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PREFACE

Interest in the field of parallel processing continues to climb. This trend is evidenced by the sharp
increase in papers submitted to the International Conference on Parallel Processing during recent years:

Papers Papers
Year Submitted  Accepted Percent
1980 170 65 57
1983 240 136 57
1986 400 170 43
1987 487 174 36
1988 590 173 29

Although the number of submissions continues to increase, the number of accepted papers this year and
in the past two years has remained relatively unchanged. This is due to the limitation imposed by the fixed
number of hours available for the conference. As a result, a record number of papers had to be rejected. This
year, the conference proceedings is being published in three volumes according to the subject category. The
breakdown of submissions and acceptances in the three main categories of this conference is as follows:

Papers Papers
Category Submitted  Accepted Percent
Architecture 264 74 28
Software 144 43 30
Algorithms and Applications 182 56 31

Of the 173 papers that were accepted, 79 were accepted as regular papers and 94 were accepted as short papers.
Many papers that normally would have been accepted as long papers were accepted as short papers in order to
meet the maximum number of paper-sessions allotted for the conference.

Finding sufficient numbers of qualified reviewers was a particularly challenging task this year, due to the
record number of submissions. Over 1,000 professionals in the field participated in this process. This year the
process of selecting referees was simplified by the use of questionnaires, which were mailed to previous
participants in the conference. The information on the completed questionnaires was entered into databases,
which then allowed the conference chairmen to select reviewers qualified in fairly specialized fields. Even so,
numerous papers were so highly specialized that custom selection of referees was still required. It appears that
an even more detailed breakdown of specializations will be needed for these questionnaires in the future.
Greater effort will also be required in the future to find additional reviewers to match the increasing numbers of
submissions.

I wish to thank the management of the Xerox Palo Alto Research Center for providing me the
opportunity to co-chair the [CPP88 program. I also thank Prof. Tse-yun Feng, my immediate supervisors Dr.
John White and Dr.Robert Ritchie, and my colleagues in the Computer Science Laboratory for their support and
encouragement. Finally, | offer special thanks to my Secretary Kathi Anderson; this project would have been
impossible without her assistance.

Howard E. Sturgis

Program Co-chair

Xerox Palo Alto Research Center
Palo Alto, California 94304
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Parallelism in Connection-Graph;Based Logic Inference

Jie-Yong Juang and Ting-Lu Huang
Dept. of Electrical Engineering & Computer Science
Northwestern University
Evanston, Illinois 60208
Tel: (312) 491-7103

Abstract:

In this paper, we investigate the parallelism that
can be achieved by concurrent resolution on a predicate
connection graph. Predicate connection graphs provide
a sound basis for parallel logic inference. However,
unrestricted concurrent resolution on this graph may
lead to logical inconsistency. This seems to contradict
the completeness theorem of the resolution principle and
the common belief of independence in parallel resolu-
tion. Using Bernstein conditions, logical inconsistency is
found to be a problem of out-of-sequence manipulations
of the connection graph. Thus, to prevent logical incon--

sistency, two resolutions must be executed in a sequen-’

tial order if there is an overlap in the parts of graph
they manipulate. Only limited parallelism is possible in
this case due to the large extent of snowball effect. For-
tunately, we have shown that precedence constraints
between two resolutions can be relaxed. This property
allows the proposed lock-and-withdraw synchronization
scheme to exploit a high parallelism at its level of
abstraction. To reduce synchronization overhead, we
have also proposed a graph partitioning approach. In
this approach, synchronization is necessary only when a
resolution involves boundary clauses. Since each sub-
graph of a partition can be distributed among memory
banks evenly, memory conflicts can also be minimized
usiig the partitioning approach. For message-based

multiprocessors such as the hypercube, we suggest that-

graph updates across the partition boundary be stored
and re-constructed when each part of the subgraph is to
be used. This approach can further minimize time-
consuming message-based synchronization.

1. Introduction

Resolution has been the basis of logic inference
since its first introduction in 1965 [13]. However, its
execution on today’s computers is too slow to be
effective, primarily due to the long resolution cycle time
and to exponential complexity. Although exponential
explosion remains unavoidable, connection—graph-bas'ed
resolution procedures have been shown to be a promis-
ing solution [3, 8, 14]. Such procedures organize the
input clauses of a problem formulation into a predicate
connection graph [9] which offers several distinct advan-
tages over previous approaches. First, once the connec-
tion graph is constructed all information regarding
tesolvable literals is maintained, and therefore no
further searching for wunifiable clauses is needed.
Second, a link is deleted after it is resolved. Its parent
clauses and associated links can also be deleted if the
removal of the link results in a pure literal. Such dele-
tions can continue for all the adjacent clauses, and leads

to a snowball effect that causes a rapid reduction of the.

graph. Third, unlike AND/OR-tree-based inference pro-
cedures [10] in which the search space is built up gradu-

This material is based upon research supported by
U S West Advanced Technologies, Englewood, Colorado

1988 International Conference on Parallel Processing

Ed Freeman
U S West Advanced Technologies
6200 South Quebec Street
Englewood, Colorado 80111
Tel: (303) 889-6036

ally as the inference proceeds, the whole search space of
a connection-graph-based procedure is known. This can
better facilitate the implementation of various problem-
solving strategies such as subsumption [7], paramodula-
tion [16], ete. The presence of the complete search

‘space also provides a sound basis for parallel logic infer-

task distribution can be done

ence since
effectively.

Rapid deletion of unnecessary clauses and links
helps keep a connection graph concise. As a result,
non-determinism is reduced, useless resolutions [17] can
be minimized, and the procedure is less likely to
explode. Nevertheless, the deletion may cause logical
inconsistency when links are resolved concurrently
without careful coordination. Logical inconsistency is a
problem in which an unsatisfiable clause set is falsely
changed to a satisfiable one [4]. Consequently, subse-
quent resolutions will not lead to an empty clause, and
the inference will fail to find the correct answer (as it
would be able to if the logical inconsistency had not
occurred). Thus, proper synchronization is necessary in
connection-graph-based parallel logic inference pro-
cedures. ‘

In this paper, we examine the parallelism achiev-
able in connection-graph-based inference procedures
according to Bernstein conditions.. This allows us to
design better connection-graph-based parallel logic infer-
ence procedures for different architectures using different
synchronization mechanisms. A review of connection
graph resolution procedure is given in Section 2. We
will then describe the logical consistency problem fol-
lowed by a summary of solutions found in the literature.
In Section 4, Bernstein conditions are applied to explain’
why logical inconsistency occurs. We then describe how
parallelism can be fully exploited under different types
of conditions. Finally, we describe how one might
design more efficient and practical connection-graph-
based parallel logic inference procedures.

more

2. Logic Inference Based on Connection Graphs

A predicate connection graph of an input clause set
can be constructed as follows: each literal of a clause in
the input clause set is represented by a node in the
graph, and the nodes representing literals of a clause are
grouped together. Unification is then conducted to
match every pair of literals which have the same predi-
cate symbol and are complementary in sign. If the
unification attempt between two literals has succeeded,
then the two corresponding nodes are marked by a link
and the resulting MGU (the most general unifier) is used
to label the link. Given the clause set of Figure 9(a) in
Section 6, its corresponding connection graph is shown
in Figure 9(b). After the.connection graph is con-:
structed, a resolution procedure then repeatedly selects
a link, resolves upon it, generates the associated resol-
vent, and finally inserts this resolvent into the connec-
tion graph. This process repeats until a null resolvent is.
generated or until further resolution is impossible.



Each resolvent inherits the unifiable links from its
two parent clauses, and the new MGUs of these links
are obtained by the composition of the old MGU and
the MGU used in the current resolution. Substitution
compatibility is checked and incompatible links are not
inherited. After the resolvent and its links are gen-
erated, the link previously used to conduct the resolu-
tion is removed from the two parent clauses.

If the resolvent is not an empty clause, it is
checked for deletion due to tautology or pure literals.
Because tautologies do not positively contribute to the
inference, they can be deleted from a set of clauses
without affecting the umsatisfiability of refutation. In
connection graph, a literal becomes pure when it does
not have any link incident to it Si.e., it is an isolatefi
node). A clause containing a pure literal can not contri-
bute to a refutation because the unlinked literal can
never be resolved upon [8, 13]. Either of the parent
clause can become pure after the removal of the
resolved link. These clauses are subsequently deleted
from the connection graph.

Deletion of clauses containing pure literals is an
important feature of the connection graph resolution
procedure. In addition to the clause itself, all links con-
nected to its literals must also be deleted from the
graph. Deletion of such links, however, may cause
literals in other clauses to become disconnected. Thus
deletion of clauses can create a snowball effect such that
‘a succession of clauses is deleted from the graph. Dele-
tion of clauses simplifies the connection graph, reduces
the search space, and makes it easier to find a solution.

3. Examples of Logical Inconsistency

Sequential resolution upon links in a predicate con-
nection graph has been shown to be sound and con-
sistent (8, 14, 151]. Nevertheless, as identified in the
literature, parallel resolutions on such a graph often
result in logical inconsistency [5, 11]. That is, during a
parallel inference, these procedures may change an
unsatisfiable clause set into a satisfiable one. As a
result, subsequent resolution lead to an empty set
instead of to an empty clause. No answer can be derived
from the result. This contradicts the soundness and

completeness of the resolution principle [4]. To provide

better insight into the problem, we illustrate how it can
occur using the following examples.

3.1 Ezample 1

A connection graph of four clauses is shown in Fig-
ure 1. Resolutions are performed upon the graph by
two processors concurrently. Processor 1 is resolving on
Link 1, and Processor 2 is resolving on Link 2. After
the resolvents e and f are generated, the two resolved
links are removed from the graph, and both processors
try to establish links for the new clauses. Processor 1
finds no link to be inherited from Clause a. It then con-
sults Clause b, and sees a single link incident to Clause
b, i.e., Link 6. So, it connects Clause e to Clause c via
a new link (Link 4). Since the two processors run con-
currently, the new link may be established after Proces-
sor 2 has consulted Clause c¢. In this case, Processor 2
will be aware the existence of the new link, and Clause f
is thus connected to Clause b only. Should Processor 2
have examined Clause ¢ after Processor 1 had connected
its resolvent to Clause ¢, Clause f would have inherited
two links from ¢, namely Links 3 and 5. . '

Link 5 plays an important role in the subsequent
resolutions. Removing Links 1 and 2 leaves literals R
and S disconnected. Then, Clauses a, b, ¢ and d are

deleted and Links 3, 4 and 6 are removed. Without
Link 5, Clauses e and f will become pure, and finally be
deleted. The final result for the inference on this ver-
sion of the graph is an empty set which means the origi-
nal clause set is logically satisfiable. On the contrary, if
Link 5 were established, the final result would be an
empty clause which implies that the original clause set
is unsatisfiable. Such a contradiction is a result of logi-
cal inconsistency.

3.2 Example 2

One may speculate that logical inconsistency in the
previous example is due to the close proximity of the
two links being resolved upon. In this example, we will
see that resolutions upon two links that are far apart
may also cause logical inconsistency. The input in this
example consists of those darkly-circled clauses in Fig-
ure 2. Resolutions on Link 3 and Link 7 are performed
by two processors concurrently. Resolvents, Clause c
and Clause j, have just been generated, but not yet con-
nected. Both Links 3 and 7 were deleted. Now, an
attempt to inherit Link 6 for Clause j failed due to an
incompatible substitution (i.e., Clause g and Clause j
can not be unified because b =2¢d). The failure fires a
snowball effect, and Clause i, j, h, g, f and b are deleted
in sequence. Then, Clause a is checked for pure literals.
If the resolvent, Clause ¢, has not been connected to
literal S(x) at this moment, all the clauses will be
deleted. The result is an empty set. If link 9 has been
established before the snowball effect propagates to
Clause a, then the resulting clause set would consists of
three clauses, Clause a, Clause ¢ and Clause d. Subse-
quent resolutions will bring this clause set to an empty
clause. Thus, Link 9 is crucial in this example. A logi-
cal inconsistency occurs if it can not be established in
time.

Figure 1. A parallel resolution procedure fails to estab-
lish link 5, and results in logical inconsistency
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Figure 2. A snowball effect of deleting clauses with pure
literals interferes with a concurrent resolution,
and may cause logical inconsistency
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3.3 Previous work

It has been speculated that the logical inconsistency
problem stems from concurrent resolutions on links that
are too close to each other. In his dissertation,
Loganantharaj proved that two resolutions upon two
links can be done concurrently if their respective parent
clauses are not mutually connected [11]. He called this
condition a dcdp parallelism in comparison with AND
parallelism and OR parallelism. He then proposed a
graph-coloring method to divide the links in the graph
into disjoint sets so that multiple resolutions in the
same set can be done concurrently without running into
the danger of logical inconsistency. There are two
drawbacks in this approach. First, overhead is high due
to the high complexity of graph coloring. Second, dedp
parallelism is also prone to logical inconsistency when
incompatible MGU substitution occurs during link
inheritance. Incompatible substitution is common and
can start up a snowball effect as shown in the second
example above.

4. What Leads to Logical Inconsistency?

4.1 Independence in resolution principle

According to. the completeness theorem of resolu-
tion principle tl], links should be allowed to resolve
upon in an arbitrary order and still obtain a correct
result (provided that no particular link is indefinitely
excluded from being selected) [16]. The order should
affect only the number of resolution cycles incurs in an
inference process, which means that some procedures
will take longer than others to finish. This property
implies that resolutions upon different links are indepen-
dent. In other words, the resolution principle imposes
‘no precedence constraint on any two resolutions. Since
parallel processing also asserts the principle that two
independent operations should be capable of being per-
formed concurrently without synchronization. Why
does logical inconsistency occur when parallel resolu-
tions are performed on two links in a close proximity?
Furthermore, how close can two clauses be without risk-
ing the danger of having parallel resolution result in
logical inconsistency? It is the objeetive of this paper to
provide some insights into the problem of logical incon-
sistency.

4.2 Why does logical inconsistency occur?

To investigate why logical inconsistency occurs in a
connection-graph-based resolution procedure, we should
examine the differences between it and more conven-
tional approaches.

In a conventional resolution procedure, the pair of
unifiable clauses to be resolved upon is selected from the
clause set using a search procedure. Once the pair of

clauses is determined, the resolution is performed as an.

indivisible operation. No other processors will cut in
and interfere the resolution. The indivisible resolution
is possible primarily due to the way the clause set is
organized. The clause set is not structured. It is simply
a collection of clauses. A clause can be added to the set

or duplicated without affecting the unsatisfiability of the.

set. Clauses are deleted from the set by a separated
pruning procedure. Thus, resolutions can be done
independent of the clause set once two parent clauses
are determined. Although the resolution may be tem-
porarily suspended by interrupts to the processor exe-
cuting it, its process context will not be changed by
other processors. There is no problem for two proces-
sors to work-on the same clause either since the clause
can be duplicated and used as a read-only object.

The story is quite different in a connection-graph-
based parallel resolution procedure. Searching for
unifiable clauses is eliminated by imposing a connection
graph over the clause set. The connection graph is a
data structure shared among all the participating pro-
cessors. Concurrent updates to a shared data structure
involve important synchronization issues. Moreover,
clause pruning is done in companion with each resolu-
tion. The engagement of resolution and clause deletion
make graph updates more complicated.

In short, the connection graph approach plays two
important roles in: (1) it eliminates the need to search
for unifiable clauses, and SZ) it deletes redundant
clauses. Consequently, a resolution depends heavily on
the graph. It includes several steps of graph manipula-
tion, e.g., link inheritance and deletion of puré-literal
clauses as we have seen in Section 2. A resolution pro-
cess becomes vulnerable when its connection graph is
arbitrarily changed before resolution has been com-
pleted.

5. Parallelism in Concurrent Resolutions

5.1 Bernstein conditions

A set of conditions that are necessary to guard a
shared object against malicious access was proposed by
Bernstein, and is commonly known as Bernstein condi-
tions. It has been shown that data consistency can be
maintained as long as Bernstein conditions are
satisfied [2, 6].

Since parallelizing a sequential process may change
the order of execution, accesses to data may also
become out of order. An out-of-order access may result
in data inconsistency. For example, assume that a data
element is read before it is written in a sequential execu-
tion. A corresponding parallel execution would be
incorrect if it changed the order of access to be a write
and then a read. Thus, if a shared data is involved, cer-
tain order must be preserved for a correct parallel exe-
cution. This observation leads to the formulation of
Bernstein conditions.

Bernstein Conditions:
Let D; and R; be the domain and range of an opera-
tion, say P;, respectively. Then, two operations P;
and P; can be executed concurrently if the follow-
ing conditions are satisfied:

(L)DNR; = ¢

“Nothing in the domain of P; can be in the
range of P}’

(2)RND; = ¢

“Nothing in the range of P; can be in the
domain of P}’

B)RNOR; =9
“Nothing in the range of P; can be in the range®
of P;”

These cénditions exclude the possibility of executing
two operations concurrently unless no shared data is
involved or the data is used without modification. Usu-
ally, the terms “‘domain” and “input” are interchange-
able, and so are the ‘“‘range” and “output”.

Bernstein conditions are a set of general constraints
valid for all types of parallel processing, and
connection-graph-based parallel logic inference is only a
special case of parallel processing. Therefore, logical
inconsistency due to the false manipulation of links in a



connection graph can be avoided if Bernstein conditions
are satisfied during all parallel operations.

With the Bernstein conditions, we can re-examine
why logical inconsistency occurred in the previous exam-
ples. In the first example, two resolutions were carried
out by two processors concurrently. When the first pro-
cessor tried to establish links for its resolvent (i.e.,
Clause e), it took Clause b and Link 6 as inputs and
made Clause ¢ and the new link its outputs.
Meanwhile, Clause ¢ and clause b were members of the
second processor’s input and output sets respectively.
Concurrent execution of these two resolutions violates
two of the Bernstein conditions, i.e.,

R;MD, = {Clause c}
D;NRy = {Clause b}

Note that although Link 6 is in the domains of both
resolutions, it does not violate any Bernstein condition.
Thus, it is not the link that causes logical inconsistency
problem.

In the second example, logical inconsistency is due
to the fact that Clause a appears in the range of the
link-inheritance operation being performed by processor
1 and in the range of the snowball effect being pro-
pagated by another processor.

5.2 Precedence constraints on connection-graph resolu-
tion

As described in Section 2, a resolution cycle
involves consists of five major steps. The domain and
range of each step are summarized in Table 1. Depen-
dence relation of these steps can be established by veri-
fying their input and output against Bernstein condi-
tions. A precedence graph summarizing the dependence
relation is shown in Figure 3. Steps that can be done in
parallel are represented as different paths in the graph.
According to this graph, the parallelism between these

resolution steps is limited since there are only two paral-’

lel paths. Thus, it is reasonable to treat a resolution
cycle as a basic scheduling unit in task assignments.
However, we don't include the possible implementation

Step Operation Domain (Input) | Range (Output)
1 Generates resolvent | Parents, Link New clause
2 Tautology check Resolvent Resolvent
3 Link inheritance Parents, Links, | Neighbors,Links,
Neighbors Resolvent
4 Link removal Link, Parents Link, Parents
5 Clause deletion Entire graph Entire graph

Table 1. Domain and range of resolution steps in a reso-
lution cycle

of finer-grained parallelism at lower-level abstrac-
tion [11] For example, the unification procedure in the
step of resolvent generation can be parallelized. Also,
the parallelism within the step of clause deletion is sub-
stantial since multiple clauses can be deleted con-
currently. We will further elaborate this point later in
this section.

Note that the removal of the resolved link can be
done either before or after tautology check and link
inheritance. The order of these steps, however, may be
crucial under certain circumstances. In Example 2

1

Removes
resolved link

5 Resolvent
elates deleted
pure-literal

clause

Snowball
propagation

Figure 3. Precedence graph of resolution steps in a reso-
lution cycle

above, for instance, if Link 3 were not removed before
link inheritance was done, the propagation of clause
deletion would stop at b. Logical inconsistency would
not have occurred in that case. ’

We now examine the dependence relation between
resolutions by treating a resolution cycle as a task unit.
In the first example in Section 3, the two links resolved
upon are at a distance of two hops apart. The two reso-
lutions are designated as L and R respectively, and their
steps are labeled by L; and R; for i=1,2,...5 for conveni-
ence. Because the completeness only guarantees that
sequential execution of L before R or R before L is
correct, it does not guarantee a correct result if I; and
R; are interleaved. Therefore we must start from the
sequential order of Ly,...Ls, Ry,...,Rs (or Ry, ..., R,
Ly, ..., Ls) and then try to explore possible parallelism
from there based on Bernstein conditions.

The input and output of a resolution step are
represented in a form of [inputs/outputs]. An overlap
of input/output between steps of L and R is represented
by a set {..}. If an overlap is not empty, the two
operations can not be executed in parallel since it will
violate Bernstein conditions. Thus, a precedence con-
straint (represented by an arrow) must be imposed. For
example, Clause b is in the input of L; and in the out-
put of Rs. So, an arrow between L; and Rj is intro-
duced, and it is labeled with {b}. The direction of the
arrow is from L to R if L is executed before R in sequen-
tial resolution, and from R to L if R is executed before
L. Once the order is determined all the other arrows
will be in the same direction. Similarly, we can add the
following arrows: Lg to Ry labeled with {c}, Lz to Rg
labeled with {b,c}, L3 to R; labeled with {c,4,6}, L5’ to
R labeled with {b,3,6}, and Ly to Rg labeled with
{6}. These arrows represent the set of dependence con-
straints for a parallel resolution of L. and R. A pre-
cedence graph summarizing these dependence con-
straints is given in Figure 4.

According to the resulting precedence graph, R,
can not be executed before Lg is finished, and Rz must
be executed after Ly . These two dependence con-
straints are so strong that only R, and R, can be exe-
cuted in parallel with L. Unconstrained execution of L
and R in parallel can run into logical inconsistency
problem easily. This explains why two links to be
resolved upon concurrently should not be in close prox-
imity. ,

The second example shown in Figure 2 has a longer
distance between the two links being resolved upon.
We can also derive a precedence graph for the two reso-
lutions. The result is shown in Figure 5. In this figure,
we can see several arrows pointing from L s to Rs.
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Figure 4. Precedence graph of the two concurrent reso-
lutions in example 1

These precedence constraints protect the resolution L
from being interfered with by a snowball effect originat-
ing from a remote link. The precedence graph also
demonstrates that two concurrent resolutions far apart
can also lead to logical inconsistency.

The above precedence graphs were derived by
strictly following Bernstein conditions with a simple
description of clauses and links (i.e. a,b,... for clauses
and 1,2,... for links). As a matter of fact, the depen-
dence constraints can be relaxed. If the data structures
representing a clause and its associated links are
separately maintained, adding and deleting a link will
not modify the clause itself. Thus, a link can be added
to or deleted from a clause even when the clause is
being used for generating a new clause. The separation
of links from clauses makes it possible to relax the
dependence constraints L;—Rs, Lg—R,;, Lg—R, and
L,—R; in Figure 4.

In the next section, we will show that clause dele-
tion blocked by another resolution can be resumed
automatically. We will also show that adding an inher-
ited link to a clause will not prohibit the clause from
being deleted. Therefore, link inheritance can be done
in parallel with clause deletion, and the two arrows ori-
ginating from Lg in Figure 4 can be removed.

Furthermore, Ls—R; is implied by L;—Rj5 due to transi-
tivity, therefore it can be removed. The only pre-
cedence constraints left now is Lgy—Rg. This says that
link inheritance is the only vulnerable step in a resolu-
tion cycle that has to be protected.

5.8 Parallelism in snowball propagation

Potential scope of a snowball effect is unlimited. It
may affect the entire graph. To ensure a correct pre-
cedence, it requires all of the clauses in the graph to be
reserved before clause deletion can start. If we did this
however, the resulting resolution procedure would
become purely sequential if one does. Fortunately, the
following theorems show that clause deletion can be
done one by one. In the case where the propagation of
clause deletion is blocked by another resolution, the
deletion process can subsequently it can be resumed by
the resolution that stopped it. From a processor point
of view, this is a very nice property because it can ter-
minates its deletion procedure whenever the procedure
is blocked. The three theorems are summarized and
proved below.

@[b.e,Qlc]

le/e] (i1}

[a,b.c,2/ ([g,h.6/
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Figure 5. Precedence graph of the two concurrent reso-
lutions in example 2

For convenience, the following terms are defined.
Let cq,c9, ..., ¢k be a set of clauses. If ¢;,; is con-
nected to ¢; by a link (cj,¢;;) such that (cjc;y,) is an
unique link incident to a literal in ¢;,;, then such a link
is called a D-link from c; to ¢;,;. Accordingly, a literal
becomes pure if the D-link incident to it is removed,
and the clause containing it can be deleted. If, for all i
(1<i<k), ¢; and ¢;,; are connected by a D-link, then
ciCy* v ¢ is called a snowball stream. A snowball
stream is a path along which clauses can be deleted suc-
cessively due to pure literals.

Obviously, if two snowball streams do not inter-
sect, then no precedence constraint exists between
clause deletion in each of them. Thus, concurrent
clause deletion is possible. If two snowball streams do
intersect, then they are dependent. The first theorem
below characterizes the concurrent clause deletion in
such a case.

‘Theorem 1:

Clause deletion can be done concurrently along

multiple snowball streams even when they merge at

some points
<Proof> :
Two snowball streams may merge at a clause. in
two different ways. They can meet either at the
same literal (e.g.,"S; and S, in Figure 6) or be
incident to different literals é.g., S; and S, in Fig-
ure 6). The former is called an “AND” type of
merge, and the latter is called an “OR” type for
convenience. In a sequential resolution, clause dele-
tion coming from a single stream of an OR merge
will propagate immediately to'_all down stream
paths since the merging clause will be deleted and
the first clause of each down stream becomes pure.



For an AND merge, all incident links must be
removed before a snowball effect can propagate to
down stream paths.

Now consider concurrent clause deletion propagat-
ing from multiple streams. Clause deletion from an
OR stream will remove an incident D-link and
cause a pure literal. The merging clause will be
deleted. Deleting the merging clause will fire a
snowball effect to all the down stream paths, and
remove all the incident D-links. No clauses will be
left undeleted since all the rest can propagate up to
their D-links incident to the clause. In case an
incident D-link of an AND stream is removed first,
it may reserved the merging clause, and block an
OR stream from propagating snowball effects to
down stream paths. However, in spite of being
blocked, deletion from an OR stream will remove
its D-link and leave a pure literal in the merging
clause. The deletion procedure from the AND
stream will check for pure literal after it removes
the incident D-link. Therefore, the down-stream
clauses will always be deleted as they should
regardless the type of merge at a given clause.
And, snowball propagations upstream do not inter-
fere with each other. Thus, deletion of clauses con-
taining pure literals can be done concurrently.

~ .\;\. N

o
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A B C D
{ Notation:
T1 o 72 A D-link,
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./ the direction of snow-
/\ ball propagation
/o /\ ‘\

Figure 6. Merging and branching of multiple snowball
streams

Now consider the dependence between clause deletion

and a resolution. It can be characterized by the next

theorem.

Theorem 2:
Let c;cy...cx be a snowball stream, and (c;,¢;;,) be a
D-link between ¢; and ¢;, ;. A resolution performed
on Jhe D-link (ci,ciH) will cause either (1) the
stream to _be re-configured to a new stream
C1Cg * * * Ci_1CiCitg * * * Ck, Where ¢; is the resolvent,
or (2) the stream to be broken into two streams
with the first clause in the down stream containing
a pure literal.

<Proof>
Consider the situation after the resolvent ¢; has
been generated. The resolvent is subject to tautol-
ogy check. If tautology is detected, then the resol-
vent is deleted, otherwise it is eligible to inherit
(¢i_1,¢;) as an incoming D-link-and (cj,,¢i0) as an
outgoing D-link. There are two possibilities in this
case: both links are inherited guccessfully or at least
one of them is incompatible. In case the resolvent is
not a tautology and both links are inherited suec-
cessfully, the snowball stream is reconnected. For
the rest, the snowball stream is broken. These

Upstream

Inherited
links

Resolvent

Inherited
links

Down stream /

Figure 7. Reconnection of a snowball stream due to a

resolution on the path

phenomena are examined respectively below.

(1) The resolvent is not of tautology, and both links
are inherited successfully:

The literal in ¢j,5 to which the new outgoing link
incident was singularly connected by the D-link
(¢i41:Cipe) on the original snowball stream. Since
the resolved link is a D-link, Clause ¢;,; will con-
tain a pure literal and be deleted after the removal
of the resolved link. Together with it, the D-link
(¢iy1,Ciye) Will also be removed. The literal will
again become singularly connected by the new link
C;sCi4o) only. Thus, the new link is a D-link. On
the other hand, the incoming link is also a D-link.
This is because the resolvent is formed by removing
the two complimentary literals connected by the
resolved link from the concatenation of the two
parents, and the new inherited link is connected to
the literal of the same predicate symbol that the
original D-link is connected to. Since the resolvent
¢; is connected to ¢;_; and c¢;_, via a D-link respec-
tively, a new snowball stream
€13Cgy * * * €i_1,CisCipay * * * € Is established. The ori-
ginal snowball stream is broken after the removal-
of ¢, and its associated links. Figure 7 illustrates
the above reconnection, in which ¢;_;,c;c;, and ¢; o
are labeled as Clauses a, b, ¢, and d respectively,
and the resolvent ¢; is shown in shade with a label

e.

(2) The resolvent is of tautology or either link is
incompatible:

If the resolvent is deleted due to tautology, then no
new link is to be added to the graph. Clause ¢;
and its associated links are to be deleted since the
literal connected by the resolved link becomes pure.
Thus the snowball stream is broken into two seg-

.ments: ¢y,¢y, * * * ¢; and ¢;,q, * * * ¢;. The literal in

Ci1o that was connected by (c;,q,¢i,0) becomes pure
since the link is a D-link and is removed when ¢;,
is deleted. Now, if the resolvent is not deleted, but
the D-link (¢;_;,¢;) is not inherited successfully, then
the snowball stream is also broken. It can be
shown using similar arguments to the above that
the first half terminates at c¢; and the second half
starts from the resolvent. If it is the D-link
(¢ir1Ci4o) that is not inherited successfully, then the
first half terminates at ¢; and the second one starts



from ¢, Figure 8 illustrates this case. The
related clauses are labeled in the same way as in
Figure 7. The case in which both links are incom-
patible follows directly from the two cases above.
The above theorem states that a snowball stream is
either reconfigured or broken after a resolution is

performed on it. In the latter case, the first clause of.

the second segment always contains a pure literal: This
implies that all the clauses in the down stream path will
be deleted due to a snowball effect. The first half will
not be affected by the resolution in any case. It may be
deleted by some other resolution upstream, or it may
remain there if no resolution upstream is done. But,
what happens if a propagating snowball effect is blocked
by a resolution? Will the rest of the clauses be deleted
as they should were the propagation not blocked? The
following theorem answers this question.

Theorem 3:

When a propagating snowball effect is blocked by a

resolution being performed on a D-link in the mid-

dle of a stream, it will be resumed by the blocking

resolution.
<Proof>

Again we assume that a resolution is performed on
the link (cj¢i;q). Since only two clauses in the
upstream will possibly be reserved during resolu-
tion, the coming snowball may be blocked either at
¢, or at ¢; depending on which step of the resolu-
tion is being executed. If it stops at ¢; then c;,
must have been deleted. In this case, the resolution
proceeds as though ¢;_; does not exist and ¢; con-
tains a pure literal. The resolvent will also con-
tains a pure literal because it is derived from c;.
Thus, no matter how the snowball stream is broken
or reconnected, the down-stream clauses will be
deleted when the resolution starts its next step of
clause deletion. However, the resolution will not
check ¢;_; for deletion in its original form. If the
incoming snowball is blocked at ¢;_;, it may not be
re-started by the current resolution. Fortunately,
this can be taken care of by a simple extension
which detects pure literals for those clauses
reserved for link inheritance.

In summary, the three theorems above indicate
that clauses that are supposed to be deleted due to
snowball effect will always be deleted wether snowball
effect propagation is interfered with by another pro-
pagating snowball or disrupted by a resolution. Propa-
gation can be done by reserving clauses one step at a
time. No global reservation is needed. The processor
executing it can simply leaves the propagation to others
without waiting for the reserved clauses to become
available.

6. Architecture Support for Parallel Resolution

As mutual exclusion is necessary for enforcing pre-
cedence constraints, a resolution must enter a critical
section whenever it intends to operate on the connection
graph. To do so, a protocol that requests for the
permission must be provided. In this section, several
approaches are suggested.

6.1. Lock and Warit or Lock and Withdraw

‘The lock and wait approach is the concept behind
many synchronization protocols for ecritical section
management [12]. However, a lock and wait scheme
may run into deadlock. Consider two concurrent resolu-
tions, each locks one clause and tries to reserve another
that happens to be locked by the other resolution. The

Inherited +

D-link

e
(B(x) -D(a)}

Resolvent \

i Subgraph

Clause deleted

ved

Figure 8. A resolution on the path of a snowball stream
breaks the stream into two segments

two resolutions will wait for each other to release locked
clauses forever, and thus a deadlock occurs.

Deadlock can be avoided by using a lock and with-
draw scheme. That is, a resolution cycle will be aborted
if not all of the required input and outputs are avail-
able. Those clauses that are locked will be released if a
resolution is aborted. The released clauses can be
claimed by resolution being performed by other proces-
sors right away. Thus, no deadlock is possible.
Nevertheless, after a resolution is aborted, the graph has
to be recovered. This may not always be possible.
Moreover, a recovery discards all the work that was par-
tially done. Computation power is wasted in this case.
For these reason, the feasibility and efficiency of a lock
and withdraw scheme has to be examined.

If either of the two parent clauses of a resolution is
found to be locked by another resolution on a nearby
link, the resolution can be aborted without any problem
since nothing has been done yet. The processor can
select another link to work on. When a resolvent is
newly generated, no link has been established. No lock-
ing is necessary in checking tautology. As we can see
from Table 1, the first two steps do not modify the con-
nection graph, while the last three steps mainly deal
with graph updates. Therefore, when locking fails for
step 3, the resolution cycle can also be aborted simply
by deleting the unlinked resolvent. Furthermore, we
have also shown above that early termination of a snow-
ball propagation will not introduce any new complica-
tions either. Thus, it would appear that a lock and
withdraw scheme can be effectively applied to the mani-
pulation of connection graphs without any identifiable
side effects.

6.2 Graph partitioning

The locking schemes discussed above require that
inputs and outputs in every step of resolution are
reserved. This requirement presents a nontrivial over-
head. The overhead can be substantially reduced by
partitioning the connection graph.

The connection graph can be partitioned into as
many subgraph as the number of processors available
(see Figure 9(b)). Each processor will work primarily on



one subgraph. The partition is adjusted dynamically
during inference by moving clauses from one subgraph
to another as it is needed. For example, if a clause is
disconnected from any clause in the same subgraph,
then it means it can not be resolved locally. Under such
circumstances, the clause has to be sent to another sub-
graph which has links to it. The migration of clause
may also be determined based on the usefulness of the
clauses in a subgraph. A migration may be desirable if a
clause is more useful in another subgraph. A conceptual
clustering scheme that governs graph partitioning and
clause migration has been developed and description of
the framework can be found in [7

With dynamic graph partitioning, two resolutions
are automatically separated by partition a boundary.
There is no danger of overlapping their inputs and out-
puts except for those clauses near the partition boun-
daries. Thus, synchronization is needed only when a
resolution involves boundary clauses. Since subgraphs
can be distributed evenly across different memory banks
to diversify memory accesses, this approach may also
minimize memory conflicts in a shared-memory MIMD
multiprocessor. Memory conflicts is one of the major
problems that degrade the performance of such MIMD
systems.

6.3 Store and Reconstruction

As a matter of fact, no synchronization is necessary
if a proper data structure is established for the links
across the partition boundary. The trick is to store all
of the changes to a graph locally, and re-construct the
part that is to be used. This approach is especially use-
ful in a message-based multiprocessor in which locking
across machine boundaries requires sending messages
back and forth. Message passing is time-consuming,
and should always be minimized.

7. Concluding Remarks

In this paper, we have investigated the parallelism
that can be achieved by parallel resolutions on a predi-
cate connection graph. Elimination of searching for
unifiable clauses makes a connection-graph-based resolu-
tion procedure superior to conventional approaches.
With a connection graph, the entire search space is
available and is maintained in a well-structured graph.
The graph is also kept concise due to the snowball effect
of deleting clauses with pure literals. Because of these
properties, a connection graph provides a sound basis
for parallel logic inference. However, unrestricted paral-
lel resolutions upon the graph may lead to logical incon-
sistency. This seems to contradict the completeness
theorem of logic resolution and the common belief of
independence in parallel resolution. Using Bernstein
conditions, logical inconsistency is found to be a prob-
lem of concurrent manipulations on the connection
graph. We have also shown that precedence constraints
between two resolutions can be relaxed. Especially, pro-
pagation of a snowball effect can be terminated when it
is blocked by a resolution. This property allows the
proposed lock-and-withdraw synchronization scheme to
achieve a higher parallelism at its level of abstraction.
To further reduce synchronization overhead and
memory conflicts, we proposed a graph partitioning
approach. For message-based multiprocessors such as
the hypercube, we suggest that graph updates across the
partition boundaries be stored and re-constructed only
when that part of subgraph is to -be used. This

approach can reduce time-consuming message-based’

synchronization.
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Figure 9. Partitioning a connection graph for parallel

resolution
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Abstract — A parallel execution model for the parallel logic language
Parlog is described. The model is targeted to non-shared memory
multiprocessors. It addresses two important issues in Parlog
implementation: the logical variable, which provides a restricted form of
global address space, and the control call, a primitive that permits
programs to control and monitor subtasks executing other programs.
Distributed unification algorithms are described that permit processes
located on different nodes to communicate using shared variables.
Alternative distributed unification algorithms permit termination and
deadlock detection in distributed tasks at the cost of additional
communications. A prototype parallel implementation of Parlog based
on this model is being used to investigate its efficiency and refine its
design.

Introduction

The parallel logic language Parlog [1] is a simple and elegant
process-oriented language. Parlog programs describe systems of light-
weight processes which execute concurrently, communicate using shared
logical variables and synchronize using dataflow constraints. Parlog
programs also have a declarative reading as sentences of predicate logic.
This facilitates analysis and understanding of programs. The language has
been used in applications as diverse as simulation, theorem proving and
process control.

Parallel logic languages such as Parlog have much in common with
dataflow and functional languages. It might hence appear that similar
techniques can be applied to achieve efficient parallel implementations.
However, a parallel implementation of Parlog must deal with two sources
of complexity not encountered in functional languages. The first is its
logical variable, which introduces some of the problems associated with
shared data in a parallel environment. The second is the control call, a
primitive that permits a Parlog program to control or detect termination
of another program's execution. This introduces a need for distributed
control and termination detection mechanisms in an implementation.

Taylor et al. [9] propose an elegant solution to the first problem, in
the context of the related language FCP. They represent variables that are
shared by processes located on two or more nodes by a single occurrence
of the variable and multiple remote references to it. An attempt to access
a variable represented by a remote reference is translated into a
communication to the node on which the variable is located. These
communications are encoded in distributed unification algorithms.

A similar approach can be used to implement shared variables in a
parallel implementation of Parlog. However, semantic differences
between Parlog and FCP mean that different distributed unification
algorithms are required. Distributed unification algorithms for Parlog are
described in this paper.

The complexity of the control call discourages a direct
implementation of its functionality. It is shown in this paper that its

distributed monitoring and control functions can be programmed in
Parlog, thus avoiding complexity in an implementation. Minor
extensions to the distributed unification algorithms support distributed
termination and deadlock detection.

The approach to Parlog implementation described in this paper is
targeted to non-shared-memory multiprocessors. This class of architecture
may be characterized as follows:

« a finite number of nodes, connected by a reliable communication
network

= no global storage; instead, each node has local storage

« nodes may communicate by message passing

Problems associated with shared memory communications and
unreliable communications are not considered.

Parlog
Language Overview
A Parlog program is a collection of clauses which have the form:

H « G4,...Gm : B1,...Bn. m,n =0

where H is the clause's head, '' is the commit operator and the G's and B's
are processes. Each clause can be read declaratively as: "H is true if the G's
and B's are true". Clauses with the same name and number of arguments
are grouped into procedures.

The G's comprise the guard of a clause. For simplicity, this paper
deals with the subset of Parlog in which the G's are restricted to be
predefined test operations. As full Parlog can be compiled to this subset
[6], this does not imply a lack of generality.

The following program illustrates the language.

go « producer(Xs, sync), consumer(Xs). 1
producer(Xs,sync) « Xs=[X|Xs1], producer(Xs1). C2)
consumer([X |Xs]) « X=sync, consumer(Xs). 3)

The notation [Head |Tail] denotes a list structure with a Head and
Tail. Strings beginning with uppercase letters denote variables while
those with lower case denote constants.

A call to this program:

? go.

creates two processes, producer and consumer (C1). producer
communicates a stream of messages (unique variables: X, X1, ...) to



consumer by incrementally constructing a list structure containing these
variables (C2). consumer acknowledges each such ‘communication’ by
assigning each variable it receives the value sync (C3).

Non-variable terms in Parlog clause heads define dataflow constraints:
a clause cannot be used to reduce a process until a process' arguments
match its own. In consequence, producer and consumer communicate
synchronously. consumer waits for a communication from producer;
producer then waits for the variable it has communicated to be bound to
sync.

Operational Model

The state of a Parlog computation may be represented as a process
pool. Computation proceeds by repeatedly selecting a process and
attempting to reduce it using the clauses in the associated procedure. A
reduction attempt may succeed, fail or suspend.

A process reduction comprises two phases: test and spawn.

Test phase: In the test phase, an attempt is made to find a clause
capable of reducing the process. Non-variable arguments in the heads of
all clauses are matched with corresponding process arguments and guard
tests are evaluated. Matching and guard evaluation cannot bind variables
in process arguments and suspend if applied to variable process
arguments. A clause is a candidate if both input matching and guard
evaluation succeed. If no clause is a candidate and at least one clause has
suspended, the reduction attempt suspends and the process is put back in
the process pool. If no clause is a candidate and no clause suspends, the
reduction attempt has failed. If one or more candidate clauses are found,
the reduction attempt has succeeded. A candidate clause is selected and
reduction proceeds to the spawn phase.

Spawn phase: In the spawn phase, unification operations ([hat is,
processes with the form: X = Y) in the body of the selected clause are
performed and other body goals are added to the process pool.

Unification is a recursive matching procedure that attempts to make
two terms identical, binding variables in either term if necessary. In
Parlog, it is generally used to simply assign a value to a variable.

Consider the producer procedure above (which consists of a single
clause). This can be used to reduce a producer process if the test:

Arg2 = sync

succeeds, where Arg2 represents the second argument of the process being
reduced. If Arg2 is not instantiated, this test and hence the producer
process suspend.

Assume that producer's second argument has been assigned the
value sync. The test succeeds, allowing the process to be reduced: the
unification” operation Xs = [X |Xs1] is performed and the process
producer(Xs1,X) is added to the process pool.

Implementations of Parlog generally optimize this simple operational
model by introducing a suspension structure which permits suspended
processes to be associated with variables for which they require values.
Such processes are not selected for reduction again until one of these
values becomes available. This avoids the overhead of repeatedly
selecting a suspended process for reduction.

A Parlog computation terminates when:

« the process pool is empty, in which case the computation has
succeeded.
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« areduction attempt or unification operation fails, in which case the
computation has failed.

« there are no reducible processes, yet the process pool is non-empty,
in which case the computation has deadlocked. (Because of
dataflow constraints, every process is suspended waiting for data).

Controlling Computation

An important component of the Parlog language is its control call.
A call to this primitive has the general form:

call(Module, Process, Status, Control)

It denotes the controlled execution of Process using the program
defined in Module. Another, concurrent process can subsequently
suspend, continue and abort evaluation of Process by binding Control
to a stream of messages. It can monitor its progress by inspecting
Status. This variable is bound to a stream of messages to report both
termination and run-time errors.

The control call provides Parlog with the important notion of task: a
unit of computation that may be monitored and controlled as a single
entity. The operational effect of the control call is to create a subtask or
process subpool within the process pool in which it is called.

Distributed Unification

Consider the problem of achieving a multiprocessor implementation
of Parlog in which the process pool representing a task may be distributed
over several nodes in a multiprocessor. Assume that a uniprocessor
implementation of Parlog exists on each node [3,5]. This supports
process reduction, unification and the control call. To support parallel
execution, this must be extended to provide:

distributed unification: to allow processes located on different nodes to
communicate using shared variables.

distributed control: to control and detect termination and runtime
errors in tasks distributed over several nodes.

One problem that does not need to be dealt with in an
implementation is load balancing. This is programmed in the language
using message passing.

Recall that Parlog's computational model distinguishes between test
and unification operation on variables. Assume that, as in Taylor et al.'s
FCP implementation, variables shared by processes located on several
nodes are represented by a single occurrence and several remote references
to this occurrence. In a multiprocessor, both tests and unifications can
encounter remote references. When this occurs, distributed unification
algorithms are invoked in the implementation.

The unify algorithm is applied during the spawn phase of Parlog
reduction when unification operations encounter remote references. It
generates messages to the nodes on which remote terms are located
requesting that they perform unification operations.

The read algorithm is applied during the test phase when tests
encounter remote references. A test operation applied to a remote
reference is made to suspend as if the remote reference denoted a variable.
If the reduction attempt suspends, messages are generated to request the
values of any remote terms encountered in suspending clauses. The
process is associated with these remote references in the suspension
structure; it will thus not be selected for reduction until a requested remote



value is returned. (The term 'value' is defined below).

It is useful to distinguish between strict and non-strict tests. Most
Parlog tests are strict: they suspend until all input arguments are
instantiated and then succeed or fail. For example, integer or atomic. A
few, such as Parlog's equality and inequality primitives == and =/=, are
non-strict: they can sometimes proceed when their input arguments are
variables. For example, a call X==Y is defined to succeed if its two
arguments are syntactically identical; this includes the case when they are
identical variables. A call X==Y can thus succeed when its arguments are
both variable, if they are the same variable.

Requests generated following strict and non-strict tests are
distinguished. As a strict test cannot proceed until a variable argument is
bound, it is not necessary to return the value of a remote term required by
a strict test until it is non-variable. A non-strict test, on the other hand,
needs to know if the remote term is a variable and, if so, what is its
location. (For example, a call X==Y must succeed if X and Y are remote
references to the same variable). The value of a remote term must thus be
returned immediately when required by a non-strict test, even if it is
variable. To implement this distinction, the ns_read algorithm is
defined, to be applied instead of the read algorithm when a non-strict test
encounters a remote reference.

Following sections define the read, ns_read and unify algorithms
in terms of:

*  when messages are generated, and
* what messages are generated, and
*  how messages are processed.

More detailed descriptions of the algorithms can be found in [4].

Each node in a multiprocessor is assumed to alternately perform
reduction attempts and process incoming messages. Processing a message
may generate further messages and/or modify internal data structures.
Alternation of reduction and message processing ensures that internal data
structures are not left in inconsistent states.

Messages are represented here as structured terms: read(T,F),
unify(X,T,Y), etc. The functor represents the message type; the first
subterm (T, X, etc.) is always a remote reference (that is, a {node,
location} pair) representing the destination of the message.

Messages are generated as a result of test and unification operations or
whilst processing messages. When a message is generated, it is sent to
the node referenced by its first component. A node receiving a message
examines the location referenced by this component. If this is a remote
reference, the message is forwarded: this dereferences chains of remote
references. Otherwise, the node can proceed to process the message.
Dereferencing of remote reference chains is assumed in the following
descriptions and is not mentioned explicitly.

A chain of remote references may lead a message back to its source
node, making an apparently remote operation a local operation [9]. For

clarity of presentation, the descriptions that follow ignore such special
cases. Only minor modifications to the algorithms are required to deal
with them.

Strict Tests: The read Algorithm

If a strict test requires the value of a remote term, a read message is
generated to the node indicated in the remote reference. A node receiving a
read message returns the value of a non-variable term immediately using
a value message. The value of a variable is not returned until the
variable is bound. A broadcast note is attached to the variable to record
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the pending request. It is thus necessary to check for broadcast notes
when binding variables. Pending requests are responded to with value
messages.

The value of a term is defined to be the scalar value of a constant, one
or more levels of a structure (including constant subterms and remote
references to other subterms) and a remote reference to a variable.

A value message copies the value of a term from one node to
another. A node receiving a value message replaces the remote reference
with the value and awakens any processes suspended waiting for it.
Subsequent accesses to a non-variable value do not require
communication. This copying of non-variable terms is possible because
of the single-assignment property of Parlog variables.

Note that a read message is only generated for the first process to
suspend on a particular remote reference on a particular node.

The read and value messages have the form:

read(To, From)
value(From, Value)

where To is a remote reference to the remote term (that is, a
representation of its node and location), From represents the node and
location of the original remote reference and Value is the value of the
remote term.

1. Value is available.

n1] read({n2,X},(n1,R}) n2
R B ——] X
[n2] 4 T—=—=====1
——
value({n1,R}, 12)
2. Value is not available.
ni] read({n2,X},{n1,R}) n2
R —_— X
@ | pFq--—mm—-—; -
niIR]| broadcast
note
n1 n2
R X
® | @EF4-- - X=17
[ T—
value({n1,R}, 17)

Figure 1 The read distributed unification algorithm.

Figure 1 shows two examples of remote reading. In each case, the
value of a term represented by a remote reference (represented here as {n2,
X}: that is, location X on node n2) is required by a strict test (for
example, integer(X)). The value of X is requested using a read message.
In the first example, the remote term is available (it is the integer 12) and
is returned immediately using a value message. In the second example,
the remote term is not available: location X is a variable. A broadcast
node is therefore associated with the variable (a). When this variable is
instantiated (X=17), its value is returned using a value message (b).

Non-Strict Tests: The ns_read Algorithm

If a non-strict test requires the value of a remote term, a ns_read
message is generated to the node indicated in the remote reference. If the
remote term is non-variable, its value is returned using a value message,



as before. If it is a variable, a broadcast note is attached to the variable
and a remote reference to the variable is returned in a ns_value message.
The node that initiated the request can then replace the initial remote
reference (which may have been the head of a reference chain) with this
direct remote reference. Non-strict tests that required the remote term may
then be repeated. If they still suspend, there is no need to request the
value of the remote term again. The broadcast note attached to the remote
variable means that its value will be returned as soon as the variable is
bound.

A ns_read message is generated for the first process to suspend on
a particular remote reference because of a non-strict test.

(a) U==V suspends

ni UL H---fp===2—— - X [n2
—— ~
ns_value({n1,U}, (i2.X}) i
ns_read({n2,Y},{n1,V}) !
v ——— T o Y
ns_value({n1,V},{n2,X})
(b) U==V succeeds
ni i n2
IC=H--—---- S~ I3EEx
/
'd
VEH---~

Figure 2 The ns_read distributed unification algorithm.

Figure 2 illustrates the use of ns_read and ns_value messages. In
(a), a non-strict test U==V encounters two remote references. Although
these indicate different locations on node n2 they in fact refer to the same
variable, X. The test U==V initially suspends and ns_read messages are
generated. Reference chains are dereferenced and 'direct’ remote references
returned to node n1. These replace the original remote references. In (b),
the test U==V is repeated and, as U and V are now identical remote
references, succeeds.

The unify Algorithm

Recall that unification operations have the form X=Y and are
performed during the spawn phase of Parlog reduction. If a unification
operation encounters a remote reference, a unify message is generated to
request nodes on which remote term(s) are located to continue unification.
Failure of such a remote unification operation is signalled to the node on
which it was initiated by a failure message. This permits an error
message to be signalled on the status stream of the task in which the
unification operation was performed.

Consider a unification operation X=Y. If one of the terms X or Y is
represented by a remote reference (say X), a unify message is generated to
the node referenced by the remote reference. This message carries the
value of the other term (Y) to be unified to the node on which the remote
term (X) is located.

If both terms to be unified are remote, a unify1 message containing
remote references to both terms is dispatched to the node on which the
first is located; a node receiving such a message forwards a unify message
containing the value of that term to the node on which the second term is
located.
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In both cases, a unify message eventually arrives at a node on which
one of the terms to be unified is located, carrying the value of the other
term. The unification operation can then proceed. '

A unify message has the form:

unify(X, T, Y)

where X is a remote reference to a term, T denotes the task which initiated
the unification operation and Y is the value of a term. A unify1 message
has the same form: unify1(X, T, Y), but both X and Y are remote
references to terms.

A failure message has the form:

failure(T, X, Y)

where T specifies the task which initiated the unification operation (X=Y)
that resulted in failure, and X and Y are the values of the terms that could
not be unified.

Figure 3 illustrates the messages that may be generated by the unify
algorithm if one or both arguments in a unification operation are remote
terms.

In (a), only one of the terms to be unified, X, is represented by a
remote reference. A unify message is generated to node n2. This
contains remote references to X and to the task in which the unification
operation occurs (T), plus the value of the other term, Y (<yvals).

In (b), both terms to be unified are represented by remote references.
A unify1 message is generated to n3, the node on which one of these
terms, Y, is located. This carries remote references to X and Y. Node n3
receives the unify1 message, determines the value of Y (<yval>) and
forwards a unify message to node n2. As in (a), this contains remote
references to X and to the task T, plus the value of the other term, Y
(<yval>).

(a) One local; one remote.
unify((n2,X},(n1,T}.<yval>)

n2

X = <yval>
X (A)

S

failure €)
unii

(b) Both remote. n3

Y
~ &
unifyl((n3 ), 1T}, (n2.X})
s unify((n2,X},|n1,T}.<yval>)
7/

n
YR
XEET ~ "B

N n2

~
N X
N

failure
Figure 3 The unify distributed unification algorithm.

X = <yval>

©) (A)

In both cases, the node N2 on which the term X is located receives a
unify message containing the value of Y and performs the actual
unification operation. This may generate further unify or failure
messages. The unification algorithm applied is described in detail in [4].




Briefly (letters A, B, C refer to Figure 3):

o If X and Y are the same constant, nothing is done.

« A local variable X is bound to reference to a remote constant or

structure Y (A)

If X is a variable and Y is not, a unify message is generated to request

the node containing Y to unify Y with X (B).

o If both X and Y are variable, an order check (defined below) is
performed.

« If X and Y are tuples of the same arity, corresponding subterms are

recursively unified. (Further messages may be generated; these are

not illustrated).

In all other cases, a failure message is generated (C).

Circular References

In logic programming systems, circular references can be created if a
variable X can be bound to a variable Y at the same time as Y is bound to
X, as illustrated in Figure 4. This problem can be avoided on shared-
memory multiprocessors by using pointer comparison to ensure that
variable to variable bindings are only created in a certain direction (from
low address to high address, for example). A similar technique can be
used on non-shared memory machines. An ordering is defined on node
identifiers. An order check compares node identifiers when variables
located on different nodes are unified. Bindings are only permitted from a
node of lower identifier to a node of higher identifier.

—_, X=Y
1® ® ® J
~——
Y=X Y=X

(a) Uniprocessor (b) Multiprocessor

Figure 4 Circular references.

The order check is applied when a local variable X is unified with a
variable represented by a remote reference Y. If the ordering constraint is
violated (that is, node(X) > node(Y)), the unify message is forwarded to
the other node. This causes the unification operation to be repeated in the
opposite direction. Otherwise, X is bound to a remote reference to Y
(unless both variables are located on the same node). In both cases, the
binding is created in the correct direction, from low to high node.

Complexity of Distributed Unification

The program presented at the beginning of this paper is used to
illustrate the use of distributed unification algorithms and to motivate
some observations on their complexity.

Recall that this program implements synchronous communication
between two processes, producer and consumer. Assume that
producer and consumer are located on different nodes. Figure 5
illustrates the messages generated when the conjunction is executed by a
Parlog implementation using the unify and read distributed unification
algorithms. In (a), the initial situation is represented. It is assumed that
the variable Xs is located on the same node as producer; consumer
thus possesses a remote reference to this variable. In (b), consumer
attempts to read the shared variable Xs, thus causing a read message to
be generated to retrieve that value. Meanwhile, producer has generated a
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value for Xs (say [X [Xs1]). In (c), a value message returns this list
structure to consumer; this contains remote references to X and Xs1. In
(d), consumer unifies the newly received term X with the constant
synch. As X is a remote reference, a unify message is generated to

producer.
Xsi" === g

(a) producer(Xs,_), consumer(Xs)

read(Xs)

$

[xe]l

=[X|Xs1]

¢ +
Xsl
(b) prod binds Xs; cons reads Xs

value([XIXs1])

unify(X,synch)
— A,
[ — = |~ = = |= —frref]X synch
- = o o mfrref] Xsl - —F — —

(c) cons obtains X and Xs1 (d) cons binds X

Figure 5 Distributed unification.

The Parlog implementation uses three messages to send and
acknowledge a ‘communication’. Two messages are required to 'read’ the
original value; one message is required to 'write' the value synch to the
variable X. In contrast, if this algorithm were to be implemented in a
language with explicit send and receive primitives, two messages
would be required for each ‘communication’: one to send it and one to
acknowledge it.

Two points can be made:

o The distributed unification algorithms presented here are in general
optimal in their communication complexity. That is, O(N)
messages are required to communicate O(N) values between nodes.
('In general’, because when unifying two variables, order checks
may cause additional communications. This is however a special
case, as variables rather than values are involved).

« The distributed unification algorithms presented here are lazy: a
value must be requested by a reader before it is transmitted. This is
why three messages are required to communicate two values. There
is scope for optimizations that eagerly propagate values when
readers are known to require them.

This example also illustrates a useful optimization that can be made
in an implementation of the unify algorithm. If a remote reference is
encountered during a unification operation, a unify message is generated,
as in Figure 5 (d). This requests that a remote node unify the remote
value (say A) with another term (B). The local remote reference, which
represents the remote term A, can immediately be replaced with the term
with which the remote term is to be unified. (In Figure 5 (d), the string .
synch). Subsequent references to that term need not therefore generate
communications.



Distributed Control
Recall that Parlog's control call provides the following functionality:

* monitoring: termination and error detection in tasks
* control: the ability to suspend, resume and abort tasks

It is relatively easy to implement these functions efficiently in a
uniprocessor [4]. For example, to detect termination of uniprocessor
tasks, a process count is associated with each task. This is incremented
when processes are created and decremented when processes terminate. A
process count of zero represents task termination. Providing the same
level of control in a multiprocessor is problematic. Existing algorithms
for distributed control and termination detection are complex [2].
Incorporating such algorithms in the language implementation
compromises simplicity and flexibility. Fortunately, it is possible to
program distributed control functions in Parlog.

Assume that each node in a multiprocessor supports a uniprocessor
implementation of Parlog, including a control call capable of monitoring
and controlling a uniprocessor task: that is, a task executing on a single
node. Assume also that each node supports distributed unification
algorithms that permit processes located on different nodes to
communicate using shared variables.

Now consider the problem of monitoring and controlling a
distributed task: a task executing on several nodes. Observe that the
process pool representing a distributed task can be viewed as a number of
process subpools, one per node on which the task is executing. For
example, in Figure 6, a distributed task T executing on three nodes N1,
N2 and N3 comprises three subpools T1, T2 and T3.

Figure 6 A distributed task.

Assume that processes in these subpools can communicate with
processes in other subpools with which they share variables, but cannot
migrate to other processes. (This is a consequence of programming load
balancing in the language). Then a uniprocessor control call is sufficient
to terminate (and detect termination of) all processes in a distributed task.
Each constituent subpool is executed as a separate uniprocessor task.
Parlog processes are provided that coordinate the monitoring and control
of the subtasks. A possible configuration for these processes is illustrated
in Figure 7. Supervisor processes (sv) are linked in a circuit using shared
variables. A coordinator (coord) provides status and control streams
which can be used to monitor and control the distributed task. For
example, a request to terminate the distributed task (received on Control)
is translated by the coordinator into a message which.passes around the
circuit. A supervisor receiving such a message terminates its subtask
using the local control call's control stream (Ci), and forwards the
message. When the control message eventually returns to the coordinator,
it is known that all subtasks have been terminated.
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Termination detection exploits Takeuchi's short circuit technique [8].
If a supervisor detects termination of its subtask, it unifies the two
variables forming its part of the circuit. Eventually, when all subtasks
have terminated, the coordinator will have two references to the same
variable; a test L==R will hence succeed. (Recall that a call to == is
defined to succeed if its two arguments are the same variable).
Termination can then be signalled on the status stream (Status).

Status Control
L 00T

Figure 7 Distributed control.

Both termination and termination detection rely on the fact that once

a pool of Parlog processes is empty, subsequent communication cannot
create new processes. This is a consequence of programming load

balancing in the language. Messages generated by distributed unification
algorithms may still be in transit; however, these messages convey data,
not processes. Process mapping occurs if this data is interpreted as
processes by a Parlog process. If no processes remain to interpret the
data, no process mapping can occur.

Termination and Deadlock Detection

The uniprocessor control call can be used to program mechanisms
that detect when all processes in a distributed task have terminated.
Messages generated as a result of unification operations performed by
processes in the task may however remain in transit after all processes
have terminated.

Recall that four types of message are used by the distributed
unification algorithms: read, value, unify and failure. read and value
messages cannot affect the course of subsequent computation if the
processes that requested the values they are retrieving have terminated. In
contrast, unify and failure messages can bind variables or signal errors.
A task has not therefore be said to have truly terminated until all its
constituent subtasks have terminated and all unify and failure messages
that it-has generated have been processed.

A possible solution to this problem of messages in transit is to
implement a global termination detection algorithm that verifies that all
unify and failure messages generated by a task are received. A much
simpler, albeit somewhat more expensive, solution is to cause each unify
message to be acknowledged. This permits the use of message counts
associated with individual uniprocessor tasks to detect when all
outstanding unify and failure messages have been processed. Termination
detection can still be programmed in the language.

The latter solution is used in the execution model reported herein. It
is embodied in an alternative unify algorithm, s_unify, which
acknowledges successful remote unifications. This differs from the unify
algorithm described previously in three respects:

« It uses S_unify and s_unify1 messages rather than unify and
unify1 messages.



» It acknowledges successful remote unifications. A node receiving a
s_unify message processes it as it would a unify message, but
acknowledges successful completion of the remote unification
operation using an ack message.

It does not perform remote unification operations when they involve
two structures. Instead, it generates a Structure message to return
both structures to the node which initiated the unification. This can
then initiate new unification operations, one per structure element.
This avoids a need for the complex mechanisms that would be
required to detect termination of the recursive unification of two
remote structures.

Assume that the Parlog implementation on each node in a
multiprocessor associates a process count with each uniprocessor task. A
task's process count is incremented when it creates a process or generates
a s_unify message; it is decremented when a process terminates or the
task receives a failure or ack message. A process count of zero then
signifies that both all a task's processes and all remote unifications that
it has initiated have terminated.

If all subtasks comprising a distributed task use the s_unify
algorithm, it is known that when all subtasks have terminated all
processes in the distributed task have terminated and all unify and failure
messages generated by this task have been processed. This is true
termination. A task for which termination detection is required hence uses
the s_unify algorithm; other tasks can use the more efficient unify
algorithm. The algorithm to be used is specified when a task is initiated.

s_unify messages have the same form as unify messages. The ack
and structure messages have the form:

ack(T)
structure(T, X, Y)

where T specifies the location of the task which initiated the remote
unification operation and X and Y are the two structures that are to be
unified.

The structure message is, strictly speaking, an unnecessary
communication. It may thus appear to be a source of inefficiency.
However, unification of two structures, though possible in Parlog, occurs
rarely in practice. To determine the approximate frequency of such
operations, ten Parlog applications (including compilers, programming
environments, simulation programs and process control programs, written
by different programmers) were tested on an instrumented uniprocessor
Parlog implementation. Less than one per cent of all unification
operations involved two structures. As remote structure-to-structure
unifications are a subset of all structure-to-structure unifications on a
multiprocessor, it can be expected that such operations will be extremely
rare. The structure message thus appears to be a useful and inexpensive
simplification,

Deadlock

Recall that a Parlog computation is deadlocked when all its processes
are suspended due to dataflow constraints. Deadlock can easily be detected
in a uniprocessor: an active process count is maintained for each task; if
this reaches zero and the task has not terminated, the task is known to be
deadlocked. Deadlock detection in a multiprocessor is more complicated,
again because of messages in transit: it is not immediately possible to
determine whether a process is suspended because there is no producer for
a remote value or merely because a read or value message is still in
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transit. In [4], it is shown that an alternative distributed unification
algorithm d_read can permit a deadlock detection algorithm due to
Dijkstra et al. [2] to be programmed in Parlog without a need for global
message counts. The d_read algorithm, which acknowledges certain
read and value messages, is used in place of read when deadlock
detection is required.

Related Work
FCP

Taylor et al.'s work on parallel implementation of FCP [9] provided
a number of ideas which were exploited in the work reported herein. Key
are the idea of using remote references to implement a global address space
and the use of broadcast notes to record requests for values that are not yet
available. However, the execution model described herein differs from that
of Taylor ez al. in a number of important respects.

One difference is that the algorithms presented here (and others
described in [4]) support termination and deadlock detection in distributed
tasks. Taylor et al. do not address these problems in their paper.

Other differences derive from semantic differences between Parlog and
FCP. FCP uses general unification rather than input matching to
determine whether a clause can reduce a process. This means that a clause
may be required to successfully perform two or more unification
operations before it can be selected to reduce a process. These must be
performed as an atomic action: if any one fails, the others must not
occur. To provide this atomicity, the FCP implementation supports
variable migration. All variables that are to be bound by a reduction are
fetched locally before the reduction is performed. To prevent livelock
when several nodes require the same variables, variables fetched in this
way are locked; this in turn requires a deadlock prevention scheme.
Starvation is possible. Once all variables required by a process have been
fetched locally, reduction can occur without further communication. Any
binding performed during a reduction attempt is recorded and undone if
reduction fails. As reduction attempts and message processing are
alternated, these 'unsuccessful bindings' are not visible to other processes.

In Parlog, on the other hand, variables are only tested prior to
reduction. Test operations are encoded efficiently using read and
ns_read messages. Unification is performed after reduction in a number
of independent operations. Unification operations involving remote terms
are requested using unify messages and variables do not migrate.
Alternating message processing and process reduction at nodes provides
mutual exclusion when binding individual variables. As processes do not
compete for resources (variables), deadlock, livelock and starvation cannot
occur.

Experimental studies are required to quantify the run-time costs
associated with the FCP and Parlog distributed unification algorithms;
these have not been performed. Intuitively, it would seem that the Parlog
algorithms are less expensive, as variables do not need to be migrated
before being bound, and variable locking and deadlock detection are not
required.

FGHC

Ichiyoshi ez al. [7] describe a parallel implementation of the parallel
logic language FGHC. They incorporate distributed control functions
such as termination detection in the lowest level of their implementation,
rather than programming this functionality in the high-level language as
proposed here. Their approach provides efficient support for certain
functions but results in a more complex and less flexible implementation.



Conclusions

A parallel implementation of Parlog must support the language's
logical variable and control call. This paper has described simple and
efficient treatments of these two language features.

Distributed unification algorithms have been described that permit
processes located on different nodes in a multiprocessor to communicate
by unifying shared variables. The distributed unification algorithms are
simple. There are three basic message types — read, value and unify —
plus three acknowledgement messages: failure, ack and structure. The
algorithms are in general optimal in their communication complexity.
That is, except when order checks fail when unifying variables, there is no
‘hidden communication': reading or writing a remote value involves a
small, constant number of messages. This means that although Parlog is
a high-level language, programmers can visualize the communications
implied by programs and can hence implement particular communication
algorithms.

The complexities inherent in the distributed monitoring and control
functions represented by the control call are not incorporated in the
execution model. Instead, these functions are programmed in the language
using simple uniprocessor mechanisms to control components of a task
located on a single node. Alternative distributed unification algorithm
support termination and deadlock detection in distributed tasks. These
provide added functionality at the cost of additional communication.

This approach to control call implementation has three advantages
compared to a full implementation of the same functions. First, the basic
implementation is kept extremely simple. Second, it permits a
programmer to trade off functionality and efficiency by an appropriate
choice of distributed unification algorithm. Third, it provides greater
flexibility. A potential disadvantage of the approach is that these
functions may be less efficient when programmed in Parlog than when
supported directly in the language implementation. Experimental studies
will be performed to determine whether additional costs associated with
the approach described herein are significant.

The distributed unification algorithms described in this paper are
incorporated in a distributed implementation of Parlog on a network of
SUN workstations. It is planned to port this implementation to a non-
shared memory multiprocessor in the near future. In the meantime, the
SUN implementation is being used for experimental studies aimed at
determining the relative costs of the various distributed unification
algorithms (and hence the costs of termination and deadlock detection).
Another area of ongoing research is simplification of the basic distributed
unification algorithms. Minor changes to Parlog's semantics can permit
significant simplifications. For example, the ns_read algorithm is
required to support Parlog's 'non-strict' test operations. If these are
redefined to be strict, this algorithm is no longer required. )
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Memory Performance of AND-parallel Prolog
on Shared-Memory Architectures

M. Hermenegildo - MCC
E. Tick — Stanford University

Abstract

The goal of the RAP-WAM AND-parallel Prolog ab-
stract architecture is to provide inference speeds signif-
icantly beyond those of sequential systems, while sup-
porting Prolog semantics and preserving sequential per-
formance and storage efficiency. This paper presents sim-
ulation results supporting these claims with special em-
phasis on memory performance on a two-level shared--
memory multiprocessor organization. Several solutions
to the cache coherency problem are analyzed. It is shown
that RAP-WAM offers good locality and storage effi-
ciency and that it can effectively take advantage of broad-
cast caches. It is argued that speeds in excess of 2 MLIPS
on real applications exhibiting medium parallelism can be
attained with current technology. )

1 Introduction

The RAP-WAM execution model [10,11] is aimed at provid-
ing, through the use of parallelism, inference speeds to logic
programs beyond those attainable in sequential systems, while
supporting the conventional “don’t know” non-deterministic se-
mantics of logic languages. Of the various sources of parallelism
present in Logic Programs [3] the RAP-WAM architecture ex-
ploits Goal Independence AND-parallelism [11], an extension
of DeGroot’s Restricted AND-parallelism [4] which provides
backward execution semantics and improved execution graph
expressions.! Sets of goals which are independent (i.e., which do
not share any non-ground variables, determined by a combined
compile-time, run-time analysis) are run in parallel. Parallelism
can be programmed by the user by annotating the program with
Conditional Graph Expressions (CGEs)? or it can be generated
automatically by the compiler, through a combination of local
and global (abstract interpretation-based) analysis [17] which
often makes run-time independence checks unnecessary.

At the implementation level, the RAP-WAM architecture
is designed to exploit both parallelism and advanced compiler
technology. The techniques used for supporting parallel execu-
tion are extensions of those used in the Warren Abstract Ma-
chine (WAM)[15], which have already brought high inferencing
speeds to sequential Prolog systems. Special attention is given
to the preservation of WAM sequential performance and storage
efficiency, and to the use of low overhead mechanisms for con-

!The model is currently being extended to support OR-parallelism -using
techniques similar to those proposed by other researchers, see for example
[16,18] and their references- and a form of dependent AND-parallelism.

2CGEs offer Prolog syntax and permit conjunctive checks, thus lifting
limitations in the expressions proposed by DeGroot: given “f£(X,Y,Z):-
g(X,Y), h(Y,Z).” the most natural annotation for this clause, that g and
h can run in parallel if the terms in X and Z don’t share variables and Y is
bound to a ground term, can be expressed easily with CGEs (“¢(X,Y,Z):-
(indep(X,2), ground(Y) | g(X,Y) & h(Y,Z)).”) but is very difficult
with DeGroot’s expressions.
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trolling parallel execution. Most of the WAM performance and
storage optimizations are still supported during parallel execu-
tion. The CGE semantics has been integrated naturally into the
WAM storage model in the form of specialized stack frames and
storage areas which are used during parallel execution. Thus
the default (sequential) model is that of a standard WAM ex-
hibiting the same high sequential performance.

The RAP-WAM architecture can be viewed as a collection
of abstract machines (workers) which cooperate in the execution
of a program. Each of these abstract machines is similar to a
standard WAM (featuring a complete set of registers and data
areas, called a Stack Set), with the addition of a Goal Stack
(used for on-demand scheduling), a Message Buffer, and two
new types of stack frames: Parcall Frames and Markers. Par-
call Frames coordinate and synchronize the execution of parallel
goals both during forward execution and backtracking. Mark-
ers delimit Stack Sections (horizontal cuts through the Stack
Set of a given abstract machine, corresponding to the execution
of one parallel goal) and they implement the storage recovery
mechanisms during backtracking[11]. In practice, the stack is
divided into separate Control (Choice Point and Markers) and
Local stacks (Environments) for reasons of locality and locking.
Table 1 summarizes the types of objects allocated in these areas
and their locality. Space limitations make a complete descrip-
tion of the RAP-WAM execution model impossible. The reader
is referred to [11] for further details.

Frame type area WAM? | lock | locality
Envts./control Stack yes no | Local
Envts./P. Vars. Stack yes no | Global
Choice points Stack yes no Local
Heap Heap yes no Global
Trail entries Trail yes no Local
PDL entries PDL yes no Local
Parcall F./Local | Stack no no | Local
Parcall F./Global | Stack no no | Global
Parcall F./Counts | Stack no yes | Global
Markers Stack no no Local
Goal Frames G. Stack | no yes | Global
Messages M. Buff. | no yes | Global

Table 1: Characteristics of RAP-WAM Storage Objects

This paper presents simulation results for RAP-WAM sup-
porting the claims of performance and efficiency. Although an
evaluation of the implementation of the model on an existing
shared-memory machine (Sequent) is currently also under way
it only provides a single data point corresponding to a particu-
lar organization.® In addition, many statistics are very difficult

3Note also that the Balance model being used in this implementation
uses write-through caches, which will be shown later in this paper to be not
ideally suited for Parallel Prolog execution. Performance results from this
implementation will be reported on elsewhere.



to gather from running hardware. Simulations can provide data
over a wide range of architectural and organizational parame-
ters and that is the approach taken in this study. Because high
performance processing elements (PE’s) are limited by available
memory bandwidth (an even more important factor in parallel
systems) this paper concentrates on memory performance.

The rest of the paper is organized as follows: results ob-
tained from high-level simulations of the architecture are first
summarized. A two-level shared-memory organization model
and alternative solutions to the cache coherency problem are
then proposed. Finally, RAP-WAM simulation results for the
different coherency protocols proposed are presented and dis-
cussed.

- Compiler

Figure 1: Simulation tools

2 Simulation Environment and High-level Results

A series of measurement tools have been built in order to eval-
uate the potential performance of the execution model and the
associated architectural tradeoffs (Figure 1). Because the RAP-
WAM model (as the WAM) is specified at a level above that of
memory organization, simulations were first performed under
the ideal assumption of a uniform, single shared-memory and
no contention. The measurements were thereby made indepen-
dent of the particular architectural organization on which the
model is implemented. The emulator generated instrumenta-
tion data such as instruction frequencies, number of references
classified by data areas, ratios of local vs. remote references,
maximum amount of storage used per area, estimated timings,
and speedups. Results from simulations at this level can be
found in [12,11] and can be summarized as follows:

The overhead in the RAP-WAM model due to the man-
agement of parallelism is low: it has, for example, been ob-
served to be in the order of 15% for up to 40 processors even
for fine granularity cases (i.e., high overhead cases) such as that
of the “deriv” benchmark, as shown in Figure 2. In this fig-
ure, work represents the number of references generated by all
PEs while doing actual processing (i.e., not waiting or idle).
Overhead, the difference between the work (references) done by
RAP-WAM and that of WAM, is in Figure 2 the distance be-
tween the work curve and the “uniprocessor” line corresponding
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Figure 2: RAP-WAM Overheads for “deriv”

to WAM work. All data in this figure is presented as percentages
of WAM work (executing the sequential version of the bench-
mark). Note that RAP-WAM work on 1 PE is very close to
WAM work. Speedup (i.e. significantly faster execution than
a high-performance sequential implementation -WAM- for sim-
ilar performance PE’s) is thus obtained even if the application
exhibits only low levels of parallelism. The stack-based mem-
ory management approach[11] also appears to be very efficient
recovering local storage upon procedure exit (with last call op-
timization) and all storage on backtracking as in the WAM.

Although these results are encouraging, practical memory
organizations deviate from the ideal behavior assumed above
and it is thus important to assess the effect of this deviation
if realistic performance figures are to be obtained. This issue
is addressed in the next sections by quantifying the effect of a
particular memory organization with limited bandwidths, cache
coherence maintenance overhead, etc.

- Local (cache)
. Memory

‘Local (cache)
::Memory |

 Lowl eache)
.. Memory . |

Figure 3: The Two-Level Shared-Memory Architecture Model

3 Two-Level Shared-Memory Results

Figure 3 shows a practical shared-memory system presenting
a two-level structure where a local cache memory is located
between each PE and the system bus. Such a hierarchical orga-
nization, characteristic of many current shared-memory multi-
processors, serves a dual purpose: first, in allowing faster execu-
tion because of the generally lower effective memory access time
seen by a PE, essential in obtaining performance that is com-



petitive with that of sequential systems. Second, in absorbing a
(hopefully) significant part of the traffic to main memory which
needs to go through the system bus, particularly important in
shared-memory multiprocessors because the system bus is often
the most significant bottleneck in the system. The locality of
Prolog/WAM was shown by Tick[14]. In the next sections it is
shown that Prolog/RAP-WAM also offers sufficient locality to
take advantage of cache memories.

3.1 Cache Coherency

Except for simple buffers which hold only local data, most of the
local memory designs used in conventional or special-purpose
sequential machines for the implementation of logic programs
(such as, for example, those used in [5] or those studied by
Tick[14]) cannot be used directly in a parallel machine because
of cache coherency problems. Coherent caches ensure that all
the PEs in the system have a consistent view of the storage
model. Although at certain times during the operation of RAP-
WAM coherency is not required, it appears that ensuring co-
herency continually is easier than enforcing coherency only at
specific points (and has the additional benefit of generality).
Therefore, traditional coherent caches are considered in this
study.

Historically, the first coherent caches[7], used a write-through
strategy, where all write references were issued to both the local
cache and shared memory, and copies residing on a cache other
than the cache issuing the write request were invalidated. This
coherency protocolis inexpensive in terms of hardware, but offers
low performance because of excessive traffic on the system bus.
Recently, a family of fully distributed broadcast cache protocols
have been proposed and built [8,1,2] which are based on the
ability of the cache organization to modify all copies of a cached
item in all caches which share this item in a single bus cycle.
Information is maintained for each cache block as to whether
it is private or shared, making it possible to avoid coherency
overheads for private blocks and implement write-back policies.
Different designs differ essentially in the treatment of a write
to a possibly shared block. A write-through broadcast strategy
updates remote copies and possibly shared memory. A write-in
broadcast strategy invalidates remote copies. Descriptions and
measurements of the relative performance of various broadcast
protocol attributes for conventional architectures are given in
Archibald([1].

The broadcast protocol offers high performance at the ex-
pense of additional hardware. With the objective of reducing
this expense by exploiting attributes of the RAP-WAM archi-
tecture, a (firmware) controlled hybrid cache protocol was devel-
oped. This scheme attempts to combine the efficiency of broad-
cast caches with the simplicity and low cost of a traditional
write-through cache using information provided by the PE (in
the form of tags, derived from the information in Table 1) as
to the locality characteristics of each reference. The protocol
is referred to as “hybrid” because based on these tags poten-
tially shared (global) data is written-through and local data is
copied back. An underlying tenet of the hybrid protocol is to
avoid some of the complexity of broadcast caches by keeping
shared memory consistent with local memory. The cost asso-
ciated with this simplification is the traffic required to write--
through to memory the write requests marked as global which
are not actually shared. The gain with respect to the tradi-
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tional write-through approach is that data marked as local is
not written-through.

Parameter deriv | tak gsort | matrix
Instructions executed 33520 | 75254 | 237884 | 95349
References (RAP-WAM) | 85477 | 178967 | 502717 | 96013
References (WAM) 82519 | 169599 | 499526 | 95357
Goals actually in // 97 263 97 24

Table 2: Statistics for the Benchmarks Used (8 processors)

cachesize | Ei | oy (tr — Ey)/o1y
(words) | large bench | deriv | tak [ qsort | mean
512 | 0.164 | 0.0626 1.11|-1.9 0.83 1.3
1024 | 0.108 | 0.0569 20(-1.1 1.6 1.6

Table 3: Fit of Small Benchmarks to Large Benchmarks

3.2 Simulations

In order to compare the performance of the various types of
caches presented above, the RAP-WAM emulator was modified
to generate a trace file of memory references (Figure 1). These
references are marked with a PE identifier, a tag describing
the particular storage area and object being accessed, and a
read/write flag. All of the coherent cache models are simulated
with the same parameterized multiprocessor cache simulator|14]
which can be reconfigured to support the various consistency
protocols. Caches are modeled as fully associative memories
with perfect LRU replacement.

The results presented correspond to the execution of the fol-
lowing set of benchmarks: symbolic derivation (“deriv”, which
finds the symbolic derivative of a given arithmetic expression),
Takeuchi (“tak”, which computes Takeuchi’s function), Quick--
sort (“gsort”, written using difference lists), and Matrix Mul-
tiplication (“matrix”, a naive matrix multiplication program).
Each benchmark was executed on relatively large input data.
Table 2 shows some statistics regarding the benchmarks used,
running on 8 PE’s. Note that the number of references shows
reasonable size. These benchmarks and their input data were
chosen for several reasons: their small granularity (except for
“matrix”) provides a worst-case type of analysis with respect to
parallelism management overhead. They also offer reasonable
degrees of parallelism so that the parallel portion of the abstract
machine is exercised. Also, their sequential memory referenc-
ing behavior and locality resemble those of much larger Prolog
programs, such as the ones studied by Tick[14]: table 3 shows
that the fit is quite good ensuring that the benchmarks exercise
the sequential storage model (the foundation of the RAP-WAM
storage model) in a reasonable, typical way.

Figure 4 shows the mean traffic ratios (as a function of total
cache size and averaged over the four benchmarks) of the write-
in broadcast, hybrid, and conventional write-through cache pro-
tocols, using four word lines. Caches of sizes 64, 128, and 256
words were simulated with no-write-allocate (a write miss does
not fetch the corresponding block to cache). Caches of sizes
512 and 1024 words were simulated with write-allocate, except
for hybrid caches which used no-write-allocate for 512 words.
These selections were made on the basis of the policy which
produced the lowest traffic. A clear result of the simulations
is that no-write-allocate is best for small caches; however, miss
ratio increases with no-write-allocate. Another result is that
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Figure 4: Traffic of Coherency Schemes

a more efficient replacement policy (e.g., copyback) produced
lower traffic with write-allocate than a less efficient policy (e.g.,
hybrid) for the same cache size. The write-through broadcast
cache statistics (not shown in Figure 4) are almost identical to
those of the write-in broadcast cache, an indication that com-
munication traffic in RAP-WAM is low.

A result seen from the curves is that the hybrid cache does
quite well in reducing traffic, almost to the level of the copyback
cache. The copyback cache does exceedingly well for 1024 word
caches, and this trend is expected to continue with larger sizes,
because the hybrid caches have already bottomed-out. The id-
josyncrasies in the curves are due to the effects of averaging
the benchmarks. Also, the advantageous effect (that of reduc-
ing memory traffic) of partitioning an algorithm’s working set
across several caches is seen to“sometimes outweigh the increase
in communication overheads. Lack of space makes it impossible
to offer many simulation results. See [12] for more details on
the benchmarks and simulations.
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3.3 Discussion

As stated before, the hierarchical memory organization serves
the dual purpose of lowering the effective memory access time
and reducing the memory bandwidth requirement of a PE. Ac-
cording to the results of the simulations presented in the previ-
ous section, the hybrid cache generates an amount of traffic be-
tween that generated by the broadcast and conventional write-
through caches. The broadcast schemes retain a (sometimes
slight) advantage throughout the range of caches simulated.

It should be noted that these results measure performance
only in terms of traffic ratio. For example, the simulation data
shows that eight PEs with write-in broadcast caches (of 128
words or greater) generate a traffic ratio of less than 0.3 (the
hybrid cache is also close to this performance); i.e. more than
70% of the traffic generated by the processors is captured in the
local memories and will not appear on the bus. However, in
order to accurately estimate the actual performance of a multi-
processor the time penalty to access shared memory due to con-
tention must also be analyzed. Although beyond the scope of
this paper a queueing model for this purpose is proposed in[14].
Results presented therein for RAP-WAM execution show that
with a relatively fast bus and an interleaved memory shared
memory efficiency can be high.

It is of obvious interest, if only to stimulate further research,
to speculate about the potential performance levels attainable
given the results presented in the previous sections. Even cur-
rent low- to medium-cost shared-memory systems offer high PE
to memory bandwidths by implementing multiple or overlapped
busses and interleaved memories. This makes it reasonable to
predict that speeds in the order of 2 million application* infer-
ences per second are possible on shared-memory multiprocessors
built using current technology.® A “back of the envelope” cal-
culation, in order to justify this claim and based on the results
obtained from the present and previous studies can be made as
follows: studies of large Prolog benchmarks show that in the
average 15 (WAM or RAP-WAM) instructions are executed per
actual inference and that each instruction averages 3 (word) ref-
erences. This represents 45 words/LI, or 180 bytes/LI for a 32
bit word size. Therefore, a system executing at a speed of 2
MLIPS would require a cumulative memory bandwidth of 360
Mbytes/sec. If the caches are able to capture 70% of this traffic,
only 108 Mbytes/sec have to be delivered by the bus/memory
system, a performance which is perfectly achievable using cur-
rent off-the-shelf technology.®

4 Conclusions

The paper has presented memory referencing characteristics of a
parallel logic programming architecture, RAP-WAM, based on
Independent/Restricted AND-parallel execution of Prolog, and

4«Application” inferences refer to inference steps of the average size
found in large Prolog programs, i.e. in the order of 15 WAM instructions.
This results in much lower but more realistic figures than those obtained
using the conventional “LIPS” measurement based on “naive reverse.”

5Note that the Japanese FGCS Project is also predicting similar infer-
encing speeds for the PIM[9].

SThese conclusions, although resulting from more detailed simulations
than those presented in a related study by Fagin[6], are in disagreement
with Fagin’s results and his contention that Prolog programs cannot effec-
tively make use of multiprocessing. The discrepancies are probably due to
differences in the execution models used and to the small size of the bench-
Ena]rks/ data simulated by Fagin. They do agree, however, with those of Lin
13|.



its behavior and potential performance on shared-memory mul-
tiprocessor organizations. The measurements presented here
indicate that RAP-WAM is well-suited to high performance
execution on tightly-coupled shared-memory multiprocessors,
from cost-effective small-scale systems to higher-performance
medium-sized systems. It has been argued that actual speeds
of 2 Million application inferences per second are possible with
currently available technology for applications which exhibit
medium degrees of parallelism. It has been shown that the ar-
chitecture offers high memory referencing locality so that it can
take advantage of two-level memory organizations. The memory
referencing study included comparison of cache coherency proto-
cols and the “broadcast” and “hybrid” protocols were shown to
offer superior performance to write-through mechanisms, present
in some multiprocessors.

Because the memory organizations studied are characteristic
of many current and next-generation multiprocessors, it is ar-
gued that the results obtained are relevant to the estimation of
the performance of AND-parallel Prolog/RAP-WAM on them
and also to determining the advantages and shortcomings of
such machines in the parallel implementation of other don’t--
know non-deterministic logic programming languages and mod-
els. In addition, the results can also be used as a guideline in
the design of small to medium-sized special purpose multipro-
cessors. Although the goal of small to medium systems may
seem rather unambitious, it is important to have evidence of
actual speedups at these levels before attempting the design of
large-scale systems. In the words of the adage, “Walk before
you run...”
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Abstract
This paper presents a technique and algorithms for compila-
tion of enumerate-and-filter logic programs, for efficient exe-
cution under committed-choice AND-parallel logic program-
ming languages. The compilation technique preserves the in-
tegration of OR-parallelism, AND-parallelism and stream par-
allelism present in enumerate-and-filter programs. Algorithms
are demonstrated by compiling enumerate-and-filter programs
in Flat Concurrent Prolog. Compilation of enumerate-and-filter
construct improves the execution time by an order of magni-
tude. Comparison of the sequential Prolog version of compiled
enumerate-and-filter programs and setof construct in Prolog
demonstrates that efficiency is achieved without any extra run
time overhead.

Keywords AND-parallelism, committed-choice, compila-
tion, enumerate-and-filter, generate-and-test, logic program,
OR-parallelism, stream parallelism.

1. Introduction

In a previous paper [1] we introduced the enumerate-and-
filter paradigm to execute generate-and-test logic programs
using committed-choice AND-parallelism. The paradigm enu-
merates possible candidate solutions using OR-parallel set enu-
meration, spawns a tester process for each candidate solution,
and collects the solutions for which the tester process termi-
nates successfully. The transformation integrates almost full
OR-parallelism, AND-parallelism and stream parallelism. OR-
parallelism was simulated using stream AND-parallelism in
enumerating the set of solutions and in operationally nonde-
terministic testers.

The OR-parallel setof uses explicit copying to spawn a dif-
ferent copy of the rest of the conjunctive subgoals for every
possible enumerated solution. The filter process uses metacalls
for spawning testers. The stream operations also make explicit
copies. The use of metacalls and explicit copying is expensive
in terms of execution.

This paper presents a general compilation technique which

‘removes the metacalls and explicit copying. Algorithms are
presented and demonstrated by compiling enumerate-and-filter
programs in Flat Concurrent Prolog (FCP) a committed-choice
AND-parallel language [8] taken as an example language to ex-
press parallelism. Our techniques are more general and can be
adapted for other committed-choice AND-parallel languages.
The compiled programs will run efficiently under non Von-
Neumann architectures.

The structure of the paper is as follows. The next section
gives the basic concepts, definitions and a brief overview of
generate-and-test and enumerate-and-filter paradigm. Section
3 discusses the compilation technique, algorithms for compila-
tion and statistics. The last two sections compare related work
and discuss conclusions respectively.

2. Basic Concepts

2.1 Definitions

This paper assumes a familiarity with logic programming

!Supported in part by Center of Automation and Intelligent Systems
Research, CWRU, Cleveland, OH 44106
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and Prolog [9] and committed-choice AND-parallel logic pro-
gramming [8], [1]. We introduce some new terminology in this
section.

The definitions of input and output variables are standard
and present in [4], [5]. An Input term is a term with atleast
one input variable, and no output variables. An Output term
is a term containing an output variable. Given the informa-
tion about input and output variables at top level goal ab-
stract interpretation using type expressions determines input
and output variables for the predicates in the program [3].

A computation of a logic program is a sequence of reduc-
tions (or resclution steps) from an initial query using clauses
from the program. At each stage the goal to be reduced is de-
termined by some computation rule. For this paper the com-
putation rule of Prolog, namely choosing the leftmost goal, is
assumed unless otherwise specified. A computation is success-
ful if the empty goal is reached. In this case, the binding of the
variables in the initial query constitutes a solution. A compu-
tation is failed if there is no clause to reduce the chosen goal.

A program is rigidly deterministic with respect to a query
if every computation starting from the query chooses a unique
clause to resolve the goal selected by the computation rule.
There is only one successful (or failed) computation.

A program is loosely deterministic with respect to a query
if there is at most one successful computation for the query,
though there may be several failed computations.

A program is don’t care nondeterministic for a query it
whenever there are several successful computations for the

query yielding same solution.

A program is pluralistic for a query if there are multiple
successful computations with different solutions.

2.2 Classifying Generate-and-test Programs

Generate-and-test programs have at least one clause which
has at least one subgoal G which generates multiple values for
at least one variable V. The subgoal G is followed by at least
one subgoal T with no output variable and sharing the variable’
V. The subgoal G is called the generator and the subgoal T is
called the tester. Generate-and-test programs are an important
subclass of pluralistic programs.

Generate-and-test programs are classified to three classes

1. A simple generate-and-test program has generate-and-
test goal pair in nonrecursive clauses.

2. In a recursively embedded generate-and-test program the
generate-and-test pair is embedded in a recursive clause to test
the partial solutions for eager pruning of the search space. The
generator and tester are identified using abstract interpreta-
tion [3]. The intermediate solution is the final solution if the
input term is completely consumed or the intermediate solution
meets the final constraint. The N queens program (Figure 1]
is a typical example . The predicates select/$ and attack/2 act
as generator and tester respectively.

3. In deeply intertwined generate-and-test programs, the
same predicate is a generator if certain variables are uninstan-
tiated and tester if the variables are instantiated. Unification
is used implicitly for instantiating the uninstantiated variables




and testing the instantiated variables.

2.3 Enumerate-and-filter Paradigm

Committed-choice AND-parallel model lacks the capability
of multiple solutions due to single clause commitment and ab-
sence of backtracking. Multiple solutions are incorporated in
committed-choice And-parallel models using the enumerate-
and-filter paradigm [1]. The basic relation for the idiom is

enumerate_and_filter(Term, Enum, Test, Stream).

An enumerator produces the set of possible solutions which
are filtered by a tester which can be either rigidly determin-
istic, loosely deterministic, don’t care non deterministic pred-
icate. The enumerate-and-filter paradigm executes pluralistic
programs. Generate-and-test programs are subset of pluralistic
programs.

Sets of solutions are represented as streams allowing the
exploitation of stream parallelism. The stream operations re-
quired tor transformation are merging two streams, mixing
structures in a single stream or multiple streams to get a new-
stream, filtering streams, closing streams, testing for empty
stream [1]. The predicate miz_stream/4 is used to mix struc-
tures of various streams to get a new stream. The basic relation
for miz_stream/4 is miz_stream(In, Out, Instrms, Outstrm).

queens(N,Qs) :- one_ton(N, Ns), queens(Ns,[ ],Qs).

queens(U, S, Qs) :-

select(Q,U,U1),\ + attack(Q, S), queens(U1,(Q | S], Qs).
queens([ ],Qs, Qs).

select(X,[X | Xs], Xs).

select(X,[Y | Ys],[Y | Zs]) :- select(X,Y s, Zs).

attack(X,Ys) :- attack(X,1,Ys).

attack(X,N,[Y |Ys]) - Xis Y + N.

attack(X,N,[Y |Ys]) - Xis Y- N.

attack(X,N,[Y | Ys]) :- N1 is N + 1, attack(X, N1,Ys).

Figure 1: N Queens program in Prolog
queens(N, Qs) -
oneton(N, Ns), queens1([(Ns?,[])], Qs).
queensi([], Qs).
queensl([I | Is], Qs) =-
otherwise | queens2(I, Qs), queens1(Is?,Qs).
queens2(([], S), @s) :- result_writer(S, Qs).
queens2((U, S), @s) :- otherwise |
enumerate_and_filter((U1, Q),
select(Q,U,U1), not_attack(Q, S), R),
miz_stream((A, B), (A, [B | S]), R?, R1),
queensl(R17,Qs).
not_attack(X, ], true).
not_attack(X,Y s, R) :-
otherwise | attack(X,1,Ys, R1), flip_result(R1?, R).
attack(X, ., [], false).
attack(X,N,Y s, R) :- otherwise |
attack1(X, N,Y s, Rl1),attack2(X, N,Ys, R2),
attack3(X, N,Y s, R3), or_solution([R1, R2, R3], R).
attackl(X,N,[Y | Ys], R) - plus(Y,N,Y1),eq(X,Y1?, R).
attack2(X,N,[Y | Ys]),R) - diff(Y,N,Y1),eq(X,Y1?, R).
attack3(X,N,[Y | Y], R) :- plus(N,1, N1),attack(X, 71?,Ys, R).

Figure 2: Transformed N queens program in FCP

3. Compiling Enumerate-and-filter
The OR-parallel setof construct used to realize enumerator
(2] explicitly copies all the conjunctive goals occurring after the
current goal being evaluated for every possible enumerated so-
lution. The filter construct makes explicit metacalls to spawn
a tester process for every possible enumerated solution. Meta-
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calls and explicit copying are expensive in terms of execution.

3.1 Compiling Filters
The filter process takes every solution from the stream gen-
erated by the enumerator and makes a metacall for the tester
process. Compiling the process is straightforward. A new re-
cursive process is started which spawns the tester for every
possible solution. The tester returns the value of result vari-
able Res depending upon the outcome. A conditional writer
process conditional_write/3 is spawned for every enumerated
solution which writes on the global solution stream if the value
of the result variable Resis true. The first element of the stream
contains the complete structure information for implicit uni-
fication and variable generation (refer [2] for the formal algo-
rithm).
filter_not_attack([ ],_,-).
filter not_attack([(U,S) | Xs],Y s, Qs) :-
otherwise | not_attack(S?,Y s, Res),
conditional_writer(Res?, (U7, S7),Qs),
filter not_attack(Xs?,Y s?,Qs).
conditional_writer(false, _, ).
conditional_writer(true, X, Qs) :- result_writer(X, Qs).
not_attack(S,Y s, Res) :- see Figure 2

Figure 3: Compiled filter for not_attack/$ in FCP

8.2 Compiling Stream Operations

The predicate miz_stream/{ is the only stream operation
which makes use of explicit copying and unification. The pred-
icate miz_stream/4 is compiled to the predicate miz_stream/3

miz_stream(_[ ],[]).
miz_stream(Intrm, [Intuple | Ins), [Outtuple | Outs]) :-
miz_stream(Intrm, Ins?, Outs).

The first argument in miz_stream/3 is the input term which
is not present in the input streams. This input term is mixed
with first element of the input streams as specified in the sec-
ond argument to give the first element the output stream as
specified in the third argument. The structures of the first el
ement in the input streams and the output stream are made
explicit in the second and third arguments to make use of im-
plicit unification and variable generation.

3.3 Compiling Enumerators

The OR-parallel setof construct needs following operation
to enumerate all the possible values.

(1) Finding the clauses having same predicate-name and
arity concurrently. (2) Making as many copies of the call as
there are number of clauses. (3) Unifying each copy of the call
with one of the clauses. (4) Filtering the successful clauses and
finding out the solution for successful clause matches concur-
rently. (5) building partial solutions bottom-up for recursive
clauses. (6) Matching the union of the shared terms and out-
put terms with their solutions for each successful clause. The
successful solutions are filtered to the final solution stream. (7)
Merging the solution streams for each successful clause.

The generators and testers in simple for generate-and-test
and recursively embedded generate-and-test programs are de-
termined using program analysis. Input variables and output
variables are identified. Such programs are transformed by
compiling each clause of the enumerator to a single clause
procedure which returns a stream of solutions. These solution
streams are merged. For recursive clauses, the solution is built
bottom-up. We give the algorithm in Figure 6.



A compiled version of the enumerator select/2 in the N-
queens program is given in Figure 2. The top level procedure
select/2 has two single clause procedures (SCPs) correspond-
ing to the two clauses in select in Figure 2. The last sub-
goal merge/3 in select/2 merges two solution streams SI and
S2. The recursive predicate select_clause2 builds the solution
bottom-up.

" select(Qs, S) -

select_clause1(Qs7?, S1), select_clause2(Qs?, S2),
merge(S17, 527, S).

select_clause1([ ][ ]).

select_clausel([Q | @], (@, Q).

select_clause2(( ][ ]).

select_clause2([Q | Qs], S) -
select(Qs?, R1),miz_stream(Q7, R17, S).

miz_stream(Q, [(X,Y) | R}, [((Q| X],Y) | R1]) --
miz_stream(Q, R?, R1).

miz_stream(_,[ ],[ ]).
Figure 4: Compiling select/2 of N queens program in FCP

queens/2 & queensl/2 as given in Figure 2
queens2(([ ],5),Qs) :- result_writer(S, @s).
queens2((U, S), Qs) :-
otherwise | select(U?, R),
filter _not_attack(R?,S?, R1),
miz_stream_queens2(S?, R1?, I _stream),
queensl(I_stream?,Qs).
miz_stream_queens2(S, (U, Q) | Xs],[(U,[Q]S]) | Ys]) -
miz_stream_queens2(S, Xs?,Y s).
miz_stream_queens2(-;[ ][ ])-
select/3 as given in Figure 4.
filter_not_attack/3 as given in Figure 3

Figure 5: Compiled version of N queens program in FCP

Algorithm compile static-enumerator

Input: Enumerator, Qutput: Compiled enumerator

Procedure compile recursive-clause(top level procedure)

Begin
Add a subgoal invoking top level procedure;
If there is any output list in the recursive clause whose first
element is instantiated by non pluralistic subgoal in the body
of recursive clauseThen
Add a subgoal miz_stream(First, Rest_stream, Result);

Else if the first element is instantiated by a pluralistic subgoal
in the body of the recursive clause Then Add a subgoal
recursive.miz_stream(First_siream, Rest_stream, Result);

End;

Begin
Rename each clause of the enumerator to make them a single
clause procedure(SCP). Each SCP has two arguments (1) a tu-
ple of input terms (2) a result stream of tuples formed by union
of shared terms and output terms;

Create a top level procedure say p/2 with subgoals correspond-
ing to these SCPs.;

call procedure compile recursive-clause(p/2) for the SCP corre-
sponding to recursive clause;

In the body of this top level procedure p/2, add a subgoal merge
with arity n+1 (n = no. of SCPs), to merge the individual

streams generated by SCPs.
End.

Figure 6: Compiling a statically inferrable enumerator

24

The dynamic enumerator corresponding to generator/tester
is compiled using a run time test to determine the instantiation
state of the variables whose instantiation states change dynam-
ically. Such variables are determined using mode-analysis with
type-expressions [3]. Each nonrecursive clause is expanded intc
2" (n = number of such variables) mutually exclusive sub single
clause procedures to take care of all the combinatorial possi-
bilities. This check for uninstantiated or ground is done in the
guard. For the test ground(Variable) an extra subgoal is added
in the guard to match the generated value and the value of
the variable. The compilation of recursive clauses is similar tc
recursive clauses for static enumerators. An algorithm is giver
in Figure 7.

Algorithm Compile dynamic-enumerator;

Input: A dynamic enumerator and set of variables whose

instantiation state changes dynamically; '

Output: A compiled dynamic enumerator;

Begin
Each single clause procedure (SCP) has three arguments (1) a
tuple representing the union of shared and output terms,(2) a
tuple of variables whose instantiation state has to be tested, (3)
the stream of shared and output terms;

Case SCP of |
Non-recursive or base-case:

Explode each SCP into 2" SSCPs having in its guard
test for every variable X which changes the instantiation
state dynamically, where n is number of such variables;

For each SSCP find out the subgoals in the guard. For
the test ground(X) treat X as input variable. For the
test Var(X) treat X as output variable;

Compile the body of SSCP using the algorithm to com-
pile static enumerator (Figure 6) with new input and
output variable information;

Recursive:
Compile the clause using procedure compile recursive

clause as given in Figure 6;
End.

Figure 7: Compiling dynamic enumerator (generator/tester)

Consider the predicate remove/3

remove(X, [X | Xs], Xs).

remove(X, [Q ]| Qs], [Q | Xs]) -
remove(X, Qs, Xs).

The nonrecursive clause has two variables X and Xs which
can be either ground or uninstantiated depending upon the
dataflow. Hence remove_clausel/3 is exploded into 4 clauses
as shown below

remove_clausel((X, Xs),[Q | Qs], Z) -
ground(X), ground(Xs), (X7, Xs?) = = (Q7,Qs?) |
2 =((@,Q9).

remove_clausel((X, Xs),[Q | Qs], Z) =-
ground(X),var(Xs), X? = = Q7| Z = [(Q,Qs)).

remove_clausel((X, Xs),[Q | Qs], [(Q, Qs)]) -
ground(Xs),var(X), Xs? = =Qs? | Z =[(Q,Qs)].

remove_clausel((X, Xs),(Q | Qs], [(Q,Qs)]) -
var(X),var(Xs) | true.

remove_clausel(.,.,[ ]) - otherwise | true.

The guard of each clause tests for one of the four possibilities.
If X or Xsis ground then their value is matched against the
generated values. Binding of the element in the output stream
is done only after the values match.



. ults And Related Work

We executed both transformed and compiled 4-queens pro-

gram on an FCP simulator (Logix version 1.1) on Vax 11/780
. The execution time was 13900 msec. and 520 msec. respec-

tively, an order of magnitude improvement.

Ueda (10}, [11] presents a method for making exhaustive
search programs deterministic. In his scheme OR-parallelism
is transformed to AND-parallelism and conjunctive goals are
solved AND-sequentially. The scheme [11] uses subcontinua-
tions to invoke the testers as soon as partial solution is gen-
erated by the generator. The number of shared terms between
generators and testers is restricted. No conjunctive generators
using the same variables are allowed, and testers are restricted
to the predicates with input variables.

The Enumerate-and-filter paradigm integrates stream par-
allelism, AND-parallelism and almost full OR-parallelism. OR-
parallelism is simulated using AND-parallelism in enumerat-
ing the set of multiple solutions and in loosely deterministic
testers. Filter process spawns a tester as soon as any enumer-
ated partial solution is available. In a recursively embedded
enumerate-and-filter program filtering occurs at different lev-
els concurrently. Pluralistic programs are executed which form
a superset of generate-and-test programs. There are no restric-
tion on the number of shared terms between generator and
tester. A stream of tuples of shared terms is passed between
generator and tester. Conjunctive generators with shared terms
are allowed. The implicit pipelining in set enumeration prunes
away the solutions with conflicting bindings.

Comparison of our scheme with Ueda’s scheme (Program 5
of [11] adapted to run in FCP) as shown in Table 1 indicates
that our scheme runs 10 % faster under FCP simulation on
single processor. We believe this gap will increase on a mul-
tiprocessor architecture capable of exploiting pipelining and
AND-parallelism. Dedicated processing elements may speed up
stream operations like miz_stream and merge.

Ueda’s Scheme Qur Scheme

N | Time/Reductions | Time/Reductions
msec/FCP(Prolog) | msec/FCP(Prolog)

1 5807 933(563) 520/ 812(361)
5 | 2350/3618(2208) | 2130/ 3287(1122)
6 | 9230/14388(7899) | 8810/12839(4214)

Table 1: comparing FCP version of N-queens

Comparison of Prolog version of our program, Ueda’s pro-
gram [11] and setof shows that (1) all the schemes are com-
parable (see table 2) (2) there is no runtime overhead in our
scheme. (3) number of reductions in our scheme is 40 % less.
(4) our scheme is faster on Cprolog. The little variation in ex-
ecution time using Sicstus and Quintus compilers is attributed
to optimizations used for setof and compiler architecture sup-
porting continuation. Comparison with other related research
is present in [2] and has been omitted due to space limitations.

N | Unit Cprolog Sicstus Quintus

Vaz 11/780 Sun 2/50 | Apollo DN300
4 | msec 335/380/321 61/74/72 83/66/74
5 | msec | 1470/1480/1292 | 214/196/203 | 308/245/251
6 | msec | 4930/5640/5060 | 477/616,/689 573/850/912
7 | sec 23.6/24.8/22.0 | 2.0/2.5/2.7 2.9/3.6/3.7
8 | sec 108/115/103 -/-7- 1 11.3/20.3/20.9

Table 2: Comparing execution time of setof/Ueda/Our Scheme
for N-queens in Prolog

5. lusion

We have developed techniques and algorithms to compile
enumerate-and-filter programs for efficient execution under
committed-choice AND-parallelism by removing explicit copy-
ing and use of metacalls. The compiled code preserves the
declarative style of programming present in logic program-
ming language and the integration of Or-parallelism, AND-
parallelism and stream parallelism achieved by our transforma-
tion scheme [1]. The generate-and-test programs execute effi-
ciently under committed-choice AND-parallelism when com-
pilation techniques are combined with transformation tech-
niques. Compilation increases the execution speed by an order
of magnitude. Compiled enumerate-and-filter programs would
run more efficiently than Ueda’s continuation based scheme
on non Von-Neumann architecture capable of exploiting AND-
parallelism and pipelining. Compiled enumerate-and-filter pro-
grams are as efficient as setof construct in Prolog and Ueda's
scheme under sequential execution showing that there is no
extra runtime overhead.
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Abstract: An algorithm can be modeled as an indez set and a set
of dependence vectors. Each index vector in the index set indexes a
computation of the algorithm. If the execution of a computation
depends on the execution of another computation, then this depen-
dency is represented as the difference between the index vectors of
the computations. The dependence matriz corresponds to a matrix
where each column is a dependence vector. An independent parti-
tion of the index set is such that there are no dependencies between
computations that belong to different blocks of the partition. This
paper considers uniform dependence algorithms with any arbitrary
kind of index sets and proposes a computationally inexpensive
method to find independent partitions of the index set. For most
algorithms, this partition is maximal and the proposed method out-
performs previously proposed approaches in terms of computational
complexity and/or optimality. Also, lower bounds and upper
bounds of the cardinality of the maximal independent partitions are
given. For some algorithms it is shown that the cardinality of the
maximal partition is equal to the determinant of one of the subma-
trices of the dependence matrix. Therefore, the value of this deter-
minant determines the partitionability of the algorithm.

1. INTRODUCTION

Parallel processing holds the potential for computational
speeds that surpass by far those achievable by technological
advances in sequential computers. This potential is predicated on
two often conflicting assumptions, namely, that many computations
can take place concurrently and that the time spent in data
exchanges between these computations is small. In order to meet
these assumptions, algorithms and/or programs must be partitioned
into computational blocks that can execute in parallel and have
communication requirements efficiently supported by the target
parallel computer. Ideally, it may.be desirable to identify, if at all
possible, the independent computational blocks of a program, i.e.,
those that require no. data communication between them. This
paper describes a practical and computationally inexpensive
approach to achieve this goal. It is based on a sound mathematical
framework which yields optimal results for a meaningful class of
algorithms and it outperforms approaches proposed in extant work.

The identification of a possible partition of an algorithm or
program can be done by the user, by the analysis phase of an
optimizing compiler or by the machine at run time [4]. The tech-
niques proposed in this paper, while usable by a patient and dedi-
cated programmer, are best suited for an optimizing compiler. They
address the specific problem of identifying independent partitions of
an algorithm with goals that are similar to those of the early works
of D.A. Padua [9] and J. Peir, D. Gajski and R. Cytron [11], [12],
[13]. The focus of these efforts is on the optimization of programs
consisting mainly of nested loops with regular data dependencies.

The techniques proposed in those papers are intended to comple- *

ment many other tools for the analysis and restructuring of sequen-
tial programs for execution in multiprocessing machines [1], [7],
[10], [14], [15]. A related potential application of partitioning tech-
niques is in the design of algorithmically specialized concurrent
VLSI architectures [8].

This research was supported in part by the National Science Foundation under
Grant DC1-8419745 and in part by the Innovative Science and Technology
Office of the Strategic Defense Initiative Organization and was administered
through the Office of Naval Research under contract No. 00014-85-k-0588.
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In this paper, nested loop programs with regular data depen-
dencies are modeled as uniform dependence algorithms which resem-
ble the uniform recurrence equations considered in [6] and the linear
recurrences of [11]. Data dependencies are represented as depen-
dence vectors (with as many entries as the number of nested loops)
that describe the distance between dependent computations in terms
of loop indices (the vectors are called dependence distance vectors in
[11] and are also considered in [15] and [2] in a complemented
form). Dependence vectors are collected in a matrix, the dependence
matriz, which is used in this paper and in [9], [11] and [13] to iden-
tify independent partitions as briefly described in the following
paragraphs.

The’ greatest common divisor method [9], [11] considers, for
each row of the dependence matrix, the greatest common divisor of
the entries in that row. The resulting greatest common divisors are
used to partition the iteration space of the program (also called the
index set) and the cardinality of the resulting partition is the pro-
duct of the greatest common divisors. In addition, an "alignment”
method is provided in [9] which allows in some cases the transfor-
mation of dependencies so that the value of the greatest common
divisors is increased. For a given set of dependencies, this approach
yields a unique independent partition which is not necessarily
optimal. In some cases, when all of the greatest common divisors
equal unity, the number of the blocks in the partition is one, i.e.,
the whole program.

In the minimum distance method [11], [13], the dependence
matrix is transformed into an upper triangular matrix which is then
used to identify an independent partition. For some algorithms the
cardinality of the partition is the product of the diagonal elements
of the upper triangular matrix. This approach yields partitions
which are better than those obtained through the greatest common
divisor method. However, the computational complexity of this
method is high (though affordable according to [11]) and the
optimality is not guaranteed.

In the method proposed in this paper, a set of vectors defined
later in Section 3 is derived from the dependence matrix. These vec-
tors are used to find independent partitions of uniform dependence
algorithms with any arbitrary kind of index set. The block to which
a given index point belongs to can be identified by simply comput-
ing the dot products of each of the vectors by the index point. For
some algorithms, the cardinality of the partition is equal to the
absolute value of the determinant of a submatrix of the dependence
matrix and for a meaningful class of algorithms, the partition
obtained is maximal. A comparison of the method proposed in this
paper with the minimum distance method is provided in Section 5.

The organization of this paper is as follows. Section 2 presents
basic definitions and notation. In Section 3, partitioning vectors are
defined and three types of independent algorithm partition by these
partitioning vectors are derived. In Section 4, a procedure to find an
independent algorithm partition is presented and sufficient condi-
tions for the resulting partition to be maximal are discussed. Section
5 compares the method proposed in this paper to the minimum dis-
tance method. Finally, Section 6 concludes this paper and points
out some open problems.

2. BASIC DEFINITIONS AND NOTATIONS

Throughout this paper, sets, matrices and row vectors are
denoted by capital letters, column vectors are represented by lower




case symbols with an overbar and scalars correspond to lower case
letters. The transposes of a vector v and a matrix M are denoted v
and MT, respectively. The symbol E; denotes the row vector whose
entries are all zeros except that the ith entry is equal to unity. The
vector 1 {or 0) denotes the row vector or column vector whose
entries are all ones (or zeroes). The dimensions of 1 and 0 and
whether they denote row or column vectors are implied by the con-
text in which they are used. The vector space spanned by a set of
vectors S={v,, Vg, ..., v} is denoted sp{v,, Vg, ..., Vi, }=28p{S} and
its dimension (i.e., the number of linearly independent vectors in S)
is denoted dim{S}. The symbol I denotes the identity matrix. The
rank of a matrix A is denoted rank(A) and the determinant of
matrix A is represented by detd. The set of rational numbers, the
real space and the set of integers are denoted @, IR and Z, respec-
tively. The set of non-negative integers and the set of positive
integers are denoted N and N', respectively. The empty set is
denoted (¢ and the notation A—B denotes the set {x:x€A, x¢ B}.
The notation |S| means the cardinality of set S and |o | represents
the absolute value of scalar @. As a final remark, if the element a
belongs to a set S, the notation a¢ € S is used and this notation is
"abused" to indicate also that a column vector m; (or a row vector
M;) is a column (row) of a matrix M, ie., m; EM (M;EM) means
that m; (M;) is a column (row) of matrix M.

_The algorithms of interest in this paper are the so-called uni-
form dependence algorithms defined as follows.

Definition 2.1 (Uniform dependence algorithm) A uniform
dependence algorithm is an algorithm that can be described by an

equation of the form o
v@=fi(v(i-di )y v(i—de), s v(j—dn)) (2.1)

where

6

}GJCZ“ is an index point, J is the index set of the algorithm
and n€N"' is the number of components of j;

fj is the computation indexed by jT, ie., a single-valued func-
tion computed "at point j" in a single unit of time;

(2)

v(]) is the value computed "at :i_", i.e. the result of computing
the right hand side of (2.1) and

EEZ , i=1, ..., m, mEN are dependence vectors, also called
dependenczes, w}uch are constant (i.e. independent of JEJ) the
matrix D=[d,, ..., dm] is called the dependence matriz and
rank(D) = min{n, m} is denoted by m'. O

(3)
(4)

The class of uniform dependence algorithms is a simple exten-
sion of the class of computations described by uniform recurrence
equations [6]. The main difference is that uniform dependence algo-
rithms allow for different functions to be computed (in a unit of
time) at different points of the index set. >From a practical
viewpoint, uniform dependence algorithms can be easily related to
programs where (1) a single statement appears in the body of a mul-
tiply nested loop and (2) the indices of the variable in the left hand
side of the statement differ by a constant from the corresponding
indices in each reference to the same variable in the right hand side.
Alternative computations can occur in each iteration as a result of a
single conditional statement as long as data dependencies do not
change. Nested loop programs with multiple statements can also
use the techniques of this paper together with the alignment method
discussed in [9] and [11]. For the purpose of this paper, only struc-
tural information of the algorithm, i.e., the index set J and the
dependence matrix D, is needed. Other information such as what
computations occur at different points and where and when
input/output of variables takes place can be ignored. Therefore, a
uniform dependence algorithm with index set J and dependence
matrix D is hereon characterized simply by the pair (J, D). Also, as
in Definition 2.1, the letters n, m and m’ always denote the dimen-
sion of points in J, the number of dependence vectors and the rank
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of the dependence matrix D, respectively.

Definition 2.2 (Algorithm dependence graph and connec-
tivity) : The dependence graph of an algorithm (J, D) is the non-
directed graph (._I E) where J is the set of nodes of the graph and
E= {(J yi)ii-i'=djorj —J—d,, 4; €D, §', JEJ} is the set of edges.
Two index p01n£s_3, ' are connected if there exist index points jy, ...,
J1€J such that (J) jx): (jl;jZ)’ [ (jl—l: jl)! (jl: j,)eE' =

Definition 2.3 (Independent partition, maximal independent
partition and partitionability): Given an algorithm (J, D) and
the corresponding dependence graph (J, E), let P = {J}, ..., J.},
q€N+ be a partition of J. If for any arbitrary points JIGJ and
jo€dy, 1#], (JI,JQ) € E, then P is an independent partition of the
algorithm (J, D). The sets J;, i=1, ..., q, are called the blocks of
partition P. For an independent partition P, if any two arbitrary
points j, j'€J;, i=1, ..., q, are connected in the dependence graph,
then P is the mazimal independent partition of (J, D) and is denoted
Prax- The cardinality of the maximal independent partition
|Pmax | is referred to as the partitionability of the algorithm (J, D).
a

Informally, an independent partition of the index set J is such
that there are no dependencies between computations which belong
to different blocks of the partition. In graph theoretical terms, each
block of an independent partition of algorithm (J, D) corresponds to
a component of its dependence graph (J, E).

Generally, the shape and the size of the index set influence the
partitionability of the algorithm because of boundary conditions.
Consider two algorithms (J, D) and (J', D') such that D'=D and
J'=JU{j}, i.e., they differ only in the size of the index sets. The
corresponding dependence graphs (J, E) and (J', E') can be such
that j;, j2€J are not connected in (J, E) but are connected in (I, E')
because it is possible that E'=E U{(j, j,), G, Jg)} In other words, j,
and j, can belong to different blocks of the maximal independent
partition of (J, D) but belong to the same block of the maximal
independent partition of (J', D). Example 2.1 in [16] illustrates this
concept.

The dependence of the partitionability of an algorithm (J, D)
on the shape and size of its index set J is a complicated issue and
has practical implications. For example, in many programs, the
loop bounds are not known at compile time and partitions must be
identified which are independent of the size and shape of the index
set and based solely on data dependencies. To concentrate on the
relationship between the structure of the dependence vectors and
the partitionability of the algorithm, the following concepts are
introduced.

Definition 2.4 (Pseudo-connectivity): Given an algorithm (J,
D), two points j, j'€J are pseudo-connected if there exists a vector
XNEZ™ such that j=j+DXx. O

Definition 2.6 (Pseudo-independent partition, maximal
pseudo-independent partition and pseudo-partitionability):
Given an algorithm (J, D), let P={J;, ..., J;} be a partition of J. If
any two arbitrary points j;€J; and j;€J), i#l, are not pseudo-
connected, then P is a pseudo-independent partition of the algorithm
(J, D). If P is a pseudo-indépendent partition and any two arbi-
trary points j, j'€J;, i==1, ..., q, are pseudo-connected, then P is the
mazimal pseudo-independent partition of (J, D) and is denoted Py,,,.
The cardinality of the maximal pseudo-independent partition
|Pmax | is referred to as the pseudo-partitionability of the the algo-
rithm (J, D). O



In many practical cases, e.g., when "while" loops are present in
a program, it is also convenient to consider algorithms whose index
sets are arbitrarily large along one or more dimensions. The general
case, i.e., when this applies to all dimensions, is captured in the fol-
lowing definition and is also considered in this paper.

Definition 2.8 (Semi-infinite index set): An index set J is
semi-infinite if it takes the following form:

I={=[31 a0 S ji <00,i=1, w, m} (2.2)
u]

-3
Example 2.1 Consider the algorithm (J, D), where D= _, ,

and J=N2 is semi-infinite, i.e., J={j=[j;, jo]T: 0=j;, Jo<co}. The
index set J is partially shown in Figure 2.1. The maximal partition
Prax={J1, Jo, Js, Js} where J13={[0: O]T}r J2={[1’ O]T}:

Js={[0,1]T, [2,0]T} and J,= {}:}e(J-_glJi)}. Points j,= [0, 0]

and j,=[0, 1]T are not actually connected in the dependence graph
of the algorithm. However, they are pseudo-connected by Definition
2.4 because jo=j;+D\, A= [3, 2]T. Intuitively, j; and j, are con-
nected through points [2, ~1]7, [4, —2]T, [6, —38]T and [3, —1]T which
are not in J. Py, is not a_pseudo-independent partition. Because
det D=1, equation DX =j—j' always has an integer solution for X.
So any two arbitrary points in J are pseudo-connected to each
other. This implies that there is only one pseudo-independent parti-
tion P={J} which is also the maximal pseudo-independent parti-
tion. O

At this point, some comments are in order. First, by
Definitions 2.3 and 2.5, a pseudo-independent partition is also an
independent partition regardless of the shape and size of the index
set. However, an independent partition is not necessarily a pseudo-
independent partition. This is due to the fact that two arbitrary ji,
j2€J are pseudo-connected if they are connected and the reverse is
not necessarily true. Secondly, for practical purposes, it is sufficient
and more efficient to identify pseudo-independent partitions instead
- of independent partitions for the reasons explained next. Blocks of
independent partitions that are not blocks of a pseudo-independent
partition and contain only a few index points (hereon called boun-
dary blocks) always occur at or near the boundaries of an index set.
This can be shown for the general case when J is semi-infinite. In
fact, according to Lemma 3 in [6], there exists always a point
P==[P1; Pay +, Pn] €J such that for any arbitrary points j=
[j!) Jas ey jn]TEJ and j'= [jll, j’2’_--~’ jln]’I_‘EJ beyond p€J (i.e.,
iz pi and 4= p;, 1=1, .., n), j and j' are connected in the
dependence graph if and only if they are pseudo-connected. Boun-
dary blocks are typically such that their individual cardinalities are
very small in relation to the sizes of the algorithm and pseudo-
independent blocks. As a consequence, little additional speed-up can
result from executing boundary blocks concurrently with other
blocks. Moreover, assigning small boundary blocks and other large
pseudo-independent blocks to different processors of a multiproces-
sor can cause a non-balanced load distribution and inefficient sys-
tem operation. In addition, as pointed out before, when index sets
are known only at run time, it is not possible to determine the
boundary blocks. Finally, many algorithms are such that they have
the same partitionability and pseudo-partitionability. For all of the
above reasons, this paper considers hereon only the problem of iden-
tifying pseudo-independent partitions of an algorithm.

3. BASIC RESULTS

In this paper, independent algorithm partitions are deter-
mined by two types of vector, called partitioning vectors and
separating vectors, which must satisfy certain conditions. Together
with some auxiliary terminology they are introduced in Definitions
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3.1 and 3.3. These definitions are followed by a theorem and an
example which make clear the relation between these vectors and
independent algorithm partitions.

Definition 8.1 (Partitioning vector, determining vector,
equal partitioning vector and algorithm coefficient): Given
an algorithm (J, D), II=[ry, mg, ..., 7, |EZP® is a partitioning vector
of (J, D), if and only if it satisfies the following conditions.

®
2)

ged (my, gy weey my)=11.
There exists a set of m'=rank(D) linearly independent depen-
dence vectors dy, di,, ...y dy; such that

I1d,, =...=I1d, ,= dispII>O0. (3.1)
The dependence vectors éh, <oy dy; are called the determining vec-
tors of IL. If Ha-l=0(mod dispH)”, i=1, ..., m, then II is called an
equal  partitioning vector  of _ (J,D). The constant
o =ged(dispIl, @}, ..., &) Where o; =IId; (mod dispII), i=1, ..., m, is
called the algorithm coefficient. O

For a given partitioning vector the set of determining vectors
is not necessarily unique and, therefore, dispIl might not be unique,
either. However, given a partitioning vector and a set of determin-
ing vectors, dispIl is unique. Therefore, whenever dispIl is men-
tioned, it is associated with a particular set of determining vectors.

By Definition 3.1, if m'=n, then for each set of determining
vectors d, ..., H,n{, the corresponding partitioning vector II is the
unique solution that satisfies conditions 1 and 2 in Definition 3.1
and the following system of linear equations:

II(dy, —dy,)=0

m(d, —d,;)=0
(3.2)

(d,, —d,,)=0

When m'<n, the partitioning vector determined by m'
linearly independent dependence vectors d, ..., d,, is not unique
and of course, it belongs to the solution space of Equation 3.2. In
the next section, a closed form expression is provided for a parti-

tioning vector as a solution of Equation 3.2.

_ A partitioning vector II defines a set of hyperplanes
ITj =c(modc), ¢c€Z, in the index space. Because an index point lies
on only one of the hyperplanes, the index set J can be partitioned
according to them, i.e., all points j lying on hyperplanes such that,
for a fixed ¢, IIj=c(moda), belong to the same block of the parti-
tion. The following definition states this concept formally.

Definition 8.2 (a-partition): Let IT be a partitioning vector and
« be the algorithm coefficient for (J, D). The partition P,={Jq, ...,
Jo—1} where Ji={j:j€J, Ij=1i(mod &)}, i=0, ..., @—1, is called the
a-partition of (J, D). O

Clearly, P, is a partition and it is shown in Theorem 3.1 that
P, is also a pseudo-independent partition.

For the case where m' < n, i.e., rank(D) < n, a necessary con-
dition for two index points j;, j2€J to be pseudo-connected is that
equation Dx=(j;—j,) has at least a real solution X€IR™. This
motivates the introduction of the following concepts. Let row vector
¥; be such that ¥;D=0. Clearly, there are n—m' linearly indepen-
dent such vectors, denoted ¥, ..., ¥,__, and they define a set of

t: ged (ay, ..., ay)=the greatest common divisor of aj,
1t : a=b (mod c) if and only if a=b+a, ¢, a;EZ.

vy 8.



hyperplanes
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wee j=§, yezn—m" (3.3)

Vo
in the index space. The index set J can be partitioned such that
points lying on the same hyperplane belong to the same block of the
partition. It will be clear later that if two index points j,, JZEJ lie
on the same hyperplane defined by (3.3), the equation Dx= (]1—_]2)
has a solution. These concepts are formally defined as follows.

Definition 3.3 (Separating vector and separating matrix):

Given an algorithm (J, D), ¥i=[i1, ..., ¥in]EZV® is a separating

vector of (J, D) if and only if it satisfies the following conditions.

(1) KCd(¢i1’ eeey 'win):]-

(2) ‘I’iD=0.

Let ¥y, «., ¥,_.v be all the linearly independent separating vectors;
¥,

the matrix U= is called separating matriz. O

n—m’

A set of n—m! linearly independent separating vectors ¥, ...,
W, for algorithm (J, D) can be found by solving the equation in
condition 2 of Definition 3.3. The following definition indicates how
to use these separating vectors to construct a.corresponding algo-
rithm partition.

Definition 8.4 (¥-partition): Let U be a separating matrix of
algorithm (J, D). The partition Py={J3,, vy J5,} of J is called the
V-partition of algorithm (J, D) if Jy= {j: j€J, ¥j=y;}, where
Yi=[¥1ir s Yoomi] TEZE™) is called the indez of block J5, i=1,
vy qo O

Clearly, Py is a partition of J. If m'==n, then Py={J}is a
trivial partition because the only separating vector is O in this case.
As for P,, Py is actually pseudo-independent as shown later in
Theorem 3.1. Let J;€Py and consider the subalgorithm (Jj, D).
Clearly, if @ > 1, subalgorithm (Jj, D) can be further partitioned
by the partitioning vector II. In other words, the index set J can be
partitioned by a set of hyperplanes

Ik

wli=
and all points lying on the same hyperplane belong to the same
block of the partition. This partition is formally stated next.

Yo (modar (3.4)

)]’ )'06{0,1,...,04—1} and iezn—m’,

Definition 3.5 («W¥-partition): Let II be a partitioning vector
and VU be a separating matrix of algorithm (J, D). The partition

Poy= {J5,5 -2y J5,} of index set J is called the o ¥-partition if Jy
:{-j_: }EJ: HJ(D‘JIIOTd o) =Yi}, where ¥= [YUi) PASERETH Y(n—m’)i]T
€22+ s called the indez of block Jy,1=1,.., k. O

Partitioning vectors and separating vectors play a very impor-
tant role in algorithm partition. The next theorem gives some of the
motivation for the introduction of these concepts. More specifically,
it provides sufficient conditions for two computations to belong to
different blocks of an independent partition, in terms of those vec-
tors and the index points associated with the computations. More-
over, it shows that o—partitions, ¥—partitions and oW-partitions
are all pseudo-independent.

Theorem 8.1 : Let IT be a partitioning vector, o be the algorithm
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coefficient and ¥ be a separating matrix of algorithm (J, D), respec-
tively. The following statements are true:

(1) For any two arbitrary points 1, Jo€J, if T0j; #H}z(mod ) then
they are not pseudo-connected. Therefore, P, is a pseudo-
independent partition of (J, D).

For any two arbitrary points JTI, EQEJ, if \IIJTﬁé\I/Eg then they are
not pseudo-connected. Therefore, Py is a pseudo-independent
partition of (J, D).

(8) P,y is a pseudo-independent partition. O

(2)

Proof: Provided in Appendix.

Corollary 3.1: If algorithm (J, D) has an equal partitioning vector
II, then j;, jo€J are not pseudo-connected if ITj; #I1j, (mod displI)
or Uj,#Vj,. O

As a particular case of Theorem 3.1, Corollary 3.1 is obviously
true. If algorithm (J, D) has an equal partitioning vector II, then
the algorithm coefficient a==dispIl. By Theorem 3.1, Corollary 3.1
holds.

Example 3.1: Consider algorithm (J, D) where J={[j,j| :
0=j,j; = 5,5€N*} and D=[d] where d=|[2, 2]T. Figure 3.1
shows the index set J for s==4. There is only one possible set of
determining vectors {d}. One of the partitioning vectors deter-
mined by d is IT=[-1,2]. It follows that dispII=Ild=2 and the
algorithm coefficient o=2. Consider index points j;=[0, 0]T and j,
=(1, 0]T; because HJI—O(modoz) and sz—l(modoz), by Theorem
3.1, they are not pseudo-connected. There is only one linearly
independent separating vector ¥;=[1, —-1] and a separating matrix
is ¥=[1,~1]. Again, consider index points j;, jz=[0, 1] for which
¥j;=0 and ¥j;=—1. By Theorem 3.1, j; and j;_are not pseudo-
connected. In Figure 3.1 (a) and (b), hyperplanes IIj=c;(moda) and
Vj=cq, ¢, cg€Z, are drawn, respectively. All the points lying on
the same hyperplane ITj=c; (mod«) belong to the same block of the
a-partition and all the points lying on the same hyperplane \IIJ =cy
belong to the same block of the W-partition. Figure 3.1 shows the
«a—partition, W-partition and oW-partition pictorially. Let s=3,
then P,={Jp, J;} where J;={[0, 0|7, [0, 1]%, [0, 2] , [0, 3]%, [2, 0],

[2’ I]T’ [2: 2]T: [27 3]T} and J1={[1:0]T: [1)1]T1 [1!2]T1 [1: 3]Ta
(3,0]T, [3,1]T, 3, 2]T, 3,3]T). Also Pw—{J—sl, OV (1SRN (4
where J[gl {8, 0] H J|2]'_{[2 0] ,[3 1 }, J[l]'—{[l 05

[2 1] :[3 2] }! 0]—{[0 0] 1[1 1] ) [2 2] :[3 3]T}:
Jy={[0, 1]%, [, Z]Ty 2, 3"}, Jg={[0, 2]",[1, 3"} and
Ji—g={ {[0, 3]7}. Interested readers can find P,y by intersecting

JiNJy, i=0, 1 and j=-3, .., 3, [16] which is such that
IPw ‘—12< o |Py |=14. Clearly, Py, P, and P,y are pseudo-
independent partitions. In Section 4, it is shown that the aW-
partition is also the maximal pseudo-independent partition. O

By Theorem 3.1, if for any arbitrary value of a€Z, 0=a<«
there is at least one point j€J such that Ilj=a(mode), then J;€P, is
such that Ji#(S, i=0, ..., a—1. Therefore, |P .| = . Intui-
tively, if J is large enough and dense (informally, an index set J is
dense if any arbitrary point jEZ" that is inside the boundaries of J
belongs to J), then for any arbitrary value of a, 0=a<« and a€Z, .
there usually exists at least one index point j such that
ITj=a(mod a). Therefore, it is Teasonable to make the following
assumption:

Assumption 3.1 (Index set): For an algorithm (J, D) under con-
sideration in this paper, let II be a partitioning vector and o be the
algorithm coefficient. It is assumed that for any arbitrary value of
acZ, 0<a<, there is at least one point JEJ such that ITj=a(moda).
a



In [18], it is shown that this is true if the index set J is defined
by (2.2), i.e., J=N". Therefore, |Py. |= « if J is semi-infinite.

4. INDEPENDENT PARTITIONING METHOD

In this section, Theorem 3.1 and other results and concepts
introduced in Section 3 are used to prescribe a partitioning pro-
cedure. Afterwards, Section 4.1 discusses how to find the partition-
ing vectors required by the procedure. Then Section 4.2 character-
izes algorithms for which the method yields the optimal partition
and derives lower and upper bounds on the pseudo-partitionability
of arbitrary uniform dependence algorithms. The independent par-
titioning procedure is as follows:

Procedure 4.1 (Finding a¥-partition for algorithm (J, D)):
Input:  Algorithm (J, D).
Output: a¥—partition P,y for algorithm (J, D).

Step 1: Select m' linearly independent dependence vectors d,, ...,
di;, set D= [dy,, . dy,], find TEZ™" such that
rank(TD.)=m' and compute the corresponding partition-
ing vector IT according to Theorem 4.1 provided in Section
4.1. If dispIl#|det(TD,)|, then select another set of m'
linearly independent dependence vectors and compute the
corresponding partitioning vector until all distinct sets of
m' linearly independent dependence vectors are considered.
If a partitioning vector II such that dispII= |det(TD,)| is
not found, then select the partitioning vector II such that
(|det(TD.) |)/(dispII) is minimum. Then compute the
algorithm coefficient o according to Definition 3.1.

Step 2: Obtain n—m’ linearly independent separating vectors ¥,

- ¥,
ey ¥ by solving equation ¥; D =0. Set ¥=| ... |
-
Step 3: For every index point jed , if 1 (I\I;Tda) =Y;
J

=[Yois F1is oo y(n—m_’li]T, then assign j to J5,, the block
indexed by y;, i.e., j€J5;.

Step 4: Poy={J5, ..., 5, }. O

4.1. Finding a partitioning vector

This subsection provides in Theorem 4.1 a closed form expres-
sion for the computation of partitioning vector II, as required in
Step 1 of Procedure 4.1. Given m' linearly independent vectors d,,,
..y d;;, the corresponding partition vector IT belongs to the solution
space of Equation 3.2. In [3], a closed form expression for a parti-
tioning vector which is determined by d,, ..., d;, is given. This
result is restated as Theorem 4.1 as follows.

Theorem 4.1 [3] : Let T Etn{ be linearly independent, consider
matrix D¢={d;, ..., E,ﬂ, and -let TEZ™® be such that
rank (TD, )=m'. Then II=4 I(TDc )7'T is a partitioning vector
determined by d,,, ..., d; , and disp[I=0, where SEN* is such that

TI€Z™™ and the greatest common divisor of the n components of II
is equal to one. O

Notice that matrix TEZ™>® (such that rank(TD.)=m') always
exists. Because rank(D,)=m/, there are m' linearly independent rows
in D,. Suppose rows ry, .., Iy are linearly independent. If

T .

T=] .. |, where E;, .., E
Trd

Section 2, then rank(TD.)=m'. In other words, the result of multi-

plying D, by T is a square submatrix of D that contains exactly m'

ry 2re as defined in the beginning of
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linearly independent rows of the m' linearly independent columns of
D. If m'=n, then T=I, the identity matrix, and II= 1D, The
essence of the proof is as follows [3]. Because §1(TD, )™ TD.=81,
vector 81 (TD,)™'T satisfies Equation 3.1 and meets conditions 1
and 2 in Definition 3.1 by the meaning of the constant f; so
I=p1(TD, )T is a partitioning vector determined by d,,, ..., dy,
and dispII=4>0.

When considering partitioning vectors for a given algorithm,
it is desirable to obtain an equal partitioning vector because of the
simplicity and regularity of the resulting partitions. Necessary and
sufficient conditions for an algorithm to have an equal partitioning
vector are provided in [16].

4.2. Sufficient conditions for optimality

Theorem 3.1 provides a necessary condition for two index
points in J to be pseudo-connected. Next it is shown in Theorems
4.2 and 4.3 that this condition becomes sufficient when the depen-
dence matrix D satisfies certain constraints. The implication of this
result is that the partition P,y obtained by Procedure 4.1 is maxi-
mal. In order to motivate and facilitate the understanding of the
main results of this section, a special case is first discussed in
Theorem 4.2 where m'=n, i.e, rank(D)=n. In this case, the ¥—par-
tition is trivial, i.e., Py={J}.

Theorem 4.2 : Let m'=n, II be a partitioning vector of algorithm
(J, D) determined by d,,, ..., d;,, D;=[dy,, ..., di, | and & be the
algorithm coefficient. If |detD, |=dispIl, then

(1) two index points JTI, EQEJ are pseudo-connected if and only if
IIj; =ITjz(moda);

(2) the a-partition is the maximal pseudo-independent partition of
(J, D), i.e.; Prnax=P4, and leax IZO" d

Proof: Provided in [16].

In this case, Procedure 4.1 becomes very simple. Because
rank(D)==n, there is only one'trivial separating vector 0 and there-
fore, W—partition={J}. So Step 3 in Procedure 4.1 can be skipped.
When II is an equal partitioning vector, then IId;=0(moddispIl),
i=1, ..., m. So a=displI= |detD, |. This fact is summarized as
Corollary 4.1 as follows. ’

Corollary 4.1 : Let m'=n, I be an equal partitioning vector of
algorithm (J, D) determined by d,, ..., d;, and D,=[d;, ..., d; ). If
|detD, |=dispIl, then the pseudo-partitionability of (J, D) is equal
to the absolute value of the determinant of matrix D, i.e.,
|Prax |= |detD, |. O

The meaning of Corollary 4.1 is as follows. For a class of algo-
rithms, the number of blocks in the maximal pseudo-independent
partition is equal to |detD, |, the absolute value of the determinant
of a submatrix of the dependence matrix D. If the algorithm is to be
executed by clusters of processors with limited inter-cluster com-
munication capabilities then the number of clusters to be used
should be directly related and perhaps equal to the cardinality of
the pseudo-independent partition. In such MIMD systems, |detD, |
is a direct indication of how many clusters can be used to execute
the algorithm. The next theorem discusses the sufficient condition
of optimality for general cases.

Theorem 4.8 : Consider algorithm (J, D), let Eh, ey —é,n{ be
linearly independent, Dc=[ge1; ey Etn,], TeZ™ ® be such that
rank(TDc)=m',_H=dis_})HI(TDC)'1T be the partitioning vector
determined by d,, ..., d; ;, @ be the algorithm coefficient and ¥ be
a separating matrix. If |det(TD,)|=dispIl, then



)
(2)

two points 31, 'JTQGJ are pseudo-connected if and onmly if
(j; —Jjz)=0(mod &) and ¥j; =Vjy;
the aW-partition is the maximal pseudo-independent partition
of (J, D), i.e., Prox=Pay-

n—m’
IP'{/ | = H (xi +1)’
, n-lIll’,l and o =

(3) —J:I’JTZGJL

where x;=max{¥; Gl —.j_Z):

i=1, ... [Poac | = a [Py . O

Proof: Provided in [16].

If the cardinalities of the a-partitions of sub-algorithms (Jg;,
D), where J;€Py, i=1, ..., q, are all equal to @, then [Py, |=
o |Py |. However, for some block J;€Py, the cardinality of its -
partition might be less than o because for some value of a€Z,
0 = a <, there might not exist an index point j€J; such that
Ilj=a(moda). This phenomenon is illustrated in the following
example.

Example 4.1: Consider the algorithm of Example 3.1 with s=3.
There is only one set of determining vectors {d} and D,=D. If
T=[-1, 2], then TD.=[2]. According to Theorem 4.1,
I=21[2]"! [-1, 2]=[-1, 2] and dispIl=2=det(TD,). As in Exam-
ple 3.1, the separating matrix is ¥=[1, —1]. To illustrate Theorem

.3 (1), consider points j;=[0, 0]° and j,=[2, 2|T. Because
I1j;=I1j; (mod &) and ¥j; = ¥jy, by Theorem 4.3, they are pseudo-
connected. Due to the fact that dispIl=det(TD,), by Theorem 4.3,
Py is the maximal pseudo-independent partition. Consider J[gleP\p,
i.e., the block whose points j are such that ¥j=3. J[S]—{[3 0]™ '} as
found in Example 3.1. There does not exist an index point jE€J3
such that ITj = 0(mod o). This illustrates the explanation before this
example. By Theorem 4.3 (3), [Py| = x+1=7, where
x=3—(—3)=6 and |Pp |= 12 £ o« |Py |=14.O

5. COMPARISON WITH MINIMUM DISTANCE
METHOD

In the minimum distance method [11], [13] , an elegant idea is
used which consists of using a linear mapping to transform the
dependence matrix D into an upper triangular matrix denoted D' in
[11]. These two dependence matrices are equivalent in the sense
that each dependence vector in D, is a linear integer combination of
the dependence vectors in D and vice versa. A set of initial points,
each of which corresponds to a block in the resulting partition, is
identified by D' and the cardinality of the partition is the product
of the diagonal elements of D'. The original program is transformed
into a parallel program containing parallel statements such as
"parallel do" by D!. An independent partition is implicitly
expressed by D and a set of initial points.

In relation to the terminology used in this paper, a
clarification needs to be made regarding the ability of the minimum
distance method to find the maximal independent partition. In fact,
as the next example illustrates, that method finds the maximal
pseudo-independent partition instead of the maximal independent
partition which is claimed by the authors of [11], [13].

Example 5.1: Consider the algorithm of Example 2.1. In Example
2.1, the maximal independent partition of this algorithm is obtained
and it has four blocks, i.e., |Pp. |=4. By the minimum distance

method, the upper triangular matrix is So, there is only one

10
01
block in the partition obtained by the minimum distance method,
which, clearly, is not maximal. However, it is the maximal pseudo-
independent partition. O

Unfortunately, the minimum distance method finds the maxi-
mal pseudo-independent partition only for a restricted class of algo-
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rithms as illustrated in the next two examples. Two possible
interpretations are con51dered for the following definition of D§,, in
line 15, page 218 of [11], "Dfyx, (corresponding to D in this paper)
contains only those linear-independent dependence cycles
(corresponding dependence vectors in this paper).” In one interpreta-
tion, it is assumed that only m'=n linearly independent vectors are
taken into account and included in Df,, and the remaining vectors
are ignored. In the other interpretation it is assumed that all depen-
dence vectors are included in Df,. The next two examples illus-
trate the fact that both interpretations result in incorrect results.

Example 5.2 Consider algorithm (J, D) where J is semi-infinite and

0 -
D= _3 2 3F [d;d2d3]. By the method proposed in this paper,

if El, 52 are chosen as determining vectors, then D = the

-3 2p
corresponding partitioning vector II=(5, 3] and the algorithm
coefficient a=gcd(I1d; (moddisplI), T1d; (moddisplII),
I1d;(moddispll))==gecd(0, 0, 3)=3. Because dispII=detD,, by
Theorem 4.2, the a-partition (which is equal to the o¥—partition)
for this algorithm is pseudo-maximal and there are three blocks in
the maximal pseudo-independent partition. There are two sets of
two linearly independent dependence vectors {dl, dg} and {dl, d3}
By the minimum distance method, if dl, d2 are included in D¢, i.e.,

3 -3
D= |, o (note that D® in [11] is DT in this paper), then the
. . . _3
corresponding upper triangular matrix is 0 2 and the number

of blocks in the maximal pseudo-independent partition is 6. If 51, 53
are chosen to be in D¢, the corresponding upper triangular matrix is
3 -3
0 3

independent partition is 9. Recall that the number of blocks in the
maximal pseudo-independent partition is three. Therefore, both
cases yield partitions that are not independent. So all the depen-
dence vectors have to be taken into account to find the maximal
pseudo-independent partition instead of only m' linearly indepen-
dent dependence vectors. O

and the number of blocks in the maximal pseudo-

Example 5.8 Consider an algorithm (J, D) with n dependence vec-
tors and n—1 linearly independent dependence vectors, i.e., DEZ™®
and rank(D)=n—1. By the minimum distance method, if all depen-
dence vectors are included in the dependence matrix, then
D°=DTeZ™®. The upper triangular matrix D' is square and D'=
KxD°® and all diagonal elements of D® are positive. This implies that
rank(D')=n. However, because rank(D®)=n—1, rank(D")= n—1, this
is a contradiction. O

In .summary, the minimum distance method is valid only for
the case where all dependence vectors are linearly independent.
When m'=m=n, it generates the maximal pseudo-indépendent parti-
tion and when m'=m<n, it generates an independent partition that
may not be maximal. In [13], an algorithm to generate initial points
is presented for this case. However, its complexity and optimality
are not clear. Moreover, only index sets J={[j;, ..., ,]*: 0<ji=s;,
i=1, ..., n, ;&N*} are considered.

In addition, compared with the partitioning method proposed
in this paper, the minimum distance method has the following
disadvantages. First, in the minimum distance method, partitions
are expressed implicitly in terms of the upper triangular matrix and
a set of initial points. According to [11], to find the upper triangular
matrix, it is necessary to solve n integer programming problems
with m variables which are NP-complete, where n, m are the
number of dimensions of the index points and the number of depen-
dence vectors, respectively. This is expensive although it is



affordable when n, m are small. In the method proposed in this
paper, partitions are expressed explicitly in terms of the partition-
ing vectors and separating vectors. To obtain these vectors, the
dominating computations required are to find partitioning vectors,
i.e., consider at most all possible combinations of m' vectors from
the m dependence vectors and compute dispII1(TD,)™'T. The com-

plexity is bounded above by Il::, O(n®).

Secondly, as mentioned above, in the minimum distance
method, blocks of the resulting partition are implicitly expressed in
terms of the upper triangular matrix and a set of initial points.
Although the serial loops in the original program can be
transformed into parallel loops by the upper triangular matrix, it is
costly to obtain the explicit expression of blocks of the partition
and, especially, to know which block a given index point belongs to.
According to the notations in [11], given an index point XEZ®, one
way to see which block it belongs to is to see if equation
X =Xjy+AD" has an integer solution ACZ"®, where Xj; is an initial
point belonging to block i. If it has, then X belongs to block i. If it
does not, then another initial point Xj, belonging to block j, j#1, is
tried until an initial point Xy, is found such that equation
X =Xjq+AD" has an integer solution. This can be a very computa-
tionally expensive procedure. In contrast, in the method proposed
in this paper, blocks of partitions are explicitly expressed in terms
of the vectors. To see which block a given index point jEZ" belongs
to, the computations required are to compute IIj(mode) and ¥j.

In the method proposed in this paper, for some algorithms
that do not satisfy the condition in Theorem 4.3, the resulting
pseudo-independent partition may not be maximal. The problem of
finding the maximal pseudo-independent partitions for these algo-
rithms is the subject of current continuing research.

6. OPEN PROBLEMS AND CONCLUSIONS

Basically, there are two open problems. First, when algo-
rithms do not satisfy the conditions described in Theorems 4.2 and
4.3, it is not known whether or not the independent partition
obtained by the proposed method is maximal. Extensions of the
approach proposed in this paper to deal with those cases are
currently under investigation. Secondly, the upper bound provided
in Theorem 4.3 is not tight. As discussed in the proof of Theorem
4.3 in [16], for some value of a€Z, 0 = a < «, there may not exist
an index point j€J; € Py such that IIj=a(mod &) although it is
assumed that there always exists at least one index point j' € J such
that ITj'=a (mod @). Let aj, ..., ag € Z, 0 = a; <, i=1, ..., B, be
such that there exists at least one index point j€J; and
IIj=aj(moda), i=1, ..., B, then, obviously, a tighter upper bound is
|Pmax | = B |Py |- To find the number 3 is still open.

The main contribution of this paper is a computationally
inexpensive method for identifying independent partitions of algo-
rithms with uniform dependencies. For a large class of algorithms
the resulting partitions are maximal. The partitioning method pro-
posed here can be applied in practice as one of the many analysis
procedures used by optimizing compilers to detect and exploit con-
currency in serial programs. It may be particularly useful in map-
ping algorithms into multiprocessor machines where processors are
organized in clusters with limited inter-cluster communication capa-
bilities. In these systems, different clusters can process distinct
blocks of a partition without inter-cluster communication overhead
costf. Among others, such multiprocessors include Cedar [17] and
Cm’ [5].
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APPENDIX
Proof of Theorem 3.1 :




(1). Suppose 31 and 372 are pseudo-connected, then there exists a vec-
tor X == [\, «vey Am]T € Z™ such that j; +D A\=j,. Therefore,

—_ - - —_ m — —_
I0j; +IIDX=ITj, or "IIj;+Y\IId;=ITj,
. i=1
Let H&i=ai+aidispl'[, a4 a; € Z, 0= o; <displl, i=1, ..., m. So,

—_— — m m
Tjo—TTj; =(Fa; ) )dispII+ Y ;N

i=1 i=1
m
where Y3 \;a; is an integer because )\; and a;, i=1, .., m, are

i=1
integers. Since gcd(dispIl, ay, .., on)= o, o;=av; and

dispIl=0o 1, 7;, 7 € Z, i=1, ..., m. Then,

_— - m m
Ojp—Mji=a (7L aiX+ L7x)=0(moda)
i=1 i=1

ie., I[JTI=H —j—g (mod «). This contradicts to the assumption. So 31
and j, are not pseudo-connected.

Consider the a-partition P,. Since ITj= i(modc), j €J €
Py, i=0, ..., @ — 1, for any two arbitrary index points j € J;, j' € J,
i#]l, I j#Ij (moda) and they are not pseudo-connected. By
Definition 2.5, P is a pseudo-independent partition.
(2). Suppose that 315 Jo are pseudo-connected, then there exists a
vector X € Z™ such that D\=(j; —js). So, YD\ =¥(j;—j.). By
Definition _ 3.3, ¥;D=0, i=1, .., n—m' which implies that
U(j; —jg)=0, i.e., ¥j;=Vj,. This is a contradiction to the assump-
tion. So, jj, j; are not pseudo-connected. For the ¥-partition Py, let
J1€J5, and jp€J5, ¥i#Y1, J5, J5€Py. The fact that y=y, implies
that Vj;#¥j,. So, j;, jo are not pseudo-connected. By Definition
2.5, Py is pseudo-independent.
(3). Similarly, let j;€J5€Psy and jo€J5EPqy, yi#¥1, where
§i=[)'0iy Viiy oo Y(n—m’)i]T and ?lz[YOh Yily ey Y(n—m')l]T' Since ¥; =¥,
there exists at least one dimension t€{0,1,...,n—m'} such that
¥i # yu. If t==0, then ITj; #ITjs(mod @) and by (1) of Theorem 3.1,
ji _and j, are not pseudo-connected. If 1=+t= n-—m', then
¥.j; # ¥j; and by (2) of Theorem 3.1, j; and j, are not pseudo-
connected. So, by Definition 2.5, P,y is pseudo-independent. O

0-E,1-|} 7]

Iz

ay

I

Figure 2.1 The maximal independent partition of algorithm of
Example 2.1 is P, ={J,, Js, J4, J;}. However, there is only one
block in the maximal pseudo-independent partition. Pictorially,
only the connectivities of points near boundaries of J are
influenced.
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(a) o - partition
5 9 N
Ja Py ° s ,Q
4 v o¥ ¥ ga

0 1 2 73 4

(b) ¥ - partition

(c)

- partition

. 0 1 27’3 4
Figure 3.1 Partitions of algorithm of Example 3.1 where D=[2, 2|,
Il=[-1,2] and_W¥=[1, —1]. (a) o-partition: the hyperplanes are
described by 11j=c,(mod2). Points lying on dotted lines belong to
Jy€P., and points lying on solid lines belong to J,€P,. (b) W-
partition: the hyperplanes are described by Wj=c.. Points lying on
hyperplane Wj=c, belong to J| j€Py. (c) ob-partition: dotted lines

specify a-partition and solid lines specify W-partition.
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‘Abstract

We compare two algorithms for automatically defining
compound functions (tasks) derived from a single program for a
multiprocessor architecture. Both algorithms assume a compound
function is represented by a Fortran DO loop. The first algorithm bases
its decision on whether a particular loop defines a compound function
on the amount of loop parallelism that is available in the loop. The
loop’s parallelism must be more than a threshold value that is supplied
as a parameter to the algorithm. The second algorithm uses more
information than the first algorithm when picking compound functions.
It estimates a loop’s execution time and it compares this estimate with
the estimates for other loops, then it picks compound functions such
that the program’s execution time estimate is minimized. Using the

_ Parafrase system, we apply these compound function definitions to 61
Fortran programs and compare the speed—up each compound function
definition yields for each program.

1. Introduction

Two factors provide the primary motivation for this study. First,
many vendors of high—performance computers are moving toward
tightly—coupled multiprocessor architectures. Some examples are Cray
Research (Cray X—-MP, Cray-2, Cray Y-MP, Cray-3), ETA Systems
(ETA-10), and Alliant Computer Systems (FX/8). Second, a large
body (tens of millions of lines) of Fortran programs exist for
high—performance computers. Users would like to execute these codes
efficiently on new computers (and, thus, new architectures) as they
become available, without a large amount of reprogramming.

The above two factors lead us to investigate restructuring serial
Fortran programs for a multiprocessor architecture. In particular we
are interested in  this study to see how well a compiler can
automatically partition programs into tasks for parallel processing on a
hypothetical high—performance multiprocessor, and we compare two
compiler algorithms for doing this.

For this study, a program is represented by a directed graph
called a program graph, with the nodes of the graph representing
computation and the arcs of the graph representing the execution
ordering between nodes. We call a node of the graph a CF (compound
function) of which there are two types: CTF’s (control functions)
which represent serial computation and CPF’s (computation
functions) which represent parallel -computation. We concentrate our
study on CPF’s.

Both of our algorithms for finding CF’s assume that a Fortran
DO loop marks the beginning and the end of a CPF. The first
algorithm bases its decision about whether a loop is a CPF on the
amount of parallelism that is available in the loop. The loop’s
parallelism must be more than a threshold value for the loop to be
chosen as a CPF. We call this CF definition algorithm the Loop
Parallelism CF Definition.!

"This work was supported in part by the National Science Foundation under Grant
Nos. US NSF DCR84-10110 and US NSF DCR84-06916, the U. S. Department of
Energy under Grant No. US DOE-DE-FG02-85ER25001, the IBM Donation, and the
Alliant Computer Systems Corporation.

*The author was a research assistant at the Center for Supercomputing Research
and Development for this work.

ISection 3 explains the CF Definition algorithms in more detail. We use the phrase
““CF definition’” to mean the process of picking or defining which loops of a program are
CPF’s.
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The second algorithm incorporates more information into
deciding which loops become CPF’s: it estimates a loop’s execution
time on our multiprocessor model and compares this estimate with the
estimates for other loops. The algorithm then picks the set of CPF’s
that minimize the program’s execution time estimate. We call this CF
definition algorithm the Optimal CF Definition.

We use the Parafrase system to empirically evaluate and
compare these two CF definition algorithms. Using Parafrase, we
apply both CF definitions to, and estimate execution time for, 61
Fortran programs.

Section 2 discusses preliminary material including our
multiprocessor model, program execution on our multiprocessor, the

Parafrase system, and the measurements we make with Parafrase. In.

Section 3 we explain the two CF definition algorithms. Section 4
presents the data we gathered with Parafrase on the 61 Fortran
programs.

2. Background Material

2.1. Our Serial Computer and Multiprocessor Models

Figure 1 shows our multiprocessor model. The multiprocessor
has many arithmetic processing elements called PE’s. Each PE
possesses a local memory that only it can access. All PE’s can access
a shared memory called global memory. An intermediate memory (in
terms of access time and accessibility) called cluster memory exists
between the fully—shared global memory and the private local memory.
PE’s can share data with other PE’s through global memory or through
cluster memory but not through another PE’s local memory. A group
of PE’s, called a cluster, share cluster memory. For this study we
assume eight PE’s form a cluster and that there are four clusters in our
multiprocessor.

Data transfer between the PE’s and the global memory is done
via an interconnection network, such as an Omega network [9]. We
assume that the network has a constant round—trip time (the time it
takes a message to travel from a PE through the network to the global
memory and back to the PE) regardless of the load on the network.
The access time for global memory through the interconnection
network is slower (e.g., factor of three to ten) than the access time of
local or cluster memory.

Programs access two types of data through the network: items
and blocks. An item is either a scalar or an array element and it takes
the full round—trip time to access (read or write) the global memory. A
block is a number of elements from a data array. We call the
maximum number of elements in a block the block size and it is small
in size (e.g., 32) with constant stride. We abbreviate block size with
BS. Programs can store or fetch blocks, which we call a block store
and a block fetch, respectively; block access refers to either a block
store or a block fetch. We assume block access is only available in
CPF’s. :

The network can pipeline block accesses in a manner similar to
the operation of pipelined arithmetic units in vector computers like the
Cray-1 [19]. For example, the first element, of a block fetch takes the
full round-trip time to reach the PE, but each of the remaining
elements takes a fraction of the round—trip time.

The other model we use is a serial computer. The serial
computer is similar to one PE from the multiprocessor with only scalar
instructions (each of the multiprocessor’s PE’s can execute scalar
instructions or vector instructions up to length BS). We assume that



the serial computer has enough registers and pipelining to make all
fetches free—only stores contribute to a program’s execution time on
the serial computer. In the multiprocessor, we count stores and fetches,
which differs from previous Parafrase—based studies [2] [3] [7]. There
are two reasons why we choose to count fetches. First, although for a
serial computer one can argue that we need not count fetches because
the time spent fetching data is masked by pipelining, adequate memory
bandwidth, CPU registers, caches, etc., we feel we cannot make such
an argument for our multiprocessor model because global memory
speed is much slower than the speed of the PE’s. The other reason we
count fetches is that we are interested in the amount of program
execution time that is due to memory access (on the multiprocessor)
and we want to measure this as accurately as possible.

The scalar arithmetic operation speed of the serial computer
exactly matches the scalar arithmetic operation speed of a PE, and the
memory speed of the serial computer exactly matches the local
memory speed of a PE. We use the serial computer as the basis for
calculating the speed—up of executing a program on our
multiprocessor.

The multiprocessor architecture we use in this study takes
advantage of local memory, cluster memory, and the vector—like block
access of the interconnection network. We call this architecture the
Block Access—No Overlap Architecture (the A3 multiprocessor for
short), following the naming scheme in [6]. At compile time, Parafrase
allocates as much program data as possible to A3’s local and cluster
memory. Parafrase also transforms the program for block access for
this multiprocessor. As the name implies, the A3 multiprocessor can
perform block accesses but cannot overlap block accesses: when the
program has to perform a block access, it suspends until the block
access is complete.

We denote the speed—up of a program executing on the A3
multiprocessor with" §2, where p is the number of PE’s in the
multiprocessor and n is the architecture number. We assume the A3
multiprocessor has 32 PE’s (four clusters of eight PE’s each)
throughout this work. Thus, we denote A3’s speed—up with S3.

We calculate speed—up for a program executing on the A3
multiprocessor in the following manner. We estimate the program’s
execution time on the serial computer; we call this estimate T;. We
estimate the program’s execution time on the A3 multiprocessor; we
call this estimate T3,. The program’s speed—up is the ratio of T, and
T3.

T
Sh=z

Parafrase uses the original program, before transforming it for
block access, to calculate Tj.

We denote a program’s speed—up using the Optimal - CF
‘Definition for the A3 multiprocessor with

SH(0p)

and similarly for the Loop Parallelism CF Definition.
S3(LP)

‘We compare these two speed—ups with a ratio denoted with

2.2. The Loops We Study

The Fortran programs we use in this study are serial programs
originally written for serial computers. We investigate automatically
transforming these serial programs for parallel execution on the A3
multiprocessor. We use the Parafrase system to transform a program
for parallel execution [3] [7] [13] [14] [21]. Parafrase uses a data
dependence graph to identify those parts of the program that can
execute in parallel. The most common parallelism that Parafrase
identifies is parallel execution of different loop iterations—this is what
we study here. Parafrase has been used to study other types of

35

parallelism [1] [20].

Parafrase  identifies three different loop types for
multiprocessors: serial loops, DoAll loops, and DoAcross loops. The
iterations of a serial loop must execute in sequence (i.e., iteration i
must finish before iteration i+1 can begin).

In terms of parallelism, DoAll loops represent the exact opposite
of serial loops. All iterations of a DoAll loop can execute concurrently.
If a DoAll loop has N iterations and N PE’s are available, each PE can
execute one iteration and the entire DoAll loop can complete in the
time of one iteration. Padua discusses DoAll loops in [13] as do
Lundstrom and Barnes in [12] and Davies in [4].

The third type of loop, the DoAcress loop, lies between a serial
loop and a DoAll loop in terms of parallelism. Inter—iteration
dependences (control and data) determine how much parallelism is
available in a DoAcross loop.

Delay characterizes a DoAcross loop and it is the amount of time
we expect it takes to satisfy an inter—iteration dependence? [3]. Each
iteration of a DoAcross loop must ‘‘delay’’ an amount of time equal to
the time needed to satisfy these dependences. In this context, DoAll
loops can be thought of as DoAcross loops with a delay of zero and
serial loops can be thought of as DoAcross loops with a delay equal to
the execution time of the loop’s body.

The execution time of a DoAcross loop is given by
{% —1] —1*max(b,p*d) +d*((N-1)mod p) + b

where N is the loop bound, p is the number of PE’s executing the loop,
b is the execution time estimate of the loop body, and d is the
DoAcross delay [15].

We use a percentage, Px, to characterize DoAcross loops: a
larger Px means a more parallel loop. A DoAll loop is a DoAcross
loop with Px=100% and a serial loop is a DoAcross loop with Px=0%.
Px for a loop, given b and p, is calculated by the following formula.

Px= (1—%) * 100%

An extensive discussion of the DoAcross loop is found in [3] and
additional results are found in [16] and [17].

2.3. Program Execution on the Multiprocessor

As stated earlier, for execution on a multiprocessor a Fortran
program is in the form of a directed graph called the program graph,
with CF’s containing computation from the serial Fortran program and
the arcs representing the execution ordering of the CF’s. A CF may
represent one or more statements from the original program: a BAS
(block of assignment statements), a loop and its body (including all
loops in the body), a GOTO, an IF statement, etc. [8].

Recall that there are two types of CF’s: CTF’s and CPF’s. CTF’s
represent the parts of the program that contain little or no parallelism,
like control statements, and execute serially on one PE. CPF’s
represent the parts of the program with much computation and highly
parallel parts—DoAll loops and DoAcross loops with a large Py, for
example—and execute on one or more clusters.

We concentrate our efforts on defining CPF’s for our
multiprocessor and we largely ignore CTF’s. We only consider CTF’s
when we estimate a program’s execution time and we always consider
them serial computation. The automatic CF definitions we present here
focus on defining CPF’s such that we exploit as much loop parallelism
as possible on our multiprocessor. After the CF definitions pick the
CPF’s, the CTF’s are the parts of the program not represented by any
CPF (i.e., the leftovers).

We restrict the definition of a CPF to a single loop because we
assume only one level of parallelism is exploitable on our
multiprocessor (i.e., only one loop at a time can execute its iterations in
parallel on multiple PE’s); we call such a loop a CPF loop. Because
we have only one level of loop parallelism, a CPF loop ‘‘freezes’” all

2Here we do not differentiate between control and data dependences.



loops surrounding it and all loops in its body. The CPF loop spreads its
iterations onto multiple PE’s; any loop inside a CPF loop executes
serially on one PE and any loop enclosing a CPF loop executes serially
as CTF’s.

‘We allow only one level of parallelism because we believe this is
arealistic assumption about the software and hardware that can be built
today to support loop iterations executing in parallel. The Alliant FX/8
multiprocessor architecture is an example of such a system. It has
software and hardware support for one level of loop parallelism within
a computation complex [5].

We schedule loop iterations from a CPF loop across PE’s at
compile time such that iteration i of a CPF loop is scheduled to execute
on PE ((i-1 mod p)+1), that is, iteration 1 executes on PE 1, iteration 2
on PE 2, and so on. Once we’ve assigned a group of p iterations, we
must ‘‘fold back’” loop iterations onto the PE’s by scheduling iteration
p+1onPE 1, p+2 on PE 2, and so forth. All statements in the body of
iteration i execute serially on PE ((i-1 mod p)+1). We call this type of
loop scheduling PE Prescheduling because it schedules CPF loop
iterations onto PE’s before run time.

This work only considers parallel processing a single subroutine
at a time, which means the spreading of different loop iterations from a
single loop across multiple PE’s. It does not consider parallel
execution of subroutines, parallel execution of BAS’s, or parallel
execution of two different loops as in [20].

2.4. The Source Program Restructurer

As mentioned, we used the Parafrase system for this study.
Parafrase performs source—to—source transformation of serial Fortran
programs for parallel execution, using a data dependence graph to
preserve the program’s original semantics.

Parafrase accepts serial Fortran—66 programs and performs two
sets of optimizations on them. The first set of optimizations are
traditional compiler optimizations like induction variable removal,
common subexpression elimination, invariant code floating, etc. The

transformed source program then passes on to a set of
architecture—specific optimizations. We target the second set of
optimizations for a multiprocessor. These optimizations include
recurrence recognition, loop fusion [20], DoAll and DoAcross loop
recognition [3] [4], and several new transformations: CF definition,
memory allocation, and block access generation [6]. The program is
transformed for execution on our multiprocessor after the second set of
optimizations finish. We only report on the CF definition
transformations in this work. .

3. Automatic Compound Function Definition

3.1. The Trade—off: Loop Parallelism vs. Loop Execution Time

The following program skeleton illustrates the trade-off we must
deal with when defining CF’s.

DoAcross 90% i=1,N

S1

Su

DoAll j=1,N
Sl
S

EndDoAll

Sy

So

EndDoAcross

Since parallelism is limited to one level, only one loop in a
multi-loop loop nest can define a CPF loop. There are two choices for
a CPF loop in this program: the DoAcross loop or the DoAll loop.
Which choice yields the most speed—up depends on the relative size (in
terms of estimated execution time) of their loop bodies. If the two
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loops are perfectly nested, we can achieve more speed—up if the DoAll
defines the CPF because it can use more PE’s than the DoAcross loop
(assuming N is large). If the DoAll loop is small compared to the
DoAcross loop, however, we can speed up the program more if the’
DoAcross loop defines the CPF.

3.2. Loop Structure Representation

‘We view the structure of the loops in a Fortran program as a tree,
as Figure 2 illustrates. Each loop from the program in Figure 2
corresponds to a node in the tree. Subtrees in the tree represent the
nesting of loops in the program. The root node represents the program;
all other nodes represent loops from the program. The root node’s
children, the level-one nodes, represent the program’s outermost loops
(loops 1, 2, and 9). Any loop within another loop is represented as a
child node of the enclosing loop’s node. This tree representation of a
program’s loop structure we call the loop tree.

‘We consider two different approaches to defining CF’s using the
loop tree. The Loop Parallelism CF Definition is based on examining
Px for each node in the loop tree, and the Optimal CF Definition is
based on a bottom-up traversal of the loop tree, estimating the
execution time of each node it traverses. The Optimal CF Definition
tries to use more information than just Px to find CPF’s. When
evaluating a particular node as a CPF candidate, the Optimal CF
Definition considers the node’s execution time estimate on the A3
multiprocessor model, and the execution time estimates for other
nodes. After comparing the execution time estimates, the Optimal CF
definition picks CPF’s that yield the largest speed—up (i.e., the
minimum execution time estimate) for the entire loop tree.

3.3. The Different Ways A Loop Can Execute On Our
Multiprocessor

Before presenting the two CF definitions let us show the four
ways a node can execute on our multiprocessor. We illustrate this in
Figure 3 from the point of view of node 2. The left-hand side of the
figure shows a program outline (showing only loop boundarigs) and

node numbers. The right-hand side shows a column for each way
node 2 can execute: it can execute as CTF’s with its body also
executing as CTF’s (column 1); it can execute as CTF’s with
descendent nodes (e.g., node 3) executing as CPF’s (column 2); it can
execute as a CPF (column 3); and it can execute serially with an:

ancestor node (e.g., node 1) as a CPF (column 4). These are the only °

four ways that node 2 can execute on our multiprocessor, due to the
restriction of one level of loop parallelism.

3.4. Loop Parallelism CF Definition

The Loop Parallelism CF definition algorithm uses a node
parallelism threshold value, T, and chooses the nodes at the highest
level of the loop tree with Px> T. This is done with a breadth—first
search of the loop tree, examining each branch of the tree and stopping
the search along any branch where a node is found with Px > T. The
first node found down a branch with a Px > T is chosen as a CPF. If a
node has Px <T, we bypass the node and consider its children as

possible CPF’s. For example, if we use T=100% and apply the Loop-

Parallelism CF Definition to the loop tree in Figure 2, it will choose

loop 6 as the only CPF; if we use T=90%, it will choose loops 4, 6, and"

10 as CPF’s; and if we use T=50%, it will choose loops 1, 3, 6, 8, 10,
and 11 as CPF’s.

3.4.1. The Heuristic for the Loop Parallelism CF Definition

One can see in Figure 2 that for T=100%, the Loop Parallelism

CF Definition misses nodes that are good candidates for CPF’s (e.g.,
nodes 4, 5, 10, and 11, all with Px>80%). To try to exploit these
. nodes, we add a heuristic to the Loop Parallelism CF Definition. After
the Loop Parallelism CF Definition picks CPF’s with sufficient
parallelism (i.e., Px > T), the heuristic examines each unfrozen node
that was not picked by the Loop Parallelism CF Definition, looking for
nodes at the highest level in the loop tree with Px > 0% (i.e., at least

3Note that the terms ‘‘node’” and ‘‘loop tree’’ can be interchanged with the terms
“‘loop”” and *‘program,’ respectively. For the remainder of this section we use ‘‘node’”
and “‘loop tree’’ in our discussion.



some parallelism). We refer to the set of nodes picked by the Loop
Parallelism CF Definition as the original CPF’s, and any additional
nodes picked by the heuristic as additional CPF’s. From here on
when we refer to the Loop Parallelism CF Definition we are referring
to the algorithm with the heuristic.

Space limitations prevent us from giving a full algorithmic
"description of the Loop Parallelism CF Definition; one is given in [6].
Figure 4 shows which nodes would be picked as original CPF’s and as
additional CPF’s from the loop tree of Figure 2 for different values of
T. For T=100%, nodes 2 and 7 are not chosen as additional CPF’s
_because they are frozen by node 6 being an original CPF. Node 3 is
chosen over nodes 4 and 5 because it is at a higher level in the loop tree
and it satisfies the heuristic (Px > 0%).

We do not go into an analysis of the running time of the Loop
Parallelism CF Definition, but simply say that it does O(L) execution
time estimates®; an analysis is done in [6]. The algorithm is basically
two breadth—first searchs of the loop tree, the first picking original
CPF’s and the second picking additional CPF’s. The advantages of this
algorithm are its simplicity and that it need only do O(L) execution
time estimates. The disadvantage of the Loop Parallelism CF
Definition is it may not pick CPF’s in the best way. For example, if we
use T<90% on the skeleton program from Section 3.1, we always
choose the DoAcross loop as the CPF when choosing the DoAll loop
instead could result in more speed-up.

3.5. The Optimal CF Definition

The Optimal CF Definition algorithm, shown in Figure 5,
calculates for each node an execution time estimate for each of the
different ways the node can execute on the A3 multiprocessor (recall
Figure 3). If the minimum estimate is the one assuming the node
defines a CPF, we call the node a CPF candidate. After all estimates
have been calculated for all nodes, the Optimal CF Definition picks
CPF’s such that the execution time estimate for the entire loop tree is
minimized. Since the algorithm considers every possible way CPF’s
could be picked from the loop tree, we are assured that the set of CPF’s
which minimizes the execution time estimate for the loop tree is found.

The procedure Estimate_Node_Time in Figure 5 calculates the
execution time estimates. After all execution time estimates are
completed, the procedure Optimal_CF_Definition searchs the loop tree
breadth—first for the outermost nodes marked as CPF candidates,
stopping the search along any branch when a CPF candidate is found.

Procedure  Estimate_Node_Time calculates execution time
estimates for three of the four ways a node can execute. The estimates
which are missing are the ones assuming a node’s ancestor defines a
CPF (column 4 of Figure 3). Memory allocation and transformation
for block access can be different for a node, depending on which
ancestor node defines a CPF and, thus, these estimates must be
recalculated for a node when the algorithm estimates execution time for
each of its ancestor nodes. This is illustrated with the following
example program.

1 A(i,j, k) = A(i,3,k) + 1.0
2 If (3.6T.1) B(i,3,k) = A(i,3-1,k) / B(i,3,k)
EndDo
EndDo
EndDo

For this example, assume 1 time unit for each local memory
access, 2 time units per global memory access, and 1 time unit for an
arithmetic operation; also assume array B is always a global array. If
the i—loop is the CPF loop, array A can be allocated to local memory
following the algorithm in [6]. The total time for statement 1 is then
_three: one for the addition and two for the local memory accesses of
array A. The total time for statement two is seven: one for the
comparison, two for the global memory accesses of array B, one for the
divide, and one for the local memory access of array A. The total
serial time for the k—loop is 10N. If, however, the j—loop is the CPF

“L is the number of nodes in the loop tree.
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loop, array A cannot be allocated to local memory and is allocated to
global memory. Loop k’s time now rises to 13N because of the change
in memory. allocation, which was necessary because a different loop
surrounding the k—loop is the CPF loop.

When time_node_parallel in line 7 of Figure 5 calculates an
execution time estimate for a node assuming it executes as a CPF, it
must redo memory allocation and block access transformation for each
of the node’s descendants. This forces a recalculation of execution
time for each descendant, which results in an algorithm which does
O(L?) execution time estimates in the worst case [6].

The advantage of the Optimal CF Definition is that it produces
the set of CPF’s that minimize the execution time estimates for the loop
tree. The Optimal CF Definition finds the best CF definition because it
calculates and compares execution time estimates for every possible
way CPF’s could be picked from the loop tree. The disadvantage is its
O(L?) worst—case running time.

Figure 6 shows hypothetical execution time estimates and the
data structures at various points while applying the Optimal CF
Definition algorithm to the loop tree in Figure 2.

[18] takes the same approach as the Optimal CF Definition for
allocating processors for a single level of parallelism. He has an O(L)
algorithm, however, because he does not consider memory allocation
or block access, and thus, a node’s serial execution time estimate is the
same no matter which ancestor node is a CPF node. We would also
have a linear algorithm if we did not consider memory allocation and
block access for nodes when estimating the execution time of ancestor
nodes.

4. Automatic Compound Function Definition Experiments

4.1. The Programs We Use In Our Experiments

For the experiments we report here, we use three sets of
programs: a Linpack kernel, an Eispack kernel, and a set of programs
from ten benchmarks which we call the ‘‘Benchmark programs.”” The
two kernels consists of all unique algorithms from their respective
packages. For example, if there is a program in the Eispack package
for real numbers, and an identical program for complex numbers, we
keep only one of these programs for Eispack’s kernel.

We change the kernels in the following ways to improve their
performance and to allow Parafrase to analyze them: we remove the
routine SGBFA from the Linpack kemel because it becomes too large
after transforming it for block access, and we direct Parafrase to
expand all CALL’s to BLAS [10] in the Linpack kernel. This leaves
11 Linpack subroutines in the Linpack kernel. In the Eispack kernel
we substitute the routine MUSEC1 for the routines BISECT and
IMTQL2, as is done in [7]. There are 15 programs in the Eispack
kernel.

The Benchmark programs are a set of 35 programs from several
University of Illinois benchmarks which solve the ten different
problems that appear below.

2-D Helmholtz Linear Least Squares

3-D Helmbholtz Monte Carlo

Banded Factorization ~ Singular Value Decomposition

Conformal Mapping ~ Symmetric Linear System

Eigenvalue Problem Symmetric Triangular
Eigenvalues/vectors

4.2. How We Present the CF Comparison Data

We use R(LP/Opt) to compare the Loop Parallelism CF
Definition and the Optimal CF Definition. Since the Optimal CF
Definition is optimal for the A3 multiprocessor, a program’s R(LP/Opt)
is always between 0.0 and 1.0. A ratio of 1.0 means the Loop
Parallelism CF Definition picks CPF’s as well as the Optimal CF
Definition; a ratio of 0.5 means the Loop Parallelism CF Definition
picks CPF’s in such a way that the program executes half as fast on the
A3 multiprocessor as the CPF’s the Optimal CF Definition picks.



‘We represent the three sets of programs with the histograms that
appear in Figure 7, Figure 8, and Figure 9. Each histogram plots
R(LP/Opt) for all programs in the set. We use T=100% for the Loop
Parallelism CF Definition because we believe that if Px is the only
basis on which to pick CPF loops, we want to pick loops that have as
much parallelism as possible.

4.3. Discussion of the CF Comparison Data

Looking at Figure 7 we see that 8 of the 11 Linpack programs
show no difference between the two CF definitions. The 3 programs
with R(LP/Opt) <.1.0 gain less than a factor of two in speed—up from
the Optimal CF Definition: 1 program gains about 50% and 2 programs
gain about 10%. This is not true of the Eispack programs, however.
Figure 8 shows that nearly two—thirds of the programs benefit from the
Optimal CF Definition, some by a large amount. Only 6 of 15
programs shaw no difference between the two CF definitions; 7
programs gain between 5% and 50%, 1 program gains nearly a factor
of two, and another program gains over a factor of three from the
Optimal CF Definition. Eispack is much more sensitive than Linpack
to the way CF’s are defined.

The Benchmark programs have their R(LP/Opt) plotted in Figure
9. Like Linpack, most of the programs show.no improvement from the
Optimal CF Definition; 26 of the 35 programs have a R(LP/Opt) of 1.0.
But like Eispack, several programs gain significantly from the Optimal
CF Definition. Six programs lie between 60% and 100%, 2 programs
gain about a factor of two, and 1 program gains a factor of five from
the Optimal CF Definition.

4.4. Reasons for R(LP/Opt) <1.0

Figure 10 isolates and catalogs the programs with R(LP/Opt) <
1.0. There are four reasons for this: block access in serial loops, small
DoAll loops in DoAcross loops, small loop bounds, and small
DoAcross loops in DoAcross loops.

The most common reason for R(LP/Opt) < 1.0 is block accessing
global arrays in serial loops. Block access is only available in CPF’s
and the heuristic of the Loop Parallelism CF Definition always passes
over a loop with Px=0% as a possible CPF, and thus, the loop never
uses block access because it always executes as a CTF. Usually this is
the correct decision. But in several cases a serial loop executes faster if
Parafrase picks it as a CPF and transforms it for block access. Even
though a serial loop cannot exploit any loop parallelism, it benefits
from block accessing global arrays as a CPF instead of accessing their
elements as single items as a CTF.

In Section 3 we presented small DoAll loops in DoAcross loops
as an example of a drawback to the Loop Parallelism CF Definition.
This is the situation where a small DoAll loop is in the body of a
DoAcross loop with a large Px. The two CF definitions could pick
different loops to define CPF’s. The Loop Parallelism CF Definition
picks the DoAll loop (since Px=100% for these experiments) as the
CPF; the Optimal CF Definition examines both loops (the DoAcross
loop as well as the DoAll loop) as possible CPF’s. If the DoAcross
loop is sufficiently parallel and sufficiently larger than the DoAll loop,
the DoAcross loop executes faster if it defines the CPF and the DoAll
loop executes serially, than if the DoAcross loop executes serially as a
CTF and the DoAll loop defines the CPF. But with T=100% the Loop
Parallelism CF Definition always picks the DoAll loop as the CPF.
This is the second most common reason why programs have R(LP/Opt)
<L0.

The third reason why the Optimal CF Definition performs better
than the Loop Parallelism CF definition is small loop bounds,
especially in the case of a pair of perfectly nested DoAll’s. The Loop
Parallelism CF Definition picks the outer DoAll as a CPF, regardless of
the loop’s upperbound. But if the outer DoAll has a very small
upperbound compared to the inner DoAll, more parallelism is exploited
if the inner DoAll is a CPF and the outer DoAll is a CTF. The
Benchmark program THREEDH has this situation in three places.

The final reason for R(LP/Opt) < 1.0 is similar to the case of a
small DoAll loop in a highly parallel DoAcross loop. Here, instead of
a DoAll loop, we have a DoAcross loop inside another DoAcross loop.
The heuristic of the Loop Parallelism CF Definition picks the outermost
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DoAcross loop if its Px > 0%. This may be the wrong decision if the
inner DoAcross loop has a much higher Py and their loop body sizes
are not significantly different. As with the case of the DoAll in the
DoAcross situation, the Optimal CF Definition does better than the
Loop Parallelism CF Definition because it examines each loop as
possible CPF’s. :

The table in Figure 10 shows the name of each program, the set
of programs each program is from, and the reason why each program
has R(LP/Opt) < 1.0. The number indicates how many distinct
occurrences in each program (e.g., SPOCO has a small DoAll loop
inside a DoAcross loop in two distinct places).

4.5. Conclusions

We see that the Optimal CF Definition improves the performance
of a significant number of programs over the Loop Parallelism CF
Definition. For Eispack, 60% of the programs show a performance
improvement due to using the Optimal CF Definition; for all three sets
of programs, 21 of 61 programs show an improvement by using the
Optimal CF Definition over the Loop Parallelism CF Definition. The
CF definition impacts S3, greatly for several programs. For example,
one Benchmark program shows nearly a factor of five improvement in
S3, by using the Optimal CF Definition.

Whereas 60% of Eispack’s programs show an improvement in
S3, by using the Optimal CF Definition, only 27% and 26% of the
Linpack and Benchmark programs, respectively, show an
improvement. The largest improvement for any Linpack program is
about 50% while both Eispack and the Benchmarks have programs
with improvement better than a factor of three. This illustrates that the
relative importance of the Optimal CF Definition over the Loop
Parallelism CF Definition depends on the workload. For some
programs (e.g., Linpack) the Optimal CF Definition may not be
critically important; however, other sets of programs (e.g., Eispack)
suffer much more by using an inferior CF definition.

These results show why it is important to pick CPF’s carefully.
We could have a workload that is fairly independent of the CF
definition, but if this is not the case, we lose much performance by
using a less effective CF definition. And if maximizing program
performance for all programs is critical, it is very important to use the
best CF definition we can develop. In each set the S3, of several
programs improve by using the Optimal CF Definition.

The most common reasons that the Optimal CF Definition
produces better speed—ups are that it finds serial loops that benefit from
block access and it picks a DoAcross loop as a CPF before an inner
DoAll loop. In the first case, the Optimal CF Definition chooses a
serial loop as a CPF when the loop can benefit from block accessing
global variables (19 places in 13 programs). The Loop Parallelism CF
Definition never considers a serial loop as a CPF because it never looks
at loops with Px=0%. Thus, all serial loops execute as CTF’s. The
second reason the Optimal CF Definition outperforms the Loop
Parallelism CF definition is that it picks more parallel inner loops as
CPF’s before less parallel outer ones.
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\apre Loop Number

DoAcross 50% 1
EndDoAcross
DoAcross 5% 2
DoAcross 50% 3
DoAcross 90% 4
EndDoAcross
DoAcross 80% 5
EndDoAcross
EndDoAcross
DoAll 6
DoAcross 50% 7
EndDoAcross
EndDoAll
DoAcross 50% 8
EndDoAcross
EndDoAcross
DoAcross 0% 9
DoAcross 90% 10
EndDoAcross
DoAcross 80% 11
EndDoAcross
EndDoAcross

4 5
90%, 80%,

Figure 2. Program “‘P’” and its Loop Tree Representation

Node Different CF Definitions
Program Skeleton Number 1 2 3 2
DoAcross 50% 1 CTF CTF CFT |*CPF*
DoAcross 75% 2 CTF CTF | *CPF*| (inside
a CPF)
DoAcross 95% 3 CTF | *CPF* | (inside | (inside
.. aCPF) | aCPF)
EndDoAcross
EndDoAcross
EndDoAcross

Figure 3. The Different Ways Node 2 Can Execute

T Original Additional Final Set
CPF’s CPF's of CPF’s
100% 6 1,3,8,10,11 1,3,6,8,10,11
90%  4,6,10 158,11 1,4,5,6,8,10,11
50%  13,68,10,11  (none) 1,3,6,8,10,11

Figure 4. CPF’s Pick by the Loop Parallelism CF Definition
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PROCEDURE Estimate_Node_Time(Node: node_ptr);
inner_L := Node.child; /* Estimate leaf nodes first */
DO WHILE (inner_L <> NIL)
CALL Estimate_Node_Time(inner_L);
inner_L := inner_L.next;
OD;
Node.T1 :=time_node_serial(Node); /* Estimate time all different ways */
Node.T_me_cpf := time_node_parallel(Node);
IF (Node € set_of_leaf_nodes) THEN
Node.T_descendant_cpf := e /* No descendants, so no estimate */
10. ELSE
11. Node.T_descendant_cpf := time_node_descendants_parallel(Node);
12. FI
13.  IF (T_me_cpf_minimum(Node)) THEN
14. Node.cpf := TRUE; /* CPF candidate if parallel time is mini */

RN ALN=

F;
END Estimate_Node_Time;

PROCEDURE Optimal_CF_Definition;
VAR Q: QUEUE; CPFS: SET;
16. Q:=empiy(;
17. CPFS:={(};
18. DO Node := 1 TO #_level_one_nodes; /* Estimates time for all nodes */
19. CALL Estimate_Node_Time(level_one_node(Node));

20. CALL enqueue(Q,Node);

21. OD;

22. DO WHILE (empty(Q) = FALSE) /* Find biggest CPFS possible */
23. Node := dequeue(Q); /* Begin breadth—first search */
24. IF (Node.cpf == TRUE) THEN

25. CPFS := CPFS U Node;

26. ELSE /* Node rejected as CPF, ine its children */
27. Node2 := Node.child;

28. DO WHILE (Node2 <> NIL) /* Add children to Q */
29. CALL enqueue(Q,Node2);

30. Node2 := Node2.next;

31. OD;

32. FL;

33, OD;

END Optimal_CF_Definition;

Figure 5. Optimal CF Definition

N & | m E)"rec:unsmgém'lls e cpt | Node.cpf
1 50 | 10 20 o
2 5 | 400 300 200
3 50 | 70 60 50
4 9 | 20 5 o TRUE
5 80 | 30 10 0 TRUE
6 100 | 200 80 90 TRUE
7 50 | 70 30 . TRUE
8 50 | 20 30 o
9 0 | 150 50 40
10 90 | 20 5 o TRUE
11 80 | 30 10 o TRUE
After Line
Nomber: 2 CPFS Comment
21 129 [Z} Execution time estimates finished.
2 29 4} Node 1’s T_me_cpf not minimal.
32 9368 %} Node 2’s T_me_cpf not minimal.
32 3681011 g Node 9°s T_me_cpf not minimal.

32 68101145
32 8101145 (6]}
32 10,1145 {6}

Q

Node 3’s T_me_cpf not minimal.
Node 6’s T_me_cpf is minimal.
Node 8’s T_me_cpf is not minimal.

32 1145 {610} Node 10’s T_me_cpf is minimal.
32 45 {61011}  Node 11’s T_me_cpf is minimal.
32 5 {46,10,11}  Node 4's T_me_cpf is minimal.

33 (empty) {456,10,11} Node5's T_me_cpf is minimal

Figure 6. Optimal CF Definition Time Estimates and Data Structures
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Abstract

This paper considers automatic restructuring of loops with
conditional branching, especially a class of loops termed
“conditional cyclic loops”, for parallel processing. With a
binary tree representation of a loop, parallelizing the loop on
a shared memory machine allowing concurrent reads is dis-
cussed. In general, parallel execution of the loop consists of
two stages, precomputation stage and path selection stage.
The precomputation stage is equivalent to solving a set of
recurrences, and the path selection stage is equivalent to
solving a full-order Boolean recurrence. A few important
special cases, which include “postfix-IF loops” and some of
“linear mixed recurrence loops”, can be executed in O(log n)
time with a polynomial number of processors, where n is
the loop bound. -

1. Introduction

A loop with conditional branching is a typical dynamic
control structure in ordinary sequential programs and is a
major obstacle to automatic program restructuring for
parallel processing. In general the loops with conditional
branching can be classified by the availability of the values
of the predicates defining the branching. Branching adds lit-
tle difficulty to parallelizing a loop, provided that the value
of the predicate at each iteration of the loop does not
depend on the results of the previous iterations. This class
of loops (conditional acyclic loops) is relatively easy to han-
dle by using control or mode bits on synchronous array
machines, or by using independent multiple control units on
asynchronous multiprocessor machines. If branching is
based on the values of the variables that are set as the
results of the previous iterations of the loop, then the loop is
difficult to parallelize. Conditional cyclic loop is a class of
‘loops in which the conditional creates a dependence cycle
across the loop index values, i.e. the values of the predicates
are decided based on the branching taken in previous itera-
tions. No attempts have been made to parallelize condi-
tional cyclic loops except a simple special case. However,
conditional cyclic loops are not rare in practice and seem to
be a major unparallelized loop type in automatically restruc-
tured nonnumerical programs (see [7]). This paper concerns
how to parallelize conditional cyclic loops in order to obtain
a better speedup gain from automatically restructured pro-
grams.

Part of this work was done while the author was with Center for
Supercomputing Research and Development, University of Illinois
at Urbana-Champaign. This work was supported in part by the
National Science Foundation under Grant No. US NSF DCR84-
10110, and the U.S. Department of Energy under Grant No. US
DOE DE-FG02-85ER25001.
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Conditional cyclic loops can be classified further by the
availability of the possible values of the variables that define
the predicate of the IF statement. A postfiz-IF loop is a
conditional cyclic loop where the two possible values of the

variables (one for the true branch and the other for the false
branch) at each iteration of the loop do not depend on the
previous iterations [11]. All the possible values are immedi-
ately available in a postfix-IF loop, and executing the loop
will choose a particular value at each iteration for each vari-
able. A mized recurrence loop is a conditional cyclic loop
where the variables used in branching cause recurrences. So,
even the possible values, not alone the actual value at each
iteration, of the variables are not available until the
recurrences are solved. The recurrences can be linear or
nonlinear. We consider the case of linear recurrence only
(linear mized recurrence loop). The overhead involved in
parallelizing nonlinear mixed recurrence loops seems to
overwhelm potential benefit of parallelizing them, and the
cases of nonlinear recurrences are rare [7]. See Figure 1 for
the examples of loops with conditional branching.

For the convenience of presentation, log n will denote
logen and will be assumed to have an integer value in this
paper. The values of z /y and vz will also be assumed to
be integers. Algorithms and program examples will be
described by a FORTRAN like notation, the meaning of
which should be apparent.

2. Boolean Recurrence in Conditional Cyclic Loops

Suppose we have a conditional cyclic loop like the fol-
lowing:

L: DO1:i=2n

IF e(z;_m, .o ,:z;_l) THEN z; = ¢,~
ELSE T, = T
1 CONTINUE
where ¢; and m; are arbitrary functions. Although the
expression e may include variables other than s
(1 <i < n), we use the notation of e(z;_p, - . . ,2;_3) to

highlight dependence cycles between the predicate and the
assignment statements. Then loop L can be represented by
the following set of equations:

¢; if b; ;=1
5= { 5

lf b" _1=0
where 4, . . . ,z, are variables, b;_; is a Boolean variable
defined by a Boolean expression e(z;_,, . . ., z_) (1
<m <n), and 0 and 1 are Boolean constants. If ¢; and m;
are constants (i.e., known values before executing the loop),
then L is a postfix-IF loop of size n, and if ¢; and m; are
linear recurrences, then L is a linear mixed recurrence loop
of size n. In the equation form of loop L, the value of the
Boolean variable b; depends on the values of some b;’s

@<i<n)



(i-m <k <i-1). So, every conditional cyclic loop has an
imbedded Boolean recurrence.

Consider a set of Boolean variables {b, . .
an integer 1.

, b;} with
Let the 2° minterms of these va.nables be num-
bered 1, 2, . , 2' as they appear in a usual truth table,
and P,(by, .. ., b,~) be the t** minterm. Then the Boolean
variable b; in loop L can be represented by the following
nonlinear Boolean recurrence of order m:

om
i = X €4 Pi(bicm, .-, bi),
(=1

where ¢; , is the value of the Boolean expression e based on
Pi(bj_yn, - .., biy), and Y denotes Boolean sum. So, one
can parallelize the loop by solving the Boolean recurrence in
parallel. In [1-3], postfix-IF loops are parallelized by solving
the Boolean recurrence caused by the loop.

2<i<n)

Since our discussion on the complexity of a conditional
cyclic loop is based on the fan-in lemma in [8] (see also
[6]), we borrow the lemma before proceeding. The assump-
tion that a processor can consume at most two operands at
a time is used in the lemma and will be used throughout the
paper.

Lemma 1 (fan-in lemma). Suppose a processor can do at
most a single binary operation at a time. Then an expres-
sion that depends on =» variables or constants cannot be
evaluated in less than log n time with an unlimited number
of processors.

To solve the Boolean recurrence for b;, the coeflicients
e, ,’s need to be evaluated first. For a postfix-if loop, all the
¢;1’s can be evaluated in parallel without any difficulty,
because all the possible values of z;’s are known. However,
in a linear mixed recurrence loop of order m, the evaluation
of e; ;’s is considerably more complex than a postfix-IF loop.
To evaluate the coeflicients of a Boolean recurrence, we need
to solve linear recurrences, and we need to solve the Boolean
recurrence to determine the coefficients of linear recurrences.
The straightforward way of breaking this circular nature,
which we adopt, is to evaluate all the possible values of the
recurrence variables. This forces us to solve a full-order
Boolean recurrence:
oli-1)
P = tzles,:P,(bl, ceey

However, by the fan-in lemma, we cannot solve this full-
order Boolean recurrence in o(n) time, and a fortior:i
O(log n) time, because there are ©(n-2") variables in the

bia), 2<i<n).

expression to be evaluated. Notice that there are 2°~1 possi-
ble values of z; for each i (1 < i < n).

3. Binary Trees and Conditional Cyclic Loops

We consider another approach of parallelizing a general
conditional cyclic loop, which is based on a binary tree
representation. Our concern is to parallelize conditional
cyclic loops in general, which include both postfix-IF loops
and linear mixed recurrence loops, on shared memory paral-
lel computers allowing concurrent reads (the CREW PRAM
[9]). For postfix-IF loops, our result is equivalent to the
Boolean recurrence solver in [2]. However, our approach
shows parallelism more clearly and is more general.

Consider loop L again. By making each node of a
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binary tree represent each possible value of the variables
defining e and the two edges from each node represent the
two branches of the IF statement, say the left edge for the
false branch and the right edge for the true branch, loop L
can be naturally represented by a binary tree of height n-1.

Consider the complete binary tree of height n-1. Let
¢;; be the t* node from the left on the i*® level of the tree
(see Figure 2). Then ¢;, (1 <t < 2'!) represents one of
2°-1 possible values of the variables defining e at the &*!
iteration of loop L. So, the execution of a conditional cyclic
loop L is equivalent to forming a certain path from the root
by selecting a node at each level of the tree, provided that
the tree is already formed.

We now consider solving the Boolean recurrence imbed-
ded in a conditional cyclic loop by selecting a path on the
tree, which is basically a parallel prefix problem. Let Path,
(1 <t <2"7!) be the Boolean product of all the € ,'s on
the path from the root to the ¢*! leaf node. Then, the prob-
lem is to find a Path, having Boolean value 1, which
represents the path to be taken in executing the loop (there
can be only one Path, having Boolean value 1).

Suppose a processor is assigned to each ‘“‘mutually
exclusive” complete subtree of height 2 of the binary tree
from top to bottom, i.e. processors are assigned to the nodes
on every other level of the tree starting from the root. By
checking the value of the root of the subtree, each processor
can determine which one of its two descendant nodes will be
taken for the path we want to find. This produces (2" -1)/3
edges for the tree of height n. Now, we want to form a
reduced tree. Suppose we have two edges, say £ and F,.
If in the original tree, the parent node in E', is a left (right)
son of the descendant node in F;, then E'y becomes a left
(right) son of E;. So, we have a tree whose height is half of
the original tree’s height (see Figure 3). Notice that this
tree reduction is essentially the step of Boolean product in
the parallel prefix problem. Doing this recursively until the
tree is reduced to a single node, we can obtain the single
path that a sequential execution of the loop follows in
O(log n) time (see Algorithm 1). The correctness of Algo-
rithm 1 can be easily checked by induction, and this leads us
to the following lemma.

Lemma 2. In a conditional cyclic loop of size n, the
imbedded Boolean recurrence can be solved in O(log n) time
with an unlimited number of processors.

To select a certain path in the tree representation of
the loop (path selection stage) by using Algorithm 1, we need
to set up the tree first by precomputing all the possible
values of the variables defining the predicate in the loop
(precomputation stage). For a linear mixed recurrence loop
of order m and of size n, the precomputation stage is
equivalent to solving 2"~! linear recurrences of order m.
Suppose we solve all the recurrences at a time by using a
fast parallel recurrence solving algorithm like the one in [4]
or [9] because we expect ‘“‘small” m in practice. Then,
assuming that the Boolean expression e can be evaluated in
constant time if the values of the variables defining it are
immediately available, the recurrences can be solved in
approximately (2 + log m)logn time with an unlimited
number of processors. So, we have the following theorem.
Theorem 3. Any arbitrary linear mixed recurrence loop of
order m and of size n can be executed in O(log m log n)
time with an unlimited number of processors.



In a postfix-IF loop the number of possible values of
the predicate is determined by the order of a postfix-IF loop.
There are at most 2™ nodes at each level of the tree for a
postfix-IF loop of order m. Since all the possible values are
immediately available, we have the following corollary
directly from Lemma 2, by taking the first 2™ nodes at each
level from the complete binary tree in Figure 2. Notice that
all the e; , result the same value of b; as ¢; ; where j =
(#-1) mod 2™~! + 1, because the value of each ¢; , depends
only on the values of ¢ ;’s (i-m <1 < i-1).

Corollary 4. A postfix-IF loop of order m and of size n
can be executed in O(log n) time with an unlimited number
of processors.

4. With A Limited Number of Processors

Since p should be a relatively small, limited number in
practice, we consider a way of exploiting the parallelism in a
conditional cyclic loop with a limited number of processors.
Consider the binary tree in Figure 2 again. To use Algo-
rithm 1, the tree is partitioned by level so that each parti-
tion covers log(3p +1) levels. By assigning processors to the
first log(3p +1) levels of the tree, we can find the first
log(3p +1) nodes for the path we want to have. The next
log(3p +1) nodes for the path can be found in the same way
by considering a subtree with its root as the last one of the
first log(3p +1) nodes found for the path. By applying Algo-
rithm 1 to each partition iteratively in this way, the path
selection stage can be done in approximately
(n-1) loglog(3p +1) Notice that Algorithm 1 is

log§3p +1)-1
equivalent to the sequential execution of a conditional cyclic
loop when p = 1. This gives us the following lemma and
corollary.

time.

Lemma 5. The path selection stage for a conditional cyclic
loop of size n can be solved in O(= lloglog ) time with p
i og p

processors.

Algorithm 1

(Path selection for a conditional cyclic loop)
/* the value of every e; , is known */
/* P; ; is an ordered set of nodes */
/* Py, is the output */

L1: DO 1 k =1, log (n-1)

L2: DOALL 2 j=1, (n-1)/2¢
i=(j-12F +1
L3: DOALL 3 t =1,2!
IF (k =1)
THENIF ¢; , THEN P; , = {¢; , NU{€i+1,2: }
ELSE P; ;, = {e;; YU{ei+1,20-1}
ELSE BEGIN
€; gty , — the last entered element of pP;,
IF ei+2k"—l,x THEN P,"g =P,"¢ UP5+2k",2z
ELSE Py =Pi UP; 9119,
END
3 CONTINUE
2 CONTINUE

1 CONTINUE
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Corollary 6. A postfix-IF loop of order m and of size n
2™ n

can be executed in O(
p

IogZL;n) time with p (> 2™) pro-

cessors.

Since in practice it is rare for m to be greater than three,
we may consider 2™ to be a constant. So, a postfix-IF loop
can be executed in O(n /p log p) time.

As noted earlier, the precomputation stage adds consid-
erable complexity in parallelizing a linear mixed recurrence
loop. To get a path of length log(3p + 1) we need to form a
tree of height log(3p + 1) for a linear mixed recurrence loop.
This requires us to solve (3p +1)/2 linear recurrences of
order m and of size log(3p + 1). Since there are at most
O(p ) nodes in a tree of height log(3p + 1), the precomputa-

tion stage for a partition can be done in O(m 2log—lﬁg)
m
time by using the algorithm in [5].

Theorem 7. A linear mixed recun;ence loop of order m

and of size n can be solved in O(]i"ilogm) time with
og p m

p processors (p > 2m).

Unfortunately, the benefit of the parallelization is little,
which makes it impractical parallelizing linear mixed
recurrence loops in general.

5. Special Cases of Linear Mixed Recurrence Loops

Although we are pessimistic about the existence of an
‘efficient’ parallel solution for a general linear mixed-
recurrence loop, we have three interesting special cases of
order 1. Consider a linear mixed recurrence loop of order 1,
which can be represented by the following equation:

"‘z{ T oz + 7 M big=0
2<i<n)

a; "% + ¢ if bi—l =1

where a;, ¢;, @;, and T; are coefficients. Then we have the
following three special cases:

Casel: ¢; =0,T =0, g; are fixed for all 1,
and @ are fixed for all ¢

CaseII. a; = 1,3 =1, ¢; are fixed for all ¢,
and ¢; are fixed for all ¢

Case III: Either ¢; =0 foralli or @ =0

for all ¢ (0 and 1 are integer)

Although our special cases seem to be quite restricted, it is
interesting to observe that the special cases are not rare in
practice (in our experiments of automatic program restruc-
turing [7], most linear mixed recurrence loops are of special
cases). Notice that all the special cases are recurrences with
constant coefficients. Furthermore, the number of possible
values of z; is reduced. By the commutativity of multiplica-
tion (for Case I), by the commutativity of addition (for Case
II), and by induction (for Case III) there are i possible
values of z; for each ¢ (1 <4 < n). This reduced number
of possible values and the constant coefficients naturally
simplify the precomputation stage and the path selection
stage.

By partitioning the binary tree by level so that each
partition has Vp levels, and by finding a subpath for each




partition iteratively starting from the first partition, we
have the following corollary.

Corollary 8. The three special cases of linear mixed

recurrence loops can be executed in O(%%—p) time with p
4

Processors.

6. Conclusion

We have considered parallelizing conditional cyclic
loops on a shared memory multiprocessor allowing con-
current reads. Based on a binary tree representation of a
conditional cyclic loop, executing the loop turns out to be
equivalent to precomputing all the possible values of vari-
ables involved in defining predicates of the loop (precompu-
tation stage) and selecting a single path from the root of the
tree (path selection stage).

Although little benefit of the parallelization with a
finite number of processors makes it impractical to parallel-
ize linear mixed recurrence loops in general, postfix-IF loops
do not require the precomputation, and the special cases of
linear mixed recurrences loop reported require the time for
precomputation increasing quadratically with respect to the
loop bound n. Furthermore, the path selection stage for
these loops can be done easily because of reduced number of
nodes in the tree. Postfix-IF loops and the special, but not
rare, cases of linear mixed recurrence loops can be executed
in O(log n) time with a polynomial number of processors
with respect to the loop bound = .

The difficulty of parallelizing conditional cyclic loops
emphasizes the importance of developing entirely new paral-
lel algorithms. However, developing an efficient new parallel
algorithm often requires long hard work and some ingenuity.
In the mean time, the way of parallelizing conditional cyclic
loops presented in this paper can be used, by identifying a
conditional cyclic loop automatically, for a “modest” gain of
speedups from some automatically restructured sequential
programs.

DO 1 i=1,n
IF (y(i) .GT. 0)
THEN x(i) = a(i) + b(i)
ELSE x(i) = a(i) * b(i)
1 CONTINUE
a). conditional acyclic loop
DO 1i=2n
IF (c(i) .GT. c(i-1))
THEN c(i+1) = w(i+1)
ELSE c(i+1) = v(i+1)
1 CONTINUE
b). postfix-IF loop of order 2
DO 1i=2n
IF (x(i-1) .GT. 0)
THEN x(i) = x(i-1)*2 - ¢
ELSE x(i) = h(i)
1 CONTINUE

linear mixed-recurrence loop of order 1

c).

Figure 1. Loops with Conditional Branching
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Debugging Parallel Programs using Graphical
Views*

Mary L. Bailey, David Socha, and David Notkin
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Abstract

Voyeur is a prototype system for creating ap-
plication-specific, graphical views of parallel pro-
grams. We describe the system and three views
created using the system, two for MIMD non-
shared memory parallel programs and one for a
shared memory, multi-threaded program.

1 Introduction

Historically, computers have supported debugging by pro-
viding access to the program’s state. The programmer
assimilates this information, comparing the expected and
actual states of the computation to validate the pro-
gram’s execution or to detect errors. This approach of-
ten is overwhelming for parallel programs, which have or-
~ ders of magnitude more state information than sequential
programs. Graphical views help to manage this state in-
formation by synthesizing images of the program’s state
and thus focusing on the problem structure, algorithmic
structure, or architectural structure of the target com-
puter. These images present a great deal of information
in a readily assimilated manner.

Voyeur is & prototype system for constructing ap-
plication-specific graphical views of parallel programs.
Voyeur’s goal is to make practical the creation of new
views for specific algorithms. To date, we have con-
structed and used Voyeur views of (1) MIMD, non-shared
memory programs written in Poker [12], (2) a shared
memory parallel simulation program executed on a Se-
quent multiprocessor, and (3) a sequential Fortran pro-
gram executed on a MicroVAX-2. This paper describes
three of these Voyeur views and discusses their use. We
also describe how Voyeur provides a structure for easily
creating views.

Related Work. Techniques to visualize the data com-.

ing from parallel debugging range from using a sequential
debugger on each of the processes of a parallel program
[11] to providing a textual trace of program execution [8]
" to integrating trace information and a visual view of the
program. The last category includes Belvedere [7], which

*This research funded in part by Office of Naval Research Con-
tract N00014-86-K-0264, National Science Foundation Grant CCR-
8416878, and Air Force Office of Scientific Research Contract 88-
0023.

46

displays the communication graph of a message passing
program and shows the message activity on the edges of
this graph, and also can find and display logical patterns
of message activity in an asynchronous message-passing
system. Similarly SDEF [5] and Poker’s Trace View [12]
display variable values in the nodes of a communication
graph.

2 Voyeur Views

- This section describes three Voyeur views and how they

helped verify and debug parallel programs. The three
views were developed for different applications: two Poker
programs and a shared memory, multi-threaded program.
Several additional views have been developed [13] but are
not discussed here due to space limitations.

Icon View. Theicon view (see Figure 1) was developed
to debug a sharks and fishes algorithm [4]. The algorithm
simulates sharks and fishes moving in a two-dimensional
grid of points. Each point may be occupied by one ani-
mal. Fish move into vacant, randomly chosen, adjacent
points. Sharks move similarly, with the exception that-
sharks eat an adjacent fish if possible. Both species oc-
casionally give birth, with the baby staying in the place
the parent vacates. Fish never starve, but sharks do if

Quit

Generation = 1

generation
g‘fid - & - ™ -
* -~ -~ 4‘*
-~ - *
ak - -« ok
R T ™

Figure 1: Voyeur’s icon view.




[ Quit

Generation = 1

Quit

eneration
grid

Generation = 3

eneration)

rid

Quit
| Generation = 5 Quit

eneration| Generation = 7
rid eneration
rid

. ) .
Figure 2: Voyeur’s vector view.

left unfed long enough. For simplicity, all the fish and
then all the sharks are moved, in an alternating pattern.

Debugging this algorithm proved difficult because of
the large amount of information in each processor, the
synchronization between processors, and the random na-
ture of the algorithm. For instance, when testing the
movement of the fishes, having the two fish in a single
processor randomly choose to move west seemed fine un-
til the icon view showed all of the fish “randomly” moving
west — clearly a bug.

Another bug manifested itself in the communication
between processors. The two-dimensional problem space
was divided among the processors which were connected
in a mesh (the grid lines are shown in Figure 1). At
one point in the program, some of the fish on the east
side of a processor jumped to the west side of the same
processor, and vice versa. This was due to a program
error: the constants east and west had been reversed.
While this bug could have been detected using only local
infoermation, the global view made it obvious.

Vector View. The vector view plots vectors in a two-
dimensional space. This view was created to assist a col-
league in the Applied Math department debug a Poker
program of the SIMPLE algorithm [2, 6]. The calcula-
tion was going wild and two causes were possible: either
there was a bug in the Poker program, or there was a
numerical instability due to the sparseness of the points
in the 3-dimensional space. Viewing the vectors during
the program’s execution, the programmer saw a vector
move non-radially before the errant behavior, indicating

numerical instability, rather than a program bug (see Fig- .

ure 2).
We developed this view by first generalizing and then
specializing the icon view. Each line of a setup file speci-
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Figure 3: Voyeur’s simulator view.

fies the type of an object to view (icon or vector), the sim-
ulator’s unique identifier for the species of object (such
as a shark icon or a hydro vector), and, for icons, a file
containing the bitmap for that object species. Adding or
removing species of objects and changing their appear-
ance is as easy as modifying this file.

Simulator View. The simulator view, developed for a
colleague in Computer Science, monitors a parallel sim-
ulation of message flow among 16 processes connected
in a 4 X 4 torus. Each process is connected to its four
neighbors. When a process receives a message, it updates
its local clock and forwards the message, with the new
clock time, to a randomly chosen neighbor. The run-time
system guarantees that messages are delivered in times-
tamp order, so that processes can never receive old mes-
sages (messages with timestamps less than the current
process’s clock). The simulation is written in SYNAPSE
[14] and runs on a Sequent [10] multiprocessor.

Figure 3 shows the message traffic of the system.
Each process shows its local time and the length of the
queues of incoming messages as bars. For instance, the
process in the upper right corner is at time 4 and has
one message in the west queue, two in the east queue,
and three in the south queue.

At the beginning of the simulation, each process gen-
erated four messages and sent them out in random di-
rections. No other messages were generated during the
simulation. The uniformity of the queue length and clock
times reaffirmed our intuition about the effects of ran-
domly selecting message ports in this regular intercon-
nection structure. Modifying the vector view to create
the simulator view took five hours.
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Figure 4: Voyeur system structure

3 Integrating Voyeur and Pro-
grams

The various views has been invaluable in debugging Poker
programs; however, the key to Voyeur’s usefulness is the
ease of creating new views. This is facilitated by Voyeur’s
structure (shown in Figure 4) and a hierarchy of views
[13]. Boxes with square corners are heavy-weight pro-
cesses. Boxes with round corners are modules. Messages
from the user filter down to change the form of the view
or to request more simulation data. Messages from the
simulator filter up to change the state shown by the view.

A Voyeur view consists of the simulator interface, the
adapter, the modeler, and the renderer [1]. The adapter
translates between the string-based simulator messages
and the procedural interface of the modeler and renderer.
These messages may come directly from the simulator, or
may come from a trace file produced by the simulator.
Based on the type of each simulator message, the corre-
sponding modeler procedure for that message is called.
The modeler manages data specific to the application.
The renderer defines the user interface (based on X Win-
dows [9]), which is responsible for drawing the view of the
information in the modeler, for manipulating the form of
the view, and for letting the user control the program’s
execution. Just as control events from the X Window in-
terface drive the execution of the renderer and modeler,
state messages from the simulator drive the adapter, the
modeler, and the renderer.

The user interfaces of the views share a basic struc-
ture. The view’s title is contained in a title bar at the top
of the view. Underneath the title bar is a set of pull-down
menus. Below the menu bar is a status area containing
data appropriate for the view. Below this and to the left
is a set of control buttons for controlling the execution

48

of the simulation. The data area, in the lower right-
hand corner, contains scroll bars for movement within
this area.

To create a new view, the user first annotates the
Poker program to send appropriate messages to the view.
The adapter is compiled from a description of these mes-
sages. The user then writes the modeler and the renderer.
Because the view share much of their functionality and
appearance, creating a new view consists of modifying an
existing one. This typically takes anywhere from a few
hours to a few days. We hope to shorten this time by
converting Voyeur from C to C++ and explicitly utiliz-
ing the class hierarchy.

4 Conclusions

The Voyeur prototype provides easy construction of new

“and flexible views for parallel debugging. These views

have greatly eased the laborious task of finding obscure
bugs in Poker programs. The current structure has a
fairly high degree of flexibility both in the power of the
views and in the creation of new views.

Still, there are many areas for improvement; we are
now pursuing these as part of the Orca project. We need
to simplify the task of creating new views by techniques
such as an explicit hierarchy of views. We need to explore
new views. We need to increase the flexibility of the
existing views. For instance, in the icon view, it would
be nice to allow the user to dynamically select which icons
to see. Similarly, logical zooming is a powerful tool. For
example, zooming out using the icon view could replace
the icons with smaller icons and eventually just a dot
for each icon, progressively giving a larger global picture.
at the expense of local information. Finally, we need to
explore using Voyeur with more programming systems.
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Abstract

The paper is concerned with the problem of designing
tools for multiprocessors. The features, the design con-
cepts and some implementation details of an integrated
and portable tool environment for multiprocessors are
presented. The tool environment MMS (Multiprocessor
Monitoring System) contains tools for debugging, per-
formance analysis and visualization of mufnproccssors
and their program execution. Apart from the func-
tionality of the tools, MMS offers the following features;
portability to various parallel architectures, expandability
and adaptability with new tools and languages, and sup-
port of several abstraction levels. In addition, the tool
environment is based on different instrumentation and
monitoring techniques. The main desi concept of
MMS is a new hierarchical layered mocfgll for tool en-
vironments, which will be presented in the paper.

1. Introduction and State of the Art

Today, programs for many parallel machines are written
in a high level programming language and are based on
the objects and system calls of ti: concurrent operating
system of each processor node. In addition, software for
many parallel computers is developed in a so called
host/target environment. This means, that the programs
are developed -with cross—compilers on a host computer
and are downloaded for execution into the target system.
The host is normally a conventional workstation connec-
ted with the target multiprocessor via parallel busses or
LAN’s. Many supercomputers from industry and uni-
versity are programmed this way, for example; the iPSC
of Intel, the Cosmic Cube, the NCUBE, the Pringle
Parallel Computer, the Mark II/III etc. In addition,
even multiprocessors with native-compilers include cen-
tral development nodes, from which programs are down-
loaded into the processor elements [4]. erefore a ”logi-
cal” host/target environment is at least existing within
this class of multiprocessors.

Tools for generating parallel programs, i.e. compilers
and linkers, are already available for multiprocessors. In
contrast, very limited possibilities are at hand for looking
at the dynamic behavior of parallel computers and their
software. No adequate tools are available for debugging,
performance measurement and visualization of program
execution. Parallel programming environments available
from university andp industry have several disadvantages
with respect to debugging, monitoring, instrumentation,
performance measurement and visualization:

+ Some tools are not integrated into the programming
environment. Therefore monitoring is done at a low
abstraction level without any relation to the program-
ming concepts [4]. These tools mainly focus on instru-
mentation techniques and synchronization concepts for
multiple monitors.
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+ Other projects are mainly interested in programming
concepts. In these projects monitoring is done using
source code instrumentation, operating system instru-
mentation and runtime instrumentation [9], [6], [7].
These concepts lead to more batch oriented tools be-
cause the insertions into the source code have to be re-
compiled each time the programmer needs new infor-
mation about program execution. In addition, the in-
serted monitoring instructions modify the runtime be-
havior of the multiprocessor. This has awkward influ-
ences on the synchronization behavior of application
programs.

+ The third class of tools focuses mostly on specific
architectures of parallel computers. There are, for ex-
ample, tools available for bus-oriented multiprocessors.
The monitoring techniques of these tools depend on
the availability of bus-oriented connections between
the processor elements [3].

Motivated by these shortcommings of the available tools,
two years aio we started the design and development of
an expandable and portable tool environment for con-
current computers. The environment contains integrated
tools for debugging, performance analysis and visualiza-
tion of the dynamic Eehavior of concurrent multiproces-
sors and their program execution. MMS is usable for
program development, program optimization, for study-
ing existing programs and for teaching the dynamic be-
havior of parallel computers and concurrent programs.
Before I describe the design concepts and the state of the
project, I will define in the next paragraph the require-
ments of tool environments for parallel computers.

2. Features and Requirements

The following described requirements are met by our
tool environment MMS. Therefore the explanation of
the requirements can also be considered as presentation
of MMS features. 1 first explain first in a coarse—grai-
ned manner the functionality of the available frontends
of the environment, the single tools.

2.1. Functionality of the Tools

The first tool, mainly used for program development, is
a window based concurrent debugger. The debugger of-
fers features for displaying and modifying the states of
programs running on the multiprocessor [5] A powerful
debugging language is available, which allows the spe-
cification of complex predicates about the dynamic ex-
ecution of programs [8], [1]. Based on these conditions,
several actions are initiated, e.g. stopping processes
gbreakpoints) or recording state changes of the program
tracing).



The second tool is a performance analyzer for optimizing
concurrent programs [5]. Using the performance analy-
zer, the programmer gets information about the efficien-
cr of the communication between processes or processor
elements, about the activation of procedures, the access
to variables and operating system objects. In general,
the performance analyzer records the access to various
objects and displays these activities using several kinds
of charts. The performance analyzer gives the user the
ability to localize the bottle-necks of his implementation.
Base(i' on this information, the programmer can develop
a optimized mapping of processes onto processors.

Another possibility for displaying the dynamic behavior
of multiprocessors is to use the visualization tool. This
art of the tool environment gives users the ability to
ook in a g_}aphical manner at the dynamic execution of
programs. This tool shows on a graphic display the flow
of communication between processes or processors. Addi-
tionally, the visualization tool displays complex data
types, the control and the data flow of programs or pro-
cesses in a graphical way. In general, this tool gives a
graphical representation of the multiprocessors state
space.

The tool environment is not limited to interactive tools.
MMS is also expandable with more batch oriented tools,
like systems for automatic testing. These frontends of
the tool environment offer possibilities for regression
tests and Cl-tracing which are necessary for program te-
sting and maintenance. However, this is not a main
focus of our project.

2.2. General Requirements and Features

An important disadvantage of existing tools, mentioned
during the introduction, is their isolation, lack of flexibi-
lity, portability and expandability. The following discus-
sions concern these more general requirements of tool
environments for multiprocessors. An important re-
quirement of tool environments is their frequent inter-
active usage. Tools like debuggers are used very interac-
tively during program development. Therefore a unique
and user friendly human interface with graphic support,
multiple windows, menus and mouse interaction is of-
fered by MMS. :

All described tools need information about the dynamic
execution of programs on the multiprocessor. This infor-
mation can be collected using different instrumentation
and monitoring techniques. Monitoring techniques consi-
dered in our project are hardware instrumentation, ob-
ject code instrumentation (software instrumentation) and
ybrid instrumentation. these instrumentation techni-
ques support interactive usability of the tool environ-
ment. No extra recompilation for monitoring is neces-
sary. An important feature is that the single tools need
not know the instrumentation technique they are actually
based on. Therefore different monitoring techniques can
be used across different processor elements.

A very important requirement is the abstraction level of
the tools [1], [5]. The programmer must be able to use
the tools at different abstraction levels, from a very low
abstraction level (e.g. machine level or assembler) up to
a very high abstraction level (e.g. process level). At the
low level, the tool environment handles addresses and
data types of the processor. At the high level, MMS
knows all objects of the programming language (e.g.
procedures and variables) and all objects of the concur-
rent operating system (e.g. tasks, semaphores, mailbo-
xes) by their names. All objects are specified and dis-
played with the syntax and semantic of the selected ab-
straction level. The user has the ability to use MMS at
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the described abstraction levels T(}rlnachine level, C langu-
age level and process level). is means that one pro-
gramminf construct can be inspected at different ab-
straction levels.

Another requirement focuses on portability. A tool en-
vironment for host/target environments has to support
various target architectures. Therefore the target parts of
MMS are easily portable to various different multipro-
cessor architectures. The tool environment is not only
based on ”real” parallel computers. An instruction level
simulation of the target system on the host computer
may also be sufficient for locating most logical errors.
Once more, the single tools need not know whether they
are based on real hardware or only on the simulation of
the real hardware.

A further disadvantage of state of the art tools is their
weak integration. All tools of our environment are based
on the same instrumentation techniques and they offer a
unique human interface. In addition, for an integration
it is necessary for all tools to use the same symbol data
base and the same symbol translation mechanism.

The last general requirement concerns the expandability
and the adaptability of the tool environment. This requi-
res that the environment is expandable with new fron-
tends (tools) without a modification of the instrumenta-
tion techniques l_?monitors). For example, the monitors
have to be powerful enough to add an automatic test sy-
stem as new frontend without changing the monitors.
Additionally, MMS is easily adaptable to new program-
ming environments with new programming concepts and
compilers. This requires an easy adaptation of the sym-
bol data base and the monitoring of the stack structures
to new requirements.

3. Design Concepts of MMS

In order to satisfy the presented requirements, an inge-
nious system is necessary which consists of hardware and
software and is divided between host and target. The va-
rious tasks, requested by the requirements, are only per-
formable by a very flexible design conczeift. The base of
our design concept is a new hierarchical layered model
for tool environments. The model is illustrated in figure
1. In analogy to the idea of the ISO/OSI model for net-
work architectures, a layer of level i needs no knowledge
of modules installed at levels lower than i. Therefore
several implementations of one layer are replaceable wi-
thout complications. This characteristic makes the tool
environment adaptable to the various described require-
ments. For example, the hardware monitor is easily re-
placeable by a software monitor without changmg the
upper layers of the model. Additionally, MMS is ex-
pandable with new tools without changing the layers
below S4. In general, a tool environment based on the
hierarchical layered model meets the requirements of
portability, expandability and adaptability.

For understanding the layered model, I explain in the
following paragraphs the functionality of the several
layers in a bottom-up manner. Three different moni-
tors are available for monitoring the dynamic behavior
of each processor element. The monitors are based either
on hardware instrumentation, on software instrumenta-
tion (object code instrumentation) or on hybrid instru-
mentation. The monitors evaluate the predicates spe-
cified about the dynamic program behavior. There are
four classes of predicates to evaluate; predicates about
the control flow, predicates about the data flow, predica-
tes about concurrency objects (e.g. tasks, mailboxes,
semaphores) and predicates about combinations of the
previous ones. It should be noted that all three monitors



offer the same interface to the upper layers. They only
differ in the retardation of program execution, but not
in their functionality.

A

Processor Element 1 re Processor Element n

Fig. 1: Hierarchical Layered Model for Multiprocessor
Tool Environments

The memory-1I/O access layer implements the access to
memory cells and I/O ports. Therefore this layer is
responsible for displaying and modifying the contents of
memory cells and I/g orts. In addition, this layer dis-
plays and modifies objects of the concurrent operating
system. The target layers of each processor element are
in general a concurrent assembler oriented monitoring
tool based on physical or virtual addresses and processor
data types. As already mentioned, even this low ab-
straction level is accessible by the user of MMS.

The simulator offers the same functionality as the target
layers. Therefore the tool environment is usable without
the availability of the target system. This means, that
the simulator implements commands for accessing
memory and I/O of the simulated multiprocessor. Addi-
tionally, the simulator allows the specification of low
level predicates about the simulated program execution.

The central layer at the host workstation is the layer for
event, action and symbol management. This layer offers
primitive events, actions and a mechanism for combi-
nin%l;hese primitives. Based on this event and action
mechanism the layers on top of the model (the tools) are
able to specify complex presicates about the dynamic be-
havior of the target system [1]. The specification of
events and actions is based on symbols used in the pro-
gram to be monitored. This layer is also responsible for
translation and retranslation of symbols into addresses
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and vice versa. Because this task requests several tedious
algorithms for sorting and searching the symbol manage-
ment is based on an adequate data base.

For the explanation of the top layer’s functionali?l (de-
buglgler, performance analyzer, visualization tool) I refer
to chapter 2.1. These tools are based only on the event
and action concept of the layer below them (S4). There-
fore these tools do not know the instrumentation and
monitoring technique they are actually based on.

4. State of the Project

In chapter 1 I mentioned that the tool environment has
been in development for about two years. In the follo-
wing I describe the state of the project and future work.

Since summer 1987 the first tool of the environment, the
concurrent debugger, has been finished. For an illustra-
tion of the debugger functionality, figures 2 and 3
represent two typical printouts of tze debugger user in-
terface. Figure 2 gives an example of the view/inspect
command. Using this feature, the programmer can in-
sEect the objects of the concurrent operating system, e.g.
the states of existing tasks. In figure 3 the specification
of a predicate, in this case a breakpoint about the data
flow, is illustrated. The availability of the debugger
implies of course the disposability of the lower layers of
the model, because the debugger is a layer at the top.

State Change Run Predicate Listing Log Quit tist-Man. Help
UIEW INSPECT e INaeE

® TASK QO MAIL O SEMA ut [<L382>
utluser3to ut luser2to

ut<L 382>
[T task utluser2to
ut Juser2(1).<L87>

priority: 60
state: WAITING

utusertok

Cores ) Chext]) 2

waiting for receiving from mailbox:

ut [<L354>

ut | mboxt ok
LISTING - ut

0381 printf("\nTASK 1 : Jetzt kreiere ich die Task user2");
0382 cretask (user2tok,user2,800,60,&retval);
0383 print f("\nTASK 1 : Jetzt kreiere ich die Task user3");
0384 cretask (&user3tok,user3, 800,60,&retval);
0385 printf("\nTASK 1 : Jetzt kreiere ich die Task userd");
0386 cretask(Ruser4tok,user4,800,60,&retval);
0387 printf("\nTASK 1 : Jetzt kreiere ich die Task user5"); [

Fig. 2: View/Inspect

State Change Run Predicate [JURIIE Log Quit List-Man. Help

DEREAK Y New ListFile..” %L

Show List-File
QOEHEC @ DATA O STOPTASK :

0252
0253 void proc5()

® Value: [5765 0254 {
0255

QO SEMA OMAIL

Module Task

|ut ”usertok

Variable : -

is | === LISTING - Ut =

int retual;
O write 0256 char c5;
Qread 0257 int i5;
0258 fong I5;

( (ERED) () wnd) () (EHTH) fo2s9

sOelem e5s0;

0260

Cox ) (conert) o261

sOelem aS[5];

Fig. 3: Breakpoint Specification



In addition to the debugger, the event, action and sym-
bol management layer on the host workstation has been
already finished. The host computer for this implemen-
tation was a VAXstation II with Ultrix32m, Xwindows
and a cross-software development system. A C-—cross—
compiler is used for generating code for the 80186 mic-
roprocessor. The concurrent operating system for the
target has been imglemented as a library on the host
which is linked to the application program. The opera-
ting system is object oriented and offers dynamically cre-
ated tasks, mailboxes, semaphores and the usual opera-
tions (system calls) on these objects [2]. The concurrent
operating system can be considered as a concurrent
language extension of C.

The host layers are based on the existing target parts of
MMS. The memory-I/O access layer as well as two dif-
ferent monitors are available. Therefore the host layers
can be based on two monitoring techniques; on a hybrid
monitor adapted to the processor bus of each processor
element and on a software monitor based on object code
instrumentation. The target layers have been im-
plemented on a target system based on only one proces-
sor element. This processor element is an 80186 single
board computer. The target system has been used as
multiprocess (multitasking) singleprocessor system within
the first prototype implementation of MMS. The al-
ready fimished subsystems of MMS are illustrated in
figure 1 with unhatched boxes.

Currently, the tool environment is adapted to target sy-
stems consisting of more than one processor element. An
32-node iPSC %’ersonal Supercomputer from Intel is the
first target system for the multiprocess multiprocessor
implementation of MMS. The host layers of this imple-
mentation remain on the VAXstation II. We connected
the host layers on the VAX via the TCP/IP network of
the iPSC cube manager with the target layers in several
nodes. Porting the target layers of MMS to the message
passing hypercube machine is not very difficult because
the nodes of the iPSC are based on an 80286/386 mic-
roprocessor which is a superset of the 80186. This retar-
§etting of MMS on the iPSC will be finished in autumn
988. For demonstration of the suitability of the tool en-
vironment for different multiprocessor architectures we
plan in the future the retargetting of MMS on a
memory coupled multiprocessor based on Motorola
68020/68881. In addition, the performance analyzer
and the visualization tool are in the specification phase.
A first approach for visualizing complex data types in a
graphical manner has been already implemented within
the concurrent debugger (see figure 4).

Slalellilmnge Hun  Predicate Listing Log Quit List-Man. Help
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|demo_mud —||£lemo_task I a= 64
Variable b= 134
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ekl

Co) v

Fig. 4: Visualization of Linked Lists
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5. Results and Condlusions

Features and concepts for the design and implementation
of tool environments for concurrent multiprocessors were

resented. In conclusion the presented tool environment
§/[MS offers the following advantages:

+ The programmer can look interactively at the dynamic
behavior of parallel computers and their program ex-
ecution using several tools (debugger, performance
analyzer, visualizer).

+ All tools support various abstraction levels (machine
level, C language level and process level).

+ All tools of the environment are integrated using a
unique event and action mechanism. In addition, the
tools are based on the same symbol data base and they
use a common graphic and menu driven human inter-
face.

The event and action mechanism is based on different
instrumentation techniques (hardware, software, hy-
brid). A mix of instrumentation techniques is possible
across different processor elements.

The central design concept of MMS is a hierarchical
layered model for tool environments. This layered
model is the reason for the portability of the environ-
ment to various multiprocessor architectures, the ex-
pandability with new tools and the adaptability to new
compilers and programming concepts.

*

»*

Although the paper mainly focuses on host/target en-
vironments, the presented hierarchical model is addi-
tionally suitable for native tool environments of multi-
processors. The apparent conclusion of this paper is that
the MMS is an adequate instrument for looking at the
dynamic behavior of parallel computers and their con-
current software.
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Viewing Anomalous States in Parallel Programs
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ABSTRACT

Static analysis techniques have been
developed for detecting anomalies in parallel
scientific applications programs. The analysis is

- based on the generation of a state graph called
the Concurrency History Graph. This graph con-
tains all possible parallel states of the program.
Displaying the Concurrency History Graph on a
large screen multi-window workstation can
greatly enhance the understanding of the
anomalies reported and the program in general.
This is an important aid to debugging and under-
standing parallel programs.

1. Introduction

Any attempt to observe or control the internal execu-
tion of a non-deterministic program may result in a change
in the behavior and resulting output of the program. This
has been referred to as the probe effect or the Hiesenberg
uncertainty principle applied to parallel programs. The
probe effect makes the use of conventional dynamic debug-
ging techniques based on breakpoints, tracing and single
stepping ineffective for isolating many bugs in parallel pro-
grams. In these situations an important alternative is the
use of static analysis which can detect certain classes of
anomalies in parallel programs. An anomaly is a potential
error. An anomaly may not be an actual error because the
execution path containing the anomaly may be infeasible!,
or because the programmer intended the program to exhibit
behavior in certain situations that is normally indicative of
an error.

In ART[AMS5] static analysis is being used to detect
two classes of errors in parallel programs: synchronization
errors and data-usage errors. Deadlock is a familiar type
of synchronization error. Data-usage errors include the
usual sequential data-usage errors such as reading an unini-
tialized variable, and parallel data-usage errors typified by
two processes simultaneously updating a shared variable.

In ART, the static analysis is based on the creation of
a concurrency history graph (CHG) similar to that
described by Taylor.[Tay83] Nodes in the CHG correspond
to possible states of the parallel program, and edges
correspond to one or more tasks in the parallel program
advancing from one synchronization point to another.
From this graph it is possible to derive some important
anomalies. The size of the CHG can be quite large. In
general it may grow in size exponentially with respect to
the number of parallel tasks. Techniques have been
developed to keep the size of the CHG manageable,
although still exponential in the worst case.
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The result of applying static analysis is an anomaly
report. The presentation of the anomaly report should pro-
vide the user with sufficient information to determine
easily if the anomaly is actually an error, and if so, how the
error can be repaired. In order to eliminate an error due to
improper synchronization of a parallel program, the user
must be able to determine how the erroneous concurrent
state could arise. For example, it may not be sufficient to
report that variable X is modified concurrently by a process
executing line 100 and another process executing line 200.
If the user cannot understand how 100 and 200 could be
executing in parallel, then it may be difficult to determine
how to resolve the problem. Furthermore, the user may
simply decide (erroneously) that this situation could never
arise and that the anomaly report should be ignored.

The approach taken in ART is to allow the user to
examine the concurrency state resulting in the anomaly
report and also to examine the concurrency states that led
up to that state. The appearance is similar to that found in
some dynamic debuggers for parallel
programs.[Gri87, Seq86] However, the dynamic debuggers
require the program to be executed and suffer from the
probe effect. In contrast, ART does not execute the pro-
gram, thus avoiding the probe effect. Before describing the
user interface and presentation of the anomaly report, a
brief description of the CHG is presented in the next sec-
tion.

2. The Concurrency History Graph

The analysis is based upon the program control
flowgraph, in which each node represents a sequence of
‘straight-line’ code terminated by a transfer of control, or a
synchronization operation. Edges in the control flowgraph
represent sequential and branch transfers of control, and
task creation. The synchronization graph is a compressed
version of the control flowgraph. All nodes in the control
flowgraph can be classified as either sequential or syn-
chronization. A node is a synchronization node if it
represents a synchronization operation (e.g. wait, create,
etc.) or represents a function or procedure invocation where
the flowgraph of the invoked procedure contains one or
more synchronization nodes. A sequential path in the con-
trol flowgraph is a path in which all nodes are sequential.
The synchronization graph is derived from the control
flowgraph by eliminating all sequential nodes and connect-
ing the synchronization nodes with edges corresponding to
the sequential paths in the control flowgraph. The syn-
chronization graph for the example source in the Appendix
is shown in Figure 1.

1. The detection of infeasible paths has been shown to be equivalent to
the halting problem.[Cla76]



Two task states can be associated with each synchron-
ization operation. These two states are referred to as pre-
and post- transition states. In a pre-transition state, a task is
waiting to perform a synchronization operation. In a post-
transition state, a task has just completed a synchronization
operation. Thus, the synchronization operation actually
occurs during the transition from a pre- to a post-transition
state. A complete transition is a sequence of non-
synchronization operations beginning immediately after a
synchronization operation up to and including exactly one
successor synchronization operation. A complete transition
is therefore, a transition from one post-transition state to
another post-transition state. A task advances by making a
complete transition.

The central data structure used in our algorithm is the
concurrency history graph, CHG. The nodes of a CHG are
concurrent states, and the edges are history transitions. A
concurrent state corresponds to a low resolution snapshot
of the execution of a parallel program. The only variables
that are ‘‘captured’ are those used in synchronization
operations, and the ‘‘program counter”’ of each task is only
resolved to the nearest preceding synchronization opera-
tion. Windows 2-6 in Figure 2 are displaying a single con-
currency state. Every possible distinct concurrent state of a
program is represented in the CHG for the program (given
the restrictions on resolution). However, many distinct
concurrent states may be represented by the same node in
the CHG (see[McD88] for details). Each edge corresponds
to one or more tasks making a complete transition, which is
the minimum change necessary to generate a distinct con-
currency state. Only complete transitions are explicitly
represented in the CHG (i.e. all tasks are in post-transition
states).

Given a particular initial concurrency state, the CHG
is generated by advancing tasks from one state to another
whenever possible, creating new concurrency states. The
CHG edges are labelled with sets that represent all non-
synchronization variables that are read or written by the
corresponding complete state transition. These sets are
called read-write sets. The synchronization variables are
those variables accessed atomically by the synchronization
operations and therefore, cannot be the source of parallel
access anomalies.

Two important types of anomalies can be directly
deduced from the CHG. The first contains both deadlock
and wait forever which are collectively referred to here as
synchronization anomalies. These are detected by the
existence of a concurrency state containing non-terminated
tasks? that cannot advance to a new state. The example in
the Appendix contains a simple example of a wait forever
anomaly. The main routine in the example is waiting on an
event (ALL_DONE) that is never posted, resulting in a
concurrency state containing only the main task that has
not terminated and also cannot advance.

2. Tasks are eliminated from the concurrency state when they ter-
minate, therefore any task in the concurrency state is non-terminated.
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The second type of anomaly occurs when two con-
currently executing tasks attempt to access shared data and
at least one task is attempting a modify operation. This is
called a parallel access anomaly (see Figure 2). It intro-
duces a race condition in which the value read or the final
value written into the shared data depends on the speed of
execution of the tasks. A parallel access anomaly exists in
a CHG if it contains a concurrency state with two tasks
such that the intersection of the read-write sets of the com-
plete transitions contains anything other than read-read
intersections.

3. Viewing the CHG

The user interface supported by ART serves two pur-
poses. First, it clearly indicates to the user, in terms of the
original source, where any detected anomalies are located.
In addition, it can aid in understanding how a parallel pro-
gram may execute. A sample user display is shown in Fig-
ure 2. The complete program text is in Appendix 1. This
program is incorrect by design for illustrative purposes.
Window 6 in Figure 2 contains a text listing of the
anomalies detected in the program. Anomaly number 1 is
currently displayed and indicates a read/write parallel
access conflict to variable MAX in CHG node number 10.
It states further that the problem occurs between a task exe-
cuting between lines 29-40 and a task executing between
lines 35-37. The concurrency state corresponding to CHG
node 10 is displayed in Windows 1-5. Window 5 contains
the values of various global synchronization variables.
Windows 2 and 3 display the state of the tasks associated
with the anomaly. The top half of windows 1-4 is scroll-
able and by default displays the text around the synchroni-
zation operation corresponding to the task state. The task
state is the last synchronization operation executed by the
task. The highlighted line indicates the task state. The
lower half of Windows 1-4 displays the next possible syn-
chronization operation to be performed by the tasks
represented by the windows. In Window 3 there are two
possible successors, however, because the lock is already
set by the task in Window 2, the task in Window 3 could
actually only advance to the new state at line 40.

Windows 7 and 8 contain the synchronization graph
and the concurrency history graph. Only a portion of the
graphs is displayed centered on the nodes corresponding to
the concurrency state displayed in windows 1-5. These
windows can be expanded to fill the entire screen if
desired, displaying the complete graphs.

The remaining window is the control window.
‘““Back’ displays the CHG node displayed previously.
““Next’” displays the sequentially next CHG node. ‘‘Plot
CHG”’ expands the CHG graph display to fill the entire
display. If the graph still does not fit on the display, the
window can be scrolled both horizontally and vertically.
“Plot SAF’’ does the same expansion for the program
graph (Synchronization Augmented Flowgraph). ‘‘Pick#"
prompts for a CHG node number and displays that node.
This is the main way of moving around when viewing
anomalies, since the anomalies are reported in terms of



CHG node numbers. “‘Quit’’ is self explanatory.

There is one additional -- the most useful -- method
for moving about in the CHG. By selecting one of the suc-
cessor states in the lower half of windows 1-4 with the
mouse, a CHG node will be displayed (if one exists) with at
least one task from the current window> advanced to the
selected synchronization operation. This allows the user to
browse the concurrency states in a manner analogous to
course grained single stepping.

4. Conclusion

A system for browsing the possible concurrent states
of a parallel program was presented. It is part of an ano-
maly reporting tool currently used as an aid for debugging
programs written in Fortran with extensions for explicit
parallelism.

Work is in progress to integrate this static analysis
tool with a dynamic debugger. Taylor[Tay84] describes
several ways in which static analysis could be productively
combined with dynamic analysis. A primary goal is to use
paths through the concurrency history graph to force deter-
ministic executions of a parallel program under control of
the dynamic debugger. Conversely, information from
dynamic monitoring will be used to guide partial static
analysis when complete static analysis would generate too
many states.

Appendix 1.

This program intentionally contains errors. It is
intended to normalize an array by the maximum value in
the array using N=4 parallel tasks.

PROGRAM EXAMPLE

parameter(N=4)
COMMON CMAX(10)
COMMON /M2/ MAX
DIMENSION A(10,10)
_declare_barrier(B1)
_decl_common_do(COLMAX)
_decl_common_do(NRML)
_decl_event(ALL_DONE)

_init_barrier(B1,N)
_init_common_do(COLMAX,1,N)
_init_common_do(NRML,1,N)

_create_family(TASK_ID,NORMAL,A N)
_wait_event(ALL_DONE)

K=1

END

_task_entry(NORMAL,A,N)
_decl_common_do(COLMAX)
_decl_common_do(NRML)
_declare_barrier(B1)
COMMON CMAX(10)
COMMON /M2/ MAX
DIMENSION A(10,10)

_begin_common_do(colmax,J)
DO 1001=1N
IF(CMAX(J) .LT. A(,))) CMAX(J) = A(,J))
100 CONTINUE
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IF(CMAX(J).LT.MAX)GOTO 150
_lock_on(MAXLOCK)
MAX = CMAX(J)
_lock_off(MAXLOCK)

150 CONTINUE
_end_common_do(colmax,J)

_wait_barrier(B1)

_begin_common_do(NRML,J)
DO 200 I=1,N
A(LJ) =A1J)/MAX
200 CONTINUE
_end_common_do(NRML,,J)

_task_return
END

main

init_barrier
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Figure 1. Synchronization Graph.

H
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3. Each window may represent more than one task all in the same state.
This collection of tasks is called a family. In addition families are
sometimes grouped into clans. This is done to reduce the size of the
CHG. Details on the use of clans and families to reduce the size of the
CHG can be found in another report.[McD88]
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18 K=1 36 MAX = CMAX(J) 36 MAX = CMAX(J)
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Figure 2. User Display with Parallel Access Anomaly.
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PAT--An Interactive Fortran Parallelizing Assistant Tool

Kevin Smith
William F. Appelbe
School of Information and Computer Science
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Atlanta, GA 30332

Abstract -- The development of parallel
programs has inherent difficulties which demand
new tools to help develop reliable and efficient
parallel programs. This paper describes one such
tool, an interactive Fortran Parallelizing Assis-
tant Tool (Par), as part of a multitasking toolkit
under development which also contains tools for
static analysis and dynamic debugging of parallel
programs.

The parallelization tool is designed to assist
and educate users in converting sequential pro-
grams into parallel programs; it relies on depen-
dence analysis and . programmer interaction in
introducing and modifying parallel constructs.
Significant differences from other work in this
area are the tool’s ability to recognize parallel
constructs and handle partially parallel pro-
grams, the ability to parallelize loops with
embedded critical sections, and the adaptability
and portability of the tool. ;

Introduction

The advantages of today’s parallel comput-
ing capabilities are often lost due to the complex-
ities of parallel programming. Constructs used
to control parallelism are often difficult to learn
and understand, and inherent in parallel execu-
tion are a new class of problems such as race
conditions which do not reveal themselves to
normal sequential debuggers. One solution is
automatic parallelization such as that done by
some optimizing compilers, but automatic detec-
tion of ‘large grain’ parallelism is extremely dif-
ficult and can only convert deterministic sequen-
tial algorithms to equivalent deterministic paral-
lel algorithms[3].

Our approach is based upon a toolkit which
will help a programmer master the complexity of
parallel programs by assisting in parallelizing
sequential or partially parallel programs and in
debugging and testing multitasking programs.
This toolkit consists of:

. A parallelizer which will examine a source

program and suggest parallelizing
modifications.

o A static analyzer which will simulate the
execution of a source program to locate
anomalies caused by the interaction of the
tasks.

° A dynamic debugger which will interactively
execute a source program.

The static analysis tool has been implemented
and is in use, and a prototype of the parallelizer
has been implemented at present.

The Toolkit
The parallelizing tool is built on the work
described in [3] and referenced in [6], and uses
the same parallel primitives and underlying
structure as Art (Anomaly Reporting Tool), the
prototype static analyzer portion of the toolkit.

The parallel model assumed is the SPMD
model of shared memory multitasking; this treats
a program as a single thread of control which
creates other tasks as needed to execute desig-
nated sections of code in parallel. The basic
parallelization technique used is execution of
sequential program loop iterations with separate
parallel tasks, and use of critical sections and
pipelines to protect parallel access anomalies and
dependences between iterations.

Art performs an exhaustive static analysis
of a parallel program by constructing the com-
plete concurrency history[9] of the program; it
detects three classes of potential bugs, or
anomalies. Non-deterministic variable anomalies
are references to variables that depend upon task
scheduling. Synchronization anomalies include
deadlock and busy-waiting loops. Parallel access
anomalies occur when a task tries to write to a
variable which another task is trying to access
simultaneously; the scheduling of tasks will
determine which will win this ‘race’ condition.

Presently the tools in the toolkit recognize

This work was supported by DOE contract number W-7405-Eng-36 through Los Alamos National Lavoratory.
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a set of parallel primitives described in [4], simi-
lar to those of Cray microtasking, although Pat
is designed to be retargetable to other shared
memory multitasking primitives, such as the
‘Fork-Join’ model.

The Parallelizing Toal

Much of our work on Pat parallels Rice
University’s work with PTOOL which interac-
tively displays dependence analysis [1]; however,
our approach differs from theirs primarily in
that:

] Pat suggests actual program modifications
and modifies source code in addition to
displaying dependences.

] Pat recognizes parallel primitives and han-
dles partially parallel programs with the
capability of suggesting modifications to
existing parallel structures.

] ‘Large grain loops’ which have embedded
critical sections are parallelized.

° Pat, based on a modified 4.2 BSD Unix
Fortran77 compiler, is portable, using an
adaptable front-end which can accept vari-
ous primitives, and X windows to display
source code and program dependences
graphically (this is illustrated for a small
program in Diagram 1).

The strength of our approach lies in the
mixed-initiative approach of interaction between
programmer and tool. There are two phases to
the parallelization process: a dependence analysis
phase, and the interactive parallelization phase.

Dependence Analysis

The first step in parallelization is the
extraction of data dependence information; a
description of dependences and their usefulness
can be found in [2]. Essentially, it is necessary
to detect any variable reference which might be
affected if a write of that variable were
performed in non-sequentially. Pat employs
Art’s "best estimate" strategy of identifying
potential dependences.

The program analysis is built on a control
flow graph (CFG) of the program. Each node in
the CFG represents either a basic block of the
program or a branch or merging in the program
flow[10]. Subroutine calls in the CFG are
expanded inline for simplicity (i.e. each call is
analyzed individually in context). Inline
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expansion has a low overhead in practice with a
non-recursive language such as Fortran, aids in
tracking aliased variables through subroutine
calls, and provides more options for
optimization.®

The desired dependence information is
extracted by tracing paths through the program,
using reference lists to construct a global depen-
dence graph. Three classes of dependence are
reported: a read to a preceding write (true
dependence), a write to a preceding read (anti
dependence), and a write to a preceding write
(output dependence).

Pat also identifies dependences arising from
concurrent operations. Each access to global
data in a parallel code section is dependent on
each write of that data in concurrent sections. In
detecting parallel dependences Pat ignores refer-
ences protected by a lock, and performs subscript
analysis. Subscripts composed of expressions
yielding a different fixed value or range of
values will never conflict, nor will subscripts
which reference the same variables in such a way
that the variable value will always differ. Partic-
ularly, subscripts can vary directly with a parallel
loop control variable, so that subscripts from two
different iterations will not conflict.

Browsing of dependences is provided
through an interactive graphic interface. Depen-
dences can be viewed sequentially, or selectively
by line number or variable name (see W1, W2
and W4 in Diagram 1).

Parallelizati

The major focus of this research is the
conversion of sequential loops to parallel loops.
Pat offers a choice of loops to be parallelized.
Three parallelization operations are provided:
modifying parallel primitives in an existing task,
converting a sequential loop to parallel execu-
tion, or designating segments of sequential code
to be run as individual tasks.

A special case of loop construction is an ‘if
loop’. Cycles in the CFG represent ‘if loops’ in
the program which in some cases are equivalent

@ Ppat treats each call to a procedure as a separate code
section for the purposes of parallelization analysis,
forcing the user to ensure that parallelization
modifications for one call do not conflict with those for
another call. This could require duplication of the
procedure body. Pat provides assistance in this sort of
checking.



to ‘do loops’ and can be executed in parallel. If
the variable to be used as the loop control vari-
able is in the form of an induction variable (see
below), it can be extracted automatically. Oth-
erwise, the programmer can interactively provide
this information.

Locating large blocks of non-loop code
which might be executed concurrently is more
difficult. Tightly coupled segments of sequential
c~rde which have few or no dependences on sur-
rounding code can be shifted to a private task.
The programmer can suggest areas to the tool
and it will help parallelize them by displaying
dependences in and surrounding the code sec-
tion.

There will still be poorly structured pro-
grams which are unanalyzable by such a tool [S].
In such situations Pat shows dependences and
suggests alternative better structured primitives;
it is then up to the programmer to restructure
the program.

Loop Analysis

After the user selects a loop body, Pat
determines which variables referenced inside the
loop can be made local to tasks executing the
loop body and which will best remain global or
shared. A subset of shared variables mus! also
be ordered by using events to ensure sequencing
of assignments to global data. Currently Pat dis-
tinguishes local, shared, shared locked, and
shared ordered variables as in [7] (see W3 in
Diagram 1).

Recognition of induction variables is also
useful. Induction variables are those with a sin-
gle assignment of the form
<variable> = <variable> < op> <expression>.
Unmodified, they are global variables requiring
ordering, but they can be replaced with a local
variable assigned to a function of the loop con-
trol variable.

Pat must also decide whether or not a bar-
rier will be required at the end of the parallel
loop; this will be so if any values generated in
the loop are read later. For example, if the loop
is performing a summation of an array, a local

sum can be employed in each task and the global

sum increased by each locally calculated value
(see the variable ‘sum’ in the sample program in
Diagram 1). A barrier is required to assure that
all tasks add their local sum to the final value
before the code following the loop is allowed to
proceed.
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Guarding Dependences

Once the parallel region is determined
parallel dependences in that region must be dealt
with. Each dependence in the code section is
identified, with a list of possible transformations
and a suggestion from Par as to how this depen-
dence is to be protected; the programmer can
accept the recommendation, protect the depen-
dence differently, or ignore it. The programmer
can also query the tool as to why it selected a
particular modification or reported a particular
dependence (see W4 in Diagram 1).

Several code modifications are effective in
avoiding the necessity of synchronization guard-
ing between iterations of a loop; these include
subscript alignment, code replication, code shift-
ing and node splitting. Each of these involves
alterations in the loop body to minimize or avoid
access of conflicting variables. Pat identifies the
possibility of code modifications, suggests those
best fitting the program environment, and indi-
cates to which lines of the code they should be
applied.

In cases where the complexity is too great
for these modifications, or in which the user
does not wish to modify the code accordingly,
parallel primitives must be added to explicitly
protect the dependent references. Pat guides in
inserting locks or events to protect these.

Future Work

The following parallelization optimization
expansions are being added to Pat. Some of
these transformations are in opposition to each
other, requiring care that application of different
techniques does not counteract others. Specific
transformations are described in more detail in
[8] and [2].

One concern once a candidate area is
selected for parallelization is optimizing the
scope of the parallel area. For example, Pat can
help decide the portion of a task which must be
enclosed in a parallel do. Lines which are not
required for each iteration, but are required for
execution of the loop, can be interactively
shifted outside the parallel do area.

Modification of the structure of loops can
be made easier by loop normalization; this is
another conversion which can be done internally.
As the loop control variable often controls
expression values, this also helps in expression
comparison, as for array subscript analysis, by
reducing functions depcndent on the loop control



variable to a similar form.

There are a group of modifications aimed
at enhancing the function of a specific computer.
These include loop interchange, loop fusion or fis-
sion, loop collapsing, and again code shifting.
They work on the structure of the loop and the
code surrounding it to optimize it for a specific
purpose such as matching tasks to a specific
number of processors, or fitting array size to the
size of a cache memory.

These optimizations depend on specific
knowledge of the target machine. In some cases
it is advantageous to divide loops to give a
greater number of small tasks, and in others it is
better to merge other code into the task area to
give a larger body for a few tasks. For example,
if a machine runs 4 processors, 12 smaller tasks
would be more likely to distribute evenly than 6
large tasks. Such "strip mining" can allow
optimal employment of a machine’s capabilities
when target specifics are known.

Status

Currently, the parallelizing tool performs
the following actions:

[ extraction of variable references and con-
struction of dependence graph;

browsing of dependences;

identification of parallel tasks, do-loops and
if-loops for parallelization;

®  automatic insertion of parallel primitives
for task creation;

identification of parallel dependences;

interactive insertion of necessary parallel
protections for variables.

The parallelizing tool and the integrated static
analyzer were developed from an F77 compiler
front end, operating under 4.2 BSD Unix. The
tools use the X window system for graphic out-
put. They have been ported to Sequent, SUN,
VAX and ISI workstations.

Conclusion

The need for tools to assist in dealing with
parallelism is clear. Our goal is a toolkit which
will provide help in debugging and correcting
parallel code, and will assist both in modifying a
sequential program to use parallel constructs and
in attaining the optimum in parallelism and clar-
ity while teaching clear parallel programming.

The static analyzer is the first part of the
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debugging portion of the toolkit; it examines
parallel code in detail and pinpoints a number of
potential errors unique to parallelism. The
dynamic debugger will complement this analysis
by allowing the user to follow the parallel execu-
tion of a program.

The parallelizing assistant tool extracts
dependence information from an analysis of the
source code, and then guides the user in adding
efficient parallel structures to the program. It
recognizes parallel constructs and suggests
modifications to run iterations of loops as paral-
lel loops, as well as indicating synchronization
and variable protection which will be required by
the parallelized loop.
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o .. e
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common/vars/sunm, a, j, b, nax, loop, bar, sunlock, n 29 100 conginu 34
e
(W5) _eventtevat20) 20 _end_common_do (1loop?
_lock(uaxlock; 31 Sum ¢ ssum = sum
_lock{sunlock - 3
real a{20),b(20), sum, max gg _::iﬁf::::i:r(bar)

lnteger i, j

call init

sum = 0

j =20

_inlt_common_do(loop,1,20)
_init_barrier{bar,20) .

_post_event(eva(0)) [(24)_global _: (R | (W1)
_create_family(task,work,20)
-vait_event(tesk) [x27)_global_:max(R1 ]

print 105, sum, max

105 ﬁ:gnat( sum : 7, f8.5,7 max : ’,f8.5) [(27)_31aba1_:max(u]]
_task_entry(work)
common/vars/sum, a, j, b, max, loop, bar, sunlock, maxlock, eva [(22)uork:ssum[ld] l l(25)work:ssum[R]
_event{eva(20))
_lock{maxlock) .
“Tock<sunlock) [23)work: £ TW] ] [«2)work:1TR]
integer L, j
real a(20),b(20), sun, max . wwnunlriginal Programessus
ssum = SUM real a(20),b(20), sun, max (W0)
_begin_common_do(loop, i) integer L, j
Jjj=3-4=-1 _taskr_;ntrg/(work) b N b
. ssum = ssum + a(l) common/vars/sum, a, J.b.max. loop. bar 11 Init

_vait_event(eva(l ~ 1)) (W6)1nteie“ i.J ce "

all) = b{yj) + ali - 1) real a(20),b{(20).sum.max sum = 0
_post_event(eva(l)) ssum = sum j=20
_lock_on{maxlock) —begin_common_do(loop., 1) do 100 L = 1,20

LF(b(1).gt.max) max = b{i) Jd=4-U-10 sum = sum + a(l)
_lock_off(maxlock) ssum = ssum ¢ a(i) all) = b(y) + alL - 1)

100  continue alid) = b{il) + ali - 1) LFC(b(1).gt.max) max = b(i)

-end_connon_do{loop) §J=3-1
_lock_on{sunlock) Ji=J4d -1 100  continue
SUR + SSUR = sum 100 continue
_lock_gff(sun}ack) —end_common_do (1oop) print 105, sum, max
_walt_barrier(bar) Sum ¢+ sSum = sum ’ s ’ I
et alt_barrier(bar) 105 :?‘znat( sum ¢ 7, §8.5,” max : °,f8.5)

end =t ask_return g

Diagram 1. Screen Display
Windows can be moved, resized or scrolled.

WO: Original sequential program.  W4: Control window.

W1: Part of dependence graph. WS: Parallel program created using Pat.
W2: View of a single dependence. (parallel primitives are as in [4])
W3: Loop variable analysis. W6: Intermediate task code for a parallel loop.
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Abstract: An example of a state-of-the-art high-cnd mainframe is
the IBM 3090VF; its associated vectorizing compiler, the IBM VS
FORTRAN (version 2) compiler, incorporates some of the latest
techniques in automatic vectorization and code optimization.
Advances in hardware and compiler technology not withstanding, a
potential limitation is the “knowledge gap” which exists between the
average end user and the compiler/machine sub-system. In particular,
the user often does not know how to write source code which will
result in generation of efficient, high performance object code. In
this short paper, we present an overview of a research project, called
FAVE, which is a knowledged-based approach for bridging the
knowledge gap alluded to above.

1.0 Introduction

The IBM VS FORTRAN (version 2) compiler’ is an example
of a state-of-the-art vectorizing compiler. It generates vectorized
code for execution on the IBM 3090 with vector facility (VF)34,
which is IBM’s latest high-end mainframe. The compiler has the
advantage that source to source transformations are transparent to
the users; vectorization is viewed almost as an additional level of
optimization, which the user can invoke as an option. Such advances
in compiler technology not withstanding, a potential limitation is the
knowledge gap which exists between the average end user and the
compiler/machine sub-system. As a result of this gap, users
frequently write high-level source code which achieves less than
achievable performance. Although the VS FORTRAN (version 2)
programming guide! provides some pointers for writing vectorizable
code, serious users have felt the need to acquire greater cxpertise in
fully exploiting the capabilities of the IBM 3090 with vector facility
(VF). Some published material (e.g.>"7) has proved to be uscful.
However, astute experimentation by several people, e.g.®?, has

identified educated heuristics for rewriting FORTRAN code in order.

to achieve near-peak performance. Such ideas are not readily
apparent from the earlier published material. In essence, expertise
in writing (or converting to) high performance source code, with
respect to the 3090 VF, seems at present to be limited to a handful
of professionals who have acquired their knowledge through
purposeful experimentation and investigation; not by accident as
ordinary FORTRAN users.

It is in this context that the EAVE project was started. EAVE
(an Expert Advisor for VEctorization), is intended to be an
intelligent aid to users of VS FORTRAN version 2, interested in
efficient use of the 3090 VF. The initial version of this Pascal-based
system is coded around the expert system shell: Expert System
Environment/VM!3, which is a recently announced program product
marketed by IBM. This project is an attempt to bridge the
knowledge gap alluded to earlier. Our goal, in short, is to start with
existing pieces of code supplied by the user and work interactively
with the user to come up with the best possible program to be
submitted to the compiler.
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2.0 Brief Functional Description

Figurc 1 shows the basic, intcractive environment which is
envisaged in the operation of EAVE. The user has the option of
consulting EAVE before or after a trial run via the actual compiler.
On a given consultation session, LAVE initially suggests possible
changes in coding style and structure as an aid to enhanced
vectorization and/or general code improvement. Under user control,
some or all of these suggested changes may be incorporated into a
modified source file, which can be processed through the actual
compiler/machine  system for verification of performance
enhancement. In principle, this process may be iterated several times
for arriving at the best possible code.

INPUT SOURCE
FILE(S)

suggested changes,
program metrics

Figure 1. Interactive program development/refinement via FAVE

3.0 Heuristic Transformations and Rule Generation

In this section we illustrate our knowledge (heuristics) acquisition
techniques. Certainly, the most readily accessible sources of
knowledge are the innumerable papers, reports and books available
on the subject. In addition to the sources already referred to!-?, we
cite a couple of others!®12, which have been of most direct relevance
to this project so far. (Additional references are, of course, available
in most of the cited documents). A second source of knowledge is
the not-so-readily available or accessible pool of actual human
experts. In lieu of direct help from experts in building the knowledge
base, indirect extraction of knowledge from their published papers is
often the only practical alternative. The ultimate, direct approach to
heuristics acquisition in the context of our very specific problem
domain, is doing appropriate experimentation on the actual machine
(IBM 3090 VT, using FORTRAN codes compiled by the actual
VS FORTRAN, Version 2 compiler. The experiments must be
appropriate, in that they must be guided by the basic knowledge
available from human experts and their published cxpertise.



Experimentation

The basic methodology used is to compile and run FORTRAN
“do loop” kernels on the 3090 VF, under varying coding styles, and
to measure relative speed-up or degradation caused by incremental
source code changes. Speed (execution rate) is measured in units of
millions of floating point operations per second (MFLOPS). In the
following, we discuss the coding of a simple FORTRAN ‘do loop’
kernel, as an example in illustrating how educated experimentation
can lead to derivation of logical rules for desirable program
transformations. A more detailed, step-by-step explanation of
rule-derivation through experimentation is available elsewhere'8.
Results based on extensive experimentation using a wide range of do
loops are being published as a separate report!6.

Example let us consider a simple matrix-vector multiplication
kernel:

DOUBLE PRECISION A(128, 128), B(128), C(128)
DO 100J = 1, N
DO2001 = 1, N
() = C() + A(LY) * B()
200 CONTINUE
100 CONTINUE

Vectorization on either I or J is possible. From stride
considerations, inner loop vectorization (on 1) is generally indicated.
IHowever, on actual experimentation, it is found that the decision of
the compiler is to perform outer loop vectorization (index J)! The
resulting code performs very poorly for N = 80 (see Table 1). This
is an example, where the built-in economic model’ of the compiler
is effectively fooled into making a wrong decision. The economic
analysis procedure is not an exact algorithm: it employs short-cuts
and heuristics of its own. By analyzing the exact code patterns!é
emitted for variations of the above loop, it is possible to infer how
the economic model is fooled in this case, but we shall not go into
that in detail here. Essentially, beyond N = 50 or so, the large stride
access begins to cause a big cache degradation.

In order to force inner loop vectorization, however, we may use
the technique of inserting a temporary scalar!8. While we are doing’
s0, we might as well try to invoke a vector MULTIPLY-AND-ADD
(VMA) compound instruction3. It turns out that in this context, the
present version of the compiler will generate a VMA only if the scalar
(B) precedes the vector. Thus, the loop structure for forcing inner
loop vectorization with VMA invocation is:

DO 100J = I, N
DO200I = 1,N
T = C(I)
T=T+BN*AL) . (B)
cn=T
200 CONTINUE
100 CONTINUE

Note, however, that in spite of improved performance (see Table
1), there is strong reason!® to expect even better results, if the I-loop
were outermost and outer loop vectorization were performed. The
best possible code, achieved after manual “outermosting”, is thus:

DO 1001 = 1, N
T = C(I)
DO200J = 1, N
T=T+BJ)*ALT ... (©)
200 CONTINUE
cpy=T
100 CONTINUE

Clearly, the reason why code (C) performs the best.is that vector
register reuse (via outer loop vectorization) and VMA invocation are
both used in the best possible manner. In this case, each section of
the vector C is loaded once, used for all values of J and stored back
(updated) once; thus optimal vector register reuse is provided. The
additional effect of VMA is understood, by examining the
performance of code (D) below (see Table 1), in which VMA is
inhibited by using the original order of multiplication:

DO 1001 = I, N
T = C()
DO 200J = I, N
T =T+ AW *B(U) . (D)
200 CONTINUE
cH=T
100 CONTINUE

Clearly, Table 1 demonstrates that code (C) is the best possible
loop to be submitted to the compiler for this example. We are now
in a position to write down the (heuristic) conditions under which a
VMA-invoking transformation seems to be advisable for a high-level
statement, which (on vectorization) looks like: vectorl = vectorl
+ scalar*vector2:

e The degree (depth) of the loop is at least 2.

¢ The index on which vector2 is vectorized, must belong to an
outer loop, i.e., to a lower nesting level than the statement itself.

Table 1

Execution Rate (MFLOPS)

N [Code{A)| Code (B)] Code (C) | Code (D
16 |10.0 72 16.5 10.4
32 | 164 12.0 30.1 16.8
48 193 14.6 34.6 19.0
60 | 179 15.9 36.4 20.1
64 | 125 16.0 35.0 19.5
80 | 3.7 17.3 38.4 20.8
9% | 3.8 18.8 422 23
112 | 39 19.7 45.0 ‘228
128 | 3.9 21.3 49.5 24.2

Heuristics-based loop interchange

Central to the idea of increasing vector register reuse through
intelligent use of outer loop vectorization, is the ability to check for
safe loop interchange. In the specific context of EAVE, this boils
down to the ability of advising loop “outermosting” which will
enhance performance while preserving program semantics. The
theory of dependence-based loop interchange is quite
well-established (e.g.!!). This is indeed the theory which is used by
the compiler’ in testing whether a given outer loop can be
“innermosted”. For the purposes of our expert adviser, we seek a
heuristic, “rules-of-thumb” approach for advising such loop

Jinterchange to the programmer. The basic tenet of the approach

here, as in almost all the other mechanisms of heuristic
transformation capability of EAVE, might be termed: hierarchical,
incremental reasoning. Essentially, this calls for avoiding the task of

‘solving the most general case first for a typical problem at hand.

Level-1 rgasoning

Level-1 reasoning is based on simple pattern-directed inferencing. In
the most part, such reasoning is based on limited context pattern
matching; here, analogous to localized visual inspection by a
FORTRAN expert, initial problems or characteristics are identificd.
Higher levels of reasoning make use of these data, if called for. In
many cases, level-1 reasoning is sufficient to arrive at a decisive



conclusion. The basic principle of level-1 reasoning is looking for
simplest things first. For ease of illustration, let us limit our
discussion to 2-level, perfectly nested loops. Also, let us restrict
ourselves to linear subscript expressions. Let us assume that the
loops are formatted (not normalized), in that all loop-headers and
subscripts are converted using a uniform convention. Thus, given an’
initial user-supplied loop, such as:

DO100 I=1,N
DO 200J =2,N-1

200 AL, 1+1J) = B() + A(L,T)

100 CONTINUE

pre-formatting might convert it into something like:

DO 100 11 = I,N,1
DO 200 I2 = 2,N-1,1
AULI2+ 1) = BI1) + A(ILI2)
200 CONTINUE
100 CONTINUE

The idea behind such formatting, of course, is to make the job of
pattern matching and recognition simpler for the machine. Note that
the reason we do not convert to a fully normalized loop immediately,
is that we do not want to losc readily-available information (for
level-1 reasoning) through subscript alterations and other major
changes. Now, assuming that the problem at hand is to determine
whether the 12-loop can be outermosted, it is obvious, by inspection
that due to the recurrence on the 12-index, the answer is no. In the
following, we attempt to mechanize this “obvious” inference process
by formulating a set of parameters and rules.

In plain english, we note that existence of 12+ 1 as a subscript
of the left-hand-side array A and 12 as the corresponding subscript
of the same variable A on the right-hand-side led us to our infercnce,
given the additional constraint that the [2-index is an increasing index
(not a decreasing one). Let us establish the parameter groups (L1,
Ul, S1) and (L2, U2, S2) to stand for the do-loop bounds on index
I1 and 12 respectively. (L: lower bound, U: upper bound, S: step).
These are of type character string and are easily read or inferred.
Thus, in our case, L1 = ‘1, Ul = 'N’,S1 = "I 1.2 = 2, U2 =

‘N-17, 82 = “l’. Let int be a function which takes an argument of the
above type and returns an integer. Thus int(L1) = 1; int(U1) may
return ‘undefined’ unless the value of N is known at compile time;
and 50 on. In case N is unknown, the user may be prompted for any
attribute of N which may be needed for inferencing. For instance, the
user may be asked: IS N POSITIVE? (In general, the user always
has the right to respond to any such query by pressing the
UNKNOWN key; in such a case, the inference mechanism should
be able to proceed, exploring other avenues, if necessary, or assuming
the most likely answer to the query. In dealing with such uncertain
information, the final inference may have a certainty factor!” of less
than 1). A given subscript expression el is said to be symbolically
greater than (less than) another subscript expression e2, if the
standard polynomial form of el differs from that of e2 by +k (-k),
where k is a known integer. Remembering that we have restricted
ourselves to linear subscripts it is clear that simple pattern matching
can be used to infer such symbolic relationships. Let us assume the
existence of two Boolean functions sgt and slt for this purpose, where
sgt(el, e2) returns TRUE if el is symbolically greater than e2; slt is
defined similarly.

In a more formal way than plain english, we may establish the
grounds of the reasoning behind our inference by putting down a set
of rules to work on a given statement, as follows:
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Rule 1: IF memberof(rhs, lhs-array-variable) IS TRUE THEN
next-term = extract-from(rhs, lhs-array-variable)

Rule 2:
AND )
memberof(second-subscript-expr(next-term), ‘12') IS TRUE
AND
sgt(second-subscript-expr(lhs),second-subscript-expr(rhs))
AND

i2-is-increasing IS TRUE THEN

recurrence-exists IS TRUE,

outermosting-possibility IS FALSE

IF memberof(second-subscript-expr(lhs), ‘12") IS TRUE

Rule 3: IF (int(S2) > 0) OR (int(U2) > int(L2)) THEN
i2-is-increasing IS TRUE

Rule 4: IF memberof(rhs, lhs-array-variable) IS FALSE THEN quit

We have used long, self-explanatory names for parameters and
functions for ease of understanding, Also, only the rules directly
relevant to the particular conclusion referred to earlier, are stated.
The syntax used is not exactly in accordance with that allowed by
ESE. The memberof function returns TRUE if the second (string)
argument matches a sub-string of the first argument. Assuming that
the rules are contained within a focus control block (FCB), the

action clause of Rule 4 is meant to stop further invocations of the
FCB. Allowing for the possibility of multiple references of the
left-hand-side array variable on the right-hand side of the assignment,
recursive invocation of the FCB can be used to effectively iterate the
process of rule-firings through successive updates of parameters
next-term and rhs (see Rule 1).

Level-n reasoning

Continuing our discussion with respect to the loop outermosting
problem, the basic question of whether a proposed outermosting is
legal, can be solved quite effectively using a 2- or 3-level reasoning
hierarchy. (The highest level must eventually perform the equivalent
of a rigorous loop-interchange algorithm based on a dependence test
like the Banerjee test!®'!. however, depending on relative need, and
context, it might be sufficient to do with much less). Additional
clarification on this topic is available elsewhere!®.

4.0 Progress and status of EAVE

The EAVE project was conceived in April 1986. The dctailed
quarter-by-quarter progress since then is described in a status
report!3. The program is fully functional and prolonged testing and
debugging has made it quite robust. It currently uses 110 rules, 40
FCBs and 19 external procedures. The program accepts ordinary
fortran programs as input and selects the do loops sequentially for
analysis and advice. Both ‘interactive’ and ‘external file’ input modcs
are available. Additional test/debug efforts currently envisaged are
expected to be minimal.

High-level heuristics incorporated

Following is a summary of the high-level heuristics incorporated
so far in EAVE.

e (1) Heuristic transformations for invocation of compound
instructions (e.g., MPYADD). Certain commonly used coding
disciplines used in FORTRAN inhibit the generation of such
compound instructions, because of the manner of vectorization



(optimization) incorporated in the VS FORTRAN, version 2
compiler. The EAVE consultant is capable of detecting such
cases and suggesting suitable code transformation and
rearrangement.

® (2) Transformations for use of proper do-loop indexing in
nested loops to ensure efficient vector stride usage.
(3) Transformations to enhance vector register reuse.

¢ (4) Various data-dependent code improvement strategies, which’
result in more efficient vector code generation for special cases.

e (5) Substitution of code sequences by appropriate calls to [SSL
(Engineering and Scientific Subroutine Library)? routines.

e  (6) Limited code restructuring to enhance cache reuse.

Versions of the present prototype have been made available to some
internal users within IBM in order to get feedback for isolating and
fixing any remaining problemis.

Further work: beyond vectorization to parallelization

Currently, we are working towards development of an interactive
research parallelization tool (called RPTOOL), based on the
concepts in EAVE. Two distinct programming environments are
being catered to: (a) the SPMD model available under EPEX
FORTRAN®# and (b) the Parallel FORTRAN language!® recently
announced At present, Parallel FORTRAN (PF) wuses VS
FORTRAN Version 2 Release .1.1 as a base, which is the
,programming medium catered to by the current version of EAVE.
Due to the obvious scope of efficient reuse of knowledge bases
already developed for EAVE, we have chosen PF as the first target
in the design of RPTOOL. Our overall objective is to generalize
EAVE so as to provide the best possible advice on running a given
do loop in vector/parallel mode on a multi-way 3090 VF under (a)
the EPEX FORTRAN SPMD model and (b) the Parallel
FORTRAN language facility.

5.0 Discussion

Given any compiler-machine pair, there is always a potential
knowledge gap between the user and the system. However,
significant performance " problems resulting out of this gap are
beginning to surface with the introduction of the newer,
high-performance vector and parallel machines only. We have
sketched briefly an outline of EAVE, which is a particular solution
to a very specific problem: namely, the knowledge gap between
FORTRAN users and a specific compiler-machine pair. However,
the research results obtained and leading from this exercisc are basic
and general enough to be able to point to future solutions to other
similar problems. Due to space constraints, detailed explanations

and examples of user interaction could not be provided in this short,

paper; the reader is referred to other reports!®.

Many of the transformations suggested and performed by EAVE,
could conceivably be included in future releases of the actual
compiler. However, due to the evolutionary change from a smart,
optimizing scalar compiler to a vectorizing compiler, problems of the
nature shown in this paper are bound to surface. In the absence of
a revolutionary approach of re-engineering the compiler from scratch,
it is probably quite difficult to make the compiler generate the best;
possible code irrespective of the programmer’s coding style. Thus,
the need for an EAVE-like consultant might persist for a while yet!
In any case, expert tools of this flavor will probably always be uscful
to programmers as guides to better programming in a given
environment.
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ABSTRACT

The Navier-Stokes Computer is a high-performance, re-
configurable, pipelined machine designed to solve large
computational fluid dynamics problems. Due to the com-
plexity of the architecture, development of effective high-
level language compilers for the system appears to be
a very difficult task. Consequently, a visual program-
ming methodology has been developed which allows users
to program the system at an architectural level by con-
structing diagrams of the pipeline configuration. These
schematic program representations can then be checked
for validity and automatically translated into machine
code. The visual environment is illustrated by using a
prototype graphical editor to program an example prob-
lem.

INTRODUCTION

The Navier-Stokes Computer (NSC) [6,7], developed
at Princeton University with funding from NASA, is
a special-purpose, high-performance parallel system de-
signed for very large computational fluid dynamics (CFD)
applications. The architecture consists of multiple pro-
cessing nodes arranged in a hypercube configuration.
Each node contains a few dozen functional units which
can be reconfigured dynamically into one or more vector
pipelines. v

The architecture has some features resembling those
of Multiflow’s TRACE ! computers [4] and CDC’s CY-
BERPLUS ? [1,3], such as multiple function units and
long instruction words. However, there are significant dif-
ferences which appear to make development of effective
high-level language compilers a very difficult problem. As
an alternative, a visual programming methodology is pre-
sented which employs a graphical interface to assist the
user in programming the NSC at the machine architec-
ture level.

A brief overview of the NSC is given first, and some of
the difficulties in programming it with conventional meth-
ods are discussed. The design for a visual programming
environment is then described, and a prototype version
is used to illustrate the concepts for a sample problem.
Conclusions based on experience with the prototype sys-
tem are reported.

NSC ARCHITECTURE

The major architectural components of the Navier-

This work was supported by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-18107 while the
authors were in residence at ICASE.  Authors’ Electronic mail:
sjt@icase.arpa, tom@icase.arpa, koala@icase.arpa.

I Multiflow and TRACE are trademarks of Multiflow Computer,

Inc.
2CYBERPLUS is a trademark of Control Data Corporation.
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Stokes Computer are described here. The focus is on the
individual nodes, rather than on the system as a whole,
since it is the internal design of the nodes which makes
the NSC a novel architecture. The information presented
is a considerable simplification of the actual design, with
many details omitted for the sake of clarity. The descrip-
tion given is sufficient for an understanding of the visual
environment described in this paper. The final design
of the NSC hardware is not complete at this writing, so
some adjustments to the following may be needed in the
future.

Each node contains 32 functional units. Every func-
tional unit can perform floating-point operations, and
some of them can also perform either integer/logical op-
erations or max/min computations. In addition, each
functional unit has an associated register file which can
be used to store constants or intermediate values, as well
as to buffer data to adjust for pipeline timing delays.
The functional units are hardwired into three types of
arithmetic-logic structures (ALSs), called singlets, dou-
blets, and triplets, which contain respectively 1, 2, or 3
floating-point units.

Memory is arranged in 16 planes of 128 Mbytes each,
for a total memory of 2 Gbytes per node. In addi-
tion, there are 16 double-buffered data caches. Two
shift/delay units are provided to aid in reformatting mem-
ory data into multiple vector streams. A complex pro-
grammable switching network routes data among ALSs,
memory planes, caches, and shift-delay units. Communi-
cation between nodes is handled by means of a hyperspace
router. The various hardware components are configured
into vector pipelines during execution by programming
the switches. Multiple pipelines may be set up to run
in parallel. The pipeline configurations may be rapidly
modified under program control as the computation pro-
ceeds through different phases. Scalars are treated as
vectors of length one. A simplified diagram of the data
path architecture is shown in Figure 1.

Control flow is even more complex. A central se-
quencer provides high-level control flow, but independent
DMA controllers associated with each memory and cache
plane pump data through the pipelines. An elaborate
interrupt scheme is used to signal pipeline completions,
evaluate conditional expressions, and trap exceptions.

Projected peak performance of the system is quite
high, with a maximum rate of 640 MFLOPS per node. A
64-node NSC would have a total memory of 128 Gbytes
and maximum performance of 40 GFLOPS [7].

PROGRAMMING CONSIDERATIONS

There are several features of the NSC architecture
which make compilation of high-level languages into effi-
cient object code a difficult task. One of the most serious




is the organization of memory into separate planes. Dur-
ing an instruction (vector operation), a function unit can
read or write in only a single memory plane, and mul-
tiple function units working in the same memory plane
can cause contention problems. This causes serious dif-
ficulties for a compiler in trying to decide where to allo-
cate variables, since the optimum layout for one pipeline
may be unworkable for the next. In some cases, it may
be necessary to maintain multiple copies of arrays, or to
relocate them between phases of the computation. An-
other problem arises since the function unjts within each
ALS are not constructed identically. Only a single unit
can perform integer operations, and another unit has cir-
cuitry for min/max computations. This, coupled with
the distinctions between singlets, doublets, and triplets,
complicates the problem of mapping function units onto
expression graphs. Generation of control code is made
more difficult by the presence of multiple sites of control
(sequencer, DMA units, interrupts, etc.) which must be
carefully orchestrated to insure that all possible actions
are mutually consistent. Numerous other details tend
to complicate programming as well. Any of the individ-
ual problems could probably be handled successfully, but
they tend to interact with each other, making the overall
problem more difficult than the sum of the subproblems.
Given current compiler technology, it is difficult to see
how all of these considerations can be handled simultane-
ously while still producing code that can achieve high uti-
lization of 32 function units. It has been estimated that
construction of a FORTRAN compiler for the NSC would
take about three years, and the performance of the result-
ing code relative to other high-performance computers is
in doubt.

Because of these problems, it seems that a program-
ming methodology more closely tied to the architecture
might deliver better performance. Traditionally, this has
been accomplished by writing assembly language pro-
grams for performance-critical applications. Unfortu-
nately, the NSC lacks anything resembling a conventional
assembly language. Each instruction must be specified in
a complex hierarchical microcode which contains specific
control for every function unit, register file, switch set-
ting, DMA unit, etc. The effect of an instruction is to
completely specify the pipeline configuration and function
unit operations for the entire machine. This requires a
few thousand bits of information per instruction, encoded
in dozens of separate fields. Therefore, hand-written mi-
croprograms are clearly not practical for the NSC.

A VISUAL PROGRAMMING ENVIRONMENT

In an effort to simplify programming at the archi-
tectural level, a visual programming methodology has
been developed. This approach is based on an informal
manual technique which evolved among applications re-
searchers at Princeton University and NASA’s Langley
Research Center. Using this technique, programs were
designed by hand-drawing a series of pipeline configura-
tions, each representing one stage, or loop body, within
the overall program. The natural evolution of this man-
ual technique suggested that an automated environment
in which pipeline instructions were drawn interactively
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on a graphics display and then automatically translated
to microcode could be an effective way of programming
the NSC at the machine level.

The concept of visual programming is not new, but
it has become increasingly practical as workstations with
high resolution graphics have become widely available [5].
A recent survey of visual programming techniques can
be found in [2]. This method seems to be a natural ap-
proach for programming data flow and pipelined architec-
tures. Visual programming techniques have been applied
to parallel architectures before, but for different architec-
tural models. A prominent example is Poker [8], which is
a parallel programming environment designed to support
the CHiP computer.

The scope of this project has purposely been limited to
internal programming of individual nodes, since this area
is the source of greatest difficulty. If needed, techniques
similar to those used in Poker could be applied to the
larger multi-node environment. Although the design has
been tailored specifically to the NSC, the same general
approach could be used for other reconfigurable pipeline
machines.

Three major goals were established for the NSC visual
programming environment. The first is that the represen-
tation have a one-to-one correspondence with the func-
tional model of the machine, so that everything could be
specified precisely if necessary. However, an effort would
be made to choose appropriate defaults wherever possi-
ble in order to minimize the amount of detail required.
The defaults could be easily overridden. The second goal
is that the graphical representation be easy to program
and clearly represent the semantics so that a program-
mer looking at an instruction would immediately see the
intent. The third is that the environment would do all it
could to ease the user’s task by preventing or indicating
syntactic errors and violations of hardware constraints as
the program is entered. More extensive checking could
be done when the visual representations are translated to
microcode, and any additional errors would be visually
presented to the programmer.

The design for the visual environment contains three
major components, a graphical editor, a checker, and a
microeode generator. Figure 2 shows the interaction be-
tween these components and the user. The graphical edi-
tor provides the usual operations found in an editor, such
as the ability to enter new input, modify or delete ex-
isting data, and save the results. However in this case,
the objects being operated on are graphical rather than
textual. The graphical editor also is responsible for ex-
tracting information from the pictures and storing it in
internal data structures. Two types of internal data are
distinguished. One type consists of information which is
needed solely to manage the graphical display, such as
the position of images on the screen. The other type con-
sists of semantic information which is needed in order to
generate microcode. Since the semantics are represented
graphically, both types of information are needed in order
to reconstruct the display. But in order to generate code,
only the semantic information is needed.

The checker contains, in a knowledge base or other
suitable representation, detailed information about the



architecture of the NSC, so far as it is relevant to the pro-
gramming process. This includes various machine param-
eters such as the number and types of function units, their
organization into ALSs, the number and size of memory
planes, etc. More importantly, the checker also knows all
of the rules about conflicts, constraints, asymmetries and
other restrictions in the NSC architecture. The graphical
editor calls on the checker at appropriate points during
interaction with the user to validate the information be-
ing input. Any errors are flagged as soon as they are de-
tected. In addition, the graphical editor uses the checker’s
knowledge of the architecture to reduce the possibilities
for making errors. For example, if the user has routed
the output from one function unit to a particular mem-
ory plane, the graphical editor will not let him send the
output of a second unit to the same plane. The philoso-
phy is similar to that embodied by syntax-directed text
editors, with the goal being to assist the user in develop-
ing correct programs despite the complexity and numer-
ous restrictions of the architecture. Another advantage
of having a checker is that it helps to make the whole
visual environment more robust in the face of changes to
the machine design. Some changes can be handled merely
by updating the knowledge base, with minimal impact on
the graphical editor and microcode generator.

Once a complete program (or consistent program frag-
ment) has been defined, the microcode generator uses the
semantic data structures created by the graphical editor
to generate machine code for the NSC. The checker is in-
voked again at this point to perform a thorough check of
global constraints and other conditions which may not be
practical to check during the editing process.

In order to test the concept of visual programming for
the NSC, a prototype graphical editor/assembler was de-
signed and implemented. The prototype focuses mainly
on the graphical editor portion of the design, in order
to determine whether the great level of detail needed in
the microcode instructions can be conveniently presented
pictorially, and to assess the ease of programming with
this type of interface. The checker is not present as a
separate entity, although some checking functions are in-
corporated into the graphical interface. Since the final
design of the NSC is not complete, and there is no means
of running actual NSC programs, the prototype produces
only the semantic data structures as output, rather than
the actual microcode instructions. The semantic data
can be thought of as a pseudo-code representation of the
instructions.

PROGRAMMING EXAMPLE

The major features of the visual environment are illus-
trated here using the prototype graphical editor to pro-
gram an example problem. The example is a point Jacobi
update for the 3-D Poisson equation on a uniform grid,
with a residual convergence check. The equation for the
update is given by
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A more complete explanation of this problem for the NSC
can be found in (7).

The central concept of the system is that visual ob-
jects, or tcons, are used to represent architectural compo-
nents of the NSC at a suitable level of abstraction. The
user manipulates these icons interactively to construct
a program. Subimages within each icon are also mean-
ingful, providing the interface to an additional level of
program detail. A high-resolution bit-mapped display is
used as the drawing surface. Interaction is provided pri-
marily with a “mouse”, augmented with a keyboard for
some operations.

In the prototype, icons consist principally of the three
different ALS types. Two representations of the doublet
are provided, since doublets may be configured to operate
as singlets by bypassing one of the functional units. Func-
tional units are shown as squares within the icon, with
the “double box” units having integer/logical as well as
floating-point capabilities. Other icons which would be
useful, but are not currently implemented, include mem-
ory planes and shift-delay units.

In addition to the icons, a variety of other visual de-
vices are employed. These include pop-up menus and
subwindows, “buttons”, “sliders”, and even text fields,
where appropriate. The prototype is implemented on a
Sun-3 workstation using SunView? graphics software.

Figure 3 shows the basic display window used. The
right hand side is a “control panel” area used to select
icons and specify various editor operations. The large
area in the center is the drawing space in which pipeline
diagrams are constructed. Informational and error mes-
sages are displayed in the narrow strip across the top. The
region at the left is reserved for control flow specifications
and variable declarations, which are not implemented in
the prototype.

To construct a program, a user defines a series of
pipeline diagrams. Each pipeline corresponds to a sin-
gle instruction, or one line of code, in a more conven-
tional language. Control panel operations provide the
usual editor operations to insert, delete, copy, and renum-
ber pipelines, as well as to scroll forward or backward or
jump to a spec1ﬁc pipeline.

The first step in constructing a pipeline dlagra.m is to
select the needed ALSs and position them in the draw-
ing area of the screen (Figure 3.) This is accomplished
by moving the mouse pointer into the control panel area
and selecting the appropriate icon, then “dragging” the
outline of the ALS to its desired location. The process is
repeated until all of the needed ALSs have been selected.

The next step is to specify the inputs and outputs
of the function units. These are selected by “mousing”
on the I/O pads (short wires terminated by small black
circles). A menu pops up showing the available choices.

3Sun-8 and SunView are trademarks of Sun Microsystems, Inc.



These may be either external connections to other func-
tion units, caches, memories, or shift/delay units, or else
internal connections for feedback loops or register file
data. Timing delays, needed for proper alignment of vec-
tor streams, may be introduced by routing input data
into a circular queue in a register file and then retrieving
the value a number of clock cycles later when it appears
at the head of the queue.

Figure 4a illustrates the process of connecting the out-
put from one function unit to the input of another. The
mouse controls a “rubber-band” line which conceptually
indicates a wiring connection between the two pads. The
checker is used during this operation to ensure that only
legal connections are attempted. The microcode gener-
ator would later derive switch settings by interrogating
the connection tables built by the graphical editor.

In the case of a cache or memory connection, addi-
tional information is needed to program the DMA units.
This is handled by a pop-up subwindow, in which the
cache or memory plane number, variable name or start-
ing address, stride, etc. are specified.

Note that the use of pop-up menus and windows is
crucial to our approach. By hiding ancillary informa-
tion until it is needed, the amount of detail displayed in
the pipeline diagrams is reduced to a manageable level.
Menus and subwindow templates also serve to prompt
the user for needed information and remind him of his
choices, both valuable services in an environment as com-
plex as the NSC architecture.

The third and final step is to program the functional
units by specifying the arithmetic or logical operations
which they are to perform. Once again this is done with
a pop-up menu (Figure 4b). The menu appears when the
mouse is used to select a function unit within an ALS.
Figure 5 shows the completed pipeline diagram for the
point Jacobi iteration of Equation 1.

CONCLUSIONS

While the results based on the prototype graphical
editor should be regarded as preliminary, it appears fea-
sible to implement a complete visual programming envi-
ronment for the Navier-Stokes Computer. This environ-
ment would clearly be more convenient and faster to use
than hand-written microcode. The improvements derive
from several factors. First, the visual representation more
clearly reflects the hardware architecture and program in-
tent than do reams of textual microassembler code. The
data-flow style of the diagrams also seems to be a natural
way for humans to describe computations. In addition,
information hiding with subwindows can be used to effec-
tively reduce the amount of low-level detail which must
be displayed and assimilated at one time. This is some-
what analogous to the use of macros and subroutines in
textual languages. Another advantage is that the detailed
knowledge of architectural intricacies built into the visual
environment reduces the possibility of writing erroneous
programs and errors are caught sooner when they do oc-
cur.

On the other hand, programming at this level, even
with the graphical interface, is a tedious process. The
amount of machine-level detail which must be specified
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requires that the programmer have a good understand-
ing of the hardware design. The user must focus not only
on solving his problem, but also on mapping his problem
onto this very complex architecture. So given a choice, a
higher-level programming environment would be prefer-
able.

One approach to reducing the complexity is to use
a simpler architectural model, perhaps a subset of the
NSC. The tradeoff here is between performance and pro-
grammability. By ignoring certain features of the archi-
tecture, it may become easier to program, but perfor-
mance may be adversely affected in some situations. Ini-
tial examination of this approach has shown that some
abstraction is possible, but the performance ramifications
are unclear.

The visual environment could potentially be extended
to include debugging features. During execution, each
new instruction would display the corresponding pipeline
diagram, annotated to show data values flowing through
the pipeline. This could help to pinpoint timing errors,
as well as other bugs in the program. The visual environ-
ment might also be useful as a back end to a compiler,
displaying the results of the compilation process.

In summary, a visual programming environment offers
several advantages for efficiently programming a reconfig-
urable pipeline architecture such as the NSC. However,
it is still essentially a low-level programming language,
and requires a significant implementation effort in order
to become a useful tool. It remains to be seen whether
this approach can compete with compiled high-level lan-
guages over the long term.
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Abstract

PFG (Parallel Flow Graphs) is a language for expres-
sion of concurrent, time-dependent computations. Its syntax
is graphical and hierarchical to allow construction and view-
ing of realistically-sized programs. Its execution semantics
are defined by a mathematical model of concurrent computa-
tion based on timed Petri nets and hierarchical graphs. The
PFG language and underlying computation paradigm serves
as the foundation of a development and analysis environ-
ment for real-time software systems under development at
the University of Maryland.

PFG is rich enough to express many of the common
concurrent control structures found in parallel languages, as
well as some less common ones. Each syntactic structure in
PFG has a direct translation into a portion of a timed Petri
net model. The net created by legally combining PFG struc-
tures is guaranteed to be well-formed, in the sense that each
Petri net is in the free-choice class and has a clear interpre-
tation in terms of a hardware/software system. Several tech-
niques have been defined which allow the model produced
from a PFG program to be analyzed for concurrency proper-
ties, such as deadlock freedom and proper mutual exclusion
on shared data structures.

1. Visual programming and concurrency

Though graphical languages are not a new idea, they
have not caught on particularly well, especially in com-
parison to the popularity of textual languages. Part of this
failure up until now may have been from the relative lack of
high-resolution, bit-mapped screens for display of graphical
programs. The widespread availability of desk-top worksta-
tions now eases this problem considerably. Icon-based tools,
offering a pictorial style of user-interface, are now very
popular and should presage a renewal of interest in graphical
programming as well.

Many researchers have designed and experimented with
graphical languages. Representative projects include the
PICT system [3], which uses flowchart-like diagrams con-
structed by the user interactively, and the PROGRAPH
language [5,6] which allows interactive construction of func-
tional dataflow programs. Earlier work on dataflow
languages also used graphical program representations [2],
though the user interfaces were not as visually rich as those
of the more recent projects due to hardware limitations. The
Poker programming environment [8] is another language that
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allows visual programming. It supports concurrent computa-
tions for the CHiP parallel processor architecture, but its
visual interface is limited to the grid-based specification of a
graph showing communication paths among the parallel
processes in a program.

Though PFG is graphical in its syntax, it differs from
previous visual languages in two aspects: it is intended for
the expression and analysis of concurrent computations
(PROGRAPH and Poker are among the few others), and its
semantics are formally defined by a mathematical model
based on timed Petri nets and hierarchical graphs. In
essence the graphical syntax for PFG is just a convenient
method for a user to specify the mathematical model of his
computation. Previous graphical languages with mathemati-
cal semantic models, like FGL [4] and GPL [1], have been
confined to the dataflow paradigm.

The HG model of concurrent software systems, which
defines the formal semantics of PFG, is explained in section
2. This theory forms the basis for both static program ana-
lyses and dynamic analyses (in the form of execution simu-
lation using the Petri net execution rules). Section 3 con-
tains the definition of a parallel flow graph and and an
explanation of the syntax of PFG. Section 4 then discusses
the timing aspects of a PFG program. A description of the
translation from PFG into the HG model is presented in sec-
tion 5, and the general utility of the language is then illus-
trated in. section 6 by giving the PFG representations of
several well known concurrent control structures, and dis-
cussing several analysis techniques that have been developed
for concurrent computations in PFG. Section 7 concludes
with a brief discussion of future research plans using PFG.

2. The formal semantics of PFG

The formal semantic definition of the PFG language is
provided by the HG software system model. This theory is
intended for the representation and analysis of concurrent,
time-dependent systems composed of a combination of
software (applications, operating system, language support,
etc.) and hardware (host machine). The mathematical details
are presented fully elsewhere [9, 10], but for ease of discus-
sion we present here a summary of the theory, with
emphasis on the issues of concurrency.

The HG formalism separates the major aspects of con-
current computation into three distinct model components.



e The data model is a formal representation, using h-
graphs, of the structure and interrelationships among col-
lections of data that are to be transformed by the compu-
tation under study. The h-graphs provide enough lever-
age to detect overlapping access to different parts of data
structures by concurrently executing code segments.

e The static program model is a representation of all the
operations on data (procedure calls) required by a com-
putation as a set of non-overlapping basic blocks. Exe-
cution of the procedure calls in each block is necessarily
sequential, but blocks can execute concurrently with each
other. Each procedure during execution has its own
local data area, and the procedure call semantics require
copy-in, copy-out argument passing. The formalism for
expressing basic blocks works in conjunction with the
h-graph formalism to allow complete determination of
operations which alter (as opposed to simply viewing)
portions of data structures.

e The model component of greatest interest here is the
control flow model. 1t expresses the possible parallel
execution threads of a concurrent computation. A thread
is a sequence of basic blocks from the static program
model, the execution of which produces the portion of
the total computation contributed by that thread. The
control flow model is a timed Petri net together with a
(somewhat complex) interpretation of the net structure in
terms of the other model components.

2.1. Data modeling

Representation of data in PFG is done with an exten-
sion to the theory of hierarchical graphs, or h-graphs, first
developed by Pratt [7]. The extended theory presupposes
two universal, finite base sets: the set ® of nodes; and the
set & of characters. An atom is a finite sequence of charac-
ters from E. The set of all atoms is denoted A, and A=E".
The atom # denotes the null, or empty, string. An extended
directed graph (or simply graph) over @ and A is the stan-
dard notion of directed graph with atoms appearing as labels
on the arcs. Given these, the following definition presents
the concept of an h-graph, the basic model of data in this
theory:

Definition 1: H-graph
An h-graph over ® and A is a triple, h=<G,V,r>,
in which
G={g;, ' - * .8}, k21, is a finite subset of Q,
ksuch that each g=<M,,E;>

V: UM; = GUA
=

reG
G is termed the graph set of h; V is the immediate
value function; r is the root graph of h. We as-
sume that r=g; and write h=<G,V>.
Related tgrms:

a. ’U1Mi is the nodeset of h, written M(h).
=

b. If me M(h), V(m) is the value of m in h.
c. If V(m)e G then m is a graph-valued node
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of h; otherwise V(m)eA and m is an
atom-valued node of h.

d. The set of all h-graphs over @ and A is
denoted T.

e. The set WY=["UA is termed the set of
values.

An h-graph is essentially a collection of directed graphs and
atoms, and a function which maps the nodes in the graphs
into these entities, thus creating a structural hierarchy among
the graphs. Figure 1 illustrates these concepts.

Selection of a node from the hierarchical structure of an
h-graph is performed by an h-graph selector, or simply
selector. H-graph selectors are syntactically the concatena-
tion of one or more graph path designations, with embedded
indications of when the hierarchy of graphs is delved into
more deeply. Semantically, a node is selected by repeating
for each path designation this procedure:

e apply the path designation to the target graph,
obtaining a node;

e apply the h-graph value function of the target graph
to the node, obtaining a new target graph.

The selection is started by using the root graph of the h-
graph as the first target graph. Considering the entire h-
graph h in Figure 1, some sample h-graph selectors and their
respective function values are shown in Figure 2. As in the
previous selector example, the value of each selector appli-
cation is the node designated by the outer brackets. Node
values are indicated for clarity. Note that the single "/"
selector denotes the top level node in the h-graph, and that
the value in that node is another graph. Also, note that a
selector produces a node; the value function must then be
invoked if the value of that node is desired.

Selectors provide the link between the control flow
model and the data model. At decision points in the control
flow, one or more paths are selected from a set of alterna-
tives according to the value found in nodes of the data state,
as indicated by specific selectors.

| op s 17 4
y
‘ b PN
—27 3.25
5 4.1

* = initial node of a graph

Figure 1 Example h-graph.




selector node selected
/ - [[#]
-a>[5]
-b->[4.1]
<>[17]1-d>[[[#]]
-x->[-27 ]
-y->[3.25]
]
]
/fa - [5]
/ffled/x = [-27]
fledll — [#]

Figure 2 Sample selectors for h-graph in Figure 1.

2.2. Control flow modeling

Both the structure and the semantics of Petri nets have
been enhanced for modeling software. First, deterministic
times have been added, one per place in the net, with each
place time being an integer greater than zero. As discussed
more completely later, a place represents one of the basic
blocks of procedure calls in the static program model, and
the time associated with a place represents the execution
duration of that code block. Secondly, to model code block
execution, the notion of token aging is included in the net
execution semantics. A token arriving at a place p with time
T, cannot participate in enabling the transitions following p
until T, time units have expired, at which point the token is
said to be fully aged. A time unit can have several
definitions; the most convenient for our purpose is simply
one state change of the entire Petri net. Thus the interpreta-
tion for this situation is that T, state changes occur in the
modeled system while the software associated with p is exe-
cuting.

Thirdly, to mesh token aging with the rest of the net
semantics, we employ a concurrent transition firing rule.
This allows a single state change to be effected by the firing
of more than one transition. A transition is enabled when a
fully aged token resides in each of the places that are inputs
to it. A transition is data-enabled (in the case of two or
more transitions sharing input places) if the state of the data
model specifies it over the others in conflict with it. From
the current state (net marking) all data-enabled transitions
are identified, and some subset of them is fired. The effects
of these firings are accumulated to produce the next state.

The concurrent firing rule allows state changes in the
net to be equated with ticks of a wall clock. This in turn
allows modeling and analysis of time-dependent computa-
tions on parallel hardware. There may be state changes in
which no transitions fire, due to a lack of fully aged tokens
in the net. The entire effect of such a state change is to age
all tokens one "tick." The length of the Petri net state
sequence produced by concurrent net execution, then, gives
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the duration of the modeled computation.

The data state is transformed in lock-step with the state
changes in the control flow model. The control state transi-
tion rule dictates which code blocks are to be executing at
any particular instant. The data state transition rule provides
semantics for creating local data regions for procedures
when called, passing arguments via copy-in, copy-out
semantics, and effecting the function calculated by each pro-
cedure on its local data. The two rules are coordinated in
that one data state change occurs for each control state
change.

A word is in order here about our interpretation of
these nets in terms of the hardware that is intended to host
the modeled computation. Our working assumption is that
each place in a Petri net is mapped to one (unique) proces-
sor in some parallel architecture; the mapping is one-to-one,
but not necessarily onto. Because of the association of code
blocks with places, then, each basic block executes on it
own processor. While this may be unrealistic for large com-
putations on today’s machines, it may not be so for
machines in the near future. It also makes analysis easier,
and so is a reasonable assumption for a first look at the util-
ity of this model. Tokens may, under this view, be thought
of as requests for the hardware processor to execute its asso-
ciated code block. Only one request is handled at a time,
which means that only one token at a place is allowed to
age. Any others arriving while this is happening simply
wait their turn, in "limbo." The same code block is executed
to fulfill each request. Thus, tokens have no identity, and
there is no need to queue them to preserve their arrival
order. Finally, a transition with a fully aged input set of
tokens must fire as soon as the subset selection allows it to
do so. No arbitrary waiting is allowed as in the original
Petri net execution semantics. This restriction is made to
ease the problems associated with timing analyses. With
one processor per net place, it seems reasonable to insist that
when one block execution request is satisfied, the processor
not "idle", but get right to handling any other of its outstand-
ing requests (tokens).

3. The syntax of PFG: parallel flow graphs

The control flow model, as presented, is largely a gen-
eral Petri net with some additions that enhance its suitability
for time-dependent analysis. The PFG language offers a
technique for controlling the acceptable structure of these-
nets, that is, limiting the software modeler to using only a
subset of the general timed Petri nets. The restrictions serve
the same purpose in our theory that structured programming
does for.the creation of manageable algorithms--they limit
achievable complexity but not expressive power.

To accomplish the goal of modeling concurrent compu-
tation with a Petri net structure of limited complexity, we
view the static program model and the control flow model as
a unified entity, represented in a graphical notation termed a
parallel flow graph. A PFG program is constructed as a
hierarchical collection of parallel flow graphs, and then each
can be dissected into the two component models for



analysis. The components of a Petri net produced from PFG
are easily associated with portions of the modeled software,
thus ensuring that analysis is attempted only for HG models
with reasonable interpretations.

The following definition describes the mathematical
structure of a parallel flow graph.

Definition 2: Parallel flow graph
Let W be a set of procedure calls, S be a set of
selectors, and Y be a distinguished node value. A
parallel flow graph ¢ over W, S, and Y is a tuple
¢=<g.K,V,%> in which
a. g=<T|,E¢,n'> where

T is a finite set of nodes,

n'eM is the initial node, and

E, is a finite set of arcs, each ey€ E, of

the form <n;n,a> with n;nEe”
and aeA, indicating that an arc la-
beled with atom a exists from node
M; to node My the arcs in E, are
subject to the restrictions stated
below.

b. K: T — { pcall, cbranch, nbranch, join }
is a function mapping each node in g
into one of four types, termed respec-
tively procedure call, concurrency
branch, nondeterministic branch, and
Jjoin.

c. VN ->SUWU (¥} is a function
mapping each node in g into either a
selector, a procedure call, or the dis-
tinguished value ¥. The value Y only
serves to make the function total.

d T — {1,2,---} U {} is a function
that associates a positive, integral execu-
tion time, or the value oo, with each
node in the PFG.

Visually, a parallel flow graph is drawn with different icons
to represent the four node types. A concurrency branch is
denoted by a base-down triangular icon. A rnondeterministic
branch is denoted by a base-down half-circle icon. A join
node is denoted with a base-up triangular icon. We employ
a syntactic shorthand in the case of procedure call nodes.
Rather than explicitly picture each node, we represent an
entire sequence of them as a single rectangular icon, termed
a basic block node. The underlying mathematical entity still
contains a sequence of individual "pcall" nodes. The node
icons in a parallel flow graph are connected with arrows.
The PFG prototype allows an icon to be "clicked" open to
reveal its contents (value), either a selector expression or a
block of procedure calls, in a viewing window. At the outer
syntactic level, nodes are numbered; branch nodes are indi-
cated by notation such as "s4", and basic blocks are indi-
cated with notation like "b7." Join nodes are pictured with ¥
on them.

We now describe restrictions on the general structure
prescribed in the definition of a parallel flow graph.
Because each procedure begins with a single control path,

the initial node m” may not be of type "join." The arcs
between nodes represent the flow of control from one action
in an algorithm to the next, and each arc has an atomic label
associated with it. To ensure connectivity, each node in the
graph must be on a directed path from the initial node.
Obviously at least one arc, then, must enter each node (other
than the initial node), but we place no upper limit on this
number. The initial node may possibly have no arcs enter-
ing it.

Arcs leaving a node are governed by several con-
straints. A node containing a procedure call or a join may
have no arcs leaving it, or it may have a single arc leaving it

with the label on that arc being null, written #!. Each of the
two types of branch node contains a selector, and may have
any positive number of arcs leaving it. The label on each of
these arcs may be any atom from A, and they need not be
unique, i.e., an atom may serve as label for two or more of
the out-arcs of a branch node. Figure 3 illustrates this syn-
thesis with a portion of a PFG in which each s; represents a
selector and each b; represents a basic block node.

As stated earlier, the formal semantics of PFG are fully
defined by the HG computation model. Informally, this
model prescribes the following computational behavior for a
parallel flow graph. Execution proceeds from the initial
node, and nodes are executed in the order they are encoun-
tered by following arcs. Such a sequence is termed a

b10

Figure 3 Parallel flow graph.

1By default, an arc with no written label has the null label.



control thread. An initial data state, represented by an h-
graph, is assumed. The effects of executing a node are
dependent on its type. If a node contains a procedure call,
then the data state is altered as specified by the function of
the called procedure. If a node contains a selector, then the
data state is consulted at the node selected and a choice of
next node (or nodes) is made based on the value found
there. For a node of type "cbranch", two or more parallel
control threads can be created. All arcs bearing the atom
label found as the value of the selected node are con-
currently followed. For a node of type "nbranch”, the selec-
tor is evaluated to get an atom; then, one of the perhaps
several arcs bearing that atom as label is chosen nondeter-
ministically and followed. If a node contains a join ¥, then
synchronization of the potentially many incoming concurrent
control paths is performed, and a single control path contin-
ues from the node. If no arc leaves a node, or if none bears
the selected atom, then the control path through that node
expires; execution does not continue from the node. Execu-
tion of the entire PFG terminates when all individual control
paths expire.

Since a PFG has a single initial node, the execution of
a PFG always begins with one control path. When a branch
node selector produces an atom that labels several out arcs,
then concurrent control paths come into being. Since branch
nodes are the only nodes allowed to have multiple out-arcs,
they are the only points in a PFG at which concurrent con-
trol paths can be created. Subsequently, the progression of
actions along each parallel control path is considered to be
executing asynchronously and concurrently with the other
parallel paths. Though the synchronization and merging of
parallel paths is possible with ¥ nodes, it is not required.
Two or more parallel paths may come together in a common
segment of a PFG without being joined. Each path retains
its separate identity and proceeds in turn to execute the PFG
nodes in the common section. This feature, coupled with
the fact that PFGs may be cyclic, allows a potentially
unbounded number of parallel paths to be created in a com-
putation. The number of such paths that can actually be
executing at any time (as opposed to activated but waiting)
is bounded, however, since the number of nodes in a PFG is
finite.

Note that sequential computation is represented by a
special form of parallel flow graph, one in which labels on
arcs leaving a concurrency branch node must be unique.
Under this restriction, at most one control thread may
proceed from any node in a sequential PFG. With only one
initial node, no concurrent activity can then be generated.
This simple and succinct restriction adds to the attractiveness
of the theory as a unified computation model.

4. Procedure timing in PFG

While timing information is an insignificant part of
PFG syntax, it is an important part of the HG software sys-
tem model, and hence of the semantics of PFG programs.
All data transformation in PFG is accomplished via pro-
cedure calls (expression evaluation, the only other operation
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on the data model, is read-only and enables branching and
parameter passing). A basic block in the HG model is a
sequence of procedure calls unbroken by any branches.
These procedures are of two kinds: primitive, and not. A
primitive procedure in a PFG program has no parallel flow
graph to represent its structure; it has only a duration (a tim-
ing) and a data transformation specified by a function. A
non-primitive procedure, on the other hand, has a parallel
flow graph representation of its structure. Its timing is then
recursively derivable from the structure of the procedures
called, with the primitive procedures providing the base tim-
ings that cause the recursion to terminate. Its function is
also derivable, as the composition of the functions of the
called procedures, in one of the possibly many orders
specified by the control flow model.

The Petri nets employed in the HG model are deter-
minately timed. Software is often not determinate in its
behavior, that is, a block of procedure calls will often have
an execution duration that varies with the input data. PFG is
intended for the expression of computations in a way that
will allow verification of adherence to absolute timing con-
straints, such as "module X must finish in under 10
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Figure 4 Translation of a basic block node.

Figure 5 Translation of a cbranch node.




Figure 6 Translation of an nbranch node.

milliseconds,” or "module Y can be no longer than 3
seconds behind module X in completion of execution."

Timing of procedures under the determinate semantics,
then, is accomplished by constructing two models for each--
a minimum timed model and a maximum timed model.
These execution bounds are obtained by path analysis on the
concurrent reachability tree [11], for the Petri net in the con-
trol flow model. This graph is a state-space structure that
reflects the difference between regular Petri net semantics
and the concurrent firing rule employed in PFG semantics.
It is constructed in such a way that duration of a block is
reflected by the length of the state sequence (path in the
graph) in which it is active. With some restrictions on its
structure, such as breadth-first node generation, the con-
current reachability tree can be searched for the longest and
shortest paths, and the leaves of those paths can be checked
for repetition of earlier states (indicating a potentially infinite
duration). Naturally, for cyclic procedures, either one of
these bounds can be infinite, and the duration of e will pro-
pagate to procedures which call it. Thus each PFG program

is analyzed as a dual-system model for timing.

Figure 7 Translation of a join node.

5. Translation of PFG into timed Petri nets

Each structure in a parallel flow graph has a translation
specified into the HG modeling formalism. Figures 4, 5, 6,
and 7 illustrate the Petri net components of the control flow
model, and the connections among them, created for each
type of PFG structure that can be encountered in a program.
The details of this translation are fully specified in [9]. In
summary, an unbroken sequence of PFG procedure call
nodes is coalesced into a single entity (a basic block in the
static program model) and represented by a single place con-
nected to a single transition in the Petri net (termed a P/T
component). A branch node in a PFG program has multiple
arcs leaving it, perhaps several labeled with the same atom.
For a cbranch, a Petri net structure s created having a single
place connected to several transitions, one for each unique
atomic arc label (termed a P/nT component). The same
number of arcs leave each transition as there are bearing its
atomic label leaving the PFG branch node. For an nbranch,
the translation is similar, except that one transition is created
for each arc, with one arc leaving each transition. A join
node in PFG has multiple arcs entering it that must be syn-
chronized and coalesced. It becomes a Petri net structure
having one place for each arc entering the join node, and a
single transition to which the places are all connected
(termed an nP/T component). A single arc then exits this
transition. Once created, the Petri net components have the
same interconnectivity as the PFG nodes have. The timing
on a PFG node is the timing given each place in the Petri
net component created from it.

The Petri nets that are created from PFG programs by
this translation form a subclass of general Petri nets, termed
free-choice nets. Their structure is simplified in that if any
place serves as input to several transitions, then it is the only
input place for those transitions. The transitions that share
the input place are said to be in conflict. Hack [12] has

Figure 8 Multi-way fork-and-join (cobegin).




shown necessary and sufficient conditions to guarantee live-
ness and safeness of free-choice nets.

6. Utility of PFG

Many common concurrent control structures can easily
be expressed in PFG. Figures 8 and 9 show examples along
with the Petri net components created from them. Programs
written to use such semantics can then be analyzed for con-
currency problems using the HG model. In addition, the
syntax of PFG allows expression of some concurrent control
structures which have no well-known names, as exemplified
in Figure 10.

Several analysis techniques have been developed for
PFG programs. The dual-model method for timing of sys-
tems has been previously mentioned. It allows verification
of adherence of procedures to execution time bounds.
Details of this method are presented in [9].

Another analysis technique allows the detection and
correction of improper accesses to shared data struc-
tures [10]. The analysis is based on the concurrent reacha-
bility tree mentioned earlier. Since a code block is associ-
ated with each place, a state (net marking) showing a token
in a place indicates that a code block is executing in that

Figure 9 Spawn concurrent threads.

Figure 10 Arbitrary concurrent control structure.
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state. The concurrent reachability tree, then, shows in its
markings which pairs of code blocks may possibly execute
concurrently. The data structures accessed by these code
blocks are checked for improper accesses, such as one pro-
cedure reading twice consecutively from a datum, and
another procedure concurrently writing to the same datum.
The h-graphs used to model the data provide the ability to
detect conflicts on portions of structured data rather than
simply on variable names. When identified, these potential
improper accesses can be prevented during execution by
automatic insertion of synchronizing places into the Petri net
models representing the calling procedure. As small an
involved portion as possible of each code block is identified,
and each block is restructured into two or more new, smaller
blocks. These new blocks are then given Petri net places
and transitions in the control flow model. For each block
pair an extra place, marked with a single token, is connected
into the model to create mutual exclusion on the conflicting
sequences of procedure calls.

A third analysis for the HG model is detection of some
deadlocks, which appear in the concurrent reachability tree
as partial markings of places that are portions of join com-
ponents. The semantics of a join are such that if any one of
the places entering it are marked (indicating that the
software represented by that place is executing) then all of
the other places must eventually be marked as well in the
same state, or the following transition can never fire, block-
ing progress at that point. Further, the fully marked state
must be reachable from the partially marked ones. For
example, consider a join component having three incoming
arcs in a PFG program. The join is represented in the Petri
net of the control flow model by three places entering a sin-
gle transition. If some state p appears in the reachability
tree having tokens in one of these places, then there must be
a state {L” on a path from p that has all three places marked.
If no such W’ exists, then a potential deadlock exists in the
original PFG program.

In addition to these concurrency analyses, aliasing
detection in the data model has been developed by Wil-
son [13] for sequential computations (a special case in PFG
syntax).

7. Future research

PFG is interesting both for its graphical syntax and for
its formal concurrent computation semantics. The language
allows expression of time-dependent concurrent computa-
tions; the underlying semantic model allows incorporation of
the behavior of the host machine into analysis of the system.
An initial implementation of the language is just now under-
way, in conjunction with the development of the PFG pro-
gramming environment. The PFG environment is a unified
construction and analysis toolset for concurrent, time-
dependent computations. It has the HG software system
model as a formal basis for all activity in thé environment:
static analysis, dynamic simulation, and code generation.
The PFG language serves as the primary program source.
Programming in other languages, such as Ada or Modula-2,



is possible in the PFG environment, with source programs
being translated directly into the HG model. After creation,
the model can then be viewed as a PFG program. Various
target machines will have HG representations stored in a
modelbase so that time-dependent analyses can be done on a
software system for a particular host. Once an HG model
has been analyzed and is correct, executable code for the
host can be generated from the model. The system is being
developed for a Sun workstation.

10.
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Abstract

This paper describes a system for development
of architecturally independent parallel programs.
The concept bases for the programming system
include the separation of specification of depen-
dency relations from specification of units of com-
putation and the formalization of specifications for
dependency relations so that they can be readily
translated to a spectrum of implementation mech-
anisms. The host for the implementation is a Sun
workstation. The languages in which units of com-
putation can be expressed include Ada, C and For-
tran. The targets for execution of the parallel pro-
grams include a Sequent Balance, a VAX cluster,
an Intel Hypercube, and a Cray XMP. The graph-
ical/visual user interface to the programming sys-
tem has been found to be a major contributor to
its effectiveness.

1 INTRODUCTION

This paper presents an environment for parallel program-
ming in which are prepared programs which can execute
on a variety of multiprocessor architectures without user
modification. A parallel program is viewed as a set of
units of computation composed into a computation by
dependency relations which specify the order of execution
of the units of computation. The user-visible structure
of a program developed in this environment is indepen-
dent of the programming languages in which the com-
ponent modules of the program are written. The com-
ponent modules may be a mixture of several different
languages, including Ada, C and Fortran. The key con-
ceptual principles are separation of specification of units
of computation from specification of dependency relations
and formal specification of dependency relations at a level

of abstraction which allows ready translation to a variety-

of synchronization and/or communication mechanisms.
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Program structure is expressed in a declarative hierar-
chy which allows effective application of architecturally
specific optimizing compilers to the component modules.
The user interface is graphical and at a level of abstrac-
tion which promotes effective program formulation as well
as preparation of executable programs.

The programming system, Computation-Oriented
Display Environment or CODE, has been in operation for
some months and has been used to generate parallel pro-
grams for several different programming environments.
Complete architectural independence is not a claim. Al-
though the unified model of parallel computation under-
pinning this work covers SIMD models, the implemented
system covers only MIMD architectures and is practically
limited to large grain parallelism.

This approach to parallel programming is complemen-
tary to the automatic restructuring of existing higher
level language programs. Statement and loop level par-
allelization can still be done on the module level compo-
nents of the parallel structure created with CODE.

2 APPROACH

The approach we have taken is to define a unified model
of parallel computation at a level of abstraction which can
be easily mapped to a spectrum of architectural mecha-
nisms for implementation of dependency relations.
Browne [BRO85, BROS86] has given an informal descrip-
tion of this unified model, while Sobek [SOB88] has given
a full and formal definition of the unified model.

There are two particularly, significant properties of
this representation of parallel computations. First, it is
sufficiently formal and complete to support translation
to representation at greater levels of resolution. That is,
a parseable formal grammar can be written for the de-
pendency relations and the firing rules specified in the
unified model. Second, the representation of dependency

relations is cleanly separated from the representation of

computations. The result of these two properties is that
a program becomes a computation structure specified as
a set of computation modules and the dependency rela-
tionships among this set of modules. The only intrinsic
limitation placed on the target execution system is that
the data, control and constraint (shared name access con-
trol) dependencies of the unified model of dependency re-

lations must be expressible in the mechanisms provided.

Separating specification of units of computation from
specification of dependency relations and the provision
for several levels of abstraction in specifying units of com-
putation enable the definition of parallel computa-
tions as declarative hierarchies. A unit of compu-
tation at one level of abstraction may itself have an ar-
bitrarily complex sequential or parallel structure with-
out this structure impacting the relationships between
this module and the balance of the computation struc-



ture at the higher level of abstraction. The computation
modules (units of computation) may thus be arbitrary
programs in any high level programming language sup-
ported in an execution environment or may themselves
be complex parallel computation structures. Thus, op-
timizing compilers which do automatic restructuring to
obtain parallelism on a particular architecture may still
be applied with profit to this architecturally independent
parallel computation structure.

3 IMPLEMENTATION

3.1

The Computation-Oriented Display Environment
(CODE) is used to develop graph structured represen-
tations of parallel computations, from which are pro-
duced the declarative specifications mentioned preceding.
These specifications are parsed to produce programs in
high level languages that support parallel execution. Af-
ter a program is written (by drawing and annotating a
graph on a graphics screen), its CODE intermediate lan-
guage file and the user’s code files are transferred to the
desired parallel architecture. Target code is produced on
the parallel machine from the transferred files.

The initial version of CODE has been implemented on
a Sun Microsystems workstation. CODE is written in C
and uses the SunView (trademark of Sun Microsystems)
package for displays.

An example CODE display is shown in Figure 1. The
horizontal strip on the top is the message window. This
window displays instructions, information, warning mes-
sages, and error messages, and it allows some textual in-
put from the programmer. The vertical strip on the left
hand side contains a menu window with symbols that
depict major CODE commands. The remaining large
drawing window on the right is used for displaying and
drawing the graphical program.

A CODE program graph is composed of four main
object types: schedulable units of computation (SUCs),
dependencies, filters, and subgraphs. A subscripted name
such as Sf5] denotes an array of objects.

A SUC is associated with a subprogram written in
some high level language, such as an Ada procedure.
SUCs communicate via dependencies. The data structure
associated with a dependency may be a simple variable
or an array. The two kinds of dependencies implemented
are data dependencies and exclusion dependencies. A
data dependency totally orders the execution of the pre-
cisely two SUCs it connects. An exclusion dependency
provides a partial ordering (or no ordering at all when it
is used only to share data) among two or more SUCs.

A filter is a special computation unit with semantics
defined by an associated constraint expression that de-
fines transmission of some subset of the data from its in-
put dependencies to some subset of its output dependen-

Graphical Interface
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CODE: Computation-Oriented Display Environment

Choose an object to open using left button.

DATAS

FILTER

DATALB
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Figure 1: Example CODE Display

cies. The constraint may be satisfied by mere existence of
input data or by the actual values associated with input
data dependency variables. Among the important uses
of filters are for loop control and, as we describe later,
acting as data dependent firing rules for SUCs.

A subgraph is composed of SUCs, filters, dependen-
cies, and subgraphs. A CODE computation graph is a
hierarchy in which each subgraph has a single parent
graph, and the overall graph has no parent. Thus, any
computation graph with a hierarchy of graphs can be
transformed into a one-level graph. Dependencies may
span subgraphs. Thus, a dependency in the graph level
currently displayed that appears to end at a subgraph
may, in fact, end at a SUC or filter arbitrarily deep in
the graph hierarchy. ’

Briefly, a typical program development scenario us-
ing CODE would be to draw the computation as a graph
of SUCs, dependencies, filters and subgraphs, set depen-
dency properties (e.g., number of data elements) and fil-
ter constraints, type the code associated with each SUC,
have CODE generate the declarations file needed to pro-
duce an executable parallel program, ship the declara-
tions file and SUC code files to a target parallel architec-
ture, and generate the target executable parallel program.

The set of objects and their properties were chosen so
that the information necess<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>