
<...I.
~I -
C;;~
om =:JJ
~z

;~

C/) ..
c:

O ·
z » r

PROCEEDINGS
OF THE

1988 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August 15-19,1988

PROCEEDINGS
OF THE

1988 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August 15-19, 1988

Vol. II Software

Howard E. Sturgis, Editor

Sponsored by

Department of Electrical Engineering
PENN STATE UNIVERSITY

University Park, Pennsylvania

THE PENNSYLVANIA STATE UNIVERSITY PRESS
UNIVERSITY PARK AND LONDON

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors' opinions and are published as presented and without change in
the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, Penn State Press, or the Institute of Electrical and Electronics Engineers,
Inc.

Library of Congress Catalog Card Number 79-640377
ISSN 0190-3918

ISBN 0-271-00654-4
IEEE Computer Society Order Number 889

IEEE Catalog Number 88CH2625-2

Copyright © 1988 The Pennsylvania State University
All rights reserved

Printed in the United States of America

Additional copies may be obtained from:
Penn State Press

215 Wagner Building
University Park, PA 16802

PREFACE

Interest in the field of parallel processing continues to climb. This trend is evidenced by the sharp
increase in papers submitted to the International Conference on Parallel Processing during recent years:

Papers Papers
Year Submitted Accepted Percent

1980 170 65 57
1983 240 136 57
1986 400 170 43
1987 487 174 36
1988 590 173 29

Although the number of submissions continues to increase, the number of accepted papers this year and
in the past two years has remained relatively unchanged. This is due to the limitation imposed by the fixed
number of hours available for the conference. As a result, a record number of papers had to be rejected. This
year, the conference proceedings is being published in three volumes according to the subject category. The
breakdown of submissions and acceptances in the three main categories of this conference is as follows:

Papers Papers
Category Submitted Accepted Percent

Architecture 264 74 28
Software 144 43 30
Algorithms and Applications 182 56 31

Of the 173 papers that were accepted, 79 were accepted as regular papers and 94 were accepted as short papers.
Many papers that normally would have been accepted as long papers were accepted as short papers in order to
meet the maximum number of paper-sessions allotted for the conference.

Finding sufficient numbers of qualified reviewers was a particularly challenging task this year, due to the
record number of submissions. Over 1,000 professionals in the field participated in this process. This year the
process of selecting referees was simplified by the use of questionnaires, which were mailed to previous
participants in the conference. The information on the completed questionnaires was entered into databases,
which then allowed the conference chairmen to select reviewers qualified in fairly specialized fields. Even so,
numerous papers were so highly specialized that custom selection of referees was stiII required. It appears that
an even more detailed breakdown of specializations will be needed for these questionnaires in the future.
Greater effort will also be required in the future to find additional reviewers to match the increasing numbers of
submissions.

I wish to thank the management of the Xerox Palo Alto Research Center for providing me the
opportunity to co-chair the ICPP88 program. I also thank Prof. Tse-yun Feng, my immediate supervisors Dr.
John White and Dr. Robert Ritchie, and my colleagues in the Computer Science Laboratory for their support and
encouragement. Finally, I offer special thanks to my Secretary Kathi Anderson; this project would have been
impossible without her assistance.

Howard E. Sturgis
Program Co-chair
Xerox Palo Alto Research Center
Palo Alto, California 94304

iii

LIST OF REFEREES

Abdollahzadeh, F. U.ofToledo Erdogan, S.S. San Diego State U.
Agre,J. Rockwell Eventoff, W. Concurrent Computer Corp.
Akingbehin, K. U. of Michigan Fang,Z. Concurrent Computer Corp.
Amit,N. U.ofMinnesota Finkel, R.A. U.ofKentucky
Appelbe, W. Georgia Inst. of Tech. Fisher, A.L. Carnegie Mellon U.
Arafeh, B.R. Auburn U. Flynn, S.F. Courant Inst.
Atwood, J.W. Concordia U. Forgy, C. Prod. Systems Technologies
Azimi,M. Michigan State U. Forin,A. Carnegie-Mellon U.
Baden, S. Lawrence Berkeley Lab. Forrest, S. Teknowledge Inc.
Badii, M. U.ofToledo Fortes, J.A.B. PurdueU.
Baer, J-L. U.ofWashington Fowler, R. U. of Rochester
Bagrodia, R.L. UCLA French, J.C. Inst. for Parallel Computation
Bailey, D.A. U.ofMassachusetts Frey, M.G. FERMILAB
Bailor, P.D. Air Force Inst. of Tech. Fujimoto, R.M. U.ofUtah
Baldwin, D. U. of Rochester Gafter, N.M .. U. of Rochester
Bannister, J. The Aerospace Corp. Gantenbein, R.E. U.ofWyoming
Bansal, A.K. Case Western Reserve U. Gehani,N. AT&T Bell Labs
Barkhordarian, S.P. EIP Microwave, Inc. Ghafoor, A. Syracuse U.
Baumgartner, K.M. Coordinated Science Lab. Gokhale, M.B. U.ofDelaware
Beck, R.D. Sequent Computer Systems Goldman,R. Lucid,lnc.
Bennet, T.W. U. of Mary land Gooley, M.M. U.oflllinois-Urbana
Benson,M. U. of Minnesota Duluth Grit, D.H. Colorado State U.
Bernstein, D. T.J. Watson Rsch. Cntr. Grogono, P. Concordia U.
Bobbie, P.O. U. of West Florida Guarna, Jr., V.A. U.ofIllinois-Urbana
Bose, P. T.J. Watson Rsch. Cntr. Gunderson, A.S. GTE Labs Inc.
Bradley, D.K. U.ofIllinois-Urbana Gupta, R. Philips Labs
Browne, J.C. U: of Texas Guthrie, G. Maharishi International U.
Bryant, B.R. U. of Alabama-Birmingham Guzzi, M.D. U. of Illinois-Urbana
Burdorf, C. Rand Corp. Hailperin, M. Knowledge Systems Lab.
Busse, T. Computer Sciences Corp. Hawkinson, S.W. Supercomputer Systems, Inc.
Callahan,D. Rice U. Headington, M.R. U.ofWisconsin-LaCrosse
Canas,D.A. Wake Forest U. Hemmendinger, D. Wright State U.
Cann, D.C. Colorado State U. Herlihy, M. Carnegie Mellon U.
Carlson, W.W. PurdueU. Hoeflinger, J. U.ofIllinois-Urbana
Casavant, T. PurdueU. Hoppe, A. Louisiana State U.
Chan,E.Y. Harris Corp. Horvath, J.C. JPL
Chang, C.K. U.ofIllinois-Chicago Hsieh, T.S. The Aerospace Corp.
Chen,A.C. AT&T Information Systems Huang,C.H. Northwestern U.
Chen, K-W.H. AT&T Information Systems Huang, T.L. Northwestern U.
Christopher, T.W. Illinois Inst. of Tech. Husmann, H.E. AT&T Bell Labs
Copper III, A.N. Bowling Green State U. Hwang,K.D. U.ofIllinois-Urbana
Crockett, T. W. NASA Langley Rsch. Cntr. Janicki, R. McMasterU.
Cytron, R. T.J. Watson Rsch. Cntr. Juang, J-Y. Northwestern U.
Daffinger, C.A. Indiana U. Kahn, K. XeroxPARC
Danforth, S. MeC Kale, L.V. U. of Illinois
Dekel, E. U.ofTexas-Dallas Kandt, R.K. Teknowledge Federal Systems
Demers,A. XeroxPARC Katz,M. Rockwell International Corp.
Dinning,A. Courant Inst. Kesselman, C. The Aerospace Corp.
Ellis,C.S. DukeU. Khoshafian, S. Ashton-Tate

iv

Kim,D.W. U.ofTexas-Austin Pramanik, S. Michigan State U.
Knox, D.L. U.ofWisconsin-Milwaukee Preiss, B.R. U.ofWaterloo
Koegel, J.F. U.ofDenver Quinn,M.J. U. of New Hampshire
Koelbel, C. PurdueU. Quiroz, C.A. U. of Rochester
Kogge,P.M. IBM Ramanujan, R.S. Honeywell
Krauss, K.G. Easton, PA Rana, S.P. Wayne State U.
Lastra, A.A. DukeU. Ravi, T.M. U. of California
Lato, K.A. AT&T Bell Labs Rego, V. Purdue U.
Lauer, P.E. McMasterU. Reinhardt, S. Cray Research, Inc.
LeBlanc, T. U.ofRochester Riccardi, G.A. Florida State U.
Lee,G. U. ofSW Louisiana Rickert, N.W. Northern Illinois U ..
Lee,J. Rockwell International Corp. Roberts, E.S. Digital Equipment Corp.
Lee, P-N. U.ofHouston Salfi, R.E. Summit,NJ
Levy,H. U.ofWashington Saphier, S.H. Dept. of Defense
Li, K. Princeton U. Sarkar, V. IBM
Li, P.P. AMETEK Schacht, E.N. Computer Sciences Corp.
Li, Z. U.ofIllinois Schwetman, H. Tech. Corp.
Lin, K-J. U.ofIllinois-Urbana Scott, M.L. U. of Rochester
Liu,L.Y. Penn. State Seyedoff, H. U.ofOklahoma
Lo,V.M. U.ofOregon Sheets, K.B. AT&T
Loganantharaj, R. U. ofSW Louisiana Shepard, T. Royal Military College
Loucks, W.M. U.ofWaterloo Sheu, P.C-Y. Purdue U.
Mace,M. Duke Shi, Y. Temple U.
Madison, D.E. Naval Postgraduate School Shirazi, B. Southern Methodist U.
Malony, A.D. U.ofIllinois-Urbana Shu,W.W. U.ofIllinois-Urbana
Manwaring, M.L. Washington State U. Simpson, R.T. Encore Computer Corp.
Marshall, R.C. IBM Corp. Singh, V. Stanford U.
Marti, J.B. The Rand Corp. Singhal, M. Ohio State U.
MauneY,J· N. Carolina State U. Skedzielewski, S.K. Livermore, CA
McClosky, M.J. San Diego, CA Smith, K. Georgia Inst. of Tech.
McKinley, P.K. U. of Illinois-Urbana Smith, L.L. Fort George Meade
Mercer, R. W. Convex Computer Corp. Smith-Thomas, B. AT&T Bell Labs
Middleton, D. NASA Langley Rsch. Cntr. Socha, D. U.ofWashington
Mills, P.H. U. of North Carolina Sridhar an, K. Concurrent Computer Corp.
Miranker, D.P. U.ofTexas-Austin Stone,J.M. T.J. Watson Rsch. Cntr.
Miyashita, J. California State U. Stotts, P.D.J. U.ofMaryland
Mullin, L.R. Syracuse U. Strout II, R.E. Microsystems, Inc.
Musciano, A.J. Harris Corp. Subramanian, R. AT&T Bell Labs
Natarajan, K.S. T.J. Watson Rsch. Cntr. Szymanski, B.K. Reusselaer Polytechnic Inst.
Natour, LA. Western Michigan U. Tai,H-M. Univ.ofTulsa
Nikhil, R. MIT Tal,D. Florida International U.
Notkin, D. U.ofWashington Tang,P. U. of Illinois
Oldehoeft, A.E. Iowa State U. Tanik,M.M. Southern Methodist U.
Ottenstein, K.J. BBN Advanced Computers, Inc. Tenny, L. Indiana U.
Pagan,M. RCA Advanced Tech. Labs Thomas, R.H. BBN Advanced Computers, Inc.
Palis, M.A. U.ofPennsylvania Tinker,P. Rockwell
Pan,Z. New Mexico State U. Tomboulian, S. NASA Langley Rsch. Cntr.
Pickert, J. U.ofIllinois-Urbana Tong,Z. U.ofMinnesota
Pieper, K.L. Stanford U. Toomey,L. IBM
Plishka, R.M. U.ofScranton Tripathi, A. U. of Minnesota
Potter, J .L. Lanham,MD Tsai, J.P. U.ofIllinois-Chicago
Prabhu,G.M. Iowa State U. Tyan,H.R. Northwestern U.

v

Tyrer,H.W. U. of Missouri-Columbia Weiser, M. XeroxPARC·
Vishnubhotla, P. The Ohio State U. Weiss, M. COMPASS
Vosbury, N. Unisys Corp. Wikstrom, M. Iowa State U.
Wah,B.W. NSF Wolfe,M. Kuck & Associates, Inc.
Wang,C-C. T.J. Watson Rsch. Cntr. Wright, C. Iowa State U.
Wang,P. George Mason U. Wu,M-Y. U.ofCalifornia-lrvine
Weinstock, C. Software Engineering Inst. Xu,Z. Rutgers U.

vi

AUTHOR INDEX

Appelbe, W.F. 58 Krishnamurthi, A. 89
Azam, M. 80 Kuck,D.1. 34
Badger,L. 122 Lauer, P.E. 150
Bailey, M.L. 46 LeBlanc, T.1. 255
Bansal, A.K. 22 Lee,G. 42
Belmont, P. 161 Li, K. 94
Bemmerl, T. 50 Li,Z. 221
Bennet, TW. 135 Lo, V.M. 239
Bose, P. 63 Marsh, B.D. 255
Bowen, N. 102 McAuliffe, K.P. 229
Browne, J.C 80 McDowell, CE. 54
Crockett, TW. 67 McKinley, P.K. 204
Crowther, W. 245 Middleton, D. 67
Cytron, R. 229 Morgan, CR. 161
Dietz, H.G. 114 Mullin, L. 89
Fang, Z. 161 M usciano, A.1. 166
Feng, H-c. 176 Natarajan, K.S. 140
Finkel, R. 198 Nikolaou, C 102
Fisher, A.L. 84 Notkin, D. 46
Fortes, J.A.B. 26 Padua, D.A. 34
Foster, I. 9 Pagan, M. 110
Freeman, E. 1 Preiss, B.R. 127
Fujimoto, R.M. 176 Ravi, T.M. 188
Geigel, T. 110 Rivoira, S. 180
Ghafoor, A. 102 Sarkar, V. 140
Guarna, Jr .. V.A. 212 Scott, M.L. 255
Gulden, S.L 157 Shang, W. 26
Hamacher, V.C 127 Smith, K. 58
Han, Y. 198 Sobek, S. 80
Hermenegildo, M.V. l7 Socha, D. 46
Highnam, P.T 84 Sterling, L.S. 22
Huang, T-L. 1 Sterling, T.L. 166
Husmann, H.E. 34 Stotts, P.O. 72

Iyengar, D. 89 Thomas, R.H. 245
Janicki, R. 150 Tick, E. 17
Jefferson, D. 188 Tomboulian, S. 67
Juang, J-Y. 1 Weiser, M. 122
Karlovsky, S. 229 Weiss, M. 161
Krauss, K.G. 157 Yew, P-C 221

vii

TABLE OF CONTENTS

Preface .. III

List of Referees . IV

Authors Index

SESSION IB: Logic Programming

(R): Parallelism in Connection-Graph-Based Logic Inference
Juang. J-Y .. Huang. T-L. (Northwestern Univ" USA).
and Freeman. E. (U S West Advanced Tech" USA)

(R): Parallel Implementation of Parlog
Foster, I. (Imperial College of Science and Tech.. United Kingdom)

(S): Memory Performance of AND-parallel Prolog on Shared-Memory Architectures
Hermenegildo. M. (MCC. USA) and Tick. E. (Stanford Univ .. USA)

(S): Compiling Enumerate-and-Filter Programs for Efficient Execution Under
Committed-Choice and-Parallelism

Bansal. A.K. and Sterling. L.S. (Case Western Reserve Univ .. USA)

SESSION 2B: Compilers I

(R): Independent Partitioning of Algorithms With Uniform Data Dependencies
Shang. W. and Fortes. J.A.B. (Purdue Univ .. USA)

(R): Automatic Compound Function Definition for Multiprocessors
Husmann, H.E. (Supercomputer Systems, USA).
Kuck. D.J.. and Padua, D. A. (U niv. of Illinois- Urbana, US A)

(S): Automatic Restructuring of Conditional Cyclic Loops
Lee, G. (Univ. ofSW Louisiana, USA)

SESSION 3B: New Directions in Languages and Compilers

Panel Discussion

SESSION 4B: Software Tools

(S): Debugging Parallel Programs using Graphical Views
Bailey. M.L., Socha, D .. andNotkin. D. (Univ. of Washington. USA)

(S): An Integrated and Portable Tool Environment for Parallel Computers
Bemmerl. T. (Technical Univ. Munich. Germany)

(S): Viewing Anomalous States in Parallel Programs
McDowell. c.E. (Univ. of California-Santa Cruz. USA)

(S): PAT -- An Interactive Fortran Parallelizing Assistant Tool
Smith. K. and Appelbe. w.F. (Georgia Inst. of Tech.. USA)

(S): Heuristic, Rule-Based Program Transformations for Enhanced Vectorization
Bose. P. (/ BM T.J. Watson Research Center. USA)

(S): A Visual Programming Environment For The Navier-Stokes Computer
Tomboulian. S" Crockett. T. w.. and
Middleton. D. (NASA Langley Research Center. USA)

viii

vii

1

9

17

22

26

34

42

46

50

54

58

63

67

SESSION 58: Languages

(R): The PFG Language: Visual Programming for Concurrent Computation
Stotts. P.D. (Univ. of Maryland, USA)

(S): Architecture and Language Independent Parallel Programming:
A Feasibility Demonstration

Sobek. S .. Azam. M .. and Browne. J.C (Univ. of Texas. USA)

(S): Communication and code optimization in SIMD programs . . .
Fisher. A.L. and Highnam. P.T. (Carnegie Mellon Univ .. USA)

(S): The Design And Development Of A Basis, (XL, For Formal Functional
Programming Languages With Arrays Based On A Mathematics Of Arrays

Mullin. L.. Krishnamurthi. A .. and Iyengar. D. (Syracuse Univ .. USA)

SESSION 68: Distributed Software

(R): IVY: A Shared Virtual Memory System for Parallel Computing
Li. K. (Princeton Univ., USA)

(R): Hierarchial Workload Allocation for Distributed Systems
Bowen. N.S .. Nikolaou. CN. (IBM T.J. Watson Research Center. USA).
and Ghafoor. A. (Syracuse Univ .. USA)

72

80

84

89

94

102

(S): A Distributed Application For The PHARROS Project 110
Geigel. T. and Pagan. M. (GE/RCA Advanced Tech. Labs. USA)

SESSION 78: Compilers II

(R): Finding Large-Grain Parallelism In Lo~ps with Serial Control Dependencies
Dietz. H.G. (Purdue Univ .. USA)

(R): Minimizing Communication For Synchronizing Parallel Dataflow Programs
Badger. L. (Univ. of Maryland, USA) and Weiser. M. (Xerox PARCo USA)

(R): Semi-Static Dataflow
Preiss. B.R. (Univ. of Waterloo. Canada)
and Hamacher. V.C (Univ. of Toronto. Canada)

SESSION 88: Software

(S): Using Control States for Parallelism Extraction
Bennet. T. W. (Univ. of Maryland, USA)

(R): Processor Scheduling Algorithms for Constraint-Satisfaction Search Problems
Natarajan. K.S. and Sarkar. V. (IBM T.J. Watson Research Center. USA)

(R): On The Semantics Of Priority Systems
Janicki: R. and Lauer. P.E. (McMaster Univ .. Canada)

(S): A Petri Net Method for the Formal Verification of Parallel Processes
Krauss. K.G. (Lafayette College. USA) and Gulden. S.L. (Lehigh Univ .. USA) .

SESSION 98: Shared Memory Software

114

122

127

135

140

150

157

(S): Dynamic Scheduling and Memory Management for Parallel Programs 161
Weiss. M. (Compass Inc .. USA). Fang. Z. (Concurrent Computer Corp .. USA).
Morgan. CR .. and Belmont. P. (Compass Inc .. USA)

ix

(R): Efficient Dynamic Scheduling of Medium-Grained Tasks for General Purpose
Parallel Processing . 166

Musciano, A.!, and Sterling, T.L. (Harris Corp., USA)

(S): AShared Memory Algorithm And Performance Evaluation Of The Generalized
Alternative Construct In CSP

Feng, H-c. (AT&T. USA) and Fujimoto. R.M. (Univ. of Utah, USA)

(R): Design Strategies For The Run-Time Support To The ADA Rendezvous
Rivoira. S. (Universita di Perugia. Italy)

SESSION lIB: Infonnation Spreading

(R): A Basic Protocol For Routing Messages To Migrating Processes
Ravi. T.M. and Jefferson, D. (Univ. of California-Los Angeles, USA)

(R): An Optimal Scheme For Disseminating Information
Han, Y. and Finkel, R. (Univ. of Kentucky, USA)

(R): Multicast Routing in Spanning Bus Hypercubes
McKinley, P. (Univ. of Illinois-Urbana. USA)

SESSION 12B: Compilers III

(R): A Technique For Analyzing Pointer and Structure References In
Parallel Restructuring Compilers

Guarna, Jro, V.A. (Univ. of Illinois-Urbana. USA)

(R): Interprocedural Analysis for Parallel Programs
Li, Z. and Yew, p-e. (Univ. of Illinois-Urbana, USA)

(R): Automatic Management of Programmable Caches (Extended Abstract)
Cytron, R. (IBM T.!. Watson Research Center, USA),
Karlovsky, S. (Univ. of Illinois-Urbana, USA),
and McAuliffe, K.P. (IBM T.!. Watson Research Center, USA)

SESSION 13B: Operating Systems

(R): Algorithms for Static Task Assignment and Symmetric Contraction in
Distributed Computing Systems

Lo, v'M. (Univ. of Oregon. USA)

(R): The Uniform System: An approach to runtime support for large scale shared memory

176

180

188

198

204

212

221

229

. 239

parallel processors 245
Thomas, R.H. (BBN Advanced Computers, Inc .. USA)
and Crowther, W. (BBN Labs Inc., USA)

(R): Design Rationale for Psyche, a General-Purpose Multiprocessor Operating System 255
Scott, M.L.. LeBlanc, T.!., and Marsh, B.D. (Univ. of Rochester, USA)

x

Parallelism in Connection-Graph-Based Logic Inference

Jie- Yong Juang and Ting-Lu Huang
Dept. of Electrical Engineering & Computer Science

Northwestern University
Evanston, Illinois 60208

Tel: (312) 491-7103

Abstract:
In this paper, we investigate the parallelism that

can be achieved by concurrent resolution on a predicate
connection graph. Predicate connection graphs provide
a sound basis for parallel logic inference. However
unrestricted concurrent resolution on this graph may
lead to logical inconsistency. This seems to contradict
the completeness theorem of the resolution principle and
the common belief of independence in parallel resolu
tion. Using Bernstein conditions, logical inconsistency is
found to be a .problem of out-of-sequence manipulations
of the connectIOn graph. Thus, to prevent logical incon
sistency, two resolutions must be executed in a sequen-'
tial order. if there is an overlap in the parts of graph
they mampulate. Only limited parallelism is possible in
this case due to the large extent of snowball effect. For
tunately, we have shown that precedence constraints
between two resolutions can be relaxed. This property
allows the proposed lock-and-withdraw synchronization
scheme to exploit a high parallelism at its level of
abstraction. To reduce synchronization overhead, we
have also proposed a graph partitioning approach. In
this ap'pro~ch, synchronization is necessary only when a
resolutIOn mvolves boundary clauses. Since each sub
graph of a partition can be distributed among memory
banks evenly, memory conflicts can also be minimized
using the partitioning approach. For message-based
multiprocessors such as the hypercube, we suggest that,
graph updates across the partition boundary be stored
and re-constructed when each part of the subgraph is to
be used. This approach can further minimize time
consuming message-based synchronization.

1. Introduction
Resolution has been the basis of logic inference

since its first introduction in 1965 [13]. However, its
execution on today's computers is too slow to be
effective, primarily due to the long resolution cycle time
and to exponential complexity. Although exponential
explosion remains unavoidable, connection-graph-based
resolution procedures have been shown to be a promis
ing solution [3,8,14]. Such procedures organize the.
input clauses of a problem formulation into a predicate
connection graph [9] which offers several distinct advan
tages over previous approaches. First, once the connec
tion graph is constructed all information regarding
resolvable literals is maintained, and therefore no
·further searching for unifiable clauses is needed.
Second, a link is deleted after it is resolved. Its parent
clauses and associated links can also be deleted if the
removal of the link results in a pure literal. Such dele
tions can continue for all the adjacent clauses, and leads
to a snowball effect that causes a rapid reduction of the
graph. Third, unlike AND/OR-tree-based inference pro
cedures [10] in which the search space is built up gradu-

This material is based upon research supported by
U S West Advanced Technologies, Englewood, Colorado

1988 International Conference on Parallel Processing

1

Ed Freeman
US West Advanced Technologies

6200 South Quebec Street
Englewood, Colorado 80111

Tel: (303) 889-6036

ally as tlie inference proceeds, the whole search space of
a connection-graph-based procedure is known. This can
bett~r facilitat~ the implementation of various problem
solvmg strategIes such as subsumption [7] paramodula
tion [16], etc. The presence of the cOI'nplete search
'space also provides a sound basis for parallel logic infer
ence since task distribution can be done more
effectively.

Rapid deletion of unnecessary clauses and links
helps keep a connection graph concise. As a result
non-d~t~r~inism is reduced, useless resolutions [17] ca~
be mmlmlzed, and the procedure is less likely to
~xplod~. Nevertheless, the deletion may cause logical
zn.conszstency when links are resolved concurrently
WIthout careful coordination. Logical inconsistency is a
problem in which an unsatisfiable clause set is falsely
changed to a satisfiable one [4]. Consequently subse
quent resolutions will not lead to an empty cla~se and
the inference will fail to find the correct answer las it
would be able to if the logical inconsistency had not
occurre~). Thus, proper synchronization is necessary in
connectlOn-graph-based parallel logic inference pro
cedures.

In this paper, we examine the parallelism achiev
able in connection-graph-based inference procedures
according to Bernstein conditions. This allows us to
design better' connection:graph~ based parallel logic infer
ence procedures for different architectures using different
synchronization mechanisms. A review of connection
graph resolution procedure is given in Section 2. We
will then describe the logical consistency problem fol
lowed by a summary of solutions found in the literature.
In Section 4, Bernstein conditions are applied to explain
why logical inconsistency occurs. We then describe how
parallelism can be fully exploited under different types
of conditions. Finally, we describe how one might
design more efficient and practical connection-graph
based parallel logic inference procedures.

2. Logic Inference Based on Connection Graphs
A predicate connection graph of an input clause set

can be constructed as follows: each literal of a: clause in
the input clause set is represented by a node in the
graph, and the nodes representing literals of a clause are
grouped together. Unification is then conducted to
match every pair of literals which have the same predi
cate symbol and are complementary in sign. If the
unification attempt between two literals has succeeded.
then the two corresponding nodes are marked' by a link
and the resulting MGU (the most general unifier) is used
to label the link. Given the clause set of Figure 9(a) in
Section 6, its corresponding connection graph is shown
in Figure 9(b). After the connection graph is con-:
structed, a resolution procedure then repeatedly selects
a link, resolves upon it, generates the associated resol
vent, and finally inserts this resolvent into the connec
tion graph. This process repeats until a null resolvent is.
generated or until further resolution is impossible.

Each resolvent inherits the unifiable links from its
two parent clauses, and the new MGUs of these links
are obtained by the composition of t~e old MG,D a;nd
the MGU used in the current resolutIOn. SubstitutIOn
compatibility is checked and incompatible links are not
inherited. After the resolvent and its links are gen
erated, the link previously used to conduct the resolu-
tion is removed from the two parent clauses. . . .

If the resolvent is not an empty clause,. It IS
checked for deletion due to tautology or pure ltterals .

. Because tautologies do not positively contribute to the
inference, they can be dele~ed f.r?m a set of. clauses
without affecting the unsattsfiabtltty oj rejutatt?n. In
connection graph a literal becomes pure when ·It does
not have any link incident to it (i.e., it is an isolate~
node). A clause containing a pure liter!,l can ~ot contri
bute to a refutation because the unlinked literal can
never be resolved upon [8, 13]. Either of the parent
clause can become pure after the removal of the
resolved link. These clauses are subsequently deleted
from the connection graph.

Deletion of clauses containing pure literals is' an
important feature of the connection graph resolution
procedure. In addition to the clause itself, all links con
nected to its literals must also be deleted from the
graph. Deletion of such links, however, may cause
literals in other clauses to become disconnected. Thus
deletion of clauses can create a snowball effect such that
a succession of clauses is deleted from the graph. Dele
tion of clauses simplifies the connection graph, reduces
the search space, and makes it easier to find a solution.

3. Examples of Logical Inconsistency
Sequential resolution upon links in a predicate con

nection graph has been shown to be sound and con
sistent [8, 14, 151. Nevertheless, as identified in the
literature, paralfel resolutions on such a graph often
result in logical inconsistency [5, 11]. That is, during a
parallel inference, these procedures may. change an
unsatisfiable clause set into a satisfiable one. As a
result, subsequent resolution lead to an empty set
instead of to an empty clause. No answer can be derived
from the result. This contradicts the soundness and
completeness of the resolution principle [4]. To provide·
better insight into the problem, we illustrate how it can
occur using the following examples.

3.1 Example 1
A connection graph of four clauses is shown in Fig

ure 1. Resolutions are performed upon the graph by
two processors concurrently. Processor 1 is resolving on
Link 1, and Processor 2 is resolving on Link 2. After
the resolvents e and f are generated, the two resolved
links are removed from the graph, and both processors
try to establish links for the new clauses. Processor 1
finds no link to be inherited from Clause a. It then con
sults Clause b, and sees a single link incident to Clause
b, i.e., Link 6. So, it connects Clause e to Clause c via
a new link (Link 4). Since the two processors run con
currently, the new link may be established after Proces
sor 2 has consulted Clause c. In this case, Processor 2
will be aware the existence of the new link, and Clause f
is thus connected to Clause b only. Should Processor 2
have examined Clause c after Processor 1 had connected
its resolvent to Clause c, Clause f would have inherited
two links from c, namely Links 3 and 5.. . .

Link 5 plays an important role in the subsequent
resolutions. Removing Links 1 and 2 leaves literals R
and S disconnected. Then, Clauses a, b, c and dare

2

deleted and Links 3, 4 and 6 are removed. Without
Link 5 Clauses e and f will become pure, and finally be
deleted. The final result for the inference on this ver
sion of the graph is an empty set which means the orig!
nal clause set is logically satisfiable. On the contrary, If
Link 5 were established, the final result would be an
empty clause which implies that the original clause set
is unsatisfiable. Such a contradiction is a result of logi
cal inconsistency.

3.2 Example 2
One may speculate that logical inconsistency in the

previous example is due to the close proximity of the
two links being resolved upon. In this example, we will
see that resolutions upon two links that are far apart
may also cause logical inconsistency. The input in this
example consists of those darkly-circled clauses in Fig
ure 2. Resolutions on Link 3 and Link 7 are performed
by two processors concurrently. Resolvents, Clause c
and Clause j, have just been generated, but not yet con
nected. Both Links 3 and 7 were deleted. Now, an
attempt to inherit Link 6 for Clause j failed due to a~
incompatible substitution (i.e., Clause g and Clause J
can not be unified because b 9=d). The failure fires a
snowball effect, and Clause i, j, h, g, f and b are deleted
in sequence. Then, Clause a is checked for pure literals.
If the resolvent, Clause c, has not been connected to
literal Sex) at this moment, all the clauses will be
deleted. The result is an empty set. If link 9 has been
established before the snowball effect propagates to
Clause a, then the resulting clause set would consists of
three clauses, Clause a, Clause c and Clause d. Subse
quent resolutions will bring this clause set to an empty
clause. Thus, Link 9 is crucial in this example. A logi
cal inconsistency occurs if it can not be established in
time.

a d

Figure 1. A parallel resolution procedure fails to estab
lish link 5, and results in logical inconsistency

Figure 2.

Snowball

t
~

A snowball effect of deleting clauses with pure
literals interferes with a concurrent resolution,
and may cause logical inconsistency

9.9 Previous work
It has been speculated that the logical inconsistency

problem stems from concurrent resolutions on links that
are too close to each other. In his dissertation,
Loganantharaj proved that two resolutions upon two
links can be done concurrently if their respective parent
clauses are not mutually connected [11]. He called this
condition a dcdp parallelism in comparison with AND
parallelism and OR parallelism. He then proposed a
graph-coloring method to divide the links in the graph
into disjoint sets so that multiple resolutions in the
same set can be done concurrently without running into
the danger of logical inconsistency. There are two
drawbacks in this approach. First, overhead is high due
to the high complexity of graph coloring. Second, dcdp
parallelism is also prone to logical inconsistency when
incompatible MGU substitution occurs during link
inheritance. Incompatible substitution is common and
can start up a snowball effect as shown in the second
example above.

4: What Leads to Logical Inconsistency?

4.1 Independence in resolution principle
According to. the completeness theorem of resolu

tion principle [4], links should be allowed to resolve
upon in an arbitrary order and still obtain a correct
result (provided that no particular link is indefinitely
excluded from being selected) [161. The order should
affect only the number of resolution cycles incurs in an
inference process, which means that some procedures
will take longer than others to finish. This property
implies that resolutions upon different links are indepen
dent. In other words, the resolution principle imposes
no precedence constraint on any two resolutions. Since
parallel processing also asserts the principle that two
independent operations should be capable of being per
formed concurrently without synchronization. Why
does logical inconsistency occur when parallel resolu
tions are performed on two links in a close proximity?
Furthermore, how close can two clauses be without risk
ing the danger of having parallel resolution result in
logical inconsistency? It is the objective of this paper to
provide some insights into the problem of logical incon
sistency.

4.2 Why does logical inconsistency occur?
To investigate why logical inconsistency occurs in a

connection-graph-based resolution procedure, we should
examine the differences between it and more conven
tional approaches.

In a conventional resolution procedure, the pair of
unifiable clauses to be resolved upon is selected from the
clause set using a search proc·edure. Once the pair of
clauses is determined, the resOlution is performed as an.
indivisible operation. No other processors will cut in
and interfere the resolution. The indivisible resolution
is possible primarily due to the way the clause set is
organized. The clause set is not structured. It is simply
a collection of clauses. A clause can be added to the set
or duplicated without affecting the unsatisfiability of the.

'set. Clauses are deleted from the set by a separated
pruning procedure. Thus, resolutions can be done
independent of the clause set once two parent clauses
are determined. Although the resolution may be tem
porarily suspended by interrupts to the processor exe
cuting it, its process context will not be changed by
other processors. There is no problem for two proces
sors to work' on the same clause either since the clause
can be duplicated and used as a read-only object.

3

The story is quite different in a connection-graph
based parallel resolution procedure. Searching for
unifiable clauses is eliminated by imposing a connection
graph over the clause set. The connection graph is a
data structure shared among all the participating pro
cessors. Concurrent updates to a shared data structure
involve important synchronization issues. Moreover,
clause pruning is done in companion with each resolu
tion. The engagement of resolution and clause deletion
make graph updates more complicated.

In short, the connection graph approach plays two
important roles in: (1) it eliminates the need to search
for unifiable clauses, and (2) it deletes redundant
clauses. Consequently, a resolution depends heavily on
the graph. It includes several steps of graph manipula
tion, e .. g., link inheritance and deletion of pure-literal
clauses as we have seen in Section 2. A resolution pro
cess becomes vulnerable when its connection graph is
arbitrarily changed before resolution has been com-'
pleted.

5. Parallelism in Concurrent Resolutions

5.1 Bernstein conditions
A set of conditions that are necessary to guard a

shared object against malicious access was proposed by
Bernstein, and is commonly known as Bernstein condi
tions. It has been shown that data consistency can be
maintained as long as Bernstein conditions are
satisfied [2, 61.

Since parallelizing a sequential process may change
the order of execution, accesses to data may also
become out of order. An out-of-order access may result
in data inconsistency. For example, assume that a data
element is read before it is written in a sequential execu
tion. A corresponding parallel execution would be
incorrect if it changed the order of access to be a write
and then a read. Thus, if a shared data is involved, cer
tain order must be preserved for a correct parallel exe
cution. This observation leads to the formulation of
Bernstein conditions.

Bernstein Conditions:
Let Di and Ri be the domain and range of an opera
tion, say Pi' respectively. Then, two operations Pi
and P j can be executed concurrently if the follow
ing conditions are satisfied:

(1) DinRj = ¢>

"Nothing in the domain of Pi can be in the
range of Pi"

(2) RinDj = ¢>

"Nothing in the range of Pi can be in the
domain of P(

(3) RinRj = ¢>
"Nothing in the range of Pi can be in the range-

ofP·"
These c6nditions exclude the possibility of executing
two operations concurrently unless no shared data is
involved or the data is used without modification. Usu~
ally, the terms "domain" and "input" are interchange
able, and so are the "range" and "output".

Bernstein conaitions are a set of general constraints
valid for all types of parallel processing, and
connection-graph-based parallel logic inference is only a
special case of parallel processing. Therefore, logical
inconsistency due to the false m!).nipulation of links in a

connection graph can be avoided if Bernstein conditions
are satisfied during all parallel operations.

With the Bernstein conditions, we can re-examine
why logical inconsistency occurred in the previous exam
ples. In the first example, two resolutions were carried
out by two processors concurrently. When the first pro
cessor tried to establish links for its resolvent {i.e.,
Clause e), it took Clause b and Link 6 as inputs and
made Clause c and the new link its outputs.
Meanwhile, Clause c and clause b were members of the
second processor's input and output sets respectively.
Concurrent execution of these two resolutions violates
two of the Bernstein conditions, i.e.,

R1nD2 = {Clause c}

D1nR2 = {Clause b}

Note that although Link 6 is in the domains of both
resolutions, it does not violate any Bernstein condition.
Thus, it is not the link that causes logical inconsistency
problem.

In the second example, logical inconsistency is due
to the fact that Clause a appears in the range of the
link-inheritance operation being performed by processor
1 and in the range of the snow ball effect being pro
pagated by another processor.

5.2 Precedence constraints on connection-graph resolu
tion

As described in Section 2, a resolution cycle
involves consists of five major steps. The domain and
range of each step are summarized in Table 1. Depen
dence relation of these steps can be established by veri
fying their input and output against Bernstein condi
tions. A precedence graph summarizing the dependence
relation is shown in Figure 3. Steps that can be done in
parallel are represented as different paths in the graph.
According to this graph, the parallelism between these
resolution steps is limited since there are only two paral-'
lei paths. Thus, it is reasonable to treat a resolution
cycle as a basic scheduling unit in task assignments.
However, we don't include the possible implementation

Step Operation Domain (Input) Range (Output)

1 Generates resolvent Parents, Link New clause

2 Tautology check Resolvent Resolvent

a Link inheritance Parents, Links, N eighbors,Links,
Neighbors Resolvent

4 Link removal Link, Parents Link, Parents

5 Clause deletion Entire graph Entire graph

Table 1. Domain and range of resolution steps in a reso-
lution cycle

of finer-grained parallelism at lower-level abstrac
tion [11. For example, the unification procedure in the
step of resolvent generation can be parallelized. Also,
the parallelism within the step of clause deletion is sub
stantial since multiple clauses can be deleted con
currently. We will further elaborate this point later in
this section.

Note that the removal of the resolved link can be
done either before or after tautology check and link
inheritance. The order of these steps, however, may be
crucial under certain circumstances. In Example 2

4

Figure 3. Precedence graph of resolution steps in a reso
lution cycle

above, for instance, if Link 3 were not removed before
link inheritance was done, the propagation of clause
deletion would stop at b. Logical inconsistency would
not have occurred in that case.

We now examine the dependence relation between
resolutions by treating a resolution cycle as a task unit.
In the first example in Section 3, the two links resolved
upon are at a distance of two hops apart. The two reso
lutions are designated as Land R respectively, and their
steps are labeled by Li and Ri for i=I,2, ... 5 for conveni
ence. Because the completeness only guarantees that
sequential execution of L before R or R before L is
correct, it does not guarantee a correct result if L· and
Ri are interleaved. Therefore we must start fron\. the
sequential order of L1, ... ,Ls, R1, ... ,Rs (or R1, ... , Rs,
L1, •.• , Ls) and then try to explore possible parallelism
from there based on Bernstein conditions.

The input and output of a resolution step are
represented in a form of [inputs/outputsJ. An overlap
of input/output between steps of Land R is represented
by a set { ... }. If an overlap is not empty, the two
operations can not be executed in parallel since it will
violate Bernstein conditions. Thus, a precedence con
straint (represented by an arrow) must be imposed. }?or
example, Clause b is in the lnput of Ll and in the out
put of R3. So, an arrow between Ll and Ra is intro
duced, and it is labeled with {b}. The direction of the
arrow is from L to R if L is executed before R in sequen
tial resolution, and from R to L if R is executed before
L. Once the order is determined all the other arrows
will be in the same direction. Similarly, we can add the
following arrows: La to Rl labeled with {c}, L3 to R3
labeled with {b,c}, L3 to Rs labeled with {c,4,6}, Ls' to
Ra labeled with {b,3,6}, and Ls' to Rs labeled with
{6}. These arrows represent the set of dependence con
straints for a parallel resolution of Land R. A pre
cedence graph summarizing these dependence con
straints is given in Figure 4.

According to the resulting precedence graph, Rl
can not be executed before La is finished, and R3 must
be executed after Ls'. These two dependence con
straints are so strong that only Rl and R2 can be exe
cuted in parallel with L. Unconstrained execution of L
and R in parallel can run into logical inconsistency
problem easily. This explains why two links to be
resolved upon concurrently should not be in close prox
imity.

The second example shown in Figure 2 has a longer
distance between the two links being resolved upon.
We can also derive a precedence graph for the two reso
lutions. The result is shown in Figure 5. In this figure,
we can see several arrows pointing from L/ s to Rs.

Notation:
[.. .I...J inputs/outputs
{.l shared data
....... Precedence if LA

--..... Relaxed precedence

Figure 4. Precedence graph of the two concurrent reso-
lutions in example 1

These precedence constraints protect the resolution L
from being interfered with by a snowball effect originat
ing from a remote link. The precedence graph also
demonstrates that two concurrent resolutions far apart
can also lead to logical inconsistency.

The above precedence graphs were derived by
strictly following Bernstein conditions with a simple
description of clauses and links (Le. a,b, ... for clauses
and 1,2, ... for links). As a matter of fact, the depen
dence constraints can be relaxed. If the data structures
representing a clause and its associated links are
separately maintained, adding and deleting a link will
not modify the clause itself. Thus, a link can be added
to or deleted from a clause even when the clause is
being used for generating a new clause. The separation
of links from clauses makes it possible to relax the
dependence constraints Lc ... R3, L3-+R1' L3-+R4 and
L4-+R3 in Figure 4.

In the next section, we will show that clause dele
tion blocked by another resolution can be resumed
automatically. We will also show that adding an inher
ited link to a clause will not prohibit the clause from
being deleted. Therefore, link inheritance can be done
in parallel with clause deletion, and the two arrows ori
ginating from L5' in Figure 4 can be removed.
Furthermore, L3-+R5 is implied by L3-+R~ due to transi
tivity, therefore it can be removed. The only pre
cedence constraints left now is L3-+R3' This 'says that
link inheritance is the only vulnerable step in a resolu
tion cycle that has to be protected.

5.3 Parallelism in snowball propagation
Potential scope of a snowball effect is unlimited. It

may affect the entire graph. To ensure a correct pre
cedence, it requires all of the clauses in the graph to be
reserved before clause deletion can start. If we did this
however, the resulting resolution procedure would
become purely sequential if one does. Fortunately, the
following theorems show that clause deletion can be
done one by one. In the case where the propagation of
clause deletion is blocked by another resolution, the
deletion process can subsequently it can be resumed by
the resolution that stopped it. From a processor point
of view, this is a very nice property because it can ter
minates its deletion procedure whenever the procedure
is blocked. The three theorems are summarized and
proved below.

5

Notations:
{ .. .I ... } inputs/outputs
{ .. } shared data
--... Precedence if LA

[c/cl

{bl

______ Relaxed precedence

-.. Precedence in individual
restllution

[c/c)

[h';:0
[j/jl R2 \

o
[g~~::; 0 / / [hh.:::i

+V 0[J1J1
~ o [ilil

(aJ I
[b.2J 't o [h.6/h.61

~ o [g,5/g,5)

+
0[,,4/,,41

+
[b.2/b.21

Figure 5. Precedence graph of the two concurrent reso
lutic;ms in example 2

For convenience, the following terms are defined.
Let c1,c2, ... ,Ck be a set of clauses. If ci+1 is con
nected to Ci by a link (ci,ci+d such that (Ci,Ci+l) is an
unique link incident to a literal in ci+1' then such a link
is called a D-link from Ci to ci+!' Accordingly, a literal
becomes pure if the D-link incident to it is removed,
and the clause containing it can be deleted. If, for all i
(l~i::;k), Ci and ci+1 are connected by a D-link, then
c1c2 ... ck is called a snowball stream. A snowball
stream is a path along which clauses can be deleted suc
cessively due to pure literals.

Obviously, if two snowball streams do not inter
sect, then no precedence constraint exists between
clause deletion in each of them. Thus, concurrent
clause deletion is possible. If two snowball streams do
intersect, then they are dependent. The first theorem
below characterizes the concurrent clause deletion in
such a case.
Theorem 1:

Clause deletion can be done concurrently along
multiple snowball streams even when they merge at
some points

<Proof>
Two snow ball streams may merge at a clause in
two different ways. They can meet either at the
same literal (e.g.,' 81 and 8,2 in Figure 6) or be
incident to different literals le.g., 81 and 82 in Fig
ure 6). The former is called an "AND" type of
merge, and the latter is called an "OR" type for
convenience. In a sequential resolution, clause dele
tion coming from a single stream of an OR merge
will propagate immediately to all down stream
paths since the merging clause will be deleted and
the first clause of each down stream becomes pure.

For an AND merge, all incident links must be
removed before a snowball effect can propagate to
down stream paths.
Now consider concurrent clause deletion propagat
ing from multiple streams. Clause deletion from an
OR stream will remove an incident D-link and
cause a pure literal. The merging clause will be
deleted. Deleting the merging clause will fire a
snowball effect to all the down stream paths, and
remove all the incident D-links. No clauses will be
left undeleted since all the rest can propagate up to
their D-links incident to the clause. In case an
incident D-link of an AND stream is removed first,
it may reserved the merging clause, and block an
OR stream from propagating snowball effects to
down stream paths. However, in spite of being
blocked, deletion from an OR stream will remove
its D-link and leave a pure literal in the merging
clause. The deletion procedure from the AND
stream will check for pure literal after it removes
the incident D-link. Therefore, the down-stream
clauses will always be deleted as they should
regardless the type of merge at a given clause.
And, snowball propagations upstream do not inter
fere with each other. Thus, deletion of clauses con
taining pure liter.als can be done concurrently.

'-..., \
~~

• S1

Notation:
_ AD-link,

~
the arrow represents I the direction 01 snow
ball propagation

~
Figure 6. Merging and branching of multiple snowball

streams

Now consider the dependence between clause deletion
and a resolution. It can be characterized by the next
theorem.
Theorem 2:

Let CIC2"'Ck be a snowball stream, and (Cj,Cj+1) be a
D-link between c) and Cj+1' A resolution performed
on "he D-link l Cj,Cj+1) will cause either (1) the
stream to bere-configured to a new stream
clc2' .. Cj_lCjCj+2 ... Ck, where Cj is the resolvent,
or (2) the stream to be broken into two streams
with the first clause in the down stream containing
a pure literal.

<Proof>
Consider the situation after the resolvent Cj has
been generated. The resolvent is subject to tautol
ogy check. If tautology is detected, then the resol
vent is deleted, otherwise it is eligible to inherit
(Cj_l,Cj) as an incoming D-link and (Ci+1,Cj+2) as an
outgomg D-link. There are two possibilities in this
case: both links ·are inherited I'uccessfully or at least
one of them is incompatible. In case the resolvent is
not a tautology and both links are inherited suc
cessfully, the snowball stream is reconnected. For
the rest, the snowball stre!).m is broken. These

6

Figure 7. Reconnection of a snowball stream due to a
resolution on the path

phenomena are examined respectively below.
(1) The resolvent is not of tautology, and both links
are inherited successfully:
The literal in ci+2 to which the new outgoing link
incident was singularly connected by the D-link
(Ci+l,Cj+2) on the original snowball stream. Since
the resolved link is a D-link, Clause ci+l will con
tain a pure literal and be deleted after the removal
of the resolved link. Together with it, the D-link
(Ci+l,Cj+2) will also be removed. The literal will
again become singularly connected by the new link
(Cj,Cj+2) only. Thus, the new link is a D-link. On
the other hand, the incoming link is also aD-link.
This is because the resolvent is formed by removing
the two complimentary literals connected by the
resolved link from the concatenation of the two
parents, and the new inherited link is connected to
the literal of the same predicate symbol that the
£riginal D-link is connected to. Since the resolvent
Cj is connected to Ci_l and Ci_2 via a D-link respec
tively, a new snowball stream
cl,c2, ... Cj_l,Cj,Cj+2' ... ck is established. The ori
ginal snow ball stream is broken after the removal,
of ci+l and its associated links. Figure 7 illustrates
the above reconnection, in which c· 1 c· c· and c· 2 1-' l' l' 1+
are labeled as Cla~s~s a, b, c .. and d respectively,
and the resolvent Cj IS shown m shade with a label
e.
(2) The resolvent is of tautology or either link is
incompatible:
If the resolvent is deleted due to tautology, then no
new }ink is t? be a~1ded to the graph. Clause ci+1
and ItS associated lInks are to be deleted since the
literal connected by the resolved link becomes pure.
Thus the snowball stream is broken into two Beg

.ments: cl,c2' ... ci and ci+2' ... ck' The literal in
ci+2 that was connected by (Ci+l,Ci+2) becomes pure
since the link is a D-link and is removed when c· 1
is deleted. Now, if the resolvent is not deleted b~t
the D-link (Cj_I,Ci) is not inherited successfully, 'then
the snowball stream is also broken. It can be
shown using similar arguments to the above that
the. first half terminates at Ci and the second half
starts from the resolvent. If it is the D-link
(Ci+1Ci+2) that is not inherited successfully, then the
first half terminates at Ci and the second one starts

from ci+2' Figure 8 illustrates this case. The
related clauses are labeled in the same way as in
Figure 7. The case in which both links are incom
patible follows directly from the two cases above.
The above theorem states that a snowball stream is

either reconfigured or broken after a resolution is
performed on it. In the latter case, the first clause of.
the second segment always contains a pure literaL This
implies that all the clauses in the down stream path will
be deleted due to a snow ball effect. The first half will
not be affected by the resolution in any case. It may be
deleted by some other resolution upstream, or it may
remain there if no resolution upstream is done. But,
what happens if a propagating snowball effect is blocked
by a resolution? Will the rest of the clauses be deleted
as they should were the propagation not blocked? The
following theorem answers this question.
Theorem 3:

When a propagating snowball effect is blocked by a
resolution being performed on a D-link in the mid
dle of a stream, it will be resumed by the blocking
resolution.

<Proof>
Again we assume that a resolution is performed on
the link (Ci,Ci+l)' Since only two clauses in the
upstream will possibly be reserved during resolu
tion, the coming snowball may be blocked either at
ci-l or at ci depending on which step of the resolu
tion is being executed. If it stops at Ci then Ci-l
must have been deleted. In this case, the resolution
proceeds as though ci-l does not exist and Ci con
tains a pure literal. The resolvent will also con
tains a pure literal because it is derived from Ci'
Thus, no matter how the snowball stream is broken
or reconnected, the down-stream clauses will be
deleted when the resolution starts its next step of
clause deletion. However, the resolution will not
check Ci_l for deletion in its original form. If the
incoming snowball is blocked at ci-l' it may not be
re-started by the current resolution. Fortunately,
this can be taken care of by a simple extension
which detects pure literals for those clauses
reserved for link inheritance.
In summary, the three theorems above indicate

that clauses that are supposed to be deleted due to
snowball effect will always be deleted wether snowball
effect propagation is interfered with by another pro
pagating snowball or disrupted by a resolution. Propa
gation can be done by reserving clauses one step at a
time. No global reservation is needed. The processor
executing it can simply leaves the propagation to others
without waiting for the reserved clauses to become
available.

6. Architecture Support for Parallel Resolution
As mutual exclusion is necessary for enforcing pre

cedence constraints, a resolution must enter a critical
section whenever it intends to operate on the connection
graph. To do so, a protocol that requests for the
permission must be provided. In this section, several
approaches are suggested.

6.1. Lock and Wait or Lock and Withdraw
The lock and wait approach is the concept behind

many synchronization protocols for critical section
management [12]. However, a lock and wait scheme
may run into deadlock. Consider two concurrent resolu
tions, each locks one clause and tries to reserve another
that happens to be locked by the other resolution. The

7

e _.l.....,.._

Figure 8. A resolution on the path of a snowball stream
breaks the stream into two segments

two resolutions will wait for each other to release locked
clauses forever, and thus a deadlock occurs.

Deadlock can be avoided by using a lock and with
draw scheme. That is, a resolution cycle will be aborted
if not all of the required input and outputs are avail
able. Those clauses that are locked will be released if a
resolution is aborted. The released clauses can be
claimed by resolution being performed by other proces
sors right away. Thus, no deadlock is possible.
Nevertheless, after a resolution is aborted, the graph has
to be recovered. This may not always be possible.
Moreover, a recovery discards all the work that was par
tially done. Computation power is wasted in this case.
For these reason, the feasibility and efficiency of a lock
and withdraw scheme has to be examined.

If either of the two parent clauses of a resolution is
found to be locked by another resolution on a nearby
link, the resolution can be aborted without any problem
since nothing has been done yet. The processor can
select another link to work on. When a resolvent is
newly generated, no link has been established. No lock
ing is necessary in checking tautology. As we can see
from Table 1, the first two steps do not modify the con
nection graph, while the last three steps mainly deal
with graph updates. Therefore,' when locking fails for
step 3, the resolution cycle can also be aborted simply
by deleting the unlinked resolvent. Furthermore, we
have also shown above that early termination of a snow
ball propagation will not introduce any new complica
tions either. Thus, it would appear that a lock and
withdraw scheme can be effectively applied to the mani
pulation of connection graphs without any identifiable
side effects.

6.2 Graph partitioning
The locking schemes discussed above require that

inputs and outputs in every step of resolution are
reserved. This requirement presents a nontrivial over
head. The overhead can be substantially reduced by
partitioning the connection graph.

The connection graph can be partitioned into as
many subgraph as the number of processors available
(see Figure 9(b)). Each processor will work primarily on

one subgraph. The partition is adjusted dynamically
during inference by moving clauses from one subgraph
to another as it is needed. For example, if a clause is
disconnected from any clause in the same subgraph,
then it means it can not be resolved locally. Under such
circumstances, the clause has to be sent to another sub
graph which has links to it. The migration of clause
may also be determined based on the usefulness of the
clauses in a subgraph. A migration may be desirable if a
clause is more useful in another subgraph. A conceptual
clustering scheme that governs graph partitioning and
clause migration has been developed and description of
the framework can be found in [7J

With dynamic graph partitioning, two resolutions
are automatically separated by' partition a boundary.
There is no danger of overlapping their inputs and out
puts except for those clauses near the partition boun
daries. Thus, synchronization is needed only when a
resolution involves boundary clauses. Since subgraphs
can be distributed evenly across different memory banks
to diversify memory accesses, this approach may also
minimize memory conflicts in a shared-memory MIMD
multiprocessor. Memory conflicts is one of the major
problems that degrade the performance of such MIMD
systems.

6.3 Store and Reconstruction
As a matter of fact, no synchronization is necessary

if a proper data structure is established for the links
across the partition boundary. The trick is to store all
of the changes to a graph locally, and re-construct the
part that is to be used. This approach is especially use
ful in a message-based multiprocessor in which locking
across machine boundaries requires sending messages
back and forth. Message passing is time-consuming,
and should always be minimized.

7. Concluding Remarks
In this paper, we have investigated the parallelism

that can be achieved by parallel resolutions on a predi
cate connection graph. Elimination of searching for
unifiable clauses makes a connection-graph-based resolu
tion procedure superior to conventional approaches.
With a connection graph, the entire search space is
::tvailable and is maintained in a well-structured graph.
The graph is also kept concise due to the snowball effect
of deleting clauses with pure literals. Because of these
properties, a connection graph provides a sound basis
for parallel logic inference. However, unrestricted paral
lel resolutions upon the graph may lead to logical incon
sistency. This seems to contradict the completeness
theorem of logic resolution and the common belief of
independence in parallel resolution. Using Bernstein
conditions, logical inconsistency is found to be a prob
lem of concurrent manipulations on the connection
graph. We have also shown that precedence constraints
between two resolutions can be relaxed. Especially, pro
pagation of a snowball effect can be terminated when it
is blocked by a resolution. This property allows the
proposed lock-and-withdraw synchronization scheme to
achieve a higher parallelism at its level of abstraction.
To further reduce synchronization overhead and
memory conflicts, we proposed a graph partitioning
approach. For message-based multiprocessors such as
the hypercube, we suggest that graph updates across the
partition boundaries be stored and re-constructed only
when that part of subgraph is to ·be used. This
approach can reduce time-consuming message-based
synchronization.

8

cl. ·G(I,f) c9. K(x,y) ·W(x,y)

c2. G(x,y) .F(z,y) ·M(x,z) cl0. Z(X,y) ·B(x,y)

c3. F(u,v) ·P(u,w) .Q(w,v) cl1. N(x,y) ·J(x,y)

c4. F(u,v) ·Q(u,V) c12. L(d,e)
c5. M(c,v) • K(u,v) c13 • S(e,f)

c6. M(u,v) ·Z(u,z) ·N(z,w) ·K(w,v) c14. B(I,b)

c7. P(X,y) ·L(x,y) cIS. J(b,c)
c8. Q(x,y) ·S(x,y) c16. W(c,d)

c1

(a) The Input clause set

(b) Graph representation of input clause set

Figure 9. Partitioning a connection graph for parallel
resolution

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

"A Qualitative Assessment of Parallelism in Expert Sys
tems," IEEE Software" pp. 70-81, May 1985.
A. J. Bernstein, "Analysis of Programs for Parallel Process
ing," IEEE Tr. Computers, vol. TSC-15, no. 5, pp. 757-762,
Oct. 1966.
W. Bibel, "A Comparative Study of Several Proof Pro
cedures," Artificial Intelligence, pp. 269-293, 1982.
M. Genesereth and N. Nillson, in Logical Foundations of
Artificial Intelligence, Morgan Kaufmann Pub. Inc., 1987.
G. Hornung, A. Knapp, and U. Knapp, "A Parallel Connec
tion Graph Proof Procedure," German Workshop on
Artificial Intelligence, pp. 160-167, Springer-Verlag,
Berlin, 1981.
K. Hwang and F. A. Briggs, in Computer Architecture and
Parallel Processing, McGraw-Hill, 1984.
J. Y. Juang and D. P. Cheng, "A Parallel Inference Model
for Logic Programming," Proc. National Computer Confer
ence , pp. 87-95, AFIPS, June 1987.
R. Kowaski, "A Proof Procedure Using Connection Graphs,"
JACM, vol. 22, no. 4, pp. 572-595, Oct., 1975.
R. Kowaski, in Logic for Problem Solving, 1979.
G. J. Li and B. W. Wah, "MANIP-2: A Multicomputer
Architecture for Evaluating Logic Programs," Proc. Int'l
Con/. Parallel Processing" pp. 123-130, 1985.
R. Loganantharaj, in Theoretical and Implementational
Aspects of Parallel Link Resolution in Connection Graphs,
Ph.D. Dissertation, Colorado State University, Fort Collins,
Colorado, 1985.
J. L. Peterson and A. Silberschatz, in Operating System Con
cepts, Addison-Wesley, 1985.
J. A. Robinson, "A Machine-Oriented Logic Based on the
Resolution Principle," JACM, vol. 12, no. 1, pp. 23-41, 1965.
S. Sickel, "A Search Technique for Clause Interconnectivity
Graphs," IEEE Tr. Computer., vol. C-25, no. 8, pp. 823-834,
August, 1976.
J. Siekmann and W. Stephan, "Completeness and Con
sistency of The Connection Graph Proof Procedure,"
Interner Bericht, no. 7/76, Institut fur Informatik, Universi
tat Karlsruhe, 1976.
J. Siekmann and G. Wrightson, "Paramodulated Connection
Graph," Acta Informatica, vol. 13, pp. 67-86, 1980.
B. W. Wah, "New Computers for Artificial Intelligence Pro
cesl1ing ,OJ IEEE Computer, vol. 20 , no. 1, pp. 10-15, Janu
ary 1987.

PARALLEL IMPLEMENTATION OF PARLOG

Ian Foster

Department of Computing
Imperial College of Science and Technology

180, Queen's Gate, London SW72BZ

itf@doc.ic.ac.uk

Abstract - A parallel execution model for the paralle1logic language
Parlog is described. The model is targeted to non-shared memory
multiprocessors. It addresses two important issues in Parlog
implementation: the logical variable, which provides a restricted form of
global address space, and the control call, a primitive that permits
programs to control and monitor subtasks executing other programs.
Distributed unification algorithms are described that permit processes
located on different nodes to communicate using shared variables.
Alternative distributed unification algorithms permit termination and
deadlock detection in distributed tasks at the cost of additional
communications. A prototype parallel implementation of Parlog based
on this model is being used to investigate its efficiency and refine its
design.

Introduction

The parallel logic language Parlog [I] is a simple and elegant

process-oriented language. Parlog programs describe systems of light
weight processes which execute concurrently, communicate using shared
logical variables and synchronize using dataflow constraints. Parlog
programs also have a declarative reading as sentences of predicate logic.
This facilitates analysis and understanding of programs. The language has
been used in applications as diverse as simulation, theorem proving and
process control.

Parallel logic languages such as Parlog have much in common with
dataflow and functional languages. It might hence appear that similar
techniques can be applied to achieve efficient parallel implementations.
However, a parallel implementation of Parlog must deal with two sources
of complexity not encountered in functional languages. The first is its
logical variable, which introduces some of the problems associated with
shared data in a parallel environment. The second is the control call, a
primitive that permits a Parlog program to control or detect termination
of another program's execution. This introduces a need for distr\buted
control and termination detection mechanisms in an implementation.

Taylor et al. [9] propose an elegant solution to the first problem, in

the context of the related language FCP. They represent variables that are
shared by processes located on two or more nodes by a single occurrence
of the variable and multiple remote references to it. An attempt to access
a variable represented by a remote reference is translated into a
communication to the node on which the variable is located. These
communications are encoded in distributed unification algorithms.

A similar approach can be used to implement shared variables in a
parallel implementation of Parlog. However, semantic differences
between Parlog and FCP mean that different distributed unification
algorithms are required. Distributed unification algorithms for Parlog are

described in this paper.
The complexity of the control call discourages a direct

implementation of its functionality. It is shown in this paper that its

9

distributed monitoring and control functions can be programmed in
Parlog, thus avoiding complexity in an implementation. Minor
extensions to the distributed unification algorithms support distributed
termination and deadlock detection.

The approach to Parlog implementation described in this paper is
targeted to non-shared-memory mUltiprocessors. This class of architecture
may be characterized as follows:

• a finite number of nodes, connected by a reliable communication
network

• no global storage; instead, each node has local storage
• nodes may communicate by message passing

Problems associated with shared memory communications and
unreliable communications are not considered.

Parlog

Language Overview

A Parlog program is a collection of clauses which have the form:

m,n~O

where H is the clause's head, ':' is the commit operator and the G's and 8's
are processes. Each clause can be read declaratively as: "H is true if the G's
and 8's are true". Clauses with the same name and number of arguments
are grouped into procedures.

The G's comprise the guard ofa clause. For simplicity, this paper
deals with the subset of Parlog in which the G's are restricted to be
predefined test operations. As full Parlog can be compiled to this subset
[6], this does not imply a lack of generality.

The following program illustrates the language.

go f- producer(Xs, sync), consumer(Xs). (CI)

producer(Xs,sync) f- Xs = [X IXs1), producer(Xs1). (C2)

consumer([X IXsJ) f- X = sync, consumer(Xs). (C3)

The notation [Head ITail) denotes a list structure with a Head and
Tail. Strings beginning with uppercase letters denote variables while
those with lower case denote constants.

A call to this program:

?- go.

creates two processes, producer and consumer (CI). producer
communicates a stream of messages (unique variables: X, X1, ...) to

consumer by incrementally constructing a list structure containing these
variables (C2). consumer acknowledges each such 'communication' by
assigning.each variable it receives the value sync (C3).

Non-variable terms in Pariog clause heads define dataflow constraints:
a clause cannot be used to reduce a process until a process' arguments
match its own. In consequence, producer and consumer communicate
synchronously. consumer waits for a communication from producer;
producer then waits for the variable it has communicated to be bound to

sync.

Operational Model

The state of a Parlog computation may be represented as a process
pool. Computation proceeds by repeatedly selecting a process and
attempting to reduce it using the clauses in the associated procedure. A
reduction attempt may succeed, fail or suspend.

A process reduction comprises two phases: test and spawn.

Test phase: In the test phase, an attempt is made to find a clause
capable of reducing the process. Non-variable arguments in the heads of
all clauses are matched with corresponding process arguments and guard

tests are evaluated. Matching and guard evaluation cannot bind variables
in process arguments and suspend if applied to variable proCeSS
arguments. A clause is a can~idate if both input matching and guard
evaluation succeed. If no clause is a candidate and at least one clause has
suspended, the reduction attempt suspends and the process is put back in
the process pool. If no clause is a candidate and no clause suspends, the
reduction attempt has failed. If one or more candidate clauses are found,
the reduction attempt has succeeded. A candidate clause is selected and
reduction proceeds to the spawn phase.

Spawn phase: In the spawn phase, unification operations (that is,
processes with the form: X = Y) in the body of the selected clause are
performed and other body goals are added to the process ponl.

Unification IS a recursive matching procedure that attempts to make
two terms identical, binding variables in either term if necessary. In
Parlog, it is generally used to simply assign a value to a variable.

Consider the producer procedure above (which consists of a single
clause). This can be used to reduce a producer process if the test

Arg2 = sync

succeeds, where Arg2 represents the second argument of the process being
reduced. If Arg2 is not instantiated, this test and hence the producer
process suspend.

Assume that producer's second argument has been assigned the
value sync. The test succeeds, allowing the process to be reduced: the
unification' operation Xs = IX IXl?1) is performed and the process
producer(Xs1,X) is added to the process pool.

Implementations ofParlog generally optimize this simple operational
model by introducing a suspension structure which permits suspended
processes to be associated with variables for which they require values.
Such processes are not selected for reduction again until one of these
values becomes available. This avoids the overhead of repeatedly
selecting a suspended process for reduction.

A Parlog computation terminates when:

• the process pool is empty, in which case the computation has
succeeded

10

• a reduction attempt or unification operation fails, in which ~ the
computation has failed.

• there are no reducible processes, yet the process pool is non-empty,
in which case the computation has deadlocked. (Because of
dataflow constraints, every process is suspended waiting for data).

Controlling Computation

An important component of the Parlog language is its control call.
A call to this primitive has the general form:

call(Module, Process, Status, Control)

It denotes the controlled execution of Process using the program
dermed in Module. Another, concurrent process can subsequently
suspend, continue and abort evaluation of Process by binding Control
to a stream of messages. It can monitor its progress by inspecting
Status. This variable is bound to a stream of messages to report both
termination and run-time errors.

The control call provides Parlpg with the important notion of task: a
unit of computation that may be monitored and controlled as a single
entity. The operational effect of the control call is to create a subtask or
process subpool within the process pool in which it is called.

Distributed Unifiea600

Consider the problem of achieving a multiprocessor implementation
of Parlog in which the process pool representing a task may be distributed
over several nodes in a multiprocessor. Assume that a uniprocessor
implementation of Parlog exists on each node [3,5]. This supports
process reduction, unification and the control call. To support parallel
execution, this must be extended to provide:

distributed unification: to allow processes located on different nodes to

communicate using shared variables.
distributed control: to control and detect termination and runtime

errors in tasks distributed over several nodes.

One problem that does not need to be dealt with in an
implementation is load balancing. This is programmed in the language
using message passing.

Recall that Parlog's computational model distinguishes between test
and unification operation on variables. Assume that, as in Taylor et al.'s
FCP implementation, variables shared by processes located on several
nodes are represented by a single occurrence and several remote references
to this occurrence. In a multiprocessor, both tests and unifications can
encounter remote references. When this occurs, distributed unification
algorithms are invoked in the implementation.

The unify algorithm is applied during the spawn phase of Parlog
reduction when unification operations encounter remote references. It
generates 'messages to the nodes on which remote terms are located
requesting that they perform unific3tion operations.

The read algorithm is applied during the test phase when tests
encounter remote references. A test operation applied to a remote
reference is made to suspend as if the remote reference denoted a variable.
If the reduction attempt suspends, messages are generated to request the
values of any remote terms encountered in suspending clauses. The
process is associated with these remote references in the suspension
structure; it will thus not be selected for reduction until a requested remote

value is returned. (The term 'value'is defined below).

It is useful to distinguish between strict and non-strict tests. Most

Parlog tests are strict: they suspend until all input arguments are
instantiated and then succeed or fail. For example, Integer or atomic. A

few, such as Parlog's equality and inequality primitives == and =/=, are
non-strict: they can sometimes proceed when their input arguments are

variables. For example, a call X== Y is defined to succeed if its two
arguments are syntactically identical; this includes the case when they are

identical variables. A call X== Y can thus succeed when its arguments are

both variable, if they are the same variable.
Requests generated following strict and non-strict tests are

distinguished. As a strict test cannot proceed until a variable argument is

bound, it is not necessary to return the value of a remote term required by
a strict test until it is non-variable. A non-strict test, on the other hand,
needs to know if the remote term is a variable and, if so, what is its

location. (For example, a call X==Y must succeed if X and Y are remote
references to the same variable). The value of a remote term must thus be

returned immediately when required by a non-strict test, even if it is

variable. To implement this distinction, the ns Jead algorithm is
defined, to be applied instead of the read algorithm when a non-strict test

encounters a remote reference.
Following sections define the read, ns Jead and unify algorithms

in terms of:

• when messages are generated, and
• what messages are generated, and

• how messages are processed.

More detailed descriptions of the algorithms can be found in [4].

Each node in a multiprocessor is assumed to alternately perform
reduction attempts and process incoming messages. Processing a message
may generate further messages and/or modify internal data structures.
Alternation of reduction and message processing ensures that internal data

structures are not left in inconsistent states.
Messages are represented here as structured terms: read(T,F).

unify(X,T,Y), etc. The functor represents the message type; the first

subterm (T, X, etc.) is always a remote reference (that is, a (node,

location} pair) representing the destination of the message.

Messages are generated as a result of test and unification operations or
whilst processing messages. When a message is generated, it is sent to

the node referenced by its first component A node receiving a message

examines the location referenced by this component. If this is a remote
reference, the message is forwarded: this dereferences chains of remote
references. Otherwise, the node can proceed to process the message.

Dereferencing of remote reference chains is assumed in the following
descriptions and is not mentioned explicitly.

A chain of remote references may lead a message back to its source
node, making an apparently remote operation a local operation [9]. For

clarity of presentation, the descriptions that follow ignore such special

cases. Only minor modifications to the algorithms are required to deal
with them.

Strict Tests: The read Algorithm

If a strict test requires the value of a remote term, a read message is

generated to the node indicated in the remote reference. A node receiving a

read message returns the value of a non-variable term immediately using
a value message. The value of a variable is not returned until the

variable is bound. A broadcast note is attached to the variable to record

11

the pending request. It is thus necessary to check for broadcast notes
when binding variables. Pending requests are responded to with value
messages.

The value of a term is defmed to be the scalar value of a constant, one
or more levels of a structure (including constant subterms and remote

reference,s to other subterms) and a remote reference to a variable.

A value message copies the value of a term from one node to
another. A node receiving a value message replaces the remote reference

with the value and awakens any processes suspended waiting for it.
Subsequent accesses to a non-variable value do not require
communication. This copying of non-variable terms is possible because
of the single-assigument property of Parlog variables.

Note that a re ad message is only generated for the fIrSt process to
suspend on a particular remote reference on a particular node.

The read and value messages have the form:

read(To, From)

value(From, Value)

where To is a remote reference to the remote term (that is, a

representation of its node and location), From represents the node and
location of the original remote reference and Va lu e is the value of the
remote term.

I. Value is available.

B1 read({n2,X},{nl,R)) ~2
R • X

~ -------- ~
• value({nl,R}, 12)

2. Value is not available.

(a) ~
read({n2.X}.{nl,R)) ~2

R .• X

Iill3- - - - - - - - - -iG~IRI
n 1 broadcast

note

(b) 8 1 {§J2 RffiTI3- __ ;-__ ___ h X=17

value({nl,RI, 17)

Figure 1 The read distributed unifICation algorithm.

Figure 1 shows two examples of remote reading. In each case, the
value of a term represented by a remote reference (represented here as {n2,
X}: that is, location X on node n2) is required by a strict test (for

example, integer(X)). The value of X is requested using a read message.
In the fIrSt example, the remote term is available (it is the integer 12) and
is returned immediately using a value message. In the second example,

the remote term is not available: location X is a variable. A broadcast
node is therefore associated with the variable (a). When this variable is
instantiated (X= 17), its value is returned using a value message (b).

Non-Strict Tests: The RS]ead Algorithm

If a non-strict test requires the value of a remote term, a os_read
message is generated to the node indicated in the remote reference. If the

remote term is non-variable, its value is returned using a value message,

as before. IT it is a variable, a broadcast note is attached to the variable
and a remote reference to the variable is returned in a ns_ value message.
The node that initiated the request can then replace the initial remote
reference (which may have been the head of a reference chain) with this
direct remote reference. Non-strict tests that required the remote term may
then be repeated. IT they still suspend, there is no need to request the
value of the remote term again. The broadcast note attached to the remote
variable means that its value will be returned as soon as the variable is
bound.

A ns_read message is generated for the fIrSt process to suspend on
a particular remote reference because of a non-strict test.

(a) U V suspends
. ns...read({n2,XI,{nl,Uj)

n1~---r _J --..wEJX
ns_value({nl,UI,{n2,xj) T
ns...read({n2.YI,{nl,Vj) I

V - - - z- - - _t_ - - -tC!:J y
DS_val:ue({nl,VI,{n2,xI)

n2

(b) U=V succeeds

n1[dc:::3-_- - -- - -- - -EJvar X n2 ____ ~L!.!!W

, ,
V ----

Figure 2 The ns -,ead distributed unif1C8tion algorithm.

Figure 2 illustrates the use of ns_read and ns_value messages. In
(a), a non-strict test U==V encounters two remote references. Although
these indicate different locations on node n2 they in fact refer to the same
variable, X. The test U==V initially suspends and ns_read messages are
generated. Reference chains are dereferenced and 'direct' remote references
returned to node n1. These replace the original remote references. In (b),

the test U==V is repeated and, as U and V are now identical remote
references, succeeds.

The unify Algorithm

Recall that unification operations have the form X= Y and are
performed during the spawn phase of Parlog reduction. If a unification
operation encounters a remote reference, a unify message is generated to

request nodes on which remote term(s) are located to continue unification.
Failure of such a remote unification operation is signalled to the node on
which it was initiated by a failure message. This permits an error
message to be signalled on the status stream of the task in which the
unification operation was performed.

Consider a unification operation X= Y. If one of the terms X or Y is
represented by a remote reference (say X), a unify message is generated to

the node referenced by the remote reference. This message carries the
value of the other term (Y) to be unified to the node on which the remote
term (X) is located.

IT both terms to be unified are remote, a unify1 message containing
remote references to both terms is dispatched to the node on which the
first is located; a node receiving such a message forwards a unify message
containing the value of that term to the node on which the second term is
located.

12

In both cases, a unify message eventually arrives at a node on which
one of the terms to be unified is located, carrying the value of the other
term. The unification operation can then proceed.

A unify message has the form:

unify(X, T, Y)

where X is a remote reference to a term, T denotes the task which initiated

the unification operation and Y is the value of a term. A unify1 message
has the same form: unify1 (X, T, V), but both X and Y are remote
references to terms.

A failure message has the form:

failure(T, X, Y)

where T specifies the task which initiated the unification operation (X= Y)
that resulted in failure, and X and Y are the values of the terms that could
not be unified.

Figure 3 illustrates the messages that may be generated by the unify

algorithm if one or both arguments in a unification operation are remote
terms.

In (a), only one of the terms to be unified, X, is represented by a
remote reference. A unify message is generated to node n2. This
contains remote references to X and to the task in which the unification
operation occurs (1), plus the value of the other term, Y «yval».

In (b), both terms to be unified are represented by remote references.
A unify1 message is generated to n3, the node on which one of these
terms, Y, is located. This carries remote references to X and Y. Node n3
receives the unify1 message, determines the value of Y «yval» and
forwards a unify message to node n2. As in (a), this contains remote
references to X and to the task T, plus the value of the other term, Y
«yval».

(a) One local; one remote.

~
1 unifY({n2,xI,{nl'TI'~al>bJ) n2

x=<yval>
Y~ • failure. (C) X (A)

WillY (B)
X n - - - - - - -- - - .ae::J

(b) Both remote. ,-Q
unifY~I{n3 1,r(;I.Tl.{n2,x)) I
~

n , ' unify({n2.Xl, (nl.Tl.<yval»

Y' n -

x, 17:
'g , n2

fail,:).. ... , X X = <yva1>
(c/"'''''''';' '- (A)

Figure 3 The unify distnbuted unification algorithm.

In both cases, the node n2 on which the term X is located receives a
unify message containing the value of Y and performs the actual
unification operation. This may generate further unify or failure
messages. The unifICation algorithm applied is described in detail in [4].

Briefly (letters A, B, C refer to Figure 3):

• If X and Y are the same constant, nothing is done.
• A local variable X is bound to reference to a remote constant or

structure Y (A)

• If X is a variable and Y is not, a unify message is generated to request

the node containing Y to unify Y with X (B).

• If both X and Y are variable, an order check (defined below) is

performed.
• If X and Y are tuples of the same arity, corresponding subterms are

recursively unified. (Further messages may be generated; these are
not illustrated).

• In all other cases, a failure message is generated (C).

Circular References

In logic programming systems, circular references can be created if a

variable X can be bound to a variable Y at the same time as Y is bound to
X, as illustrated in Figure 4. This problem can be avoided on shared

memory multiprocessors by using pointer comparison to ensure that
variable to variable bindings are only created in a certain direction (from

low address to high address, for example). A similar technique can be

used on non-shared memory machines. An ordering is defined on node

identifiers. An order check compares nqde identifiers when variables

located on different nodes are unified. Bindings are only permitted from a

node of lower identifier to a node of higher identifier.

(a) Uniprocessor (b) Multiprocessor

Figure 4 Circular references.

The order check is applied when a local variable X is unified with a
variable represented by a remote reference Y. If the ordering constraint is

violated (that is, node(X) > node(Y», the unify message is forwarded to
the other node. This causes the unification operation to be repeated in the
opposite direction. Otherwise, X is bound to a remote reference to Y

(unless both variables are located on the same node). In both cases, the
binding is created in the correct direction, from low to high node.

Complexity of Distributed Unification

The program presented at the beginning of this paper is used to
illustrate the use of distributed unification algorithms and to motivate
some observations on their complexity.

Recall that this program implements synchronous communication
between two processes, producer and consumer. Assume that
producer and consumer are located on different nodes. Figure 5

illustrates the messages generated when the conjunction is executed by a

Parlog implementation using the unify and read distributed unification
algorithms. In (a), the initial situation is represented. It is assumed that

the variable Xs is located on the same node as producer; consumer

thus possesses a remote reference to this variable. In (b), consumer
attempts to read the shared variable Xs, thus causing a read message to
be generated to retrieve that value. Meanwhile, producer has generated a

13

value for Xs (say IX IXs1). In (c), a value message returns this list
structure to consumer; this contains remote references to X and Xs1. In

(d), consumer unifies the newly received term X with the constant
synch. As X is a remote reference, a unify message is generated to
producer.

[±t--oo
(a) producer(Xs,...). consumer(Xs)

va1ue([XIXs 1])

•

(c) cons obtains X and X.I

-ix/Xrl: read(XSE!]) e
4--- - - 4
X
XII

(b) prod binds Xs; cons reads Xs

unify(X,synch)

~--L----J
(d) cons binds X

Figure 5 Distributed unification.

The Parlog implementation uses three messages to send and
acknowledge a 'communication'. Two messages are required to 'read' the
original value; one message is required to 'write' the value synch to the

variable X. In contrast, if this algorithm were to be implemented in a
language with explicit send and receive primitives, two messages
would be required for each 'communication': one to send it and one to

acknowledge it.
Two points can be made:

• The distributed unification algOrithms presented here are in general
optimal in their communication complexity. That is, D(N)

messages are required to communicate D(N) values between nodes.

('In general', because when unifying two variables, order checks
may cause additional communications. This is however a special

case, as variables rather than values are involved).

• The distributed unification· algorithms presented here are lazy: a
value must be requested by a reader before it is transmitted. This is

why three messages are required to communicate two values. There

is scope for optimizations that eagerly propagate values when
readers are known to require them.

This example also illustrates a useful optimization that can be made

in an implementation of the unify algorithm. If a remote reference is

encountered during a unifICation operation, a unify message is generated,
as in Figure 5 (d). This requests that a remote node unify the remote

value (say A) with another term (8). The local remote reference, which

represents the remote term A, can immediately be replaced with the term

with which the remote term is to be unified. (In Figure 5 (d), the string.

sync h). Subsequent references to that term need not therefore generate

communications.

D&ributed Control

Recall that Parlog's control call provides the following functionality:

• monitoring: tennination and error detection in tasks
• control: the ability to suspend, resume and abort tasks

It is relatively easy to implement these functions efficiently in a
uniprocessor [4]. For example, to detect tennination of uniprocessor

tasks, a process count is associated with each task. This is incremented
when processes are created and decremented when processes tenninate. A
process count of zero represents task tennination. Providing the same

level of control in a multiprocessor is problematic. Existing algorithms

for distributed control and termination detection are complex [2].
Incorporating such algorithms in the language implementation

compromises simplicity and flexibility. Fortunately, it is possible to
program distributed control functions in Parlog.

Assume that each node in a multiprocessor supports a uniprocessor

implementation of Parlog, including a control call capable of monitoring

and controlling a uniprocessor task: that is, a task executing on a single

node. Assume also that each node supports distributed unification
algorithms that permit prpcesses located on different nodes to
communicate using shared variables.

Now consider the problem of monitoring and controlling a
distributed task: a task executing on several nodes. Observe that the
process pool representing a distributed task can be viewed as a number of

process subpools, one per node on which the task is executing. For
example, in Figure 6, a distributed task T executing on three nodes Nl,
N2 and N3 comprises three subpools Tl, T2 and D.

Nl N2

N3 N4

Figure 6 A distributed task.

Assume that processes in these subpools can communicate with

processes in other subpools with which they share variables, but cannot
migrate to other processes. (This is a consequence of programming load

balancing in the language). Then a uniprocessor control call is sufficient
to tenninate (and detect tennination of) all processes in a distributed task.

Each constituent subpool is executed as a separate uniprocessor task.

Parlog processes are provided that coordinate the monitoring and control
of the subtasks. A possible configuration for these processes is illustrated
in Figure 7. Supervisor processes (sv) are linked in a circuit using shared

variables. A coordinator (coo rd) provides status and control streams
which can be used to monitor and control the distributed task. For

example, a request to terminate the distributed task (received on Control)
is translated by the coordinator into a message which passes around the

circuit. A supervisor receiving such a message tenninates its subtask
using the local control call's control stream (Ci), and forwards the

message. When the control message eventually returns to the coordinator,
it is known that all subtasks have been tenninated.

14

Termination detection exploits Takeuchi's short circuit technique [8].

If a supervisor detects termination of its subtask, it unifies the two
variables fonning its part of the circuit. Eventually, when all sub tasks

have terminated, the coordinator will have two references to the same

variable; a test L== R will hence succeed. (Recall that a call to == is
defined to succeed if its two arguments are the same variable).

Termination can then be signalled on the status stream (Status).

node 1 node 2 noden

Figure 7 Distributed control.

Both tennination and tennination detection rely on the fact that once
a pool of Parlog processes is empty, subsequent communication cannot
create new processes. This is a consequence of programming load

balancing in the language. Messages generated by distributed unification
algorithms may still be in transit; however, these messages convey data,

not processes. Process mapping occurs if this data is interpreted as

processes by a Parlog process. If no processes remain to interpret the
data, no process mapping can occur.

Termination and Deadlock Detection

The uniprocessor control call can be used to program mechanisms
that detect when all processes in a distributed task have tenninated.

Messages generated as a result of unification operations perfonned by

processes in the task may however remain in transit after all processes
have tenninated.

Recall that four types of message are used by the distributed

unification algorithms: read, value, unify and failure. read and value
messages cannot affect the course of subsequent computation if the
processes that requested the values they are retrieving have tenninated. In

contrast, unify and failure messages can bind variables or signal errors.
A task has not therefore be said to have truly tenninated until all its
constituent subtasks have tenninated and all unify and failure messages

that it has generated have been processed.
A possible solution to this problem of messages in transit is to

implement a global tennination detection algorithm that verifies that all

unify and failure messages generated by a task are received. A much
simpler, albeit somewhat more expensive, solution is to cause each unify
message to be acknowledged. This pennits the use of message counts

associated with individual uniprocessor tasks to detect when all
outstanding unify and failure messages have been processed. Termination

detection can still be programmed in the language.

The latter solution is used in the execution model reported herein. It
is embodied in an alternative unify algorithm, s_unify, which
acknowledges successful remote unifications. This differs from the unify

algorithm described previously in three respects:

• It uses s_unify and s_unify1 messages rather than unify and

unify1 messages.

• It acknowledges successful remote unifications. A node receiving a
s_unify message processes it as it would a unify message, but
acknowledges successful completion of tbe remote unification
operation using an ack message.

• It does not perform remote unification operations when tbey involve
two structures. Instead, it generates a structure message to return
botb structures to tbe node which initiated tbe unification. This can
tben initiate new unification operations, one per structure element.

This avoids a need for tbe complex mechanisms tbat would be
required to detect termination of tbe recursive unification of two
remote structures.

Assume that the Parlog implementation on each node in a
multiprocessor associates a process count witb each uniprocessor task. A

task's process count is incremented when it creates a process or generates
a s_unify message; it is decremented when a process terminates or the
task receives a failure or ack message. A process count of zero then
signifies tbat botb all a task's processes and all remote unifications tbat
it has initiated have terminated.

If all subtasks comprising a distributed task use tbe s_unify
algorithm, it is known that when all subtasks have terminated all
processes in tbe distributed task have terminated and all unify and failure
messages generated by tbis task have been processed. This is true
termination. A task for which termination detection is required hence uses
tbe s _unify algorithm; otber tasks can use tbe more efficient unify
algoritbm. The algoritbm to be used is specified when a task is initiated.

s_unify messages have tbe same form as unify messages. The ack
and structure messages have tbe form:

ack(T)

structure(T, X, Y)

where T specifies the location of the task which initiated tbe remote
unification operation and X and Y are tbe two structures tbat are to be
unified.

The structure message is, strictly speaking, an unnecessary
communication. It may thus appear to be a source of inefficiency.
However, unification of two structures, tbough possible in Parlog, occurs
rarely in practice. To determine tbe approximate frequency of such
operations, ten Parlog applications (including compilers, programming
environments, simulation programs and process control programs, written
by different programmers) were tested on an instrumented uniprocessor
Parlog implementation. Less tban one per cent of all unification
operations involved two structures. As remote structure-to-structure
unifications are a subset of all structure-to-structure unifications on a
multiprocessor, it can be expected tbatsuch operations will be extremely
rare. The structure message tbus appears to be a useful and inexpensive
simplification.

DeadIock

Recall tbat a Parlog computation is deadlocked when all its processes
are suspended due to dataflow constraints. Deadlock can easily be detected
in a uniprocessor: an active process count is maintained for each task; if
tbis reaches zero and tbe task has not terminated, tbe task is known to be
deadlocked. Deadlock detection in a multiprocessor is more complicated,
again because of messages in transit: it is not immediately possible to
determine whetber a process is suspended because tbere is no producer for
a remote value or merely because a read or value message is still in

15

transit. In [4], it is shown tbat an alternative distributed unification
algoritbm d -,ead can permit a deadlock detection algoritbm due to
Dijkstra et al. [2] to be programmed in Parlog witbout a need for global
message counts. The d -,ead algoritbm, which acknowledges certain
read and value messages, is used in place of read when deadlock
detection is required.

Related Work
FCP

Taylor et al. 's work on parallel implementation of FCP [9] provided

a number of ideas which were exploited in tbe wode reported herein. Key
are tbe idea of using remote references to implement a global address space

and tbe use of broadcast notes to record requests for values tbat are not yet
available. However, tbe execution model described herein differs from tbat
of Taylor et al. in a number of important respects.

One difference is tbat tbe algorithms presented here (and otbers
described in [4]) support termination and deadlock detection in distributed
tasks. Taylor et al. do not address tbese problems in tbeir paper.

Otber differences derive from semantic differences between Parlog and
FCP. FCP uses general unification rather than input matching to
determine whether a clause can reduce a process. This means tbat a clause
may be required to successfully perform two or more unification
operations before it can be selected to reduce a process. These must be
performed as an atomic action: if anyone fails, tbe otbers must not
occur. To provide tbis atomicity, the FCP implementation supports
variable migration. All variables that are to be bound by a reduction are
fetched locally before tbe reduction is performed. To prevent livelock
when several nodes require tbe same variables, variables fetched in tbis
way are locked; this in turn requires a deadlock prevention scheme.
Starvation is possible. Once all variables required by a process have been
fetched locally, reduction can occur witbout furtber communication. Any
binding performed during a reduction attempt is recorded and undone if
reduction fails. As reduction attempts and message processing are
alternated, tbese 'unsuccessful bindings' are not visible to otber processes.

In Parlog, on the other hand, variables are only tested prior to
reduction. Test operations are encoded efficiently using read and
ns_read messages. Unification is performed after reduction in a number
of independent operations. Unification operations involving remote terms
are requested using unify messages and variables do not migrate.
Alternating message processing and process reduction at nodes provides
mutual exclusion when binding individual variables. As processes do not
compete for resources (variables), deadlock, livelock and starvation cannot
occur.

Experimental studies are required to quantify tbe run-time costs
associated witb tbe FCP and Parlog distributed unification algoritbms;
these have not been performed. Intuitively, it would seem tbat tbe Parlog
algoritbms are less expensive, as variables do not need to be migrated
before being bound, and variable locking and deadlock detection are not
J.tquired.

FGHC

Ichiyoshi et al. [7] describe a parallel implementation of the parallel
logic language FGHC. They incorporate distributed control functions
such as termination detection in tbe lowest level of tbeir implementation,
ratber tban programming tbis functionality in tbe high-level language as
proposed here. Their approach provides efficient support for certain

functions but results in a more complex and less flexible implementation.

Conclusions

A parallel implementation of Parlog must support the language's
logical variable and conJrol call. This paper has described simple and
efficient treatments of these two language features.

Distributed unification algorithms have been described that pennit
processes located on different nodes in a multiprocessor to communicate
by unifying shared variables. The distributed unification algorith~s are
simple. There are three basic message types - read, value and unify -
plus three acknowledgement messages: failure, ack and structure. The
algorithms are in general optimal in their communication complexity.
That is, except when order checks fail when unifying variables, there is no
'hidden communication': reading or writing a remote value involves a
small, constant number of messages. This means that although Parlog is
a high-level language, programmers can visualize the communications
implied by programs and can hence implement particular communication
algorithms.

The complexities inherent in the distributed monitoring and control

functions represented by the control call are not incorporated in the
execution model. Instead, these functions are programmed in the language
using simple uniprocessor mechanisms to control components of a task

located on a single node. Alternative distributed unification algorithm
support termination and deadlock detection in distributed tasks. These
provide added functionality at the cost of additional communication.

This approach to control call implementation has three advantages
compared to a full implementation of the same functions. First, the basic
implementation is kept extremely simple. Second, it pennits a
programmer to trade off functionality and efficiency by an appropriate
choice of distributed unification algorithm. Third, it provides greater
flexibility. A potential disadvantage of the approach is that these
functions may be less efficient when programmed in Parlog than when
supported directly in the language implementation. Experimental studies
will be performed to detennine whether additional costs associated with
the approach described herein are significant

The distributed unification algorithms described in this paper are
incorporated in a distributed implementation of Parlog on a networlc of
SUN workstations. It is planned to port this implementation to a non
shared memory multiprocessor in the near future. In the meantime, the
SUN implementation is being used for experimental studies aimed at
detennining the relative costs of the various distributed unification

algorithms (and hence the costs of tennination and deadlock detection).
Another area of ongoing research is simplification of the basic distributed
unification algorithms. Minor changes to Parlog's semantics can permit
significant simplifications. For example, the ns Jead algorithm is
required to support Parlog's 'non-strict' test operations. If these are
redefined to be strict, this algorithm is no longer required.

16

Acknowledgements

This research was supported by the Science and Engineering Research

Council under grant GR/D/2.4036. . . .
The author is grateful to Steve Taylor for enlightening discussIOns on

parallel impl~entation. Thanks also to Nobuyuki I~hiyoshi ~d others
at the ICOT research centre for explaining the details ~f therr parall~l
FGHC implementation and for commenting on an earlier m:ut of this

paper.

References

[I] Clark, K.L. and Gregory, S. "Parlog: parallel programming in
logic," ACM Trans. on Programming Languages and Systems 8(1)
(January, 1986), 1-49.

[2] Dijkstra, E.W., Feijen, W.H.J. and van Gasteren, A.J.M ..
"Derivation of a termination detection algorithm for distributed
computations," Iriformation Processing Letters 16 (1983), 217-219.

[3] Foster, I.T., Gregory, S., Ringwood, G.A. and Satoh, K. "A
sequential implementation of Parlog", Proc. 3rd Inti Logic

Programming Con/., LNCS-225, Springer-Verlag, (Juner, 1986)
149-156.

[4] Foster, I.T. Parlog as a Systems Programming Language, PhD
thesis, Imperial College, London (March, 1988).

[5] Foster, LT. and Taylor, S. "Flat Parlog: a basis for comparison",
International Journal of Parallel Programming, 16(2) (1988).

[6] Gregory, S. Parallel Lagic Programming in Parlog. Addison
Wesley, Reading, Mass. (1987).

[7] Ichiyoshi, N., Miyazaki, T. and Taki, K. "A distributed
implementation of Flat GHC on the Multi-PSI," Logic
Programming: Proc. 4th Inti Con/., MIT Press (May, 1987),257-
275.

[8] Takeuchi, A. 1983. "How to solve it in Concurrent Prolog".
Unpublished note, ICOT, Tokyo.

[9] Taylor, S., Safra, S. and Shapiro, E. "A parallel implementation of

Flat Concurrent Prolog," International Journal of Parallel
Programming, 15(3)(1987),245-275.

Memory Performance of AND-parallel Prolog
on Shared-Memory Architectures

M. Hermenegildo - MCC
E. Tick - Stanford University

Abstract

The goal of the RAP-WAM AND-parallel Prolog ab
stract architecture is to provide inference speeds signif
icantly beyond those of sequential systems, while sup
porting Prolog semantics and preserving sequential per
formance and storage efficiency. This paper presents sim
ulation results supporting these claims with special em
phasis on memory performance on a two-level shared-
memory multiprocessor organization. Several solutions
to the cache coherency problem are analyzed. It is shown
that RAP-WAM offers good locality and storage effi
ciency and that it can effectively take advantage of broad
cast caches. It is argued that speeds in excess of 2 M LIP S
on real applications exhibiting medium parallelism can be
attained with current technology. .

1 Introduction

The RAP-WAM execution model [10,11] is aimed at provid
ing, through the use of parallelism, inference speeds to logic
programs beyond those attainable in sequential systems, while
supporting the conventional "don't know" non-deterministic se
mantics of logic languages. Of the various sources of parallelism
present in Logic Programs [3] the RAP-WAM architecture ex
ploits Goal Independence AND-parallelism [11], an extension
of DeGroot's Restricted AND-parallelism [4] which provides
backward execution semantics and improved execution graph
expressions. 1 Sets of goals which are independent (i.e., which do
not share any non-ground variables, determined by a combined
compile-time, run-time analysis) are run in parallel. Parallelism
can be programmed by the user by annotating the program with
Conditional Graph Expressions (CGEs)2 or it can be generated
automatically by the compiler, through a combination of local
and global (abstract interpretation-based) analysis [17] which
often makes run-time independence checks unnecessary.

At the implementation level, the RAP-WAM architecture
is designed to exploit both parallelism and advanced compiler
technology. The techniques used for supporting parallel execu
tion are extensions of those used in the Warren Abstract Ma
chine (WAM)[15], which have already brought high inferencing
speeds to sequential Prolog systems. Special attention is given
to the preservation of W AM sequential performance and storage
efficiency, and to the use of low overhead mechanisms for con-

1 The model is currently being extended to support OR-parallelism -using
techniques similar to those proposed by other researchers, see for example
[16,18] and their references- and a form of dependent AND-parallelism.

'CGEs offer Prolog syntax and permit conjunctive checks, thus lifting
limitations in the expressions proposed by DeGroot: given "t(X,Y,Z):
g(X,Y). h(Y.Z)." the most natural annotation for this clause, that g and
h can run in parallel if the terms in X and Z don't share variables and Y is
bound to a ground term, can be expressed easily with CGEs ("t(X, Y ,Z):
(indep(X,Z). ground(Y) I g(X,Y) th(Y,Z».") but is very difficult
with DeGroot's expressions.

17

trolling parallel execution. Most of the WAM performance and
storage optimizations are still supported during parallel execu
tion. The CGE semantics has been integrated naturally into the
W AM storage model in the form of specialized stack frames and
storage areas which are used during parallel execution. Thus
the default (sequential) model is that of a standard WAM ex
hibiting the same high sequential performance.

The RAP-WAM architecture can be viewed as a collection
of abstract machines (workers) which cooperate in the execution
of a program. Each of these abstract machines is similar to a
standard WAM (featuring a complete set of registers and data
areas, called a Stack Set), with the addition of a Goal Stack
(used for on-demand scheduling), a Message Buffer, and two
new types of stack frames: Parcall Frames and Markers. Par
call Frames coordinate and synchronize the execution of parallel
goals both during forward execution and backtracking. Mark
ers delimit Stack Sections (horizontal cuts through the Stack
Set of a given abstract machine, corresponding to the execution
of one parallel goal) and they implement the storage recovery
mechanisms during backtracking[l1]. In practice, the stack is
divided into separate Control (Choice Point and Markers) and
Local stacks (Environments) for reasons of locality and locking.
Table 1 summarizes the types of objects allocated in these areas
and their locality. Space limitations make a complete descrip
tion of the RAP-W AM execution model impossible. The reader
is referred to [11] for further details.

Frame type area WAM? lock locality
Envts./control Stack yes no Local
Envts./P. Vars. Stack yes no Global
Choice points Stack yes no Local
Heap Heap yes no Global
Trail entries Trail yes no Local
PDL entries PDL yes no Local
Parcall F./Local Stack no no Local
Parcall F./Global Stack no no Global
Parcall F./Counts Stack no yes Global
Markers Stack no no Local
Goal Frames G. Stack no yes Global
Messages M. Buff. no yes Global

Table 1: Characteristics of RAP-WAM Storage Objects

This paper presents simulation results for RAP-WAM sup
porting the claims of performance and efficiency. Although an
evaluation of the implementation of the model on an existing
shared-memory machine (Sequent) is currently also under way
it only provides a single data point corresponding to a particu
lar organization.s In addition, many statistics are very difficult

aNote also that the Balance model being used in this implementation
uses write-through caches, which will be shown lateX'in this paper to be not
ideally suited for Parallel Prolog execution. Performance results from this
implementation will be reported on elsewhere.

to gather from running hardware. Simulations can provide data
over a wide range of architectural and organizational parame
ters and that is the approach taken in this study. Because high
performance processing elements (PE's) are limited by available
memory bandwidth (an even more important factor in parallel
systems) this paper concentrates on memory performance.

The rest of the paper is organized as follows: results ob
tained from high-level simulations of the architecture are first
summarized. A two-level shared-memory organization model
and alternative solutions to the cache coherency problem are
then proposed. Finally, RAP-WAM simulation results for the
different coherency protocols proposed are presented and dis
cussed.

Figure 1: Simulation tools

2 Simulation Environment and High-level Results

A series of measurement tools have been built in order to eval
uate the potential performance of the execution model and the
associated architectural tradeoffs (Figure 1). Because the RAP
WAM model (as the W AM) is specified at a level above that of
memory organization, si~IlUlations. were first performed under
the ideai assumption of a uniform, single shared-memory and
no contention. The measurements were thereby made indepen
dent of the particular architectural organization on which the
model is implemented. The emulator generated instrumenta
tion data such as instruction frequencies, number of references
classified by data areas, ratios of local vs. remote references,
maximum amount of storage used per area, estimated timings,
and speedups. Results from simulations at this level can be
found in [12,11] and can be summarized as follows:

The overhead in theRAP-WAM model due to the man
agement of parallelism is low: it has, for example, been ob
served to be in the order of 15% for up to 40 processors even
for fine granularity cases (Le., high overhead cases) such as that
of the "deriv" benchmark, as shown in Figure 2. In this fig
ure, work represents the number of references generated by all
PEs while doing actual processing (i.e., not waiting or idle).
Overhead, the difference between the work (references) done by
RAP-WAM and that of WAM, is in Figure 2 the distance be
tween the work curve and the "uniprocessor" line corresponding

18

%of
WAM 140
work

120 ~
(PWAI\i) Ii I

.............
100 " I

80

60

40

20

9iOr (WAM) / !

~
~

/ "-idle I
,),

./
10 20 30 40

of processors

Figure 2: RAP-WAM Overheads for "deriv"

to W AM work. All data ih this figure is presented as percentages
of WAM work (executing the sequential version of the bench
mark). Note that RAP-WAM work on 1 PE is very close to
WAM work. Speedup (Le. significantly faster execution than
a high-performance sequential implementation -WAM- for sim
ilar performance PE's) is thus obtained even if the application
exhibits only low levels of parallelism. The stack-based mem
ory management approach[l1] also appears to be very efficient
recovering local storage upon procedure exit (with last call op
timization) and all storage on backtracking as in the WAM.

Although these results are encouraging, practical memory
organizations deviate from the ideal behavior assumed above
and it is thus important to assess the effect of this deviation
if realistic performance figures are to be obtained. This issue
is addressed in the next sections by quantifying the effect of a
particular memory organization with limited bandwidths, cache
coherence maintenance overhead, etc.

Figure 3: The Two-Level Shared-Memory Architecture Model

3 Two-Level Shared-Memory Results

Figure 3 shows a practical shared-memory system presenting
a two-level structure where a local cache memory is located
between each PE and the system bus. Such a hierarchical orga
nization, characteristic of many current shared-memory multi
processors, serves a dual purpose: first, in allowing faster execu
tion because of the generally lower effective memory access time
seen by a PE, essential in obtaining performance that is com-

petitive with that of sequential systems. Second, in absorbing a
(hopefully) significant part of the traffic to main memory which
needs to go through the system bus, particularly important in
shared-memory multiprocessors because the system bus is often
the most significant bottleneck in the system. The locality of
Prolog/WAM was shown by Tick[14). In the next sections it is
shown that Prolog/RAP-WAM also offers sufficient locality to
take advantage of cache memories.

3.1 Cache Coherency

Except for simple buffers which hold only local data, most of the
local memory designs used in conventional or special-purpose
sequential machines for the implementation of logic programs
(such as, for example, those used in [5) or those studied by
Tick[14)} cannot be used directly in a parallel machine because
of cache coherency problems. Ooherent caches ensure that all
the PEs in the system have a consistent view of the storage
model. Although at certain times during the operation of RAP
W AM coherency is not required, it appears that ensuring co
herency continually is easier than enforcing coherency only at
specific points (and has the additional benefit of generality).
Therefore, traditional coherent caches are considered in this
study.

Historically, the first coherent caches[7), used a write-through
strategy, where all write references were issued to both the local
cache and shared memory, and copies residing on a cache other
than the cache issuing the write request were invalidated. This
coherency protocol is inexpensive in terms of hardware, but offers
low performance because of excessive traffic on the system bus.
Recently, a family of fully distributed broadcast cache protocols
have been proposed and built [8,1,2) which are based on the
ability of the cache organization to modify all copies of a cached
item in all caches which share this item in a single bus cycle.
Information is maintained for each cache block as to whether
it is private or shared, making it possible to avoid coherency
overheads for private blocks and implement write-back policies.
Different designs differ essentially in the treatment of a write
to a possibly shared block. A write-through broadcast strategy
updates remote copies and possibly shared memory. A write-in
broadcast strategy invalidates remote copies. Descriptions and
measurements of the relative performance of various broadcast
protocol attributes for conventional architectures are given in
Archibald[I).

The broadcast protocol offers high performance at the ex
pense of additional hardware. With the objective of reducing
this expense by exploiting attributes of the RAP-WAM archi
tecture, a (firmware) controlled hybrid cache protocol was devel
oped. 'This scheme attempts to combine the efficiency of broad
cast caches with the simplicity and low cost of a traditional
write-through cache using. information provided by the PE (in
the form of tags, derived from the information in Table 1) as
to the locality characteristics of each reference. The protocol
is referred to as "hybrid" because based on these tags poten
tially shared (global) data is written-through and local data is
copied back. An underlying tenet of the hybrid protocol is to
avoid some of the complexity of broadcast caches by keeping
shared memory consistent with local memory. The cost asso
ciated with this simplification is the traffic required to write-
through to memory the write requests marked as global which
are not actually shared. The gain with respect to the tradi-

19

tional write-through approach is that data marked as local is
not written-through.

Parameter deriv tak qsort matrix
Instructions executed 33520 75254 237884 95349
References (RAP-WAM) 85477 178967 502717 96013
References (W AM) 82519 169599 499526 95357
Goals actually in / / 97 263 97 24

Table 2: Statistics for the Benchmarks Used (8 processors)

cache size E tr I Utr (tr - Etr)/Utr

(words) large bench deriv tak qsort mean

512 0.164 I 0.0626 1.1 -1.9 0.83 1.3
1024 0.108 I 0.0569 2.0 -1.1 1.6 1.6

Table 3: Fit of Small Benchmarks to Large Benchmarks

3.2 Simulations

In order to compare the performance of the various types of
caches presented above, the RAP-W AM emulator was modified
to generate a trace file of memory references (Figure 1). These
references are marked with a PE identifier, a tag describing
the particular storage area and object being accessed, and a
read/write flag. All of the coherent cache models are simulated
with the same parameterized multiprocessor cache simulator[14)
which can be reconfigured to support the various consistency
protocols. Caches are modeled as fully associative memories
with perfect LRU replacement.

The results presented correspond to the execution of the fol
lowing set of benchmarks: symbolic derivation ("deriv", which
finds the symbolic derivative ofa given arithmetic expression),
Takeuchi ("tak", which computes Takeuchi's function), Quick-
sort ("qsort", written using difference lists), and Matrix Mul
tiplication ("matrix", a naive matrix multiplication program).
Each benchmark was executed on relatively large input data.
Table 2 shows some statistics regarding the benchmarks used,
running on 8 PE's. Note that the number of references shows
reasonable size. These benchmarks and their input data were
chosen for several reasons: their small granularity (except for
"matrix") provides a worst-case type of analysis with respect to
parallelism management overhead. They also offer reasonable
degrees of parallelism so that the parallel portion of the abstract
machine is exercised. Also, their sequential memory referenc
ing behavior and locality resemble those of much larger Prolog
programs, such as the ones studied by Tick[14): table 3 shows
that the fit is quite good ensuring that the benchmarks exercise
the sequential storage model (the foundation of the RAP-W AM
storage model) in a reasonable, typical way.

Figure 4 shows the mean traffic ratios (as a function of total
cache size and averaged over the four benchmarks) of the write
in broadcast, hybrid, and conventional write-through cache pro
tocols, using four word lines. Caches of sizes 64, 128, and 256
words were simulated with no-write-allocate (a write miss does
not fetch the corresponding block to cache). Caches of sizes
512 and 1024 words were simulated with write-allocate, except
for hybrid caches which used no-write-allocate for 512 words.
These selections were made on the basis of the policy which
produced the lowest traffic. A clear result of the simulations
is that no-write-allocate is best for small caches; however, miss
ratio increases with no-write-allocate. Another result is that

0.9

0.8

0.7
0 0.6 1li 0.5 0

!§ 0.4 -- 0.3

0.2

0.1

0.9

0.8

0.7
0 0.6 1li 0.5
0

~ 0.4 - 0.3

0.2

0.1

0.9

0.8

0.7
0 0.6 iii
~ 0.5 0

~ 0.4 - 0.3

0.2

0.1

broadcast

-EI- 1 PE ... 2PE

...... .- 4PE ... 8PE
~

............ ~
---~ ... "'- -.

64 128 256 512 1024 2048 4096 8192
cache size in words

hybrid

~

'"

"' ... --- --- -
64 128 256 512 1024 2048 4096 8192

cache size in words
write thru -- ---
--- ::.

......

64 128 256 512 1024 2048 4096 8192
cache size in words

Figure 4: Traffic of Coherency Schemes

a more efficient replacement policy (e.g., copyback) produced
lower traffic with write-allocate than a less efficient policy (e.g.,
hybrid) for the same cache size. The write-through broadcast
cache statistics (not shown in Figure 4) are almost identical to
those of the write-in broadcast cache, an indication that com
munication traffic in RAP-WAM is low.

A result seen from the curves is that the hybrid cache does
quite well in reducing traffic, almost to the level of the copyback
cache. The copyback cache does exceedingly well for 1024 word
caches, and this trend is expected to continue with larger sizes,
because the hybrid caches have already bottomed-out. The id
iosyncrasies in the curves are due to the effects of averaging
the benchmarks. Also, the advantageous effect (that of reduc
ing memory traffic) of partitioning an algorithm's working set
across several caches is seen to "sometimes outweigh the increase
in communication overheads. Lack of space makes it impossible
to offer many simulation results. See [12] for more details on
the benchmarks and simulations.

20

3.3 DiscussioD

As stated before, the hierarchical memory organization serves
the dual purpose of lowering the effective memory access time
and reducing the memory bandwidth requirement of a PE. Ac
cording to the results of the simulations presented in the previ
ous section, the hybrid cache generates an amount of traffic be
tween that generated by the broadcast and conventional write
through caches. The broadcast schemes retain a (sometimes
slight) advantage throughout the range of caches simulated.

It should be noted that these results measure performance
only in terms of traffic ratio. For example, the simulation data
shows that eight PEs with write-in broadcast caches (of 128
words or greater) generate a traffic ratio of less than 0.3 (the
hybrid cache is also close to this performance); i.e. more than
70% of the traffic generated by the processors is captured in the
local memories and will not appear on the bus. However, in
order to accurately estimate the actual performance of a multi
processor the time penalty to access shared memory due to con
tention must also be analyzed. Although beyond the scope of
this paper a queueing model for this purpose is proposed in[14].
Results presented therein for RAP-WAM execution show that
with a relatively fast bus and an interleaved memory shared
memory efficiency can be high.

It is of obvious interest, if only to stimulate further research,
to speculate about the potential performance levels attainable
given the results presented in the previous sections. Even cur
rent low- to medium-cost shared-memory systems offer high PE
to memory bandwidths by implementing multiple or overlapped
busses and interleaved memories. This makes it reasonable to
predict that speeds in the order of 2 million application4 infer
ences per second are possible on shared-memory multiprocessors
built using current technology.5 A "back of the envelope" cal
culation, in order to justify this claim and based on the results
obtained from the present and previous studies can be made as
follows: studies of large Prolog benchmarks show that in t!le
average 15 (W AM or RAP-WAM) instructions are executed per
actual inference and that each instruction averages 3 (word) ref
erences. This represents 45 words/tI, or 180 bytes/LI for a 32
bit word size. Therefore, a system executing at a speed of 2
MLIPS would. require a cumulative memory bandwidth of 360
Mbytes/sec. If the caches are able to capture 70% of this traffic,
only 108 Mbytes/sec have to be delivered by the bus/memory
system, a performance which is perfectly achievable using cur
rent off-the-shelf technology.6

4 ConclusioDs

The paper has presented memory referencing characteristics of a
parallel logic programming architecture, RAP-WAM, based on
Independent/Restricted AND-parallel execution of Prolog, and

•• Application' inferences refer to inference steps of the average size
found in large Prolog programs, i.e. in the order of 15 W AM instructions.
This results in much lower but more realistic figures than those obtained
using the conventional "LIPS' measurement based on "naive reverse.»

"Note that the Japanese FGeS Project is also predicting similar infer
encing speeds for the PIM[9J.

"These conclusions, although resulting from more detailed simulations
than those presented in a related study by Fagin[6J, are in disagreement
with Fagin's results and his contention that Prolog programs cannot effec
tively make use of multiprocessing. The discrepancies are probably due to
differences in the execution models used and to the small size of the bench
marks/data simulated by Fagin. They do agree, however, with those of Lin
[13J.

its behavior and potential performance on shared-memory mul
tiprocessor organizations. The measurements presented here
indicate that RAP-WAM is well-suited to high performance
execution on tightly-coupled shared-memory multiprocessors,
from cost-effective small-scale systems to higher-performance
medium-sized systems. It has been argued that actual speeds
of 2 Million application inferences per second are possible with
currently available technology for applications which exhibit
medium degrees of parallelism. It has been shown that the ar
chitecture offers high memory referencing locality so that it can
take advantage of two-level memory organizations. The memory
referencing study included comparison of cache coherency proto
cols and the "broadcast" and "hybrid" protocols were shown to
offer superior performance to write-through mechanisms, present
in some multiprocessors.

Because the memory organizations studied are characteristic
of many current and next-generation multiprocessors, it is ar
gued that the results obtained are relevant to the estimation of
the performance of AND-parallel Prolog/RAP-WAM on them
and also to determining the advantages and shortcomings of
such machines in the parallel implementation of other don't-
know non-deterministic logic programming languages and mod
els. In addition, the results can also be used as a guideline in
the design of small to medium-sized special purpose multipro
cessors. Although the goal of small to medium systems may
seem rather unambitious, it is important to have evidence of
actual speedups at these levels before attempting the design of
large-scale systems. In the words ·of the adage, "Walk before
you run ... "

5 Acknowledgements

Thanks to Richard Warren for his comments on earlier drafts
of this paper, MCC for its support, and ICOT for supplying
facilities with which a portion of this paper was formated. Evan
Tick was also supported by an IBM Graduate Fellowship and
by NASA-Ames (NCA2-IR745-406).

References

[1] J .. Archibald. High Performance Cache Coherence Proto
cols For Shared-Bus Multiprocessors. Technical Report 86-
06-02, University of Washington, Seattle, WA 98195, June
1986.

[2] P. Bitar and A. M. Despain. Multiprocessor Cache
Synchronization. In 19th Int. Symp. on Compo Arch.,
pages 424-433, June 1986.

[3] J. S. Conery. Parallel Execution of Logic Programs. Kluwer
Academic Publishers, Norwell, MA 02061, 1987.

21

[4] D. DeGroot. Restricted AND-Parallelism. In Interna
tional Conference on Fifth Generation Computer Systems,
pages 471-478, November 1984.

[5J T. P. Dobry et. a1. Performance Studies of a Prolog Ma
chine Architecture. In 12th Int. Symp. on Compo Arch.,
pages 180-190, December 1985.

[6] B. Fagin and A. Despain. Performance Studies of a Parallel
Prolog Architecture. In 14th Annual International Sym
posium on Computer Architecture, pages 108-116, IEEE
Computer Society, June 1987.

[7] D. H. Gibson. Considerations in Block-Oriented Systems
Design. In AFIPS Conference Proceedings, pages 75-80,
Spring Joint Computer Conference, Academic Press, April
1967.

[8J J. R. Goodman. Using Cache Memory to Reduce
Processor-Memory Traffic. In 10th Annual International
Symposium on Computer Architecture, pages 124-131,
IEEE Computer Society, 1983.

[91 A. Goto. Parallel Inference Machine Research in FGCS
Project. In Proceedings of the First Japan- U.S. AI Sympo
sium, pages 21-36, December 1987.

[10] M. V. Hermenegildo. An Abstract Machine for Restricted
AND-parallel Execution of Logic Programs. In Proceedings
of the Third International Conference on Logic Program
ming, pages 25-40, Springer-Verlag, 1986.

[11] M. V. Hermenegildo. Independent 4ND-Parallel Prolog
and its Architecture. Kluwer Academic Publishers, Nor
well, MA 02061, 1988.

[12J M. V. Hermenegildo and E. Tick. Memory Performance
of AND-Parallel Prolog on Shared-Memory Architectures.
Technical Report PP-036-88, Microelectronics and Com
puter Technology Corporation (MCC), Austin, TX 78759,
January 1988.

[13J Y.-J. Lin. A Parallel Implementation of Logic Programs.
PhD thesis, Dept. of Computer Science, University of Texas
at Austin, Austin, Texas 78712, August 1988.

[14J E. Tick. Studies In Prolog Architectures. PhD thesis, Stan
ford University, Stanford, CA 94305, June 1987.

[15] D. H. D. Warren. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, 1983.

[16] D. H. D. Warren. The SRI Model for OR-Parallel Ex
ecution of Prolog-Abstract Design and Implementation.
In 1987 Symposium on Logic Programming, pages 92-102,
IEEE Computer Society, August 1987.

[17]

[18]

R. Warren, M. Hermenegildo, and S. Debray. On the Prac
ticality of Global Flow Analysis of Logic Programs. In Pro
ceedings of the Fifth International Conference and Sympo
sium on Logic Programming, August 1988.

H. Westphal and P. Robert. The PEPSys Model: Combin
ing Backtracking, AND- and OR- Parallelism. In Symp. of
Logic Prog., pages 436-448, August 1987.

COMPILING ENUMERATE-AND-FILTER PROGRAMS FOR EFFICIENT EXECUTION UNDER
COMMITTED-CHOICE AND-PARALLELISM 1

Arvind K. Bansal and Leon S. Sterling
Dept. of Computer Engineering and Science,

Case Western Reserve University,
Cleveland, OH. 44106 (USA)

Ab.tract
This paper presents a technique and algorithms for compila
tion of enumerate-and-filter logic programs, for efficient exe
cution under committed-choice AND-parallel logic program
ming languages. The compilation technique preserves the in
tegration of OR-parallelism, AND-parallelism and stream par
allelism present in enumerate-and-filter programs. Algorithms
are demonstrated by compiling enumerate-and-filter programs
in Flat Concurrent Prolog. Compilation of enumerate-and-filter
construct improves the execution time by an order ofmagni
tude. Comparison of the sequential Prolog version of compiled
enumerate-and-filter programs and seto/ construct in Prolog
demonstrates that efficiency is achieved without any extra run
time overhead.

Keyword. AND-parallelism, committed-choice, compila
tion, enumerate-and-filter, generate-and-test, logic program,
OR-parallelism, stream parallelism.

1. Introduction
In a previous paper [1) we introduced the enumerate-and

filter paradigm to execute generate-and-test logic programs
using committed-choice AND-parallelism. The paradigm enu
merates possible candidate solutions using OR-parallel set enu
meration, spawns a tester process for each candidate solution,
and collects the solutions for which the tester process termi
nates successfully. The transformation integrates almost full
OR-parallelism, AND-parallelism and stream parallelism. OR
parallelism was simulated using stream AND-parallelism in
enumerating the set of solutions and in operationally nonde
terministic testers.

The OR-parallel seto/uses explicit copying to spawn a dif
ferent copy of the rest of the conjunctive subgoals for every
possible enumerated solution. The filter process uses metacalls
for spawning testers. The stream operations also make explicit
copies. The use of metacalls and explicit copying is expensive
in terms of execution.

This paper presents a general compilation technique which
. removes the metacalls and explicit copying. Algorithms are
presented and demonstrated by compiling enumerate-and-filter
programs in Flat Concurrent Prolog (FCP) a committed-choice
AND-parallel language [8) taken as an example language to ex
press parallelism. Our techniques are more general and can be
adapted for other committed-choice AND-parallel languages.
The compiled programs will run efficiently under non Von
Neumann architectures.

The structure of the paper is as follows. The next section
gives the basic concepts, definitions and a brief overview of
generate-and-test and enumerate-and-filter paradigm. Section
3 discusses the compilation technique, algorithms for compila
tion and statistics. The last two sections compare related work
and discuss conclusions respectively.

2. Basic Concepts
2,1 Definitions

This paper assumes a familiarity with logic programming

lSupported in part by Center of Automation and Intelligent Systems
Research, CWRU, Cleveland, OR 44106

22

and Prolog [9) and committed-choice AND-parallel logic pro
gramming (8), [1). We introduce some new terminology in this
section.

The definitions of input and output variables are standard
and present in (4), (5). An Input term is a term with atleast
one input variable, and no output variables. An Output term
is a term containing an output variable. Given the informa
tion about input and output variables at top level goal ab
stract interpretation using type expressions determines input
and output variables for the predicates in the program (3).

A computation of a logic program is a sequence of reduc
tions (or res(}lution steps) from an initial query using clauses
Crom the program. At each stage the goal to be reduced is de
termined by some computation rule. For this paper the com
putation rule of Prolog, namely choosing the leftmost goal, is
assumed unless otherwise specified. A computation is succe8B
ful if the empty goal is reached. In this case, the binding of the
variables in the initial query constitutes a solution. A compu
tation is failed if there is no clause to reduce the chosen goal.

A program is rigidly deterministic with respect to a query
if every computation starting from the query chooses a unique
clause to resolve the goal selected by the computation rule.
There is only one successful (or failed) computation.

A program is loosely deterministic with respect to a query
if there is at most one successful computation for the query,
though there may be several failed computations.

A program is don't care nondeterministic for a query if
whenever there are several successful computations for thE
query yielding same solution.

A program is pluralistic for a query if there are multipl(
successful computations with different solutions.
2.2 Classifying Generate-and-test Programs

Generate-and-test programs have at least one clause which
has at least one subgoal G which generates multiple values fOI
at least one variable V. The subgoal G is followed by at least
one subgoal Twith no output variable and sharing the variable'
V. The subgoal G is called the generator and the subgoal T is
called the tester. Generate-and-test programs are an important
subclass of pluralistic programs.

Generate-and-test programs are classified to three classes
1. A simple generate-and-test program has generate-and

test goal pair in nonrecursive clauses.
2. In a recursively embedded generate-and-test program the

generate-and-test pair is embedded in a recursive clause to test
the partial solutions for eager pruning of the search space. The
generator and tester are identified using abstract interpreta
tion [3). The intermediate solution is the final solution if thE
input term is completely consumed or the intermediate solution
meets the final constraint. The N queens program (Figure 1 j
is a typical example. The predicates select/3 and attack/2 act
as generator and tester respectively.

3. In deeply intertwined generate-and-test programs, the
same predicate is a generator if certain variables are uninstan
tiated and tester if the variables are instantiated. Unification
is used implicitly for instantiating the uninstantiated variables

and testing the instantiated variables.

2.3 Enumerate-and-filter Paradigm
Committed-choice AND-parallel model lacks the capabilitJ

of multiple solutions due to single clause commitment and ab
sence of backtracking. Multiple solutions are incorporated in
committed-choice And-parallel models using the enumerate
and-filter paradigm [IJ. The basic relation for the idiom is

enumerate_and_filter(Term, Enum, Test, Stream).
An enumerator produces the set of possible solutions which

are filtered by a tester which can be either rigidly determin
istic, loosely deterministic, don't care non deterministic pred
icate. The enumerate-and-filter paradigm executes pluralistic
programs. Generate-and-test programs are subset of pluralistic
programs.

Sets of solutions are represented as streams allowing the
exploitation of stream parallelism. The stream operations re

quire-<i tor transformation are merging two streams, mixing
structures in a single stream or multiple streams to get a new
stream, filtering streams, closing streams, testing for empty
stream [IJ. The predicate mix_stream/4 is used to mix struc
tures of various streams to get a new stream. The basic relation
for mix_stream/4 is mix..stream(In, Out, Instrms, Outstrm).

queens(N, Qs) :- one_to_n(N, N s), queens(Ns'[J,Q8).

queenB(U, S, Qs) :-
aelect(Q, U, UI), \ + attack(Q, S), queens(UI, [Q I SJ, Qs).

queens([J, Qs, Qs).

se/ect(X,[X IXs),Xs).
Be/eet(X, [Y I Yal, [Y I ZsD :- select(X, Y s, Zs).

attack(X, Y s) :- attack(X, I, Y s).

attack(X, N, [Y I YaD :- X is Y + N.
attack(X, N, [Y I YaD :- X is Y - N.
attack(X, N, [Y I YsD :- N1 is N + 1, attack(X, NI, Ys).

Figure I: N Queens program in Prolog

queens(N, Qs) :-
o,-"do_n(N, N 8), queensl([(Ns1, 0»), Qs).

queensl(D, Qs).
queensl([I I Is), Qs) :-

otherwise I queens2(I, Qs), queensl(Is?, Qs).

queens2«(O, S), Qs) :- resuILwriter(S, Qs).
queens2«U, S), Qs) :- otherwise I

enumerate_and_filter«Ul, Q),
select(Q, U, Ul), noLattack(Q, S), R),

mix_stream«A, B), (A, [B lSD, R?, RI),
queensI(Rl?, Qs).

noLattack(X, 0, true).
noLattack(X, Y s, R) :-

otherwise I attack(X, I, Y s, RI),//ip_result(RI?, R).

attack(X, _, 0, false).
attack(X, N, Y s, R) :- otherwise I

attackl(X, N, Y s, RI),attack2(X, N, Ys, R2),
attack3(X, N, Y s, R3), or ..solution([Rl, R2, R3)' R).

attackl(X, N, [Y I Y s], R) :- plus(Y, N, Yl), eq(X, Yl?, R).
attack2(X,N,[Y I Ys],R):- diff(Y,N,Yl),eq(X,Yl?,R).
attack3(X, N, [Y I Y s], R) :- plus(N, 1, Nl),attack(X, Nl?, Y s, R),

Figure 2: Transformed N queens program in FCP

3. Compiling Enumerate-and-filter
The OR-parallel setof construct used to realize enumerator

[2] explicitly copies all the conjunctive goals occurring after the
current goal being evaluated for every possible enumerated so
lution. The filter construct makes explicit metacalls to spawn
a tester process for every possible enumerated solution. Meta-

23

calls and explicit copying are expensive in terms of execution.

3.1 Compiling Filters
The filter process takes every solution from the stream gen

erated by the enumerator and makes a metacall for the tester
process. Compiling the process is straightforward. A new re
cursive process is started which spawns the tester for every
possible solution. The tester returns the value of result vari
able Res depending upon the outcome. A conditional writer
process conditionaLwrite/3 is spawned for every enumerated
solution which writes on the global solution stream if the value
of the result variable Res is true. The first element of the stream
contains the complete structure information for implicit uni
fication and variable generation (refer [2] for the formal algo
rithm).

filter_noLattack([J,-,-).
filter _noLattack([(U, S) IX s], Y s, Qs) :

otherwise I noLattack(S?, Ys, Res),
conditionaLwriter(Res?, (U?, S1), Qs),
filter _noLattack(X s?, Y s7, Qs).

conditionaLwriter(!alse, _, _).
conditionaLwriter(true, X, Qs) :- resulLwriter(X, Qs),
noLattack(S, Y s, Res) :- see Figure 2

Figure 3: Compiled filter for noLattack/9 in FCP

mix.stream(~[],[D.
mix_stream(Intrm, [Intuple I Ins], [Outtuple lOuts]) :-

mix_stream(Intrm, Ins?, Outs).

The first argument in mix_stream/S is the input term which
is not present in the input streams. This input term is mixed
with first element of the input streams as specified in the sec
ond argument to give the first element the output stream 3.l'

specified in the third argument. The structures of the first el
ement in the input streams and the output stream are madE
explicit in the second and third arguments to make use of im
plicit unification and variable generation.

3.3 Compiling Enumerators

The OR-parallel setof construct needs following operation
to enumerate all the possible values.

(1) Finding the clauses having same predicate-name and
arity concurrently. (2) Making as many copies of the call as
there are number of clauses. (3) Unifying each copy of the call
with one of the clauses. (4) Filtering the successful clauses and
finding out the solution for successful clause matches concur
rently. (5) building partial solutions bottom-up for recursive
clauses. (6) Matching the union of the shared terms and out
put terms with their solutions for each successful clause. The
successful solutions are filtered to the final solution stream. (7)
Merging the solution streams for each successful clause.

The generators and testers in simple for generate-and·test
and recursively embedded generate-and-test programs are de
termined using program analysis. Input variables and output
variables are identified. Such programs are transformed by
compiling each clause of the enumerator to a single clause
procedure which returns a stream of solutions. These solution
streams are merged. For recursive clauses, the solution is built
bottom-up. We give the algorithm in Figure 6.

A compiled version of the enumera..tor select/I in the N
queens program is given in Figure 2. The top level procedure
select/I has two single clause procedures (SCPs) correspond
ing to the two clauses in select in Figure 2. The last sub
goal merge/a in select/I merges two solution streams 51 and
51. The recursive predicate select-c1ausel builds the solution
bottom-up.

select(Qs,S) :-
select_clausel(Qs?, SI), 8elect_clause2(Qs?, S2),
merge(SI?, S2?, S).

.elect-clausel ({ l,{ J).

.elect_clausel([Q I Qs), [(Qs, Q»).

• elecLclausel({ l,{ J).
.elect_elause2([Q I Qs), S) :-

select(Qs?, Rl),miz..stream(Q?, Rl?, S).

miz..Btream(Q, [(X, Y) I RI, [([Q I X), Y) I Rl)) :
miz..stream(Q, R?, Rl).

miutream(..,{ l,{ J).

Figure 4: Compiling seleet/S of N queens program in FCP

queens/2 &. queensl/2 88 given in Figure 2
queensS(({ l,S),Qs):- resuILwriter(S, Qs).

queens2«U,S),Qs) :-
otherwise I select(U?, R),
filter _not..attack(R?, 81, Rl),
miz..Btream_queen82(S?, Rl?, [..stream),
queens1(I..stream?, Q8).

miz_stream_queens2(S, [(U, Q) I X s), [(U, [Q I 8) I Y s)) :-
miz..stream_queenB2(S, Xs?, Y B).

miz..stream_9ueensl(..,{ l,{ l)·
select/3 88 given in Figure 4.
filter_noLattack/3 88 given in Figure 3

Figure 5: Compiled version of N queens program in FCP

Algorithm compile static-enumerator
Input: Enumerator, Output: Compiled enumerator
Procedure compile recursive-clause(top level procedure)
Begin .

Add a subgoal invoking top level procedure;

If there is any output list in the recursive clause whose first
element is instantiated by non pluralistic subgoal in the body
of recursive clauseThen
Add a subgoal miz..stream(First,Rest..stream, Result);

Else if the first element is instantiated by a pluralistic subgoal
in the body of the recursive clause Then Add a subgoal
ruursiveJRiz_stream(FirsLstream, ResLstream,Result);

End;
Begin

Rename each clause of the enumerator to make them a single
clause procedure(SCP). Each SCP h88 two arguments (1) a tu
ple of input terms (2) a result stream of tuples formed by union
of shared terms and output terms;

Create a top level procedure say p/S with subgoals correspond
ing to these SCPs.;

call procedure compile recursive-clause(p/S) for the SCP corre
sponding to recursive clause;

In the body of this top level procedure p/2, add a subgoal merge
with arity n+1 (n = no. of SCPs), to merge the individual
streams generated by SCPs.

End.

Figure 6: Compiling a statically inferrable enumerator

24

The dynamic enumerator corresponding to generator/tester
is compiled using a run time test to determine the instantiation
state of the variables whose instantiation states change dynam
icaJly. Such variables are determined using mode-analysis with
type-expressions [3). Each nonrecursive clause is expanded into
2ft (n = number of such variables) mutuaJlyexclusive sub single
clause procedures to take care of aJl the combinatorial possi
bilities. This check for uninstantiated or ground is done in the
guard. For the test ground(Variable) an extra subgoal is added
in the guard to match the generated value and the value ot
the variable. The compilation of recursive clauses is similar tc
recursive clauses for static enumerators. An algorithm is given
in Figure 7 .

Algorithm Compile dynamic-enumerator;
Input: A dynamic enumerator and set of variables whose
instantiation state changes dynamically; .
Output: A compiled dynamic enumerator;
Begin

Each single clause procedure (SCP) has three arguments (1) a
tuple representing the union of shared and output terms,(2) a
tuple of variables whose instantiation state has to be tested, (3)
the stream of shared and output terms;
Case SCP of

End.

Non-recursive or base-case:
Explode each SCP into 2n SSCPs having in its guard
test for every variable X which changes the instantiation
state dynamically, where n is number of such variables;

For each SSCP find out the subgoals in the guard. For
the test ground(X) treat X as input variable. For the
test Var(X) treat X 88 output variable;

Compile the body of SSCP using the algorithm to com
pile static enumerator (Figure 6) with new input and
output variable information;

Recursive:
Compile the clause using procedure compile recursive
clause as given in Figure 6;

Figure 7: Compiling dynamic enumerator (generator/tester)

Consider the predicate remove/3

remove(X, [X I Xs), Xs).
remove(X, [Q I Qs), [Q I Xs)) :-

remove(X,Qs, Xs).

The nonrecursive clause has two variables X and Xs which
can be either ground or uninstantiated depending upon the
dataflow. Hence remove_clausel/3 is exploded into 4 clauses
as shown below

remove_clausel«X, X s), [Q I Qs), Z) :
ground(X),ground(Xs),(X?,Xs?) = = (Q?,Q8?) I
Z = [(Q,Qs»).

remove_clausel«X,Xs),[Q I Qs),Z):
ground(X),var(Xs),X? = = Q? I Z = [(Q,Qs»).

remove_clausel«X, X s), [Q I Qs), [(Q, Qs))) :
ground(Xs),var(X),Xs? = = Qs? I Z = [(Q,Qa»).

remove_clauBel«X, Xs), [Q I Qs), [(Q, Qs))) :-
var(X), var(Xs) I true.

removeJ:lauae1 (_,_,{ J) :- otherwise I true.

The guard of each clause tests for one of the four possibilities.
H X or Xs is ground then their value is matched against the
generated values. Binding of the element in the output stream
is done only after the values match.

4. ReIUltS And Related Work
We executed both transformed and compiled 4-queens pro

gram on an FCP simulator (Logix version 1.1) on Vax 11/780
. The execution time was 13900 msec. and 520 msec. respec
tively, an order of magnitude improvement.

Ueda [10], [11] presents a method for making exhaustive
search programs deterministic. In his scheme OR-parallelism
is transformed to AND-parallelism and conjunctive goals are
solved AND-sequentially. The scheme [11] uses subcontinua
tions to invoke the testers as soon as partial solution is gen
erated by the generator. The number of shared terms between
generators and testers is restricted. No conjunctive generators
using the same variables are allowed, and testers are restricted
to the predicates with input variables.

The Enumerate-and-filter paradigm integrates stream par
allelism, AND-parallelism and almost full OR-parallelism. OR
parallelism is simulated using AND-parallelism in enumerat
ing the set of multiple solutions and in loosely deterministic
testers. Filter process spawns a tester as soon as any enumer
ated partial solution is available. In a recursively embedded
enumerate-and-filter program filtering occurs at different lev
els concurrently. Pluralistic programs are executed which form
a superset of generate-and-test programs. There are no restric
tion on the number of shared terms between generator and
tester. A stream of tuples of shared terms is passed between
generator and tester. Conjunctive generators with shared terms
are allowed. The implicit pipelining in set enumeration prunes
away the solutions with conflicting bindings.

Comparison of our scheme with Ueda's scheme (Program 5
of [11] adapted to run in FCP) as shown in Table 1 indicates
that our scheme runs 10 % faster under FCP simulation on
single processor. We believe this gap will increase on a mul
tiprocessor architecture capable of exploiting pipelining and
AND-parallelism. Dedicated processing elements may speed up
stream operations like mix_stream and merge.

Ueda '$ Scheme Our Scheme
N Time/Reductions Time/Reductions

msec/FCP(Prolog) msec/FCP(Prolog)
4 580/933(563) 520/ 812(361)
5 2350/3618(2208T 2130/3287(1122)
6 9230/14388(7899) 8810/12839(4214)

Table 1: comparing FCP version of N-queens

Comparison of Prolog version of our program, Ueda's pro
gram [11] and setof shows that (1) all the schemes are com
parable (see table 2) (2) there is no runtime overhead in our
scheme. (3) number of reductions in our scheme is 40 % less.
(4) our scheme is faster on Cprolog. The little variation in ex
ecution time using Sicstus and Quintus compilers is attributed
to optimizations used for setof and compiler architecture sup
porting continuation. Comparison with other related research
is present in [2] and has been omitted due to space limitations.

N Unit Cprolog Sicstus Quintus
Vax 11/780 Sun 2/50 Apollo DN300

4 msec 335/380/321 61/74/72 83/66/74
5 msec 1470/1480/1292 214/196"/203 308/245/251
6 msec 4930/5640/5060 477/616/689 573/850/912
7 sec 23.6/24.8/22.0 2.0/2.5/2.7 2.9/3.6/3.7
8 sec 108/115/103 -/-/- 11.3/20.3/20.9

Table 2: Comparing execution time o.f setof/Ueda/Our SchemE
for N-queens in Prolog

25

.5 •. Qgnclusions
We have developed techniques and algorithms to compile

enumerate-and-filter programs for efficient execution under
commiited-choice AND-parallelism by removing explicit copy·
ing and use of metacalls. The compiled code preserves thE
declarative style of programming present in logic program·
ming language and the integration of Or-parallelism, AND·
parallelism and stream parallelism achieved by our transforma.
tion scheme [1]. The generate-and-test programs execute effi.
ciently under committed-choice AND-parallelism when com·
pilation techniques are combined with transformation tech.
niques. Compila.tion increases the execution speed by an ordel
of magnitude. Compiled enumerate-and-filter programs would
run more efficiently than Ueda's continuation based schemE
on non Von-Neumann architecture capable of exploiting AND
parallelism and pipelining. Compiled enumerate-and-filter pro
grams are as efficient as setof construct in Prolog and Ueda's
scheme under sequential execution showing that there is no
extra runtime overhead.

References
[1] A. K. Bansal and L. S. Sterling, "On Source-to-Source

Transfromation Of Sequential Logic Programs To AND
parallelism", Proceedings International Conference On
Parallel Processing, (August, 1987), pp. 795 - 802.

[2] A. K. Bansal and L. S. Sterling, Compiling Generate-and
test Programs to Committed-choice And-pGrallelism, Dept.
Of Computer Science, C W R U, Cleveland, OH 44106,
USA, CES 87-13,(September, 1987).

[3] A. K. Bansal and L. S. Sterling, Abstract Interpretation of
Logic Programs for Transformation to Committed-choice
And-pGrallelism, Dept. Of Computer Science, C W R U,
Cleveland, OH 44106, USA, CES 87-14, (October, 1987)

[4] S. Gregory, Parallel Logic Programming in Parlog, The.
languag~ and its implementation, Addison Wesley, (1987)

[5] M. Codlsh, and E. Y. Shapiro, "Compiling OR-parallelism
into AND-Parallelism", International Conference on Logic
Programming, London, (July, 1986), pp. 283-297.

[6] J. Crammond, " An Execution Model for Committed
Choice Non-Deterministic Languages", Proc. IEEE Sym_
posium on Logic Programming, Salt Lake City, Utah, USA,
(August, 1986), pp. 148-158.

[7] A. Mycroft, R. A. O'keefe, " A Polymorphic Type System
for Prolog", Artificial Intelligence 23, (1984), pp. 295 _
307.

[8] E. Y. Shapiro, Concurrent Prolog - Collected Papers, MIT
Press, (1987), pp. 27-83.

[9] L. Sterling, and E. Shapiro, The A rt Of Prolog, MIT Press
1986. '

[10] K. Ueda, "Making Exhaustive Search Programs Determin.
istic", Proc. ard International Conference on Logic Pro.
gramming, London, UK, (July, 1986), pp. 270 - 282.

[11] K. Ueda, "Making Exhaustive Search Programs Determin.
istic II" , Proc. 4th International Conference on Logic Pro
gramming, Melbourn, Australia, (May, 1987), pp. 356 .
375.

INDEPENDENT PARTITIONING OF ALGORITHMS
WITH UNIFORM DEPENDENCIES

Weiiia Shang and Jose A. B. Fortes
School of Electrical Engineering

Purdue University
West Lafayette, IN 47907

Abstract: An algorithm can be modeled as an index set and a set
of dependence· vectorB. Each index vector in the index set indexes a
computation of the algorithm. If the execution of a computation
depends on the execution of another computation, then this depen
dency is represented as the difference between the index vectors of
the computations. The dependence matrix corresponds to a matrix
where each column is a dependence vector. An independent parti
tion of the index set is such that there are no dependencies between
computations that belong to different blocks of the partition. This
paper considers uniform dependence algorithms with any arbitrary
kind of index sets and proposes a computationally inexpensive
method to find independent partitions of the index set. For most
algorithms, this partition is maximal and the proposed method out
performs previously proposed approaches in terms of computational
complexity and/or optimality. Also, lower bounds and upper
bounds of the cardinality of the maximal independent partitions are
given. For some algorithms it is shown that the cardinality of the
maximal partition is equal to the determinant of one of the subma
trices of the dependence matrix. Therefore, the value of this deter
minant determines the partitionability of the algorithm.

1. INTRODUCTION

Parallel processing holds the potential for computational
speeds that surpass by far those achievable by technological
advances in sequential computers. This potential is predicated on
two often conflicting assumptions, namely, that many computations
can take place concurrently and that the time spent in data
exchanges between these computations is small. In order to meet
these assumptions, algorithms and/or programs must be partitioned
into computational blocks that can execute in parallel and have
communication requirements efficiently supported by the target
parallel computer. Ideally, it may be desirable to identify, if at all
possible, the independent computational blocks of a program, i.e.,
those that require no· data communication between them. This
paper describes a practical and computationally inexpensive
approach to achieve this goal. It is based on a sound mathematical
framework which yields optimal results for a meaningful class of
algorithms and it outperforms approaches proposed in extant work.

The identification of a possible partition of an algorithm or
program can be done by the user, by the analysis phase of an
optimizing compiler or by the machine at rUIi time [4]. The tech
niques proposed in this paper, while usable by a patient and dedi
cated programmer, are best suited for an optimizing compiler. They
address the specific problem of identifying independent partitions of
an algorithm with goals that are similar to those of the early works
of D.A. Padua [9] and J. Peir, D. Gajski and R. Cytron [11], [12],
[13]. The focus of these efforts is on the optimization of programs
consisting mainly of nested loops with' regular data dependencies.
The techniques proposed in those papers are intended to comple- .
ment many other tools for the analysis and restructuring of sequen
tial programs for execution in multiprocessing machines [1], [7],
[10], [14], [15]. A related potential application of partitioning tech
niques is in the design of algorithmically specialized concurrent
VLSI architectures [8].

This research was supported in part by the National Science Foundation under
Grant Del-8419U5 and in part by the Innovative Science and Technology
Office of the Strategic Defense Initiative Organization and was administered
through the Olllce or Naval Research under 'contract No. 00014-85-k-0588.

26

In this paper, nested loop programs with regular data depen
dencies are modeled as uniform dependence algorithmB which resem
ble the uniform recurrence equations considered in [6] and the linear
recurrences of [11]. Data dependencies are represented as depen
dence vectors (with as many entries as the number of nested loops)
that describe the distance between dependent computations in terms
of loop indices (the vectors are called dependence distance vectors in
[11] and are also considered in [15] and [2] in a complemented
form). Dependence vectors are collected in a matrix, the dependence
matrix, which is used in this paper and in [9J, [11] and [13J to iden
tify independent partitions as briefly described in the following
paragraphs.

The' greatest common divisor method [9], [11] considers, for
each row of the dependence matrix, the greatest common divisor of
the entries in that row. The resulting greatest common divisors are
used to partition the iteration space of the program (also called the
index set) and the cardinality of the resulting partition is the pro
duct of the greatest common divisors. In addition, an "alignment"
method is provided in [9] which allows in some cases the transfor
mation of dependencies so that the value of the greatest common
divisors is increased. For a given set of dependencies, this approach
yields a unique independent partition which is not necessarily
optimal. In some cases, when all of the greatest common divisors
equal unity, the number of the blocks in the partition is one, i.e.,
the whole program.

In the minimum distance method [11], [13], the dependence
matrix is transformed into an upper triangular matrix which is then
used to identify an independent partition. For some algorithms the
cardinality of the partition is the product of the diagonal elements
of the upper triangular matrix. This approach yields partitions
which are better than those obtained through the greatest common
divisor method. However, the computational complexity of this
method is high (though affordable according to [11]) and the
optimality is not guaranteed.

In the method proposed in this paper, a set of vectors defined
later in Section 3 is derived from the dependence matrix. These vec
tors are used to find independent partitions of uniform dependence
algorithms with any arbitrary kind of index set. The block to which
a given index point belongs to can be identified by simply comput
ing the dot products of each of the vectors by the index point. For
some algorithms, the cardinality of the partition is equal to the
absolute value of the determinant of a submatrix of the dependence
matrix and for a meaningful class of algorithms, the partition
obtained is maximal. A comparison of the method proposed in this
paper with the minimum distance method is provided in Section 5.

The organization of this paper is as follows.' Section 2 presents
basic definitions and notation. In Section 3, partitioning vectors are
defined and three types of independent algorithm partition by these
partitioning vectors are derived. In Section 4, a procedure to find an
independent algorithm partition is presented and sufficient condi
tions for the resulting partition to be maximal are discussed. Section
5 compares the method proposed in this paper to the minimum dis
tance method. Finally, Section 6 concludes this paper and points
out some open problems.

2. BASIC DEFINITIONS AND NOTATIONS

Throughout this paper, BetB, matrices and row vectorB are
denoted by capital letters, column vectors are represented by lower

ca.se symbols with a.n overbar and scalars correspond to lower case
·letters. The transposes of a vector v and a matrix M are denoted vT

and W, respectively. The symbol E j denotes the row vector whose
entries are all zeros except that the ith entry is equal to unity. The
vector '1 (or 0) denotes the row vector or column vector whose
entries are all ones (or zeroes). The dimensions of '1 and 0 and
whether they denote row or column vectors are implied by the con
text in which they are used. The vector space spanned by a set of
vectors S={VI, V2' ... , Vk} is denoted SP{VII V2J ••. J Vk}=SP{S} and
its dimension (i.e., the number of linearly independent vectors in S)
is denoted dim{S}. The symbol I denotes the identity matrix. The
rank of a matrix A is denoted rank(A) and the determinant of
matrix A is represented by detA. The set of rational numbers, the
real space and the set of integers are denoted Q, IR and Z, respec
tively. The set of non-negative integers and the set of positive
integers are denoted Nand JV+, respectively. The empty set is
denoted 0 and the notation A-B denotes the set {x: xEA, xEt B}.
The notation I S I means the cardinality of set S and I 1l< I represents
the absolute value of scalar 1l<. As a final remark, if the element a
belongs to a set S, the notation a E S is used and this notation is
"abused" to indicate also that a column vector IDj (or a row vector
Mj) is a column (row) of a matrix M, i.e., IDj EM (MjEM) means
that IDj (Mj) is a column (row) of matrix M.

. The algorithms of iriterest in this paper are the so-called uni
form dependence algorithms defined as follows.

Definition 2.1 (Uniform dependence algorithm) A uniform
dependence algorithm is an algorithm that can be described by an
equation of the form
v(j)=fj(v (I - d l), v (T - d2), ... , v (T - dm)) (2.1)

where

(1)

(2)

(3)

(4)

IEJczn is an index point, J is the index set of the algorithm
and nEN+ is the number of components of j;

fj is the computation in~exed by j, i.e., a single-valued func
tion computed "at poiI).t j" in a single unit of time;

vII) is the value computed "at I", i.e. the result of computing
the right hand side of (2.1) and

djEZn , i=l, ... , m, mEN are dependence vectors, also called
dependencies, which are constant (i.e. independent of IEJ); the
matrix D=[d l , ... , dm] is called the dependence matrix and
rank(D) ;;;;; min {n, m} is denoted by m'. 0

The class of uniform dependence algorithms is a simple exten
sion of the class of computations described by uniform recurrence
equations [6]. The main difference is that uniform dependence algo
rithms allow for different functions to be computed (in a unit of
time) at ·different points of the index set. > From a practical
viewpoint, uniform dependence algorithms can be easily related to
programs where (1) a single statement appears in the body of a mul
tiply nested loop and (2) the indices of the variable in the left hand
side of the statement differ by a constant from the corresponding
indices in each reference to the same variable in the right hand side.
Alternative computations can occur in each iteration as a result of a
single conditional statement as long as data dependencies do not
change. Nested loop programs with multiple statements can also
use the techniques of this paper together with the alignment method
discussed in [9] and [11]. For the purpose of this paper, only struc
tural information of the algorithm, i.e., the index set J and the
dependence matrix D, is needed. Other information such as what
computations occur at different points and where and when
input/output of variables takes place can be ignored. Therefore, a
uniform dependence algorithm with index set J and dependence
matriX D is hereon characterized simply by the pair (J, D). Also, as
in Definition 2.1, the letters n, m and m' always denote the dimen
sion of points in J, the number of dependence vectors and the rank

27

of the dependence matrix D, respectively.

Definition 2.2 (Algorithm dependence graph and connec
tivity): The dependence graph of an algorithm (J, D) is the non
directe~ ~raE..h ~, El wh~e ~ is th~ set oi ~odes of the graph and
E= {(j', j) : j - j',=, ij or j' - j=dj, diED, j', jEJ} is the set of .o:.dges.
Two index points j, j' are connected if there exist index points jl, ... ,
1EJ such that (I.JI)' (II.J2)' ... , (1-I.JI), (1,Y)EE. 0

Definition 2.3 (Independent partition, maximal independent
partition and partitionability): Given an algorithm (J, D) and
the corresponding dependence graph (J, E), let P = {Jl.' ... , J q},

qEN+, be a partition of J. If for any arbitrary points h EJj and
I2EJI' i .. I, (II.J2) Et E, then P is an independent partition of the
algorithm (J, D). The sets J j, i=l, ... , q, are called the blocks of
partition P. For an independent partition P, if any two arbitrary
points I, YEJj, i=l, ... , q, are connected in the dependence graph,
then P is the maximal independent partition of (J, D) and is denoted
P max. The cardinality of the maximal independent partition
IP max I is referred to as the partitionability of the algorithm (J, D).

o

Informally, an independent partition of the index set J is such
that there are no dependencies between computations which belong
to different blocks of the partition. In graph theoretical terms, each
block of an independent partition of algorithm (J, D) corresponds to
a component of its dependence graph (J, E).

Generally, the shape and the size of the index set influence the
partitionability of the algorithm because of boundary conditions.
Consider two algorithms (J, D) and (J', D') such that D'=D and
J'=J U {I}, i.e., they differ only in the size of the index sets. The
corresponding dependence graphs (J, E) and (J', E') can be such
that II, I2EJ are not connected in (J, E) but are connected in (J', E')
beca~se it is possible that E'=E U {(I, Itl, (I, I2)}. In other words, II
and j2 can belong to different blocks of the maximal independent
partition.of (J, D) but belong to the same block of the maximal
independent partition of (J', D'). Example 2.1 in [16] illustrates this
concept.

The dependence of the partition ability of an algorithm (J, D)
on the shape and size of its index set J is a complicated issue and
has practical implications. For example, in many programs, the
loop bounds are not known at compile time and partitions must be
identified which are independent of the size and shape of the index
set and based solely on data dependencies. To concentrate on the
relationship between the structure of the dependence vectors and
the partitionability of the algorithm, the following concepts are
introduced.

Definition 2.4 (Pseudo-connectivity): Given an algorithm (J,
D), two points I, YEJ are pseudo-connected if there exists a vector
);:EZm such that I=Ji+D);:. 0

Definition 2.5 (Pseudo-independent partition, maximal
pseudo-independent partition and pseudo-partitionability):
Given an algorithm (J, D), I.o:.t P={JI, ::., J q } be a partition of J. If
a1)Y two arbitrary points jl EJj and hEJlI i .. l, are not pseudo
connected, then P is a pseudo-independent partition of the algorithm
(J, D). If P_is_a pseudo-independent partition and any two arbi
trary points j, j'EJj, i=l, ... , q, are pseudo-connected, then P is the
maximal pseudo-independent partition of (J, D) and is denoted P max •

The cardinality of the maximal pseudo-independent partition
IP max I is referred to as the pseudo-partitionability of the the algo

rithm (J, D). 0

In many practical cases, e.g., when "while" loops are present in
a program, it is also convenient to consider algorithms whose index
sets are arbitrarily large along one or more dimensions. The general
case, i.e., when this applies to all dimensions, is captured in the fol
lowing definition and is also considered in this paper.

Definition 2.6 (Semi-infinite index set): An index set J is
semi-infinite if it takes the following form:

J = {] = [jl' ... , jo JT: 0;;; ji < 00, i = 1, ... , n}

o

(2.2)

[2 -3] Example 2.1 Consider the algorit~m (J, D), where ~= -1 2

and J=N2 is semi-infinite, i.e., J={j=[b j2JT: O;;;jl, h<oo}. The
index set J is partially shown in Figure 2.1. The maximal partition
P max={Jl, J2, J3 , J4 } where J l ={[O, O]T}, J2={[1,0]T},

__ 3 _

J3={[0, W, [2,0]T} and J 4= {j:jE(J- U J i)}. Points jl = [O,o]T
1=1

and]2= [0, 1 JT are not actually connected in the dependence graph
of the algorithm. However, they are pseudo-connected by Definition
2.4 because]2=]1 +D >:, >:= [3, 2]T. IntuitivelY']l and]2 are con
nected through points [2, -lJT, [4, _2]T, [6, -3JT and [3, -lJT which
are riot in J. P max is not a pseudo-independent partition. Because
detD=l, equation D>: =] - y always has an integer solution for >:.
So any two arbitrary points in J are pseudo-connected to each
other. This implies that there is only one pseudo-independent parti
tion P={J} which is also the maximal pseudo-independent parti
tion. 0

At this point, some comments are in order. First, by
Definitions 2.3 and 2.5, a pseudo-indepelldent partition is also an
independent partition regardless of the shape and size of the index
set. However, an independent partition is not necessarily a pseu<!?
i.ndependent partition. This is due to the fact that two arbitrary jl,
j2EJ are pseudo-connected if they are connected and the reverse is
not necessarily true. Secondly, for. practical purposes, it is sufficient
and more efficient to identify pseudo-independent partitions instead
of independent partitions for the reasons explained next. Blocks of
independent partitions that are not blocks of a pseudo-independent
partition and contain only a few index points (hereon called boun
dary blocks) always occur at or near the boundaries of an index set.
This can be shown for the general case when J is semi-infinite. In
fact, according to Lemma 3 in [6], there exists always a point
P=[Pl' Pz, ... , PoVEJ such that for any arbitrary points j=
[h, jz, ... , joJTEJ and Y= [j't, j'z, ... , j'nVEJ beyond pEJ (i.e.,
ji;;;; Pi and j'i;;;; Pi> 1=1, ... , n),] and Yare connected in the
dependence graph if and only if they are pseudo-connected. Boun
dary blocks are typically such that their individual cardinalities are
very small in relation to the sizes of the algorithm and pseudo
independent blocks. As a consequence, little additional speed-up can
result from executing boundary blocks concurrently with other
blocks. Moreover, assigning small boundary blocks and other large
pseudo-independent blocks to different processors of a multiproces
sor can cause a non-balanced load distribution and inefficient sys
tem operation. In addition, as pointed out before, when index sets
are known only at run time, it is not possible to determine the
boundary blocks. Finally, many algorithms are such that they have
the same partitionability and pseudo-partitionability. For all of the
above reasons, this paper considers hereon only the problem of iden
tifying pseudo-independent partitions of an algorithm.

3. BASIC RESULTS

In this paper, independent algorithm partitions are deter
mined by two types of vector, called partitioning vectors and
separating vectors, which must satisfy certain conditions. Together
with some auxiliary terminology they are introduced in Definitions

28

3.1 and 3.3. These definitions are followed by a theorem and an
example which make clear the relation between these vectors and
independent algorithm partitions.

Definition 3.1 (Partitioning vector, determining vector,
equal partitioning vector and algorithm coefficient): Given
an algorithm (J, D), II=[1f1> 1f2' ... , 1fo]EZlXO is a partitioning vector
of (J, D), if and only if it satisfies the following conditions.

(1) gcd (1fl' 1f2' ... , 1fo)=lt.

(2) There exists a set of m'=rank(D) linearly independent depen
dence vectors dll , d12, ... , dIm such that

(3.1)

The dependence vectors dIP ... , dIm are called the determining vec

tors of II. If II d;=O(mod dispTI)tt, i=l, ... , m, then TI is called an
equal partitioning vector of (J, D). The constant
01= gcd(dispTI, 011, ... , am) where ai =TIdi (mod dispTI), i= 1, ... , m, is
called the algorithm coefficient. 0

For a given partitioning vector the set of determining vectors
is not necessarily unique and, therefore, dispTI might not be unique,
either. However, given a partitioning vector and a set of determin
ing vectors, dispTI is unique. Therefore, whenever dispTI is men
tioned, it is associated with a particular set of determining vectors.

By Definition 3.1, if m'=n, then for each set of determining
vectors d t" ... , dIm' the corresponding partitioning vector TI is the
unique solution that satisfies conditions 1 and 2 in Definition 3.1
and the following system of linear equations:

TI(dtl -dt2)=0

TI(dtl -dt3)=0
(3.2)

When m'<n, the partitioning vector determined by m'
linearly independent dependence vectors d tl , ... , d tm is not unique
and of course, it belongs to the solution space of Equation 3.2. In
the next section, a closed form expression is provided for a parti
tioning vector as a solution of Equation 3.2.

A partitioning vector TI defines a set of hyperplanes
TIT = c(moda), cEZ, in the index space. Because an index point lies
on only one of the hyperplanes, the index set J can be partitioned
according to them, i.e., all points] lying on hyperplanes such that,
for a fixed c, TIT = c(moda), belong to the same block of the parti
tion. The following definition states this concept formally.

Definition 3.2 (a-partition): Let TI be a partitioning vector and
a be the algorith~ ~oeffici~nt for (J, D). The partition P ",={Jo, ... ,
J",-d where Ji={j: jEJ, IIj = i (mod a)}, i=O, ... , 01-1, is called the
a-partition of (J, D). 0

Clearly, P", is a partition and it is shown in Theorem 3.1 that
Po< is also a pseudo-independent partition.

For the case where m'.:::: n.l i.e., rank(D) < n, a necessary con
dition for two index points jl, jzEJ to be pseudo-connected is that
equation Dx = (Tl-]z) has at least a real solution xElRm. This
motivates the introduction of the following concepts. Let row vector
'Vi be such that 'ViD=O. Clearly, there are n-m' linearly indepen
dent such vectors, denoted 'V I> ... , 'V n-m', and they define a set of

t: gcd (all'''' an)=the greatest common divisor of all "'j an'

tt: a=b (mod cJ if and only if a=b+al c, al EZ.

hyperplanes

(3.3)

in the index space. The index set J can be partitioned such that
points lying on the same hyperplane belong to the same ~oc~ of the
partition. It will be clear later that if two index points h, jzEJ lie
on the same hyperplane defined by (3.3), the equation Dx = (JI-JZ)
has a solution. These concepts are formally defined as follows.

Definition 3.3 (Separating. vector and separating matrix):
Given an algorithm (J, D), W;=[.pil' ... , .p;n]EZIXn is a separating
vector of (J, D) if and only if it satisfies the following conditions.

(1) gcd(.pil' ... , .p;n)=1

(2) w;D=O.

Let WI, ... , wn_r-' be all the linearly independent separating vectors;

the matrix W,;" ~~ I is called separating matrix. 0
Wn-ml

A set of n-m' linearly independent separating vectors WI, ... ,
Wn- m' for algorithm (J, D) can be found by solving the equation in
condition 2 of Definition 3.3. The following definition indicates how
to use these separating vectors to construct a. corresponding algo
rithm partition.

Definition 3.4 (W-partition): Let W be a separating matrix of
algorithm (J, D). The partitionP,,={JY1' .",!Y.! of J_is called the
![i-partition of algorithm (J, D) if Jy,= {j: JEJ, wj"",y;}, where

Y;=[Yli' ... , y(n_m')iFEz(n-m') is called the index of block Jy" i=1,
... , q. 0

Clearly, P" is a partition of J. If m'=n, then P,,={J} is a
trivial partition because the only separating vector is 0 in this case.
As for P '" P" is actually pseudo-independent as shown later in
Theorem 3.1. Let JyEP" and consider the sub algorithm (Jy, D).
Clearly, if 01 > 1, sub algorithm (Jy, D) can be further partitioned
by the partitioning vector II. In other words, the index set J can be
partitioned by a set of hyperplanes

[IIl:: [YO (mOdOl)] { } - n-m' wy= Y , YoE 0,1, ... ,01-1 and yEZ , (3.4)

and all points lying on the same hyperplane belong to the same
block of the partition. This partition is formally stated next.

Definition 3.5 (OIW-partition): Let II be a partitioning vector
and W be a separating matrix of algorithm (J, D). The partition
P ",,= {Jy1 , ... , Jyk} of index set J is c.alled the 01 ![i-partition if Jy,

-{-:. -: J [IIJ(mOd OI)L -} h - - []T - J. JE , WJ rY;' were y;- yo;, Yli, ... , Y(n-m')i

Ezn-m'+1 is called the index of block Jy" i=1, ... , k. 0

Partitioning vectors and separating vectors playa very impor
tant role in algorithm partition. The next theorem gives some of the
motivation for the introduction of these concepts. More specifically,
it provides sufficient conditions for two computations to belong to
different blocks of an independent partition, in terms of those vec
tors and the index points associated with the computations. More
over, it shows that OI-partitions, W-partitions and OIW-partitions
are all pseudo-independent.

Theorem 3.1 : Let II be a partitioning vector, 01 be the algorithm

29

coefficient and W be a separating matrix of algorithm (J, D), respec
tively. The following statements are true:

(1) For any two arbitrary points JI' JzEJ, if IIJI""IIJz(mod 01) then
they are not pseudo-connected. Therefore, P" is a pseudo
independent partition of (J, D).

(2) For any two arbitrary points jl, hEJ, if wh "wjz then they are
not pseudo-connected. Therefore, P" is a pseudo-independent
partition of (J, D). .

(3) P "" is a pseudo-independent partition. 0

Proof: Provided in Appendix.

Corollary 3.1: If algorithm (J, D) has an equal partitioning vector
II, t~en JLl JzEJ are not pseudo-connected if IIJI .. IIJz (mod dispII)
or wjl .. wh. 0

As a particular case of Theorem 3.1, Corollary 3.1 is obviously
true. If algorithm (J, D) has an equal partitioning vector II, then
the algorithm coefficient OI=dispII. By Theorem 3.1, Corollary 3.1
holds.

Example 3.1: Consider algorithm (J, D) where J=WI,hF: ° ~ h, h ~ s, sEN+} and D= [d] where d = [2, 2]T. Figure a.1
shows the index set J for s=4. There is only one possible set of
determining vectors {d}. One of the partitioning vectors deter
mined by d is II= [-1, 2]. It follows that dispII::=IId=2 and t~e
algorithm coefficient 01=2. Consider index points jl =[0, of and j2
=[1, of; because IIJI=O(moda) and :ri.fz=1(modOl), by Theorem
a.1, they are not pseudo-connected. There is only one linearly
independent separating vector WI =[1, -1] and a separating matrix
is_W= [1, -1] . .f.gain, consider index poi~ts Jl' 1.=[0, 1F for which
Wjl =0 and Wh=-1. By Theorem 3.1, hand h are not pseudo
connected. In Figure 3.1 (a) and (b), hyperplanes IIJ = CI (modOl) and
WJ=cz, Cl, czEZ, are drawn, respectively. All the points lying on
the same hyperplane IIJ = CI (modOl) belong to the same block?! the
a-partition and all the points lying on the same hyperplane Wj = Cz
belong to the same block of the W-partition. Figure 3.1 shows the
a-partition, W-partition and OIW-partition pictorially. Let s=3,
then P,,={Jo,Jtl where Jo={[0,0]T,[0,1jT, [0,2]T, [O,ajT, [2,OjT,
[2,1jT, [2,2]T, [2,ajT} and J I={[1,OjT,[1,1jT, [1,2]T, [1,3jT,
[a,ojT, [3,1jT, [3,2]T, [3,ajT}. Also P,,={JI-3), ... , J)O) , ... , J)3¥
where J)3j={[3, oF}' JlzJ={[2, O]T, [3, 1 T}, JII\={[1,0],
[2, 1jT, [3, 2 T}, J)O)={[O, O]T, [1, 1]T, [2, 2 T,[3, 3]T},
J)-1)={[O, 1jT, [1, 2jT, [2, 3jT}, J)_2)={[0, 2]T, [1, 3jT} and
J)-3)={[O, 3jT}. Interested readers can find P "" by intersecting
J; n J\i) , i=O, 1 and j=-3, ... , 3, 116] which is such that
IP "" =12~ alP" 1=14. Clearly, P", P" and P "" are pseudo

independent partitions. In Section 4, it is shown that the aW
partition is also the maximal pseudo-independent ·partitioil. 0

By Theorem 3.1, if for any arbitrary value of aEZ, 0;;;; a<a
there is at least one point JEJ such that IIJ=a(moda), then J; EP" is
such that J i .. 0, i=O, ... , a-l. Therefore, IP max I;;; a. Intui
tively, if J is large enough a~d dense (informally, an index set J is
dense if any arbitrary point jEZn that is inside the boundaries of J
belongs to J), then for any arbitrary value of a, 0;;;; a< a and aEZ,
there usually exists at least one index point J such that
IIJ=a(mod a). Therefore, it is -reasonable to make the following
assumption:

Assumption 3.1 (Index set): For an algorithm (J, D) under con
sideration ill this paper, let II be a partitioning vector and a be the
algorithm coefficient. It is ;l.ssumed that for any arbitrary value of
aEZ, O::;;a<OI, there is at least one point JEJ such that IIJ=a(modOl).
o

In [16J, it is shown that this is true if the index set J is defined
by (2.2), i.e., J=Nn. Therefore, IP max I:;; a if J is semi-infinite.

4. INDEPENDENT PARTITIONING METHOD

In this section, Theorem 3.1 and other results and concepts
introduced in Section 3 are used to prescribe a partitioning pro
cedure. Mterwards, Section 4.1 discusses how to find the partition
ing vectors required by the procedure. Then Section 4.2 character
izes algorithms for which the method yields the optimal partition
and derives lower and upper bounds on the pseudo-partitionability
of arbitrary uniform dependence algorithms. The independent par
titioning procedure is as follows:

Procedure 4.1 (Finding alit-partition for algorithm (J, D)):

Input: Algorithm (J, D).

Output: aW-partition P "" for algorithm (J, D).

Step 1: Select m' linearly independent dependence vectors dtl , ... ,

dtm' set Dc= [dtl' ... , dtn,J, find TEzm'xn such that
rank(TDc)=m' and compute the corresponding partition
ing vector II according to Theorem 4.1 provided in Section
4.1. If dispII,.ldet(TDc) I, then select another set of m'
linearly independent dependence vectors and compute the
corresponding parti~ioning vector until all distinct sets of
m' linearly independent dependence vectors are considered.
If a partitioning vector II such that dispII= Idet(TDc) 1 is
not found, then select the partitioning vector II such that
(ldet(TDc) 1)/(dispII) is minimum. Then compute the
algorithm coefficient a according to Definition 3.1.

Step 2:

Step 3:

Step 4:

Obtain n - m' linearly independent separating vectors WI,

... , Wn- m' by solving equation Wi D = O. Set W= [~~].
'Wn- mf

For every index point jEJ, if [IIT(X:Tda)]=y'i

=[YOi'Yli' ... , Y(n-m.'li]T, then assign j to Jy" the block
indexed by Yi> i.e., jEJy,'

P",,={Jyl , ... , Jyk }' 0

4.1. Finding a partitioning vector

This subsection provides in Theorem 4.1 a closed form expres
sion- for the computation of partitioning vector II, as required in
Ste~ 1 of Procedure 4.1. Given m' linearly independent vectors dtl'
... , dIm' the corresponding partition vector II belongs to the solution
space of Equation 3.2. In [3J, a closed f~rm exp~ession for a parti
tioning vector which is determined by dtl , ... , dtm is given. This
result is restated as Theor~m 4.1 as follows.

Theorem 4.1 ~J : Le~ dtl' ... , d tm be linearly independent, consider

matrix Dc= [dIP ... , dIm J a~d - let TEzm'xn be such that

rank (TDc)=m~ The~ II=,81 (TDc)-IT is a partitioning vector
determined by dll , ... , dIm and dispII=,8, where ,8EN+ is such that
IIEZlxn and the greatest common divisor of the n components of II
is equal to one. 0

Notice that matrix TEzm'xn (such that rank(TDc)=m') always
exists. Because rank(Dc)=m', there are m' linearly independent rowS
in D[. Suppose rows rl, ... , rm' are linearly independent. If

Erl I -
T = ..., where Erp ... , Erm are as defined in the beginning of

Erm

Section 2, then rank(TDc) = m'. In other words, the result of multi
plying Dc by T is a square submatrix of D that contains exactly m'

30

linearly independent rows of the m' linearly independent columns of
D. If m'=n, then T=I, the idelltity matrix, and II= ,81 D;;-I. The
essence o~ the proof is as follows [3J. Because ,81 (TDc tl TDc=,81,
vector ,81 (TDctl T satisfies Equation 3.1 and meets conditions 1
and 2 in Definition 3.1 by the meaning of the constant ,8; so
II=,81 (TDc tIT is a partitioning vector determined by dIp ... , dIm
and dispII=,8>O.

When considering partitioning vectors for a give,{ algorithm,
it is desirable to obtain an equal partitioning vector because of the
simplicity and regularity of the resulting partitions. Necessary and
sufficient conditions for an algorithm to have an equal partitioning
vector are provided in [16J.

4.2. Sufficient conditions for optimality

Theorem 3.1 provides a necessary condition for two index
points in J to be pseudo-connected. Next it is shown in Theorems
4.2 and 4.3 that this condition becomes sufficient when the depen
dence matrix D satisfies certain constraints. The implication of this
result is that the partition P "" obtained by Procedure 4.1 is maxi
mal. In order to motivate arid facilitate the understanding of the
main results of this section, a special case is first discussed in
Theorem 4.2 where m'=n, i.e, rank(D)=n. In this case, the W-par
titian is trivial, i.e., P,,={J}.

Theorem 4.2 : Let m'=n, II be a partitioning vector of algorithm
(J, D) determined by dtl , ... , dIn' Dc=[dtl , ... , dIn J and a be the
algorithm coefficient. If 1 detDc 1 =dispII, then

(1) two index points jl' j2EJ are pseudo-connected if and only if
IITI =IIT2 (moda);

(2) the a-partition is the maximal pseudo-independent partition of
(J, D), i.e., P max=P '" and IPmax 1=01. 0

Proof: Provided in [16J.

In this case, Procedure 4.1 becomes very simple. Because
rank(D)=n, there is only one-trivial separating vector 0 and there
fore, w-partition={ J}. So Step 3 in Procedure 4.1 can be skipped.
When II is an equal partitioning vector, then IIdi=O(moddispII),
i=l, ... , m. So a=dispII= IdetDc I. This fact is summarized as
Corollary 4.1 as follows.

Corollary 4.1 : Let m'=n, II be an equal partitioning vector of
algorithm (J, D) determined by d tl , ... , dtn and Dc=[dtl , ... , dtnJ. If
IdetDc l=dispII, then the pseudo-partitionability of (J, D) is equal

to the absolute value of the determinant of matrix DOl i.e.,
Ipma:< 1= IdetDc I. 0

The meaning of Corollary 4.1 is as follows. For a class of algo
rithms, the number of blocks in the maximal pseudo-independent
partition is equal to IdetDc I. the absolute value of the determinant
of a submatrix of the dependence matrix D. If the algorithm is to be
executed by clusters of processors with limited inter-cluster com
munication capabilities then the number of clusters to be used
should be directly related and perhaps equal to the cardinality of
the pseudo-independent partition. In such MIMD systems, 1 detDc 1
is a direct indication of how :many clusters can be used to execute
the algorithm. The next theorem discusses the sufficient condition
of optimality for general cases.

Theorem 4.3 : Consider algorithm (J, D), let d tl , ... , d tm be
linearly independent, Dc=[dt1 , ... , dlmJ, TEzm'xn be such that

rank(TDc)=m', _ II=dis'pIIl(TDctl T be the partitioning vector
determined by dtp ... , dtm' a be the algorithm coefficient and W be
a separating matrix. If Idet(TDc) l=dispII, then

(1) two points II, I2EJ are pseudo-connected if and only if
II(JI - T2)= 0 (mod a) and \lITl =\lIT2;

(2) the a\ll-partition is the maximal pseudo-independent partition
of (J, D), i.e., P max=P """

n-m'

(3) IP", 1 ;:;; II (Xj + 1), where xj=max{\lIj(Tl - T2): jl' hEJ},
i=l

i=l, ... , nom', and",;:;; IPm"" 1 ;:;; '" IP", I. 0

Proof: Provided in [16].

If the cardinalities of the a-partitions of sub-algorithms (JYi'
D), where JyiEP"" i=l, ...• q, are all equal to a, then IPmal< 1=
a IP", I. However, for some block JyEP"" the cardinality of its a
partition might be less than a because for some _value of aEZ,
o i2 a < "" there might not exist an index point jEJy such that
IIj = a (moda). This phenomenon is illustrated in the following
example.

Example 4.1: Consider the algorithm of Exam"ple 3.1 with s=3.
There is only one set of determining vectors {d} and De =D. If
T=[=l. 2], then TDe=[2]. According to Theorem 4.1,
II=21 [2rl [-1, 2]=[-1, 2] and dispII = 2 = det(TDe). As in Exam
ple 3.1, the separating matrix is \lI=[l, -1]. To illustrate Theorem
4~ (11. consider poin.!.s It::=[O,O]T and 12=[2, 2F. Because
IIjl =IIh (mod a) and \lIjl = \lib, by Theorem 4.3, they are pseudo
connected. Due to the fact that dispII = det(TDe), by Theorem 4.3,
P "", is the maximal pseudo-i~dependent partition. Consider J[s[EP""
i.e., the block whose points j are such that \lIj = 3. J[s[={[3, OFj as
found in Example 3.1. There does not exist an index point jEJ3

such that IIT = O(mod a). This illustrates the explanation before this
example. By Theorem 4.3 (3). IP'!' 1 = x+1=7. where
x=3 - (-3)=6 and IPm"" 1= 12 ;:;; alP", 1=14. 0

6. COMPARISON WITH MINIMUM
METHOD

DISTANCE

In the minimum distance method [11]. [13]. an elegant idea is
used which consists of using a linear mapping to transform the
dependence matrix D into an upper triangular matrix denoted D' in
[11]. These two dependence matrices are equivalent in the sense
that each dependence vector in D'. is a linear integer combination of
the dependence vectors in D and vice versa. A set of initial points.
each of which corresponds to a block in the resulting partition. is
identified by D' and the cardinality of the P4'rtition is the product
of the diagonal elements of D'. The original program is transformed
into a parallel program containing parallel statements such as
"parallel do" by D'. An independent partition is implicitly
expressed by D' and a set of initial points.

In relation to the terminology used in this paper. a
clarification needs to be made regarding the ability of the minimum
distance method to find the maximal independent partition. In fact.
as the next example illustrates, that method finds the maximal
pseudo-independent partition instead of the maximal independent
partition which is claimed by the authors of [11], [13].

Example 6.1: Consider the algorithm of Example 2.1. In Example
2.1, the maximal independent partition of this algorithm is obtained
and it has four blocks, i.e.. IP max 1 =4. By the minimum distance

method, the upper triangular matrix is [~ ~ J So, there is only one

block in the partition obtained by the minimum distance method,
which. clearly. is not maximal. However, it is the maximal pseudo
independent partition. 0

Unfortunately, the minimum distance method finds the maxi
mal pseudocindependent partition only for a restricted class of algo-

31

rithms as illustrated in the next two examples. Two possible
interpretations are considered for the following definition of D:;'xn in
line 15. page 218 of [11], "D:;'xu (corresponding to D in this paper)
contains only those linear-independent dependence cycles
(corresponding dependence vectors in this paper)." In one interpreta
tion, it is assumed that only m';:;; n linearly independent vectors are
taken into account and included in D:;'xu and the remaining vectors
are ignored. In the other interpretation it is assumed that all depen
dence vectors are included in D:;'xn' The next two examples illus
trate the fact that both interpretations result in incorrect results.

Example 6.2 Consider algorithm (J, D) where J is semi-infinite and

[3 ° 0] __ _
D= -3 2 3 = [d l d2ds]· By the method proposed in this paper.

_ _ [3 0]
if d l , d2 are chosen as determining vectors, then De= -3 2' the

corresponding partitioning vector II=[5, 3] and the algorithm
co..:flicient ",=gcd(IIdl (moddispII), IId2 (moddispII),
IIds(moddispII))=gcd(O, 0, 3)=3. Because dispII = detD" by
Theorem 4.2, the a-partition (which is equal to the a\ll-partition)
for this algorithm is pseudo-maximal and there are three blocks in
the maximal pseudo-independent partition. There are two sets of
two linearly independent dependence vectors {dl , d2 } and {dl , ds}'

::~"[!";1:0~:::: ;'::o~, ~ ~'~ i ::h:'::~)~ t~:: ~::
corresponding upper triangular matrix is [~ ~3] and the n~mb~r
of blocks in the maximal pseudo-independent partition is 6. If dl , d3 r! c:~ra:od b:~: D~~::ee:o:;s::::~:g i:PP

t7e tr:::::l m;st:::

independent partition is 9. Recall that the number of blocks in the
maximal pseudo-independent partition is three. Therefore, both
cases yield partitions that are not independent. So all the depen
dence vectors have to be taken into account to find the maximal
pseudo-independent partition instead of only m' linearly indepen
dent dependence vectors. 0

Example 6.3 Consider an algorithm (J, D) with n dependence vec
tors and n-1 linearly independent dependence vectors, i.e., DEznxn

and rank(D)=n-l. By the minimum distance method, if all depen
dence vectors are included in the dependence matrix, then
De=DT EZnxu. The upper triangular matrix D' is square and D'=
KxDe and all diagonal elements of D' are positive. This implies that
rank(D')=n. However, because rank(De)=n-1, rank(D');:;; n-1, this
is a contradiction. 0

In ,summary, the minimum distance method is valid only for
the case where all dependence vectors are linearly independent.
When m'=m=n, it generates the maximal pseudo-independent parti
tion and when m'=m<n, it generates an independent partition that
may not be maximal. In [13], an algorithm to generate initial points
is presented for this case. However, its complexity and optimality
are not clear. Moreover, only index sets J={[jl' ... ,jnF: O::;jj;:;;Sj,
i=1, ... , n, sjEN+} are considered.

In addition, compared with the partitioning method proposed
in this paper, the minimum distance method has the following
disadvantages. First, in the minimum distance method, partitions
are expressed implicitly in terms of the upper triangular matrix and
a set of initial points. According to [11], to find the upper triangular
matrix, it is necessary to solve n integer programming problems
with m variables which are NP-complete, where n, m are the
number of dimensions of the index points and the number of depen
dence vectors, respectively. This is expensive although it is

affordable when n, m are small. In the method proposed in this
paper, partitions are expressed explicitly in terms of the partition
ing vectors and separating vectors. To obtain these vectors, the
dominating computations required are to find partitioning vectors,
i.e., consider at most all possible combinations of m' vectors from
the m dependence vectors and compute dispIIi (TDctlT. The com
plexity is bounded above by (:,)O(n3).

Secondly, as mentioned above, in the minimum distance
method, blocks of the resulting partition are implicitly expressed in
terms of the upper triangular matrix and a set of initial points.
Although the serial loops in the original program can be
transformed into parallel loops by the upper triangular matrix, it is
costly to obtain the explicit expression of blocks of the partition
and, especially, to know which block a given index point belongs to.
According to the notations in [11], given an index point XEZ1xn , one
way to see which block it belongs to is to see if equation
X = X;o + AD' has an integer solution AEZ1xn , where XiO is an initial
point belonging to block i. If it has, then X belongs to block i. If it
does not, then another initial point XjO belonging to block j, j ¥< i, is
tried until an initial point XkO is found such that equation
X=XkO + AD' has an integer solution. This can be a very computa
tionally expensive procedure. In contrast, in the method proposed
in this paper, blocks of partitions are explicitly expre~ed in terms
of the vectors. To see which block a given index point jEZ· belongs
to, the computations required are to compute IIj(modOl) and wI.

In the method proposed in this paper, for some algorithms
that do not satisfy the condition in Theorem 4.3, the resulting
pseudo-independent partition may not be maximal. The problem of
finding the maximal pseudo-independent partitions for these algo
rithms is the subject of current continuing research.

6. OPEN PROBLEMS AND CONCLUSIONS

Basically, there are two open problems. First, when algo
rithms do not satisfy the conditions described in Theorems 4.2 and
4·.3, it is not· known whether or not the independent partition
obtained by the proposed method is maximal. Extensions of the
approach proposed in this paper to deal with those' cases are
currently under investigation. Secondly, the upper bound provided
in Theorem 4.3 is not tight. As discussed in the proof of Theorem
4.3 in [16], for ~ome value of aEZ, ° ~2'- < 01, there may not exist
an index point jOy E P" such that IIj = a (mod 01) alth~ugh it is
assumed that there always exists at least one index point j' E J such
that IIji = a (mod 01). Let aI, ... , a{1 E Z, ° ~ aj < 01, i=IL ... , {3, be
s~h that there exists at least one index point jEJy and
IIj = aj(modOl), i=1, ... , {3, then, obviously, a tighter upper bound is
IP max I ~ {3 IP" I· To find the number {3 is still open.

The main contribution of this paper is a computationally
inexpensive method for identifying independent partitions of algo
rithms with uniform dependencies. For a large class of algorithms
the resulting partitions are maximal. The partitioning method pro
posed here can be applied in practice as one of the many analysis
procedures used by optimizing compilers to detect and exploit con
currency in serial programs. It may be particularly useful in map
ping algorithms into multiprocessor machines where processors are
organized in clusters with limited inter-cluster communication capa
bilities. In these systems, different clusters can process distinct
blocks of a partition without inter-cluster communication overhead
costs. Among others, such multiprocessors include Cedar [17] and
Cm" [5].

ACKNOWLEDGEMENTS

The authors thank the referees for their suggestions for
improvements in the presentation of this paper.

32

REFERENCES

[1] U. Banerjee, S.C. Chen, D.J. Kuck and R.A. Towle, "Time
and Parallel Processor Bounds for FORTRAN-like Loops",
IEEE Trans. on Comp., Vol. c-28, No.9, pp.660-670, Sept.
1979.

[2] R. Cytron, "Doacross: Beyond Vectorization for Multiproces
sors," Proc. 1986 Int'l Conf. on Parallel Processing, 1986.

[3] J.A.B. Fortes, "Algorithm Transformations for Parallel Pro
cessing and VLSI Architecture Design" , Ph.D. Thesis, Dept of
Elect. Eng.-Syst., University of Southern California, December
1983.

[4] D. D. Gajski and J.-K. Peir, "Essential Issues in Multiproces
sor Systems," IEEE Computer, Vol.18, No.6, pp. 9-27, June
1985.

[5] K. Hwang and F.A. Briggs, "Computer Architecture and
Parallel Processing," McGraw-Hill, New York, 1984.

[6] R.M. Karp, R.E. Miller and S. Winograd, :'The Organization
of Computations for Uniform Recurrence Equations," JACM
14,3, pp. 563-590, Jul. 1967.

[7] D.C. Kuck, A.H. Sameh, R. Cytron, A.V. Veidenbaum, C.D.
Polychronopoulos, G. Lee, T. McDaniel, B.R. Leasure, C.
Beckman, J.R.B. Davies and C. Kruskal,"The Effects of Pro
gram Restructuring, Algorithm Changes, and Architecture
Choice on Program Performance," Proc. 1984 Int'l Conf. on
Parallel Processing, pp.129-138, Aug. 1984.

[8] D.l. Moldovan and J.A.B. Fortes, "Partitioning and Mapping
Algorithms into Fixed Size Systolic Arrays," IEEE Trans.
Computers, Vol. C-35, No.1, pp. 1-12, Jan. 1986.

[9] D. A. Padua, "Multiprocessors: Discussion of Theoretical and
Practical Problems," Ph.D Thesis, Univ. of Illinois at Urb.
Champ., Rept. No. UIUCDCS-R-79-990, Nov. 1979.

[10] D.A. Padua, D.J. Kuck and D.L. Lawrie, "High Speed Mul
tiprocessor and Compilation Techniques," IEEE Trans. on
Computers, Vol. C-29, No.9, pp. 763-776, Sept. 1980.

[11] J.-K. Peir and R. Cytron, "Minimum Distance: A Method for
Partitioning Recurrences for Multiprocessors," Proc. 1987 Int'l
Conf. on Parallel Processing, pp.217-225, 1987.

[12] J.-K. Peir and D.D. Gajski, "CAMP: A Programming Aid for
Multiprocessors," Proc. 1986. Int'l Conf. on Parallel Process
ing, pp.475-482, Aug. 1986.

[13] J.-K. Peir, "Program Partitioning and Synchronization on
Multiprocessor Systems," Ph. D Thesis, Report No.
UIUCDCS-R-86-1259, Dept. of Computer Science, Univ. of
Illinois at Urb.-Champ., Urbana, Illinois, Mar. 1986.

[14] C.D. Polychronopoulos, D.J. Kuck and ri.A. Padua, "Execu
tion of Parallel Loops on Parallel Processor Systems," Proc.
1986 Int'l Conf. on Parallel Processing , pp. 519-527,Aug.
1986.

[15] M.J. Wolfe, "Optimizing Supercompilers for Supercomputers,"
Ph.D thesis, University of Illinois at Urbana-Champaign,
Urbana, Illinois. Report No. UIUCDCS-R-82-1105, 1982

[16] W. Shang and J.A.B. Fortes, "Partitioning of Uniform Depen
dency Algorithms for Parallel Execution on MIMD/Systolic
Systems," Technical Report 88-18, Purdue University, W.
Lafayette, IN 47907, April 1988.

[17] D. Kuck, E. Davidson, D. Lawrie and A. Sameh, "Parallel
Supercomputing Today and the Cedar Approach," Science,
Vol. 231, pp. 967-974, Feb. 28, 1986.

APPENDIX

Proof of Theorem 3.1 :

(1). Suppose II and 12 are pseudo-connected, then there exists a vec
tor>: = [AI' ... , AmF E zm such that II + D >:=I2. Therefore,

nII+IID>:=nI2 or nII+i:Aindi=nI2
i=l

Let ndi=ai+aidispn, ajj ai E Z, 0;:;; ai <dispn, i=1, ... , m. So,

m2-nII =(i:aiAi)dispn+ ~aiAi
1=1 1=1

m

where L: Ai ai is an integer because).i and ai, i=1, ... , m. are
i=l

integers. Since gcd(dispn. ai' ...• a m)= a, ai=OI"1i and
dispn=a "I, "Iii "I E Z. i=1 •...• m. Then,

nI2 - nIl = 01 ("I i: ai).i + i: "Ii \) = ° (mod a)
i=l i=l

i.e .• .!l II =n 12 (mod a). This contradicts to the assumption. SO II
and i2 are not pseudo-connected.

Consider the a-partition P ". Since nI= i (mod a). I E J i E
P ", i=0.1. ... , <; -1. for any two arbitrary index points I E Ji, ji E Jh
i .. I, n j .. nj' (mod 01) and they are not pseudo-connected. By
Definition 2.5. P is a pseudo-independent partition.

(2). Su~pose that II. 12 are Eseu~o-c~nnected, th.:n the!e ~xists a
vector). E zm such t~at D)' = (jl - j2). So. \liD), =\lI(j,-h). By
De!niE-on _ 3.3, \lI.J)=OL i=1. . .• , n-m' which implies that
\lI(h -i2),::O._i.e., \lIjl =\lIh- This is a contradiction to the assump
.!ion. So, jl,j2 are not pseudo-connected. For the \lI-partition P>!" let
jlEJYi ~nd hEJy" Y.!.. .. ~, Jyl' Jy,EP>!,. The fact that Yi"Yl implies
that \lIjl .. \lIi2. So, j" i2 are not pseudo-connected. By Definition
2.5, P>!, is pseudo-independent.

(3). Similarly, let IIEJYiEP~ and 12EJy,EP,,>!,, Yi"Yh where

Yi=[YOi' YII, ... , Y(n-m1iF and Yl=[YOh Ylh ... , Y(n-m11F· Since Yi "Yh
there exists at least on.: di~ension tE{O, 1, ...• n-m'} such that
IIi" YI!. 1f t=O, then njl .. ni2(mod a) and by (1) of Theorem 3.1,
jl and i2 are not pseudo-connected. If 1;:;; t ;:;; n-m'. then
\lIITI .. wlT2 and by (2) of Theorem 3.1. TI and T2 are not pseudo
connected. So. by Definition 2.5, P ,,>!, is pseudo-independent. 0

D = [d d 1 = r 2 - 3J
1 2'" l:1 2

• • • •
• • • •

•
•
•

(a) « - partition

!l-
#'

(It},

4.---.---.-------·

4

(b) 'If - partitio n

• (c)

• «'If

Figure 2.1 The maximal independent partition of algorithm of
Example 2.1 is p",.,,:=[J,. Je• J:l • Jt}. However. there is only one
block in the maximal pseudo-independent partition. Pictorially.
only the connectivities of points near boundaries of J are
influenced.

33

Figure 3.1 Partitions of algorithm ot Example 3.1 where D=[2. 2r.
11=[-1,2] and_ "'=[1. -1]. (a) a-partition: the hyperplanes are
described hy Ilj=c I (mod2). Points lying on dotted lines belong to
J"EP" and points lying on solid lines beIOl!l~ to JIEP". (b) "'
partition: the_hyperplanes are.described by "'j=c~. Points lying on
hyperplane "'j=c" belong to JhJEP'i" (c) OI"'-partition: dotted lines
specify "-partition and solid lines specify "'-partition ..

Automatic Compound Function Definition for Multiprocessorst

Harlan E. Husmannl David 1. Kuck David A. Padua

Supercomputer Systems, Inc.
1414 W. Hamilton Avenue

Eau Claire, WI 54701

Center for Supercomputing
Research and Development

University of Illinois
Urbana, IL 61801

Center for Supercomputing
Research and Development

University of Illinois
Urbana, IL 61801

~bstract

We compare two algorithms for automatically defining
compound functions (tasks) derived from a single program for a
multiprocessor architecture. Both algorithms assume a compound
function is represented by a Fortran 00 loop. The first algorithm bases
its decision on whether a particular loop defines a compound function
on the amount of loop parallelism that is available in the loop. The
loop's parallelism must be more than a threshold value that is supplied
as a parameter to the algorithm. The second algorithm uses more
information than the first algorithm when picking compound functions.
It estimates a loop's execution time and it compares this estimate with
the estimates for other loops, then it picks compound functions such
that the program's execution time estimate is minimized. Using the
Parafrase system, we apply these compound function definitions to 61
Fortran programs and compare the speed-up each compound function
definition yields for each ·program.

1. Introduction

Two factors provide the primary motivation for this study. First,
many vendors of high-performance computers are moving toward
tightly-coupled multiprocessor architectures. Some examples are Cray
Research (Cray X-MP, Cray-2, Cray Y-MP, Cray-3), ETA Systems
(ETA-IO), and Alliant Computer Systems (FXl8). Second, a large
body (tens of millions of lines) of Fortran programs exist for
high-performance computers. Users would like to execute these codes
efficiently on new computers (and, thus, new architectures) as they
become available, without a large amount of reprogramming.

The above two factors lead us to inv.estigate restructuring serial
Fortran programs for a multiprocessor architecture. In particular we
are interested in. this study to see how well a compiler can
automatically partition programs into tasks for parallel processing on a
hypothetical high-performance multiprocessor, and we compare two
compiler algorithrris for doing this.

For this study, a program is represented by a directed graph
called a program graph, with the nodes of the graph representing
computation and the arcs of the graph representing the execution
ordering between nodes. We call a node of the graph a CF (compound
function) of which there are two types: CTF's (control functions)
which represent serial computation and CPF's (computation
functions) which represent parallel computation. We concentrate our
study on CPF's.

Both of our algorithms for finding CF's assume that a Fortran
00 loop marks the beginning and the end of a CPF. The first
algorithm bases its decision about whether a loop is a CPF on the
amount of parallelism that is available in the loop. The loop's
parallelism must be more than a threshold value for the loop to be
chosen as a CPF. We call this CF definition algorithm the Loop
Parallelism CF Definition.!

tThis work was supported in part by the National Science Foundation under Grant
Nos. US NSF DCR84-1011O and US NSF DCR84-06916, the U. S. Department of
Energy under Grant No. US DOE-DE-FGOZ-85ER25001, the IBM Donation, and the
Alliant Computer Systems Corporation.

*The "author was a research assistant at the Center for Supercomputing Research
and Development for this work.

lSection 3 explains the CF Defulition algorithms in more detail. We use the phrase
"CF definition" to mean the process of picking or defining which loops of a program are
CPF's.

34

The second algorithm incorporates more information into
deciding which loops become CPF's: it estimates a loop's execution
time on our multiprocessor model and compares this estimate with the
estimates for other loops. The algorithm then picks the set of CPF's
that minimize the program's execution time estimate. We call this CF
definition algorithm the Optimal CF Definition.

We use the Parafrase system to empirically evaluate and
compare these two CF definition algorithms. Using Parafrase, we
apply both CF definitions to, and estimate execution time for, 61
Fortran programs.

Section 2 discusses preliminary material including our
multiprocessor model, program execution on our multiprocessor, the
Parafrase system, and the measurements we make with Parafrase. In
Section 3 we explain the two CF definition algorithms. Section 4
presents the data we gathered with Parafrase on the 61 Fortran
programs.

2. Background Material

2.1. Our Serial Computer and Multiprocessor Models

Figure 1 shows our multiprocessor model. The multiprocessor
has many arithmetic processing elements called PE's. Each PE
possesses a local memory that only it can access. All PE's can access
a shared memory called global memory. An intermediate memory (in
terms of access time and accessibility) called cluster memory exists
between the fully-shared global memory and the private local memory.
PE's can share data with other PE's through global memory or through
cluster memory but not through another PE's local memory. A group
of PE's, called a cluster, share cluster memory. For this study we
assume eight PE's form a cluster and that there are four clusters in our
mUltiprocessor.

Data transfer between the PE's and the global memory is done
via an interconnection network, such as an Omega network [9]. We
assume that the network has a constant round-trip time (the time it
takes a message to travel from a PE through the network to the global
memory and back to the PE) regardless of the load on the network.
The access time for global memory through the interconnection
network is slower (e.g., factor of three to ten) than the access time of
local or cluster memory.

Programs access two types of data through the network: items
and blocks. An item is either a scalar or an array element and it takes
the full round-trip time to access (read or write) the global memory. A
block is a number of elements from a data array. We call the
maximum number of elements in a block the block size and it is small
in size (e.g., 32) with constant stride. We abbreviate block size with
BS. Programs can store or fetch blocks, which we call a block store
and a block fetch, respectively; block access refers to either a block
store or a block fetch. We assume block access is only available in
CPF's. .

The network can pipeline block accesses in a manner similar to
the operation of pipelined arithmetic units in vector computers like the
Cray-I [19]. For example, the first element. of a block fetch takes the
full round-trip time to reach the PE, but each of the remaining
elements takes a fraction of the round-trip time.

The other model we use is a serial computer. The serial
computer is similar to one PE from the multiprocessor with only scalar
instructions (each of the multiprocessor's PE's can execute scalar
instructions or vector instructions up to length BS). We assume that

the serial computer has enough registers and pipelining to make all
fetches free--only stores contribute to a program's execution time on
the serial computer. In the multiprocessor, we count stores and fetches,
which differs from previous Parafrase-based studies [2] [3] [7]. There
are two reasons why we choose to count fetches. First, although for a
serial computer one can argue that we need not count fetches because
· the time spent fetching data is masked by pipelining, adequate memory
bandwidth, CPU registers, caches, etc., we feel we cannot make such
an argument for our multiprocessor model because global memory
speed is much slower than the speed of the PE's. The other reason we
count fetches is that we are interested in the amount of program
execution time that is due to memory access (on the multiprocessor)
and we want to measure this as accurately as possible.

The scalar arithmetic operation speed of the serial computer
exactly matches the scalar arithmetic operation speed of a PE, and the
memory speed of the serial computer exactly matches the local
memory speed of a PE. We use the serial computer as the basis for
calculating the speed-up of executing a program on our
multiprocessor.

The multiprocessor architecture we use in this study takes
advantage of local memory, cluster memory, and the vector-like block
access of the interconnection network. We call this architecture the
Block Access-No Overlap Architecture (the A3 multiprocessor for
short), following the naming scheme in [6]. At compile time, Parafrase
allocates as much program data as possible to A3's local and cluster
memory. Parafrase also transforms the program for block access for
this multiprocessor. As the name implies, the A3 multiprocessor can
perform block accesses but cannot overlap block accesses: when the
· program has to perform a block access, it suspends until the block
access is complete.

We denote the speed-up of a program executing on the A3
multiprocessor with· S;, where p is the number of PE's in the
multiprocessor and n is the architecture number. We assume the A3
multiprocessor has 32 PE's (four clusters of eight PE's each)
throughout this work. Thus, we denote A3's speed-up with Sn.

We calculate speed-up for a program executing on the A3
multiprocessor in the following manner. We estimate the program's
execution time on the serial computer; we call this estimate T I. We
estimate the program's execution time on the A3 multiprocessor; we
call this estimate Th. The program's speed-up is the ratio of TI and
Th.

Parafrase uses the original program, before transforming it for
block access, to calculate T1•

We denote a program's speed-up using the Optimal CF
· Definition for the A3 multiprocessor with

S:h(Opt)

and similarly for the Loop Parallelism CF Definition.

Sh(LP)

We compare these two speed-ups with a ratio denoted with

Sh(LP)
R(LP/Opt) = S?2(Opt)'

2.2. The Loops We Study

The Fortran programs we use in this study are serial programs
originally written for serial computers. We investigate automatically
transforming these serial programs for parallel execution on the A3
mUltiprocessor. We use the Parafrase system to transform a program
for parallel execution [3] [7] [13] [14] [21]. Parafrase uses a data
dependence gi'aph to identify those parts of the program that. can
execute in parallel. The most COmmon parallelism that Parafrase
identifies is parallel execution of different loop iterations-this is what
we study here. Parafrase has been used to study other types of

35

parallelism [1] [20].

Parafrase identifies three different loop types for
multiprocessors: serial loops, DoAllloops, and DoAcross loops. The
iterations of a serial loop must execute in sequence (Le., iteration i
must finish before iteration i+ 1 can begin).

In terms of parallelism, DoAll loops represent the exact opposite
of serial loops. All iterations of a DoAllloop can execute concurrently.
If a DoAllloop has N iterations and N PE's are available, each PE can
execute one iteration and the entire DoAll loop can complete in the
time of one iteration. Padua discusses DoAll loops in [13] as do
I.,undstrom and Barnes in [12] and Davies in [4].

The third type of loop, the DoAcross loop, lies between a serial
loop and a DoAll loop in terms of parallelism. Inter-iteration
dependences (control and data) determine how much parallelism is
available in a DoAcross loop.

Delay characterizes a DoAcross loop and it is the amount of time
we expect it takes to satisfy an inter-iteration dependence2 [3]. Each
iteration of a DoAcross loop must "delay" an amount of time equal to
the time needed to satisfy these dependences. In this context, DoAll
loops can be thought of as DoAcross loops with a delay of zero and
serial loops can be thought of as DoAcross loops with a delay equal to
the execution time of the loop's body.

The execution time of a DoAcross loop is given by

r ; -11-1 * max.(b,p*d) + d*«N-l) modp) + b

whereN is the loop bound,p is the number ofPE's executing the loop,
b is the execution time estimate of the loop body, and d is the
DoAcross delay [15].

We use a percentage, Px, to characterize DoAcross loops: a
larger Px means a more parallel loop. A DoAll loop is a DoAcross
loop with Px=100% and a serial loop is a DoAcross loop with Px=O%.
Px for a loop, given b and p, is calculated by the following formula

PX=(I-%) * 100%

An extensive discussion of the DoAcross loop is found in [3] and
additional results are found in [16] and [17].

2.3. Program Execution on the Multiprocessor

As stated earlier, for execution on a multiprocessor a Fortran
program is in the form of a directed graph called the program graph,
with CF's containing computation from the serial Fortran program and
the arcs representing the execution ordering of the CF's. A CF may
represent one or more statements from the original program: a BAS
(block of assignment statements), a loop and its body (including all
loops in the body), a GOTO, an IF statement, etc. [8].

Recall that there are two types of CF's: CTF's and CPF's. CTF's
represent the parts of the program that contain little or no parallelism,
like control statements, and execute serially on one PE. CPF's
represent the parts of the program with much computation and highly
parallel parts-DoAll loops and DoAcross loops with a large Px, for
example-and execute on one or more clusters.

We concentrate our efforts on defining CPF's for our
multiprocessor and we largely ignore CTF's. We ouly consider CTF's
when we estimate a program's execution time and we always consider
them serial computation. The automatic CF definitions we present here
focus on defining CPF's such that we exploit as much loop parallelism
as possible on our multiprocessor. After the CF definitions pick the
CPF's, the ClF's are the parts of the program' not represented by any
CPF (Le., the leftovers).

We restrict the definition of a CPF to a single loop because we
assume only one level of parallelism is exploitable on our
multiprocessor (Le., only one loop at a time can execute its iterations in
parallel on multiple PE's); we call such a loop a CPF loop. Because
we have only one level of loop parallelism, a CPF loop "freezes" all

2Here we do not differentiate between control and data dependences.

loops surrounding it and all loops in its body. The CPF loop spreads its
iterations onto multiple PE's; any loop inside a CPF loop executes
serially on one PE and any loop enclosing a CPF loop executes serially
as C1F's.

We allow only one level of parallelism because we believe this is
a realistic assumption about the software and hardware that can be built
today to support loop iterations executing in parallel. The Alliant FX/8
multiprocessor architecture is an example of such a system. It has
software and hardware support for one level of loop parallelism within
a computation complex [5].

We schedule loop iterations from a CPF loop across PE's at
compile time such that itenttion i of a CPF loop is scheduled to execute
on PE «i-I modp)+I), that is, iteration 1 executes on PE I, iteration 2
on PE 2, and so on. Once we've assigned a group of p iterations, we
must "fold back" loop iterations onto the PE's by scheduling iteration
p+1 on PE I, p+2 on PE 2, and so forth. All statements in the body of
iteration i execute serially on PE «i-I modp)+I). We call this type of
loop scheduling PE Prescheduling because it schednles CPF loop
iterations onto PE' s before run time.

This work only considers parallel processing a single subroutine
at a time, which means the spreading of different loop iterations from a
single loop across multiple PE's. It does not consider parallel
execution of subroutines, parallel execution of BAS's, or parallel
execution of two different loops as in [20].

2.4. The Source Program Restructurer

As mentioned, we used the Parafrase system for this study.
Parafrase performs source-to-source transformation of serial Fortran
programs for parallel execution, using a data dependence graph to
preserve the program's original semantics.

Parafrase accepts serial Fortran-66 programs and performs two
sets of optimizations on them. The first set of optimizations are
traditional compiler optimizations like induction variable removal,
common subexpression elimination, invariant code floating, etc. The

transformed source program then passes on to a set of
architecture-specific optimizations. We target the second set of
optimizations for a multiprocessor. These optimizations include
recurrence recognition, loop fusion [20], DoAII and DoAcross loop
recognition [3] [4], and several new transformations: CF definition,
memory allocation, and block access generation [6]. The program is
transformed for execution on our multiprocessor after the second set of
optimizations finish. We only report on the CF definition
transformations in this work ..

3. Automatic Compound Function Definition

3.1. The Trade-off: Loop Parallelism vs. Loop Execution Time

The following program skeleton illustrates the trade-off we must
deal with when defining CF's.

DoAcross 90% i=l,N

SI

SM
DoAll j~l, N

SM+1

SN

EndDoAll

SN+l

So
EndDoAcross

Since parallelism is limited to one level, only one loop in a
multi-loop loop nest can define a CPF loop. There are two choices for
a CPF loop in this program: the DoAcross loop or the DoAlI loop.
Which choice yields the most speed-up depends on the relative size (In
terms of estimated execution time) of their loop bodies. If the two

36

loops are perfectly nested, we can achieve more speed-up if the DoAII
defines the CPF because it can nse more PE's than the DoAcross loop
(assuming N is large). If the DoAlI loop is small compared to the
DoAcross loop, however, we can speed up the program more if the'
DoAcross loop defines the CPF.

3.2. Loop Structure Representation

We view the structure of the loops in a Fortran program as a tree,
as Figure 2 illustrates. Each loop from the program in Figure 2
corresponds to a node in the tree. Subtrees in the tree represent the
nesting of loops in the program. The root node represents the program;
all other nodes represent loops from the program. The root node's
children, the level-one nodes, represent the program's outermost loops
(loops I, 2, and 9). Any loop within another loop is represented as a
child node of the enclosing loop's node. This tree representation of a
program's loop structure we call the loop tree.3

We consider two different approaches to defining CF's using the
loop tree. The Loop Parallelism CF Definition is based on examining
Px for each node in the loop tree, and the Optimal CF Definition is
based on a bottom-up traversal of the loop tree, estimating the
execution time of each node it traverses. The Optimal CF Definition
tries to use more information than just Px to find CPF's. When
evaluating a particnlar node as a CPF candidate, the Optim3I CF
Definition considers the node's execution time estimate on the A3
multiprocessor model, and the execution time estimates for other
nodes. After comparing the execution time estimates, the Optimal CF
definition picks CPF's that yield the largest speed~up (i.e., the
minimum execution time estimate) for the entire loop tree.

3.3. The Different Ways A Loop Can Execute On Our
Multiprocessor

Before presenting the two CF definitions let us show the four
ways a node can execute on our mnltiprocessor. We illustrate this in
Figure 3 from the point of view of node 2. The left-hand side of the
figure shows a program outline (showing only loop boundari~s) and

node numbers. The right-hand side shows a column for each way
node 2 can execute: it can execute as C1F's with its body also
executing as C1F's (column 1); it can execute as C1F's with
descendent nodes (e.g., node 3) executing as CPF's (column 2); it can
execute as a CPF (column 3); and it can execute serially with an
ancestor node (e.g., node 1) as a CPF (column 4). These are the only
four ways that node 2 can execute on our mnltiprocessor, due to the
restriction of one level of loop parallelism.

3.4. Loop Parallelism CF Definition

The Loop Parallelism CF definition algorithm uses a node
parallelism threshold value, T, and chooses the nodes at the highest
level of the loop tree with Px ~ T. This is done with a breadth-first
search of the loop tree, examining each branch of the tree and stoppipg
the search along any branch where a node is found with Px ~ T. The
first node found down a branch with a Px ~ T is chosen as a CPF. If a
node has Px < T, we bypass the node and consider its children as
possible CPF's. For example, if we use T=I00% and apply the Loop
Parallelism CF Definition to the loop tree in Figure 2, it will choose
loop 6 as the only CPF; if we use T=90%, it will choose loops 4, 6, and
10 as CPF's; and if we use T=50%, it will choose loops I, 3, 6, 8, 10,
and 11 as CPF's.

3.4.1. The Heuristic for the Loop Parallelism CF Definition

One can see in Figure 2 that for T=IOO%, the Loop Parallelism
CF Definition misses nodes that are good candidates for CPF's (e.g.,
nodes 4, 5, 10, and 11, all with Px ~ 80%). To try to exploit these

. nodes, we add a heuristic to the Loop Parallelism CF Definition. After
the Loop Parallelism CF Definition picks CPF's with sufficient
parallelism (i.e., Px ~ 1'), the heuristic examines each unfrozen node
that was not picked by the Loop Parallelism CF Definition, looking for
nodes at the highest level in the loop tree with Px > 0% (i.e., at least

3Note that the tenns "node" and "loop tree" can be interchanged with the tenns
"loop" and "program," respectively. For the remainder of this section we use "node"
and "loop tree" in our discussion.

some parallelism). We refer to the set of nodes picked by the Loop
Parallelism CF Definition as the original CPF's, and any additional
nodes picked by the heuristic as additional CPF's. From here on
when we refer to the Loop Parallelism CF Definition we are referring
to the algorithm with the heuristic.

Space limitations prevent us from giving a full algorithmic
. description of the Loop Parallelism CF Definition; one is given in [6].
Figure 4 shows which nodes would be picked as original CPF's and as
additional CPF's from the loop tree of Figure 2 for different values of
T. For T=IOO%, nodes 2 and 7 are not chosen as additional CPF's
.because they are frozen by node 6 being an original CPF. Node 3 is
chosen over nodes 4 and 5 because it is at a higher level in the loop tree
and it satisfies the heuristic (Px > 0%).

We do not go into an analysis of the running time of the Loop
Parallelism CF Definition, but simply say that it does O(L) execution
time estimates4; an analysis is done in [6]. The algorithm is basically
two breadth-first searchs of the loop tree, the first picking original
CPF's and the second picking additional CPF's. The advantages of this
algorithm are its simplicity and that it need only do O(L) execution
time estimates. The disadvantage of the Loop Parallelism CF
Definition is it may not pick CPF's in the best way. For example, if we
.use T~90% on the skeleton program from Section 3.1, we always
choose the DoAcross loop as the CPF when choosing the DoAllloop
instead could result in more speed-up.

3.5. The Optimal CF Definition

The Optimal CF Definition algorithm, shown in Figure 5,
calculates for each node an execution time estimate for each of the
different ways the node can execute on the A3 multiprocessor (recall
Figure 3). If the minimum estimate is the one assuming the node
defines a CPF, we call the node a CPF candidate. Mter all estimates
have been calculated for all nodes, the Optimal CF Definition picks
CPF's such that the execution time es~ate for the entire loop tree is
minimized. Since the algorithm considers every possible way CPF's
could be picked from the loop tree, we are assured that the set of CPF's
which minimizes the execution time estimate for the loop tree is found.

The procedure Estimateflode_Time in Figure 5 calculates the
execution time estimates. After all execution time estimates are
completed, the procedure Optimal CF Definition searchs the loop tree
breadth-first for the outermost nodes marked as CPF candidates,
stopping the search along any branch when a CPF candidate is found.

Procedure Estimate Node Time calculates execution time
estimates for three of the foUr ways a node can execute. The estimates
which are missing are the ones assuming a node's ancestor defines a
CPF (column 4 of Figure 3). Memory allocation and transformation
for block access can be different for a node, depending on which
ancestor node defines a CPF and, thus, these estimates must be
recalculated for a node when the algorithm estimates execution time for
each of its ancestor nodes. This is illustrated with the following
example program.

Do i = 1, N
Do j = 1, N

Do k = 1, N
1 A(i,j,k) ~ A(i,j,k) + 1.0
2 If (j.GT.l) B(i,j,k) ~ A(i,j-l,k) / B(i,j,k)

EndDo
EndDo

EndDo

For this example, assume 1 time unit for each local memory
access, 2 time units per global memory access, and I time unit for an
arithmetic operation; also assume array B is always a global array. If
the i-loop is the CPF loop, array A can be allocated to local memory
following the algorithm in [6]. The total time for statement 1 is then

. three: one for the addition and two for the local memory accesses of
array A. The total time for statement two is seven: one for the
comparison, two for the global memory accesses of array B, one for the
divide, and one for the local memory access of array A. The total
serial time for the k-loop is ION. If, however, the j-loop is the CPF

4L is the nmnber of nodes in the loop tree.

37

loop, array A cannot be allocated to local memory and is allocated to
global memory. Loop k's time now rises to 13N because of the change
in memory allocation, which was necessary because a different loop
surrounding the k-loop is the CPF loop.

When time_node yarallel in line 7 of Figure 5 calculates an
execution time estimate for a node assuming it executes as a CPF, it
must redo memory allocation and block access transformation for each
of the node's descendants. This forces a recalculation of execution
time for each descendant, which results in an algorithm which does
O(L2) execution time estimates in the worst case [6].

The advantage of the Optimal CF Definition is that it produces
the set of CPF's that minimize the execution time estimates for the loop
tree. The Optimal CF Definition finds the best CF definition because it
calculates and compares execution time estimates for every possible
way CPF's could be picked from the loop tree. The disadvantage is its
O(L2) worst-case running time.

Figure 6 shows hypothetical execution time estimates and the
data structures at various points while applying the Optimal CF
Definition algorithm to the loop tree in Figure 2.

[18] takes the same approach as the Optimal CF Definition for
allocating processors for a single level of parallelism. He has an O(L)
algorithm, however, because he does not consider memory allocation
or block access, and thus, a node's serial execution time estimate is the
same no matter which ancestor node is a CPF node. We would also
have a linear algorithm if we did not consider memory allocation and
block access for nodes when estimating the execution time of ancestor
nodes.

4 •. Automatic Compound Function Definition Experiments

4.1. The Programs We Use In Our Experiments

For the experiments we report here, we use three sets of
programs: a Linpack kernel, an Eispack kernel, and a set of programs
from ten benchmarks which we call the "Benchmark programs." The
two kernels consists of all unique algorithms ·from their respective
packages. For example, if there is a program in the Eispack package
for real numbers, and an identical program for complex numbers, we
keep only one of these programs for Eispack's kernel.

We change the kernels in the following ways to improve their
performance and to allow Parafrase to analyze them: we remove the
routine SGBFA from the Linpack kernel because it becomes too large
after transforming it for block access, and we direct Parafrase to
expand all CALL's to BLAS [10] in the Linpack kernel. This leaves
11 Linpack subroutines in the Linpack kernel. In the Eispack kernel
we substitute the routine MUSECI for the routines BISECT and
IMTQL2, as is done in [7]. There are 15 programs in the Eispack
kernel.

The Benchmark programs are a set of 35 programs from several
University of Illinois benchmarks which solve the ten different
problems that appear below.

2-D Helmholtz
3-D Helmholtz
Banded Factorization
Conformal Mapping
Eigenvalue Problem

Linear Least Squares
Monte Carlo
Singular Value Decomposition
Symmetric Linear System
Symmetric Triangular

Eigenvalues/vectors

4.2. How We Present the CF Comparison Data

We use R(LPlOpt) to compare the Loop Parallelism CF
Definition and the Optimal CF Definition. Since the Optimal CF
Definition is optimal for the A3 multiprocessor, a program's R(LPlOpt)
is always between 0.0 and 1.0. A ratio of 1.0 means the Loop
Parallelism CF Definition picks CPF's as well as the Optimal CF
Definition; a ratio of 0.5 means· the Loop Parallelism CF Definition
pick!! CPF's in such a way that the program executes half as fast on the
A3 multiprocessor as the CPF's the Optimal CF Definition picks.

w.e reJ?fesent the .three sets of programs with the histograms that
appear 10 Figure 7, Figure 8, and Figure 9. Each histogram plots
R(LP/Opt) for all pro~ams in the set. We use T=I00% for the Loop
Par~ehsm ~F De~mtlon because we believe that if Px is the only
basIS on WhICh to pick CPF loops, we want to pick loops that have as
much parallelism as possible.

4.3. Discussion of the CF Comparison Data

LooJ?ng at Figure 7 we see that 8 of the 11 Linpack programs
s~ow no difference between the two CF definitions. The 3 programs
With R~P/Opt) < 1.0. ~ain less than a factor of two in speed-up from
th~ Optimal CF Defi~ltI?n: 1 program gains about 50% and 2 programs
g~n about 10%. This IS not true of the Eispack programs, however.
Figure 8 shows that nearly two-thirds of the programs benefit from the
Optimal CF Definition, some by a large amount. Only 6 of 15
programs shQW no difference between the two CF definitions· 7
programs gain between 5% and 50%, I program gains nearly a f~tor
of two, and another program gains over a factor of three from the
Optimal CF Definition. Eispack is much more sensitive than Linpack
to the way CF's are defined.

. The. Benchmark programs have their R(LP/Opt) plotted in Figure
9. Like Lmpack, most of the programs show.no inIprovement from the
Opti~a1 C~ Definition; 26 of the 35 programs have a R(LP/Opt) of 1.0.
But like Elspack, several programs gain significantly from the Optimal a: Definition. Six programs lie between 60% and 100%, 2 programs
gam about a factor of two, and 1 program gains a factor of five from
the Optimal CF Definition.

4.4. Reasons for R(LP/Opt) < 1.0

Figure 10 isolates and catalogs the programs with R(LP/Opt) <
1.0. There are four reasons for this: block access in serial loops, small
DoAll loops in DoAcross loops, small loop bounds, and small
DoAcross loops in DoAcrbss loops.

The most common reason for R(LP/Opt) < 1.0 is block accessing
global arrays in serial loops. Block access is only available in CPF's
and the heuristic of the Loop Parallelism CF Definition always passes
over a loop with Px=O% as a possible CPF, and thus, the loop never
uses block access because it always executes as a C1F. Usually this is
the correct decision. But in several cases a serial loop executes faster if
Parafrase picks it as a CPF and transfurms it for block access. Even
though a serial loop cannot exploit any loop parallelism, it benefits
from block accessing global arrays as a CPF instead of accessing their
elements as single items as a C1F.

In Section 3 we presented small DoAlIIoops in DoAcross loops
as an example of a drawhack to the Loop Parallelism CF Definition.
This is the situation where a small DoAll loop is in the body of a
~oAcross loop with a large Px. The two CF definitions could pick
different loops to define CPF's. The Loop Parallelism CF Definition
picks the DoAlI loop (since Px=I00% for these experiments) as the
CPF; the Optimal CF Definition examines both loops (the DoAcross
loop as well as the DoAllloop) as possible CPF's. If the DoAcross
loop is sufficiently parallel and sufficiently larger than the DoAllloop,
the DoAcross loop executes faster if it defines the CPF and the DoAll
loop executes serially, than if the DoAcross loop executes serially as a
CTF and the DoAllloop defines the CPF. But with T=I00% the Loop
Parallelism CF Definition always picks the DoAll loop as the CPF.
This is the second most common reason why programs have R(LP/Opt)
< 1.0.

The third reason why the Optimal CF Definition performs better
than the Loop Parallelism CF definition is small loop bounds,
especially in the case of a pair of perfectly nested DoAl!' s. The Loop
Parallelism CF Definition picks the outer DoAll as aCPF, regardless of
the loop's upperbound. But if the outer DoAll has a very small
upperbound compared to the inner DoAll, more parallelism is exploited
if the inner DoAlI is a CPF and the outer DoAll is a C1F. The
Benchmark program THREEDH has this situation in three places.

The final reason for R(LP/Opt) < 1.0 is similar to the case of a
small DoAllloop in a highly parallel DoAcross loop. Here, instead of
a DoAllloop, we have. a DoAcross loop inside another DoAcross loop.
The heuristic of the Loop Parallelism CF Definition picks the outermost

38

DoAcross loop if its Px > 0%. This may be the wrong decision if the
inner DoAcross loop has a much higher Px and their loop body sizes
are not significantly different As with the case of the DoAll in the
DoAcross situation, the Optimal CF Definition does better than the
Loop Parallelism CF Definition because it examines each loop as
possible CPF's. .

The table in Figure 10 shows the name of each program, the set
of programs each program is from, and the reason why each program
has R(LP/Opt) < 1.0. The number indicates how many distinct
occurrences in each program (e.g., SPOCO has a small DoAlI loop
inside a DoAcross loop in two distinct places).

4.5. Conclusions

We see that the Optimal CF Definition inIproves the performance
of a significant number of programs over the Loop Parallelism CF
Definition. For Eispack, 60% of the programs show a performance
inIprovement due to using the Optimal CF Definition; for all three sets
of programs, 21 of 61 programs show an inIprovement by using the
Optimal CF Definition over the Loop Parallelism CF Definition. The
CF definition inIpacts SYz greatly for several programs. For example,
one Benchmark program shows nearly a factor of five improvement in
S12 by using the Optimal CF Definition.

Whereas 60% of Eispack's programs show an inIprovement in
S12 by using the Optimal CF Definition, only 27% and 26% of the .
Linpack and Benchmark programs, respectively, show an
improvement. The largest improvement for any Linpack program is
about 50% while both Eispack and the Benchmarks have programs
with improvement better than a factor of three. This illustrates that the
relative inIportance of the Optimal CF Definition over the Loop
Parallelism CF Definition depends on the workload. For some
programs (e.g., Linpack) the Optimal CF Definition may not be
critically important; however, other sets of programs (e.g., Eispack)
suffer much more by using an inferior CF definition.

These results show why it is inIportant to pick CPF's carefully.
We could have a workload that is fairly independent of the CF
de~nition, but if th~s is not the case, we lose much performance by
usrng a less effective CF definition. And if maximizing program
performance for all programs is critical, it is very important to use the
best CF definition we can develop. In each set the S12 of several
programs inIprove by using the Optimal CF Definition.

The most common reasons that the Optimal CF Definition
produces better speed-ups are that it finds serial loops that benefit from
block access and it picks a DoAcross loop as a CPF before an inner
DoAll loop. In the first case, the Optimal CF Definition chooses a
serial loop as a CPF when the loop can benefit from block accessing
global variables (19 places in 13 programs). The Loop Parallelism CF
Definition never considers a serial loop as a CPF because it never looks
at loops with Px=O%. Thus, all serial loops execute as C1F's. The
second . reason the Optimal CF Definition outperforms the Loop
Parallehsm CF definition is that it picks more parallel inner loops as
CPF's before less parallel outer ones.

References

[1] Walid Abu-Sufah, H. E. Husmann, and D. J. Kuck, "On
Input/Output Speedup in Tightly Coupled Multiprocessors,"
IEEE Transactions on Computers, Vol. C-35, No.6, June 1986,
pp. 520-530.

[2] Utpal Banerjee, S-C Chen, D. J. Kuck, and R. A. Towle, "TinIe
and Parallel Processor Bounds for Fortran-Like Loops," IEEE
Transactions on Computers, Vol. C-28, No.9, September 1979,
pp. 660c-670.

[3] Ron.a1~ ~ary Cytron, • 'Compile-time Scheduling aud
OptimIZation for Asynchronous Machines," Ph.D. Thesis,
University of Illinois at Urbana-Champaign, DCS Report No.
UIUCDCS-R-84-1177, October 1984.

[4] James Russell Beckman Davies, "Parallel Loop Constructs for
Multiprocessors," Masters Thesis, University of Illinois at

Urbana-Champaign, DCS Report No. uruCDCS-R-81-1070,
May 1981.

[5] "A New Way to Speed Up a Supercomputer," Electronics, July
29,1985,pp.56-58.

[6] Harlan E. Husmann, "Compiler Memory Management arid
Compound Function Definition for Multiprocessors," Ph.D.
thesis, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, CSRD Report
Number 575, August 1986.

[7] David J. Kuck, A. Sameh, R. Cytron, A. Veidenbaum, C.
Polychronopoulos, G. Lee, T. McDaniel, B. Leasure, C.
Beckman, J. Davies, and C. Kruskal, "The Effects of Program
Restructuring, Algorithm Change, and Architecture Choice on
Program Performance," Proceedings of the 1984 International
Conference on Parallel Processing, August 1984 ..

[8] David J. Kuck, D. Lawrie, A. Sameh, and D. Gajski, "The
Architecture and Programming of the Cedar System,"
Proceedings of the 1983 LASL Workslwp on Vector and Parallel
Processing, Los Alamos, NM, August 1983.

[9] Duncan H. Lawrie, •• Access and Alignment of Data in an Array
Processor," IEEE Transactions on Computers, Vol. C-24, No.
12, December 1975.

[10] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, "Basic Linear
Algebra Subprograms for Fortran Usage", ACM Transactions on
Mathematical Software, Vol. 5, No.3, 1979.

[11] Kyungsook Lee, W. Abu-Sufah, and D. Kuck, "On Modeling
Performance Degradation Due to Data Movement in Vector
Machines," Proceedings of the 1984 International Conference on
Parallel Processing, August 1984.

[12] Stephen F. Lundstrom and George H. Barnes, "A Controllable
MIMD Architecture," Proceedings of the 1980 International
Conference on Parallel Processing, 1980.

[13] David Alejandro Padua Haiek, "Multiprocessors: Discussion of
Some Theoretical and Practical Problems," Ph.D. Thesis,
University of Illinois at Urbana-Champaign, DCS Report No.
uruCDCS-R-79-990, November 1979.

[14] David A.' Padua, D. Kuck, and D. Lawrie, "High-Speed
Multiprocessors and Compilations Techniques," IEEE
Transactions on Computers, Vol. C-24, No.9, pp. 763-776,
September 1980.

[I5] Constantine D. Polychronopoulos and Utpal Banerjee, "Speedup
Bounds and Processor Allocation for Parallel Programs on
Multiprocessors," Proceedings of the 1986 International
Conference on Parallel Processing, August 1986.

[16] Constantine D. Polychronopoulos and Utpal Banerjee, "Processor
Allocation for Horizontal and Vertical Parallelism and Related
Speedup Bounds," IEEE Transactions on Computers, Vol. C-36,
No.4, AprilI987,pp. 410-420.

[17] Constantine D. Polychronopoulos, D. Kuck, and D. Padua,
"Execution of Parallel Loops on Parallel Processor Systems,"
Proceedings of the 1986 International Conference on Parallel
Processing, August 1986.

[18] Constantine D. Polychronopoulos, "On Program Restructuring,
Scheduling, and Communication for Parallel Processor Systems,"
Ph.D. thesis, Center for Supercomputing Research and
Development, University of lllinois at Urbana-Champaign,
CSRD Report Number 595, August 1986.

[19] Richard M. Russell, "The Cray-l Computer System,"
Communications of the ACM; January 1978.

[20] Alexander Veidenbaum, "Compiler Optimizations and
Architecture Design Issues for Multiprocessors," Ph.D. Thesis,
University of Illinois at Urbana-Charnpaign, DCS Report No.

39

uruCDCS-R-85-1207, May 1985.

[21] Michael J. Wolfe, "Optimizing Supercompilers for
Supercomputers," Ph.D. Thesis, University of Illinois at
Urbana-Champaign, DCS Report No. uruCDCS-R-82-1105,
October 1982.

Figures

Global Memory

Cluster Memory
,
, , ____ • ______ • _______________ __ ______ .J

PE Cluster

PE: Aritlunetic Processing Element
LM: Local Memory

Other PE Ousters

Figure 1. Multiprocessor Model

program' 'p" Loop Number
DoAcross 50% 1

EndDoAcross
DoAcross 5% 2

DoAcross 50% 3
DoAcross 90% 4

EndDoAcross

DoAcross 80% S

EndDoAcross
EndDoAcross
DoAll 6

DoAcross 50% 7

EndDoAcross

EndDoAll
DoAcross 50%

EndDoAcross
EndDoAcross
DoAcross 0% 9

DoAcross 90% 10

EndDoAcross
DoAcross 80% 11

EndDoAcross

EndDoAcross

®
If \1 @@

Figure 2. Program "P" and its Loop Tree Representation

Node Different CF Definitions
Program S1re1eton

Number 1 2 3 4

DoAcross 50% 1 CTF CTF CFl' *CPF*

DoAcross 75% 2 CTF CTF *CPF* (inside

aCPF)

DoAcross 95% 3 CTF *CPF* (inside (inside

aCPF) aCPF)

EndDoAcross

EndDoAcross
EndDoAcross

Figure 3. The Different Ways Node 2 Can Execute

Original Additional Final Set
T

CPF's CPFs ofCPF's

100% 6 1.3.8,10,11 1,3,6,8,10,11

90% 4,6,10 1,5,8,11 1,4,5,6,8,10,11

50% 1.3,6,8,10,11 (none) 1.3,6,8,10,11

Figure 4. CPF's Pick by the Loop Parallelism CF Definition

40

PROCEDURE Estimate-.Node_Time(Node: node..Jl1r);
1. inne,-L := Node.child; /* Estimate leaf nodes first */
2. DQ WHILB (inner_L <> NIL)
3. CALL Estimate....Node3ime(inner_L);
4. inner_L := inner_Lnext;
5. OD;
6. Node. T! := timeJlode_serial(Node); /* Estimate time all different ways */
7. Node. TJtle_cpf:= timeJlode..J>8falle1(Node);
8. IF (Node E seCof_leafJlodes) THEN
9. Node.T_descendant_cpf:= -/* No descendants, so no estimate"

10. ELSE
II. Node.T_deacendant_cpf:= time_node_descendants..J>8falle1(Node);
12. Fl;
13. IF (T_me_cpf_rninimmn(Node» TIIBN
14. Node.cpf:= TRUE; /* CPF candidate ifpara11e1 time is rninimmn ./
15. F1;

END Estimate_Node_Time;

PROCEDURE C>ptirnat,CF _Definition;
V AR Q: QUEUE; CPFS: SET;

16. Q := emptyO; .
17. CPFS := II ;
18. DO Node := I TO#_level.one_nodes; /* Estimates time for all nodes */
19. CALL Bstimate_Node_Time(1evel_ODe_node(Node»;
20. CALL enqueue(Q,Node);
21. OD'
22. DO'WHILB (empty(Q) = FALSE) /* Find biggest CPFS possible */
23. Node := ciequeue(Q); /* Begin breadth-first ,earch */
24. IF (Node.cpf = TRUE) THEN
25. CPFS := CPFS U Node;
26. ELSE /* Node rejected a, CPF, examine its children */
27. Node2 := Node.child;
28. DO WHILB (N0de2 <> NIL) /* Add children to Q */
29. CALL enqueue(Q,N0de2);
30. N0de2 := N0de2.next;
31. OD;
32. F1;
33. OD;

END Optima_CF _Definition;

Figure 5. Optimal CF Definition

Node
Px

Execution Time Estimates
Node.cpf

No. T! T me cnf T descendant cof
I 50 10 20 -2 5 400 300 200
3 50 70 60 50
4 90 20 5 - TRUE

5 80 30 10 - TRUE

6 100 200 80 90 TRUE
7 50 70 30 - TRUE

8 50 20 30 -9 0 150 50 40
10 ·90 20 5 - TRUE

11 80 30 10 - TRUE

~:::,e Q CPFS Comment

21 1,2,9 I2l Execution time estimates finished.
32 2,9 I2l Node I', TJtle_cpf not minimal.
32 9.3,6,8 I2l Node 2', T_me_cpfnotminimal.
32 3,6,8,10,11 I2l Node 9'. T_me_cpfnot minimal.
32 6,8,10,11,4,5 I2l Node 3', T_me_cpfnotminimal.
32 8,10,11,4,5 (6) Node 6'. T_me_cpf is minimal.
32 10,11,4,5 (6) Node 8'. T_me_cpfis not minimal.
32 l1,4,S (6,1O) Node 10'. TJDe_cpf i, minimal.
32 4,5 (6,IO,11) Node II'. T_me_cpf is minimal.
32 5 (4,6,10,11) Node 4'. T_me_cpf is minimal.
33 (empty) (4,5,6,10,11) Node S's T me q>f is minimal.

Figure 6. Optimal CF Definition Time Estimates and Data Structures

FREQUENCY

•

. .. '" ::::
---o:oo--o:os--o:ro--o:-rs--o:-2o--ii:-2'5--673"o--o73"s--ii":-40--57E--ii7s5--a7ss--67i;o--ij:6S--a:-'10--ij:'1S--o:eo--ij:is--0:90--0:-9S--1:00

R(LP/Opt)

FREQUENCY

25

20

15

10

Figure 7. Linpack Speed-up Comparison

Figure 8. Eispack Speed-up Comparison

"'''' ..
::::

II!! ::::
HH
H:i

--(j:iiii--ii:iis--ii:Iii--'O:rs--o:'2o--(j:-2'5--(j:3"o--(j:3"S--ii:4o--o:'4S--(j:s(j--'Q:sS--ii:'6ii--o:'6s--(j:'7o--ii:'7S--(j:iii--o:sS--(j:90--ii:9S--i:o(j
R(LP/Opt)

Figure 9. Benchmarks Speed-up Comparison

Program
Block Access DoAllin Loop DoAcrossin

Package
';n S.ri.l . """ nnA""",. Rnund. DnAcm ..

SPBFA L 3 1
SPOCO L 2
SORSL L 1
ELMBAK E 1
ELTRAN E 1
HQR E 2
HQRi E 1
1M'rQLV E 1
lNVIT E 2
MINFIT E 1 4
MUSECI E 3
TRED2 E 1
COMPVO B 1
GENBUN B 1
ICSEVU B 1
RFFIFI B 1
SINT B 1
SORT3 B 1
TIlREEDH B 3
1RID B 1
TRIX B 1

Figure 10. Reasons for R(LP!Opt) Less Than 1.0

41

Automatic Restructuring or Conditional Cyclic Loops

Gyungho Lee

The Center for Advanced Computer Studies
University of Southwestern Louisiana

P.O. Box 44330
Lafayette, LA. 70504

Abstract
This paper considers automatic restructuring of loops with
conditional branching, especially a class of loops termed
"conditional cyclic loops", for parallel processing. With a
binary tree representation of a loop, parallelizing the loop on
a shared memory machine allo';"ing concurrent reads is dis
cussed. In general, parallel execution of the loop consists of
two stages, precomputation stage and path selection stage.
The precomputation stage is equivalent to solving a set of
recurrences, and the path selection stage is equivalent to
solving a full-order Boolean recurrence. A few important
special cases, which include "postfix-IF loops" and some of
"linear mixed recurrence loops", can be executed in O(Jog n)
time with a polynomial number of processors, where n is
the loop bound.

1. Introduction

A loop with conditional branching is a typical dynamic
control structure in ordinary sequential programs and is a
major obstacle to automatic program restructuring for
parallel processing. In general the loops with conditional
branching can be classified by the availability of the values
of the predicates defining the branching. Branching adds lit
tle difficulty to parallelizing a loop, provided that the value
of the predicate at each iteration of the loop does not
depend on the results of the previous iterations. This class
of loops (conditional acyclic loops) is relatively easy to han
dle by using control or mode bits on synchronous array
machines, or by using independent multiple control units on
asynchronous multiprocessor machines. If branching is
based on the values of the variables that are set as the
results of the previous iterations of the loop, then the loop is
difficult to parallelize. Conditional cyclic loop is a class of
loops in which the conditional creates a dependence cycle
across the loop index values, i.e. the values of the predicates
are decided based on the branching taken in previous itera
tions. No attempts have been made to parallelize condi
tional cyclic loops except a simple special case. However,
conditional cyclic loops are not rare in practice and seem to
be a major unparallelized loop type in automatically restruc
tured nonnumerical programs (see [7]). This paper concerns
how to parallelize conditional cyclic loops in order to obtain
a better speedup gain from automatically restructured pro
grams.

Part of this work was done while the author was with Center for
Supercomputing Research and Development, University of Illinois
at Urbana-Champaign. This work was supported in part by the
National Science Foundation under Grant No. US NSF DCR84-
10110, and the U.S. Department of Energy under Grant No. US
DOE DE-FG02-85ER2500l.

42

Conditional cyclic loops can be classified further by the
availability of the possible values of the variables that define
the predicate of the IF statement. A postfix-IF loop is a
conditional cyclic loop where the two possible values of the

variables (one for the true branch and the other for the false
branch) at each iteration of the loop do not depend on the
previous iterations [I1J. All the possible values are immedi
ately available in a postfix-IF loop, and executing the loop
will choose a particular value at each iteration for each vari
able. A mixed recurrence loop is a conditional cyclic loop
where the variables used in branching cause recurrences. So,
even the possible values, not alone the actual value at each
iteration, of the variables are not available un til the
recurrences are solved. The recurrences can be linear or
nonlinear. We consider the case of linear recurrence only
(linear mixed recurrence loop). The overhead involved in
parallelizing nonlinear mixed recurrence loops seems to
overwhelm potential benefit of parallelizing them, and the
cases of nonlinear recurrences are rare [7J. See Figure 1 for
the examples of loops with conditional branching.

For the convenience of presentation, log n will denote
log2n and will be assumed to have an integer value in this
paper. The values of x /y and Vx will also be assumed to
be integers. Algorithms and program examples will be
described by a FORTRAN like notation, the meaning of
which should be apparent.

2. Boolean Recurrence in Conditional Cyclic Loops

Suppose we have a conditional cyclic loop like the fol
lowing:

L: DO 1 i= 2, n
IF e(x,_m, ... ,xi_d

CONTINUE

THEN x, = <P,
ELSE x, = 1ri

where <Pi and 1ri are arbitrary functions. Although the
expression e may include variables other than x,
(1 ~ i ~ n), we use the notation of e(x,_m, ... ,Xi_I) to
highlight dependence cycles between the predicate and the
assignment statements. Then loop L can be represented by
the following set of equations:

{ <p, if bi _l =l

Xi = 1ri if bi_I=O (2 ~ i ~n)

where X2, ..• ,xn are variables, bi _1 is a Boolean variable
defined by a Boolean expression e(xi_m, ... , Xi_I) (1
~m <n), and 0 and 1 are Boolean constants. If <Pi and 1ri
are constants (Le., known values before executing the loop),
then L is a postfix-IF loop of size n, and if <Pi and 1r i are
linear recurrences, then L is a linear mixed recurrence loop
of size n. In the equation form of loop L, the value of the
Boolean variable bi depends on the values of some bk 's

(i-m $k $i-l). So, every conditional cyclic loop has an
imbedded Boolean recurrence.

Consider a set of .Boolean variables {b I> ••• , bi } with
an integer i. Let the 2' minterms of these variables be num-
bered 1, 2, ... , 2' as they appear in a usual truth table,
and P, (b 1, ... , b;) be the t th min term. Then the Boolean
variable b. in loop L can be represented by the following
nonlinear Boolean recurrence of order m :

2m

b. = E e."P,(b._m , ••• , b._I), (2 $ i $ n).
'=1

where e., is the value of the Boolean expression e based on
P, (b. -m,' ... , b. -1), and E denotes Boolean sum. So, one
can parallelize the loop by solving the Boolean recurrence in
parallel. In [1-3]' postfix-IF loops are parallelized by solving
the Boolean recurrence caused by the loop.

Since our discussion on the complexity of a conditional
cyclic loop is based on the I an -in lemma in [8] (see also
[6]), we borrow the lemma before proceeding. The assump
tion that a processor can consume at most two operands at
a time is used in the lemma and will be used throughout the
paper.

Lemma 1 (fan-in lemma). Suppose a processor can do at
most a single binary operation at a time. Then an expres
sion that depends on n variables or constants cannot be
evaluated in less than log n time with an unlimited number
of processors.

To solve the Boolean recurrence for b., the coefficients
ei,' 's need to be evaluated first. For a postfix-if loop, all the
ei,' 's can be evaluated in parallel without any difficulty,
because all the possible values of x. 's are known. However,
in a linear mixed recurrence loop of order m, the evaluation
of ei,' 's is considerably more complex than a postfix-IF loop.
To evaluate the coefficients of a Boolean recurrence, we need
to solve linear recurrences, and we need to solve the Boolean
recurrence to determine the coefficients of linear recurrences.
The straightforward way of breaking this circular nature,
which we adopt, is to evaluate all the possible values of the
recurrence variables. This forces us to solve a full-order
Boolean recurrence:

:z(i-l)

bi = E ei"P,(bl> ... , bi-:1), (2 $ i $ n).
1=1

However, by the fan-in lemma, we cannot solve this full
order Boolean recurrence in o(n) time, and a lortiori
O(log n) time, because there are 9(n ·2") variables in the

expression to be evaluated. Notice that there are 2i - 1 possi
ble values of Xi for each i (1 $ i $ n).

3. Binary Trees and Conditional Cyclic Loops

We consider another approach of parallelizing a general
conditional cyclic loop, which is based on a binary tree
representation. Our concern is to parallelize conditional
cyclic loops in general, which include both postfix-IF loops
and linear mixed recurrence loops, on shared memory paral
lel computers allowing concurrent reads (the CREW PRAM
.[9]). For postfix-IF loops, our result is equivalent to the
Boolean recurrence solver in [2]. However, our approach
shows parallelism more clearly and is more general.

Consider loop L again. By making each node of a

43

binary tree represent each possible value of the variables
defining e and the two edges from each node represent the
two branches of the IF statement, say the left edge for the
false branch and the right edge for the true branch, loop L
can be naturally represented by a binary tree of height n-1.

Consider the complete binary tree of height n -1. Let
ei' be the t th node from the left on the ith level of the tree
(s.~e Figure 2). Then e." (1 $ t $ 2.-1) represents one of
2,-1 possible values of the variables defining e at the jth

iteration of loop L. So, the execution of a conditional cyclic
loop L is equivalent to forming a certain path from the root
by selecting a node at each level of the tree, provided that
the tree is already formed.

We now consider solving the Boolean recurrence imbed
ded in a conditional cyclic loop by selecting a path on the
tree, which is basically a parallel prefix problem. Let Path,
(1 $ t $ 2"-1) be the Boolean product of all the e." 's on
the path from the root to the ttb leaf node. Then, the prob
lem is to find a Path, having Boolean value 1, which
represents the path to be taken in executing the loop (there
can be only one Path, having Boolean value 1).

Suppose a processor is assigned to each "mutually
exclusive" complete subtree of height 2 of the binary tree
from top to bottom, i.e. processors are assigned to the nodes
on every other level of the tree starting from the root. By
checking the value of the root of the subtree, each processor
can determine which one of its two descendant nodes will be
taken for the path we want to find. This produces (2" -1)/3
edges for the tree of height n. Now, we want to form a
reduced tree. Suppose we have two edges, say Eland E 2.

If in the original tree, the parent node in E 2 is a left (right)
son of the descendant node in E 1> then E 2 becomes a left
(right) son of E 1. So, we have a tree whose height is half of
the original tree's height (see Figure 3). Notice that this
tree reduction is essentially the step of Boolean product in
the parallel prefix problem. Doing this recursively until the
tree is reduced to a single node, we can obtain the single
path that a sequential execution of the loop follows in
O(log n) time (see Algorithm 1). The correctness of Algo
rithm 1 can be easily checked by induction, and this leads us
to the following lemma.

Lemma 2. In a conditional cyclic loop of size n, the
imbedded Boolean recurrence can be solved in O(log n) time
with an unlimited number of processors.

To select a certain path in the tree representation of
the loop (path selection stage) by using Algorithm 1, we need
to set up the tree first by precomputing all the possible
values of the variables defining the predicate in the loop
(pre computation stage). For a linear mixed recurrence loop
of order m and of size n, the precomputation stage is
equivalent to solving 2"-1 linear recurrences of order m.
Suppose we solve all the recurrences at a time by using a
fast parallel recurrenc.e solving algorithm like the one in [4]
or [9] because we expect "small" m in practice. Then,
assuming that the Boolean expression e can be evaluated in
constant time if the values of the variables defining it are
immediately available, the recurrences can be solved in
approximately (2 + log m) log n time with an unlimited
number of processors. So, we have the following theorem.
Theorem 3. Any arbitrary linear mixed recurrence loop of

order m and of size n can be executed in O(log m log n)
time with an unlimited number of processors.

In a postfix-IF loop the number of possible values of
the predicate is determined by the order of a postfix-IF loop.
There are at most 2m nodes at each level of the tree for a
postfix-IF loop of order m. Since all the possible values are
immediately available, we have the following corollary
directly from Lemma 2, by taking the first 2m nodes at each
level from the complete binary tree in Figure 2. Notice that
all the ei ,K result the same value of hi as ei ,j where j =
(u-l) mod 2m - 1 + 1, because the value of each ei,u depends
only on the values of e',1 's (i-m ~ I ~ i-I).

Corollary 4. A postfix-IF loop of order m and of size n
can be executed in O(log n) time with an unlimited number
of processors.

4. With A Limited Number of Processors

Sin(;e p should be a relatively small, limited number in
practice, we consider a way of exploiting the parallelism in a
conditional cyclic loop with a limited number of processors.
Consider the binary tree in Figure 2 again. To use Algo
rithm 1, the tree is partitioned by level so that each parti
tion covers log(3p +1) levels. By assigning processors to the
first log(3p +1) levels of the tree, we can find the first
log(3p +1) nodes for the path we want to have. The next
log(3p +1) nodes for the path can be found in the same way
by considering a subtree with its root as the last one of the
first log(3p +1) nodes found for the path. By applying Algo
rithm 1 to each partition iteratively in this way, the path
selection stage can be done in approximately
(n-l) loglog(3p +1) time. Notice that Algorithm 1 is

log(3p +1) - 1
equivalent to the sequential execution of a conditional cyclic
loop when p = 1. This gives us the following lemma and
corollary.

Lemma 5. The path selection stage for a conditional cyclic

loop of size n can be solved in O(n loglog p) time with p
log p

processors.

Algorithm 1
(Path selection for a conditional cyclic loop)

/* the value of every ei,1 is known */
/* Pi,l is an ordered set of nodes */
/* P 1,1 is the output */

Ll: DO 1 k = 1, log (n-l)
L2: DOALL 2 j=I,(n-l)/2i

i = (j - 1)2i + 1
L3: DOALL 3 t = 1, 2i-1

IF (k = 1)
THEN IF ei,1 THEN Pi,1 = {ei,1 }U{ei+l,21}

ELSE Pi,1 = {ei,1 }U{ei+l,21-1}
ELSE BEGIN

ei+2H_I,s = the last entered element of Pi ,I

IF ei+2H_I,s THEN Pi,I=Pi,IUPi+2H,2S
ELSE Pi ,I =Pi ,I UPi +2k-1,2s_1

END
3 CONTINUE
2 CONTINUE
1 CONTINUE

44

Corollary 6. A postfix-IF loop of order m and of size n

can be executed in O(2m n 10gL) time with p (> 2m) pro-
P 2m

cessors.

Since in practice it is rare for m to be greater than three,
we may consider 2m to be a constant. So, a postfix-IF loop
can be executed in O(n /p log p) time.

As noted earlier, the precomputation stage adds consid
erable complexity in parallelizing a linear mixed recurrence
loop. To get a path of length log(3p + 1) we need to form a
tree of height log(3p + 1) for a linear mixed recurrence loop.
This requires us to solve (3p + 1)/2 linear recurrences of
order m and of size log(3p + 1). Since there are at most
O(p) nodes in a tree of height log(3p + 1), the precomputa-

tion stage for a partition can be done in 0(m210g~)
m

time by using the algorithm in [5].

Theorem 7. A linear mixed recurrence loop of order m

and of size n can be solved in O(1m 2n log log p) time with
ogp m

p processors (p ~ 2m).

Unfortunately, the benefit of the parallelization is little,
which makes it impractical parallelizing linear mixed
recurrence loops in general.

5. Special Cases of Linear Mixed Recurrence Loop.

Although we are pessimistic about the existence of an
'efficient' parallel solution for a general linear mixed
recurrence loop, we have three interesting special cases of
order 1. Consider a linear mixed recurrence loop of order 1,
which can be represented by the following equation:

where ai, Ci, if;, and C; are coefficients. Then we have the
following three special cases:

Case I: Ci = 0, Ci = 0, ai are fixed for all i,
and ifi are fixed for all i

Case II: ai = 1, ifi = 1, ci are fixed for all i,
and C; are fixed for all i

Case III: Either ai = 0 for all i or if; = 0

for all i (0 and 1 are integer)

Although our special cases seem to be quite restricted, it is
interesting to observe that the special cases are not rare in
practice (in our experiments of automatic program restruc
turing [7], most linear mixed recurrence loops are of special
cases). Notice that all the special cases are recurrences with
constant coefficients. Furthermore, the number of possible
values of Xi is reduced. By the commutativity of multiplica
tion (for Case I), by the commutativity of addition (for Case
II), and by induction (for Case III) there are i possible
values of Xi for each i (1 ~ i ~ n). This reduced number
of possible values and the constant coefficients naturally
simplify the precomputation stage and the path selection
stage.

By partitioning the binary tree by level so that each
partition has vP levels, and by finding a subpath for each

partition iteratively starting from the first partition, we
have the following corollary.

Corollary 8. The three special cases of linear mixed

recurrence loops can be executed in O(n !I!- p) time with p

processors.

6. Conclusion

We have considered parallelizing conditional cyclic
loops on a shared memory multiprocessor allowing con
current reads. Based on a binary tree representation of a
conditional cyclic loop, executing the loop turns out to be
equivalent to precomputing all the possible values of vari
ables involved in defining predicates of the loop (precompu
tation stage) and selecting a single path from the root of the
tree (path selection stage).

Although little benefit of the parallelization with a
finite number of processors makes it impractical to parallel
ize linear mixed recurrence loops in general, postfix-IF loops
do not require the precomputation, and the special cases of
linear mixed recurrences loop reported require the time for
precomputation increasing quadratically with respect to the
loop bound n. Furthermore, the path selection stage for
these loops can be done easily because of reduced number of
nodes in the tree. Postfix-IF loops and the special, but not
rare, cases of linear mixed recurrence loops can be executed
in O(log n) time with a polynomial number of processors
with respect to the loop bound n .

The difficulty of parallelizing conditional cyclic loops
emphasizes the importance of developing entirely new paral
lei algorithms. However, developing an efficient new parallel
algorithm often requires long hard work and some ingenuity.
In the mean time, the way of parallelizing conditional cyclic
loops presented in this paper can be used, by identifying a
conditional cyclic loop automatically, for a "modest" gain of
speedups from some automatically restructured sequential
programs.

1

a).

1

b).

DO 1 i = 1, n
IF (y(i) .CT. 0)
THEN xCi) = a(i) + b(i)
ELSE xCi) = a(i) * b(i)

CONTINUE

conditional acyclic loop

DO 1 i = 2, n
IF (c(i) .CT. c(i-l))
THEN c(i+I) = w(i+l)
ELSE c(i+I) = v(i+I)

CONTINUE

postfix-IF loop of order 2

DO 1 i = 2, n
IF (x(i-l) .CT. 0)
THEN xCi) = x(i-l)*2 - t
ELSE xCi) = h(i)

1 CONTINUE

c). linear mixed-recurrence loop of order 1

Figure 1. Loops with Conditional Branching

45

level

2

3

/

'1,1

x~
'3.1 '3,2 '3,3 '3,4

n-l e,,-I,1 &,._1,2_-1

Figure 2. A Tree Representation of a Conditional Cyclic Loop

original tree

: edges taken by processors

~ --® ®
reduced tree

Figure 3. Tree Reduction

References

[1] U. Banerjee, "Speedup of Ordinary Programs", Ph.D
Thesis, University of Illinois at Urbana-Champaign,
Dept. of Computer Science, 1979

[2] U. Banerjee and D. Cajski, "Fast Evaluation of Loops
with IF statement", IEEE Trans. on Computers, Vol.
C-33, No. 11, pp. 1030-1033, 1984

[3] U. Banerjee, D. Cajski, and D. Kuck, "Array Machine
Control Units for Loops Containing IFs", Proc. of the
1980 International Con! on Parallel processing, Aug.
1980

[4]

[5]

[6]

[7]

[8]

S. Chen, "Speedup of Iterative Programs in Multipro
cessor Systems", Ph.D Thesis, University of Illinois at
Urbana-Champaign, Dept. of Computer Science, 1975

S. Chen, D. Kuck, and A. Sameh, "Practical Band Tri
angular System Solvers", ACM Trans. on Mathematical
Software, Vol. 4, No.3, pp. 270-277, Sept. 1978

D. J. Kuck, The Structure of Computers and Computa
tions, Vol. I, John Wiley & Sons, Inc., NY, 1978

C. Lee, C. Kruskal, and D. Kuck, "An Empirical Study
of Automatic Restructuring of Nonnumerical Programs
for Parallel Processors", IEEE Trans. on Computers,
Vol. c-34, No. 10, 1985, pp.927-933

I. Munro and M. Patterson, "Optimal algorithms for
parallel polynomial evaluation", J. Comput. Syst. Sci.,
7(1973)

[9] A. Sameh and R. Brent, "Solving Triangular Systems
on a Parallel Computer", SIAM J. Num. Analysis, Vol.
14, No.6, pp. 1101-1113, Dec. 1977

[10] M. Snir, "On Parallel Search", presented at the Ottawa
Conf. Distributed Computing, Aug. 1982

[11] M. J. Wolfe, "Optimizing Super Compilers for Super
computers", Ph.D Thesis, University of Illinois at
Urbana-Champaign, Dept. of Computer Science, 1982

Debugging Parallel Programs using Graphical
Views*

Mary L. Bailey, David Socha, and David Notkin

Department of Computer Science, FR-35
University of Washington, Seattle, WA 98195

1

Abstract

Voyeur is a prototype system for creating ap
plication-specific, graphical views of parallel pro
grams. We describe the system and three views
created using the system, two for MIMD non
shared memory parallel programs and one for a
shared memory, multi-threaded program.

Introduction

Historically, computers have supported debugging by pro
viding access to the program's state. The programmer
assimilates this information, comparing the expected and
actual states of the computation to validate the pro
gram's execution or to detect errors. This approach of
ten is overwhelming for parallel programs, which have or
ders of magnitude more state information than sequential
programs. Graphical views help to manage this state in
formation by synthesizing images of the program's state
and thus focusing on the problem structure, algorithmic
structure, or architectural structure of the target com
puter. These"images present a great deal of information
in a readily assimilated manner.

Voyeur is a prototype system for constructing ap
plication-specific graphical views of parallel programs.
Voyeur's goal is to make practical the creation of new
views for specific algorithms. To date, we have con
structed and used Voyeur views of (1) MIMD, non-shared
memory programs written in Poker [12], (2) a shared
memory parallel simulation program executed on a Se
quent multiprocessor, and (3) a sequential Fortran pr?
gram executed on a MicroVAX-2. This paper describes
three of these Voyeur views and discusses their use. We
also describe how Voyeur provides a structure for easily
creating views.

Related Work. Techniques to visualize the data como"
ing from parallel debugging range from using a sequential
debugger on each of the processes of a parallel program
[11] to providing a textual trace of program execution [8]
to integrating trace information and a visual view of the
program. The last category includes Belvedere [7], which

·This research funded in part by Office of Naval Research Con
tract N00014-86-K-0264, National Science Foundation Grant CCR-
8416878, and Air Force Office of Scientific Research Contract 88-
0023.

46

displays the communication graph of a message passing
program and shows the message activity on the edges of
this graph, and also can find and display logical patterns
of message activity in an asynchronous message-passing
system. Similarly SDEF [5] and Poker's Trace View [12]
display variable values in the nodes of a communication
graph.

2 Voyeur Views

This section describes three Voyeur views and how they
helped verify and debug parallel programs. The three
views were developed for different applications: two Poker
programs and a shared memory, multi-threaded program.
Several additional views have been developed [13] but are
not discussed here due to space limitations.

Icon View. The icon view (see Figure 1) was developed
to debug a sharks and fishes algorithm [4]. The algorithm
simulates sharks and fishes moving in a two-dimensional
grid of points. Each point may be occupied by one ani
mal. Fish move into vacant, randomly chosen, adjacent
points. Sharks move similarly, with the exception that
sharks eat an adjacent fish if possible. Both species oc
casionally give birth, with the baby staying in the place
the parent vacates. Fish never starve, but sharks do if

Quit
Generation 1
generation

grid • •

"" ...
•

Figure 1: Voyeur's icon view.

...
-' .
......

'.

/ /
/'"

Figure 2: Voyeur's vector view.

left unfed long enough. For simplicity, all the fish and
then all the sharks are moved, in an alternating pattern.

Debugging this algorithm proved difficult because of
the large amount of information in each processor, the
synchronization between processors, and the random na
ture of the algorithm. For instance, when testing the
movement of the fishes, having the two fish in a single
processor randomly choose to move west seemed fine un
til the icon view showed all of the fish "randomly" moving
west - clearly a bug.

Another bug manifested itself in the communication
between processors. The two-dimensional problem space
was divided among the processors which were connected
in a mesh (the grid lines are shown in Figure 1). At
one point in the program, some of the fish on the east
side of a processor jumped to the west side of the same
processor, and vice versa. This was due to a program
error: the constants east and west had been reversed.
While this bug could have been detected using only local
infmmation, the global view made it obvious.

Vector View. The vector view plots vectors in a two
dimensional space. This view was created to assist a col
league in the Applied Math department debug a Poker
program of the SIMPLE algorithm [2, 6]. The calcula
tion was going wild and two causes were possible: either
there was a bug in the Poker program, or there was a
numerical instability due to the sparseness of the points
in the 3-dimensional space. Viewing the vectors during
the program's execution, the programmer saw a vector
move non-radially before the errant behavior, indicating
numerical instability, rather than a program bug (see Fig- .
ure2).

We developed this view by first generalizing and then
specializing the icon view. Each line of a setup file speci-

47

Quit
HUI'Ibl!r of' "'I!'SS81I!'S = 136

lIIes.~.l...e

arid - -
11 I 4 I 10 I 4 I - - -
- - - -
9 4 I I 4 4 - -
-4 I 7 I 12 I 4 I - -

- -
I 4 I I 4 I 8 I 7 - - -

Figure 3: Voyeur's simulator view.

fies the type of an object to view (icon or vector), the sim
ulator's unique identifier for the species of object (such
as a shark icon or a hydro vector), and, for icons, a file
containing the bitmap for that object species. Adding or
removing species of objects and changing their appear
ance is as easy as modifying this file.

Simulator View. The simulator view, developed for a
colleague in Computer Science, monitors a parallel sim
ulation of message flow among 16 processes connected
in a 4 X 4 torus. Each process is connected to its four
neighbors. When a process receives a message, it updates
its local clock and forwards the message, with the new
clock time, to a randomly chosen neighbor. The run-time
system guarantees that messages are delivered in times
tamp order, so that processes can never receive old mes
sages (messages with timestamps less than the current
process's clock). The simulation is written in SYNAPSE
[14] and runs on a Sequent [10] multiprocessor.

Figure 3 shows the message traffic of the system.
Each process shows its local time and the length of the
queues of incoming messages as bars. For instance, the
process in the upper right corner is at time 4 and has
one message in the west queue, two in the east queue,
and three in the south queue.

At the beginning of the simulation, each process gen
erated four messages and sent them out in random di
rections. No other messages were generated during the
simulation. The uniformity of the queue length and clock
times reaffirmed our intuition about the effects of ran
domly selecting message ports in this regular intercon
nection structure. Modifying the vector view to create
the simulator view took five hours.

View:

Renderer
program

Modeler

~~~~""""""""'$""""""" ~ 
................................................. ~ 

Figure 4: Voyeur system structure 

3 Integrating Voyeur and Pro
grams 

The various views has been invaluable in debugging Poker 
programs; however, the key to Voyeur's usefulness is the 
ease of creating new views. This is facilitated by Voyeur's 
structure (shown in Figure 4) and a hierarchy of views 
[13]. Boxes with square corners are heavy-weight pro
cesses. Boxes with round corners are modules. Messages 
from the user filter down to change the form of the view 
or to request more simulation data. Messages from the 
simulator filter up to change the state shown by the view. 

A Voyeur view consists of the simulator interface, the 
adapter, the modeler, and the renderer [1]. The adapter 
translates between the string-based simulator messages 
and the procedural interface ofthe modeler and renderer. 
These messages may come directly from the simulator or 
may come from a trace file produced by the simula~or. 
Based on the type of each simulator message, the corre
sponding modeler procedure for that message is called. 
The modeler manages data specific to the application. 
The renderer defines the user interface (based on X Win
dows [9]), which is responsible for drawing the view of the 
information in the modeler, for manipulating the form of 
the view, and for letting the user control the program's 
execution. Just as control events from the X Window in
terface drive the execution of the renderer and modeler, 
state messages from the simulator drive the adapter, the 
modeler, and the renderer. 

The user interfaces of the views share a basic struc
ture. The view's title is contained in a title bar at the top· 
of the view. Underneath the title bar is a set of pull-down 
menus. Below the menu bar is a status area containing 
data appropriate for the view. Below this and to the left 
is a set of control buttons for controlling the execution 

48 

of the simulation. The data area, in the lower right
hand corner, contains scroll bars for movement within 
this area. 

To create a new view, the user first annotates the 
Poker program to send appropriate messages to the view. 
The adapter is compiled from a description of thesemes
sages. The user then writes the modeler and the renderer. 
Because the view share much of their functionality and 
appearance, creating a new view consists of modifying an 
existing one. This typically takes anywhere from a few 
hours to a few days. We hope to shorten this time by 
converting Voyeur from C to C++ and explicitly utiliz
ing the class hierarchy. 

4 Conclusions 

The Voyeur prototype provides easy construction of new 
. and flexible views for parallel debugging. These views 
have greatly eased the laborious task of finding obscure 
bugs in Poker programs. The current structure has a 
fairly high degree of flexibility both in the power of the 
views and in the creation of new views. 

Still, there are many areas for improvement; we are 
now pursuing these as part of the Orca project. We need 
to simplify the task of creating new views by techniques 
such as an explicit hierarchy of views. We need to explore 
new views. We need to increase the flexibility of the 
existing views. For instance, in the icon view, it would 
be nice to allow the user to dynamically select which icons 
to see. Similarly, logical zooming is a powerful tool. For 
example, zooming out using the icon view could replace 
the icons with smaller icons and eventually just a dot 
for each icon, progressively giving a larger global picture. 
at the expense of local information. Finally, we need to 
explore using Voyeur with more programming systems. 

References 

[1] Marc H. Brown. Algorithm Animation. PhD thesis, 
Department of Computer Science, Brown University, 
April 1987. 

[2] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. 
The SIMPLE Code. Technical Report UCID-17715, 
Lawrence Livermore Laboratory, February 1978. 

[3] dbx. In UNIX User's Manual Reference Guide. 4.2 
Berkeley Software Distribution, USENIX Associa
tion, March 1984. 

[4] A. K. Dewdney. Computer Recreations. Scientific 
American, pages 18-24, July 1984. 

[5] B. R. Engstrom and P. R. Capello. The SDEF Sys
tolic Programming System. In Sartaj K. Sahni, ed
itor, Proceedings of the International. Conference on 
Parallel Processing, pages 645-652, St. Charles, IL, 
August 1987. 



[6] Kevin Gates. SIMPLE, an Exercise in Programming 
in Poker. Technical Report 88-2, Department of Ap
plied Math, University of Washington, March 1988. 

[7] Alfred A. Hough and Janice E. Cuny. Belvedere: 
Prototype of a Pattern-Oriented Debugger for 
Highly Parallel Computation. In Sartaj K.. Sahni, 
editor, Proceedings of the International Conference 
on Parallel Processing, pages 735-738, St. Charles, 
IL, August 1987. 

[8] Terrence W. Pratt. The PISCES 2 Parallel Program
ming Environment. In Sartaj K. Sahni, editor, Pro
ceedings of the International C~nference on Parallel 
Processing, pages 439-445, St. Charles, IL, August 
1987. IEEE Computer Society Press. 

[9] R. W. Scheifier and J. Gettys. The X Window Sys
tem. ACM Transaction.s on Graphics, 5(2):79-109, 
April 1986. 

[10] S. S. Thakker, P. R. Gifford, and G. F. Fieland. 
Balance: A Shared Memory Multiprocessor System. 

49 

In Proceedings of the 2nd International Conference 
on Supercomputing, May 1987. 

[11] Charles L. Seitz. The Cosmic Cube. Communica
tions of the ACM, 28(1):22-23, January 1985. 

[12] Lawrence Snyder. Parallel Programming and the 
Poker Programming Environment. IEEE Computer, 
17(7):27-36, July 1984. 

[13] David Socha, Mary Bailey, and David Notkin. 
Voyeur: Graphical Views of Parallel Programs. In 
Proceedings of the ACM SIGPLAN and SIGOPS 
Workshop on Parallel and Distributed Debugging, 
Madison, WI, May 1988. 

[14] David D. Wagner, Edward D. Lazowska, and 
Brian N. Bershad. Techniques for Efficient Shared
Memory Parallel Simulation. Technical Report 88-
04-05, Department of Computer Science, University 
of Washington, April 1988. 



An Integrated and Portable Tool Environment 
for Paral1d Computers 

Thomas Bemmerl 

Technical University Munich, Department of Computer Science 
Laboratory for Parallel Computing 

Arcisstr. 21, D-8000 Munchen 2, Federal Republic of Germany 

Abstract 
The paper is concerned with the problem of designing 
tools for multiprocessors. The features, the design con
cepts and some implementation details of an integrated 
and portable tool environment for multiprocessors are 
presented. The tool environment MMS (Multiprocessor 
Monitoring System) contains tools for debug~mg, per
formance analysis and visualization of multlprocessors 
and their program execution. Apart from the func
tionalitX, of the tools, MMS offers the following features; 
portabllity to various parallel architectures, expandability 
and adaptability with new tools and languages, and sup
port of several abstraction levels. In addition, the tool 
environment is based on different instrumentation and 
monitoring techniques. The main design concept of 
MMS is a new hlerarchical layered model for tool en
vironments, which will be presented in the paper. 

1. Introduction and State of the Art 

Today, programs for many parallel machines are written 
in a high level programming language and are based on 
the objects and system calls of the concurrent operating 
system of each processor node. In addition, software for 
many parallel computers is developed in a so called 
host/target environment. This means, that the programs 
are developed· with cross-compilers on a host computer 
and are downloaded for execution into the target system. 
The host is normally a conventional workstation connec
ted with the target multiprocessor via parallel busses or 
LAN's. Many supercomputers from industry and uni
versity are programmed this way, for example; the iPSC 
of Intel, the Cosmic Cube, the NCUBE, the Pringle 
Parallel Computer, the Mark II/III etc. In addition, 
even multiprocessors with native-compilers include cen
tral development nodes, from which rr()uams are down
loaded into the processor elements [4 . Therefore a "logi
cal" host/target environment is at least existing within 
this class of multiprocessors. 

Tools for generating parallel programs, i.e. compilers 
and linkers, are already available for multiprocessors. In 
contrast, very . limited possibilities are at hand for lookin.g 
at the dynanuc behavlOr of P¥allel computers and theIr 
software. No adequate tools are available for debugging, 
performance. measurement and visualization of program 
execution. Parallel programming environments available 
from university and industry have several disadvantages 
with respect to debugging, monitoring, instrumentation, 
performance measurement and visualization: 

• Some tools are not integrated into the programming 
environment. Therefore monitoring is done at a low 
abstraction level without any relation to the program
ming concepts [4). These tools mainly focus·on instru
mentation techniques arid synchronization concepts for 
multiple monitors. 

50 

• Other projects are mainly interested in programming 
concepts. In these projects monitoring is done using 
source code instrumentation, operating system instru
mentation and runtime instrumentation [9), [6), (7). 
These concepts lead to more batch oriented tools be
cause the insertions into the source code have to be re
compiled each time the programmer needs new infor~ 
mahon about program execution. In addition, the in
serted monitonng instructions modify the runtime be
havior of the multiprocessor. This has awkward influ
ences on the synchronization behavior of application 
programs. 

• The third class of tools focuses mostly on specific 
architectures of p'arallel computers. There are, for ex
ample, tools avaIlable for bus-oriented multiprocessors. 
The monitoring techniques of these tools depend on 
the availability of bus-oriented connections between 
the processor elements [3). 

Motivated by these shortcommin&"s of the available tools, 
two years ago we started the deSIgn and development of 
an expandable and portable tool environment for con
current computers. The environment contains integrated 
tools for debuggin~, perfo~ance analysis and vi~ualiza
tion of the dynaffilc behaVIor of concurrent multiproces
sors and their program execution. MMS is usable for 
program development, program optimization, for ~tudy
mg existing programs and for teaching the dynamIC be
havior of parallel computers and concurrent programs. 
Before I describe the design concepts and the state of .the 
project, I will define in the next paragraph the requlre
ments of tool environments for parallel computers. 

2. Features and Requirelllents 

The following described requirements are met by our 
tool environment MMS. Therefore the explanation of 
the requirements can also be considered as presentation 
of MMS features. I first explain first in a coarse-grai
ned manner the functionality of the available frontends 
of the environment, the single tools. 

2.1. Functionality of the Tools 

The first tool, mainly used for program development, is 
a window based concurrent. debugger. The debugger of
fers features for displaying and modifying the states of 
programs running on the multiprocessor [8). A powerful 
debug~ng language is available, which allows the spe
cificatIon of complex p'redicates about the dynamic ex
ecution of programs [8), [1). Based on these conditions, 
several actIons are· initiated, e.g. stopping processes 
(breakpoints) or recording state changes of the program 
(tracing). 



The second tool is a Eerformance analyzer for optimizing 
concurrent programs [5]. Using the performance analy
zer, the programmer gets information about the efficien
cy of the communication between processes or processor 
elements, about the activation of procedures, the access 
to variables and operating system objects. In general, 
the performance analyzer records the access to various 
objects and displays these activities using several kinds 
of . ~arts. Tht; performance analyzer ~ves the user the 
ablhty to localize the bottle-necks of his implementation. 
Based on this information, the programmer can develop 
a optimized mapping of processes onto processors. 

Another possibility for displaying the dynamic behavior 
of multiprocessors is to use the visualization tool. This 
part of the tool environment gives users the ability to 
look in a graphical manner at the dynamic execution of 
programs. ,!hi~ tool shows on a graphic display the flow 
o.f commumcatIc;>n b~twc:en processes or processors. Addi
tIonally, the visualizatIOn tool displays complex data 
types, !he control and the data flow of programs or pro
cesses In a graphical way. In general, this tool gives a 
graphical representation of the multiprocessors state 
space. 

The tool environment is not limited to interactive tools. 
MMS is also expandable with more batch oriented tools 
like systems for automatic testin~. These frontends of 
the tool environment offer pOSSibilities for regression 
te.sts and C1-t~acing which are necessary ~or program te
stIng and maintenance. However, this IS not a main 
focus of our project. 

2.2. General Requirement. and Features 

An important disadvantage of existing tools, mentioned 
during the introduction, is their isolation, lack of flexibi
l~ty, portability and expandability. The following discus
SIO~S concern these mo~e general requirements of tool 
en~lronments for multiprocessors. An important re
qUIrement of tool e~vironments is their frequent inter
lI;ctIve usa~e. Tools hke debuggers are used very interac
tively dunng program development. Therefore a unique 
and ~ser f~endly human interface with. graphic sUl?port, 
multiple Windows, menus and mouse mteraction IS of
fered by MMS. 

All de~cribed tools need information about the dynamic 
exec.utIon of programs on the multiprocessor. This infor
mation can be collected using different instrumentation 
and m~>nitoring tc:chniques. Monito~ng techniques consi
dered In our project are hardware Instrumentation ob
ject ~o~e instrumen!ation (softwar.e instrumentation) and 
hybnd instrumentation. All these Instrumentation techni
ques support interactive usability of the tool environ
ment. No. extra recompilati~n for monitoring is neces
sary. An Imp<;lrtant featuf!! IS that .the single tools need 
not know the instrumentation techmque they are actually 
based on. Therefore different monitoring techniques can 
be used across different processor elements. 

A very important requirement is the abstraction level of 
the tools [1], [5]. The programmer must be able to use 
the tools at different abstraction levels, from a very low 
abstraction level (e.g. machine level or assembler) up to 
a very high abstraction level (e.g. process level). At the 
low level, the tool environment handles addresses and 
data types of the processor. At the high level MMS 
knows all objects of the programming language (e.g. 
procedures :=tnd variables) and all objects of the concur
rent operat~ng system (e.g. tasks, semaphores, mailbo
xes) by their names. All objects are specified and dis
played. with the syntax and semantic of the selected ab
straction level. The user has the ability to use MMS at 

51 

the described abstraction levels (machine level, C langu
age level and process level). This means that one pro
gramming construct can be inspected at different ab
straction levels. 

Another requirement focuses on portability. A tool en
vironment for host/target environments has to support 
various target architectures. Therefore the target parts of 
MMS are easily portable to various different multipro
cessor architectures. The tool environment is not only 
based on "real" parallel computers. An instruction level 
simulation of the target system on the host computer 
may also be sufficient for locating most logical errors. 
Once more, the single tools need not know whether they 
are based on real hardware or only on the simulation of 
the real hardware. 

A further disadvantage of state of the ari: tools is their 
weak integration. All tools of our environment are based 
on the same instrumentation techniques and they offer a 
unique human interface. In addition, for an integration 
it is necessary for all tools to use the same symbol data 
base and the same symbol translation mechamsm. 

The last general requirement concerns the expandability 
and the adaptability of the tool environment. This requi
res that the environment is expandable with new fron
tends (tools) without a modification of the instrumenta
tion techniques (monitors). For example, the monitors 
have to be powerful enou~h to add an automatic test sy
stem as new frontend without changing the monitors. 
Additionally, MMS is easily adaptable to new program
ming environments with new programming concepts and 
compilers. This requires an easy adaptation of the sym
bol data base and the monitoring of the stack structures 
to new requirements. 

3. Design Concepts of MMS 

In order to satisfy the presented re<I,uirements, an inge
nious system is necessary which consists of hardware and 
software and is divided between host and target. The va
rious tasks, requested by the reguirements, are only per
formable by a very flexible deSign concept. The base of 
our design concept is a new hierarchical layered model 
for tool environments. The model is illustrated in figure 
1. In analogy to the idea of the ISO/OSI model for net
work architectures, a layer of level i needs no knowledge 
of modules installed at levels lower than i. Therefore 
several implementations of one layer are replaceable wi
thout complications. This characteristic makes the tool 
environment adaptable to the various described require
ments. For example, the hardware monitor is easily re
placeable by a software monitor without changing the 
upper layers of the model. Additionally, MMS is ex
pandable with new tools without changing the layers 
below S4. In general, a tool environment based on the 
hierarchical layered model meets the requirements of 
portability, expandability and adaptability. 

For understanding the layered model, I explain in the 
following paragraphs the functionality of the several 
layers in a bottom-up manner. Three different moni
tors are available for monitoring the dynamic behavior 
of each processor element. The monitors are based either 
on hardware instrumentation, on software instrumenta
tion (object code instrumentation) or on hybrid instru
mentation. The monitors evaluate the predicates spe
cified about the dynamic program behavior. There are 
four classes of predicates to evaluate; predicates about 
the control flow, predicates about the data flow, predica
tes about concurrency objects (e.g. tasks, mailboxes, 
semaphores) and predicates about combinations of the 
previous ones. It should be noted that all three monitors 



H 

o 

s 

T 

offer the same interface to the upper layers. They only 
differ in the retardation of program execution, but not 
in their functionality. 

____________________________________________ e~ 

EvenHAc!lon·/Symbol·Management 

~ 
-'--------~=========-----~==~==~e~ 
T 

R 

G 

E 

T 

Communication Communication 
with Host with Host 

Memory-I/O·Access-La yer Me mory-I/O·Access-La yer 

80 

!:g' I ;;:g' I !::c !::c 
0_ 0 ... 0_ 0 ... 

" - " IT " - " IT -Ii -~ -Ii 
~~ -,. ia: 0'= g ;;: ~ CD 

II 

Processor Element 1 Processor Element n 

Fig. 1: Hierarchical Layered Model for Multiprocessor 
Tool Environments 

The memory-IIO access layer implements the access to 
memory cells and I/O ports. Therefore this layer is 
responsible for displaying and modifying the contents of 
memory cells and I/O ports. In addition, this layer dis
plays and modifies objects of the concurrent operating 
system. The target layers of each processor element are 
in general a concurrent assembler oriented monitoring 
tool based on physical or virtual addresses and processor 
data types. As already mentioned, even this low ab
straction level is accessible by the user of MMS. 

The simulator offers the same functionality as the target 
layers. Therefore the tool environment is usable without 
the availability of the target system. This means, that 
the simulator imflements commands for accessing 
memory and I/O 0 the simulated multip'rocessor. Addi
tionally, the simulator allows the speclfication of low 
level predicates about the simulated program execution. 

The central layer at the host workstation is the layer for 
event, action and symbol management. This layer offers 
primitive events, actions and a mechanism for combi
ning these primitives. Based on this event and action 
mechanism the layers on top of the model (the tools) are 
able to specify complex predicates about the dynamic be
havior of the target system [1]. The specification of 
events and actions is based on symbols used in the pro
gram to be monitored. This layer is also responsible for 
translation and retranslation of symbols into addresses 

52 

and vice versa. Because this task requests several tedious 
algorithms for sorting and searching the symbol manage
ment is based on an adequate data base. 

For the explanation of the top layer's functionality (de
bugger, performance analyzer, visualization tool) I refer 
to chapter 2.1. These tools are based only on the event 
and action concept of the layer below them (S4). There
fore these tools do not know the instrumentation and 
monitoring technique they are actually based on. 

4. State of the Project 

In chapter 1 I mentioned that the tool environment has 
been in development for about two years. In the follo
wing I describe the state of the project and future work. 

Since summer 1987 the first tool of the environment, the 
concurrent debugger, has been finished. For an illustra
tion of the debugger functionality, figures 2 and 3 
represent two typical printouts of the debugger user in
terface. Figure 2 gives an example of the view/inspect 
command. Using this feature, the programmer can in
spect the objects of the concurrent operating system, e.g. 
the states of existing tasks. In figure 3 the specification 
of a predicate, in this case a breakpoint about the data 
flow, is illustrated. The availability of the debugger 
implies of course the disposability of the lower layers of 
the model, because the debugger is a layer at the top. 

Stote Chonge Run Predicate listing Log Quit U.I··M"". Help 

UIEW&INSPECT 10 INSPECT 
@TASK OMAIL OSEMA utl<L382> 
utluser3to ut luser2to 
utl<L382> 
DU" •• ;; task uti user2to 
utl<L380> ut I u.e"2( I). <L87> 
utlusertok p"lo"lty: 60 
~ Ciii!![J 2 .tote: UAITING 

-------------------------------- waiting for receiving froll mai Ibox: 

~ 
0361 
0382 
0363 
038'1 
0385 
0386 
0387 

OEHEC 

OSEMR 

(CANCEL) 
ut I <L354> 
ut Imboxtok 

LISTING - ul' 
p"intf("\nTASK I : Jetzt kre 1 ere Ich die To.k u.e"2");. 
cretask (&user2t ok, user2, 800,60, &ret va I ) ; 
p"lntf("\nTASK I : Jetzt kre I ere Ich die Task user3"); 
cret ask (&user3tok, userJ, 800,60 I &ret va I ) ; 
p"lntf("\nTASK I : Jet zt kre I ere Ich die Task u.e"4"); 
cretask(&useritok, user", 800,60,&retva I); 
P" int f( "\nTASK I : Jet zt kre I ere Ich die Task userS")j 

Fig. 2: View/Inspect 

Module Task 
1-'1 u"'t =----,IIL..u_se_r_to_k __ -' 

Variable 

int retval; 
char cSj 
Int 15; 
long 15; 
sOelell eSsO; 
.Oelem 05[5]; 

Fig. 3: Breakpoint Specification 

II 
ij!~i 

mm 
'-' 
~! 

~ '21 

I 



In addition to the debugger, the event, action and sym
bol management layer on the host workstation has been 
already finished. The host computer for this implemen
tation was a VAXstation II with Ultrix32m, Xwindows 
and a cross-software development system. A C-cross
compiler is used for generating code for the 80186 mic
roprocessor. The concurrent operating system for the 
tar~et has been implemented as a library on the host 
which is linked to the application program. The opera
ting system is object oriented and offers dynamically cre
ated tasks, mailboxes, semaphores and the usual opera
tions (system calls) on these objects [2]. The concurrent 
operatmg system can be considered as a concurrent 
language extension of C. 

The host layers are based on the existing target parts of 
MMS. The memory-I/O access layer as well as two dif
ferent monitors are available. Therefore the host layers 
can be based on two monitoring techniques; on a hybrid 
monitor adapted to the processor bus of each l?rocessor 
element and on a software monitor based on object code 
instrumentation. The target layers have been im
plemented on a target system based on only one proces
sor element. This processor element is an 80186 single 
board computer. The target system has been used as 
multiprocess (multitasking) singleprocessor system within 
the first prototype implementation of MMS. The al
ready fimshed subsystems of MMS are illustrated in 
figure 1 with unhatched boxes. 

Currently, the tool environment is adapted to target sy
stems consisting of more than one processor element. An 
32-node iPSe Personal Supercomputer from Intel is the 
first target system for the multiprocess multiprocessor 
implementation of MMS. The host layers of thiS imple
mentation remain on the VAXstation II. We connected 
the host layers on the VAX via the TCP/IP Qetwork of 
the iPSe cube manager with the target layers in several 
nodes. Porting the target layers of MMS to the message 
passing hypercube machine is not very difficult because 
the nodes of the iPSC are based on an 80286/386 mic
roprocessor which is a superset of the 80186. This retar
getting of MMS on the iPSC will be finished in autumn 
1988. For demonstration of the suitability of the tool en
vironment for different multiprocessor architectures we 
plan in the future the retargetting of MMS on a 
memory coupled multiprocessor based on Motorola 
68020/68881. In addition, the performance analyzer 
and the visualization tool are in the specification phase. 
A first approach for visualizing coml?lex data types in a 
graphical manner has been already Implemented within 
the concurrent debugger (see figure 4). 

Stote I [lU"U.l" fllIn I'''' 11;1:" \(, U'ti'U.l Log Quit list-Mon. Help 

181 ---) CD ---) 0 ---) 0 ---) m ---) 0 --") 0 ---) CD ---) 0 --) 
---) 0 ---) @---) @---) @---) @)---) (B) ---) @---) @--) 

---) @---) @ ---) ~ ---) ~ ---) @---) @---) @] ---) ~ --) 

---) @)---) @---) @ ---) ~ 
DISPLAY :;0 TYpmDISPLAY 

rM::::;Od""Ueole'---:----,r'-:T"'OS"'-k-:----:-_-, Ele.ent-Hr.: 19 I demo_mod II demo_task I a" 61 
V I bl b= 134 

I
r ""or-"6"""-'e'--______ --. C6 [01= 'A' 

';:~=u=rz=:::__===_-----'I--n-e-~-;:~~·:~~~~-m-----m-------m--__ 

~ (CANCEL] I CANCEL I 

Fig. 4: Visualization of Linked Lists 

53 

5. Results and Conclusions 

Features and concepts for the design and implementation 
of tool environments for concurrent multiprocessors were 
presented. In conclusion the presented tool environment 
MMS offers the following advantages: 
* The programmer can look interactively at the dynamic 

behavior of parallel computers and their program ex
ecution using several tools (debugger, peiformance 
analyzer, visualizer). 

* All tools support various abstraction levels (machine 
level, C language level and process level). 

* All tools of the environment are integrated using a 
unique event and action mechanism. Tn addition, the 
tools are based on the same symbol data base and they 
use a common graphic and menu driven human inter
face. 

* The event and action mechanism is based on different 
instrumentation techniques (hardware, software, hy
brid). A mix of instrumentation techniques is possible 
across different processor elements. 

* The central design concept of MMS is a hierarchical 
layered model for tool environments. This layered 
model is the reason for the portability of the environ
ment to various multiprocessor architectures, the ex
pandability with new tools and the adaptability to new 
compilers and programming concepts. 

Although the paper mainly focuses on host/target en
vironments, the presented hierarchical model is addi
tionally suitable for native tool environments of multi
processors. The apparent conclusion of this paper is that 
the MMS is an adequate instrument for looking at the 
dynamic behavior of parallel computers. and their con
current software. 

References 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

T. Bemmer!: Realtime High Level Debugging in 
HostlTarget Environments; Proc. of EUROMICRO 
Symp. on Microarchitectures, Developments and 
Applications, Venice, Sept. 1986, p. 387 - 400 
T. Bemmer!, G. Schader: A Portable Realtime 
Multitasking Kernel for Embedded Microprocessor 
Systems; Proc. of EUROMICRO Symp. on Micro
computers: Usage, Methods and Structures, Ports
mouth, Sept. 1987, p. 181 - 188 
H. Burkhart, R. Millen: Monitoring Tools for Mul
tiprocessor Environments; Proc. of Int. Conf. on 
Parallel Computing 85, 1985, p. 345 - 351 

R. Klar, N. Luttenberger: VLSI-based Monitoring 
of the Inter-Process-Communication in Multi-Mic
rocomputer Systems with Shared Memory; Proc. of 
EUROMICRO' 86, Venice, Sept. 1986 
]. Nievergelt, B. Plattner: Monitoring Program Ex
ecution: A Survey; IEEE Computer, Nov. 1981 
T.W. Pratt: The PISCES 2 Parallel Programming 
Environment; IEEE Int. Conf. on Parallel Proces
sing, 1987, p. 439 - 445 
Z. Segall, L. Rudolph: PIE: A Programming and 
Instrumentation Environment for Parallel Proces
sing; IEEE Software, Nov. 1985, p. 22 - 37 
R. Seidner, N. Tindall: Interactive Debug Require
ments; ACM Symp. on High Level Debugging, 
Pacific Grove, March 1983, p. 9 - 22 
L. Snyder, D. Socha: Poker on the Cosmic Cube: 
The First Retargetable Parallel Programming 
Language and Environment; IEEE Int. Conf. on 
Parallel Processing, 1986, p. 628 - 635 



Viewing Anomalous States in Parallel Programs 

Charles E. McDowell 

Computer and Information Sciences 
University of California, Santa Cruz 

Santa Cruz, California 95064 

ABSTRACI' 

Static analysis techniques have been 
developed for detecting anomalies in parallel 
scientific applications programs. The analysis is 
based on the generation of a state graph called 
the Concurrency History Graph. This graph con
tains all possible parallel states of the program. 
Displaying the Concurrency History Graph on a 
large screen multi-window workstation can 
greatly enhance the understanding of the 
anomalies reported and the program in general. 
This is an important aid to debugging and under
standing parallel programs. 

1. Introduction 
Any attempt to observe or control the internal execu

tion of a non-deterministic program may result in a change 
in the behavior and resulting output of the program. This 
has been referred to as the probe effect or the Hiesenberg 
uncertainty principle applied to parallel programs. The 
probe effect makes the use of conventional dynamic debug
ging techniques based on breakpoints, tracing and single 
stepping ineffective for isolating many bugs in parallel pro
grams. In these situations an important alternative is the 
use of static analysis which can detect certain classes of 
anomalies in parallel programs. An anomaly is a potential 
error. An anomaly may not be an actual error because the 
execution path containing the anomaly may be infeasible1, 
or because the programmer intended the program to exhibit 
behavior in certain situations that is normally indicative of 
an ,error. 

In ART[AM85] static analysis is being used to detect 
two classes of errors in parallel programs: synchronization 
errors and data-usage errors. Deadlock is a familiar type 
of synchronization error. Data-usage errors include the 
usual sequential data-usage errors such as reading an unini
tialized variable, and parallel data-usage errors typified by 
two processes simultaneously updating a shared variable. 

In ART, the static analysis is based on the creation of 
a concurrency history graph (CHG) similar to that 
described by Taylor.[Tay83] Nodes in the CHG correspond 
to possible states of the parallel program, and edges 
correspond to one or more tasks in the parallel program 
advancing from one synchronization point to another. 
From this graph it is possible to derive some important 
anomalies. The size of the CHG can be quite large. In 
general it may grow in size exponentially with respect to 
the number of parallel tasks. Techniques have been 
developed to keep the size of the CHG manageable, 
although still exponential in the worst case. 

54 

The result of applying static analysis is an anomaly 
report The presentation of the anomaly report should pro
vide the user with sufficient information to determine 
easily if the anomaly is actually an error, and if so, how the 
error can be repaired. In order to eliminate an error due to 
improper synchronization of a parallel program,. the user 
must be able to determine how the erroneous concurrent 
state could arise. For example, it may not be sufficient to 
report that variable X is modified concurrently by a process 
executing line 100 and another process executing line 200. 
If the user cannot understand how 100 and 200 could be 
executing in parallel, then'it may be difficult to determine 
how to resolve the problem. Furthermore, the user may 
simply decide (erroneously) that this situation could never 
arise and that the anomaly report should be ignored. 

The approach taken in ART is to allow the user to 
examine the concurrency state resulting in the anomaly 
report and also to examine the concurrency states that led 
up to that state. The appearance is similar to that found in 
some dynamic debuggers for parallel 
programs.[Gri87, Seq86] However, the dynamic debuggers 
require the program to be executed and suffer from the 
probe effect. In contrast, ART does not execute the pro
gram, thus avoiding the probe effect. Before describing the 
user interface and presentation of the anomaly report, a 
brief description of the CHG is presented in the next sec
tion. 

2. The Concurrency History Graph 

The analysis is based upon the program control 
jlowgraph, in which each node represents a sequence of 
'straight-line' code terminated by a transfer of control, or a 
synchronization operation. Edges in the control ftowgraph 
represent sequential and branch transfers of control, and 
task creation. The synchronization graph is a compressed 
version of the control ftowgraph. All nodes in the control 
ftowgraph can be classified as either sequential or syn
chronization. A node is a synchronization node if it 
represents a synchronization operation (e.g. wait, create, 
etc.) or represents a function or procedure invocation where 
the ftowgraph of the invoked procedure contains one or 
more synchronization nodes. A sequential path in the con
trol ftowgraph is a path in which all nodes are sequential. 
The synchronization graph is derived from the control 
ftowgraph by eliminating all sequential nodes and connect
ing the synchronization nodes with edges corresponding to 
the sequential paths in the control ftowgraph. The syn
chronization graph for the example source in the Appendix 
is shown in Figure 1. 

1. The detection of infeasible paths has been shown to be equivalent to 
the halting problem.[Cla76] 



Two task states can be associated with each synchron
ization operation. These two states are referred to as pre
and post- transition states. In a pre-transition state, a task is 
waiting to perform a synchronization operation. In a post
transition state, a task has just completed a synchronization 
operation. Thus, the synchronization operation actually 
occurs during the transition from a pre- to a post-transition 
state. A complete transition is a sequence of non
synchronization operations beginning immediately after a 
synchronization operation up to and including exactly one 
successor synchronization operation. A complete transition 
is therefore, a transition from one post-transition state to 
another post-transition state. A task advances by making a 
complete transition. 

The central data structure used in our algorithm is the 
concurrency history graph, eRG. The nodes of a eRG are 
concurrent states, and the edges are history transitions. A 
concurrent state corresponds to a low resolution snapshot 
of the execution of a parallel program. The only variables 
that are "captured" are those used in synchronization 
operations, and the "program counter" of each task is only 
resolved to the nearest preceding synchronization opera
tion. Windows 2-6 in Figure 2 are displaying a single con
currency state. Every possible distinct concurrent state of a 
program is represented in the eRG for the program (given 
the restrictions on resolution). Rowever, many distinct 
concurrent states may be represented by the same node in 
the CHG (see[McD88] for details). Each edge corresponds 
to one or more tasks making a complete transition, which is 
the minimum change necessary to generate a distinct con
currency state. Only complete transitions are explicitly 
represented in the eRG (i.e. all tasks are in post-transition 
states). 

Given a particular initial concurrency state, the eRG 
is generated by advancing tasks from one state to another 
whenever possible, creating new concurrency states. The 
eRG edges are labelled with sets that represent all non
synchronization variables that are read or written by the 
corresponding complete state transition. These sets a..1'I! 
called read-write sets. The synchronization variables are 
those variables accessed atomically by the synchronization 
operations and therefore, cannot be the source of parallel 
access anomalies. 

Two important types of anomalies can be directly 
deduced from the eRG. The first contains both deadlock 
and wait forever which are collectively referred to here as 
synchronization anomalies. These are detected by the 
existence of a concurrency state containing non-terminated 
tasks2 that cannot advance to a new state. The example in 
the Appendix contains a simple example of a wait forever 
anomaly. The main routine in the example is waiting on an 
event (ALL_DONE) that is never posted, resulting in a 
concurrency state containing only the main task that has 
not terminated and also cannot advance. 

2. Tasks are eliminated from the concurrency state when they ter
minate' therefore any task in the concurrency state is non-terminated. 

55 

The second type of anomaly occurs when two con
currently executing tasks attempt to access shared data and 
at least one task is attempting a modify operation. This is 
called a parallel access anomaly (see Figure 2). It intro
duces a race condition in which the value read or the final 
value written into the shared data depends on the speed of 
execution of the tasks. A parallel access anomaly exists in 
a eRG if it contains a concurrency state with two tasks 
such that the intersection of the read-write sets of the com
plete transitions contains anything other than read-read 
intersections. 

3. Viewing the eHG 

The user interface supported by ART serves two pur
poses. First, it clearly indicates to the user, in terms of the 
original source, where any detected anomalies are located. 
In addition, it can aid in understanding how a parallel pro
gram may execute. A sample user display is shown in fig
ure 2. The complete program text is in Appendix 1. This 
program is incorrect by design for illustrative purposes. 
Window 6 in Figure 2 contains a text listing of the 
anomalies detected in the program. Anomaly number 1 is 
currently displayed and indicates a read/write parallel 
access conflict to variable MAX in eRG node number 10. 
It states further that the problem occurs between a task exe
cuting between lines 29-40 and a task executing between 
lines 35-37. The concurrency state corresponding to eRG 
node 10 is displayed in Windows 1-5. Window 5 contains 
the values of various global synchronization variables. 
Windows 2 and 3 display the state of the tasks associated 
with the anomaly. The top half of windows 1-4 is scroll
able and by default displays the text around the synchroni
zation operation corresponding to the task state. The task 
state is the last synchronization operation executed by the 
task. The highlighted line indicates the task state. The 
lower half of Windows 1-4 displays the next possible syn
chronization operation to be performed by the tasks 
represented by the windows. In Window 3 there are two 
possible successors, however, because the lock is already 
set by the task in Window 2, the task in Window 3 could 
actually only advance to the new state at line 40. 

Windows 7 and 8 contain the synchronization graph 
and the concurrency history graph. Only a portion of the 
graphs is displayed centered on the nodes corresponding to 
the concurrency state displayed in windows 1-5. These 
windows can be expanded to fill the entire screen if 
desired, displaying the complete graphs. 

The remaining window is the control window. 
"Back" displays the eRG node displayed previously. 
"Next" displays the sequentially next eRG node. "Plot 
eRG" expands the eRG graph display to fill the entire 
display. If the graph still does not fit on the display, the 
window can be scrolled both horizontally and vertically. 
"Plot SAF" does the same expansion for the program 
graph (Synchronization Augmented Flowgraph). "Pick#" 
prompts for a eRG node number and displays that node. 
This is the main way of moving around when viewing 
anomalies, since the anomalies are reported in terms of 



CRG node numbers. "Quit" is self explanatory. 

There is one additional -- the most useful -- method 
for moving about in the CHG. By selecting one of the suc
cessor states in the lower half of windows 1-4 with the 
mouse, a CRG node will be displayed (if one exists) with at 
least one task from the current window3 advanced to the 
selected synchronization operation. This allows the user to 
browse the concurrency states in a manner analogous to 
course grained single stepping. 

4. Conclusion 
A system for browsing the possible concurrent states 

of a parallel program was presented. It is part of an ano
maly reporting tool currently used as an aid for debugging 
programs written in Fortran with extensions for explicit 
parallelism. 

Work is in progress to integrate this static analysis 
tool with a dynamic debugger. Taylor[Tay84] describes 
several ways in which static analysis could be productively 
combined with dynamic analysis. A primary goal is to use 
paths through the concurrency history graph to force deter
ministic executions of a parallel program under control of 
the dynamic debugger. Conversely, information from 
dynamic monitoring will be used to guide partial static 
analysis when complete static analysis would generate too 
many states. 

Appendix 1. 

This program intentionally contains errors. It is 
intended to normalize an array by the maximum value in 
the array using N=4 parallel tasks. 

PROGRAM EXAMPLE 

parameter(N=4) 
COMMON CMAX(lO) 
COMMON /M2/ MAX 
DIMENSION A(lO,lO) 
_declare_barrier(BI) 
_decCcommon_do(COLMAX) 
_decl_common_do(NRML) 

_decl_event(ALL_DONE) 

_inicbarrier(B I,N) 
_iniccommon_do(COLMAX,I,N) 
_iniccommon_do(NRML,I,N) 

_createjamily(TASK_ID,NORMAL,A,N) 
_ waicevent(ALL_DONE) 
K=I 
END 

_task_entry(NORMAL,A,N) 
_decl_common_do(COLMAX) 
_decCcommon_do(NRML) 
_declare_barrier(B 1) 
COMMON CMAX(lO) 
COMMON /M2/MAX 
DIMENSION A(IO,lO) 

_begin_common_do(colmax,J) 
DO lOOI=I,N 

IF(CMAX(J) .LT. A(I,J» CMAX(J) = A(I,J) 
100 CONTINUE 

56 

IF(CMAX(J).LT.MAX)GOTO 150 
_lock_on(MAXLOCK) 
MAX = CMAX(J) 
_lock_off(MAXLOCK) 

150 CONTINUE 
_end_common_do(colmax,J) 

_waicbarrier(Bl) 

_begin_common_do(NRML,J) 
DO 200 I=l,N 
A(I,J) = A(I,J) / MAX 

200 CONTINUE 
_end_common_do(NRML,J) 

Figure 1. Synchronization Graph. 

3. Each window may represent more than one task all in the same state. 
This collection of tasks is called a family. In addition families are 
sometimes grouped into clans. This is done to reduce the size of the 
CRG. Details on the use of clans and families to reduce the size of the 
CRG ca:1 be found in another report.[McD88j 



References 

AM85. 
Appelbe, W. F. and McDowell, C. E., "Anomaly 
Reporting - A Tool for Debugging and Developing 
Parallel Numerical Algorithms," Proc. First Inter. 
Con! on Supercomputing Systems, pp. 386-391, 
December 1985. 

Cla76. 
Clarke, L.A., "A System to Generate Test Data and 
Symbolically Execute Programs," IEEE Transactions 
Software Engineering, vol. SE-2, no. 3, pp. 215-222, 
September 1976. 

Gri87.Griffin, J., "Parallel Debugging System User's 
Guide," LANL Tech Report, July 1987. 

McD88. 
McDowell, C. E., "A Practical Algorithm for Static 
Analysis of Parallel Programs," Journal of Parallel 
and Distributed Computing, to appear 1988. 

Seq86. 
Dynix Pdbx Parallel Debugger User's Manual, 
Sequent Corp., 1986. 

Tay83. 
Taylor, R. N., "A General-Purpose Algorithm for 
Analyzing Concurrent Programs," CACM, vol. 26, 
no. 5, pp. 362-376, May 1983. 

Tay84. 
Taylor, R. N., "Debugging Real-Time Software in a 
Host-Target Environment," U.C. Irvine Tech. Rep. 
212,1984. 

Hon-cl"n Clan Humber Map Size: 2 3 1 Cl"n Humber M"p Size: 1 3 1 --------------------------1 
11 
12 
13 
14 
15 

_init_barrier(Bl,Hl 
_in1t_commo"-do (COLMAX, 1,N) 
_init_commo"-do(HRML,l,H) 

D 
17 
18 
19 
20 
21 
22 

Line 17: 

_w,,1t_event(ALL-DOHE) 
K=l 
EHD 

_task-entr~(HORMAL,A,H) 
_decl_commo"-do(COLMAX) 

Clan Number Map Size: 0 7 1 

1 

16 _create_faMil~(TASK_ID,NORMAL 
17 ~ait_event(ALL-DOHE) 
18 K=l 
19 END 
20 
.. • ... lA!fIlltl$'M .. '. 

22 _decl_commo"-do(COLMAX) 
23 _decl_commo"-do(HRML) 
24 _declare_barrier (Bl) 
25 COMMON CMAX(10) 
26 C!»ION /M21 MAX 
27 DIMENSION A(10,10l 

LinE> 29: 

3 
3 1 
1 
1 1 1 

Anomal~ number *** 1 *** 
Node 10:Task readlwrite conflict: 

4 

29 
30 
31 
32 100 
33 
34 

&I 
36 
37 
38 
39 150 
40 

Line 37: 

_begin_common_do(colmax,J) 
DO 100 I=l,H 

IF(CMAX(J) .LT. AU,J» 
COHTIHUE 

IF(CMAX(J) LT MAX)GOTO 150 

MAX = CMAX(J) 
-1ock-oFF(MAXLOCK) 

COHTIHUE 
_end_commo"-do(colmax,J) 

2 

C 

ack 
Next 

HI 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Llne 
Line 

lot CHG 
lot SAl' 

Pickll 
Quit 

5 

_global_:max [R](line 33) _global_:max [W](line 37) 
On edge From _006_begin_commo"-do (line 29) to _009_end-commo"-do (line 40) 
On edge frOM _007_lock_on (line 35) to _OOS_lock-oFF (line 37) 6 

100 

150 

40: 
35: 

Figure 2. User Display with Parallel Access Anomaly. 

57 

l"a;,M·i",,,t.""lNDi,,e;y' 
DO 100 I=l,H 

IF(CMAX(J) .LT. AU,J» C 
CONTI HUE 

IF(CMAX(J).LT.MAX)GOTO 150 
_lock-on (MAXLOCK) 
MAX = CMAX(J) 
_lock_oFF (MAXLOCK) 

CONTI HUE 
_end_commo"-do (colmax, J) 

_end-commo"-do(colm"x,J) 
_lock-on (MAXLOCK) 

3 

7 

8 



P AT··An Interactive Fortran Parallelizing Assistant Tool 

KlJvin Smith 
William F. ApplJlblJ 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, GA 30332 

Abstract •• The development of parallel 
programs has inherent difficulties which demand 
new tools to help develop reliable and efficient 
parallel programs. This paper describes one such 
tool, an interactive Fortran Parallelizing Assis
tant Tool (Pat), as part of a multitasking toolkit 
under development which also contains tools for 
static analysis and dynamic debugging of parallel 
programs. 

The parallelization tool is designed to assist 
and educate users in converting sequential pro
grams into parallel programs; it relies on depen
dence analysis and· programmer interaction in 
introducing and modifying parallel constructs. 
Significant differences from other work in this 
area are the tool's ability to recognize parallel 
constructs and handle partially parallel pro
grams, the ability to parallelize loops with 
embedded critical sections, and the adaptability 
and portability of the tool. 

Introduction 

The advantages of today's parallel comput
ing capabilities are often lost due to the complex
ities of parallel programming. Constructs used 
to control parallelism are often difficult to learn 
and understand, and inherent in parallel execu
tion are a new class of problems such as race 
conditions which do not reveal themselves to 
normal sequential debuggers. One solution is 
automatic parallelization such as that done by 
some optimizing compilers, but automatic detec
tion of 'large grain' parallelism is extremely dif· 
ficult and can only convert deterministic sequen
tial algorithms to equivalent deterministic paral
lel algorithms[3]. 

Our approach is based upon a toolkit which 
will help a programmer master the complexity of 
parallel programs by assisting in parallelizing 
sequential or partially parallel programs and in 
debugging and testing multitasking programs. 
This toolkit consists of: 

• A parallelizlJr which will examine a source 
program and suggest paralleHzing 
modifications. 

• A static analyzlJr which will simulate the 
execution of a source program to locate 
anomalies caused by the interaction of the 
tasks. 

• A dynamic dlJbug ger which will interactively 
execute a source program. 

The static analysis tool has been implemented 
and is in use, and a prototype of the parallelizer 
has been implemented at present. 

The Toolkit 

The parallelizing tool is built on the work 
described in [3] and referenced in [6], and uses 
the same parallel primitives and underlying 
str~ure as Art (Anomaly Reporting Tool), the 
prototype static analyzer portion of the toolkit. 

The parallel model assumed is the SPMD 
model of shared memory multitasking; this treats 
a program as a single thread of control which 
creates other tasks as needed to execute desig
nated sections of code in parallel. The basic 
parallelization technique used is execution of 
sequential program loop iterations with separate 
parallel tasks, and use of critical sections and 
pipelines to protect parallel access anomalies and 
dependences between iterations. 

Art performs an exhaustive static analysis 
of a parallel program by constructing the com
plete concurrency history[9] of the program; it 
detects three classes of potential bugs, or 
anomalies. Non·dlJterministic variabllJ anomalies 
are references to variables that depend upon task 
scheduling. Synchronization anomalies include 
deadlock and busy-waiting loops. Parallel acclJss 
anomalies occur when a task tries to write to a 
variable which another tas k is trying to access 
simultaneously; the scheduling of tasks will 
determine which will win this 'race' condition. 

Presently the tools in the toolkit recognize 

This work.,. sapported by DOE contract number W-740S-Enl-36 through Los Alamos National Laboratory. 

58 



a set of parallel primitives described in [4], simi
lar to those of Cray microtasking, although Pat 
is designed to be retargetable to other shared 
memory multitasking primitives, such as the 
'Fork-Join' model. 

The Parallelizin& Tool 

Much of our work on Pat parallels Rice 
University's work with PTOOL which interac
tively displays dependence analysis [1]; however, 
our approach differs from theirs primarily in 
that: 

• Pat suggests actual program modifications 
and modifies source code in addition to 
displaying dependences. 

• Pat recognizes parallel primitives and han
dles partially parallel programs with the 
capability of suggesting modifications to 
existing parallel structures. 

• 'Large grain loops' which have embedded 
critical sections are parallelized. 

• Pat, based on a modified 4.2 BSD Unix 
Fortran77 compiler, is portable, using an 
adaptable front-end which can accept vari
ous primitives, and X windows to display 
source code and program dependences 
graphically (this is illustrated for a small 
program in Diagram 1). 

The strength of our approach lies in the 
mixed-initiative approach of interaction between 
programmer and tool. There are two phases to 
the parallelization process: a dependence analysis 
phase, and the interactive parallelization phase. 

Dependence Analysis 

The first step in parallelization is the 
extraction of data dependence information; a 
description of dependences and their usefulness 
can be found in [2]. Essentially, it is necessary 
to detect any variable reference which might be 
affected if a write of that variable were 
performed in non-sequentially. Pat employs 
Art's "best estimate" strategy of identifying 
potential dependences. 

The program analysis is built on a control 
flow graph (CFG) of the program. Each node in 
the CFG represents either a basic block of the 
program or a branch or merging in the program 
flow[10). Subroutine calls in the CFG are 
expanded inline for simplicity (Le. each call is 
analyzed individually in context). Inline 

59 

expansion has a low overhead in practice with a 
non-recursive language such as Fortran, aids in 
tracking alia sed variables through subroutine 
calls, and provides more options for 
optimization. (a) 

The desired dependence information is 
extracted by tracing paths through the program, 
using reference lists to construct a global depen
dence graph. Three classes of dependence are 
reported: a read to a preceding write (true 
dependence), a write to a preceding read (anti 
dependence), and a write to a preceding write 
(output dependence). 

Pat also identifies dependences arising from 
concurrent operations. Each access to global 
data in a parallel code section is dependent on 
each write of that data in concurrent sections. In 
detecting parallel dependences Pat ignores refer
ences protected by a lock, and performs subscript 
analysis. Subscripts composed of expressions 
yielding a different fixed value or range of 
values will never conflict, nor will subscripts 
which reference the same variables in such a way 
that the variable value will always differ. Partic
ularly, subscripts can vary directly with a parallel 
loop control variable, so that subscripts from two 
different iterations will not conflict. 

Browsing of dependences is provided 
through an interactive graphic interface. Depen
dences can be viewed sequentially, or selectively 
by line number or variable name (see WI, W2 
and W4 in Diagram 1). 

Parallelization 

The major focus of this research is the 
conversion of sequential loops to parallel loops. 
Pat offers a choice of loops to be parallelized. 
Three parallelization operations are provided: 
modifying parallel primitives in an existing task, 
converting a sequential loop to parallel execu
tion, or designating segments of sequential code 
to be run as individual tasks. 

A special case of loop construction is an 'if 
loop' . Cycles in the CFG represent 'if loops' in 
the program which in some cases are equivalent 

(0) Pal treats each call to a procedure as a separate code 
section for the purposes of parallelization analysis, 
forcing the user to ensure that parallelization 
modifications for one call do not conflict with those for 
another call. TIlls could require duplication of the 
procedure body. Pal provides assistance in this sort of 
checking. 



to 'do loops' and can be executed in parallel. If 
the variable to be used as the loop control vari
able is in the form of an induction variable (see 
below), it can be extracted automatically. Oth
erwise, the programmer can interactively provide 
this information. 

Locating large blocks of non-loop code 
which might be executed concurrently is more 
difficult. Tightly coupled segments of sequential 
crde which have few or no dependences on sur
rounding code can be shifted to a private task. 
The programmer can suggest areas to the tool 
and it will help parallelize them by displaying 
dependences in and surrounding the code sec
tion. 

There will still be poorly structured pro
grams which are unanalyzable by such a tool [5]. 
In such situations Pat shows dependences and 
suggests alternative better structured primitives; 
it is then up to the programmer to restructure 
the program. 

Loop Analysis 

After the user selects a loop body, Pat 
determines which variables referenced inside the 
loop can be made local to tasks executing the 
loop body and which will best remain global or 
shared. A subset of shared variables IUUS' also 
be ordered by using events to ensure sequencing 
of assignments to global data. Currently Pat dis
tinguishes local, shared, shared loc1ced, and 
shared ordered variables as in [7] (see W3 in 
Diagram 1). 

Recognition of induction variables is also 
useful. Induction variables are those with a sin
gle assignment of the form 
< variable> = < variable> < op> <expression>. 
Unmodified, they are global variables requiring 
ordering, but they can be replaced with a local 
variable assigned to a function of the loop con
trol variable. 

Pat must also decide whether or not a bar
rier will be required at the end of the parallel 
loop; this will be so if any values generated in 
the loop are read later. For example, if the loop 
is performing a summation of an array, a local 
sum can be employed in each task and the global 
sum increased by each locally calculated value 
(see the variable 'sum' in the sample program in 
Diagram 1). A barrier is required to assure that 
all tasks add their local sum to the final value 
before the code following the loop is allowed to 
proceed. 

60 

Guarding Depend~ 

Once the parallel region is determined 
parallel dependences in that region must be dealt 
with. Each dependence in the code section is 
identified, with a list of possible transformations 
and a suggestion from Pat as to how this depen
dence is to be protected; the programmer can 
accept the recommendation, protect the depen
dence differently, or ignore it. The programmer 
can also query the tool as to why it selected a 
particular modification or reported a particular 
dependence (see W4 in Diagram 1). 

Several code modifications are effective in 
avoiding the necessity of synchronization guard
ing between iterations of a loop; these include 
subscript alignment, code replication, code shift
ing and node splitting. Each of these involves 
alterations in the loop body to minimize or avoid 
access of conflicting variables. Pat identifies the 
possibility of code modifications, suggests those 
best fitting the program environment, and indi
cates to which lines of the code they should be 
applied. 

In cases where the complexity is too great 
for these modifications, or in which the user 
does not wish to modify the code accordingly, 
parallel primitives must be added to explicitly 
protect the dependent references. Pat guides in 
inserting loeb or events to protect these. 

Future WQJ'k 

The following parallelization optimization 
expansions are being added to Pat. Some of 
these transformations are in opposition to each 
other, requiring care that application of different 
techniques does not counteract others. Specific 
transformations are described in more detail in 
[8] and [2]. 

One concern once a candidate area is 
selected for parallelization is optimizing the 
scope of the parallel area. For example, Pat can 
help decide the portion of a task which must be 
enclosed in a parallel do. Lines which are not 
required for each iteration, but are required for 
execution of the loop, can be interactively 
shifted outside the parallel do area. 

Modification of the structure of loops can 
be made easier by loop normalization; this is 
another conversion which can be done internally. 
As the loop control variable often controls 
expression values, this also helps in expression 
comparison, as for array subscript analysis, by 
reducing functions depc ndent on the loop control 



variable to a similar form. 

There are a group of modifications aimed 
at enhancing the function of a specific computer. 
These include loop interchange, loop fusion or fis
sion, loop collapsing, and again code shifting. 
They work on the structure of the loop and the 
code surrounding it to optimize it for a specific 
purpose such as matching tasks to a specific 
number of processors, or fitting array size to the 
size of a cache memory. 

These optimizations depend on specific 
knowledge of the target machine. In some cases 
it is advantageous to divide loops to give a 
greater number of small tasks, and in others it is 
better to merge other code into the task area to 
give a larger body for a few tasks. For example, 
if a machine runs 4 processors, 12 smaller tasks 
would be more likely to distribute evenly than 6 
large tasks. Such "strip mining" can allow 
optimal employment of a machine's capabilities 
when target specifics are known. 

~ 

Currently, the parallelizing tool perform s 
the following actions: 

• extraction of variable references and con
struction of dependence graph; 

• browsing of dependences; 

• identification of parallel tasks, do-loops and 
if-loops for parallelization; 

• automatic insertion of parallel primitives 
for task creation; 

• identification of parallel dependences; 

• interactive insertion of necessary parallel 
protections for variables. 

The parallelizing tool and the integrated static 
analyzer were developed from an F77 compiler 
front end, operating under 4.2 BSD Unix. The 
tools use the X window system for graphic out
put. They have been ported to Sequent, SUN, 
V AX and lSI workstations. 

Conclusion 

The need for tools to assist in dealing with 
parallelism is clear. Our goal is a toolkit which 
will provide help in debugging and correcting 
parallel code, and will assist both in modifying a 
sequential program to use parallel constructs and 
in attaining the optimum in parallelism and clar
ity while teaching clear parallel programming. 

The static analyzer is the first part of the 

61 

debugging portion of the toolkit; it examines 
parallel code in detail and pinpoints a number of 
potential errors unique to parallelism. The 
dynamic debugger will complement this analysis 
by allowing the user to follow the parallel execu
tion of a program. 

The parallelizing assistant tool extracts 
dependence information from an analysis of the 
source code, and then guides the user in adding 
efficient parallel structures to the program. It 
recognizes parallel constructs and suggests 
modifications to run iterations of loops as paral
lel loops, as well as indicating synchronization 
and variable protection which will be required by 
the parallelized loop. 

1. Randy Allen, Donn Baumgartner, Ken 
Kennedy, and Allan Porterfield, "PTOOL: 
A Semi-automatic Parallel Programming 
Assistant," Computer Science Technical 
Report, Rice University (January 1987). 

2. Randy Allen and Ken Kennedy, 
"Automatic Translation of Fortran Pro
grams to Vector Form," Computer Science 
Technical Report, Rice COMP TR84-9, 
Rice University (July, 1984). 

3. Bill Appelbe and Charles E. McDowell, 
"Developing Multitasking Applications 
Programs," Proceedings of the Hawaii 
International Converence on System Sci
ences (January 1988). 

4. Brian F. Hanks and Charles E. McDowell, 
"A Proposed Tool for Parallel Program
ming Multiple 3081IE's," Computer Sci
ence Technical Report UCSC-CRL-86-20, 
University of California at Santa Cruz (July 
25, 1986). 

S. Leslie A. Henderson, The Usefulness of 
Dependency-Analysis Tools in Parallel Pro
gramming: Experiences Using Plool, Los 
Alamos National Laboratory (1988). 

6. Charles E. McDowell, A Formal Model for 
Static Analysis of Parallel Programs, 
University of California, Santa Cruz 
(1987). to appear in Journal of Parallel 
and Distributed Computing. 

7. Anita Osterhaug, Guide to Parallel Pro
gramming on Sequent Computer Systems, 
Sequent Computer Systems, Inc., Beaver
ton, Oregon (1986). 



8. David A. Padua and Michael J. Wolfe, 
"Advanced Compiler Optimizations for 
Supercomputers," Communication.r 0/ the 
ACM 29(12), pp. 1184-1201 (December 
1986). 

9. 

to. 

on max", 

Richard N. Taylor. "A General-purpose 
Algorithm for Analyzing Concurrent Pro
grams," CACM 26(5), pp. 362-376 (May 
1983). 

William W. Waite and 
Compiler Construction, 
New York (1985). 

Gerhard Goos, 
Springer-Verlag, 

labl. anal~.l.: 
1 .> local (W2) 

(W3 ):u~> ·~h~~~~c~~~~~e~ccm follou. loop 9 
10 
11 

_inlt_cornmon_do(loop, 1,20) 
_lnit_barrier(bar,20) 
_create_famlly(task,work.20) 

j • > reduc Hon 
b .> .hored 
.ax .> shared loc~ed; urile follou. loop 

(W4) 
lock around ref erence$. 

18 _task-entry (work) 

23 

( 5) cooMnlllor./su., 0, j, b, .ox-loop,bar, .u.lock, 
W .event<evo(20» 

• locI<. (.axloc~) 
.lock(.u.lock) 

27 
28 
29 
30 
31 
32 
33 

100 

if(b(il.li:t •• > • = b<i) 
JJ = JJ • 1 

contlnut!' 
_end_cOfMlo,,-do (loop) 
$UI"l + SSUIYl = sum 
-walt_barrler(bar) 
_task-return 

105 

100 

real 0(20), b(20), OUft, .ox 
lnleger 1, j 

call lnU 

su" = 0 
J = 20 
.lnl I.c ••• on.do( loop.l, 20) 
.lnl I.borrledb.r, 20) 
.poo I.even Hovo (0» 
.create.fa.ll~( la5~, uork, 20) 
.ual I.event< la.k) 

prinl 105; .uo, .ox 
for.al('ou. : ',f8.5,' .ax : ',f8.5) 
end 

• tasCentry(uorU 
cOllllllonl'Yars/sur., a, j, b, "41><' loop, bar, 5u .. lock,. IIIaxlock, eva 
.evonl<ov.(20) ) 
.lock( •• xlock) 
.10cHou.lock> 
inloger 1, J 
re.l a(20),b(20),5u.,.ox 
S$U" = 5U" 
.begln.co •• ori.do( loop, 1) 
jj = j • (1 - 1) 

saufII = :-5oU" + a( 1) 
.uoU.ovenl<eva( 1 • 1» 

aU} = b(jj) + .U • 1) 
.post.event<ev.( 1» 
.lock.on( .axloek) 

(W6 )cornmon/yarsisUlll, .. , J,b.max, loop, 
int"ger i,J 
real a(20),b(20),sUIIl.max 
sawn = sum 
_b"gln_common.do(loop,i) 
JJ = J • (1 • 1) 

(27) global :maxCWl 

I (22)work:ssumCW] 

I (23)work:HWJ 

191n41 Prograflt.*'" 
r.,al .(20), b(20), au., .ax 
lnl.,gor 1,j 

call lnU 

su" = 0 
j = 20 
do 100 1 = 1,20 

SU" = au" + aU) 

(WI) 

(WO) 

Lf(bU).gl •• ax) •• x = b(1) 
.10eLof f( ftaxloek) 
continue 
.end.co •• on.do<toop) 
_lock.on(.u.lock) 
8Uft + $5UIII = su" 
.lock.off( OUR lock ) 
.uaU.barr 1.dbar) 
_task._return 

ssum = ss~ + a(i) 0(1) = b(j) + .(1 • 1) 
If<b(L}.gl •• ox} •• x = bO) 
J = j • 1 

end 

100 continue 
_en~common.do(loop) 
SwrJ + SSUffl = SUM 

.walt_barrler(bar) 

100 con Unue 

pr lnt 105., $UIII., .. ax 
105 for.aH'outl: ',fe.S,' .a": ',F8.5) 

e~d 

Diagram 1. Screen Display 
Windows can be moved. resized or scrolled. 

WO: Originallequential program. 
W1: Part of dependence graph. 
W2: View of a single dependence. 
W3: Loop variable analysis. 

W4: Control window. 
W5: Parallel program created using Pat. 

(parallel primitives are as in [4]) 
W6: Intermediate task code for a parallel loop. 

62 



HeuriStic Rule-Based Program Transformations for Enhanced Vectorization 

Pradip Dose 

IBM Research Division 
T .. J. Watson Research Center 

P.O. Dox 704, Yorktown Heights, NY 10598 

Abstract: An example of a state-of-the-art high-cnd mainframe is 
the IBM 3090VF; its associated vectorizing compilcr, the IBM VS 
FORTRAN (version 2) compiler, incorporates some of the latest 
techniques in automatic vectorization and code optimization. 
Advances in hardware and compiler technology not withstanding, a 
potential limitation is the "knowledge gap" which exists hetween the 
average end user and the compiler/machine sub-system. In particular, 
the user often does not know how to write source code which will 
'result in generation of efficient, high performance object code. In 
this short paper, we present an overview of a research project, called 

. EAVE, which is a knowledged-based approach for bridging the 
knowledge gaP. alluded to above. 

1.0 Introduction 

The IBM VS FORTRAN (version 2) compiler7 is an example 
·of a state-of-the-art vectorizing compiler. It generates vectorizcd 
code for execution on the IBM 3090 with vector facility (VF)3-4, 
which is IBM's latest high-end mainframe. The compiler has thc 
advantage that source to source transformations are transparent to 
the users; vectorization is viewed almost as an additional level of 
optimization, which the user can invoke as an option. Such advances 
.in compiler technology not withstanding, a potential limitation is the 
knowledge gap which exists between the average end user and the 
compiler/machine sub-system. As a result of this gap, users 
frequently write high-level source code which achievcs less than 
achievable performance. Although the VS FORTRAN (version 2) 
programming guide l provides some pointers for writing vectorizable 
code, serious users have felt the need to acquire greater expertise in 
fully exploiting the capabilities of the IBM 3090 with vector facility 
(VF). Some published material (e.g.,'-') has proved to be useful. 
However, astute experimentation by several people, e.g.8-9, has' 
identified educated heuristics for rewriting PORTRAN code in order. 
to achieve near-peak performance. Such ideas are not readily 
apparent from the earlier published material. In essence, expertise 
in writing (or converting to) high performance source code, with 
respect to the 3090 VF, seems at present to be limited to a handful 
of professionals who have acquired their knowledge through 
p~rposeful experimentation and investigation; not by accident as 
ordinary FORTRAN users. 

It is in this context that the EAVE project was started. riA VE 
(an Expert Advisor for VEctorization), is intended to be an 
intelligent aid to users of VS FORTRAN version 2, interested in 
efficient use of the 3090 VF. The initial version of this Pascal-based 
system is coded around the expert system shell: Expert System 
Environrnent/VMI8, which is a recently announced program product 
marketed by IBM. This project is an attempt to bridge the 
knowledge gap auuded to earlier. Our goal, in short, is to start with 
existing pieces of code supplied by the user and work interactively 
with the user to come up with the best possible program 10 bc 
submitted -It) 1he compiler. 

63 

. 2.0 Brief Functional Description 

Figure I shows the basic, intcractive environment which is 
envisaged in the operation of EAVE. The user has the option of 
consulting EAVE before or after a trial run via the actual compiler. 
On a given consultation session, EA VB initially suggests possiblc 
changes in coding style and structure as an aid to enhanced 
vectorization and/or general code improvement. Under user control, 
some or all of these suggested changes may be incorporated into a 
modified source file, which can be pnicessed through the actual 
compiler/machine system for verification of performance 
enhancement. In principle, this process may be iterated several times 
for arriving at the best possible code. 

suggested ella nges, 
program metrles 

Figure 1. Interactive program development/refinement via EAVE 

3.0 Heuristic Transformations and Rule Generation 

In this section we illustrate our knowledge (heuristics) acquisition 
techniques. Certainly, the most readily accessible sources of 
.knowledge are the innumerable papers, reports and books available 
on the subject. In addition to the sources already refcrred to l -9 , we 
cite a couple of others lO-12, which have been of most direct relevance 
to this project so far. (Additional references are, of course, available 
in most of the cited documents). A second source of knowledge is 
the not-so-readily available or accessible pool of actual human 
expert~ In lieu of direct help from experts in building the knowledge 
base, indirect extraction of knowledge from their published papers is 
often the only practical altemative. The ultimate, direct approach to 
heuristics acquisition in the context of our very specific problem 
domain, is doing appropriate experimentation on the actual machine 
(IBM 3090 VP), using FORTRAN codes compiled by the actual 
VS FORTRAN, Version 2 compiler. The experiments must be 
appropriate, in that they must be guided by the basic knowledge 
available from human experts and their published expertise. 



Experimentation 

The basic methodology used is to compile and run FORTRAN 
'do loop' kernels on the 3090 VF, under varying coding styles, and 
to measure relative speed-up or degradation caused by incremental 
source code changes. Speed (execution rate) is measured in units of 
millions of floating point operations per second (MFLOPS). In the· 
following, we discuss the coding of a simple FORTRAN 'do loop' 
kernel, as an example in illustrating how educated experimentation 
can lead to derivation of logical rules for desirable program 
transformations. A more detailed, step-by-step explanation of 
rule-derivation through experimentation is available elsewhere! •. 
Results based on extensive experimentation using a wide range of do 
loops are being published as a separate reportl6. 

Example Let us consider a simple matrix-vector multiplication 
kernel: 

DOUBLE PRECISION A(128, 128), B(128), C(128) 
DO 100 J = I, N 
DO 200 I = I, N ............... (A) 
C(I) = C(I) + A(I,J) + B(J) 

200 CONTINUE 
100.CONTINUE 

Vectorization on either I or J is possible. From stride 
considerations, inner loop vectorization (on I) is generally indicated. 
However, on actual experimentation, it is found that the decision of 
the compiler is to perform outer loop vectorization (index J)! The 
resulting code performs very poorly fot N ;;;, 80 (see Table 1). This 
is an example, where the built-in economic modeF of the compiler 
is effectively fooled into making a wrong decision. The economic 
analysis procedure is not an exact algorithm: it employs short-cuts 
and heuristics of its own. By analyzing the exact code patternsl6 

emitted for variations of the above loop, it is possible to infer how 
the economic model is fooled in this case, but we shall not go into 
that in detail here. Essentially, beyond N = 50 or so, the large stride 
access begins to cause a big cache degradation. 

In order to force inner loop vectorization, however, we may use 
the technique of inserting a temporary scalar I 8 • While we are doing 
so, we might as well try to invoke a vector MULTIPLY-AND-ADD 
(VMA) compound instruction3• It turns out that in this context, the 
present version of the compiler will generate a VMA only if the scalar 
(B) precedes the vector. Thus, the loop structure for forcing inner 
loop vectorization with VMA invocation is: 

DO 100 J = 1, N 
DO 200 1= 1, N 
T = C(I) 
T = T + B(J) + A(I, J) ............ (B) 
C(I) = T 

200 CONTINUE 
100 CONTINUE 

Note, however, that in spite of improved performance (see Table 
I), there is strong reason l8 to expect even better results, if the I-loop 
were outermost and outer' loop vectorization were performed. The 
best possible code, achieved after manual HoutermostingH, is thus: 

DO 100 1= I,N 
T = C(I) 
DO 200J = I, N 
T = T + B(J) + A(I,.1) ........... (C) 

200 CONTINUE 
C(I) = T 

100 CONTINUE 

64 

Clearly, the reaSon why code (C) performs the best .is that vector 
register reuse (via outer loop vectorization) and VMA invocation are 
both used in the best possible manner. In this case, each section of 
the vector C is loaded once, used for all values of .1 and stored back 
(uPdated) once; thus optimal vector register reuse is provided. The' 
additional effect of VMA is understood, by examining the 
performance of code (D) below (see Table 1), in which VMA is 
inhibited by using the original order of multiplication: 

DO 100 I = I, N 
T = C(I) 
D0200.1=I,N 
T = T + A(I,J) + 8(J) ........... (D) 

200 CONTINUE 
C(I) = T 

100 CONTINUE 

Clearly, Table 1 demonstrates that code (C) is the best possible 
loop to be submitted to the compiler for this example. We are now 
in a position to write down the (heuristic) conditions under which a 
VMA-invoking transformation seems to be advisable for a high-level 
statement, which (on vectorization) looks like: vector I = vector I 
+ scalar+vector2: 

• The degree (depth) of the loop is at least 2. 

• The index on which vector2 is vectorized, must belong to an 
outer loop, i.e., to a lower nesting level than the statement itself. 

Table I 
ExecutIOn Rate (MFLOPS) 

N Code {A) Code (B) Code (C) Code (D 

16 10.0 7.2 16.5 10.4 
32 16.4 12.0 30.1 16.8 
48 19.3 14.6 34.6 19.0 
60 17.9 15.9 36.4 20.1 
64 12.5 16.0 35.0 19.5 
80 3.7 17.3 38.4 20.8 
96 3.8 18.8 42.2 22.3 
Il2 3.9 19.7 45.0 22.8 
128 3.9 21.3 49.5 24.2 

Heuristics-based loop JDterchange 

Central to the idea of increasing vector register reuse through 
intelligent use of outer loop vectorization, is the ability to check for 
safe loop interchange. In the specific context of EAVE, this boils 
down to 'the ability of advising loop NoutermostingN which will 
enhance performance while preserving program semantics. lbe 
theory of dependence-based loop interchange is quite 
well-established (e.g. II). This is indeed the theory which is used by 
the compiler7 in testing whether a given outer loop can be 
HinnermostedN. For the purposes of our expert adviser, we seek a 
heuristic, "rules-of-thumb" approach for advising such loop 
.interchange to the programmer. The basic tenet of the approach 
here, as in almost all the other mechanisms of heuristic 
transformation capability of EAVE, might be termed: hierarchical, 
incremental reasoning. Essentially, this calls for avoiding the task of 

:solving the most general case first for a typical problem at hand. 

Level-I reasoning 

Level-I reasoning is based on simple pattern-directed inferencing. In 
the most part, such reasoning is based on limited context pattern 
matching; here, analogous to localized visual inspection by a 
FORTRAN expert, initial problems or characteristics are identified. 
Higher levels of reasoning make use of these data, if called for. In 
II.Iany cases, level-I reasoning is sufficient to arrive at a decisive 



conclusion. The basic principle of level-I reasoning is looking for 
simplest things first. For ease of illustration, let us limit our 
discussion to 2-level, perfectly nested loops. Also, let us restrict 
ourselves to linear subscript expressions. Let us assume that the 
loops are formatted (not normalized), in that all loop-headers and, 
subscripts are converted using a uniform convention. Thus, given an: 
initial user-supplied loop, such as: 

DO 100 I = I, N 
DO 200 J = 2, N - I 

200 A(I, 1+ J) = B(I) + A(I ,.I) 
100 CONTINUE 

pre-formatting might convert it into something like: 

DO 100 II = I,N,I 
DO 200 12 = 2,N-I,1 
A(Il,I2+ I) = B(I1) + A(Il,12) 

200 CONTINUE 
100 CONTINUE 

The idea behind such formatting, of course, is to make the job of 
pattern matching and recognition simpler for the machine. Note that 
the reason we do not convert to a fully normalized loop immediately, 
is that we do not want to losc readily-available information (for 
level-I reasoning) through subscript alterations and other major 
changes. Now, assuming that the problem at hand is to determine 
whether the 12-loop can be outennosted, it is obvious, by inspection 
that due to the recurrence on the I2-index, the answer is no. In the 
.following, we attempt to mechanize this ·obvious· infercnce process 
by formulating a set of parameters and rules. 

In plain english, we note that existence of 12 + I as a subscript 
of the left-hand-side array A and 12 as the corresponding subscript 
of the same variable A on the right-hand-side led us to our infercncc, 
given the additional constraint that the 12-index is an increa.ring index 
(not a decreasing one). Let us establish the parameter groups (LI, 
UI, SI) and (L2, U2, S2) to stand for the do-loop bounds on index 
II and 12 respectively. (L: lower bound, U: upper bound, S: stcp). 
These are of type character string and are easily read or infcrrcd. 
Thus, in our case, LI = T, UI = 'N', Sl = 'I'; L2 = '2', U2 = 

'N-I', S2 = '1'. Let int be a function which takes an argument of the 
above type and returns an integer. Thus int(LI) = I; int(UI) may 
return 'undefined' unless the value of N is known at compile time; 
and so on. In case N is unknown, the user may be prompted for any 
attribute of N which may be needed for inferencing. For instance, the 
user may be asked: IS N POSITIVE? (In general, the user always 
has the right to respond to any such query by pressing the 
UNKNOWN key; in such a case, the inference mechanism should 
be able to proceed, exploring other avenues, if nec.essary, or assuming 
the most likely answer to the query, In dealing with such uncertain 
information, the final inference may have a certainty factorl1 of less 
than I). A given subscript expression e I is said to be symbolically 
greater than (less than) another subscript expression e2, if the 
standard polynomial form of el differs from that of e2 by + k (-k), 
where k is a known integer. Remembering that we have restricted 
-ourselves to linear subscripts it is clear that simple pattern matching' 
can be used to infer such symbolic relationships. Let us assume the 
existence of two Boolean functions sgt and sit for this purpose, where 
sgt(el, e2) returns TRUE if el is symbolically greater than e2; sIt is 
defined similarly. 

In a more formal way than plain english, we may establish the 
grounds of the reasoning behind our inference by putting down a set 
of rules to work on a given statement, as follows: 

65 

Rule I: IF memberof(rhs, lhs-array-variable) IS TRUE THEN 
next-term = extract-from(rhs, Ihs-array-variable) 

Rule 2: IF memberof(second-subscript-expr(lhs), '12') IS TRUE 
AND 
memberof(second-subscript-expr(next-term), '12') IS TRUE 
AND 
sgt(second-subscript-expr(lhs),second-subscript-expr(rhs)) 
AND 
i2-is-increasing IS TRUE THEN 
recurrence-exists IS TRUE, 
outermosting-possibiliiy IS FALSE 

Rule 3: IF (int(S2) > 0) OR (int(U2) > int(L2) THEN 
i2-is-increasing IS TRUE 

Rule 4: IF memberof(rhs,lhs-array-variable) IS FALSE TIIEN quit 

We have used long, self-explanatory names for parameters and 
functions for ease of understanding. Also, only the rules directly 
relevant to the particular conclusion referred to earlier, are stated. 
The syntax used is not exactly in accordance with that allowcd by 
ESE. The memberof function returns TRUE if the second (string) 
argument matches a sub-string of the first argument. Assuming that 
the rules are contained within a focus control block (FCR), the 

action clause of Rule 4 is meant to stop further invocations of the 
FCB. Allowing for the possibility of multiple references of the 
left-hand-side array variable on the right-hand side ofthe assignment, 
recursive invocation of the FCB can be used to effectively iterate the 
process of rule-flfings through successive updates of parameters 
next-term and rhs (see Rule I). 

Level-n reasoning 

Continuing our discussion with respect to the loop outermosting 
problem, the basic question of whether a proposed outermosting is 
legal, can be solved quite effectively using a 2- or 3-level reasoning 
hierarchy. (The highest level must eventually perform the equivalent 
of a rigorous loop-interchange algorithm based on a dependence test 
like the Banerjee test lO,II. however, depending on relative need, and 
context, it might be sufficient to do with much less). Additional 
clarification on this topic is available elsewherel8• 

4_0 Progress and status of EAVE 

The EAVE project was conceived in April· 1986. The dctailed 
quarter-by-quarter progress since then is described in a status 
reportlS. The program is fully functional and prolonged testing <J.nd 
debugging has made it quite robust. It currently uses 110 rules, 40 
FCBs and 19 external procedures. The program accepts ordinary 
fortran programs as input and selects the do loops sequentially for 
analysis and advice. Both 'interactive' and 'external file' input mod(~R 
are available. Additional test/debug efforts currently envisaged are 
expected to be minimal. 

High-level heuristics incorporated 

Following is a summary of the high-level heuristics incorporated 
so far in EAVE. 

• (I) Heuristic transformations for invocation of compound 
instructions (e.g., MPYADD). Certain commonly used coding 
disciplines used in FORTRAN inhihit the generation of such 
compound instructions, because of the manner of vectorizatioll 



(optimization) incorporated in the VS FORTRAN, version 2 
compiler. The EAVE consultant is capable of detecting such 
eases and suggesting suitable code transfonnation and 
rearrangement. 

• (2) Transformations for use of proper do-loop indexing III 

nested loops to ensure efficient vector stride usage. 
• (3) Transformations to enhance vector register reuse. 
• (4) Various data-dependent code improvement strategies, which' 

result in more efficient vector code generation for special cases. 
• (5) Substitution of code sequences by appropriate calls to ESSL 

(Engineering and Scientific Subroutine Library)2 routines. 
• (6) Limited code restructuring to enhance cache reuse. 

Versions of the present prototype have been made available to some 
internal users within IBM in order to get feedback for isolating and 
fixing any remaining problems. 

Further work: beyond vectorization to parallelization 

Currently, we are working towards development of an interactive 
research parallelization tool (called RPTOOL), based on the 
concepts in EAVE. Two distinct programming environments are 
being catered to: (a) the SPMD model available under EPEX 
FORTRAN",14 and (b) the Parallel FORTRAN languagel9 recently 
announced At present, Parallel FORTRAN (PF) uses VS 
FORTRAN Version 2 Release .1.1 as a base, which is the 

. programming medium catered to by the current version of EAVE. 
Due to the obvious scope of efficient reuse of knowledge bases 
already developed for EAVE, we have chosen PF as the first target 
in the design of RPTOOL. Our overall objective is to generalize 
EAVE so as to provide the best possible advice on running a given 
do loop in vector/parallel mode on a multi-way 3090 VF under (a) 
the EPEX FORTRAN SPMD model and (b) the Parallel 
FORTRAN language facility. 

5.0 Discussion 

CJiven any compiler-machine pair, there is always a potential 
knowledge gap between the user and the system. However, 
significant performance' problems resulting out of this gap are 
beginning to surface with the introduction of the newer, 
high-performance vector and parallel machines only. We have 
sketched briefly an outline of EAVE, which is a particular solution 
to a very specific problem: namely, the knowledge gap between 
FORTRAN users and a specific compiler-machine pair. However, 
the research results obtained and leading from this exercise are basic 
and general enough to be able to point to future solutions to other 
similar problems. Due to space constraints, detailed explanations 
and examples of user interaction could not be provided in this short. 
paper; the reader is referred to other reports 18. 

Many of the transformations suggested and performed by EAVE, 
could conceivably be included in future releases of the actual 
compiler. However,' due to the evolutionary change from a smart, 
optimizing scalar compiler to a vectorizing compiler, problems of the 
nature shown in this paper are bound to surface. In the absence of 
a revolutionary approach of re-engineering the compiler from scratch, 
it is probably quite difficult to make the compiler gcnerate the bes~ 

possible code irrespective of the programmer's coding style. Thus, 
the need for an EAVE-like consultant might persist for a while yet! 
In any case, expert tools of this flavor will probably always be useful 
to programmers as guides to beUer programming in a given 
environment. 

66 

References 

1. IBM, VS FORTRAN Version 2 Programming Guide, February 
1986; IBM order number SC26-4222. 

2. IBM, Engineering and Scientific Subroutine Library Guide and 
Reference, February 1986; IBM order number SC23-0l84. 

3. IBM System/370 Vector Operations, January 1986; IBM order 
number SA22-7125. 

4. IBM, IBM Systems Journal, Vol 25, No.1, 1986, pp. 4-81. 

5. A. A. Dubrulle, R. G. Scarborough and H. G. Kolsky, "How 
to write good vectorizable FORTRAN," IBM Palo Alto 
Scientific Center, G320-3478, Sept 1985. 

6. H. II. Wang, "Introduction to vectorizing techniques," IBM 
Palo Alto Scientific Center, G320-3489, March 1986. 

7. R. G. Scarborough and H. G. Kolsky, "A vectorizing 
FORTRAN compiler," IBM Journal of Research & 
Development, Vol. 30, No.2, March 1986, pp. 163-171. 

8. B. Liu and N. Strother, "Pcak· vector performance from VS 
FORTRAN," IBM Technical Report # RC 12849, T . .1. 
Watson Research Center, Yorktown Heights, NY, June 1987. 

9. R. Ellersick, "Vector coding techniques for VS FORTRAN 
version 2," Proceedings of SHARE 68, March 1987. 

10. U. Banerjee, S-C.Chen, D. J.Kuck and R. A. Towle, 'Time and 
parallel processor bounds for FORTRAN-like loops," IFCFCFC 
Trans. on Computers, Vol C-28, No.9, September 1979, pp. 
660-670. 

11. J. R. Allen, "Dependence analysis for subscripted variables and 
its application to program transformations," Ph.D. dissertation, 
Rice University, 1983. 

12. J. J. Dongarra, F. G. Gustavson and A. Karp, "Implementing 
linear algebra algorithms for deme matrices on a vector pipeline 
machine," SIAM Review, 26(1):91-112, January 1984. 

13. D. A. George, "EPEX -- environment for parallel execution," in 
Parallel Systems and Computation, G. Paul and G. S. Almasi, 
ed., North-Holland, 1988. 

14. F. Darema' et al., "A Single-Program-Multiple-Data 
computational model for EPEX FORTRAN," IBM Research 
Report RC 11552, Yorktown Heights, NY, October 1986. 

15. P. Bose, "A brief status report on EAVE: an expert adviser for 
vectorization," IBM Research Report RC 13353, 12/10/87. 

16. P. Bose, "Gedanken experiments with FORTRAN do loops on 
the 3090 VF: IBM Research Report (under clearance for 
publication). 

17. Expert System Environment/VM, Reference Manual, 1st. 
edition, September 1987, IBM order nnmber SC38-7004-0. 

18. P. Bose, "Interactive program improvement via EAVE: an 
Expert Adviser for Vectorization," Proc. 1988 ACM Int'!. Con! 
on Supercomputing, St. Malo, !'rance, July 1988; see also, IBM 
Research.Report RC 13472, Yorktown Heights, NY, January 
1988. 

19. IBM, Parallel FORTRAN Language and Library Reference, 
IBM order number SC23-043 1-0, March 1988. 



A VISUAL PROGRAMMING ENVIRONMENT FOR THE NAVIER-STOKES COMPUTER 

Sherryl Tomboulian, Thomas W. Crockett, David Middleton 
Institute for Computer Applications in Science and Engineering 

Mail Stop 132C NASA Langley Research Center 
Hampton, VA 23665, USA 

ABSTRACT 

The Navier-Stokes Computer is a high-performance, re
configurable, pipelined machine designed to solve large 
computational fluid dynamics problems. Due to the com
plexity of the architecture, development of effective high
level language compilers for the system appears to be 
a very difficult task. Consequently, a visual program
ming methodology has been developed which allows users 
to program the system at an architectural level by con
structing diagrams of the pipeline configuration. These 
schematic program representations can then be checked 
for validity and automatically translated into machine 
code. The visual environment is illustrated by using a 
prototype graphical editor to program an example prob
lem. 

INTRODUCTION 

The Navier-Stokes ComputeI: (NSC) [6,7], developed 
at Princeton University with funding from NASA, is 
a special-purpose, high-performance parallel system de
signed for very large computational fluid dynamics (CFD) 
applications. The architecture consists of multiple pro
cessing nodes arranged in a hypercube configuration. 
Each node contains a few dozen functional units which 
can be reconfigured dynamically into one or more vector 
pipelines. 

The architecture has some features resembling those 
of Multiflow's TRACE 1 computers [4] and CDC's CY
BERPLUS 2 [1,3], such as multiple function units and 
long instruction words. However, there are significant dif
ferences which appear to make development of effective 
high-level language compilers a very difficult problem. As 
an alternative, a visual programming methodology is pre
sented which employs a graphical interface to assist the 
user in programming the NSC at the machine architec
ture level. 

A brief overview of the NSC is given first, and some of 
the difficulties in programming it with conventional meth
ods are discussed. The design for a visual programming 
environment is then described, and a prototype version 
is used to illustrate the concepts for a sample problem. 
Conclusions based on experience with the prototype sys
tem are reported. 

NSC ARCHITECTURE 

The major architectural components of the Navier

This work was supported by the National Aeronautics and Space 
Administration under NASA Contract No. NASl-18107 while the 
authors were in residence at ICASE. Authors' Electronic mail: 

sjt@icase.arpa, tom@icase.arpa, koaia@icase.arpa. 
1 Multiftow and TRACE are trademarks. of Multiflow Computer, 

Inc. 
2CYBERPLUS is a trademark of Control Data Corporation. 

67 

Stokes Computer are described here. The focus is on the 
individual nodes, rather than on the system as a whole, 
since it is the internal design of the nodes which makes 
the NSC a novel architecture. The information presented 
is a considerable simplification of the actual design, with 
many details omitted for the sake of clarity. The descrip
tion given is sufficient for an understanding of the visual 
environment described in this paper. The final design 
of the NSC hardware is not complete at this writing, so 
some adjustments to the following may be needed in the 
future. 

Each node contains 32 functional units. Every func
tional unit can perform floating-point operations, and 
some of them can also perform either integer/logical op
erations or max/min computations. In addition, each 
functional unit has an associated register file which can 
be used to store constants or intermediate values, as well 
as to buffer data to adjust for pipeline timing delays. 
The functional units are hardwired into three types of 
arithmetic-logic structures (ALBs), called singlets, dou
blets, and triplets, which contain respectively 1, 2, or 3 
floating-point units. 

Memory is arranged in 16 planes of 128 Mbytes each, 
for a total memory of 2 Gbytes per node. In addi
tion, there are 16 double-buffered data caches. Two 
shift/delay units are provided to aid in reformatting mem
ory data into multiple vector streams. A complex pro
grammable switching network routes data among ALSs, 
memory planes, caches, and shift-delay units. Communi
cation between nodes is handled by means of a hyperspace 
router. The various hardware components are configured 
into vector pipelines during execution by programming 
the switches. Multiple pipelines may be set up to run 
in parallel. The pipeline configurations may be rapidly 
modified under program control as the COmputll-tion pro
ceeds through different phases. Scalars are treated as 
vectors of length one. A simplified diagram of the data 
path architecture is shown in Figure 1. 

Control flow is even more complex. A central se
quencer provides high-level control flow, but independent 
DMA controllers associated with each memory and cache 
plane pump data through the pipelines. An elaborate 
interrupt scheme is used to signal pipeline completions, 
evaluate conditional expressions, and trap exceptions. 

Projected peak performance of the system is quite 
high, with a maximum rate of 640 MFLOPS per node. A 
64-node NSC would have a total memory of 128 Gbytes 
and maximum performance of 40 GFLOPS [7]. 

PROGRAMMING CONSIDERATIONS 

There are several features of the NSC architecture 
which make compilation of high-level languages into effi
cient object code a difficult task. One of the most serious 



is the organization of memory into separate planes. Dur
ing an instruction (vector operation), a function unit can 
read or write iIi only a single memory plane, and mul
tiple function units working in the same memory plane 
can cause contention problems. This causes serious dif
ficulties for a compiler in trying to decide where to allo
cate variables, since the optimum layout for one pipeline 
may be unworkable for the next. In some cases, it may 
be necessary to maintain multiple copies of arrays, or to 
relocate them between phases of the computation. An
other problem arises since the function unjts within each 
ALS are not constructed identically. Only a single unit 
can perform integer operations, and another unit has cir
cuitry for min/max computations. This, coupled with 
the distinctions between singlets, doublets, and triplets, 
complicates the problem of mapping function units onto 
expression graphs. Generation of control code is made 
more difficult by the presence of multiple sites of control 
(sequencer, DMA units, interrupts, etc.) which must be 
carefully orchestrated to insure that all possible actions 
are mutually consistent. Numerous other details tend 
to complicate programming as well. Any of the individ
ual problems could probably be handled successfully, but 
they tend to interact with each other, making the overall 
problem more difficult than the sum of the subproblems. 
Given current compiler technology, it is difficult to see 
how all of these considerations can be handled simultane
ously while still producing code that can achieve high uti
lization of 32 function units. It has been estimated tha~ 
constructiOIi of a FORTRAN compiler for the NSC would 
take about three years, and the performance of the result
ing code relative to other high-performance computers is 
in doubt. 

Because of these problems, it seems that a program
ming methodology more closely tied to the architecture 
might deliver better performance. Traditionally, this has 
been accomplished by writing assembly language pro
grams for performance-critical applications. Unfortu
nately, the NSC lacks anything resembling a conventional 
assembly language. Each instruction must be specified in 
a complex hierarchical microcode which contains specific 
control for every function unit, register file, switch set
ting, DMA unit, etc. The effect of an instruction is to 
completely specify the pipeline configuration and function 
unit operations for the entire machine. This requires a 
few thousand bits of information per instruction, encoded 
in dozens of separate fields. Therefore, hand-written mi
croprograms are clearly not practical for the NSC. 

A VISUAL PROGRAMMING ENVIRONMENT 

In an effort to simplify programming at the archi
tectural level, a visual programming methodology has 
been developed. This approach is based on an informal 
manual technique which evolved among applications re
searchers at Princeton University and NASA's Langley 
Research Center. Using this technique, programs were 
designed by hand-drawing a series of pipeline configura
tions, each representing one stage, or loop body, within 
the overall program. The natural evolution of this man
ual technique suggested that an automated environment 
in which pipeline instructions were drawn interactively 

68 

on a graphics display and then automatically translated 
to microcode could be an effective way of programming 
the NSC at the machine level. 

The concept of visual programming is not new, but 
it has become increasingly practical as workstations with 
high resolution graphics have become widely available [5J. 
A recent survey of visual programming techniques can 
be found in [2J. This method seems to be a natural ap
proach for programming data flow and pipelined architec
tures. Visual programming techniques have been applied 
to parallel architectures before, but for different architec
tural models. A prominent example is Poker [8J, which is 
a parallel programming environment designed to support 
the CHiP computer. 

The scope of this project has purposely been limited to 
internal programming of individual nodes, since this area 
is the source of greatest difficulty. If needed, techniques 
similar to those used in Poker could be applied to the 
larger multi-node environment. Although the design has 
been tailored specifically to the NSC, the same general 
approach could be used for other reconfigurable pipeline 
machines. 

Three major goals were established for the NSC visual 
programming environment. The first is that the represen
tation have a one-to-one correspondence with the func
tional model of the machine, so that everything could be 
specified precisely if necessary. However, an effort would 
be made to choose appropriate defaults wherever possi
ble in order to minimize the amount of detail required. 
The defaults could be easily overridden. The second goal 
is that the graphical representation be easy to program 
and clearly represent the semantics so that a program
mer looking at an instruction would immediately see the 
intent. The third is that the environment would do all it 
could to ease the user's task by preventing or indicating 
syntactic errors and violations 'of hardware constraints as 
the program is entered. More extensive checking could 
be done when the visual representations are translated to 
microcode, and any additional errors would be visually 
presented to the programmer. 

The design for the visual environment contains three 
major components, a graphical editor, a checker, and a 
microcode generator. Figure 2 shows the interaction be
tween these components and the user. The graphical edi
tor provides the usual operations found in an editor, such 
as the ability to enter new input, modify or delete ex
isting data, and save the results. However in this case, 
the objects being operated on are graphical rather than 
.textual. The graphical editor also is responsible for ex
tracting information from the pictures and storing it in 
internal data structures. Two types of internal data are 
distinguished. One type consists of information which is 
needed solely to manage the graphical display, such as 
the position of images on the screen. The other type con
sists of semantic information which is needed in order to 
generate microcode. Since the semantics are represented 
graphically, both types of information are needed in order 
to reconstruct the display. But in order to generate code, 
only the semantic information is needed. 

The checker contains, in a knowledge base or other 
suitable representation, detailed information about the 



architecture of the NSC, so far as it is relevant to the pro
gramming process. This includes various machine param
eters such as the number and types of function units, their 
organization into ALSs, the number and size of memory 
planes, etc. More importantly, the checker also knows all 
of the rules about conflicts, constraints, asymmetries and 
other restrictions in the NSC architecture. The graphical 
editor calls on the checker at appropriate points during 
interaction with the user to validate the information be
ing input. Any errors are flagged as soon as they are de
tected. In addition, the graphical editor uses the checker's 
knowledge of the architecture to reduce the possibilities 
for making errors. For example, if the user has routed 
the output from one function unit to a particular mem
ory plane, the graphical editor will not let him send the 
output of a second unit to the same plane. The philoso
phy is similar to that embodied by syntax-directed text 
editors, with the goal being to assist the user in develop
ing correct programs despite the complexity and numer
ous restrictions of the architecture. Another advantage 
of having a checker is that it helps to make the whole 
visual environment more robust in the face of changes to 
the machine design. Some changes can be handled merely 
by updating the knowledge base, with minimal impact on 
the graphical editor and microcode generator. 

Once a complete program (or consistent program frag
ment) has been defined, the microcode generator uses the 
semantic data structures created by the graphical editor 
to generate machine code for the NSC. The checker is in
voked again at this point to perform a thorough check of 
global constraints and other conditions which may.not be 
practical to check during the editing process. 

In order to test the concept of visual programming for 
the NSC, a prototype graphical editor/assembler was de
signed and implemented. The prototype focuses mainly 
on the graphical editor portion of the design, in order 
to determine whether the great level of detail needed in 
the microcode instructions can be conveniently presented 
pictorially, and to assess the ease of programming with 
this type of interface. The checker is not present as a 
separate entity, although some checking functions are in
corporated into the graphical interface. Since the final 
design of the NSC is not complete, and there is no means 
of running actual NSC programs, the prototype produces 
only the semantic data structures as output, rather than 
the actual microcode instructions. The semantic data 
can be thought of as a pseudo-code representation of the 
instructions. 

PROGRAMMING EXAMPLE 

The major features of the visual environment are illus
trated here using the prototype graphical editor to pro
gram an example problem. The example is a point Jacobi 
update for the 3-D Poisson equation on a uniform grid, 
with a residual convergence check. The equation for the 
update is given by 

(m+1) _ (m) h2 R(m) 
u ijk - u ijk +"6 ijk (1) 

69, 

1 ( (m) (m) (m) (m) = h2 Ui+l,;k + Ui-l.;k + 11.,.;+1.1: + ui.;-l.k (2) 

+u~i.l+1 + U~i.l-l - 6u~~) - Gijk 

A more complete explanation of this problem for the NSC 
can be found in [7]. 

The central concept of the system is that visual ob
jects, or icons, are used to represent architectural compo
nents of the NSC at a suitable level of abstraction. The 
user manipulates these icons interactively to construct 
a program. Subimages within each icon are also mean
ingful, providing the interface to an additional level of 
program detail. A high-resolution bit-mapped display is 
used as the drawing surface. Interaction is provided pri
marily with a "mouse", augmented with a keyboard for 
some operations. 

In the prototype, icons consist principally of the three 
different ALS types. Two representations of the doublet 
are provided, since doublets may be configured to operate 
as singlets by bypassing one of the functional units. Func
tional units are shown as squares within the icon, with 
the "double box" units having integer/logical as well as 
floating-point capabilities. Other icons which would be 
useful, but are not currently implemented, include mem
ory planes and shift-delay units. 

In addition to the icons, a variety of other visual de
vices are employed. These include pop-up menus and 
subwindows, "buttons", "sliders", and even text fields, 
where appropriate. The prototype is implemented on a 
Sun-3 workstation using Sun ViewS graphics software. 

Figure 3 shows the basic display window used. The 
right hand side is a "control panel" area used to select 
icons and specify various editor operations. The large 
area in the center is the drawing space in which pipeline 
diagrams are constructed. Informational and error mes
sages are displayed in the narrow strip across the top. The 
region at the left is reserved for control flow specifications 
and variable declarations, which are not implemented in 
the prototype. 

To construct a program, a user defines a series of 
pipeline diagrams. Each pipeline corresponds to a sin
gle instruction, or one line of code, in a more conven
tional language. Control panel operations provide the 
usual editor operations to insert, delete, copy, and renum
ber pipelines, as well as to scroll forward or backward or 
jump to a specific pipeline. 

The first step in constructing a pipeline diagram is to 
select the needed ALSs and position them in the draw
ing area of the screen (Figure 3.) This is accomplished 
by moving the mouse pointer into the control panel area 
and selecting the appropriate icon, then "dragging" the 
outline of the ALS to its desired location. The process is 
repeated until all of the needed ALSs have been selected. 

The next step is to specify the inputs and outputs 
of the function units. These are selected by "mousing" 
on the I/O pads (short wires terminated by small black 
circles). A menu pops up showing the available choices. 

3Sun-9 and Sun View are trl!odemarks of Sun Microsystems, Inc. 



These may be either external connections to other func
~ion units, caches, memories, or shift/delay units, or else 
mternal connections for feedback loops or register file 
data. Timing delays, needed for proper alignment of vec
tor streams, may be introduced by routing input data 
into a circular queue in a register file and then retrieving 
the value a number of clock cycles later when it appears 
at the head of the queue. 

Figure 4a illustrates the process of connecting the out
put from one function unit to the input of another. The 
mouse controls a "rubber-band" line which conceptually 
indicates a wiring connection between the two pads. The 
checker is used during this operation to ensure that only 
legal connections are attempted. The microcode gener
ator would later derive switch settings by interrogating 
the connection tables built by the graphical editor. 

In the case of a cache or memory connection, addi
tional information is needed to program the DMA units. 
This is handled by a pop-up subwindow, in which the 
cache or memory plane number, variable name or start
ing address, stride, etc. are specified. 

Note that the use of pop-up menus and windows is 
crucial to our approach. By hiding ancillary informa
tion until it is needed, the amount of detail displayed in 
the pipeline diagrams is reduced to a manageable level. 
Menus and subwindow templates also serve to prompt 
the user for needed information and remind him of his 
choices, both valuable services in an environment as com
plex as the NSC architecture. 

The third and final step is to program the functional 
units by specifying the arithmetic or logical operations 
which they are to perform. Once again this is done with 
a pop-up menu (Figure 4b). The menu appears when the 
mouse is used to select a function unit within an ALS. 
Figure 5 shows the completed pipeline diagram for the 
point Jacobi iteration of Equation 1. 

CONCLUSIONS 

While the results based on the prototype graphical 
editor should be regarded as preliminary, it appears fea
sible to implement a complete visual programming envi
ronment for the Navier-Stokes Computer. This environ
ment would clearly be more convenient and faster to use 
than hand-written microcode. The improvements derive 
from several factors. First, the visual representation more 
clearly reflects the hardware architecture and program in
tent than do reams of textual microassembler code. The 
data-flow style of the diagrams also seems to be a natural 
way for humans to describe computations. In addition, 
information hiding with subwindows can be used to effec
tively reduce the amount of low-level detail which must 
be displayed and assimilated at one time. This is some
what analogous to the use of macros and subroutines in 
textual languages. Another advantage is that the detailed 
knowledge of architectural intricacies built into the visual 
environment reduces the possibility of writing erroneous 
programs and errors are caught sooner when they do oc
cur. 

On the other hand, programming at this level, even 
with the graphical interface, is a tedious process. The 
amount of machine-level detail which must be specified 

70 

requires that the programmer have a good understand
ing of the hardware design. The user must focus not only 
on solving his problem, but also on mapping his problem 
onto this very complex architecture. So given a choice, a 
higher-level programming environment would be prefer
able. 

One approach to reducing the complexity is to use 
a simpler architectural model, perhaps a subset of the 
NSC. The tradeoff here is between performance and pro
grammability. By ignoring certain features of the archi
tecture, it may become easier to program, but perfor
mance may be adversely affected in some situations. Ini
tial examination of this approach has shown that some 
abstraction is possible, but the performance ramifications 
are unclear. 

The visual environment could potentially be extended 
to include debugging features. During execution, each 
new instruction would display the corresponding pipeline 
diagram, annotated to show data values flowing through 
the pipeline. This could help to pinpoint timing errors, 
as well as other bugs in the program. The visual environ
ment might also be useful as a back end to a compiler, 
displaying the results of the compilation process. 

In summary, a visual programming environment offers 
several advantages for efficiently programming a reconfig
urable pipeline architecture such as the NSC. However, 
it is still essentially a low-level programming language, 
and requires a significant implementation effort in order 
to become a useful tool. It remains to be seen whether 
this approach can compete with compiled high-level lan
guages over the long term. 

REFERENCES 

[1] R.G. Babb, L. Storc, W.C. Ragsdale, "A Large
Grain Data Flow Scheduler for Parallel Processing 
on CYBERPLUS", Proceedings of the 1986 Interna
tional Conference on Parallel Processing, pp. 845-
848. 

[2] S. Chang, "Visual Languages: A Tutorial and Sur
vey", IEEE Software, Vol. 4, No.1, Jan. 1987, pp. 
29-39. 

[3] Control Data Corporation, "CYBERPLUS Hard
ware Reference Manual", Publication No. 77960981. 

[4] J.A. Fisher, "The VLIW Machine: A Multiprocessor 
for Compiling Scientific Code", Computer, Vol. 17, 
No.7, July 1984, pp. 45-53. 

[5] R.J.K. Jacob, "A State Transition Diagram Lan
guage for Visual Programming", Computer, Vol. 18, 
No.8, Aug. 1985, pp. 51-59. 

[6] D.M. Nosenchuck, M.G. Littman, W. Flannery, 
"Two-Dimensional Nonsteady Viscous Flow Simu
lation on the Navier-Stokes Computer MiniNode", 
Journal of Scientific Computing, Vol. 1, No.1, 1986. 

[7] D.M. Nosenchuck, S.E. Krist, T.A. Zang, "On Multi
grid Methods for the Navier-Stokes Computer", in 
Multigrid Methods, S. McCormick and K. Stuben 
(eds.), Marcel-Dekker, 1988. 



[8] L. Snyder, "Parallel Programming and the Poker 
Programming Environment", Computer, Vol. 17, -, .. -,~~ 
No.7, July 1984, pp. 27-36. 

111· .. 1 
I Hy.on .. " I Router 

.--L- D' D' 
Memory Planes 

118MB.x!tJ 

Double-Buffered 
DataCachel Switch 
J'KB>< tlll)(' Network 

-y;:r;r;:J 
'--r- -y;:r;r;:J 

Shih/Delay Unit. 

....... -- _. 
[QJ ffilffil ru1 
[QJ ffil~ ru1 
[QJ ffil~ r1E 
[QJ ffil~ ~ 

Functioaal Unitl 

Figure 1: Simplified diagram ofthe datapath architecture 
of the Navier-Stokes Computer. 

Graphical 
Editor 

Intcrtlctiu, 
DUp/ap 

Semantic 
Data Structure. 

Microcode 
Generator 

1 Ese.vtable 
Progf'Gm 

C 
h Machine-
e Specific 
c Knowledge k 
e Base 
r 

Figure 2: Major components of the visual programming 
system. 

71 

Olr./UllIt",",nle/n",,~ --, 

Figure 3: Selecting and positioning an icon. 

(a) 

lo ical" 
:In"leget''' 
Posta .. 
other 

(b) 

Figure 4: Programming function units. (a) Specifying 
pipeline connections. (b) Selecting operators. 

Figure 5: Completed pipeline diagram for the point Ja
cobi iteration. 



The PFG Language: 
Visual Programming for Concurrent Computation 

P. David Stotts 

Department of Computer Science and 
Institute for Advanced Computer Studies 

University of Maryland 
College Park, MD 20742 

Abstract 
PFG (Parallel Flow Graphs) is a language for expres

sion of concurrent, time-dependent computations. Its syntax 
is graphical and hierarchical to allow construction and view
ing of realistically-sized programs. Its execution semantics 
a:e defined by a mathematical model of concurrent computa
non based on timed Petri nets and hierarchical graphs. The 
PPO language and underlying computation paradigm serves 
as the foundation of a development and analysis environ
ment for real-time software systems under development at 
the University of Maryland. 

PPO is rich enough to express many of the common 
concurrent control structures found in parallel languages, as 
well as some less common ones. Each syntactic structure in 
PPO has a direct translation into a portion of a timed Petri 
net model. The net created by legally combining PPO struc
tures is guaranteed to be well-formed, in the sense that each 
Pe~ n.et is in the free-choice class and has a clear interpre
tanon In terms of a hardware/software system. Several tech
niques have been defined which allow the model produced 
f~om a PPO program to be analyzed for concurrency proper
ues, such as deadlock freedom and proper mutual exclusion 
on shared data structures. 

1. Visual programming and concurrency 
Though graphical languages are not a new idea, they 

have not caught on particularly well, especially in com
parison to the popularity of textual languages. Part of this 
failure up until now may have been from the relative lack of 
high-resolution, bit-mapped screens for display of graphical 
programs. The widespread availability of desk-top worksta
tions now eases this problem considerably. Icon-based tools, 
offering a pictorial style of user-interface, are now very 
popular and should presage a renewal of interest in graphical 
programming as well. 

Many researchers have designed and experimented with 
graphical languages. Representative projects include the 
PICT system [3], which uses flowchart-like diagrams con
structed by the user interactively, and the PROORAPH 
language [5,6] which allows interactive construction of funo
tional dataflow programs. Earlier work on dataflow 
languages also used graphical program representations [2], 
though the user interfaces were not as visually rich as those 
of the more recent projects due to hardware limitations. The 
Poker programming environment [8] is another language that 

72 

~lows visual pro~arnming. It supports concurrent computa
Uons for the CHiP parallel processor architecture, but its 
visual interface is limited to the grid-based specification of a 
graph showing communication paths among the parallel 
processes in a program. 

Though PPO is graphical in its syntax, it differs from 
previous visual languages in two aspects: it is intended for 
the expression and analysis of concurrent computations 
(PROO.RAPH and Poker are among the few others), and its 
semanncs are formally defined by a mathematical model 
based on timed Petri nets and hierarchical graphs. In 
essence the graphical syntax for PPO is just a convenient 
method for a user to specify the mathematical model of his 
computation. Previous graphical languages with mathemati
cal semantic models, like POL [4] and OPL [1], have been 
confined to the dataflow paradigm. 

The HO model of concurrent software systems, which 
defines the formal semantics of PPO, is explained in section 
2. This theory forms the basis for both static program ana
lyses and dynamic analyses (in the form of execution simu
lation using the Petri net execution rules). Section 3 con
tains the definition of a parallel flow graph and and an 
explanation of the syntax of PPO. Section 4 then discusses 
the timing aspects of a PPO program. A description of the 
translation from PPO into the HO model is presented in sec
tion 5, and the general utility of the language is then illus
trated in section 6 by giving the PPO representations of 
several well known concurrent control structures, and dis
cussing several analysis techniques that have been developed 
for concurrent computations in PPO. Section 7 concludes 
with a brief discussion of future research plans using PPO .. 

2. The formal semantics of PFG 
The formal semantic definition of the PPO language is 

provided by the HG software system model. This theory is 
intended for the representation and anaiysis of concurrent, 
time-dependent systems composed of a combination of 
software (applications, operating system, language support, 
etc.) and hardware (host machine). The mathematical details 
are presented fully elsewhere [9,10], but for ease of discus
sion we present here a summary of the theory, with 
emphasis on the issues of concurrency. 

The HO formalism separates the major aspects of con
current computation into three distinct model components. 



• The data model is a fonnal representation, using h
graphs, of the structure and interrelationships among col
lections of data that are to be transfonned by the compu
tation under study. The h-graphs provide enough lever
age to detect overlapping access to different parts of data 
structures by concurrently executing code segments. 

• The static program model is a representation of all the 
operations on data (procedure calls) required by a com
putation as a set of non-overlapping basic blocks. Exe
cution of the procedure calls in each block is necessarily 
sequential, but blocks can execute concurrently with each 
other. Each procedure during execution has its own 
local data area, and the procedure call semantics require 
copy-in, copy-out argument passing. The fonnalism for 
expressing basic blocks works in conjunction with the 
h-graph fonnalism to allow complete determination of 
operations which alter (as opposed to simply viewing) 
portions of data structures. 

• The model component of greatest interest here is the 
control flow model. It expresses the possible parallel 
execution threads of a concurrent computation. A thread 
is a sequence of basic blocks from the static program 
model, the execution of which produces· the portion of 
the total computation contributed by that thread. The 
control flow model is a timed Petri net together with a 
(somewhat complex) interpretation of the net structure in 
tenns of the other model components. 

2.1. Data modeling 

Representation of data in PFG is done with an exten
sion to the theory of hierarchical graphs, or h-graphs, first 
developed by Pratt [7]. The extended theory presupposes 
two universal, finite base sets: the set <I> of nodes; and the 
set S of characters. An atom is a finite sequence of charac
ters from S. The set of all atoms is denoted A, and A=8*. 
The atom # denotes the null, or empty, string. An extended 
directed graph (or simply graph) over <I> and A is the stan
dard notion of directed graph with atoms appearing as labels 
on the arcs. Given these, the following definition presents 
the concept of an h-graph, the basic model of data in this 
theory: 

Definition 1: H-graph 
An h-graph over <I> and A is a triple, h=<.G,V,r>, 
in which 

G={gl' ... ,gk) , k~l, is a finite subset of n, 
such that each gF<Mi,Ei> 

k 

V: UMi-+GUA 
i=1 

rEG 
G is termed the graph set of h; V is the immediate 
value function; r is the root graph of h. We as
sume that r=gl and write h=<G,V>. 
Related tenns: 

k 

a. UMi is the nodeset of h, written M(h). 
i=1 

b. If mEM(h), V(m) is the value of m in h. 
c. If V(m)E G then m is a graph-valued node 

* 

73 

of h; otherwise V(m)E A and m is an 
atom-valued node of h. 

d. The set of all h-graphs over <I> and A is 
denoted r. 

e. The set 'P=rUA is tenned the set of 
values. 

An h-graph is essentially a collection of directed graphs and 
atoms, and a function which maps the nodes in the graphs 
into these entities, thus creating a structural hierarchy among 
the graphs. Figure 1 illustrates these concepts. 

Selection of a node from the hierarchical structure of an 
h-graph is perfonned by an h-graph selector, or simply 
selector. H-graph selectors are syntactically the concatena
tion of one or more graph path designations, with embedded 
indications of when the hierarchy of graphs is delved into 
more deeply. Semantically, a node is selected by repeating 
for each path designation this procedure: 

• apply the path designation to the target graph, 
obtaining a node; 

• apply the h-graph value function of the target graph 
to the node, obtaining a new target graph. 

The selection is started by using the root graph of the h
graph as the first target graph. Considering the entire h
graph h in Figure 1, some sample h-graph selectors and their 
respective function. values are shown in Figure 2. As in the 
previous selector example, the value of each selector appli
cation is the node designated by the outer brackets. Node 
values are indicated for clarity. Note that the single "/" 
selector denotes the top level node in the h-graph, and that 
the value in that node is another graph. Also, note that a 
selector produces a node; the value function must then be 
invoked if the value of that node is desired. 

Selectors provide the link between the control flow 
model and the data model. At decision points in the control 
flow, one or more paths are selected from a set of alterna
tives according to the value found in nodes of the data state, 
as indicated by specific selectors. 

* 

* = initial node of a graph 

Figure.l Example h-graph. 



selector node selected 

! -+ [[#] 
-a-> [ 5 ] 
-b-> [ 4.1 ] 
-c-> [ 17 ] -d-> [ [ [ # ] ] 

lIa -+ [5] 
IIc.dlx -+ [-27] 
IIc.dI! -+ [#] 

-x-> [ -27 ] 
-y-> [3.25] 

Figure 2 Sample selectors for h-graph in Figure 1. 

2.2. Control flow modeling 

Both the structure and the semantics of Petti nets have 
been enhanced for modeling software. First, deterministic 
times have been added, one per place in the net, with each 
place time being an integer greater than zero. As discussed 
more completely later, a place represents one of the basic 
blocks of procedure calls in the static program model, and 
the time associated with a place represents the execution 
duration of that code block. Secondly, to model code block 
execution, the notion of token aging is included in the net 
execution semantics. A token arriving at a place p with time 
't cannot participate in enabling the transitions following p 
tntil 'tp time units have expired, at which point the token is 
said to be fully aged. A time unit can have several 
definitions; the most convenient for our purpose is simply 
one state change of the entire Petri net. Thus the interpreta
tion for this situation is that 'tp state changes occur in the 
modeled system while the software associated with p is exe
cuting. 

Thirdly, to mesh token aging with the rest of the net 
semantics, we employ a concurrent transition firing rule. 
This allows a single state change to be effected by the firing 
of more than one transition. A transition is enabled when a 
fully aged token resides in each of the places that are inputs 
to it. A transition is' data-enabled (in the case of two or 
more transitions sharing input places) if the state of the data 
model specifies it over the others in conflict with it. From 
the current state (net marking) all data-enabled transitions 
are identified, and some subset of them is fired. The effects 
of these firings are accumulated to produce the next state. 

The concurrent firing rule' allows state changes in the 
net to be equated with ticks of a wall clock. This in turn 
allows modeling and analysis of time-dependent computa
tions on parallel hardware. . There may be state changes' in 
which no transitions fire, due to a lack of fully aged tokens 
in the net. The entire effect of such a state change is to age 
all tokens one "tick." The' length of the Petri net state 
sequence produced by concurrent net execution, then, gives 

74 

the duration of the modeled computation. 

The data state is transformed in lock-step with the state 
changes in the control flow model. The control state transi
tion rule dictates which code blocks are to be executing at 
any particular instant. The data state transition rule provides 
semantics for creating local data regions for procedures 
when called, passing arguments via copy-in, copy-out 
semantics, and effecting the function calculated by each pro
cedure on its local data. The two rules are coordinated in 
that one data state change occurs for each control state 
change. 

A word is in order here about our interpretation of 
these nets in terms of the hardware that is intended to host 
the modeled computation. Our working assumption is that 
each place in a Petri net is mapped to one (unique) proces
sor in some parallel architecture; the mapping is one-ta-one, 
but not necessarily onto. Because of the association of code 
blocks with places,. then, each basic block executes on it 
own processor. While this may be unrealistic for large com
putations on today's machines, it may not be so for 
machines in the near future. It also makes analysis easier, 
and so is a reasonable assumption for a first look at the util
ity of this model. Tokens may, under this view,be thought 
of as requests for the hardware processor to execute its asso
ciated code block. Only one request is handled at a time, 
which means that only one token at a place is allowed to 
age. Any others arriving while this is happening simply 
wait their turn, in "limbo." The same code block is executed 
to fulfill each request. Thus, tokens have no identity, and 
there is no need to queue them to preserve their arrival 
order. Finally, a transition with a fully aged input set of 
tokens must fire as soon as the subset selection allows it to 
do so. No arbitrary waiting is allowed as in the original 
Petri net execution semantics. This restriction is made to 
ease the problems associated with timing analyses. With 
one processor per net place, it seems reasonable to insist that 
when one block execution request is satisfied, the processor 
not "idle", but get right to handling any other of its outstand
ing requests (tokens). 

3. The syntax of PFG: parallel flow graphs 
The control flow model, as presented, is largely a gen

eral Petri net with some additions that enhance its suitability 
for time-dependent analysis. The PFG language offers a 
technique for controlling the acceptable structure of these· 
nets, that is, limiting the software modeler to using only a 
subset of the general timed Petri nets. The restrictions serve 
the same purpose in our theory that structured programming 
does for. the creation of manageable algorithms--they limit 
achievable complexity but not expressive power. 

To accomplish the goal of modeling concurrent compu
tation with a Petri net structure of limited complexity, we 
view the static program model and the control flow model as 
a unified entity, represented in a graphical notation termed a 
parallel flow graph. A PFG program is constructed as a 
hierarchical collection of parallel flow graphs, and then each 
can be dissected into the two component models for 



analysis. The components of a Petri net produced from PFG 
are easily associated with portions of the modeled software, 
thus ensuring that analysis is attempted only for HG models 
with reasonable interpretations. 

The following definition describes the mathematical 
structure of a parallel flow graph. 

Definition 2: Parallel flow graph 
Let W be a set of procedure calls, S be a set of 
selectors, and Y be a distinguished node value. A 
parallel flow graph <I> over W, S, and Y is a tuple 
<I>=<g,K,v,t> in which . 

a. g=<11 ,Ecjl,T1'> where 
11 is a finite set of nodes, 
T1' E 11 is the initial node, and 
Ecjl is a finite set of arcs, each ecjliE Ecjl of 

the form <T1j,T1",a> with T1j,T1kE 11 
and aE~, indicating that an arc la
beled with atom a exists from node 
T1j to node T1b the arcs in Ecjl are 
subject to the restrictions stated 
below. 

b. K: 11 ~ { pcall, cbranch, nbranch, join } 
is a function mapping each node in g 
into one of four types, termed respec
tively procedure call, concurrency 
branch, nondeterministic branch, and 
join. 

c. V: 11 ~ S u W U ('W} is a function 
mapping each node in g into either a 
selector, a procedure call, or the dis
tinguished value w: The value Y only 
serves to make the function total. 

d. t: 11 ~ {l,2, ... } u {oo} is a function 
that associates a positive, integral execu
tion time, or the value 00, with each 
node in the PFG. 

Visually, a parallel flow graph is drawn with different icons 
to represent the four node types. A concurrency branch is 
denoted by a base-down triangular icon. A nondeterministic 
branch is denoted by a base-down half-circle icon. A join 
node is denoted with a base-up triangular icon. We employ 
a syntactic shorthand in the case of procedure call nodes. 
Rather than explicitly picture each node, we represent an 
entire sequence of them as a single rectangular icon, termed 
a basic block node. The underlying mathematical entity still 
contains a sequence of individual "pcall" nodes. The node 
icons in a parallel flow graph are connected with arrows. 
The PFG prototype allows an icon to be "clicked" open to 
reveal its contents (value), either a selector expression or a 
block of procedure calls, in a viewing window. At the outer 
syntactic level, nodes are numbered; branch nodes are indi
cated by notation such as "s4", and basic blocks are indi
cated with notation like "b7." Join nodes are pictured with Y 
on them. 

We now describe restrictions on the general structure 
prescribed in the definition of a parallel flow graph. 
Because each procedure begins with a single control path, 

75 

the initial node T1' may not be of type "join." The arcs 
between nodes represent the flow of control from one action 
in an algorithm to the next, and each arc has an atomic label 
associated with it. To ensure connectivity, each node in the 
graph must be on a directed path from the initial node. 
Obviously at least one arc, then, must enter each node (other 
than the initial node), but we place no upper limit on this 
number. The initial node may possibly have no arcs enter
ing it. 

Arcs leaving a node are governed by several con
straints. A node containing a procedure call or a join may 
have no arcs leaving it, or it may have a single arc leaving it 
with the label on that arc being null, written #1. Each of the 
two types of branch node contains a selector, and may have 
any positive number of arcs leaving it. The label on each of 
these arcs may be any atom from ~, and they need not be 
unique, i.e., an atom may serve as label for two or more of 
the out-arcs of a branch node. Figure 3 illustrates this syn
thesis with a portion of a PFG in which each si represents a 
selector and each bi represents a basic block node. 

As stated earlier, the formal semantics of PFG are fully 
defined by the HG computation model. Informally, this 
model prescribes the following computational behavior for a 
parallel flow graph. Execution proceeds from the initial 
node, and nodes are executed in the order they are encoun
tered by following arcs. Such a sequence is termed a 

(J. 

blue 

Figure 3 Parallel flow graph. 

1 By default, an arc with no written label has the nul/label. 



control thread. An initial data state, represented by an h
graph, is assumed. The effects of executing a node are 
dependent on its type. If a node contains a procedure call, 
then the data state is altered as specified by the function of 
the called procedure. If a node contains a selector, then the 
data state is consulted at the node selected and a choice of 
next node (or nodes) is made based on the value found 
there. For a node of type "cbranch", two or more parallel 
control threads can be created. All arcs bearing the atom 
label found as the value of the selected node are con
currently followed. For a node of type "nbranch", the selec
tor is evaluated to get an atom; then, one of the perhaps 
several arcs bearing that atom as label is chosen nondeter
ministically and followed. If a node contains a join Yo then 
synchronization of the potentially many incoming concurrent 
control paths is performed, and a single control path contin
ues from the node. If no arc leaves a node, or if none bears 
the selected atom, then the control path through that node 
expires; execution does not continue from the node. Execu
tion of the entire PFO terminates when all individual control 
paths expire. 

Since a PFO has a single initial node, the execution of 
a PFO always begins with one control path. When a branch 
node selector produces an atom that labels several out arcs, 
then concurrent control paths come into being. Since branch 
nodes are the only nodes allowed to have multiple out-arcs, 
they are the only points in a PFO at which concurrent con
trol paths can be created. Subsequently, the progression of 
actions along each parallel control path is considered to be 
executing asynchronously and concurrently with the other 
parallel paths. Though the synchronization and merging of 
parallel paths is possible with W nodes, it is not required. 
Two or more parallel paths may come together in a common 
segment of a PFO without being joined. Each path retains 
its separate identity and proceeds in turn to execute the PFO 
nodes in the common section. This feature, coupled with 
the fact that PFOs may be cyclic, allows a potentially 
unbounded number of parallel paths. to be created in a com
putation. The number of such paths that can actually be 
executing at any time (as opposed to activated but waiting) 
is bounded, however, since the number of nodes in a PFO is 
finite. 

Note that sequential computation is represented by a 
special form of parallel flow graph, one in which labels on 
arcs leaving a concurrency branch node must be unique. 
Under this restriction, at most one control thread may 
proceed from any node in a sequential PFO. With only one 
initial node, no concurrent activity can then be generated. 
This simple and succinct restriction adds to the attractiveness 
of the theory as a unified computation model. 

4. Procedure timing in PFG 
While timing information is an insignificant part of 

PFO syntax, it is an important part of the HO software sys
tem model, and hence of the semantics of PFO programs. 
All data transformation in PFO is accomplished via pro
cedure calls (expression evaluation, the only other operation 

76 

on the data model, is read-only and enables branching and 
parameter passing). A basic block in the HO model is a 
sequence of procedure calls unbroken by any branches. 
These procedures are of two kinds: primitive, and not. A 
primitive procedure in a PFO program has no parallel flow 
graph to represent its structure; it has only a duration (a tim
ing) and a data transformation specified by a function. A 
non-primitive procedure, on the other hand, has a parallel 
flow graph representation of its structure. Its timing is then 
recursively derivable from the structure of the procedures 
called, with the primitive procedures providing the base tim
ings that cause the recursion to terminate. Its function is 
also derivable, as the composition of the functions of the 
called procedures, in one of the possibly many orders 
specified by the control flow model. 

The Petri nets employed in the HO model are deter
minately timed. Software is often not determinate in its 
behavior, that is, a block of procedure calls will often have 
an execution duration that varies with the input data. PFO is 
intended for the expression of computations in a way that 
will allow verification of adherence to absolute timing con
straints, such as "module X must finish in under 10 

r-----..... ------... -..... , 

I I 
I 1'7" 
I I 
I I : : l.. _______________ J 

Figure 4 Translation of a basic block node. 

------l 

I 
1'1 

I . ___ ._.:.J 

Figure 5 Translation of a cbranch node. 



1)' 

Figure 6 Translation of an nbranch node. 

milliseconds," or "module Y can be no longer than 3 
seconds behind module X in completion of execution." 

Timing of procedures under the determinate semantics, 
then, is accomplished by constructing two models for each-
a minimum timed model and a maximum timed model. 
These execution bounds are obtained by path analysis on the 
concurrent reachability tree [11], for the Petri net in the con
trol flow model. This graph is a state-space structure that 
reflects the difference between regular Petri net semantics 
and the concurrent firing rule employed in PFG semantics. 
It is constructed in such a way that duration of a block is 
reflected by the length of the state sequence (path in the 
graph) in which it is active. With some restrictions on its 
structure, such as breadth-first node generation, the con
current reachability tree can be searched for the longest and 
shortest paths, and the leaves of those paths can be checked 
for repetition of earlier states (indicating a potentially infinite 
duration). Naturally, for cyclic procedures, either one of 
these bounds can be infinite, and the duration of 00 will pro
pagate to procedures which call it. Thus each PFG program 
is analyzed as a dual-system model for timing. 

Figure 7 Translation of a join node. 

77 

5. Translation of PFG into timed Petri nets 
Each structure in a parallel flow graph has a translation 

specified into the HG modeling formalism. Figures 4, 5, 6, 
and 7 illustrate the Petri net components of the control flow 
model, and the connections among them, created for each 
type of PFG structure that can be encountered in a program. 
The details of this translation are fully specified in [9]. In 
summary, an unbroken sequence of PFG procedure call 
nodes is coalesced into a single entity (a basic block in the 
static program model) and represented by a single place con
nected to a single transition in the Petri net (termed a PIT 
component). A branch node in a PFG program has multiple 
arcs leaving it, perhaps several labeled with the same atom. 
For a cbranch, a Petri net structure s created having a single 
place connected to several transitions, one for each unique 
atomic arc label (termed a PinT component). The same 
number of arcs leave each transition as there are bearing its 
atomic label leaving the PFG branch node. For an nbranch, 
the translation is similar, except that one transition is created 
for each arc, with one arc leaving each transition. A join 
node in PFG has multiple arcs entering it that must be syn
chronized and coalesced. It becomes a Petri net structure 
having one place for each arc entering the join node, and a 
single transition to which the places are all connected 
(termed an nP/T component). A single arc then exits this 
transition. Once created, the Petri net components have the 
same interconnectivity as the PFG nodes have. The timing 
on a PFG node is the timing given each place in the Petri 
net component created from it. 

The Petri nets that are created from PFG programs by 
this translation form a subclass of general Petri nets, termed 
free-choice nets. Their structure is simplified in that if any 
place serves as input to several transitions, then it is the only 
input place for those transitions. The transitions that share 
the input place are said to be in conflict. Hack [12] has 

Figure 8 Multi-way fork-and-join (cobegin). 



shown necessary and sufficient conditions to guarantee live
ness and safeness of free-choice nets. 

6. Utility of PFG 
Many common concurrent control structures can easily 

be expressed in PFG. Figures 8 and 9 show examples along 
with the Petri net components created from them. Programs 
written to use such semantics can then be analyzed for con
currency problems using the HG model. In addition, the 
syntax of PFG allows expression of some concurrent control 
structures which have no well-known names, as exemplified 
in Figure 10. 

Several analysis techniques have been developed for 
PFG programs. The dual-model method for timing of sys
tems has been previously mentioned. It allows verification 
of adherence of procedures to execution time bounds. 
Details of this method are presented in [9]. 

Another analysis technique allows the detection and 
correction of improper accesses to shared data struc
tures [10]. The analysis is based on the concurrent reacha
bility tree mentioned earlier. Since a code block is associ
ated with each place, a state (net marking) showing a token 
in a place indicates that a code block is executing in that 

Figure 9 Spawn concurrent threads. 

Figure 10 Arbitrary concurrent control structure. 

78 

state. The concurrent reachability tree, then, shows in its 
markings which pairs of code blocks may possibly execute 
concurrently. The data structures accessed by these code 
blocks are checked for improper accesses, such as one pro
cedure reading twice consecutively from a datum, and 
another procedure concurrently writing to the same datum. 
The h-graphs used to model the data provide the ability to 
detect conflicts on portions of structured data rather than 
simply on variable names. When identified, these potential 
improper accesses can be prevented during execution by 
automatic insertion of synchronizing places into the Petri net 
models representing the calling procedure. As small an 
involved portion as possible of each code block is identified, 
and each block is restructured into two or more new, smaller 
blocks. These new blocks are then given Petri net places 
and transitions in the control flow model. For each block 
pair an extra place, marked with a single token, is connected 
into the model to create mutual exclusion on the conflicting 
sequences of procedure calls. 

A third analysis for the HG model is detection of some 
deadlocks, which appear in the concurrent reach ability tree 
as partial markings of places that are portions of join com
ponents. The semantics of a join are such that if anyone of 
the places entering it are marked (indicating that the 
software represented by that place is executing) then all of 
the other places must eventually be marked as well in the 
same state, or the following transition can never fire, block
ing progress at that point. Further, the fully marked state 
must be reachable from the partially marked ones. For 
example, consider a join component having three incoming 
arcs in a PFG program. The join is represented in the Petri 
net of the control flow model by three places entering a sin
gle transition. If some state Il appears in the reachability 
tree having tokens in one of these places, then there must be 
a state Il' on a path from Il that has all three places marked. 
If no such Il' exists, then a potential deadlock exists in the 
original PFG program. 

In addition to these concurrency analyses, aliasing 
detection in the data model has been developed by Wil
son [13] for sequential computations (a special case in PFG 
syntax). 

7. Future research 
PFG is interesting both for its graphical syntax and for 

its formal concurrent computation semantics. The language 
allows expression of time-dependent concurrent computa
tions; the underlying semantic model allows incorporation of 
the behavior of the host machine into analysis of the system. 
An initial implementation of the language is just now under
way, in conjunction with the development of the PFG pro
gramming environment. The PFG environment is a unified 
construction and analysis toolset for concurrent, time
dependent computations. It has the HG software system 
model as a formal basis for all activity in the environment: 
static analysis, dynamic simulation, and code generation. 
The PFG language serves as the primary program source. 
Programming in other languages, such as Ada or Modula-2, 



is possible in the PFG environment, with source programs 
being translated directly into the HG model. After creation, 
the model can then be viewed as a PFG program. Various 
target machines will have HG representations stored in a 
modelbase so that time-dependent analyses can be done on a 
software system for a particular host, Once an HG model 
has been analyzed and is correct, executable code for the 
host can be generated from the model. The system is being 
developed for a Sun workstation. 

1. 

References 

A. L. Davis and S. A. Lowder, "A Sample Manage
ment Application Program in a Graphical Data
Driven Programming Language," Digest of Papers, 
Compcon Spring 81, pp. 162-167 (February 1981). 

2. A. L. Davis and R. M. Keller, "Data Flow Program 
Graphs," Computer, 15(2), pp. 26-41 (February 
1982). 

3. E. P. Glinert and S. L. Tanimoto, "Pict: An Interac
tive Graphical Programming Environment," Com
puter, 17(11), pp. 7-25 (November 1984). 

4. R. M. Keller and W.-C. J. Yen, "A Graphical 
Approach to Software Development Using Function 
Graphs," Digest of Papers, Compcon Spring 81, pp. 
156-161 (February 1981). 

5. T. Pietrzykowski, S. Matwin, and T. Mu1dner, "The 
Programming Language PROGRAPH: Yet Another 
Application of Graphics," Graphics Interface '83, 
Edmonton, Alberta, pp. 143-145 (May 1983). 

6. T. Pietrzykowski and S. Matwin, "PROGRAPH: A 
Preliminary Report," Technical Report TR-84-07, 
University of Ottawa (April 1984). 

7. T. W. Pratt, "Formal Specification of Software Using 
H-Graph Semantics," pp. 314-332, in Lecture Notes 
in Computer Science #153: Graph Grammars and 
Their Application to Computer Science, ed. H. Ehrig, 
M. Nag!, and G. Rozenberg, Springer-Verlag, Ber
lin (1983). 

8. L. Snyder, "Parallel Programming and the Poker Pro
gramming Environment," Computer, 17(7), pp. 27-
36 (July 1984). . 

9. P. D. Stotts, Jr., "A Hierarchical Graph Model of 
Concurrent Real-Time Software Systems," Ph. D. 
Dissertation (TR-86-12), Department of Computer 
Science, University of Virginia, Charlottesville, 
Virginia (August 1985). 

to. P. D. Stotts, Jr. and T. W. Pratt, "Hierarchical 
Modeling of Software Systems With Timed Petri 
Nets," Proceedings of the International Workshop on 
timed Petri Nets, Torino, Italy, pp. 32-39 (July 

11. 

12. 

13. 

79 

1985). 

P. D. Stotts and T. W. Pratt, "Petri Net Reachability 
Trees for Concurrent Execution Rules," Journal of 
Parallel and Distributed Computing (accepted, to 
appear). 

M. Hack, "Analysis of Production Schemata by Petri 
Nets," M.S. thesis, Cambridge, Massachusetts, 
Department of Electrical Engineering, Massachusetts 
Institute of Technology (February 1972). 

J. N. Wilson, "Data Types and Aliasing in Program 
Specification and Verification," Ph. D. dissertation 
(TR-86-13), University of Virginia, Department of 
Computer Science, Charlottesville, Virginia (May 
1985). 



ARCHITECTURE AND 
LANGUAGE INDEPENDENT 
PARALLEL PROGRAMMING: 

A FEASIBILITY 
DEMONSTRATION * 

S. Sobek, M. Azam, and J.C. Browne 
Department of Computer Sciences 

The University of Texas 
Austin, TX 78712-1188 

Abstract 

This paper describes a system for development 
of architecturally independent parallel programs. 
The concept bases for the programming system 
include the separation of specification of depen
dency relations from specification of units of com
putation and the formalization of specifications for 
dependency relations so that they can be readily 
translated to a spectrum of imJllementation mech
anisms. The host for the implementation is a Sun 
workstation. The languages in which units of com
putation can be expressed include Ada, C and For
tran. The targets for execution of the parallel pro
grams include a Sequent Balance, a VAX cluster, 
an Intel Hypercube, and a Cray XMP. The graph
ical/visual user interface to the programming sys
tem has been found to be a major contributor to 
its effectiveness. 

1 INTRODUCTION 

This paper presents aD. environment for parallel program
ming in which are prepared programs which can execute 
on a variety of multiprocessor architectures without user 
modification. A parallel program is viewed as a set of 
units of computation composed into a computation by 
dependency relations which specify the order of execution 
of the units of computation. The user-visible structure 
of a program developed in this environment is indepen
dent of the programming languages in which the com
ponent modules of the program are written. The com
ponent modules may be a mixture of several different 
languages, including Ada, C and Fortran. The key con
ceptual principles are separation of specification of units 
of computation from specification of dependency relations 
and formal specification of dependency relations at a level 
of abstraction which allows ready translation to a variety· 
of synchronization and/or communication mechanisms. 

·This research was supported in part by the DOE under grant 
DE-FG05-85-ER-2501O, in part by the DARPA under grant N00039-
86-C-0167, and in part by the ONR under grant NOOOl4-86-K-0763. 

80 

Program structure is expressed in a declarative hierar
chy which allows effective application of architecturally 
specific optimizing compilers to the component modules. 
The user interface is graphical and at a level of abstrac
tion which promotes effective program formulation as well 
as preparation of executable programs. 

The programming system, Computation-Oriented 
Display Environment or CODE, has been in operation for 
some months and has been used to generate parallel pro
grams for several different programming environments. 
Complete architectural independence is not a claim. Al
though the unified model of parallel computation under
pinning this work covers SIMD models, the implemented 
system covers only MIMD architectures and is practically 
limited to large grain parallelism. 

This approach to parallel programming is complemen
tary to the automatic restructuring of existing higher 
level language programs. Statement and loop level par
allelization can still be done on the module level compo
nents of the parallel structure created with CODE. 

2 APPROACH 

The approach we have taken is to define a unified model 
of parallel computation at a level of abstraction which can 
be easily mapped to a spectrum of architectural mecha
nisms for implementation of dependency relations. 
Browne [BR085, BR086] has given an informal descrip
tion of this unified model, while Sobek [SOB88] has given 
a full and formal definition of the unified model. 

There are two particularly significant properties of 
this representation of parallel computations: First, it is 
sufficiently formal and complete to support translation 
to representation at greater levels of resolution. That is, 
a parseable formal grammar can be written for the de
pendency relations and the firing rules specified in the 
unified model. Second, the representation of dependency 
relations is cleanly separated from the representation of 
computations. The result of these two properties is that 
a program becomes a computation structure specified as 
a set of computation modules and the dependency rela
tionships among this set of modules. The only intrinsic 
limitation placed on the target execution system is that 
the data, control and constraint (shared name access con
trol) dependencies of the unified model of dependency re
lations must be expressible in the mechanisms provided. 
. Separating specification of units of computation from 
specification of dependency relations and the provision 
for several levels of abstraction in specifying units of com
putation enable the definition of parallel computa
tions as declarative hierarchies. A unit of compu
tation at one level of abstraction may itself have an ar
bitrarily complex sequential or parallel structure with
out this structure impacting the relationships between 
this module and the balance of the computation struc-



ture at the higher level of abstraction. The computation 
modules (units of computation) may thus be arbitrary 
programs in any high level programming language sup
ported in an execution environment or may themselves 
be complex parallel computation structures. Thus, op
timizing compilers which do automatic restructuring to 
obtain parallelism on a particular architecture may still 
be applied with profit to this architecturally independent 
parallel computation structure. 

3 IMPLEMENTATION 

3.1 Graphical Interface 

The Computation-Oriented Display Environment 
(CODE) is used to develop graph structured represen
tations of parallel computations, from which are pro
duced the declarative specifications mentioned preceding. 
These specifit:.ations are parsed to produce programs in 
high level languages that support parallel execution. Af
ter a program is written (by drawing and annotating a 
graph on a graphics screen), its CODE intermediate lan
guage file and the user's code files are transferred to the 
desired parallel architecture. Target code is produced on 
the parallel machine from the transferred files. 

The initial version of CODE has been implemented on 
a Sun Microsystems workstation. CODE is written in C 
anc. uses the SunView (trademark of Sun Microsystems) 
package for displays. 

An example CODE display is shown in Figure 1. The 
horizontal strip on the top is the message window. This 
window displays instructions, information, warning mes
sages, and error messages, and it allows some textual in
put from the programmer. The vertical strip on the left 
hand side contains a menu window with symbols that 
depict major CODE commands. The remaining large 
drawing window on the right is used for displaying and 
drawing the graphical program. 

A CODE program graph is composed of four main 
object types: schedulable units of computation (SUCs), 
dependencies, filters, and subgraphs. A subscripted name 
such as Si5} denotes an array of objects. 

A sue is associated with a subprogram written in 
some high level language, such as an Ada procedure. 
SUCs communicate via dependencie8. The data structure 
associated with a dependency may be a simple variable 
or an array. The two kinds of dependencies implemented 
are data dependencies and exclusion dependencies. A 
data dependency totally orders the execution of the pre
cisely two SUCs it connects. An exclusion dependency 

. provides a partial ordering (or no ordering at all when it 
is used only to share data) among two or more SUCs. 

A filter is a special computation unit with, semantics 
defined by an associated constraint expression that de
fines transmission of some subset of the data from its in
put dependencies to some subset of its output dependen-

81 

Choose an object to open using left button. 

DATM 

, 
: EXCLUDE 
I DATA8 

Figure 1: Example CODE Display 

des. The constraint may be satisfied by mere existence of 
input data or by the actual values associated with input 
data dependency variables. Among the important uses 
of filters are for loop control and, as we describe later, 
acting as data dependent firing rules for SUCs. 

A 8ubgraph is composed of SUCs, filters, dependen
cies, and subgraphs. A CODE computation graph is a 
hierarchy in which each subgraph has a single parent 
graph, and the overall graph has no parent. Thus, any 
computation graph with a hierarchy of graphs can be 
transformed into a one-level graph. Dependencies may 
span subgraphs. Thus, a dependency in the graph level 
currently displayed that appears to end at a subgraph 
may, in fact, end at a SUC or filter arbitrarily deep in 
the graph hierarchy. ' 

Briefly, a typical program development scenario us
ing CODE would be to draw the computation as a graph 
of SUCs, dependencies, filters and subgraphs, set depen
dency properties (e.g., number of data elements) and fil
ter constraints, type the code associated with each SUC, 
have CODE generate the declarations file needed to pro
duce an executable parallel program, ship the declara
tions file and SUC code files to a target parallelarchitec
ture, and generate the target executable parallel program. 

The set of objects and their properties were chosen so 
that the information necessary to synchronize and sched
ule operations is highly visible. In particular, we have 
identified commonly used constraints on execution and 
made specification of those constraints an integral part 
of CODE. 

The primarily used SUC execution constraint is that 
all input data be available. Like many before us, we use a 



directed arrow (data dependency) from graph node A to 
node B to mean that B requires data produced by A, and 
thus execution of B may not start until execution of A 
has ended. An exclusion dependency denotes that two or 
more SUCs share data. Here the synchronization may not 
be simple, and so we have defined an exclusion constraint 
syntax, and implemented a subset of the syntactically 
correct constraints. Exclusion constraints specify under 
what circumstances a SUC that is otherwise able to begin 
execution is precluded by the current execution of some 
set of SUCs. For example, the constraint '(A OR B) 
MUTEX C' means that if either SUC A or SUC B is 
executing, then SUC C may not start execution, and vice 
versa. A and B might be only reading shared data and 
may execute together, while C might be updating that 
same data, and thus must execute alone. 

The constraints of filters can make data-dependent 
SUC execution decisions quite visible. Filters can use 
the existence or actual values of data associated with in
coming data dependencies to schedule SUC execution. 
Filters have their own constraint syntax. For example, 
assume that data dependency Dt ends at a filter whose 
output data is passed to SUC A. The constraint 'Dt[S} > 
8.0' means that for SUC A to begin execution, the fifth 
element of Dt must be greater than 8.0. 

When objects are created, they are assigned default 
properties. For example, the default SUC code file lan
guage might be Ada. Options windows are displays which 
show the current or default properties of objects in the 
program graph and allow the user to change selected 
properties. 

The SUC options window contains the important com
mand 'update code', which generates header and trailer 
lines for the SUC code file. Although a complete sepa
ration of the SUC synchronization information from the 
SUC module code is desirable, certain practical consid
erations preclude it. SUCs communicate via dependenc 

cies, and the set of dependencies associated with an ex
isting SUC may change at any time during development. 
Dependencies have associated data types, and the data 
types of existing dependencies may change at any time 
during development. Requiring the user to keep track of 
all these changes so that later an executable program on 
a target system may be created is a prescription for dis
aster. Therefore, the 'update code' command is used to 
generate each SUC's connection to the rest of the parallel 
program (such as an Ada procedure header), and CODE 
checks to make sure that· the user has not changed the 
generated header and trailer lines. 

3.2 Encapsulation Strategy 

Once the user is satisfied with the program graph and 
associated SUC code file~, she or he requests that CODE 
generate a declarative specification of the graph; The 
declaration file and the SUC code files are then shipped 

82 

to one or more target parallel architectures. 
The end product desired is a computation in which 

generated code, which satisfies all declared synchroniza
tion constraints, controls the execution of user-written 
SUCs. On each target machine, TOAD (Translator Of 
A Declaration) uses synchronization information in the 
declarations file and target-architecture-specific informa
tion to produce a compilable program that encapsulates 
the SUCs. 

The encapsulation must be able to pass input data 
to SUCs, get result data from SUCs, and execute SUCs. 
Although even assembly language could be encapsulated, 
it is easier if each SUC code language provides support, 
such as procedures that can access and change parameters 
or common data. The encapsulation must ensure that 
each SUC which is coded in an acceptable language is 
provided with the interface to other SUCs it requires. 

Although the declarative specification language is ar
chitecturally independent, and generated headers and 
trailers are as portable as the language in which the SUC 
is written, the progranuning environment does not at
tempt to ensure the portability of user-written code in 
SUCs. Moreover, it is the user's responsibility to ensure 
that all information required by the encapsulation in the 
form of output values from SUCs is actually produced by 
the SUCs. 

We have a TOAD for several parallal systems, in
cluding a Sequent Balance, a VAX cluster, an Intel Hy
percube, and a Cray XMP. The following discusses the 
TOAD implemented on a Sequent Balance 21000. For 
that implementation, we have chosen to allow SUCs to 
be coded in Ada, Fortran, and C. The encapsulation code 
generated is an Ada program that calls SUCs as Ada 
subprograms, or uses the Ada pragma 'INTERFACE' for 
SUCs that are not Ada code. 

Each non-loop data dependency has a task which ac
cepts notification each time a SUC produces a value for 
that dependency. The task then notifies the proper SUC. 
For example, if SUC A[9} produces values for dependency 
D[6} to pass to SUC B[2}, then the task must know which 
element of A produces which 2 elements of DEP and 
which 3 elements of DEP are consumed by each element 
of B. Later, buffering will be added to these tasks .. 

Each exclusion dependency has an Ada task. The 
only constraints implemented enforce a multiple readers, 
single writer paradigm, and any exclusion is mutual ex
clusion. So constraints such as 'A OR B' (denoting only 
readers) and '(A OR B) MUTEX C MUTEX D' (A and B 
are readers, while C and D are writers) are allowed, while 
'(A AND B) MUTEX C MUTEX D' is not be allowed. 
The exclusion dependency task has a reader's semaphore 
and a writer's semaphore. It is called by the SUC task 
of every associated SUC that is otherwise ready to begin 
execution. Later, buffering will be added to these tasks. 

Each SUC has its own task that ensures that all data 
needed is available, all filter constraints are met, and 



exclusion constraints are satisfiable. It calls the user
written sue code, and, ifthere are any associated depen
dencies, it notifies the dependencies that it has completed 
execution. 

All tasks are terminated when all tasks are idle, and 
all messages queues are empty. 

3.3 Execution Constraint Specification 

Achieving a useful separation of the code inside SUCs 
from constraints on the execution ofthose SUCs requires 
careful specification of the set of allowed constraints on 
execution. Dependencies and filters are used by CODE 
and TOADs to provide very general mechanisms for spec
ifying constraints. Dependencies can affect the execution 
order of two or more SUCs, while the filters of a SUC al
low data dependent constraints on that SUC's execution. 

An exclusion dependency is used to share data or pro
vide a partial ordering among its two or more associated 
SUCs. The basic syntax of an exclusion dependency con
straint is: 

( <or_sue_phrase> ) I 
<mutex_phrase> MUTEX <sue_phrase> I 
<sue_phrase> EX <sue_phrase> 

For example, the constraint '(SA OR SB OR SC)' means 
any combination of the SUCs SA, SE, and SC mayexe
cute concurrently, and '(SA OR SB) EX SC' means if SA 
or SE is executing, then SC may not start execution. 

A SUC may execute when all of its un-filtered depen
dencies have associated data and the constraints of all of 
its filters are satisfied. A filter constraint may be satis
fied by dependencies simply having data or by the values 
to which dependencies' associated data have been set. A 
filter constraint specifies (explicitly or implicitly): what 
subset of dependencies must provide data to satisfy the 
constraint, the constraint the above dependencies must 
satisfy, what subset of dependencies will be used to pro
vide input data to the SUC when it executes, and what 
subset of dependencies will be consumed by filter con
straint satisfaction evaluation or by SUC execution. 

The basic syntax of a filter constraint is: 
<dependency_expression> I <selection_phrase> I 
f <selection_phrase> J : < d'ependency_expression> 

f <number_ol_times> J 
<dependency_expression> is an expression whose truth 
value may be based on the values of dependencies' data. 
<selection_phrase> allows selection of a subset of the de
pendencies to provide filter output data. The keywords 
ANY, HIGHEST, LOWEST, FIRST, and LAST are 
currently allowed in the phrase, but only ANY is fully 
implemented in TOADs. <number_ol_times> gives a cri
terion for when a particular dependency may that pro
vided input data may again provide input data. 

For example, consider a filter with input dependencies 
DA, DB, and DC, and thedata structure associated with 
each is an array 1..100 of real numbers. The cons,traint 

83 

'ANY 2 : $$[5] > 1.0' means that once at least two depen
dencies have data whose fifth element is greater than 1.0, 
allow execution with those two as input data ($$ signifies 
any incoming dependency). 

4 CONCLUSIONS AND FUR
THER WORK 

CODE and TOAD have been demonstrated to synthe
size correct code for the unfamiliar and difficult por
tion of parallel programs, dependency relations and fir
ing rules, for any environment for which TOAD has been 
implemented. Implementation effort for an initial ver
sion of TOAD in any given execution environment will 
be a matter of man-weeks or a few man-months at most. 
CODE provides a parallel structuring concept environ
ment which is sufficiently rich to facilitate formulation 
of most parallel algorithms. CODE and TOAD .have 
demonstrated the feasibility of architectural and compo
nent language independence for parallel programs. 

There remain, however, a host of research issues and 
implementation issues. Enrichment and/or simplification 
of the model of computation is an open question. Will 
this methodology extend to SIMD architectures or is it 
even needed in this domain? Synthesis of efficient code 
for dependency relations and firing rules is a major is
sue. What are the issues in extending CODE and TOAD 
to smaller units of granularity for computational com
ponents? CODE and TOAD will be integrated with a 
capability for generating dependency graphs for exist
ing programs and with a library facility for computation 
modules which will support both entry of existing mod
ules and selectioh of modules from the library. These two 
features will make CODE and TOAD much more usable 
by providing access to modules from existing programs. 

References 

[BR085] 

[BR086] 

[SOB88] 

J. Browne, "Formulation and Programming 
of Parallel Computations: A Unified Ap
proach", Proc. of 1985 Int. ConE. on Parallel 
Processing, University Park, Pennsylvania, 
August 1985, 624-631. 

J. Browne, "Framework for Formulation 
and Analysis of Parallel Computation Struc
tures", Parallel Computing 3, 1986, 1-9. 

S. Sobek, "Architecture Independent Paral
lel Programming", Ph. D. dissertation, De
partment of Computer Sciences, The Uni
versity of Texas, Austin, Texas, to be pub
lished in August 1988. 



Communication and code optimization in SIMD programs 

Allan L. Fisher Peter T. Highnam 
Carnegie Mellon University Department of Computer Science 

Pittsburgh, Pennsylvania 15213 

Abstract 
The use of SIMD architectures has been impeded by the 

lack of efficient high-level programming languages. This 
paper describes an abstraction of communication in SIMD 
systems that is similar in spirit to previous proposals, but 
whose functional formulation allows the application of 
powerful code optimization techniques. We give examples of 
how a fairly simple compiler can produce SIMD code of 
handcrafted qUality. We further show how programs ex
pressed in this style can conveniently be mapped to alternate 
topologies and execution schedules. 

1. Introduction 
The SIMD model of computation that we address consists 

of an array of identical processing elements with a regular 
interconnection network. The processing elements receive a 
broadcast instruction from a global controller, which can also 
perform scalar computations independently of the array. In
itially, we will consider a 2-dimensional SIMD mesh with 
connections between each cell and its orthogonal nearest 
neighbors. Later, we give an example of how our system of 
communication primitives can be used to aid in the mapping 
of such a virtual grid onto a machine with a different topol
ogy. 

The programming style we advocate assumes that a parallel 
decomposition of the task has already been performed. In the 
area of image processing, from which we draw the code 
examples used in this paper, this usually involves performing 
the same computation at each pixel in an image. This ap
proach has been described in earlier work!, with access to 

This research is supported by the Defense Advanced 
Research Projects Agency (DOD), ARPA Order No. 4976, 
monitored by the Air Force Avionics Laboratory under Con
tract F33615-87-C-1499. 

The views and conclusions contained in this document are 
those of the authors and should not be interpreted as 
representing the official policies, either expressed or implied, 
of the Defense Advanced Research Projects Agency or the US 
Government. 

84 

neighboring values specified using relative coordinates. Our 
approach, instead, is to use a functional notation for com
munication, which in tum allows the detection of redundant 
computation among neighboring cells. 

2. Directionals 
A directional is a unary operator that permits position

independent .code to reference data held at other locations 
specified in a relative manner. Our grid model uses four 
directionals: LEFT, RIGHT, UP and DOWN. The seman
tics, using LEFT as a generic example, are: 

LEFTexpr The value of this expression is the result 
of the computation that represents expr as 
computed in the left neighbor. 

Directionals can be applied to the result of any expression, 
in particular they may be applied to expressions that involve 
directionals. For example, we can access the upper-left 
diagonal neighbor's p value using LEFT UP p, or equiv
alently UP LEFT p. (We note that similar operators can be 
defined for other topologies including trees, hypercubes, shuf
fle graphs, etc.) 

More formally, we can define an algebra of operations on 
grids of values, with the usual arithmetic and relational 
operators applied point-by-point, and directionals representing 
translations. Where a fiuite grid is used, we leave border 
semantics up to the implementation. 

The important properties of directionals from the viewpoint 
of code optimization are their interactions with each other and 
with other operators. An optimizing compiler can make ex
tensive use of algebraic properties; the properties of direc
tionals are listed below. Syntactically, we have defined direc
tionals to be prefix operators of precedence equal to that of 
unary minus. Semantically, prefixing an expression with a 
directional in a SIMD architecture is a way of saying that the 
computation makes use of work done at another site. 

The pairs LEFT, RIGHT and UP, DOWN have equivalent 
and orthogonal semantics. In the following, the 
LEFT-RIGHT pair is used generically; a represents a pos-



sibly empty sequence of directionals. Along with the descrip
tion of mathematical properties, we describe computational 
motivation for their use. 

e LEFT expr. The value of expr is computed at 
the left neighbor and the result is transferred here. 

e LEFT ex = ex LEFT. The ordering of a se
quence of directionals is unimportant. Permuting 
a sequence of directionals simply changes the 
routing that a value takes to achieve a fixed rela
tive translation. (This is true on a grid, but not 
true of all directional algebras.) 

e Cancellation. When a LEFT and a RIGHT 
directional are present in a directional sequence 
ex, we can delete both because their net effect is a 
zero transfer. 

e Directionals and unary operators. Applying a 
non-directional unary operator unop to the result 
of an expression expr prefixed by a directional 
LEFT means that expr is evaluated on the left 
neighbor, the result transferred here and then the 
unop is applied to the result. For reasons that 
will become clear later we would prefer the 
neighbor to do all of the computation and trans
mit the result to us. The resulting value, unop 
expr and its location are the same: 

unop LEFT expr = LEFT unop expr 

eDirectionals and binary operators. When both of 
a binary operator's operands are prefixed by the 
same directional we are specifying that the two 
operand values be evaluated at another PE; the 
values moved here from that PE and then the 
binary operation is performed. We would prefer 
the neighbor who evaluated the operands to also 
carry out the operation and transfer that result to 
us, at a savings of one communication operation. 
The resulting value and its location are the same: 

(LEFT exprl) binop (LEFT expr2) 

= LEFT (exprl binop expr2) 

e LEFT constant. Applying a directional to a con
stant that has the same value in all PEs is a 
wasted operation and can simply be removed: 

LEFT constant = constant 

e LEFT global variable. The value of a global 
variable is either not used in the computation of 
any PE, or it is broadcast to all PEs. In the 
former instance applying a directional to the 
value is incorrect. Applying a directional to a 
value that is broadcast is equivalent to supplying 
a constant to all PEs and the directional is redun
dant: 

LEFT globalvariable = globalvariable 

A programmer would like to be able to freely mix con
stants, local and global variables together in a program. Part 
of the compiler's task can therefore be expected to be deter
mining the site of particular components of the code. Because 

85 

the controller in a SIMD machine is typically able to execute 
code concurrently with the PEs, accurately extracting the 
maximum amount of controller computation is an important 
optimization. With these considerations in mind we introduce 
a fifth directional, not available to the ·programmer, but used 
within the compiler: NOMOVE. A constant or global vari
able within the forest used by the compiler to represent the 
input program is internally prefixed with this new directional. 
The semantics are simple: the value of the expression ar
gument to a NOMOVE is computed only from constants and 
global variables, and hence may be computed in the controller 
at run-time (or possibly by constant-folding during 
compilation). The addition of the new directional has the 
further desirable attribute of reducing the special cases to be 
handled during compilation. The directional property list 
given above is augmented as follows: 

e LEFT NOMOVE expr. When a directional is 
applied to the result of an expression given by a 
NOMOVE we know that the directional is 
redundant and can be removed: 

LEFT NOMOVE expr = NOMOVE expr 

e NOMOVE behaves with unary and binary 
operators as a regular directional. 

e LEFT, NOMOVE and binary operators. When 
the two operands of a binary operator are values 
produced by a NOMOVE (operandI) and a 
regular directional (operand2) then the computa
tion described is: compute operand2 at another 
PE; move the value of operand2 as described by 
the directional; perform the binary operation on 
the global value. We can treat the binary 
operator with this mix of operands as the equiv
alent unary operator with one operand (operandI) 
fixed as a constant: 

(NOMOVE exprl) binop( LEFT expr2) 

= LEFT ( ( NOMOVE expr 1) binopexpr2) 

3. Experiments 
Two translators have been implemented as a preliminary 

assessment of directionals as a language feature and of the 
leverage gained by conventional compiler optimization 
techniques2 using the information provided by directionals. 

The first translator implements an extension of the e lan
guage3, SASS, for writing position independent code using 
directionals. The translator consists of a preprocessor to the 
standard e compiler, including interfacing to the standard 
eMU image routine libraries. Both PE local and global 
variables are supported. Using e as the target language 
permits straightforward mechanisms such as matrices to be 
used to represent processing state at each position in the 
image grid, and directionals are reduced to integer relative 
offsets for use in array index computations. As demonstrated 
by the SASS pseudo-median filtering program in Figure 3-1, 
grid algorithms are naturally expressed. 



The second translator is an optimizer for expression graphs 
including directionals, based on algebraic transformation and 
common subexpression elimination. Such an optimizer is 
useful as a machine-independent stage in a complete SIMD 
compiler. The optimizer receives a data-dependency graph of 
a single-assignment language program without looping. It 
performs optimizations on the forest, producing a modified 
graph that could be used for code generation. The program 
was written in the OPS5 language4, which allows straightfor
ward expression and modification of graph-theoretic transfor
mations. The remainder of this section describes the results 
achieved by the optimizer on some code fragments; the struc
ture of the optimizer itself is described in Section 4. 

; Three variables instantiated at every pixel position. 
local (pixel) 
local(co~edian) 

local (result) 

prog( 
colmedian 

result 

median( pixel, 
up (pixel) , 
down (pixel) 

median( colmedian, 
left (colmedian), 
right (colmedian) 

Figure 3·1: SASS example: 3x3 pseudo-median. 

We present four code fragments, first as written without 
regard to efficiency, and then as improved by the optimizer. 
For readability, we have omitted all NOMOVE directionals. 
In each case, the' optimized code is as good as that produced 
by an experienced SIMD programmer (ignoring machine
dependencies). While a complete assessment of this tech
nique will require examination of a wide range of programs, 
these results are representative of our testing of a dozen or so 
code fragments. 

1. Finding the maximum value in the linear five 
neighborhood of a point nominally involves six 
lateral communication steps. The transfor
mation demonstrated in Figure 1-1 saves two 
communication steps. 

2. Summing the 2 x 2 region of which the point is 
the lower righthand comer is entered as three 
additions and four communication operations 
(Figure 1-2). The compiler transformations 
reduced this to two additions and two com
munication steps. 

3. A linear filter applied as a convolution can be 
treated as the other examples to achieve some 
savings. In this example however the.optimizer 
is supplied with code for a 3 x 3 convolution 
filter that is two-way symmetric. As a result of 

.86 

the filter's symmetry, the computation uses only 
three global variables for filter coefficients. The 
operation specified has nine multiplications, 
eight additions and twelve communication steps 
(Figure 1-3). The optimizations produce an 
equivalent expression with three multiplications, 
eight additions (as before) and six communica
tion steps. 

4. As a final example, Figure 1-4 shows edge
finding code transliterated directly from a robot 
navigation system in use at eMU, along with an 
intermediate version following algebraic trans
formations and a final optimized version. The 
code shown uses a 3 x 3 window, where win
dows up to 49 x 49 are often used; the optimizer 
produces even better results on larger windows. 
For this example, additions and subtractions are 
reduced from 17 to 9; multiplications from 26 to 
8; and moves from 24 to 8. The single square 
root operation remains unchanged. Although 
the original code already makes use of sym
metry properties to improve performance over a 
completely naive implementation, the direc
tional formulation reveals the possibility for sig
nificant further improvement. 

Our experiments, together with the experience of Apply! 
programmers, indicate that the point-independent coding style 
is appropriate for many image processing applications. The 
use of directionals permits concise coding, and conventional 
compiler optimization techniques are able to exploit the infor
mation provided by directionals to produce high-quality 
SIMD code. Furthermore, the compilation complexity (as 
measured by the number of major decisions taken in the 
course of the compilation) for each of the examples we have 
listed was extremely low. 

Most of the expressive power of directionals is also 
provided by the relative coordinates used in Apply and earlier 
notations. Although we find directionals syntactically sweeter 
in many cases, their main advantage is in simplifying op
timization. Without explicit use of a directional-like algebra, 
equivalent optimization of expressions using relative coor
dinates would require the use of an algebra of general arith
metic expressions, a much harder task. 

4. A SIMD code optimizer 
The objective of the optimizer is to minimize the number of 

operations that will be performed by the system at runtime, 
where an operation is a PE instruction or an inter-cell com
munication step. No other considerations are taken into ac
courtt during the compilation; in particular, storage manage
ment is ignored. Section 5 contains some discussion of other 
issues. 

The optimizer implements a straightforward greedy algo
rithm that performs algebraic transformations till exhaustion, 
followed by a common subexpression elimination stage. Not 
only does theoptirnizer attempt to minimize runtime but (via 



the NOMOVE mechanism) it also flags expressions that may 
be computed at compile time or entirely within the global 
controller. The forest received by the optimizer is essentially 
a basic block. The optimizer (by the nature of its implemen
tation medium) is easily extended to make use of additional 
information on the operators and structures it must deal with. 
For example, point-independent code that reports a single 
value as a function of its neighborhood in many cases makes 
use of fully associative operators. The optimizer can be 
informed that an operator is associative by a one line state
ment supplied with the program. 

Common subexpression elimination (CSE), the penultimate 
stage of a compiler (and the last in which machine
independent optimizations usually occur), changes the 
representation of the program graph, not the logical structure. 
This permits us to divide the optimizer structure as shown 
without loss of potential optimizations. In SIMD programs, 
locating common sub expressions below different directionals 
is particularly useful, as in Figure 1-3. 

5. Machine dependencies 
In this section, we examine the mapping of a virtual grid 

program using directionals onto a vector of processors5, 6, 7. 

(Such a program, of course, can be implemented directly or 
via multiplexing on a machine of matching 
topology5, 8, 9, 10, 11.) 

One mapping of a virtual grid onto a vector is based on 
sweeping the vector over the image. Therefore, unlike the 
grid, algorithms written for a vector cannot assume that the 
entire input is available for immediate reference when the 
computation begins. Suppose the vector is considered to 
sweep down the image (i.e., the image is delivered to the 
vector one row at a time, beginning with the topmost row). 
The compiler can apply this schedule by introducing direc
tionals representing time: replace UP with PREY, and 
DOWN with NEXT. The NEXT directional carmot be im
plemented directly, of course, except by prescient hardware. 
This problem is solved by performing the following operation 
on the program graph, before the optimization phase: 

1. Select those nodes that represent assignments to 
variables, the roots of distinct expression trees. 

2. Find the largest number of NEXT directionals 
that occur between one of the nodes selected in 
the previous stage and a leaf, k. 

3. Insert k PREY directionals immediately above 
each leaf. 

The graph produced by the optimization will not contain 
any NEXT directionals. PREY expressions can be imple
mented using circular buffers local to each processing ele
ment. 

An alternative mapping can be applied in cases where data 
dependencies extend across an entire image row, as is typical 
of many "scan-line" algorithms. If the image is skewed so 

87 

that pixels in column i arrive one time unit before their row
mates in column i+ 1, scan-line processing is effectively 
pipelined over many lines, and full processor utilization can 
be achieved. Program graphs with this feature can be recog
nized automatically by examining dependency loops, and the 
mapping can be implemented by the following replacements 
(before optimization begins): 

• LEFT becomes PRE V LEFT. 

• RIGHT becomes NEXT RIGHT. 

• UP becomes PREY. 

• DOWN becomes NEXT. 

6. Conclusions 
We have presented an abstraction of communication in 

fine-grain SIMD machines, and have shown how to apply it to 
the optimization and scheduling of parallel programs. A 
simple algebraic substitution pass, followed by common sub
expression elimination, is highly effective in detecting and 
eliminating redundant computation and communication 
among groups of neighboring cells. The use of directional 
operators also simplifies the task of mapping "virtual" 
topologies onto real machines. 

We have not addressed some other issues of practical im
portance. One such issue is optimization between basic 
blocks; loop unrolling and functional embedding of condition
als will broaden the scope of what can be optimized. Another 
issue is the introduction of more precise measures of opera
tion cost; here, we expect a fairly simple formulation to give 
good results. A complete assessment of our approach awaits 
the construction of a complete translator from a high-level 
language to machine code. The construction of such a com
piler for the CMU Scan Line Array Processor6 is underway. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

L. G. C. Hamey, J. A. Webb and I.-C. Wu, "Low
level vision on Warp and the Apply programming 
model", in Parallel Computation and Computers for 
Artificial Intelligence, J. Kowalik, ed., Kluwer 
Academic Publishers, 1987. 

A. V. Aho and J. D. Ullman, Principles of Compiler 
Design, Addison-Wesley, 1977. 

B. W. Kernighan and D. M. Ritchie, The C program
ming language, Prentice-Hall, 1978. 

C. L. Forgy, "OPS5 User's Manual", Technical 
Report CMU-CS-81-135, Computer Science Depart
ment, Carnegie Mellon University, July 1981. 

M. J. B. Duff and T. J. Fountain, Cellular Logic Image 
Processing, Academic Press, 1986. 

A. L. Fisher and P. T. Highnam, "Real-Time Image 
Processing on Scan Line Array Processors", IEEE 
Computer Society Workshop on Computer Architec
tures for Pattern AlUllysis and Image Database 
Management, November 1985. 



7. S. S. Wilson, "The PIXIE-5000 - A systolic array 
processor", IEEE Computer Society Workshop on 
Computer Architectures for Pattern Analysis and Im
age Database Management, November 1985, pp. 
477-483. 

8. 

9. 

10. 

K. E. Batcher, "Design of a Massively Parallel 
Processor", IEEE Transactions on Computers, Vol. 
C-29, No.9, September 1981, pp. 836-840. 

P. M. Flanders, D. J. Hunt, S. F. Reddaway and 
D. Parkinson, "Efficient high speed computing with 
the Distributed Array Processor", in High speed com
puter and algorithm organization, D. J. Kuck, 
D. H. Lawrie and A. H. Sameh, eds., Academic Press, 
1977, pp. 113-127. 

W. D. Hillis, The Connection Machine, MIT Press, 
Cambridge, Massachussetts, 1985. 

11. R. M. Hord, The Illiac lV, the First Supercomputer, 
Computer Science Press, 1982. 

I. Optimization examples 
In order to save space the four directionals LEFT, RIGHT, 

DOWN and UP are shown in the examples as L, R, D and U, 
respectively. The interested reader may find it helpful to 
construct the data dependency graphs that space limitations 
oblige us to omit. 

Input: 

result .- MAX ( L L P 
MAX ( L P , 
MAX ( P 
MAX ( R P , 

R R P ) » ) 
Result: 

result .- MAX( P 
MAX( R MAX( P , R P ) 

L MAX( P , L p») 

Figure 1·1: Optimization example: (1) Max of linear five. 

Input: 

result .- p + L P + 
Up+LUp 

Result: 

temp 
result 

.- p + U p; 

.- temp + L temp; 

Figure 1·2: Optimization example: (2) 2x2 summation. 

88 

Input: 

global a,b,c; 
result .-

a * L U P + 
b * L P + 

a * L D P + 

Result: 

temp! .- p * ai 
temp2 .- p * bi 

b * U P + a * R U P + 
c * p + b * R P + 
b * D P + a * R D p; 

temp3 .- temp2 + U temp! + D temp!; 
result:= R temp3 + L temp3 

+ D temp2 + U temp2 
+ p * c; 

Figure 1·3: Optimization example: (3) 3x3 symm. filter. 

Input: 
gx := 

gl " gpr1 * U R P + gprO * U P - gpr1 " U L P 
+ gO * gpr1 * R P + gprO * p - gpr1 " L P ) 
+ gl " gpr1 " D R P + gprO " D P - gpr1 * D L P 

gy := 

gl * (. gpr1 * D L P + gprO * L P - gpr1 " U L P 
+ gO " ( gpr1 * D P + gprO * p - gpr1 " Up) 
+ gl .. ( gprl * D R P + gprO " R P - gpr1 " U R P 

mag := sqrt(gx " gx + gy " gy) 

Intermediate: 
gx := 

gl " U 

+ gO * 
+ gl " D 

gpr1 * R P + gprO " p - gpr1 * L P 
gpr1 * R P + gprO .. p - gpr1 * L P 
gpr1 " R P + gprO .. p - gpr1 * L P 

gy := 

gl " L 
+ gO .. 
+ gl * R 

gpr1 * D P + gprO " p - gpr1 " Up). 
gprl * D P + gprO " p - gprl .. Up) 
gprl " D P + gprO " p - gpr1 * Up) 

mag := sqrt( gx * gx + gy " gy ) 

Result: 
tl := gprl * p 
t2 := gprO * p 
t3 := t2 - L tl 
t4 := t3 + R t1 
t5 := gl " t4 
t6 := gO " t4 
t7 := t2 - U t1 
t8 := t7 + D tl 
t9 := gl .. t8 
t10 := gO .. t8 

gx := D t5 + t6 + U t5 
gy := L t9 + t10 + R t9 

mag := sqrt(gx " gx + gy " gy) 

Figure 1·4: Optimization example: (4) 3x3 edge finder. 



THE DESIGN AND DEVELOPMENT OF A BASIS, aL, 
FOR FORMAL FUNCTIONAL PROGRAMMING LANGUAGES 

WITH ARRAYS BASED ON 
A Mathematics of Arrays© 

Lenore M. Restifo Mullin 
Ashok Krishnamurthi and Deepa Iyengar 

CASE Center 
The New York State Center for Advanced Technology 

in Computer Applications and Software Engineering 
and 

Northeast Parallel Architectures Center 
Syracuse University 

Syracuse, New York 13244 

Backus describes a formal functional programming system as a 
functional programming language with an associated algebra. We 
present in this report the design and development of the first (outer 
product) in a class (partitioning, structuring and orienting) of opera
tions on arrays based on an n-dimensional indexing function 'V. 
These operations are the basis, Clr., for formal functional program
ming languages with arrays. These operations are described using A 
Mathematics of Arrays which is the algebra(a) of programs for a for
mal functional programming language with arrays. A Mathematics of 
Arrays axiomatically describes all of its arrays operations in terms of 
their dimensions. When we describe an arrays operations in terms of 
their structure we can exploit parallelism naturally, thus aL describes 
and verifies the execution of concurrent operations for parallel archi
tectures. This report describes designs and implementations for 
Parallel Architectures in general. In particular we address the formal 
design and implementation of outer-product on an Alliant FX\8 and 
Encore MuItimax. A Mathematics of Arrays is based on Iverson's 
array operations. Iverson's array operations are based(b) on 
Sylvester's Constructive Theory of Partitions and Cayley's Theory of 
Linear Transformations. Sylvester and Cayley's collaborative work 
complemented the classical approach to differential and projective 
geometry developed by Riemann et al during the 19th century. We 
use A Mathematics of Arrays to govern the design and implementa
tion of all array operations as well as partitioning algorithms at both 
the coarse and fine grained level. We are thus using our theory to 
govern the design and development of a scheduler as well as an 
operating system for parallel languages on parallel architectures. 

Preface 

The purpose of this report is to document the development of 
aL, a basis for formal functional programming languages with arrays, 
based on A Mathematics of Arrays. A Mathematics of Arrays 
axiomatizes a functional indexing enhanced subset of Iverson's[9] 
structuring and partitioning operations. Iverson's work(b) is based on 
J. Sylvester's Constructive Theory of Partitions[19] and A. Cayley's 
Theory of Linear Transformatioins[4]. Cayley and Sylvester's 
development of algebraic geometry complemented the classical work 
in differential and projective geometry at a time when Riemann 
lived. Cayley first gave the definition of an abstract group. Sylvester 
first introduced the idea of A Universal Algebra based on array 
operations which was referenced and furthered by Whitehead at the 
end of the 19th century. It is A Universal Algebra that will become 
the Algebra of Programs for aL, the basis for formal functional pro
grams with arrays. A Mathematics of Arrays is the dissertation topic 
of the first author (School of Computer Science - Syracuse Univer
sity). 

© Dissertation Research - L.M.R. Mullin - School of CIS 
Syracuse University 

(a) Sylvester"s description of a Universal Algebra based on arrays 
was later referenced by Whitehead in A Treatise on Universal Algebra. 

(h) conversations with K.E. Iverson '- Toronto, Canada - 1987 

89 

We view the axioms and theorems in A Mathematics of Arrays 
relating to structure as an axiomatic basis for an n-dimensional 
geometry with symmetries. The motion of these structures over time 
is based on array expressions containing structuring, partitioning, and 
orienting operations. A Mathematics of Arrays axiomatically 
describes all partitioning operations and linear transformations on 
arrays in terms of their shape and the n-dimensional indexing func
tion 'V. An axiomatic definition provides a basis for symbolic reason
ing about arrays. Thus, we can use the axioms and theorems in A 
Mathematics of Arrays as rewrite rules in mechanical theorem 
provers based on resolution with unification and equality[6] to verify 
array expressions. A Mathematics of Arrays describes operations and 
combining forms on arrays. Combining forms can allow high level 
programs to build still higher level ones in a style not possible in 
conventionallanguages[3]. An axiomatic definition of arrays provides 
the basis for reasoning about arrays in general and may be used to 
reason about arrays in any formal functional programming language. 
Thus, A Mathematics of Arrays is an algebra of programs for formal 
functional languages with arrays. We call this basis 0.£0 All array 
operations as well as processor and vector register allocation(coarse 
and fine grained partitioning) will be executed in parallel and are 
direct implementations of the theory. Symbolic computation and 
numeric computation go hand and hand, thus we can reason both 
symbolically and numerically about array problems. 
Introduction 

We showed in CASE Report No. 8712[13] that although the 
structuring operations are a subset of Iverson's APL language[9], 
their design and implementation are different than the same opera
tions in A Mathematics of Arrays. If the same APL operations were 
parallelized they would still not meet the theoretical designs used in 
A Mathematics of Arrays because each structuring operation in A 
Mathematics of Arrays is described using an array shape in conjunc
tion with 'V. We will show in future reports how the structuring, par
titioning, and orienting operations are variations of one higher level 
operation. 

We have eliminated all but the structuring, partitioning and 
orienting operations from the C written APL\I1. That means, only 
expression evaluation is possible from the skeleton from which aL is 
being developed. We assume all function definition, assignment and 
all functional language environments are handled by A definitions. 
Eventually, aL can be included in any Programming language 
environment. All of our designs as well as their implementations will 
be based on A Mathematics of Arrays. We will show how we are 
developing a scheduler and thus an operating system based on A 
Mathematics of Arrays. Non-functional languages, including all 
dialects of APL, as well as procedural languages such as Ada, For
tran, PL I, Pascal, etc., can include our compiled operations and thus 
benefit from the speed-ups. 

Some of, our goals include, describing all of the structuring 
operations in terms of one high level operation and developing 
simplification of array expressions as theorems in A Mathematics of 
Arrays which could be used in a compiler for aL. We plan to 
develop an environment which can handle array operations on any 



parallel architecture, both coarse and fine grained. Our present 
research is on an Alliant FX'8 and Encore Multimax. 

We have chosen C as the implementation language in a Unix 
environment because of its sound theoretical basis(·). 

Notation: e - denotes an arbitary array - when a superscript is 
omitted e refers to arrays of all ranks. 

en - denotes an arbitrary n-dimensional array - the rank 
of en is the one element vector containing the number of 
dimensions in eft i.e. pp!;n is <11>. 

p!;n _ denotes the shape of an array. Shape is always a 
vector. Each component of a shape vector is the length 
of each of e'''s n dimensions. Thus p<n>, the shape of 
the rank vector, is <1>, the one element vector contain
ing 1. 

,en - linearizes, vectorizes, ravels an array in row major 
order. 

Outer Product - A Structuring Operation 

We want to prove that array operations based on A Mathemat
ics of, Arrays are faster and more space efficient than any array 
operations or concurrency operations provided by Encore or Alliant 
and that our designs are optimal and general for both architectures 
Our experiments focus on the execution of an outerproduct with tw~ 
array operands. In all of our experiments we monitor the perfor
mance of an outerproduct. with 400 component operands and a 
160000 component result(for integer and floating point operations). 

Let Lop+ denote outer product as an infix operator with the 
scalar operation plus. Therefore, 

el Lop+ e, 

is the ~peration we want to perform. Ideally we want to partition this 
operan~n over p,el processors to obtain maximum medium-grained 
?aralIehsm ~d do p,e, scalar operations with each component of ,el 
1D vector reglSters(or array processors) that are p,e, long. We want 
to perform the operation such that each partial result is put into 
shared memory based on which unit of work was nerformed. 

Let 1 denote a number generating function such that tn gen
erates the numbers 0 to n-1, 

For all i e tp,el 
el Lop+ e, 

is equivalent to 
(<i> 1jI,eo + .e, 

where the resultant shape is 
(P!;u,(pe,) 

The Architectures Targeted 

We targeted the Alliant FX/8 and Encore Multimax for experi
ments. The! supported UMAX and CONCENTRIX operating sys
tems respectively. 

~e focus on medium-grained parallelism because our parallel 
~SS1Dg takes place within a single application program. The Mul
timax and Alliant both provide Software and hardware support for 
medium grained parallel!sm.We use system calls. fork. pfork. pjoin. 
and concurrency InstruCtiOns to create multiple threads of control. 

Arrays: The Goal 

As previously mentioned. we ideally want to distribute p e 
units of. work which. we will denote by <W>. to p.el processo~~ 
Each unit of work. Ie lW. executes a portion of the outer product 
based on. i. per segments of the result are computed asynchronously 

(c) Discussed by J. C. Browne in a talk entiJ.led 
A c.:n~ Approach 10 Parallel Programming 2 December 1987 at Synoeuse 
Umvemty. 

90 

in parallel. In all of our experiments. W = 400. We will dttterentIate 
units of work from processes so as not to imply that we are dealing 
with W UNIX processes.We used A Mathematics of Arrays to govern 
the design of this scheduling algorithm. We will subsequently show 
how our implementation of this scheduler is described by <W> P tR 
where R represents the number of real processors. 

First. we'll describe our initial attempts at implementing 
<W>ptR. We'll then show how that implementation did not meet 
it's specification, <W>p tR. Finally. we will show through an infor
mal proof. that our implementation is equivalent to the design and 
conjecture about how a class of loops is equivalent to <W>p tR. 

We found that we received the best speed ups when"" we 
scheduled the 400 units of work over 18 real processors as opposed 
to letting the operating system schedule it. We refer to the system 
imposed local limit for processes as the number of virtual processors 
we could FORK to. Our method of partitioning can be viewed as 
building a large parallel aysynchronous software pipeline. We break 
the work up over the 18 real processors and sequentially run groups 
of work over them. 

Our first set of experiments. illustrated in Figures 1a and lb. 
proves that this method is the best way to partition work. W. over R 
real processors. That is to say. " 

Scheduling of Work = <W> P tR 

We will now elaborate on this definition and show how it is 
implemented in C. We will also show how our implementation is 
based on A Mathematics of Arrays by giving an informal proof. 

Partitioning and Scheduling of Array Operations 

For all i e lp.el. each unit of work. «i> 1jI .el) + .e, • updates 
a portion of the result of the outer product. «i x p.e,) + j> 1jI .e ..... ult. 

for all j e lp.e... We denote each of these units of work as Wi. ie lW. 

for all ie lp.l;l and j e lp.e, 
Wi is 

«i xp.e,) + j>1jI .eresul' f-~ (<i> 1jI .eU + <j> 1jI.er 
As noted previously. we partition the work. W. over R real proces
sors in the following way: 

Scheduling of Work = <W>p tR 

A small example illustrating our designs follows: 

Example: 

Suppose el = <4 5> P 120. e, is <3 4> p 112. and R = 8. There
fore p.el is <20> and W is 20. Based on our definition for outer pro
duct, 

'"'0 W19 

«<0>",<0 I ... 19» + <0 I ... 11» •..• «19>'1'<0 I ... 19» + <0 1 •.. II> 

with a resultant shape of 
(<4 5>,<3 4». 

Now. to schedule the 20 units of work over 8 processors we want to 
pipeline the work as follows: 

Table I - Processors 

[0] [I] [2] [3] [4] [5] [6] [7] 

0 1 2 3 4 5 6 7 
8 9 1Q 11 12 13 14 15 

16 17 18 19 

The above table, illustrates that we want processor 0 to handle" 
work units O. 8. and 16; processor 1 to handle units 1. 9. and 17; '" ; 



and processor 7 IIDits 7 and 15. . . 
We want to do this because <w>p tR is <2O>p ,8> which IS 

<0 1234567012345670123>. We order the processors, R, from 0 to 
R-I, based on the firing order of forks, and associ~ each processor 

her with it's locations in the vector above which has ~O com-
nurn . 8 d 16 d 7's are In loca-ponents. O's are in locatlons 0, , an , ... , an 
tions 7 and 15. We can now relate this to the processor table above. 
That is Processor 0 runs work units 0, 8, and 16, ... , and Processor 
7 runs 'work units 7 and 15. This may be more clearly IIDderstood 
by viewing the following: 
Let the p.'s refer to which processor we want to use and the w/s, the 

J 

IIDit of work we want associated with each Pi' 

for j£ ,8 and i£ ,20 

prOl23456701 2345 670123 

wF 0 I 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 

This means that we are assigning work units 0 through 19 to proces
sors 0 through 7 which get cyclically used until all 20 units of work 
are assigned. 

During implementation, we wanted to assign work to Proces
sors in groups. We did not want to assign Wo to Po followed by WI to 
PI' etc. This implied forking of work IIDits Wo to W, to processors Po to 
1'7 then returning to Wg to repeat the cycle IIDtiJ all work is done. 
Pfork on the Encore Multimax had characteristics similar to this 
which is why it proved to be so slow compared to our pipelined 
approach. The extra overhead caused by w joins was excessive. We 
realized that to be efficient, we needed to build a large pipeline for 
the work to be processed amongst the processors. Thus we had to 
determine how to send groups of work to processors in a way that 
preserved our design. 

We first tried to implement <w>p IR directly via the formal 
design: 

for all i£ ,w 
<w>p IR 
(--) 

«I>modulo R)'I' IR 
with a resultant shape of <W> 

This design dictated w divides which we wanted to avoid. We there
fore, decided to do an implementation which first performed, 
W modulo R, to determine if W was evenly divisible by R. If it was 
evenly divisible, we equally divided the work over the processors. If 
it was not evenly divisible, we performed the leftover work on a sin
gle processor. The remaining work was divided evenly amongst the 
R processors. 

Continuing with our example, we will show how this technique 
assigned work to processors. Since 20 modulo 8 is 4, we assign Wo 

through W3 to a processor. With this, we know that 16 IIDits of work, 
w. through W19 can be evenly divided amongst the 8 processors. We 
therefore assigned w. and Ws to Po, ... , and Wig and W19 to 1'7. Although 
we eliminated the W divides, which the theory dictated, we intro
duced a dependency on one more· processor to run the remainder of 
work after we determined if the work was evenly divisible by the 
processors. 

We then realized that what we wanted to do was assign work 
to processors in the following way: 

pr ° ° 0 1 1 1 2 2 2 3 3 3 4 4 5 5 6 6 7 7 
w.= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 

Given the firing order 0 to 19, we had to assign an ordering to the 
Wi'S so that the correct segment of the result is updated based on the 
theory. If we order the Wi in the following way, we can show that 
our design is theoretically correct Using the p/s and w/s above and 
an ordering which relates the w/s to Table 1 above, denoted by ~Oi' 

we have the following: 

91 

Pj= 0 0 0 1 1 1 2 2 2 3 3 3 4 4 5 5 6 6 7 7 

Wi = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

~o.= 0 8 16 1 9 17 2 10 18 3 11 19 4 12 5 13 6 14 7 15 

So if we associate the w/s with its adjacent ~i' the ordering above, 

we can see that the correct location in the result will get updated, 
thus conforming to our theory. We define a unary function 0 such 
that O(~I) obtains the locations of ~l'S ordered components. Therefore, 
using our example, if we order the components in <w>p IR, 

O(<2O>p 18) .... -><0 8 16 1 9 17 2 10 183 11 194 125 13 6 147 15> 

ordering this we get 

O(O(<2O>p 18»+--><03 6 9 12 14 16 18 1 47 10 13 15 17 19 25 8 11> 

If we now use the result of this last ordering to index the vector 
associating processors to work, the p/s, which we will denote by I;/:. 
we see that: 

i;b+--><OOOII122233344556677> 

**Note that the result of <2O>p ,8 indexed by O( <2O>p 18) is <2O>p 18 

sorted and that is ~h. ** 

Now, we index ~b by O(O(<2O>p 18» and get 

<01234567012345670123> 

which is 
<2O>p ,8 

That is, if we order <2O>p ,8 where 

<2O>p 18 .... -><0 1 2 3 4 5 67012345670123> 

we get 

O(<2O>p ,8)+--><08 1619 17210 183 11 194125 136147 IS> 

which when used to index <2O>p ,8 is 

<00011122233344556677> 

which is ~ above, the sorted vector we want, and is the association 
we want to make. We can therefore say formally that <w>p IR 
indexed by its ordering is equivalent to the program shell illustrated 
in Conjecture 0 because: 

Given 0, we denote <w>p IR by 1;),W>p\l/: 

Proposition 0 

**Noting that 'I' is an associative operation** 

We now conjecture given that the above Proposition is true: 

Conjecture 0 

For all non-negative integers w and r 

Loops with the following characteristics are equivalent to 
<w>ptr 

while(k=O&k<r){ 
while ( i = k & i < w){ 

doi=i+r; 
) 

do (k = k+ 1); 
) 

Note also that Proposition 0 describes the permutations that ,W 

goes through to return to 1W, all the valid indices of W p IR. An initial 
lemma in our theory states that 'pl;l indexing 1;1 is an identity for ~I. 

The outer loop in Conjecture 0 describes <w>p tr sorted, while 



the inner loop describes how to index <w>p \r sorted in a way that 
would result in <w>p \r. 

Experiments Conducted 

We want to prove that partitioning of arrays and scheduling of 
work to processors using A Mathematics of Arrays is faster than any 
concurrency operations supported by the Encore. Multimax and the 
Alliant FX/8. 

(1) 

(2) 

(3) 

We conducted the following experiments: 
_ equals with equals - forking with scalar operations (integer 
and floating point) and shared memory on the Alliant and 
Encore(see Figure 2,3,4). 

(a) 4,5 MIP CE's on the Alliant compared to 

(b) 10,2 MIP CE's on the Encore 

- best with best - (integer and floating point) 

(c) - complex of 4, 5 MIP attached/detached CE's running 
Fortran concurrent outer and vector inner(see Figure 2,3) 
compared with 

(d) Encore's 18,2 MIP processors running C and pfork 

(see Figure 4) compared with 

(e) partitioning based on A Mathematics of Arrays 

(e.l) - forking to 18 processors on Encore using scalar 
operations (see Figure 4) and 

(e.2) - forking to 4 attached/detached CE's on the Alli
ant with vector operations using Alliant' s Vector 
Registers(vector inner). (see Figure 2,3) 

_ various configurations on the Alliant compared with what 
Alliant believes to be the best; Fortran running on a complex 
of 4 CEs using concurrent outer and vector inner support. 
Control of partitioning for g and h below is based on A 
Mathematics of Arrays while k and I are controlled by Con
currency Instructions in Concentrix C (integer and floating 

point). 

(g) - fork to 4 attached/detached CE's - scalar inner 
(FOSI).(see Figure 2,3). 

(h) - fork to 4 attached/detached CE's - vector inner 
(FOVI).(see Figure 2,3). 

(k) - Concurrent outer and scalar inner running on 4 
attached/detached CEs (COS I). (see Figure 2,3). 

(I) - Concurrent outer and vector inner running on 4 
attached/detached CEs. (COVI). (see Figure 2,3). 

Experimental Findings 

Performance Analysis 
We found in both sets of initial experiments, that the 

Encore Multimax performed better when we did not use all of its 
real processors. The best performance was observed when we forked 
just once. As we increased the number of forks from 1 to 18 we 
observed a decrease in performance by a factor of '" 30. From 18 to 
50 forks, a further degradation occured but not to such an extent as 
from I to 18 forks on 18 dedicated processors. The ideal speed-up 
should have been 18 forks performed on 18 real dedicated proces
sors. 

In previous experiments[13] we noticed that the sequential 
code running in a multi-processor environment achieved a speed-up 
of '" n where n was the number of real processors as compared to the 
same code running on a uniprocessor. The sequential code took '" 12 
seconds vs 1201' seconds when we forked once and 36571' seconds 
when we forked n=18 times using designs based on A Mathematics 
of Arrays. The experiments detailed in this report show that redesign
ing the sequential outerproduct algorithm in APL\lI[lO] in terms of 
partitioning operations based on A Mathematics of Arrays achieves 

92 

speed-ups in excess of 100 times as compared to running the sequen
tial code on 18 real processors. 

UMAX appears to incur a considerable amount of overhead in 
managing(scheduling) it's processors. This is also obvious in Figure 
3 where we compare pfork to Mathematics of Arrays scheduling. 

From Figures 2,3 and 4, we see that scheduling algorithms 
using A Mathematics of Arrays run faster on the Alliant when we 
compare Alliant's 4 - 5 MIP processors to Encore's 10 - 2 MIP pro
cessors. The Alliant took a fraction of a microsecond while the 
Encore took approximately 1.4 milliseconds for the same operations. 

On both machines, integer and floating point operations took 
about the same time for an outerproduct with 400 components in 
each of its operands. In fact, using vector registers instead of scalar 
registers did not make any difference except when we used Alliant's 
concurrency operations in C, (concurrent outer scalar inner(COSI) 
and concurrent outer vector inner(COVI) see Figure 2,3). On the 
Encore, when we forked 18 times, we not only noticed a 
degradation(see Figure 4) in performance, we also noticed that float
in~ point operations ran slightly slower than scalar operations. 

On the Alliant, running the CE's attached significantly effected 
the performance of COSI and COVI and slightly effected the perfor
mance of compiled Fortran(see Figure 3). We note that the slight 
speed-up we observed in the Fortan-only test versus Fortan-calling-C, 
is due to the overhead incurred by program linkages(see Figure 3). 
On the Alliant, scheduling based on A Mathematics of Arrays out
performed all forms of concurrency operations in either detached or 
attached CE mode including compiled Fortan optimized for con
currency and vectorization(see Figure 2,3). 

Similary, . our scheduling of array operations outperformed all 
concurrency instructions on the Encore. Pfork was the slowest con
currency instruction used(see Figure 4). 

Conclusions and Future Research 

Our experiments indicate that array operations and processor 
scheduling designs based on A Mathematics of Arrays are better than 
any concurrency operations used on the Alliant or Encore. 

We also showed that our scheduling algorithm was true 
because of Proposition O. We showed how a specific variety of loop
ing program is equivalent to <W>p tR. This was formalized in Conjec
ture 0 and based on Proposition O. 

Thus, our designs are optimal because: 

(I) - They are the fastest 

(2) - They are based on A Mathematics of Arrays and are thus 
theoretically sound. 

(3) - They use a basic "C" and Unix instruction fork, and shared 
memory allocation. This simplicity makes our designs portable 
from one Parallel architecture to another. Our designs eliminate 
the dependencies imposed by specific Parallel architectures. 

Our next report will show how the design and implementation 
of inner product follows from the design and scheduling of the outer 
product operation. Our next report will indicate why the class of 
structuring, partitioning, and orienting operations relate to one 
another. We also hope to run our experiments on other parallel archi
tectures. 

References 

[1] Abrams, P. S., An APL Machine ,TR SLAC-1l4 UC-
32(MISC), Stanford Linear Accelerator Center, February 
(1970). 

_____ , "What's Wrong with APL", In APL 75 ,pp 
1-8, ACM, June, (1975). 

[2] Alliant FXlSeries Product Summary, Alliant Computer Systems 
Corp., Littleton, Mass., (1987). 

[3] Backus, J., "Can Programming be Liberated from the von Neu
mann Style? A functional Style and Its Algebra of Programs", 
CACM ,V21, N8, pp613-641, (1978). 



[4] Cayley. A .• The TheolY of Linear Transformations. An Ele
mentary Treatise on Elliptic Functions .ppl64-178. First Edi
tion(1876) Cambridge. Second Edition(1895) George Bell and 
Sons. and Dover Publications. New York (1961). 

[5] Cvetanovic, Z .• "The Effects of Problem Partitioning. Alloca
tion, and Granularity on the Performance of Multiple-Processor 
Systems", IEEE Transactions on Computers, C-36. 4, pp 421-
432, April (1987). 

[6] Digricoli. V. J .• and Harrison. M. C .• "Equality-Based Binary 
Resolution". JACM .V33. N2. pp253-289. (1986). 

[7] Encore Computer Corp .• Multimax Technical Summary. Marl
boro. MA. (1987). 
_________ • UMAX 4.2 Programmer's Reference 
Manual. 

[8] Guibas. L. J .• and Wyatt, D. K .• "Compilation and Delayed 
Evaluation in APL n. In Conference Record of the Fifth Annual 
ACM Symposium on the Principles of Programming 
Languages, pp 1-8. ACM. January (1978). 

[9] Iverson, K. E .• A Programming Language ,John Wiley and 
Sons, New York. (1962). 

[10] Lathwell, R. H.. A Formal Description of APL. November 
1971. IBM Technical Report No. 320-3008. 

______ • "System Formulation and APL Shared 
Variables". IBM Journal of Research and Development. V17. 
N4. (1973). 

[11] Miller. T .• Tentative Compilation - A Design for an APL 

[12] 

[13] 

[14] 

[15] 

. Compiler. tR No. 133. Department of Computer SCience. Vale 
University. May (1978) and APL Quote Quad 9. pp 88-95. 
June (1979). 

Minter, C .• A Machine Design for the Efficient 
Implementation of API. .TR No. 81. Department of Computer 

Science. Yale University, May (1976). 

Mullin, L. R., Stormon, C. D.. and Krempel,· H. B.. Initial 
Experiments in Parallelizing APL. CASE Report No. 8712. 
(1987). 

Multitasking User Guide (SN0222). Cray Research Inc., Men
dota Heights, Minnesota. 

Perlis. A. J .• Steps toward an APL Compiler - Updated. TR 
No. 24. Department of Computer Science, Yale University. 
March (1975). 

[16] Peterson and Silberschatz. O}l!lrating Systems Concepts. 
Addison Wesley (1985). 

[17] Reynolds. J. C.. "Reasoning About Arrays". CACM .V22. 
pp290-298, (1979). 

[18] Robinson. J. A .• "A Machine-Oriented Logic Based on the 
Resolution Principle". JACM. V12. pp23-41. (1965). 

[19] Sylvester. J. J .• "On the Theory of Partitions", ComPtes 
Rendus ,XCVI. pp674-675. (1883) reprinted in Mathematical 

Papers. 5 .• p92. Chelsea Publishing. New York. (1973). 
-:-:--:-____ • "Lectures on the Principles of Universal 
Algebra", American Journal of Mathematics ,VI. pp 270-286. 
(1884) reprinted in Mathematical Papers, 31.. pp208-224. 

______ • "A Constructive Theory of Partitions ...... 
American Journal of Mathematics .V. pp 251-230. (1882); VI, 
pp 334-336. (1884) reprinted in Mathematical Papers. 1. ppl-
83. 

[20] Tu. H., FAC: A Functional Array Calculator and it's 
Applicaton to APL and Functional Programming_ PhD Disser

tation. Yale University. New Haven. Conn .• (1985). 

[21] Tu. H .• and Perlis. A.J .• "FAC: A Functional APL Language". 
IEEE Software January (1986). 

[22] Whitehead.A. N., A Treatise on Universal Algebra with 
Applications. Hafner Publishing. New York, (1960). 

93 

AU.lA.''iT'S FX/K 
Detached M()~Je 

F . Floating Pomt 

1-lnle~'Cr 

II~mMlcroseconds 

."'IOA . ~lalhcmauc~ Of ArrJ)'s 

FO'I 

I F 
MOA 

FORTRA~ COVI 

FOYI 

I F I F 

Figure 2 

AI.I.1ASTS FX/M 

Anach('d Mode 
F . Floallnl:, POInt 
I . tnu~gcr 

t I~ In Mlcrn~econds 

I F 

MO,\ . \lalhemallc~ Of Arrays 

FOSI 

I F 
MOA 

FOVI 

I F 

FORTRAN COVI 

I F I F 

Figure 3 

COSI 

.:~ 

"' 
~ 

! , 
/ 
" 

I F 

COSI 

I F 

PFORK 18 PFORK 10 

E!'IICQRE'S MULTIMAX 
F - Rooting Point 

I-Integer 
tis in Microseconds 

MOA - Mathematics Of Amys 

7.0 

6.5 

•. 0 

5,~ 

:'it) 

4.; 

10, '" '.0 10 

3.' 

J.O 

2.' 

2.0 

I.' 
1.0 

0.' 

0.0 

7.0 

6.5 

6.0 

,., 
'.0 

4.5 

10, "I 
4.0 JO 

3.' 

10 

2.' 

2.0 

1.5 

1.0 

0.5 

0.0 

7.5 

7.0 

65 

6.0 

5.5 

5.0 

4.5 

log (I) 

4.0 10 

35 

3.0 

2.5 

2.0 

I., 

1.0 

0.5 



IVY: A Shared Virtual Memory System 
for Parallel Computing 

Kai Li 
Department of Computer Science 

Princeton University 
Princeton, NJ 08544 

Abstract 

A shared virtual memory system can provide a virtual address 
space shared among all processors in a loosely-coupled multipro
cessor. This paper shows that such a memory can solve many 
problems in message passing systems on loosely-coupled multi
processors, and describes the design and implementation of a 
prototype shared virtual memory system, IVY, implemented on 
an Apollo ring network. The experiments on the prototype sys
tem show that parallel programs using a shared virtual memory 
yield almost linear and occasionally super-linear speedups and 
that it is practical to implement such a system on existing ar
chitectures. 

Introduction 

Much of the work on distributed computing has focused on mes
sage passing models such as Hoare's communicating sequential 
processes [16] and Actor [15], perhaps because message passing 
matches the basic communication mechanism in loosely-coupled 
multiprocessors. Many people have studied shared memory mod
els for tightly coupled multiprocessors, but few have studied that 
model for loosely-coupled multiprocessors. Because not enough 
work has been done, it has not been clear whether a message 
passing model is 'better than a shared memory model for parallel 
computation on loosely-coupled multiprocessors. It has also not 
been clear whether it is possible to design an efficient system to 
support the shared memory model on loosely-coupled multipro
cessors. 

Systems based on message passing suffer mainly in two as
pects: passing complex data structures and process migrations. 
This paper shows that a solution to these problems is to build 
a shared virtual memory. The shared virtual memory provides 
a virtual address space that is shared among all processors in a 
loosely-coupled distributed-memory multiprocessor system. Ap
plication programs can use the shared virtual memory just as 
they do a traditional virtual memory, except that processes can 
run on different processors in parallel. The shared virtual mem
ory keeps its memory pages coherent all the time and data can 
naturally migmte between processors on demand [23,22]. Fur
thermore, just as a conventional virtual memory swaps processes, 
so does the shared virtual memory. Thus the shared virtual 
memory provides a natural and efficient form of process migra
tion between processors in a distributed system. This is quite 
a gain because process migration is usually very difficult to im
plement. In effect, process migration subsumes remote procedure 
calls. 

A prototype shared virtual memory has been implemented on 
a network of Apollo workstations. A number of practical par
allel program examples are chosen to run on the prototype sys-

94 

tem. The experimental results show that parallel programs using 
such a not well-tuned, user-mode shared virtual memory system 
yield almost linear and occasionally super-linear speedups over 
a uniprocessor. The success of this implementation suggests a 
new operating mode for loosely-coupled multiprocessor architec
tures in which parallel programs can exploit the total processing 
power and memory capabilities in a far more unified way than 
the traditional "message-passing" approach. 

Shared Memory vs. Message Passing 

Message passing in concurrent systems is characterized by mul
tiple threads of control. A pure message passing system usually 
does not have any shared global data; instead processes access 
ports or mailboxes to achieve interprocess communication. Par
allel programs need to use primitives such as send and receive 
explicitly through channels, ports, or mailboxes. Although pro
grammers can use these primitives to synchronize parallel pro
grams, they need to be conscious of data movement between 
processes at all times. 

Remote procedure call is, a mechanism for language-level 
transfer of control and data between programs in disjoint address 
spaces whose primary communication medium is a narrow chan
nel [24]. A remote procedure call mechanism allows programmers 
to worry less about data movement and provides clients with a 
fairly transparent interface so that remote procedure calls look 
much like local procedure calls. However, the transparency ofre
mote procedure calls is limited because a remote procedure call 
mechanism actually simulates the execution in the same address 
space using completely different address spaces. 

Since both message passing and remote procedure calls deal 
with multiple address spaces, they ;both have difficulties with 
passing complex data structures. In fact, the difficulty of pass
ing complex data structures is the main drawback of message 
passing and remote procedure calls for parallel programming. 
For example, passing a list data structure by sending messages 
will introduce considerable complexity in programming and sub
stantial overhead in both space and time [14]. In a remote pro
cedure call, there is no good way to pass a pointer argument 
[24]. This problem becomes more severe when the data struc
tures are fundamental to a language being implemented on a 
parallel machine. 

In contrast, a shared memory multiprocessor has no difficulty 
passing pointers because processors can share a single address 
space. Therefore, there is no need to pack and unpack the data 
structures containing pointers in messages. Passing a list data 
structure simply requires passing a pointer. 

Another problem with message passing systems is the diffi
culty of process migration because there are multiple address 



spaces. When migrating a process, all the operating system 
resources allocated by the process have to be moved together; 
this is expensive [25]. In the case where a process has a few 
opened ports and files, the pending messages and file access con
trol blocks need to be transferred. Furthermore, the code and 
the stack of the process have to be moved because there is no 
easy way to translate the contents of different address spaces 
efficiently on the fly. 

In a shared memory multiprocessor system, a process migra
tion only requires moving a process from the ready queue on the 
source processor to the ready queue on the destination processor 
because process control block, code, and stack are all in the same 
address space. 

Some systems use a set of primitives to access a global space 
that is used to store shared data structures of processes [8,5]. 
Although programming the global space does not require data 
movement as much as message passing, programmers still have 
to explicitly use the primitives. In a primitive global-space sys
tem, passing complex data structures and process migration are 
as difficult as in message passing systems, since accessing the 
data structures and process migration are by value or by name. 
Furthermore, using primitives may greatly reduce the efficiency 
of parallel programs because a primitive operation requires at 
least one procedure call, which costs much more than a simple 
memory reference. 

Both data structure passing and process migration are im
portant for implementing parallel programming languages. Al
though some implementations of parallel programming languages 
are based on a message passing facility, implementing exist
ing parallel languages on a shared memory multiprocessor can 
greatly simplify the implementations. In summary, shared mem
ory is highly desirable for parallel computation. 

Shared Virtual Memory 

A shared virtual memory is a single address space shared by a 
number of processors (Figure 1). Any processor can access any 
memory location in the address space directly. Memory mapping 
managers implement the mapping between local memories and 
the shared virtual memory address space. Other than mapping, 
their chief responsibility is to keep the address space coherent at 
all times; that is, the value returned by a read operation is always 
the same as the value written by the most recent write operation 
to the same address. In short, a shared virtual memory provides 
clients with the same interface as' the shared memory address 
space on a shared-memory multiprocessor. 

A shared virtual memory address space is partitioned into 
pages. Pages that are marked read-only can have copies resid
ing in the physical memories of many processors at the same 
time. But a page marked write can reside in only one proces
sor's physical memory. The memory mapping manager views 
its local memory as a large cache of the shared virtual mem
ory address space for its associated processor. Like traditional 
virtual memory [11], the shared memory itself exists only virtu
ally. A memory reference will cause a page fault when the page 
containing the memory location is not in a processor's current 
physical memory. When this happens, the memory mapping 
manager retrieves the page from either disk or the memory of 
another processor. If the faulting memory reference is the target 
of a write operation, then the memory mapping manager must 
guarantee the atomicity of the operation [23]. 

,95 

CPU 1 

Memory 1 

J 
Mapping 
manager 

CPU 2 

Memory 2 

Shared virtual memory 

CPU N 

Memory N 

I 
Mapping 
manager 

Figure 1: Shared virtual memory mapping / 

In a shared virtual memory system, the model of a parallel 
program is a set of processes (or threads) that share a single vir
tual memory address space. These processes are "lightweight"~ 
they share the same address space and thus the cost of a process 
context switch, process creation, or process termination is small, 
say, on the order of a few procedure calls [20]. One of the key 
goals of the shared virtual memory, of course, is to allow pro
cesses of a program to execute on different processors in parallel. 
To do so, the appropriate process manager and memory allo
cation manager must be integrated properly with the memory 
mapping manager. 

The performance of parallel programs on a shared virtual 
memory system depends mainly on two things: the number 
of parallel processes and the degree of data sharing (i.e. con
tention). Theoretically, performance improves as the number 
of parallel processes increases and contention decreases. Con
tention is less if a program exhibits locality of references. One 
of the main justifications for the traditional virtucil memory is 
that memory references in sequential programs generally exhibit 
a high degree of locality [10,12]. Although memory references in 
parallel programs may behave differently from those in sequential 
ones, a single process is still a sequential program, and should 
exhibit a high degree oflocality. Contention among parallel pro
cesses for the same piece of data depends on the algorithm, of 
course, but a common goal in designing parallel algorithms is to 
minimize such contention for optimal performance. 

Prototype Implementation 

In order to answer the question of whether it is practical to build 
a shared virtual memory on a loosely-coupled multiprocessor and 
whether most parallel application programs will get speedup on 
such a system, a user-mode prototype system has been imple
mented on the Apollo Domain [1,21], an integrated system of 
personal workstations and server computers connected by a 12M 
bit/sec baseband, single token ring network. IVY is implemented 
on top of the modified operating system Aegis of the Domain en
vironment. The implementation is not particularly efficient but 
simple and tractable. 

IVY consists of 5 modules, namely, remote operation, mem
ory mapping, process management, memory allocation, and ini
tialization. The hierarchy of the system is shown in Figure 2. 
The three top modules in the hierarchy form the IVY client in~ 



terface. Each consists of a set of primitives that can be used by 
application programs. 

Client programs 

Process 
management 

Memory 
allocation 

I. Remote 
~V Operation 
~ L..------I 

Initialization 

Memory 
mapping 

OS low-level support 

Figure 2: IVY hierarchy. 

Shared Virtual Memory Mapping 

Memory mapping managers implement the mapping between 
local memories and the shared virtual memory address space. 
Other than mapping, their chief responsibility is to keep the ad
dress space coherent at all times; that is, the value returned by 
a read operation is always the same as the value written by the 
most recent write operation to the same address. The memory 
coherence problem is similar to that encountered in cache and 
multicache designs for shared memories on multiprocessors (see 
[27,2] for a survey), but most memory coherence techniques for 
multicaches do not apply, because a loosely-coupled multipro
cessor has no physically shared memory and the communication 
cost between processors is non-trivial. [23] gives a detailed de
scription and analysis of the algorithms for memory coherence. 

Since memory coherence memory coherence of a shared vir
tual memory is maintained at page level, it is important to choose 
the right page size. On a stock loosely-coupled multiprocessor, 
one has to use a page size which is consistent with or the mul
tiple of that provided in a Memory Management Unit (MMU) 
in order to use its protection mechanisms to detect incoherent 
memory references and trap them to appropriate fault handlers. 
These page fault handlers and their servers implement memory 
coherence strategy that keeps the memory space coherent at all 
times. Since sending large packets of data (say 1,000 bytes) in a 
loosely-coupled multiprocessor is not much more expensive than 
sending small ones (say 100 bytes) [28], relatively large page sizes 
are possible in a shared virtual memory. On the other hand, the 
larger the memory unit, the greater the chance for contention. 
The possibility of contention indicates the need for relatively 
small page sizes. Our experience with a page size of 1K bytes 
has been pleasant and we expect that smaller page sizes (per
haps as low as 256 bytes) will work well also, but we are not as 
confident about larger page sizes, due to the contention problem. 
The right size is clearly application dependent, however, and we 
simply do not have the implementation experience to say what 

96 

size is best for a sufficiently broad range of parallel programs. 
In IVY, each user address space is divided into two portions. 

The shared virtual memory address space is in the high portion 
and the private memory is in the low portion. For simplicity, the 
data structure of the page table is a vector of records and each 
record is a table entry. The whole table is stored in the private 
memory. 

The memory coherence strategies implemented IVY use in
validation approach. In this approach, all read-only copies of a 
page are invalidated (changed to nil access) before a processor 
writes to a page. For experimental purposes, we implemented 
three algorithms: the improved centralized manager algorithm, 
the fixed distributed manager algorithm, and the dynamic dis
tributed manager algorithm. These algorithms and other al
gorithms for solving the memory coherence problem have been 
studied in depth [23]. Briefly, The centralized manager algo
rithm is similar to the cache coherence solution [6]. The cen
tralized manager resides on a single processor, and maintains all 
ownership information. When having a page fault, a processor 
will ask the manager for the copy of the page. The manager will 
then ask the owner of the page to send a copy to the requesting 
processor. 

The fixed distributed manager algorithm gives every proces
sor a predetermined set of pages to manage. The most straight
forward approach is to distribute pages evenly in a fixed manner 
to all processors (the distributed directory map solution to the 
multicache coherence problem [2] is similar). With this approach 
there is one manager per processor, each responsible for the pages 
specified by the fixed mapping function H. When a fault occurs 
on page p, the faulting processor asks processor H(p) where the 
true page owner is, and then proceeds as in the centralized man
ager algorithm. 

The dynamic distributed manager algorithm keeps track of 
the ownership of all pages in each processor's local' page table, 
using a field called probOwner in each page entry. The value of 
this field can be either the true owner or the "probable" owner 
of the page. The information that it contains is just a hint; it 
is not necessarily correct at all times, but if incorrect it will at 
least provide the beginning of a sequence of processors through 
which the true owner can be found. Initially, . the probOwner 
field of every entry on all processors is set to some default pro
cessor that can be considered the initial owner of all pages. As 
the system runs, each processor uses the probOwner field to keep 
track of the last change of the ownership of a page. This field is 
updated whenever a processor receives an invalidation request, . 
relinquishes ownership of the page, or forwards a page fault re
quest. 

The fixed distributed manager algorithm, the dynamic dis
tributed manager algorithm, and their variations are more ap
propriate than others. 

Process and Process Scheduling 

The process management module implements all the operations 
for process control, process migration, and process synchroniza
tion. The module provides clients with a set of calls for writing 
parallel programs. 

All the processes in IVY are lightweight. The program code 
of a process is stored in its private memory; therefore, IVY need 
not have its own loader. The stack of a process is allocated from 
the shared memory portion. Each process has a process control 



block (PCB) that contains necessary information like process 
state, stack, context, and other process control-dependent in
formation. The PCBs are stored in the private memory of the 
address space. Therefore, the PID of a process is represented as 
a pair-processor number and the address of its PCB. 

The process scheduling mechanism is designed to be simple. 
Each processor has a local ready queue using a last-in-first-out 
policy, that is, processes do not have priorities. The process 
dispatcher always picks up the process in the front of the ready 
queue. If there is no ready process available, the dispatcher runs 
a system process called the null process. 

The null process implements a passive load balancing algo
rithm. It normally waits on two low level eventcounts, one for 
timeout and another for new ready processes. The null process 
is invoked when either of them is advanced. When a timeout 
event occurs, the null process will run the passive load balancing 
algorithm. The main idea of the algorithm is to let each proces
sor ask for work when it is idle using some hints. The event count 
for new ready processes can be advanced only when a process is 
migrated to the current processor, a remote resume operation is 
performed, or a remote notification operation results in waking 
up a process. Of course, when a new ready process is available, 
the null process will suspend itself. The dispatcher will then do 
another schedule. 

The hint information about the number of ready processes is 
important for minimizing the number of rejections of migration 
requests. The processors in IVY keep each other up to date 
on their current work loads by adding a few extra bits to the 
messages transmitted for remote operations. Usually, a byte will 
be enough to transfer the information. This byte can be packed 
into every message at almost no extra cost. 

Experiments with many parallel application programs show 
that the algorithm will not work well if the number of ready 
processes on each processor is used as the only criterion for mi
grating processes. A better way is to use the number of processes 
(including both ready and suspended) controlled by thresholds 
[22]. When such a number is less than the lower threshold, the 
processor will try to ask for work. When such a number is greater 
than the upper threshold, the processor will migrate processes 
to other processors upon requests. 

Process migration 

A process in IVY is either migratable or non-migratable, in
dicated by a field in its PCB. Clients can modify the field by 
using a primitive so ,that a migratable process can become non
migratable or vice versa at run time. Only a ready, migratable 
process can migrate from one processor to another. When a 
process is migrated, a.forwarding pointer is put into its PCB 
and the migrated attribute is set. The PCBs of migrated pro
cesses are used for storing forwarding pointers. The collection of 
non-reachable PCB's has not been implemented in IVY. 

Since PCBs are stored in the private memory portion of the 
address space, a process migration must 

• send the PCB of the process to the destination processor 
and put it into a PCB, 

• copy the current page of the process's stack to the desti
nation processor and transfer the ownership of the page, 

• transfer the ownership of all the pages in the upper portion 
of the stack to the destination processor, and 

97 

• put the PCB in the ready queue on the destination proces
sor. 

The reason for moving the current page of the process's stack is 
to avoid a page fault in the process dispatcher (Figure 3). 

upper 
portion 

SP - current 
page 

lower 
portion 

stack b ase 

Figure 3: A process stack. 

The upper portion of the stack need not move to the desti
nation processor because its content is meaningless. Ownership 
transfer is inexpensive because it only requires setting the pro
tection bits of the page frames. There is no need to do anything 
with the lower portion of the stack because the stack can grow 
without having further page faults after the current page and 
the upper portion of the stack become writable. 

Eventcount Implementation 

In a shared virtual memory system, it is possible to implement a 
process synchronization mechanism based on either global mem
ory or message passing. Eventcount [26] is the process synchro
nization mechanism in IVY. The main reason for choosing event
count is that the Aegis operating system uses event counts as its 
synchronization mechanism. 

An event count synchronization mechanism has four primitive 
operations: 

• Init( ec ) - initializes an eventcount. 

• Read( ec ) - returns the value of the eventcount. 

• Await ( ec. value ) - suspends the calling process itself 
until the value of the event count reaches the value specified. 

• Advance( ec ) - increments the value of the eventcount 
by one and wakes up awaiting processes. 

After an eventcount is initialized, any process can use it without 
knowing where it resides. 

The implementation of these primitives is based on shared 
virtual memory. The atomic operation is implemented by pin
ning memory pages and using test-and-set instructions. This 
implementation is much cleaner than that based on message
passing; furthermore, the performance is better when there is 
more than one process on each processor because event count 
primitives become local operations when the event count data 
structure has been paged into the local processor. 

The data structures of an event count usually reside together 
in one page. The shared virtual memory mapping mechanism 
can move this page on demand when an event count operation is 
performed and on a processor where there is no such event count 
data structures. If the data structures of an event count require 
more than one page, then the additional pages will be linked to
gether. This mechanism increases the locality of the event count 



data structure. In most cases, only one page is needed for each 
eventcount. 

Memory Allocation 

IVY has a simple memory allocation module that uses a "first 
fit" algorithm with one-level centralized control. The proces
sor with which the user directly contacts will be appointed to 
the centralized memory manager. To reduce the memory con
tention, the memory allocator allocates each piece of memory to 
the boundary of a page. 

Both allocate and free are atomic operations. IVY uses a 
binary lock on each processor for memory allocation purposes. 
At the beginning of each memory management primitive, a test
and-set operation is performed on the lock. A failed process will 
be put into a queue and will be awakened by an unlock operation 
on the lock which is done at every end of each primitive. 

A more efficient approach is two-level memory management. 
In this approach, each processor has a local allocator maintain
ing a big chunk of memory allocated from the central memory 
allocator. This big chunk of memory serves for the local memory 
allocations. When there is not enough free memory left in the big 
chunk, the local allocator will allocate another big chunk from 
the central allocator. This approach has not been implemented 
yet, though it is expected to have better performance. 

Remote Operation 

The remote operation module implements a remote request/reply 
mechanism that handles all the remote operations of other mod
ules. Such a mechanism (also called simple RPC) is similar 
to remote procedure call facility [24,3], but it is simpler than 
the general one and has a few special features for implementing 
shared virtual memory system. 

One of such features is broadcast or multicast remote oper
ation mechanism. A broadcast or a multicast request has three 
reply schemes: a reply from any receiving processor, replies from 
all receiving processors, and no reply at all. The first option is 
useful for broadcasting page fault requests to locate page own
ers (see [23]). The second option can be used for implementing 
invalidation operations. The third option is for broadcasting 
approximate information for process scheduling. 

Another feature is a forwarding request mechanism that al
lows a processor to forward a request to another processor. For 
example, processor 1 can send a request to processor 2, processor 
2 forwards the request to processor 3, .and so on until processor 
k performs the operation and sends a reply back to processor 1. 
There are no intermediate replies involved in the operation. This 
mechanism is particularly useful for implementing the dynamic 
distributed manager algorithm. 

The retransmission protocol is based on the philosophy of 
resending replies only when necessary. Such a design is based 
on two assumptions: local computation is always correct, and 
communication may be unreliable, but once a packet is received, 
its content is always correct. The protocol is reliable only when 
these assumptions hold. In practice, the assumptions are reason
able. Retransmission checking is done in a null process, which 
checks all the outgoing channels every half second when there is 
nothing to do. 

98 

Programming in the IVY Environment 

Programmers can use any programming language in the Apollo 
DOMAIN to write parallel programs as long as they can interact 
with the procedure calls in the Apollo DOMAIN Pascal in which 
IVY is implemented. Since all the languages in the Apollo DO
MAIN are designed for sequential programming, the programmer 
has to program parallel constructs explicitly with the primitives 
provided by IVY. 

Programmers or compilers using IVY need to decide which 
piece of data puts into shared virtual memory and which into 
private memory. Programs later do not need to know where 
the shared data structures are in the sense that references to 
these data structures are the same as to other data structures. 
If IVY had its own loader, explicit memory allocation would not 
be necessary. 

Clients can use primitives provided by the process manage
ment module to create lightweight processes (or threads) for a 
parallel computation. The programmer can choose how to sched
ule processes when calling an initialization procedure at the be
ginning of the program. There are two options: manual schedul
ing and system scheduling. If system scheduling is used, the 
programmer only needs to create and terminate processes. But 
if manual scheduling is chosen, the programmer needs to tell 
where and when a process goes. It is the programmer's respon
sibility to program process synchronization. The methodology 
of such programming is the same as that of "conventional" con
current programming developed since the 1960s. Although there 
is no parallel programming language, such a primitive environ
ment has proven to be convenient enough to write benchmark 
programs. 

IVY does not have any special debugging tools. Initial de
bugging programs can be done on a single processor. Since an 
IVY image file can run on any number of processors, there is 
no need to have a simulator. If a program follows IVY paral
lel programming conventions, debugging on a single processor 
is usually easy. After debugging on a single processor, the pro
grammer should debug on two and then three processors. My 
experience indicates that if a program can run on three proces
sors correctly, there are few bugs left. 

Experiments 

Given the difficulties of finding practical parallel programs, the 
only reasonable way to do experiments is to select a set of appli
cation programs from different fields as a benchmark suite. All 
benchmarks have the following two properties: 

• reasonably fine granularity of parallelism, and 

• side-effects in shared data structures. 
Parallel programs with rather coarse granularity can obviously 
perform well in the shared virtual memory system. There are 
parallel functional programs that do not have any side-effects in 
their data structures at run time. The shared virtual memory 
system is clearly a big win in these applications. The main goal 
in using the two criteria is to avoid weighing the experiments in 
favor of the shared virtual memory system by picking problems 
that suit the system well. The benchmark set in the experiments 
consists of six parallel programs that are written in Pascal. All 
of them are transformed manually from sequential algorithms 
into parallel ones in a straightforward way. 

Linear Equation Solver This program implements a par
allel Jacobi algorithm for solving linear equations. The algorithm 



is transformed from the traditional, sequential Jacobi algorithm 
that solves the linear equation Ax = b where A is an n by n 
matrix. In each iteration, x(k+1) is obtained by 

i-I n 

X(k+1) - (b. - ~ a' 'x(k) - ~ a' 'x(k») la·· i - t L..J 13 j ~ 13 j ito 

j=l j=.+l 

The parallel algorithm creates a I).umber of processes to partition 
the problem by the number of rows of matrix A. All the pro
cesses are synchronized at each iteration by using an eventcount. 
The data structures A, x, and b are stored linearly in the shared 
virtual memory, and the processes access them freely without 
regard to their location. 

3D PDE Solver This program solves three dimensional 
partial differential equations (PDEs) using a parallel Jacobi al
gorithm. The algorithm and its transformation are similar to 
the linear equation solver except that in the equation Ax = b, 
A is a sparse matrix. Since this matrix is never updated in 
the program, the practical PDE solvers in scientific computing 
usually eliminate the matrix by coding it into programs to save 
space and time. In practice, matrix A is large and it is read
only, coding it into program will not be in favor of the shared 
virtual memory performance. To be more realistic, we choose 
to do so. The vectors x and b are stored linearly in the shared 
virtual memory. 

Traveling Salesman Problem The traveling salesman 
problem is to find a tour that visits each city once with the 
minimum cost. The cities are represented as the nodes in an 
undirected graph. The cost of a tour is the sum of the weights 
of the edges on the tour. The algorithm used in the program is 
a simplified version of the branch-and-bound approach proposed 
in [13]. At each step, an 1-tree (a variation of the minimum span
ning tree) of the remaining graph is computed. The sum of the 
cost of the subtour and the 1-tree is compared with the cost of 
the current least upper bound. If the cost is less than the upper 
bound, it will replace the upper bound and the subtour is still 
valid; otherwise, the subtour will be thrown away. The available 
branches, the graph, and the least upper bound are stored in 
the shared virtual memory. The program creates a process for 
each processor that performs the branch-and-bound algorithm 
on a branch obtained from the shared virtual memory. These 
processes run in parallel until the tour is found. Each process 
is not much different from the sequential one except it needs to 
access shared data structures mutual exclusively. 

Matrix Multiply This program computes C = AB where 
A, B and C are square matrices. A number of processes are cre
ated to partition the problem by the number of columns of ma
trix B. All the matrices are stored in the shared virtual memory. 
The program assumes that matrix A and B are on one processor 
at the beginning and they will be paged to other processors on 
demand. 

Dot-product The dot-product program computes 

n 

S = LXiYi. 
.=1 

A number of processes are created to partition the problem. 
Each process computes a partial sum and S is obtained by sum
ming up the partial sums produced by the individual processes. 
Both vector x and Y are stored iIi the shared virtual memory in 
a random manner, under the assumption that x and yare not 
fully distributed before doing the computation. The main reason 

99 

"'for choosing this example is to show the weak side of the shared 
virtual memory system; dot-product does little computation but 
requires a lot of data movement. 

Split-merge Sort This program implements a variation 
of the block odd-even based merge-split algorithm described in 
[4]. The sorted data is a vector of records that contain random 
strings. At the beginning, the program divides the vector into 
2N blocks for N processors, and creates N processes, one for each 
processor. Each process sorts two blocks by using a quicksort 
algorithm [17]. This internal sorting is naturally done in parallel. 
Each process then does an odd-even block merge-split sort 2N -1 
times. The vector is stored in the shared virtual memory, and the 
spawned processes access it freely. Because the data movement 
is implicit, the parallel transformation is straightforward. 

The speedup of a program is the ratio of the execution time 
of the program on a single processor to that on the shared virtual 
memory system. In order to obtain a fair speedup measurement, 
all the programs in the experiments partition their problems by 
creating a certain number of processes according to the number 
of processors used. As a result of such a parameterized partition
ing, any program does its best for any given number of proces
sors. Unlike message-passing systems or primitive global-space 
systems, IVY has almost no extra overhead when programs run 
on a single processor. The only additional costs are in creating 
processes, which takes milliseconds in total, and mutual exclu
sion, which takes two 68000 instructions for each locking. Since 
there are few locking operations in the programs above, the pro
grams using one processor run just as fast as their sequential 
programs. 

Speedup 

8 

6 

4 

2 

o / 
o 

/ 

2 4 6 
Number of processors 

Figure 4: Super-linear speedup 

8 

The 3D PDE program, when matrix A is 503 by 503 , ex
perienced super-linear speedup as shown in Figure 4. At first 
glance, the result seems impossible because the fundamental law 
of parallel computation says that a parallel solution utilizing p 
processors can improve the best sequential solution by at most a 
factor of p. 'Since the algorithm in both programs is a straightfor
ward transformation from the sequential Jacobi algorithm and 
all the processes are synchronized at each iteration, the algorithm 
cannot yield super-linear speedup. The reason is that the funda
mental law of parallel computation assumes that every processor 
has an infinitely large memory, which is not true in practice. For 
instance, in the parallel 3-D PDE example, the data structure 



for the problem is greater than the size of physical memory on 
a single processor, so when the program is run on one processor 
there is a large amount of paging between the physical memory 
and disk. 

Table 1 shows the total number of disk I/O page transfers of 
the first six iterations when the 3D PDE program runs on one 
processor and two processors. Obviously, the number of the disk 
I/O page transfers on two processors is substantially less than 
that on one processor. In the two-processor case, the program 
initializes its data structures only on one processor, this proces
sor causes most disk I/O transfers because it cannot hold all the 
data structures in its physical memory. As the program runs, 
the processes start to access some portions of the data struc
tures, causing the shared virtual memory page faults to move 
pages from one processor to another. When the shared virtual 
memory distributes the data structure into individual physical 
memories whose cumulative size is large enough, few disk I/O 
data movements will occur. On the other hand, IVY is a user
mode system implemented on top of the Aegis virtual memory 
system which performs an approximate LRU page replacement 
strategy; the pages recently moved from the processor with ini
tialized data structures may not be replaced because these pages 
are also most recently referenced ones. This explains why the 
number of disk I/O page transfers in the two-processor case de
creases gradually. 

Disk page transfers of each iteration 
1 I 2 T 3 I 4 I 5 I 6 

1 processor 899 I 1600 T 1543 T 1515 T 1542 I 1540 
2 processors 1432 I 1072 T 466 T 156 I 101 I 105 

Table 1: Disk page transfers 

When the data structure of the problem is not larger than 
the physical memory on a processor (matrix A is 403 by 403), the 
result of the 3D PDE is no longer super-linear, as shown in Fig
ure 5. They are similar to what we see in tJte past. For example, 
the result is similar to that generated by similar experiments on 

CM*, a shared memory multiprocessor [18,9]. Indeed, the shared 
virtual memory system is as good as the best curve in the pub
lished experiments on CM* for the same program; but the efforts 
and costs of the two approaches are dramatically different. In 
fact the best curve in CM* was obtained by keeping the private 
pro~ram code and stack in the local memory on each proces
sor. The main reason that the performance of this program is so 
good in the shared virtual memory system is that the program 
exhibits a high degree oflocality. While the shared virtual mem
ory system pays the cost of local memory references, CM* pays 
the cost of remote memory references across its Kmaps. 

The dot-product program did not perform well on IVY, as 
indicated in Figure 5. It is included here so as not to paint too 
bright a picture. Since this program only references each element 
once the ratio of the communication cost to the computation 
cost in this program is large. For programs like dot-product, it 
is not appropriate to use a shared virtual memory system, unless 
the communication cost can be reduced. 

Matrix multiply and traveling salesman problem perform well 
on IVY system. They show the good side of the shared vir
tual memory system. Both programs exhibit a high degree of 
localized computation. Since the algorithm used in the travel
ing salesman problem is a parallel branch-and-bound, there are 

100 

Speedup 

8 

6 

4 

2 

/ o / 
o 

~'-

/ 

/ 

/ matrix multiply 
/ TSP 

// linear equation 
/ 3DPDE 

dot product 

8 
Number of processors 

Figure 5: Speedups 

anomalies (19). It is possible that the program gets super-linear 
speedup or no speedup at all. In this example, it happens to 
have super-linear speedup. 

Figure 6 shows the speedup of merge-split sort program. The 
curve does not·look very good because even with no communi
cation costs, the algorithm does not yield linear speedup. The 
program uses the best strategy for any given number of proces
sors. For example, there is one merge-split sorting when running 
the program on one processor, there are 4 blocks when running 
the program on two processors, and so on. Using a fixed number 
of blocks for any number of processors would result in a better 
speedup, but such an approach is not reasonable. 

8 

6 

Speedup 

4 

2 

/ o / 
o 4 

Number of processors 

Figure 6: Speedup of merge-split sort 

Conclusion 

The difficulties with passing complex data structures and pro
cess migration are the main drawbacks of the message passing 
model for parallel computing. Shared virtual memory on loosely
coupled multiprocessors can solve these problems. The success 
of implementing the prototype shared virtual memory system 
IVY and the experiments show that it is practical to implement 
such a system on existing loosely-coupled multiprocessors such 
as local area networks. 

The implementation experience shows that, although it is 
possible to implement a shared virtual memory without modi-



fying an existing system like the Aegis operating system, it is 
necessary to modify the existing system to get acceptable per
formance. IVY is a user-mode implementation, so it has a lot 
of overhead. A system-mode implementation ought to provide 
a substantial improvement. It is expected that a well-tuned 
system-mode implementation should improve the performance 
of remote operations and page moving by a factor of at least two 
according to the performance comparison with some well tuned 
systems [28,7]. I/O overlaps among the lightweight processes 
do not exist in IVY. An integrated heavyweight and lightweight 
process scheduler is highly desirable. The disk I/O overlap may 
also greatly improve IVY's performance. 

The experimental results of running some non-trivial parallel 
programs on the prototype system strongly support the idea of 
shared virtual memory on loosely-coupled multiprocessors. The 
results demonstrate that the shared virtual memory can effec
tively exploit not only the available processors but also the com
bined physical memories of a multiprocessor system. 

The experimental results reported in this paper are limited 
because there were only up to eight processors available for run
ning the modified Aegis operating system at the time. Exper
iments on more processors will show more insights of shared 
virtual memory and behaviors of parallel programs. To answer 
many unanswered questions, we plan to perform more experi
ments on a shared virtual memory system being implemented 
on a large-scale multiprocessor at Princeton. 

Acknowledgement 

I wish to thank John Ellis for his invaluable suggestions and help
ful discussions and Nat Mishkin for his help with understanding 
the Aegis kernel, which made my modifications to the OS possi
ble. I would like to thank Paul Hudak and Alan Perlis for their 
continual help inspiration. I also wish to thank Jeff Naughton 
and the referees for their helpful comments. 

References 

[1] Apollo. Apollo DOMAIN Architecture. Apollo Computer Inc., 
Chelmsford, Mass., 1981. 

[2] J. Archibald and J. Baer. Cache Coherence Protocols: Evaluation 
Using a Multiprocessor Simulation Model. ACM Transactions on 
Computer Systems, 4(4):273-298, November 1986. 

[3] A.D. Birrell and B.J. Nelson. Implementing Remote Procedure 
Calls. Technical Report CSL-83-7, Xerox PARC, December 1983. 

[4] D. Bitton, D.J. DeWitt, D.K. Hsaio, and J. Menon. A Taxon
omy of Parallel Sorting. ACM Computing Surveys, 16(3):287-318, 
September 1984. 

[5] N. Carriero and D. Gelernter. The S/Net's Linda Kernel. ACM 
Transactions on Computer Systems, 4(2):110-129, May 1986. 

[6] L.M. Censier and P. Feautrier. A New Solution to Coherence 
Problems in Multicache Systems. IEEE Transactions on Com
puters, C-27(12):1112-1118, December 1978. 

[7] David R. Cheriton. The V kernel: A Software Base for Dis
tributed Systems. IEEE Software, 1(2):19-43, 1984. 

[8] D.R. Cheriton and M. Stumm. The Multi-Satellite Star: Struc
turing Parallel Computations for A Workstation Cluster. To ap
pear, 1988. 

[9] Jarek Deminet. Experience with Multiprocessor Algorithms. 
IEEE Transactions on Computers, C-31( 4), April 1982. 

101 

[10] Peter J. Denning. On Modeling Program Behavior. In Proceed
ings of Spring Joint Computer Conference, pages 937-944, AFIPS 
Press, 1972. 

[11] Peter J. Denning. Virtual Memory. ACM Computing Surveys, 
2(3):153-189, September 1970. 

[12] Peter J. Denning. Working Sets Past and Present. IEEE Trans
actions on Software Engineering, SE-6(1 ):64-84, January 1980. 

[13] M. Heid and R.M. Karp. The Traveling-salesman Problem and 
Minimum Spanning Trees. Operation Research, 17(12):1139-
1167, December 1970. 

[14] M. Herlihy and B. Liskov. A Value Transmission Method for 
Abstract Data Types. ACM Transactions on Programming Lan
guages and Systems, 4(4):527-551, October 1982. 

[15] Carl Hewitt. The Apiary Network Architecture for Knowledge
able Systems. In Proceedings of the Lisp Conference, pages 107-
117, August 1980. 

[16] C.A.R. Hoare. Communicating Sequential Processes. Communi
cations of the ACM, 21(11):666-677, August 1978. 

[17] C.A.R. Hoare. Quicksort. Computer Journal, 5(1):10-15, 1962. 

[18] A. K. Jones and P. Schwarz. Experience Using Multiprocessor 
Systems - A Status Report. ACM Computing Surveys, 12(2), 
June 1980. 

[19] T. Lai and S. Sahni. Anomalies in Parallel Branch-and-Bound 
Algorithms. Communications of the ACM, 27(6):594-602, June 
1984. 

[20] B. M. Lampson and D. D. Redell. Experience with Processes and 
Monitors in Mesa. Communications of the ACM, 23(2):105-117, 
February 1980. 

[21] P.J. Leach, P.H. Levine, B.P. Douros, J.A. Hamilton, D.L. Nel
son, and B.L. Stumpf. The Architecture .of an Integrated Local 
Network. IEEE Journal on Selected Areas in Communications, 
1983. 

[22] Kai Li. Shared Virtual Memory on Loosely-coupled Multiproces
sors. PhD thesis, Yale University, October 1986. Tech Report 
YALEU-RR-492. 

[23] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual 
Memory Systems. In Proceedings of the 5th Annual ACM Sym
posium on Principles of Distributed Computing, pages 229-239, 
August 1986. A journal version will appear in ACM Transactions 
on Computer Systems. 

[24] Bruce J. Nelson. Remote Procedure Call. PhD thesis, Carnegie
Mellon University, May 1981. 

[25] M.L. Powell and B.P. Miller. Process Migration in DEMOS/MP. 
In Proceedings of the ninth Symposium on Operating Systems 
Principles, pages 110-119, 1983. 

[26] David P. Reed and Rajendra K. Kanodia. Synchronization with 
Eventcounts and Sequencers. Communications of the ACM, 
22(2):115-123, February 1979. 

[27] Alan J. Smith. Cache Memories. ACM Computing Surveys, 
14(3):473-530, September 1982. 

[28] Alfred Z. Spector. Performing Remote Operations Efficiently 
on a Local Computer Network. Communications of the ACM, 
25(4):260-273, April 1982. 



Hierarchical Workload Allocation for Distributed Systems 

Nicholas S. Bowen 
Christos N. Nikolaou 

IBM Research Division 
T .• I. Watson Research Center 

P.O. Box 704, 114-G51 
Yorktown Heights, N. Y. 10598 

Arif Gharo"r 

Department of Electrical and Computer Engineering 
Syracuse University 

Syracuse, N. Y. 13244- I 240 

Abstract 

Workload management is one of the important open problems 
in distributed operating systems research. The mapping of the 
distributed applications onto the processors of the system has to 
be achieved in such a way so that the performance goals of these 
applications (response time, throughput) are met. Balancing the 
load of the applications among the processors ()f the distributed 
system can increase the overall throughput. However, if two or 
more highly interacting processes are assigned to different 
processors, their response time may suffer because of the 
communication overhead. 

We propose and evaluate an efficient hierarchical clustering and 
allocation algorithm that drastically reduces the interproccss 
conununication cost while observing low and upper bounds of 

; utilization for the individual processors. We compare the 
algorithm with branch-and-bound-type algorithms that can 
produce allocations with minimal communication cost, and we 
show a very encouraging time complexitYlsuboptimality trade-off 
in favor of our algorithm, at least for a class of process clusters 
and their random combinations, which we believe occur naturally 
in clistributed applications. Our heuristic allocation is well suited 
for a changing environment, where processors. may fail or bc 
added to the system and where the workload patterns may change 
unpredictably and/or periodically. 

1.0 Introduction 

One of the reasons that the performance of a distributed system 
may suffer is the following: if the mapping of distributed 
applications to processors is not carefully implemented, processors 
may fmd themselves spending most of their time waiting for each 
other instead of performing useful computations. A fundamental 
trade-off is at work here: one would like to spread the load of a 
distributed application as "evenly" as possible among the 
processors of the system in order to maximi~e throughput. But if 
heavily used (or high priority) processes communicating frequently 
with each other, for example through messages, shared memory, 
remote procedure calls etc., are assigned to different processors, 
then significant time could be wasted executing expensive global 
synchronization protocols such as interprocessor locking or 
blocking SENDs and RECEIVEs. In addition, the interproccssor 
communication (locking) cost is usually significantly higher than 
the cost incurred when two processes communicate within the 
same processor. A survey of the work on the load allocation and 
balancing problem can be found in [Bowe87] 

102 

In this paper, we propose and evaluate a hierarchical clustering 
algorithm that can be used for grouping both processes and 
processors in clusters of either frequently communicating processes 
Of topologically close processors. The clustering algorithm 
generates two cluster trees, one for the processes and one for the 
processors. We next evaluate a heuristic mapping algorithm, 
proposed in [Nik086], and we compare its results with an optimal 
allocation of processes to processors that minimizes the total 
process communication cost while keeping the workload assigned 
to each processof within some previously specified lower and 
upper bounds. We show that for a class of process clusters and 
their random combinations, which we believe naturally occur in 
distributed applications, the allocation obtained by our heuristic is 
close to the optimal. Our heuristic allocation is well suited for a 
changing environment, where processors may fail or be added to 
the system and where the workload patterns may change 
unpredictably and/of periodically. In [Niko86, Perg86] algorithms 
are given to relocate processes when the configuration changcg. 
These algorithms modify the process and procesgor cluster trees 
generated during the original allocation, to reflect the configuration 
changes. These changes, however, do not usually alter dragtically 
the two trees. Therefore, only a small subtree of the process cluster 
tree will have to be remapped to a small processor cluster subtree. 

The rest of the paper is organized as follows: we give a formal 
defmition of the problem in 2.0, Formulation of the problem. We 
then present our clustering algorithm in 3.0, Clustering and we 
review the heuristic allocation algorithm proposed in 
4.0, Allocation Algorithm. In 5.0, Results, we present the results 
of applying both the heuristics and integer linear programming 
techniques to the allocation problem. 

2.0 FonnuIation of the problem 

In the context of this paper we conceive of a distributed system 
as composed of a set of nodeJ representing the active processing 
agents (e.g. host computer complexes in a computer network, 
individual processors in a multiprocessor system or a local area 
network, etc.) and an interconnection structure providing full 
connectivity between the nodes (e.g. communication lines in a 
long-haul computer network, shared memory modules or a bus in 
a multiprocessor system, a ring or a star topology in a local area 
network). Given a set of processes 6., a set of processors n. and 
their logical and physical interconnection structure respectively, we 
defme the process graph 6 = (6., n,), where n, is a sct of links 
defmed as: 6, = {(i, j) I (i, j) denotes logical communication 
between processes i and j }. Similarly we define the processor graph 
n = (n., n,), where n, = {(k, /) I (k, /) denotes a physical 
communication link between processors k and /). 



The process allocation problem can be formulated' as a 
quadratic assignment problem, and as such is similar to ~everal 
other assignment problems such as facilitics location, space 
allocation, scheduling and routing, [Ligg81). These problems 
differ from the linear assignment problem in that the entities to be 
assigned are treated as a set of interconnected, rather than 
independent, objects (e.g. a facilities location problcm in which the 
cost of materials Ilow between facilities is an important 
consideration). In our case, the interconnection of processes is 
modelled by a cost matrix A with ~ typical clement 0;) , denoting 
the volume of communication between processes i and j. If the 
link (i, J) ~!!..I then t1y = O. Also we take a;; = 0, If i. The 
communication cost ean be thought of as being composed of two 
parts: a static part that takes into account the total number of 
bytes transferred in a single execution of processes i and j, and a 
dynamic part that aecounts for the frequency of process execution 
and communications related queueing delays. Note that whereas 
the static communication cost can be precisely accounted for by 
inspection of the processes code, the dynamic part has to be 
estimated based on gathered statistical information and is 
dependent upon the allocation itself! 

Next we model the interconnection of processors through a 
delay matrix D where the typical element d" denotes the 
communication delay for sending a byte (a message of unit length) 
from processor k to processor I. If processors k and I are neighbors 
in the processor graph, then dkl rellects the cost of point-to-point 
or multiple access communication. If the two processors are not 
neighbors, but there is a path from k to I in the proccssor graph, 
then dkl reflects the routing cost for sending a byte from k to I, 
dependent of course on the particular routing algorithm used. 
Finally, ifthere is no path between k and I, then dkl = 00, and if 
k = I, then dkl reflects the cost of intra-processor message sending 
per' unit message length. If a particular allocation assigns process i 
on processor k and process j on processor I , then the 
communication cost for this particular assignment is taken to be 
a,jd.l · 

Each process i represents a load 1,. on processor k which loosc\y 
reflects this process's demands on processor resources such as 
CPU time, memory, I/O devices (but not those dedicated for 
inter-processor communications) and secondary storage. Each 
processor k sets an upper bound Uk on the total load that can be 
allocated. In addition, since we want to balance the load allocated 
to the processors of the distributed system, we also set a lower 
bound L. on the load allocated to each processor k. Note that by 
setting i;. = 00 for some of the k's , we can model a process's 
preference in being assigned to specific processors only. Some 
researchers have proposed algorithms for allocating processes to 
processors under these preference constraints [I1aes80]. Let 
X,k = I if process i is assigned to processor k and 0 otherwise. 
Then the processor capacity and load balancing constraints can be 
written as: 

i=n 

Lk :::; 2)kXlk :::; Uk Ifk, k = I, ... , N [2.1] 
1=1 

where n is the total number of processes and N is the total number 
of processors. In addition, since a proccss can be assigned to only 
one processor, we have the following constraint: 

N 

IXlk= I, Ifi, i= l, ... n 
k=1 

[2.2] 

103 

The minimization of the communication cost can now be 
written as: 

[2.3] 

For the allocation algorithm discussed in this paper, we make 
the following simplifying assumptions: we treat all processes as 
equals in terms of the load that they represent to the processors. 
Typically, in large transaction processing centers thcre is a small 
number - probably no more than one hundred - of very active and 
resource demanding transaction types (processes) and a large 
number - probably in the thousands - of rarely, if ever, used 
transaction types. Only the allocation of the active transaction 
types has an impact on the performance of the center, not the 
allocation of the remaining thousands. We assume that these 
active processes represent roughly equal workloads, and wc 
normalize their load to one. We call this assumption the "unit 
workload assumption". Furthermore, we assume that 
dkk = 0 Ifk, k = I, ... , N, i.e. that intra-processor message passing 
incurs a negligible communication cost as compared to the 
inter-processor one. We feci that this is a fully justificd assumption 
for all existing distributed systems. 

In the next two sections we describe our approach to process 
allocation. We propose the following combination of heuristic 
techniques: making use of a clustering algorithm, organize the 
graphs !!.. and n in hierarchies of clusters using the weigllts on 
their links as the clustering (similarity) measure. Call Land T the 
resulting process and processor cluster trees respectively. In 
4.0, Allocation Algoritlun, we show how to map the nodes of L 
to the nodes of T. This mapping defmes an assignment of 
processes to processors. The basic idea of the clustering algorithm 
is to start with a weighted graph where each node represents a 
lowest-level cluster (a leaf in the associated cluster tree). We then 
form clusters of the next higher level by grouping pairs of nodes 
connected with links of maximum weight. These pairs are then 
considered single nodes for the next iteration of the algorithm. 
Termination occurs when there is only one node left, the root of 
the cluster tree. 

3.0 Clustering 

The algorithm presented is a variation of the agglomerative 
algorithm [I-lago83] which uses the weight between nodes as the 
similarity criterion. The readcr can consult [Bowe87] for a formal 
definition of the algorithm. The input to this algorithm is a graph 
G = (V,A) where V is a set of nodes and A is a set of edges. 
Associated with A is the set E, which contains the wei gilts of all 
edges in A. 

The first step is to copy the graph G into a working graph G' . 
Since an agglomerative algorithm is used, a series of intermediate 
passes are made which cluster the nodes with the greatest amnity. 
During each intermediate pass, each node must be put into a 
cluster. A cluster is a collection of nodes, possibly a single node in 
the case of a disjoint node (i.e., not communicating with any 
neighbors). . Once an intermediate cluster has been formed, all 
nodes but one are removed from the working graph (G'). The 
single remaining node acts as a representative for the removed 
nodes during subsequent iterations of the algorithm. An 
intermediate pass terminates when all nodes have been clustered, 
and the algorithm terminates when G' contains a single node. 



The fIrst step of the intennediate pass is to select a pivol node. 
This node is the one adjacent to the largest edge in the graph. 
Since there are at least two of these nodes, we can break tics by 
greatest number of edges or by selecting the lowest numbered 
node. The next step is to select all the neighbors of the pivot 
node which have not yet been clustered. These are sorted into 
descending order based on the edge weight between the neighbor 
and the pivot. The set of all neighbors and the pivot node are 
now considered for clustering into a single node. 1\ threshold 
value is used to select neighbors (and neighbors of neighbors up to 
depth k) with approximately equal weights e;j" 

An array c is introduced to track when nodes have been 
clustered. Before an intennediate pass is begun, e(v,) is set to zero 
for all nodes in V'. Once the pivot and neighbors have been 
selected, the pivot node is marked as clustered by the e(v,) variable 
being set to one. However, the other elements of the cluster do 
not have to have their e(v,) adjusted since they are entirely 
removed from the set V'. The graph must also be changed to 
reflect the clustering. I\l1 of the neighbors selected for the cluster 
are removed from V' and all links from the pivot to all other links 
within the cluster are removed from A'. Since the pivot must 
represent all the deleted nodes for the remainder of the algoritlun 
there are several adjustments to the edge values which must be 
made (see details in [Bowe87]). 

4.0 Allocation Algorithm 

The allocation requires a process tree for input. Non-leaf nodes in 
this tree are denoted by r, and for any node r there is an associated 
value, nCr), which is the number of children of r. With each node 
r, we associate a set of values w, which is the number of processes 
represented by child i of r. I\n example of a process cluster tree is 
shown in Figure 1. The leaves represent the actual processes and 
the interior nodes are the result of the clustering and represent the 
clusters of processes. Each interior node has i children and each 
of these children have an associated w, value which is equal to the 
number of leaf nodes under the particular child. 

r' 

Figure I. Example of a Process Cluster Tree 

The allocation algorithm also requires a processor tree for 
input. Non-leaf nodes in this tree are denoted by R and for any 
node R , there are associated values ni, and M" These values 
represent the aggregate minimum and maximum workload 
balancing constraints, respective/y, of child i of node R. I\n 
example of a processor cluster tree is shown in Figure 2. 
I\ssociated with each leaf (a processor) is an L. and a U. which 
represent the minimum and maximum workloads, respectively, 
allowed for the processor k. An interior node k has nI. and M. 
defIned as follows: 

m. = 2:,L .. where k is a leaf of the subtree rooted at R 
M. = 2:,U., where k is a leaf of the subtree rooted at R 

104 

We defme the violation, v" of a node i of the processor cluster 
tree as follows: 

v = m, - c, ,c. is the current assigned workload on i 
I mi l 

The V,'s are then partitioned into the sets S, = {V, I V, > O} and 
Sa = {v,I V,::;; OJ. Note the following relationships between the 
current and minimum workloads: 

=> I 2 V, > 0, thus V, E S, 

La=2 
Uz=4 

Lz=3 La=2 
Uz=5 Ua=2 

Figure 2. Example of Processor Cluster Tree 

m,::;;ci<M, 
mi-M, 

02 V, > -;n;-' thus V, E S. => 

This means that the set S, contains all the processors which 
have not yet met their minimum workload requirement, and are 
thus in violation of the constraints. The greater this value (with a 
maximum of one) the farther they are Jrom meeting their 
minimum requirement. The set S, is sorted into descending order 
so that the first element of S, is always the processor which is 
assigned work first. Once a processor has been assigned work 
more than the minimum, then the corresponding Vi becomes 
negative, V, is removed from S, and added to the set S •. 

The set S. is referred to as the auxiliary set, and contains 
processors which have met the minimum workload requirement 
but have not met the maximum allowed workload. These 
processors are still available for assigrunent. S. is sorted into 
ascending order based on the absolute value of V" which means 
that the first element is the one which is farthest from the 
maximum allowed workload. 

We next present the allocation algorithm. It assumes both the 
process graph and processor graph have been clustered into trees. 
The details of the algorithm are shown in Figure 3. The 
allocation algorithm is called with the parameters (r,R), where r is 
a node in the process tree and R is a node in the processor tree. 
For the initial call, (r,R) are the roots of these respective trees. To 
allocate processes to processors, the algorithm maps the process 
tree onto the processor tree. The process tree is altered so that r is 
made to have the same number of children as R, that is, child i of 
r (process) is assigned to child i of R (processor). 

The ftrst step in the algorithm (only when both rand Rare 
roots) is to verify the feasibility of the solution. If the total 
number of processes does not lie between the total minimum and 
maximum workload constraints (summed over all processors) then 
no solution exists. The second step of the algorithm is to check if 
R is a leaf in the processor tree. Mapping the children of r to the 



children of R creates the assignment. If R is a leaf, and thus a 
single .processor, then all the children of r have been assigned to 
processor R. Since the algorithm is implemented recursively, this 
check simply terminates a path in the algorithm. 

ALLOCATE(r.R) 

1. If rand R are roots. then check global constraints. 
If !hese fail !hen stop; !here is no solution to !he prohlem. 

I mjSnS I Mj 

iechildrerr(r) ieclrildrfm(R) 

2. If R is a leaf !hen RETURN 
3. S,= {V,I V,= 1.IE chifdren(R)} 
4. c, = O. 'r/ i e chiidren(R) 
5. P, = {II', liE chifdren(r)} 
6. RA, = {} for IE chifdren(R) 
7. Repeat until P, = {} or S, = {} 

a. Let i be child of R wi!h maximum value of V, 
b. SELECf child j of r to be a~signed to processor i 
c. Perform updates 

c;=ci+wj 

II: _ m,- CI 
,- m; 

If VI S 0 !hen remove VI from Sy and if ci < M, !hen add 
VI to S. 

d. Remove Wj from P, 
e. Insertj into RA, 

8. If P, '" {} !hen REPEAT UNTIL P,.= {} 
a. Let i be child of R wi!h MIN I VII in S. 
b. SELECf child j of r to be assigned to processor I 
c. Perform updates 

cl = cl + 11'/ 

mJ-c, 
VI = ---;;;;-

If ci = MI !hen remove VI from S. 

d. Remove Wj from P, 
e. Insert j into RAI 

9. Now P, = {} since all elements of P, have been assigned to RA,. 
For each set RA, create a new node i as a child of r and make 
all nodes in RA, children of i. 

10. Now n(r) = n(R). ALLOCATE(I.t) for i = 1.2 .... n(R) 

Figure 3. Allocation Algorithm 

Before the main loop of the algorithm there are three 
initialization steps. In the fust, each V, in the set S, is initialized 
to one. A V; = I simply implies that the current assigned 
workload (c,) for that processor is O. Next, the set P, is initialized 
to contain the work units represented by each child of r. Finally, 
for each child i of R there exists a set (RA,) which contains the 
indices of the processes (e.g. j for child j of r) which have been 
assigned to this particular processor (or cluster of processors). 

The main loop of the allocation algorithm begins in step 7. 
The repeat until clause causes the algorithm to repeat until all of 
the processes (children of r) have been assigned (P, = {)) or all of 
the processors have at least met their minimum workload 
requirement (thus S, = (}). First select the processor with the 
greatest V, value (i.e., we select the processor which is farthest 
from meeting its minimum workload constraint). Once a 
processor has been chosen, the routine SELECT is called to pick 
one of the remaining children of r to be assigned to this proce~sor. 
This routine is described in the following section. After the 

105 

selection has been made, the rest is just bookkeeping. The current 
workload of the selected processor (c,) is updated to reflect the 
work assigned (wj ), and a new V, value must be calculated for the 
processor. If V, is negative, then the processor has met its 
minimum workload constraint, and that V, is removed from S, . In 
addition, if c, < M,. that V, is added to S.. Finally. the index (J) of 
process child j is added to the set RA,. 

If S, becomes empty before P" then all processors have met 
their minimum workload requirement but there are still processes 
which have not yet been assigned to processors. Step 8 is 
conceptually the same as Step 7, but the target set of processors is 

different. Since S, = n. the set S. is used to select a processor for 

assignment. From this set,the processor with the smallest I Vii is 
chosen (i.e., the processor which is closest to the minimum 

workload). The remainder of this step is the same as step 7, 
except that S. is updated instead of S,. Elements are removed 

from S. when they have been assigned their maximum workload. 

Step 9 modifies the tree structure for the children of r 
(processes). A new set of children are created under r equal in 
number to the children of R. For eadi' new child i of r, the nodes 
assigned to processor-i (elements of RA,) are made to be children 
of this new child i of r. If only one child of r is assigned to a 
particular processor then this intermediate node can be discarded. 

The fmal step is to recursively caU the algorithm. At this point. 
the children of r have been assigned to children of R so that both r 
and R have the same number of children. For each of these 

assignments, a call to ALLOCATE(i,i) is made for each of the 
.pairs of children. 

The unit workload assumption and the check for the minimum 
workload constraint during the SELECT process guarantee that 

the algorithm terminates with a solution. If the unit workload 

assumption were to be dropped, then modifications would have to 
be made to ensure that the workload constraints arc satisfied. 

4.1.1 SELECT 

This routine selects child j of r (cluster of processes) with the 

maximum WI to be assigned to processor i. SELECT checks 
whether there are still enough processes in P, to meet the 
minimum workload requirement of all processor nodes that are 
children of R, after the removal of j from P,. 

By way of example, assume that the processes in Pigure 4 are 
to be assigned to two clusters of processors, each with (75.85) as 
their workload constraints. Figure 5 shows the allocation after 
process children I and 2 have been assigned to processor cluster 

nodes I and 2, respectively. Note that RA, and c, reflect these 

assignments. 

If the allocation algorithm did not examine the implications of 
these assignments, there could be cases where the algorithm would 
not terminate with a solution. In this example, process child 3 of 
r (W3 = 40) would be assigned to processor child 2 of R (Vz = 0.4). 
These nodes are selected because they have the maximum 
violation (processor child 2) and workload (process child 3) .. This· 



W,=155 

Figure 4. Process tree before a pop. 

MR = 170 
mR= 150 
c R = 95 

A 
M,=.85 
m,= 75 
C1 = 50 
RA,= (1) 

M.= 85 
m2 = 75 
c 2 = 45 
RA.= (2) 

Figure S. Allocation after tirst two assignments 

would make ~ = 85 and then force process child 4 to be assigned 
to processor child I giving a fmal c, = 70. The assignment would 
have failed since the minimum workload constraints of processor I 
is not met. Therefore, the algorithm selects the greatest w, value, 
updates P, arid the c, value for the selected processor, and makes 
the following check: 

L wm ~ L(ml- c/) '<Ii, c/< ml,ie children(R) 
wmeP, 

The left hand side of this expression calculates the total amount 
of unassigned work (assuming that w, has been removed from P,). 
The right hand side calculates the total amount of work required 
to allow all processors to meet their minimum workload 
constraint. If this check is not satisfied, then the process node 
with the greatest WJ value is popped and the assignment is 
attempted again after selecting a new wp If child 3 of r is popped, 
then the resulting structure is shown in Figure 6. Notice that the 
original node (with a W3 =.40) has been removed and the three 

children of the former child 3 are now children of r. This 
completes a pop. 

Continuing with the example, after child 3 of r is popped, the 
new children of r are assigned to the processor tree as shown in 
Figure 7. 

106 

Figure 6. Process tree after a pop 

MR= 170 
mR = 150 
OR'" 155 

~ 
M,= 85 
m,= 75 
0, = 79 
RA,= (1,3,4) 

Ma= 85 
ma= 75 
01 = 78 
RA.= (2,5,8) 

Figure 7. Final allocation 

5.0 ResuJts 

The generation of a realistic workload is critical for the 
validation of the allocation algorithm. However, little is known in 
the literature about "typical" process graphs, with the possible 
exception of parallel algorithms solving specific numerical 
problems modelling highly localized interactions between 
neighbors (e.g. FFT, finite element methods; and so on). Very 
little information is available about process communication 
patterns encountered in distributed systems consisting of 
collections of workstations, departmental computers and possibly 
mainframes. Our technique is to first build a library of small 
subgraphs (2 - 8 process nodes), representing highly interacting 
processes, and then randomly group the subgraphs, through low 
volume communication links, to make the larger process graph. 
We have chosen subgraphs that, we believe, accurately reflect 
patterns of heavy communication among groups of processes in 
existing distributed systems. These subgraphs are described next. 

I)ipeline. The f!fst set of graphs consist of the pipeline graphs 
which represent a set a processes with communication in a linear 
fashion with at most two neighbors. Pipes are frequently used by 
processes running on UNIX and MS-DOS, for instance. Our 
library contains seven different pipeline lengths: 2, 3, 4, 5, 6, 7 and 
8 processes long. The weight on a pipeline link can· take the value 
5, 10 or 100. For any particular library entry, all link weights are 
the same. We therefore have 7 x 3 = 21 different pipelines in our 
library. 



Ring. The ring is a slight modification of the pipeline graph 
such that the last node communicates back with the first node as 
shown in Figure 9. There is a total of 18 different rings in our 
library having 3, 4, 5, 6, 7 or 8 nodes and 5, 10 or 100 as weights. 

·0 
Figure 9. A Ring Subgraph with Four Nodes 

Server. The server subgraph represents a server process which 
communicates with several processes that submit requests, as 
shown in Figure 10. Examples of server processes are me servers, 
name servers and so on. Although there may be a large number 
of processes occasionally communicating with a server in a 
distributed system, this subgraph models the situation of some 
processes making heavy use of a particular server. It may then 
make sense to allocate these heavy users on the processor where 
the server resides. There are 15 different server subgraphs in the 
library (4, 5, 6, 7 or 8 nodes and 5, 10 or 100 as weight values). 

X· 
• • 

Figure 10. Server Subgraph 

Interference. The interference subgraph represents a contention 
situation. The weight of the edges do not now represent volume 
of data transferred but serve instead as a measure of, for example, 
lock contention. A weight could for example be defined as the 
ratio of contended locks versus the total number of lock requests 
over a time unit and for a particular pair of processes. A data 
sharing model between processors is assumed here. The subgraph 
implies that it is highly desirable for all the processes to run on a 
single processor. Any process that is scheduled on a remote 
processor interferes with all other processes of the subgraph, as 
shown in Figure II. There are IS interference subgraphs in the 
library (4, 5, 6, 7 or 8 nodes and 5, 10 or 100 as weight values). 

Figure 11. Interference Subgraph 

Full process graph generation. The full graphs were 
constructed from the 21 + 18 + IS + IS = 69 subgraphs. We 
experimented with process graphs consisting of 45,90,180 and 360 
nodes, respectively. For a particular number of nodes (e.g. 90 

107 

nodes) 100 full graphs were generated. The 400 process graphs 
(100 of each set of 45, 90, 180 and 360) are constructed by 
randomly selecting subgraphs until the desired number of nodes 
have been generated. Each subgraph is connected through a weak 

link of weight one to the subgraph previously selected, and the last 
subgraph is connected back to the first subgraph. 

Since the subgraphs ?Ie connected into a circular fashion, it is 
possible to estimate a lower bound on the optimal solution. 
Assume a number of processors less than or equal to the number 
of subgraphs in the process graph, fully interconnected through a 
homogeneous interconnection medium (say a bus or a crosspoint 
switch), and 2 and 00 as low and high thresholds of utilization. 
Then the optimal assignment would be to allocate at least one 
subgraph on each processor and the communication cost would be 
N, the number of processors. If the number of processors is 
increased to be greater than the number of subgraphs in the 
process graph, or if the high threshold is decreased, then it is 
possible that a subgraph may have to be allocated on two or more 
processors in the optimal solution and the communication cost 
will be higher than N. But the communication cost never drops 
below N, if we do not allow idling processors (having 0 as low 
threshold of utilization). This observation proved to be very 
helpful in evaluating the heuristic solutions. 

The allocation problem, formulated as a 0-1 linear integer 
programming problem, was solved for a number of different inputs 
using MIPS/370. Figure 12 compares the optimal solution to our 
heuristic algorithm. The cost shown is that of the network 
communication. The worst case cost is an assignment where all 
communication costs are incurred. Clearly, our heuristic 
algorithm produces very reasonable allocations very fast. 

Heuristic Time 

Optimal Time 

Heuristic Cost 

Optimal Cost 

\Jorst Case Cost 

2 processors 
90 processes 
(L,U) = (40,4» 

0.581 sec 

4.52 Sec 

3.47 

2.00 

4245 

4 processors 
90 processes 
(L,U) = (20,24) 

0.592 sec 

1777.22 sec 

39.26 

4.20 

4829 

Figure 12. Heuristic and optimal allocation, CPU time and 
communication cost 

Next we present the results from 3,200 runs of the clustering 
and allocation algorithms. There are four sets of process graphs 
which consist of 45,90,180 and 360 process nodes. Each set 
contains 100 graphs (Le., there are a total of 400 proc.css graphs)_ 
Four fully connected processor graphs with all weights equal to 
one were used in the experiment (2,4,8 and 16 processors). For 
each matching of a set of process graphs to an individual processor 
graph, the clustering and allocation algorithms were executed with 
four different workload balancing constraints. We define the 
target workload to be that of a uniform workload distribution 
equal to the number of processes divided by the number of 
processors. We further defme a set of variances (10%, 25%, 50% 
and 98%) which are applied to the target workload to obtain 
minimum and maximum workload bounds. 



JO 

15 

~20 
<= 
o 
u 
~ IS 

V> 

=> 
a.. 10 
u 

CPU Time VS. Process nodes 
22 nodes per processpr 

O+---~~~~~--~--~--r---r-~ 
o 50 100 ISO 100 lSO lOO l50 400 

, of Process nodes 

Figure 13. CPU Analysis 

The CPU consumption is a critical measure of this algorithm. 
In Figure 13 we have graphed the CPU seconds, on an IBM 
3090-200, required for the clustering and allocation algorithm for a 
variety of process nodes. The aim of the configurations used in 
this example was to show the growth in CPU consumption as the 
size of the system grows. For this reason we have decided to use . 
processor configurations which always get approximately 22 
process nodes per processor (i.e., 90 processes on 4 processors, 360 
processes on 16 processors). The best' fit for the measured CPU 
time is the following function: 

CPU Seconds = k x n2.767 

where k = 2.031 x 10-5 and n is the number of process nodes. 
This relationship shows that the algorithms are practical even for 
large configurations. 

Again looking at processor configurations which always get 
approximately 22 process nodes per processor (i.e., 90 processes 
on 4 processors, 360 processes on 16 processors), we have also 
studied the communication cost. Since the optimal solution is 
extremely time consuming to calculate, we have used a feature 
inherent to the process graphs to compare our solutions. The 
workload graphs were generated by connecting a collection of 
small (2-8 process nodes) nodes together to form a large process 
graph. These small graphs were connected by a "weak-link" of 
value one. One can intuitively imagine the optimal solution to 
assign these small subgraphs to a single processor. Then the only 
interprocessor communication is due to these "weak-links". 
Therefore we can state that a lower bound for the optimal 
solution is the number of processors in the configuration. 
Figure 14 shows the heuristic solutions for the same points that 
were shown in Figure 13. These numbers are the average of 100 

. runs on each given processor configuration. In each of the 100 
runs a different process graph is being used for input. These 
results are extremely promising. since they are very close to the 
lower bound of the optimal solution. 

In addition to looking at a fixed number of processes per 
processor, we also present results for taking the same set of 
processes and assigning them to a varying number of processors. 
In Figure 15, 90 processes are assigned to 2,4, 8, and 16 
processors. The workload bounds used for these points were 
50%. Note that the assigned number of processes per processor 
gets smaller as the number of processors increase. These results 
again show that the algorithms are making very good assignments. 

108 

Communi cot ion Cost 
22 processes per processor 

4l.40 

4 I Ii 
Number of Processors 

Figure 14. Communication cost for 22 processes pcr proccssor 

As stated in the introduction of this section, the workload 
bounds were varied to determine the sensitivity of the algorithms. 
to these parameters. The CPU time was not at all sensitive to the 
workload bounds but we found the solutions themselves to be 
rather sensitive. Figure 16 shows communication costs for the 
case where 180 processes are assigned to 8 processor nodes. The 
workload bounds were calculated using variances of 10, 25, 50 and 
98 percent. The results are not immediately intuitive. Using a 
variance of 10% the workload bounds are very tight (20-24 
processes per processor). This case produces the worst results 
because the allocation algorithm is forced to split apart most of 
the subgraphs in the workload process graph. Variances of 25 and 
50 percent produce good results because the allocation is able to 
maintain the affinity of the subgraphs. 

One would think that using a variance of 98% would produce 
results better than using 25 and 50. This is not the case. As 
shown in the graph, this case produces worse results. Consider 
the following example. Assume that the process tree root had four 
subtrees each representing 44 units of work. Also assume that the . 
processor tree root contains eight subtrees each with workload 
bounds of (1,44). The allocation algorithm would assign the first 
three subtrees from the process graph to the first three subtrees of 
the processor graph. This would leave one process subtree of 44 
nodes to be assigned to five processors. The single process subtree 
would now have to be "popped"· several times to meet this 
allocation. Having tighter bounds, primarily the uppe.r bound, 
produces more popping at the higher levels of the processor tree. 
The clustering has produced a tree with heavily communicating 
nodes at the bottom of the tree, therefore, popping at the top of 
the tree does not create a severe communication cost penalty. 
Once the popping is forced to go deep to the bottom of a process 
tree, the communication penalties become high. 

The workload generations for these experiments produce a 
series of subgraphs (2-8 nodes) which are connected by a 

. Hweak_JinkH of weight one. It is interesting to measure the 
communication cost when the workload bOunds are made so tight 
that these subgraphs must be split onto separate processors. In ' 
Figure 17, the 90 node process graphs are assigned to 16· 
processors with all four workload variances. The target 
assignment for each processor is 5.6 processes per processor. 



120 

........, 100 

'" '-' 
c 

'" 

'" <> 

80 

60 

c lO 

E 
E 
~ 20 

Communi cot ion Cost 
90 Processes 50% Workload Variance 

2.30 
7.0) 

rI 

107.80 
-

l 16 

Number of proce.,ors 

Figure 15. Communication cost for 90 processes assigned to 2,4,8 
and 16 processors 

80 

70 

~ 60 

c 50 

2.000 

~ 

;:;1 .500 

'-' 
c 

'" 
-:;; 1,000 

<> 
.-
c 

E 500 
2; 
'-' 

0 

Cost 01 .orious workload bounds 
8 processors - ISO processe. 

7 1.80 

ll20 

1 g. 90 21.60 

(20.H) (16,27) (11.))) (I.H) 

Load Balancing Conslroints ( L , U ) 

Figure 16. Sensitivity to workload bounds 

Communi cot ion Cost 
90 processes and 16 pro c e s s 0 r s 

1.945 
r--

I, lJJ 
r--

Il2 107 

r-l. r---l 
(1.11) (2.8) (l.6) (5.6) 

Load Balancing Conslraints ( L , II ) 

Figure 17. Effects of tight workload bounds 

109 

In the first two cases (10% and 25% variance) the 
communication costs are very reasonable. This is because the 
subgraphs are still able to be mostly assigned to one processor. 
Once the maximum workload bound goes below the subgraph size 
the solutions get dramatically worse. It should be noted, however, 
that even in the worst case (bounds of 5,6) the communication 
cost of 1,945 is still reasonable. The total amount of 
communication for these processes nodes is 4,569. Although we 
could not calculate the optimal solution for this last case, we 
suspect that the heuristic solution is considerably closer to the 
optimal than to the worst case. 

6.0 Conclusion 

In this paper we presented a novel approach that clusters 
groups of processes that communicate frequently and allocatcs 
them as a group to processors of a distributed system. We also 
described a methodology to build a library of workloads that were 
used to evaluate our clustering and allocation algorithms. This 
methodology allows us to experiment with a great variety of 
different components, modelling groups of processes exhibiting 
specific patterns of communication, by combining them randomly 
to form realistic large process or processor networks. We believe 
that this workload accurately represents component processcs 
found in distributed operating systems. 

Using our process and processor graph generating methodology, 
we executed both our heuristic clustering and allocation 
algorithms, and a mathematical programming algorithm to yield 
optimal solutions. The comparison between the two is very 
encouraging because, at significantly lower execution time, we 
obtained allocations with cost very close to the optimal. More 
research should be done to experiment with a bigger variety of 
graphs, and to extend the allocation algorithm to cover the case of 
non-unit workloads and strong processor affinity. 

Acknowledgements 

John Forrest has been very helpful in showing us how to best use 
MIPS/370. Leo Georgiadis edited early drafts of the paper and 
helped us with discussions and comments. 

REFERENCES 

Bowe87. Nicholas S. Bowen, Christos N. Nikolaou, and Arif Ghafoor, Workload 
Allocation for Distributed Systems, InM Research, RC 13180, October 
1987. 

Ferg86. Ferguson, D., Leitner, G., Nikolaou, C., and Kar, G., "Relocating 
Processes in a Distributed Computer System/' Proc. of the 5th 
Symposium on Reliability In Distributed Software and Database Systems, 
January 1986. 

Haes80. Haessig, K. and Jenny, C.J., An Algorithm for Allocaling 
Computational Objects in Distributed Computing Systems, IBM, Zurich 
Research Laboratory, RZ 1016, 1980. 

Hago83. Hagouel, J., Issues in Routing for Large and Dynamk Networks, 10M 
Research, RC 9942, 1983. 

Ligg81. Liggett, R.S., "The Quadratic Assignment Problem: an Experimental 
Evaluation of Solution Strategies," Management Science, vol. 27, no. 4, 
pp. 442-458, April 1981. 

Niko86. Nikolaou, C., Ferguson, D., Leitner, G., and Kar, G., "Allocation and 
Relocation of Processes in a Distributed Computer System," in Yemini, 
Y., editor, Current Advances in Distributed Computing and 
Communications, vol., I, 1986. Computer Science Press. 



A DISTRmUTED APPLICATION FOR THE PHARROS PROJECT 
(pHARROS = PARALLEL HETEROGENEOUS ARCHITECTURE, 

RELIABLE REALTIME OPERATING SYSTEM) 

Tom Geigel and Mike Pagan 
GE/RCA Advanced Technology Laboratories 

Moorestown, New Jersey 08057 

ARPANET: tgeigel%henry.decnet@GE-CRD.arpa 
mpagan%henry.decnet@GE-CRD.arpa 

Abstract -- RCA Advanced Technology Labs is developing an operat
ing system kernel designed for distributed execution of programs across a 
network of parallel- and uni-processors. PHARROS (parallel Hetero
geneous Architecture Reliable Realtime Operating System) is being de
signed to be an extention of UNIX that focuses on fault tolerance and 
real time processing on heterogeneous processors. Using a dataflow graph 
(DFG) metaphor to define the application programs, DFG nodes repre
senting processes are scheduled and dispatched via a centralized control
ler. This phase of the project involves linking a DEC !LV AX, a Thinking 
Machine Corporation Connection Machine, and a BBN Butterfly comput
er via TCP/lP over Ethernet This paper discusses the design and testing 
of the PHARROS with a sonar processing application program. 

Introduction 

Advanced communications and sensor equipment, such as radars, so
nars, and satellite groundstations are beginning to rely on parallel pro
cessors to achieve better performance in both signal and data processing. 
The type of processing that must be performed, however, is very diverse; 
note the distinction between "signal processing" and "data processing," 
which has been made since the early days of the field. Traditionally, the 
data processor has been a conventional uniprocessor, the signal processor 
has been a "conventional" array processor, and both have been tied togeth
er on a single bus. More recently, the search for higher performance has 
lead to algorithms which must run on complex heterogeneous systems of 
processors. Systolic arrays, shared memory mUltiprocessors, special pur
pose Lisp machines, and even more esoteric beasts are finding their way 
into such systems. One of the goals of the PHARROS project is to pro
vide communication and application software system designers with a 
layer of abstraction to shield them from the unnecessary details of the 
hardware. -This, of course, should be the goal of all operating systems. 
The uniqueness of PHARROS is its focus on heterogeneity, fault toler
ance, and realtime processing. 

Objectives 

PHARROS itself is intended to be an extension to the UNIX kernel. 
It is not a full-blown operating system, but rather it is to be an infra
structure for the dataflow style of programming under an existing oper
ating system. In many ways it resembles NETlinks [1], Sun RPC func
tions, the Warp Programming Environment (WPE) [2], and other such 
remote program execution facilities, in that its main purpose is to allow 
programs to run and data to be transferred across different machines on a 
network. 

The major objective of PHARROS is to provide the programmer with 
a consistent view of the system on which it is running, a system compris
ing a number of dissimilar processors. All of the various computers and 
operating systems must present the same basic services which behave the 
same way and produce the same results. To insure that this would be the 
case, a common interface was derived from the ACOS/ECOS DFG specifi
cation [3] which is summarized in Table 1. ACOS/ECOS (ASP Common 
Operational Support Software/EMSP Common Operational Support 
Software) defines all of the parameters necessary to fully specify a data
flow graph. It was originally developed to allow signal processing ap
plications to be described in DFG form and automatically converted into 
executable software modules. 

TABLE 1. ACOS/ECOS DFG SPECIFICATIONS 

Data Flow Graph (DFG) A set of nodes representing the processing 
to be performed connected by a set of arcs 
representing the directed information flow 
through the graph. 

Node Parameters ~: The name of the executable code as-
sociated with a node. 
Inputs/Outputs: Connections to arcs. 

Arc Parameters Inputs/Outputs: Connections to nodes. 
Read Amount The amount of data the node 
will read from a given arc each time it exe-
cutes. 
Offset Amount: The number of data ele-
ments to skip before starting a read on a 
given arc. 
Consume Amount: The number of data ele-
ments to be removed from an arc on each 
read. (NOTE; the read amount does not ne-
cessarily equal the consume amount) 
Produce Amount: The number of data ele-
ments produced whenever the node associat-
ed with the arc is executed. 
Threshold Amount: The minimum number 
of data elements required for the node asso-
ciated with the arc to fire. 

SPGN (Signal Processing A generic high-level language defined spe-
Graph Notation) cifically to describe the structure of a DFG. 

ACOS/ECOS DFG's consist of a set of nodes representing software 
modules connected by arcs which represent unidirectional communication 
paths. Nodes are best thought of as black-box subroutines with no con
nections to the outside world other than their input/output arcs, and no 
retained state information between executions. Arcs are thought of sim
ply as queues, regardless of how they might be implemented. This ab
straction should allow the development of individual nodes "in a vacu
um," that is, without regard to the state of development of any other 
nodes in the graph. The strict enforcement of node input/output con
straints imposed by this specification makes this possible by forcing the 
programs to be written in a very modular fashion. 

ACOS/ECOS also provides a definition of a high level language for 
describing the structure and function of a graph, but PHARROS uses 
only the overall DFG description sections of the specification which de
fine the node firing and arc production/consumption parameters. 

The first phase of this project, completed in December 1987, was to 
demonstrate the feasibility of PHARROS on an existing network of dif
ferent computers running different operating systems. At the end of this 
phase, half of the PHARROS acronym was fulfIlled: it is both "Parallel" 
and "Heterogeneous." During this four month effort, an already existing 
signal processing algorithm was chosen and recoded to conform to the 
PHARROS specification. This provided both continuous feedback for de
bugging PHARROS and a complete demonstration of its capabilities us
ing a known application. 

110 



The next phase is now underway, which involves converting the entire 
system to MACH [4] and upgrading the network hardware. At the same 
time the kernel will be extended further to implement the second half of 
the acronym: dynamic node assignment will make it "Reliable" while fast 
and smart scheduling will allow realtime programming. 

Hardware 

The machines used in the fIrst phase of the project include 2 DEC Mi
croV AXen, a DEC VAX 8350, a 16 processor BBN Butterfly, and a 16K 
processor Connection Machine-l from Thinking Machines Inc. The 
V AXen run Ultrix, while the Butterfly runs Chrysalis (a Butterfly
specific OS), and the Connection Machine acts as an extension of the 
VAX 8350. All of the machines are networked together over Ethernet 

Aggroach 

This section describes the approach taken during the fIrst phase of the 
PHARROS project. 

Omniwtent Controllers 

The intention of the PHARROS project is to create an environment 
for coordinating the execution of an application across heterogeneous par
allel processors. This task was performed with the use of executive pro
grams called Omnipotent Controllers (OCs) operating independently on 
each participating machine. The OCs, written in C, are in charge of decid
ing what task is to execute and on what machine, what data files must be 
accessed by the task, and creating and sending the message that will exe
cute the task. Messages between OCs control the passing of files from 
machine to machine and the spawning of tasks from the application DFG. 
The OCs implement a message queue to read messages and perform opera
tions on a flfSt come-flfSt serve basis. Communications between the dif
ferent machine's OCs are performed via Ethernet interface programs, IPC, 
NL, and READIT, also written in C (see Figure 1). 

Initially, the PHARROS project implements a centralized scheduling 
scheme that schedules application DFG nodes that have been assigned, a 
priori, to a particular machine. Centralized scheduling comes in the form 
of a Master Omnipotent Controller (MOC). The MOC is in charge of 
scheduling the application nodes, managing the data arcs produced by the 
application, and coordinating the transfer of these arcs to the correct ma
chines. The other OCs are slaves to the MOC, performing exactly as the 
MOC instructs them, and notifying the MOC as to the completion of any 
application node running on its machine. 

Messages. PHARROS operations are performed cooperatively be
tween OCs; commands are sent via a message passing mechanism. A mes
sage consists of four parts: a message type, the message's ultimate desti
nation, a fIle associated with the message, and the message size. The type 

• • 
. ~ 

Ethernet 

Figure 1. PHARROS Network Block Diagram 

of message determines how the file is interpreted by the destination OC. 
The list of defined messages are: 

START 
EXECUTE 
NOTIFY 
TRANSFER_x 

CREATE 
DELETE 

- start DFG 
- execute a DFG node 
- notifIcation of a node's completion 
- transfer a file to machine x. If x is the 

receiving machine, then this message notifies 
the OC that a file has been transferred. 

- create a file 
- delete a file 

When an OC wishes to send a message, it forks an IPC process, pass
ing the message parts to IPC as arguments. IPC is a TCP/IP protocol, 
Ethernet communications program written in the same vein as telnet and 
ftp. The message is formatted and sent via a predetermined Ethernet port 
to NL, the IPC daemon listening on the other machine. When NL receives 
a message on the port, it spawns a READIT process to fInish reading the 
transmission. When the message is read, the file part of the message is 
written to a file on the destination machine. The message's type and file
name are then put on the OC's message queue to be read eventually by the 
OC. 

Implementation. Because of scheduling constraints, a simple ap
proach to implementing the application DFG was adopted. Conceptually, 
nodes represent executable programs that generate data. This data is 
stored in arcs in FlFO queue form. Since nodes can execute on many hete
rogeneous machines, managing arcs as a data queue becomes quite diffI
cult. In the PHARROS implementation, arcs are treated as data files. 
Nodes generate data in file form; these files are listed in a FIFO queue in 
the Master Omnipotent Controller. In this way, the writers did not 
concern themselves with the issues of memory ' management, which was 
not within PHARROS's scope of interest at this time. 

With data arcs implemented as files, a mechanism for binding the cor
rect data from an arc to any particular node instantiation was easily de
veloped. Nodes are spawned by the omnipotent controllers after receiv
ing an EXECUTE message. An EXECUTE message's associated file 
contains a command line which is passed to the execve system subroutine 
after a fork. The form of the command line is: 

The in_arc_listjile is an ASCII file containing a list of input arc 
files tabulated by the Master Omnipotent Controller. These filenames 
came from the linked lists of files representing each individual arc in the 
MOC's central DFG database. Likewise, the ouCarc_lisUile is a file of 
a list of output arcs for the node. Thus the node is bound to a set of data 
in its arcs by passing it the correct filename in the arc list files. From 
the standpoint of the node writers and DFG debuggers, this ~ethod pro
vides a transparent and generic mechanism for reading and writing data to 
arcs. The node does not have to be written with arc interfacing in mind, 
since the binding method lends itself to producing a generic interface 
template for any node, given the input and output arcs. Figure 2 shows 
some sample code . 

Master OC Scheduling. The operation of the MOC is straightfor
ward. After receiving a NOTIFY message from a slave OC referring to a 
particular node, the MOC updates the node's associated input and output 
arcs' sizes in its database. If any arc has been consumed, the corresponding 
file is deleted. This is done by the MOC by sending a DELETE message to 
the arc file's resident machine(s). The MOC then checks the nodes asso
ciated with the completed node's output arcs, called output nodes (the 
output arcs are input arcs of the completed node's output nodes). If all of 
the output node's input arcs have enough data in them, then the node is 
ready to execute. The MO~ creates filenames for the output data, and 
sends messages to the machine that the node is assigned to. These messag
es tell the machine to create the outp'!t arc files and execute the node. 
Messages are also sent to other machines to transfer the node's input arc 
files to the machine that will execute the node. 

111 



main (arqc,arqv) 
tnt argc; 
char *argv[]; 

char 
float 

.truct cmplx { 

filename [80]; 
*input data, 
*output_data2; 

float real, 
imao; 

output datal [produce amountl]; 
FILE *inargs, -

*outargs, 
*input file, 
*output filel, 
*outPut=file2; 

1*--------------- Get arc list files from argv ------------*1 
inargs "" fopen (arov[l], "rii); 
outargs = fopen(arqv[2]," r -); 

1*----------- Get input arc filename from inargs file -----*1 
fgets (filename, 80, inargs); 1* get input arc name *1 
filename [strlen (filename)-l] - 1\0 1 ;1* convert \n to NULL *1 
input_file'" fopen (filename, -r ll ); 1* open arc file *1 

I*------------------Get data from input arc----------------*I 
input data = (float *)mal1oc (read amount*sizeof (float)); 
fread(input_data, SiZBOf (float), read_amount, input_file); 

I*------------------Rest of Code here----------------------*I 

1*----- Get output arc .1 filename from outargs fi1e-------*1 
fgets (filename, 80, outargs} ; 1* get output arc name *1 
filename [strlen (filename)-l] - 1\0 1;1* convert \n to NULL *1 
output_fUel - fopen(fl1ename, ·Wll); 1* open arc file *1 

I*-----------------Write data to ouput arc .1--------------*1 
fwrite (output_datal, sizeof (.tZ'U.ct cmprx), 

produce_~,mount1,output_file1) ; 

1*----- Get output arc .2 filename from outargs f11e-------*1 
fgets (filename,80,outargs); 1* get output arc name *1 
fllename[strlen(fi1ename}-1] - 1\0 1 ;/* convert \n to NOLL */ 
output_file2 ... fopen (filename, "W·); 1'It open arc file 'ltl 

I*-----------------Wri te data to ouput arc .2--------------*1 
fwrite (output_data2, sizeof (float), -

produce_amount2,output_file2) ; 

Figure 2. PHARROS Interface Template 

The Application 

Figure 3 shows the application DFG used to test and demonstrate 
PHARROS. The algorithm is used to detect signals in very low signal
to-noise ratio environments. The main reasons for choosing this algo
rithm were its availability and the fact that it has been used a number of 
times by RCA/AlL to benchmark computer systems. 

This algorithm is well suited for implementation using PHARROS 
because it consists of a number of processing stages and subroutines which 
map well onto widely differing computer architectures. The number 
crunching part of the algorithm performs well on the shared memory ar
chitecture of the Butterfly, while the preprocessing functions are better 
matched to the massively parallel Connection Machine. Other functions 
such as displaying output which support little or no parallelization are 
best performed by a VAX. 

Conversion to PHARROS required the modules to be decomposed, 
with careful attention paid to parameter passing. This implementation of 
the ACOS/ECOS specification allows for no ,state to be saved in the 
nodes, so globally declared variables had to be eliminated. Beyond that, 
very few changes were needed. 

112 

Problems Encountered 

A few complications hindered the implementors in producing a quick 
product in the amount of time given. One involved the system-imposed 
maximum queue size. The OCs' message queues were built using the stan
dard UNIX message queue system subroutines. It imposed a limit of 40 
messages allowed on a message queue at anyone time (for the ULTRIX 
version). The implementers soon found out that 40 was quite inadequate, 
as the demonstration DFG was written to spawn 30 nodes at the same 
time. This resulted in greater that 60 messages being passed to the Moe 
at one time. Needless to say, some messages never were received by the 
MOC. 

A quick solution involved checking the current size of the message 
queue prior to placing a message on the queue. This involved creating a 
semaphore lock so that one process at a time could read the size of the 
message queue at any time. This solved the problem of lost messages, but 
caused a greater problem that degraded the MOC's performance. If a pr0-

cess could not place its message on the oes queue, it would wait a speci
fied amount of time and then attempt it again. Soon, there were many 
processes attempting to read the size of the message queue, all competing 
with the oe for the JlVAX's only processor. The result: a much slower 
oe which could not keep up with the ever increasing number of processes 
attempting to place a message on its queue the second one is removed. The 
solution is to increase the number or develop another message queue 
without implementing the UNIX routines; however, it was not a viable 
solution in the schedule given. 

Another obvious performance degrader was the use of the file system. 
For every message, there was associated with it a file. This file had to be 
created, the filename passed to the IPC process which opened it, read it, 
sent it via the Ethernet to the NL daemon, which created another file to 
hold the file sent. Finally the oe receiving the message had to open and 
read the file before finally deleting it. When the message queue is rede
veloped, it will contain a shared memory block capable of storing mes
sages without the need of files. 

Lastly, future work is intended to experiment with smarter, decen
tralized and distributed scheduling schemes and dynamic node assignment. 

Results and Recommendations 

The initial core of PHARROS has been demonstrated successfully af
ter only four months from the beginning of its development. This has 
shown the basic concepts to be sound and reasonably easy to implement on 
a real network of processors. As was expected, it also showed the present 
network implementation to be completely inadequate for even a medium
sized demonstration application. The network is now being upgraded to 
improve its performance and to allow more advanced features to be added 
to PHARROS. In its next incarnation, all of the machines in the system 
will be tied into a single high speed parallel bus (such as a VME bus). Ul
timately, the goal is to use the Distributed Interconnection Switch Net
work (DISN) to connect up the system. The DISN is a multistage 
switched network currently being developed at RCA Advanced Technolo-· 
gy Labs. In addition, as was mentioned earlier, UNIX is to be replaced by 
Mach. Mach provides distributed processing extensions to UNIX which 

, will make PHARROS simpler and more efficient, such as transparent in
terprocessor communication, multiple process and I/O threads. 

Note that nodes were truly generated "in a vacuum." Previously ex
isting, unrelated building blocks were simply spliced onto PHARROS 
kernel calls to produce the finished demonstration application. Debug
ging was accomplished by generating artificial input data and using 
PHARROS to present it to the node under development, which allowed 
symbolic debuggers to be used which might be unwieldy or impossible to 
link into the entire application. As soon as a node was completed, 
PHARROS would be used to capture its output from a dummy output 
arc. The output would then be used to test other nodes with real, rather 
than synthetic, data. 



Connection 
Machine 

Butterfly 
D 

VAX 

Figure 3. Demonstration Data Flow Graph 

References 

[1] D.F. Vrsalovic, Z.Z. Segall, D.P. Sieworek, "Netlinks: Interpro
cess(or) Communication Infrastructure for Distributed Environ
ments," Carnegie-Mellon University Technical Report, Pittsburgh, 
PA. 

[2] Bernd Bruegge, "Warp Programming Environment Users Manual," 
Department of Computer Science, Carnegie-Mellon University, 
Pittsburgh, PA, (September 1987). 

[3] "EMSP/ASP Common Operational Support Software Methodlogy 
Specification," Analytic Disciplines, Inc., (June 1983). 

113 

[4] A. Tevanian and R.F. Rashid, "Mach: A Basis for Future UNIX De
velopment," Department of Computer Science, Carnegie-Mellon 
University, Pitsburgh, PA, (June 1987). 

[5] J. VanZandt, "Dynamic Tasking in a Heterogenerous Parallel Proces
sor," Proceedings of MAPCON IV Conference, (February 1988). 

[6] J. VanZandt, "The PHARROS Project," Proceedings of the 2nd 
Workshop on Large-Grained Parallelism, Carnegie-Mellon Univer
sity Software Engineering Institute, Special Report CMV/SEI-87-
SR-5, Ed. by Mario Barbacci, Pittsburgh, PA, (November 1987), 
86 pp. 



.Finding Large-Grain Parallelism in Loops 

with Serial Control Dependencies 

Henry G. Dietz 

School of Electrical Engineering 
Purdue University 

West Lafayette, IN 47907 
January 1988 

This p~nts an automatic parallelization 
technique, control precomputation, whereby arbi
trary sequential loops, including those with serializing 
control dependencies (i.e., general wh i 1 e loops) 
and/or irreducible flow graphs, may be transformed to 
permit relatively large-grain asynchronous parallel exe
cution. The basic concept is for the compiler to isolate 
inherently sequential operations from the remainder of 
the loop, thereby enabling the remaining operations to 
be parallelized. Since there is a cost associated with 
splitting loops, not all loops can be profitably parallel
ized in this way. Compared to "pipelining," however, 
this technique effectively reduces synchronization over
head by grouping high-frequency synchronization points 
within a single process; the reduction in synchronization 
overhead is approximately proportional to the parallel
ism width of the machine. Such a transformation is 
particularly useful for non-shared memory machines, 
such as the current generation of hypercube computers, 
and with loops typical of programs written in languages 
like C. 

1. A Brief Example 

Perhaps the best way to prove that selec

tive serialization can result in dramatic 

increases in usable parallelism is to give a con

crete example. Control pre computation is a 

new kind of loop transformation which attempts 

to parallelize a portion of a loop body by selec

tively, deliberately, serializing some operations 

within the loop. In particular, operations which 

are involved in computing the expressions which 

determine when the loop is exited are placed in 

a separate loop called the preloop. The other 

operations are placed in a parallelizable loop 

114 

called the postloop, and the preloop followed 

by the postloop are both placed inside the clo

sure loop. The loop: 

while « c = getchar ( » 1= EOF) { 
checksum += f(c); 

} 

Listing 1: An "Inherently Sequential" C Loop 

where f ( c) performs a relatively expensive 

computation with no significant side-effects, 

becomes something like: 

int exit, i; 

/* Closure loop */ 

exit = FALSE; 
do { 

int ctemp[MAXWIDTH], pari; 

/* Preloop */ 

i = 0; 
do { 

if (I«c = getchar(» 1= EOF» { 
exit = TRUE; 
break; 

} 

ctemp[i] = Cj 

} while (++i < MAXWIDTH); 

/* Postloop */ 

for (pari=O: pari<i: ++pari) { 
checksum += f( ctemp[pari] ); 

} 

} wh i 1 e (I ex it) ; 

Listing 2: Listing 1 by Control Precomputation 



which is far better than pipelining execution of 

the loop, because the amount of synchronization 

needed for execution on most machines is 

reduced by a factor of MAXWIDTH. It has this 

effect because it places the synchronization

intensive portion of the loop In a single 

process/processor. In this particular example, it 

is also unclear whether it is physically possible 

for the reads from a single file to be spread 

across multiple processors as pipelining would 

generally imply. 

Notice, however, that parallelization of the 

above postloop also requires that the postloop 

be processed as an associative reduction. 

2. Introduction 

This paper will not attempt to describe the 

excellent work of [AlK82 , Al183, BuC86, Con86, 

Ell85, KAI85, KuS84, Li85, MiP86, PoK86, 

ScK86, and Wo186] in the parallelization of 

FOR TRAN DO or similar loops; it is assumed 

that such technologies will be employed wher

ever appropriate. Our intent is instead to 

define a loop parallelization transformation to 

be used when the above techniques either do not 

readily apply or result in overly 

synchronization-intensive code. The class of 

loops for which such a new technique is needed 

is perhaps best summarized as those loops which 

cannot be parallelized in such way as to change 

the order of computational complexity. (Only 

parallelism in the form of executing multiple 

iterations of the loop body in parallel will be 

considered in this paper.) 

If a sequential loop is of a certain form, 

then the loop's body for multiple iterations -

parameterized in a way corresponding to the 

parameters of the body in the iterations - may 

be executed using asynchronous parallel control. 

The constraints on the loop form which permit 

such parallelization are, to some extent, depen

dent on the ( dependence) analysis techniques 

used and also on the target machine charac

teristics (for example, on some machines, only 

certain memory reference patterns may be exe

cuted fully parallel). However, in this paper, we 

are more concerned with defining the parame

ters of the body for each iteration than with the 

data dependence and other constraints. 

2.1. Iteration Parameters 

What are the parameters of the execution of 

a loop body for a particular iteration? Any 

expression, computed within the loop body, 

whose value is not loop invariant! is potentially 

a parameter to the loop body. Further, the 

existence of a particular iteration is a parame

ter to the loop body. For the purposes of this 

paper, we define the expression which must be 

evaluated in order to determine if a particular 

iteration will occur as the iteration decider. 

Consider the following C code fragment: 

for (i=Oj i<nj ++i) { 

a[i] = OJ 

Listing 3: Simple Parallelizable Loop 

The loop body here may be considered as having 

parameters &.a [ i], i, and an iteration 

decider derived from the loop exit expression 

i < n. In practice, since &. a [ i] and i are 

related by a loop invariant expression (i = 
(&.a [ i ] ) - (&.a [ 0 ] )), only one of them need 

be a parameter to the loop body. 

2.2. Iteration Deciders 

The iteration decider for the loop in Listing 

3 is constructed as: 

{O + (k * 1» < n 

Listing 4: Iteration Decider for Listing 3 

1 An expression is loop invariant if its form does not change from one 
iteration to the next and if no values used in the expression may be changed by 
earlier iterations. 

115 



which was obtained by substituting the formula 

computing the value of i in iteration k (0 + 

(k * 1») within the loop exit test expression 
(i <n). Notice that this iteration decider is loop 

invariant; it can be determined that the kth 

iteration would or would not occur in the 

sequential execution of the loop without any 

dependence on a value computed in a previous 

iteration. In order for a loop to be large-grain 

parallelizable, it is necessary that the iteration 

decider be loop invariant. 

It is also necessary that the iteration 

decider be defined for values of k as large as the 

number of iterations the sequential loop would 

execute plus the maximum number of parallel 

operations. This is due to the fact that the 

entire loop is asynchronous parallel iff each 

process is able to terminate itself, which implies 

that the iteration decider may be applied across 

all PEs despite the fact that as few as one may 

actually have work to do. Consider the loop: 

for (i=O; a[i]<n; ++i) { 
a[i] = 0; 

} 

Listing 6: Loop with Exit Condition Hazards 

here, the formula is: 

a[O + (k * 1)] < n 

Listing 6: (Incorrect) Iteration Decider for Listing 5 

which is loop-invariant, but it is not properly 

defined over the necessary range of values for k. 

It fails in two respects: 

[1] Suppose n is 5, the target machine is capable of 
executing four operations simultaneously, and the 
first four elements of the array a [] are { O. 
5 • 3 , 1 }. The formula of Listing 6 would 
determine that iterations 0, 2, and 3 are to be exe
cuted, although the sequential loop would execute 
only iteration O. In other words, this formula is 
not valid for any value of k larger than the number 
of iterations made by the sequential loop. An even 
simpler example of such a failure may be seen by 
replacing i <n of Listings 3 and 4 with i 1 =n. 

[2] Suppose that the first element of a to satisfy the 
exit condition is the last element of the array. 
Ignoring, for the moment, that the formula of List
ing 6 does not yield correct decisions for values of k 
larger than the number of iterations made by the 
sequential loop, it is clear that the test itself would 
cause a reference past the end of a. 

Both of these kinds of failures can be corrected 

directly in some, but not all, cases: 

• If the test in the loop was i 1 =n, it is within 
current compiler technology to convert the test 
into i <no This transformation requires recogni
tion of the linear sequence of values taken on by 
i, but this insight is also necessary in order to 
create a loop-invariant formula if the loop condi
tion is i <no 

• If the test involves a subscripting operation, the 
compiler could automatically prefix the test with a 
bounds check for the array. If the subscript would 
be out of bounds, then the loop is terminated 
without performing the remainder of the loop con
trol test. (Of course, this "fix" assumes that the 
sequential loop remained in bounds - which is not 
necessarily a good assumption.) 

The vast majority of loops for which a proper 

iteration decider cannot easily be created are, 

however, loops which have been commonly 

characterized as either "inherently sequential" 

or as parallelizable only by "pipelining" (with 

no asynchronous parallelism). The asynchro

nous parallelization of this kind of loop by selec

tively serializing the synchronization-heavy por

tion of the loop is the aim of the current work. 

Typical examples of loops for which only 

this kind of selective serialization can produce a 

proper iteration decider include: 

• a loop which reads input from a single stream until 
some condition occurs in the stream (as in Listings 
1 and 2), 

• a loop which traverses a linked list, and 

• a loop which is essentially a FORTRAN DO loop 
with an additional control-flow hazard (multiple 
entries or exits, embedded conditionals). 

Many loops of these forms can provide substan

tial asynchronous parallelism using control 
precomputation. The basic' idea is that each 

116 



such loop can be converted into a sequential 

loop which computes the iteration deciders and 

an asynchronous parallel "loop" which is driven 

by the iteration deciders computed serially. 

3. Terminology and Definitions 

Since it is relatively convenient to do so, 

this discussion employs the terminology of con

ventional, sequential, compiler flow analysis, as 

per [AhU77 and AhS86j. These terms are use, 

def, D-V chain, and V-D chain. Two new 

terms, def closure and use closure, are also 

defined - but these are simply extensions of the 

concepts of D-U chains and U-D chains, respec

tively: 

Definition 1: Def Closure (D*) 
The'def closure, denoted D*, of a particular def 8 
consists of the D-U chain of 8 U the D-U chain of 
each def which establishes a binding where the 
value used in the binding was either in D* of 8 or 
resulted from a computation involving at least one 
use that was a member of D* of 8. Informally, D* 
of 8 consists of the def 8 and the set of all subse
quent uses and defs which may depend on prior 
execution of the def 8. 

Definition 2: Use Closure (U*) 
The use closure, denoted U*, of a particular use u 
consists of the U-D chain of u U the U-D chain of 
each use which is either used to produce the value 
for a def which is an element of U* or is involved 
in a computation whose result is used to produce 
the value for a def which is an element of U*. 
Additionally, each use which is involved in select
ing a flow path applied by D-U chains within U* of 
u is also a member of U* of u. Informally, U* of u 
consists of the use u and the set of all uses and 
defs which may have to be executed to produce the 
value which is used in use u. 

These essentially embody the concept of closure 

of a D-U chain (for D*) and of closure of a U-D 

chain (for U*). No other terminology or 

definitions are needed. 

117 

4. Control Precomputation 

The control precomputation transformation 

may be viewed as analysis and transformation 

of an arbitrary cycle within a flow graph, result

ing in a functionally equivalent substitute for 

that cycle within the flow graph. In this view, 

it is convenient to consider the input to the 

algorithm as a subgraph of a conventional con

trol flow graph (as defined above) which is 

known to be a cycle. 

The algorithm does not require that the 

cycle in question be the result of structured 

code, nor even that it constitute a reducible 

graph. Given a reducible flow graph, the task 

of locating a cycle and marking its subgraph is 

easily accomplished. Although optimal parallel

ization might not result, irreducible graphs may 

be processed in like manner - by recognizing 

any apparent cycle. In such a case, any addi

tional entries to or exits from the subgraph 

must be represented in the extracted subgraph: 

each cut point should be denoted by a dummy 

node in the subgraph. 

In its most general form, the control 

precomputation transformation algorithm may 

be summarized as: 

[1] Straighten the flow graph. A conventional con
trol flow graph is constructed for the source pro
gram, but for each node A, if only a single arc 
leaves A and it goes to node B, and if no other arc 
ends in B, then nodes A and B are combined into 'a 
single node. (Since jumps are represented by arcs, 
each node should consist only of computational 
operations - no jumps are internal to a node.) 
Code straightening is discussed in [Die84]. 

[2] Split loop by U· of exit expression{s). Let P 
be the set of all uses which are in the exit condi
tion expression(s) of the loop. For each operation 0 

within the loop, if there exists a use u E P such 
that 0 E U*(u), then 0 is placed in the preloop; 
otherwise, 0 is placed in the postloop. At this 



point, it is possible to make a good estimate as to 
whether the loop can be usefully parallelized in this 
way - if not, the entire transformation can be 
aborted. 

[3] Promote defs across preloopjpostloop. For 
each def 8 E preloop, if D*( b) is not a subset of the 
preioop (Le., a def in the pre loop is used in the 
postloop), allocate a vector of temporary storage to 
buffer the value of this def between the preloop 
and the postloop. Adjust the references accord
ingly in the preloop and postloop. 

[4] Internal branch correction. If the body of the 
source loop contained conditional branches, for 
each conditional that dominates code which is nei
ther 

• completely contained within the preloop nor 

• completely contained within the postloop 
create a vector of temporary storage to buffer the 
value of the conditional expression and replicate 
the conditional construct in both the pre loop and 
the postloop. The 'preloop stores values into the 
vector and the postloop reads them, thereby dupli
cating the control flow which would have occurred 
within the sequential execution of each iteration. 

[5] Alternative entry correction. If the source loop 
may be entered from points other than the top of 
the loop, only a portion of the first iteration may 
be executed, but all other iterations (except 
perhaps the last one) will execute the entire body 
just as though the loop had been entered at the 
top. Therefore, any jump which would enter the 
source looI? becomes a jump to a chunk of code 
which replicates the portion of the first iteration 
which appears after the jump entry point. This 
chunk terminates with a jump to the test of the 
closure loop. 

[6] Alternative exit correction. If the body of the 
source loop contained conditional exits at other 
than the edge between iterations, create a scalar 
state variable which may take on a value 
representing the exit condition which has occurred. 
(A scalar may be used since only the last iteration 
of the loop may be exited prematurely.) The body 
of the postloop is then replicated after the post
loop, with the conditional clauses of the source 
loop replaced by references to the scalar state vari
able. 

[7] Construct the final looping structure. The 
pre loop, postloop, etc., are placed within a closure 
loop which permits buffer vectors to be of finite size 
(in Listing 2, of size MAXWIDTH). Typically, this 
size would be related to the parallelism width of 
the hardware. Parallelization of the postloop then 
proceeds by traditional methods. 

Ignoring the complexity of the flow analysis and 

of later operations parallelizing the postloop, 

the complexity of this transformation is approx

imately O(n), where n is the number of uses + 
defs within the loop. 

5. A Complete Example 

Due to space limitations, it is not possible 

to give examples of all the different types of 

loops which can be parallelized using the control 

precomputation transformation. Instead, this 

section presents in detail the parallelization of a 

loop which not only cannot be effectively paral

lelized by other means, but also embodies an 

irreducible flow graph. ~h4?"" code ~~ears In 

Listing 7. ~ ill 
for (i=O; a[i]<n; ++i) { 

a[i] = 0; 

b: 
c[i] = 0; 

} 

Listing 7: Irreducible Source Loop 
with Control Dependencies 

By rather conventional means, the source loop 

of Listing 7 can be converted into the tuple code 

of Table 1, generating the basic blocks listed in 

Table 2 and the flow graph of Figure 1. 

Basic Block Set of Tuple #s Exit Arc(s) 
A {a} B 
B {I, 2, 3, 4, 5, 6} False(5) ~ C, 

else G 
C {7} E 
D {8, 9,10, ll} B 
E {12, 13, l4} F 
F {IS, 16, 17, IS} D 
G {19, ... } 

Table 2: Grouping of Tuples into Basic Blocks 

llR 



Tuple #
o 
1 

2 
3 

4 
5 
6 

7 
8 

9 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 

Operation 
Store #i,#O 
Load #i 
Add #a, 1 
Load 2 

Load 
LT 
JumpF 
Jump 
Load 
Add 
Store 
Jump 
Load 
Add 
Store 
Load 
Add 
Store 
Jump 

#.n 
3,4 
5, 19 
12 
#i 
8,#1 
#i,9 
1 
#i 
#a,12 
13,#0 
#i 
#c,15 
16,#0 
8 

Table 1: Tuple Code Representing Listing 7 

Figure 1 1: Original Control Flow Graph 

1 H) 

This graph can be straightened (step 1 of the 

control precomputation algorithm) to create the 

graph in Figure 2 and the new set of basic 

blocks listed in Table 3. 

Figure 2: Straightened Control Flow Graph 

Basic Block 
A 
B 

{C,E} 
{F, D} 

G 

Tuple Sequence 
{O} 
{I, 2, 3, 4, 5} 

{12, 13, 14} 
{IS, 16, 17, ~ 9, 10} 
{19, ... } 

Exit Arc(s) 
B 
False(5) -
{C, E}, else G 
{F, D} 
B 

Table 3: Basic Blocks after Code Straightening 

Next, correction is made for the multiple entry 

points to the loop. There is no particular rea

son to choose one entry over the other, however, 

trying both (see Figures 3 and 4) clearly demon

strates that the normalization for the entry at 

f or is more efficient, resulting in the new set of 

basic blocks given in Table 4. Note that, since 

Figures 3 and 4 represent only the code derived 

from the loop body, in some cases nil nodes are 

introduced as placehplders for the entry and 

exit points where the loop body code was not 

replica ted. 



Figure 3: Normalized Graph for Entry at for 

Figure 4: Normalized Graph for Entry at b: 

Basic Block Tuple Sequence Exit Arc(s) 
A {o} B 
B {1, 2, 3, 4, 5} False(5) - C, E, 

else G 
C,E,F,D {12, 13, 14, 15, 

16, 17, 8, 9, 10} B 
G {19, ... } 

Table 4: Basic Blocks after Normalization 

120 

Considering only those operations remammg in 

the loop (see Figure 5), the final loop structure 

can now be constructed using the U* and D* 

information in Table 5. The resulting preloop 

and postloop code is given in Table 6. 

Figure 6: Extracted Normalized Loop 

Tuple =IF Operation U*(6) D*(lO) 
1 Load #i Yes Yes 
2 Add #a,1 Yes Yes 
3 Load 2 Yes Yes 
4 Load #.n Yes No 
5 LT 3,4 Yes Yes 

14 Store 2,#0 No Yes 
16 Add #c,1 No Yes 
17 Store 16,#0 No Yes 

9 Add 1 , # 1 Yes Yes 
10 Store #i,9 Yes Yes 

Table 6: Use/Def Closures for Optimized Graph 

This parallelization permits the assignments 

a [ i ] = 0; and c [ i ] = 0; to be asyn

chronously parallelized for all iterations. 



Block Tuple # 
Preloop B 1 

2 

3 
4 

5 

Preloop 9 
C,E,F,D 10 

PostIoop X 
body 14 

Y 
16 

17 

Operation 

Load 
Add 
Save 
Load 
Load 
LT 

Add 
Store 
Save 

Restore 
Store 
Restore 
Add 
Store 

#i 
#a ,1 
ASubmu!,2 
2 
#n 
3,4 

1,# 1 
#i,9 
IBu!,2 

ASubmu!,2 
X,#O 
IBu!,2 
#c,Y 
16,#0 

Table 6: Resulting Preloop/postIoop Contents 

6. Summary 

The principle of parallelization by selective 

serialization is, as evidenced by the control 

precomputation transformation, a very effective 

way in which to minimize synchronization over

head thereby maximIZIng asynchronous 

parallelism. This is vital in automatic paralleli

zation for non-shared memory MIMD machines, 

such as the current generation of hypercube 
computers. 

We have not yet determined how often such 

parallelization opportunities arise in real pro

grams, however, it is our belief that the high 

frequency of occurrence of these loops in C pro

grams we have examined is not anomalous. 

While FORTRAN number-crunching codes often 

employ easy-to-parallelize loops, the nature of 

systems programs, typical of C code, is such 

that unpredictable whiles appear to far out

number DO-like loops. Further stu.dy is under
way to confirm or deny this. 

121 

References 

[AhS86] A. v. Aho, R. Sethi, and J. D. Ullman, Compilers: 
Principles, Techniques, and Tools, Addison Wes
ley, Reading, Massachusetts, 1986. 

[AhU77] A. V. Aho and J. D. Ullman, Principles of Com
piler Design, Addison Wesley, Reading, Mas
sachusetts, 1977. 

[AIK82] 

[AIl83] 

[BuC86] 

J. R. Allen, K. Kennedy, "PFC: A Program to 
Convert Fortran to Parallel Form," Department 
of Mathematical Sciences, Rice University, Hous
ton, Report MASC TR 82-6, March 1982. 

J. R. Allen, Dependence Anall/sis for Subsr.ripted 
Variables and its Application to Program Transfor
mations, R.ice University, Ph.D. Thesis, April 1983. 

M. Burke, R.. Cytron, "Interprocedural Depen
dence Analysis and Parallelization," SIGPLAN 
Symposium on Compiler Construction, 1986, pages 
162-175. 

[Con86] Vectorizing C Compiler, Convex Computer Cor
poration, Richardson, Texas, 1986. 

[Die84] H. G. Dietz, Compiler Design and Construction II, 
Graduate Course Notes, Polytechnic Institute of 
New York, Spring 1984. 

[EIl85] J. R. Ellis, Bulldog: A Compiler for VLlW Archi
tectures, ACM Doctoral Dissertation Award, MIT 
Press, 1985. 

[KA185] "Mini-KAP / AF," Kuck and Associates, Inc., new 
product release, 1985. 

[KuS84] D. J. Kuck, A. H. Sameb, R. Cytron, A. V. Veiden
baum, C. D. Polychronopoulos, G. Lee, T. 
McDaniel, B. R. Leasure, C. Beckman, J. R. B. 
Davies, and C. P. Kruskal, "The Effects of PrO'
gram Restructuring, Algorithm Change, and 
Architecture Choice on Program Performance," 
IEEE Proceedings of the 1984 International 
Conference on Parallel Processing, August 1984. 

[Li85] Z. Li, A Technique for Reducing Data Synchroni
zation in Afultiprocessed Loops, MS Thesis, Univer
sity of Illinois at Urbana-Champaign, May 1985. 

[MiP86] s. P.Midkiff and D. A. Padua, Compiler Gen
erated Synchronization for DO Loops, Technical 
Report, University of Illinois at Urbana
Champaign, Number CSRD 554, 1986. 

[PoK86] C. D. Polychronopoulos, D. J. Kuck, and D. A. 
Padua, E:recution of Parallel Loops on Parallel 
Processor Systems, University of Illinois at 
Urbana-Champaign, Number CSRD 552; 1986. 

[ScK86] R. G. Scarborough and H. G. Kolsky, "A Vectoriz
ing Fortran Compiler," IBM Journal of Research 
and Development, Volume 30, Number 2, March 
1986. 

[WoI86] M. Wolfe, "Advanced Loop Interchanging," pre
print extended version of a paper appearing in the 
Proceedings of the 1986 International Conference 
on Parallel Processing, 1986. 



MINIMIZING COMMUNICATION FOR SYNCHRONIZING PARALLEL DATAFLOW PROGRAMS* 

Lee Badger 
Computer Science Department 

University of Maryland, College Park 
College Park, MD, 20742, USA 

and 
Marl!: Weiler 

Computer Sciences Laboratory 
Xerox PARC 

3333 Coyote Hill Rd. 
Palo Alto, CA 94304 

Abstract -A new method of automatically paralleliz
ing sequentially written programs is to use dataflow in
formation to break programs into components which exe
cute concurrently and without communication. At execu
tion time, the output streams of the separate components 
are merged to construct the sequential behavior of the 
parallelized program. This paper presents a technique to 
perform the merging operation with approximately mini
mal communication. The merging algorithm is potentially 
applicable to any parallel computer which uses dataflow 
paths to organize the computation. 

Introduction 

Tl).is paper describes an algorithm which substantially 
improves on a new way to automatically parallelize exist
ing sequential programs. Traditional parallelism extract
ing approaches include pipelining [5], vectorizing [1], [2],. 
and the development of dataflow techniques [4]. Pipelining 
seeks to keep many instructions simultaneously in differ
ent stages of execution. Vectorizing techniques attempt to 
execute all cycles of a loop simultaneously. Dataflow ma
chines attempt to execute as many fine grained data ma
nipulation operations as are enabled at any time. These 
techniques,sometimes achieve significant speedup [6], but 
usually require special hardware or the tight coupling 
of processors [6], [8]. We propose a general technique 
which can tolerate slow interprocessor communications 
and which is therefore applicable for use in a wide va
riety of MIMD [7] environments. Our method is described 
in terms of program slicing [12], although it has potential 
for application to many parallelization techniques based 
on dataflow. 

Slicing is a technique for breaking a program into 
dataflow-related components called slices. The slices are 
distributed onto separate processors and executed concur
rently. The slices are themselves complete programs, and 
normal vectorizing techniques such as scalar renaming, 
variable expansion, node splitting, loop distribution, etc. 
[9], [11] can be used to increase their execution speeds. 
Their output streams are collected at a central location 
and assembled at runtime to form the output of the orig
inal program. The main 'contribution of this pa,per is an 
efficient way .to perform this last process, which we call 
splicing. 

A slice of a program P is a subprogram of P which has 
the property that it faithfully reproduces some portion 
of p's behavior. For instance, if P contains an output 
statement 0, then a slice ~ of P, which contains 0, at 
runtime executes 0 exactly the same number of times that 
P does (on the same input), and the i'th execution of 0 

* This research was supported in part by ONR grant 
NOOOI4-87-K-0307 and by Xerox Corp. 

122 

Figure 1: Compile Time 

in ~ produces exactly the same value in the output as 
the i'th execution of 0 in P. A slice need not contain 
statements which compute values which are not output in 
that slice. If P contains Ie output statements, then we may 
generate Ie slices of P, PI, P2 ••••• P", such that the i'th slice 
contains the i'th output statement and no other output 
statement. These slices, along with modules to split their 
common input and merge their output, may be generated 
automatically by a slicing/splicing compiler (see figure 1). 
Executing concurrently and without communication, the 
slices reproduce all of p's behavior (see figure 2), but the 
arbitrary differences in the speeds of individual slices may 
cause the output to be permuted. The splicing problem is 
the problem of finding at runtime the correct ordering of 
the output. Cal (b) 

. Previous solutions to the splicing problem exist [10]' 
[13], but they require each ~ to continually transmit to a 
central location a sequence of nodes or edges which repre
sents ~'s walk in its flowgraph. These solutions pose effi
ciency problems because the amount of information trans
mitted by each slice is proportional to the running time 
of the slice. Our new solution is an improvement because 
it allows each slice to transmit only a small amount of 
informa~!on .along with each piece of normal output, thus 

(al A symmetric problem, which has been dubbed "split
ting", concerns how slices read from a common input file. 

: The mechanism which we develop here to order write oper
ations, however, may be applied to order read operations, 
and so we address the splitting problem only iqlplicitly. 
(b) For the reader who may· not be familiar with slicing 

and splicing it is important to note that figures 1 and 2 
oversimplify in two ways. First, the complete program is 
shown being sliced as a whole, when in fact slicing and 
splicing are applicable to any single-entry-single-exit pro
gram component and one may wish to choose components 
for maximum parallelism. Second, it shows only a single 
splicer, while in fact splicers can be cascaded to reduce 
bandwidth and fan-in. 



Figure 2: Run Time Communication 

practically eliminating the overhead associated with splic
mg. In fact, we argue later that the amount of information 
we transfer is close to a lower bound. 

Algorithm 

I~ the new solution, a small collection of counting vari
ables IS added to eacl! slice to record information about its 
progress during execution. When eacl! slice encounters an 
output statement, it sends to the splicer module both the 
output that it has produced and the sum of its counting 
varIables. (By the properties of slices, different outputs 
from the same slice are produced in the correct order and 
we assume for simplicity that the communication medium 
is FIFO.) When the splicer receives two (output, counter
sum) pairs from two different slices, it must decide how to 
order the outputs produced. For some outputs, a static 
analysis performed when the program was first sliced pro
vides enough information for the splicer to decide which 
output should appear first in the program's execution. For 
other outputs a static analysis is insufficient, and the coun
ters are carefully chosen at slice-time to provide the addi
tional information to resolve these cases at runtime. 

Let P be the original program to be parallelized. With
out loss of generality, we will assume throughout this pa
per that there are only two slices of P, Pj and P;, and only 
two output statements in P, OJ and 0i, such that OJ appears 
only in Pj and OJ appears only in Pj. For brevity we will use 
Pk and 0,. to denote an arbitrary slice or output statement. 

. We now present some definitions which are necessary to 
express the algorithms which preprocess P, generate the 
counting variables for each slice, and perform the splicing. 

A h.ammock graph. is a structure (N, E, no, ne) such that N 
is a set of nodes, E is a set of edges between elements of N, 
and no is a start node and ne is an end node such that every 
element of N can be included in some directed path p from 
no to ne' For our purposes, we assume that outdegree(n.) = o. 
(Note that any hammock can easily be augmented to make 
this true, and that any flowgraph can easily be augmented 
to be a hammock.) We assume that program p's flowgraph 
G is such a hammock. The flowgraph of slice Pk is also 
a hammock and we denote its set of nodes Nk and note 
that Nle ~ N. For notational simplicity we assume that 
outdegree(olc) = indegree(o,.) = 1. (Our results do not depend 
in any essential way on this simplification.) Define an 
inverse dominator of a node n to be another node n' such 
that every path from n to n. contains n'. Denote a branch 
,node (outdegree > 1) by b. For any node n in G, define 
I(n) = {bin is on some directed path p from b to b's nearest 
'inverse dominator such that p contains b's nearest inverse 

123 

dominator only once, and n is not on an endpoint of pl. 
I(n) is the set of branch nodes which can influence the 
execution of n [3]. Let 1= 1(0;) n I(oi)' I is thus the set of 
branch nodes which can affect the execution of both OJ and 
OJ. 

The key idea of our method can be stated as follows: 
Only statements in I can affect the relative ordering of 
OJ and 0i, so to synchronize OJ and 0i it suffices to know 
where, relative to the number of executions of statements 
in I, each slice was when it produced OJ (Theorem 1). fur
thermore, if both slices are at the same place relative to 
executions of statements in I, then the relative order of 
OJ and OJ is completely determined, and the same, for all 
cycles in the flowgraph (Theorem 2). In order to better 
motivate the proofs of these theorems, below are bnef de
scriptions of the algorithms to preprocess P, to generate 
the tags which accompany the outputs of slices, and to re
construct p's intended output at the splicer module. The 
correctness of these algorithms depend on the theorems 
proved in the following section. 

Preprocessing P 

Find at compile time a directed path p in G which 
connects OJ and OJ and contains no element of I, if such a 
path exists. If p exists, then we remember its direction: if 
p is from OJ to OJ, then we remember that OJ takes prece
dence over Of. The direction of p, if it exists, provides the 
extra information which, when combined with the values 
of the counting variables associated with OJ and 0;' allows 
the splicer to correctly order an occurrance of OJ and an 
occurrance of 0i in the output. If p does not exist, then 
we will not need this information. 

Tag generation 

In Pj and Pi, for eacl! element of I, initialize a counter 
variable to the value 0 before execution begins. Each time 
execution passes a node in I, increment the corresponding 
counter variable. When an output statement OJ or OJ is 
encountered, send the collection of counters, along with 
the value to be output, to the splicer. We refer to this 
collection of counters as a tag. 

Splicing algorithm 

At runtime, order two outputs (from different slices) 
by comparing their tags. The tag whose counters add to 
a larger sum is larger. The output statement with the 
smaller tag preceeds the output statement with the larger 
tag. If the tags are equal, then the output statement with 
the greater precedence (from the preprocessing of p) pre
ceeds the other. 

Proof of Correctness 

We model the execution of P by "a walk 10 = (no = 
nl, 112, ns ... , nn = n.) where each n; is an occurrance of a 
node in G. Denote a prefix of 10 as til. A special prefix 
of a walk in a slice which occurs quite often is the prefix 
which ends at the output statement. We usually refer 
to this prefix, for slice k and statement Ole, as simply til". 
For A ~ N let lOlA be the sequence 10 with every n; ¢ A 
removed. Let 1101 denote the length of 10, and let II denote 
concatenation between sequences. If we let slice Pj have 
flowgraph Gj then we model the execution of ~ by a walk 
Wj in Gj • According to the definition of a slice we must have 
Wj = WIN, and Wjl{o;} = wI{Oj}' In order for ~ to generate 



Wil{oi}l (in other words, in order for Pi to be a slice) Pi 
must contain every element of I, and the elements of 1 
must behave in Pi exactly as they do in P. We thus have 
WII = will and, analogously, WII = Will' Note that will and· 
will are both prefixes of the same sequence, WII. During 
execution, when slice ~ reaches execution state Wi such 
that the last element of Wi is the output statement Oi, it 
sends to the splicer the result of 0; and also the sum of its 
set of counters, which is equal to IW;III. 

The splicer module will receive and compare IW;lll and 
IWilll. They will either be unequal or equal. We wi 1 con
sider both cases and show that in each case the splicer is 
able to decide which output should preceed the other in w. 
We first consider the case where they are unequal. Let the 
irreflexive, asymmetric, transitive relation n; -<, Pli denote 
that n; preceeds Pli in sequence s and let last(s} denote the 
last element of s. We wish to prove: 

IW;III < IWill1 * last(w;} -<w last(wi} 

This assertion states that, if the tags are unequal, then 
the output of the slice which sent the smaller tag should 
preceed the output of the slice which sent the larger tag. 
In order to prove this assertion, we require two technical 
lemmas. 

The following lemma asserts that, if two elements of 
a projected sequence are related by -<, then they are also 
related in the sequence on which the projection is defined. 

Lemma 1 

For all s E N+, A$; N, and n, m elements of SIA 

Proof; We show it by induction. Let x be ~n element of 
N - A. We have SIA = sl11(n)IIs211(m)IIs3 where Sl, S2, and S3 
are subsequences of SIA' Now let A' = AU{x}. We now have 
SIA' = s~II(PI)IIs~II(m)IIs~ where sl is Si with possibly many 
instances of x inserted in it. By transitivity the relation is 
preserved. QED. 

The next lemma displays a necessary relationship be
tween elements of a projection of a prefix of a sequence 
which are in the projection and elements of the prefix 
which are not in the projection. Let [sl; denote the ith 

element of sequence s. 

Lemma 2 

For all s E N+, A $; N, and II E Integers 

ISlA I < II S; ISlA I => last(s} -<, [slAlv 

Proof; We prove it by contradiction. Suppose that [sIAl. -<, 
last(s}. Then [sIAl. must be in SIA' Let u = ISIAI. Then 
last(sIA~ = [slAlu and we must have u ~ II, but by the left 
hand s1de we have u < II, a contradiction. QED. 

We are now able to prove that the splicer's decisions 
are correct when the tags are unequal. 

Theorem 1 

IWill1 < IWill1 * last(w;) -<w last(wi} 

Pro?/; Informally this must be approximately true, since 
Wi 1S "farther ahead" than W; in executing statements in 

124 

w = (1,2,3,0105,2,4,02,5,2,6) 
W1 = (1,2,3,01) 
W2 = (1,2,3,0105,2,4,02) 

1= {2} 
W1!1 = (2) 
W2!1 = (2,2) 

!W1!1! = 1 
!w2jI! = 2 

Figure 3: Example when projections are not equal. 

1, and only statements in 1 matter for rei.ative ordering 
of 0; and 0i' Lemmas 1 and 2 permit us to generalize 
from prefixes of walks projected through 1 (which is the 
sort of information we get from IWklll) to prefixes of the 
base walks. Formally, we will show that, for some x E w, 
last(w;} -<w x and x -<w last(wi}' Let II = IWill1 and notice that 
II S; IWJ'lI1 = IW;III and that IW;III < II. We now have: 

IW;III < II S; IWill1 

and by lemma 2 we have: 

last(w;} --(Wi [W;II1. 

Using the equality WINi = W; we have: 

last(w;) -<WIN, [w;II1. 

Applying lemma 1 we get 

last(w;} -<w [willl.· 

Now notice that [willl. = [willl. and that [willl. = last(will}' 
Remember that last(wi} is an output statement, not an 
element of 1, and therefore: 

last(will} --(Wj last(wj) 

Substituting [willl. back for last( Wjll} we have: 

[w;II1. --(Wj last(wi) 

Using the identity Wi = WINj and lemma 1 we have: 

[w;II1. --(w last( wi) 

Combining previous results: 

last(wi} -<w [willl. -<w last(wi} 

and by transitivity of -< .. we have: 

last(w;) -<w last(wi} 

which is our desired result. QED. 

Theorem 1 enables the splicer to make the correct de-



more, rather than transmitting the complete counter value 
each time, each slice could simply transmit the increment 
in the counter value since the last time it was transmitted, 
and the splicer could keep track of the full value. Finally, 
an upper bound (e.g. 16 bits) could be set on the size of 
the integer representing the counter increment. Whenever 
the upper bound was in danger of being exceeded the slice 
would transmit an additional increment to the slicer. 

Is transmitting the sum of the number of times the 
statements in I have been executed the least amount of 
information one can get away with for synchronizing the 
slices? And is incrementing a counter for each statement 
in I the least amount of execution overhead possible in 
the slices? At this time we do not have a formal answer 
to these questions. However, we believe our method to be 
optimal, or close to it. Our thinking runs like this: Con
sider an inner loop like the one shown in figure 4. OJ and OJ 
can each be avoided an arbitrary number of times in their 
respective slices, allowing one slice to be arbitrarily far 
ahead of the other before producing output requiring syn
chronization. The only way to synchronize at that point 
is to know where each slice is in its computation, which 
requires at least a count of the number of times each slice 
went around its inner loop, and the size and expense of this 
count is equivalent to the size and expense of the counters 
required for our algorithm. 

To conclude, we have described a method to par
allelize sequentially written programs. Program slicing, 
combined with program splicing, provides a way to con
currently execute parallelized programs on loosly coupled 
multiprocessors. We then introduced a new method for re
synchronzing the outputs of slices which radically reduces 
the overhead associated with reconstruction of the output. 
We believe that program slicing, augmented with program 
splicing, holds out significant potential for the automatic 
parallelization of sequentially written programs. Work is 
currently proceeding on reducing the complexity of finding 
minimal tags, on implementing a slicing/splicing compiler, 
and on applying the splicing method to other dataflow
based parallelisms besides slicing. 

Acknowledgments 

The authors would like to thank Michael Mazurek for 
suggestions on earlier versions of this paper. 

References 

[1] G. H. Barnes, R. M. Brown, M.Kato, D. J.Kuck, 
D. L.Slotnick and R. A. Stokes, "The ILL lAC IV 
Computer," IEEE Transactions on Computers (Au
gust,1968), pp. 746-757. 

126 

[2] K. Batcher, "STARAN Parallel Processor System 
Hardware," 1974 National Computer Conference 
And Exposition (May, 1974), pp. 405-410. 

[3] D. E. Denning and P. J. Denning, "Certifica-
tion of programs for secure information flow," 
Communications of the ACM (July, 1977), pp. 504-
513. 

[4) J. Dennis, "The Varieties of Data Flow Comput
ers," First International Conference on Distributed 
Computing Systems (October, 1979), pp. 430-439. 

[5] J. Dennis and G. Rong, "Maximum Pipelining of 
Array Operations on Static Data Flow Machines," 
Proceedings of the 1983 International Conference on 
Parallel Processing (August,1983), pp. 331-334. 

[6] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. 
Nicolau, "Parallel Processing: A Smart Compiler and 
a Dumb Machine," Proceedings of the ACM SIG
PLAN '84 Symposium on Compiler Contruction 
(June, 1984), pp. 37-47 

[7] M. Flynn, "Some Computer Organizations and Their 
Effectiveness," IEEE Transactions on Computers 
(September, 1972), pp. 948-960. . 

[8] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, 
and M. Wolfe, "Dependence Graphs and Com
piler Optimizations," Eighth ACM Symposium on 
Principles of Programming Languages, (January, 
1981), pp. 207-218. 

[9] D. J. Kuck, R. H. Kuhn, B. Leasure and M. Wolfe, 
"The Structure of an Advanced Vectorizer For 
Pipelined Processors," Fourth International Comp
uter Software And Applications Conference, (Octo
ber, 1980), pp. 709-715. 

[10] M. Mazurek, M. Weiser, "Towards the Automatic 
Parallelization of Sequential Programs," Submitted 
for publication. 

[11] D. A. Padua, M. J. Wolfe, "Advanced Compiler Op
timizations For Supercomputers," C~mmunications 
of the ACM (December; 1986), pp. 1184-120l. 

[12] M. Weiser. "Program Slicing," IEEE Transactions 
On Software Engineering (July, 1984), pp. 352-357. 

[13] M. Weiser. "Reconstructing Sequential Behavior 
From Parallel Behavior Projections," Information 
Processing Letters (October, 1983), pp. 129-135. 



cision when tags are not equRl.. Figure 3 shows an e~~ple 
flowgraph and execution (w) where !wlll! < !~II! which 1I~
plies !Wl! < !~! which implies last(wd -<w last(~). The ~run 
result of this paper is theorem 2, which enables the sphcer 
to make the right decision when the tags are equal. Be
fore presenting it, however, it is useful to intr~duce the 
following lemma, which asserts that every ~cle .m a flow
graph contains at least one branch node which mfluences 
the execution of every node in the cycle. 

Lemma 3 

In a hammock G, for every cycle c = (nl' n2, n3.'" nm, nl) 

3;.1~;SmVi.1SJ~m [n; E I(ni)) 

Proof: Informally, this follows from the observation that 
there must be a branch node with an edge on a direct 
(off the cycle and itself cycl~-free) path to ne , an~ this 
node influences every node m the cycle because It can 
prevent any further executions of every node in the cy
cle. Formally, because G is a hammock, n. must be reach
able from every node in c and therefore at least one node 
in c has outdegree > 1. Assume for a moment that there 
is only one such node, and denote it b. At least one of 
b's out edges must be directed to a node n' which is not 
in c and which is on a cycle free path p from b to ne' 

Since b's nearest inverse dominator is distinct from b and 
is on any cycle free path from b to n., b' nearest inverse 
dominator is on any cycle free path p from a successor 
of b to n.. Thus the inverse dominator of b is not in 
c. Now note that, since b in on c, c may be rewritten 
c = (b = n/o, n"+l, n1o+2,"" n" mod m+l, nlJ .. " b). 'Fhe path ~llp 
includes every node in c on a path from b to b s nearest m
verse dominator and includes b's nearest inverse dominator 
only once (because p contains no cycles). Thus b E I(n;) for 
1'< i < m. If there are additional branch nodes which leave 
the cycle, they do not affect the existence of clip, and so b 
still influences every node in the cycle. QED. 

The following result shows that, whenever tags are 
equal the information from the preprocessing algorithm 
enabl~s the splicer to decide which output should preceed 
the other. Intuitively, Theorem 2 asserts that, ~or ev
ery program P with flowgraph G, and any two slIces Pi 
and Pi of P, exactly one of two things is true: in every 
possible walk w in G (execution of p) last(w;) -<VI last(wi) 
whenever their tags are equal, or in ev~ry possible walk 
w in G last(wi) -<. last(ti4) whenever thelr tags ar~ equal. 

. Figure 4 shows an example flowgraph and executIOn (w) 
where the two tags IW1III and I~III are equal and where the 
path (p) found during the preprocessing algorithm allows 
the splicer to conclude that last(wd -<,. last(~). Let wE G 
mean that w is a walk in hammock G. 

Theorem 2 

For at and OJ distinct 

Va[VwEa{lw;111 = IWJlII => last(w;) -<. last(wi)}or 

V .. Ea{lw;111 = IWill1 => last(wi) -<w last(ti4)}) . 

Proof: First we show that, for any w, if IWill1 = IWill1 then 
there exists at least one directed path p in G such that p 
contains 0i and 0i and p contains no element of I. Since the 
prefixes Wi and Wi end in different nodes, they cannot be of 
the same length. Let s denote the shorter prefix, I denote 
the longer, and d denote the difference so that I = slid. Note 

w = (1,2,01,3,D2,4,2,5) 1= {2} p = (01,3,oz) 
W1 = (1,2, 01) w111 = (2) IWl/I1 = 1 
Wz = (1,2,01, 3, D2) WZII = (2) IWZIII = 1 

Because of p, 01 preceeds 0z whenever IWl/I1 = IWZIII. 

Figure 4: Example when projections are equal. 

that IW;III = IWill1 => Idlli = 0 and d has no element of I. Now 
let Os be the last node of s, and let 0L be the last node of 
I. Note that Os ¢ I because every element of I is a branch 
node and at and 0i are not branch nodes. Therefore the 
path'p = (os)lld contains 0; and OJ and no element of I. If all 
such paths are directed in the same direction, that is, all 
are from 0; to Oil or all are from 0i to 0;, then the ordering 
of at and 0i is always the same, for a particular graph, 
whenever the tags are equal. This is because any contrary 
ordering would require that d contain some element of I, 
and the tags would therefore be unequal. We now, then, 
must show that there exists no directed path p' of the form 
(oL,e,n,e,.:.,os) su~.that p' contains no elem~nt of I. We 
show it by contradIctIOn. Suppose such .a p' eXIst~d. Then, 
if we remove the last node of p to obtam 15, pllp' IS a cycle 
o which contains both 0; ~d 0i' From lemma 3 we know 
that 0 must contain at least one element of I and therefore 
10111 i' 0, a contradiction. All paths which connect 0; and 
0i and contain no element of I therefore have the same 
direction. QED. 

Applications and Conclusion 

Slices and splices are a convenient way for describ
ing this sort of dataflow problem because the dataflow
independent pieces are separated into different programs. 
However, our methods are more generally applicable to 
dataflow-driven solutions. Consider for a moment a 
dataflow machine architecture which has compiled a se
quential program into a number of small operations exe
cuted in parallel as their data becomes available. Follow
ing a single dataflow thread through such a machine shows 
a computation m:uch.like a walk thr~>ugh a slice, except 
that the parallelism IS more constraIned by later opera
tions needing to wait for ea:rlier ones ~o reach. t~e same 
control point before proceedmg. ~y usmg a spli~I.ng-style 
synclrronization, faster computatIOn threa~s wrutmg. ~n1y 
for control synchronization could proceed WIthout waItmg, 
and later be merged by using the results of theorems 1 and 
2. By removing a dependency, this could lead to bet~er 
balancing of the execution units of the dataflow machme 
by keeping more ofthem busy. 

125 

There are some simple transformations of the algo
rithms described in previous sections which w~uld make 
them more useful in practice. Rather than keepIng a sep
arate counter for each statement in I, a single counter 
incremented by each member of I could be used. Further-



Semi-Static Dataflow 

Abstract 

Bruno R. Preiss 

Department of Electrical Engineering 
University of Waterloo 

Waterloo, Ontario, Canada, N2L 3Gl 

In this paper we present a new dataflow execution 
model called semi-static dataflow. This model incorporates 
aspects of conventional static and dynamic dataflow architec
tures. Programs are partitioned into a collection of dataflow 
graphs. The execution of each of these graphs is the respon
sibility of a low-level process called a contea:t. The static 
dataflow execution model is used to evaluate each of these 
graphs. Separate instruction and data spaces are used to 
allow program reentrancy. Function invocation, iteration, 
and conditional execution are accomplished by dynamically 
creating new contexts. 

The process of creating new contexts and moving 
data tokens between contexts is called dynamic dataflow 
graph splicing and is the motivation for calling the whole sys
tem semi-static. We present a number of programming para
digms for function invocation, sequential iteration and paral
lel iteration that are based on dynamic dataflow graph splic
ing. 

We have simulated the execution of a semi-static 
dataflow multiprocessor. In this paper some of the simula
tion results obtained for several benchmark programs are 
presented. 

1. Introduction and Motivation 

Dataflow architect-ures are classified as either static 
or dynamic. Static and dynamic architectures differ in the 
following ways: First, in static architectures, the program 
graph is loaded into memory in completed form before the 
program begins execution (Le., no run-time loader); whereas 
in dynamic architectures, nodes can be created at run time 
(e.g:, to s~pport loop unravelling and recursion). Second, in 
static architectures, at most one instance of an actor may be 
enabled for firing at a time. Dynamic architectures support 
seve.ral inst.ances of an actor firing simultaneously[l]. Finally, 
static architectures use the same storage space for instruc
tions (actors) and data (tokens) (Le., impure code). 
Dynamic architectures use physically separate memories for 
instructions (i.e., pure code) and data[2]. 

In static dataflow architectures, the dataflow program 
graph is represented as a multiply-linked collection of items 
called activity templates[3]. Each activity template 
corresponds to an actor of the dataflow program graph. An 
activity template is a triple consisting of i) an operation code 
ii) a set of operand slots, and iii) a (destination) pointer list: 
The operand slots correspond to the input arcs of the actor. 
Each slot is a reserved memory location into which one of 
the actor's predecessors stores a token. Thus, arcs have a 
maximum token-carrying capacity of one. The elements of 
the destination pointer list correspond to the output arcs of 
the actor. These pointers indicate the operand slots in other 

This tesearch was supported in part by NSERC (Canada) under 
Grant A5192, 

127 

V. Carl Hamacher 

Computer Systems Research Institute 
University of Toronto 

Toronto, Ontario, Canada, M5S lA4 

activity templates into which the result of this actor is to be 
stored. The operation code field of the actor specifies the 
function computed by the actor. It also directly or implicitly 
specifies the number of operand slots, the number of destina
tion pointers, and the firing rule for the given actor. The 
basic execution cycle involves: identifying an activity tem
plate whose firing rule is satisfied (Le., all its operand slots 
are full and the operand slots of its successors are empty); 
computing the function specified by the operation code; and 
storing the result in the operand slots specified by the desti
nation pointers. 

The finite arc capacity and impurity of code in the 
static dataflow systems result in dataflow program graphs 
that are not reentrant. This constraint affects both iteration 
and function (subroutine) calling mechanisms. Automatic 
run-time loop unravelling is not supported by static dataflow 
systems. Functions can be made reentrant by either code
duplication [4] or code-sharing mechanisms[5]. 

In dynamic dataflow architectures, dataflow program 
graphs are also represented as a collection of multiply-linked 
activity templates. In this case, activity templates consist of 
i) an operation code and ii) a (destination) pointer list. No 
space is reserved in the activity template for storing (input) 
data tokens. Instead, tokens are stored elsewhere. Each 
token is tagged with information that identifies the arc on 
which the token conceptually resides. Thus, a token consists 
of a data field and a tag field. As a result, the token-carrying 
capacity of the arcs is not constrained. As in static architec
tures, the elements of the destination pointer list correspond 
to the output arcs of the actor. These pointers specify the 
address of the successor activity template and also indicate 
to which input of the actor the token is to be sent. (In gen
eral, the functions computed by the actors need not be com
mutative). In addition, the pointer may also. specify how 
many tokens are required by the successor actor in order to 
fire (to facilitate efficient evaluation of its firing rules). The 
basic execution cycle involves locating actors whose input 
arcs are full (by matching tag fields of tokens); computing 
the function specified by the operation code (using the value 
fields of tokens); and forming the value parts of the output 
tokens from the result of the computation and the tag parts 
of the output tokens from the elements of the destination 
list. 

Since there are no operand slots in the activity tem
plates, the code is pure .. Furthermore, as explained above, 
the token-carrying capacity of arcs is not constrained by the 
representation of the dataflow graph. As a result, loop 
unravelling and reentrant functions are easily implemented in 
dynamic dataflow architectures. 

To support reentrancy and unravelling, the tag field 
of tokens is augmented with information that identifies the 
context in which the token is executing. The augmented tag 
field is called an activity name. The activity name specifies i) 



the actor (and which of its inputs) to which the token is des
tined, ii) the iteration number of the loop to which the token 
belongs (if it is inside a loop), and iii) the activity name of 
the calling function if the token belongs to a called func
tion[6]. Note that the activity name is recursively defined. 
In effect, every token carries with it information that is 
analogous to the processor stack in conventional, Von Neu
mann architectures. 

Iteration and function calls are accomplished in 
dynamic architectures by using actors that manipulate the 
tag fields of tokens[7]. For example, iteration is accomplished 
using an actor that takes tokens from the bottom of a loop, 
increments the iteration number field of the activity name of 
the token, and injects the token back into the top of the 
loop. Arguments are transmitted to functions and results are 
received from functions using actors that, in effect, push and 
pop contexts from activity names. 

In this paper we present a new dataflow execution 
model that attempts to exploit the capabilities of both static 
and dynamic dataflow architectures without incurring the the 
tag matching overhead of the dynamic model or the difficul
ties arising from the impure code of the static model. We 
call this execution model semi-static dataflow. In semi-static 
dataflow architectures, the dataflow program graph is 
represented as a multiply-linked collection of activity tem
plates. As in static architectures, the activity templates con
sist of i) an operation code part, ii) operand slots, and iii) 
destination pointers. Semi-static architectures differ from 
static ones in that the activity template is not stored in con
tiguous memory locations. Instead, the operation code and, 
destination pointers are stored in an instruction space and 
the operand slots are stored in a data space. By associating 
several data spaces with one instruction space, a graph can 
be made reentrant. The advantage of this scheme is that 
reentrancy is accomplished without the overhead of code 
copying or tagged tokens. Furthermore, since there are fixed 
memory locations for data token storage, tags are unneces
sary. Consequently the tag matching program has been elim
inated. 

Typically, a dataflow program consists of a collection 
of separate dataflow graphs (e.g., a separate graph is con
structed for each procedure). Each instance of the evalua
tion of a dataflow graph requires a new data space. In order 
to simplify the management of memory resources, we restrict 
the size of an instruction or data space to the size of a 
memory page (e.g., 1 kbyte). A separate "process" is 
invoked to evaluate each {instruction space, data space} pair. 
We call these processes contexts to emphasize their small 
size. (We reserve the term process for the execution of a 
family of related contexts. I.e., the term process carries its 
usual meaning.) 

2. Contexts 

A context is a small to medium granularity process. 
A context evaluates a static dataflow graph. The execution 
of a program requires the dynamic creation and execution of 
many contexts. In order to perform useful computation, 
these contexts must communicate. We have adopted a sim
ple communications model based on the use of unidirectional 
communication channels. 

A context requires (1) a static dataflow graph, (2) a 
data token space, and (3) a pair of communication channels 

128 

called the input and output channels of the context. A con
text receives data tokens over the input channel, evaluates 
its dataflow graph using the data token space for token 
storage, and sends its results over the output channel. 

In dynamic dataflow machines, conditional execution, 
iteration, and function invocation are accomplished using spe
cial actors that alter the tags associated with tokens. In 
effect these actors change the "context" in which the tokens 
are executing. By analogy, in semi-static dataflow, condi
tional execution, iteration and function invocation are all 
accomplished by the dynamic creation of contexts. 

The essence of the semi-static dataflow approach is 
the partitioning of the program into a collection of dataflow 
graphs. Each of these graphs can be evaluated using the 
static dataflow execution model. That is, data token storage 
addresses are statically allocated for each of these dataflow 
graphs. By associating several virtual data spaces with a sin
gle graph, the dataflow graph can be made reentrant. These 
associations are established dynamically as the program is 
being executed. Each of these associations is executed by a 
low-level process called a context. Special actors are used for 
the creation of contexts and for the communication of data 
tokens between contexts. Thus the semi-static dataflow 
approach is a cross between the static and dynamic dataflow 
execution models 

3. Commul'lication Primitives 

Communication between contexts is accomplished 
over communication channels. A channel is an abstract 
entity whose purpose is to provide a unidirectional communi
cations path between two contexts. Communication chan
nels can be established in two ways: 

• Communication channels can be opened dynamically dur
ing program execution. These channels are created when 
contexts are created to provide the necessary communica
tion paths between parent and child contexts. 

• Communication channels can be allocated statically at 
compile time. These are channels explicitly declared and 
used by the programmer. 

A channel is used to transfer a fixed length message 
from one context to another. Each message can carry 
exactly one (scalar) data token. Consequently, the length of 
the data portion of a message is equal to the word size of the 
machine .. 

Channels use an unbuffered, synchronous communica
tions strategy sometimes called a rendezvous. Intercontext 
communication is accomplished using two simple primitives 
called send and receive. Each channel has a unique channei 
identifier. This identifier is used by channel primitives to 
select the desired communications channel. This is. essen
tially the mechanism used in the Occam language for inter
process communication[8], and will be discussed later in 
relation to our simulation study. 

The dataflow actors used to represent the two com
munication primitives are shown in Fig. 1. The send actor is 
a three-input, one-output dataflow actor. The first operand, 
k, is a control token. It is used to sequence communications 
primitives. Its use will be described below. The second 
operand, c, is a channel identifier. It specifies the channel to 
use for the communication. The third operand is the value, 
x, to be transmitted on the channel. The output of the send 



k c x k c 

k k x 
Fig.!. Communication primitive 

dataflow actors. 

actor, k, is a copy of the input control token. 

The receive actor is a two-input, two-output dataflow 
actor. The first operand, k, is a control token. The second 
operand, c, is a channel identifier. The first output of the 
receive actor, k, is a copy of the input control token. The 
second output of the receive actor is the value, x, received on 
the channel. 

The send and receive actors are non-standard 
dataflow actors in two senses: 

• They are not free from side effects. Both send and receive 
affect the execution of other contexts. 

• They are not strictly functional in the mathematical sense. 
That is, the result of their execution is not strictly a func
tion of their operands. 

Consequently, the order in which send and receive 
actors are executed will affect the outcome of the computa
tion. To ensure deterministic results, these actors Use con
trol tokens. The sole purpose of these tokens is to sequence 
actors having side effects. The send and receive actors only 
produce control tokens on their output arcs after successful 
communication has occurred. This involves the exchange of 
two messages between contexts. The first message carries 
the input data token from the send actor to the receive 
actor. The second message acknowledges receipt of the data 
token. 

The effect of the execution of a {send, receive} pair is 
the establishment of dynamic arcs between the two actors. 
These arcs must be established dynamically since, in general, 
it is not possible to predict which two send and receive actors 
in a given program will communicate. This uncertainty can 
arise in two ways. First, the channel identifier used by a 
primitive need not be statically determined. Second, the 
invocation of a particular instance of a communication primi
tive may be conditionally determined. The net effect of the 
dynamic establishment of arcs is that separate dataflow 
graphs are "spliced" together at execution time. For this 
reason, we call this technique dynamic dataflow graph splic
ing. 

4. Function Invocation by DynaIllic Dataflow Graph 
Splicing 

In this section, we describe a function invocation 
paradigm based on the method of dynamic dataflow. graph 
splicing. The function invocation paradigm consists of four 
phases of execution: context generation, parameter passing, 
concurrent execution, and result passing. 

4.1. Context Generation Phase 

In the context generation phase, the calling context 

129 

k g k g o 

k o k 
Fig. 2. Context generation primitive 

dataflow actors. 

(i.e., the parent context) creates a new context for the execu
tion of the function. We have currently defined two primi
tives for the generation of contexts. These primitives are 
called recursive fork (rfork) and iterative fork (ifork). Func
tion invocation is accomplished using the rfork primitive. 
(The use of the ifork primitive to implement sequential itera
tion is described in a subsequent section.) 

The dataflow actors used to represent the context 
generation primitives are shown in Fig. 2. The rfork actor is 
a two-input, three-output dataflow actor. The first operand 
is a control token, k, which is used to sequence actors with 
side effects. The second operand is a pointer to the dataflow 
graph to be evaluated by the child context (i.e., the entry 
point of the subroutine). The effect of the rfork actor is to 
generate a new context together with two new channels. 
These channels become the input and output channels of the 
child context. The first output of the rfork actor is a control 
token, k, which is a copy of the input control token. The 
second and third outputs of the rfork actor, i and 0, are the 
channel identifiers of the input and output channels of the 
child context. The input channel is used by the parent con
text to send data tokens to the child context. The output 
channel is used by the child context to send data tokens to 
the parent context. 

The ifork actor is a three-input, two-output dataflow 
actor. The first operand is a control token, k, which is used 
to sequence actors with side effects. The second operand is a 
pointer to the dataflow graph to be evaluated by the child 
context. The third operand is a channel identifier. The 
effect of the ifork actor is to generate a new context together 
with one new channel. This channel becomes the input chan
nel of the child context. The output channel of the child 
context is specified by the third operand of the ifork actor. 
The first output of the ifork actor is a control token, k, which 
is a copy of the input control token. The second output of 
the ifork actor, i, is the channel identifier of the input chan
nel of the child context. 

4.2. Parameter Passing Phase 

In the parameter passing phase, the parent context 
sends the parameter values to the child context. The parent 
context does this by sending data tokens over the child 
context's input channel. The channel identifier for this chan
nel is obtained as a result of the rfork or ifork primitive. 

In the event that the child context requires more 
than one parameter, those parameters must be transmitted 
to the child sequentially.· Consequently, the parent and child 
contexts must use a prearranged parameter sequence to 
ensure correctness. This sequence can be specified statically 
at compile time. 



" data" / 

" / 

/ 

/ 
/ 

/ 

,I 

/ 
/ 

" '3ck 

result 

,I 
/ 

proc f (var y, value x) = 
y:=x+l: 

var result: 
f (result, 6) 

Fig. 3. Basic function invocation paradigm. 

4.3. Concurrent Execution Phase 

After the child context has received all its parameter 
values from the parent context, the concurrent execution 
phase begins. During the concurrent execution phase, both 
the parent and child contexts may execute in parallel. 

4.4. Result Passing Phase 

During the result passing phase, the child context 
sends its computed results back to the parent context. The 
child context does this by sending data tokens over its out
put channel. The parent context can receive the result data 
tokens using the channel identifier returned by the rfork 
actor or specified to the ifork actor. 

In the event that the child context produces more 
than one result, those results are returned in a predetermined 
sequence just as in the parameter passing phase. 

4.5. Example 

The dataflow graphs of Fig. 3 illustrate the basic 
function invocation paradigm. This example consists of a 
trivial function, namely I(x)-x+l, and a main program 
that evaluates 1(5). The main program has three actors: (1) 
The rfork actor creates a new context to execute the graph 
associated with the function f. (2) The send actor transmits 
the argument, 5, to the new context. (3) the receive actor 
receives the result from the called context. The graph 
corresponding to the function f has three actors: (1) The 
receive actor receives the arguments to f on the input chan
nel. (2) The + actor adds 1 to the argument. (3) The send 
actor transmits the result of the function to the parent con
text via the output channel. The dashed arcs in Fig. 3 
correspond to the dynamically created arcs that splice the 
two dataflow graphs together. 

130 

5. Sequential Iteration 

In this section we descrihe an iteration paradigm 
based on the method of dynamic dataflow graph splicing. 
The essential feature of this paradigm is the creation of a 
separate context for each iteration. This is done to allow for 
dynamic loop unravelling, Le., to allow the parallel evaluation 
of multiple iterations. 

The program of Fig. 4 illustrates the iteration para
digm. The iteration paradigm requires three separate 
dataflow graphs that are spliced together at execution time. 
These graphs are: the main program graph (m), the loop 
body graph (b), and the loop terminator graph (t). 

5.1. Main Program Graph 

The main program graph uses the basic function invo
cation paradigm described in the preceding section to initiate 
the execution of a loop. In effect, the main program graph 
calls the loop body graph as if it is a function. The main pro
gram uses the rfork primitive to create the new context. The 
main program graph then transmits to the loop body the 
value of the loop counter and any values used in the body of 
the loop. In the example of Fig. 4, the main program graph 
invokes the loop body and transmits the initial values of the 
variables sum and i. A consequence of using the basic func
tion invocation paradigm is that the main program graph 
may execute concurrently with one or more loop iterations. 

5.2. Loop Body Graph 

The loop body graph performs the calculations 
involved in a single iteration of the loop. It then tests the 
termination condition and creates a new context .. This new 
context will execute the next iteration of the loop if the ter
mination condition is not satisfied. Otherwise, it executes 
the loop terminator graph. 

The loop body graph uses the ifork primitive to 
create the new context. Recall that the ifork primitive 
passes on the specified output channel to the child context. 
This output channel is the channel over which the main pro
gram graph expects to receive its results. In this way, the 
final iteration of the loop can return its results directly to the 
main program graph without having to pass through all the 
intermediate loop iterations. This is similar in effect to tail 
recursion. The advantage of this approach is that it allows 
loop unravelling yet at the same time permits the recovery of 
resources allocated to earlier iterations as they terminate. 

In. the example of Fig. 4, the loop Ibody receives the 
values of sum and i. It computes new values for sum and i 
and tests the loop termination condition. If the loop 

termination condition is not satisfied, it invokes a new instan
tiation of the loop body graph. If the loop termination condi
tion is satisfied, it invokes the loop terminator. In both 
cases, it transmits the new values of sum and i to the child 
context. 

5.3. Loop Terminator Graph 

The loop terminator graph is used to return the 
results from the final iter<j.tion of the loop back to the main 
program graph. The loop terminator graph is invoked by the 
loop body graph when the loop termination condition has 
been satisfied. Note that the loop body graph and loop ter
minator graph must have the same call format. That is, the 



input channel id 

sequences in which the arguments are transmitted must be 
identical. However, the loop terminator graph will discard 
most of the input values except for the final results. These 
results are transmitted via the output channel. Since the 
output channel has been inherited from preceding loop itera~ 
tions, the values transmitted on this channel are returned 
directly to the main program graph. 

In the example of Fig. 4, the loop terminator receives 
the values of sum and i. It discards the value ofi and 
returns the sum to the main program graph. The value 
rec~ived by the main program graph thus becomes the result. 

6. Dynamic Process Creation by Parallel Iteration 

In this section we describe a modification of the 
sequential iteration paradigm described above which allows 

.131 

input channel id 

var sum, result: 
seq 

sum := 0 
seq i .. [1 for 10] 

sum := sum + i 
result := sum 

Fig. 4. Sequential iteration paradigm. 

the dynamic creation of parallel processes (or context fami
lies). It is assumed that these processes are to execute con
currently. Furthermore, any synchronization or inter process 
communication required uses channels explicitly declared by 
the programmer. 

The program of Fig. 5 illustrates the parallel iteration 
paradigm. The structure of this program is very similar to 
the sequential iteration paradigm. Each iteration of the loop 
is responsible for the execution of one process. ThiS tech
nique exploits the concurrent execution phase of the basic 
function invocation paradigm to achieve the parallel execu
tion of a number of processes. 

There is an important difference between the sequen
tial iteration and parallel iteration paradigms .. Whereas in 
the sequential iteration paradigm the main program context 
only needs to synchronize with the final iteration of the loop, 
in the parallel iteration paradigm the main program graph 
needs to synchronize with all iterations. This is required to 
preserve the "par" semantics. That is, subsequent computa
tion in the main context cannot proceed until all parallel pro
cess instantiations have terminated. 

Synchronization is explicitly accomplished by message 
passing. Each iteration i waits until its process instantiation 
has completed and until it has received a message from itera
tion i+ 1 indicating that all higher number iterations have 
completed. When both conditions have been met, iteration i 
returns a message to iteration i-l indicating that it has com
pleted. In effect, parallel iteration is analogous to conven
tional recursion except that all instantiations proceed in 
parallel. 

7. Performance Analysis 

In order to characterize the potential performance of 
the semi-static dataflow execution model, we have designed a 



input channel id 

shared-bus multiprocessor architecture called a Queue 
Machine Multiprocessor which uses the semi-static execution 
model[9J. In addition, we have implemented a preliminary 
run-time environment that supports the execution of pro
grams compiled using a prototype Occam compiler. In this 
section we will present the results obtained by simulation of 
the execution of a number of benchmark programs. 

7.1. Architectural Model 

The Queue Machine Multiprocessor is a shared-bus 
multiprocessor which consists of a number of processing ele
ments each with their own local memory connected by a 

132 

input channel id 

par i = [1 for 10] 
Process (i) 

Fig. 5. Parallel iteration paradigm. 

shared interprocesBor communication bus. The processing 
elements in this system are called Queue Machines[lOJ. A 
queue machine is a processing element that has been optim
ized for the efficient evaluation of static, acyclic dataflow 
graphs[llJ. In contrast to typical dataflow processing ele
ments, a queue. machine has a single locus of control. How
ever, we have shown that a queue machine can efficiently 
utilize a pipelined AL U to exploit the parallelism in a static, 
acyclic dataflow graph (intracontext parallelism). 

We have also implemented a Queue Machine Mul
tiprocessing Kernel for the Queue Machine Multiprocessor[9J. 
This is a collection of software routines in which queue 
machine programs generated by the Occam language com
piler described below can be executed. The purpose of the 
kernel is to manage contexts (i.e., small processes) and 
resources (memory and channels). In particular, this kernel 
provides the coo.text generation primitives rfork and ifork. 

7.2. Occam Compiler 

The benchmark programs used in this performance 
analysis are written in the Occam programming language[8J. 
We have constructed a prototype compiler that translates 
Occam source programs into dataflow graphs. for execution 
on the Queue Machine Multiprocessor. 

The compiler uses the basic function invocation, 
sequential iteration, and parallel iteration paradigms 
described above. It automatically partitions the source pro
gram into multiple contexts for parallel execution. The 
current partitioning algorithm is very simple (and, conse
quently, suboptimal). The compiler generates a separate 
dataflow graph for every procedure, for every outcome of a 
conditional branch, and for the body of every loop (sequential 
and parallel iteration). (The compiler also constructs loop 
terminator graphs as needed.) 

The Occam compiler automatically emits the context 
generation and intercontext communication primitives as 
required by the function invocation, and sequential and 
parallel iteration paradigms. In order to emit the intercon
text communication primitives, the compiler must choose a 
sequence of the input arcs to each dataflow graph. The com
piler automatically chooses that sequence which maximizes 
the amount of computation possible within a context before 
another input is required. This heuristic has been found, 



experimentally, to produce good overall throughput results 
on the multiprocessor[9J. 

7.3. Benchmark Programs 

We have simulated the execution of a number of 
benchmark programs on the Queue Machine Multiprocessor. 
In this paper we present the results for four different Occam 
programs. The tasks performed by the benchmark programs 
are: 1) Matrix Multiplication, 2) Fast Fourier Transform, 3) 
Cholesky decomposition, and 4) Congruence transformation. 

7.3.1. Matrix Multiplication 

The Matrix Multiplication program computes the 
product of two NXN matrices. 

7.3.2. Fast Fourier Transform 

The Fast Fourier Transform program computes the 
discrete Fourier transform of N data points, where N is a 
power of 2. The program is based on the binary recursive 
FFT algorithm described in [12J. 

7.3.3. Cholesky Decomposition 

The Cholesky Derompo_it,;on program is an algorithm 
for the factoring of a symmetric positive definite matrix A of 
order N into the product LLT of a lower triangular matrix 
and its transpose. This algorithm is a transliteration of the 
dataflow-based algorithm presented in [13J. 

7.3.4. Congruence Transformation 

The Congruence Transformation program computes 
the congruence transformation of a matrix A. That is, given 
two NXN matrices A and Q, it computes the matrix 
C=QAQT. This algorithm is based on an algorithm 
presented in [13J. 

7.4. Simulation Results 

The principle performance metric used in our study is 
the system throughput ratio. The system throughput ratio, 
Rn, is defined as the ratio of the throughput on a system 

with n processors to the throughput on a system with 1 pro
cessor. Let X be the total work to be done in some particu
lar workload class. The total workload consists of the sum of 
the user workload XU and the kernel workload XK. Conse
quently, the total execution time, Tn, is the sum.of the user 

execution time, T;:, and the kernel execution time, T;;. The 

throughput of the system is the ratio of the user workload to 
the total execution time, XU ITn' (The contribution to the 

workload due to the kernel is overhead and is excluded from 
(Xu ITn) Tl 

the throughput calculation.) Thus, Rn 
(Xu ITl ) Tn 

The system throughput ratios obtained by simulation 
of the four benchmark programs described above are shown 
in Fig. 6. A number of Queue Machine Multiprocessor sys
tems have been simulated having one to eight processing ele
ments. Note that for small values of n (the number of pro
cessors), the system throughput ratio is greater than n. In 
effect, the system exhibits super-linear speedup. 

These simulation results can be explained by using a 
modified derivation of Amdahl's law [14J that takes into con
sideration the effect of the kernel workload as well as the 

133 

Table I 
Benchmark program statistics 

program S G 
Matrix Multiplication 15 8 
Fast Fourier Transform 63 17 
Cholesky Decomposition 74 22 

Congruence Transformation 66 18 

S - number of Occam source lines 
G - number of dataflow graphs 
A - total number of actors 

A 
236 

587 

428 

434 

user workload. We assume that the user workload consists of 
two parts: (1) a sequential part that requires a fixed amount 
of execution time, SU, and (2) a parallel part, the execution 
time of which is inversely proportional to the number of pro-

u pU ,U 
cessors, pU In. Thus, Tn =--+.) . The kernel workload 

n 
consists of a large number of calls to kernel primitives. We 
assume that these calls can execute independently. 

Therefore, T;;= Yin, where Y is proportional to the total 

work done by all the kernel calls. It is important to observe 
that some of the kernel workload is proportional to the 
number of processes running on a given processor. Thus, it is 

argued that Y= pK +SK. Hence, 
n 

where f 

Note that li,m Rn 
n-+oo 

1 
(f ) . That is, the system 

1- +g 
throulhPut ratio has a finite upper bound. Also 
dRn 
-- =f+2g. That is the slope of the graph of Rn vs. n 

dn n=l 

is f+2g at n=1. Note that when SU<pK, f+2g>1. That is, 
for small values of n, the slope of the graph of Rn vs. n can 

be greater than 1. This situation is called super-linear 
speedup. 

Although it may seem unlikely, this kind of super
linearity is in fact a real phenomenon. Super-linear results 
have been reported in [15J. One way to view super-linearity 
is that is the manifestation of a kernel. implementation that 
penalizes systems with a small number of processing elements 
and that becomes more efficient only when the number of 
processing elements is increased. 

Note that if we neglect kernel overhead, f 

and g=O. In this case, the system throughput ratio can be 

simplified to Rn (J ) (Amdahl's law)[14J. 
1+ 1 n-l f 

8. Conclusions 

In this paper we have presented a new dataflow exe
cution model called semi-static dataflow. Programs are par
titioned into a collection of dataflow graphs. Each of these 
graphs is evaluated by a low level process (called a context) 
using the static dataflow execution model. Contexts are 
dynamically created during execution to implement iteration, 
conditional execution, and function invocation. This execu-



16 R" 

14 

12 

10 

8 

6 

4 

2 

3 4 6 6 

Legend: 

x X 

G----0 
r:J CJ 

Matrix Multiplication 

Fast Fourier Transform 

Cholesky Decomposition 

Congruence Transformation 

Fig. 6. System throughput ratios 
for the benchmark programs 

vs. number of processors. 

n 

7 8 

tion model provides the benefits of both static and dynamic 
dataflow architectures without the associated costs of code 
copying or tag manipulation. 

We have also presented a number of program struc
ture paradigms for function invocation, sequential iteration, 
and parallel iteration. These paradigms are used bya proto
type compiler for the Occam programming language to 
generate semi-static dataflow program graphs. This compiler 
has been used to generate code for a semi-static dataflow 
multiprocessor. We have presented the simulation results for 
several benchmark programs. These results show that the 
semi-static execution paradigm is capable of automatically 
exploiting the increased parallelism available as the number 
of processors in the multiprocessor system is increased. We 
have used a modified derivation of Amdahl's law to justify 
the simulation results. 

134 

9. References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

V. P. Srini, "An Architectural Comparison of 
Dataflow Systems," Computer, Vol. 19, No.3, pp. 
68-88, Mar. 1986. 

K. W. Todd, "Function Sharing in a Static Data 
Flow Machine," Proc. 1982 Int. Can/. Parallel Pro
cessing, pp. 137-139, IEEE, Aug. 1982. 

J. B. Dennis, "Data Flow Supercomputers," Com
puter, Vol. 13, No. 11, pp. 48-56, Nov. 1980. 

A. L. Davis and R. M. Keller, "Data Flow Program 
Graphs," Computer, Vol. 15, No.2, pp. 26-41, Feb. 
1982. 

G. S. Miranker, "Implementation of Procedures on a 
Class of Data Flow Processors," Proc. 1977 Int. Con/. 
Parallel Processing, pp. 77-86, IEEE, Aug. 1976. 

Arvind and K. P. Gostelow, "The U-Interpreter," 
Computer, Vol. 15, No.2, pp. 42-49, Feb. 1982. 

I. Watson and J. Gurd, "A Prototype Data Flow 
Computer with Token Labelling," 1979 Nat. Compo 
Conf., Vol. 48, pp. 623-628, June 1979. 

INMOS Limited, OCCAM Programming Manual, 
Englewood Cliffs, NJ: Prentice-Hall, 1984. 

B. R. Preiss, "Data Flow on a Queue Machine," 
Ph.D. Thesis, Univ. of Toronto, Dept. of Elec. Engin., 
Toronto, Ontario, Canada, 1984. 

B. R. Preiss and V. C. Hamacher, "Data Flow on a 
Queue Machine," Con/. Proc. 12th Ann. Symp. Compo 
Arch., pp. 342-351, IEEE Computer Society Press, 
June 1985. 

B. R. Preiss, "Design and Simulation of a Data-Flow 
Multiprocessor System," M.A.Sc. Thesis, Univ. of 
Toronto, Dept. of Elec. Engin., Toronto, Ontario, 
Canada, 1984. 

J. D. Lipson, Elements of Algebra and Algebraic Com
puting, Reading, MA: Addison-Wesley, 1981. 

D. P. O'Leary an<J G. W. Stewart, "Data-Flow Algo
rithms for Parallel Matrix Computations," Communi
cations of the ACM, Vol. 28, No.8, pp. 840-853, 
Aug. 1985. 

J. P. Riganati and P. B. Schneck, "Supercomputing," 
Computer, Vol. 17, No. 10, pp. 97-113, Oct. 1984. 

J. Sanguinetti, "Performance of 
Multiprocessor ," Computer, Vol. 
47-55, Sept. 1986. 

a Message-Based 
19, No.9, pp. 



Using Control States for Parallelism Extraction* 

Tom Bennet 
Computer Science Department 

University of Maryland, College Park 
College Park, MD, 20742, USA 

Abstract - Existing work on parallelism extraction usually occu
pies one of two categories: DO-loop methods which use the loop index 
value space for analysis, and stream methods which examine dataflow 
graphs. Our method combines some of the advantages of the loop 
and stream approaches through a generalization of the DO loop index 
variable called a control state. With control states, we can deal with 
while loops and with loop bodies containing if's. We describe the 
control state concept and how it can be used to extract parallelism. 

Introduction 

The advantages of parallel computers are generally recognized, 
but many questions remain about how best to program them. Special 
programming languages have been proposed, some of which allow ex
plicit expression of parallel operations [13] [4], and some which provide 
less-sequential forms of familiar operations [1] [8]. Still, it would also 
be nice to be able to compile programs written in standard sequential 
programming languages into code to run on parallel machines. 

Existing work on parallelism extraction usually falls into one of 
two categories: Do-loop analysis (e.g. [3], [12], [9], and [2]), which 
uses the loop index values to analyze the whole execution of a loop at 
compile time, and stream analysis (e.g. [7] and [5]), which examines 
dataflow graphs. Much of the DO-loop work is quite elegant and precise 
because it benefits from the space of loop index values as a concep
tual underpinning, but the domain is rather limited: while loops and 
if's in loop bodes are particular problems. The stream analysis work 
is much more general, but it lacks the nice conceptual framework, 
making it much more ad hoc. 

Our method combines some of the advantages of the loop and 
stream approaches through the concept of a control state. A control 
state is a generalization of the DO loop index variable that applies to 
while loops and deals better with if's inside loops. We describe the 
control state concept and, through an example, how it can be used to 
extract parallelism. 

Control States 

Description 

We view a computation as a sequence of states, each state after 
the first generated from the previous one. A state specifies the current 
values of all the variables and the operation applied to it to produce 
the next state. For each state, there is a set of input variables and a set 
of output variables. (These sets do not depend on the operation alone 
which may use array subscripting or pointer dereferencing.) As such, 
the computation forms a graph where the nodes are states and there 
is an arc from state i to state j, i < j, if and only if state i outputs 
some variable which j reads, and no intervening state outputs that 
variable. 

If the nodes of this graph were assigned to different processors in 
a parallel machine, the information each processor would need, in ad
dition to the input values, constitutes the "control state." Specifically, 
a control state is any subset of a state large enough to: 

• Uniquely identify the state within the computation, 

• Determine the set of input and output variables for the identified 
state, and 

* This work was sponsored by the United States Air Force under 
grant number AFOSR 87-130. 

135 

state G num sub dig arr[O] arr [1] arr [2] arr[3] arr[4] 
Rl sl ? ? ? ? ? ? ? ? 
R2 s2 23 ? ? ? ? ? ? ? 
R3 s4 23 4 ? ? ? ? ? ? 
R4 s5 23 4 3 ? ? ? ? ? 
R5 s6 2 4 3 ? ? ? ? ? 
R6 s7 2 4 3 ? ? ? ? '3' 
R7 s4 2 3 3 ? ? ? ? '3' 
Rs s5 2 3 2 ? ? ? ? '3' 
Rg s6 0 3 2 ? ? ? ? '3' 
RlO s7 0 3 2 ? ? ? '2' '3' 
Rll s9 0 2 2 ? ? ? '2' '3' 
Rl2 ? 0 2 2 ? ? ? '2' '3' 

Figure 1: A Computation for the Conversion Program. 

state in out 
Rl M,G num,1D 
R2 .,41 sub,1D 
R3 num,C1 dig,C1 
R4 nus,' num,1D 
R5 sUb,dig,1D arr [4], 10 
R6 sub,G Bub,G 
R7 num,G dig,1D 
Rs num,G num,1D 
Rg sub,dig,1D arr[3],10 
Rlo sub,1D sub,1D 
Rll arr[4], arr[3], sub,1D 10 
Rl2 

Figure 2: The input and output sets for each state. 

• Determine which states read the output variables of the identified 
state. 

Note that this is enough information to determine the graph. 

For example, consider the following code segment that might be 
part of an output conversion program: 

s1 num:= M; 
s2 sub:= N; 
s3 while num != 0 do 
s4 dig := num mod 10; 
s5 num := num div 10; 
s6 arr[sub]:= chr(ord('O')+dig); 
s7 sub := sub-l 
s8 od; 
s9 print (arr,sub+l) 

The computation for the program when M = 23 and N = 4 is given 
in Figure 1, and the input and output sets for each state are given in 
Figure 2. The graph formed is given in Figure 3. There is a state for 
every execution of every non-control statement. Control statements 
are omitted since they do not produce values, but their meaning is 
incorporated since each state must determine the next state. The 
variable 10, referred to as the pc, designates the state's next operation . 

A series of control states for each state in this computation is given 
in Figure 4. Note that the control states satisfy the above conditions: 

• No control state is a subset of any state other than the one from 
which it was taken. Therefore each control state identifies its state. 

• The pc alone determines the inputs for all states and the output 



arr[3] 

Figure 3: Graph of Example Conversion Computation. 

control 
state • nUll Bub 
Al 81 ? ? 
A2 82 23 ? 
Aa 84 23 4 
~ s5 23 4 
A5 86 2 4 
As s7 2 4 
AT s4 2 3 
As s5 2 3 
A9 s6 0 3 
AlO s7 0 3 
Au s9 0 2 
A12 ? 0 2 

Figure 4: Control states for conversion program computation. 

variable for all states except Rs and R9. In those, the output vari
able arr[sub] is determined by. and sub, which are both included 
in the control states. 

• Outputs from states Rs and Rg are always used in the next state 
after the loop exits (i.e., Rll), and no variables are needed to de
termine that. Other values are used either in specific states in the 
same iteration, again requiring no variables to compute, or are used 
in specific states in the next iteration, if any. The "if any" is easily 
computed from nUll in the control state, i.e., for states with. values 
s4 and s5, see if InUIII ~ 10; for s6 and s7, see if num != O. 

Note also that if we left sub out of all the control states except As, 
A9, and All, they would still be control states. We could also leave 
out any variable which is undefined, that is, has a value of "?" . 

The set of variables in a control state is called a control variable 
set, or CVS. If all control states for a computation have the same 
CVS, it is the CVS for the whole computation. 

Relationship to Previous Work 

The control state is similar to the combination of the DO-loop in
dex variables and the • variable. This equivalence has been noticed 
before: [6] suggests that in a loop body with more than one state
ment, the statement name could be treated as an extra inner loop 
index. Conversely, a DO loop nest with a one-statement body pro
duces computations for which the loop index set alone is a CVS. 

In the conversion example, num is analogous to the loop index, 
and sub is included because it helps determine an output variable 
set. Since existing loop analysis methods generally concern themselves 
with loops where the subscript expressions are functions of the loop 
index variables [11], the pair of num and sub is analogous to the loop 
index variable. 

Existing DO loop methods break dependences by introducing new 
variables, e.g., Renaming and Scalar Expansion [10]. Control states 
do this naturally because, while separate values for some variable x 

136 

Figure 5: Static Graph for Conversion Program. 

may be produced in any number of (control) states, each is treated 
separately since the value is identified not just by the variable name 
x, but also its graph position. 

Direct Application 

This section describes how control states can be used to extract 
parallelism. We define a finite "static graph" which can represent 
the set of all computations of some program, and the execution cost 
in terms of it. We then discuss the problem of allocating the graph 
nodes to processors in order to get a good execution time. 

Node Completion times 

We model execution time by assigrling each node a completion 
time defined in terms of its parents', accounting for communication 
costs and also its own execution time. Each node begins sending data 
at its completion time (ct). Each datum is sent serially requiring 
the transmit time (zt), traverses the communications medium for its 
propagation delay time (Pd), and then is available to be read at the 
receiver, which must read its inputs serially, each taking its receive 
time (rt). After all data are received, a node computes its function 
consuming its execution time (et). The'model is designed to be gen
eral enough to permit the "communications medium" to be eitlier a 
message-passing network of some kind or a global memory. 

The Static Graph 

In order to manipulate programs rather than processes, we define 
a "static graph" representing all computations that can be executions 
of some given program. Each node in the static graph represents some 
set of states from some represented computation(s). For each arc (a, b), 
there is a ·continuance probability," cp, which has the meaning "when 
a computation enters a state S represented by node a, the probability 
that it will next enter a state R represented by b is given by cp( (a, b) )." 

There is an arc from node a to node b in the static graph whenever 
a represents some state S and b some state R such that (S, R) is an 
arc in the graph of some computation, except that: 

• Each static node must receive enough information to constitute a 
control state for any represented state, so it may need to receive 
data that is not in the input set of any represented state. 

• If a received value is the same for all represented states, there is no 
need to receive it at all. 

Figure 5 contains a static graph for the conversion program.' In it, 
each node represents sets of states having the same pc value, so that 
it need not be transmitted. The nodes are labeled with the state
ment number of the. value for their represented states, and a second 
figure when needed to give unique names. The nodes 1 and 2 repre
sent states in which the pc is statement sl and s2. Nodes 4.4, 5.4, 6.4, 



Figure 6: Control Trace for Conversion. 

and 7.4 represent states in which the pc is statement s4, s5, s6, or s7, 
respectively, and which are part of the last execution of the loop body. 
Nodes 4.3 - 7.3 likewise represent those statements for next-to-last it
erations, etc. The 4.1- 7.1 group represent all the previous iterations. 
Nodes 9.0 - 9.4 represent states where the pc is s9 for different num
bers of digits generated (or numbers of iterations completed). Node 
1 is a parent of all of the s4 and s5 nodes because they all represent 
some states which are part of the first loop iteration and hence use 
the initial values. Node 2 is likewise a parent of all s6 and s7 nodes. 
The completion time of a static graph node is an average of the com
pletion times of the states it represents, with one additional cost: the 
sink computation time BC. That is the time required to compute where 
to send the output values. It is spent by the sender just before the :ct 
begins. 

The continuance probabilities of (4.z, 6.z) and (5.z,7.z) are all 1 
because the whole loop body is executed whenever it is entered. Arcs 
(5.z,4.z+ 1) and (7.z, 6.z+ 1) also have probabilities of! because the 
sources of those arcs represent only states which are not part of the 
last iteration of the loop. Other probabilities depend on the actual 
value of H, but, assuming that the probability of the loop test being 
true is a constant p, cp«(2,9.0) = 1 - p, cp«(1,4.4) = p(1 - p), 
cp«(I, 4.3» = p2(1_ p), cp«(I, 4.2» = p3(1- p), and cp«(I, 4.1» = p4. 
Node 4.1 breaks the pattern because it covers more than a single 
iteration. Other cp values are computed similarly. The model has 
predicted actual execution times on the ZMOB [14) MIMD processor 
to within 10%. 

Processor Allocation 

Processor allocation can be indicated by drawing heavy "control 
trace" arcs on the graph which indicate ordering of nodes due to exe
cution by the same processor and may replace data dependence arcs. 
When communicating states are assigned to the same processor, the 
communication times become zero. We used a heuristic search to find 
an allocation that provides a good completion time for the graph of 
Figure 5, and the result is given in Figure 6. In the heuristic solution, 
each (5.z,4.z + 1,6.z + 1) is a stage which extracts one digit from 
nUll as it is passed along. The (7.1, ... ) series provides the subscript 
for each stage. In the loop itself (ignoring the print routine which is 
expensive and atolnic), the allocation found 32% of the cost savings 
that could be realized if the graph were executed with free communi
cations. This works out to about two communications per iteration. 
The calculations are summarized in Figure 7. 

Translating programs to static graphs 

We need to discover a set of variables which is a CVS for ev
ery execution of a program, or part of a program, being examined. 
For sequential code, this is not usually hard. For while loops it may 

137 

Time for sequential execution . . . . . . . . . . . 82.5 
Time for parallel execution as allocated . . . . . . 71.2 

Speedup . . . . . . . . . . . 82.5/71.2 = 1.16 
Time for parallel exec. with free communication (min). . . . 47.2 

Speedup . . . . . . . . . . . .. . 82.5/47.2 = 1.75 
Time for parallel exec., 1 node/processor (max) ...... 91.5 
Savings found by allocation ....... 82.5 - 71.2 = 11.3 
Savings when using free communications .. 82.5 - 47.2 = 35.3 
Percent of max savings found by allocation. . 11.3/35.3 = 32% 
Cost of zt or rt . . . . . . . . . . . .. .... . . . 8 
Savings shortfall in terms of communications cost 

. . . . . . . . . . . . . . . . . (35.3 - 11.3)/8 = 3.0 
Expected number of loop iterations . . . . . . . . . . .. 1.5 
Savings shortfall, communications per iteration . . . 3.0/1.5 = 2.0 

Figure 7: Conversion Loop Allocation Statistics. 

be more difficult, but we have an algorithm that can find reasonable 
control states. It is based based on a theorem which follows from our 
formal definitions of computation and control state. Before stating 
the theorem, a few preliminaries: 

• A state is represented by a set of ordered pairs of a variable and its 
value. 

• Unless otherwise indicated, A is a state. 

• If A is a state and v is a variable, A( v) gives the value of v in state 
A. Therefore, the notation A(I) gives A's function (statement), 
A(I)(A) applies it to A and hence gives the next state after A, 
and A(I)(A)(I) gives the function of the state after A (the next 
statement). 

• For any state A and any set of variables D, 

AD == {(v, d)l(v, d} E AAv E D} 

• For any states A1 and A2, the set of matching variables is 

• For any state A, inCA) and out(A) give its input and output vari
ables, respectively. 

And the theorem is: 

Consider the computation: 

At, ... ,A~,A~, ... ,A~, ... ,Af, ... ,A~,Z (1) 

Now, if 

1 :$ q :$ k, 1:$ p, r :$ n, p::/= r (2) 

and 

Aj(l) ::/= Z(I), l:$q:$k, l:$p:$n (3) 

Then, for any set D having the properties: 

There exists some function w : P -+ boolean s.t. (4) 
w(AiD) = T, 1 :$ i:$ k 
W(ZD) = F 

and 

out(Ai) n D::/= 0 => in(Ai) ~ D, (5) 

and 

D U {I} ~ M(A1, A) => in(A1) = in (A.) A out(A1) = out (A) (6) 

AAf(I)(A1)(I) = A(I)(A)(I) 



the set C = D U {eI} is a CVS for the computation A1. 
Requirements (2) and (3) simply insist that each A{, ... , ~ series 

is a loop body execution and that Z is the state after loop exit so that 
all executions are represented. In (4), the function w represents the 
while loop test and the condition insists that D contains the variables 
needed to evaluate it. Condition (5) insists that any change to a value 
in D must be a function of the D values, and (6) requires that D 
contain enough variables to determine the input and output sets and 
the outcome of any if tests in the loop body. 

The algorithm that comes from this theorem is as follows: Assume 
a loop of the form while e do sl; ... ;sn od.t 

Let 
V be the set of all variables, 
q be a set containing all states of all loop computations, and 
P be a set containing all states. 

Define INO, OUTO, and CI~ any way such that: 

IN(21) ;2 {vl(3A)(A E q Av E V A A(G) = 21 Av E in(A»} 

That is, all possible input variables for statement 21. For 
instance, IN(a:= b) = {b}, or, assuming 1 ... 1 are the 
bounds of v, IN(a:= v[i]) = {i, v[1], ... , v[I)}. Techni
cally, the expression says IN(21) must include all input 
variables of all states of the computation A which have 
A(G) = 21. 

OUT(21);2 {vl(3A)(A E q Av E V A A(e) = 21 A v E oot(A»} 

That is, all possible output variables for statement x. 

CIN ;2 {vl(3A)(A EPA v E V A A(G) = "b :=e" Av E inCA))} 
for e of the loop above. 

That is, all input variables for the loop control expression, 
e. The variable b is an arbitrary boolean variable used to 
make an assignment statement. 

Then the algorithm 

D:=CIN; 
repeat 

change := false; 
for each 21 E {sl, ... , sn} 

if (OUT(21) n D ~ 0v 

fi 
rof 

(3A E q)(3A' E PleD U {e} !; M(A, A') A 
(in(A) ~ inCA') V out (A) ~ oot(A') V 

A(G)(A)(e) ~ A'(G)(A')(G»))) A 
IN(21) g; D then 

D:= D UIN(21)j 
change := true 

until not change; 
C:=Du{e} 

produces a value of C which satisfies (1). To see that this is so, notice 
that the computations of the while loop must satisfy (2) and (3). 
The conditions on D, (4), (5), and (6), must be true of D for the 
algorithm to terminate. Since D !; iN(sl) U ... U IN(sn) U CIN, the 
while loop must eventually halt so long as all IN(21) sets and CIN 
are finite. This algorithm finds the CVS {num,dig,sub,G} for the 
conversion loop. Obviously this is not optimal, but it is of reasonable 
size. Another example is the array reversing loop 

t As the theorem is currently formulated, there may be no nested 
while loops, and any if statements in the loop body must have equal 
numbers of statements in each alternative. We expect to remove these 
restrictions later. 

138 

i := 1; 
while i < 1/2 do 

t := a[i]; 
a[iJ := a[J - i + 1J; 
a[J - i + 1] := t; 
i := i + 1 

od 

For this, the algorithm finds that {i, I,G} is a CVS. So this algorithm 
permits us to find some reasonable CVS's, and we expect it will be 
possible to find better or more specialized algorithms. We have not 
investigated the question of finding the best CVS, or even what the 
best CV S is: A larger CV S incurs more communication cost, but 
may reduce the se. 

Translating Static Graphs to Programs 

First, we extract a set of "control trees" from the graph. Each 
node that does not have a control trace entering it is the root of the 
control tree formed by the outgoing control arc( s) and their succes
sores). There are six such trees in Figure 6: Tl rooted at node 1, T2 at 
2, T3 at 5.1, T4 at 5.2, T5 at 5.3, and Ts at 4.4. T2 is shown in Figure 
8. When a node has multiple control arcs out, it means that after 
it executes, at most one of its control children will actually follow, 
whichever represents the state that actually occurs. Each tree, then, 
represents the program that will be executed by some process, where 
the process will follow one path from the root to a leaf and eXit. In 
some cases, termination of the process an alternative, represented by 
an empty subtree, and so not easily drawn. Next, note that nodes can 
be considered "execution equivalent" when they differ only in what 
is received, so they can be represented by identical object code. This 
lets us compress the trees as shown in Figure 8. 

Next, we extract the programs for each unique compressed tree by 
tracing it out, starting at the root and passing through to the leaves. 
At each node, we first generate a receive operation for each datum 
required from another trace, then generate the code for the node itself, 
then generate sends for each output datum that must be shipped 
elsewhere. If the node has mUltiple successors in the tree, an if must 
be generated to determine which will actually be executed. When a 
node is its own successor, each execution followed by a successor test 
constitutes a loop in the object program, as in T2. The results for the 
tree in Figure 8 is given in Figure 9. 

Computation of sinks and the if tests that result from tree branch
ing in this example are all of the form "does the loop execute at least 
n more times." We have assumed that the translator can see, from 
the fact that s5 is the only body statement that changes the loop test 
result, that the question can be answered for any n and num by an 
expression of the form num ( div lo)n ! = O. It is a simple optimiza.
tion to substitute Inuml >= lon, though we have not done that. In 
general, the test is performed by seeing how the loop body modifies 
the control state. 

The three communications operations are send, creates end, and 
receive. Send and createsend both transmit a particular variable 
(name and value) to a named process; createsend creates the process 
before sending to it. Receive reads in a variable regardless of who sent 
it: The control state scheme is designed around the idea that when 
you send data, you know where it goes. In general, a process can be 
uniquely named by the control state of any node in its tree; we have 
used a form of this, but with a smaller name size. We identify some 
trees as executed at most once by the fact that they always perform 
some code which is outside of any loop in the original program (Tl' 
T2, T5 , and Ta), and name.these by the tree type. For the others, each 
·root node has a CVS 'of {num,e}, and the tree type determines the 
value of e, so these are named by the tree name and num value. 

Current Directions 

We are continuing work toward building a prototype compiler 



tree compressed tree 

T'O 

2 7.* 6. 

6. 

Figure 8: Example execution tree for Figure 6. 

T2: receive(num); 
2 sub: z I; 

7.* 

6.4 

6.4 

it num != 0 then 
it num div 10 !: 0 then 

do 
receive(num); 
sub := sub - 1; 
send« T34 >.sub) 

while num ! = 0; 
receive(dig); 
arr[sub] := chr(ord('O') + dig); 
send«T5 >.arr[sub]) 

.lse 
receive(dig); 

ti 
else 

~rr[sub] := chr(ord('O') + dig); 
send«Tl >,arr[sub]) 

9.0 print(arr,sub + 1) 
ti 

Figure 9: Program derived from the tree, in Figure 8. 

based on the control state concept. One area for additional work is 
dealing with a limited number of processors. Our exposition assumes a 
run-time environment that manages processors, but another approach 
is to produce only allocations that use no more than the actual number 
of processors, as in [15]. This would involve a step after the heuristic 
allocation that would continue adding control traces so as to chain 
trees together. This would continue until the number of processes is 
reduced to the limit. 

Another important task will be improving the allocation heuristic. 
For instance, consider the hexadecimal conversion program: 

num := H; 
sub := H; 
while num != 0 do 

dig := num mod 16; 
num := num div 16; 
it dig < 10 then 

arr[sub] := chr(ord('O')+dig) 
else 

arr[sub] := chr(ord(>a')+dig-10) 
1i 
sub := sub-1 

od; 
print(arr.sub+1) 

Its graph is really no harder to produce than the one in Figure 5, 

139 

having two nodes in place of each node 6.z, but our studies with the 
heuristic search have been disappointing. While the occurrence of it 
statements inside loop bodies causes problems for other extraction 
methods, our formalism has no particular trouble with this, and we 
feel this is a particular strength of our method which we can exploit 
as soon as the heuristic is improved. 

References 

[1] W. B. Ackerman, "Data Flow Languages," Proc. NCC (1979), 
pp. 1087-1095. 

[2] R. Allen, D. Callahan, and K. Kennedy, "Automatic Decom
position of Scientific Programs for Parallel Execution," Proc. 
Symp. on POPL (1987), pp. 63-76. . 

[3] U. Banerjee, Data Dependence in Ordinary Programs, Computer 
Science Dept., University of Illinois at Urbana, UIUCDCS-R-76-
837, (November, 1976),41 pp. 

[4] P. Brinch Hansen, "The Programming Language Concurrent Pas
cal," IEEE TSE (June, 1975), pp. 199-207. 

[5] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau, "Paral
lel Processing: A Smart Compiler and a Dumb Machine," Proc. of 
the SIGPLAN Symp. on Compiler Construction (1984), pp. 37-
47. 

[6] J. A. B. Fortes, and D. I. Moldovan, "Parallelism Detection and 
Transformation Techniques Useful for VLSI Algorithms," J. of 
Parallel and Distr. Compo (September, 1985), pp. 227-301. 

[7] C. C. Foster, and E. M. Riseman, "Percolation of Code to En
hance Parallel Dispatching and Execution," IEEE Tr. on Compo 
(December 1972), pp. 1411-1415. 

[8] D. Gelernter, N. Carriero, S. Chandran, and S. Chang, Parallel 
Programming in Linda, Computer Science Dept., Yale University, 
YALEU/DCS/RR#359, (January, 1985),21 pp. 

[9] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, "The Struc
ture for an Advanced Vectorizer for Pipelined Processors," Fourth 
Inti. Con!. on Computer Software and Applications (1980), pp. 
709-715. 

[10] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, 
"Dependence Grahps and Compiler Optimizations," Proc. Symp. 
on POPL (1981), pp. 207-218. 

[11] D. J. Kuck, "A Survey of Parallel Machine Organization and Pro
gramming," Computing Surveys (March, 1977), pp. 29-59. 

[12] L. Lamport, "The Parallel Execution of DO Loops," C. ACM 
(February, 1974), pp. 83-93. 

[13] R. H. Perrott, "A Language for Array and Vector Processors," 
AcM TOPLAS (October, 1979), pp. 177-195. 

[14] C. Rieger, ZMOB: Hardware from a User's Viewpoint, Computer 
Science Dept., University of Maryland College Park, TR-1042, 
(April, 1981),23 pp. 

[15] V. Sarkar, and J. Hennessy, "Compile-time Partitioning and 
Scheduling of Parallel Programs," Proc. of the SIGPLAN Symp. 
on Compiler Construction (1986), pp. 17-26. 



Processor Scheduling Algorithms for 
Constraint-Satisfaction Search Problems 

K. S. Natarajan 
Vivek Sarkar 

IBM Research 
T. J. Watson Research Center 
Yorktown Heights, NY 10598 

Abstract 

Constraint-satisfaction problems arise frequently in Artificial 
Intelligence and engineering design applications. These 
problems are computationally intensive and would significantly 
benefit from speedup through parallel processing. In this paper, 
we investigate parallelizations of the Forward-Checker 
algorithm, which is known to be an efficient sequential algorithm 
for constraint-satisfaction problems. We present two parallel 
algorithms -- the Threshold Depth-First Priority (TDFP) and the 
Breadth-First List Scheduling (BFLS) algorithms. Simulation 
results show that both algorithms are suitable for solving 
constraint-satisfaction problems in parallel, and yield near-linear 
speedup even beyond 100 processors. The best choice of 
algorithm depends on the amount of imbalance in the search 
problem and the overhead in the target multiprocessor. 

1. Introduction 

A constraint-satisfaction problem typically requires finding 
values for a set of variables, subject to an arbitrary set of 
constraints. For example, consider the problem of packing 
items -into boxes, with the constraint that some pairs of items 
cannot be packed together (perhaps to avoid forming an 
explosive mixture). An acceptable solution to the packing 
problem is an assignment of items to boxes such that all 
constraints on pairs of items are satisfied. In a number of 
applications, one is interested in generating all acceptable 
solutions to a constraint-satisfaction problem. Many 
Artificial Intelligence and combinatorial search applications 
can be formulated as constraint-satisfaction problems. 

A backtrack-search algorithm [GOL6S] can be used to 
enumerate all solutions to a constraint-satisfaction problem. 
Previous work has primarily focussed on methods for 
improving the efficiency of backtrack search algorithms. 
Various authors have developed methods for improving 
search efficiency [BIDS] [HAR80] [NUD88]. The Iterative 
Deepening A * (IDA *) algorithm [KOR8S] has been applied 
to find optimal cost solutions in AI applications modeled as 
state-space searches. Parallel execution methods for the 
IDA * algorithm are described in [RA087] . 

140 

Most constraint-satisfaction problems are NP-complete 
and the algorithms used to solve them have worst-case 
exponential execution times. Using multiple processors to 
solve such problems cannot significantly improve the 
worst-case performance [KAS86] Nevertheless, since a large 
number of practical applications are naturally formulated as 
constraint-satisfaction problems, it is important to speed up 
their solutiGn using one or both of the following approaches: 

1. Develop efficient sequential algorithms for the average 
case. 

2. Use multiple processors to speed up their execution by 
parallel processing. 

In this paper, we are interested in parallelizations of the 
Forward-Checker algorithm [HAR80] which has been shown 
to be one of the most efficient sequential algorithms for 
constraint-satisfaction problems An efficient parallelization 
of the Forward-Checker algorithm, rather than the backtrack 
algorithm, gives us a true speedup over the sequential 
execution time. 

We present two parallel algorithms that give near-linear 
speedups even beyond 100 processors. The first method is the 
Threshold Depth-First Priority (TDFP) algorithm which uses 
inter-node parallelism up to a specified granularity combined 
with a depth-first priority scheduling policy for tasks. The 
second method is the Breadth-First List Scheduling (BFLS) 
algorithm which uses inter-n~de parallelism to decompose th~ 
search tree into a fixed number of tasks (subproblems), and 
then applies the intra-node parallel algorithm from [NAT87] 
on . each task simultaneously with a small number of 
processors per task. We present simulation results to support 
the following observations: . 

1. The TDFP algorithm is more robust with respect to 
imbalanced search trees; the algorithm can achieve 
near~linear speedup even when the imbalance becomes a 
sequential bottleneck for the BFLS algorithm. 

2. The BFLS algorithm is more robust with respect to 
increasing multiprocessor overhead, while the 
performance of the TDFP algorithm degrades severely in 
this case. 



An important property of our simulation is that we 
accurately measure the effect of scheduling overhead in the 
TDFP algorithm by treating a priority queue operation as a 
critical section. Thus, the parallel execution times measured 
include the effect of serialization in the task scheduler. 
Another important parameter studied is the effect of 
granularity. We show that, in the presence of overhead, there 
is an optimal intermediate threshold size which gives the best 
speedup. 

The lookahead search in the Forward-Checker algorithm 
involves making a binding decision for a free variable, X, and 
discarding those values for the remaining free variables that 
are inconsistent with the value chosen for X. If all the 
remaining free variables still have a feasible value, the binding 
for X is performed and the search procedure moves forward 
in an attempt to find a binding for the next free variable. A 
solution is found when no free variables remain. However, if 
any of the remaining free variables has no feasible value, the 
binding for X is undone, and another value is chosen. When 
there are no more values, the search procedure backtracks to 
the previous variable. The reader is referred to [HAR80] for 
a detailed description of the sequential algorithm. 

The rest of this paper is organized as follows. In Section 2, 
we describe two methods for parallelizing the sequential 
Forward-Checker algorithm. In Section 3, we present 
experimental results based on simulations of these algorithms. 
The experiments take into account the effects of scheduling, 
synchronization and serialization in executing the parallel 
algorithms. We 'present experimental results for two 
constraint-satisfaction problems, the N-Queens and Graph 
Coloring problems. In Section 4, we present our conclusions. 

2. Processor Scheduling Algorithms 

We assume a shared-memory multiprocessor model in this 
paper. Our simulation systen measures the parallel execution 
times, according to the task scheduling algorithm being used. 
The primary inter-processor interaction in the TDFP 
algorithm is due to insertions and deletions in the priority 
queue, which is accurately modelled as a critical section in 
our simulations. The priority queue contains all the necessary 
synchronization, since a parent task ensures that all the data 
needed by its child tasks is ready before the child tasks are 
created. Therefore, all other inter-processor interactions are 
secondary effects mainly due to interference among 
independent shared memory accesses. These effects depend 
on the shared memory architecture and are ignored in our 
simulations. 

Ideally, a good parallel algorithm for a given problem 
should have the following desirable properties: 

1. Sufficient parallelism for the number of processors we are 
interested in using. 

141 

2. Low overhead component in the parallel execution time. 
The overhead comes from controlling the parallel 
execution of a program (task creation, synchronization, 
communication, etc.). 

3. Good load balancing of tasks on processors. 
4. Efficient sequential execution time. 
5. Reasonable space requirement. For our purpose, 

O(NumProcs x SeqSpace) space is reasonable, though 
O(SeqSpace) space is ideal, where NumProcs is the 
number of processors and Seq Space is the space used by 
an efficient sequential algorithm. 
O(NumProcs x SeqSpace) space can be considered 
reasonable for multiprocessors in which the total memory 
size increases linearly with the number of processors. 

Properties 1,. 2, and 3 are all necessary for good speedup. 
Property 4 is desirable for good performance measured in 
absolute terms. Property 5 is a necessary resource constraint 
to ensure that the parallel algorithm will execute with the 
available amount of memory. We next present two different 
algorithms for scheduling multiprocessor 
constraint-satisfaction searches and evaluate them against the 
criteria outlined above. 

2.1 Threshold Depth-First Priority Algorithm 

The Threshold Depth-First Priority algorithm (TDFP) 
described in this section satisfies all 5 properties as follows: 

1. The TDFP algorithm exploits parallelism among nodes of 
the search tree. Since the number of parallel nodes could 
potentially be exponential, the amount of parallelism in 
the algorithm is more than adequate for any reasonable 
number of processors. 

2. A low overhead component is obtained by using a 
threshold size to decide if a search tree node should be 
executed as a separate task or not. If the number of tests 
in the node is less than the threshold value then the node 
and all its descendants are executed sequentially as part 
of the parent task. Thus, the overhead of task creation, 
scheduling, synchronization, etc. only applies to 
computations larger than the thr~shold size, leading to a 
small amortized overhead. Naturally, this use of a 
threshold size reduces parallelism. But for the data sizes 
used in practice, there still remains plenty of parallelism 
after the threshold size has been made large enough to 
reduce the overhead component to an acceptable level. 

3. Good load balancing is achieved by dynamically 
scheduling tasks at run-time. The scheduling policy is a 
form of non-preemptive list scheduling with no unforced 
idleness. This policy is guaranteed to yield a parallel 
execution time within a factor of 2 of the optimal 
schedule [GRA69]. 

4. The TDFP algorithm is a parallelization of the 
Forward-Checker search algorithm, which is considered 
to be one of the most time-efficient sequential algorithms 
for. constraint-satisfaction problems. Both the parallel 



TDFP and the sequential Forward-Checker algorithms 
perform exactly the same number of consistency tests. 
Hence our parallel algorithm has an efficient sequential 
execution time. 

S. A depth-first priority rule is used to schedule tasks in the 
TDFP algorithm, so that nodes at a larger depth are 
executed first. This rule guarantees an 
O(NumProcs x SeqSpace) space usage, assuming that a 
parent task creates at most O(NumProcs) child tasks. 
Space usage is a very important issue for tree-structured 
computations, where a simple FIFO scheduling policy 
could incur an exponential space expansion making it 
impossible for the program to continue execution. 

The TDFP algorithm can be conveniently described by the 
recursive procedure, Parallel_Search , in Figure 1 which is 
structured like the version in [NA11!7J The main difference is 
in the FORK statement. The WHEN clause in the FORK 
statement was introduced to avoid code duplication. If the 
WHEN condition is true, the computation enclosed in 
BEGIN ... END is forked as a separate task with priority = 
CurVar If the WHEN condition is false, the same 
computation is just executed sequentially by the parent task. 

This algorithm assumes that a scheduling mechanism exists 
in the multiprocessor system to assign each processor a task 
with the highest priority. It is necessary to maintain a 
run-time priority queue for scheduling tasks. Since the 
priority values must be in a small bounded range (up to the 
maximum depth of the search tree, say $100), a priority 
queue can be efficiently implemented as an array (indexed by 
priority values) of lists of tasks. 

All data communication between parallel tasks in 
procedure Parallel_Search occurs between a parent and 
child. There are no global shared variables. The PRIVATE 
declaration gives each task its own copy of the variables. The 
TDFP algorithm thus has locality in communication. 
However, the priority-based task scheduler is assumed to be a 
centralized structure. An interesting area of future research 
would be to design efficient priority-based scheduling 
algorithms for distributed systems, which would allow the 
TDFP algorithm to work efficiently on message-passing 
multiprocessors as well. 

Finally, we observe that this algorithm has no JOIN 
operation corresponding to the FORK's. So the parent task 
is just terminated a~ter all its child tasks have been created. 
Thus, the parent does not need to be suspended till its child 
tasks have completed and the scheduling policy can be truly 
non-preemptive. Program execution is completed when there 
are no tasks in the priority queue and no tasks being executed 
on any processor. 

142 

PROCEDURE Parallel Search(CurVar,F,FVT); 
/* CurVar = current variable = computation depth * / 
/* F = partial solution, defined for F(l..CurVar-l) * / 
/* FVT is the Feasible Value Table. FVT(i) gives the 

list of feasible values for CurVar$i$ NumVars. * / 
IF CurVar = NumVars THEN 

Output all solutions defined by F(l..CurVar-l) 
and FVT(CurVar) 

ELSE 
FOR V ... each value in FVT(CurVar) DO 
/* If the number of tests in FVT(CurVar+ 1) ... 

FVT(NumVars) exceeds ThresholdSize, then fork 
BEGIN ... END as a separate task with priority=CurVar. 
Otherwise, execute the computation sequentially. * / 

FORK WITH PRIORITY=CurVar 
WHEN size(FVT(CurVar+ l..NumVars» 

~ ThresholdSize 
BEGIN 

PRIVATE New_F, New_FVT; 
New F ... F ; New F(CurVar) ... V; 
New FVT ... Check_Forward(CurVar, V, FVT) ; 
IF New _ FVT is not empty THEN 

Parallel_Search(CurVar+l,New_F,New_FVT) 
END 

END FOR 
END PROCEDURE 

PROCEDURE Check Forward(CurVar,CurVal,FVT); 
/* Return a new FVT with those (Variable,Value) 

pairs that are consistent with (CurVar,CurVal). 
Return an empty table if some variable has no 
feasible value. * / 

/* Initialize NewFVT to an array of empty lists. * / 
NewFVT ... empty table; 
FOR FreeVar· ... CurVar+l TO NumVars DO 

FOR V ... each value in FVT(FreeVar) DO 
/* This is the consistency test. * / 
IF (FreeVar,V) is consistent 

with (CuiVar,CurVal) THEN 
Insert V in NewFVT(FreeVar) 

ENDFOR; 
IF NewFVT(FreeVar) is empty THEN 
BEGIN 

NewFVT ... empty table; 
RETURN NewFVT 

END 
ENDFOR; 
RETURN NewFVT 
END PROCEDURE 

Figure 1. Outline of the Threshold Depth-First Priority Algorithm 



2.2 Breadth-First List Scheduling Algorithm 

The Breadth-First List Scheduling Algorithm (BFLS) 
described in this section differs from the TDFP algorithm in 
how the multiple processors are allocated to search the tree. 
The algorithm exploits intra-node parallelism available at all 
levels of the search tree. The average amount of intra-node 
parallelism is large at nodes close to the root and falls off at 
deeper levels of the tree. If the amount of work to be done in 
a node is large enough to keep all the available processors 
busy, then all the processors are deployed to work in parallel 
within the node. However, when the available work within a 
node is not large enough to keep all the available processors 
performing useful work, then the algorithm explores many 
nodes in parallel (inter-node parallelism) by assigning a 
separate group of processors to each node. 

The BFLS Algorithm was motivated by our earlier study 
[NAT87] where we observed a fall-off in intra-node 
parallelism with increasing node depth. The rationale for the 
present approach is to divide the search problem into smaller 
subproblems (or tasks) and to allocate the available 
processors to work in parallel on the tasks so that linear 
speedup oehavior is achieved when a medium (l00) to large 
(500) number of processors are used. 

We next comment on the BFLS Algorithm with respect to 
the five points listed at the beginning of Section 2. 

1. The parallelism used by the algorithm is limited by 
intra-node parallelism and by a user definable parameter 
NurnTasks, the number of search subproblems created in 
Phase 1 of the algorithm. 

2. The overhead is proportional to NurnTasks. We ensure 
that NurnTasks < NurnProcs, so that the overhead will be 
O(NurnProcs). If NurnTasks is too small (close to 1), the 
algorithm will suffer from lack of parallelism. If the 
NurnTasks is too large, the overhead will become 
significant. We have found that a reasonable choice for 
NurnTasks is between 5% and 10% of NurnProcs. 

3. Good load balancing is achieved by the list scheduling 
algorithm used in Phase 2. 

4. The BFLS algorithm performs all the consistency tests 
performed by the sequential Forward-Checker algorithm, 
and may also do some extra tests. The experimental 
results reported in Section 3.2 take into account any extra 
work that may be performed by the parallel algorithm. 

5. The space requirement of the algorithm is 
O(NurnTasks x SeqSpace), where SeqSpace is the space 
required by the sequential Forward-Checker algorithm. 
By specifying NurnTasks to be O(NurnProcs), we ensure 
the space required is reasonable. 

The BFLS Algorithm is outlined in Figure 2. It consists of 
two phases. In Phase 1, a list of tasks corresponding to the 
subproblems is created. This is achieved by calling 
Par _ Ch _Forward, a procedure that performs lookahead 

143 

/ * Main Program * / 
/* N = Number of variables * / 
/* NumProcs = total number of processors * / 
/* FVT = Table of feasible values * / 
/* Phase 1: Creates a shared list of tasks * / 

Create_Tasks (NumProcs,NumTasks,L); 
ProcsPerTask = max (l,NumProcs / NumTasks) 
/* Phase 2: Schedule tasks using List Scheduler * / 
while (L non-empty & a processor group is idle) do 
Schedule the next search Task L(i) for execution; 
Initialize F and FVT tables corresponding to L(i); 
INITIATE (BF _Par_LAS, L(i),ProcsPerTask); 
end; 

/* Phase 1 * / 
Procedure Create _ Tasks(NumProcs,NumTasks,L); 
/* Create list L: L(l), L(2), ... , L(NumTasks) */ 
Par_Ch_Forward with NumProcs; Visit in 
breadth-first sequence and enqueue tasks in L until 
number of entries in L reaches NumTasks. 

Procedure BF _Par_LAS (Curr,F,FVT,PGS); 
/* Phase 2: Use Parallel Lookahead search within • / 
/* each search task (see NAT87). Use PGS procs. */ 
/* in parallel within a node. Array F stores * / 
/* values assigned to the bound variables. * / 
FOR F(Curr) = each element of FVT(Curr) 
DO BEGIN 
IF Curr < N 
THEN BEGIN 
Par_ Ch _Forward(Curr,F(Curr),FVT,New _FVT,PGS); 
IF New_FVT not empty 
THEN BF_Par_LAS (Curr+l,F,New_FVT,PGS); 

END 
ELSE Output the solution F; 
END BF Par_LAS; 

Par_Ch_Forward(Curr,L,FVT,New_FVT,PGSize); 
/* New_FVT is New Feasible Value Table. L is bound 
to Curr, FVT is revised and New FVT is returned. 
PGSize processors are simultaneously used in 
the parallel execution of the nested do loops that 
perform the consistency tests. * / 
New_FVT:= emptytable; 
FOR free_var:= Curr+ 1 to N DOALL 
BEGIN 
FOR tvalue := each element of FVT(free var) 
DOALL -
Perform lookahead tests in parallel (NA T87) 

ENDDO; 
ENDDO; 

return(New _FVT); 
END Par Ch _Forward; 

Figure 2. Outline of the Breadth-First List Scheduling Algorithm 



operations within a node in parallel. In this invocation, all 
NumProcs processors are used to work in parallel within a 
node. After the list is created, the algorithm calculates 
ProcsPerTask, the number of processors to assign each task. 

Phase 2 of the main program consists of the parallel 
execution of tasks in list L. A scheduler accesses list L in an 
exclusive mode, picks up the next task waiting to be executed 
and initiates a group of ProcsPerTask processors to execute it. 
Task initiation consists of invoking BF _Par_LAS , and 
passing it appropriate data structures corresponding to the 
task being scheduled. BF _Par_LAS in turn invokes 
Par_Ch_Forward to explore the nodes using ProcsPerTask 
processors within each node. Note that once a task is 
initiated, the scheduler is free to assign another task to 
another idle group of processors, provided such a group 
exists. If all processor groups are busy, the scheduler waits 
until a group becomes idle and assigns that group another 
task. The completion of Phase 2 occurs when all the tasks in 
list L have finished execution. 

3. Experimental Results 

In the following subsections, we present simulation results 
for the TDFP and BFLS algorithms. Only consistency tests, 
are considered as useful work, since they dominate the 
computation in a search algorithm, The simulated execution 
times are normalized with respect to the execution time of a 
consistency test, so that each test is has execution time = 1. 
Results are presented for the following constraint-satisfaction 
problems: 

1. N-Queens problem - Find all placements of N queens on 
an N x N chessboard such that no queen can attack 
another. Our experiments used N = 8. 

2. m-Colorings of graphs - Given an undirected graph and 
m colors, find all possible ways in which the graph can be 
colored such that no two adjacent vertices in the graph 
are assigned the same color. Our experiments used m = 5 
on a graph with 10 vertices (Figure 3). Vertex 1 was 
chosen as the distinguished vertex (fixed color). Note 
that the packing problem described in Section 1 can be 
formulated as a graph coloring problem. 

3.1 TDFP Algorithm 

A simulation of the Threshold Depth-First Priority algorithm 
(Section 2.1) was implemented with the following 
parameters: 

1. NumProcs, the number of processors. 
2. ThresholdSize, the threshold size specified as a minimum 

number of tests to be processed in a parallel task. 
3. QTime, the overhead incurred by a processor to insert or 

remove a task from the priority queue. An important 

144 

feature of our simulation is that the overhead time is 
assumed to be a critical section, just as in a real 
implementation. So, the waiting time to access the 
priority queue is often much more significant than QTime. 
In our simulation, the value of QTime is normalized with 
respect to the execution time of a consistency test (i.e. 
QTime= 1 means that an enqueue or dequeue operation 
takes the same time as a test). 

4. The search problem to be solved. Any 
constraint-satisfaction problem can be solved by this 
algorithm by appropriately initializing FVT and defining 
the consistency test predicate. 

Figures 4a, 4b, 4c and 5a, 5b, 5c display results of 
experiments performed on the 8 Queens and Graph Coloring 
problems. The parallel execution time can be considered to 
have 4 components, corresponding to the 4 different states 
that a processor can be in: 

TPar = TUse!ul + TWorkWait + TQWait + TQ 

where 

1. TV"j"1 is the average time spent by a processor doing 
useful work (i.e. consistency tests). 

2. T w ... kWail is the average time spent by a processor waiting 
for work when the priority queue is empty. This usually 
occurs at the start of the program when a small number of 
tasks is available in the queue. 

3. TQwail is the average time spent by a processor waiting to 
enter the critical section of the priority queue. A 
processor needs to wait before it can pick a task for 
execution or insert any new child tasks in the queue. 

4. TQ is the average time spent by a processor on priority 
queue operations. If a processor needs to insert t tasks 
and then dequeue one task, it spends (t + 1)QTime time 
as overhead after entering the critical section. 

Figures 4a and 5a show the effect of threshold size on 
speedup for the 8 Queens problem on 100 processors and the 
Graph Coloring problem on 500 processors. For each value 
of ThresholdSize on the X-axis, the corresponding speedup 
was plotted on the Y-axis. The speedup is defined to be the 
ratio Ts,/Tpa" where 

Ts.. is the total number of tests performed by the 
sequential Forward-Checker algorithm. Its value for the 
8 Queens and Graph Coloring problems was 13024 and 
202857 respectively. 
Tpa, is the simulated parallel execution time. 

There are 4 curves in Figures 4a and 5a corresponding to 4 
different values of queue overhead, QTime = 0, 0.1, I, 10. 
We define OptThresholdSize(NumProcs,QTime) to be that 
value of ThresholdSize which gives the largest speedup on 



NumProcs processors with a queue overhead of QTime. 1 From 
Figure 4a for the 8 Queens problem, we can see that 
OptThresholdSize (100, QTime) = 1, 12, 23, 25 for 
QTime = 0,0.1, 1, 10 respectively. From Figure Sa for the 
Graph Coloring problem, we have OptThresholdSize (100, 
QTime) 1, 13, 17, 22 for QTime = 0,0.1,1,10 
respectively. 

QTime = 0 represents the ideal zero overhead situation 
where the smallest threshold size (= 1) is optimal. In this 
case, the speedup only decreases (or stays the same) as the 
threshold size increases. However, the speedup curves for 
QTime = 0.1,1,10 all exhibit a maximum at an intermediate 
threshold size. This is the trade-off between overhead and 
parallelism. If the threshold size is too small, the overhead 
component increases causing the speedup to decrease. If the 
threshold size is too large, there is less parallelism again 
causing the speedup to decrease. This existence of an optimal 
granularity has been predicted for parallel programs in 
general [SAR86], [SAR87] and is observed here in a real 
application. 

Figures 4b and 5b show how the parallel execution time 
from Figures 4a and Sa (for QTime =0.1) is split into its 
components. The 3 curves plotted are: 

1. Useful Work Fraction = TU"fjTpa,. 
2. Work Wait Fraction = Twa'kwa,,/Tp~. 
3. Queue Wait Fraction = TQu,u,wajTpa,. 

The ratio TQ/Tpa, was not plotted because it was negligible « 
0.01) compared to tl1e other 3 components. The waiting 
time, TQwa't> is much more significant than the actual time 
spent in the critical section, TQ. The threshold size that gives 
the maximum speedup can now be identified as that value 
which maximizes the Useful Work Fraction. The Queue Wait 
Fraction decreases (or remains the same) as ThresholdSize 
increases, which confirms that increasing the threshold size 
reduces the overhead component. Similarly the Work Wait 
Fraction increases (or remains the same) as ThresholdSize 
increases because of loss of parallelism. 

The only exception to the monotonic behavior of the 
Queue Wait and Work Wait fractions occurs in Figure 5b 
when ThresholdSize goes from 4 to 5. We see an unexpected 
drop in the Work Wait Fraction with a corresponding rise in 
the Queue Wait Fraction. However, the actual value of TQWail 
(rather than the Queue Wait Fraction) decreases 
montonically through 7159.4, 2319.8, 1761.4 for 
ThresholdSize = 3, 4, 5. The problem is in TW"kWail which 
goes through the values 619.9, 1253.4, 455.8. This erratic 
behavior in TW"kWail occurs because the priority queue is a 
critical section. At any given time, the queue contains a 
subset of the tasks that are ready to execute, because the 

processors must wait to enter the critical section before they 
can enqueue their newly created tasks. This subset can be 
significantly smaller than the set of ready tasks when 
ThresholdSize is small because of the longer waiting time to 
access the queue. 

Finally, Figures 4c and 5c show the speedup as a function 
of the number of processors for QTime = 0, 0.1, 1, 10. The 
threshold size used for a given QTime value is that size which 
gave the best speedup on 100 processors for 8 Queens, or on 
500 processors for Graph Coloring. We see that all 4 
speedup curves begin with a linear increase and then flatten 
out, depending on the value of QTime. The speedup is very 
sensitive to QTime, which indicates that a real 
implementation should try and reduce the queue overhead as 
much as possible. There are a few points in Figure 4c where 
increasing the number of processors actually causes a small 
decrease in speedup. This occurs because our scheduling 
policy is not optimal. However, since we use a form of list 
scheduling, the theorem in [GRA69] guarantees that this 
anomalous decrease in speed-up cannot be by more than a 
factor of 2. This anomaly was only observed for 8 Queens, 
because the Graph Coloring problem contains more work and 
used a larger number of tasks which had a smoothing effect 
on the speedup curves. 

For the 8 Queens problem on 100 processors, the speedups 
obtained for QTime = 0,0.1,1,10 were 58.9, 49.9, 27.0 and 
10.4 (see Figure 4c). For the Graph Coloring problem on 
500 processors, the speedups obtained for 
QTime = 0,0.1,1,10 were 364.2, 249.3, 78.3 and 35.5 (see 
Figure 5c). This establishes that the Threshold Depth-First 
Priority algorithm can attain reasonable speedups in the 
presence of low overhead. In fact, the simulated speedup 
values presented here are conservatively low. We can expect 
better speedups in a real implementation because: 

The problem size used in a real multiprocessor will be 
much larger than 8 Queens or Graph Coloring (which 
take around 1 CPU second on a mainframe). Therefore, 
a larger threshold size can be used to get the same 
amount of parallelism, but with a lower overhead 
component. 
An efficient implementation of the priority queue can 
reduce overhead and increase speedup in two ways: 
1. By reducing QTime , which would give a larger 

speedup. 
2. By further reducing TQWail by allowing many 

processors to simultaneously update the queue. 
For example, if the queue is implemented as an array of 
lists of tasks indexed by priority values, then each queue 
operation takes constant time and the insertion and 
deletion of tasks with different priorities can proceed 
simultaneously. 

If there is more than one optimal value for ThresholdSize, let OptThresholdSize(NumProcs.QTime) be the smallest one. 

145 



3.2 BFLS Algorithm 

A simulation of the Breadth-First List Scheduling 
Algorithm (Section 2.2) was implemented with the following 
parameters: 

1. NumProcs, the number of processors. 
2. NumTasks, the number of tasks created in the list from 

which tasks are assigned by the scheduler for processing 
by small groups of processors. For the purpose of this 
study the number of tasks created was controlled by an 
input parameter BF _ Upto _Level which specified that 
the search tree be explored breadth-first at levels 1 
through BF _ Upto _Level. For depths greater than 
BF Upto _Level, the search was executed according to 
the list scheduling algorithm. 

3. ProcsPerTask, the number of processors per task was 
varied from 1 through 20. 

4. The search problem to be solved. 

In our simulation of the BFLS algorithm, the overhead 
associated with accessing the shared list of tasks was assumed 
to be zero (a reasonable assumption if task granularity is 
sufficiently large). In the next section, we estimate the effect 
of overhead due to list accesses on speedup. 

Figure 6 displays results of experiments performed on the 
8-Queens problem. We plot three curves showing Speedup vs 
Number of processors that reflect the effects of different 
combinations of breadth-first and list scheduling of search 
effort. Specifically, the curves correspond to the following 
cases: 

Using a value of BF _ Upto _Level = 1, a small number 
of subproblems (8 tasks) were created. 

U sing a value of BF _ Upto _Level = 2, a medium 
number of tasks (42) were created. 
Using a value of BF_Upto_Level = 3, a large number 

of tasks (140) w·ere created. 

We make the following observations from Figure 6. When 
the number of tasks is small (= 8, a limited use of 
breadth-first search), the speedup increases upto about 100 
processors and then flattens out at a limiting speedup value of 
52 for larger number of processors. When a medium number 
of tasks (= 42, an intermediate amount of breadth-first 
search) is created, the speedup increases upto about 200 
processors and then flattens out gradually· at 125 
(significantly higher than 52). When a large number of tasks 
(= 140, a large amount of breadth-first search) is created, 
the speedup tends to flatten out at about 62. This set of 
experiments suggests that the limiting speedup behavior of 
Breadth-First List Scheduling improves with increasing the 
number of tasks (i.e., the breadth-first component) up to 
some intermediate point a.nd then starts deteriorating as the 
number of tasks is increased even further. The reason why 
the limiting speedup peaks at some intermediate number of 

146 

tasks rather than increase monotonically with increasing 
number of tasks is as follows. The total time in executing the 
search consists of two components: 

1. A Breadth-First component, where nodes of the search 
tree are examined sequentially and tasks are created for 
parallel execution. 

2. A List Scheduling component, different tasks are 
executed in parallel. 

The time spent in the Breadth-First component increases with 
the number of tasks created. This is shown in Figure 7 as 
TS,,'a,(BF). The time spent in the List-Scheduling component 
decreases with increasing number of tasks created because of 
greater potential for inter-node parallelism. This is shown in 
Figure 7 as TPa;oall,' (LS). There exists an intermediate value for 
the number of tasks such that the sum of the two components 
reaches a minimum (the right most bar in each set of three 
bars shown in Figure 7). Since the total amount of work 
done by the parallel algorithm is fixed, the work performed 
during the creation of a shared list of tasks must be balanced 
against potential benefit due to parallel execution of tasks. 

Figure 8 shows results corresponding to Graph Coloring 
problem. Note that the graph shown in Figure 3 was used as 
an instance of the problem. Figure 8 displays results 
(Speedup vs Number of processors) of experiments 
performed with different task decompositions. Specifically, 
the following cases were considered: 

Using a value of BF _ Upto _Level = 3, a small number 
of tasks (64) were created. 

Using a value of BF _Upto_Level = 4, a medium 
number of tasks (204) were created. 
Using a value of BF _ Upto _Level = 5, a large number 

of tasks (816) were created. 

When the number of tasks created is 64, speedup tends to 
flatten out at 229. When the number of tasks created is 204, 
the speedup tends to flatten out at about 413 (significantly 
more than 229). When the number of tasks created is 816, 
the speedup tends to flatten out at about 174. 

The experiments performed with the N-Queens and Graph 
Coloring problems suggest that depending on the problem 
and its size, an optimal mix of sequential breadth-first 
traversal and parallel list scheduling should be used to 
maximize the performance benefit due to parallelism. 

4. Conclusions 

This paper has presented two new methods for 
parallelizing the Forward-Checker algorithm, namely the 
Threshold Depth-First Priority (TDFP) and the Breadth-First 
List Scheduling (BFLS) algorithms. Experimental results 
show that these algorithms can achieve near-linear speedups 
beyond 100 processors for problems where the speedup 



obtained by just using intra-node parallelism falls off at 10 
processors. 

The performance of the TDFP algorithm is very sensitive 
to the queue overhead, QTime, especially since a queue 
operation is assumed to be a critical section. It is very 
important to reduce the size of the critical section, and hence 
the value of QTime, as much as possible. For a priority 
queue implemented as an array (indexed by priority values) 
of lists, serialization is only necessary for operations with the 
same priority. Ideally, the basic FIFO queue operation for a 
given priority could just be a single Fetch-and-Add 
instruction (or some other equivalent instruction). While it is 
important to reduce the size of the critical section, the real 
solution to the serialization problem is to implement a 
distributed priority scheduler. This is an interesting area for 
future research. 

An important parameter of the TDFP algorithm is the 
threshold size which defines the granularity of execution. 
The optimal granularity depends on the nature of the search 
problem, the number of processors (NumProcs) and the 
queue overh~ad (QTime). We observed that, in the presence 
of overhead, there is an optimal threshold size which gives 
the best speedup. This is the trade-off between overhead and 
parallelism. If the threshold size is too small, the overhead 
component increases causing the speedup to decrease. If the 
threshold size is too large, there is less parallelism again 
causing the speedup to decrease. 

Similarly, the parameter which controls the granularity of 
the BFLS algorithm is NumTasks, the number of subproblems 
to be created. If the specified value is too small, the 
algorithm will suffer from lack of parallelizable work. If the 
specified value is too large, the sequential breadth-first 
traversal will become a bottleneck. 

The TDFP and BFLS algorithms were found to perform 
well under different conditions. A speedup comparison is 
given in Table 1. The BFLS speedups were obtained 
assuming 42 tasks for 8 Queens and 204 tasks for Graph 
Coloring (i.e. the best values for NumTasks). For the BFLS 
algorithm, the speedup with overhead was simply computed 
as NumTests/(Tpa, + 2 x NumTasks x QTime), so that each 
task incurs an enqueue and a dequeue overhead just as in the 
TDFP algorithm. A * is placed against a speedup entry in the 
table if the speedup is at least 10% more than the speedup 
due to the other method .. 

For low overhead (QTime = 0,0.1), the TDFP algorithm 
performed better than the BFLS algorithm for the Graph 
Coloring problem and they performed comparably on the 
N-Queens problem. This is because the search tree for 
Graph Coloring problem is more imbalanced than the 
N-Queens problem. For large overhead (QTime = 1, 10), 
the .BFLS algorithm performed better than the TDFP 
algorithm on both problems. This is because the TDFP 

147 

algorithm is more sensitive to increased overhead. Therefore, 
both algorithms are suitable for solving 
constraint-satisfaction problems. The best choice depends on 
the search problem and the overhead in the target 
multiprocessor. 

References 

[ BIT75] J. R. Bitner and E. M. Reingold, "Backtrack 
programming techniques," Comm. of the ACM, 
vol. 18, pp. 651-656, Nov 1975. 

[ GOL65] S. Golomb and L. Baumert, "Backtrack 
programming," Journal of the ACM, vol. 12, 
1965, pp. 516-524. 

[ GRA69] R. L. Graham, "Bounds on multiprocessing 
timing anomalies," SIAM Journal on Applied 
Mathematics 17(2), March 1969. 

[HAR80] R. M. Haralick and G. L. Elliott, "Improving tree 
search efficiency for constraint-satisfaction 
problems," Artificial Intelligence pp.263-313, 
1980. 

[ KAS86] S. Kasif, "On the parallel complexity of some 
constraint-satisfaction problems," Proc. of the 
Fifth National Conference on Artificial 
Intelligence, Philadelphia, PA, 1986, pp.349-353. 

[ KOR85 ] R. E. Korf, "Depth-first iterative-deepening: an 
optimal admissible tree search," Artificial 
Intelligence, 1985. 

[NAT87] K. S. Natarajan, "An empirical study of parallel 
search for constraint-satisfaction problems," IBM 
Research Report 13320, Nov. 1987. 

[NUD88] B. A. Nudel, "Tree search and arc consistency in 
constraint satisfaction algorithms," iIi Search in 
Artificial Intelligence, edited by L. Kanal and V. 
Kumar, Springer-Verlag, 1988 (to appear). 

[ RA087 ] V. N. Rao, V. Kumar and K. Ramesh, "A parallel 
. implementation of the IDA* algorithm," Proc. of 
the AAAI-87, July 1987, Seattle, WA. 

[SAR86] V. Sarkar and J. L. Hennessy, "Partitioning 
Parallel Programs for Macro-Dataflow," Proc. of 
the A CM Conference on Lisp and Functional 
Programming, August 1986, pp. 202-211. 

[ SAR87] V. Sarkar, "Partitioning and Scheduling Parallel 
Programs for Execution on Multiprocessors," 
Ph.D. thesis, Stanford University, April 1987, 
Technical Report No. CSL-TR-87-328. 



Problem Procs QTime Method Speedup 

8Queens 84 0.0 TDFP 53.8 

8Queens 84 0.0 BFLS 54.3 

8Queens 84 0.1 TDFP 49.0 

8Queens 84 0.1 BFLS 52.4 

8Queens 84 1.0 TDFP 27.0 

8Queens 84 1.0 BFLS 40.2 * 
8Queens 84 10.0 TDFP 10.4 

8Queens 84 10.0 BFLS 12.1 * 
Coloring 410 0.0 TDFP 314.0 * 
Coloring 408 0.0 BFLS 237.3 

Coloring 410 0.1 TDFP 230.9 

Coloring 408 0.1 BFLS 226.5 

Coloring 410 0.1 TDFP 78.3 

Coloring 408 1.0 BFLS 160.6 * 

Coloring 410 10.0 TDFP 35.5 * 
Coloring 408 10.0 BFLS 41.1 * 

Table 1: Speedup comparison of the TDFP and BFLS algorithms 

Figure 3: Graph u~ed in Coloring Problem 

., 
w~~ ____ ~ ______ " __ ~ ____ ~ 

Figure 4(a): 8 Queene= Effect of ThreehoIdSize 
~~=r ______ ~(I=OO~~=="=='~~==_-~O~.O~.I~.~I._IO~' ____________ , 

110 

i 30 

• 
~ 

i 
I 
l. 
1; 

I 
E 

20 

10 

o 10 20 30 --
Figure 4(b): 8 Queene. Parale. time COIiIponent. 

(100 -. an ... - 0.1) 

0.. 

0.' 

0.7 

0.1 

0.5 

0.4 

u 

CI.2 

0.1 

0 
0 10 20 30 40 --

.Figure 4(c): 8 0ueenII Speedup VI Proce .. ore 
~,-_________ ~=anmo-o~~~~.I.~I.l=O~:~~==,,=_=.=~~n~) ____________ ~ 

110 

.,::. ___ ..... ' 40 

i 30 

?-__ --<l-_--::::i 7 
20 

10 

o 10 20 30 40 70 ~ 80 100 _01_ 
148 



Figure S(a): Graph CoIoring= Effect of ThreIhoIcISIze 
«Q~--------~~~p~,==".='=~~~~~-_~~~~I.~I~.I~~~-----------, 

~_o 

-
2l1li 

I 200 

110 

lao 

10 

0 
0 10 10 lIII 40 --

Figure S(b):' Graph CaIoring=ParaIeI time ~ 
(500 _. ~ - 0.1) 

o.e 

D.8 

~7 

~. 

o.a 

~I. 

110 --
Figure 5(c): Graph CoIaringI Speedup VI Proceeeore 

_________ ~~~~~I.I~.I~ol:~~~·~-~·'~·~~~~ ____________ ~ «Q, 

f 200 

1110 

lao 

o lao «Q 500 _ 01_ 

i 

I 
'Ii 

I 

t 

1 

149 

Figure 6: 8 QueenII Speedup VI Procellan 
llIO~----------~(=_==~0I~T--==--~~~~~~14O~)--------------, 
140 

IlIII 
120 

110 

lao 

10 

80 

7D 

80 

110 8 

40 

lIII 
20 

10 

o4---~---r---'--~~--r---'---~---r---'---4 
o o.a Q.4 D.8 o.a 

_O/_~ 

Figure 7: Componente of Total Tille 
_~ ____________ (~~~~~~P~.dW~~~~~~~ ______________ ~ -220 

200 

180 

180 

140 

120 

lao 

80 

80 

40 

20' 

SorIaI(DF) 

Figure 8 

«Q 

2l1li 

200 

1110 

lao 

10' 

0 
0 

• 140 

~T""'_ 

6 

4011 .1. 1224 1832 _ 2_ 2I11III 32tI4 lIlS72 _ ._01_ 



ON THE SEMANTICS OF PRIORITY SYSTEMS 

Ryszard Janicki Peter E. Lauer 

Department of Computer Science and Systems 
McMaster University 

1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1 

Abstract 

The paper presents a formal definition of the semantics of 
concurrent systems with priority constraints. It is shown that 
neither partial orders, which form the basis of several formal 
semantical theories which explicitly model concurrency, nor 
total orders, which form the basis of all formal semantical 
theories which reduce concurrency to arbitrary interleaving, 
suffice for the treatment of priority. We use a dialect of COSY, 
a notation for specifying concurrent systems whose formal se
mantics is based on partial orders for the treatment of systems 
in the absence of priorities. Vlfe introduce a semantical the
ory of COSY systems including priority constraints which is 
based on sequences of multiples. Finally, we show how the 
concept of starvation can be formally defined in the approach 
presented. 

1 Introduction 

In non-sequential systems, priority denotes the order of pref
erence in which events in conflict obtain service. It may be 
based on the nature of the service being requested or the im
portance of the events involved. Various techniques for spec
ifying priorities in real-time systems together with their intu
itive semantics, are discussed in [1]. Priorities are used to ad
vantage to obtain COSY specificatiori of a hyperfast banker's 
strategy in [2]. The programming language occaml[:3], a com
mercial version of Communicating Processes CSP [4], has a 
priority operator similar to the one used in COSY. However, 
CSP and its accompanying theorY'usually skirts the issue of 
priorities (see [5][4]). To develop a formal semantics for pri
orities is difficult and controversial, and a fully satisfactory 
formal solution has yet to be discovered in our opinion. Some 
reasons for problems arising in the formal treatment of pri
orities are described by Leslie Lamport in [6]. In the present 
paper we point out another source of problems and suggest a 
solution to it. The approach presented here is based in part 
on the results of [14]. 

2 Problem Explanation 

Let us consider the following part of an occam-like program 
(see [:3][5]): 

1 occam is a trade mark of the INMOS Group of Companies. 

PAR 
WHILE TRUE 

PRI ALT 
SEQ 

stop?ANY 
errorrecoveryandrestart 

read?x 
WHILE TRUE 

SEQ 
errormessage? ANY 
stop!ANY 

The program above can be modelled by the following 
extended Theoretical Communicating Sequential Processes 
TCSP program (see [7][4]):2 

Prl = j.tP.( stopandrestart --+ PO> readx --+ P) 
II f.lP.( error-message -+ stopandrcstart --+ P) 

where readx corresponds to read?x, stopandrestart corre
sponds to: 

SEQ 
.stop?ANY 
errorrecoveryandresfart 

in the first loop, and to sfop!ANY in the second 
loop (compare [5]), and errormessage corresponds to 
errormessage?ANY. The only extension we have allowed 
ourselves over standard TCSP is the use of the operator 0>, 
which corresponds to P RI ALT in occam, and it denotes the 
resolution of non-deterministic choice in favour of the left side. 
Po >Q means that any conflict between P and Q should al
ways be resolved in favour of P, i.e. Q may be activated only 
if other synchronization constraints disallow activation of P. 
The extended Petri net in Fig.1 models both our part of the 
occam-like program, and the extended TCSP program (see [8], 
and [9], for the relationship between Petri nets and TCSP). 
Here, the only extension to standard Petri nets is that we at
tach a description of the priority b > c to the place S3. The 
notation s3(b > c) means that "b and c must be output transi
tions of 83, and any conflict between band c must be resolved 
in favour of b" . 

The standard semantics of Petri nets is defined in terms of 
labelled partial orders (see [10]), where partial orders repre
sent possible histories of the system represented by a given 
net. Many arguments in favour of partial order semantics in 

2In this paper we use the notation of [4]. 

150 



a {errorm ... ag.} 

'2 

b {.topGndr .. tart} 

Figure 1: Extended Petri Net for program Prl 

general, not just for Petri nets, can be found in [11). Unfortu
nately, the above net shows that partial order semantics does 
not work for our extended nets with priorities. One may easily 
show that the sequence of transitions ca, and the simultane
ous firing of transitions a and c, are both possible behaviours, 
while the sequence of transitions ac is not! The reason is that 
after firing a the conflict between band c arises, and it has to 
be resolved in favour of b. The simultaneous firing of a and 
c is allowed, since initially there is no conflict between band 
c, and b is not enabled until a has been fired. But this means 
that a history involving a and c cannot be modelled by a par
tial (causal) order. Suppose that there is a partial order which 
models such a history adequately. Because of the possibility of 
the simultaneous firing of a and c, there should be no order be
tween a and c in this partial order. But this would imply that 
sequences ac and ca would be possible behaviours, whereas 
we have pointed out above that ac is not a possible behaviour. 
The standard semantics for TCSP is based on the notion of 
arbitrarily interleaving the independent events of concurrent 
subsystems to form one totally ordered history, thus reducing 
concurrency to arbitrary choice (see [4)[7)), however partial 
order semantics may be used also (see [8)[9)[25)). The notion 
of interleaving seems to work for our example Prl' The set of 
all interleavings generated by Prl can be described as: 

Pref( (readx*.( errormessage.stopandstart))*) 

where Pref(L) denotes the set of all prefixes of L, where L 
is a language (or a string set), and "." denotes string concate
nation. For some arguments against interleaving semantics for 
concurrent systems see [8) [9)[25). However, the next example 
will show that we cannot use interleaving semantics to model 
priorities in general .. Consider the following extended TCSP 
program: 

Pr2 = J-tP.((d -+ P)O>(a -+ (b -+ POe -+ P))) 
II J-tP.((b -+ P)O >(c -+ (d -+ Poe -+ P))) 

A corresponding extended Petri net is that of Fig.2. In both 
cases the set of interleavings generated is Pref( (ab U cd)*). 
Thus according to interleaving semantics the event (transi
tion) e never occurs. For e to occur, 'a and c must occur 
simultaneously. Furthermore, this implies that both Prl and 
Pr2 are not live according to interleaving semantics, while 
both are live according to intuition. It is also possible to give 
non-artificial examples of occam-like programs for which in
terleaving semantics does not work correctly, when compared 

151 

Figure 2: Extended Petri Net for Pr2. 

to the intuitive understanding of the intended meaning of the 
program. We refrain from giving more elaborate examples 
here due to lack of space and the need to introduce more oc
cam constructs. 

3 Towards a Solution 

In our approach we shall use sequences of multiples to mathe
matically model system behaviour, and represent the concur
rent systems we will be modelling in a COSY dialect which is 
suited to the task. 

3.1 Observations and Multiple Sequences 

A partial order representing a history can be interpreted as a 
causality relation holding between event occurrences (or tran
sition firings). No order between two event occurrences means 
that they are regarded as causally independent. Interleaving 
semantics is based on the assumption that an observer can 
observe only one event occurence at a time. However, we 
can reason about behaviour in another way. Assume that a 
possible observer of system behaviours can only detect either 
sequential or simultaneous occurrences of events at anyone 
point (see [12)). Under such an assumption every observa
tion can be represented as a sequence of sets of events. For 
instance, the observation: 

"first, an observation of simultaneous occurences of 
a, band Cj followed by an observation of an occurence 
of d alone, followed by an observation of simultaneous 
occurences of a and e" 

can be represented by a sequence of multiples as follows (see 
[13][14)): 

{a, b, c }{d}{ a, e} 

where {a, b, c} denotes a simultaneous occurrence of a, band 
c, {d} denotes an occurrence of d alone, and {a, e} denotes 
a simultaneous occurrence of a and e. Each such sequence 
will be called a multiple sequence. Multiple sequence se
mantics is a generalization of interleaving semantics in that 
more observational power is given to observers. Multiple se
quences can also be interpreted as a kind of partial order in the 
sense that interleavings can be interpreted as total orders (see 
Fig.3). However, partial orders defined by multiple sequences 



maximal 
antichains 

{a, b, c} 

~ 
{d} 

~ 
{a, .} 

Figure 3: Partial (but not causal) order corresponding to 
{a,b,c}{d}{a,e}. 

Figure 4: Partial (causal) order (invariant, partial order 
scheme. 

are very special, and in general they cannot be interpreted as 
histories of causally related event occurrences. 

For these orders, maximal anti chains correspond to multi
ples (i.e. sets of simultaneous event occurrences), maximal 
antichains are always disjoint, and each such order can al
ways be 1'epresented as a total order of its maximal anti chains 
(see Fig.3). This is a simple consequence of the fact that in 
this approach simultaneity is transitive when treated as a rela
tion, whereas concurrency is clearly not transitive. A partial 
(causal) order representing a system history can be interpreted 
as an invariant (or partial order scheme), i.e., the maximal 
order which is satisfied by every observation. This interpre
tation is also possible in the interleaving model. For systems 
whose histories could be modelled by partial (causal) orders, 
an invariant represents all possible behaviours and vice versa. 
For instance, a history represented by the partial (causal) or
der from Fig.4. can equivalently be represented by the follow
ing multiple sequences (observations): 

{a}{b}{c},{a}{c}{b},{b}{a}{c},{a,b}{c},{a}{b,c} 

For systems with priorities some observations (multiple se
quences) are not allowed, although they can satisfy a given 
invariant, so usually in this case, an invariant describes more 
observations than are really possible. However, we can use 
multiple sequences (observations )to represent non-sequential 
behaviours directly, as it is done in the interleaving approach 
with regard to concurrency. The diagram in Fig.5 represents 
the behaviours of the system specified by the extended TCSP 
program Prl and the extended Petri net from Fig.l, and the 
diagram in Fig.6 represents the behaviours of the system spec· 
ified by the extended TCSP program Pr2 and the extended 
Petri net from Fig.2, and their behaviours seem to be ex· 
actly as we intuitively expect. Unfortunately, the multiple 
sequence approach has some disadvantages. But it works for 
systems with priorities. The assumption that an observer can 
only observe either sequence or simultaneity disallows some 
observations. For instance, in the case of the partial order ex
amined immediately above and depicted in Fig.4, it disallows 

152 

{8'topa.ndl'elltal't} {el'l'Ol'D'U8'8'a,e} {el'l'Ol'meBllage,l'eadz} 

Figure 5: The observation behaviour of Prl. 

Figure 6: The observation behaviour of Pr2' 

the observation: 

"a simultaneous observation of an occurrence of band 
of the sequence of occurrences ac," 

that is, something like {b,ac}, although the partial (causal) 
order describes such a possibility as well. Giving more power 
to observers will result in an extremely complex formal theory. 
In some cases, the precise interpretation of "simultaneous oc
currences" of events is not obvious and might be ambiguous. 
All the problems dissappear when one uses partial (causal) 
orders, so in many respects the partial order approach (as in 
Petri net theory, standard COSY semantics, or in [11]) is bet
ter, if applicable. 

3.2 Multiple Sequence Semantics of a COSY di
alect with Priorities 

COSY (short for COncurrent SYstem) is an abstract nota
tion for specifying the synchronization properties of concur
rent systems in abstraction from all other properties of the 
system, such as which mathematical functions a system may 
be computing, or what other interpretations basic events of the 
system may have. It can be seen as an extension of regular 
expressions to include parallelism (in the same sense as Petri 
nets can be regarded as an extension or "product" of finite 
automata). The COSY notation was introduced in [15], and 
subsequently was extended to a high level notation to express 
common structures of subsystems succinctly, and for obtaining 
parametrized specifications of systems, during a succession of 
research projects at the University of Newcastle upon Tyne, 
U.K., the GMD Research Establishment, Bonn, West Ger
many, and McMaster University, Canada (see [16][17][18][9]). 
Here we will only introduce the bare essentials to make our 
points. Similar use of uninterpreted symbols to denote events 
form the basis of CCS [12J and TCSP [7J. 



Let Ev be a,n arbitrary (but finite) set of events, P and Pi 
denote sequential COSY subsystems, and PT denote a COSY 
system composed of such subsystems, The following BNF
style grammar defines an abstract syntax for our COSY di
alect: 

P ::= a! PI;Pz / PI,PZ / (P)* 
PT ::= PIli , .. II Pn 

where a E Ev. The grammar above contains ambiguities 
which can be resolved by using parentheses. In the absence 
of pa,renthesis we use the convention that "," binds stronger 
than ";", and the latter binds stronger than "II". Hence, a, b; e 
is equivalent to (a, b); e. Instead of (a)* we can also write aL 
The semicolon denotes sequence (concatenation), the comma 
denotes nmtually exclusive choice, and * denotes the Kleene 
star, i.e., (P)* means that P may be executed zero or more 
times. Syntactically, P is nothing but a kind of regular expres
sion, although they are interpreted differently. The abstract 
grammar above is a modification of a grammar presented in 
[9]. The full COSY notation can be found in [16][18]. Its stan
darel partial order semantics is defined on the basis of vector 
firing sequences [19]. For more details the reader is referred 
to [9][18]. 

Let Pr = PIli·· ·IIPn be a COSY program. By Ev we 
denote the set of all events involved in Pr, and by EVi we 
denote the set of all events involved in Pi for i = 1, ... , n. 
That is, Ev = EVI U ... U Evn. For any i, let Seq(Pi) denote 
the set of all sequences (or language) over EVi defined by Pi 
interpreted as a regular expression. For instance: 

Seq(a,b;c) = {ae,be} and Seq((d;e)*;b) = {de}*{b}. 

For every set L <:;; Ev*, let Pref(L) = {xl(3y E Ev*)xy E 

L}. The set of all possible observations of the behaviour of Pi, 
the firing sequences of Pi, denoted by F Si, is defined by: 
FSi = PTef(Seq(Pi)). From F S1, ... , F Sn we can derive the 
set of all histories (causal partial orders) generated by PT (see 
[19][18][9] for details). 

The relation ind <:;; Ev X Ev, called the independency, is 
defined as: 

(Va, bE Ev)(a,b) E ind 0(0} a of. b 1\ (Vi)(a ric EVi V b ric Ev;). 

The relation ind defines independent events and only in
dependent events can eventually (but not neccessarily) occur 
simultaneouslv. 

Define a fa~lily of sets of events I nd <:;; 2Ev a.s follows: 

A E Ind:o(o} (Va,b E A)a = b V (a,b) E indo 

The elements of Ind are simply sets of mutually independent 
events. 

Let Ie <:;; Ev x Ev be the following local conflict relation: 

(a, b) E Ie :0(0} a of. b 1\ (3i)(3x E FSi)xa E FSi 1\ xb E FSi. 

Note that: 

(a,b) E Ie =? (3i)a E EVi 1\ b E EVi 0(0} (a,b) ric indo 

If (ct, b) E Ie, i.e. if they are in a local conflict, then there is 
at least one sequential component of the whole system, which 
when considered on its own, after a sequence of event occur
rences x, permits an occurrence of either a o'r b (but not both, 
since (a, b) rf. ind). Figure.7 illustrates the relations ind, Ie and 
the family of sets of events Ind. Let < <:;; Ev X Ev be a relation 
satisfying: 

153 

Pr = a,b;cllb,d;e 

• b 

the relation ind the relation Ie 

Ind = {{a,e},{a},{e},{b},{c,d},{c},{d}} 

Figure 7: An illustration of ind, Ic and Ind. 

(1) a < b =? --,(b < a) 

(2) a<b=?(a,b)Ele. 

Condition (1) says that < is asymetric, and Condition (2) in
dicates that < can only be defined for events in a local conflict. 
The relation < is called priority (we do not assume that < is 
transitive). By a priority COSY program we mean a pair: 

where: <= {al < bl, ... ,ak < bd is the definition of a 
priority relation <, and PIli .. . IIPn is a COSY program. For 
example: 

Prl = 
{readx < stopandl'estart} 
(el'Tormessage; stopandrestaTt) * II (readx, stopandrestart)* 

corresponds to the TCSP program Prl and the Petri net in 
Fig.l, and: 

Prz = {a < d, c < b} 
((a;b,e),d)* II ((c;d,e),b)* 

corresponds to the TCSP program Pr2 and the Petri net in 
Fig.2. 

Let 10 denote both the empty sequence and the empty 
multiple sequence, let I nd* denote the family of all mul
tiple sequences over the alphabet I nd including 10, and for 
i = 1, ... , n, let hi : Ind' ---+ Ev* be the following homomor
phism: 

(i) hi(E)=10 

(ii) (VA E Ind)hi(A) = { : iff A nEvi = 0 
iff A nEvi = {a} 

The correctness of the definition of hi follows from the fact 
that: 

(Vi = 1, ... , n)(VA E Ind)eardinality(A nEvi) 2:: 1. 

Since hi is a homomorphism: 

hi(AI ... Ak) = hi(AI)' .. hi(Ak) for AI"", Ak E Ind. 

A set A E Ind is said to be potentially enabled (i.e. 
without taking into account the priority constraints) at t E 
I nd* if and only if: 

(Vi = 1, ... ,n)hi(tA) E FSi. 



Let mpenabled(t) denote the family of all sets (multiples) 
potentially enabled at t. A set A E Ind is said to be enabled 
at t E I nd* if and only if: 

(1) A is potentially enabled at t (i.e A E mpenabled(t», 

(2) (Va E A)(VB E mpenabled(t»(Vb E B) .. (a < b). 

The second condition says that there is no potentially enabled 
event which has a greater priority than elements of A. The 
family of all sets (multiples) enabled at t will be denoted by 
menabled(t). 

For example in the case of the COSY program PrI: 

m penabl ed( r::) = menabl ed( r:: ) 
= {{readx},{errormessage},{errormessage,readx}}, 

mpenabled( {readx}) = menabled( {readx}) 
= {{readx},{errormessage},{errormessage,readx}}, 

mpenabled( {errormessage}) = {{readx}, {stopandrestart}}, 

menabled( {e1Tormessage}) = {{ stopandrestart}} , so 
mpenabled( {errormessage}) t= menabled( {errormessage}), 

mpenabled( {errormessage, readx} ) 
= menabled( {error'message, readx}) 
= {{stopandrestart}}, and so on . 

Let R< ~ I nd* X I nd* be the following relation: 

(Vt,r E Ind*) tR<r :{} (3A E menabled(t» r = tAo 

The relation R< is called the reachability in one step. 
The set of possible observations, the multiple firing se
quences of Pr, denoted by M FS (or MFS(Pr) if necessary), 
is defined by: 

MFS = {t I r::R~t}. 
For the COSY programs PrI and Pr2 we have: 

M FS(PrI) = Pref(( {readx }*(( {errormessage, readx} 
U{ errormessage}){ stopandrestart} »*), 

M FS(Pr2) = Pref(( {a}{b} U {c}{ d} U {a, c}{ e} )*). 

where we have written a regular expression over the alpha
bet Ind rather than the explicit description of the multiple 
language. Note that these are exactly the behaviours depicted 
in the last two diagrams. Let ~ be the following relation on 
MFS: 

(Vt,rEMFS)t~r:{} (Vi = 1, ... ,n)h;(t) =h;(r). 

One may easily prove that ~ is an equivalence relation. Let 
[t]", be the eqivalence class of ~ containing t. The interpreta
tion of ~ is the following. Suppose we have n local observers, 
and the i-th observer can only observe events belonging to 
EVi. If t ~ r then t and r are different observations of the 
same history, and [t]", is the set of all observations of a his
tory. Note that in general [t]", cannot be constructed from 
the h;(t)'s alone, Le., we cannot replace MFS by Ind" in the 
definition of~. 

The multiple firing sequence semantics may also be ap
plied to ordinary COSY programs without priorities, simply 
by assuming that the priority relation is empty. In this case 
MFS can be described without the use of R<, using only 
FSI, ... ,FSn . 

Theorem 3.1 [14] 

If < is the empty relation then 

MFS = {t E Ind*I(Vi = 1, ... ,n)h;(t) E FSi}. _ 

One immediate consequence of Theorem 3.1 is that if < is 
the empty relation then we can replace M F S by I nd* in the 
definition of ~, since in such a case: 

[t]", = {r E Ind*I(Vi = 1, ... , n )hi(t) = hi(r)}. 

The COSY program Pr2 shows that, if < is not the empty 
relation then the behaviour of a system might not be sim
ulatable by interleavings (e is never allowed to occur under 
interleaving semantics). 

We say that Pr =< PIli .. . IIPn is serializable if and only 
if: 

(VtEMFS\{r::})(3aI, ... ,akEEv){ad ... {ak} ~ t. 

where "\" denotes set subtraction. The COSY program PrI 
is serializable, but Pr2 is not. 

Theorem 3.2 [14] 

If ("It E MFS)(VA E menabled(t»(VB C A) 

A \ B E menabled(tB) then Pr is serializable. _ 

The multiple firing sequence model of behaviour allows us 
to speak formally of dynamic properties of a system specified 
by a priority COSY program Pr =< PIli ... llPn. We say 
that Pr =< PIli ... llPn is deadlock-free if and only if: 

("It E MFS)menabled(t) t= 0. 

We say that Pr =< PIli .. . IIPn is adequate (contains no 
partial system deadlock, see [18][19][9]) if and only if: 

(\:It E MFS)(Va E Ev)(3r E R~(t» {a} E menabled(r) 

where R«t) = {r E Ind*ltR<r}. It can be proved that for 
< equal to the empty relation the above notions correspond 
directly to the similar notions in the standard COSY approach 
used in [18], see [14]. 

4 Starvation and Infinite Multiple Se
quences 

Starvation occurs when some part of a system is constantly 
prevented from progressing. The reasons for starvation might 
be unfair conflict resolution, or conspiracy on the part of some 
subsystems against some other subsystem(s). Although the 
intuition at the basis of the notion of starvation seems rather 
clear, it turns out to be extremely difficult to formalize (com
pare [20]). To define starvation for COSY programs we need 
to define the concept of infinite behaviour. 

Let Pr =< PIli .. . IIPn be a priority COSY program. 
The set of infinite possible observations, or the infinite 
multiple firing sequences of Pr, denoted by I M F S (or 
I M F S( Pr) if necessary), is defined by: 

IMFS= 
{AI' .. Ai .. . I (\:Ii = 1, ... ,00 )Ai E Ind A Al , .. Ai E M FS}. 

We say that Pr =< PIli .. . IIPn is a simple request sys
tem for a E Ev, and b E Ev is t.he request of a in Pr, if 
and only if there is ib, ib = 1, ... ,n, such that: 

1§4 



(1) (lfj)(ib of. j =} b rf. EVj) 1\ (lfc E EVib)(b,c) rf.lc), 

(2) (If x E hib(MFS))pr{a,b}(X) E (ba)*(bUc), 

where in (2) the regular expression (ba)*(b U c) represents a 
language as usual, and pr{a,b}(X) denotes x after erasing all 
events e.xcept a and b (projection of x onto {a, b}). If Pr is 
a simple request system for a, and b is the request for a, we 
shall write req( a) instead of b. 

The Condition (1) of the definition of simple request sys
tem says that b = req( a), the request for a, occurs in one 
sequential component only, and it is not involved in any con
flict. The Condition (2) says that the sequential component 
containing b = req( a) has a special form, namely, if x is a 
finite firing sequence of this component, generated by a fi
nite behaviour of Pr, and if we erase from x all event occur
rences except those of a and b, the result differing from .0 is 
either baba ... aba, or baba ... abo For instance, the COSY pro
gram Pri is a simple request system for stopandrestart with 
errormessage = req(stopandrestart). 

The next auxiliary function is npe, number of possible 
enablings, and is defined as follows: 

npe: Ev x (MFS U IMFS) --> {O,l, ... ,oo} 

and where A, Ai E I nd, tEl nd* 

(1) (lfb E Ev)n e(b E) = {o {b} rf. menabled(E) 
p, 1 {b} E menabled(E) 

(2) (lfb E Ev)(lftA EMF S)n'[!e(b, tA) 

_ { npe(b, t) {b} rf. menabled(tA) 
- npe(b,t)+l {b}Emenabled(tA) 

(3) (lfb E Ev)(IfAIA2 ... E IMFS)npe(b,AIA2"') = k 
:¢} (:Jj)(lfi ~ j)npe(b, AI'" Ai) = k 

(4) (lfb E Ev)(IfAIA2 ... E IMFS)npe(b,AIA2"') = 00 

:¢} (lfi)(:Jj)npe(b, AI ... Aj) = i. 

The function npe(b, t) describes how many times b was en
abled during t. 

Let Pr =< PIli .. . IIPn be a simple request system for 
a E Ev. We will say that Pr is starvation free for a if and 
only if: 

(1) Pr is deadlock-free, 

(2) (1ft E IMFS)npe(req(a),t) = 00, 

(3) (IfA1 A2 ... E IMFS)(req(a) E Aj =} (:Jk ~ l)a E Ai+k), 

where AI ,A2 , ••• E Ind. 
The first condition is obvious. A deadlock implies the star

vation of the whole system. If Pr is deadlock-free, then its 
infinite behaviour unambiguously defines its finite behaviour, 
since in such a case M F S can be defined as the set of all fi
nite prefixes of elements of IMFS. Condition (2) says that 
the only way of permanently blocking the event req(a) from 
occurring is to deadlock the whole system. Otherwise req(a) 
may be disabled only temporarily. Since req( a) is not involved 
in any conflict (see the definition of a simple request system), 
if Pr is deadlock-free, nothing can prevent req(a) from oc-. 
curring an infinite number of times. However, because req(a) 

155 

belongs to one sequential component only, it might refuse to 
become active ("commit suicide"), without deadlocking the 
whole system. The last condition (3) says that any request 
for a is served after a certain finite amount of time. Hence, 
the above definition seems to meet the intuitive requirements 
of starvation-freeness. The above model has been used to ana
lyze starvation problems in programs, such as the classical sec
ond problem for Readers and Writers [21][22]. Lack of space 
prevents us from presenting this or similar more complex ex
amples at this point. 

5 Final Comment 

In this paper we have briefly indicated how to express and rea
son about some of the properties of concurrent systems involv
ing priorities. The type of priority discussed is a constrained 
kind of static priority, that is, the priority constraint holding 
for two events will remain the same for all possible behaviours 
of the system involving them. In [22] we have shown how cer
tain kinds of dynamic priority may be expressed and reasoned 
about using multiple sequence semantics and "ghost" events 
(compare [23]), which never occur, but serve to pass priority 
constraints from events to events, thus allowing the simula
tion of this kind of dynamic priority. Furthermore, in [14][22] 
we show how conventional vector firing sequence semantics 
can be used to reason about priority systems, provided one is 
not interested in such properties as starvation and atomicity, 
but only in such properties as serializability, deadlock-freeness, 
adequacy, and the preservation of capacity bounds. Conven
tional vector firing sequence semantics may also be used to fa
cilitate intermediate reasoning about starvation and fairness, 
analogous to the type of intermediate reasoning in terms of 
imaginary numbers in number theory. The restrictive case 
when the priority relation is transitive and all aspects of be
haviour are expressible in terms of partial (causal) orders is 
also analyzed in [24]. Finally, we have been developing a dif
ferent approach to expressing priority which may prove to be 
more directly applicable for the expression of dynamic prior
ities without the use of "ghost" variables. But the current 
approach does suffice to prove starvation freeness and fairness 
of all the static priority constraints stated for COSY specifi
cations published in the literature. 
Acknowledgement 

The authors would like to thank the anonymous referees for 
helpful comments. The first author was partially supported 
by a grant from the Science and Research Board of McMaster 
University, and the second author was partially supported by 
a grant from the National Science and Engineering Research 
Council of Canada. 

References 

[1] W.J. Quirk (Ed.): Verification and Validation of Real
time Software, Springer Verlag, (1985), 245 pp. 

[2] P. E. Lauer, P. R. Torrigiani, R. Devillers: A COSY 
Banker, Lecture Notes in Computer Science 83, Springer 
Verlag, (1980), pp. 223-239. 

[3] Inmos Ltd.: occam:Programming Manual, Prentice Hall, 
(1987), 96 pp. 



[4] C.A.R. Hoare: Communicating Sequential Processes, 
Prentice Hall, (1985), 256 pp. 

[5] A. W. Roscoe: Denotational Semantics for occam, Lecture 
Notes in Computer Science 197, Springer Verlag, (1984), 
pp. 306-329. 

[6] L. Lamport: What it means for a concurrent program to 
satisfy a specification: Why no one has specified priority, 
3rd ACM Symp. on Principles of Distributed Computing, 
Vancouver, (1984), pp. 78-83. 

[7] S. D. Brookes, C.A.R. Hoare, A.W. Roscoe: A Theory 
of Communicating Sequential Processes, JACM, (July, 
1984), pp. 560-599. 

[8] E. R. Olderog: Operational Petri Net Semantics for 
CCSP, Lecture Notes in Computer Science 266, Springer 
Verlag, (1987), pp. 196-223. 

[9] E. Best: COSy:Its Relation to Nets and CSP, Lecture 
Notes in Computer Science 255, Springer Verlag, (1986), 
pp. 416-440. 

[10] W. Reisig: Petri Nets, Springer Verlag, (1985), 161 pp. 

[11] V. Pratt: Modelling Concurrency with Partial Orders, 
Int. J. of Parallel Programming, (January,1986), pp. 33-
71. 

[12] R. Milner: Calculi for Synchrony and Asynchrony, Theo
retical Computer Science 25, (1983), pp. 267-320. 

[13] M. Yoeli, T. Etzion: Behavioural Equivalence of Concur
rent Systems, Informatik-Fachberichte 66, Springer Ver
lag, (1983), pp. 292-305. 

[14] R. Janicki: A Formal Semantics for Concurrent Systems 
with a Priority Relation, Acta Informatica 24, (1987), 
pp. 33-55. 

[15] P. E. Lauer, R. H. Campbell: Formal Semantics for a 
Class of High-level Primitives for Coordinating Concur
rent Processes, Acta Informatica 5, (1975), pp. 297-332. 

156 

[16] P. E. Lauer, P. R. Torrigiani, M. W. Shields: COSY:A 
System Specification Language based on Paths and Pro
cesses, Acta Informatica 12, (1979), pp. 109-158. 

[17] P. E. Lauer: Computer System Dossiers, in Distributed 
Computer Systems: Synchronization, Control and Com
munication, (Eds. E. Paker, J.-P. Verjus), Academic 
Press, (1983), pp. 109-147. 

[18] P. E. Lauer: The COSY Approach to Distributed Com
puting Systems, in Distributed Computing Systems Pro
gramme, Peter Peregrinus, London, (1984), pp. 107-125. 

[19] M. W. Shields: Adequate Path Expressions, Lecture 
Notes in Computer Science 70, Springer Verlag, (1979), 
pp. 249-265. 

[20] W. Reisig: Partial Order Semantics versus Interleaving 
Semantics for CSP-like Languages and its Impact on Fair
ness, Lecture Notes in Computer Science 172, Springer 
Verlag, (1984), pp. 403-413. 

[21] P. J. Courtois, F. Heymans, D. 1. Parnas: Concurrent 
Control with 'Readers' and 'Writers', Comm.ACM 14, 
(1971), pp. 6157-668. 

[22J R. Janicki, P. E. Lauer: The Specification and Analysis of 
Concurrent Systems: The COSY Approach, Manuscript 
of Book to appear in 1988-1989. 

[23] F. Okulicka: The Semantics of Path Expressions with 
Priorities, Ph.D. Thesis, Institute of Mathematics, War
saw Technical University, Poland, (1986). 

[24] M. W. Shields: On the Non-sequential Behaviours of Sys
tems Posessing a General Free-choice Property, Report 
CRS-92-81, Dept. of Computer Science, University of Ed
inburgh, 1981. 

[25J P. E. Lauer: Synchronization of Concurrent Processes 
without Globality Assumptions, New Advances in Dis
tributed Computer Systems, (Ed. K. G. Beauchamp), 
Nato Advq,nced Study Institutes Series, D. Reidel Pub
lishing Co., (1982), pp. 341-365. 



A PETRI NET METHOD FOR THE FORMAL VERIFICATION OF PARALLEL PROCESSES 

Kenneth G. Krauss 
Computer Science Department 

Lafayette College 
Easton, PA 18042 

Samuel L. Gulden 
Department of CSEE 

Lehigh University 
Bethlehem, PA 18015 

Abstract--Anyone who has seriously 
considered the subject realizes that the formal 
verification of computer programs is a complex 
issue. Various approaches have been taken in an 
attempt to find a method by which programs can be 
proven to be correct. The axiomatic method 
proposed by Hoare[l) is ideal theoretically but 
extremely impractical. 

Robert M. Keller has proposed describing a 
process as a labelled Petri net.[2) This 
approach has certain advantages over a purely 
axiomatic method. We formalize and extend 
Keller's method. In this approach. a predicate. 
the tru th of which es tablishes the program 
correctness. must be derived and demonstrated to 
be qO-inductive. 

We define a special form of a labelled Petri 
Net which we refer to as a process net. It is 
shown how a program which is constructed using 
accepted control structures for sequential or 
parallel processes can be described as a process 
net. We further demonstrate how we can derive a 
qO-inductive predicate which establishes the 
program correctness. 

Defini tions 

A P lace- trans i tion graph is a sys tern 
consisting of 

1. Two sets P and T such that PIIT = c/J. We 
assume P is finite and T is countable. 

2. A set. E. of objects called edges. 

3. Two functions. band f that map edges 
to PIIT such tha t for any edge, e E E. if b(e) E P 
then f(e) E T and if b(e) E T then f(e) E P. 

We will indicate elements of p. called 
places by. O's and elements of T. called 
transitions, by c=::::J's. Given an edge. e. we 
call b(e) an input node of f(e) and f(e) an 
output node of b(e). Edges are indicated by 
arrows.[2) 

Figure 1 

~ssume a bipartite graph n = (P,T,b.f) as 
descr1bed above. In order to refer to the places 
and transitions. let the places be labelled with 

157 

:Pl. P2 ••••• Pk and the trans i tions wi th 
tl.t2' •••• tn.... Also each transition. t. is 
labelled further with a statement of the form. 

when B(I;) dol;4-F t(l;) 

where B is a predica te on 1;. a da ta state vec tor 
variable, and Ft is a function which assigns a 
value to each component of the vector 1;. In the 
case tha t F t(l;) = I; we reduce the transi tion 
label to. when B(I;). and in the case that B(I;) is 
true for all I; we write. I; +-Ft(I;). [2) 

when 

Figure 2 

Let there be a control state variable 
consisting of a count at each place. P. 
designated by v(p) where v(p) is a non-negative 
integer. (0 < v(p». Let N be a state of the 
vector obtained from all the v(p) and I; be a 
state of the data vector. Where t represents a 
transition node. we define (~.I;) (N',I;') to 
mean the following: (I( t) .O( t) and,.. defined 
after vii) 

i. If P E I(t) then v(p) ~ 1. 

ii. If P E I(t)-O(t) then v'(p) = v(p)-l. 

iii. Ifp E O( t)"'I( t) then v' (p) V(p)+l. 

iv. If p E I(t)nO(t) then v' (p) v(p). 

v. If p E 1'-( I( t)UO( t) then v'(p) = v(p). 

vi. B( 1;) is true. 

vii. 1;' = Ft ( 1;). 

whereN = (V(Pl)'V(P2) •••• ,V(Pk». I(t) is the 
set of input place nodes of t. O(t) is the set of 
output place nodes of t •. B is the predicate on 
~he data state which is associated with t. and-
1S set difference. Let Q = {q jq = (N.I;)}.[2) 



We will refer to (N, 1;) .i.o. (1'1' ,1;') as firing 
the transition t. Firing a transition moves the 
transition system from one state q = (N,I;) to 
another state q' = (~',I;') as given by i through 
vii above. The necessary conditions to fire a 
transition, t" are given in i and vi above. If 
i and vi are satisfied then we say t is enabled. 

The next step is to extend the binary 
relation, +, recursively as follows:[2} 

1. 'Vq(q E Q :t q -*- q) where the new 
binary relation is denoted by ~ • 

2. V'q,q' ,q"«q -*-- q'}/\(q'_q") .... 
(q ..i.-t q"» where q,q' ,q" E Q and 1\ means and. 

We say that q' is reachable from q iff q ~q'. 

We will denote the initial state by qO. 

Method 

In order to apply a place-transition graph, 
with its underlying transition-system (Q,+), to 
the study of program correctness we consider 
predicates defined on Q over portions of the 
graph. Let P be a predicate defined on Q. For 
each q E Q, p(q) is either true or false. 

A predicate, P, defined on Q is said to be 
qO-inductive iff[2} 

ii. For each q,q' E Q if q + q' and p(q) 
then P(q'). 

Following [2} we consider a program correct 
if we can find a predicate Q with the following 
properties: 

1. If the predica te is true then the 
desired conditions hold. 

2. The predicate is qo-inductive within 
the required portion of the graph. 

We will refer to the labelled graphs that we 
have described as process nets. A program which 
uses only accepted control structures can always 
be modelled by a process net. We do not consider 
subprograms here. 

Selection. 

Figure 3 

when BCe) do e ~ Ft (e) 
1 

158 

Iteration. 

when 
tl c:::=::J 

Figure 4 

Parallel Processes 

when B(1;)io e ~ Ft (e) 
1 

The issue of proving parallel programs to be 
correct is far more complex than proving the 
correctness of sequential programs. A number of 
statements can be executed simultaneously and the 
programmer may have no knowledge of the order in 
which parallel processes will be treated. The 
order can be different each time the program is 
executed. This situation makes testing and 
verifica tion of parallel programs very difficul t. 

Some limitations and control must be placed 
on the manner in which parallel execution of 
statements can take place. We will extend the 
set of control structures by adding two more as 
proposed by Susan Owicki and David Gries. The 
two new statements are designed to implement and 
control parallel processing.[3} 

When parallel execution is about to take 
place a statement of the following form is used: 

resource rl(variable list), ••• ,rm(variable 
list) : 

cobegin Sl/l ••• " Sn coend 

where Sl' ••• ,Sn are statements to be executed in 
parallel and each ri identifies a list of 
variables, possibly one variable, which must be 
protected within the parallel execution. No 
variable may be common to two or more ri.[3} 

The second statement, which is to be used 
only within parallel execution is of the form: 

with r when B do S 

where r is a resource, B is a Boolean expression 
and S is an executable statement which does not 
contain a with statement referencing the same 
r. [3] 

When we enter a parallel execution region we 
list all variables which can be altered or 
inspected from within critical sections only. 
Then from within the parallel execution statement 
the only way to access these variables is from 



within a critical section. That is, by using a 
"with r" statement. 

Variables which are changed by one parallel 
process, S, must be in a resource if any other 
process that can be executed in parallel with S 
refers to them either for inspection or 
assignment. This restriction does not tell us 
the order in which assignments to and inspections 
of variables within parallel execution must be 
made, but it does assure us that any particular 
assignment or inspection will be completed before 
another one begins. 

For the process ne t of the cobe'gin-coend 
statement we include a place for each variable 
which is in a resource. A place which indicates 
that the parallel execution statement is 
executing is also included. 

Figure 5 

The with-when statement is modelled by the 
following process net. 

when B do e ~ Ft (e) 
1 

Figure 6 

Notice that S is reflected by t.; .... Ft.t (0. 
This single transition can be extended to model S 
if necessary. Only one process can exist in this 
extension at a time due to the protection 
provided by the place for resource r, Pro 

The method is demonstrated by the following 
simple example. The variable, x, is incremented 
by 2. In order to accomplish this the assignment 

159 

x := x+l is executed twice in parallel. Here is 
the program in s ta temen t form. [3] 

the 

x+ 

x+l 

begin 
resource r(x): 

cobegin 
with r when true do 

x := x+l 
U with r when true do 

x := x+l 
coend 

end 

process net for the program is 

o Pa 

Figure 7 

P !! (X=Vl+V2+2v3)I\(VO+Vp-I'V3=1)I\ 
(v -l+V ~l)I\(V -2+V ~l)/l 
(V_l+Vl+V_2+V2>0 ~ Vp=l) 

will serve as the qO-inductive predicate. If 
V3 = 1 then vp = 0 so vI = v2 = 0 and x = 2. P 
is true f or the ini tia 1 state qo = 
(VO,V _l,v l,v _2,v 2 ,Vx,vp,v 3 ,x) = 
(1,0,0,0,0,0,0,0,0). 

Assume P is true and to is ready to fire. 
Before to fires: 
P,\Q = I, x = 0 which imply V-I = VI = V-2 = v2 
Vp=V3=0 

After to fires: 

Hence P is true after to fires. 

Assume P is true and tl is ready to fire. 
Before tl fires: 



P,V_l- l,v x > ° implyvp 
x =v2' 

After tl fires: 

0, 

V':' l =v' =v1 = 0, Vl' =v' .. 1, v1 =V2, x' = x+l 
v ' ,0 2,., P 

.. 1 iV 2 + v3, ~2 .. V-2' 

Hence P is true after tl fires. 

The same is true for t2 with a similar 
argument. 

Assume P is true and t3 is ready to fire. 
Before t3 fires: 

P,"l = V2 .. Vp = 1, Vx > ° imply Vo .. V3 .. V-I '"' 
V_2 .. 0, x = 2 

After t3 fires: 

vi .. vi = v; .. V '1 = v' 2 .. \J' = 0, V3 
.. 2. 

1, x' = x 

Hence P is true af ter t3 fires. 

It follows that the program is correct. 

Mutual Exclusion 

G. L. Peterson" developed a solution to the 
two-process mutual exclusion problem. [4] The 
protocol for process one is given as follows: 

Ql:= true; 
TURN:= 1; 
wait until not Q2 or TURN =2; 
Critical Section; 
Ql:= false. 

We give here the process net for process one 
which is half of the process net for the parallel 
execution of process one and process two. 

when 1,-.... .,.... 
Q2 

Figure 8 

160 

In order to prove that Peterson's solution 
is correct we can establish the following: 

1) Deadlock can not occur. That is to say 
process 1 can enter its critical region if 
Process 2 is not trying and vice versa. 

PI: (vi +v~+v~"0~"Q2)t\(V2+V3+V4=0"''''Ql). 
Also one process can enter if both are trying to 
enter their respective critical regions. 

2) Mutual Exclusion is maintained. 

(V4"1I\V~=1) =+ false. 

It can also be shown that indefinite 
postponement can not occur with this solution. 

In order to show that (v4-lAv't{"1)'" false is 
qo-inductive we consider 

P3: (V4=1) at «~Q2VTURN=2)AQl) and 

P4: (v~-l)" «"Ql\'TURN -lMQ2) are qo
inductive. Notice that (V4-l)A(V'=1) implies the 
contradiction (~Q2YTURN=2)~Ql)I\«,qlVTURN=1)A 
Q2) • 

It follows from the discussion above that 
the predicate that we must extablish as being qo
inductive throughout the process net is: 

6 6 
P s. PIA P2 A P3 A P4 ~ E Vi < 1 A E "i < 

1. i=l - i=l 

(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 

false,false,l) 

With the process net, predicate, and qo we 
can establish the correctness of Peterson's 
solution. 

Bibliography 

[1] Hoare, C. A. R.,. An Axiomatic Basis for 
Computer Programming, Communications of the 
ACM, Vol. 19, Number 7, July 1976. 

[2] Keller, R. M., Formal Verification of 
Parallel Programs, Communications of 
the ACM, Vol. 19, Number 7, July 1976. 

[3] Owicki, Gries, Verifying Properties of 
Parallel Programs: An Axiomatic Approach, 
Communications of the ACM, May 1976, Vol. 
19, Number 5. 

[4] Peterson, G. L., Myths About the Mutual 
Exclusion Problem, Information 
Processing Letters, Vol. 12, Number 3, 
March 1981, North-Holland. 



Dynamic Scheduling and Memory Management for 
Parallel Programs 

Michael Weiss, C. Robert Morgan, 
and Peter Belmont 

Compass, Inc" 
Wakefield, MA 

Abstract 

We describe a scheme for the dynamic scheduling of 
DOALL-loops and (a generalization of) FORK-JOINs. While 
our runtime model is generally applicable, we are especially 
concerned with supporting the output of a parallelizing FOR
TRAN compiler for a shared memory multiprocessor archi
tecture. We assume tbat tbe user wants to explicitly code 
parallelism. We build on the work of Fang et al. [5]. Our 
scbeme is two-level, like tbeirs, and permits general nested 
loops. We use a queue ,:or tbe upper level, however, instead 
of a complex system of tables. 

Memory management issues are also addressed. Effi
ciency concerns dictate treating process locality differently 
from procedure locality. As a corollary, we bave tbe follow
ing interesting result: tbe number of call frames required at 
anyone time for a nonrecursive procedure is bounded by 
tbe number of processors. 

1 Introduction 

The wide variety of MIMD supercomputing systems has created a 
demand for software techniques to help exploit the new processing 
power. Much effort has been devoted to developing restructuring 
compilers and source-to-source translators that detect implicit par
allelism in a "dusty deck" program. Such automatic parallelization 
is not always sufficient- the user often needs to code in parallelism. 
DOALL-Ioops and FORK-JOINs are common parallel constructs. 

The runtime support for the new parallel constructs will have 
a major impact on the success of a parallel compiler; scr.eduling 
must be done with an intelligent trade-off of overhead against con
currency. Since the user can code the parallel constructs explicity, 
the runtime model should restrict their use as little as possible. 
For example, parallel loops should be nestable with each other, 
with other parallel constructs, and with all sequential constructs, 
including arbitrary control flow. 

A macro package intel"cting with the operating system pro
vides the simplest way to ujlize multiple processors from within a 
single FORTRAN program (see, e.g., Dongarra and Sorensen [4]). 
However, the overhead to start an operating system task is usually 
high and geared to general purpose use rather than the particu
lar needs of the parallel program. A better approach is to build a 
"mini-OS" within the existing operating system. We will refer to 
the units scheduled by the mini-OS as processes, in contrast to the 
tasks of the surrounding general purpose OS. 

The operating system analogy suggests using a queue for schedul
ing processes. On the other hand, unnested parallel loops are 
usually scheduled using a pair of counters. Fang et al. have de
scribed one scheduling strategy for general nested loops [5]. (To 
our knowledge, this is the only previous work that deals with the 
general nested case.) Somewhat surprisingly, their approach is not 

• Formerly Massachusetts Computer Associates, Inc. 

161 

Zhixi Fang 
Concurrent Computer 

Corporation 
Tinton Falls, N J 

queue-based. They schedule innermost parallel loops using a pair 
of counters ("low level scheduling"), but use a complex system of 
tables for outer parallel loops ("upper level scheduling"). The com
piler constructs the tables from dependence information. The main 
drawback to their scheme is the size of the tables. It is also not 
clear how to incorporate parallel procedure calls into their system. 

In Section 3, we describe a two-level scheduling scheme where 
the upper level is queue-based. This scheme handles the general 
nested case and is both simpler and more efficient than the table
based approach; it integrates smoothly with procedure calls. 

Memory management can also make or break the runtime sys
tem. Much previous work has testified to the feasibility and desir
ability of "directly parallelizing call statements" [2,9] [3, Chapter 
4]. Allowing nested parallelism leads to a process tree. Incorporat
ing procedure calls leads to a picture like Figure 1. 

Separate procedure invocations of course require separate frames 

Figure 1: A Process Tree 

for local variables. A cactus stack implementation is inevitable. 
However, different processes within the same procedure also have 
locality needs. Interaction with the memory management system 
every time processes are spawned would incur prohibitive overhead. 

In Section 4, we describe a method for handling procedure lo
cality using a cactus stack (i.e., dynamically), but process locality 
statically. The overhead with this scheme should be little more 
than the normal overhead of procedure calls. An interesting the
oretical consequence is a bound on the number of frames that a 
nonrecursive procedure can simultaneously require. 

2 Parallel Constructs in the Model 

Our runtime model is designed to support DOALL-Ioops and a gen
eralization of FORK-JOINs, which we call a FORK-JOIN DAG. 
We allow arbitrary nesting of the these constructs along with or
dinary sequential control-flow constructs such as DO-loops. Our 
model also permits procedure .calls inside of parallel constructs, 
where the called procedure may itself contain parallelism . 



By a DOALL-loop, we mean the most straightforward (asyn
chronous) parallel version of the conventional DO-loop: a process 
entering the DOALt-loop splits into subprocesses, one for each it
eratian, and these subprocesses merge back together at the end 
of the laap. What .order the iteratians are actually performed in 
depends on the assignment .of processars ta processes; we make 
no assumptians about this. Note that the processar entering the 
DOALL-Iaap is nat necessarily the same pracessor that executes 
the cade following the loop. 

FORK-JOINs are anather familiar parallel canstruct. We per
mit a generalizatian we call a FORK-JOIN DAG: that is, a single
entry single-exit DAG of FORKs and JOINs. Mare precisely, each 
node in the DAG is FORK, a JOIN, .or represents a canstruct other. 
than a DAG1 • 

FORK-JOIN DAGs appear quite naturally in the .output of a 
parallelizing compiler that exploits coarse-grain concurrency. Out
side ofloaps (or restricting attention to a single iteration of a loop), 
the data dependence graph is a DAG. This naturally translates inta 
a FORK-JOIN DAG. If a node in the dependence graph has several 
predecessors, that implies a JOIN just befare it. If a node has sev
eral successors, that implies a FORK just after it. An entry FORK 
and an exit JOIN are added if necessary to ensure a single-entry 
single-exit construct. 

In practice, the compiler wauld nat directly translate the depen
dence graph into a FORK-JOIN DAG in this fashian, but would 
first "collapse" the dependence graph inta a smaller DAG to achieve 
a good trade-off between the ov.erhead .of the FORKs and JOINs, 
and the expected speed-up due to parallelism. We will discuss 
one such callapsing algorithm in a subsequent paper [10); see alsa 
Sarkar and Hennessy [7). In any case, requiring the FORK-JOIN 
DAG ta reduce to a combinatian .of FORK-JOINs places an un
necessary burden on the compiler's .output. We refer to the JOINs 
in a FORK-JOIN DAG, and alsa to the end of a DOALL-laap, as 
merge points. 

3 Scheduling 

We will describe .our scheduling strategy as an .optimized version of 
a conceptually simple (but inefficient) methad that we cali the ide
alized scheme. The next section outlines the idealized scheme; sub
sequent sectians describe several .optimizations that make it prac-
tical. . . 

Our DOALL loops will "caunt down," that is, be scheduled 
from higher index values to lower index values. This allows loop 
termination to be detected by a "test for zera," which is more 
convenient than a test against the upper bound. 

3.1 The Idealized Scheme 

The essential features of the idealized scheme are listed below. 

• There is a list of process descriptors. A descriptor contains 
the information needed to create a process. This includes 
its starting address, the base address of lacal variables, and 
iteratian indices for all enclasing parallellaaps. 

• The pragram uses a fixed set of (operating system) tasks, 
called drivers. All drivers are identical; they share the same 
code and data segments. The dispatch loop assigns drivers 
to processes. Whenever a driver becomes idle, it jumps to 
the dispatch loop, where it tries to get a process from the 
descriptar list. If it succeeds, it removes the descriptor from 
the list; if it fails, it stays in the dispatch laap. 

1 E.g., an assignment statement, a DO-loop, or a DOALr;.loop. There is 
no point in nesting a DAG inside a DAG, since the result is equivalent"flo one 
IargerDAG. 

162 

• Whenever a process splits into several processes, the driver 
executing the process picks one of the child processes to ex
ecute and places descriptors far the other child pracesses an 
the descriptor list. Far example, a process executing "DOALL 
I=1,10" splits into 10 pracesses; its executing driver might 
choose ta execute the "I=10" process itself, placing descrip
tors far the other 9 processes on the list. 

• The synchronizatian implied at a merge paint is obtained 
using merge counters. Each driver entering the merge point 
decrements the counter. The last driver ta enter continues 
with the code past the merge paint; the .others jump to the 
dispatch laop. 

• Process management code is cade ather than the dispatch 
loop that is needed to handle the spawning and merging 
of pracesses. This consists of farking code far FORKs and 
DOALLs (which places descriptars in the list), and merging 
code for merge paints (which decrements the merge counter 
and tests to see if it's zero). Thus FORKs, JOINs, DOALLs, 
and ENDALLs correspond to distinct chunks of code in the 
object code module. 

3.2 Innermost Loops 

If L is an innermost DOALt-loop (i.e., there are no parallel con
structs nested inside L), then the idealized madel will most likely 
cause a driver to get descriptars repeatedly from the list for differ
ent iterations of L. Since nothing is changing except the iteration 
index, it makes sense to keep the driver assigned to L until L is 
exhausted, without revisiting the dispatch loap. 

We accomplish this as fallaws: 

• A shared glabal variable (call it A) holds the highest unas
signed value .of the iteration index. A driver that is assigned 
to L gets a new iteration by perfarming a fetchtdecrement 
operatian on A. 

• There is a single descriptor an the descriptor list ta assign 
drivers to L in the first place. The first driver to encaunter 
the DOALL statement for L enqueues this descriptar. When 
a driver is assigned the last iteratian in L, it removes the 
descriptor. 

• A driver assigned to L gets all the information it needs to 
execute L from this descriptar, other than the iteration index 
(e.g., iteratian indices for enclasing DOALL-loaps). 

• The merge counter is another shared global variable control
ling execution .of L; we call it B, and refer to A and B tagether 
as the AB-pair for the innermost loop. 

Many machines have an indivisible fetchtdecrement opera.
tion, sa that locking and unlocking the descriptor list is nat neces
sary. 

We have as yet said nothing about the allocatian .of AB-pairs. 
One obvious approach is dynamic allocation: keep a pool of slots 
for AB-pairs; the driver that enqueues the descriptar gets a free 
slot from the pool and pas'>es it in the descriptar; the driver that 
deletes the descriptor deal'ocates the slot. However, we argue in 
Sectian 4 that static allocation (described there) is more efficient. 

If the number of pracessors is sufficiently large and the upper 
bound of the DOALL-Iaop is also large, the AB-pair could become 
a hot spot. This can be dealt with by means .of the software com
bining tree .of Yew et al. [11]2, or by means of Braaks' "butterfly 
barrier" [1). 

'But note that Rettberg and Thomas report that on one system (the BBN: 
butterfly), simple :fetchtadd outperforms software combination for less than : 
.about 100 processors [6]. We would expect the crossover point to be lower for . 
a. bus-based system. 



3.3 Combining descriptors 

Consider the following nested DOALL loops: 

DOALL I=l,3 
DOALL J=l,2 
X(I,J) 

ENDALL 
DOALL J=1,2 
Y(I,J) 

EEALL 
ElfDALL 

Figure 2 illustrates how one process splits into three processes, 
each of these splitting again. Consider a driver that flows down 
the rightmost branches, eventually executing the box I X(j2 ). Even 
with the innermost loop optimization, the idealized mo e would 
put up descriptors for "I=2" and "I=l", plus a descriptor pointing 
to the AB-pair for the first ''DOALL J" loop. 

We can combine these into one descriptor. This descriptor has 
"I=3" in it, and represents the fact that there is unassigned work 
for this and lower values of "I". When a driver is assigned to the 
I x12 1 box, it decrements the "I" in the descriptor. Eventually a 

driver is assigned to the I X11 I box, at which point it removes the 
descriptor. 

In general, this combining of descriptors can occur only when 
a DOALL-Ioop occurs as the first executable part of an enclosing 
DOALL-Ioop. Three different descriptors will be needed for second 
"DOALL J" loop, carrying the information "I=3" , "I=2" , and "I=l" . 

Figure 2 shows a snapshot of the relationship between the de
scriptor queue and the AB-pairs for the above example. For clarity, 
we have shown the queue as if AB-pairs were dynamically allocated. 
With static allocation, the value of "I" and of "start" are enough 
to determine the address of the AB-pair, as will become clear in 
Section 4. 

If there were a non-parallel statement right before the first 
"DOALL J" loop (say "K(I)=1"), the driver taking the "I=3" itera
tion would put a single descriptor up with "I=2". This represents 
the unassigned work with "I=2" and "I=l". The driver dispatching 
off this descriptor would decrement "I", and the descriptor would 
be removed when "I" was decremented to O. 

Figure 2: AB-Pairs and the Descriptor Queue 

Analogous to combining descriptors, one may consider combin
ing merge counters. Still using Figure 2 as an example, the sec
ond inner DOALL-loop requires three merge counters, each with 
a count of 2, and the outer DOALL-Ioop requires a merge counter 
with' a count of 3. All four merge counters could be combined 

163 

into a single merge counter with a count of 6. In general, when 
a DOALL-Ioop occurs as the last executable part of an enclosing 
DOALL-Ioop, the merge counters can be combined. 

However, the instruction saving (one fetchidecrement) is mi
nor, compared to the saving associated with combining descriptors. 
The four merge counters thus combined form a natural "software 
combining tree" [11). We are thus increasing the likelihood that 
the combined merge counter will prove a hot spot. 

3.4 Strip mining 

Strip mining, or blocking loops, is a familiar transformation from 
vectorization; it serves a dual role in scheduling and memory man
agement. 

In our situation, we rewrite a DOALL loop as a DO loo:? nested 
inside a DOALL loop. Suppose K is a constant that the compiler 
cltooses; usually it would be of the same order of magnitude as the 
number of processors. The bound expressions are cltosen so that 
the DOALL-Ioop will have K iterations. (If we were vectorizing, 
we would arrange matters so the inner loop had K iterations.) 

From a scheduling standpoint, strip mining serves to group it
erations together so as to l"educe spawning overhead. By making 
K larger than the number '"f processors, we can expect some load 
balancing to help performance. 

However, the main reason for strip mining comes from memory 
management, as we explain in Section 4. 

3.5 FORK-JOIN DAGs 

For a general FORK-JOIN DAG, there is no natural way to pair up 
fork points with qlerge points. This means that the merge counters 
for each JOIN must be initialized by the entry FORK. 

Suppose we have a FORK A whiclt has a JOIN node B as a 
successor. The idealized model would spawn a process (Le., place 
a descriptor on the list) solely to participate in the merge (i.e., 
decrement the merge counter). It is more efficient for the processor 
executing the FORK to directly decrement the merge counter. In 
general, then, a processor executing a FORK 

• decrements the merge counters of any successors that are 
JOINs; 

• makes a list of successors that are ready to be scheduled; this 
consists of all non-JOIN successors, plus all JOIN successors 
whose merge counter went to zero on the previous step; 

• picks one of the successors on this list to jump to and puts 
up descriptors for the others. 

With the above optimizations, the descriptor list must be im
plemented as a queue, not a stack. This points up the greater 
regularity of the idealized model, where these details are irrele
vant. With a descriptor stack it is possible to construct a scenario 
with just two processors where it becomes necessary to remove a 
descriptor in the middle of ~he stack. 

4 Memory Management 

Concurrency forces replacement of the traditional stack of call 
frames (or even static allocation) with a tree-like structure known 
as a cactus stack. The cactus stack deals with the local/global (or 
private/shared) issues implied by having parallelism and procedure 
calls together. 

One simple way to define the cactus stack is to have it directly 
mirror the process tree. That is, when a process with a given frame 

, splits into several processes, we create a child frame for eaclt child 



process. The only other way child frames are created is through 
the usual procedure calling mechanism. 

While appealing in its simplicity, this scheme calls for frequent 
allocation and deallocatic.u of frames, causing excessive runtime 
overhead. We propose another approach, which treats process lo
cality differently from procedure locality. We will allocate a new 
frame only on a procedure call. Each frame is labelled with the 
name of the procedure whose invocation created it. Initially, a 
frame has just one process active in it. If that process splits, then 
the child processes share the same frame. If two child processes 
make procedure calls, they are allocated different child frames. 

Procedure locality is thus handled by means of the cactus stack. 
Process locality can be handled by the well-known technique of 
scalar promotion (also called. scalar expansion). Suppose a DOALL
loop "DOALL I=1,100" cor.tains a variable V for which each itera
tion (Le., subprocess) requires a separate copy. The compiler will 
scalar promote V to an array V(l : 100). 

Two objections can be answered immediately. 

• Strip mining bounds the size of the promoted arrays, if the 
bounds of the DOALL-Ioop are unknown at compile time, or 
even known but large. 

• A processor usually has some local memory, perhaps some 
registers, even with a shared memory architecture. Using 
these for process-local variables is preferable to allocuting ar
rays. 

However, we cannot simply assume that all process-local vari
ables will be stored in registers, and not only because of the 
danger of running out of registers. If a process splits into sub
processes that later merge back together, any process-local 
variable whose lifetime spans the split cannot be allocated in 
a register. This follo~'s from the observation that the proces
sor continuing after the merge need not be the same processor 
that entered the splitting point. 

We suggest that these trade-offs are best handled by standard 
register allocation techniques. The register allocator must 
treat a fork point or a merge point as a boundary that kills all 
register assignments. (It may still help the register allocator 
to mark promoted variables as different from ordinary array 
references.) 

What variables are process-local? Most notably, merge counters 
and AB-pairs. That is, if a "DOALL I" loop has another parallel 
construct nested inside it, the merge counter for the inner construct 
will require scalar promotion to an array indexed by "I". 

The scalar promotion approach amounts static allocation in the 
sense that all process-local variables are allocated on procedure 
entry- no special action needs to be taken for process start-up. 
The time overhead for static allocation is just the time to allocate 
the call frame. We contraEt this with dynamic allocation (as out
lined for AB-pairs in section 3), where we look for storage for all 
process-local variables every time we spawn a process. In a pro
gram with a significant amount of parallelism, we expect process 
creation to be much more frequent than procedure calls. Thus 
static allocation is generally preferable to dynamic allocation. 

The essential features of this scheme are: 

• The base address of a process (passed in the descriptor) points 
to the one frame it can access. 

• If new processes are forked within a procedure, they initially 
share the same frame. 

• A new frame is created when a process calls lI. procedure. As 
part of normal procedure calling conventions, the old base 

164 

address is stored in the new frame (effectively providing a 
parent link in the cactus stack), and the base address of the 
process is changed to point to the new frame. 

• The scalar promotion mechanism handles the allocation needs 
of process-local variables. 

• When a process executes a RETURN, the following always 
holds: all processes forked since procedure entry have merged. 
Hence the returning process is the only one using the frame, 
which can be deleted. 

We consider finally the problem of allocating and deallocating 
frames without hopelessly fragmenting memory. Perhaps the sim
plest approach is to adopt a fixed minimum size for call frames, 
and keep a free list. Procedures with modest storage needs would 
of course waste some space (so-called "internal fragmentation"). 

Procedures with large storage needs could be handled with over
flow frames. Alternately, a special free list of "extra.-large" frames 
could be set aside for them; the amount of storage required for 
this special free list can be bounded in most cases by the following 
observation: 

Theorem: If P is nonrecursive (Le., P cannot call itself directly or 
indirectly) then the cactus stack can contain at most n frames 
labelled P at any time, where n is the number of processors. 

Proof: Each processor "lives" in one of the frames on the cactus 
stack, namely the one for the invocation of the procedure it 
is currently executing. Any subtree of the cactus stack has at 
least one processor living in it. To see that this is true, note 
that a processor leaves a frame in three ways: by a procedure 
call, in which event the processor moves to a child frame; by 
a procedure return, in which event the frame is deleted; and 
by being not-the-las~ to rel!:Ch a merge point, in which event 
another processor is still active inside the parallel construct, 
and hence living in the subtree. 

Say Pl , •.. , Pk are all the frames labelled P. The subtrees 
rooted at distinct Pi and Pj must be disjoint by the hypoth
esis that P is nonrecursive. Since each such subtree has a 
processor living in it, k :S n. QED 

5 Conclusions 

We have replaced the complex tables for upper level scheduling 
as described by Fang et al: [5] with a simple queue-based scheme. 
Both schemes support general parallel nested loops. Despite the 
different viewpoints, most of the code for the table based approach 
can be readily adapted to provide process management code for 
our approach. We reserve the details for a future paper [10]. 

We have also proposed using dynamic allocation (in the form 
of a cactus stack) for procedure calls, combined with static alloca
tion (in the form of scalar promotion) for process-local variables. 
With this approach, process creation entails no time overhead for 
memory allocation. The overhead for procedure calls is not much 
greater than for a tradition call stack. We obtained also an inter
esting theoretical bound on the number of simultaneously active 
call frames for a nonrecursive procedure. 

References 

[1] Eugene D. Brooks lIT. The butterfly barrier. International 
Journal of Parallel P'lVgramming, 15(4):295-307, August 1986. 

[2] Michael Burke and Ron Cytron. Interprocedural dependence 
analysis and parallelization. In Proceedings of the SIGPLAN 
1986 Symposium on Compiler Co'fistrnction, July 1986. 



[3] David Callahan. A Global Approach to Detection of Paral
lelism. PhD thesis, Rice University, Honston, Texas, February 
1987. 

[4] Jack J. Dongarra and Danny C. Sorensen. A Portable Envi
ronment for Developing Parallel Fortran Programs. Techni
cal Report Technical Memorandum No. 79, Argonne National 
Laboratory, July 198(J. 

[5] Zhixi Fang, Pen-Chung Yew, Peiyi Tang, and Chuan-Qi Zhu. 
Dynamic processor self-scheduling for general parallel nested 
loops. In Proceedings of the 1987 International Conference on 
Parallel Processin9, pages 1-10, August 1987. 

[6] Randall Rettberg and Robert Thomas. Contention is no ob
stacle to shared-memory multiprocessing. Communications of 
the ACM, 29(12):1202-1212, December 1986. 

[7] Vivek Sarkar and John Hennessy. Compile-time partition
ing and scheduling of parallel programs. In Proceedings of 
the SIGPLAN 1986 Symposium on Compiler Construction, 
pages 17-26, 1986. 

[8] Peiyi Tang, Pen-Chung Yew, Zhixi Fang, and Chuan-Qi Zhu. 
Deadlock prevention in processor self-scheduling for parallel 
nested loops. In Proaedings of the 1987 International Con
ference on Parallel P"ocessing, pages 11-18, August 1987. 

[9] Remi Triolet, Fran~ois Irigoin, and Paul Feautrier. Direct par
allelization of call statements. In Proceedin9s of the SIGPLAN 
1986 Symposium on Compiler Construction, pages 176-185, 
July 1986. 

[10] Michael Weiss and Zhixi Fang. Adding parallelization and 
vectorization to an existing compiler. In preparation. 

[11] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. 
Distributing hot-spot addressing in large-scale multiproces
sors. In Proceedings of the 1986 International Conference on 
Parallel Processing, pages 51-58, IEEE, August 1986. 

165 



Efficient Dynamic Scheduling of Medium-Grained Tasks 
for General Purposing Parallel Processing 

Albert J. Musciano 
Thomas L. Sterling 

Advanced Technology Department 
Harris Corporation 

PO Box 37, MS 3A11912 
Melbourne, FL 32902 

Abstract 

~ is a research initiative established to realize a 
general parallel execution environment on an existing multi
processor. Its purpose is to investigate the architectural 
requirements for advanced high performance parallel archi
tectures. ~ uses a dynamically scheduled runtime sys
tem to execute application programs written in Simultane
ous Pascal on the Concert Multiprocessor. Effective 
execution of medium-grained parallel tasks is achieved by 
implementing scheduling and synchronization primitives in 
software. The methods employed by the ~ execution 
environment are described and their implications for 
advanced parallel processor architectures are discussed. 

1. Introduction 

A myriad of challenges confront general purpose par
allel processing, from its definition to . its realization. The 
~ parallel execution environment has been developed as 
a general purpose parallel computing research vehicle to 
explore these challenges. Emphasis has been placed upon 
minimization of task management overhead to provide good 
scalability, coupled with the study of advanced architec
tures and novel mechanisms to define the next generation 
of parallel computers. The result is a general purpose paral
lel computing system hosted by a 64 processor shared 
memory multiprocessor that performs efficient dynamic 
scheduling of medium-grained tasks defined by programs 
written in a high level parallel programming language. The 
experience gained from ~ has provided insight into the 
principal elements of a more advanced parallel architecture. 

The ~ system has evolved from a minimally func
tional parallel programming environment[l] into an efficient 
parallel research tool. ~ maps a high level virtual parallel 
machine, dermed by the Simultaneous Pascal[2] program
ming language, onto the physical hardware of the Concert 
Multiprocessor[3]. In order to achieve a usable system, 
~ must minimize the overhead associated with dynamic 
scheduling. This overhead includes all the work performed 
to manage parallel activities that would not be required by a 
sequential machine. If the overhead required to schedule a 
task exceeds the actual work performed by that task, the 

scalability of the application will suffer. Scalability can be 
enhanced by finding a computing model whose constructs 
can be efficiently implemented. 

Simultaneous Pascal uses a dynamically scheduled 
concurrent thread version of the parallel control flow mod
el[4]. This model provides for sequential, atomic threads 
which execute on a processor without interruption or sus
pension. The termination of one or more threads may cause 
other threads to be created and executed. The explicit par
allel constructs in Simultaneous Pascal allow thread cre
ation and synchronization points to be determined at com
pile time. Armed with this knowledge, the ~ runtime 
software uses a simple set of data structures to manage 
thread creation, execution, and synchronization. The over
head involved in these software routines yields a useful 
granularity of about 140 machine instructions per thread, 
which is within the bounds of medium-grained parallel pro
cessing. In addition, the block structured nature of Simulta
neous Pascal allows ~ to exploit the hierarchical memory 
of the Concert Multiprocessor, maximizing references to 
local memory while minimizing global references and their 
associated communication traffic. 

Management of threads and their associated control 
structures can result in appreciable overhead beyond that 
required of a. uniprocessor system. There is substantial 
opportunity through architectural improvement to greatly 
reduce this overhead. Current processors and memory con
trollers were not designed with parallel processing in mind, 
and lack the features needed to support dynamic parallel 
processing. The incorporation of special memory controllers 
along with caches and prefetching techniques into future 
machines will reduce the work required of the runtime soft
ware to support a dynamically scheduled parallel execution 
environment. 

The ~ experience provides a working model of all 
of the integrated functions comprising a dynamically sched
uled parallel processing environment. Studies of application 
programs run on ~ return profiles of the use of the under
lying mechanisms. The insight derived from this activity is 
leading to a determination of the most likely mechanisms 
whose support in hardware will have the greatest impact on 
system performance. 



2. Parallel Computing Environment 

A complete parallel computing environment consists 
of three principal components: a medium for expressing par
allel algorithms, parallel computing hardware to execute 
those algorithms, and a set of functions which map the par
allel virtual machine to the physical parallel hardware. At 
Harris, these three requirements are met by the Simultane
ous Pascal programming language, the Concert Multipro
cessor Testbed, and the ~ execution environment. 

2.1. Simultaneous Pascal 

Simultaneous Pascal is a superset of ISO Level 0 
Standard Pascal[5]. It extends the sequential programming 
model of Pascal with parallel language constructs which 
support a concurrent thread version of the parallel control 
flow model of computation. Programmers explicitly delin
eate the parallel threads within their program using these 
constructs. A thread is a sequential piece of code which, 
once started, will not block or suspend until it terminates. 
Upon termination, the thread causes other threads to start 
executing. The programmer indicates the precedence rela
tionships of the threads in his program using the various 
parallel language constructs in Simultaneous Pascal. 

Within Simultaneous Pascal, there are three princi
pal parallel constructs, illustrated in Figure 1. The forall 
statement provides SIMD[6] parallelism, allowing multiple 
instantiations of a single statement (or a block of state
ments) to be executed in parallel. Each instantiation is 
denoted by a different value of an indexing variable. The 
fork statement allows the programmer to execute several 
different statements in parallel, providing MIMD paral
lelism. Finally, the traverse statement allows a dynami
cally created data structure, such as a tree or linked list, to 
be operated upon in parallel. This dynamic form of SIMD 
parallelism instantiates a thread for each node in the data 
structure. 

. In addition to this statement level parallelism, 
SImultaneous Pascal provides for the parallel evaluation of 
complex expressions. Since expression evaluation order in 
Pascal is explicitly undefined, the programmer may indicate 
(with appropriate operator symbols) that subexpressions 
should be evaluated in parallel. As subexpressions are 
evaluated, pending operations are completed, much iike the 
functional model of parallel computing[7]. 

All of the parallel constructs in Simultaneous P~al 
utilize barrier synchronization to coordinate the execution of 
threads.. ~en a forall, fork, traverse, or parallel 
expresslOn IS executed, all of the threads within the con
struct must finish executing before control will pass to the 
statement following the parallel construct. This synchro
nization of terminating threads is called a join operation. 

Simultaneous Pascal also provides additional paral
lel support statements, including the locking statement 
and the using statement. The locking statement allows 

167 

fork 
magnitude := sqrt(sqr(x) + sqr(y»; 
initialize; 
for i := 1 to max do 

evaluate (i) 
join 

fora11 i := min x to max x do 
fora11 j := ;in-y to ;ax-y do 

digitally_thin (image [x, y]); 

type tree-ptr Atree_node; 
tree_node record 

data integer; 
left tree-ptr; 
right tree-ptr 

end; 

var head : tree-ptr; 

traverse p := head via left, right do 
evaluate(pA.data); 

Figure 1. Simultaneous Pascal parallel statements. The fork state
ment causes the three statements (including the entire for statement) 
to execute in parallel. The nested fora11 illustrate element-wise 
paralleli~m across a two-dimensional array. Using the indicated types 
and vanables, the traverse statement will access in parallel every 
node of the tree accessible via head. 

the programmer to define, lock, and release semaphores, 
providing exclusive access to shared data objects. The 
using statement extends variable scoping down to the 
statement level, allowing storage for variables to be allocat
ed and released as individual statements are executed. 

Simultaneous Pascal specifically precludes any refer
ence to the underlying physical parallel hardware. Program
mers are unaware of the number of processors the machine 
will have, as well as how those processors are connected. 
Simultaneous Pascal encourages the programmer to think 
about his algorithm in terms of parallel threads, which are 
mapped by the compiler and runtime software onto a partic
ular machine configuration. This abstraction of a parallel 
virtual machine significantly enhances the writing of easily 
understood, portable parallel code. 

2.2. The Concert Multiprocessor Testbed 

The Concert Multiprocessor Testbed is a hierarchi
cal .shared memory multiprocessor, incorporating 64 pro
cessmg elements. Each processing element is comprised of 
a MC68000 microprocessor coupled with a MC68881 float
ing point unit and at least 512 Kbytes of high speed local 
memory. Eight processing elements are arranged into a 
cluster, with up to four megabytes of memory shared 
among the members of the cluster. Within the cluster, the 
processing elements and the shared memory are connected 
by a Multibus backplane. Contention for the shared memo
ry is managed by a parallel arbiter employing a round robin 
scheduling mechanism. 

Eight clusters are connected via a crossbar switch 
~o e~g?t me~abytes of global memory. The global memory 
IS diVIded mto 512 Kbyte blocks, providing 16-way inter
leaving on word boundaries. Each cluster has an interface 



Figure 2. Growth and collapse of a parallelism tree. In A. an exist
ing parallelism tree. with two parent threads. and four executing chil
dren. In B. a child thread creates four children of its own. and waits 

card within it which connects to the crossbar switch. A pro
cessor within a cluster desiring global memory access first 
acquires access to the global memory interface controller 
via the Multibus. A memory request is then sent to the 
crossbar switch. which in turn arbitrates for access to the 
desired bank of global memory. 

2.3.~ 

!p£ (Simultaneous Pascal on Concert) is the syn
thesis of the Simultaneous Pascal programming language 
with the Concert hardware. The Simultaneous Pascal cross 
compiler generates MC68000 object code, interspersed 
with calls to runtime support software which implement the 
various Simultaneous Pascal parallel constructs. This run
time support software is the heart of the !p£ system, and 
provides the mapping from the virtual Simultaneous Pascal 
parallel machine to the physical Concert Multiprocessor. 
The design and implementation of this runtime software 
determines the efficiency of the !p£ system as a whole. 

3. Representation of Work 

An application program can be viewed as an amount 
of work to be performed. In!p£. the programmer uses 
Simultaneous Pascal to describe the work, and how that 
work can be broken into threads. The Simultaneous Pascal 
compiler translates this high level representation of work 
and thread relationships into a lower level description 
which is readily executable on the Concert Multiprocessor. 
The manner in which the application work is represented 
significantly affects how well the application performs when 
executed on Concert. 

Work in !p£ is represented by thread objects. Ini
tially. a single thread object, representing the starting code 
of the application, is placed into the system. The idle pro
cessors contend for this object, and the processor which 
acquires it begins executing the application code. At some 
point, additional thread objects will be created. The remain
ing processors then acquire and execute these threads. As 
the system proceeds through an application, there is a con
stant ebb and flow of thread objects being created, waiting 
for an available processor, being acquired by a processor, 
executed, and being destroyed. Finally, the system collaps
. es down to a single thread, which terminates the applica
!tion. . 

168 

D Child thread. available 
for execution 

11IIIIIIII Parent thread. awaiting 
- child synchronization 

for their termination. In C, two of the four children created in B 
remain. Finally, in D, all four children have terminated, and the par
ent can resume execution. 

3.1. Management of Parallelism 

The creation and synchronization of threads occurs 
in a hierarchical, tree-like manner. When an executing 
thread encounters a parallel statement in an application, a 
number of child thread objects are created to represent the 
instantiations of the body of the parallel construct. These 
children retain a pointer to their parent object, and utilize a 
data structure in the parent to synchronize the termination 
of the child threads. When all of the children have terminat
ed, the parent thread resumes execution at the point follow
ing the parallel construct. Thus, as parallel constructs are 
encountered, the tree grows downward, representing nest
ed parallel statements. As these statements synchronize 
and terminate, the tree is reduced, communicating the syn
chronization upwards to the parent threads. 

At any point during execution, the leaf nodes of the 
parallelism tree represent child threads either executing or 
awaiting execution. The interior nodes of the tree represent 
parent threads, awaiting the termination of their children. 
As the children terminate, the intenor nodes ·are re
exposed as leaf nodes, and resume execution. The growtli 
and collapse of a parallelism tree is shown in Figure 2. 

3.2. Thread Object Contents 

A thread needs several pieces of information in 
order to be scheduled on a processor. In addition to the par
ent object pointer, the address of the code representing the 
thread is required, as well as the value of the forall 
index or traverse pointer. if needed. A pointer to the 
enclosing Pascal procedure or function scope is also 
required. When a thread is scheduled for execution, the 
processor loads the Pascal scope pointer and thread object 
into registers. and branches to the code address held in the 
thread object. If the application code references the 
forall index or traverse pointer. the thread object 
pointer can be used to access its value. A typical thread 
object is shown in Figure 3. 

If a thread creates child threads. two additional ele
ments are required in the thread object. The fIrst is a point
er to the join point: the address in the application code at 
which execution will resume after the children have syn
chronized. The second element is the synchronization 
counter, which is used to synchronize' the child threads and 
track when the join is complete. Child threads access the' 



counter via the parent thread pointer stored in their thread 
object. When synchronization is complete, the parent 
thread resumes execution at the join address held in the 
parent thread object. 

4. Runtime Support Details 

~ is a dynamically scheduled parallel execution 
environment. Concert does not provide hardware support 
for the parallel constructs in Simultaneous Pascal. In order 
to emulate these constructs, it is necessary to provide a 
package of runtime support functions which schedule work 
(represented by thread objects) on processors as an appli
cation executes. The efficiency of this software package is 
critical to the success of ~ as a whole. 

The principal measure of the effectiveness of the run
time system is the amount of overhead that is associated 
with a thread. This overhead includes all of the work which 
must be performed by the runtime system in order to create, 
schedule and synchronize threads. The amount of applica
tion work which can be performed by a thread must exceed 
the overhead associated with that thread in order to 
achieve effective scalability as processors are added to the 
system. Thus, the amount of overhead constrains the effec
tive granularity of the parallel application. The smaller the 
overhead, the finer-grained the application can become. 

4.1. Frames 

The basic data object in the ~. runtime system is 
the frame. A frame is a small piece of memory which is 
used to represent thread objects. A frame must contain all 
of the runtime system thread control variables, and must 
also provide space for the application defined local variables 
and the compiler determined induction variables and tempo
raries. The size of the frame needed by an application is 
determined by the compiler and is passed to the runtime 
system prior to execution. The runtime system then guar
antees that all frames will be of sufficient size to execute 
the application. 

A frame can be in one of three states: free, awaiting 

O Data always present 
in thread 

~ Data present when child 
L1l threads are created 

iii Data present based 
''''~'' upon application code 

Figure 3. Contents of a thread object. The first three elements are 
required for a thread to execute. The next three are needed to track ter
minating child threads. The fora~~ index or traverse pointer, 
along with any local variables, are required as dictated by the applica
tion code. 

169 

execution, or executingt. A free frame is kept in the free 
frame pool, and will be retrieved by a processor when it is 
needed to represent a thread. Once a frame has been used 
to represent a thread, it is placed into the work pool, to 
await execution by a processor. Finally, a frame is 
removed from the work pool, and holds the local thread 
state while the thread is executed by a processor. When 
the thread terminates, the frame is placed back into the free 
frame pool for subsequent reuse. 

The rate at which frames can be placed into, and 
removed from, the free and work pools is a limiting factor on 
the speed of the runtime support software. The frame pools 
are shared data objects which must be accessed serially in 
order to preserve queue integrity, inducing logical con
tention in the runtime system. In addition, physical con
tention occurs as processors attempt to inspect the frame 
pools, which are stored in shared global memory. 

The data structures that implement the frame pools 
must minimize both logical and physical contention. Con
tention is reduced by breaking the frame pool into several 
smaller subpools, which are accessed simultaneously by 
several processors in parallel. Physical contention is fur
ther reduced by exploiting the interleaved memory of the 
Concert hardware, and attempting to locate different ele
ments of the pool in different memory banks. 

The frame pools are implemented as a circular list of 
singly linked stacks of frames. Each stack has a 
semaphore to proVide exclusive access, and a flag indicat
ing if the stack is empty. There are as many stacks in the 
pool as there are processors in the system. Although all 
stacks are accessible by all processors, each processor is 
associated with a specific stack for purposes of frame inser
tion. The frame pool in a four processor system is shown in 
Figure 4. 

A processor locates and removes a frame in the fol
lowing manner. Beginning at its corresponding stack 
(processor Pi starts with stack S), the processor cycles 
around the circular list of stacks until a nonempty stack is 
found. The processor spin-waits on the stack semaphore 
until it acquires exclusive access to the stack. The proces
sor then removes the top element of the stack, updates the 
empty flag (if needed), and resets the stack semaphore. 

This scheme has several advantages. The use of 
multiple frame stacks helps to distribute the searching pro
cessors around the ring of stacks, reducing logical and phys
ical contention. In addition, the use of the empty flag 
reduces the number of times a processor must obtain exclu
sive access to the stack in order to inspect it. Finally, the 
actual removal of the frame is quick, minimizing the amount 
of time the stack is exclusively owned by a processor. In 
reality, the entire frame removal process can be implement
ed with as few as fifteen MC68000 machine instructions; 
the critical section requires only five. 

t Frames are also used to represent procedure and function scopes. Within this 
paper, the representation of routine scopes is not pertinent. 



Figure 4. A four processor frame pool. Each processor retains a 
pointer to one of the four frame stacks. When a frame is required, a 
processor cycles around the stacks until a nonempty stack (indicated by 
the "Empty" flag) is found. The "Lock" field provides exclusive 
stack access. Frames are reinserted back into the stack indicated by the 
processor's pool pointer. 

In order to insert a frame back into a pool, a proces
sor Pi uses its own frame stack Si' It spin-waits until 
exclusive access is acquired, places the frame on the stack, 
clears the empty flag, and releases the semaphore. This 
method reduces the time spent actually accessing the pool, 
since the processor does not have to search for a target 
stack for insertion. This routine can be implemented in as 
few as six instructions; the critical section requires only 
two. 

4.2. Thread Creation 

A thread goes through three phases during its life. 
It is created, it is executed, and it is synchronized and 
destroyed. Efficient implementation of each phase is impor
tant to achieve. the fastest possible runtime system. In par
ticular, communication between the compiler generated 
application code and the various runtime support routines 
must be as efficient as possible. 

4.2.1. Fork Statement Expansion 

The information required to expand a fork state
ment is the addresses of the statements in the body of the 
fork, and the join address, which is the address of the 
code to be executed following child synchronization. First, 
the join address is saved in the parent thread object. Then, 
the runtime routine iterates' through the list of statement 
addresses, creating a child thread for each statement. As 
each child is created, a frame is obtained from the free frame 
pool, its fields are filled in, and it is placed in the available 
work pool. The last child thread is retained for execution by 
the processor that was expanding the fork statement. 
Typically, the number of children created by a fork state
ment is small (less than ten), and the overhead per thread 
for child creation can be as low as twelve instructions, plus 
the cost of frame acquisition. 

170 

4.2.2. Forall Statement Expansion 

A forall statement requires less information for 
expansion than a fork, but can be more complex in imple
mentation. The data required are the bounds of the range of 
the forall index, the address of the body of the forall 
statement, and the join address following the forall 
statement. Again, the runtime system first saves the join 
address in the parent thread object. It then creates a spe
cial forall control object, which holds the body address 
and the current and maximum forall index values. The 
processor expanding the forall immediately begins exe
cuting the body of the forall. 

The compiler generates application specific code at 
the start of the forall body to determine if the forall 
has been completely expanded, based upon the current and 
maximum index values held in the forall control object. 
If expansion is not complete, the current index value is 
incremented, and the forall control object is placed back 
into the available work pool for another processor to 
retrieve and execute. The current processor then obtains a 
frame to represent the thread, initializes the appropriate 
fields in the frame, and continues with the body of the 
forall statement. If the current child thread is the last 
child of the forall, the processor simply keeps the 
forall control object and uses it as the frame for the child 
thread. Processor activity during forall expansion is 
shown in Figure 5. 

This technique, although complicated, achieves a 
higher throughput in the creation of child threads. Unlike 
the more pedestrian technique of simply iterating across the 
forall index, creating all of the children at once, this tech
nique allows several processors to be creating children 
simultaneously as the forall control object is passed 
around. If the children were all expanded at once, it is pos
sible that the number of threads created would swamp the 
resources of the parallel machine. The incremental expan
sion of children uses only one additional frame to hold the 
forall control object while the child threads are execut
ing, minimizing the use of machine resources. Finally, since 
the acquisition of a frame is left up to the processor execut
ing the child thread, the processor can use local memory for 
the thread frame, reducing memory access time during 
thread execution. Although greater overhead is incurred by 
the incremental method, threads begin executing more 
rapidly, reducing the number of idle processors. Applica
tions using the incremental approach finish faster than the 
equivalent application expanding forall statements using 
the iterative approach. 

4.2.3. Traverse Statement Expansion 

The traverse statement requires the programmer 
to specify a pointer to the head of a dynamic data structure, 
along with those fields in the structure which are pointers 
to other elements of the data structure. This information, 
along with the body and join addresses, is needed by the 
runtime system. Like forall, the traverse statement 



P1 

P2 

P3 

P4 

PS 

: :. 

:.: : .. ':::' : :.:: : .::";: . ~ ::.:~ .~: 

. ':: 

: :: 
.. ::::.:.: .. ::.:.:. ::. 

IZ:<) .:::::: .::.:: •• ' : . 

I'~"":' \r::::'~~: ~. ~ ':: ... 

.. ~. ~I~ ... ~ii····: . i:~~::~~:: ~.:.:.';:i::::::~::i'.;.·.:;::~::.·;:: .•.. ;;:.·:::·.;::.:;.::;:: .•.. ':I~~I!:·;:i:::I;'·~·· .: .... ~ ... :.:... ~ 
P6 ::::: . 

P7 ::: . 
a 6205 

Time (microseconds) 

Figure 5. Processor activity during forall expansion. Here, thread is the forall expansion overhead; the darker region at the end 
eight processors expand and execute a twenty element forall state- is synchronization overhead. The remaining area is application work. 
ment. Each horizontal trace represents the activity of one processor. Note that processors are performing useful work while expansion by 
Each block within a trace represents the execution of a single thread; other processors is occurring. Data was obtained using instrumenta-
processors are otherwise idle. The darker region at the start of a tion hardware in Concert during actual application execution. 

i uses an incremental expansion technique. The only differ
ence is that the compiler generated code at the beginning of 
the traverse body creates not one, but several threads, 
each thread corresponding to one of the programmer speci
fied link fields in the data structure. In a traverse state
ment expanding across a binary tree, each processor would 
create child threads for the left and right children of the cur
rent element of the tree before processing the current tree 
node. These children would, in tum, create thread objects 
for their children before executing. 

The traverse expansion achieves the same 
increase in throughput as the forall expansion, but does 
not avoid the excessive use of machine resources. Since 
each node can create a large number of child threads, many 
thread objects can be created as the data structure is 
traversed. In addition, the current implementation does not 
check to ensure that nodes in the data structure are visited 
only once, precluding the use of circular data structures. 
The overhead of traverse expansion depends upon the 
number of link fields specified by the programmer, but can 
approach the overhead of a forall expansion in a singly 
linked data structure. 

4.3. Thread Execution 

Once a thread has been created, it is placed in the 
available work pool. Idle processors in the system are con
stantly cycling through the work pool, trying to find a thread 
object to execute. When an object is found, the processor 
removes it from the pool and executes the code associated 
with the thread object. 

A processor keeps pointers to the thread object and 
Simultaneous Pascal scope in registers during thread exe
cution. References to the forall index or traverse 
pointer are made using the thread object address. Similar
ly, references to variables in the most local routine scope 
are made via the Simultaneous Pascal scope pointer. Refer
ences to values in more global scopes are made by chasing 
the thread (or scope) parent pointers to the appropriate 
frame and retrieving the value. The compiler is aware of the 
cost of such pointer traversal, particularly into global memo-

171 

ry, and attempts to cache global scope pointers in machine 
registers to improve access time. The various thread scope 
pointers are shown in Figure 6. 

4.4. Thread Synchronization 

When a thread finishes executing, it synchronizes 
with its sibling threads, and informs its parent of its termi
nation. This is done by calling a runtime support routine 
which accomplishes the join operation. 

This routine uses the parent pointer in the thread 
object to locate the parent thread object. As child threads 
were created, the synchronization counter in the parent 
thread was updated to reflect the number of executing chil
dren. As children terminate, they gain exclusive access to 
the parent thread object and decrement the child counter. 
When the counter reaches zero, no children remain, and the 
parent thread can resume execution at the join address. 

Significant contention can occur when many children 
are attempting to access and modify the synchronization 
counter simultaneously. To reduce this conflict, counter 
access is made as fast as possible. Child threads can lock, 

t + J: Parent I DO . I Parenl T 

I Local I ... 

I Local I 
data D7 data 

AO 
A1 

:=t Parent J A2 I Parent T l Local ,..., ....... A3 I Local I 
data A4 - data 

Thread 

l I Parent l.r Routine I Parent r-
I Local I Stack 

I Local I 
data Processor data 

Routine Scopes 
Registers 

Thread Scopes 

Slack 

Figure 6. Scopes available to an executing thread. A thread retains 
dedicated pointers to its thread object and most local routine scope. 
Back pointers are used to find more global scopes; these pointers may 
be cached (gray arrows) as needed by the application. A thread also 
has access to a local stack for fast subroutine calls and interrupt han
dling. 



, .. 
, 
z 

• 
co' , 
~ .. 
g36 
." 
~2 
(1)2 

a.. 

2 

• , 
20 

, 
2 

• 
'1/ • 

1/ 

-' 1/ 
1/ 

T7 
1/ 

IA 
1/ 

1/ 
1/ ./' 

1/ ~ 
I~ ir"" 

Ih v 
Ib 

kI' 

IV 'V ,/ V 

12 16 ~ 2' ~ ~ 36 ~ '* ~ 52 ~ 00 6' 

Number of Processors 
Figure 7. Scalability of the Mandelbrot application. The upper 
plot represents the pixel-wise version of the application; the lower 
plot, the row-wise version. The diagonal line is for reference; it repre
sents linear scalability. 

update, and release the parent thread object in as few as 
five instructions. Join contention can be further reduced by 
the nature of thread creation. Incremental thread creation 
tends to stagger the starts of sibling threads, which may 
stagger their termination, reducing simultaneous access to 
the synchronization counter. 

When a processor detects that it has reduced the 
child count in the parent thread to zero, the parent can 
resume execution. The join address is fetched from the par-

ent thread, various parent thread registers are restored 
from values saved in the parent thread object, and execu
tion jumps to the join address. 

5. Examples 

The only way to evaluate the effectiveness of the 
~ system is to execute and analyze a variety of applica
tions. The performance of any given application is depen
dent upon so many different factors that it is impossible to 
characterize the performance of ~ using just one pro
gram. Although many applications have been executed on 
Concert via ~, the following two examples serve to 
demonstrate the range of performance obtained from the 
dynamically scheduled Simultaneous Pascal execution envi
ronment. 

5.1. Mandelbrot 

A Mandelbrot image[8] is a bitmap derived by iter
ating elements of the complex plane through the equation z 
= Z2 + c. The iteration completes when the magnitude of z 
exceeds two, or the number of iterations exceeds a prede
termined limit. The number of iterations is then mapped 
into a set of colors, and the resulting image can be quite 
beautiful. Obviously, the desire for maximum resolution 
(providing more pixels per unit area in the image) and many 
colors (increasing the maximum iteration limit) results in a 
computationally intensive application. 

172 

Mandelbrot is naturally parallel at two levels. The 
algorithm can be expressed with row-wise parallelism, 
with each thread in the application computing all of the pixel 
values in a given row of the image. A more fme-grained 
approach exploits pixel-wise parallelism, creating a thread 
for each pixel in the image. Within ij:I.:C, the former tech
nique results in starvation, with too many processors idled 
by an insufficient number of threads. The latter technique 
results in an excellent example of a dynamically load-bal
anced parallel machine. 

The scalability of the Mandelbrot application is 
shown in Figure 7. The upper curve shows the performance 
of the element-wise Mandelbrot calculation, while the low
er curve represents the row-wise version. The tremendous 
locality of the application, coupled with the large work to 
overhead ratio in the threads, makes the element-wise ver
sion scale well across 64 processors. Information regarding 
thread sizes and overhead timing in the element-wise ver
sion of Mandelbrot is presented in Figure 8. 

The row-wise version of Mandelbrot is no different 
from the element-wise in terms of locality, and has an even 
better work to overhead ratio. Unfortunately, the number of 
available threads is much smaller, and the resulting starva
tion causes scalability to top out at the twenty processor 
point. Once starvation sets in, the increased contention 
resulting from too many processors polling the empty work 
pool further contributes to loss of performance. 

5.2. Gaussian Elimination 

Gaussian elimination[9] is a classic technique for 
solving n equations in n unknowns. Gaussian elimination is 
a popular parallel application, since it is a naturally parallel 
algorithm. Like Mandelbrot, Gaussian elimination allows a 
wide range of granularity in the resulting parallel applica
tion. Unfortunately, in its ~ implementation, Gaussian 
elimination suffers from a large number of references to a 
shared global data object. The contention resulting from 
these accesses makes Gaussian elimination a good exam
ple of scalability failure in the ~ system. 

Processor State Entered 'rime Average Percent 
Awaiting Work 4225 137135 32.46 0.17 
Thread Fetch 4225 150353 35.59 0.19 
Executing 8581 79062232 9213.64 99.26 
Expand Fork 0 0 0.00 
Expand Forall 4290 195051 45.47 0.24 
Expand Traverse 0 0 0.00 
Perform Join 4290 108037 25.18 0.14 

** Total ** 79652808 

Figure 8. Breakdown of processor utilization in Mandelbrot. 
These figures, obtained from Concert instrumentation, show the time 
(in microseconds) spent in various states of the ~ runtime system. 
The average times for scheduling primitives ("Expand Forall" and 
"Perform Join") show how quickly this task is accomplished in ij:I.:C. 
The small "Awaiting Work" time represents processor idle time, and 
shows the excellent processor utilization in Mandelbrot The average 
"Executing" time indicates the average thread length. 



,. 

" c: 
"iii 
(!) 
Q)20 

g 
ro 
E, 
.g 
Q) 

• 

0-" 

" 

/ 
/ 

/ 
/ 

V 
~ 

/' ~ 
/' 

• U U 20 " U ~ 

Number of Processors 
Figure 9. Scalability of Gaussian elimination. The upper plot repre
sents the row-wise version of the application; the lower plot, the ele
ment-wise version. Excessive contention results in significantly 
degraded performance, regardless of granularity. 

The graph in Figure 9 shows the scalability of two 
versions of Gaussian elimination. The upper plot is the 
row-wise version; the lower plot is the element-wise ver
sion. Regardless of granularity, both versions experience 
reduced performance improvement. The contention for 
access to the .global data eventually overcomes any bene
fits obtained from adding additional processors. The con
tention and latency caused by global memory accesses in 
Concert increases thread execution times while interfering 
with ~ scheduling primitives. Even the best of optimiza
tions within the ~ runtime system can be overwhelmed 
by an unfortunate conflict between a particular implementa
tion of an application and artifacts in the Concert architec
ture. 

6. Degradation 

Loss of performance in a multiprocessor system can 
be traced to four principal sources. These sources are: 

Starvation is the time a processor is idle due to an 
insufficient number of executable threads. 

Contention is the time spent by a processor waiting 
for access to shared physical or logical 
objects. 

Latency is the additional delay of an access 
resulting from excessive distance in a 
distributed system. 

Overhead is the work performed managing parallel 
activities and resources not required in a 
sequential machine. 

Starvation in a ~ application is a direct result of 
the programmer. As evidenced in the more coarsely 
grained version of Mandelbrot, a failure to create a suffi
cient number of appropriately sized threads in the parallel 
application will result in poor utilization of the underlying 

173 

parallel hardware, reducing scalability. Although the ~ 
tool set includes tools to analyze the number and size of 
threads, the final responsibility for correcting this problem 
lies with the programmer, and not with the ~ runtime sys
tem. 

Contention is a serious problem in the ~ system, 
at both the application and the system level. The use of 
shared data objects can result in excessive references to 
global memory. These references cause extraneous global 
bus traffic at the cluster and global memory levels, slowing 
unrelated accesses by other processors. ~ attempts to 
solve this problem in application programs by relying on 
smart compilation techniques to exploit locality. The con
tention problem within the ~ system software is mini
mized by judicious algorithm selection for the runtime rou
tines, and much tuning based upon application execution 
data. 

Latency in the ~ system is induced by artifacts in 
the Concert architecture, and there is little that can be 
accomplished in software to circumvent the additional cost 
of global memory references. As stated, every attempt is 
made to reduce the number of global memory references, 
minimizing the impact of memory access latency on ~ 
applications. 

Overhead is the fundamental limiting factor in the 
performance of ~ applications. The time required to cre
ate, schedule, synchronize, and destroy threads presents a 
lower bounds on the granularity of ~ applications, and 
affects the ultimate scalability of the ~ system. Current
ly, each thread incurs approximately 140 instructions of 
overhead during its lifetime. Further improvements in soft
ware are unlikely, and hardware support is the only likely 
avenue of promise for future ~ performance improvements. 

7. Implications for Future Architectures 

Although a software implementation of the ~ run
time system has succeeded in producing a usable medium
grained parallel execution environment, further advances 
needed to support finer-grained applications will require 
support in the underlying machine architecture. These 
architectural features. exploit specific aspects of the ~ 
system to reduce performance degradation. 

The ~ experience has lead to the formulation of 
some basic ideas concerning the architecture of multiproces
sors applied to general purpose parallel processing. . The 
principal results obtained from ~ are: 

• There is a limit to the performance gain that can 
be realized by implementing thread management 
primitives in software, indicating a' need for thread 
support in hardware, and 

• It is possible to support dynamically scheduled 
threads with a small number of well-defined prim-



itives whose distribution throughout the system 
critically impacts contention and latency. 

This second result has significant implications in an 
advanced architecture. In~, all primitives are performed 
by the microprocessor. In future architectures, support for 
specific primitives should be distributed throughout the sys
tem. For example, atomic frame management primitives 
should be part of a smart memory controller, not the micro
processor itself. 

The driving premise of an advanced architecture for 
execution of a ~-like environment is to separate the gen
eral processor performing application work from the over
head of managing system parallelism. In the advanced .f<C 
architecture, this general processor would be augmented 
with a thread-context coprocessor and a structured memory 
controller. The processors would be linked to global memo
ry via a prioritized, split transaction, general communication 
mechanism. A block diagram of this architecture is shown 
in Figure 10. 

7.1. Thread-Context Coprocessor 

The thread-context coprocessor is responsible for 
prefetching and initializing the context of threads. It 
acquires a thread object from the work pool stored in shared 
main memory and initializes the context of its associated 
microprocessor. Based upon compiler-supplied information, 
the coprocessor can prefetch code and static data for its 
companion microprocessor. When the thread completes, 
the thread-context coprocessor assists in updating the vari
ous contrOl variables used to manage the .f<C parallelism 
tree. 

From the perspective of the microprocessor, most of 
its accesses are to its local caches, initialized by its thread
context coprocessor. To the microprocessor, the apparent 
available bandwidth of the communications mechanism is 

Figure 10. The Advanced ~ Architecture. Processor complexes 
are connected to banks of global RAM via a global communications 
mechanism (GCM). The RAM supports primitive· operations on high 
level objects via the structured memory controller (SMC). A proces
sor complex consists of a microprocessor coupled to a high~speed cache 
and a thread-context coprocessor (TCC). The TCC prefetches code and 
data into the cache to increase the apparent processor/GCM communica
tions bandwidth. 

174 

greater since most of the transfers are done in advance by 
the coprocessor at low priority. Losses due to contention 
are greatly reduced, because fewer global accesses are 
made by the microprocessor. Those that do occur contend 
with fewer requests from other microprocessors. 

The introduction of a dedicated thread-context 
coprocessor significantly reduces the time required to cre
ate and initialize a thread prior to execution, as well as 

. reducing the time required to synchronize and destroy a 
thread. The ability of the coprocessor to prefetch code and 
data into local caches minimizes the amount of global mem
ory accesses, reducing contention and bus traffic in the 
memory communication mechanism 

7.2. Structured Memory Controller 

The structured memory controller augments the con
ventional memory controller by providing the ability to 
manipulate the data structures employed by the ~ run
time system. Such data structures include task queues, 
frames, and thread objects. Simple operations upon these 
objects are performed directly by the structured memory 
controller rather than the microprocessors. This reduces 
both contention on the communication channels and the 
time required to perform the functions. 

For example, accessing the thread work pool could 
be defined as a primitive operation within the structured 
memory controller. A request from the thread-context 
coprocessor would cause the memory controller to locate 
and manipulate the appropriate pointers without further 
information from the processor complex. Analysis has 
shown that hardware support for thread queues would cut 
overhead in the current .f<C implementation by fifty percent, 
not including the positive effect derived from reduced global 
memory contention. 

The structured memory controller also supports 
exclusive access to shared resources. Ordinarily, proces
sors waiting for a locked logical resource poll the 
semaphore until it indicates the resource is available. This 
consumes communication and memory bandwidth, aggravat
ing contention and degrading performance. The data struc
ture representing a semaphore would contain as many bits 
as there are processors in the system. When a processor 
or coprocessor attempts to access a locked logical resource, 
its associated bit in the semaphore is set. When the 
resource is freed by the current user, the structured memory 
controller uses the set bits in the semaphore to select the 
next processor which will take possession of the shared 
resource. While the processor has lost time waiting for the 
object, increased contention due to polling is avoided. 

8. Conclusions 

General purpose parallel processing requires a par
allel computing strategy for coordinating concurrent activi
ties. Dynamic scheduling is essential for automatic load 
balancing for diverse applications. Medium to fine grain 



I independently scheduled tasks are necessary for scalability 
and impose a need for low overhead mechanisms. The ~ 
parallel execution environment has been presented and its 
implications for advanced parallel computer architecture 
have been discussed. ~ executes programs written in 
Simultaneous Pascal, a version of Pascal augmented with 
explicit parallel constructs consistent with the structured 
nature of the original language. Simultaneous Pascal pro
vides the programmer with the means for delineating the 
parallelism in the application algorithm. Portability of code 
to different multiprocessors is maintained by isolating the 
programmer from the actual machine organization. 

The ~ system supports general purpose parallel 
processing on the Concert Multiprocessor. Mechanisms for 
task creation, dispatching, and synchronization are realized 
in software. The type of parallelism used permits determi
nation of join locations during thread creation for efficient 
synchronization. Locality of reference within threads is 
exploited using local memory for each processor to reduce 
global memory access and contention for shared communi
cation resources. Tasks on the order of 140 instructions 
can be effectively handled by ~, providing substantial par
allelism for many applications. 

The ~ system has provided insight into the fea
tures of an advanced parallel architecture suitable for exe
cuting Simultaneous Pascal applications but exhibiting 
superior scalability. This architecture reduces overhead, 
allows fmer-grained tasks, and minimizes losses due to 
contention. This is accomplished by separating application 
execution from thread management, providing maximum uti
lization of the processors for application work. A dedicated 
coprocessor prefetches and manages thread objects, remov
ing this responsibility from the application processor. 
Smart memory controllers in global memory perform com
pound operations on structured data elements. Memory 
controller support for runtime functions greatly reduces their 
execution time and reduces communication traffic along with 
its resulting contention. 

The ~ system has shown that a scalable parallel 
processing environment can be realized in software. By 
defming a specific parallel virtual· machine, and implement
ing that virtual machine on a general purpose multiproces
sor, ~ has provided general purpose medium-grained par
allel processing to its users. The insight gained from 
executing a variety of applications on ~ has allowed its 
developers to propose a set of components which, if incor
porated in future multiprocessors, would provide significant 
performance gains for the ~ parallel virtual machine. 

Acknowledgments 

The authors wish to recognize the significant contri
butions made by Ellery Y. Chan, Douglas A. Thomae, 
Michael D. Noakes, and Kenneth C. Laprade to the realiza
tion of the ~ parallel execution environment. In addition, 
the many helpful comments by other members of the Harris 
Advanced Technology Department, and the Parallel Pro
cessing Group at the Laboratory for Computer Science at 
MIT have proved invaluable in making ~ a reality. 

References 

[1] T.L. Sterling, A.J. Musciano, E.Y. Chan, and D.A. 
Thomae, "~: An Effective Implementation of a Par
allel Language on a Multiprocessor," IEEE Micro, 
Vol. 7, Num. 6, Dec. 1987, pp. 46-62. 

[2] T.L. Sterling, "Parallel Control Flow Mechanisms for 
Dynamic Scheduling of Tightly Coupled Multiproces
sors", Ph.D. Thesis, EECS Dept., MIT, May 1984, 
pp.24-29. 

[3] R.Il. Halstead, T.!. Anderson, R.B. Osborne, and T.L. 

175 

Sterling, "Concert: Design of a Multiprocessor Devel
opment System," 13th Symposium on Computer Archi
tecture, June, 1986, pp. 40-48. 

[4] P.C. Treleaven and R.P. Hopkins, "Decentralized 
Computation," Eighth Symposium on Computer Archi
tecture, May, 1981, pp. 279-290. 

[5] D. Cooper, Standard Pascal User Reference Manual, 
W.W. Norton & Company, 1983. 

[6] M.J. Flynn, "Very High-Speed Computing Systems," 
Proc. IEEE, Vol. 54, 1966, pp. 1901 - 1909. 

[7] J. Backus, "Can Programming be Liberated from the 
von Neumann Style? A Functional Style and Its Alge
bra of Programs," Communications of the ACM, Vol. 
21, No.8, August 1978, pp. 613 - 641. 

[8] H.-a. Peitgen and P.H. Richter, The Beauty of Frac
tals, Springer-Verlag, 1986, pp. 151-160. 

[9] R. Beckett and J. Hun, NumericaL CalcuLations and 
Algorithms, McGraw-Hill Book Co., 1967, pp88-90. 



A SHARED MEMORY ALGORITHM AND PERFORMANCE 
EVALUATION OF THE GENERALIZED ALTERNATIVE 

CONSTRUCT IN CSpl 

H wa-chung Feng 
AT&T 

200 Laurel A venue 
Middletown, NJ 07748 

Abstract 

Communicating Sequential Processes (CSP) is a paradigm for com
munication and synchronization "among distributed processes. The al
ternative construct is a key feature of CSP that allows nondeterministic 
selection of one among several possible communicants. Previously, an 
algorithm for shared-memory multiprocessors was developed for the 
generalized version of Hoare's alternative construct that allows output 
commands to be included in guards. Here, the performance of this 
algorithm, as implemented on the BBN Butterfly Parallel Processor, 
is evaluated. An adaptive approach that automatically optimizes the 
performance of the synchronization mechanism is suggested and eval
uated. 

1 Introduction 

Communicating Sequential Processes is a well known paradigm for 
parallel computation [5,6). A CSP program consists of a collection of 
processes that interact by exchanging messages. The message-passing 
primitives, called input and output commands, are synchronous. An 
important feature of CSP is the alternative construct which is based 
on Dijkstra's guarded command (2). This construct enables a process 
to nondeterministically select one communicant among many. 

In (4) an algorithm was proposed for implementing the generalized 
alternative construct that allows output commands to be included in 
guards. A variation of this algorithm was implemented on the BBN 
ButterflyTM multiprocessor. The principal contribution of this paper 
is to present an empirical performance evaluation of this algorithm and 
to suggest techniques to optimize its performance. 

For completeness, we will first describe the algorithm and its im
plementation. A correctness proof and more detailed discussion of the 
algorithm appears in (4). The performance evaluation studies follow. 

2 The Alternative Algorithm 

A CSP program contains processes Pi, P2 , ••• , PN. Process Pi is 
, assigned the unique process ID i to distinguish it from others. 

Each invocation of an alternative operation is referred to as a trans
action that begins when the operation is initiated and ends when a 
successful communication has been completed. A process will usually 
engage in many transactions during its lifetime. A total ordering is im
"posed among all transactions entered by all processes of a given CSP 
program. A unique sequence number, referred to here as a transaction 
ID, is associated with each transaction. 

Two processes that initiate alternative operations that result in a 
communication between them are said to rendezvous. In a typical ren
dezvous, the first process to enter the alternative will block and wait 
for a signal from the second. When the second process enters the al
ternative, it will commit to the first in order to obtain "permission" to 
rendezvous; the "committing" process will then signal and exchange a 
message with the blocked process, and both will complete their respec
tive alternative operations. The algorithm uses an "abort and retry" 
mechanism to avoid race conditions when two potential communicants 
simultaneously enter the alternative command. 

'This work was supported by ONR contract number NOOOl4-87-K-0184 
and NSF grant number DCR-8504826. 

Richard M. Fujimoto 
Department Of Computer Science 

University Of Utah 
Salt Lake City, UT 84112 

"2.1 Primitive "Operations 

The machine is assumed to be a shared memory multiprocessor. To 
simplify the presentation, we will assume certain synchronization prim
itives are available. Each can be easily constructed using a test-and-set 
and standard scheduling primitives. In particular, we will assume the 
following are available: 

• AtomicAdd(X): INTEGER atomically increments the integer 
variable X and returns the original value of X. 

• Lock and Unlock provide exclusive access to shared data struc
tures. 

• WaitForSignal and Signal block and unblock the process, re
spectively. A signal contains a single, user-defined integer value. 
If a signal is not absorbed before a second one arrives, it is dis
carded. 

• Send(M, R) and Recv(R): Message provide the blocking send 
and receive function, where R is the remote process ID. 

• Sleep(T) causes the process invoking it to block for at least T 
time units. A process will always eventually awake after calling 
Sleep. 

2.2 Process States and Shared Variables 

Each process can be in one of the following states: 

• WAITING. The process is blocked on a WaitForSignalopera.
tion, waiting for a rendezvous. 

• ALT. The process has begun an alternative operation and is scan
ning through its guard list to find a possible rendezvous. 

• SLEEPING. The process was forced to abort an alternative 
operation. After aborting, the process goes to sleep for some 
time before retrying. 

• RUNNING. The process is executing code not related to the 
alternative operation. 

A state transition diagram for each process is shown in figure 1. The 
ALT and SLEEPING states should be viewed as "transitory" states 
through which a process must pass while trying to commit or move 
into the WAITING state. A process cannot remaiI). in either the ALT 
or the SLEEPING state for an unbounded amount of time on a single 
transaction (4). 

Each process Pi maintains a number of variables that may be ex
amined, and in some cases modified, by other processes: 

• AltListj lists the guards associated with the last alternative op
eration initiated by Pi that caused Pj to enter the WAITING state. 

• AltLockj is a lock used to control access to AltListj. It is ini
tialized to 0 (unlocked). 

• Statej holds the current state of Pj. It may be set to WAITING, 
ALT, SLEEPING, or RUNNING, and is initialized to RUNNING. 

• WakeUpj is initialized to 1 and is set to zero by Pj whenever 
it enters the WAITING state. It is incremented (atomically) by 
processes trying to commit ·to Pj. 

176 



abort 8 
/ •• ___ - SLEEPING 

lilly 

Figure 1: The state diagram of a process. 

A system wide global variable, NextTransID, is initialized to zero 
and is atomically incremented each time a process initiates an alter
native operation. If necessary, this can be implemented using local 
variables and unique processor IDs to avoid contention [4]. 

A procedure CbeckAndCommit(AltListr , gi): INTEGER is 
called by process P, (I denotes the local process) to check that "valid" 
communications can take place between P, using guard g, and Pr (r 
denotes the remote process), and if so, to attempt to commit to Pro 
If a commit was attempted and succeeded, CheckAndCommit returns 
a value indicating the corresponding guard in the remote process Pro 
Otherwise, FAILED is returned. 

2.3 Other Notation 

For notational convenience, other variables and predefined functions 
'are defined that are used in the algorithm. These include: 

• TraIisIDI is a variable that contains the ID of the current trans
action in which process P, is engaged. 

• CommunicantID(gi) is a function that returns the ID of the 
process listed in the I/O command portion of guard gi. 

• Communicate(gi) executes the I/O command in guard g,. 

• TimeOut is a constant indicating the period of time a process 
should sleep after an aborted attempt. 

The algorithm is shown in figures 2 and 3. The Alternative proce
dure shown in figure 2 is a ''front end" that is responsible for retrying 
aborted attempts. The heart of the algorithm lies in the TryAlternative 
procedure shown in figure 3. The parameters passed to both procedures 
are n enabled I/O guards gl, g2, ... , gn' Each guard contains either 
a single output or a single input primitive. This procedure does not 
return until a rendezvous has been completed at which time it returns 
an integer indicating the guard (gl, g2, ... , gn) that was· eventually 
satisfied. See [4] for a more complete description of the algorithm. 

3 Performance Evaluation 

Because the algorithm relies on an abort-and-retry mechanism to 
avoid race conditions, a performance analysis is required to ensure it 
does not thrash under certain "stressed" workload conditions. An im
plementation of the algorithm was developed for a 16-node BBN But
terfly Parallel Processor for this purpose. The implementation was 
written in C. 

3.1 Butterfly Hardware 

The BBN Butterfly multiprocessor contains up to 256 processing 
nodes and a high performance interconnection switch. Each processor 
node contains a 16 MHz MC68020 with MC68881 floating point co.· 
processor, up to 4 MBytes of memory, and a processor node controller 
(PNC), a microcoded engine implemented with 2900 series AMD parts. 
The interconnection switch is configured as an Omega network [1]. 

All memory references made by the 68020 are passed to the PNC. 
Local memory references are forwarded to the local memory, while re-

177 

,* ~ are enabled I/O guards *, 
~!R CEDURE Alternative(g1 ..... g,,): INTEGER; 

INTEGER ReturnValue; '* indicates guard which rendezvoused *, 
BEGIN ,* 1 is the local process id *' 

TransIo" :- AtomicAdd(Ne>:tTransID); 
ReturnValue :- FAILED; 
WHILE (ReturnValue - FAILED) DO 

ReturnValue :- TryAlternative (gl, ... , g,.); 
IF (ReturnValue - FAILED) THEN Sleep (TimeOut); END; 
END; 

RETURN (ReturnValue); 
END Alternative; 

Figure 2: The "front end" procedure. TryAlternative returns the num
ber of the guard on which a rendezvous took place or FAILED if it 
aborted. 

mote references are passed to the appropriate processor node through 
the switch. A local reference requires approximately 600 nanoseconds 
and a remote reference 4 microseconds assuming no switch contention. 
The PNC also handles memory requests made by other processors to 
this node, as well as atomic memory operations. 

3.2 Factors and Metrics 

The time that a process spends in a specific alternative operation 
is affected by many factors. The number of guards affects the amount 
of time required to scan the guard list. The amount of computation 
that a process conducts between two consecutive alternative operations 
also influences performance. The more frequently processes enter the 
alternative operation, the more likely collisions are to take place, po
tentially increasing the number of aborted operations, and reducing 
performance. 

The sleeping period, i.e., the amount of time a process waits after an 
alternative operation aborts, is an important parameter that must be 
set to an appropriate value. A sleep period that is too short may cause 
a process to wake up when its neighbors are still in the ALT state, 
leading to additional aborted attempts and thrashing. On the other 
hand, an excessively long sleeping period could lead to an unnecessary 
delay while the process remains in the SLEEPING state. An adaptive 

PROCEDURE TryAlternative(gl •...• g,,): INTEGER; 
VAR 

BOOLEAN flag; 
INTEGER GuardNumber; ,* corresponding guard of p. *, 
INTEGER i. r; 

BEGIN 
State" :- ALT; 
/* look for rendezvous vi th & vai ting process. *, 
FOR i:-1 TO n DO 

r :- CommunicantID(g;); 
flag :- TRUE; 
WHILE (flag) DO 

CASE Stater DO ,* The remote process state. *, 
SLEEPING: flag :- FALSE; 
RUNNING: flag .:- FALSE; ,. try next guard *, 
WAITING: GuardNumber :- Chec!tAndCommit(r. gi); 

IF (GuardNumber - FAILED) THEN 
flag :- FALSE; ,. try next guard *, 

ELSE ,. Wake up Pr ., 
Statel:- RUNNING: 
Signaler, GuardNumber); 
Communicate(Si) ; 
RETURN W; 

END: 
ALT: IF (Tran.Io" > TransIa.) THEN 

Statel:- SLEEPING: 
RETURN (FAILED): /* abort .... ' 

ELSE ,* busy wait loop. ., 
WHILE «Stater - ALT) DO END 

END; ,* if-then-else ., 
END; /. case statement ., 

END; ,. while loop ., 
END: ,. for statement ., 
,. couldo't find guard to rendezvous ., 
Lock(Al tListl): Al tListl :- (gl ..... g,,): Unlock(AltListl); 
WakeUPl :- 0; 1* first to commit gets rendezvous *1 
State" :- WAITING: 
i :- WaitForSigualO; ,. Blocks *, 
Statel:- RUNNING; 
Communicate (Si) 
RETURN (i); 

END TryAlternative: 

Figure 3: The TryAlternative procedure attempts to rendezvous with· 
a process listed in an I/O guard, and does not return until rendezvous 
takes place. 



degree. 12 degree. " 

:~ 
0 

~ 0 

a~ 0 o 0 

0 0 0 0 0 0 0 0 

Figure 4: Typical meshes (degrees 4 and 12). 

technique will be described later to assign an appropriate value for the 
sleeping period. 

3.3 Test Programs 

A synthetic workload program was designed to determine appro
priate methods for setting the sleep period. The parameters for this 
program are: 

topology The channel connection pattern among the processes. This 
determines the size of the guard list in the alternative operation. 

interval computation The amount of time each process spends in 
the RUNNING state between consecutive alternative operations. 

sleep period The time a process spends in the SLEEPING state when 
it aborts. 

The size of the message that is exchanged is not considered here because 
the communication takes place after the rendezvous point is reached, 
so it is in fact not part of the alternative operation and may be viewed 
as part of the interval computation. 

o decree 6 o decree a 
7 x decree 10 

V lkgree 12 
• fWI amnec:Iion 

5 

4 

3 

2 

o+------r------~----~----~ 
O.oI 0.1 10 100 

Sleep Period (ms) 

Figure 5: Abortion rate with no interval computation. 

The test programs used for these experiments were configured as a 
lattice of 16 processes, each communicating with some number of its 
neighbors. This number is referred to as the degree. Figure 4 shows the 
connection patterns of meshes with degrees 4 and 12. The programs 

178 

Mean Tans. Time (ms> 
20. cree 

o decree 6 
18 0 decree a 

x decree 10 
16 V decree 12 

• fWI COIIJIeCIion 

14 

12 

10 

8 

6 

4 

2 • • • • -
O+------r------~----~----~ 
om 0.1 10 100 

Sleep Period (ms) 

Figure 6: Transaction time with D;0 interval computation. 

used in these experiments are meshes with degree 4, 6, 8, 10', 12, and a 
full connection pattern, i.e., degree 15. The symmetric mesh connection 
pattern is chosen to avoid bottlenecks that might bias the result. Wrap
around connections are used at the edges at the mesh to maintain 
symmetry. 

Each of the 16 processes repetitively executes an alternative op
eration, attempting to rendezvous with one of its neighbors. Each 
process is mapped to a separate processor to maximize the likelihood 
of collisions. These experiments study the worst case behavior of the 
alternative operation under different parameter settings. Performance 
in a typical application will be discussed later. 

The length of interval computation is chosen from an exponential 
distribution with a mean ranging from 500 microseconds to 16 mil
liseconds. The sleep period ranges from 100 microseconds to 12.8 mil
liseconds. The performance metrics for these experiments are (1) the 
average transaction time, and (2) the abortion rate, i.e., the average 
number of abortions per transaction. The reported measurements are 
mean values with a 95 percent confidence interval about the calculated 
mean value of less than 4 percent. 

All of the time measurements are derived from recordings of the 
real time clock which has a resolution of 62.5 microseconds, and in
clude operating system overhead. It is estimated that the total error is 
within 5 percent of the reported results. To minimize interference, the 
measurements were taken with no other user processes on the machine. 

3.4 Results 

Figure 5 shows the abortion rate when the interval computation is 
zero, maximizing the probability of abortion. In topologies with low 
degree, e.g., 4 and 6, the abortion rate is not affected as dramatically as 
it is for large degree topologies as the sleeping period is varied. This is 
because the probability of seeing each other in the ALT state is already 
small for topologies with small degree. 

Figure 6 shows the mean transaction time with zero interval com
putation. Each topology has a different "best" sleeping period that 
increases with the degree of the topology. When the list of guards 
becomes longer, the alternative algorithm tends to spend more time 
scanning the list, and therefore spends more time in the ALT state. As 
a result, a longer sleeping period is needed to avoid excessive abortions. 
However, an excessively long period is undesirable as well. 

Table 1 shows the approximate "best" sleeping periods in each 
topology in milliseconds, along with the average abortion rate. The 
percentage in parentheses indicates the standard deviations of the re
spective mean values. They suggest that topologies with large degree 
have large variances. 



Mean Trans. 11me (ms) 
14 

• fun cannection 
o degree 12 

12 [J depec 10 
)( depec8 
V depec6 
• degree4 

10 

8 

6 

4 

2 

0 
0.1 10 100 

Interval Computation (ms) 

Figure 7: Transaction time with non-zero interval computation. 

Figure 7 shows the average transaction time as a function of the 
mean interval computation time when the sleep period is set to the 
"best" value for each topology. The interval computation spreads al
ternative operations attempts over a longer period of time, thereby 
reducing the frequency of conflicts. Because it achieves the same ef
fect as a longer sleep period, a similar relationship between the interval 
computation and the performance of the algorithm is expected. The 
more sparsely an application executes the alternative operation, the 
closer the performance of each operation is to the optimum. Not sur
prisingly, the least amount of interval computation necessary to achieve 
optimal performance, i.e., zero abortion, is comparable to the "best" 
sleep period. 

3.5 An Adaptive Approach to Setting the Sleeping Period 

The results of the previous section indicate that an optimal sleeping 
period for one configuration is far from optimal for others. Therefore, 
no single sleep period is appropriate for all situations. To accommodate 
a wide variety of circumstances, an adaptive approach of setting the 
sleeping period is required. 

One measure for determining when the sleeping period should be 
reset is the number of abortions the current transaction has committed 
so far. Each additional abortion in a given transaction indicates that 
the current sleeping period may be too short. The following scheme is 
proposed to dynamically set the sleeping period: The sleeping period is 
initially set to a small value on each transaction. During the lifetime of 
this transaction, each additional abortion causes the sleep period to be 
doubled. This strategy is not unlike the algorithm used in the Ethernet 
local area communication network to resolve collisions [7]. 

Although large degree topologies may require several abortions be
fore a suitable sleep period is accumulated, the exponential approxima
tion should quickly converge to an appropriate value. Table 2 validates 
this intuition. The performance of the adaptive scheme is seen to match 
that obtained when the sleep period was manually optimized for each 
particular configuration. The sleeping period in these experiments was, 
initially set to 400 microseconds at the beginning of each transaction. 
In topologies with large degrees, the improvement is especially apparent 
because many transactions now spend much less time sleeping. 

In addition to the experiments based on synthetic workloads, the 
performance of a "typical" application program was also investigated. 
The bounded buffer program [3] consists of a buffer process and some 
number of producer and consumer processes. The producer processes 
repetitively generate data and send them to the buffer process, while 
the consumer processes consume the data collected by the buffer pro
cess. The !:mffer' process can hold up to four unconsumed data items 
before it disables all the channels connected with the producers. Sim-

179 

Table 1: "Best" Sleeping Period with no Interval Computation. 

Degree Avg. Abort Rate Avg. Tran. Time Sleep Period 
4 (10~) 0.9 ~25~~ 2.0 0.6 
6 ( 8%) 1.0 (58%) 3.3 1.2 
8 ( 6%) 1.6 (67%) 5.1 2.4 

10 ( 6%) 1.7 (75%) 7.2 3.2 
12 ( 4%) 1.8 (78%) 10.4 4.8 
fc ( 5%) 1.5 (92%) 17.2 9.6 

Table 2: Performance of the Adaptive Scheme. 

degree abortion/tran time( ms )ltrans 
4 0.3 1.8 
6 1.6 3.3 
8 1.9 4.8 

10 2.5 6.9 
12 2.9 9.7 
fc 3.5 12.9 

ilarly, the channels with the consumers are disabled if there are no 
data to be consumed. When executed on the Butterfly, it was observed 
that the buffer process only spends an average of 600 microseconds to 
reach rendezvous regardless of the number of producers and consumers. 
There are very few aborted attempts. This result is much better than 
the previous "worst case" performance and can be explained as follows. 
All of the producers and consumers spend most of their time in the 
WAITING state because the buffer can rendezvous only one process on 
each repetition. Therefore, the buffer process will usually rendezvous 
with the first process it scans every time it enters an alternative oper
ation, minimizing the transaction time. 

4 Conclusions 

We have presented an algorithm that implements the generalized 
alternative construct in CSP. Unlike previous algorithms, it is based 
on a shared memory architecture. An implementation, written in C, 
has been developed for a 16-processor BBN Butterfly and extensive 
performance evaluations were conducted. An important parameter of 
the algorithm is the amount of time that the process waits after each 
aborted attempt before attempting to retry the operation. It was found 
that the appropriate sleep period is application dependent, so an adap
tive scheme was suggested to dynamically set this parameter. Empirical 
data indicate that this approach is effective in practical situations. 

References 

[1] B. Thomas, et al. Butterfly Parallel Processor Overview. BBN 
Report No. 6148, BBN Laboratories Incorporated, March 1986. 

[2] E. W. Dijkstra. Guarded Command, Nondeterminism and Formal 
Derivation of Programs. CACM, 18(8):453-457, August 1975. 

[3] R. E. Filman and D. P. Friedman. Communicating Sequential Pro
cesses, chapter 10. Computer Science Series, 1984. 

[4] R. Fujimoto and H.C. Feng. A Shared Memory Algorithm and 
Proof for the Alternative Construct in CSP. International Journal 
of Parallel Programming, June 1987. 

[5] C. A. R. Hoare. Communicating Sequential Processes. CACM, 
21(8):666-677, August 1978. 

[6] C. A. R. Hoare., Communicating Sequential Processes. Computer 
Science, Prentice Hall, 1985. 

[7] R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed Packet 
Switching for Local Computer Networks. CACM, 19(7):395-404, 
July 1976. 



DESIGN STRATEGIES FOR THE RUN-TIME SUPPORT TO THE ADA RENDEZVOUS 

Silvano Rivoira 
Dipartimento di Matematica - Universita di Perugia 

Via Vanvitelli, 1 
06100 Perugia (Italy) 

Abstract -- This paper describes an 
experimental comparison of three different 
strategies for the design of the run-time support 
to the tasking facilities in the ADA language. The 
three strategies differ for the task in whose 
thread of control the accept body is executed 
during a rendezvous: the called task (server 
model), the calling task (procedural call model) 
and the last task joining the rendezvous (order of 
arrival model). All models have been implemented 
in the operating system kernel of a tightly
coupled multiprocessor system based on 16 bit 
microprocessors. The time requirements of the 
alternative implementations have been measured and 
the results are discussed in the last section. 
Finally the efficiency of the rendezvous models 
has been compared with that of the semaphoric 
model in the solution of the classical bounded 
buffer problem. 

Introduction 

The programming language ADA [1] contains 
powerful tasking facilities for concurrent and 
real-time programming, which allow a programmer 
to concentrate on parallel system design and to 
ignore inter-task synchronization and 
communication details. 

The strength of the rendezvous (RV) mechanism 
is that it unifies the semantics of different 
multiprocessing construct, providing a very 
general, expressive, elegant means for developing 
parallel systems. However, the implementation of 
these high level facilities, due to their 
generality, raises significant problems to the 
designers of compilers and run-time supports for 
ADA [2 J - [3 J. One of the main problems is how 
to avoid excessive scheduling interactions in many 
synchronization cases which frequently occur in 
real-time applications [4]. 

Considerable research and experimentation 
efforts have been devoted to propose 
implementation strategies of RV [5] - [(I -
[7J - [8] - [9] - [1~I, to compare the ADA's 
tasking facilities with those of other languages 
[11] - [12], and to explore the performance of 
different implementations of RV on a given machine 
under constrained circumstances [13]. 

Unfortunately it is often difficult, or even 
impossible, to compare solutions and experiences 
from different authors, because they have been 

based on different assumptions or obtained for 
different architectures. 

The goal of this work is to evaluate the 
efficiency of different implementations of the ADA 
parallel facilities on monoprocessor and 
multiprocessor architectures, and to compare it 
with that of other communication and 
synchronization mechanisms. A modular architecture 
(MODIAC) developed by the Consiglio Nazionale 
delle Ricerche of Italy and proposed as a national 
standard for real-time control of continuous and 
discontinuous industrial processes [1 {I, is used 
as a benchmark. The architecture is organized as a 
tightly-coupled multiprocessor system based on 16 
bit microprocessors, and it currently supports a 
distributed.Operating System kernel (MODOSK) which 
extends the programming language PASCAL with 
synchronization, message passing and short time 
scheduling primitives between processes [15]. 

Three different implementation strategies of 
the ADA tasking facilities for such an architecture 
are considered. The implementations have been 
derived from the ADA rationale [5] and from a 
formal model of the ADA multitasking constructs 
developed as part of a total formal description of 
the language [1 ~I . 

The ADA kernel is designed as a set of 
primitives identically replicated in the private 
memory of each processor. The primitives control 
the ~oncurrent execution of the tasks running on 
the processor pool and they allow interactions 
between tasks independently of their physical 
allocatiori . 

The different RV implementations have been 
coded in the sequential PASCAL language, excepting 
only a few functions of the lowest level, coded in 
assembly language. The ADA tasking facilities are 
supported by a set of kernel primitives which can 
be invoked as procedures by tasks also'implemented 
as PASCAL procedures. 

180 

The use of a high level system language 
allowed us to reduce the development time and to 
produce more readable and portable code. Using 
PASCAL has also the aim, in this case, of comparing 
the efficiency of the ADA concurrency constructs 
with respect to the efficiency of the 
synchronization mechanisms provided by MODOSK in 
the same environment. For this reason the MODOSK 
and ADA kernel primitives use similar data 
structures and similar implementations for ready 
queues, time schedule queues and task descriptor 



management. 
The following sections describe: the main 

features of the alternative implementations of 
the RV mechanism; the kernel structure; the 
translation scheme of the ADA constructs; the 
operations involved in the order of arrival 
implementation. Finally the results of the time 
requirement measurements are reported in the last 
sections. 

Alternative Implementations of the RV Mechanism 

In the RV implementation suggested by the 
ADA rationale [5 J and referred to in this paper 
as "server" RV, the calling task remains 
suspended until the called task executes the 
accept body. It is worth noting that, in order to 
complete a RV, the scheduler is invoked (and 
possibly a context switch occurs) two times in 
the case entry calling precedes the execution of 
the accept statement and three times in the other 
case. One or two interprocessor interrupt 
signals and two or four scheduling operations 
respectively are necessary if the interacting 
tasks are running on different processors. 

This situation is shown in Fig. la, where 
scheduling points and interprocessor interrupts 
are represented by dots and double arrows 
respectively. A single copy of the accept body is 
sufficient and it can be stored in the private 
memory of the processor running the accepting 
task. Parameter passing may be performed through 
the shared memory. 

A second approach, the "procedural call" 
rendezvous [7 J - [8 J, states t~at the accept 
body is always executed by the calling tasks. 
Task interactions for this case are shown in Fig. 
lb. The advantage of this implementation is that 
no special mechanism is necessary for parameter 
passing because the caller executes the accept 
body in its thread of control. The disadvantage 
is that the accept body must be accessible to the 
calling tasks. Accessibility can be obtained 
either by replicating the code of accept bodies 
in the private memory of each processor running 
a calling task, or by storing the code in the 
shared memory. 

Since the accept body can refer to global 
variables declared in a larger environment, these 
variables must be referable by different tasks, 
possibly running on different processors, and 
therefore they also have to be stored in shared 
memory. This solution becomes ineffective or 
impossible when some resource requested by an 
accept body is only available on a particular 
processor. 

A solution which reduces the number of 
scheduling points during a RV consists of 

181 

Entry cal.l ing precedes .keept Acc{'pt precedl!s Entry cal ling 

T 
cc 

T 
ec 

T 
ac 

T 
ec 

T 
ac 

Task !)tate 'l--b::::;d- _ ~ 
-J :- running U :-

E ttme - - E tim~ 

o t .. blocked I i . 
A 

I time, 

ready 

running 

Fig. la - Server rendez VOllS 

blocked 

ready 

body I 

time 

~ I , 
running ~ 

ti~e " i T E 

blocked J 

-JL ready IL-running 

A I time A time 

Fig. 1 b - Procedural call rendez VOllS 

l 
blocked 

J read! 

I running bod, 

E, E 
0 

time • time 
I 

i blocked I 
I ready J L I I 

body running 

A, time. A, time 

Fig. Ie - Order of arrival rendez VOllS 

Fig. 1 - State transitions of the calling (T ) and 
ec 

accepting (T ) tasks during a rendezvous 
ac 

executing the accept body as a part of the thread 
of control of the last task which joins the RV. 
This approach can be referred to as the "order of 
arrival" implementation and it has been proposed 
by several authors [6] - [7] - [9]. It appears 
to be effective both on monoprocessor 
architectures (where it reduces the scheduling 
points to two) and on tightly coupled 
multiprocessor architectures, where only one 
interprocessor interrupt signal and two scheduiing 
operations are needed to complete a RV (Fig. lc). 
This solution, however, shares with the procedural 
call implementation the difficulties due to global 
variable references and private resource access. 

At. this time .it is unknown whether the 
performance gain due to fewer context switches 



compensates for the overhead introduced by such 
difficulties. 

One of the aims of this work is to contribute 
in answering this question. 

Structure of the ADA Kernel 

As previously mentioned, the experimental 
analysis has been performed on a tightly coupled 
multiprocessor architecture based on 16 bit 
microprocessors (Zilog, Z8001). 

The system has a multiple bus interconnection 
scheme with three bus levels: private, shared and 
global [1{1. Physical resources connected to a 
private bus are accessible only by the processor 
which owns the bus; resources connected to the 
global bus are accessible by every processor in 
the system; resources connected to a shared bus 
can be directly accessed (that is without 
competition) by one processor and indirectly 
accessed (through the global bus) by all the other 
processors. The arbitration mechanism of the 
global bus is distributed and the contention is 
resolved on a single transaction basis. The 
indivisible read-modify instructions required to 
allow lock operations on common variables are 
obtained by inhibiting the access to the global 
bus for one or more transactions. Each processor 
can send interrupt signals to any other processor; 
more requests can be sent at the same time to a 
same processor. 

In the following we shall assume that the 
instruction code executable by a processor resides 
in the processor private memory and that some data 
structures are located in shared memory, where 
they can be ~eferred to by tasks allocated on 
different processors. Tasks descriptors are divided 
into two parts: local and global. 

The local descriptor (LTD) resides in the 
private memory of a processor and it contains all 
the information necessary to the execution of the 
task concurrently with other tasks resident in the 
same processor. The global descriptor (GTD) 
resides in the shared memory directly connected to 
the processor which owns the task, and it contains 
the information which allow the interactions 
between tasks allocated on different processors. 
The kernel is constituted by a set of primitives 
identically replicated in the private memory of 
each processor. 

When a task invokes the kernel to interact 
with another task, the invoked primitive (executed 
by the processor which owns the calling task) 
checks for the processor identifier in the global 
descriptor of the called task. If the called task 
resides in the same processQr as the calling one, 
all the information about its status is available 
in the local descriptor and the requested 

182 

operation can be performed. If the called task 
resides in a different processor, the kernel 
primitive sends an interrupt request to that 
processor, together with the code of the requested 
operation, and the references to the called task 
and the calling processor. The interrupt service 
procedure resident on the interrupted processor 
will then invoke the kernel primitive 
corresponding to the requested operation in order 
to complete the task interaction. 

It is worth noticing that a clever allocation 
of a logical resource at the appropriate bus level 
can greatly improve the system's performance. This 
is particularly true for the RV implementations 
(procedure-call and arrival-ordered) requiring 
that some variables declared in one environment 
are accessible by tasks possibly running on 
different processors. 

The main content of a local task descriptor 
(LTD) is the following: 
- a statework S referring to the hardware and 

software context of the task; 
- a status field, which may assume the following 

values: 
-'RUNNING: the virtual processor (VP) has the 

control of the processor; 
- READY: the VP is eligible for processor 

utilization on the basis of its priority; 
- BLOCKED: the VP does not compete for processor 

utilization because it is scheduled for a 
later time or because it is waiting for an 
event which will be caused by a partner task; 

- the task priority; 
the scheduling time, that is the time value set 
by a delay statement; 

- a link to another LTD; 
- a link to the GTD of the same task. 

A global task descriptor (GTD) essentially 
contains the following information: 
- the processor number; 
- a lock variable; 
- a status field, which assumes the ACTIVE value 

when the corresponding LTD status is RUNNING or 
READY, while it assumes one of the following 
values when the LTD status is BLOCKED: 
ENTRY CALLING: the task is blocked as a 

consequence of an entry call and 
it is waiting for the execution 
of the corresponding accept 
statement by another task; 

ACCEPTING 
or 
SELECTING 

ENGAGED 

the task is blocked as a 
consequence of an accept (select) 
statement execution and it is 
waiting for a corresponding entry 
call; 
the task is blocked because its 
partner task is completing the RV 
(i.e. it is executing the accept 



body); 
TERMINATED the task is terminated and it has 

released all its resources. 
- a pointer (PA) to the record containing the actual 

parameter addresses after a blocking entry call; 
- a set (OA) of addresses of Entries corresponding 

to open alternatives; 
- a set (QUEUES) of queues, one for each entry 

declared in the task, containing the identifiers 
of tasks performing entry calls before the 
corresponding accept is executed; 

- a stack. (PARTNERS) containing the identifiers of 
the tasks involved in a RV with the task 
described by the GTb. It allows the handling of 
nested accept bodies; 

- the address (DPR) of the delay part, used for 
timed entry call or selective wait statements; 

- a link to the LTD of the same task. 

Translation of the ADA Communication Constructs 

The RV implementations have been coded in the 
sequential PASCAL language, excepting only a few 
functions of the lowest level coded in assembly 
language. The ADA tasking facilities are supported 
by a set of kernel primitives which can be invoked 
as procedures by tasks also implemented in PASCAL. 

In the following it is described how the ADA 
parallel constructs are translated into procedural 
calls to kernel primitives. 

Accept statement 
accept entry_name (formal parameter part) 

do 
sequence of statements 

end 
is translated into a call to the kernel 
primitive: 
procedure ACCEPT (CALLED: task_id; EN: entry_n) 
where: 
- CALLED is the identifier of the task which 

declares the accept statement; 
- EN is the name of a PASCAL procedure 

implementing the accept body: 
procedure entry-name (formal parameter part) 
begin sequence of statements end. 

- Entry call statement 
called_task.entry_name (actual parameter part) 
is translated into a call to a system procedure 
declared as: 
procedure EC (CALLED: task_id; EN: entry_n; PA: 
address); 
where PA is a pointer to a record containing the 
actual parameter addresses .• 
Conditional entry call 

select 

else 

183 

end select; 
corresponds to: 
procedure SELECTC (CALLED: task_id; EN: 
entry_n; PA: address; EP: procedure; ELSE PART: 
procedure); 
where EP and ELSE PART are the names of 
parameter-less procedures declared as: 
procedure EP; 
begin sequence_of_statements 1 end; 
procedure ELSE_PART; 
begin sequence_of_statements_2 end. 

- Timed entry call 
select 

or 

entry call (sequence_of_statements _ 
_ 1) 

delay statement (sequence_of _ 
_ statements_2) 

end select; 
corresponds to: 
procedure SELECTD (CALLED: task_id; EN: entry_n; 
PA: address; EP: procedure; DELAY PART: 
procedure; T: time); 
where EP and DELAY PART are procedures containing 
the sequences_of statements 1 and 2 respectively. 

- Selective wait 
select 

(when condition) 
select alternative 

(.£E(when condition) 
select alternative) 

(else 

end select; 
where select alternative is: 

accept statement (sequence of statements) 
or delay statement (sequence of statements) 
or terminate; 
is translated into a call to: 
procedure SELECTW (SEL MODE: mode; CALLED: 
task_id; S_ALT: select_alt); 
where: 
type mode is: mode = (elsem, delavm, term, 

acceptm) and 
type select alt is select_alt = array (1 ••. n) 

of record 

and where: 

C: function; 
EN: entry-n; 
EP: procedure; 

M: mode; 
T: time; 

end; 

elsem: corresponds to a select 
statement with the else part; 

delaym: corresponds to a select 
statement with the delay part; 

term: corresponds to a select 



statement with the terminate part; 
acceptm: corresponds to a select 

statement without else or delay or 
terminate parts; 

C is the name of the boolean function 
which evaluates the guard of the 
i-th select alternative; 

EN is the name of the procedure 
implementing the i-th accept body 
(if any); 

EP is the procedure which contains 
the sequence of statements (if 
any) of the i-th select 
altern<ttive; 

M is the mode of the i-th select 
alternative; 

T is the delay time when M is delaym. 

More about the "Order of Arrival" Implementation 

The server, procedural call and order of 
arrival implementations of the RV mechanism share 
both the translation of the ADA constructs into 
procedural calls to kernel primitives and the 
structure of the task descriptors. They only 
differ in some operations performed by some kernel 
primitives. 

The order of arrival implementation, which 
includes the other ones to a great extent, will be 
described in more detail in the following. For the 
sake of simplicity, the ancestory relationships 
between tasks and their implications on task 
termination as well as exception handling will not 
be considered. 

Three variables (CALLER, CALLED, RUNID) will 
be used to refer the tasks involved in a RV: 
- CALLER contains the identifier of the task 

performing an entry call; 
- CALLED contains the identifier of the task 

owning an entry; 
- RUNID contains the identifier of the running 

task. 
The ACCEPT primitive (which implements the 

semantics of the accept statement) firstly checks 
for a task in the QUEUES field of CALLED. In the 
case the queue corresponding to the entry is empty, 
both the CALLED and the RUNID states are set to 
ACCEPTING and the entry name is inserted in the OA 
field of CALLED; the next task to be executed is 
then selected from the ready list. If the queue 
corresponding to the entry in the QUEUES field of 
CALLED is not empty, the first task (CALLER) is 
extracted and its state is set to ENGAGED; the 
kernel procedure BEGIN_RENDEZVOUS is the invoked, 
with CALLER and RUNID as actual parameters. 

The BEGIN RENDEZVOUS procedure refers to the 
formal parameters CALLER and CALLED; it firstly 
saves the CALLER identifier in the PARTNERS field 

of CALLED, then it invokes the procedure which 
implements the accept body. After the execution of 
the accept body, the control is returned to BEGIN_ 
_RENDEZVOUS, which will complete the RV. The RV 
completion part uses the information contained in 
the CALLED., PARTNERS stack to identity the partner 
of RUNID which must be resumed to the READY state. 
The task identifier on the top of the stack is 
extracted and assigned to the LCALLER variable. 
Since the accept body has just been executed by 
RUNID, if the LCALLER task is different from RUNID 
then it is the partner of RUNID and it will be 
resumed. 

·184 

Otherwise, if the retrieved LCALLER task is 
RUNID, then three situations can occur: 
1) The CALLED.PARTNERS stack is empty, i.e. a non 

nested accept statement occurs. As LCALLER 
executed the accept body, CALLED must be 
resumed. 

2) The CALLED.PARTNERS stack is not empty, i.e. 
the accept body just executed by RUNID is 
nested inside another accept body; the former 
RV was initiated by a task identified as 
PREVIOIJS CALLER. 

2a) If the PREVIOUS CALLER state is ENGAGED then 
CALLED reached its accept statement after 
PREVIOUS_CALLER performed its entry call. In 
this case PREVIOUS_CALLER will be resumed by 
CALLED, and CALLED must be resumed by RUNID. 

2b) If the PREVIOUS CALLER state is ACCEPTING or 
SELECTING, then CALLED reached its accept or 
select statement before PREVIOUS CALLER 
performed its entry call. Thus CALLED will be 
resumed by PREVIOUS_CALLER and RUNID must, 
resume PREVIOUS CALLER. 

The primitive EC implements the entry call 
statement. If the CALLED state is ACCEPTING or 
SELECTING and the entry name is in the OA field of 
CALLED, then the CALLED state is set to ENGAGED 
and the procedure BEGIN-RENDEZVOUS is invoked with 
RUNID arid CALLED as actual parameters, else the 
RUNID state is set to ENTRY CALLING, the pointer 
to the entry's actual parameter addresses is saved 
in the PA field of RUNID, the RUNID identifier is 
inserted into the queue associated with the entry 
name in the QUEUES field of CALLED, and the next 
task to be executed is selected from the ready 
list. 

The SELECT primitive (which implements the 
semantics of a conditional entry call) differs 
from EC only when the RV is not immediately 
possible, in which case the procedure ELSE_PART is 
invoked. 

The timed entry call is implemented by the 
procedure SELECTD: the RV is performed if and only 
if the corresponding accept statement is executed 
within a fixed time interval T, otherwise the 
delay part will be executed. The semantics of the 



timed entry call is obtained by the combined 
effect of the procedure SCHEDULE and of the 
system time scheduling mechanism implemented by 
the procedure PACTIVATE. 

The procedure SCHEDULE inserts the local 
descriptor of RUNID in the schedule list SL, 
maintaining the list ordered for ascending 
scheduling time. 

The procedure PACTIVATE is invoked whenever 
the real-time clock ticks; it controls the 
scheduling time of the first LTD in the SL list. 
If it is zero, the task descriptor is removed 
from the SL list and the delay part will not be 
executed. If the scheduling time equals the 
current clock value, that is the delay time has 
elapsed, the task is moved from the ENTRY CALLING 
to the READY state and its starting address is 
set to the delay part address. 

Selective wait is the most complex construct 
and it is implemented by the procedure SELECTW. 
If no alternatives can be immediately selected, 
then the behaviour of the procedure SELECTW 
depends on the parameter SEL-MODE. In the case 
SEL-MODE is elsem, the ELSE_PART is executed. If 
the SEL_MODE is acceptm, i.e. there isn't an 
ELSE_PART, the task must wait until an open 
alternative can be selected. Both the RUNID and 
the CALLED states are .set to SELECTING in analogy 
with the ACCEPT procedure. If the SE~MODE is 
delaym then SELECTW behaves like the procedure 
SELECTD: the time interval, which must elapse 
before the DELAY PART is executed, is set to the 
minimum declared interval of the open delay 
alternatives. Finally if SEL_MODE is term, the 
termination of the task can be tried after setting 
both the RUNID and the CALLED states to SELECTING, 
so that the RV can be completed if the 
termination will not occur. 

Time Requirements 

The time requirements of the three 
implementations of the ADA communication 
primitives have been measured and compared with 
those of the MODOSK semaphoric primitives. 

The experimental environment was composed 
of the MODIAC multiprocessor and of a Hewkett 
Packard 64000 development system. 

The measurements have been performed by 
exploiting the real time facilities of the 
in-circuit emulators of the HP-64000. 

It is worth noticing that the execution time 
of a kernel primitive is an increasing function 
of the number of active tasks and .of the number 
of involved processors. Furthermore it is 
affected by the relative priorities of ·the 
interacting tasks when preemption occurs. 

The results reported in Table 1 show the 

185 

Prim! tive Circumstance Worst-case 

time requirements ( !see) 

o d r er 0 
Server 

roee ura 
arrival call 

ACCEPT Entry Call preceded 
Accept 

1470 1470 1440 

Accept precedes Entry 
Call 

990 990 990 

Entry Call precedes Accept 
or Sel. W. 1530 1530 1530 

EC ~ccept or Sel. W. 
Preceded Enti"y Call 1200 1850 1200 

The Else Part is selected 1670 1670 1670 

SELECTW 
Entry Calls preceded Sele£ 
tive Wait 

4320 4320 3880 

Select! ve Wait precedes 
Entry Calls 

2220 1970 2220 

The semaphore is not blocking 150 

p 

The semaphore is blocking 750 

The semaphore has no waiting process 145 

V 
The process waiting for the longest 
time is inserted in the ready list 560 

The process waiting for the lOfl&est 
time preempts the running process 880 

Table 1 -Time requirements of ADA and semaphoric primi ti ves. 

worst-case time requirements of the primitives 
which implement the semantics of the accept, entry 
call and selective wait statements, together with 
the worst-case requirements of the P and V 
operations on semaphores. 

The quoted values are related to six 
interacting tasks running on three different 
processors. 

No significant difference appears between the 
three implementations of rendezvous at a first 
glance, while the semaphoric primitives appear to 
perform far better. These results, however, can be 
misleading if one forgets that the requirements 
reported in Table 1 are related to single 
executions of the primitives and they do not take 
into account the number of invocations necessary 
for completing a rendezvous. 

Only the order of arrival implementation, in 
fact, requires just one execution of the entry 
call primitive and one execution of the accept (or 
selective wait) primitive to complete a rendezvous. 

In the server implementation, the accept (or 
selective wait) primitive must be invoked.two 
times when the entry call comes last, while in the 
procedural call implementation the entry call 
primitive is executed two times when it is invoked 
first. 

The total time requirements for a complete 
rendezvous are reported in Table 2. 

As it was to be expected, the order of 
arrival implementation performs as the server one 



Synchronization 
de mo 

Accept 

Rendezvous 

Selective Waf t 

Rl!nde%Yous 

P I V 

Circumstance WORST-CASE TIME REC:JIREt'.ENTS { ,sec 1 

I order of I server I procedural 
arrival call 

Entry Call precedes Accept 3000 3000 ~170 

Accept precedes Entry Call 2190 ~310 2190 

Entry Call precedes Select. 
5850 

Wait 
5850 6610 

Select. Wait prl!cecies Entry 
Call 

3420 BUO 3420 

V precedes P 295 

P precedes V 1630 

Table 2. Time requirements of complete synchronizations between processes. 

does when entry call precedes accept or selective 
wait, while it performs like the procedural call 
implementation when accept or selective wait 
precedes entry call. The comparison with 
semaphoric synchronizations is merely indicative, 
since the complexity, and therefore the expressive 
power, of the ADA tasking constructs is far 
greater than that of the semaphoric primitives. 

~n order to properly compare the 
performances of so different mechanisms, we must 
ask them for the same job in the same environment, 
as in the following experiment. 

The classical solutions of the bounded buffer 
problem by means of the ADA non deterministic 
constructs and of the semaphoric primitives have 
been implemented and experimentally analyzed. 

The results reported in Fig. 2.1 show the 
number of accesses per second to a shared buffer, 
where the buffer size is equal to 100 and the time 
required to fill or empty each buffer slot is 30 
flsec. 

The access frequencies range in the shaded 
areas, depending on the relative priorities of the 
involved processes. 

Fig. 2.2 reports the performances of the same 
solutions in less extreme conditions, that is when 
the time for filling or empting a buffer slot is 
3 msec. 

The effect of reducing the buffer size to 1 
(maintaining the slot access time equal to 30f.!sec) 
is shown in the last two figures: Fig. 2.3 is 
related to the same solution considered in the 
previous experiments (using a selective wait), 
while Fig. 2.4 has been obtained by solving the 
one slot buffer problem by means of a 
deterministic sequence of two accept statements. 

Conclusions 

A general and flexible scheme for the 
translation of tasking constructs in ADA has been 
presented. Three different implementations of the 

186 

Sem 

o 

L--o\2uV\O;---4Nqul;;\o;--"'6v"'v--'8.rorO(O;---;-;lU~uo;-----O:accesses/sec 

Fig. 2.1 - Slot access time = 30 isec; Buffer size = 100 

Sem V///,: 

V//A 
V///A 

'----;rn-4U------,OotrU ---"rlr'u,------,-" o"'u---<"vuv,----o'accesses I sec 

Fig. 2.2- Slot access time '= 3msec; Bufler size = lOa 

Sem V////~ 

V///l 

V/~ 

100 200 300 400 500 600 accesses/sec 

Fig. 2.3- Slot access time = 30tsec; Buffer size = 1; Selective Wait solut. 

Sem V/////I 
a V///A 

V//////l 
V////,: 

100 200 300 400 500 600 accesses/sec 

Fig. 2.4 - Slot access time == 30fsecj Buffer size ==. I; Accept solution 

Fig. 2 - Access frequency to a shared buffer by producer/consumer processes 

rendezvous concept have been discussed, mainly 
from the viewpoint of efficiency. The time 
requirements of the three implementations have 
been measured and compared. 

The order of arrival implementation takes, 
on the average, less time for completing a 
rendezvous than the other ones and it results to 
be the best solution in monoprocessor systems and 
in multiprocessor architectures where all the 
resources are shared. 

In multi~rocessor architectures with private 
resources, the fact that the access time to code 
and data depends on their physical allocation has 
to be considered. 

In the server implementation, the accept 
body and its environment are automatically 
available in the context of the called task, since 
they are declared inside it, and therefore they 
can reside in the private memory of the processor 
which runs the called task. 

In the order of arrival and procedural call 



implementations, this is not true since the accept 
body can be executed in the thread of control of 
the calling tasks, which possibly run on different 
processors. 

Even if the code of accept bodies would be 
replicated in the private memories of every 
processor, the variables referred to by 
instructions in an accept body should be made 
available to all calling tasks, and therefore 
should be maintained in the shared memory. 

The more efficient support to rendezvous of 
the order of arrival implementation versus the 
server one is unavoidably counterbalanced by a 
greater probability of access conflicts to the 
global bus. 

Therefore the server model can represent the 
best solution in multiprocessor architectures with 
private resources where the global bus is the 
bottleneck. 

In a further experiment the time requirements 
of the rendezvous models have been compared with 
those of the semaphoric model in the solution of 
the bounded buffer problem. 

References 

[1 J Reference Manual for the ADA Progrannning 
Language, ANSI/MIL-STD 1815A,(Jan., 1983). 

[2J J. Van den Bos, "Connnents on ADA Process 
Connnunication", SIGPLAN Notices, vol. 15, n. 
6, (1980), pp. 77-81. 

[3J A. Silberschatz, "On the Synchronization 
Mechanism of the ADA Language", SIGPLAN 
Notices, vol. 15, n. 6, (1980), pp. 96-103. 

[4J E.S. Roberts, A. Evans, C.R. Morgan, and 
E.M. Clarke, "Task Management in ADA - A 
Critical Evaluation for Real-time 
Multiprocessor", Software Practice and 
Experience, vol. 11, (1981), pp. 1019-1051. 

[5 J J.D. Ichbiah, and others, "Rationale for the 
Design of the ADA Progrannning Language", ACM 
SIGPLAN Notices, vol. 14, n. 6, (1979). 

[6J A.N. Habermann, and I.R-. Nassi, "Efficient 
Implementation of ADA Tasks", Tech. Rept. 
CMU-CS-80-103, Carnegie Mellon Univ., (1980), 
pp. 22. 

[7J D.R. Stevenson, "Algorithnis for Translating 
ADA Multitasking", Proc. ACM-SIGPLAN 
Symposium on the ADA Progrannning Language, 
(1980), pp. 166-177. 

187 

[8J E. Falis, "Design and Implementation in ADA 
of a Runtime Task Supervisor", Proc. Ada TEC 
Conf. on ADA, Arlington, (1982), pp. 1-9. 

[9] P.N. Hilfinger, "Implementation Strategies 
for ADA Tasking Idioms", Proc. Ada TEC ConL 
on ADA, Arlington, (1982), pp. 26-30. 

[1<D T.P. Baker, and G.A. Riccardi, "Ada Tasking: 
From Semantics to Efficient Implementatiorr', 
IEEE Software, (March, 1985), pp. 34-46. 

[1 D W. Eventoff, D. Harvey, and R. J. Price, "The 
Rendezvous and Monitor Concepts: Is There an 
Efficiency Difference?", SIGPLAN Notices, 
vol. 15, n. 11, (1980), pp. 156-165. 

O~ S. Haridi, J.O. Bauner, and G. Svensson, 
"An Implementation and Empirical Evaluation 
of the Tasking Facilities in ADA", SIGPLAN 
Notices, vol. 16, n. 2, (1981), pp. 35-47. 

[1:D A. Jones, and A. Ardo, "Comparative 
Efficiency of Different Implementations of 
the ADA Rendezvous", Proc. Ada TEC Conf. on 
ADA, Arlington, (1982), pp. 212-223. 

04] S. Rivoira, and A. Serra, "A Multimicro 
Architecture and Its Distributed Operating 
System for Real-time Control", Proc. Third 
Conf. on Distributed Computing Systems, 
Miami, (1982), pp. 238-246. 

I}~ P. Garetti, P. Laface, and S. Rivoira, 
"MODOSK: A Modular Distributed Operating 
System Kernel for Process Control", 
Microprocessing and Microprogramming, vol. 
9, n. 4, (1982), pp. 201-213. 

[1~ H.H. Lovengreen, "Parallelism in ADA", in 
D. Bjorner, O.N. Oest (Ed.), Towards a 
Formal Description of ADA, Lecture Notes in 
Computer Science 98, Springer-Verlag, (1980), 
pp. 309-432. 



A BASIC PROTOCOL FOR ROUTING MESSAGES TO MIGRATING PROCESSES 

T. M. Ravi and David lefferson 

UCLA Computer Science Department 
University o/California, Los Angeles 

CA 90024 

Abstract: We are investigating process migration in distributed systems 
with message passing. Our objective is to develop mechanisms for 
routing messages to and from migrating processes, that can scale up to 
thousands of nodes. In particular. we are concerned with the optimization 
of storage and bandwidth required for routing messages in large 
systems. 

In this paper we present a formal specification of a basic routing 
and migration protocol. The emphasis in this basic protocol is on careful 
modularization, synchronization, and correctness issues associated with 
process migration and the routing of messages to processes. We verify 
the basic protocol and show that it is deadlock free. 

1. THE PROBLEM 

In a distributed system where processes have been ass.igned to 
nodes statically, the load will vary from node to node during the course 
of execution. While some nodes are underutilized, others may be so 
heavily loaded as to become a critical performance bottleneck. 
Moreover some processes may be more critical than others, and the 
degree to which a process is critical may change from time to time as 
the execution proceeds. Dynamic load management is the attempt to 
optimize performance at run time by reallocating resources, making 
more available for the execution of currently critical processes. 

Most current research in load management is concerned with the 
policy of process migration, i.e. deciding which process is to be moved, 
when, and from which source node to which destination node [Nl 85, 
GAO 84). Here we are concerned instead with the mechanics of process 

, migration, i.e. protocols for moving a process from one node to another 
and delivery of messages to processes that are moving. The main 
technical issues arise from the fact that from the operating system's 
point of view both messages and processes are in motion, and messages 
must be routed to moving targets instead of fixed targets. In a distributed 
system it is impossible to predict at the time a process is to migrate 
whether or not there is a message in transit toward it, and thus some 
messages will have to be forwarded to eatch up to their targets. 

We are only interested in migration and routing mechanisms that· 
can scale up to thousands of nodes. Because of this we cannot assume 
that a node has enough memory to keep a complete routing table 
mapping every process name to a node address. In our routing protocol, 
routing tables may have incomplete information, i.e. a node will 
generally have routing information about only some of the processes in 
the system. Message routing must also rely on possibly out-ofdare 
routing information, i.e. new routing updates indicating that a process 
has moved cannot be broadcast instantaneously throughout the network. 

t This work has been supported in part by an IDM Graduate Fellowship and the 

Jet Propulsion Laboratory Contract No. 957523. 

188 

Section 3 describes the organization and structure of the 
distributed system and some assumptions about the system. In Section 4 
we first describe a basic routing and migration (BRM) protocol, and 
then' give a detailed specification of the protocol. Next in Section S we 
show the absence of deadlock and prove that all messages eventually 
are delivered to the destination processes. Section 6 indicates some of 
our work in progress and future directions. 

2. RELATED WORK 

Process migration and forwarding of messages has been 
implemented in the DEMOS/MP system (Powell 83). Our basic routing 
and migration protocol can be .considered to be a more formal 
specification and generalization of their migration procedure with 
particular concern for modularization issues, storage issues, and 
synchronization issues that arise when a process has to be moved from 
one node to another. Our model also permits concurrent execution of 
several instantiations of the protocol on the same node. 

Fowler [Fowler 85 & Fowler 86) proposed protocols using 
forwarding addresses to locate moving objects in a distributed system. 
In particular he analyzes the complexity of protocols for updating the 
address of a process that has moved, using three protocols one of which 
is based on the UNION-FIND path compression algorithm. This work 
assumes that a node has complete address tables for every process in the 
system. We examine mechartisms for routing when a node cannot keep a 
complete routing table. The main feature of Fowler's approach is that 
routing entries are updated only when they are along the frajectory of a 
message. In our protocol, we do not restrict ourselves to passive 
updating of routing entries, but also consider schemes where 
maintenance messages are propagated as a side-effect of process 
migration. 

The Emerald system [lui 88) has implemented mobility of process 
objects as well as data objects. To find an object it incorporates the 
forwarding address protocol proposed by Fowler. When a node is 
unreachable due to failure or the loss of a forwarding address, the 
Emerald system resorts to a system-wide broadcast 19 find the objecL 

In both Locus [Popek 85) and the Sprite operating system [Douglis 
81 & Ouster 88) processes use kernel calls instead of messages for 
mteraction with other processes. Each process is assigned a special 
origin site or home node to which all remote calls are sent. The special 
node has a forwarding address to the current location of the process, to 
which all calls are forwarded. However this strategy has several 
problems. There is a residual dependency of the process on the special 
node even, after the process has migrated several times. In large 
distributed systems over a periQd of time, the additional path length for 
the call could become very large compared to the actual distance to a 
process. When all communication to a process is required to go through 
a special node, process migration is no longer effective in reducing 
communication distances. Moreover the failure of the special node 
makes the process inaccessible to other processes in the system. 



In the V-System [Theimer 86), when a message has to be sent a 
local cache is checked for the location of the destination process. Ii a 
cache entry is found then the message is sent to the location indicated. IT 
there is no entry for the process at the local cache, or if the process is no 
longer at the location indicated by the cache entry then a query is 
broadcast system-wide to all nodes requesting the location of the 
process. The local cache is updated with the response to the query and 
the message is forwarded to the new location. 

Lu, Chen, and Liu [Lu 87) have proposed a migration mechanism 
that assumes that each process commwlicates with a finite number of 
processes called adjacent processes and each node has a table with the 
exact location of processes adjacent to resident processes. When a 
process migrates, it first blocks its adjacent processes from sending 
mess~ges, migrates to a new node, sends the adjacent processes the new 
locauon of the process and re-enables the adjacent processes to send 
messages to the recently migrated process. This scheme ensure that 
there is no message for a process in transit when it migrates. In our 
protocol we tackle a more general problem assuming any procell can 
communicate with any other procell at any time, and that the operating 
system does not know which processes will communicate with one 
another. 

Mullender and Vitanyi [Mullen 85) studied the resource location 
problem for a client-server model, in the context of the Amoeba 
operating system. The server posts its location to a set of nodes and the 
client queries another set of nodes for the desired service. A re:UUzl/ous 
node is a node in the intersection of the two sets where the client node 
finds the location of the server node. They do not consider the routing of 
messages that may be in transit when a process moves, or that are sent 
based on old location information which has not yet been updated_ 

Scheurich and Dubois [Scheur 87) deal with the problem of the 
migration and location of memory pages in distributed systems. The 
perf~ance of their mechanism strongly depends on the geographical, 
spatlal, and temporal locality of page references. It uses caches for hints, 
and .uses a broadcast search when the page is not found. Our message 
rouung scheme basically relies on routing entries and the forwarding of 
messages to a process that has moved. Extensions to our skeletal 
protocol to be proposed elsewhere, will resemble their mechanism in 
that it will use caches to take advantage of localities. 

Our problem is similar to the problem of routing to a mobile 
subscriber in packet radio systems with fixed stations [Kahn 78). In 
packet radio networks, a flooding Icheme is commonly used to initially 
locate a mobile subscriber. The weakness of this scheme, however, is 
the high channel bandwidth due to control messages. A modification of 
this scheme [Li 86) is to have a complete routing table at each station. 
To locate a mobile subscriber a message is sent to the last known station 
to which the subscriber was affiliated. IT the subscriber has moved out of 
range of that station then a flood broadcast is initiated at the last known 
station. 

3.THEMODEL 

We envision a load managing operating system as consisting of 
five functional levels (Figure I). The lowest is the Architecture lel/el 
consisting of the nodes and the network connecting them. The Low 
Lel/el Kernel implements reliable node-to-node message routing and 
manages the multiplexing of processes on each node. The next layer 
handles the Mechanics of ROUling and Migration and includes protocols 
for process-to-process message routing, routing table maintenance, and 
migration of a process from one node to another. The Load Management 
Policy Loyer makes decisions about how to redistribute the load. Finally 

189 

Application cooperating processes 

Load Management migration policy 

Mechanics or interprocess msg. routing 

Routing & Migration migration protocol 

Low Level Kernel 
intemode msg. routing 
process multiplexing 

many processors 
Architecture Level MIMD 

no shared memory 

Flgure 1 : Functional Levels In System 

the Application layer consists of a collection of cooperating processes 
that communicate asynchronously by messages. 

Each level of the system is assumed to be reliable. Communication 
between nodes is by asynchronous messages, takes finite time, and need 
not be order preserving. Each node may have multiple processes 
~sident on it.A p~ess may send a message to any other process at any 
ume, addressmg It by name. In this paper we are interested in the 
implementation of the third layer, handling the Mechanics of ROUling 
and Migration. Message routing between nodes is handled by the Lower 
LeI/e1 Kernel, and we will not be concemed with how it is done. 

4. THE BASIC PROTOCOL 

. We now present a Basic Routing and Migration protocol, BRM, 
which forms a basis for the subsequent development of more complex 
protocols that optimize performance. The BRM is designed with careful 
attention to modularization to allow for different possible 
implementations of sub-modules and so that different features can be 
added on to the basic protocol for perfonnance enhancement This 
protocol assumes that buffers of unlimited size are available at each 
node to store messages while remote routing entries are being obtained. 

Associated with each process, the operating system maintains a 
migration-count a which is incremented whenever the process migrates. 
Each node maintains a possibly incomplete rOUling table containing 
entries that among other things map process names to node addresses. 
Routing entries for a process are marked with a migration-count field 
that is equal to the migration-count of the process when it was located at 
the node indicated by the routing entry. The status of a routing entry 
indicates whcther it is permanent or temporary, i.e. whethedt ~ains 
in existence for the lifetime of the process or not The updates field 
indicates the number of pending updates or update requests to remote 
nodes from the node where the entry is located. Before an update to 
remote nodes is started this field is incremented by one and .when the 
update is complete it is decremented by one. A temporary routing entry 
can be deleted only .when the value of this field is zero. A lock field 



controls access to the routing entry. The structure of a routing entry is 
shown in Figure 2 When a process becomes resident on a node, a new 
routing entry for that process is created at that node if one does not 
am;ady exist. 

I Process Name \I Lock I Location S 

<J Migration-count I Status I Updates I 

Figure 2 : Routing Entry 

When a process is created, routing entries for the process are 
distributed to a subset of the nodes in the system and remain in 
existence for the lifetime of the process. It is not necessary that every 
node have a routing entry for every process. However each node U has 
access to a let &.sUl'Togale(U, q) of nearby nodes that have a routing 
entry for a process q. U itself is not considered a member of 
&:sUTTogale(U, q). The set &:sUI'Togale(U. q) does not have to contain all 
the nodes in the system that have a routing entry for q. IT U has a 
permanent routing entry for q then &:sUTTogale(U, q) may be an empty 
set. However if U does not have a pennanent routing entry for q then 
&:SUI'TogQle(U, q) must be nonempty. 

In brief the protocol for routing a message to a process is as follows: 

a. Wh~ node U must route a message to process q, either at the 
request of process p on U or in order to forward a message 
addressed to q, the operating system fint checks if a routing entry 
for q exists at node U. IT so the message is either delivered locally 
or ToUled to the proper node depending on whether the routing 
entry points to U or not. However if no routing entry for the 
process is found at U then a TOUling faull occun. 

b. When a TOUling faull for a message addressed to q occun at node 
U, the message is buffered at U and a request is sent to one or 
more surrop,ates of U which have routing entries for q, i.e. nodes 
in &:sUI'Togale(U. q). When a routing entry for q is received in 
response, the message is routed to the node indicated by the 
routing entry. 

c. IT a node V receives a message for a process q that is not resident 
on V, it Te-ToUles the message. The procedure for Te-ToUling a 
message from V is identical to that for routing a message 
originating at that node. 

Note that in some implementations of the BRM protocol, it is possible 
to receive several replies to a request for a particular routing entry from 
the surrogates. The first routing entry that is received is used to route the 
waiting message. IT a routing entry is received and there are no pending 
messages then it is ignored. 

The migration protocol for moving process q from node U to V is 
informally described below. Process migration is atomic with respect to 
message routing, i.e. a message cannot be delivered to a process while it 
is migrating. 

d. The temporary or pennanent routing entry for q at node U is 
locked, and the execution of q is stopped at node U. Node U 
sends a MOVE system message, containing the process state (and 
program code if necessary) to node V. 

190 

e. 

f. 

When node V receives the MOVE message, the migration-count 
of q is incremented, q is installed and restaned at V, and the 
routing entry for q at V is modified to indicate its current location 
and migration-count. IT there is no routing entry for q at V then 
one is included in the routing table at V. marked as temporary, 
and assigned the new location and migration-count of q. A 
system message MOVE_CONFIRM is sent back to node U 
indicating that q is now located at V. 

Node U on receiving MOVE_CONFIRM, m.odifies the routing 
entry for q to indicate that q is at V, marks it with the incremented 
migration-count and unlocks the routing entry. Node U sends a 
routing update message to all surrogate nodes of U with routing 
entries for q. 

Figure 3 illustrates the migration protocol. lbe choice of the surrogates 
and the method for the access and update of remote routing entries are 
left open in the BRM protocol. Obtaining a remote routing entry can be 
done in a number of ways such as bounded broadcasts. hashing etc., 
which we will not go into here. 

&sURROGATE (U, q) U v 

Flgure 3 : Migration Protocol 

In the basic protocol temporary routing entries for a process are 
created at a node for two different reasons. IT a process q is resident at a 
node U which does not normally have a routing entry for q, then a 
temporary routing entry for q is created at U to indicate that q is located 
at U. Another instance where a temporary routing entry is used is to 
facilitate the efficient atomic update of routing tables of surrogates. In 
order to reduce the synchronization delay during which a routing entry 
at U is unavailable, an atomic update can be achieved by creating a 
temporary routing entry at U, and sending asynchronous updates to the 
remote nodes that have to be updated. Creation of temporary routing 
entries can however lead to an increase in storage over time and hence 
these latter temporary entries must be deleted when the update is 
completed. 

For correctness, the routing table update procedure has to satisfy 
the (ollowing specifications: 

1. When a routing table update is received at a node W indicating 
that process q is located at V with migration-count IX, then the 
routing entry for q at W, if any, is updated only if IX is greater 



2. 

3. 

At"" 
Process Name RT.Lock ___ 

I 
P 
q 

RT(p).Lock RT(p).Node RT(p).a RT(p).Status RT(p). Update.. 

...... 

Figure 4 : Routing Table (RT) 

than the migration-count of the routing entry for q. 

lbe set of remote routing entries for q that can be queried when a 
routing-fault occurs at node U, must be a subset of those updated 
by U when q migrates away from U. 

Any temporary entry for q at U can be deleted only after all 
members of &.sUTrogate(U, q) have been updated. 

IT a process q migrates away from U, returns and migrates again, then it 
is possible that a new request for updating surrogate nodes of U with 
routing entries for q can be generated while a previous remote update for 
q is ongoing. The operating system therefore has to keep track of the 
number of requests for remote updates that are not yet complete. Only 
when all remote updates have completed can a temporary routing entry 
for q at node U be deleted. 

Access to the tables is controlled by locks to ensure that possible 
concurrent access to a table at a node is synchronized. We design for the 
possibility that several instantiations of the BRM protocol may be 
running simultaneously at a node responding to different routing and 
migration activities. Associsted with each table are two levels of locks, 
one lock to control insertion and deletion of entries from the table, and 
the other associated with each entry, to control read or write access to 
that entry. 

MBLock MB(p).Queue 
.......... 

r-- .....-
p MB(p).Lock 

q ... -.. 

Figure 5 : Message Bulrer Table (MB) 

Figures 4 and 5 show the routing table (RT) and the message 
buffer table (MB). We refer to these tables at node U as RT u and MBu, 
but we drop the subscripts when the location of the table is clear from 

. the context. Each entry in MB has a message queue to Slore messages. 
We will always assume that the buffer at node U is large enough to Slore 

191 

those messages destined for a process q that arrive at U while q is 
migrating from U. It is a flow-control problem to guarantee that this 
assumption is true, but we do not deal with this issue in this paper. 
Enqueue and Dequeue operations insert and remove messages from the 
queue. The Empty operation checks to see if a queue is empty. Lock 
(A.Lock) and Unlock (A.Lock) obtain and release A.Lock. A lock that is 
requested and is unavailable is retried and the algorithm does not 
proceed to the next step till the lock is obtained. Insert&Lock creates an 
entry that is initialized as locked. Delete unlocks an entry and then 
removesiL 

Send is a kernel call to route a message to the node indicated in 
the message. When indicates the action to be taken on the receipt of a 
message from the kernel or a request from the higher levels of the 
operating system. 

The algorithm for the routing and migration protocol follows. 
Each step of the algorithm is invoked asynchronously upon the arrival 
of a message or on receiving a command from the load management or 
application level. 

BASIC ROUTING , MIGRATION PROTOCOL 

Variable for each Process q 

q.a migration-count for process q_ 
Incremented whenever q moves. 

Variables at each Node U 

RT 

RT.Lock 

RT(q) 

RT (q) .Node 

RT(q) .a 

RT(q) .Status 

RT(q) .Updates 

routing table located at node U 
containing routing entries. 

lock 
that 

associated 
has to be 

with table RT 
obtained before 

any routing entries are inserted 
or deleted from RT. 

routing entry for process q. By 
convention we say it is equal to 
Nil if there is no entry for q in 
the rout ing table at U. RT (q) is 
deleted from RT by the execution 
of Delete (q, RT) • RT (q) is 
created 
Insert&Lock(q, 
that creates 
already locked. 

by executing 
RT, RT(q).Lock), 

an entry that is 

possibly out-of-date node address 
for q. 

migration-count associated with 
the above routing entry. 

indicat ion of 
routing entry 

whether this 
is permanent or 

temporary. Permanent entries are 
marked "permanent" and temporary 
entries are marked "temporary" . 

number of updates to remote 



RT (q) .Lock 

MB 

MB.Lock 

MB(q) 

MB(q) .Queue 

MB(q) .Lock 

rout ing entries whose completion 
has not yet been confirmed. 

lock for routing entry that has 
to be obtained before the entry 
is read or written into. 

message buffer table at node U 
consisting of a list of queues of 
messages destined for different 
processes and waiting for the 
resolution of routing-faults. 

lock associated with MB that has 
to be obtained before MB (q) can 
be created or removed from MB. 

message buffer entry to indicate 
the existence of a queue of user 
messages whose destination is q. 
MB(q) Nil if there are no 
messages whose destination is q. 
MB (q) is deleted from MB by the 
execution of Delete(q, MB). MB(q) 
is created by executing 
Insert&Lock(MB(q), MB(q) .Lock), 
that creates a entry consisting 
of an empty queue that is already 
locked. 

queue of user messages that are 
waiting for the resolution of 
routing-faults and whose 
destination is q. 

lock for MB (q) that has to be 
obtained before a message can be 
enqueued or dequeued from MB(q). 

Messages Sent & Received at each Node U 

SMSG(U, q, text) 
node U containing 
process q. 

system message sent 
user message text 

to 
for 

MOVE (U, V, q, state, code) system message 
for the migration of q from node V to U, 
containing the process state and code. 

MOVE_CONFIRM (V, U, q) system message in response 
to a MOVE message; sent from node U to V 
indicating that process q is executing on U. 

RE(U, q, W) system message sent to U 
indicating that q is believed to be at W. 

UPDATE_CONFIRM(U, q) system message to confirm 
that updates for q sent to remote nodes have 
been received. It may be a message sent by U 
to itself. 

192 

Xnitia1ization Initially the migration-counts of 
all processes are zero and routing entries for 
each process are set up in the routing tables of 
some subset of nodes. The routing entries for a 
process consist of a node address which is the 
initial location of the process, and the entries 
are marked with a migration-count of zero, 
updates equal to zero and status permanent. 

Procedures & Functions 

Function ROUTE_LOCAL(q, text) 

( Attempts to deliver or route messages based on 
the local routing table. Delivers the message 
destined for q if q is located at node U. Else 
if there is a routing entry for process q at U 
then the message is forwarded to the node 
location given by the routing entry. ) 

begin 
Lock (RT.Lock) 
if RT(q) ¢ Nil then begin 

{routing entry found} 
Lock (RT(q) .Lock) 
Unlock(RT.Lock} 
i~ RT(q) .Node = U then begin 

{locally delivered} 
Place text in message queue 

for process q 
result := delivered 

end else begin 

end 

{ re-routed} 
send SMSG(RT(q) .Node, q, text) 
result := re_routed 

Unlock (RT (q) . Lock) 
end else begin 

Unlock(RT.Lock) 
result := failed 

end 
return(result) 

end ROUTE LOCAL 

Procedure ROUTE_REMOTE(q, text) 

Buffers the content of a message in the 
waiting table and requests for a remote routing 
entry for the destination process. The message 
with content text destined for q and is buffered 
in the waiting table at node U and a remote 
routing entry for q is requested. } 

begin 
Lock (MB.Lock) 
if MB(q) = Nil then begin 

{no message buffer entry for q} 
Insert&Lock(q, MB, MB(q) .Lock) 
Unlock (MB.Lock) 

{buffer message} 
Enqueue«q, text), MB(q) .Queue) 
Unlock(MB(q} .Lock) 



{request remote routing entry} 
REQ_REMOTE_RE{q) 

end el.e begin 

end 

{other messages for q waiting} 
Lock (MB(q) .Lock) 
Unlock (MB.Lock) 

(buffer message) 
Enqueue«q, text), MB(q) .Queue) 
Unlock (MB(q) . Lock) 

end ROUTE REMOTE 

Procedure DELETE_RE(q) 

( Delete the routing entry for q from the local 
routing table if the entry is temporary, all 
updates to remote nodes have completed and the 
process is not resident at U. ) 

begin 
Lock(RT.Lock) 
if RT(q) ¢ Nil then begin 

Lock(RT(q) .Lock) 
if RT(q) .Status = temporary 

{temporary routing entry} 
and- RT(q) .Node ¢ U 

(process has not moved back) 
and RT(q} .Updates = 0 then begin 

{remote updates complete} 
Delete(q, RT) 
(delete temporary routing entry) 

end elae begin 
Unlock(RT(q) • Lock) 

end 
end 
Unlock(RT.Lock) 

end DELETE RE 

This is a procedure to obtain a remotely 
located routing entry for q. In the Basic 
Routing , Migration Protocol the implementation 
of REQ_REMOTE_RE is left unspecified, as it can 
be done in a variety of ways. REQ_REMOTE~RE (q) 
executed at different nodes may return different 
va1ues. 

The set of remote routing entries that are 
queried are a subset of those updated. 

In response to messages sent in this procedure, 
node U receives a message or messages RE (U, q, 
V) indicating that q is believed to be at V. } 

Procedure UPDATE REMOTE RE (q, V, a) 

{ Sends update messages to some subset of remote 
routing entries from U. The routing entries are 
updated to indicate that process q is located at 
node V with migration-count a, but only if a is 

193 

greater than the migration-count of the routing 
entry being updated. The implementation of 
UPDATE. REMOTE. RE I.s left unspecified. The subset 
contains at least those remote routing entries 
that can be queried from U. 

If U has a temporary routing entry for q then in 
response to update messages sent in this 
procedure node U receives a UPDATE_CONFIRM (U, 
q) message indicating that all nodes in the 
subset have received the update. ) 

Algorithm at each Node U 

<1> when a process on node U requests sending 
of a message to process q begin 

{call from application layer} 
result := ROUTE_LOCAL (q, text) 

end 

if result = failed then begin 
ROUTE_REMOTE (q, text) 

end 

<2> when SMSG{U, q, text) arrives begin 
(message from outside arrives) 

result := ROUTE_LOCAL (q, text) 

end 

if result = failed then begin 
ROUTE_REMOTE (q, text) 

end 

<3> when RE(U, q, V) arrives begin 
Lock (MB.Lock) 

end 

if MB(q) ¢ Nil then begin 
(messages for q in buffer) 
Lock (MB(q) .Lock) 
while not Empty (MB{q) .Queue) 

do begin 
(q, text) := Dequeue (MB{q) .Queue) 

Ire-route messages in buffer) 
aend SMSG(V, q, text) 

end 
Delete(q, MB) 
Unlock (MB.Lock) 

end elae begin 

end 

(no messages for q in buffer) 
Unlock (MB.Lock) 

<4> when policy software requests 
migration of q from U to W begin 

{call from load management layer} 
Lock(RT (q) .Lock} 

end 

{block access to routing entry} 
Remove q from execution 
aend MOVE(W, U, q, state, code) 

<5> when MOVE(U, V, q,- state, code) 
arrives begin 

q.a := q.a + 1 
Install process q with its state 



end 

and code at node U 
Lock (RT.Lock) 
~f RT{q) = Nil then beq~n 

{create temporary routing entry} 
Insert&Lock(q, RT, RT(q) .Lock) 
Unlock (RT.Lock) 
RT(q) .Status := temporary 
RT(q) • Updates := 0 
RT(q) .Node := U 
RT{q).a := q.a 
Unlock{RT (q) .Lock) 

end else beqin 

end 

{permanent routing entry exists} 
Lock{RT (q) .Lock} 
Unlock (RT.Lock) 
{update routing entry} 
RT{q) .Node :=- U 
RT{q).a := q.a 
Unlock{RT (q) .Lock) 

send MOVE_CONFIRM{V, U, q) 

<6> when MOVE_CONFIRM{U, W, q) arrives begin 
{update local routing entry} 

RT{q) .Node := W 

end 

RT {q).a := RT (q) .a + 1 
{pending update to remote entries} 

RT{q) .Updates := RT{q) .Updates,+ 1 
a :- RT{q).a 

{unblock access to routing entry} 
Unlock{RT{q) • Lock) 

{update remote routing entries} 
UPDATE_REMOTE_RE{q, W, a) 

<7> when UPDATE_CONFIRM{U, q) arrives beqin 
{a remote update is complete} 

Lock (RT.Lock) 

end 

if RT (q)" '" Nil then begin 
Lock{RT{q) .Lock) 
Unlock (RT.Lock) 
RT{q) .Updates := RT{q) .Updates - 1 
Unlock (RT (q) .Lock) 
{attempt to delete entry} 
DELETE_RE (q) 

end else beqin 
Unlock (RT.Lock) 

end 

5. CORRECTNESS ARGUMENT 

In this section we discuss the validation of the basic protocol by 
showing the absence of deadlocks and by proving that under appropriate 
conditions messages that are routed according to the protocol are 
eventually delivered to the destination process. 

We first examine the possibility of local and distributed deadlock 
in the BRM protocol. Every step of the protocol has the following 
properties. 

194 

(i) An attempt is made to obtain a lock for a table entry only 
when the entry exists and the entry is guarded from deletion while the 
protocol is waiting for its lock. 

(ii) The actions in each step other than waiting for locks take 
finite time. 

Every step except <6> has the additional propeny. 

(iii) In each step table entries are locked before they are accessed. 

Every step except <4> has the additional propeny. 

(iv) Before completion of a step all locks obtained in the step are 
released. 

By assumption we have the following propeny. 

(v) Low level node-to-node message delivery takes finite time. 

There are two levels of locks, one associated with an entry that has 
to be acquired before reading or writing to the entry, and the other 
associated with an entire table to control insertion, deletion and testing 
the existence of an entry. An entry lock and the corresponding table lock 
on the same node can be viewed as a parent-chiid lock pair. Obtaining 
the table lock does not prevent concurrent acquisition of an entry lock 
belonging to the table. . 

In the BRM protocol, the procedure for creating an entry is first to 
lock the table, test for the existence of the entry in the table, and if it 
doesn't exist then execute an Insen&Lock operation that creates an 
entry that is already locked. The table lock can now be released, the 
entry written into and the entry lock released. As the table lock has to be 
obtained to create an entry, two entries for a table cannot be created 
concurrently and there is no danger of creating duplicate entries. 

An entry is deleted by first locking the table, then locking the entry 
and then executing a Delete operation that removes the entry. The table 
is then unlocked. As the entry has to be locked before it can be deleted 
hence in the BRM protocol it is not possible to delete an entry that is 
simultaneously being accessed. 

To access an entry only the entry lock has to be obtained. 
However, in the protocol whenever there is a possibility that an entry 
does not exist, the table is first locked and the existence of the entry in 
the table is checked. If the entry is in the table the entry is locked and 
the table lock is released. Hence in the BRM protocol there is no 
possibility of waiting foreverin attempting to lock an entry that does not 
exist. Thus propeny <i> holds for all steps of the protocol. 

A causal path is a sequence of dependent steps or events that can 
be on the same node or across nodes. Steps <4>, <5> and <6> form pan 
of a causal path invoked when a process q migrates say from U to V, 
with steps <4> and <6> executing on node U and step <5> executing on 
V. The sequence of steps <4>, <5> and <6> take finite time because of 
properties (ii) and (v). The lock RT u(q )Lock obtained in step <4> is not 
released at the end of the step. Subsequently when step <6> is invoked 
at U the routing entry for q can be accessed because the lock is already 
obtained by an earlier step in the causal path. Finally in step <6> the 
lock R1'u(q ).Lock is released. We observe that even though properties 
(iii) and (iv) do not hold for all steps, for every causal path through the 
protocol entries are locked before they are accessed, and all locks 
obtained in the course of the path are released before the path 
terminates. 



Theorem The Basic Routing and Migration Protocol is deadlock free. 

Proof: When a causal path needs only one lock, it is obtsined and 
released after finite time. For all causal paths in our protocol except the 
sequence of steps <4>, <5> and <6> invoked when a process migrates, 
at most two locks are held at any time. When two locks are held at a 
time, the two locks are always an entry lock and the corresponding 
parent tsble lock and they are always obtained monotonically - first the 
parent tsble lock and then the entry lock. The concurrent exeQltion of 
two paths of the protocol cannot result in a deadlock because the pair of 
locks have to be obtained in order. Moreover as only a corresponding 
parent-c:hild lock pair can be held at the same time and not an entry
entry lock pair hence there is no possibility that three or more 
concurrent executions of the protocol can lead to a deadlock cycle. Thus 
there can be no deadlock when causal paths in the protocol other than 
the path related to migrating a process are executed concurrently on the 
same node or on different nodes. 

Now consider the causal path that results when a process migrates. 
We assume that the Load Management level of the operating system is 
well behaved with the following properties: 

i It does not request a process to be migrated from a node to itself. 

ii It does not request a process to be moved from a node if it is not 
located at the node. 

Because of assumption (i), steps <4> and <6>, and <5> that belong to a 
causal path cannot be invoked on the same node. Let us consider the 
migration of a process q from U to V. Steps <4> and <6> are invoked on 
U and <5> is invoked on V. A routing entry for q at U and a parent-c:hild 
pair of the routing table and routing entry at V can be locked at the same 
time. Because the pair of locks at V is obtained in parent-c:hild order 
hence a causal path with steps <4> , <5> and <6> cannot be involved in 
a deadlock with any other causal path. From a .. umption (ii) and the fact 
that every process has an unique name, simultaneous migrations from a 
node or between a pair of nodes has to involve locking routing entries 
for different processes which can not result in deadlock. Hence any two 
causal paths of the protocol can not be involved in a deadlock. 

We have thus shown that the protocol is deadlock free. • 

Figure 6 illustrates the absence of deadlock in the scenario when 
two processes q and p migrate simultaneously from U to V and V to U 
respectively. 

Before we proceed with the verification of the basic protocol we 
introduce a few definitions. A process trajectory at time t is defined as 
the sequence of node locations where the process has been resident up to 
time t. Since initialization, if a process q has been resident on nodes X 0, 

X I, ... and at time t is resident at X"' then the process trajectory is 
trajectory(q, t) = XOXI Xl ... X". If the process q moves from X 

X ." " to '1+1 at tune t, where t > t then trajectory(q,l') = 
XOX1 X1 X3 ••• X"X,,+l' 

, Similarly let a message trajectory at time t for a message be the 
sequence of node locations to which the message has been routed up to 
time t. If a message M" whose destination is process q, originates at 
node Yo and is initially routed to Y I, then re-routed to Y 1, Y 3, ... and is 
last routed to Y t, then the message trajectory at time t is 
trajectory (Mq, t) = Y 1 Y'1. Y 3 '" Y t. For technical reasons we leave 
the origin of the message Yo out of the message trajectory. When the 
message is re-routed from node Y t to Y t+l then the old message 
trajectory is appended with Y t+ 1 to obtain the new message trajectory. 

195 

Lock (RT(q). Lock) 

Lock (RT. Lock) 

Lock (RT(P). Lock) 
Unlock (RT. Lock) 
Unlock (RT(P). Lock) 

Unlock (RT(q). Lock) 

U v 

Lock (RT(P). Lock) 

Lock (RT. Lock) 

Lock (RT(q). Lock) 
Unlock (RT. Lock) 
Unlock (RT(q). Lock) 

Unlock (RT(P). Lock) 

Figure 6 : Simultaneous process mIgration between U and V 

We derme the functions delegate and toward. Let q be a process 
and U and X be nodes. The nondetenninistic function surrogate was 
earlier dermed as: 

surrogate(U, q) = Some node X such that X '* U and RTx(q) '* nil 

The function surrogate need not return the same node value every time 
it is invoked. We define &surrogate (U, q) as the set of all possible 
nodes that can be returned by surrogate (U, q). 

The node with the routing entry used to route messages to process 
q from node U is given by function delegate(U, q). 

de/egate(U, q) = If RT u(q) '* nil then U 
else surrogate(U, q) 

The function delegate(U, q) can never be nil. In accordance with 
procedure ROUTE_MSG, if there is an entry for q at U then it is chosen 
for routing messages for q at node U, else an entry for q located at 
surrogate (U, q) is used. 

The function toward(U, q) computes the address of a node to 
which messages for a process q are routed (or re-routed) from node U, 
i.e. the node that delegate(U, q)'believes is the location of q. 

toward(U, q) = R1d<l.gtJI. (U.q) (q)Node 

In order to show the correctness of the Basic Routing and 
Migration Protocol we prove the following theorems: 
First we prove that while routing entries are not necessarily up to date, 
they always point to a past or the present location of the prQCess and 
have a migration-count equal to the number of the times the process had 
(has) migrated when it was (is) atlhatlocation. 

Theorem 1 Let the process trajectory for process q at time I 

be trajectory (q. t) = Xo Xl'" Xr ... X" . For any node U at any 
time R1'u(q) is unlocked, ify= RTu(q).Cl then RTu(q)Node =Xr . 

Proof: Initially, all routing entries for q point to the original location of 



q, i.e. X 0, and all routing entries for q have migration-count zero. Also 
initially a process has a migration-count equal to zero. A routing entry 
can be modified only in step <6> and by the receipt of updates. Steps 
<4> to <6> and the remote update procedure are invoked whenever a 
process migrates to a new location. Every time a procell migrate., ill 
migration-count is incremented (step <5». We observe in steps <6> and 
from the specifications of the update procedure that the routing entries 
that are modified when a process migrates to ill y+-Ith location, point to 
the new location of the process and are assigned a migration-count y. 
Thus any routing entry for a process always poinll to the present or past 
locations of the process, and a routing entry with migration-count y 
poinll to the y+-I th location of the process .• 

We now show that messages to a process from a node that is a 
previous location of the process, will be routed to a more recent location 
of the process. 

Theorem 2 At any time after a process q has left its ~th 
location U, we have RT tSek".,c(U, f) (q).a 2: IL 

Proof: Let us assume that the process q with migration count ~-l 
resides on node U which is the ~th location of q. H process q moves 
from U to V, the routing entry for q at U if non null is updated to point 
to V and it is assigned the latest migration-count of q, i.e. ~. H the 
routing entry for q at U is null, then all nodes belonging to 
&surrogate(U, q), are updated «6> and specification of remote update 
procedure) to point to V and assigned the migration-count~. During the 
update of nodes surrogate(U, q), the routing entries for q at 
surrogate(U, q) are inaccessible from U because a temporary local 
routing entry for q is created at U and remains in place till all the 
surrogates have been updated «6> & <I». Thus at the moment process 
q completes its migration away from its ~ location U, a routing entry 
for q at all values of delegate(U, q) will have a migration-count IL 

We now show that the migration-count field of a given routing 
entry on a given node never decreases. From the update procedure 
which describes the action taken by a node on receiving an update 
message, we observe that the routing entry for a process q is left 
unchanged unleu the migration-count of the update is strictly greater 
than the migration-count of the routing entry. H the process q revisits U 
then the migration-count of its routing entry at U can only increase 
when q leaves U because the migration-count of a process is 
monotonically increasing on every move. Therefore the routing entry for 
q at any delegate(U, q) will have migration-count 2:~, where U is the 
~th location of q .• 

In Theorem 3 we prove that if messages for a process are routed to 
a new node from another node then either the process is resident on the 
new node or else the new node has a more recent routing entry for the 
process. 

Theorem 3 At all times, either RT
'
t>W4rrJ(u. f)(q).Node = 

toward(U, q) or RTdcl<".IC(It>W4rd(U, f), f)(q).a > RTdcl<".,«U. ,)( q).fl. 

Proof: Let Y = RTdcl<".IC(U, q)( q).fl. From Theorem I we know that any 
routing entry for process q with migration-count y points to the y+-l th 
node in the process trajectory of q. Therefore toward(U, q) is the y+-lth 
node in the process trajectory of q. Suppose q is not at node toward(U, 
q), i.e. RT towarrJ(U. q)( q ).Node ~ toward (U, q). From Theorem 2 we 
know that if node toward(U, q) is the y+-Ith location of q, then 

RT tSel<".,«toward(U. q), q)(q).a 2: y+-l. 

196 

Therefore RTtSel<".,«It>W4rd(U. fl. fl(q)·a > RTtSelc".IC(u. f)(q)·fl. • 

Finally, we show that a message to a process follows the trajectory 
taken by the process. 

Theorem 4 The trajectory of a message is a subsequence (not 
necessarily contiguous) of the trajectory of its target process. 

Proof: From the definition of the function delegate we know that either 
a node U has a rouPtJg entry for q, or else surrogate(U, q) has a routing 
entry for q. From procedure ROUTE_MSG we observe that messages 
for a process q are routed from any node U to toward(U. q). If a 
message is routed to a node toward(U. q) where the process is not 
resident. then the message is re-routed to toward(toward(U. q),q). 
Suppose the message is routed from say Yo to Y I. from Y I to Y 2 and so 
on, and arrives at Y ~ at time t. At time t, the message trajectory is 
trajectory (Mq , t) = Y I Y 2 Y 3 ••• Y~. 

Let the process trajectory be trajectory (q, t) 
Xo XI ... Xy ... X'l' From Theorem 1 we know that any routing 
entry for a process points to a node on the process trajectory. Therefore 
at any time t the jth node in trajectory (q. t) maps to the ~ node of 
trajectory (M" t) such that XJ + I = Y Jl' From Theorem 3 we know that 
this mapping is strictly monotonic i.e. if XJ + 1 = Y" and Xy+ 1 = Y T and 
if j > ythen we have ~ > y. 

Therefore a message for a process follows a trajectory that is a 
subsequence of the trajectory taken by its target in such a way that every 
time a messag'e is re-routed it is sent to a more recent location of the 
process .• 

We now show that under certain conditions for the velocity of 
messages and processes the BRM protocol does correctly deliver all 
messages to their target processes. The message velocity is the rate of 
increase of the number of nodes in the message trajectory and 
incorporates the time that a message is waiting for the resolution of 
routing faults. 

Proposition If a message always travels a shortest physical 
distance route between stops along its trajectory, and if its average 
velocity is strictly greater than the average velocity of its target process, 
then the message will be delivered to its targeL 

Proor: By Theorem 4 the trajectory of the message is a subsequence of 
the trajectory of the target process. By the triangle inequality the 
message travels a physical distance between any two stops along its 
trajectory that is less than or equal to the physical distance the process 
traveled between the same two stops. Hence. if the average velocity of a 
message is higher, and the average distance traveled between points is 
equal or shorter, the message will catch up with the process .• 

Figure 7 illustrates a message from process p following the 
trajectory of process q. The migration-count of q is originally zero and 
every time q migrates, its migration-count is incremented by one. The 
message is delivered to q when the migration-count of q is ten. 

6. WORK IN PROGRESS 

At UCLA, we are engaged in designing and implementing a 
distributed load management operating system on a 32 node iPSC 
hypercube. For this relatively small system, we have complete routing 
tables at each node. 11te BRM protocol is extended so that whenever a 
process migrates, an asynchronous-update is broadcast to all the nodes. 



Message Trajectory 

Migration-count of Process 
when resident at this node 

Flgure 7 : Route taken by • message from proc:ess p to q 

For large systems: we have developed extensions to the BRM 
protocol that take advantage of localities. In particular we have 
developed an extenlion called the hierardUcal protocol where routing 
entriel for a pnx:eal are updated with non-unifonn frequency. We have 
proposed a scheme for the addition of caches to the BRM protocol to 
take advantage of temporal locality in communication. We are currently 
developing analytical and simulation models to compare the bandwidth. 
memory requirements. delay and reliability propertiel of these extended 
protocols. 

REFERENCES 

Douglis rr7 Douglis. F .• and J. K. Ousterbout. "Process Migration 
in the Sprite Operating System". S~v~nth International Conference 
on Distributed Computing. SepL 1987. pp. 18-25. 

Fowler 85 Fowler. Roben J.. "Decentralized Object Finding 
Using Forwarding Addresses". PhD thesis. Uruversity of 
Washington. Seattle. Washington. December 1985. (Depattment of 
Computer Science Technical Report TR85-12-1) 

Fowler 86 Fowler. Roben J;. "The Complexity of. Using 
Forwarding Addresses for Decentralized Object Finding" • 
Proc~edings Fifth ACM Symposium on th~ Principles of 
Distribut~d Computation. Calgary. Canada. August 1986. 

197 

Gao 84 Gao. Cl\llanshan.lane W. S. Liu. and Malcolm Railey. 
"Load Balancing Algorithms in Homogeneous Distributed 
Systems". Proc. 1984 Int. Con{. Parallel Processing. August 1984. 

lul 88 lul. Eric. H. Levy. N. Hutchinson and A. Black, 
"Fine-Grained Mobility in the Emerald System". ACM 
Transactions 011 Comput~r Syst~ms. VoL 6. No.1. Feb. 1988. 

Kahn 79 Kahn. Robert E .• S. A. Gronemeyer. 1. Burchfiel and 
R. C. Kunzelman. .. Advancel in Packet Radio Technology". 
Proce~dillgs of the IEEE • VoL 66. No. 11. pp. 1468-1496. OcL 
1978. 

Li 86 Li. Victor O. K .• and Rong-Fens Chang. "Proposed 
Routing Algorithms for the US Anny Mobile Subscriber 
Equipment (MSE) Network". IEEE MII..COM 86. Mooterey. 
California, October. 1986. 

Ln 87 Ln. Chin. Arthur Chen and lane W. S. Liu. "Protocols 
for Reliable Process Migration". IEEE Infocom 87. San Francisco. 
California, March - April. 1987. 

Mullen 85 Mullender. Sape 1. and Paul M. B. Vitanyi, 
"Distributed Match-Making for Processes in Computer Network .... 
Proctltldings Fourth ACM Symposium 011 the Principles of 
Distributed Computation. Minacki, Canada, August 1985. 

Ni 85 Ni, Liooel M .• Chong-Wei Xu and Thomas B. 
Gendreau. "A Distributed Drafting Algorithm for Load Balancing". 
IEEE Transactions on Software Engineering. VoL SE-ll. No. 10. 
0ct0ber1985. 

Ouster 88 Ousterhout, 1. K.. et aI.. "The Sprite Network 
Operating System". Computu. February 1988. 

PopeJt 85 Popek. G. 1. and B. 1. Walker. "The LOCUS 
Distributed System Architecture". Computer Sy.tem. Series. The 
MIT Pre ... 1985. 

Powell 83 Powell. M. 1.. and B. P. Miller. "Process Migratioo in 
DEMOS/MP". Proc. 9th Symposium O~rating Sys. Principles. 
October 1983. 

Scheur 87 Scheurich. Chri.toph and Michel DuOOis. "Dynamic 
Memory Allocation in a Mesh-Connected Multiprocessor". Proc. 
of the 12th AMIIai Hawaii Interllalional ConferellC~ on System 
Sciences. January 1987. 

Theimer 85 Theimer. M.. "Preemptable Remote Execution 
Facilities for Loosely-Coupled Distributed Systems". stanford 
University Technical Report STAN-CS-86-1128.1une 1986. 



AN OPTIMAL SCHEME FOR DISSEMINATING INFORMATION 

Yijie Han and Raphael Finkel 
Computer Science Department 

Patterson Office Tower 
University of Kentucky 

Lexington, KY 40506-0027 

Abstract - We present an optimal communi
cation pattern that achieves complete dissemina
tion of information among n machines in flog n 1 
time by repeated use of point-to-point messages. 
This scheme improves previous results in this field 
by removing restrictions on n (it need not be a 
power of 2) and by introducing reorganization to 
tolerate single-machine faults. 

Introduction 

Data broadcasting is a very important opera
tion in parallel and distributed systems 
[1,2,3,4,5]. Alon et al. [1] have characterized 
the data-dissemination process as one in which 
each machine repeatedly receives, modifies, and 
forwards messages. All machines act in syn
chrony; in each round, each machine sends and 
receives at most one message. Alon et al. have 
shown that broadcasting can be accomplished by 
data dissemination without physical broadcast. 

The fundamental mechanism of Drezner [2] 
and Alon et al. [1] disseminates information by 
repeatedly doubling the number of machines that 
receive the information during each round. Infor
mation originally in machine i 1 can be sent in one 
round to machine i 2' During the second round 
both i 1 and i 2 become senders, and two other 
machines i 3 and i 4 receive the information. Infor
mation can therefore be broadcast to all machines 
in flog n 1 rounds. Broadcasting by data dissemi
nation requires at least flog n 1 rounds. Simul
taneous broadcasts can piggyback data onto the 
same messages. 

The situation becomes a more complicated 
when the following conditions must be met. 

198 

(a) No matter which machine starts broadcasting, 
the information should reach all n machines in 
flog n 1 rounds. 

(b) No matter at what round a machine starts 
broadcasting, the information should reach all 
n machines in flog n 1 rounds. 

(c) The scheme should be able to detect and/or 
tolerate certain faults. 

(d) The system should be able to dynamically 
reorganize after certain faults. 

The scheme proposed by Alon et al. [1] meets 
conditions (a) and (b) when n is a power of 2 or 
one of a family of primes. For general n, they 
adopt a quotient emulation [6] that requires 
2flog n 1 rounds. Their scheme can detect any 
single-machine failure in n rounds. (A failed 
machine no longer sends messages.) They propose 
analytic. solutions for faulty systems as an area 
worthy of further research. 

In this paper we present an optimal scheme for 
disseminating information. Our scheme meets 
conditions (a) and (b) for any n. ill addition, our 
scheme tolerates single-machine failure if the 
number of rounds used for broadcasting informa
tion is flog n 1 +2. Our scheme allows the system 
to be reorganized in flog n 1 +2 rounds to excise a 
failed machine. 

The underlying model that we will use 
assumes that any permutation of messages can be 
realized in one round. We consider such a permu
tation of messages a basic communication event. 
The token ring network and the ethemet are partic
ularly suitable as implementations for our model. 



However, a restricted network with rlog n 1 con
necting links for each machine is sufficient for our 
data-dissemination procedure; after each flog n 1 
rounds, our scheme repeats the destination pattern. 

The rest of the paper is organized as follows. 
Section 2 presents our scheme for data dissemina
tion. Section 3 shows how our scheme can be 
modified to tolerate single faults. Section 4 
discusses reorganizing the system after failure. 
We summarize these results and draw some 

conclusions in Section 5. 

Broadcast 

Our scheme for disseminating information is 
for each machine i , O:S;i <n , to execute the follow
ing procedure. 
procedure Disseminate; 
loop 

-- each iteration is one run 
for round : = 0 to flog n 1-1 do 

-- each iteration is one round 
message := new+old broadcast data 
send message to machine (i+2roUnd) mod n 

end -- for 
end -- loop 

The information sent by machine i during any time 
t is a combination of 

• New information that i has decided to broad
cast starting at time t. 

• Information received by i during the previous 
flog n 1 -1 rounds that must still be transmitted 
to other machines. 

We will not be concerned with how messages are 
packaged and how i maintains its data structures 
to show which information needs to be sent on any 
round. We will assume that messages are long 
enough to hold all the information that must be 
sent. If a basic unit of information uses b bytes, 
and each machine may only originate one broad
cast per round, then the longest message needed 
will be 2bn bytes. However, many applications 
can reduce this length by combining information 
from several simultaneous broadcasts. To produce 
an average, for example, a broadcast message need 
only include the sum of the values provided by all 
the broadcast sources. 

We will call a set of flog n 1 rounds a run. 
The following chart shows the destinations for the 
3 rounds that constitute a run when n = 6. 

199 

round source 
0 1 2 3 4 5 

0 1 2 3 4 5 0 
1 2 3 4 5 0 1 
2 4 5 0 1 2 3 

If machine 2 wishes to disseminate some informa
tion at round 0, it will send it to machine 3. At 
round 1, machines {2, 3} will send the information 
to {4, 5}. At round 2, machines {2, 3, 4, 5} will 
send the information to {O, 1, 2, 3}, at which point 
all 6 machines will have the desired information. 
In fact, machines {2, 3} will have seen it twice. If 
this is a problem (and it would be for computing 
global statistics such as averages), the messages 
can include a unique broadcast serial number (in 
this case, picked by machine 2) that can be 
checked for duplicates. 

All machines must agree on the current round 
within a run. Either they can refer to a global 
clock, or they can agree that each machine will 
send exactly one message per round even if no 
broadcasts are current. 

Theorem 1: Procedure Disseminate will 
broadcast information from any source to all desti
nations within any consecutive flog n 1 rounds. 

Proof: Any broadcast started by machine i 
arrives at machine j in round s if and only if a 
broadcast started by machine 0 arrives at machine 
(j -i) mod n in round s, so without loss of gen
erality, we may assume the source is machine O. 
After rlog n 1 rounds, the broadcast has reached 
machines (0[+21] [+22] ... [+ilognl-1])modn, 
where square brackets indicate that the term is 
optional. The order in which these machines are 
reached depends on which round in a run is current 
when the broadcast starts, but the set of reached 
machines is the same in any case. Clearly, this set 
includes all machines O:S;i <n . D 

In procedure Disseminate, we can view 
all machines as arranged in a cycle, as shown in 
Figure 1. The (asymmetric) distance from 
machine p to machine q is (q-p) mod n. If 
broadcast starts at round 0, then after round i, 

machines within distance 2i from p will receive 
information from p. The pattern is not so clear for 
broadcasts that start at different rounds. Alon et 
al. [1] realized that Disseminate will finish 



broadcasting if it is started at round 0, whereas 
Theorem 1 proves a stronger fact. 

o 

7~0~1 

(0 0\ 
60 02 

\ ) 
5 °"--0.-/° 3 

4 

Figure 1: Conceptual arrangement of machines 

Fault tolerance 

We assume that machine failures prevent mes
sages from being sent from the failed machine, but 
that no other indication of failure is given. This 
failure model is intermediate between immediately 
globally visible failures, which are trivial to deal 
with, and Byzantine failures [7] , which are quite 
difficult. 

The disseminating process of Dissem
inate assumes a tree shape, as shown in Figure 
2. We will call this tree the broadcasting tree of 
machine 0 with depth rlog n 1 starting at round O. 

00 

7"'0~ 
02 \\ 0, 

o 4 \~ 6 05\""'07 

1\\ \ \'" 
08 012 010 014 09 013 011 015 

Figure 2: Broadcasting tree of machine 0 
with 4 rounds starting at round O. 

200 

A failed mac:pine will cast a shadow in this tree, 
preventing its descendants from getting informa
tion originating from the root of the broadcasting 
tree. In order to transfer information from the root 
to all nodes, we have to use more than rlog n 1 
rounds. Extra rounds can circumvent the failed 
machine. In the following theorem we show that if 
exactly one machine fails, a message from any 
other machine can reach all working machines 
within any consecutive flog n 1 +2 rounds of 
Disseminate. 

Theorem 2: Procedure Disseminate will 
broadcast information from any source to all desti
nations within any consecutive flog n 1 +2 rounds 
if exactly one machine has failed. 

Proof: Without loss of generality, machine 0 
is the source of the broadcast. Suppose machine 0 
starts broadcast at round i, and the information 
first reaches the failed machine ! at round j, 
where ~! ,j <flog n 1. Consider the following 
cases: 

Case 1: ~i '5.j <flog n 1. After rounds i, i + 1, 
... j, ... , flogn1-1, 0,1, ... , i-I, machines that 
have not yet received information from machine 0 
are in S=f!'5,m I m=![+2j +1] ••• 
[+ilognl-l][+20j ... [+2i- 1]j. No pair of 
machines in S is separated by exactly 2i. In the 
next round, round i, every mach~e in S will 
receive information from a source 2' places earlier 
in the cycle, and that source is not in S. Therefore, 

that source already has the information derived 
from machine O. In this case, flog n 1 +1 rounds 
suffice for broadcasting information. 

Case 2: O'5.j <i <rlog n 1. After rounds i, i+l, 
rlogn1-1,0, 1, ... , j, ... , i-I, the machines that 
have not yet received info~ation froJ;Il machine 0 
are in S={m I m=! [+2J+l] ... [+2,-l]}. When 
i <flog n 1-1, no two machines in S are separated 
by exactly 2i , so broadcasting can be accom
plished with one more round. When i=flog n 1-1, 
it is possible ~at two machines in S are separated 
by exactly 2' (see the example following this 
proof). In this situation, two more rounds will 
finish the broadcast. The reason is that when 
i =f log n 1 -1, the second broadcast round is round 
O. A broadcast that starts at round 0 would require 
flog n 1 +1 rounds to complete in the face of a sin
gle failure, as shown in Case 1. 0 



Here is an example that demonstrates the 
necessity of flog n 1 +2 rounds. Let n =10, i =3 (the 
round at which broadcast starts), f =1 (the failed 
machine). Broadcast is initiated by machine O. 
The following chart shows that 6 rounds are 
required for broadcast to complete. A mark (e) 
indicates that the given machine has received the 
broadcast. 

round machine 
0 1 2 3 4 5 6 7 8 9 

3 • f • 
0 • f • • 
1 • f • • • 
2 • f • • • • • • 
3 • f • • • • • • • 
0 • f • • • • • • • • 

The analysis presented in this section. shows 
that by using two more rounds for broadcasting 
our scheme can tolerate single faults. 

Reorganization 

After a machine f fails, it can be advanta
geous to reorganize and degrade an n -machine 
system to an (n -1 )-machine system. Reorganiza
tion can be accomplished as follows. If f =n -I, 
the rest of the machines simply assume that there 
are only n -1 machines left. If f '#n -1, machine 
n -I will assume the identity of f. Depending on 
the communication medium used, destination 
tables might need to be modified on every 
machine. (We require that failures never partition 
the network.) 

It can happen that n =2j + 1 for some j, in 
which case the reduction in machines leads to a 
new value for flog n 1 . The current round number 
may be invalid for this new value. Therefore, we 
will reset the round to 0 after reorganization. 

We must resolve two technical details to 
accomplish reorganization. The first is achieving 
simultaneous . reorganization, and the second is 
protecting active broadcasts during reorganization. 

Simultaneous reorganization 

Reorganization must occur simultaneously on 
all machines or chaos will result. The following 
method achieves this aim. If a single machine f 

201 

should fail, one machine, say i, will notice that 
fact during the next round as an expected message 
fails to arrive. A different machine, say j, will 
notice the failure during the subsequent round as 
its expected message fails to arrive. Meanwhile, i 
can report the failure to a third machine k during 
the same period. Although both i and j notice that 
f has failed, only i gets the correct failure time. 
The failure time of f noticed by j is later than that 
noticed by i. During later rounds, if machine m 
receives word of the failure from both i and j, m 
can discard the notice from j because the failure 
time reported by i is earlier than that from j. By 
Theorem 2, a failure notice from i will be received 
by every functioning machine in flog n 1 +2 
rounds. Every such machine can reorganize its 
tables effective flog n 1 +3 rounds after the failure 
occurred. This scheme is expressed by the follow-
ing procedure. 

procedure Re 0 rg an i z e ; 
-- reorganization during broadcast 

var 
: integer := whatever; 
-- identifier of this machine 

n : integer := whatever; 
-- number of machines 

clock : integer := 0; 
-- monotone increasing every round 

I : integer; -- which machine failed 
failtime : integer := ~; 

-- when it failed: based on clock 
reorganize : integer := -1; 

-- time reorganization scheduled 
loop -- each iteration is one run 

for round : = 0 to flog n l-1 do 
if reorganize = clock then 

-- time to reorganize 
if i = n-l then 

i : = I; 
endif; 
failtime := 00; 
n := n-l; 

endif; 
message := traffic, I, failtime; 
send message to (i+2roUnd)modn 
accept message from (i _2round) mod n 
if no message arrives then 

-- a failure has occurred 
newfail : = (i_2roUnd) mod n 
newfailtime := clock - 1; 

else 
traffic, newfail, newfailtime := 

message; 
endif; 



if newfailtime < failtime then 
-- discard old value 
failtime := newfailtime; 
f := newfail; 

endif; 
if failtime < 00 then 

reorganize := fail time + 
rlog n 1 + 3; 

endif; 
clock := clock + 1; 

end -- for loop; one round 
end -- loop; one run 

Based upon the above analysis we have: 

Theorem 3: The system can be reorganized in 
rlog n 1 +3 rounds after a single failure. 

Proof: If machine f fails at round i, then at 
round i + I, some machine notices the failure and 
the failure time. By Theorem 2, this information 
will be known to all machines in an additional 
flog n 1 +2 rounds. Therefore at the end of round 
rlog n 1 +3, every machine is ready for reorganiza
tion. 0 

The first machine p that observes the failure 
starts a failure broadcast. The relation between 
this p and f enables us to avoid the (flog n 1 +2)
round case (Case 2 of the proof of Theorem 2). 
We can prove. the following stronger result. 

Theorem 4: The system can be reorganized in 
rlog n 1 +2 rounds after a single failure. 

Proof: The only situation where flog n 1 +2 
rounds are required for broadcasting with a single 
failure occurs when a machine starts broadcast at 
round flog n 1 -1 (see the proof of Theorem 2). 
This happens when f fails at round flog n 1-3, 
machine p discovers the failure at round 
rlog n 1-2, and starts broadcast at round 
rlog n 1-1. 

In this case the distance from f to p is 
i10g n 1-2 and the distance from p to f is greater 
than i10g n 1-2 (recall that the distance is asym
metric). Ignore the first round in broadcast, that is, 
round r log n 1 -1. Machine f is a leaf in the 
broadcasting tree of machine p starting at round 0 
and therefore will not cast shade on any machine 
in this tree. Thus in flog n 1 +2 rounds after failure 
every machine has the correct failure informationD 

202 

Active broadcasts 

The other detail to be worked out is the fate of 
broadcasts active during failure and reorganiza
tion. Reorganization is likely to introduce chaos 
into any broadcasts that are active. For this rea
son, machines should not start new broadcasts if 
they know that a reorganization is scheduled 
within the next rlog n 1 +2 time units. (If a reor
ganization is scheduled, there must be a failed 
machine, in which case broadcast can take that 
long to finish.) Any broadcast that was inadver
tently started within this window should be 
restarted. 

A failure that occurs at time t could damage 
broadcasts started as early as time t -r log n 1 +1. 
Two strategies can cope with these damaged 
broadcasts. The first strategy restarts such broad
casts after the error has been repaired. Broadcasts 
may therefore require as long as 3rlog n 1 time to 
complete. The first rlog n 1 is for the original 
broadcast that fails near the end because of a bro
ken machine. The second rlog n 1 is needed to 
inform the world about the failure, and the third 
rlog n 1 is to run the broadcast again. 

The second strategy uses flog n 1 +2 rounds 
for each broadcast to tolerate single faults so that 
broadcast need not be restarted when a machine 
fails. The first strategy is more efficient on the 
average if failures are rare, but can suffer long 
delays when failures occur. The second strategy 
uses flog n 1 +2 rounds for every broadcast, but it 
is a useful strategy for real-time systems. 

Conclusions 

We have presented an optimal data
dissemination algorithm for machines capable of 
sending messages to each other. It improves pre
vious results in that it does not restrict the number 
of machines and accommodates single-machine 
failure and reorganization. 

Although our data-dissemination algorithms 
are described for point-to-point networks, they are 
also suited to multi-machine organizations with 
broadcast media such as token-ring network and 



ethemets [8]. In these networks, each message 
can potentially reach all machines, although usu
ally only the intended destination machine actually 
reads any message. Ordinary broadcast by n 
processes requires n messages, but each machine 
must receive n -1 messages, leading to O(n 2) total 
work. In comparison, dissemination requires only 
O(n log n) total work. The reduction is due to 
piggybacking messages. In some applications, 
such as finding average load, piggybacking does 
not require increasing the message size. 

Several open questions remain. Multiple 
failures could prevent broadcasts from reaching 
from some sources to some destinations altogether. 
We know that one failure never has this property. 
What is the minimum number of failures that 
does? 

Our reorganization scheme is synchronous. Is 
there art asynchronous reorganization scheme that 
preserves broadcasts that are underway? 

Acknowledgements 

We would like to thank Debra Hensgen for 
helpful discussions. 

References 

1. N. Alon, A. Barak, and U. Manber, "On 
disseminating information reliably without 
broadcasting," Proceedings of the 7th Inter
national Conference on Distributed Comput
ing Systems, pp. 74-81 (September 1987). 

203 

2. Z. Drezner and A. Barak, "A probabilistic 
algorithm for scattering information in a mul
tiprocessor system," Technical report CRL
TR-15-84, University of Michigan Comput
ing Research Laboratory (March 1984). 

3. c.E. Leiserson and J.B. Saxe, "Optimal syn
chronous systems," Proceedings of the 22nd 
Annual IEEE Symposium on Foundations of 
Computer Science, pp. 23-36 (1981). 

4. M. Livny and U. Manber, "Distributed com
putation via active messages," IEEE Trans. 
on Comput. C-34(12) pp. 1185-1190 
(December 1985). 

5. D. Nassimi and S. Sahni, "Data broadcasting 
in SIMD computers," IEEE Trans. Comput. 
C-27(2) pp. 2-7 (1979). 

6. J.A. Fishburn and R.A. Finkel, "Quotient net
works," IEEE Trans. on Comput. C-31(4) pp. 
288-295 (April 1982). 

7. R. Cristian, H. Aghili, and R. Strong, 
"Atomic broadcast from simple message dif
fusion to byzantine agreement," Technical 
report RJ 4540, IBM San Jose Research 
Center (December 1984). 

8. A.S. Tanenbaum, Computer networks, 
Prentice-Hall (1981). 



Multicast Routing in Spanning Bus Hypercubes 

Philip McKinley 

) 

Department of Computer Science 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801 

ABSTRACT 

This paper investigates communication among 
groups of cooperating processes in 3-dimensional 
spanning bus hypercubes. Requiring processes to send a 
separate copy of each message to every group member 
may result in high bandwidth consumption and network 
traffic congestion. Multicast virtual circuits provide an 
alternative mechanism for' process group 
communication. Unfortunately, constructing a single, 
optimal multicast tree for a group of nodes in a 3-
dimensional spanning bus hypercube is an NP-hard 
problem. In this paper, several heuristic algorithms for 
this problem are evaluated and compared. We 
introduce a greedy algorithm with complexity linear in 
the group size. This algorithm performs better than 
other algorithms with respect to b~th tree cardinality 
and average message propagation delay. 

1. Introduction 
A multicomputer is a collection of computers 

designed to operate as parallel processors [1,2]. In a 
multicomputer, the individual processors communicate 
by passing messages via a communication network. A 
D-dimensional, W-wide spanning bus hypercube [3] is 
a multicomputer architecture in which each processor, 

. or node, is connected by ports to D buses, each bus 
spanning a different dimension in the hypercube address 
space. Each bus is connected to exactly W nodes. A 
3-dimensional, 3-wide spanning bus hypercube is shown 
in Figure 1. 

Until recently, the primary disadvantage of the 
spanning bus hypercube architecture has been that the 
width, W, is limited by the bandwidth of the buses. 
However, continuing advances in communication 
technology, particularly optical fibers, have largely 
obviated this problem. In particular, star couplers [4] 
offer an efficient way to - organize optical fibers as 
multiple-access media, or buses, that may be connected' 
together to form a spanning bus hypercube network. 
Figure 2 gives a representation for a 2-dimensional, 3-
wide spanning bus hypercube constructed from optical 

204 

stars. Networks constructed from multiple optical stars' 
have been studied [5-7] in the' context of local area 
networks, and we [8] have investigated ways to exploit 
their unique properties in distributed system design. 
Marhic [4] suggested their use in interconnection 
networks for parallel processors. 

The small diameter and average internode distance, 
combined with low cost, make the spanning bus 
hypercube architecture attractive for parallel processing· 
[9]. The topology is particularly well-suited to' 
multicast communication. In contrast to unicast. 
transmission, which involves a single destination node, 
multicast allows for one source node to communicate 
with more than one destination node. Broadcast is a 
special case of multicast in which the data is delivered 
to all nodes in the network. Parallel applications such 
as particle dynamics calculations and image processing 
often require communication among groups of processes 
[10]. Hence, efficient multicast is important. 

Bus 

Node and 
network interface 
(3 ports per node) 

Figure 1 3-d, 3-w spanning bus hypercube 



Star coupler 
Node and 

Network interface ~ Optical star 

(two ports ~~~.:~~~: ............. :.:.:.:: ............. J .. 

Figure 2 2-d, 3-w spanning bus hypercube 

In this work we address the issue of multicast 
routing in a 3-dimensional spanning bus hypercube. 
Three dimensions allow a large number of nodes to be 
connected in a network with a very small diameter. We 
assume the system to be a general purpose machine 
capable of executing multiple applications 
simultaneously, with multiprogramming at processor 
nodes. Our primary concern is with communication 
among process groups whose members are scattered 
throughout the network. Such a situation may arise for 
two reasons. First, the nature of a particular 
application may require communication among 
subgroups of processes whose memberships change 
dynamically. Second, the assignment of process group 
members to processors upon initiation of a parallel 
application depends upon the assignments of the 
applications already running and their current 
activities. Because these conditions are dynamic, the 
processors most eligible to execute the new application 
may be widely dispersed in the network. We assume 
that communication among process group members is 
frequent relative to the lifetime of process groups. In 
addition, any group member may send messages to the 
other group members, that is, group communication is 
symmetric. 

This work does not concern management issues for 
process groups, such as dynamic group membership, or 
the details of message buffering and flow control. These 
functions would be provided by a process group 
communication mechanism such as multicast channels 
[10]. Rather, the routing algorithms described in this 
paper can be considered as a method for efficiently 
supporting such a mechanism in a spanning bus 
hypercube architecture. 

205 

The simplest method of multicast is to require that 
a process send a separate copy of each message to every 
other process group member. Such a strategy may 
result in high bandwidth consumption and traffic 
congestion. An alternative solution for multicasting is 
to support tree forwarding, in which virtual circuits are 
established along the branches of a tree that spans the 
group members. Data travels from the source node 
along the branches of the tree. Once a multicast tree 
has been constructed, forwarding and duplication of 
data is accomplished using routing tables at network 
nodes. 

To reduce bandwidth consumption and traffic 
congestion, it is desirable to minimize the number of 
branches (communication links) in the tree. This 
problem is NP-hard for arbitrary point-to-point 
networks, but Wall [11] has investigated heuristic 
algorithms that perform well in practice. The multicast 
tree problem is also NP-hard for spanning bus 
hypercubes [12] and hence we investigate heuristic 
algorithms. As in other work concerning multicast trees 
in bus-based networks [13,14], we are particularly 
interested in algorithms that exploit the broadcast 
nature of the media. In Section 2, we give some 
background on the problem needed in our subsequent 
discussion by briefly describing several approaches to 
multicast routing. Section 3 describes and compares 
three algorithms for the construction of multicast trees. 
Finally, in Section 4, we present conclusions and 

summarize our work. 

2. Multicast Routing Schemes 
The multicast routing scheme used in a 

multicomputer directly affects the performance of 
process group communication and, hence, the 
performance of parallel applications. Several multicast 
routing schemes have been proposed. An extensive 
discussion of these strategies can be found in [15]. 

Separate Addressing 

Separate addressing is the simplest multicast 
technique. In this scheme, a separate copy of the 
message is sent to each destination. This strategy can 
be implemented directly atop a unicast transmission 
protocol. In hypercube topologies, unicast routing is 
straightforward [3]. Each node address consists of D 
coordinates, one for each dimension of the hypercube. 
For example, (X2,xI'xO) is an address for a node in "a 3-
dimensional spanning bus hypercube. Nodes in the 
hypercube shown in Figure 1 are assigned addresses 
(0,0,0) through (2,2,2), as shown in Figure 3. We shall 
refer to a bus by an address with a missing coordinate 
to indicate the direction of the bus. For example, bus 
(0,-,2) lies in the Xl direction and is in the Oth x2 plane 
and the 2nd Xo plane~ 



When a message is being forwarded from one node 
to another, differing coordinates between the present 
address and the destination address determine the next 
bus on which to forward the message. For example, 
consider the spanning bus hypercube shown in Figure 3. 
If coordinates are resolved in the order xo, xl' x2, then 
when node (0,0,0) sends a message to node (1,2,1), the 
message will first traverse bus (0,0,-), then bus (0,-,1), 
and finally bus (-,2,1). The order in which coordinates 
are resolved may be varied, and does not affect the 
number of buses that must be traversed to reach the 
destination. 

bus (-,2,1) 

1,0,0 1If--+---t=..!..::...!.-=----I-----F=~ 

bus (0,0,-) bus (0,-,1) 

Figure 3 3-d, 3-w spanning bus hypercube 

The primary disadvantage of separate addressing 
as a multicast technique is that multiple copies of a 
message must be sent and may actually traverse the 
same communication links. This results in excessive 
bandwidth consumption and congestion at intermediate 
nodes. If we call the transmission of a packet on any 
bus a bus visit, then for separate addressing the number 
of bus visits is proportional to the group size. Given a 
source node and g destination nodes distributed 
uniformly in a 3-dimensional, w-wide spanning bus 
hypercube, the average number of bus visits for a 
multicast using separate addressing can be computed 
directly. We partition the potential destination nodes 
into three groups according to distance from the source 
node along a shortest path: 3{w-l) nodes are one hop 
away, 3{w-l)2 nodes are two hops away, and (w-l)3 
nodes are three hops away. There are w 3-1 potential 

206 

destination nodes, and hence the average number of bus 
visits required to send to g destinations is: 

3{w-l)·1 + 3(w-l)2·2 + (w-1t"3.g = 3w2g 
w3-1 w2+w+l 

Despite its drawbacks, separate addressing is the best 
multicast routing strategy for small groups, especially if 
the rate of group message traffic is low [16]. Any 
overhead accompanying a more complex scheme is not 
justified. 

Multidestination Addressing 

One popular multicast scheme that avoids sending 
multiple copies of a message along the same 
communication links is multidestination addressing [17-
20], in which a small number of multiply-addressed 
packets are sent for each multicast. When a packet 
arrives at an intermediate node, its destination 
addresses are apportioned among multiple copies such 
that destinations along the same route share the same 
copy. 

For a 3-dimensional, w-wide spanning bus 
hypercube, the number of bus visits per multicast for 
multidestination addressing can also be directly 
computed. We assume, as before, that member nodes 
are uniformly distributed and that packets traverse 
shortest paths along links in xo, Xl' x2 order. Figure 4 
depicts with bold lines the buses that may be traversed 
by multicast messages sent from node,s. The buses 
shown with dotted lines would not be used. The 
probabilities of traversing buses in each direction are, 
respectively: . 

Pz,{w,g) = 1 _ [w2;1 ][w3;1 fl 
[w3-w2g+W-l] [w3g_1]-1 pz.(w,g) = 1 -

Pziw,g) = 1- [w3;w][w3;1 fl 
Since the numbers of potential Xo-, Xl-' and x2-buses to 
be visited are 1, w, and w2, respectively, the average 
number of bus visits per multicast is: 



, , , , , , , , , , , , 
, , , , , , , , , , , , 

, , , xl? , , , , , , , , , 

s 

xO 

Figure 4, Routing with multidestination addressing 

Figure 5 compares the average number of bus visits 
for separate addressing and multidestination addressing 
in a 3-dimensional, 8-wide spanning bus hypercube for 
various group sizes. While the number of bus visits in 
the separate addressing case increases linearly with the 
group size, the number of buses in multidestination 
routing asymptotically approaches w2+w+1 or, in this 
case, 73. 

Bus Visits 

o Separate addressing 
250 D Multidestination addressing 

200 

150 

100 

50 

O+---.---.---.---~--~--~--~--~~ 

ffi ~ W m w w ro ~ 00 ~ 

Group Size 

Figure 6 Bus visit comparison 
3-d, 8-w spanning bus hypercube 

207 

Variable length packet headers, required to contain 
multiple destination addresses, and computation time 
for apportioning these addresses are the major 
drawbacks of multidestination addressing [15]. Both of 
these shortcomings become more serious as group size 
increases. 

Tree Forwarding 

An alternative approach is source routing, in which 
the route is placed in the packet header. Although 
normally intended for larger networks [21,22], this 
strategy has advantages for multicast routing in a 
regular topology, such as a spanning bus hypercube, 
where a relatively complex multicast path can be 
efficiently encoded. However, a serious drawback is 
the fact that, without state information at intermediate 
nodes, flow control information and acknowledgements 
must be sent individually from each destination to the 
source, potentially causing congestion at the source and 
at intermediate nodes. In addition, the scheme must be 
robust enough to handle inoperative network 
components, particularly switches at intermediate 
nodes. 

Tree-forwarding avoids these problems by 
constructing multicast virtual circuits between the 
processors on which process group members reside. A 
group identifier, rather than a list of destinations, in the 
packet header can be used by intermediate nodes to 
forward the packet, based on state information 
maintained along the route. This approach provides 
more efficient end-to-end control information by 
merging flow control and acknowledgement messages as 
they proceed from the destinations to the host [ffi]. 

The number of buses, or cardinality, of a multicast 
tree rooted at a particular node matches the number of 
bus visits required for a multicast from that node using 
multidestination addressing. Single-tree forwarding 
attempts to minimize bandwidth consumption, state 
information and maintenance costs by constructing a 
single tree that is used by all the nodes in a multicast 
group. In multiple-tree forwarding, each member uses a 
separate tree to multicast to the other members. Each 
tree is constructed by merging the shortest paths from 
the individual source node to the other nodes. The 
length of a path may be measured in number of hops or 
expected delay. 

The major problem with multiple-tree forwarding 
is that the size of the state information required is 
proportional to the square of the group size [15]. Also, 
this scheme is not amenable to dynamic group 
membership, as each tree must be modified when a node 
joins or leaves the group. Although the average point
to-point delay is usually greater for single-tree 
forwarding than for multiple-tree forwarding, this 
difference may not be significant in a highly connected 



network such as a spanning bus hypercube. More 
. importantly, this shortcoming is outweighed by simpler 
tree construction, tree maintenance, and exchange of 
control information. Hence, we are concerned only with 
single-tree forwarding algorithms. 

3. Single-Tree Routing Schemes 
When single-tree forwarding is used to multicast 

data, the routing problem reduces to that of 
constructing good multicast trees. Good trees have 
small cardinalities and reasonable delays between each 
pair of nodes. In this section we evaluate and compare 
algorithms for constructing good multicast trees in 3-
dimensional spanning bus hypercubes. As pointed out 
earlier, we are interested in algorithms that exploit the 
broadcast nature of the media. The first two algorithms 
are based on the shortest paths between pairs of 
member nodes. The last algorithm, however, accounts 
for the fact that multiple group members may reside on 
the same bus. 

Simple Shortest Path Routing 

One way to multicast from a source to a group of 
processes is to merge the point-to-point paths into a 
single tree and construct virtual circuits along its 
branches. We call this simple shortest path routing. A 
different tree can be constructed for each member of a 
process group. For single-tree forwarding, one of these 
trees is (arbitrarily) chosen for communication within 
the group. The trees are not identical with regard to 
their cardinality or the number of hops between nodes, 
so it is possible that the best tree will not be chosen. 

'Considering all possible roots and then choosing the 
best one requires time quadratic in the group size. 

An alternative approach is to arbitrarily choose a 
root but consider alternate orders in which to resolve 
address components. For example, in a 3-dimensional 
spanning bus hypercube there are six possible orders in 
which to resolve references, corresponding to the six 
permutations of xo, Xl and X2' For single-tree 
forwarding, all of these computations are carried out 
and the single best tree is chosen for communication 
between the group members. We call this scheme 
ordered shortest path routing. 

Figure 6 compares the cardinality (that is, bus 
visits per multicast) of multicast trees for simple 
shortest path routing and ordered shortest path routing 
over a range of group sizes in a 3-dimensional, 8-wide 
spanning bus hypercube. Although difficult to see 
because they are so small, 99 percent confidence 
intervals are plotted in this and all other graphs. 
Ordered shortest path routing provides an improvement 
over simple shortest path routing. 

Bus Visits 

60~--.--,---.---,--.---.--,---.--~ 

o Simple shortest path 

50 
o Ordered shortest path 

40 

30 

20 

10+---.--,---.---.--.---.--,---.--~ 

10 20 30 40 50 60 70 80 90 100 

Group Size 

Figure 6 Bus visit comparison 
3-d, 8-w spanning bus hypercube 

Centered Routing 

An alternative to arbitrarily selecting one of the 
member nodes to be the root of the tree is to select a 
node that is centrally located within the group. We call 

. this scheme centered shortest path routing. This 
technique is similar to the technique known as center
based forwarding, studied for point-to-point networks 
[11]. Selecting the center of the group may be done in 
several ways. The mechanism we have used is simple 
and requires time linear in the group size. First, the 
algorithm identifies the three planes, one in each 
dimension, that contain the most group members. The 
node at the intersection of these planes is chosen as the 
root of the multicast tree. This node need not be a 
member of the group, but may only be called upon to 
forward packets. Next, by resolving addresses in 
different orders, the six possible trees are computed. 
Finally, these trees are compared and the tree with the 
smallest number of buses is chosen. 

208 

Figures 7 and 8 compare the cardinality and 
average delay of ordered routing and centered routing. 
While centered routing requires slightly more buses on 
average, the average number of hops between nodes is 
fewer than for ordered shortest path routing. 



Bus Visits 

60.---.--.---.--.--.---.--,---.--. 

50 

40 

30 

20 

o Centered shortest path 
o Ordered shortest path 

Group Size 

Figure 7 Bus visit comparison 
3-d, 8-w spanning bus hypercube 

Average Delay (hops) 

6'-~'--.--.---.--.r--.--'---.--. 

o Ordered shortest path 
o Centered shortest path 

5 

M 

3 

10 20 30 40 50 60 70 80 90 100 

Group Size 

Figure 8 Average delay comparison 
3-d, 8-w spanning bus hypercube 

209 

Greedy Algorithm 

In the preceding discussion, we have seen that 
multicast tree construction based on shortest paths 
between pairs of nodes is sensitive to which node is the 
root of the tree, as well as to the order in which address 
components are resolved in computing the shortest 
paths. In this section, we describe a relatively simple 
greedy algorithm that does not require construction of 
multiple trees and that performs better than those 
algorithms previously described. In the greedy 
algorithm, the basic metric used to construct multicast 
trees is the number of member nodes on each bus. 
Buses connected to many member nodes are more likely 
to be included in the multicast tree. The intuitive 
appeal of such an approach is that, unlike algorithms 
based on the distance between pairs of member nodes, 
greedy algorithms are better able to exploit the fact 
that the media are buses. 

In an earlier paper [13], we have shown that the 
performance of a greedy algorithm is very close to 
optimal for 2-dimensional grids of buses, that is, 2-
dimensional spanning bus hypercubes. Since each plane 
of a 3-dimensional spanning bus hypercube is a 2-
dimensional spanning bus hypercube, the algorithm 
initially identifies the three orthogonal planes that 
contain the most group members. We call these the 
primary planes. The group members in the three 
primary planes are covered using the 2-dimensional 
spanning bus hypercube multicast algorithm. Next, the 
group members not in primary planes are covered. If 
the bus used to cover such a node does not intersect one 
of the primary planes at a node that is already covered, 
an additional bus in the primary plane is included in 
the multicast tree to guarantee connectedness. The 
algorithm is given in Figure 9. 

Figures 10 and 11 compare the cardinality and 
average delay performance for simple shortest path 
routing, centered routing, and the greedy algorithm. 
All have complexity linear in the group size. The 
greedy algorithm provides the best cardinality 
performance and the best average delay performance for 
large groups. It is interesting that the delay for this 
algorithm, after initially increasing, decreases as group 
size increases. This results because the tree has no 
designated root. Point-to-point distances continue to 
decrease, while in the other schemes packets must more 
often go through the root node. When routing is based 
on shortest paths from a particular node, a shorter path 
between two group members is less likely to be included 
in the tree. 



Greedy algorithm for multicast tree construction 
Input: A 3-d sbh S and a subset G of its nodes. 
Output: A multicast tree T for G. 

begin 
find primary planes pO, pI and p2 
let inP = { g E Gig resides in pO, pI or p2 } 
let outP = G - inP 

1* cover members in the primary planes first * / 
for each of pO, pI and p2 do 
begin 

/* cover nodes with the 2-d greedy algorithm * / 
for each g E inP that is in the plane do 
begin 

select bus b of g with most uncovered members 
T =T U {b} 
inP=inP-{rEinP Irliesonb} 

end 
end 
if pO, pI, and p2 are not connected then 

connect them using buses in their intersections 
endif 

1* handle members not in the primary planes * / 
for each g E outP do 
begin 

select bus b of g with most uncovered members 
T = T U {b} 

1* connect b to a primary plane * / 
let b intersect one of pO, pI or p2 at node c 
if c is not covered then 

let t be a bus of c in the primary plane 
T =T U {t} 

endif 
outP = outP - { r E outP I r lies on b } 

end 
end 

Figure 9 Greedy Algorithm 

210 

Bus Visits 

50 

40 

30 

20 

o Simple shortest path 
o Centered shortest path 
'i1 Greedy algorithm 

10+---.--.---r--~-.---.--.---.-~ 

Group Size 

Figure 10 Bus visit comparison 
3-d, 8-w spanning bus hypercube 

Average Delay (hops) 

6.---.--.---r--~-.---.--.---~-. 

5 

4 

3 

o Simple shortest path 
o Centered shortest path 
'i1 Algorithm 2 (greedy) 

Group Size 

Figure 11 Average delay comparison 
3-d, 8-w spanning bus hypercube 



4. Summary 
Bus-based multicomputer networks facilitate 

multicast communication, an important facet of many 
parallel algorithms. With recent advances in optical 
fiber technology, bus-based interconnection networks 
are receiving new attention. Separate addressing is 
inefficient unless the process group is small, and 
multidestination addressing is difficult to implement 
and may cause unreasonable delays in packet 
forwarding. Multicast virtual circuits offer a solution to 
these problems. While multiple-tree forwarding is not 
attractive because of the large table space required, 
single-tree forwarding requires space linear in the group 
size. Although average delay between group members is 
usually larger when using a single tree than when using 
a separate tree for each group member, the average 
delay can still be reasonably small in a bus-based 
network with high connectivity, such as a spanning bus 
hypercube. 

In this paper we have compared multicast tree 
construction algorithms based on greedy methods with 
those that do not account for the broadcast nature of 
the media. We have shown that the former performs 
favorably while maintaining linear complexity. We are 
currently evaluating other multicast routing algorithms 
for spanning bus hypercubes and other bus-based 
networks. 

Acknowledgements 

This research was conducted at the University of 
Illinois Advanced Construction Technology Center, 
funded by the United States Army Research Office 
under the Department of Defense-University Research 
Initiative Program. 

References 

1. D. A. Reed and R. M. Fujimoto, Multicomputer 
Networks: Message-Based Parallel Processing, MIT 
Press, Cambridge, Mass. (1987). 

2. C. Seitz, "The Cosmic Cube," Communications of the 
ACM28(1)(January 1985). 

3. L. D. Wittie, "Communication Structures for Large 
Networks of Microcomputers," IEEE Trans. on 
Computers c-30(4)(April1981). 

4. M. E. Marhic, "Combinatorial Star Couplers for 
Single-Mode Fibers," Proc. FOC/LAN '84, pp. 175-
179 (1984). 

5. D. L. Baldwin, E. H. Tegge, K. Whiteleather, and S. 
Gilstad, "Fiber Optic Local Area Network 
Developments Cor Over 100 Ports and Approaching 
lGbps," FOC/LAN, (1986). 

6. G. S. Christensen, "DATApipe - A High-Speed LAN," . 
Proc. Fifth European Fibre Optic Communications and 
Local Area Networks Exposition (EFOC/LAN 87), (June 
1987). 

211 

7. Y. Ofek, "The Topology Algorithms and Analysis of a 
Synchronous Optical Hypergraph Architecture," Ph.D. 
dissertation, University of lllinois at Urbana
Champaign, Urbana, lllinois (May 1987). 

8. P. K. McKinley and Y. Ofek, "Resource Sharing in a 
Synchronous Optical Hypergraph," Proc. Symposium on 
the Simulation of Computer Networks, (Aug. 1987). 

9. P. W. Doud and K. Jabbour, "Performance Evaluation 
of the Spanning Multiaccess Channel Hypercube 
Interconnection Network," Proc. IEEE INFOCOM '87, 
pp. 1117-1125 (1987). 

10. H. P. KatseiJ, "Flow-Controlled Multicast in 
Multiprocessor Systems," Proc. IEEE Phoenix 
Conference on Computers and Communications, pp. 8-
13 (1987). 

11. D. W. Wall, "Mechanisms for Broadcast and Selective 
Broadcast," Ph.D. dissertation, Stanford University, 
Stanford, California (June 1980). 

12. L. R. Foulds and R. L. Graham, "The Steiner Problem 
in Phylogeny is NP-Complete," Advances in Applied 
Mathematics 3 pp. 43-49 (1982). 

13. P. K. McKinley and J. W. S. Liu, "Multicast Routing in 
Bus-Based Computer Networks," Proc. Computer 
Networkir:g Symposium, pp. 277-287 (April 1988). 

14. P. McKinley and J. W. S. Liu, Multicast Routing in 
Irregular Bus-Based Networks, in preparation 

15. A. J. Frank, L. D. Wittie, and A. J. Bernstein, 
"Multicast Communication on Network Computers," 
IEEE Software, (May 1985). 

16. A. Frank, "Distributed Dynamic Groups on Network 
Computers," Ph.D. dissertation, State University of 
New York at Stony Brook (Dec. 1985). 

17. L. Aguilar, "Datagram Routing for Internet 
Multicasting," ACM SIGCOMM 84 Computer 
Communications Review 14(2) pp. 58-63 (June 1984). 

18. S. E. Deering, "Internet Group Multicast Protocol," 
Technical Report RFC-991, SRI Network InCormation 
Center (November 1986). 

19. E. Caples and C. D. Young, "Multidestination Protocols 
for Tactical Radio Networks," Proc. MIL COM, pp. 
615-619 (1987). 

20. Y. Lan, L. M. Ni, and A. Esfahanian, "Distributed 
Multi-destination Routing in Hypercube 
Multiprocessors," Proc. Third Conference on Hypercube 
Concurrent Computers and Applications, (Jan. 1988). 

21. J. H. Saltzer, D. P. Reed, and D. D. Clark, "Source 
Routing for Campus-Wide Internet Transport," pp. 1-
23 in Local Networks for Computer Communcations, ed. 
A. West and P. Janson,North-Holland, Amsterdam 
(1981). 

22. D. A. Pitt, K. K. Sy, and R. A. Donnan, "Source 
Routing for Bridged Local Area Networks," pp. 517-530 
in Advances in Local Area Networks, ed. K. Kummerle, 
J. Limb and F. Tobagi,IEEE Press, New York (1987). 



A TECHNIQUE FOR ANALYZING POINTER AND STRUCTURE 
REFERENCES IN PARALLEL RESTRUCTURING COMPILERS 

Vincent A. Guarna, Jr. 

Center for Supercomputing Research and Development 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801 

Abstract -- This paper describes techniques for doing depen
dence analysis for C programs. In particular, only those prob
lems pertaining to aliasing due to pointers are discussed. An 
algorithm is developed to determine alias relationships within C 
programs. This algorithm is then enhanced to build dependence 
graphs for C looping constructs containing pointer expressions. 

INTRODUCTION 

Overview 

Modem high-performance computing systems achieve 
throughput by taking advantage of parallelism realized through 
architectural features such as multiple processors and vector 
arithmetic units. These machine features are frequently utilized 
through the use of optimizing compilers that perform paralleliza
tion and vectorization on scientific Fortran codes. However, 
with the proliferation of a new genre of parallel machines run
ning the Unix [9,12] operating system,(a) the automatic optimiza
tion of languages such as C is a subject of increasing interest. 

Automatic restructuring for parallelism and vectorization is 
usually done by analyzing the data dependence graphs for 
sequential programs and ascertaining which of a number of 
known program transformations may be applied to introduce 
parallelism without changing program semantics. Dependence 
analysis techniques have been researched for several years, espe
cially in the context of vectorization of Fortran programs 
[2,3,10,14]. However, newer languages such as C that have 
pointer and structure data types present different problems for 
dependence analysis, particularly because of new aliaSing prob
lems which can arise. This paper focuses specifically on the 
dependence analysis of C program constructs containing pointers 
and structures. 

Related Work 

Although work in the area of dependence analysis in the 
presence of pointers has not been extensive, several efforts in the 
area of data flow analysis have been done in the past few years. 

Aha, Sethi, and Ullman [1] present heuristics for recogniz
ing the effects of aliases created through the existence of simple 
pointer expressions. They also present an algorithm for collect
ing aliases on a global rather than a statement-by-statement 
basis. The resulting algorithm is conservative but fast, and 
should be easy to implement. 

Coutant [7] presents an overview of an alias analysis tech
nique for pointer expressions similar to that discussed in this 
paper. The algorithm handles structures as well as multiple lev
els of indirection. .Coutant focuses on alias computation tech
niques without regard to dependence computation and subse
quent parallelization. Additionally, Coutant describes an algo
rithm that does flow-insensitive analysis rather than point-by
point alias analysis. 

(aJ Unix is a trade mark of AT&T Bell Laboratories. 

212 

Weihl [13] presents an algorithm for data flow analysis of 
programs containing pointer references. In contrast to this paper, 
Weihl develops his theory with the assumption that control flow 
information is not available. Alias computation in Weihl is 
somewhat conservative because he does not differentiate 
between multiple levels of pointer indirection. As with 
Coutant's algorithm, Weihl's technique collects alias informa
tion in a flow-insensitive marmer. Weihl also does not deal with 
the issues of arrays or structures. 

No discussion of dependence analysis would be complete 
without referencing the work of Allen [2] and Wolfe [14]. These 
works concentrate on the problems of dependence analysis in 
Fortran programs, specifically in the area of array references. 
Pointer expressions are not covered. 

Notation and Definitions 

This section defines some of the various phraseological and 
notational conventions used in this paper. 

Statement References. Statements within example pro
gram segments will frequently be referenced. Si refers to state
ment i in a C source program fragment, and will be labeled as 
such in accompanying figures. For any two statements, Si and 
Sj, i < j implies that Si lexically precedes Sj. 

Variable References. 

Definition 1-1. The Set of Referenced Variables, REF(S) 

If S is a C source statement, then REF(S) is the set of all 
variables referenced for input by that statement. For simple 
assignment statements not involving pointer expressions or 
the C increment and decrement operators, REF(S) 
corresponds to the variables that appear on the right-hand 
side (RHS) of the assignment operator. 

Definition 1-2. The Set of Generated Variables, GEN(S) 

If S is a C source statement, then GEN(S) is the set of vari
ables generated by that statement [1]. For simple assignment 
statements not involving pointer expressions or the C incre
ment and decrement operators, this corresponds to the vari
able that appears on the left-hand side (LHS) of the assign
ment operator. 

Definition 1-3. The KILL set 

If S is a C source statement, then KILL(S) is the set of reach
ing definitions [1] that is killed by that statement. For single 
assignment statements not using the unary 
increment/decrement operators, KILL(S) exactly equals 
GEN(S). 



Data Dependences. 

Definition 1-4. Flow Dependence 

A flow data dependence from Si to Sj' denoted as Si 0 Sj' 
exists if <X E GEN(Si), <X E REF(Sj) for some <X. Si is me 
source of me dependence and Sj is me sink of me depen
dence. Si must be executed before Sj- For example, Sl 0 S2 
in me following FOR loop: 

for(i = 1; i <= 10; i++) { 
ali] = b[i] + c[i]; 
d[i] = ali - 1] + b[i]; 

Definition 1-5. Anti·Dependence 

An anti data dependence from Si to Sj' denoted as Si ~ Sj' 
exists if <X E REF(SJ ' <X E GEN(S} for some <X. Si is me 
source of me dependence, and Sj is me sink of me deQ.en
dence. Si must be executed before Sj. For example, Sl 0 S2 
in me following FOR loop: 

for(i = 1; i <= 10; i++) ( 
ali] = b[i] + c[i]; 
b[i-l] = c[i] + d[i]; 

Definition 1-6. Output Dependence 

An output data dependence from Si to Sj' denoted as Si 0° Sj' 
exists if <X E GEN(S;) ,<X E GEN(S) for some <X. Si is me 
source of me dependence, and Sj is me sink of me dep.en
dence. Si must be executed before Sj. For example, Sl 0 S2 
in me following FOR loop: 

for(i = 1; i <= 10; i++) { 
ali] = b[i] + c[i]; 
ali-I] = b[i] + d[i]; 

DEPENDENCES AND POINTERS 

Overview 

Traditional flow dependence analysis focuses on computing me 
intersections of GEN sets of statements wim me REF sets of 
ome( statements. The existence of a non-empty intersection set 
between any two such statements indicates me existence of a 
dependence between me statements. For pointer variables, me 
problem is slightly more complicated. Once a pointer is 
assigned a valid address, me pointer may be used in two ways. 
One is to access me value stored in me pointer variable; this 
corresponds to a traditional scalar access to this variable in 
which no indirection is used. In me second way, me value is 
used to dereference me pointer one or more times (Le. a read 
access is done in me process of computing me address of me tar
get operand). Consider me following C program fragment: 

int a, *p, *q; 

Sl: p= &a; 
S2: q =p; 

213 

These pointer references are simply scalar references and are 
analyzed in me usual way [10]. The value of p computed in Sl 
is used in S2; merefore, a flow dependence exists from Sl to S2' 

Consider a second example: 

int a, *p; 

Sl: p=&a; 
S2: *p = 6; 

In this example, p appears on me left-hand side of me 
assignment in S2; however, it appears in a dereferenced form. 
This program fragment has me same dependence graph as me 
previous one, Le., a flow dependence exists from Sl to S2' Note 
mat me appearance of a dereferenced pointer expression in a 
statement always constitutes a fetch of mat pointer value, regard
less of which side of me assignment me pointer expression 
appears. Because me pointer value must be fetched in order to 
compute me final target address of me operand, it is always a 
member ofREF(Si)' . 

Consider one more example: 

int x, *p, **pp; 

pp=&p; 
*pp=&x; 
**pp= 3; 

Figure 1. Example of Multiple Dereferences 

In this example, me value computed in Sl for pp is used in 
S2. Similarly, it is used to dereference twice in S3' Therefore, a 
flow dependence exists from Sl to S2 and from Sl to S3' This, 
however, should be intuitively insufficient. If dependences only 
existed from Sl to S2 and S3, men S2 and S3 could execute in any 
order (or simultaneously) which is clearly not true for me given 
example. The reason for this is that dereferencing pp in S2 
yields a pointer, not a basic datum. This pointer is men derefer
enced in S3 to access me value of x. Therefore, a flow depen
dence must exist from S2 to S3 giving me complete dependence 
graph as given in Figure 2. 

Figure 2. Dependence graph for program in Figure 1 



Dependence Analysis Through Syntax Tree Matching 

An accurate analysis of program dependences with pointer 
expressions can be obtained by building syntax trees for expres
sions involving pointer expressions. Before describing the use of 
these syntax trees, five new definitions are presented. 

Definition 2-1. The Set of Trees of Referenced Variables, 
TREF(S) 

If S is a C source statement, then TREF(S) is the syntax tree 
corresponding to the expression for the variables that are 
referenced i . ent 
state , (S) is the abstract syntax tree for the expre -
ion to the right of the assignment operator [1]. 

,~f/.JV 
't\ /Definition 2-2. The Set of Trees of Generated Variables, 

TGEN(S) 
If S is a C source statement, then TGEN(S) is the set of syn
tax trees corresponding to the expressions that receive new 
values as a result of that statement. For assignment state
ments, TGEN(S) is the single abstract syntax tree for the 
expression to the left of the assignment operator. 

Definition 2-3. The TKILL set 
If S is a C source statement, then TKILL(S) is the set of syn
tax trees for expressions that are killed by that statement. 
For single assignment statements not using the unary 
increment/decrement operators, TKILL(S) . exactly equals 
TGEN(S). 

Definition 2-4. The Set of Equivalent Trees, TEQUIV 
TEQUIV is a set of unordered pairs of syntax trees (ex, (3) 
such that a aliases (3 (Le. a and (3 represent expressions that 
access identical data locations). TEQUIVi contains pairs of 
equivalences that are valid for statement Si. Additions to the 
TEQUIV set are made upon recognition of assignments to 
pointer expressions. For convenience, each a and (3 in 
TEQUIV is referred to as an expression. Additionally, for a 
given pair (ex, (3), a is the co-alias of (3, and (3 is the co-alias 
ofa. 

Definition 2-5. The TDEF set 
If Si is a C source statement, then TDEFi is the set of 
definitions reaching that statement [1]. 

Using these definitions, an algorithm will be described that 
allows the discovery of dependences in the presence of pointer 
expressions. The algorithm is very similar to those algorithms 
used to detect dependences in non-pointer environments (e.g. 
Fortran). Specifically, IN and OUT sets are computed and inter
sected, with the resulting intersections yielding information 
about inter-statement dependences. The major difference is that 
the set elements are syntax trees rather than simple identifier 
entries. This is done to facilitate the recognition of aliasing 
situations embedded within the expressions. 

The algorithm for determining dependences between C 
statements in a non-loop environment is given below. For 
simplicity, only flow and output dependences are checked. 
Additionally, all statements are assumed to be assignment state
ments. A more complete discussion about algorithm additions 
needed for anti-dependence discovery can be found in [8]. 
Dependences involving structures and loops are covered later. 

214 

Dependence Algorithm Definition. This algorithm com
putes dependences that exist after the analysis of a source state
ment Si. Before statement Si is analyzed, the set TDEFi is 
assumed to be valid. Initially, TDEFI is the null set. TEQUIVi 
must also be valid before statement Si is analyzed. Irtitially, 
TEQUIV I is the null set. 

STEP 1 -- Compute TREF(S;). 

First, the expression tree for the right-hand side of the 
assignment statement is built. With one exception, each 
identifier that appears as a leaf node in this tree is added to 
TREF(S;). The exception is the case of identifiers in the tree 
that have the C • 'address of" (&) operator as a parent node. 
The •• address of" operator causes the address of an identifier 
to be used in a computation rather than its value. Because 
this is a static compile-time address expression, it does not 
contribute to the data dependence graph for that program and 
so it is not entered in TREF(S;). 

Any subtrees rooted at the C dereference operator (*) are 
also included in TREF(S;). Irttuitively, a statement such as 

x=*p; 

generates two references. The first is the pointer, p, which is 
picked up during the frontier traversal. The second is *p, the 
value to which p is pointing. A similar case exists for any 
subtree rooted at (*). 

As previously mentioned, the left-hand side of the assign
ment statement must also be analyzed for inclusions into 
TREF(S;). Again, the syntax tree for the LHS expression is 
built. Similarly, identifiers on the frontier of the tree, along 
with subtrees rooted at (*) are considered for inclusion. This 
time, however, only proper subtrees are included in the 
TREF set. The subtree which is not a proper subtree 
represents a definition, not a reference for the given expres
sion. For example, in the statement 

p= ... 

the identifier, p, appears on the frontier of the expression 
tree, but is not a proper subtree and, therefore, is not 
included in the TREF set. This is correct because p is not 
being referenced in this context, but is being given a value. 
Similarly, in the statement 

*p= ... 

P is a proper subtree and is included in the TREF set. Notice 
that *p is a subtree rooted at (*) and must be considered; 
however, it is not included because it is not a proper subtree 
of the LHS syntax tree. 

The first pass ofTREF(S;) is now complete. The final step is 
to examine each element that has been put into TREF(S;) to 
check for any aliases that might exist. To do this, each ele
ment of TREF(S;) and TEQUIVi is examined. If any ele
ment of TREF(S;) is matched with any expression in 
TEQUIVi, the associated expression's co-alias is also 
included into TREF(S;). 

, 



STEP 2 -- Compute TGEN(S;). 

TGEN(S;) is initially set to the syntax tree for the LHS 
expression. Also added are the syntax trees for any expres
sions on the RHS that may result in a change in an 
identifier's value (such as a function call with the & operator 
applied to one or more arguments(b~. TEQUIVi is then 
searched to locate aliases (as in step 1). If any aliases are 
found, they are added to TGEN(Si). 

STEP 3 -- Compute dependences 

The intersection of TREF(S;) and TDEFi is taken. Any ele
ments common to both sets represent flow dependence arcs 
into this statement based on those elements. Similarly, any 
elements in the intersection of TDEFi and TGEN(S;) 
represent output dependence arcs into this statement based 
on those elements. (c) 

STEP 4 -- Update TDEFi+l 

TGEN(S;) is intersected with TDEFi. If the intersection is 
non-null, the common elements are removed from the TDEF 
set.(d) Now, the union ofTDEF and TGEN is taken, with the 
result being placed in TDEFi+l. Also, any element in the 
TDEFi set that contains an element of TGEN(S;) as a proper 
subtree is eliminated from TDEFi+l (killed). 

STEP 5 -- Update TEQUIVi+1 

Each element of TGEN(S;) is compared to the elements of 
TEQUIVi. If any element of the TGEN set appears as a 
proper subtree of any of the elements in TEQUIVi, the asso
ciated pair in TEQUIVi is removed and does not appear in 
TEQUIVi+1. The reason for this is as follows. Each element 
(alias pair) in the TEQUIV set is created during the analysis 
of statements involving pointer assignments. For example, 
the statement . 

p=expr; 

(where p is a pointer variable) creates the alias (*p, *expr) in 
the TEQUIV set. A definition of (or assignment to) *p, 
which is not a proper subtree, does not affect the alias rela
tionship whereas a definition of (or assignment to) p does. 
In general, a definition of any of the constituent expressions 
that is used in the dereferencing of an alias will kill that 
alias. 

After the necessary entries have been removed from the 
TEQUIV set, the LHS of the assignment statement is exam
ined. An LHS expression of type pointer results in the crea
tion of an alias and the pair (*LHS, *RHS) is added to 
TEQUIVi+I. If the LHS expression is not a pointer, no new 
aliases are created. 

(b) This is a pessimistic approach. Inter-procedural analysis could pro
duce be\ter results [5,6). 

(e) The above discussions have concentrated solely on the manipulation of 
syntax trees generated by each statement. For inter-statement dependence com
putation, statement numbers must be associated with each syntax tree in the 
TDEFset. 

(d) This is a KILL operation. For single assignment statements, the TGEN 
and TKILL sets .are equivalent. 

215 

Finally, a transitive closure is performed on the TEQUIVi+l 
set. For example, if TEQUIV includes the alias pairs (*a, 
*b) and (*b, *c), the pair (*a, *c) is added to the set. After 
this operation, TEQUIVi+1 and the dependence analysis for 
statement Si are complete. 

A Simple Example. The application of the outlined pro
cedures is shown in the context of the program in Figure 3. The 
analysis steps are shown in Table 1. For convenience, syntax 
trees are not depicted graphically; rather, they are denoted by 
their infix representation. 

tnainO 
{ 

sl: 
s2: 
s3: 
s4: 

int x, y, *p, **pp; 

P =&x; 
pp =&p; 
*pp=&y; 
*p =3; 

Figure 3. 

Before beginning the analysis, TDEFI and TEQUIVI are both set 
to the null set because no definitions or equivalences are valid at 
the point just before statement SI. 

The final dependence graph, following complete analysis, is 
shown in Figure 4. 

Figure 4. Dependence graph for program in Figure 3 



51 TREF(51) TGEN(51) DEPENDENCES TDEFI+I TEQUIVi+1 

51 {} {p} {} {(p,51)} {(*p,X)} 

52 {} {Pp} {} {(p,51),(pp,52)} {(*p,X ),(*pp,p ),(**pp,X)} 

53 {pp} {*pp,p} {(52 5 5s),(51 5° 5s)} {(*pp,5s),(p,5s),(pp,52)} {(*pp,p ),(**pp,y ),(*p,y)} 

5, {p} {*p,y} {(5a 55J} - -

NOTES: 

51: Although it may appear that x could be referenced by this statement, its associated node in the syntax tree has the &; 
operator as a parent and is therefore not include in TREF. Since TDEF I is the null set, there are no dependence arcs 
leading to this statement. Note that the elements of the TDEF sets include line numbers as well as syntax trees so that 
inter-statement dependence arcs may easily be computed. TEQUIVa (reduced from {(*p,*(&x))}) has an entry because 
the LHS of 51 is a pointer-type expression. 

5a: For TEQUIVs, the last alias in the set was derived from the closure of aliases one and two (*PP substituted Cor p in the 
first pair). 

5s: The generation oC *pp is derived directly Crom the stmt; the generation oC p is ascertained through the second alias in 
TEQUIVs. The flow dependence exists because TDEFs shows a definition of pp in 5a and TREF(5s) shows a use oC pp. 
The output dependence is discovered because TDEFs shows a definition oC pin 51 while TGEN(5s) also shows a definition 
oC p. TGEN(5s) contains *pp and p. TEQUIV3 contains the pair (*p,x) oC which p is a proper subtree and is therefore 
deleted. It also contains the pair (**pp,x) oC which *pp is a subtree; thereCore, this pair is also deleted. The pair 
(*PPtp) remains in the TEQUIV set. Additionally, the pair (**PPtY) is added as a result oC the assignment statement 
(The LHS is a pointer expression). From the transitive closure, the last pair, (*PtY), is derived. 

5,: The flow dependence is discovered because TDEF, shows a definition oC pin 5s and TREF(5,) shows a use of p. 

Table 1. Analysis Summary of Program in Figure 3 

STRUCTURES AND LOOPS 

Overview 

This section focuses on dependence analysis for loops that 
operate on structures and pointers. Rather than attempting to 
outline a procedure that would lead to vectorization of these 
loops, an attempt is made to identify those aspects of C loops 
that can inhibit parallelization. (e) 

A typical example of a loop operating on a null-terminated 
list structure is shown in the program in Figure 5. The goal is to 
detel11lip.e if any dependences exist within the body of the 
WHILE loop that prohibit its parallelization. 

In the analysis of the the WHILE loop in Figure 5, several 
issues warrant consideration. First, parallel execution of the loop 
iterations requires that all pointers to the individual instances of 
structl be available before initiation of the parallel loop. 

(oj Here. loop parallelization is defined as the execution of complete loop 
bodies by individual processors. Each processor works on an iteration in paral
lel Witil all iterations of the loop have completed. Within each processor. the 
entire loop body is executed serially. 

216 

Second, dependence analysis of the loop requires knowledge 
about the sequence of values that ptr will assume. The program 
in Figure 5 shows that ptr traverses the list threaded by the next 
fields. However, a general algorithm needs to locate the "next" 
and/or "previous" fields, as well as the pointers that traverse 
them in an arbitrary loop body. These issues are discussed in 
more detail in [8]. 

Basic Loop Dependence Recognition 

As with any dependence analysis operation, the OUT and 
IN sets are constructed and intersected. Within loop constructs 
however, an additional dimension is present. Before discussing 
references within loops, the following definition is presented. 

Definition 3·1. Reference Distance 

Let P be a pointer variable or pointer expression to some 
structure within a looping constrUct. Further, let next be a 
pointer member within the structure that threads the struc
tures together and is used to provide a path across structures 
that corresponds to successive iterations of the looping con
struct. The reference distance for an expression is then the 



mainO 
{ 

int 
struct 

}; 

x,y,z; 
structl { 
struct structl *next; 
int fieldl; 
int field2; 
int * fieldptr; 

struct structl *ptr; 

ptr = (some initial value); 

while (ptr != NULL) { 

(expr's involving ptr and structl) 

ptr = ptr -> next; 

FigureS. 

number of times the next field is dereferenced for that 
expression. For example, P -> field has a reference distance 
of 0; P -> next -> field has a reference distance of I; etc. For 
those structures that have a previous field that represents 
structures accessed in past iterations, the reference distance 
for an expression is the number of times the previous field is 
dereferenced for that expression.(f) For references involving 
the previous field, the reference distance is negative. Note 
that references of the form P -> next have a reference dis
tance of 0 since the next field is not dereferenced; rather, it is 
the target of the reference. Note also that references within 
the loop to identifiers such as global scalars that are not 
located within the structure being traversed have an infinite 
number of reference distances because they can be accessed 
from any iteration. 

Once the reference distance for each identifier reference in 
a loop body is known, dependence information is easily comput
able. Consider two member references in a loop, rr and rw' 
where rr is a read reference and rw is a write reference that have 
reference distances dr and dw, respectively. Further, references rr 
and rw are located in two statements, Sr and Sw, which are not 
necessarily distinct and in no particular lexical order. If dw > dr' 
then Sw 0 Sr' reKardless of the lexical ordering of Sw and S,.. If 
dw < d,., then Sr 0 Sw, regardless of the lexical ordering of Sw....and 
S,.. If dw = dr' then Sw 0 Sr if Sw lexically precedes Sr and Sr 0 Sw 
if Sr lexically precedes Sw' 

Output dependences can also be computed with the refer
ence distance information. Consider two identifier references in 
a loop, rwl and rw2, which are both write references that have 
reference distances dwl and dw2, respectively. Further, refer
ences rwl and rw2 are located in two statements, Swl and Sw2 
which are in no particular lexical order. If dwl < dw2, then 

co The next and previous fields represent the forward and backward 
pointers in a doubly-linked list structure. Pointer expressions "that use the next 
field are exactly analogous to array expressions in loops that use the index vari
able plus one. Pointer expressions that use the previous field are exactly analo
gous to array expressions in loops that use the index variable minus one. 

217 

Sw2 0° Swh regardless of the lexical ordering of Swl and Sw2. If 
dwl > dw2, then Swl 0° Sw2, regardless of the lexical ordering of 
Swl and Sw2' If dwl = dw2, then Swl 0° Sw2 if Swl lexically pre
cedes Sw2 and Sw2 0° Swl if Sw2lexically precedes Swl' 

Analysis for Loop Parallelization 

In order to execute the iterations of a loop in parallel with 
no synchronization, dependences may only exist between state
ments of that loop that have expressions of equal reference dis
tances. Pairs of references with unequal distances imply that 
unsynchronized accesses to the same location will occur in two 
or more processors. The absence of synchronization could cause 
nondeterministic results when compared to serial execution. 
Equal dependences may be ignored because they result from 
iterations accessing the same location within the same loop 
iteration. Because the goal is complete loop parallelization, 
equal dependences will be enforced by the serial execution of 
each iteration within a single processor. For completeness, how
ever, all dependences will be computed. 

Dependence Analysis for Structures and Loops 

The procedure for analyzing dependences across loop itera
tions is the same as the tree-matching algorithm presented ear
lier, with two additions. The first is the analysis of structure 
references, the second is the analysis of the statements within 
loop bodies. 

The analysis of structure references requires slightly more 
work than the analysis of scalar references because they may 
comprise various levels of detail. For example, in the sequence 

struct sl { 

} a; 

struct s 1 *next; 
int x; 
int y; 

SI: a = ... 
S2: = a.x; 
S3: a.y= ... ; 

Figure 6. 

there is a flow dependence from SI to S2 because all of the fields 
in structure a are written in SI and one of these fields is read in 
S2. However, there is no anti-dependence between statements S2 
and S3 because there is no overlap in the memory space specified 
by these two references.(g) 

Many of the references involving structures are of the form 
0.->[3, where a. is a pointerto a structure and [3 is a field within 
that structure. These references sllOuld be stored internally as 
(*o.).(offset,length), where "offset" is the number of bytes from 
the beginning of the record where the field, [3, begins and 
"field" is the total number of bytes occupied by the referenced 
field. If no field is specifically referenced, then (0, sizeof(*p» is 
inserted for the field. This allows more accurate analysis of 

W This can be complicated by the unIon construct in C, but should al
ways be computable if the idea of overlapping memory space is used. "This is 
essentially the Same idea as the "Overlaps With" set in [7]. 



memory overlap conditions in the presence of union constructs 
and cast pointer references. Storing the offset and length instead 
of identifier names for fields serves two purposes. One is that 
Step I of the tree matching algorithm will not add the identifier 
name associated with the fields to the TREF set. Another is that 
the offset aids in uncovering additional aliasing problems that 
may be introduced with structures. An example of this will be 
presented later. 

Maintaining pointer applications in a canonical form aids 
the process of alias recognition throughout the dependence 
analysis algorithm. Therefore, references such as p->x and p
>next->x are stored as (*p).(4,4) and (*«*p).(O,4»)).(4,4), 
respectively, with the corresponding syntax trees shown in Fig
ure 7.(h) 

With all structure references organized in this way, the tree 
matching algorithm can be modified to work with structures. As 
originally presented, Step I of the algorithm traversed the fron
tier of the expression tree for the RHS and added all leaf nodes 
and subtrees rooted at .. *" to the TREF set. Step I must also 
add subtrees rooted at ••. " to the TREF set. For the example of 
p->next->x, Figure 7 shows that «*p).(O,4» and 
(*«*p).0»).(4,4) are added to TREF. When this operation is 
complete, transitive closure of the TREF set using TEQillV is 
done as before. 

Figure 7. Syntax trees for p->x and p->next->x 

Step 3 of the tree matching algorithm is also slightly dif
ferent. When considering structures, dependences are recog
nized by locating intersections between memory spaces of fields. 
For example, the program in Figure 6 indicates a dependence 
between statements 1 and 2 because field x's extent(i) (4,4) over
laps with structure a's extent (0,12). With pointers and multiple 
structure definitions, the problem is more complex, but still solv-' 
able. Consider the program in Figure 8. The flow dependence 
from S3 to S4 can be recognized by following the augmented tree 
matching algorithm. At statement S3, TEQUIV3 is {(*p, x), (*q, 
*p), (*q, x)}. TGEN(S3) is {«*p).(5,4», «*q).(5,4», (x.(5,4»)} 
Similarly, TREF(S4) is {«*q).(8,4)), «*p).(8,4», (x.(8,4»}. 
Because a definition for byte 8 of structure x exists in statement 
S3 (bytes 5, 6, 7, and 8 are defined with the offset/length pair of 
(5,4» and a reference of byte 8 exists in statement S4, statement 
S4 is flow dependent on statement Ss. 

• (b) Offset ~elds have been computed with the asswnption that pointers 
and mtegers reqwre4 bytes of internal storage. 

(I) Length/offset pair. 

218 

mainO 
{ 

struct sl { 
struct s 1 *next; 
char a; 
int b; 

} x, *p; 

struct s2 { 
struct s2 *next; 
int c; 
int d; 

} *q; 

S,: p=&x; 
S2: q = (struct s2 *) p; 
S3: p->b= ... ; 
S4: ... =q ->d; 
} 

Figure 8. Example of multiple structures!ptrs 

Step 3 of the tree matching algorithm also needs another 
addition to be able to work within the context of inter-iteration 
dependence analysis. As mentioned earlier, only dependences 
between statements that have references of unequal reference 
distance are of interest. This means that when intersecting the 
TDEF and TREF sets (for flow- and anti-dependences) and the 
TDEF and' TGEN sets (for output dependences) the analyzer 
must be able to recognize overlapping accesses in the presence 
of multiple levels of indirection. For example, in the sequence 

S,:p->a= ... ; 
Sz: ... = p -> next -> a; 

the analyzer must recognize that the expression in Sz references 
the same element as is defined by Sz, except in a different 
(future) iteration. Therefore, when comparing these syntax trees, 
the analyzer must be able to tolerate zero or more occurrences of 
"next ->" subexpressions and still find a match. 

As previously mentioned, only those dependences which 
develop as a result of expressions of unequal reference distance 
are of interest in parallelization. These are the dependences that 
can not be honored with parallel execution of loops. Depen
dences occurring between expressions of equal reference dis
tance will be enforced through the serial execution of the loop 
body in each processor. 

As outlined, the tree matching algorithm focused solely on 
the analysis of straight-line code; therefore, the propagation of 
TDEF information was strictly linear. For looping constructs, 
this information must also propagate from the end of the loop 
body back to the beginning because the control flow of the con
structs follows this behavior. Therefore, there is a cyclic flow in 
this information; any ~efinition available at any point in the loop 
is available to any other statement in the loop. This is the same 
technique that is applied in any flow analysis problem [1,4]. 



There are two problems with the proposed dependence 
analysis technique. One is that the use of pointers and structures 
creates the possibility of circular lists. Consider the following 
example: 

while (p != 0) { 

I'" reads and writes on fields pointed to by p "'I 
I'" assume all "flag" fields are start at 0 "'I 

if «P -> flag) == 0) { 
p->flag = 1; 
p= P -> next; 

} 
else p = p -> aux-ptr; 

This loop traverses a linked list "marking" each structure after 
doing some processing on it. The program works when executed 
sequentially because the flag field can be used to control the exit 
from the circular list (no structure is ever processed twice in this 
example). In the parallel case, however, a race condition could 
exist. Because the list is circular, the notion of indirection dis
tance is not valid. A write of p -> field and a write of p -> 
(next-+)n field will conflict for some n. The circularity in the 
data structure is probably not detectable at compile time and 
must be resolved through the use of assertions communicated 
either interactively or through source code additions. 

Another inherent problem with the dependence algorithm 
is its complexity. Unlike languages such as Fortran where 
aliases may only be created at procedure call interfaces or 
through explicit instructions such as EQUlV ALENCE, C's sup
port for pointers allows the creation of aliases anywhere in the 
program. For this reason alias analysis must be combined with a 
detailed flow analysis to minimize the number of conselVative 
assumptions made by the compiler. Without global analysis, for 
example, a pointer received as a function parameter would have 
to be assumed to alias all variables global to that function in 
order to be conseIVative. G> 

The potential time and space consumption for such an 
operation could be substantial. Transitive closure for the 
TEQUlV set can be an O(N3) time operation [11], where N is the 
number of pointer expressions appearing in the program on the 
LHS of assignment statements. (k) Conditional execution con
structs such as IF statements and loops compound the flow 
analysis problem. Additional research is needed to reduce the 
amount of unnecessary computation for analysis and to eliminate 
significant sections of analysis which yield little speedup. 

SUMMARY 

Even in the presence of pointer expressions, dependence 
analysis of C programs is a solvable problem. By doing point
by-point alias computation in conjunction with program flow 
analysis, the number of conselVative assumptions made by an 
optimizing restructuring compiler can be reduced. 

fj) For most C programs, this requirement could be reduced to all g10bals 
of the same tYPe as the pointer, but this is not a strict requirement 

(k) And other Ivalue type operations such as call-by-reference paranieters. 

219 

Because of the flexibility of the C language, alias analysis 
must be thorough. Alias infonnation can be stored as pairs of 
abstract syntax trees, representing pairs of expressions that point 
to the same memory location. Additionally, the traditional use
definition infonnation can be stored as abstract syntax trees 
using the alias pairs in a transitive closure operation to compute 
all possible references and definitions. After computing these 
sets of trees, sufficient infonnation exists to discover dependence 
infonnation needed for parallel restructuring. 

Many issues with respect to the restructuring of C remain 
unanswered. First, pointers create a unique problem for depen
dence analysis that does not typically appear in the analysis of 
arrays. This is the problem of circular lists. If user data struc
tures are linked together in some arbitrary way, the compiler has 
no way to detennine dependence distance with certainty. In the 
short tenn, this problem can be alleviated with the insertion of 
programmer assertions into the source code, but this solution is 
suboptimal since users are prone to err. Perhaps additional 
analysis techniques could be found to compute this infonnation 
automatically. 

Second, the tree pattern matching algorithm described is 
likely to be time consuming (being at least O(n3». The problem 
is exacerbated by the fact that C applications tend to be modular. 
This modularity requires compilation environments to perfonn 
extensive global analysis to be effective. Additional research is 
needed to determine the exact cost of the alias computation algo
rithm. Furthennore, the cost must be weighed against the 
improvement seen in programs as measured by speedup. Hope
fully, studies of this type will help point the way to an 
"optimal" compilation environment which can recover the 
majority of available parallelism with the least amount of compi
lation overhead. 

ACKNOWLEDGEMENTS 

This work was supported in part by the National Science 
Foundation under Grants No. US NSF MlP-84 101 10, the U. S. 
Department of Energy under Grant No. US DOE-DE-FG02-
85ER25001, the U.S. Air Force Office of Scientific Research 
Grant No. AFOSR-F49620-86-C-0136, and the IBM Donation. 

[1] 

[2] 

[3] 

[4] 

REFERENCES 

A. V. Aho, R. Sethi and J. D. Ullman. Compilers - Prin
ciples. Techniques. and Tools. Addison-Wesley, 1986. 

J. R. Allen. "Dependence Analysis for Subscripted Vari
ables and Its Application to Program Transfonnations", 
Rpt. No. 82-1105, Rice University, Dept. of Mathemati
cal Sciences, Apr., 1983. 

U. Banerjee. "Speedup of Ordinary Programs", Rpt. 
No. UIUCDCS-R-79-989, Ph.D. Thesis, University of 
illinois at Urbana-Champaign, Urbana, illinois, October, 
1979. 

J. Barth. "An Interprocedural Data Flow Analysis Algo
rithm," Proceedings of the 4th A(:M Symposium on 
Principles of Programming Languages (1977), pp. 119-
31. 



[5] M. Burke and R. Cytron. "Interprocedural Dependence 
Analysis and Parallelization," Proceedings of SIGPLAN 
1986 Symposium on Compiler Construction, SIGPLAN 
NOTICES,21 (7) (1986), pp. 162-75. 

[6] K. D. Cooper, K. Kennedy and L. Torczon. "The Impact 
of Interprocedural Analysis and Optimization on the 
Design of a Software Development Environment," 
Language Issues in Programming Environments. Papers 
of the ACM SIGPLAN 1985 Symposium (lu1y, 1985), pp. 
107-16. 

[7] D. Coutant. "Retargetable High-Level Alias Analysis," 
ACM Symposium on Principles of Programmin 

~Liinguage$ (january, 1986), PIli lUl::::..I-1..L1a..8. ____ _ 
/ ~ 

,/ [8] V. A. Guarna lr. "Analysis of C Programs for Paralleli-
/ , zation in the Presence of Pointers", CSRD Report No. 
i \. 695, M.S. Thesis, Univ. Of lllinois, Center for Super-

computing Research and Development, Urbana, illinois, 
-..... --
[9] 

December, 1987. 
..... --._-
B. Kerrnghan_Jl!ld R. Pike. The Unix Pro 
Enyironment. Prentice-Han, 198"4:----_ .. -

220 

[10] D. A. Padua and M. 1. Wolfe. "Advanced Compiler 
Optimizations for Supercomputers," Comm. ACM 29 
(December, 1986), No. 12, pp. 1184-1201. 

[11] E. Reingold, 1. Nievergelt and N. Deo. Combinatorial 
Algorithms - Theory and Practice. Prentice-Hall, 
Englewood Cliffs, N.l., 1977. 

[12] University of California. UNIX User's Manual, Refer
ence Guide--4.2 Berkeley Software Distribution. Com
puter Science Division, University of California, Berke
ley, California, 1984. 

[13] E. W. Weihl. "Interprocedural Data Flow Anlyisis in the 
Presence of Pointers, Procedure Variables, and Label 
Variables," Seventh Annual ACM Symposium on Princi
ples of Programming Languages (1980), pp. 83-94. 

[14] M. Wolfe. "Optimizing Compilers for Supercomput
ers", Rpt. No. UlUCDCS-R-82-11 05, Ph.D. Thesis, 
University of illinois at Urbana-Champaign, Urbana, 
illinois, October, 1982. 



• INTERPROCEDURAL ANALYSIS FOR PARALLEL COMPUTING 

Zhiyuan Li Pen-Chung Yew 

Center for Supercomputing Research and Development 
University of Illinois at Urbana-Champaign 

104 S. Wright Street 
Urbana, Dlinois 61801 

Abstract - This paper presents an approach to performing 
interprocedural analysis for program restructuring and paral
lelization. Compared to previous approaches, it provides 
more information needed for most data dependence test 
schemes. It is quite effective in loop parallelization, loop res
tructuring, as well as array alias recognition (without array 
linearization). The paper also discusses the issue of recursive 
calls in program parallelization. It is shown that the pro
posed approach can handle recursive calls quite effectively. 

I. Introduction 

In the past few years, there has been tremendous 
increase in the speed of computers designed for scientific com
puting. One of the major factors is the improvement in the 
design of parallel systems. To fully. capitalize on these 
advanced computers, an optimizing compiler should identify 
independent subtasks in a program which can be executed in 
parallel. Especially, it is very important to uncover loops 
whose iterations can be executed concurrently, since loops 
usually contain most computation in a program. 

. Intraprocedural analysis for parallelism has been studied 
for many years and has seen great progress. For programs 
without procedure calls, techniques for program restructuring 
and parallelization have been studied for more than a decade 
[2, 5, 21, 24, 26, 32, etc.). However, handling loops with pro
cedure calls is not well understood. When a loop has pro
cedure calls, in the absence of information from the called 
procedure, the loop often has to be serialized. Conventional 
interprocedural analysis can provide a lot of information [3, 
9, 10, 12, 14, 15, 17, 18, 20, 30, 31, 36). Nonetheless, it 
ignores subscript details in array references, therefore it is 
usually not sufficient for loop parallelization [11, 34, 35). In 
an experiment using LINPACK programs [16), we examined 
all the subroutines except those for complex-valued computa
tion (which are in essence the same as their counterparts for 
real-valued computation). In those examined subroutines, 
there are 166 DO-loops, 99 of which contain procedure calls. 
Without information from the called procedures, these loops 
would have to be serialized. With conventional interpro
cedural analysis, only 9 procedure calls could be parallelized 
even after all other optimization techniques are applied, while 
27 procedure calls in total could have been parallelized with 
more powerful techniques [28). Moreover, a conventional 
interprocedural analysis does not recognize aliases as pre
cisely as desired for program parallelization [11). 

One could use in-line expansion [18) to eliminate pro
cedure calls before optimizing a program for parallel 
machines. [19) discussed this approach. It expands the 

*This work was supported in part by the National Seienee Foun
dation under Grants No. US NSF MIP-8410110 and the US Depart
ment of EnerlD' under Grant No. US DOE DE-FG02-85ER25001, and 
by a donation from the mM Corporation. and by a donation from the 
CDC Corporation. 

221 

procedure calls by SUbstituting each call statement with the 
body of the called procedure. After expansion, the entire pro
gram consists of only one routine. Although simple and 
effective, the expansion method has many well-known limita
tions (see e.g. [18, 28, 34, 35)). 

In order to process loops with procedure calls more 
effectively, new techniques for interprocedural analysis are 
needed. Works on this subject are still quite limited [11, 28, 
34, 35), and the issue of recursive calls is basically untouched. 
Array aliasing has not been handled except in [11) where 
array linearization was considered a solution. However, in 
many cases, linearizing an array may risk losing accuracy of 
analysis [29, 37). A scheme was presented in [34, 35) to iden
tify parallel loops with procedure calls, where programs are 
assumed to contain no recursion. The scheme is to analyze 
data dependences by checking the consistency of a set of 
linear inequalities which represent array references in regular 
statements and in called procedures. Checking such con
sistency is very timEH:onsuming [27, 34, 35) • 

This paper is intended to present a new approach which 
can provide sufficient information for efficient data depen
dence test schemes. The approach works for programs with 
recursion and is quite effective for loop parallelization, loop 
restructuring, as well as array alias recognition (without 
array linearization). Our experiment [28) shows that this 
approaCh is much more efficient than the one presented in 
[34,35). 

2. Do-Loops and Atom Images 

2.1 Parallel loops 

Throughout this paper, a loop is said to be parallel if the 
iterations of the loop can be executed simultaneously without 
interaction. Our objective is to automatically identify paral
lel loops with procedure calls, some of the procedure calls 
may be recursive. Data dependence and alias should be 
analyzed for this purpose. Some loops may need restructur
ing (e. g. loop distribution and loop interchange) before they 
can be parallelized. These are discussed in [28). 

The examples in figure 2.1 illustrate the nature of our 
problem. (Although we do not restrict ourselves to any 
language, the syntax and semantics in the examples are con
ventional and straightforward.) In Example I, PROC1 calls 
PROC2 from inside a loop. PROC2 recursively calls itself. 
The loop in PROC1 is parallel. Example 2 shows a different 
pattern of array indexing. In PROC4, the parameter K 
changes with every call to PROC4. However, the loop in 

PROC3 is still parallel. In example 3, the loop in PROC5 is 
not parallel. In all examples, it requires interprocedural 
analysis to decide whether there are data dependences across 
the iterations of a loop. If·there are no dependences across 
the iterations the loop is parallel. The above observation is 
under the ass~mption that no aliases are present. Otherwise, 



Example 1 (i loop i8 parallel) 

PROCEDURE PROCI 
DOi= ... 

Example 3 (i loop i8 parallel) 

PROCEDURE PROC3 
DOi= ... 

Example 3 (i loop i8 not parallel) 

PROCEDURE PROC5 
DOi= ... 

CALL PROC2(A, i) 
ENDDO 

CALL PROC4(A, I, i) 
ENDDO 

CALL PROC6(A, i) 
ENDDO 

RETURN RETURN RETURN 

PROCEDURE PROC2(B, j) 
DOK= ... 

PROCEDURE PROC4(B, K, j) 
B(K, j) = B(K, j) + ... 

PROCEDURE PROC6(B, j) 
DOK= ... 

B(K, 2*j) = B(K, 2*j-I)/2 

ENDDO 
IF ( ... ) 

ENDDO 
IF ( ... ) 
THEN RETURN 

B(K, j) = B(K, j-l)/2 

ENDDO 
IF ( ... ) 

THEN RETURN 
ELSE CALL PROC2(B,j) 
RETURN 

ELSE CALL PROC4(B, K+1, j) 
RETURN 

THEN RETURN 
ELSE CALL PROC6(B,j) 
RETURN 

Figure 2.1 

it becomes more complicated. 

2.2. Data dependence test 

Data dependence analysis is the most important analysis 
for loop parallelization and loop restructuring [2, 4, 7, 8, 38]. 
The commonly used schemes for data dependence test ([2, 4, 
7, 8, 38]) are based on the Diophantine equations derived 
from the subscripts of array references. They need to know 
precisely the coefficients of loop indexes in each array sub
script. These schemes have linear complexity with respect to 
the depth of loop nesting. In [34, 35], array subscripts are 
represented by a set of linear inequalities. To capture the 
global effect of array references in a procedure, those inequali
ties representing references to array parameters, called gl06al 
regions, are propagated to the routines which invoke this pro
cedure. The exact coefficients of loop indexes are not avail
able from global regions. The only data dependence test 
scheme can be used in this approach is to check the con
sistency of a given set of ,linear inequalities. This scheme is 
very time-consuming. Theoretically, its complexity grows 
exponentially when the depth of loop nesting increases [13, 
27, 34, 35]. Experimentally, [34] has reported an increase of 
testing time over those linear-time schemes by a factor of 22 
to 28 on average. Moreover, this scheme does not give 
integral solutions which in some cases are critical. Therefore, 
this consistency checking scheme should only be tried when 
less expensive schemes failed. 

When analyzing a loop without procedure calls, if sub
script expressions are linear functions of loop indexes, they 
can be formulated precisely with a data structure called atom 
(see figure 2.2). Atoms provide the information needed in the 
linear-time schemes. Parafrase (an optimizing restructurer 
developed in University of lllinois [21, 22, 26, 32, 33, 38, etc.]) 
and its derivatives use this format for all of its test schemes. 
An atom is essentially a two-dimension matrix (figure 2.2). 
The name of an atom is the name of the referenced variable. 
If it is a read (or write) reference, the atom is called a read 
(or write) atom respectively. The matrix is empty tor scalar 
references. For an array reference, each row of the atom 
corresponds to one dimension of the array, and each column 
(except the first one and the second one) corres~~~ds ~? one 
of the loop indexes. The first column, marked lInear, has 
boolean entries which indicate if the SUbscript expression in a 

222 

particular dimension is linear. Each entry in the second 
column, marked "const", is the constant term (with respect to 
the loop indexes) in a subscript. Each entry in the column 
marked "~" is the coefficient of index Ii in a subscript. If any 
non-index variable of unknown value appears in the subscript 
of a particular dimension of the array, in most cases, this 
dimension has to be marked as nonlinear and dependence is 
always assumed in this dimension. Note that data depen
dence exists between two references of an array only if it 
exists in every dimension. 

2.3 Atom images 

In order to perform data dependence test on a loop with 
procedure calls, atoms should be generated for variables 
referenced in the called procedures that can cause side effects 
in the calling procedure. Moreover, loop bounds in the called 
procedures should also be known. We introduce a data struc
ture called atom image (Figure 2.3) to propagate subscript 
details and loop bounds from lower-level procedures. The 
name of an atom image is the name of the referenced variable 
declared in the called procedure. Atom images are bound to 
atoms when upper-level routines are analyzed. Atom images 
are generated only for references to formal variables and glo
bal variables which we shall call parameters. Without loss of 
generality, we assume two-level name scoping as in Fortran. 
Discusaions can be generalized to name scoping with more 
levels by following the straightforward way suggested in [14]. 
In Fortran programs, parameters of a routine are variables in 
the argument list and variables in COMMON blocks. In Fig
ure 2.3, each row with a entries corresponds to one of the 
dimensions of the array, and each row with f3 entries 
corresponds to one of the upper bounds of the loops (loops are 
normalized so that lower bounds and index steps are always 
1). Each column (except the first one and the second one) 
corresponds to one of the loop indexes II, 12, ••• , 1,. The 
indexes are ordered by loop nesting: II the outermost loop, I, 
the innermost. Column "linear" has boolean entries which 
indicate whether a subscript (or a loop upper bound) is a 
linear expression of the loop indexes. Column "cond" is the 
constant term (with respect to . loop indexes) in a subscript. 
Each entry a,,, denotes the coefficient of loop index Ii in 
dimension i of the subscript, and the entry f3i,i denotes the 
coefficient of loop index Ii in UB(, the upper bound of loop 
with index Ii' ai" and hi can be expressions which contain 



DO I = 1, 100 
DO J = 1, 100 

A(I+J, I) = 
ENDDO 
ENDDO 

dim I 
dim! 

atom name: A 

linear conat 

T 0 
T 0 

Figure 2.2 (a) The atom for A(I+J, I) 

linear const I I. 
dim I T/F 41,0 41,1 al,2 

dim! T/F 42,0 42,1 a2,2 

dim T/F a 'n a a" 

I 
1 
1 

I. 

41,1 

a2,1 

a 

Figure 2.2 (b) A general representation of an atom 

J 
1 
0 

parameters. Figure 2.4 gives an example of an atom image. 

Suppose we have a loop as shown in Figure 2.5. Since 
subroutine SUB has a left-hand side atom image (see Figure 
2.4), the CALL statement has a write atom shown in Figure 
2.5. We assume array A's bound in each dimension is the' 
same in both the calling routine and SUB. Loop upper bound 
K passed from SUB (now becoming N-I) should also be 
retained for the dependence test. 

2.4 Binding atOIn ilnagell to atoms 

Consider a call site where procedure PI! calls P1. Two 
aspects should be considered in the binding of atom images in 
Pl to atoms in PI!. (1) For each array A in Pl, its matching 
array B in PI! should be found if A is a parameter. Moreover, 
the mapping function from an A element to a B element 
should be decided (for details, see [28]). (2) The expressions 
in an atom image (i.e. cri,i and f3i,i in Figure 2.3) should be 
evaluated so that the coefficients of the matching atom and 
the loop bounds can be decided. This is done by finding the 
values of parameters appearing in those expressions. If a 
parameter is a formal variable, its value should be the actual 
argument at the call site, which may be one of the following: 

(1) a constant; 
(2) a variable whose initial value at the call site 
remains constant. (Note that a variable with con
stant initial value may be updated inside the called 
procedure. ) 
(3) a loop index; 
(4) a non-index variable of unknown value; 
(5) an expression formed by factors from the above. 

H a parameter is a global variable, its value may be a con
stant, a non-index variable of unknown value or a variable 
whose initial value at the call site is constant. 

Generating atom images for references in regular state-

linear const I I. I. 
diml T/F alia (XI,I 0'1,2 al,I 

dim. T/F tl'2,O 0'2,1 Q'2,2 cr2,1 

dimd T/F crdn cr crd.' cr 

UBI T/F f3 I ,o - - -
UB2 T/F f32,o f32,1 - -
UB T/F f3l.0 fl, fl,. -

Figure 2.3 An atom image 

223 

SUBROUTINE SUB(I, A, K) 
DO J = 1, K 
A(I+J, I) = ... 

ENDDO 
RETURN 

atom image name: A 

linear const 

dim I T I 
dim. T I 

J T K 

Figure 2.4 The atom image for A(I+J, I) 

DO I = 1, N 
CALL SUB(I, A(1, 2), N-I) 

ENDDO diml 
dim. 

Figure 2.5 

atom name: A 

linear const I 
T 0 1 
T 1 1 

J 
1 
0 

-

J 
1 
0 

ments (i.e. statements without procedure calls) is obvious. 
For call statements, atom images may need to be propagated 
through multiple levels. Suppose Pl is called by PI!, and PI! 
called by pa. If an atom image from Pl is bound to a vari
able which is a parameter in PI!, then the reference described 
by the atom image from Pl also affects pa. The atom image 
should be bound to an atom image generated in PI!. The 
latter will be propagated to pa. Binding an atom image to 
another atom image is similar to binding it to an atom. 
However, the coefficient expressions (see Figure 2.3) in the 
new atom image may again contain parameters which are to 
be evaluated in pa. Note that if an atom image in Pl is 
bound to an atom whose name is local to PI!, then there is no 
need to generate a new atom image. This reduces some work 
for data dependence test in pa. 

3. Ullage of AtoIn IInagell 

3.1 Loop parallelillation 

Figure 3.1 shows a loop structure, in which we want to 
decide whether the loop indexed by i .. is parallel. In the loop 
structure, loop body may contain more loops which are not 
necessarily perfectly nested. Consider two statements, 81 and 
81!, in loop body. 81! depends on 81 if and only if (1) there is 
an execution path from s1 to sf!; (2) sl has a reference rl, sl! 
has a reference rl!, such that the Diophantine equations which 
equate the subscripts in rl and r2 have integral solutions 
within the loop bounds. Obviously, how the loops inside loop 
body are nested does not affect the solution of the Diophan
tine equations. Only the loop bounds and array subscripts 
have significance. [38J defined the direction of a data depen
dence for each loop index. Consider a data dependence from 
rl to rl!, the dependence direction with loop index i", may be 
a combination of the following: 

(1) "=" direction. The Diophantine equations have a 
solution in which the value of i .. for rl equals to that 
for rf!; 
(2) "<" direction. The Diophantine equations have a 
solution in which the value of i .. for rl is smaller than 
that for rf!; 
(3) ">" direction. The Diophantine equations have a 
solution in which the value of i .. for rl is greater than 
that for rl!. 

A loop is a parallel loop if and only if the loop does not have 
a data dependence with "<" direction when all of its outer 
loops (if any) are only allowed to have dependence with "=" 



DO i 1 = ... 

DOi .. = ... 

Loop bodll 

ENDDO 
ENDDO 

Figure 3.1 

DIMENSION A(lOO,lOO) 

CALL PtA, A(l,lOO),50) 

SUBROUTINE P(B,C,N) 
DIMENSION B(N),C(N) 

DO I = 1 to N 
B(I) = 

= C(I) 
ENDDO 

Figure 3.2 

direction. Therefore, loop nesting and statement ordering in 
loop 60dy has no effect on whether the loop indexed by i .. is a 
parallel loop. For this reason, the information carried by 
atom images, i.e., subscripts and loop bounds, is sufficient for 
identifying parallel loops. In [28], it is shown that informa
tion carried by atom images is sufficient for loop distribution, 
statement re-ordering, as well as loop interchange. 

3.2 Azray alias recognition 

Conventional alias analysis ignores subscript details in 
array variables. It often results in unnecessary claims for 
aliases and causes unnecessary dependences. Therefore, it 
could reduce parallelism. The example in figure 3.2 is from 
[11]. Conventional alias analysis would determine that B and 
C are aliased in P, as A is passed (by reference) to both. In 
fact, the A elements referenced by B and C in P do not over
lap, so alias does not really exist. The problem of determin
ing such array alias is equivalent to testing a data dependence 
(without restriction on dependence directions) between B 
reference and C reference after they are bound to A. [11] sug
gested that all arrays of multiple dimensions be linearized 
before data dependence test and alias analysis. Linearization 
certainly has its merits and sometimes may be unavoidable. 
Nonetheless, as [29, 37] pointed out, linearizing arrays 
indiscriminately may risk less precise test. 

On the other hand, alias analysis could actUally be per
formed by binding the atom images of questionable references 
(e.g. B and C) to atoms at higher level (e.g. atoms for A.) 
After binding, data dependence (without restriction on depen
dence directions) is tested between the questionable references 
to see if any overlap happens. For the example in figure 3.2, 
it is easy to test that there is no overlap between B reference 
and C reference. In this way, linearization could be avoided 
when possible. Moreover, from the information provided by 
atom images, arrays could still be linearized when needed. 

4.. Traversing the Call Graph 

From the discussion in section 3, the atom image is the 
key to program restructuring and parallelization in the pres
ence of procedure calls. For a given procedure P, once the 
complete set of atom images in every procedure that P calls 
is determined, atoms can be generated in P not only for regu
lar statements but also for call statements. Data depen
dences can then be tested. Alias can be analyzed. Each loop 
can be examined to determine whether it is parallel. Loop 
distribution and loop interchange can be performed when 
they can be applied. (Before atoms are generated for data 
dependence test, some transformations on the procedure may 

224 

be desired. The transformations could eliminate unnecessary 
dependences and could also enhance dependence tests. They 
were discussed in [28].) The remaining problem is to follow 
the call graph and generate a complete set of atom images for 
every procedure. 

The relationship among the procedures in a program 
can be represented by a call graph, G. Each node in G 
represents a procedure and each edge indicates that a pro
cedure calls another. IC the program has recursive calls, G 
will contain cycles. Otherwise, G is acyclic. For an acyclic 
call graph, the atom image problem is simple. G can be 
traversed following the reversed direction of a topological 
Borting of G [23]. Moreover, the process of generating atom 
images for a procedure can be integrated into the process of 
optimization of the procedure. No additional visit to the pro
cedure is needed. 

In general cases the problem is complicated by cycles in , • h 
a call graph. In this section, we discuss how to obtain t e 
complete set of atom images for every procedure, given an 
arbitrary call graph. Once this is achieved, individual pro
cedures can be optimized in any order. 

4..1 Notation 

(1) GEN(PROC) denotes the set of atom images in reg
ular statements (i.e. statements without calls) of pro
cedure PROC. 
(2) OUT(PROC) denotes the set of all atom images in 
PROC, including those from procedure calls. 
(3) ~ denotes a mapping for the binding of atom 
images. Suppose S is a set of atom images from a pro
cedure called by PROCl, ~PROC1(S) denotes a mapping 
from S to OUT(PROCl). The value of ~PROC1(S) is the 
set of atom images in PROCl which are bound to those 
atom images in S. ~ A (~B(S» can be written, as 
~A ~B(S), ~A ~B is called the product of ~A and ~B' 
Obviously, ~ is distributive, i.e. ~A(SI U 82) = ~A(Sl) 
U ~A (S2). 

4..2 Computing the OUT sets 

IC {PI I i = 1, 2, ... , m} are procedures directly called by 
P, then ' . 

OUT(P) = GEN(P) U ( U ~p(OUT(PI))) 
1==1, .. 

IC we can derive such an equation for every procedure in the 
call graph, we shall have a system of simultaneous equations 
which contain recurrence and a classical flow problem is for
mulated. In a sense, this resembles the well-known problem 
of determining call effect in the classical interprocedural 
analysis [9, 10, 14, 30, 31]. Nonetheless, our problem is com
plicated not only by the parameter binding cycles but also by 
the subscript details. Intuitively, the solution of OUT(P) 
should include GEN(P) and the binding result of GEN(Q) for 
every procedure Q called directly or indirectly by P. How
ever the binding result may not be explicit due to two dis
tinc~ problems caused by the binding of' formal variables in 
recursive calls. We discuss these two problems in the follow
ing two sections. 

4..2.1 Problem 1: parameters in array subscripts 

First we define two classes of parameters. Suppose pro
cedure Pi is in a call cycle and has a parameter paramo If the 
value of param is never changed in the call cycle, we say that 



PROCEDURE PROC1(KA, ZA) 
ZA(KA) = ... 

PROCEDURE PROC1(KA, ZA) 
ZA(KA)= ... 

PROCEDURE PROC1(KA, ZA) 
INTEGER temp1 

KA=KA+1 
CALL PROC2(KA, ZA) 
RETURN 

CALL PROC2(KA+1, ZA) 
RETURN 

ZA(KA) = ... 
temp1 =KA+ 1 

PROCEDURE PROC2(KB, ZB) 
ZB(KB) = ... 

PROCEDURE PROC2(KB, ZB) 
ZB(KB) = ... 

CALL PROC2(temp1, ZA) 
RETURN 

CALL PROC1(KB, ZB) 
RETURN 

PROCEDURE PROC2(KB, ZB) 
ZB(KB) = ... IF ( ... ) CALL PROC1(KB, ZB) 

RETURN 
(2) KA i. implicitly updated 

CALL PROC1(KB, ZB) 
RETURN (1) KA is explicitly updated 

Figure 4.1 Recursively variant parameters (3) Local variables in the binding chain 

param is recur8i"elll in"ariant. Otherwise, param is recur-
8i"e/1I "ariant. A parameter can be recursively variant if the 
parameter is explicitly updated in a procedure in the call 
cycle (e.g. the parameter KA in figure 4.1(1)), or the input 
value of the parameter is implicitly updated through an argu
ment binding chain (e.g. the parameter KA in figure 4.1(2» 
Local variables can also be involved in a binding chain which 
implicitly updates a parameter recursively (e.g. figure 4.1(3» 
Note that a parameter can be recursively variant even though 
it is not in a conventional MODIFY !let. A parameter is in 
the MODIFY set of a procedure P only if it is explicitly 
updated by an assignment statement in P or any procedure 
called from P [9, 10, 14]. • 

Suppose array A is a parameter in procedure Pl, and rl 
is a reference to A. If a recursively variant parameter is 
found in dimension i of the subscript of d, we say that the 
atom image for rl is augmented in dimension i. When the 
atom image is bound to an atom, the corresponding dimen
sion of the atom should also be augmented. If a loop bound 
in the atom image has a recursively variant parameter, then 
the bound should be assumed conservatively. If a dimension 
of an atom is augmented, data dependence is always assumed 
in that dimension. Recall that data dependence exists 
between two array references only if it exists in every dimen
sion. The GEN sets may contain augmented atom images. 

Before traversing a call graph to generate atom images, 
recursively variant parameters should be recognized. They 
can be recognized by a flow matrix which is similar to the 
mapping table used in a summary analysis (see, e.g. [14]). 
Here we need to represent the call relationship among the 
procedures by a multi-graph, G",. G". has the same nodes as 
in G. However, each edge stands for a distinct call site. So 
there may be several edges from a calling procedure to a 
called procedure. 

First, a complete list of formal variables from all pro
cedures is forlI\ed. Let FV denote the list. Suppose there are 
N,v entries in the list. The flow matrix is a N,v by N,v bit 
matrix. If there is a data flow (through assignment state
ments and a binding chain) in the program such that the 
value of a formal variable 1,,1 in Pl affects the value of 
another formal variable Id in PD, the entry (/,,1, I"e) is 1, 
otherwise it is o. 

The flow matrix can be obtained as follows. First, set 
all of the entries to O's. Suppose apl is an actual argument at 
a call site where Pl calls pe and apl is directly bound to Id 
in procedure PD. For any formal variable 1,,1 in Pl, it is easy 
to determine whether the value of 1,,1 affects the value of apl 

225 

(which is also the initial value of I"e) by conventional flow 
analysis. If 1,,1 does affect apl, then the entry (I"l,l"e) is set 
to 1. The transitive closure of the matrix is exactly the flow 
matrix we need. Using Warshall's algorithm to compute the 
flow matrix is straightforward, but it ~equires O(N}v) time 
[1]. Following an algorithm presented in [14], the flow matrix 
can be computed in O(lElo«IEI, INI» time assuming that the 
length of the argument list at every call site is bounded by a 
small constant, where lEI is the number of edges in G"" INI is 
the number of nodes, and 0< is the inverse of Ackerman's func
tion. Its time complexity is very close to linear. 

Given the flow matrix, recursive variants can be deter
mined as follows. We first identify those caused by explicit 
modification. If entry (/,,1, 1"1) is 1 and 1,,1 is in the sum
mary modification set (which we assume available,) then 1,,1 
is recursively variant. Next, we identify the other type of 
recursively variant formal variables. If (1) the value of Id is 
affected by (but not identical to) the value of 1"1, and (2) both 
entries (1,,1, I"e) and (/d, 1"1) are 1, then both Id and I"D are 
recursively variant. If the value of 1,,1 and I"e are identical, 
they cannot be changed by their recursive binding. Finally, if 
1,,1 is recursively variant and both entries (/,,1, I"e) and (ld, 
1"1) are 1, then I"e is also recursively variant. 

4.2.2 Problem 2: implicit references through a binding 
chain 

The problem can be best illustrated by an example 
shown in figure 4.2. Obviously, GEN(PROCl) has only one 
element that is the atom image for D(i,k). There is no atom 
image for E(i,k), since it is not a parameter. However, 

PROGRAM MAIN 

DOk= ... 
CALL PROC1(X, Y, Z, W, k) 

ENDDO 
RETURN 

PROCEDURE PROC1(A, B, C, D, k) 
REAL A, B, C, D, E 
INTEGERi, k 
DOi= ... 
D(i,k)= .. . 
E(i,k)= .. . 

ENDDO 
CALL PROC1(E, A, B, C, k) 
RETURN 

Figure 4.2 



OUT(PROC1) should contain more atom images. By calling 
PROC1 recursively three times, we can see that 
OUT(PROC1) should also contain A(i,k), B(i,k) and C(i,k), 
each in a distinct loop originated from a distinct incarnation 
of PROCl. Further recursive calls will only introduce redun
dant atom images. Such additional atom images originated 
from a recursive binding chain make it difficult to obtain 
OUT(PROCl). Moreover, if a call graph is more compli
cated, traversing the graph to uncover this type of atom 
images can be very time consuming. 

Using the mapping table defined in [14], we define an 
ezt-GEN set which is an extension of a GEN set. A mapping 
table is a bit matrix of the same size as the flow matrix. 
However, the entry (fvl, fv2) is 1 if and only if fvl is eventu
ally bound to fv2 through a binding chain. It can be obtained 
as follows. First, set all of the entries to O's. Suppose fvl is a 
formal variable in Pl and fv2 is a formal variable in P2. If 
ftll is directly bound to fv2 at a call site where Pl calls P2, 
the entry (fvl, fv2) is set to 1. The transitive closure of the 
matrix is the mapping table needed. A formal variable fvl in 
P is a feedback variable, if there is another formal variable, 
fv2, in P such that the entry (fvl, fv2) in the mapping table is 
1. 

Definition (the ezt-GEN set of procedure P) 
1. ext-GEN(P) ~ GEN(P). 
2. If (i) r is an atom image in GEN(P) for a scalar for
mal variable, fvl, in P; 

(ii) the entry (fvl, fv2) in the mapping table is 1, 
where fv2 is also a scalar formal variable in P, 
then ext-GEN(P) should include the atom image for 
fv2. 

3. If (i) r is an atom image in GEN(P) for an array for
mal variable, fvl, in P; 

(ii) there are no feedback variables in any dimension 
of r in which r is not augmented (c.f. section 4.2.1); 

(iii) the entry (fvl, fv2) in the mapping table is 1, 
where fv2 is also an array formal variable in P, 
then ext-GEN(P) should include an atom image whose 
name- is fv2, and whose coefficient expressions are 
exactly the same as those in r. 
4. If (i) r is an atom image in GEN(P) for an array for
mal variable; 

(ii) there are feedback variables in some dimensions of 
r in which r is not augmented; 

(iii) fvl is a feedback variable in the coefficient expres
sions of 1'; 

(iv) the entry (fvl, fv2) in 1, where fv2 is in P, 
then ext-GEN(P) should include an atom image whose 
name and coefficient expressions are the same as those 
of r, except that fvl in the coefficient expressions 
should be replaced by fv2; 

5. If (i) r is an atom image in GEN(P) for an array for
mal variable which is also a feedback variable; 

(ii) there are feedback variables in some dimensions of 
r in which r is not augmented, 
then ext-GEN(P) should include all atom images which 
can be obtained by combining cases 3 and 4. 

The process of computing ext-GEN(P) is implied in the 
definition. Obviously, if {p; : i = 1, 2, ... , m} are all the pro
cedures directly called by P, then 

226 

OUT(P) = ext-GEN(P) U ( U ~p(OUT(P;))) 
i=l,m 

4.3 Traversing cyclic call graphs 

The ezt-GEN set has the following important property. 

Supp08e ~H i8 the product of a series of ~'s, then 
~p~H(ezt-GEN(P)) C ezt-GEN(P). 

It is because: (a) for any atom image in ext-GEN(P), if it is 
augmented in one of its dimensions, nothing would be 
changed in that dimension after the atom image is pro
pagated back to P; (b) if the atom image is not augmented in 
a certain dimension, then the subscript in that dimension can 
only be changed due to feedback variables. However, by 
definition of ext-GEN, there must be another atom image in 
ext-GEN which covers the change in that dimension; (c) the 
definition of ext-GEN also covers the possibility that when 
an atom image in ext-GEN(P) is propagated back to P, a 
new atom image will be generated because it is a feedback 
variable. 

4.3.1 Basic cycles 

We first consider a basic cycle containing three pro
cedures A, H, C (figure 4.3). To determine the atom images 
for each of the procedures in figure 4.3, the following 
recurrence can be derived: 

OUT(A) = ext-GEN(A) U ~A(OUT(B)) 
OUT(B) = ext-GEN(B) U ~B(OUT(C)) 
OUT(C) = ext-GEN(C) U ~dOUT(A)) 

Without loss of generality, assume the propagation of atom 
images starts from node A, OUT(O)(A) = ext-GEN(A). Not
ing that ~A ~B~dext-GEN(A)) C ext-GEN(A), 
~B~o~A(ext-GEN(B)) C ext-GEN(B), and ~O~A ~B(ext
GEN(C)) C ext-GEN(C), we can expand the recurrence and 
solve OUT(A). 

OUT(A) = OUr(;)(A) 

= ext-GEN(A) U ~A(ext-GEN(B)) U ~A ~B (ext
GEN(C)) 

Substituting OUT(A) into the original recurrence, we solve 
OUT(B) and OUT(C): 

OUT(B) = ext-GEN(B) U ~B(ext-GEN(C)) U ~B~O 
(ext-GEN(A)) 
OUT(C) = ext-GEN(C) U ~dext-GEN(A)) U ~O~A 
(ext-GEN(B)) 

According to the result shown above, atom images of pro
cedures in a basic call cycle can be obtained by traversing in 
the reversed direction of the cycle twice, starting from any 
procedure in the cycle. Whenever a procedure has been 
visited twice, the set of its atom images will become com
plete. Therefore when traversing forward to the calling pro
cedure, the complete set of atoms of that procedure can be 
determined. 

Figure 4.4 shows a generalized basic cycle, in which a 
procedure, say H, in the call cycle may call directly or 
indirectly several procedures which are not part of any cycle. 
We say that these procedures form a branch originated from 
B. It is straightforward to determine the atom images for 
the procedures in a generalized basic call cycle. The propaga
tion of atom images starts from the branches. Since each 



branch is an acyclic subgraph, the atom images for the pro
cedures in a branch can be determined by traversing the 
branch in the reversed direction of any topological sorting. 
After atom images are determined for all branches, the cycle 
can be traversed in a reversed direction starting from an arbi
trary node. The traverse only needs to be iterated twice. 

4,.3.2 MaximUID strong colDponents in G 

First, the brllnches of a maximal strong component 
(MSC) [1] can be defined analogously to the branches of a 
basic cycle. Then the atom images for procedures in an MSC 
can be determined by the following steps: 

Step 1 Determine the atom images of the procedures 
in the branches of the MSC. 
Step e Compute a maximal acyclic subgraph (MAS) 
of the MSC by first computing a DFST (depth-first 
spanning tree) of the MSC then deleting the back edges 
from the MSC to eliminate cycles. 
Step 9 Let MASR denote the reverse of MAS (i.e. every 
edge in MASR is in the reversed direction of the 
corresponding edge in MAS.) Traverse MASR. 
Step -I Traverse the reverse of the back edges in the 
MSC. 
Step 5 Repeat step 3 and step 4 once. The atom 
images in the leaves of MASR should be complete. 
Step 6 Traverse MASR again. The atom images of 
every procedure in MSC should be complete. 

By the above algorithm, every edge in MASR will be 
traversed at most three times. Every back edge in the MSC 
will be traversed in the reversed direction at most twice. A 
formal proof to the correctness of the algorithm involves tedi
ous process of setting up the recurrence equations. So instead 
of presenting such a proof, we illustrate the algorithm 
through the following example. 

Consider the call graph in figure "4.5 in which the whole 
graph is an MSC. Step 1 is skipped since there are no 
branches. In step 2, an MAS (shown by the solid edges in 
figure 4.5) is computed. A is the root of DSFT(MSC). In step 
3, the reverse of MAS can be traversed in the order of 
«C,D>, <E,D>, <D,B>, <B,A». In step 4, the 
reverse of the back edges (the slim edges in figure 4.5) is 
traversed in the order of «A,C>, <A,D>, <A,E». 
Repeating step 3 and step 4 once, the atom images in C and 
E will be complete. In step 5, the atom images in every pro
cedure will be completed in the order of (D, B, A). The 
correctness of the above process is ensured by the solution of 
the OUT sets. The recurrence in the MSC is as follows:. 

OUT(A) = ext-GEN(A) U !PA(OUT(B)) 
OUT(B) = ext--GEN(B) U !PB(OUT(C)) U !PB(OUT(D)) 
OUT(C) = ext-GEN(C) U !Pc(OUT(A)) 

OUT(D) = ext-GEN(D) U !PD(OUT(A)) U !PD(OUT(C)) 
U !PD(OUT(E)) 
OUT(E) = ext-GEN(E) U !PB(OUT(A)) 

Expanding the recurrence, we can solve the OUT set for each 
procedure. For example: 

OUT(B) = ext-GEN(B) U !PB(ext-GEN(C» U !PB(ext
GEN(D» U !PB !Pc(ext-GEN(A» U !PB !PD(ext-GEN(E)) 
U !PB!PD(ext-GEN(C)) U" !PB!PD(ext-GEN(A)) U 
!PB!PD !p.( ext-GEN(A)) U !PB!PD !Pc( ext-GEN(A)) 

After step 3, the following sets have been computed: { ext
GEN(B), !PB(ext-GEN(C)), !PB(ext-GEN(D)), !PB!PD(ext
GEN(E», !PB!PD(ext-GEN(C)), }. After step 4, the following 
sets have been computed: { !Pc(ext-GEN(A)) !PD(ext
GEN(A» !P.(ext-GEN(A))}. In this example, step 5 is not 
needed. After step 6, the following sets have been computed: 
{ !PB !PD(ext-GEN(A)) !PB !Pc{ext-GEN(A» !PB!PD 4IB(ext
GEN(A» !PB!PD !Pc{ext-GEN(A)) }. Therefore, OUT(B) is 
complete after step 6. 

4,.4, Traversing an arbitrary call graph 

First, we must find all the MSCs in the cali graph, G. If 
we reduce each MSC into a node, the resulting graph (called 
the reduced grllph) will be acyclic. To determine the com
plete atom images in every procedure, G is traversed as fol
lows. 

Step 1 Determine the atom images in the procedures 
in the branches of every MSC. 
Step e Number the MSCs by the reverse of a topologi
cal sorting of the reduced graph. 
Step 9 Visit the MSCs following the numbering 
obtained at step 2. When visiting an MSC, determine 
the atom images in the procedures in each MSC. 

5. Conclusion 

We have presented an approach to perform interpro
cedural analysis for program parallelization. In this 

approach, the effect of a procedure call is captured by IItom 
imllges. An atom image precisely formulates the subscript 
details of each array reference. It aliows more accurate data 
dependence tests to be used for more advanced program res
tructuring techniques. These techniques cannot be perform,ed 
effectively using a conventional interprocedural analysis. We 
have implemented our approach to perform both paralleliza
tion and restructuring on programs with procedure calls in 
Parafrase [21, 22]. The results [28J show much better 
efficiency and effectiveness compared to other approaches 
such as the region test [34, 35]. 

In this paper, we also show that atom images can be 
used to recognize array aliases without linearizing the array 
as suggested in [ll], and it also allows recursive procedural 

Figure 4.3 A basic call cycle Figure 4.4 A generalized basic call cycle Figure 4.5 

227 



calls to be analyaed. By formulating call effects with atom 
images, the problem of recursion in procedure calls is reduced 
to finding complete sets of atom images for such procedures. 
We proposed algorithms to traverse a call graph and to gen
erate those complete sets of atom images. 

(1) 

[2] 

(3) 

(4) 

(5) 

(6) 

(7) 

[8] 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

REFERENCES 

A. V. Aho, J. E. Hopcroft and J. D. Ullman, The DeBign and 
Anal,.i. of Computer Algorithms, Addiaon-Wealey, Reading, 
Mass. 1974. 
J. R. Allen and K. Kennedy, "Automatic Translation of For
tran Programs to Vector Form," Dept. of Computer Science, 
Rice University, Houston, TX, Rice Comp TR84-9, July, 
1984. 
F. E. Allen, "Interprocedural Data Flow Analysia," Proceed
ing. of the IFIP Congre88, North Holland, 1974. 
J. R. Allen, "Dependence Analysia for Subscripted Variables 
And Its Application to Program Transformations," Ph.D. 
Theaia, Department of Mathematical Sciences, Rice Univer
sity, Houston, TX, April 1983. 
C. N. Arnold, "Vector Optimization on the Cyber 205," 
Proceeding. of the 1989 Int'l Conf. on Parallel Proce8Bing, 
Aug. 1983. pp. 530-536. 
J. Ball, "Predicting the Effect of Optimilation on a Pro
cedure Body," SIGPLAN Notice., vol. 14, No.8, 1979. 
U. Banerjee, "Data Dependence in Ordinary Programs," 
Department of Computer Sciences, University of Illinois at 
Urbana-Champaign, Rpt. No. 76-837, Nov. 1976. 
U. Banerjee, "Speedup of Ordinary Programs," Ph.D Thesia, 
Department of Computer Sciencea, University of Dlinoia at 
Urbana-Champaign, Rpt. No. UIUCDCS-R-79-989, 1979. 
J. Banning, "A Method for Determining the Side Effects of a 
Procedure Call's," Ph.D. Diasertation, Stanford University, 
Aug. 1978. 
J. Barth, "A Practical Interprocedural Data Flow Analysia 
Algorithm," CACMVol. 21. No.9, Sept. 1978, pp. 724-736. 
M. Burke and R. Cytron, "Interprocedural Dependence 
Analysia and Parallelization," Proc. of the ACM SIG-
PLAN'88 S,mpo.ium on Compiler Construction. ACM SIG
PLAN Not. 21, 7(July 1986), 162-175. 
D. Callahan, K. Cooper, K. Kennedy, and L. Torclan, "Inter
procedural Constant Propagation," Proceedings of the ACM 
SlGPLAN '88 S,mp. on Compilec Conatruction, SIGPLAN 
Noticea, Vol. 21, No.6, June 1986. 
P. Cousot, N. Halbwacks, "Automatic Discovery of Linear 
Restraints among Variables of a Program," Conf. Record of 
the 5-th Annual ACM S,mp. on Principle of Program 
Languagel, 1978. 
K. D. Cooper, K. Kennedy, "Efficient Computation of Flow 
Insensitive Interprocedural Summary Information," Proceed-
ing. of the ACM SIGPLAN '84 S,mp. on Compiler ConBtruc
tion, SIGPLAN Noticea, Vol. 19, No.6, June 1984. 
K. Cooper, "Analyzing Aliases of Reference Formal Parame
ters," Conf. Record of the It-tll Annual ACM Slimp. on Prin
ciple of Program Language., 1985, pp281-290. 
J. Dongana, J. Bunch, C. Moler, and G. W. Stewart, LIN
PACK U.ers' Guide, SIAM, Philadelphia, 1979. Spring-
Verlag, Heidelberg, 1976. 

[17] S. Graham and M. Wegman, "A Fast and Usually Linear 
Algorithm for Global Flow Analysia," JACM Vol. 23, No.1, 
Jan. 1976,pp. 172-202. 

[18] M. S. Hecht, Flow Anaillsis of Computer ProgramB, North 
Holland, 1977. 

(19) C. A. Huson, "An In-Line Subroutine Expander for 
Parafrase," M.S. Theaia, Dec. 1982, Univ. of lllinoia at 
Urbana-Champaign, Report No. UIUCDCS-R-82-1118. 

228 

[20] J. Kam and J. Ullman, "Global Data Flow Analysia and 
Iterative Algorithms," JACM, Vol. 23, No.1, Jan. 1976, pp. 
158-171. 

(21) D. Kuck, R. Kuhn, B. Leasure and M. Wolfe, "The Structure 
of an Advanced Vectorizer for Pipelined Processors," Proc. of 
COMPSAC 80, The 4th Int'l Computer Software and Appli
catio"" Con/., pp. 709-715, Oct. 1980. 

(22) D. Kuck, R. Kuhn, D. Padua, B. Leasure and M. Wolfe, 
"Dependence Graphs and Compiler Organizations," Proc. of 
the 8th ACM S,mp. on Principlea of Programming Languages 
, Williamsburgh, VA, pp. 207-218, Jan. 1981. 

(23) D. Knuth, The Art of Computer Programming, Vol. 1, 
Addiaon-Wealey~Reading, Mass. 1973. 

(24) D. Kuck, "A Survey of Parallel Machine Organization And 
Programming," ACM Computing Surlle,s, Vol. 9, No.1, Mar. 
1977, pp. 29-60. 

(25) D. Kuck, The Structure of Computer. and Computation, John 
Wiley and Son, 1978 .• 

(26) D. Kuck, "Automatic Program Reatructuring for High-Speed 
Computations," Proc. of CONPAR 81, Conf. on AnalllAng 
Problem-ClaBBes and Programming for Parallel Computing, 
Nurnberg, F. R. Germany, ed. by W. Handler, June 1981 
(Springer-Verlag). 

(27) R. Kuhn, "Optimilation And Interconnection Complexity 
for: Parallel Processors, Single-Stage Networks, And Deci
sion Trees," Ph.D. Theaia, Department of Computer Science, 
University of lliinoia at Urbana-Champaign, Rpt. No. 
UIUCDCS-R-80-1009, Feb. 1980. 

(28) Z. Li and P. C. Yew, "Interprocedural Analysia and Program 
Restructuring for Parallel Programs," CSRD report No. 720, 
University of lliinoia at Urbana-Champaign, Jan. 1988. 

(29) Z. Li and P. C. Yew, "Program Parallelization with Interpro
cedural Analysia," Submitted for publication. April, 1988. 

(30) E. Myers "A Preciae And Efficient Algorithm for Determining 
Exiatential Summary Data Flow Information," Tech. Rpt. 
CU-CS-175-80, University of Colorado, Boulder, Colo., 
March 1980. 

(31) E. Myers "A Precise Inter-Procedural Data Flow Algorithm," 
Conf. Record of the 8-tll AnnualACM Slimp. on Principle of 
Program LanguageB, 1981, pp219-230. 

(32) D. Padua, D. Kuck, and D. Lawrie, "H'lgh-Speed Multipro
cessors and Compilation Techniques," IEEE Tran •• Comput
er., Vol. C-29, No.9, Sept. 1980, pp. 763-776. 

(33) Parafrase Analyzer Documents, CSRD, Univ. of lllinoia at 
Urbana-Champaign, 1985. 

[34] R. Triolet, "Interprocedural Analysia for Program Reatruc
turing with Parafrase," CSRD Rpt. No. 538, University of 
lliinoia at Urbana-Champaign, Dec. 1985. 

[35] R. Triolet, F. !rigoin, P. Feautrier, "Direct Parallelization of 
CALL Statements," Proceeding. of the ACM SIGPLAN '88 
S,mp. on Compiler Co""truction, SIGPLAN Notices, Vol. 21, 
No.6, June 1986. 

(36) M. Wegman, F. Zadeck, "Constant Propagation with Condi
tional Branchea," Conf. Record of tile It-th Annual ACM 
S,mp. on Principle of Program Languages, 1985, pp291-299. 

(37) M. Wolfe and U. Banerjee, "Data Dependence for Parallelism 
Detection," paper prepared for publication. 

[38] M. J. Wolfe, "Optimi.ing Supercompilers for Supercomput
ers," Ph.D. theaia, Univ. of Illinoia at Urbana-Champaign, 
DCS Report No. UIUCDCS- R-82-1105, Oct. 1982. 



Automatic Mamlgement of Programmable Caches 
(Extended Abstract) 

Ron Cytron (*) 
Steve Karlovsky (**) 

Kevin P. McAuliffe (*) 

(*) IBM T. J. Watson Research Center 
Computer Science Department 

Yorktown Heights, New York 10598 

(**) Center for Supercomputing Research and Development 
University of Illinois at Urbana-Champaign 

Urbana, Illinois 61801 

We present algorithms for compiler-directed management of cache memories, where hardware does not keep 
such memories consistent: caches may contain discrepant values for shared variables. Our algorithms 
determine when a cached value must update its shared variable, and when a processor's cached value is 
potentially stale. Although our algorithms are presented in the context of programmable caches, the 
algorithms apply to a broad class of architectures where hardware does not force coherence among 
processors' local memories. We present algorithms and results for cache management of automatically 
parallelized sequential programs. We then consider optimizing the placement of cache management 
instructions. These optimizations apply to programs with explicitly specified cache management instructions 
as well as those where such instructions are automatically determined. 

1.0 Introduction 
As a means of obtaining increased performance, one trend in 
parallel architecture is to incorporate increasing numbers of 
processors. To cooperate in solving a problem, these processors 
must share data. We consider a broad class of architectures 
comprised of multiple processors connected to multiple memory 
modules (a global memory) via a multi-cycle interconnection 
network. Increasing the number of processors in such a system 
necessarily increases the average latency associated with 
referencing shared data. To reduce the effective memory 
latency, a cache can be associated with each processor. The 
inclusion of processor-specific caches reduces memory latency 
since the resulting access time is an average of the global 
memory access time and cache memory access time. Moreover, 
since the cache services a percentage of all memory requests, 
network traffic is diminished, thus further reducing the average 
latency for global memory. 

The indiscriminate use of such cache memories can introduce 
memory coherence problems: distinct processors can view 
discrepant values for the same global variable. Historically, 
centralized or distributed hardware cross-interrogation 
mechanisms enforce coh~rence: when a processor issues a store 
to an address, the hardware ensures that the value in the other 
processors' caches is consistent with the value stored, either by 

('0) This work was supported in part by the National Science Foundation 
under Grants No. US NSF MIP-8410110, the U. S. Department of Energy 
under Grant No. US DOE-DE-FG02-85ER25001, and the IBM Donation. 

229 

invalidating the address in cache or by updating the cache with 
the stored value [2, 7, 13]. Maintaining coherence by hardware 
introduces serialization, the manifestation of which depends on 
the hardware implementation [22]. Incoherence can be tolerated 
where discrepant values for a given address are not observable 
by any processor. Although this refinement eliminates some 
unnecessary serialization, all global memory accesses must be 
tracked. For large parallel systems, maintaining coherence 
exclusively in hardware is prohibitive either in cost or in serial
ization. For this reason, the larger systems have proposed 
managing caches through software [14, 17, 18] 

Although it might appear that the burden of managing the caches 
has now fallen on the programmer, this paper is devoted to 
showing how automatic techniques can effectively manage 
software-controlled caches. Because our methods are based on 
dependence analysis of sequential programs, our algorithms are 
easily incorporated into parallelizing compilers. These 
algorithms have been implemented in PTRAN [4, 16]; the 
examples shown in this paper demonstrate the results of this 
implementation. 

In the remainder of this section, we state our assumptions and 
definitions with respect to software-controlled caches and we 
define our execution model. In Section 2.0, we provide 
algorithms for deterrriining the placement of cache management 
instructions (cache control. points). Section 3.0 describes 
optimiZing cache management instructions. In Section 4.0, we 
state our conclusions and describe future work. 



1.1 Software-Controlled Caches 
We define a programmable cache as a standard cache memory 
where certain control mechanisms (see below) can be invoked 
under software control. For the present discussion, we assume 
a store-in cache with sufficient size (and mapping power) to 
avoid any evictions. l We also assume that the "line size" of the 
cache is the unit of storage reference (for example, a word). 
Thus, no data is cached without explicit reference, and no data 
in cache is ever replaced outside the scope of software control. 
In Section 4.0, we discuss the implications of evictions, store
through caches, and longer line sizes. 

Unlike traditional approaches, we allow incoherence: two 
processors may reference the same variable, yet view discrepant 
values for that variable. Thus, we have a storage hierarchy with 
a uniform address space, referenced through global memory and 
caches that afford processors an efficient, albeit potentially 
inconsistent, view of global memory. 

Each address within the global address space is marked with 
cache ability status: 

Cacheable: Data at the associated address can 
always be cached, and software 
will never demand that such data 
leave a cache. This marking is 
appropriate only for read-only data 
or data that is never shared among 
processors. 

Temporarily cacheable: Data at the associated address can 
be cached at any reference, but 
software controls the durations of 
the data's residency in cache, using 
the invalidate or flush instructions 
described below. 

Non-cacheable: Data at the associated address can 
never be cached. This marking is 
useful where the overhead associ
ated with managing temporarily 
cached data becomes excessive. 

Under these definitions, data enters a cache when a processor 
references the associated address, only if that address is marked 
cacheable or temporarily cacheable. Because of the store-in and 
eviction-free assumptions, data leaves a cache only under 
software control. For temporarily cached data, a processor can 
issue the following instructions with respect to its own cache: 

Post: 

Invalidate: 

Data associated with an address is copied back 
to global memory. The processor's cache 
retains its copy of the data. 

Data associated with an address is marked 
invalid. Global memory is unaffected since the 
cached value is not copied back to global 
memory. When the processor next references 
the associated address, the reference will be 
satisfied at global memory. 

Flush: Both of the above operations occur: data is 
copied back to global memory and marked 
invalid in the cache. 

Although we define the marking and management of cached 
addresses in terms of individual addresses, implementation 
considerations have motivated architectures to consider 
addresses at a coarser granularity. For example, the 
Ultracomputer project at NYU [12] and the RP3 project at IBM 
[8] have considered marking cacheability status at the page or 
segment level as a cost-effective alternative to marking 
individual addresses. In the current Ultracomputer prototype 
[14] and in the original treatment of this problem by 
Veidenbaum [20], post or invalidate instructions issued by a 
processor apply to the entire cache associated with that 
processor. The RP3 allows finer grain control of cache invali
dation, including line invalidate and temporarily-cacheable-data 
(marked data) invalidate. Such organizations invite further 
compile-time optimizations as described in Section 3.0. 

1.2 Execution Model 
Our execution model consists of a program that has been 
analyzed by a parallelizing compiler such as PTRAN. Although 
our algorithms incorporate information obtained through 
interprocedural analysis, the algorithms themselves examine 
separately each procedure of a program in turn. In the resulting 
program, parallelism is achieved (in part) by executing certain 
loops as DOALL loops, where the iterations of such loops can 
be executed by distinct processors. In general, concurrency can 
be generated for arbitrary parts of a program, but in this 
discussion we restrict ourselves to nested DOALL parallelism. 
The algorithms readily generalize for COBEGIN/COEND 
constructs. 

Each time a DOALL loop is encountered, some number of 
processors are assigned to execute some number of iterations of 
that loop. When the iterations are exhausted, the processors 
assigned to the loop are freed. Thus, a single DOALL loop can 
be executed multiple times (as shown in Figure 2), but the 
processors assigned to the DOALL may differ for each 
execution. 

1.3 Notation 
Our algorithms use a scheduling vector that specifies which loops 
of a program potentially execute as DOALL loops. For loop i, 
if SJ;'(i) = 'P', then loop i is a parallel (DOALL) loop; otherwise 
SV(i) = 'S' and loop i executes sequentially. We also require the 
data dependence graph typically computed by parallelizing 
compilers. We avoid a detailed discussion of data dependence 
[6, 9, 21], and focus instead on those aspects relevant to our 
work. Two statements ST, and S~ participate in a flow depend
ence (denoted ST,8ST) if ST, can create data that could be 
consumed at S~. Statements ST, and S~ participate in an output 
dependence, if both statements write to the same location and 
ST; should write last (denoted ST,8'S~. Statements ST, and ST; 
participate in an anti-dependence (denoted ST,8ST;) if ST, reads 
data that can subsequently be written by S~.2 For these 
dependence relations, ST, and STj could be executed on the same 
or different processors. If they execute on different processors, 
we assume the compiler has inserted synchronization or has 

(1) An eviction is the removal of a cache line by hardware for the purpose of replacement. 
(2) These last two forms of data dependence can often be eliminated by renaming techniques . 

. 230 



sequenced the computations so that ST, finishes before S~ starts 
[10]. Synchronization, however, is insufficient to honor flow 
dependences where processors cache values: sometimes a 
processor must post its cached value for access by another 
processor. Further, we must sometimes invalidate stale values in 
a cache, so that a subsequent reference is correctly resolved in 
global memory. For clarity, we do not show synchronization 
operations in our examples. 

We use the following notation to describe how processors 
reference global memory: Let Write(P,){) denote a global 
memory write issued by processor P, for variable (location) X. 
Let Read(P,){) similarly denote a read, and let Ref(P,){) denote 
an arbitrary reference (read or a write). We use" ..... " to denote 
a possible sequence of such operations. For example, notation 

denotes that Pj might reference X after Pi' 

2.0 Algorithms 
We determine in three steps cacheability and associated 
coherence requirements. 

1. Mark all variables as temporarily cacheable. 

2. Determine where cache actions (post, invalidate, or flush) 
are necessary to maintain coherence, using algorithms in the 
ensuing sections. Given our assumptions with regard to line 
size and eviction, this determination is partitionable: cache 
management instructions for a given variable are not 
affected by such considerations for other variables. Thus, 
each variable can be analyzed separately; the solution over 
all variables is just the union of post and invalidation points. 

3. Identify the actual cache ability of variables. For variables 
that require no cache action, the variables should be marked 
cacheable. Variables that are referenced only after invali
dation should be marked non-cacheable. A variable whose 
behavior falls between these two extremes requires analysis 
to determine the profitability of caching that variable. Such 
analysis is beyond the scope of this paper. 

2.1 Processor-Crossing Dependences 
To determine cache control points, our algorithms must 
determine when the source and sink of a dependence potentially 
execute in different processors. The dependence analysis in 
PTRAN yields a collection of fully-refined direction vectors for 
each dependence that cantiot be refuted by the decision 
algorithms [9]. We avoid a: detailed discussion of direction 
vectors [21], and focus on the properties relevant to our 
discussion. A fully-refined direction vector can be classified as 
one of the following: 

Loop-Carried(i) The dependence is satisfied by sequencing 
the iterations of some loop i, where loop i 
surrounds the source and sink of the 
dependence [6]. 

Loop-Independent The dependence is implicitly satisfied for 
the nested DOALL model of parallel 
execution.3 

The algorithm shown in Figure 1 determines if a dependence 
crosses processors. For (source8sink), the dependence crosses 
processors if source and sink potentially execute in different 
processors. 

procedure CROSSES? (source, sink) 

If the dependence is loop-carried (by loop i), 

then 

If SV(i) = 'P' 

then return (CROSSES) 

else mark_loop = i 

else mark_loop = ICLoop (source, sink) 

For each loop j such that mark_loop contains loop j 
and loop j contains either source or sink, 

if SV(j) = 'P' 

then return (CROSSES) 

return (DOES_NOT_CROSS) 

Figure 1. Processor-Crossing Algorithm: ICLoop is a 
function that returns the innermost common 
loop of its arguments. 

The algorithm of Figure 1 conservatively assumes that a 
dependence can cross processors where processors are reallo
cated to iterations. Consider the example of Figure 2. 

DO i=l to N 
DOALL j=l to M 

B(j) 
X(j) 

B (j) + X (j) 
B(j-1) 

A(i,j) 
A(i-l, j) 

ENDDOALL 

A(i,f(i) ) 
ENDDO 

Figure 2. Dependences Cross 

The flow dependences for A are satisfied by the outer sequential 
loop. However, successive executions of the inner loop cause 
flow dependences that potentially cross processors, since we 
make no assumptions about processor allocation to loop 
iterations. Optimization of this situation is discussed in Section 
3.0. 

The complexity of this algorithm is O(Ll), where Ll is the 
maximum depth of interval (loop) nesting. When invoked by the 
other algorithms of this paper, the processor-crossing algorithm 
effectively executes in constant time. 

(3) Fo( more general COBEGIN/COEND parallelism, such dependences are satisfied by sequencing certain statements [5]. 

231 



2.2 Posting Values to Global Memory 
The purpose of posting is to keep global memory up-to-date, 
preventing stale values from being referenced. Our fundamental 
observation is that the sequence: 

Write(Pi,X) ... Read(Pj,X), i ~ j (1) 

should cause Pi to post its cache value for X to global memory. 
The> post, in addition to the requisite synchronization or 
sequencing, guarantees Pj references the correct value for X in 
global memory. Consider some procedure Q for which parallel 
loops have been identified. An algorithm that captures 
observation (1) for procedure Q is shown in Figure 3. 

For each statement ST, that defines variable X, 

if X is inter procedurally live in Q, and if the 
definition of X by ST, reaches any exit of Q, 

then POST (ST" X) 

else consider each flow dependence ST,8SIj for 
X. 

if CROSSES? (ST" SIj) 

then POST (ST" X) 

Figure 3. Post Algorithm: POST (ST, V) causes the 
reference of variable V to be posted upon 
completion of statement ST. 

The first POST is necessary where a procedure may define 
variables that are used solely by other procedures. For such 
definitions, no flow dependences per se exist in the analyzed 
procedure. However, interprocedural information indicates 
whether other procedures use the defined variable, and we do 
not assume that such procedures execute in the same processor 
that defines the variable. Intraprocedural information indicates 
whether the definition can persist to a procedure exit. We 
therefore conservatively determine that such definitions must 
be posted to global memory for access by other procedures. The 
second POST is necessary for intraprocedural flow dependences. 
Consider the example of Figure 2 with post instructions as 
shown in Figure 4. 

DO i=l to N 
DOALL j=l to M 

B (j) 
POST (B(j)) 
X (j) 

A(i, j) 

B(j) + X(j) 
B(j-1) 

POST (A (i, j) ) 
= A(i-l,j) 

ENDDOALL 

A(i,f (i)) 
ENDDO 

Figure 4. Example 

(4) Flow dependences are a subset of def-use arcs. 

232 

Note that post instructions have been placed after definitions 
that participate in flow dependences that cross processors. For 
each such definition, a post instruction is generated that 
references the defined location. Thus, the argument to POST 
must be identical to the variable defined, including any subscript 
expressions indexing the variable. Note that the assignment to 
X requires no post: a processor that creates data for X will be 
the same processor consuming that data. 

The complexity of this algorithm is O(t. x I de! ... use I ), where 
t. is the maximum depth of interval nesting (effectively constant) 
and I de! ... use I is the number of def-use data flow arcs. 4 

2.3 Invalidating Cache 
The purpose of invalidation is to keep cache up-to-date, 
preventing stale values from being referenced. Although the 
cache is not actually updated at invalidation time, a subsequent 
reference to an invalidated address demands that the cache be 
refreshed from global memory. Our fundamental observation is 
that the sequence: 

could cause processor Pi to have a stale value of X in its cache. 
In such cases, Pi must invalidate X. We present two solutions for 
the invalidation problem. Our first solution is conservative with 
respect to observation (2) above. This solution is analogous to 
the posting algorithm: invalidation points are determined by 
examining each dependence in turn. A more precise (and 
expensive) scheme is considered in Section 2.3.2. 

2.3.1 Simple Scheme 
As a first approximation to observation (2) above, consider the 
algorithm shown in Figure 5 as applied to some procedure Q . 

For each statement ST, that' uses variable X, 

if X is upwards-exposed for procedure Q, 

then INVALID (ST" X) 

else consider each flow dependence ST,8SIj for 
X. 

if CROSSES? (ST" SIj) 

then INVALID (SIj, X) 

Figure S. Simple Invalidation: INVALID (ST, V) 
causes a processor to invalidate its cache for 
variable V prior to executing statement ST. 

The first INVALID causes a processor to invalidate its cache of 
a variable that could be defined by some other procedure; the 
invalidation occurs before the variable is accessed. Consider a 
dependence ST,8ST, on a variable X, for which the algorithm of 
Figure 3 posts X after ST,. The second INVALID of Figure 5 
determines an invalidation of X before executing ST,. 

Returning to the example of Figure 4, the program shown in 
Figure 6 shows where invalidations occur. 



DO i=l to N 
DOALL j=l to M 

B (j) 
X (j) 

A (i, j) 

B(j) + X(j) 
INVALID (B ( j -1 ) ) 
= B(j-1) 

INVALID (A(i-1,j)) 
=A(i-1,j) 

ENDDOALL 

ENDDO 

INVALID (A(i,f(i) )) 
A(i,f(i)) 

Figure 6. Invalidations under Simple Scheme 

The invalidations for this example essentially occur at the sink 
of dependences that caused posts in Figure 4. The complexity 
of this algorithm is therefore D(t, x I def -+ use I). 

2.3.2 Better Scheme 
Unfortunately, excessive invalidations result from applying the 
algorithm of Figure 5. Returning to the example of Figure 6, 
the invalidate of A (i,[(i)) is unnecessary. Each element of A is 
defined at most once. Suppose a processor has a value for 
A(i,[(i)) in its cache. If that processor subsequently references 
that value, then the value can come from cache since no other 
processor could have defined the value. If the value is missing 
from cache, then the reference is resolved in global memory. 
The corresponding definitions would be posted, as determined 
by the algorithm of Figure 3. 

In contrast to obscrvation (2), the simple invalidation algorithm 
detects the more conservative situation: 

Write(!j,x) -+ Read(Pi,X) , j #"- i 

We can eliminate invalidation where defined data can reside in 
at most one cache. The algorithm shown in Figure 7 captures 
such cases. 

For each statement ST, that uses variable X, 

if X is upwards-exposed for procedure Q, 

then INVALID CST" X) 

else consider each flow dependence ST,8ST; for 
X. 

if CROSSES? (ST" ST;) 

then if 3STk such that (STk8"ST, or STk8ST, ) 
and CROSSES? (Sh SJ 
then INVALID (ST;, X) 

Figure 7. Better Invalidation 

The second INVALID occurs where some processor may read 
or write the value assigned by statement ST,. That value could 
then be stale at the reference by ST; and thus require invali
dation. Using the algorithms of Figure 3 and Figure 7 results 
in the program shown in Figure 8. 

233 

DO i=l to N 
DOALL j=l to M 

B(j) 

X(j) 

A(i,j) 

ENDDOALL 

POST (B(j)) 

= B(j) + X(j) 
INVALID (B(j-1)) 
= B(j-1) 

POST (A(i,j)) 
= A(i-1,j) 

A(i,f(i)) 
ENDDO 

Figure 8. Resulting Program 

In essence, this better invalidation scheme determines where a 
processor may safely reference data that was not obtained from 
global memory since processor reassignment. In Figure 8,· 
processor reassignment occurs for the inner DOALL loop. If the 
processor executing the outer sequential loop is assigned to an 
iteration of the inner DOALL loop, then the data for the use 
A(i,[(i» may reside in cache. Although the dependence could 
cross processors, no stale accesses result. 

As expected, the complexity of this better invalidation algorithm 
is worse than for the simple invalidation scheme: 

D( I def -+ use I x (t, + t, x (I use -+ defl + I def -+ defl ))) 

Where the maximum interval depth is considered constant, and 
where variables fewer definition than use sites, the complexity 
is essentially D( I def -+ use 1 2). In practice, this complexity 
would be noticed only where statements define most variables. 
Otherwise, the observed complexity should be closer to 
D( I def -+ use I). 

2.4 Flush (Post and Invalidate) 
In the above discussion, posts were associated with definitions 
and invalidates with uses. This section examines how the two 
operations can be combined into a flush operation performed 
after the definition. A flush of X causes X to be posted to global 
memory and invalidated from the issuing processor's cache. The 
advantage of separating post and invalidate is that certain uses 
may benefit from cache accesses, even while other uses of the 
same variable go to global memory. In the example of 
Figure 8, the use of B(i) can be resolved in cache while the use 
B(i - 1) must be satisfied in global memory. If the post and 
invalidate were combined at the definition (FLUSH(B(i)), then 
the resulting program would forfeit resolving one use of B in 
cache. We seek a solution where invalidates and posts can be 
combined without loss of cache utilization. Consider the 
example shown in Figure 9. Data dependence identifies a 
processor-crossing flow dependence for X from STz to ST" 
causing the definition to be posted after ST2 and the use to be 
invalidated before ST.. No cache action is required for the 
dependence from ST" to S0. Thus, the invalidation inside the 
DOALL loop can be eliminated in favor of a flush of X after 
STz· 



ST, DO i=l to N 
ST2 X 

FLUSH (Xl 

ST3 DOALL j=l to N 
ST4 = X 
STs ENDDOALL 

ST6 X = 
ST7 X 
STs ENDDO 

Figure 9. Flush Example 

The algorithm shown in Figure 10 computes those definitions 
for which flushes do not sacrifice cache utilization. 

do while 3 unexamined flow dependence arcs for 
variable X 

Pick some arc defsite ... usesite 

Initialize 

DEFSITES = {defsite} 

USESITES = {usesite} 

Compute the "closure" of the dependence; repeat 
until no changes to DEFSITES or USESITES: 

if 3newdefsite¢DEFSITES such that 
newdefsite8usesite , where 
usesite € USESITES, 

then DEFSITES = DEFSITES U newdefsite 

if 3newusesite¢ USESITES such that 
defsite8newusesite , where 
defsite € DEFSITES, 

then USESITES = USESITES U newusesite 

if Vdefsite € DEFSITES, 

POST (defsite, X) 

and Vusesite € USESITES, 

INVALID (usesite, X) 

then 

for each defsite E DEFSITES, replace POST 
(defsite, X) with FLUSH (defsite, X) 

for each usesite E USESITES, eliminate 
INVALID (usesite, X) 

Figure 10. Flush Algorithm 

With the proper data structure, the complexity of this algorithm 
is O( I def.... use I ) . 

3.0 Optimizations 
Although the placement of cache management instructions 
determined by the algorithms of the preceding section is correct, 
the resulting programs are not necessarily optimal with respect 
to cache utilization or program speedup. In this section, we 
describe how the placement of cache management instructions 
can be improved. In Section 3.1, we use data flow techniques 

234 

to improve cache utilization and to reduce synchronization delay 
for.values posted to global memory. In Section 3.3 we consider 
how variables with similar cache ability profiles could be grouped 
together. Single cache instructions could then concurrently 
manage all members of a group. In Section 3.2, we consider how 
process formation and processor allocation can influence cache 
performance. The techniques discussed in this section are of 
interest for explicitly parallel as well as automatically parallelized 
programs. 

3.1 Data Flow Motion 
Herc we seek to improve the placement of cache management 
instructions through "standard" data flow analysis. For a given 
region of a program, such analysis typically computes [15]: 

KILL() 

PRESERVE() . 

NODEF() 

The set of variables for which a definition 
occurs along every path through the region. 

The set of variables for which some path 
through the region contains no definition. 

The set of variables for which no definition 
occurs along any path through the region. 

A region that preserves X mayor may not define X, but a region 
that kills X always defines X. Consider two processes PI and 
P2 as shown in Figure 11. 

SYNC··· 

SYNC 

Process P1 

SEND X 
to P2 

Figure 11. Problem Statement 

Process P2 

= X 

~X 

Process PI contains a region of code that kills X: every path 
through PI contains some definition for X. The region is 
followed by synchronization, at which point PI has no more 
updates for X as far as P2 is concerned. Note that such 
synchronization could have been explicitly specified in a parallel 
program. Process P2 begins by referencing X. This reference is 
either resolved in cache or causes a value for X to be cached in 
P2. Note that the algorithm of Section 2.3.2 can allow such 
references to be safely resolved in cache. P2 then executes a 
region of code that preserves X: some path through this region 
avoids defining X. The preserving region in P2 is followed by a 
use of X that is reached by the dependence arcs shown in 
Figure 11. The semantics are as follows: If the region of code 
in P2 defines X, then the use of X should reference the value 
computed by P2 (potentially in P2's cache). Otherwise, P2 fails 
to define X and the use should reference the value created by PI. 



This scenario is actually a very general setting for our problem. 
Control flow within process P2 decides whether P2 receives its 
locally computed value fOF X or receives a value computed by 
some other process. When the value comes from another 
process, P2 must invalidate X: the reference to X prior to the 
synchronization point can result in a stale value for X in P2's 
cache. Similarly, control flow within PI decides which definition 
of X in PI should reach the last use of X in P2, should P2 fail to 
define X itself. Although the synchronization point is shown 
after the region that kills X, we wish to post X from the cache of 
PI as early, yet as infrequently, as possible. This allows other 
processors that wait on results from PI to proceed as soon as 
possible. 

3.1.1 Invalidating 
Applying the algorithm of Section 2.3.2 allows references prior 
to the synchronization point to be resolved in cache. Unfortu
nately, the use of X by P2 after the synchronization point would 
be preceded by an invalidation of X, even though some paths 
assign X prior to the use. We wish to invalidate X only if it has 
not been updated after the synchronization point. Although 
hardware could be developed to detect such situations, we wish 
to explore a software-based solution. 

Given that the value for X in P2's cache is stale immediately after 
the SYNC point in Figure 11, P2 could invalidate X after the 
SYNC. Subsequent stores to X by P2 would cause P2's cache to 
contain the correct value for X. With respect to cache utiliza
tion, this scheme is the software equivalent of the "fast selective 
invalidate" scheme proposed by Cheong and Veidenbaum [11], 
where a bit associated with each address indicates if the address 
is referenced after a SYNC point. Such a reference causes the 
cache to be updated, and subsequent references are satisfied by 
the cache. 

In general, invalidation instructions could be moved from a use 
site to somewhere after the synchronization point for the 
dependence causing the invalidation, if the following conditions 
hold: 

1. A processor executes the invalidation instruction if the use 
site is reached. 

2. The address(es) referenced at the use site can be generated 
at the invalidation point. 

The first condition allows the invalidation instruction to be 
moved to any dominator of the use site in P2 (where the SYNC 
point is the final dominator).5 The second condition is easily 
satisfied for scalars. .For arrays, the invalidation must occur for 
any element that could be referenced at the use. This motivates 
the need for an invalidation instruction that could be applied to 
a group of addresses, perhaps contiguous such as ·those 
belonging to an array. 

An alternative to the wholesale invalidation of such data at 
dominators would be to place invalidation instructions along the 
required paths. Consider the example of Figure 12. In 
Figure I2(a), invalidation always occurs for X , whereas in 
Figure I2(b), invalidation occurs only if the assignment to X is 
avoided. 

There is anoth~r reason for determining the precise placement 
of invalidation instructions with respect to control flow. A 

precise invalidate (coupled with a post) corresponds to 
interprocessor communication, where one processor has finished 
updating a variable and the invalidating processor must receive 
the value for that variable. Once the "else" branch in 
Figure I2(b) is taken, X can be invalidated and the value can 
be requested from global memory, well in advance of the actual 
use of X. For processors connected via a multi-cycle intercon
nection network, the advance staging of such data can dramat
ically improve performance. 

INVALID (Xl 

if () 
then X 
else 
endif 

if () 
then X 
else INVALID (Xl 
endif 

X X 

(a) (b) 

Figure 12. Where to Invalidate? 

This problem can be cast as a data flow problem over the control 
flow graph of a program. In terms of P2 shown in Figure 11, 
each node either kills X, preserves X, or fails to define X. The 
data flow problem then computes a solution that accounts for 
all paths through P2. The data flow values assigned at a given 
point E are: 

VALID 

NODEF 

PRES 

All paths from the start of P2 to E contain a killing 
definition or invalidation of X. 

There are no definitions of X on any path from P2 
to E. 

Some path from the start of P2 to E defines, yet 
fails to kill, X. 

Data flow analysis computes a solution for the entry to a node 
of the control flow graph. The node itself is then examined, and 
a value is computed for the exit(s) of that node. If IN is the data 
flow value on entry to node Nand N can either KILL(X), 
PRESERVE(X), or NODEF(X), then 

follows: 

OUT(N) = f(IN, Action(N» 

f(VALID,Action(N» = VALID 
f(PRES,KILL(X» = VALID 

f(PRES,PRESERVES(X» = PRES 
f(PRES,NODEF(X» = PRES 
f(NODEF,KILL(X» = VALID 

f(NODEF,PRESERVES(X» = PRES 
f(NODEF,NODEF(X» = NODEF 

Where multiple paths meet at entry to a node, the meet of the 
data flow information is: 

(5) The dominators of a node n are those nodes whose execution must have occurred if node n is executed. 

235 



Path 2 

Meet I VALID NODEF PRES 
-------------------------------

P VALID VALID VALID PRES 
a 
t NODEF VALID NODEF PRES 
h 

PRES PRES PRES PRES 

Note that PRES is bottom of the meet lattice, and NODEF is 
top. 

When the data flow problem has completed, one of two values 
should prevail at the use of X in P2: 

• The value VALID signifies that all paths either killed X or 
could contain the appropriate invalidation instructions. 
Such instructions are placed on edges carrying the data flow 
value NODEF, where VALID meets such edges to produce 
VALID. 

• The value PRES signifies that some path mayor may not 
define X, and invalidation should be placed at some 
dominator of the use of X. 

This algorithm when applied to the example of Figure 12 places 
invalidation on the else branch of the if statement. Consider the 
example shown in Figure 13. 

if () 
then X 
else ... 
endif 

if () 
then .... 
else X 
endif 

= X 

*-- INVALID (X) 

Figure 13. Invalidation Placement 

The data flow problem places invalidation at the else branch of 
the first if statement. The data flow value VALID is 
subsequently propagated to the use of X, signifying that invali
dation need not occur at a dominator of the use. 

This algorithm is a rapid (and therefore fast) data flow algorithm 
[19]. For each variable, the algorithm takes O(Nu(N» , where 
N is the number of nodes in the control flow graph of a 
procedure. Our algorithms require the prior construction of 
def-use chains, which incurs similar expense. 

3.1.2 Posting 
In the example of Figure 11, PI contains a region where every 
path defines X. At the end of· the region, PI should make its 
value for X available for process P2. Thus, PI should post its 
value for X to global memory. Although the post instruction 
could occur at the synchronization point terminating the region, 
we wish to issue the post as early, yet as infrequently, as 
possible. The post can occur whenever we are certain PI will 

make no further assignment to X. This allows process P2 to 
proceed before PI reaches the declared synchronization point. 
We compute post points by solving a dataflow problem similar 
to very busy expressions [3] over the expression X, where 

• all uses of X within the killing region of PI are ignored 

• the synchronization point at the end of PI is treated as the 
sole use of X. 

Posts can be placed where X is very busy, as shown in 
Figure 14. 

x • 

Post X ~ 
x - x -

Figure 14. Post Points 

3.2 Processor Allocation 

Post X x • 

x -
p, x 

Our execution model contained no assumptions with respect to 
the allocation of processors within or between DOALL loops. 
With greater supervision over processor allocation, a conipiler 
could conceivably increase reuse of data in cache. Consider 
Figure 6. If for each iteration of the outer loop, iterations of the 
inner loop were assigned to the same processors, then the 
invalidations would not be necessary. As another example, 
consider Figure 15. 

DOALL i= ... 
A(i) = 

ENDDOALL 

IF () THEN 
DOALL i= 

A(i) = 
ENDDOALL 

ENDIF 

DOALL i= 
= A(i) 

ENDDOALL 

Figure 15. Example for Supervised Processor Allocation 

Where processors cannot be repeatedly assigned the same 
iterations, an invalidation must occur either at the end of the first 
loop or before the use of A in the last loop. Either invalidation 

236 



prohibits the values for A computed by the first loop to remain 
in cache for use by the last loop. The invalidation is extraneous 
if the second loop does not execute. If iterations are assigned 
consistently to processors for the second and third loops, then 
the invalidation optimization algorithm of Section 3.1.1 can 
place invalidation inside the IF -block. The effects of invali
dations can also be reduced by locality-increasing transf
ormations such as loop fusion [1]. 

3.3 Grouping 
Invalidation could benefit from a mechanism that allows a set 
of individual invalidates to be combined into a single group 
invalidate. Consider Figure 6. The invalidations for A are due 
to the cross processor flow dependences carried by the outer 
loop. Rather than issuing individual invalidations for each 
reference A (i - 1 J), a group invalidate for all addresses associ
ated with A could be executed once by each processor assigned 
to the inner DOALL loop. This mechanism requires hardware 
assistance, and the optimization of group selection is beyond the 
scope of this paper. 

4.0 Conclusion and Open Problems 
The algorithms presented in this paper are sufficiently simple 
and fast to be implemented in parallelizing compilers. We have 
implemented the algorithms described in Section 2.0 in PTRAN; 
the effectiveness of these algorithms has yet to be determined. 
The following sections describe the effects of relaxing certain 
assumptions under which the algorithms were developed. 

4.1 Line Size 
We have thus far assumed that cache activity is regulated at the 
granularity of an individual storage reference (for example, a 
word). To exploit locality of reference, many systems organize 
cache by lines, where a single line contains multiple words. 
When a reference is satisfied by bringing a word into cache, 
other words associated with the referenced line are also brought 
into cache. Thus, words can be brought into cache without 
actually referencing the associated addresses. The algorithms 
presented in this paper assumed that if a variable is invalidated, 
only a subsequent reference to that variable could bring the 
variable back into cache. Optimizations that move an invali
dation instruction away from a use are potentially incorrect 
where an intervening reference indirectly causes the variable to 
enter cache. Consider the example shown in Figure 16. 

Pl P2 

INVALID (X) 
= y 

X = 
POST (X) 

= X 

Figure 16. Line Size Problems: The reference to Y 
brings in a value for X if X and Yare in the 
same cache line. 

237 

With the invalidate of X moved away from the use, the use of X 
in P2 references stale data. 

We feel that a strictly software solution to this problem is 
unreasonable: a compiler would have to know the mapping of 
variables to lines. We are currently investigating a solution 
involving hardware assistance. In particular, we postulate the 
usefulness of an invalidate if not referenced instruction. Such an 
instruction would invalidate data that was prefetched into cache 
due to its proximity to an actually referenced variable. 

For performance considerations, invalidation should be localized 
within a cache line (applied to specific words) rather than 
invalidating the entire line. This requires residency bits for each 
unit of storage reference. To lessen hardware costs, residency 
could be maintained on a word basis: invalidating a byte would 
invalidate its associated word. 

4.2 Store-in 
Although our algorithms were developed for a store-in cache, the 
techniques also apply to a store-through cache. Obviously, a 
compiler need not post values to global memory for a store
through cache. However, store-through caches can degrade 
performance through increased network traffic. In particular, 
reduction of network traffic through optimized post instructions 
as considered in Section 3.1.2 is appropriate only for store-in 
caches. 

4.3 Evictions 
We have thus far assumed that data leaves a cache only under 
software control; however, caches typically use a hardware 
eviction policy. Although our algorithms are still correct, 
eviction beyond software control raises the following issues: 

• Cache management instructions for one variable may affect 
the cache behavior of other variables. Strictly speaking, our 
assumptions as to the partitionability of cache management 
problems no longer hold. However, the actual mapping of 
addresses to cache locations cannot be considered at 
compile-time (for example, formal parameters). 

• The optimization of post instructions involves holding onto 
cached data until a processor has finished modifying data 
at a given address. Where such data is prematurely evicted, 
optimization may suffer and network traffic may be 
increased. 

Thus, adding eviction to our cache model results in potentially 
decreased performance. The above considerations suggest that 
even eviction should enter the realm of software control. Where 
the compiler determines certain data non-evictable, new data 
cannot cause the eviction of such data until' the data is 
subsequently marked evictable. Cacheable data that conflicts 
only with non-evict able data would not enter cache on reference. 

5.0 Acknowledgements 
We thank Fran Allen and Michael Burke for their comments on 
this work. 



Bibliography 
1. W. A. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the 

Performance Enhancement of Paging Systems Through 
Program Analysis and Transformations. IEEE Trans. 
on Computer, C-30(5):341-356, May 1981. 

2. Anant Agarwal, Richard Simoni, John Hennessy, and 
Mark Horowitz. Scalable Directory Schemes for Cache 
Coherence. Proceedings of the 15th International 
Symposium on Computer Architecture, 1988. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: 
Principles, Techniques, and Tools. Addison-Wesley, 
1986. 

Fran Allen, Michael Burke, Philippe Charles, Ron 
Cytron, and Jeanne Ferrante. An Overview of the 
PTRAN Analysis System for Multiprocessing. 
Proceedings of the 1987 International Conference on 
Supercomputing, Springer- Verlag, Athens,Greece, 1987. 
To appear in a special issue of the Journal of Parallel and 
Distributed Computing. 

Fran Allen, Michael Burke, Ron Cytron, Jeanne 
Ferrante, Wilson Hsieh, and Vivek Sarkar. A 
Framework for Determining Useful Parallelism, IBM 
T.J. Watson Research Center, July 1988. ACM 
International Conference on Supercomputing '88. 

Randy Allen and Ken Kennedy. Automatic Translation 
of FORTRAN Programs to Vector Form. ACM 
Transactions on Programming Languages and Systems, 
9(4):491-592, October 1987. 

James Archibald and Jean-Loup Baer. An Economical 
Solution to the Cache Coherence Problem. 11th Int. 
Symp. on Compo Arch., pages 355-362,1984. 

W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3 
Processor-Memory Element. Proc. 1985 International 
Conference on Parallel Processing, pages 782-789,1985. 

Michael Burke and Ron Cytron. Interprocedural 
Dependence Analysis and Parallelization. Proceedings 
of the Sigplan '86 Symposium on Compiler Construction, 
21(7):162-175, July 1986. 

Michael Burke, Ron 'Cytron, Jeanne Ferrante, Wilson 
Hsieh, and David Shields. On the Automatic Generation 
of Useful Parallelism: A Tool and an Experiment, IBM 
T.J. Watson Research Center, July 1988. ACM 
SIGPLAN Symposium on Parallel Programming: 
Experience with Applications, Languages, and Systems. 

Hoichi Cheong and Alex Veidenbaum. Stale Access 
Detection and Cache Coherence Enforcement Using a 
Flow Analysis Approach. Proceedings of the 1988 
International Conference on Parallel Processing, 1988. 

238 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Jan Edler, Allan Gottlieb, Clyde P. Kruskal, Kevin P. 
McAuliffe, Larry Rudolph, Marc Snir, Patricia J. Teller, 
and James Wilson. Issues Related to MIMD Shared
memory Computers: the NYU Ultracomputer 
Approach. Conference Proceedings of the 12th Annual 
International Symposium on Computer Architecture, pages 
126-135, Boston, Massachusetts, 1985. 

James Goodman. Using Cache Memory to Reduce 
Processor-Memory Traffic. The 10th Int. Symp. 
Comput. Arch., pages 124-131, June 1983. 

Allan Gottlieb. An Overview of the NYU 
Ultracomputer Project. in J. Dongarra, editor, 
Experimental Parallel Computing Architectures, North
Holland, 1987. Formerly Ultracomputer Note #100, 
Courant Institute of Mathematical Sciences, New York 
University (1986). 

Matthew S. Hecht. Flow Analysis of Computer 
Programs. Elsevier North-Holland, Inc., 1977. 

Steven R. Karlovsky. Automatic Management of 
Programmable Caches: Algorithms and Experience, 
Center for Supercomputing Research and Development, 
Urbana, Illinois. 1988. Master's thesis in progress. 

David J. Kuck, Edward S. Davidson, Duncan H. Lawrie, 
and Ahmed H. Sameh, Parallel Supercomputing Today 
and the Cedar Approach. Science, 231:967-974, 
February 1986. 

G. F. Pfister, W. C. Brantley, D. A. George, S. L. 
Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A. 
Melton, V. A. Norton, and J. Weiss. The IBM Research 
Parallel Processor Prototype (RP3): Introduction and 
Architecture. International Conference on Parallel 
Processing, pages 764-771,'1985. 

Barry K. Rosen. Monoids for Rapid Data Flow Analysis. 
Siam Journal of Computing, 9(1):159-196, Feburary 
1980. 

Alex Veidenbaum. A Compiler-Assisted Cache 
Coherence Solution for Multiprocessors.. International 
Conference on Parallel Processing, pages 1029-1036, 
August 1986. 

Michael J. Wolfe. Optimizing Supercompilers for 
Supercomputers, PhD thesis, University of Illinois at 
Urbana-Champaign, Urbana, Illinois 1982. Report No. 
UIUCDCS-R-82-1105. 

W. C. Yen, D. W. L. Yen, and K.-S. Fu. Data Coherence 
Problems in a Multicache System. IEEE Transactions 
on Computers, C-34:56-65, January 1985. 



ALGORITHMS FOR STATIC TASK ASSIGNMENT AND SYMMETRIC CONTRACTION 
IN DISTRIDUTED COMPUTING SYSTEMS 

Virginia M. Lo 
Dept. oC Computer and InCormation Science 

University oC Oregon 
Eugene, OR 97403 
lo@cs.uoregon.edu 

AbBtract -- In this paper, we look at the mapping problem, which was 
posed within the domain of parallel processing, and we redefine that 
problem for use in distributed computing systems whose underlying com
munication medium is a broadcast medium such as ethernet. We 
describe an efficient algorithm which can be utilized to find optimal 
assignments of tasks to processors for a wide variety of distributed algo
rithms when .ymmetric contraction of the algorithm is necessary. We 
also describe a heuristic algorithm for use in finding suboptimal assign
ments of tasks to processors for arbitrary distributed computations. 
Both algorithms model the mapping problem as the Graph Partitioning 
Problem. Our algorithms utilize an efficient algorithm for finding max
imum weight matchings to find all assignment of tasks to processors 
which minimizes the total interprocessor communication cost while meet
ing a constraint on the number of tasks assigned to each processor. 

1. Introduction 

Researchers in the area of distributed computing are 
actively seeking ways to take advantage of the potential of these 
systems Cor parallel computing. The last few years have seen 
intensification oC efforts in the design of large-grained, loosely cou
pled parallel algorithms and in the design of systems soCtwar~ 
(operating systems, compilers) which support parallel computa
tion. One problem that occurs in both distributed and parallel 
systems is the problem of assigning tasks in a distributed (paral
lel) computation to the processors in a distributed (parallel) sys
tem. This problem has been reCerred to as the static task 
assignment problem and also as the mapping problem, with 
the former appellation more 'commonly used in the distributed 
computing community and the latter terminology more com
monly used in the parallel processing community. For both types 
of systems, the goals of task assignment include reducing inter
processor communication, load balancing, and parallelism; indeed, 
many approaches to the solution of this problem can be applied 
successfully to either type of system. However, there are 
differences in the architectures of distributed systems and parallel 
processors that affect the design of task assignment algorithms. 

In this paper, we look at the mapping problem, which was 
posed within the domain of parallel processing, and we define an 
analogous problem for distributed computing systems whose 
underlying communication medium is a broadcast medium such 
as ethernet. We demonstrate that in such a system, an appropri
ate goal for task assignment algorithms is minimization of the 
total interprocessor communication costs while meeting a con
straint on the number of tasks assigned to each processor. We 
describe an efficient algorithm which can be utilized to find 
optimal assignments of tasks to processors for a wide variety of 
distributed al~orithms when 811mmetric contraction of the algo
rithm is necessary. We also describe a heuristic algorithm Cor use 
in finding suboptimal assignments oCtasks to processors for arbi
trary distributed computations. Both algorithms model the task 
assigninent problem as the Graph Partitioning Problem. Our 
algorithms' utilize an efficient algorithm for finding maximum 
weight matchings to find an assignment of tasks to processors. 

239 

We consider only distributed systems which consist of a col
lection of homogeneous mUltiple computers, each with local CPU, 
memory, and other hardware resources, and which communicate 
through an ethernet bus. A distributed computation or task force 
consists of a set of communicating tasks to be assigned to proces
sors in the distributed system. We utilize the graph theoretic 
model [16] for these computations in which each task is modeled 
as a node in the graph and communicating tasks are connected by 
an edge whose weight equals the communication cost incurred if 
the tasks are assigned to different processors. We assume that 
communication between tasks assigned to the same processor is 
negligible. 

In section 2 we describe the problem in more detail and dis
cuss its relation to the contraction problem Crom parallel process
ing. In section 3 we present our algorithms as well as simulation 
results Cor the heuristic Algorithm H. The last section contains 
conclusions and a discussion of further work in this area. 

2. Static Task Assignment and Contraction in 
Ethernet-based Distributed Systems 

The general problem we wish to address is the assignment 
oC tasks to processOl'S in order to minimize interprocessor com
munication while meeting constraints on the number of tasks 
assigned to each processor. This statement of the task assign
ment problem 1 is useful in two slightly different contexts: (1) for 
initial assignment oC tasks to processors (static task assignment) 
and (2) Cor assignment of tasks to fewer processors than the dis
tributed algorithm was initially designed for, either at the time of 
initial assignment or dynamically at execution time due to node 
failure, node withdrawal, or phase transitions in the distributed 
computation. Node withdrawal occurs in distributed systems 
comprised of a network of personal workstations. At any time, 
one of the workstations may become unavailable to the distri
buted computation, either because the 'owner' withdraws it from 
the pool or because the load on that workstation becomes heavy. 

These problems are similar to the mapping problem posed 
by [2] for parallel processoring systems. In parallel processors, the 
point-to-point nature of the communication network offers a mul
tiplicity of interconnection options - hypercube, meshes, shuffie
exchange networks, cube-connected cycles, trees, etc. and the 
potential for parallel (non-interCering) communication on disjoint 
paths through the network. As a result, the mapping problem 
involves two phases, contraction and layout. Contraction involves 
reducing the graph G which represents the parallel algorithm to a 
smaller graph G' in the same family, causing several task nodes 

1 Several different optimality criteria have been studied in the graph 
theoretic approach to static task assignment including minimization of the total 
sum of execution and communication costs [11, 13, 15, 16[, minimization of !PC 
followed by load leveling [5[, and sum-bottleneck optimization [15[. 



in a to become associated with one node in the reduced graph 
a'. (Thus, if a is a tree, it must be contracted to a smaller tree 
a' .. ) In the layout phase, the reduced graph is then mapped to 
the interconnection hardware, with at most one task node per 
processor, taking into account the mapping of edges in the com
putation graph to edges in the processor network [2]. At execu
tion time, the tasks assigned to a given processor are multiplexed 
on that processor. In an ethernet-based system, there is only one 
communication pathway, and all interprocessor communication 
competes for the same resource. As a result, the layout phase is 
not relevant for distributed systems (i.e., it is not necessary to 
map computation edges to network edges) nor is it necessary to 
maintain any specific interconnection structure in the contracted 
graph. 

In addition, the criteria evaluating contractions in a distri
buted system is different than that proposed for parallel process
ing systems. In the latter systems L evaluation of contraction algO
rithms utilizes one or more of the following metrics: 2 

the average number of tasks and edges from a absorbed 
into one ]lode of a' , 
the maximum number of tasks and· edges from a absorbed 
into one node of G' , 

the average number of edges of a mapped to an edge in 
a', 
the maximum number of edges of a mapped to an edge in 
a'. 

These objective functions, particularly the latter two objective 
functions, are useful when more than one communication link 
exists and communication can occur independently and in parallel 
on these links. In ethernet systems, a more appropriate metric 
with respect to communication is the total sum of interprocessor 
communication costs incurred by an assignment. By minimizing 
this quantity, the overall overhead of IPC and also the contention 
for ethernet is minimized thereby improving the response time of 
the distributed computation. However, it is a well-known fact 
that minimization of IPC conflicts with the goals of load balanc
ing and parallelism. We compensate for these needs by constrain
ing the number of tasks assignable to each processor. When 
many tasks are assigned to one processor they contend for the 
resources of that processor and incur overhead due to process 
switching, management of shared buffers, etc. Bounding the 
number of tasks per processor contributes to load balancing by 
limiting contention of this nature. 

Thus, in an ethernet-based distributed system, task assign
ment requires contraction of the computation task graph to a 
reduced graph ill order to minimize the total interprocessor com
munication costs while maintaining a bound on the number of 
tasks assigned to each processor. Henceforth, we restrict our dis
cussion to the context of ethernet-based distributed systems and 
we will use the terms ta8k a8Bignment, mapping, and contraction 
interchangeably. 

Because we seek different goals for contraction in distributed 
systems, contraction techniques devised by parallel processing 
researchers may not be appropriate for our problem. For exam
ple, Berman's technique of truncation for complete binary trees 
yields an assignment with total IPC cost of 12 whereas an 
optimal assignment according to our criteria has cost equal to 3 
(see Figure 1 beloW). 

Finally, we introduce the notfon of 8ymmetric contraction 
for distributed and parallel algorithms which are regular in struc
ture. These algorithms consist of a number of identical tasks 
that operate on data that has been partitioned among the tMks. 

. ~ These performance metrics are based on the assumption that Cij = 1 for 
all I ,); these metrics can be extended in a natural w;'y for arbitrary Cij. 

240 

(a) Contraction to Minimize IPC (IPC = 3) 

(b) Berman Snyder Contraction (IPC = 12) 

Figure 1: Two Contractions of A Binary Tree 
(All edges assumed to have Cij = 1) 

When contraction is performed, it is necessary to merge tasks in a 
symmetric fashion in order to preserve parallelism. More 
specifically, if a distributed algorithm consisting of k identical 
tasks is to be contracted for assignment to fewer than k proces
sors, it is necessary to contract an equal number of tasks. to each 
processor. Because the tasks on a given processor are multi
plexed, an unequal contraction is undesirable because it constrains 
all processors to the speed of the slowest processor in the system. 
This necessity for symmetric contraction has been noted in [14] 
and in our own survey of distributed and parallel algorithms. We 
shall see that this fact provides compelling motivation for the use 
of Algorithm M (described below) to find optimal contractions of 
distributed computations. 

3. Description of the Algorithms 

We have developed two algorithms for the assignment of 
tasks to processors whose goals is minimization of total IPC 
under a common constraint on the number of tasks per proces
sors. Algorithm M finds optimal assignments in polynomial time 
for a restricted group of distributed coinputations. Algorithm M 
is ideally suited for contraction of computations with the regular 
structure described above and for the assignment of "small" com
putations in a "big" distributed system. We illustrate its appli
cation to a distributed algorithm for the simplex method of linear 
programming. Algorithm H is an efficient heuristic which finds 
possibly suboptimal assignments for arbitrary distributed compu
tations. Simulation results show the performance of this algo
rithm to be good, yielding an optimal assignment in 81.1% of the 
cases simulated. 



3.1. Equivalence to the Graph Partitioning 
Problem 

We restrict our attention to homogeneous systems with n 
identical processors. Let P = {p I, P 2, ••• , P.} be the set of n pro
cessors, T = {tl, t2, ... , t.} be a set of k communicating tasks 
(i.e., a distributed computation) to be assigned to the processors. 
Let Cij be the cost of communication between tasks ti and tj if 
they are assigned to different processors. Interprocess communica
tioncost is assumed to be negligible when communicating tasks 

are assigned to the same processor. Let B, r i.l < B < k, be a 
n - -

common bound on the maximum number of tasks allowed on 
each processor. We define an optimal assignment as one which 
minimizes the total interprocessor communication costs incurred 
under the constraint that kg ::; B for all processors Pg, l::;q::;n, 
where kg is the number of tasks assigned to processor Pg. 

The task-processor system described above can be modeled 
as a graph G = (V ,E) in which each task is represented as a 
vertex in V. An edge is constructed for each pair of communicat
ing tasks and given a weight equal to the communication cost Cij. 

The problem of finding an assignment of tasks to processors 
which minimizes IPC under a constraint on the number of tasks 
per processors is equivalent to the Graph Partitioning Problem 
with all node weights equal to one. 

Graph Partitioning Problem: Given Graph G = (V,E), 
weights w ( v) for each v € V and I (e) for each e € E, and posi
tive integers B and J, find a partition of V into disjoint sets 
V V V 2,··· Vn such that :E w(v)::;B for 19::;n and 

t1£Vi 

such that if E' contained in E is the set of edges that have their 
two endpoints in two different sets Vi, then :E I (e) ::; J. 

BeE' 

The Graph Partitioning Problem and the Graph Partition
ing Problem with all vertex weights equal to one have been shown 
to be NP-complete [8]. Thus, our task assignment problem is 
also NP-complete. 

3.2. Algorithm M, An Optimal Algorithm for 
Task Assignment 

Algorithm M can be used to find optimal assignments in 
polynomial time when the number of tasks is less than or equal to 
twice the number of processors and when each processor may be 
assigned at most two tasks. These constraints may sound rather 
limiting at first, but we show that there exist many distributed 
computations for which these constraints hota. Algorithm M util
izes a polynomial time algorithm for finding a mazimllm weight 
matching in graphs. An algorithm of complexity 0 (ke logk ) 
where e is the number of edges and k the number of nodes in the 
network is described in [7]. 

We first prove that for systems in which the number of 
tasks is less than or equal to twice the number of processors and 
in which each processor may be assigned at most two tasks, an 
optimal solution can be found in polynomial time. This proof 
involves two parts: (a) construction of a maximal matching in a 
graph corresponding to the task assignment problem, and (b) 
proof that a maximal matching yields an assignment which 
minimizes IPC while meeting the constraint of at most two tasks 
per processor. 

241 

Theorem 1: Consider a system with n identical processors and 
with the number of tasks k < 2n. Let B= 2 be the maximum 
number of tasks allowed on ~ch processor. Then an assignment 
which minimizes total interprocessor communication costs under 
the constraint of at most 2 tasks per processor can be found in 
polynomial time. 

Proof: 

(a): Construct a graph G with a node representing each task and 
an edge between each pair of task nodes tj and tj with weight 
Cij. We note from graph theory [9] that a matching in such a 
graph is a set of edges in which no two edges have a node in com
mon and the weight of the matching is the sum of the weights of 
those edges that are in the matching. Furthermore, a mazimllm 
weight matching for G is one whose weight is maximum among 
all matchings for G. 

A matching can be used to define an assignment of tasks to 
processors with at most two tasks per processor as follows: 

(1) Let each pair of tasks ti and tj connected by an edge e in 
the matching be assigned to a distinct processor Pg. 

(2) If there exist tasks not connected by an edge in the match
ing, arbitrarily arrange them in pairs and assign these pairs 
to distinct processors P 9 such that no other tasks are 
assigned to P 9 • 

(3) If a single task remains unassigned, assign it to any proces-
sor P q such that no other tasks are assigned to P 9 • 

Since the number of tasks k ::; 2n, there will be a sufficient 
number of processors to perform the above assignment. Because 
of the way the assignment is made, no processor will be assigned 
more than two tasks. 

(b): We now prove that a maximum weight matching corresponds 
to an assignment which minimizes the total interprocessor com
munication costs under the constraint that no processor is 
assigned more than two tasks. Let f be an assignment of tasks 
to processors and let 

0, :E Cij 
'(lj) .. '(I,) 

and 

0, :E Cij 
,(Ij)-'(Ij) 

In oth.!!" words, 0, is the total IPC incurred by assignment f , 
and 0, is the sum of communication costs between tasks 
assigned to the same processor. Then 

0TOT = :E Cij = 0, + Of 
lS,i ,jS,k 

Since 0TOT ( the grand total of all communication costs on all 
edges in the graph) is fixed over allJ!SSignments, an assignment 
which minimizes 0, also maximizes 0, . 

Now consider a maximum weight matching for G and con
struct an assignment f from the matching as described above. 
We will show that t~ weight of the maximum weight matching 
is precisely equal to Of' the sum of the communication costs on 
edges between tasks assigned to the same processor. Each edge in 
the maximum we~ht matching has a weight Cij which contri
butes to the sum 0, since the two tasks t; and tj are assigned to 
the same processor by step (1). Each pair of tasks selected by 
step (2) above has a weight Cij which equals O. (If not, that edge 
could be added to the maXimum weight matching to produce 
another matching with greater weight.) Thus 0, is precisely 
equal to the weight of the matching. It follows then that an 
assignm~t defined by a maximum weight matching for G max
imizes 0, and thus minimizes 0" the communication costs 
incurred by. assignment· f. As discussed above, an assignment 
which minimizes 0, is optimal. 

As stated above, maximum weight matchings and thus 
optimal assignments can be found in polynomial time. Q.E.D. 



Algorithm M: 

• Construct a matching in G using a polynomial time algo
rithm for finding maximum weight matchings. 

• Construct an assignment according to the steps described in 
part (a) of Theorem 1. 

Algorithm M is well':suited for the problem of dynamic con
traction in ethernet-based distributed systems for regular distri
buted computations. As discussed earlier, parallelism is main
tained in regnlar distributed computations by contracting an 
equal number of tasks to each processor. For many distributed 
algorithms, contraction which assigns two tasks per processor is 
acceptable and even desirable. In these cases, the number of tasks 
is precisely equal to twice the number of proceBS<?rs, and Algo
rithm M can be used to find an optimal contraction by setting 
B = 2. Figure 2 illustrates the contraction of a regular distri
buted algorithm for the simplex method of linear programming. 
This algorithm was developed by [6] for execution on the Char
lotte Distributed Operating System which consists of 20 Vax 

11/750. Other regular algorithms for which contraction to ~ 
processors is useful include Jacobi iterative method for solving 
LaPlace equations on a rectangle, successive over-relaxation itera
tive method for solution of linear systems of equations, Nelson's 
version of Horowitz I;lDd Zorat's matrix multiplcation algorithm. 
These algorithms all appear in [14]. 

We also note that many existing'distributed systems, such 
as those in use at academic and research institutions, consist of 
40-50 nodes. Algorithm M can thus be used for the optimal 
assignment of distributed computations consisting of up to twice 
that many tasks. We claim (but do not substantiate now) that 
there are a significant number oC distributed algorthms that are 
within these size constraints. In particular, for many distributed 
algorithms, such as the simplex algorithm, the number of tasks is 
a user option and can thereCore be specified to be in the range 
necessary for Algorithm M. 

3.3. Algorithm H, a Heuristic Algorithm for 
Task Assignment 

Theorem 1 suggests the following heuristic, polynomial-time 
algorithm for task systems with an arbitrary number of tasks, n 
identical processors, and bound B, r ~1 ~ B ~ k, on the max

n 
imum number of tasks per processor. 

Algorithm H: This algorithm reduces the original task fIaph to 

one containing ~ 2n nodes, each with no more than r 2"1 tasks 

per node. Algorithip. M can then be used to produce an optimal 
assignment for the reduced graph, but this assignment may be 
suboptimal for the original graph. 

• Construct a graph G with a node Cor each task tj and an 
edge between each pair of nodes tj and tj with weight Cij' 

• 

• 

If k ~ 2n, then Theorem 1 applies and Algorithm M can 
be invoked to obtain an optimal assignment. 

If k > 2n, then tasks are grouped into clusters utilizing 
the Sort Greedy Algorithm (described below) with a limit 

r~l on the ,maximum size of' a cluster, where 

r ~1 ~ B ~ k. Sort Greedy continues to form' clusters until 
n 

the number of clusters is less than or equal to 211 . 

242 

Symmetric Contraction ot A Distributed Algorithm 
tor the Simplex Method * 

The system to be solved is represented by a matrix M. and a 
solution is obtained through repeated iterations on M. At each 
iteration, it is necessary to (1) select a pivot column from M, (2) 
select a pivot row from M, and (3) perform operations on each 
row in Musing the values of the elements in the pivot row. 

Given m rows in M, we distribute the work to p processes by as
signing each calculator process m/p contiguous rows. The 
selection of the pivot column can be done locally by each calcula
tor process. However, the selection of the pivot row involves 
choosing the "best" row of the m rows in M. One alternative for 
achieving the distributed voting to select the pivot row utilizes la
tin squares. 

Latin squares voting: Each calculator process has an ordered 
list of all the other calculator processes such that no two lists con
tain 'the same process in the same ordinal position in the list. 
During each round, a given calculator sends its best row (either 
its own best, in round 0, or the best seen so far, in later rounds) 
to the next calculator on its list. During that round, it also re
ceives a'message Crom some other calculator. The lists can be ar
ranged 50 that after log p rounds (base 2), each calculator knows 
the best row (assuming the number oC processes p is a power oC 
2). 

A task graph representing the distributed simplex algorithm 
designed for 8 tasks is shown below. The communication edges 
are defined by the latin squares configuration also shown in the 
figure. Because of the regnlar nature oC the distributed algorithm, 
Cjj" = 0 for all i ,j. If contraction of this algorithm is necessary, 
contraction to 4 processors preserves the parallelism in the algo
rithm because of the identical nature of the tasks. Thus Algo
rithm M can be invoked with B=2, k=8, and n=4. to find an 
optimal assignment with total IPC of 20* 0 units. 

Lists for the Calculator Proc~es 
1 2 3 4 5 6 7 8 

Round 0 2 3 4 5 6 7 8 1 
Round 1 3 4 5 6 7 8 1 2 
Round 2 5 6 7 8 1 2 3 4 

(a) before contraction (b) optimal contraction 

Figure 2: Contraction of a Distributed 
Algorithm for the Simplex Method 

* Only the bare bones of the algorithm are presented 
here. The full algorithm can be found in [6]. 



• A new graph G' is constructed with a node corresponding 
to each cluster and an edge between the pair of clusters r 1 

and r2 with weight 

• 

w12 = E Cjj 

'ierl 
'j ET2 

Since the number of nodes in this new graph G' is less 
than or equal to 2n, Algorithm M can be used to produce 
an assignment of clusters to processors which minimizes the 
total inter-cluster communication costs while keeping the 
number of tasks on each processor less than or equal to the 
bound B. 

Subroutine Sort Greedy: This subroutine is vreedy algorithm 

which groups tasks into clusters of size ::; r 21 such that the 

total number of clusters is ::; 2n. 

• Initially, each task in G is in a task group by itself. 

• Construct a list L which contains the edges of G sorted in 
non-increasing order. 

• While there are unmarked edges remaining 

• • Find the Q.ext unmarked edge e = (tj, tj) in the 
list L. Mark it. 

G; is the task group containing tj. 
Gj is the task group containing tj • 

• • If I G; I + I Gj I r ~l then 

••• Merge the two groups: 
Gnew = G; U Gj 

• •• Mark all the edges between tasks in 
G; and tasks in Gj 

•• Else do not merge Gj and Gj . 

Algorithm H is a polynomial time algorithm. The complex
ity of Subroutine Sort Greedy is 0 ( e log e) where e is the 
number of edges in the computation graph. The maximal match
ing is found using Algorithm M in polynomial time as discussed 
earlier. 

3.4. Simulation Results 

In order to evaluate the performance of Algorithm H in 
finding suboptimal task assignments, simulation runs were per
formed on a variety of typical task forces. Altogether, 90 task 
forces were simulated with the number of tasks ranging from 4 to 
35 and the number of processors ranging from 2 to 5. Optimal 
assignments were computed using a branch and bound backtrack-
ing algorithm. ' 

The data used in the simulations are organized into four 
categories. Dataset 1 (Clustered) consists of randomly generated 
task-processor systems in which tasks form clusters. Oommunica
tion costs between tasks within the same cluster are on the aver
age larger than communication costs between tasks in different 
clusters. Dat~et 2 (Sparse) consists of randomly generated task
processor configurations in which the communication matrix is 
sparse. In particular, the communication costs are nonzero for 

only !. of the (;) possible pairs of tasks. Dataset 3 (Actua~ con-

243 

sists of data representing actual task forces derived from numeri
cal and matrix algorithms, operating systems programs, and gen
eral applications programs. In this dataset, specific information 
about the number of tasks and/or about which pairs of tasks 
communicate with each other was available in the literature. 
Estimates of execution and communication costs were made from 
information such as the number and type of messages passed 
between tasks, from the function of the tasks, and from raw data 
on these costs. Dataset 4 (Structured) consists of task forces 
whose task graphs have the structure of a ring, a pipe, a tree, or a 
lattice. Details about these datasets can be found in [11]. 

Algorithm H performed extremely well, finding an optimal 
assignment in 81.1% of cases. Table 1 below shows the ratio 
T 
~ where THis the cost of an assignment found by Algorithm 
To 

H, while To is the cost of an optimal assignment. 

Table 1: Distribution of Ratio TH/To by Dataset 

Percent of Simulations 
Dataset 

No. of 
(Optimal) Cas .. 

1.00 ::;1.10 ::;1.20 ::;1.30 ::; lAO ::; 1.50 

All Data 90 81.1 91.1 95.5 96.6 98.8 100.0 
Clustered 19 47A 79.0 94.8 100.0 100.0 100.0 
Svarse 16 87.5 87.5 87.5 87.5 93.8 100.0 

Actual 22 90.9 100.0 100.0 100.0 100.0 100.0 
Structured 33 90.9 93.9 96.9 96.9 100.0 100.0 

4. Conclusion 

This work represents a contribution to the current research 
effort to utilize the potential of distributed computing systems for 
parallel computation. To summarize, we have presented two 
algorithms for the assignment of tasks to processors in order to 
minimize interprocessor communication costs under the constraint 
of a bound on the number of tasks assigned to each processor. 
Algorithm M finds optimal assignments for systems in which the 
number of tasks is ::; twice the number of processors. Algo
rithm H is a heuristic for arbitrary task-processor configurations. 
This model of the task assignment problem and the use of Algo
rithms M and H are suitable for assignment of tasks and for con
traction of tasks in distributed systems which have ethernet as 
the underlying communication medium. 

We are looking at a number of extensions to the work 
described in this paper. First, because Algorithm H utilizes a 
greedy type algorithm to reduce the task graph, it is clear that 
poor assignments may result when the task graph has uniform 
communication costs. For example, in the binary tree task 
graphs of Figure 1, an optimal assignment has cost 3 while Algo
rithm H could yield a poor ~ignment with cost 8. (Algorithm H 
could also find the optimal assignment but is not guaranteed to.) 
Thus, we are interested in refining Algorithm H to handle the case 
of uniform communication costs. Weare also interested in 

finding algorithms tailored to regular graph structures such as 
trees, rings, lattices; for these restricted graphs, it may be possible 
to find optimal algorithms. In the longer run, we are interested 
multiphase contraction as described in [14] and decentralized 
dynamic contraction. Many distributed algorithms involve multi
ple execution phases with a distinct communication pattern asso
ciated with each phase. Decentralized dynamic contraction 
involves local detection of the need for contraction at execution 
time and achievement of contrac.!ion throug!1 negotiation among 



processors rather than through a centralized controller. Both of 
these problems are related to our interest in process migration in 
distributed computing systems; in fact, dynamic contraction is 
essentially carefully-orchestrated process migration. Weare 
currently engaged in a study of parallel and distributed algo
rithms to determine the role that characteristics of these algo
rithms can take in guiding process migration in distributed sys
tems. 

References 

[lJ Y. Artsy, H.Y. Chang, and R. Finkel, "Processes Migrate in 
Charlotte", University of Wisconsin Dept. of Computer Sci
ence Technical Report No. 655, August 1986. 

[2J F. Berman and L. Snyder, "On Mapping Parallel Algo
rithms into Parallel Architectures", Journal of Parallel and 
Di8tributed Computing", Vol. 4 No.5, Oct. 1987, pp. 549-
458. 

[3J S.H. Bokhari, "Partitioning Problems in Parallel, Pipelined 
and Distributed Computing", IEEE Tran8action8 on Com
puting, can't find which issue now, but will find it, 1987. 

[4J W. W. Chu, L. J. Holloway, M. T. Lan, and Kemal Efe, 
"Task Allocation in Distributed Data Processing," IEEE 
Computer, Nov. 1980, pp. 57-69. 

[5J K. Efe, "Heuristic Models of Task Assignment Scheduling in 
Distributed Systems," IEEE Computer, June 1982, pp. 50-
56. 

[6J R. A. Finkel, "Large-grain Parallelism - Three Case Stu
dies", in The Characteri8tic8 of Parallel Algorithm8, edited 
by L.H. Jamieson, D.B. Gannon, and R.J. Douglas, MIT 
Press, 1987, pp. 21-64. 

244 

[7) 

[8J 

[9J 

[10J 

[l1J 

[12J 

[13J 

[14J 

[15J 

Z. Galil, S. Micali, and H. Gabow, "Priority Queues '~ith 
Variable Priority and an O(EVlogV) Algorithm for Fmd
ing a Maximal Weighted Matching .in General Graphs".' 
ftSrd Annual Symposium on Foundatlon8 of Computer SCI

ence, Nov. 1982, pp. 255-261. 
L. Hyafil and R.L. Rivest, "Graph Partitioni~g and Con
structing Optimal Decision Trees are Polynomial Complet,e 
Problems", Report No. 33, IRIA-Laboria, Rocquencourt, 
France, 1973. 

E. Lawler, Combinatorial Optimzation, Network8 and 
Matroid8, Holt, Rinehart, and Winston, 1976. 

V. M. Lo and J. W. S. Liu, "Task Assignment in Distri
buted Multiprocessor Systems" Proceeding8 of the 1981 
IEEE International Conference on Parallel Proce88ing, 1981, 
pp. 358-360. 

V. M. Lo, "Task Assignment in Distributed Systems,", 
Dept. of Computer Science, University of lllinois, Ph.D. 
Thesis, October 1983. 

V. M. Lo, "Task Assignment to Minimize Completion 
Time", IEEE 5th International Conference on Distributed 
Computing Systems, May 1985. 

V. M. Lo, "Heuristics· for Static Task Assignment in Distri
buted Systems", in press for IEEE Transaction8 on Com-
puters. (Also University of Oregon Technical RepOl·t CIS
TR-86-13.) 

P. A. Nelson, "Parallel Programming Paradigms", Univer
sity of Washington Computer Science Technical Report No. 
87-07-02, July 1987. 

H. S. Stone and S. H. Bokhari, "Control of Distributed 
Processes," IEEE Computer, July 1978, pp. 97-106. 

[16J H. S. Stone, "Multiprocessor Scheduling with the Aid of 
Network Flow Algorithms," IEEE Trans. on Software 
Engineering, Vol. SE-3, No.1, Jan. 1977, pp. 85-93. 



The Uniform System: An approach to runtime support for 

large scale shared memory parallel processors 

Robert H. Thomas Will Crowther 

BBN Advanced Computers Inc. 
10 Fawcett St. 

BBN Laboratories Inc 
10 Moulton St 
Cambridge MA, 02238 Cambridge MA, 02238 

Abstract 

Widespread use of large scale shared memory parallel proces
sors requires easy-to-use programming techniques that effi
ciently exploit parallelism. This paper describes a practical 
approach to runtime support for parallel programming, called 
the Uniform System, that is based on the notion of the com
putational tasks to be performed rather than the processes or 
processors that perform the tasks. The basis for this approach 
is a technique for describing many related tasks in terms of a 
method for generating individual tasks. The paper presents the 
considerations that shaped the approach, and describes the 
approach itself in terms of the facilities it provides for parallel 
programming. It includes several examples illustrating use of 
the approach, both explicitly by the application programmer 
and as the target for compiled code that support parallel 
programming constructs. Finally, the paper describes the 
Uniform System implementation for tge Butterfly Parallel 
Processor. 

1. Introduction 

Tightly coupled, shared memory parallel processors with tens 
to hundreds of processors have become commercially available 
over the past few years. The ability of machines in this class 
to provide cost effective conventional time sharing service has 
been demonstrated, and time sharing can be expected to be an 
important application for these machines for years to come. 
However, many of these machines were designed to support 
computationally intensive applications by exploiting the paral
lelism inherent in them through parallel processing. 
Widespread use of these machines to parallel process applica
tions requires techniques for programming parallel implemen
tations that are relatively easy to learn and to use, and that effi
ciently exploit the parallelism provided by the machine archi
tectures. 

Few would argue that a higher level of abstraction than that 
provided directly by the hardware is desirable. Although the 
familiar process abstraction, as supported by conventional 
operating systems, has an important role in runtime support 
for parallel programming, we believe that by itself, it does not 
represent an adequate basis for programming applications that 
use tens to hundreds of processors. 

An approach to runtime support for large scale shared memory 
parallel systems called the Uniform System has been used with 
success for several years on the ButterflyUn Parallel Processor 
[BBN87]. The runtime support provided by the Uniform 
System is used in two ways. Application programs call it di
rectly and compilers generate calls on it. Although at present it 
is used to support programming language extensions for ex
plicitly controlling parallel activity, it is suitable as the target 
for automatically detected parallelism. 

245 

The Uniform System runs under the two operating systems 
currently supported for the Butterfly Parallel Processor, 
Chrysalis [BBN88a] and Mach 1000. Chrysalis is a propri
etary real time operating system for the Butterfly Parallel 
Processor. Mach 1000 is a variant of Mach [Acc86], a new 
operating system developed at Carnegie-Mellon University that 
is fully compatible with Berkeley UnixUn version 4.3bsd. It 
runs on a variety of machines, including several shared mem
ory parallel processors. 

There are two common architectural approaches for building 
shared memory parallel processors. Bus-based architectures 
connect processors and memory to a high speed bus; switch
based architectures connect processors and memory by means 
of a high performance interconnecting switch. The fixed ca
pacity of a bus usually limits bus-based architectures to a few 
tens of processors. Because the capacity of a switch usually 
scales with the number of processors, switch-based architec
tures can handle hundreds of processors. Sequent [Seq86], 
Encore [Enc86] and Alliant [Per86] manufacture bus-based 
machines. The BBN Butterfly Parallel Processor and the IBM -
RP3 [Pfi85a] are examples of the switch-based architecture. 

There are two commonly used approaches for packaging 
shared memory systems. One uses separate processor and 
memory modules, and the other uses combined processor
memory modules. Both bus-based and switch-based 
architectures accommodate either approach. The different 
packaging approaches result in two different classes of shared 
memory machines [You87]: 

1. Uniform Memory Access (UMA) machines with uniform 
memory access times for all data. 

2. Non-uniform Memory Access (NUMA) machines in 
which a particular processor can access some memory 
(its local memory) faster than other memory (memory 
local to other processors). 

Although the Uniform System was developed for the Butterfly 
Parallel Processor, which is a NUMA machine, we believe that 
the Uniform System approach works well on shared memory 
machines of both classes, and that the ideas it embodies, if not 
the interfaces it supports, port relatively easily to other 
machines 

This paper describes the Uniform System approach to runtime 
support. It presents the considerations that shaped the ap
proach first. Following that, it describes how processors and 
memory are handled. Next, it gives several examples illus
trating use of the Uniform System. Finally, the paper sketches 
the implementation and discusses some performance consider
ations. To expedite presentation, the paper simplifies the de
scriptions of some Uniform System features. Readers 



interested in the details should consult the programmer's 
manual [BBN88b]. 

2. Runtime support for parallel processin: 

Runtime support for shared memory parallel processors needs 
to address two principal issues: 

1. Processor management. Means must be provided to 
control how (or at least request how) processors are 
allocated to an application program throughout the course 
of its execution. 

2. Memory management. Means must be provided to con
trol the access processors have to various regions of 
memory. 

It is useful to introduce some terminology and state some as
sumptions about the environment within which runtime sup
port exists before describing how the Uniform System ap
proach addresses these issues. 

We assume an operating system that supports processes. For 
our pUrposes, a process is the unit of activity the operating 
system schedules for execution on a processor. A process is 
characterized by an address space and a program counter. We 
ass~e that the operating system provides means for creating, 
startmg and stopping processes, as well as for establishing 
sharing relationships among the address spaces of separate 
processes. 

A task is a basic unit of computational work. Processes run
ning on processors execute tasks. For the sake of concrete
ness, it is useful to think of a task as the execution of a sub
routine; however, as we shall see shortly, the Uniform System 
does not restrict tasks in this way. 

The Uniform System approach to processor management is 
based on several beliefs. 

Belief #1: 

W,hen there are tens or hundreds of processors it is in
feasible to deal individually with each processor and each 
process. 

Belief#2: . 

The criteria used by operating systems to schedule pro
cesses are typically based on minimal, and at best indi
rect, knowledge of application program needs. The goal 
of an operating system is to optimize ·the utilization of 
system processor, memory and i/o bandwidth resources 
across processes with wildly varying requirements. 

Belief #3: 

Achieving high application performance by parallel pro
cessing requires means for applications to control the as
signment of processors to application tasks. 

The principal consequences of beliefs #1, #2 and #3 are: 

1. From the programming point of view the primary focus 
is on the computational work or tasks to be done rather 
than the processes or processors that execute tasks. 

246 

2. Although the focus is principally on tasks rather than 
processes, processes form a fine implementation basis 
for runtime support. By using one process per proces
sor, the processors can be thought of as computational 
servers that execute application tasks. 

With the view that processes serve as a pool of equivalent 
workers, the role of the runtime support system is to control 
the scheduling of tasks to processes. The phrase process 
running on a processor is cumbersome. Since the notion of 
process is secondary to the notion of task and since the 
Uniform System implementation uses a single process running 
on each processor, this paper uses process and processor 
interchangeably, being careful to make the distinction 
whenever important. 

Belief #4: 

Since the execution of a single program may involve 
thousands of tasks, a concise means of specifying many 
related tasks is preferrable to an explicit enumeration of 
the tasks. 

Belief #5: 

Runtime scheduling of tasks to processors is more flexi
ble than scheduling at compile time or program 
construction time. Furthermore, runtime scheduling 
does nbt preclude more static scheduling schemes. 

The consequences of beliefs #4 and #5 are: 

1. The basis of the Uniform System processor management 
mechanism is a technique for describing many related 
tasks in terms of a method for generating the individual 
tasks. 

2. Processors schedule themselves by using the generation 
method to obtain their next task. This naturally results in 
dynamic load balancing behavior with processors 
looking for work when they complete tasks. 

This approach to processor management places requirements 
on the memory management approach. To treat processors as 
equivalent workers, the processes running on each must share 
regions of their address spaces. In particular, application data 
accessed by tasks must be allocated to shared memory regions 
to ensure that any processor can work on any task. 

The processes need not share their entire address spaces. For 
example, there is no need to share their c\iIVretum stacks or 
temporary storage used to execute tasks. 

The memory management mechanisms provided by the run- . 
time support system should permit programmers to control the 
visibility of data. It should distinguish between process pri
vate data visible only to a single process and globally shared 
data visible to all processes. 

For NUMA machines, like the Butterfly, the location of data is 
often an important performance consideration. Thus, for a 
NUMA machine, runtime memory management should allow 
programs to control where (Le., on which processor-memory 
module) data is allocated, and provide efficient means for 
copying blocks of data from one memory to another. 

To summarize, the Uniform System treats tasks as distinct 
from processes in several important ways: 



A single process may execute many tasks (sequentially). 

The operating system specifies the data structure defming 
a process, the application programmer specifies the data 
structure of a task. 

Tasks are usually described in sets rather than individu
ally. 

A task will not be started until it is ready to run to com
pletion. There is no virtue in setting aside one task in 
favor of another. 

All processors are treated alike: all can create new task collec
tions via the generator mechanism (described below), all can 
allocate storage. One processor is special in that it, early on, 
acquired the task of running the application program. It will 
be the first processor to invoke the help of others, and the last 
to terminate on program exit. Otherwise, it is no different 
from the rest. 

3. Initiating and managing parallel activity 

Processors running a Uniform System application are in one 
of2 states: 

Busy, working on an application task. 

Free, looking for an application task. 

When a processor working on an application task finishes its 
current task, it looks for the next task. If there are more tasks 
to be done, it starts working on one them. If not, it enters the 
free state. 

The U~iform System uses shared memory data structures, 
called task generators, to specify work to be done. A task 
generator data structure describes work in terms of a related 
collection of tasks. For example, a task generator can 
represent the work to be done by a loop; each loop iteration is 
a task, and the set of all loop iteration tasks represents all of 
the loop work. 

In general, a task is characterized by: 

A body of code, called the task work procedure, that is 
executed to perform the task. 

Some task-specific parameters. 

Data common to all of the tasks associated with a given 
task generator. 

A task generator specifies how to obtain the next task in the 
collection of tasks associated with it. As such, it is an implicit 
description of work rather than an explicit enumeration of all 
tasks in the work collection. This is important when tlie enu
meration might include many thousands of tasks. 

A task generator data structure includes: 

A task generation procedure. This is a body of code 
executed to obtain the next task associated with the task 
generator. When a process starts working on a task 
generator it calls the task generation procedure. 

The task generation procedure .typically loops generating 
tasks and executing them until all tasks associated witt; 

the generator have been generated. An individual task is 
described in terms of the parameters for a task work 
procedure. Task generation involves generating the 
parameters for the next task, and task execution is ac
complished by executing the task work procedure with 
those parameters. 

The task generation procedure for the loop example 
above is particularly simple. It is a loop that atomically 
increments a counter to produce an index. If the index is 
within range, it identifies the next loop iteration to 
execute. If it is not within range, work on this task 
generator can cease since all loop iterations have been 
scheduled. In this case the task generation procedure 
exits. 

A task work procedure. This is a body of code executed 
to perform a task. The parameters obtained by execut
ing the task generation procedure are used with the task 
work procedure. 

For the parallel loop example, the task work procedure is 
the loop body, and its parameter is the index generated 
by the task generation procedure that specifies a 
particular loop interation. 

Data. This specifies data that is accessible to all of the 
tasks associated with the task generator. 

Fields for bookkeeping. The task generation procedure 
uses these for keeping track of its progress. 

For the parallel loop example, a counter and a range 
suffice for bookkeeping. 

When a program starts to run on a group of processors, its 
execution is limited to a single processor until it initiates par
allel activity by placing a task generator data structure into 
shared memory. Free processors find the task generator and 
immediately use it to generate and work on its tasks. 
Processors currently busy will begin working on the new task 
generator when they finish their current work. 

The Uniform System runtime support library provides a col
lection of routines, called activators, for initiating parallel 
activity. These routines create and intialize task generator data 
structures and place them in shared memory where processors 
can find them. There are a variety of specific activators that 
allow users to specify some task generator fields and default 
others. In addition, there is a general purpose activator, called 
ActivateGen, that provides precise control over the task 
generator created. All of the specific activator routines call 
ActivateGen. 

Perhaps the simplest specific activator is the index activator: 

GenOnI (task_work, range) 

This activator specifies a task work procedure and a range 
parameter. The task generation procedure is implicit. It loops, 
atomically incrementing a counter to generate the tasks: 

task work(O) , task work(l), ... 
- task_work (range-l) 

Any data common to all of the tasks is implicit; and assumed 
to be in shared memory. 

247 



GenOnI can be used to parallelize loops. For example, con
sider the serial C language loop: 

for (i = 0; i < N; i++) 
a [i) = b [i) * c [i); 

This loop has no data dependences and can be transformed 
into the parallel loop: 

simple loop body (i) 
int i; -
a [i) = b [i) + c [i); 

GenOnI (simple_loop_body, N); 

Other simple specific activators include the array activator: 

GenOnA (task_work, rangel, range2) 

a 2 dimensional version of GenOnI that generates tasks of the 
form: 

task_work (row, column) 

corresponding to each element in a rangel x range2 array, and 
the half array activator: 

GenOnHA (task_work, rangel, range2) 

a variant on GenOnA that generates tasks of the same form 
corresponding to elements of the lower triangular portion of a 
rangel x range2 array. 

The activator 

GenTaskForEachProc (task_work, task_data) 

where task_data points to task data in shared memory gener
ates exactly one task for each processor of the form: 

These simple activators support a style of parallel program
ming, sometimes referred to as single program multiple data 
(SPMD) programming [Kar87], where each processor executes 
the same code against different data. They are also capable of 
supporting less homogeneous situations. For example, the 
index passed to GenOnI tasks can be used to dispatch to 
index-specific code. The activator 

GenTasksFromList (routine_list, arg_list) 

generates a set of tasks, one for each routine-argument pair 
from the routine and argument lists. Example 2 in Section 5 
illustrates further how the Uniform System generator mecha
nism can be used to support heterogeneous situations. 

The simple activators described above are sufficient for many 
applications. However, there are situations where it is desir
able to exercise more control over generators. 

Two activator control disciplines are supported: 

1. Synchronous activators return to the caller after all of the 
generated tasks have been executed. Furthermore, the 
processor that calls a synchronous activator always 
works on tasks that result. 

In simple situations where only one processor calls syn
chronous activators, each call represents a barrier 
synchronization; execution will not procede beyond the 
call until all of the tasks associated with it have been 
completed. . 

2. Asynchronous activators return to the caller as soon as 
the generator has ,been activated. This enables the caller 
to do other work either directly or by invoking other 
activators. The caller can later work on the generated 
tasks if it so chooses. . 

Normally, when a generator is active, processors begin 
working on the generator until either all processors are work
ing on it, or all the tasks have been generated. In situations 
where multiple generators can be active simultaneously, it may 
be desirable to control the number of processors used for each. 
Means exist to limit the processors used on a generator. For 
example, the code fragment: 

Asynch limited gen 1 (task work 1, 
- - - processor limit 1, ... ); 

Asynch limited gen 2 (task work 2, -
- - - processor_liInit_2, ... ); 

activates two generators, each limited to a subset of the total 
available processors, in a way that enables the activating pro
cessor to work on other things. 

In some situations it may be possible to place an upper bound 
on the number of tasks required, but the actual number re
quired might be data dependent and significantly less than the 
bound. For example, consider a search that can be partitioned 
into N tasks, each of which searches dne of N disjoint regions 
of the search space. If a task for one of the first regions suc
ceeds, it is unnecessary to generate tasks to search the 
remaining regions. Means exist to abort task generation in 
such situations. 

In some situations when a processor begins working on a 
generator, it is convenient for it to execute some generator
specific initi.alization code prior to executing any of the 
generator's tasks. For example, it might be convenient to ini
tialize some private temporaries required by the tasks. 
Similarly, it is sometimes convenient for a processor to exe
cute epilog code after it has executed the last task for a· 
generator; for example, to combine its results with those of 
other processors working on the generator. Initialization and 
finalization procedures can be specified when a generator is 
activated 

All the specific activators in the Uniform System library call 
ActivateGen, the general purpose activator. ActivateGen can 
also be used directly to build custom activators when none of 
the specific activators is well matched to an application's 
needs. The parameters for ActivateGen specify: 

248 

A task generation procedure 

A task work procedure 

A pointer to data common to all of the tasks 

Generator initialization and fmalization procedures 



A flag indicating whether the generator is synchronous 
or asynchronous 

A flag indicating whether the generator is abortable 

A processor limitation. 

Whe~ programs .call Uniform System activators directly, they 
speCIfy subroutmes for the task work and task generation 
procedt,lres. The task. generation subroutine usually loops 
generatmg parameters It uses to call the task work subroutine. 
When a compiler generates calls on the Uniform System to 
support parallel constructs, it can compile a single procedure 
that embodies both the task generation procedure and the task 
work procedure. The resulting procedure is, in effect a task 
generation procedure that includes in-line expansion of the task 
work procedure. 

Finally, programs can nest calls to activators. When a 
processor (P) begins working on a generator (G 1) it continues 
working on it until all of its tasks have been generated or a task 
it is working on calls an activator. When this occurs, P, as 
well as any free processors, begin working on the new 
generator (G2). When generator G2 is finished, Presumes 
working on generator G 1. 

4. Mana~in~ memory 

The Uniform System provides two types of memory regions 
for application program data: process private memory and 
globally shared memory. 

Process private memory is accessible only to the allocating 
process. The Uniform System uses conventional uniprocessor 
memory allocation mechanisms, such as the Unix maUoe 
family of dynamic memory allocators, to support process pri
vatememory 

Globally shared memory is visible to all of the processors. To 
support it, the Uniform System uses mechanisms that allocate 
storage in regions of the process address space that are shared 
among all processes. The basic Uniform System allocator for 
globally shared memory is: 

which is analogous to the maUoe allocator. 

Dynamic storage allocation is foreign to Fortran77. To permit 
Fortran programs to explicitly manage globally shared mem
ory, Butterfly Fortran has been extended to support dynamic 
storage allocation along the lines proposed for Fortran8x. In 
addition, it has been extended to support a visibility attribute 
for common blocks that allows programmers to declare 
whether a common block is to be process private (the current 
default) or globally shared: 

shared common /datl/ real a(lOOO), real b(20) 

The Fortran compiler generates calls on the runtime support 
provided by the Uniform System to implement globally shared 
common. 

For NUMA machines, like the Butterfly, the location of data 
relative to the processor that accesses it can have a significant 
effect on program performance. The Uniform System 
provides means to control where storage is allocated and 

249 

means to move blocks of data efficiently from one memory to 
another. 

UsAlloe allocates storage on the local processor if there is 
space; if not, it cycles through other processors until it finds 
one with enough free storage to satisfy the request. In addi
tion, 

UsAllocLocal (number_of_bytes) 

allocates from the memory of the local processor, and 

UsAllocOnProc (processor, number_of_bytes) 

allocates storage from memory of the processor specified. 

When space for a data structure must be allocated, it may not 
be possibl~ to ~ell which processor will access it most heavily. 
In such SItuatIOns, a block transfer routine can be used to 
move the data to the processor accessing it (and back again, if 
processing changes it). The block transfer trades off the cost 
of moving data against faster data references when the data is 
local, and is used when there are sufficient data references to 
recover the cost of the transfer. 

On a NUMA machine, if a processor allocates all of its data to a 
single memory module, parallel execution will be serialized 
when multiple processors simultaneously access the memory 
module. Clearly, the application data should be scattered 
across the available memories so that the full memory band
width of the machine can be used to remove this bottleneck. 
Some machines interleave consecutive memory addresses 
across memory to achieve this sort of scattering. The Butterfly 
hardware does not interleave addresses; within a page, con
secutive memory addresses fall within the same processor
memory module. As a result software must scatter the data. 

To facilitate data scatterering, the Uniform System provides 
the scattering memory allocator: 

UsAllocScatterMatrix (row, columns, 
element size) 

which allocates space for a 2 dimensional array by allocating 
successive rows on different memory modules and storing 
p~inters to the rows in a vector. Because the C language per
mIts the same syntax for array subscripting and pointer 
dereferencing, a program can reference elements of a scattered 
array like a standard C array. Of course, for a scatter array to 
effectively reduce memory contention, each processor 
accessing it should have its own local copy of row pointers;. 
Otherwise, the memory holding the vector of pointers will 
serialize access to it. 

Butterfly Fortran has been extended to support a scatter at
tribute for arrays (which are scattered by column rather than 
row) and for common blocks. The declaration: 

shared scattered common /datl/ 
real a(lOOO),real b(20) 

causes the common block data to be scattered across available 
memories. 



5. Examples 

This section contains three examples that illustrate use of the 
Uniform System. The first example illustrates direct calls 
upon the Uniform System and discusses some performance 
issues. The second illustrates compiling into Uniform System 
runtime support, and the third illustrates the construction of a 
custom activator. Space limitations do not permit the examples 
to include complete programs; instead, program fragments 
abstracted from working Butterfly programs are used. 

Example #1. Direct use of the Uniform System. 

This example computes the product (a) of two matrices (b and 
c) by computing individual elements of the product matrix in 
parallel. The example uses an array activator that generates a 
task for each element in a. The task work procedure is a 
routine that computes the dot product of a row of b and a 
column of c, and stores the result in a. A C language code 
fragment that implements this is: 

typedef struct 
{ int size; 

float * * a, * * b, * * c; 
} matrix_problem; 

dot-Froduct (p, row, col) 
matrix-Froblem * p; 
int row, col; 
int i; 
float temp = 0.0; 

for (i = 0; i < p->size; i++) 
temp += p->b [row] [i] * p->c [i] [col]; 

p->a[row] [col] = temp; 

matrix multiply (a, b, c, size) 
float * * a, * * b, * * c; 
int size: 
matrix-Froblem * p = 

(matrix-Froblem *) 
USAlloc (sizeof (matrix-Froblem»; 

p->size = size: 
p->a = a; 
p->b = b; 
p->c = c; 
GenOnAFull (dot-Froduct, p, 

p->size, p->siz,e, ... ); 

Matrix multiply accepts the operand and result matrices 
(assumed to be in shared memory) and creates a structure to 
hold data common to the dot product tasks. It then uses 
GenOnAFull, a variant of the array activator, to start the 
parallel computation; this variant accepts a pointer (P) to the 
common data and causes tasks of the form: 

dot-Froduct (p, row, col) 

to be generated. Dot yroduct stores the specified dot product 
in the result matrix p->a[ row][ col]. 

This program must be tuned to achieve best performance on a 
large scale NUMA machine like the Butterfly: 

1. The matrices would be stored as scatter matrices to 
reduce memory contention. 

250 

2. Dotyroduct accesses an entire row and an entire 
column of the operand matrices. Since elements in a row 
of a scatter matrix are contiguously stored, dot yroduct 
would use the block transfer operation to make a local 
copy of the row. Elements in the columns are scattered, 
however, preventing use of block transfer in this way. 
Transposing a matrix is inexpensive relative to 
mutiplying two matrices, and can be performed very 
efficiently in parallel. An optimized version would 
transpose the c matrix before activating the array 
generator. This would allow dot yroduct tasks to block 
transfer the columns of c. 

3. With optimization #2 each dot product requires 2 block 
transfer operations. Note that each row of b and column 
of c is actually used for N dot products. By clumping 
tasks such that each computes an n x n rectangle of dot 
products, n2 dot products can be computed using only 
2·n block transfers. 

Clumping reduces the block transfers required. It also 
reduces the number of tasks generated. This further 
improves performance, up to a point, by reducing the 
overall task generation overhead required by the 
program. The benefit of clumping diminishes w~en 
there are too few tasks to prevent processor starvatlOn 
effects that occur near the end of the computation from 
dominating the runtime. 

Optimizations #1 and #2 would not be beneficial on a UMA 
machine. Clumping would improve performance by reducing 
overall task generation overhead, however. Furthermore, for 
a UMA machine with a data cache, it would increase the 
likelihood that needed row and column elements were resident 
in the cache. 

Example #2. Compilation into the Uniform System. 

Butterfly Fortran extends Fortran77 with directives for explic
itly specifying parallel activity. This example outlines how the 
compiler uses Uniform System support to implement a DO 
PARALLEL directive for parallel loop execution. (Butterfly 
Fortran enables interloop data dependences to be properly 
handled, but this issue is not addressed here.) 

DO PARALLEL can be used to transform the serial loop 

integer i, k, a(1000) 

do i = 1, 1000 
k = a (i) 
a (i) = x (k * k) 

end do 

into a parallel loop: 

do paral'lel, shared (a), private (k) 

do i = 1, 1000 
k = a (i) 
a (i) = x (k * k) 

end do 

The shared and private options with DO PARALLEL specify that 
a is to be accessed by all processors, and k is to be private to 
each. 



The compiler transforms this parallel loop into the following 
(pseudo code): 

integer i, k, a(1000) 
record arg vec 
allocatable arg vec 
external Proc123 

arg_vec = UsAlloc (48) 
arg_vec.a a 
arg vec.k = k 
arg:=vec.i = 1 

call ActivateGen ( ... , Proc123, arg_vec, ... ) 

subroutine Proc123 (arg_vec) 

integer i, k 
record arg_vec 

k = arg vec.k 
a: loop-

i = atomic add (arg vec.i, 1) 
if (i > 1000) exit a 
k = arg veG.a (i) 
arg_vec~a (i) = x (k * k) 

end loop 

end 

The general purpose activator, ActivateGen, initiates parallel 
execution of the loop. The compiler constructs the procedure 
Proc123 containing the loop to act as the task generation 
procedure. It uses the structure arg_vec to pass processors 
data they need to execute loop iterations. After initializing the 
processor private variable k, Proc123 loops, atomically 
incrementing the globally shared loop counter producing 
indices used to execute loop iteration tasks in-line. 

An option to DO PARAlLEL controls how loop iterations are 
scheduled. The loop in this example is self scheduling in that 
processors working on the loop schedule the iterations. Less 
dynamic scheduling can be achieved by clumping iterations; 
e.g., by incrementing the shared loop counter (arg_vec.i) by 
the desired clump size. Fully static scheduling over a fixed 
number of processors can be achieved by compiling a task 
generation procedure that simply assigns each processor its 
share of the iterations as a single task. 

This example and the previous one illustrate the SPMD method 
of parallel programming, where each processor executes the 
same code (e.g., dotyroduct in Example 1, loop body in this 
example) against different parts of the data. This is sometimes 
also called data partitioning [Ost86]. The Uniform System 
also supports a second method, calledfunctional partitioning, 
where each processor executes different code on shared data. 

Butterfly Fortran supports a BEGIN PARALLEL construct for 
functional partitioning: 

begin parallel 
<t>ranch 1> 

next parallel 
<branch 2> 

next parallel 

end parallel 

251 

where each branch is a group of statements executed in paral
lel. Since activators can be nested, there can be parallelism 
within each branch as well as across branches. To translate 
BEGIN PARALLEL the compiler builds a task generation 
procedure with a loop that contains a case statement 
corresponding to each branch. Processors generate tasks by 
atomically incrementing a shared loop counter that specifies a 
branch to execute. The semantics of BEGIN PARALLEL are 
similar to the peASE construct of the FORCE package [Jor86]. 

Example #3. A custom task generator. 

Custom activators provide a way to extend the Uniform 
System The previous example illustrated how a compiler can 
construct simple custom activators to support parallel loops. 
This example outlines the construction of a more complex 
generator appropriate for .applications that use tree-walking 
techniques. 

Many problems contain substantial computational phases that 
involve searching for a path through a tree to a leaf node that 
satisfies some solution criteria. Typically, the tree is 
constructed as the search proceeds. Sometimes a single solu
tion is sought, sometimes all solutions are sought, and some
times a node close enough by some criteria to an exact solution 
is sufficient 

For example, the objective of the n-queens puzzle is to place n 
queens on an n x n chess board so that no queen can attack 
another. A search for a solution can be organized by con
structing a tree whose nodes correspond to legal board config
urations. The root node corresponds to the empty board, and 
children nodes correspond to various legal queen placements. 
In the tree for the 4-queens problem the root node would have 
4 descendent nodes, each corresponding to a board with a 
queen in one of the columns of the first row. Each of these 
depth 1 nodes would have descendent nodes corresponding to 
legal placements of the second queen in the second row, and 
so forth. All depth 4 nodes represent boards holding 4 queens 
that solve the puzzle. 

It is possible to formulate parallel solutions to combinatorial 
problems in terms of tasks that construct and explore the 
corresponding problem description tree. Two routines can be 
used to express these solutions. The first adds a new node to 
an existing node in the description tree: 

New node data is problem-specific data to be embedded in 
the new nOde. For the n-queens problem, new_node _data 
would be the board configuration corresponding to a node. 
The second routine is a activator that generates tasks 
corresponding to tree nodes: . 

GenTreeTasks (init, process_node, final, 
root_node_data) 

where process node is the task work procedure, 
root node data is problem-specific data to be embedded in the 
root node of the tree, and init andfinal are initialization and fi
nalization routines. It generates tasks of the form: 

process_node (node) 

that explore a node, possibly using AddNode to create other 
tree nodes to be explored by other tasks. 



The following C language program fragment finds all 
solutions to the n-queens puzzle in parallel: 

in it queens () 
{ my_ selns = Allecate space fer this 

precesser's selutiens; 

place_queens (beard) 
{ next_rew = * pieces en beard; 

fer each celumn 
if (OK to. place queen at 

(next_rew, celumn» 
new_beard = beard + 

(next rew, celumn); 
if (new rew == last-rew) 

my_ solns = my_ sOlns + 

else 
AddNede (beard, new_beard); 

final queens () 
{tetal selns [Atemic_add (seln_index, 1)] 

= my_ selns; 

main () 
seln_index = Allecate space in shared 

memery fer cQunter; 
tetal_ selns = Allecate space in shared 

memery to. held peinters to. 
selutiens frem precessers; 

GenTreeTasks (init_queens, place_queens, 
final_queens, empty_beard) 

~ach processor maintains a list of solutions (my solns) it 
~mds. Before working on any node tasks, each calls 
mit_queens to initialize its individual solution list. The 
place_queens task work procedure accepts a legal board 
configuration with queens in its ftrst k rows, and creates a new 
board configuration for each column in the next row where it 
is legal to place a queen. If the next row is the last row the 
new board configuration is a solution and the procesor adds it 
to its solution list. If not, it creates a new tree node corre
spondi.ng to ~he new ,hoard conftguration. When each proces
sor fimshes, It calls/mal queens to combine its solutions with 
those found by other processors. 

For this to work, the task generation procedure used by 
GenTreeTasks must explore the entire problem tree. There are 
n,umerous tree walking strategies. Depth ftrst is a particularly 
SImple one. A purely depth first walk is inherently serial 
however, since only one processor can follow the depth first 
path through the tree. The task generation procedure outlined 
below approximates depth first order: one processor (not 
necessarily the same one) follows depth ftrst order, and others 
are pulled along behind it, exploring tree nodes above and to 
the right of the depth ftrst processor. 

The task generation procedure uses the bookkeeping ftelds in 
th~ t.ask generat?r data structure to keep track of two nodes 
withm the evolvmg p~oblem tree. One, the depth/irst node, is 
the nod.e currently bemg explored by the processor following 
depth fITst order. The second is an allocation node used to 
assign nodes to processors not following depth first o~r. 

252 

When the task generation procedure needs to assign a new 
node for the processor following depth first order there are 
two cases: 

If the current depth first node is not a terminal node, it 
advances the allocation node to the depth first node. 
Advancing the allocation node in this way forces other 
processors to follow along behind the depth first 
processor (see below). It then advances the depth fITst 
node to its left most descendent, and assigns the new 
depth first node to the processor. 

If the current depth ftrst node is a terminal node, the task 
generation procedure advances in depth ftrst order from 
it, ignoring any nodes that have already been explored. 
If it encounters an unexplored node, it advances the 
depth first node to the node, and assigns it to the 
processor. If it enotmters a node currently being 
explored, it advances the depth first node to the node, 
and then uses the allocation node to fmd the next task for 
its processor (see below). If it reaches the root without 
encountering an unexplored node or one currently being 
explored, the tree has been fully explored, and it exits, 
freeing its processor for other work. 

When a processor not working on the depth first node ftnishes 
with a node, the task generation procedure uses the allocation 
node to find the next node to assign it. (Note that the node a 
processor is working on can be made the depth ftrst node by 
another processor.) If the allocation node has unexplored 
children, the task generation procedure assigns the processor 
the left-most unexplored child. If not, it advances from the 
allocation node in depth first order looking for an unexplored 
node. If it encounters one, it assigns the node to the 
processor. If not, it waits for some other processor to advance 
the allocation node or for the depth fIrst processor to exit. If 
the allocation node advances, the processor repeats this 
procedure; otherwise it exits. 

6. Implementation 

The Uniform System runs on the Butterfly Parallel Processor, 
which is a NUMA machine. It runs under both the Chrysalis 
and Mach 1000 operating systems . 

Chrysalis isa multi-user operating system which allocates 
groups of processors, called clusters, to users. A Uniform 
System program running under Chrysalis uses the processors 
within a processor cluster. As currently supported on the 
Butterfly machine, Mach 1000 is a multi-user system that 
manages two processor partitions. There is a public partition 
shared among all logged in users, and a dedicated partition, 
from which processor clusters can be allocated on a dedicated 
basis. Under Mach 1000, a Uniform System program can run 
either within the public processor partition, in which case it 
shares processor and memory resources with other time 
sharing users, or it can run within a processor cluster from the 
dedicated processor partition, in which case it has exclusive 
access to the processor and memory resources within its 
cluster. 

A substantial part of the Butterfly implementation deals with 
the NUMA nature of the machine. However, several key 
characteristics of the implementation would remain in UMA 
implementations: 

1. Dependence upon efficient synchronization mechanisms. 
The Butterfly hardware implements efficient atomic/etch 



and op operations. These are similar in function to the 
Ultracomputer fetch and op operations [Got83] but are 
implemented entirely at the memory, rather than sup
ported by combining within the switch. 

2. Dependence upon operating system support for 
establishing sharing relations among process address 
spaces. 

3. Use of a single process per processor as a computational 
server for its processor to avoid unnecessary process 
context switches. 

The following sketches the task generator and storage 
management implementations for the Butterfly Parallel 
Processor. 

The task generator mechanism must solve two problems: 

1. Notification problem. A low latency scheme is required 
to notify free processors when a new generator has been 
activated. 

2. Bookkeeping problem. An efficient, race-free, dead
lock-free scheme is required to keep track of multiple and 
nested generators. 

We outline the approach taken to the notification problem in 
the Butterfly implementation. Space limitations prevent 
discussion of the bookkeeping problem. 

Although both Butterfly operating systems support interpro
cess communication (IPC), we rejected solutions based on IPC 
support as too slow. The basis for a simple low latency ap
proach is a flag in shared memory that indicates whether there 
is an active generator. Free processors looking for work 
would spin on the flag. To activate a generator, a processor 
would store the task generator in a pre-agreed upon place in 
shared memory and set the flag, which would release any 
spinning processors. 

As described, this might work well on UMA machines with a 
few processors and clever caching schemes. It does not work 
well on NUMA machines with hundreds of processors, such as 
a large Butterfly system, however. The problem is that the 
memory holding the flag becomes very hot [Pfi85b], [Th086]. 
This has two undesirable consequences: there is a severe 
serial bottleneck in accessing the flag, resulting in a high 
average latency for generator startup; and, working processors 
that access data in the memory holding the flag are slowed 

The attraction of this approach is that, at least in principle, the 
spin frequency can be adjusted to achieve the desired latency. 
The problem with it is that spinning processors interfere with 
one another and with working processors. A refinement is to 
have each free processor spin on a flag in a shared portion of 
its own memory. This prevents spinning processors from 
interfering with one another and limits the impact their 
spinning can have on working processors. At initialization 
time, every processor "publishes" its spin location, and 
whenever a processor activates a generator, it writes into each 
spin location. For a system with a few processors this 
approach works well, but when there are hundreds of 
processors, writing into each spin location becomes a serial 
bottleneck. . 

A further refinement is to remove this serial bottleneck by 
making the notification be logarithmic. The processor activat
ing the generator sets the spin locations of a few processors, 

253 

and when each notices its location has changed, each sets the 
spin locations of a few more processors, and so forth, until all 
have been started. For this to actually work, a few details 
must be addressed. For example, the logarithmic startup tree 
must be limited to free processors, since a working processor 
at an intermediate level in the tree would not notifiy processors 
at lower levels until it becomes free itself. 

The implementation uses operating system support for shared 
memory to set up a large address space region that the 
processes on each processor share. Because the Butterfly is a 
NUMA machine, the implementation partitions the shared 
region into subregions corresponding to processors, and uses 
the physical memory of each processor to support the 
corresponding subregion. 

The Uniform System shared memory allocation mechanism for 
the Butterfly machine uses a first fit storage allocation scheme 
[Knu68] adapted for a NUMA environment It maintains a free 
list for each subregion of the address space, and protects each 
subregion free list with a mutual exclusion lock. The locks 
support a locking discipline that permits simultaneous 
allocation activity within different subregions, but serializes 
allocation within a single subregion. 

An implementation for a UMA machine would not partition the 
shared region of the address space into subregions. For a 
UMA machine it may be desirable to permit simultaneous 
allocation activity, however. This would require a more 
sophisticated locking scheme than can be supported using a 
single mutual exclusion lock for the allocator [E1l87]. 

7. Conclusions. 

The Uniform System is a practical approach to runtime support 
for shared memory parallel processors. It manages parallel 
activity by means of a task generation mechanism that provides 
a concise and efficient way to represent large numbers of 
related tasks. The Uniform System library provides a 
collection of task generators that are well matched to many ap
plications, and the ability to construct custom generators pro
vides a natural extension path. 

The approach was shaped by the beliefs outlined in Section 2. 
Not all would subscribe to these [LeB86]. Other approaches 
to runtime support, such as the Force [Jor86] and the monitors 
package developed at Argonne National Laboratory [Lus83], 
appear to be motivated by similar views, however. The 
Uniform System generator mechanism represents an efficient 
generalization of the parallel processing features these 
approaches provide. 

The Uniform System has been in use for over 3 years running 
under 2 operating systems on 2 generations of the Butterfly 
hardware at over 70 user sites. Experience with it over this 
time has shown that it represents a viable approach to runtime 
support for large scale shared memory parallel processors. 
The Uniform System is easy to learn and to use, and it has 
been used across a wide range of problem domains to produce 
high performance programs for large scale parallel machines 
[Cr085], [Kim87], [Gil86], [ONe87], [Jef88]. 

References 

[Acc86] MJ. Accetta et aI., "MACH: A New Kernel 
Foundation for Unix Development" , Proc Summer Usenix, 
July, 1986. 



LBBN87] BBN Advanced Computers, "Butterfly Product Overview", 
1987. 

LBBN88a] BBN Advanced Computers, "Butterfly Parallel Processor 
Chrysalis Programmer's Manual", 1988. 

BBN88b] BBN Advanced Computers, "Programming with the Uniform 
System", 1988. 

[Cro85] W. Crowther et al., "Performance Measurements on a 128-
node Butterfly Parallel Processor", Proc 1985 International 
Conference on Parallel Processing, pp531-540, IEEE 
Computer Society Press, 1985. 

[Ell87] C.S. Ellis and T.J. Olson, "Parallel First Fit Memory 
Allocation", Proc 1987 Intematioual Conference on Parallel 
Processing, pp502-511, IEEE Computer Society Press, 1987. 

[Enc86] Encore Computing Corporation, "UMAX 4.2 Programmer's 
Reference Manual", 1986. 

[Gil86] J. Gilmer, G. Hartwig, and L. Kokinakis, "Parallel Entity 
Centerered Simulation on the Butterfly Computer", Proc 1986 
International Conference on Parallel Processing, IEEE 
Computer Society Press, 1986. 

[Got83] A. Gottlieb et al., "The NYU Ultracomputer - Designing an 
MIMD Shared Memory Parallel Computer", IEEE Trans on 
Computers, C-32, 1983. 

[Jef88] W. Jeffrey et aI., "Functional Optimization and Pattern 
Selection in Rayleigh-Benard Convection: An Implementation 
on the BBN Butterfly Parallel Processor", submitted to the 
Journal of Computational Physics. 

[J0r86] H. Iordan, "Structuring Parallel Algorithms in an MIMD, 
Shared Memory Environment", Parallel Computing, 3 (1986), 
North-Holland,1986. 

[Kar87] A. Karp, "Programming for Parallelism", IEEE Computer, 
May 1987, pp 43-57. 

[Kim87] O. Kimball, L. Cosell, R. Schwartz, and M. Krasner, " 
Efficient Implementation of Continuous Speech Recognition 
on a Large Scale Parallel Processor", Proc 1987 International 
Conference on Acoustics, Speech and Signal Processing, 
Dallas, TX, 1987. 

[Knu68] D. Knuth, "The Art of Computer Programming: Volume 1 
Fundamental Algorithms", p435-437 , Addison-Wesley, 1968. 

LLeB86] TJ. LeBlanc, "Shared Memory Versus Message-Passing in a 
Tightly-Coupled Multiprocess: A Case Study", Proc 1986 
International Conference on Parallel Processing, pp764-771, 
IEEE Computer Society Press, 1985 

[LusS3] E.L Lusk and R. A. Overbeck, "Implementation of Monitors: 
A Programming Aide for the HEP and Other Parallel 
Processors", Report No. ANL-83-97, Argonne National 
Laboratory, 1983. 

[ONe87] E. O'Neill, E. Tenenbaum, H. Allik, and S. Moore, "Finite 
Element Analysis on the BBN Butterfly Multiprocessor", Proc 
2nd International Conference on Supercomputing, 1987. 

[Os186] A. Osterhaug, "Guide to Parallel Programming", Sequent 
Computer Systems, 1986. 

[per86] R. Perron and C. Mundie, "The Architecture of the Alliant 
FX/8 Computer", Digest of Papers, Compeon, Spring 1986. 
A.G. Bell, ed., IEEE Computer Society Press, 1986. 

[Pfi85a] G.F. Pfister et al., "The IBM Research Parallel Processor 
Prototype (RP3)", Proc 1985 International Conference on 

[Pfi85b] 

[Seq86] 

[Tho86] 

[You87] 

254 

Parallel Processing, pp764-771, IEEE Computer Society 
Press, 1985. 

G.F. Pfister and A. Norton, "Hot Spot Contention and 
Combining in Multistate Interconnection Networks", Proc 
1985 International Conference on Parallel Processing, pp790-
797, IEEE Computer Society Press, 1985. 

Sequent Computer Systems, Inc., Dynix Programmer's 
Manual, 1986. 

R. Thomas, "Performance of the Butterfly Parallel Processor 
in the Presence of Memory Hot Spots", Proc 1986 
International Conference on Parallel Processing, pp46-50, 
IEEE Computer Society Press, 1986. 

M. Young et at, "The Duality of Memory and 
Communication in the Implementation of a Multiprocessor 
Operating System.", Proc. 11th ACM Symposium on 
Operating Systems Principles, November 1987, pp 63-76. 



Design Rationale for Psyche, 
a General·Purpose Multiprocessor Operating System 

Michael L. Scott, Thomas J. LeBlanc, and Brian D. Marsh 

University of Rochester 
Department of Computer Science 

Rochester, NY 14627 

ABSTRACT 

The Psyche project at the University of Rochester aims to 
develop a high-performance operating system to support a wide 
variety of models for parallel programming. It is predicated on 
the conviction that no one model of process state or style of com
munication will prove appropriate for all applications, but that 
shared-memory multiprocessors (particularly the scalable 
"NUMA" variety) can and should support all models. Conven
tional approaches, such as shared memory or message passing, 
can be regarded as points on a continuum that reflects the 
degree of sharing between processes. Psyche facilitates dynamic 
sharing by providing a user interface based on passive data 
abstractions in a uniform virtual address space. It ensures that 
users pay for protection' only when it is required by permitting 
lazy evaluation of protection policies implemented with keys and 
access lists. The data abstractions define conventions for shar
ing the uniform address space; the tradeoff between protection 
and performance determines the degree to which those conven
tions are enforced. In the absence of protection boundaries, 
access to a shared abstraction can be as efficient as a procedure 
call or a pointer dereference. 

Introduction 

Though shared-memory multiprocessors have existed for 
over 20 years, the design of operating systems for such machines 
has seldom been the subject of research. For one thing, indivi
dual processors have tended to be very few in number, or less 
than general-purpose. With the notable exception of projects at 
CMU [26,33], it is only in recent years that multiprocessors 
have been constructed with relatively large numbers of equally 
powerful nodes. It is understandable, then, that the parallel 
operating systems community has for the past decade focused its 
attention on loosely-coupled systems, in which more-or-less con
ventional processors exchange messages over a local-area net
work. 

With the advent of large-scale commercial multiprocessors, 
several vendors have adapted the UNIX operating system for 
use on parallel machines. Most message-based operating sys
tems can be implemented on shared-memory machines as well. 
The Mach project [1] at CMU represents, to a large extent, the 
merger of Berkeley UNIX with the Accent network operating 
system [30]. Mach now runs on several multiprocessors, includ
ing DEC, Encore, and Sequent machines. 

Our aim in the Psyche project is to develop a program
ming environment (starting with an operating system) that sup
ports truly general-purpose parallel computing. By this we 
mean that the operating system will run almost any application 

. This worl was supported in part by NSF CER grant number 
DCR-8320136, DARPA ETL contract number DACA76-85-C-OOOl, and 
an IBM Faculty Development Award. We thank the Xerox Corporation 
University Grants Program for providirig equipment used in the 
preparation of this paper. 

255 

for which the hardware is appropriate, and will usually run it 
well. As with the parallel UNIX designs, we also mean that 
Psyche will not be a back-end system. In addition to individual, 
highly-parallel applications, it will support large numbers of 
users with smaller applications, in the style of conventional 
time-sharing. 

We see at least two dangers in adapting an existing 
operating system for use on a multiprocessor. First, it may fail 
to provide abstractions that are appropriate for certain applica
tions. Second, it may fail to make effective use of the hardware. 
Through the course of considerable experience with application 
and system software, we have become convinced that no one 
model of process state or style of communication will be best for 
all parallel applications. Just as a general-purpose operating 
system for a uniprocessor must support a wide variety of models 
(e.g. programming languages) for sequential computing, so too 
must a general-purpose operating system for a multiprocessor 
support a wide variety of models for parallel computing. Since 
parallel computing involves concepts (such as scheduling and 
interprocess communication) that have traditionally been the 
province of operating systems, parallel versions of traditional 
operating systems are unlikely to provide the flexibility required 
by users. 

Our first goal for Psyche is therefore flexibility: users 
should be able to implement a wide variety of models for inter
process communication and lightweight process structure. 
Pieces of an application written under different models should be 
able to interact easily, that is, to arrange dynamically to share 
access to arbitrary abstractions. Since Psyche is to be a multi
user system, our second goal is protection: it should be possible 
to associate a protocol with a shared abstraction in such a way 
that access to the abstraction is possible only by executing the 
protocol. Finally, since multiprocessors are attractive primarily 
for speed, our third goal is performance: the cost of a simple 
operation on a shared abstraction should be much closer to that 
of a procedure call than to that of sending a message in current 
network operating systems. 

Though protection and performance are conventional 
goals, our emphasis on flexibility is distinctive and unusual. In 
order to permit user-level control over processes and communica
tion, we have adopted a kernel/user interface consisting of 
unusually low-level primitives. We do not expect this interface 
to be easy to use, but the assumption is that most programmers 
will never attempt to use it. Instead, they will rely on pre
existing libraries and language support packages for process 
management and communication. We have adopted the position 
that an operating system kernel should provide only the lowest 
common denominator for things that will be built upon it. The 
purpose of the kernel is to provide protection and to hide the 
most unpleasant idiosyncrasies of the hardware while leaving 
the bulk of its power available to the language and library 
builder. 

This conception of the role of the operating system does 
not appear to have guided most recent research projects. 



Message-based operating systems, such as Eden [3], Mach [1], 
and V [14], have tended to provide a kernel interface that is too 
low~level to be used directly (witness the proliferation of remote 
procedure call stub generators), yet too high-level to permit 
alternative approaches to naming, buffering, error recovery, or 
flow control (we argue this point in [31]). Similarly, most imple
mentations of parallel programming languages b,ave either 
employed a special-purpose kernel (as in SR [4], StarMod [21], or 
Linda [13]), or have been built on top of an existing uniprocessor 
operating system, most often UNIX. We are unaware of any 
work specifically addressing the design of a kernel to support 
multiple programming models. 

Motivation 

Shared Memory Versus Messages 
Conventional wisdom holds that parallel processes must 

communicate either by sharing memory or by exchanging mes
sages. These alternatives are generally viewed as incompatible 
opposites. It is our contention, however, that conventional 
approaches are better regarded as points on a continuum that 
reflects the degree of sharing between processes. The full spec
trum includes many different styles of message passing, as well 
as monitors, path expressions, remote procedure calls, atomic 
and parallel data structures, and unconstrained shared memory. 
In a pure shared-memory approach, processes share everything; 
in a pure message-passing approach, they share nothing. The 
other options lie somewhere in-between. 

The continuum has not been widely recognized. Parallel 
programming environments have tended to present a single user 
view, often one directly supported by the underlying hardware. 
But a kernel interface is more than just a mechanism for access
ing physical resources. It is also a programming abstract~on 
that profoundly influences the algorithms that can be imple
mented on top of it. 

Three years ago, our department acquired a 128-node BBN 
ButterflyTM Parallel Processor [9], still the largest shared
memory machine available, and one that also provides firmware 
support for message passing. Since then, a major thrust 9f our 
work has been the comparison of solutions to common problems 
under various programming models [12,22,23,24]. We are con
vinced that no one model of parallelism will prove appropriate 
for all applications. Some algorithms will be easier to imple
ment with fully shared memory. Others are most clearly con
ceived with message passing. Still others need an intermediate 
option, such as monitors. Some applications may even benefit 
from the ability to use different models in different software 
modules. A computer vision system, for example, may be easiest 
to construct with shared memory at the lowest levels, where 
processes are operating in parallel on common pixel maps, and 
message passing at higher levels, where the emphasis is on 
feature integration in order to recognize objects. 

The need for flexibility in the communication structures of 
parallel programs is illustrated by an analogy to the information 
structures of sequential programs. In sequential programming, 
information can be made available in one of two forms: a data 
structure that contains the information or a function that com
putes it. Since either approach can be used to implement the 
other, the choice depends on the attributes of the application. 
Information that is hard to compute, but easy to store and 
access, is encoded in a data structure. A data structure might 
also be used in situations where the relationship between data 
items, as encoded in the data structure, may be difficult to 
recreate. Information that is easy to compute, or would require 
too much space to store, is encoded in a function. Complex infor
mation structures, such as the symbol table in a compiler, often 
use combinations of both mechanisms. 

Message passing is analogous to information exchange via 
functions, in that both impose a value-oriented semantics. 
Processes may only communicate values, some of which might 
require the exchange of an environment in which to interpret 
the value. The implicit communication required to establish an 
environment will often dominate the cost of interpreting Ii. value 
within the environment. In the case of functions, a value
oriented semantics guarantees the absence of side-effects, but 
requires the environment to be passed as a parameter.1 As with 
message passing, the cost of passing the environment as a 
parameter can dominate the cost of function execution. 

Another property shared by message passing and functions 
is that both offer a form of abstraction. A function computes a 
value without requiring the caller to know any details of how 
the value is computed. Similarly, message passing offers a 
recipient the contents of a message without requiring it to know 
the details of how the message values were computed, when the 
message was sent, or what buffering operations were involved. 

On the other hand, communication using shared memory 
is analogous to information exchange via data structures. Each 
computation (process) has access to the results of previous com
putations that have been stored (cached) in the shared memory, 
just as each procedure may have access to previous results stored 
in global data structures. Computation units (processes or pro
cedures) have reduced fixed overhead, since they can inherit a 
context implicitly (an address space or a, global data structure). 
There is little abstraction involved since both shared memory 
and data structure access require the user to have detailed 
knowledge of the location and format of information. 

The analogy between communication structures and infor
mation structures is useful because it points out the inadvisabil
ity of any attempt to impose a single model of communication on 
all applications. Sequential programming systems do not 
attempt to dictate the choice of information structure; they pro
vide functions, data structures, and hybrid combinations. Exist
ing parallel programming systems tend to allow only a single 
communication structure. Psyche is designed to be more flexi
ble, providing shared memory, message passing, and options in
between. 

Lightweight Process Models 
The processes scheduled by an operating system tend to be 

bulky objects with a large amount of state. Context switching 
between them is relatively expensive. Though many parallel 
algorithms are most easily realized with a very large number of 
processes, the cost of heavyweight context switches (as well as 
the space required for process state) makes straightforward 
implementation impossible. Lightweight processes, with a lim
ited amount of explicit state, have been provided by several 
operating systems, including Mach [1] and Amoeba [27], and by 
an even larger number of parallel programming languages and 
library packages. The precise semantics of lightweight 
processes, however, differ nearly as much from system to system 
as do the semantics of interprocess communication. ' 

256 

As with IPC semantics, we believe that the choice of a 
lightweight process model must be left to the writers of indivi
dual applications. Certainly an operating system that intends to 
allow the implementation of LISP futures [18], Ada tasks [35], 
LYNX threads [32], Emerald objects [11], Modula-2 corou
tines [37], and SR [4] processes cannot insist on the use of a sin
gle, fixed model for lightweight process management. Psyche 
provides a notion of thread that is "independent of process 
weight, and that eliminates the need for kernel intervention 

1 We are assuming pure functions that do not have access to an 
implicit environment. Functions that reference global data are 
considered a hybrid form of information structure, 



when switching between mutually-trusting threads. 

Psyche Overview 

The design of Psyche is based on the observation that 
access to shared memory is the fundamental mechanism for 
interaction between threads of control on a multiprocessor. Any 
other abstraction that can be provided on the machine must be 
built from this basic mechanism. An operating system whose 
kernel interface is based on direct use of shared memory will 
thus in some sense be universal. 

Basic Concepts 
The realm is the central abstraction provided by the 

Psyche kernel. Each realm includes data and code. The code 
constitutes a protocol for manipulating the data and for schedul
ing threads of control. The intent is that the data should not be 
accessed except by obeying the protocol. In effect, a realm is an 
abstract data object. Its protocol consists of operations on the 
data that define the nature of the abstraction. Invocation of 
these operations is the principal mechanism for communication 
between parallel threads of control. 

The thread is the abstraction for control flow and schedul
ing. All threads that begin execution in the same realm reside 
in a single protection domain. That domain enjoys access to 
the original realm and any other realms for which access rights 
have been demonstrated to the kernel. The layout of a thread 
context block is defined by the kernel, but threads themselves 
are created and scheduled by the user. The kernel time-slices on 
each processor between protection domains in which threads are 
active, providing upcalls [15] at quantum boundaries and when
ever else a scheduling decision is required. 

The relationship between realms and threads is somewhat 
unusual: the conventional notion of an anthropomorphic process 
has no analog in Psyche. Realms are passive objects, but their 
code controls all execution. Threads merely animate the code; 
they have no "volition" of their own. 

Depending on the degree of protection desired, an'invoca
tion of a realm operation can be as fast as an ordinary procedure 
call or as slow as a heavyweight process switch. We call the 
inexpensive version an optimized invocation; the safer version is 
a protected invocation. In the case of a trivial protocol or truly 
minimal protection, Psyche also permits direct external access to 
the data of a realm. One can think of direct access as a mechan
ism for in-line expansion of realm operations. By mixing the use 
of protected, optimized, and in-line invocations, the programmer 
can obtain (and pay for) as much or as little protection as 
desired. 

Keys and access lists are the mechanisms used to imple
ment protection. Each realm includes an access list consisting of 
<key, right> pairs. The right to invoke an operation of a 
realm is conferred by possession of a key for which appropriate 
permissions appear in the realm's access list. A key is a large 
uninterpreted value affording probabilistic protection. The crea
tion and distribution of keys and the management of access lists 
are all under user control, enabling the implementation of many 
different protection policies. 

Memory Model 
If optimized (particularly in-line) invocations are to 

proceed quickly, they must avoid modification of memory maps. 
Every realm visible to a given thread must therefore occupy a 
different location from the point of view of that thread. In addi
tion, if pointers are to be stored in realms, then every realm visi
ble to multiple threads must occupy the same location from the 
point of view of each of those threads. Satisfying these two con
ditions simultaneously constitutes an exercise in bipartite graph 
coloring. In order to accommodate arbitrary changes to the 

257 

graph at run time, we must generally arrange for all coexistent 
realms to occupy disjoint virtual addresses. Psyche therefore 
presents its users (conceptually at least) with a single, global, 
virtual address space. Each protection domain may have a 
different view of this address space, in the sense that different 
subsets may be marked accessible, but the mapping from virtual 
to physical addresses will be uniform. Virtual addresses suffice 
for naming, and pointers can (with appropriate permissions) be 
used without regard to the realm into which they point. 

The view of a protection domain is embodied in the 
hardware memory map. Execution proceeds unimpeded until an 
attempt is made to access something not included in the view. 
The resulting protection fault is fielded by the kernel, whose job 
it is to either (1) announce an error, (2) update the current view 
and restart the faulting instruction, or (3) perform an upcall into 
the protection domain associated with the target realm, in order 
to create a new thread to perform the attempted operation. In 
effect, Psyche uses conventional memory-management hardware 
as a cache for software-managed protection. Case (2) 
corresponds to optimized invocation. Future invocations of the 
same realm from the same protection domain will proceed 
without kernel intervention. Case (3) corresponds to protected 
invocations. The choice between cases is controlled by the keys 
and access lists. 

The major disadvantage of the uniform virtual address 
space is that address bits will be a scarce resource on most 
current architectures. Neither the 24-bit virtual addresses of 
many current machines nor the 32-bit virtual addresses now 
becoming available will be sufficient to address every realm of 
every program. Therefore, although the conceptual model pro
vided by Psyche is that of Ii single, uniform address space, any 
practical implementation must take special measures to econom
ize on virtual addresses. As with all scarce resources, it becomes 
important to (1) multiplex the resource among different pro
grams and (2) reclaim the resource when it is not in use. 

A Psyche implementation need only maintain the appear
ance of a uniform virtual address space. It can multiplex 
addresses if it knows that certain realms will never be simul
taneously visible. Realms that will not be shared at all can 
clearly overlap. Substantial amounts of code and data are likely 
to fall into this category in practice. Asking the user to identify 
unshared realms to the kernel runs counter to the Psyche philo
sophy, but is likely to produce benefits that outweigh its concep
tual cost. In addition, realms that are accessed only through 
protected invocations can be located somewhere other than 
where the user thinks they are, and in fact can overlap. Since 
the kernel is involved in every invocation, it can map a dense 
range of virtual addresses onto the operations of the overlapped 
realms. 

In order to reuse virtual addresses, a kernel implementa
tion must be able to tell when a realm is no longer needed. 
Since we want to support long-term sharing relationships, we 
cannot delete a realm simply because no thread is currently 
accessing it. Genuine garbage collection is also impractical, 
since it presupposes that all references to realms can be found. 
Other solutions adopted in traditional operating systems don't 
work either because sharing must be established explicitly 
beforehand, because long-lived' sharing relationships are not 
allowed, or because resources that can be shared long-term are 
never reclaimed by the system. For example, in most operating 
systems memory is reclaimed when a process terminates. The 
file system must be used for long-term sharing (often defined to 
be any sharing that spans process boundaries) and file space is 
reclaimed only by human intervention. In Psyche, we plan to 
use a combination of explicit de allocation by the user and impli
cit deallocation via an ownership hierarchy to reclaim virtual 
address space. Explicit deallocation allows the user to micro
manage the virtual address space; implicit deallocation based on 



ownership guarantees that the system has ultimate control over 
resource reclamation. 

Threads and Scheduling 
Each realm in Psyche is the root of exactly one protection 

domain. All threads that begin execution in the same realm 
belong to the protection domain rooted in that realm. They 
share a common view of memory, that is, a single memory map. 
Initially, the view includes only the data of the original realm of 
the protection domain. When an attempt is first made to access 
another realm from that domain, the kernel checks access rights 
and implicitly opens the new realm for access by threads in the 
domain.2 If optimized access is permitted,the new realm is 
added to the view. 

The kernel time-slices on each processor between protec
tion domains in which threads are active, providing each with 
an equal percentage of the CPU. On a given processor, each pro
tection domain will be represented by at most one of its threads 
at any point in time. The identity of this thread can be changed 
in user code, so that the thread suspended at the end of a quan
tum may well be different from th!l one that was resumed at the 
beginning of the quantum. In effect, the kernel and user 
schedule exactly the same abstraction. 

Each realm is required to provide routines for thread 
management tasks that involve the kernel. The kernel performs 
upcalls to these routines whenever user-level scheduling may be 
required. For example, upcalls occur when (1) an invocation of 
one of the realm's operations has occurred in a protection 
domain in which the realm is open for protected access (so that 
it may be appropriate to create a new thread to perform the 
requested operation), (2) a protected invocation by the current 
thread in the realm's own protection domain has caused that 
thread to block (so that it may be appropriate to run a different 
thread), (3) a protected invocation has completed in some other 
protection domain (so that a local thread may be unblocked), (4) 
a user-specified time limit has expired (so that preemption of the 
current thread may be required), and (5) a hardware fault has 
occurred (so that it may be appropriate to raise an exception in 
the current thread). None of t~ese upcalls is expected to return. 
The state of the machine at the time of the upcall is saved by 
the kernel in the context block of the current thread. After per
forming its scheduling operation, the upcall routine is 'expected 
to jump immediately into the execution of an appropriate thread. 

Upcalls execute in user mode, running code provided by 
the user. Their work space is allocated out of a static area esta
blished by the kernel when the realm is created. Each realm 
exercises complete control over the threads in its own protection 
domain. The kernel makes no assumption about the nature (or 
even the existence) of stacks for the threads themselves. 

Since a realm can be opened for optimized access from 
more than one protection domain, it is possible for threads of 
many different kinds to be executing in the realm at once. In 
order to facilitate synchronization of these threads, each root 
realm of a protection domain is expected to provide a pair of rou
tines to be called in user mode to block the current thread and to 
unblock a specified thread. These routines are in addition to the 
kernel-required upcall interface. When execution of a realm 
operation cannot proceed because of a synchronization con
straint, the approved course of action is to call the thread block
ing routine of the current protection domain, after saving the 
address of the unblock routine in an appropriate data structure. 
Low-level, architecture-specific primitives (such as test-and-set 

2 This "lazy evaluation" approach to protection frees the 
programmer from keeping track of which realms have been opened, and 
allows us to limit the cost of access rights verification to cases in which 
the realm in question will actually be used. ' 

or compare-and-swap instructions) can be used to maintain 
atomicity of the scheduling operations. 

In comparison to the library-based coroutine packages of 
traditional operating systems, the parameterized thread manage
ment of Psyche allows a protection domain to schedule other 
threads when the current thread has blocked, and permits time
slicing between user threads in a completely natural way. In 
comparison to the kernel-supported threads of Mach [1], or 
Amoeba [27], the Psyche mechanism provides the speed of a 
coroutine package for voluntary context switches within a pro
tection domain and, given sufficient overlap of domains, for 
unblock operations that span thread types. In addition, the 
Psyche mechanism allows us to use the syntax and linkage con
ventions of ordinary procedure calls for both protected and 
optimized invocations. Once a realm is opened, it allows the 
optimized invocations to exhibit the same performance as ordi
nary procedure calls. Finally, the Psyche mechanism provides a 
much higher degree of llexibility than is possible with either 
other approach. Reference parameters can be used for protected 
invocations if the caller trusts the callee. Synchronization of 
operations in shared realms can be provided to dissimilar 
threads. User specification of the code to be executed by upcalls 
means that a realm can implement an explicitly message-based 
style of serving external requests, dispatching invocations to 
waiting server threads rather than creating new threads impli
citly. 

Keys and Access Lists 
From the caller's point of view, protected and optimized 

calls will usually look the same. The exception is that a caller 
can insist that an invocation be protected when it does not trust 
the realm it is calling. In effect, Psyche has separated the 
dimensions of protection and performance from the semantics of 
realm invocation. Unless explicitly requested by the caller, the 
choice between the two is based on the access list of the realm 
being called. 

When a thread attempts to invoke an operation of a realm 
for the first time, the kernel performs an implicit open operation 
on behalf of the protection domain in which the thread is execut
ing. In order to verify access rights, the kernel checks to see 
whether the thread possesses a key that appears in the realm's 
access list with a right that would permit the attempted opera
tion. Once a realm has been opened from a given protection 
domain, access checks are not performed for individual realm 
invocations, even those that are protected (and hence effected by 
the kernel). 

Rights contained in access lists include; initialize realm 
(change'protocol), destroy realm, invoke protected, invoke optim
ized (or in-line), and invoke optimized read-only. 

Since the value of a key depends on neither the holder nor 
on the realm(s) to which it confers rights, it is possible to (1) pos
sess a key that grants rights to a large number of realms, (2) 
change the rights conferred by a key without notifying the 
holder(s) and (3) change the holders of a key without notifying 
the realm(s) to which the key grants access. 

The context block of each thread contains a pointer to the 
key list to be used when checking access rights. When a fault 
occurs, the kernel matches the key list of the current thread 
against the access list of the target realm. The principal draw
back of this strategy is the potential cost of matching when both 
the key list and the access list are long. Since matching occurs 
only when realms are opened, there is reason to believe that any 
cost incurred will be amortized over enough operations to make 
it essentially negligible. Moreover, we believe that most pro
grammers will use keys in either a capability or access-list style, 
so that either the key list or the access list will generally be 
short. In cases where multi-way matching is expected to be 
unacceptably slow, programmers will have the option of calling 

258 



an explicit open operation, with explicit presentation of a key. 

In the early stages of our design work, before adopting our 
system of keys, we had planned to use capabilities for protection 
in Psyche. This seemed to be a reasonable choice; realm invoca
tions bore a superficial resemblance to mechanisms employing 
capabilities in several other systems, including the object invoca
tions of Eden [3] and the procedure caIls of Hydra [38]. Upon 
further examination, however, it became clear that the use of 
capabilities in Psyche would pose several serious problems: 

(1) The tight association between names and rights within a 
capability would require most pointers into realms to be 
accompanied in every data structure by an appropriate 
capability, resulting in unacceptable space overhead. 

(2) Given appropriate rights, our goal for optimized access is to 
map a realm into the current address space in such a way 
that further proof of rights is never needed. Under these 
circumstances we expect accesses to occur frequently enough 
to make the cost of presenting a capability on every access 
unacceptable, even if no actual verification is performed. 

(3) Mandatory use of an explicit open primitive would eliminate 
the need to present capabilities for routine access, but would 
also force the Psyche user to keep track of which realms are 
currently accessible. Our experience with the Chrysalis 
operating system [7] has convinced us that this burden will 
be unacceptable for ordinary programmers and undesirable 
for the implementors of communication models. Opening 
realms at the earliest possible moment (rather than waiting 
until just before the first access) is also unattractive, 
because the set of realms that might potentially be accessed 
is likely to be very much larger than the set that will actu
ally be accessed. 

Traditional access lists solve these problems, but have 
other limitations of their own. They require that we be able to 
name the entities to whom access should be granted. They can 
require a great deal of space to list all valid names. They make 
it difficult or impossible to pass rights on to a third party 
without kernel intervention. By introducing keys as an addi
tional level of indirection, we obtain the advantages of access 
lists while avoiding their disadvantages. Keys can be moved 
from place to place without kernel intervention. A single key 
can convey an arbitrarily complex set of rights over an arbitrary 
set of realms to an arbitrary set of clients. The rights associated 
with a key can even be changed without the knowledge of the 
clients. While it is not in general possible to prevent a thread 
from passing its keys on to a third party, we see no way to avoid 
this problem in any scheme that transfers rights between protec
tion domains without the help of the kernel. 

Locality 
The fact that Psyche is intended to run on a large-scale 

multiprocessor raises locality issues not encountered in unipro
cessors or in bus-based multiprocessors. Machines that will 
scale to hundreds or thousands of nodes must clearly have 
NUMA (non-uniform memory access) architectures. Current 
designs include the BBN Butterfly [8,9], IBM RP3 [29], Illinois 
Cedar [20], and Encore Ultramax [36]. Given hardware or 
firmware support for microsecond access to remote memory, 
hypercube designs would qualify as well. Optimal performance 
on these NUMA machines depends critically on' maximizing 
locality, so that data accessed frequently is also accessed quickly. 
Unfortunately, the research community has yet to develop any 
general purpose memory management strategy that achieves the 
desired result. Attacking this so-called "NUMA problem" will 
be a crucial task for Psyche. 

Psyche "realms provide a strong notion of locality in our 
current implementation. All the data of a given realm resides at 
a single location, equally close or equally far from each 

individual thread. Applications that need to manage locality 
explicitly can create multiple realms. Allowing the data of a 
realm to be scattered across the machine would require either 
(1) a successful solution to the NUMA problem (in the form of 
kernel-managed, automatic, optimal data distribution), or (2) the 
introduction of a new abstraction to represent the pieces of a 
realm. We are reluctant to accept the latter; we do not yet have 
the former. We see our current approach as a reasonable first 
cut that will permit further experimentation. 

Whether realms span NUMA boundaries or not, protection 
domains clearly must do so, since they consist of multiple 
realms. As a result, interactions between realms may span 
NUMA boundaries. In most cases performance will be maxim
ized by executing realm operations on a processor close to the 
data. These operations must be performed by a thread co-located 
with the data. In some cases, however, the cost of transferring 
control to a thread on an appropriate processor may exceed the 
cost of accessing the data remotely. If the appropriate code is 
replicated, these operations can be performed by any thread, 
which then accesses the data remotely. 

In our current implementation, we permit the user to 
specify which operations are data-intensive enough to justify the 
cost of co-locating code and data. The code for these operations 
is kept out of the page table to force the use of protected invoca
tions, thereby transferring control to a thread in a domain that 
is close to the data. As with scattering of data, we consider this 
approach to be a first cut that will support later experimentation 
with more sophisticated realm or thread migration strategies. 

The opportunity to perform migration occurs in several 
places. When a realm is first opened for optimized access from a 
given protection domain, the kernel can consider moving the 
realm to be closer to other realms in the domain. When a pro
tected invocation provides reference parameters, the kernel can 
consider moving either the target realm or the realm of the 
parameters in order to optimize access. When a very large data 
structure is incorporated in the views of more than one protec
tion domain, the kernel may use virtual memory techniques to 
copy on reference or even move on reference. The optimal mix of 
techniques for automatic data (re)location is far from obvious; 
the NUMA problem is very much an open research issue. 

Although Psyche is not designed explicitly for loosely cou
pled networks, it could be extended to accommodate them in at 
least two different ways. The first is to incorporate networks 
into the NUMA model by simulating remote operations in 
software (i.e. in the kernel). This approach has the considerable 
advantage of functional transparency. Protected invocations 
would be implemented in much the same way as on a shared
memory machine. Optimized invocations would need to make 
use of automatic migration in order to obtain acceptable per
formance. Work by Li and Hudak suggests that this first 
approach is tractable for certain usage patterns [25]. In other 
cases, however, it might serve to hide costs that would be better 
kept explicit. An alternative would be to write network inter
face realms to support cross-machine operations. This second 
approach would require no kernel modifications. It is similar in 
style to remote procedure call stub generators and to the net
work server processes of Accent and Mach. 

Examples of the Use of Realms 
For both locality and communication, the philosophy of 

Psyche is to provide a fundamental, low-level mechanism from 
which a wide variety of higher-level facilities can be built. 
Realms, with directly-executed operations, can b~ used to imple
ment the following: 

(1) Pure shared memory in the style of the BBN Uniform Sys
tem [10]. A single large collection of realms would be 
shared by all threads. The access protocol, in an abstract 
sense, would permit unrestricted reads and writes of 

259 



individual memory cells. 

(2) Packet-switched message passing. Each message would be 
a separate realm. To send a message one would make the 
realm accessible to the receiver and inaccessible to the 
sender. 

(3) Circuit-switched message passing, in the style of 
Accent [30], Charlotte [5], or Lynx [32]. Each communica
tion channel would be realized as a realm accessible to a 
limited number of threads, and would contain buffers mani
pulated by protocol operations. 

(4) Synchronization mechanisms such as monitors, locks, and 
path expressions. Each of these can be written once as a 
library routine that is instantiated as a realm by each 
abstraction that needs it. 

(5) Parallel data structures. Special-purpose locking could be 
implemented in a collection of realms scattered across the 
nodes of the machine, in order to reduce contention [16, 17]. 
For certain kinds of data structures, (the Linda tuple 
space [2], for example), the entry routines of the data struc
ture as a whole might be fully parallel, able to be executed 
without synchronization until access is required to particu
lar pieces of the data. 

Machine Requirements 
In order to support an implementation of Psyche, a target 

multiprocessor must have certain characteristics. All or most of 
its memory must be sharable - the architecture may be UMA or 
NUMA, but it must be possible to access the code and data of 
any realm from any processor. The virtual address space must 
be at least as large as, and preferably much larger than, the 
physical address space. There must be a very large number of 
individually protected segments or pages. Support must be pro
vided for very sparse address spaces. 

Commercial multiprocessors that are likely candidates for 
Psyche implementations include the Sequent Balance, Encore 
Multimax, multiprocessor VAX, and BBN Butterfly machines: 
Of these, the Butterfly has by far the largest number of process
ing nodes and the most interesting memory architecture, in 
terms of varying locality. The new Butterfly 1000 series [8] also 
provides 32 bit virtual addresses, more than either Sequent or 
Encore.3 Even with 32 bits, however, software techniques for 
coping with the scarcity of virtual addresses will still be neces
sary. Our implementation effort has deliberately focused on 
issues that are independent of the choice of a particular target 
machine. 

Relationship to Previous Work 

Psyche resembles Hydra [38] in its use of protected pro
cedure calls for the execution of operations in separate protection 
domains. Our approach differs in its emphasis on multiple pro
gramming models, its integration of code and data in realms, 
and its provision for optimized access. Objects in Hydra can be 
either procedures or data. Realms in Psyche are both. Our 
approach is more in keeping with current use of the term 
"object-oriented," in that data is never separated from the proto
col for its access.· Sharable data in Hydra can be accessed only 
through the use of capabilities, so very fine-grain operations, 
even without the need for protection, cannot be made efficient. 

3 The original Butterfly, the Sequent Balance, and the Encore 
Multimax all employ 24-bit virtual addresses, enough to access HI' 
megabytes. A fully-configured, 256-node Butterfly would contain one 
gigabyte of physical memory. The Balance can have up to 28 
megabytes of memory, the Multimax up to 12B megabytes. 

4 The fundamentally passive nature of a realm, the unusual 
protection mechanism, and the lack of inheritance lead us to avoid the 
adjective "object-oriented." 

The structural difference between Hydra objects and 
Psyche realms is best viewed as a difference in approaches to 
building abstractions. The association between data and pro
cedures in Hydra is established by convention. Protocols are 
enforced by giving a procedure the ability to amplify the rights 
of capabilities for certain types of data objects. User programs 
hold capabilities that do not permit them to access the internals 
of the data objects; only the amplifying procedures can do so. 
Psyche abstractions, by contrast, are provided directly by the 
Psyche kernel. No amplification mechanism is needed in order 
to enforce the use of protocols. Where a Hydra user would ask 
the "pop" procedure to return an item from stack object X, a 
Psyche user would ask the "stack X" object to pop itself and 
return the result. By analogy to programming languages, the 
Hydra approach to abstraction resembles an Ada package [35] 
that exports an opaque type, while Psyche abstractions resemble 
Smalltalk objects. 

Psyche also bears a resemblance to the StarOS [19] and 
Medusa [28] operating systems for Cm*. It is. closer to Hydra 
than to StarOS, and closer to StarOS than to Medusa. StarOS 
emphasizes the asynchronous execution of operations by remote 
processes. As in Hydra, code and data comprise separate objects, 
but a number of special object types (dequeues, mailboxes, 
events) are built into the kernel and supported with microcode. 
A mechanism is provided for mapping an object into one of a 
limited number of windows, but the result is much less general 
than the inclusion of Psyche realms in views_ In any event the 
use of a uniform virtual address space would not have been an 
option on the Cm* hardware, which only supported 16-bit 
addresses. Medusa adopts an essentially message-based 
approach to process interaction, with only a limited form of data 
sharing permitted within multi-process task forces. 

Perhaps the best-known current work in multiprocessor 
operating systems is the Mach project [1], again at CMU. In 
comparison to Mach, Psyche has both a different motivating phi
losophy and a different set of resulting abstractions. Psyche is 
not constrained to be UNIX compatible .. It is also not designed 
specifically for networks, though it could be extended to run in a 
loosely-coupled world. Its real focus is on scalable shared
memory multiprocessors, for which we believe it can make 
significantly better use of the hardware than is possible with a 
primarily message-based system. 

Psyche adopts a passive view of objects, as opposed to the 
active view of Mach. Where Mach provides messages as the 
basic communication mechanism, Psyche provides data sharing 
and protected procedure calls. Where the notion of threads 
within a task is built into Mach at the kernel level, the threads 
of Psyche can be scheduled in user code and can move between 
mutually-accessible realms. Where Mach supports data sharing 
primarily between related tasks in the task creation tree, Psyche 
facilitates dynamic sharing relationships between arbitrary 
threads. Where Mach relies on the kernel to control the u.se of 
capabilities, Psyche provides probabilistic protection with keys 
in user space. All of these differences make Psyche a lower
level, less structured operating system, but at the same time one 
that will admit a wider variety of user applications with a finer 
grain of interaction. 

We feel that the closest parallels to Psyche can be found in 
the so-called open operating systems developed for uniprocessors 
by groups at Xerox and MIT. In Cedar [34] (no relation to the 
Illinois Cedar project) and Swift [15], all the software of the 
machine runs in a single address space, with no protection pro
vided by the kernel. Processes are prevented from interfering 
with each other by relying on the compiler for a "safe" program
ming language. Psyche can be regarded as an attempt to pro
vide the advantages of an open operating system without relying 
on a single programming language. It is also an attempt to 
extend support to multiple processing nodes, though the Cedar 

260 



group is moving in the same direction [6]. 

The comparison to Swift is particularly apt. The multi
process modules of Swift are very much like realms. Up calls 
between modules in Swift resemble optimized realm invocations. 
Both Psyche and Swift are designed to separate the crossing of 
functional boundaries (i.e. between realmsl from the expense of 
context switching. The solution may be more successful in 
Swift, since the CLU compiler can provide cost-free protection 
when calling an untrusted module. Psyche invocations that go 
"down" into a trusted realm like the file system will be easier to 
optimize than invocations that go "up" into untrusted user code. 

Status and Plans 
Design of the low-level kernel routines for Psyche was 

completed in the summer of 1987. Implementation of these rou
tines has proceeded in parallel with the design of higher layers. 
We have recently acquired a 24-node Butterfly 1000 Parallel 
Processor (a.k.a. Butterfly Plus) on which we are continuing 
development. With its Motorola 68851-based memory manage
ment system, this new machine permits the large sparse address 
spaces we require. Our principal goal for the coming year is to 
obtain an environment as quickly as possible in which we can 
experiment with multi-model programs. 

We expect our work to evolve into a number of interre
lated projects. Interesting research could be performed in 
memory management (particularly for the automatic manage
ment of memory with non-uniform access times), lightweight 
process structure, implementation and evaluation of communica
tion models, and parallel language design. The latter subject is 
of particular interest. We have specifically avoided language 
dependencies in the design of the Psyche kernel. It is our intent 
that many languages, with widely differing process and com
munication models, be able to coexist and cooperate on a' Psyche 
machine. We are interested, however, in the extent to which the 
Psyche philosophy itself can be embodied in a programming 
language. 

The communications facilities of a language enjoy consid
erable advantages over a simple subroutine library. They can be 
integrated with the naming and type structure of the language. 
They can employ alternative syntax. They can make use of 
implicit context. They can produce language-level exceptions. 
For us the question is:. to what extent can these advantages be 
provided without insisting on a single communication model at 
language-design time? Though these questions are beyond the 
scope of our current work, we expect them to form the basis of a 
future, follow-on project. 

Acknowledgments 
Many members of the Rochester systems group have con

tributed to the work reported herein. The authors extend their 
thanks to Rob Fowler, Bill Bolosky, Alan Cox, Lawrence Crowl, 
Peter Dibble, Neal Gafter, John Kerber, and John Mellor
Crummey. 

References 
[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. 

Tevanian, and M. Young, "Mach: A New Kernel Founda
tion for UNIX Development," Proceedings of the Summer 
1986 USENIX Technical Conference and Exhibition, June 
1986, pp. 93-112. 

[2] S. Ahuja, N. Carriero, and D. Gelernter, "Linda and 
Friends," Computer 19:8 (August 1986), pp. 26-34. 

261 

[3] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe, 
"The Eden System: A Technical Review," IEEE Transac
tions on Software Engineering SE-ll:1 (January 1985), pp. 
43-59. 

[4] G. R. Andrews, R. A. Olsson, M. Coffin, I. J. P. Elshoff, K. 
Nilsen, T. Purdin, and G. Townsend, "An Overview of the 
SR Language and Implementation," ACM TOPLAS 10:1 
(January 1988), pp. 51-86. 

[5] Y. Artsy, H.-Y. Chang, and R. Finkel, "Interprocess Com
munication in Charlotte," IEEE Software 4:1 (January 
1987), pp. 22-28. 

[6] R. R. Atkinson and E. M. McCreight, "The Dragon Proces
sor," Proceedings of the Second International Conference on 
Architectural Support for Programming Languages and 
Operating Systems (ASPLOS Il), 5-8 October 1987, pp. 65-
71. 

[7] BBN Advanced Computers Incorporated, "Chrysalis lID Pro
grammers Manual, Version 3.0," Cambridge, MA, 28 April 
1987. 

[8] BBN Advanced Computers Incorporated, "Inside the 
Butterfly Plus," Cambridge, MA, 16 October 1987. 

[9] BBN Laboratories, "ButterflyllD Parallel Processor Over
view," BBN Report #6149, Version 2, Cambridge, MA, 16 
June 1986. 

[10] BBN Laboratories, "The Uniform System Approach to Pro
gramming the ButterflyllD Parallel Processor," BBN Report 
#6149, Version 2, Cambridge, MA, 16 June 1986. 

[11] A. Black, N. Hutchinson, E. Jul, and H. Levy, "Object 
Structure in the Emerald System," OOPSLA'86 Conference 
Proceedings, 29 September - 2 October 1986, pp. 78-86. In 
ACM SIGPLAN Notices 21:11 (November 1986). 

[12] C. M. Brown, R. J. Fowler, T. J. LeBlanc, M. L. Scott, M. 
Srinivas, and others, "DARPA Parallel Architecture 
Benchmark Study," BPR 13, Computer Science Depart
ment, University of Rochester, October 1986. 

[13] N. Carriero and D. Gelernter, "The SlNet's Linda Kernel," 
ACM TOCS 4:2 (May 1986), pp. 110-129. Originally 
presented at the Tenth ACM Symposium on Operating 
Systems Principles, 1-4 December 1985. 

[14] D. R. Cheriton and W. Zwaenepoel, "The Distributed V 
Kernel and its Performance for Diskless Workstations," 
Proceedings of the Ninth ACM Symposium on Operating 
Systems Principles, 10-13 October 1983, pp. 129-140. In 
ACM Operating Systems Review 17:5. 

[15] D. Clark, "The Structuring of Systems Using Upcalls," 
Proceedings of the Tenth ACM Symposium on Operating 
Systems Principles, 1-4 December 1985, pp. 171-180. In 
ACM Operating Systems Review 19:5. 

[16] C. Ellis, "Concurrent Search and Insertion in 2-3 Trees," 
Acta Informatica 14 (1980), pp. 63-86. 

[17] C. Ellis, "Concurrent Search and Insertion in AVL Trees," 
IEEE Transactions on Computers C-29:9 (September 
1980), pp. 811-817. 

[18] R. H. Halstead, Jr., "Parallel Symbolic Computing," Com
puter 19:8 (August 1986), pp. 35-43. 

[19] A. K. Jones, R. J. Chansler, Jr., I. Durham, K. Schwans, 
and S. R. Vegdahl, "StarOS, a Multiprocessor Operating 
System for the Support of Task Forces," Proceedings of the 
Seventh ACM Symposium on Operating Systems Princi
ples,December 1979, pp. 117-127. 



[20] D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. 
Sameh, "Parallel Supercomputing Today and th,e Cedar 
Approach," Science 231 (28 February 1986), pp. 967-974. 

[21] T. J. LeBlanc, R. H. Gerber, and R. P. Cook, "The StarMod 
Distributed Programming Kernel," Software - Practice 
and Experience 14:12 (December 1984), pp. 1123-1139. 

[22] T. J. LeBlanc, "Shared Memory Versus Message-Passing 
in a Tightly-Coupled Multiprocessor: A Case Study," 
Proceedings of the 1986 International Conference on Paral
lel Processing, 19-22 August 1986, pp. 463-466. Expanded 
version available as BPR 3, Computer Science Depart
ment, University of Rochester, January 1986. 

[23] T. J. LeBlanc, "Problem Decomposition and Communica
tion Tradeoffs in a Shared-Memory Multiprocessor," in 
Numerical Algorithms for Modern Parallel Computer 
Architectures, IMA Volumes in Mathematics and its Appli
cations #16, Springer-Verlag, 1988. 

[24] T. J. LeBlanc, M. 1. Scott, and C. M. Brown, "Large-Scale 
Parallel Programming: Experience with the BBN Butterfly 
Parallel Processor," Proceedings of the ACM SIGPLAN 
Conference on Parallel Programming: Experience with 
Applications, Languages, and Systems, July 1988. 

[25] K. Li and P. Hudak, "Memory Coherence in Shared Vir
tual Memory Systems," Proceedings of the Fifth Annual 
ACM Symposium on Principles of Distributed Computing, 
11-13 August 1986, pp. 229-239. 

[26] H. H. Mashburn, "The C.mmp/Hydra Project: An Architec
tural Overview," pp. 350-370 (chapter 22) in Computer 
Structures: Principles and Examples; ed. D. P. Siewiorek, 
C. G. Bell, and A. Newell, McGraw-Hill, New York, 1982. 

[27] S. J. Mullender and A. S. Tanenbaum, "The Design of a 
Capability-Based Distributed Operating System," The 
Computer Journal 29:4 (1986), pp. 289-299. 

[28] J. D. Ousterhout, D. A. Scelza, and S. S. Pradeep, 
"Medusa: An Experiment in Distributed Operating System 
Structure," CACM 23:2 (February 1980), pp. 92-104. 

[29] G. R. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, 
W. J. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. 
Norton, and J. Weiss, "The IBM Research Parallel Proces
sor Prototype (RP3): Introduction and Architecture," 
Proceedings of the 1985 International Conference on Paral
lel Processing, 20-23 August 1985, pp. 764-771. 

[30] R. F. Rashid and G. G. Robertson, "Accent: A Communica
tion Oriented Network Operating System Kernel," 
Proceedings of the Eighth ACM Symposium on Operating 
Systems Principles, 14-16 December 1981, pp. 64-75. In 
ACM Operating Systems Review 15:5. 

[31] M. L. Scott, "The Interface Between Distributed Operating 
System and High-Level Programming Language," Proceed
ings of the 1986 International Conference on Parallel Pro
cessing, 19-22 August 1986, pp. 242-249. 

[32] M. L. Scott, "Language Support for Loosely-Coupled Dis
tributed Programs," IEEE Transactions on Software 
Engineering SE-13:1 (January 1987), pp. 88-103. 

[33] R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm* - A 
Modular Multi-Microprocessor," Proceedings of the AFIPS 
1977 NCC46, AFIPS Press (1977), pp. 637-644. 

[34] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann, 
"A Structural View of the Cedar Programming Environ
ment," ACM TOPLAS 8:4 (October 1986), pp. 419-490. 

[35] United States Department of Defense, "Reference Manual 
for the Ada® Programming Language," (ANSIIMIL-STD-
1815A-1983), 17 February 1983. Available as Lecture 
Notes in Computer Science #106, Springer-Verlag, New 
York,198l. 

[36] A. W. Wilson, Jr., "Hierarchical Cache/Bus Architecture 
for Shared Memory Multiprocessors," Fourteenth Annual 
International Symposium on Computer Architecture, 2-5 
June 1987, pp. 244-252. 

[37] N. Wirth, Programming in Modula-2, Third, Corrected 
Edition. Texts and Monographs 'in Computer Science, ed. 
D. Gries, Springer-Verlag, Berlin, 1985. 

[38] W. A. Wulf, R. Levin, and S.P. Harbison, Hydra/C.mmp: 

262 

An Experimental Computer System, McGraw-Hill, New 
York,198l. 


