
<
~1 ---
~~

(Q ::D
~z
::+ ~
::r3 ::I

0
tn z
ml>
::::J r-
Q. o
l>o :g z
:-n
n m
m :a =m oz :Jo
"'m
i

~1
'< r-

m
r-

~
m
z
Q

PENN
STATE

PROCEEDINGS
OF THE

1988 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August 15-19, 1988

PROCEEDINGS
OF THE

1988 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING
August ·15-19, 1988

Vol. Ill Algorithms and Applications

David H. Bailey, Editor

Sponsored by

Department of Electrical Engineering
PENN STATE UNIVERSITY

University Park, Pennsylvania

THE PENNSYLVANIA STATE UNIVERSITY PRESS
UNIVERSITY PARK ANO LONDON

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors' opinions and are published as presented and without change in
the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, Penn State Press, or the Institute of Electrical and Electronics Engineers,
Inc.

Library of Congress Catalog Card Number 79-640377
ISSN 0190-3918

ISBN 0-271-00654-4
IEEE Computer Society Order Number 889

IEEE Catalog Number 88CH2625-2

Copyright © 1988 The Pennsylvania State University
All rights reserved

Printed in the United States of America

Additional co'pies may be obtained from:
Penn State Press

215 Wagner Building
University Park, PA 16802

PREFACE

Interest in the field of parallel processing continues to climb. This trend is evidenced by the sharp increase
in papers submitted to the International Conference on Parallel Processing during recent years:

Papers Papers
Year Submitted Accepted Percent

1980 170 65 57
1983 240 136 57
1986 400 170 43
1987 487 174 36
1988 590 173 29

Although the number of submissions continues to increase, the number of accepted papers this year and
in the past two years has remained relatively unchanged. This is due to the limitation imposed by the fixed
number of hours available for the conference. As a result, a record number of papers had to be rejected. This
year, the conference proceedings is being published in three volumes according to the subject category. The
breakdown of submissions and acceptances in the three main categories of this conference is as follows:

Papers Papers
Category Submitted Accepted Percent

Architecture 264 74 28
Software 144 43 30
Algorithms and Applications 182 56 31

Of the 173 papers that were accepted, 79 were accepted as regular papers and 94 were accepted as short papers.
Many papers that normally would have been accepted as long papers were accepted as short papers in order to
meet the maximum number of paper-sessions allotted for the conference.

Finding sufficient numbers of qualified reviewers was a particularly challenging task this year, due to the
record number of submissions. Over 1,000 professionals in the field participated in this process. This year
the process of selecting referees was simplified by the use of questionnaires, which were mailed to previous
participants in the conference. The information on the completed questionnaires were entered into databases,
which then allowed the conference chairmen to select reviewers qualified in fairly specialized fields. Even so,
numerous papers were so highly specialized that custom selection of referees was still required. It appears
that an even more detailed breakdown of specializations will be needed for these questionnaires in the future.
Greater effort will also be required in the future to find additional reviewers to adequately evaluate the increasing
numbers of submissions.

I wish to thank the management of the Numerical Aerodynamic Simulation Systems Division at NASA
Ames for providing me the opportunity to serve on the program committee this year. I also wish to thank
the following persons on our staff who assisted in selecting referees and in handling the correspondence: Liviu
Lustman, Martin Fouts, Julie Swisshelm, Horst Simon, Creon Levit, Gina Riley, Saundra Ramirez, and Reina
Trinwith. I wish also to thank Prof. Tse-yun Feng for his support and encouragement in this effort.

David H. Bailey
NASA Ames Research Center
Moffett Field, CA 94035

iii

LIST OF REFEREES

Abello, J. U. C. Santa Barbara Chang, C. K. Univ. of Ill. Chicago
Abileah, R. SRI International Chang, D. Univ. of Louisville
Adams, G. B. Purdue Univ. Chang, H. Univ. of Miami
Agrawal, D. P. North Carolina St. Univ. Chang, P.R. Purdue Univ.
Agrawala, A. Univ. of Maryland Chang, S. Univ. of Maryland
Ahmad, M. 0. Concordia Univ. Chellappa, R. Univ. of Southern Cal.
Alaghband, G. Univ. of Colorado Chen, S. Univ. of North Carolina
Alexander, W. E. North Carolina St. Univ. Chennagiri, R. K. Univ. of Southern Cal.
Altmann, E. Carnegie Mellon Univ. Cherkassy, V. Univ. of Minnesota
Antony, R. U.S. Army Christian, F. IBM Almaden Research Ctr.
Armstrong, J. Convex Computer Corp. Chung, M. J. Michigan St. Univ.
Bailey, D. H. NASA Ames Research Ctr. Coffman, E. G. AT&T Bell Labs
Bappana, R. V. Univ. of Southern Cal. Conroy, J. M. IDA- SRC
Baru, C. K. Univ. of Michigan Cuny; J" K Univ. of Massachusetts
Bastani, F. B. Univ. of Houston Curoe, J.E. Mobil Corp.
Berger, M. Courant Inst. Cybenko, G. Tufts Univ.
Berkling, K. Syracuse Univ. Cypher, R. Univ. of Washington
Bermudez, M. E. Univ. of Florida Darema, F. IBM Hawthorne Res. Lab.
Bhanu, B. Honeywell Research Ctr. De Forcrand, P. Cray Research Inc.
Bhargava, B. Purdue Univ. De Young, G. E. Winchester, MA
Bhasker, J. Honeywell, Inc. Dehne, F. Carleton Univ.
Blelloch, G. MIT AI Lab. Dekel, E. Univ. of Texas, Dallas
Bodorik, P. Tech. Univ. Nova Scotia Despain, A. M. U. C. Berkeley
Bose, P. IBM Watson Research Ctr. Dey, P. Univ. of Alabama Birm.
Bourbakis, N. George Mason Univ. Diamond, M. D. FMC Corp.
Bowyer, K. W. Univ. of South Florida Dixit, V. V. Univ. of Southern Cal.
Braaten, M. E. G. E. Res. and Dev. Ctr. Downes, E. H. Reston, VA
Breitkreutz, T. Univ. of Alberta Dyer, C.R. Univ. of Wisconsin
Brenner, A. E. II~A - SRC Egecioglu, 0. U. C. Santa Barbara
Breuer, M.A. Univ. of Southern Cal. El-Sharkawy, M. Bucknell Univ.
Browne, J.C. Univ. of Texas Ellis, C. Duke Univ.
Bryant, B. Univ. of Alabama Birm. Eltgroth, P. Lawrence Livermore Lab.
Bryant, R. M. IBM Watson Research Ctr. Ercegovac, M. D. U. C. Los Angeles
Buell, D. IDA- SRC Eshaghian, M. M. Univ. of Southern Cal.
Bui, T. D. Concordia Univ. Fahlman, S. E. Carnegie-Mellon Univ.
Burn, R. Systems Control Fang, Z. Concurrent Comp. Corp.
Buzbee, B. L. NCAR Fatoohi, R. NASA Ames Research Ctr.
Cappello, P. R. U. C. Santa Barbara Felten, E.W. Cal. Inst. of Tech.
Cargo, D. U.S. Dept. of Defense Feo, J. Lawrence Livermore Lab.
Carlson, D. A. IDA- SRC Ferguson, D. Boeing Computer Serv.
Carty, F. G. Goodyear Aerospace Corp. Ferreira, A. G. Grenoble, France
Cazes, A. IBM Watson Research Ctr. Fiduccia, C. M. G. E. Res. and Dev. Ctr.
Cerny, E. Univ. de Montreal Fier, J. Ametek
Chan, M. Y. Univ. of Texas at Dallas Finkel, R. Lexington, KY
Chan, T. U. C. Los Angeles Fornberg, B. Exxon Research and Eng.
Chandran, S. Univ. of Maryland Foulser, D. Yale Univ.

iv

Fouts, M. J. NASA Ames Research Ctr. Kocay, W. Univ. of Manitoba
Franklin, M. Washington Univ. Kodeih, M. Rensselaer Poly. Inst.
Friesen, D. Texas A&M Univ. Koenig, E. C. Univ. of Wisconsin
Fujimoto, R. M. Univ. of Utah Kosaraju, S. R. Johns Hopkins Univ.
Gallopoulos, E. Univ. of Illinois Urbana Kountanis, D. Western Michigan Univ.
Gao, G. R. McGill Univ. Kowalik, J. S. Boeing Computer Serv.
Gaushell, D. J. Westin Power Consultants Krishnamoorthy, M. S. Rensselaer Poly. Inst.
Gear, C. W. Univ. of Illinois Krishnamurthy, B. Tektronix Inc.
Ghosh, A. K. Univ. of Iowa Kruskal, C. Univ. of Maryland
Goel, A. Ohio St. Univ. Kumar, D. St. Univ. of New York
Goel, P. Univ. of Michigan Kumar, V. Univ. of Texas
Gonzalez, T. F. U. C. Santa Barbara Kung, H. T. Carnegie Mellon Univ.
Gorin, A. L. AT&T Bell Labs Kung, S. Princeton Univ.
Graf, K. SRI International Kurtzberg, J. IBM Watson Research Ctr.
Greenbaum, A. New York Univ. Ladner, R. E. Univ. of Washington
Greening, D. R. Nashua, NH Lai, T. Ohio St. Univ.
Grefenstette, J. J. Vanderbilt Univ. Lander, E. Whitehead Inst.
Grimes, R. Boeing Computer Serv. Lazowska, E. D. Univ. of Washington
Guha, S. Univ. of Michigan LeBlanc, T .' J. Univ. of Rochester
Gupta, A. Carnegie-Mellon Univ. Lee, C. S. G. Purdue Univ.
Hae, A. AT&T Bell Labs Lee, D. L. Ohio St. Univ.
Hachtel, G. D. Univ. of Colordo Lee, S. Cornell Univ.
Hadlock, F. 0. Tennessee Tech. Univ. Leiserson, C. E. MIT
Haghighi, M. Bradley Univ. Leite, T. R. IMSL
Han, J. Southern Illinois Univ. Lesser, V. Univ. of Massachusetts
Han, Y. Univ. of Kentucky Leu, D. Univ. of Houston
Hanson, F. B. Argonne National Lab. Lewis, J. Boeing Computer Serv.
Heath, M. Oak Ridge National Lab Li, H. IBM Watson Research Ctr.
Hewitt, C. E. MIT AI Lab. Li, X. Univ. of Alberta
Ho, C. Yale Univ. Liao, Y. Digital Equipment Corp.
Hong, Y. U. C. Riverside Lin, A. Temple Univ.
Hume, D. Tennessee Tech. Univ. Lin, W. Pennsylvania St. Univ.
Hyatt, R. Univ. of Alabama Birm. Liu, W. North Carolina St. Univ.
Ibarra, 0. H. Univ. of Minnesota Livingston, M. L. Southern Illinois Univ.
Ipsen, I. Yale Univ. Loganantharaj, R. Univ. of S. Louisianna
Iyengar, S. S. Louisiana St. Univ. Logothetis, G. Univ. of Florida
JaJa, J. Univ. of Maryland Lowrie, M. B. Univ. of Illinois Urbana
Janakiram, V. K. North Carolina St. Univ. Lubachevsky, B. D. AT&T Bell Labs
J anardan, R. Univ. of Minnesota Lustman, L. R. NASA Ames Research Ctr.
Janicki, R. McMaster Univ. Lynch, N. A. MIT Lab for Computer Sci.
Jones, J. Air Force Inst. of Tech. Makhoul, J. BEN, Inc.
Josephson, J. R. Ohio St. Univ. Mandell, D. Los Alamos National Lab
Kailath, T. Stanford Univ. Manhardt, P. D. COMCO, Inc.
Karnath, C. Digital Equipment Corp. Mann, T. DEC Systems Research Ctr.
Karabeg, D. U. C. San Diego Marsland, T. A. Univ. of Alberta
Karp, A. IBM Scientific Ctr. Mattheyses, R. M. G. E. Res. and Dev. Ctr.
Keller, R. M. Quintus Computer Sys. McMillin, B. M. Michigan St. Univ.
Kender, J. R. Columbia Univ. Mei, G. North Carolina St. Univ.
Kim, M. H. Michigan St. Univ. Mesirov, J. P. Thinking Machines Corp.
Kirkpatrick, S. IBM Watson Research Ctr. Messerschmitt, D. G. U. C. Berkeley

v

Miller, G. L. Univ. of Southern Cal. Ramesh, K. Univ. of Texas
Miller, R. SUNY Buffalo Ranka, S. Univ. of Minnesota
Miller, T. K. North Carolina St. Univ. Rao, V. N. Univ. of Texas
Moceyunas, P. H. Univ. of Colordo Reddy, S. M. Univ. of Iowa
Moldovan, D. I. Univ. of Southern Cal. Reed, D. A. Univ. of Illinois Urbana
Molloy, M. K. Univ. of Texas Reeves, A. P. Univ. of Illinois
Montry, G. Sandia National Labs Reynolds, P. F. The Univ. of Virginia
Morgan, A. P. General Motors Res. Lab. Rivest, R. L. MIT
Morris, R. A. U. S. Dept. of Defense Robertson, G. G. Thinking Machines Corp.
Morris, R. J. T. AT&T Bell Labs Robinson, J. IBM Watson Research Ctr.
Mudge, T. Univ. of Michigan Rodrigue, G. U.C.Davis
Mueller, R. A. Colorado St. Univ. Rogers, 'E. H. Rensselaer Poly. Inst.
Mukherjee, A. Univ. of Cent. Florida Ruiu, L.A. Griffis AFB
Na.kazawa, S. MARC Analytical Res. Saad, Y. Univ. of Illinois
Nassimi, D. Univ. of Delaware Sahni, S. Univ. of Minnesota
Natarajan, K. S. IBM Watson Research Ctr. Saltz, J. Yale Univ.
Newman-Wolfe, R. Univ. of Florida Sangiovanni-V, A. U. C. Berkeley
Ng, E. Oak Ridge Natl. Labs Sanz, J. L. C. IBM Almaden Research Ctr.
Nichols, K. M. AT&T Bell Labs Sarrafzadeh, M. Northwestern Univ.
Noga, M. T. Lockheed Palo Alto Sawafzadeh, M. Northwestern Univ.
Norton, A. IBM Watson Research Ctr. Schaper, G. A. Univ. of Central Florida
Nuttal, L. A. Univ. of Utah Schwetman, H. MCC
O'Hallaron, D.R. G. E. Res. and Dev. Ctr. Seager, M. Lawrence Livermore Lab.
O'Leary, D. P. Univ. of Maryland Sen, A. Arizona St. Univ.
Oh, S. J. Syracuse Univ. Sen, S. Univ. of Alabama
Oliger, J. Stanford Univ. Sengupta, A. Univ. of South Carolina
Omiecinski, E. Georgia Inst. of Tech. Shaffer, P. G. E. Res. and Dev. Ctr.
Ortega, J. M. Univ. of Virginia Shannon, G. E. Purdue Univ.
Otto, S. W. Cal. Inst. of Tech. Shields, M. W. Univ. of Kent, GB
Ougouag, A. M. Univ. of illinois Urbana Shokooh, A. Tennessee Tech. Univ.
Ozguner, F. Ohio St. Univ. Shyu, W. C. H. Old Dominion Univ.
Pargas, R. P. Clemson Univ. Simmes, S. D. Science Appl. Inc.
Park, S. North Carolina St. Univ. Simon, H. D. NASA Ames Research Ctr.
Patrick, M. L. Duke Univ. Sinclair, B. Rice Univ.
Pawagi, S. SUNY Stony Brook Singhal, M. Ohio St. Univ.
Payne, T. H. U. C. Riverside Somani, A. K. Univ. of Washington
Peng, S. Univ. of Maryland BC Sorensen, D. Argonne National Lab
Perry, R. J. Villanova Univ. Sridhar, M. A. Univ. of S. Carolina
Peskin, R. L. Rutgers Univ. Srimani, P. K. Southern illinois Univ.
Peterson, J. L. MOC Srinidhi, H. N. Univ. of Cent. Florida
Pham, Q.T. BNR, Canada Starzyk, J. Ohio Univ.
Pong, T. C. Univ. of Minnesota Stiles, G. S. Utah St. Univ.
Prabhu, G. M. Iowa St. Univ. Stojmenovic, I. Univ. of Miami
Pramanik, S. Michigan St. Univ. Stolfo, S. J. Columbia Univ.
Quinn, M. J. Univ. of New Hampshire Stotts, D. Univ. of Maryland
Raefsky, A. Palo Alto, CA Stout, Q. F. Univ. of Michigan
Raghavendra, C. S. Univ. of Southern Cal. Strader, R. Texas A&M Univ.
Ramachandran, V. Univ. of Illinois Urbana Strong, R. IBM Almaden Res. Ctr.
Ramakrishnan, I. V. SUNY Stony Brook Stunkel, C. B. Univ. of illinois Urbana
Ramamoorthy, C. V. U. C. Berkeley Suk,M. Syracuse Univ.

vi

Suzuki, I.
Swarztrauber, P.
Swisshelm, J. M.
Tang, W.
Tanik, M. M.
Tao, L.
Tham, K. Y.
Thomborson, C. D.
Tokuta, A. 0.
Tomboulian, S. J.
Tong, Z.
Tsin, Y. H.
Turner, C. J.
Tymann, P. T.
Ursein, A.
Van Loan, C.
Yarman, P.
Venkatesan, S.
Vernon, M. K.
Vishwanathan, S.
Visvanathan, V.
Wagar, B.
Wah,B. W.
Waid, B.
Wainer, M.
Walicki, J.
Walton, S.
Wang, C. Y.
Wang, C.
Waramahaputi, J.
White, W.
Willebeek-LeMair, M.
Winter, C. L.
Witten, M.
Wu,C.
Wunderlich, M. C.
Young-Myers, H.
Yu,K.
Zargham, M.
Zeigler, B. P.
Zeigler; G. M.
Zhang, C. N.
Zhang, H.
Zhao, F.
Zyda, M. J.

Univ. of Wisconsin
NCAR
NASA Ames Research Ctr.
Univ. of Waterloo
Southern Methodist Univ.
Univ. of Pennsylvania
Mentor Graphics Corp.
Univ. of Minn. Duluth
Univ. of South Florida
NASA Langley Res. Ctr.
Univ. of Minnesota
Univ. of Windsor
Science Appl. Inc.
SUNY Oswego
Los Angeles, CA
Cornell Univ.
Rice Univ.
Univ. of Minnesota
Univ. of Wisconsin
Univ. of South Carolina
AT&T Bell Labs
Univ. of Michigan
Purdue Univ.
Glen Ellyn, IL
Southern Illinois Univ.
Colorado St. Univ.
Cal. St. Northridge
Southern Illinois Univ.
Cal. St. Sacramento
Univ. of S. Louisiana
Ohio St. Univ.
Cornell Univ.
Science Appl. Inc.
Univ. of Louisville
Univ. of Col. Denver
U. S. Dept. of Defense
Columbia, MD
Univ. of Alabama Birm.
Southern Illinois Univ.
Univ. of Arizona
Hewlett Packard
North Carolina A&T Univ.
Temple Univ.
MIT
Naval Postgrad. School

vii

AUTHOR INDEX

Agrawal, D. P. 69 Kim, J. H. 124
Alaghband, G. 177 Kim, M. H. 76
Alexander, W. E. 124 Kim, S. J. 1
Allison, D. C. S. 165 Kimbel, J. 272

. Altmann, E. 198 Kumar, V. 128
Armstrong, J. 161 Kumar, V. 207
Atwood, G. H. 120 Lander, E. 257
Baheti, R. S. 108 Lee, C. S. G. 290
Bermudez, M. E. 151 Li, X. 223
Blelloch, G. 218 Lin, S. H. 112
Braaten, M. E. 243 Lingas, A. 304
Breitkreutz, T. 198 Little, J. J. 218
Browne, J. C. 1 Logothetis, G. 151
Burdick, S. 251 Madala, S. 62
Chan, M. Y. 295 Marsland, T. A. 198
Chang, P.R. 290 Mehrotra, R. 69
Chang, S-C. 9 Mesirov, J. P. 257
Chang, S-C. 18 Moceyunas, P. H. 133
Chen, G-H. 112 Moona, R. 227
Cuny, J.E. 141 Nandy, S. K. 227
Cypher, R. 308 Newhouse, J. 272
Diamond, M .. 272 Newman-Wolfe, R. 151
Doshi, K. 202 O'Hallaron, D. R. 108
Fatoohi, R. 235 Park, S-M. 124
Foulser, D. 42 Peng, S-T. 169
Frederickson, G. N. 282 Peng, S-T. 173
Fujimoto, R. M. 34 Pong, T-C. 190
Gao, G. R. 47 Pramanik, S. 76
Gao, G. R. 181 Qu,X. 223
Goel, A. 156 Rajagopalan, S. 227
Greenberg, M. 141 Ramesh, K. 128
Grosch, C. K 235 Ranka, S. 84
Hachtel, G. D. 133 Ranka, S. 92
Han, Y. 194 Ranka, S. 212
Hanson, F. B. 117 Rao, V. N. 128
Harimoto, S. 165 Rao, V. N. 207
Ho, H.F. 112 Roberts, J.B. G. 230
Huang, Y. M. 26 Sadayappan, P. 54
Hudson, T. F. 173 Sadayappan, P. 156
Ibarra, 0. H. 190 Sahni, S. 84
Igaraski, Y. 194 Sahni, S. 92
JaJa, J. 9 Sahni, S. 212
JaJa, J. 18 Sanz, J. 308
Janakiram, V. K. 69 Sarrafzadeh, M. 26
Janardan, R. 282 Schwetman, H. 251
Josephson, J. R. 156 Sheu, J.P. 112
Jun, M. S. 169 Simmes, S. D. 146

viii

Sinclair, J. B. 62
Singhal, M. 186
Sohn, S. M. 190
Sridhar, M. A. 299
Stojmenovic, I. 100
Stout, Q. F. 104
Stunkel, C. B. 264
Sugihara, K. 14
Suzuki, I. 14
Taylor, W. 257
Thomas, S. J. 47
Turner, C. J. 146
Yarman, P. 202
Vishwanathan, S. 299
Visvanathan, V. 54
Ward, J. S. 230
Watson, L. T. 165
Whelan, M. 181
Yum, T. K. 181

ix

TABLE OF CONTENTS

Preface .. ; iii
List of Referees : .. ~· . iv

Author Index .. viii

SESSION lC: Computational Complexity

1. (R) A General Approach to the Mapping of Parallel Computations Upon
Multiprocessor Architectures ... 1
S. J. Kim and J. C. Browne (U. of Texas, USA}

2. (S) Parallel Algorithms for River Routing ... 9
S-C. Chang and J. JaJa (U. of Maryland, USA}

3. (S) Nearly Optimal Clock Synchronization Under Unbounded Message
Transmission Time .. 14
K. Sugihara (U. of Hawaii, USA} and I. Suzuki (U. of Wisconsin, USA}

SESSION 2C: Applications I

1. (R) Parallel Algorithms for Channel Routing in the Knock-Knee Model 18
S-C. Chang and J. JaJa (U. of Maryland, USA}

2. (R) A Parallel Algorithm for Minimum Dual-Cover with Application to
CMOS Layout ... 26
Y. M. Huang and M. Sarrafzadeh (Norwestern U. 1 USA}

3. (R) Lookahead in Parallel Discrete Event Simulation .. 34
R. M. Fujimoto (U. of Utah, USA)

SESSION 4C: Numeric Algorithms I

1. (R) A Blocked Jacobi Method for the Symmetric Eigenproblem 42
D. Foulser (Yale U. 1 USA)

2. (R) An Optimal Parallel Jacobi-Like Solution Method for the Singular Value
Decomposition .. 47
G. R. Gao and S. J. Thomas (McGill U., Canada)

3. (R) Modeling and Optimal Scheduling of Parallel Sparse Gaussian Estimation 54
P. Sadayappan (Ohio State U., USA) and V. Visvanathan (AT&T Bell Labs, USA)

SESSION SC: Non-Numeric Algorithms I

1. (R) Performance of Parallel Partitioning Algorithms , 62
S. Madala and J. B. Sinclair (Rice U., USA}

2. (R) A Randomized Parallel Branch and Bound Algorithm 69
V. K. Janakiram, D. P. Agrawal, and R. Mehrotra (N. Carolina St. U., USA}

3. (R) Generalized Parallel Processing Model for Database Systems 76
S. Pramanik and M. H. Kim (Michigan St. U., USA}

SESSION 6C: Image Analysis and Geometry I

x

1. (R) Image Template Matching on SIMD Hypercube Multicomputers 84
S. Ranka and S. Sahni (U. of Minnesota, USA)

2. (R) Image Template Matching on MIMD Hypercube Multicomputers 92
S. Ranka and S. Sahni (U. of Minnesota, USA)

3. (S) Computational Geometry on a Hypercube .. 100
I. Stojmenovic (U. of Miami, USA)

4. (S) Constant-Time Geometry on PRAMs ... 104
Q. F. Stout {U. of Michigan, USA)

SESSION 7C: Applications II

1. (S) Parallel Implementation of a Kalman Filter on the Warp Computer 108
D. R. O'Hallaron and R. S. Baheti (G.E. R&D Ctr., USA)

2. (S) Solving Linear Programming on Fixed-Size Hypercubes 112
H.F. Ho, G-H. Chen, S. H. Lin (Natl. Taiwan U., Taiwan), and J. P. Sheu (Natl.
Central U., Taiwan)

3. (S) Parallel Computation for Stochastic Dynamic Programming: Row Versus
Column Orientation ... 117
F. B. Hanson {Argonne Natl. Lab, USA)

4. (S) Parallel Langrangian Interpolation ... 120
G. H. Atwood (U. of Alberta, Canada)

5. (S) A New Approach to the Implementation of Multidimensional Signal
Processing Algorithms ... 124
W. E. Alexander, S-M. Park and J. H. Kim (N. Carolina St. U., USA)

6. (S) Parallel Depth First Search on a Ring Architecture 128
V. Kumar, V. N. Rao and K. Ramesh (U. of Texas, USA)

SESSION SC: Artificial Intelligence

1. (R) Parallel Algorithms for Answering the Tautology Question 133
G.D. Hachtel and P. H. Moceyunas (U. of Colorado, USA)

2. (S) Parallelism in Knowledge-Based Systems with Inheritance 141
M. Greenberg and J.E. Cuny (U. of Massachusetts, USA)

3. (S) Associative Memories on the Connection Machine 146
S. D. Simmes and C. J. Turner {Science Appl. Intl. Corp., USA)

4. (S) Parallel Generation of LR Parsers ... 151
M. E. Bermudez, G. Logothetis and R. Newman- Wolfe (U. of Florida, USA)

5. (S) Concurrent Design of Composite Explanatory Hypotheses 156
A. Goel, P. Sadayappan and J. R. Josephson (Ohio St. U., USA)

SESSION 9C: Numeric Algorithms II

1. (S) Algorithm and Performance Notes for Block LU Factorization 161
J. Armstrong (Convex Comp. Corp., USA)

xi

2. (S) The Granularity of Parallel Homotopy Algorithms for Polynomial Systems
of Equations .. 165
D. C. S. Allison, S. Harimoto and L. T. Watson {Virginia Poly. Inst., USA}

3. (S) A New VLSI 2-D Systolic Array for Matrix Multiplication and Its Applications 169
S-T. Peng and M. S. Jun (U. of Maryland B.C.1 USA}

4. (S) Parallel Algorithms for Multiplying Very Large Integers 173
S-T. Peng and T. F. Hudson (U. of Maryland B.C., USA}

5. (S) A Parallel Pivoting Algorithm on a Shared Memory Multiprocessor with
Fill-in Control , ... 178
G. Alaghband (U. of Colorado, USA)

6. (S) Optimal Decomposition of Matrix Multiplication on Multiprocessor
Architectures ... 181
M. Whelan, R. G. Guang and T. K. Yum (Philips Labs, USA}

SESSION lOC: Non-Numeric Algorithms II

1. (S) Performance Analysis of an Optimistic Concurrency Control Algorithm
in Replicated Database Systems .. 186
M. Singhal {Ohio St. U., USA)

2. (S) Hypercube Algorithms for Some String Comparison Problems 190
0. H. Ibarra, T-C. Pong and S. M. Sohn (U. of Minnesota, USA)

3. (S) Time Lower Bounds for Sorting on Multi-Dimensional Mesh-Connected
Processor Arrays ... 194
Y. Han (U. of Kentucky, USA) and Y. Igaraski (Gunma U., Japan)

4. (S) Accounting for Parallel Tree Search Overheads ... 198
E. Altmann, T. A. Marsland and T. Breitkreutz {U. of Alberta, Canada}

5. (S) Sorting with Linear Speedup on a VLSI Network 202
P. Varman and K. Doshi (Rice U., USA}

6. (S) Concurrent Insertions and Deletions in a Priority Queue 207
V. N. Rao and V. Kumar (U. of Texas, USA}

SESSION llC: Image Analysis and Geometry II

1. (R) Convolution on SIMD Mesh Connected Multicomputers 212
S. Ranka and S. Sahni (U. of Minnesota, USA)

2. (S) Parallel Solutions to Geometric Problems on the Scan Model of Computation 218
G. Blelloch and J. J. Little (MIT, USA}

3. (S) Parallel Template Matching Algorithms ... 223
X. Qu and X. Li (U. of Alberta, Canada)

4. (S) Linear Quadtree Algorithms on the Hypercube ... 227
S. K. Nandy, R. Moona and S. Rajagopalan {Indian Inst. of Sci., India}

xii

5. (S) Optimising a Reconfigurable MIMD Transputer Machine for Line-of-Sight
Calculations on Large Digital Maps .. 230
J. S. Ward and J.B. G. Roberts (Royal Signals and Radar, UK}

SESSION 12C: Applications III

1. (R) Implementation and Analysis of a Navier-Stokes Algorithm on
Parallel Computers : ... 235
R. Fatoohi (NASA Ames Res. Ctr., USA} and G. E. Grosch (Old Dominion U., USA)

2. (R) Solution of Viscous Fluid Flows on a Distributed Memory Concurrent
Computer ...•... 243
M. E. Braaten (G.E. R&D Ctr., USA}

3. (R) Parallelizing an Electron Transport Monte Carlo Simulator 251
H. Schwetman and S. Burdick {MGG, USA)

SESSION 14C: Applications IV

1. (R) Protein Sequence Comparison on a Data Parallel Computer 257
E. Lander (Harvard U.), J. P. Mesirov, and W. Taylor {Thinking Mach. Gorp., USA}

2. (R) Linear Optimization Via Message-Based Parallel Processing 264
G. B. Stunkel (U. of lllinois Urbana, USA}

3. (R) Results of a Multiprocessor Implementation for Sequential Decision
Processes ... 272
M. Diamond, J. Newhouse and J. Kimbel (FMC Gorp., USA)

SESSION 15C: Graph Theory

1. (R) Space-Efficient and Fault-Tolerant Message Routing in Outerplanar
Networks ... 282
G. N. Frederickson (Purdue U., USA) and R. Janardan {U. of Minnesota, USA}

2. (S) A Decomposition Approach for Balancing Large-Scale Acyclic Data
Flow Graphs .. 290
P.R. Chang and G. S. G. Lee (Purdue U., USA}

3. (S) Dilation-2 Embeddings of Grids into Hypercubes 295
M. Y. Ghan (U. of Texas at Dallas, USA)

4. (S) Some Results on Graph Coloring in Parallel .. 299
S. Vishwanathan and M. A. Sridhar (U. of S. Carolina, USA}

5. (S) Subgraph Isomorphism for Connected Graphs of Bounded Valence and
Bounded Separator is in NC .. 304
A. Lingas {Linkoping U., Sweden}

LATE PAPER - SESSION lC

1. (S) Optimal Sorting on Reduced Architectures•........................ 308
R. Cypher (U. Wash., Seattle, USA) and J. L. C. Sanz (IBM Almaden Research Ctr., USA)

xiii

A GENERAL APPROACH TO MAPPING OF PARALLEL
COMPUTATIONS UPON MULTIPROCESSOR

ARCHITECTURES

S. J. Kim and J. C. Browne

Dcpartmenl of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188

Abstract -- This paper defines and describes a broadly appli­
cable approach to mapping of parallel computations upon
multiprocessors, and briefly sketches the related mapping
algorithms. The approach begins with a graph representation
of a parallel computation and first generates a reduced graph
by merging nodes with high intemode communication cost
through iterative use of a critical path algorithm. This graph
is then mapped to a graphical representation of a multiproces­
sor architecture by the mapping algorithms. These algo­
rithms attempt to minimize the total execution time including
both computation and communication times. The algorithms,
while they are heuristic rather than true optimal algorithms,
are shown to yield excellent results in example applications
and have modest execution costs.

1. INTRODUCTION
This paper defines and describes a broadly applicable

approach to mapping of parallel computation structures (con­
sisting of mutually dependent schedulable units of computa­
tions) upon MIMD multiprocessor architectures, and then
sketches the related heuristic mapping algorithms. It also
gives examples of the results obtained by application of the
algorithms to different types of parallel computation struc­
tures and different multiprocessor architectures. The algo­
rithms are based upon the mapping of a graphical representa­
tion of a parallel computation structure [4, 5] upon a graphi­
cal representation of a multiprocessor architecture. In fact, we
consider a series of transformations and mappings between a
computation graph and an architecture graph as illustrated in
Fig. 1-1.

The algorithms are described informally herein but com­
plete formal definitions can be found in [17]. The algorithms
apply to a broad class of graphs which can be derived from

Translation

t~ Virtual
Architecture

Graph

i"_
, Transformation
• and
: Mapping

t~ Virtual
Architecture

Graph

t

Figure 1-1 General Overview of Our Approach

1

programs with various types of loop structures, and to a wide
class of architectures. The algorithms attempt to minimize the
total execution time (computation time and communication
time) of the parallel computation. Reduction of execution
time is attained mainly by reduction of communication time
by merging of schedulable units of computation. The first
step of each of the algorithms is the reduction of the compu­
tation graph to a virtual architecture graph through transfor­
mations determined by iterative application of a critical path
algorithm. This virtual architecture graph is then either
transformed into another virtual architecture graph or mapped
onto an abstracted graphical representation of a multiproces­
sor architecture (called physical architecture graph). Note that
a computation graph is assumed to have one root node and
one leaf node without loss of generality.

The algorithms are heuristics with modest execution
cost. True optimal algorithms for the scheduling problem as
stated in Section 2 are known to be NP-complete. Three
applications are given: mapping of the Sieve of Eratosthenes
to an Intel iPSC/5 [15], mapping of a Gaussian (forward)
elimination to a Sequent Balance and mapping of a molecular
physics code to an emulated Intel iPSC/5 configu!ati?n with a
mixture of fast and slow processors and commumcat10n chan­
nels. The results of the applications are surprisingly good.
Near optimal tot:'.1 execution times are coupled with near
minimal resource requirements and good workload balancing.

This paper is organized as follows: After giving the
problem statement in Section 2, we briefly review previous
work in Section 3. Then, in Section 4, after discussing our
approach and the models for computation and architecture
graphs, we explain mapping algorithms based on linear clus­
ters. Section 5 gives a brief summary of performance results
and Section 6 summarizes the status of the research.

2. PROBLEM STATEMENT
A parallel computation can be represented by a direct

acyclic graph Ge =(Ne, Ee). where Ne = (n 1• n 2• · · ·, nz}
is a set of schedulable units of computation to be executed,
and Ee specifies scheduling constraints and data dependen­
cies defined on Ne. A multiprocessor architecture can be
represented by an undirected graph Gp = (Np, Ep), where
Np = (p 1, p 2, · · ·, Pm} is a set of processors, and Ep
specifies interconnection topology among the processors.
The basic problem is to find a mapping of Ge onto Gp which
minimizes schedule length (or makespan) defined as:

max I, (comp;+comm;j),
J:Sk'.Os i ,j E qi,

where <jJ = { <jJ1,<jJ2, ... , <l>s} represents a set of paths from the
root node to the leaf node in Ge, node nj (assigned to proces­
sor Py EN p (l:::::y sm)) is a direct descendant of node n;
(assigned to processor PxENp (lS:\:S!n)) in Ge, comp; is
computation time of n;, and comm;j is communication time
from n; to nj (comm;j = 0, if Px =Py or n; has no direct des­
cendants).

An optimal schedule is one which meets the criteria of
the minimum schedule length for a single parallel computa­
tion structure or the maximum total throughput for a set of

simultaneously executing parallel computation structures. It
must integrate scheduling of computations and dependency
relations to resources. An approach which integrates con­
sideration of all the interacting factors is one which maps a
computation graph defining the computation structure
(including the resource requirements for execution of each
element of the computation structure) onto an architecture
graph which defines the capability and capacity of the
resource set of the execution environment. From here on we
use the term task and schedulable units of computation,
which corresponds to a node in a computation graph, inter­
changeably.

3. PREVIOUS WORK
The problem of optimal scheduling (as defined in Sec­

tion 2) of parallel computations upon multiprocessor architec­
tures has received generous attention in the literature. Algo­
rithms which yield true optimal solutions in the absence of
resource constraints are well known to be NP-complete [12,
21]. In fact, it is proven by Kim [17] that the other interesting
scheduling problems are also NP-complete or worse in com­
putation complexity.

There have been many heuristic algorithms proposed in
the past. Previous approaches have focused mainly on the
development of specific mapping strategies for particular
multiprocessor architectures. Some attempt to take advantage
of the unique hardware characteristics such as interconnec­
tion topologies of multiprocessor architectures under con­
sideration. Since each strategy is usually an ad-hoc scheme, it
is in most cases applicable to some limited class of multipro­
cessor architectures (e.g., tightly-coupled homogeneous
architectures [2], loosely-coupled homogeneous architectures
[23], loosely-coupled heterogeneous architectures [11], or
multicomputers connected in point-to-point fashion [6]).

Various simplifying assumptions are common. For
example, Bokhari [3] studies the assignment of tasks to pro­
cessors with the restriction that the number of tasks should be
less than or equal to the number of processors. Shen and Tsai
[20] propose a graph matching approach for solving task
assignment to processors, but ignore dependency relations
among tasks. Some approaches have limited scheduling
objectives; they find the best schedule with respect to either
the total computation time [13] or interprocessor communica­
tion time [14]. Other approaches are interested in balancing
the workload of the total multiprocessor architecture [10, 22].

In most scheduling strategies for tightly-coupled archi­
tectures, specific interconnection networks such as the
Butterfly switch, the Omega network, the SW-Banyan net­
work or a composition of them [19] are assumed. On the
other hand, most research has not taken into account schedul­
ing constraints, resource limitations, and/or the current work­
loads of processors. It is frequently assumed that each pro­
cessor is identical (i.e., all have the same processing speed,
equal number of communication channels, and identical
memory capacity). Finally, while most scheduling strategies
make heavy use of busy-waiting as a synchronization
mechanism, there is little attempt to reduce or avoid using it.

All in all, there are a myriad of multiprocessor schedul­
ing strategies which can be applied to specific multiprocessor
architectures. On the other hand, there is little research
which attempts an integrated approach to multiprocessor
scheduling which could be applicable to various multiproces­
sor architectures regardless of underlying architectural
characteristics.

4. APPROACH AND ALGORITHMS

4.1. Approach

2

One of the contributions of this paper is to propose algo­
rithms based on linear clustering. A linear cluster is a con­
nected subgraph of a computation graph which is in the form
of a linear list of schedulable units of computation. Linear
clustering is an effectual heuristic to compromise between
two conflicting goals of multiprocessor scheduling, minimi­
zation of interprocessor communication and maximization of
potential parallelism, and to satisfy the other goals,
throughput enhancement and workload balance, relatively
well. The underlying idea of linear clustering is that the
schedulable units of computation that are sequentially depen­
dent on each other are to be assigned to one processor, while
those that are mutually independent are to be allocated to
separate processors. We select linear clusters on the basis of
total execution time on an architecture with a processor for
each node of the graph and a distinct communication channel
per each edge of the graph. The critical restriction of linear
clustering is that it expects a computation graph to be acyclic.
To minimize this restriction, we identify cases in which
cyclic computation graphs can be transformed into acyclic
graphs in a straightforward manner [17].

A computation graph is transformed into a virtual archi­
tecture graph (VAG) by linear clustering. The VAG in fact
represents an optimal multiprocessor architecture for the
computation graph. The optimal architecture provides one
processor to every linear cluster so that mutually independent
tasks belonging to different linear clusters can be executed in
parallel as long as possible. Furthermore, direct communica­
tion channels are always available for any adjacent linear
clusters in the optimal architecture.

The VAG may be transformed into another VAG by
merging two or more linear clusters into one cluster. Two
linear clusters K 1 and K 2 are combined into one if K 2 may
start only after K 1 finishes or may be executed only while K 1
is idle. It contributes to further balancing the workload of
processors, and further reducing the amount of resources to
be utilized and interprocessor communication overhead.

After constructing a VAG which represents the optimal
multiprocessor architecture for a given computation graph,
we then find an optimal mapping of the VAG onto a physical
architecture graph (P AG) which represents the target archi­
tecture. This mapping is called a physical mapping as it is
the final mapping of a computation graph onto a real physical
multiprocessor architecture. We develop homogeneous and
heterogeneous mapping algorithms for homogeneous and
heterogeneous architectures, respectively.

These algorithms rely on not only local information but
also on limited global information. The key issue is how to
reduce the mapping complexity while sacrificing as little
optimality as possible. A dominant request tree is a maximal
spanning tree of a VAG . It provides limited global informa­
tion on the VAG such as the mapping order of the nodes and
the edges whose adjacency should be maintained. Both map­
ping algorithms utilize dominant request trees, but take quite
different approaches to mapping the trees onto PAG 's. Most
importantly, in the case of homogeneous mappings, the trees
are directly mapped onto PAG 's. On the other hand, in the
case of heterogeneous mappings, they are mapped onto dom­
inant service trees. A dominant service tree is a maximal
spanning tree of a P AG. For heterogeneous mappings, one of
the important issues is how to identify and utilize resources
with high performance. A dominant service tree provides
such information.

4.2. Model of Computation
Browne [5] proposes a directed graph as a representation

basis of a parallel computation, in which the nodes represent
the bindings of operations to data and the edges represent

dependency relations between schedulable units of computa­
tion executed at the nodes. Our computation graph model is a
triple (Ge, f gmnp, f gomm), whose first component
Ge= (Ne, Ee) specifies a parallel computation. Computation
graph Ge is a directed acyclic graph and defined as follows:
(i) AnodesetNe={n 1,n2, ··· ,nz};

(ii) An edge set Ee = { e 1, e 2, · · · , ei}, where any given
edge eP = (ni, nj) is directed from node ni to node nj.

To be specific, graph Ge defines computation steps by
the nodes and sequencing among the steps by the edges. The
remaining components provide information necessary for
mapping the computation ,ij,;aph onto a target architecture.
The second component f go is a function which maps each
node in Ne onto a positive integer which is the expected com­
putation time used by the schedulable unit of com,g.utation
corresponding to the node. The next function fg0 maps
each edge (n;, n j) in Ee onto a nonnegative integer which is
the expected amount of internode communication from node
ni to node nj. For example, if f gomm(ep) = Nbytes for ep =
(n;,nj), then the total length of messages sent from ni to nj is
N bytes bytes.

Our computation graph is a restricted model in a couple
of ways. The critical restriction that makes the model inap­
propriate for representing some parallel computations is that
a set of edges entering and leaving a given node may not be
joined by or conditions. The other restriction is that compu­
tation graphs are required to be static; neither new nodes nor
new edges can be created during runtime. The main reason
for these restrictions is to avoid ambiguity in determining the
computation and communication requirements of the nodes
and edges in a computation graph.

The model for architecture graphs provides a representa­
tion basis for the structural description of multiprocessor
architectures. We consider three types of resources: proces­
sors, communication channels and memory. Our architecture
graph model is also a triple (Ga, f gomp, f gomm), whose first
component Ga =<Na. Ea) is an undirected graph defined as
follows:
(i) An architecture node set Na = {an 1, an 2, · · · , anz};

(ii) An architecture edge set Ea = {ae 1, ae 2, · · · , ae1 },

where any architecture edge aeP = (an;, anj) is
undirected.
In an architecture graph, an architecture node represents

a processor as well as a memory module, and an architecture
edge represents a communication channel between two pro­
cessors. The second component fgomp is a function which
maps each architecture node in Na onto a pair of positive
integers which denote the level of computing power of a pro­
cessor relative to the others in the architecture and the current
local memory size. A common global memory may be
specified by a dummy architecture node which is fully­
connected with the other architecture nodes. The next func­
tion fgomm maps an architecture edge (an;, anj) in Ea onto a
positive integer which represents the bandwidth of communi­
cation channel from an; to an J and vice versa.

It is assumed that an architecture graph is static; the
resource configuration of a physical multiprocessor architec­
ture will not be changed dynamically during runtime. More­
over, it maintains the exact current status of the architecture.
The status includes the information on which processors are
currently active/inactive, which communication channels are
currently available and what is the current memory capacity
available in each processor.

4.3. Mapping Based on Linear Clusters
Clustering techniques have been used in a variety of

3

areas in compllter science [1, 7]. In this section, we propose
a new mapping technique based on linear clustering and
linear cluster merging. After discussing linear clustering and
merging, we explain how to iteratively refine linear clusters
(if necessary) for the minimization of schedule length.

4.3.1. Linear Clustering
Linear clustering is a fundamental idea of our mapping

algorithms discussed in Section 4.4. A cluster of Ge = (Ne,
Ee) is called a linear cluster K if it satisfies the following
conditions:

• K is nonempty;
• K is a connected subgraph of Ge;
• Both indegree and outdegree of every node in K is less

than or equal to 1.
Linear clustering is a special case of general clustering in that
a linear cluster is a degenerate tree in which each node has at
most one direct ancestor and/or one direct descendant, while
a cluster, in general, is an arbitrary graph.

The following algorithm LinearCluster illustrates how
to identify linear clusters:

LinearCluster (G, K)
/* G is a (cycle-free) computation graph. */
/* K is a set of linear clusters. *I
Begin

LetK =0;
Find a longest path P from the root to a leaf node in G ;
During traversing path P backward

from the leaf to the root node,
cut all the incoming and outgoing edges
except the one belonging to P ;

For each connected subgraph S of G ,
If both indegree and outdegree of each node in S

is less than or equal to 1,
Then

K=KuS
Else Do

LinearCluster (S, K');
K =K uK';

End Do;
End LinearCluster.

A path (n 1, n 2 , ... , n1) of graph Ge =(Ne. Ee) such that
n; e Ne and (ni, n(i+I)) e Ee is considered the longest path
ifjt maximizes the following function:
!;(rorTcomp, + (1-ro1Hro2·T.0...,,.0 + (1-roi)·. ~.,,Tcomm,,,)) + ro1·Tcomp,•
1=1 1eN..i1

where Teomp, is the computation time 1~f node nk (lg~/),
Teomm,, is the communication time of node ns with an adja­
cent node n1 (l~<l and l<tg), N~dj denotes a set of nodes
adjacent to n1 (l<r:o;/), and both ro1 and '°2 are normalization
factors.

4.3.2. Linear Cluster Merging
In this section, we investigate a means to merge two or

more linear clusters into one without affecting potential
parallelism existing in a computation graph. It may contri­
bute to further balancing the workload of processors. It may
also contribute further reducing the amount of resources to be
utilized and interprocessor communication overhead.

The level numbers may be used to identify potential
parallelism [18] in a computation graph if defined as follows:

level (T) = 1 if T is a root node;

= [max(level (A) for each direct ancestor A of T)]

+ l, otherwise.

Then, the same level number implies mutual independence.
To be more specific, if a group of tasks have the same level
number, they are mutually independent and may be simul­
taneously executable.

In order to define conditions for merging linear clusters,
let Li represent a set of level numbers assigned to tasks in
linear cluster Ki. Two linear clusters Ki and Kj are said to be
sequentially strong ~dependent if they satisfy the following
conditions:
1) Li nLj =0;
2) The trailer node of linear cluster Ki precedes the header

node of linear cluster Kj.

Two linear clusters Ki and Kj are said to be mutually
strong ~ependent if they satisfy the following conditions:
1) Li nLj =0;
2) For two tasks T 1 and T 2 in Ki, T 1 is a direct ancestor of

T 2, where the former is one of direct ancestors of the
header node of Kj and has the largest level number
among the direct ancestors, and the latter is one of direct
descendants of the trailer node of Kj and has the smallest
level number among the direct descendants.

If a pair of linear clusters satisfy any of the merging condi­
tions, they can be merged into one cluster without affecting
the execution time of the computation.

4.3.3. Iterative Refinement of Linear Cluster
In the previous sections, we discussed how to transform

a computation graph Ge into a virtual architecture graph by
linear clustering and merging. It is expected that a linear
cluster consisting of schedulable units of computation on the
critical path of Ge takes the longest time to finish in the VAG
in most cases. In this case, we can make use of the VAG for
the mapping onto a physical architecture graph without any
modification. This may not be true if the computation graph
has extremely heavy communication requirements on edges
not on the initial critical path. If that is the case, we may
need to iteratively refine linear clusters in the VAG so that we
can further reduce the total length of schedule prior to map­
ping. It consists of two steps:

• Linear cluster labeling;
• Linear cluster refinement.

During labeling step, we label edges in a computation
graph Ge = (Ne, Ee). The level number level edge of edge eij
= (ni,nj) may be defined as follows:

level edge (eij) = co·compj+(l-co)·commij+levelnode (nj),
where levelnode(nj) is the level number of node nj, compj
and commij are computation time of n1 and communication
time from ni to nj, respectively, and co is a normalization fac­
tor. Note that levelnode(nj) is defined as max(leveledge(ejk))

n•eD1
where Dj is a set of direct descendants of node nj. These
edge labels allow us to identify the longest path to be con­
sidered for the minimization of the total schedule length in a
VAG.

After linear cluster labeling, we can determine if there
are paths through a V AG , each of whose length is longer than
the total computation time of a linear cluster corresponding to
the critical path of the original computation graph Ge. If
there exist such paths, we modify the current set of linear
clusters in order to further reduce the total schedule length
through iterative refinements of them.

4

Figure 4-1 Linear Clusters

NN.:N,
- - -: -- -- : - -

. ' .

(a) (b) (c)

Figure 4-2 Possible Refinements of Linear Clusters

In Fig. 4-1, let us assume that a new longest path is pass­
ing through nodes n · and ni, i.e., the new longest path is
(· · · , n j, ni, · · ·) . The basic idea of linear cluster refinement
is to locate a cut edge (nj,ni) on the longest pat..11 and to
reduce the length by merging nodes ni and n j (belonging to
separate linear clusters) into one. After the two nodes nj and
n; are merged, linear clusters shown in Fig. 4-1 can be refined
as shown in Fig. 4-2. In Fig. 4-2-a, we merge n; and nj into
one cluster, and cut the edges like (nj,n1) and (nk,ni) so that
all the clusters remain as linear clusters. In Fig. 4-2-b and
Fig. 4-2-c, however, we merge them, but leave one of the
edges uncut while we cut the other edge. This type of
refinement may force us to sacrifice some potential parallel­
ism since two or more nodes (e.g., n1 and n; in Fig. 4-2-b, nj
and nk in Fig. 4-2-c) executable in parallel are to be assigned
to the same cluster. Nonetheless, it is worthwhile to merge
two linear clusters in this way if internode communication
overhead from nj to n1 is larger than the schedule extension
caused by sequential execution of nodes (e.g., n1 and ni in
Fig. 4-2-b, nj and nk in Fig. 4-2-c).

4.4. Mapping Algorithms
The subject of this section is how to map a VAG onto a

PAG. The important goal of our proposed algorithms is to
compromise between two extreme approaches [8, 18] by
reducing the complexity of the mapping algorithms while
sacrificing their optimality as little as possible. For physical
mapping, we need to take into consideration as much global
information as possible during mapping.

4.4.1. Dominant Request Tree
The basic idea of our algorithm is to find a subgraph iso­

morphism [12] from a VAG to a PAG which minimizes the
total schedule length and satisfies given scheduling con­
straints. We can easily show that the subgraph isomorphism
problem is NP -complete , making use of the fact that the
Undirected Hamilton Circuit problem is NP-complete. This
fact forces us to rely on heuristics. We map each node of a
VAG one by one in a sequential order. The key issue is then
how to determine the mapping order which leads to the
minimization of the schedule length. For this purpose, we
propose another transformation of a VAG into a tree called
Dominant Request Tree (DRT). This transformation can be
done ir.dependently of the target architecture (i.e., whether it
is homogeneous or heterogeneous).

A DRT is a maximal spanning tree of a VAG. We con­
struct the DRT starting from a node called the Most Dom­
inant Node (MDN) rather than starting from an arbitrary
node in the VAG. The MDN is that node n which maximizes
the cost function defined as:

ro·Tcomp + (1-ro)'Tcomm•
where Tcomp is the computation time of n, Tcomm is the total
communication time of n with its adjacent node(s), and ro is a
nonnalization factor. The MDN is considered to be the most
important node in the VAG in the sense that it represents a
linear cluster which includes all tasks on the critical path in a
given computation graph. Since it is usually the case that the
MDN requires the largest weighted sum of computation and
communication times among nodes in the VAG, we would
better assign the MDN to the most appropriate processor in a
PAG.

Starting from the MDN of a DRT, we select a node with
the highest binding power among unassigned nodes incident
upon any already assigned node until all the nodes in the
DRT are selected. The binding power of node n; with
respect to an adjacent node '!J is determined by:

ffiJ'Tcomp; + (1-ro1Hm2·l~omm,; + (1-roi)· L Tcompi'),
k;j;

where Tcomp· is the computation time of nj, Tcomm .. is the
• j • f d • h d 'I commumcauon time o no e n; wit no e nj, and A.

represents a set of nodes adjacent to nJ: ro1 and ro2 are agai~
nomialization factors. A DRT of a VAG has two types of
edges: the primary and secondary edges. The former are
edges belonging to the DRT, while the latter are edges
belonging to the VAG but not to the DRT. Note that the
order in which each cluster is included in. the DRT deter­
mines the priority list L.

4.4.2. Homogeneous Mapping
The goal of homogeneous mapping is to find a subgraph

in a PAG to which a DRT of a VAG is isomorphic, relying
on various heuristics like connectivity, exclusion, perturba­
tion, foster mapping, and restricted pairwise exchange. The
basic approach of the homogeneous mapping is to try to
maintain adjacency of each node in the DRT with its neigh­
bors as far as possible; whenever there is a direct primary
edge from cluster K 1 to cluster K 2, we choose processor PK,
which has a direct channel from PK,· Note that PK and Kda
denote a processor onto which cluster K is to be mapped and
the direct ancestor of K, respectively.

Each node of the VAG is assigned to a processor in the
order detennined during transforming the VAG into the DRT.
For each cluster K in the order of the priority list L, if there
are at least two clusters which form full-connectivity with K,
we first apply connectivity mapping. This heuristic attempts
to maintain full-connectivity among clusters during mapping.
If it is not successful to maintain the connectivity or there
exist no clusters which form full-connectivity with K, then
we try to assign K to a free processor in PAG adjacent to
PK,,.· During this mapping, we apply exclusion mapping to
exclude processors in P AG which might be crucial to other
clusters yet to be assigned.

Next, we consider the case that PK,,. has no more free
adjacent processors. Then, K may be mapped onto a proces­
sor which is not adjacent to P Ka.. For this case, we provide
two heuristics: perturbation and foster mappings. In both
heuristics, we first choose a processor which has the most
appropriate numbtr of channels among currently unassigned
processors. If there is more than one, we choose the one
which is the nearest to PK,,.· Those unassigned processors
should be adjacent to at least one processor to which a cluster
has already been assigned.

5

In perturbation mapping, we attempt to preempt a linear
cluster which has already been assigned to a processor adja­
cent to PK,,.• and to assign K to the processor. There are two
possible cases that a linear cluster may be preempted after
being assigned to a processor. First, an adjacent processor
(say, PK.,) of PK,. might be assigned to cluster Kadj which is
not in fact adjacent to cluster Kda in the VAG. The other
possible case is that all the clusters assigned to adjacent pro­
cessors of PKaa are in fact neighbors of Kda• but Kadj might
have less communication overhead with Kda than K in the
VAG.

As long as perturbation mapping does not make any
improvement, it is not possible to maintain adjacency using a
primary edge for this particular mapping. That is, cluster K
can not communicate directly with cluster Kda· In order to
lessen the effect of the indirect communication, we first
check whether there is another cluster adjacent to K through
a primary edge which has already been assigned to a proces­
sor. If there is more than one, we choose a cluster Kfa which
has the highest binding power (other than Kda) with K. After
assuming Kfa as a direct ancestor of K, we reiterate the same
mapping procedure mentioned above (i.e., finding the best
mapping from processor PK,)· We call such a mapping
foster mapping. The only difference is that Kfa is now
assumed to be the direct ancestor of K for Kda in the VAG.
If there does not exist such a primary edge, utilizing the
secondary edges, we repeat the same procedure as we do for
the primary edge.

Since the previous heuristics do not guarantee an
optimal mapping, we try to further improve the result by
applying restricted pairwise exchange; we do allow random
pairwise exchange of clusters to which specific codes have
been assigned during mapping [17]. Note that we keep. track
of such codes based on how the clusters have been assigned
during mapping.

4.4.3. Heterogeneous Mapping
Heterogeneous mapping is a mapping of computation

graphs onto architecture graphs which represent heterogene­
ous multiprocessors. For heterogeneous mappings, it is
important to utilize resources with high performance as far as
possible so that the total schedule length can be minimized
and the workload balance can be achieved. We first need to
distinguish resources with higher performance from those
with lower performance. A Dominant Service Tree (DST)
provides a limited amount of global information on resources
in a heterogeneous multiprocessor lest our mapping algo­
rithms become totally greedy based on local information. We
can construct a DST by utilizing a maximal spanning tree
algorithm. This may be considered as a transformation of a
PAG into another PAG. In a sense, the transformation can
be regarded as prescanning of architecture graphs prior to
physical mapping. During the scanning, we collect informa­
tion like which processors have more computing power and
which communication channels have more bandwidth than
others.

After the transformation of a P AG into a DST, the
scheduling problems for heterogeneous multiprocessor archi­
tectures turn into the tree-to-tree mapping problems. The
edges in the PAG are to be divided into two different types:
the primary and secondary edges. Analogous to a DRT, the
edges belonging to the DST are called the primary edges,
while the edges belonging to the PAG but not to the DST are
called the secondary edges. The main goal of heterogeneous
mapping is to identify a mapping which maintains adjacency
of the primary edges of the VAG with those of the PAG.
When there are no primary edges available, however, we util-

ize secondary edges of the PAG during mapping. Specific
scheduling constraints (e.g., available local memory size) are
also to be applied on the fly during the mapping.

Since it is still an NP -complete problem to find an
optimal mapping from one tree to another, the issue is how to
develop efficient heuristic mapping algorithms between a
DRT and a DST. We exploit sequential mapping order of
nodes determined during constructing a DRT, and so-called
node information [17] as a means to avoid exhaustive match­
ing between two trees.

5. APPLICATIONS
The applications described here cover regular (Sieve of

Eratosthenes, Gaussian elimination) and irregular (molecular
physics code) computation graphs, and partitioned (Intel
iPSC) and shared memory (Sequent Balance) multiprocessor
architectures.

5.1 Mapping of Sieve of Eratosthenes to an Intel iPSC
We seek here decrease of the communication time com­

ponent of the total execution time. The computation graph
for the algorithm is shown in Fig. 5-1. The VAG for the com­
putation graph is shown in Fig. 5-2. Fig. 5-3 shows the
improvement in total execution time obtained by application
of the algorithm together with the lower bound of total execu­
tion time for this execution environment.

Figure 5-1 Computation Graph

Figure 5-2 Virtual Architecture Graph

6

Total 1
Ex.ff.ii,tlon 1

(sec} 1

Unclustered

Clustered

10000 20000 30000 40000 50000 60000 70000

MJJ:imum me
umber

Figure 5-3 Comparison of Totai Execution Times

5.2. Gaussian Elimination on a Sequent Balance
The principal benefit to be obtained from application of

one algorithm to scheduling for a shared memory multipro­
cessor is decrease in overhead without loss of parallelism
caused by an optimal selection of schedulable units of com­
putation. The computation graph for forward elimination is
shown in Fig. 5-4. Each node Ak,t in Fig. 5-4 represents the
row operation to force Ak 1 to zero. The VAG is shown in
Fig. 5-5. The saving in overhead is shown in Fig. 5-6 for 9
processors across a range of array sizes after linear clustering
and merging. The gain is substantial Cl5%-20%) for larger
array sizes.

~)
Figure 5-4 Computation Graph

160

ISO

140

130

120

110

100

Total90
, cution

J.\\\rso

70

60

so

40

30

20

10

Figure 5-5 Virtual Architecture Graph

Unclustered

so
5&

Figure 5-6 Comparison of Total Execution Times using 9 Processors

5.3. Modified Molecular Dynamics Code on a "Hetero­
geneous" Intel iPSC

The .effects to be studied here are those of an irregular
computation graph on a heterogeneous architecture. The
computation graph is shown in Fig. 5-7 and the VAG in Fig.
5-8. In order to obtain the effect of a heterogeneous multipro­
cessor, we assume that 50% of processors and 20% of com­
munication channels are twice as fast as real ones by setting
computation times of nodes and communication times of
edges in the VAG to 112 of their actual values if they are
assigned to faster processors or channels, respectively. Fig.
5-9 compares total execution times for four cases (x,y) where
x = (homogeneous, heterogeneous) and y = (measured,
theoretical). It is not surprising that the improvement in exe­
cution time is greater for the heterogeneous architecture than
for the homogeneous architecture since .the clusters with

7

greater resource requirements can be assigned to faster pro­
cessors and channels of the heterogeneous one as far as possi­
ble.

s.o

4.0

3.0
Total

Execution
Time
(sec}

2.0

1.0

Figure 5-7 Computation Graph

Figure 5-8 Virtual Architecture Graph

........
(Homogeneous)

Meuured
(Heicrogeneous)

r·;

'

Theoretical
(Homogeneous)

' '
' '
'

1bcoretical
(Heterogeneous)

Figure 5-9 Comparison of Total Execution Times (Unclustered vs Clustered)

6. SUMMARY
The conceptually simple and computationally tractable

heuristics based on linear clustering have been found in appli­
cation to be effective and, so far as can be judged by the lim­
ited sample of applications, robust.

Future work will include test of a large number of appli­
cations, incorporation of various scheduling constraints into
the model, and analytic definition of the class of graphs
where the heuristics yield optimal schedules.

7. ACKNOWLEDGEMENT
We are grateful to Al Mok for pointing out a drawback

in the original linear clustering algorithm. This research is
partially supported by DARPA grant N00039-86-C-0167, and
DOE grant DE-FG05-85ER-25010.

REFERENCES

[1] Banerjee, J., Kim, W., Kim, S. J., and Garza, J. F.,
"Clustering a DAG for CAD Databases," To appear in
IEEE-SE.

[2] "Butterfly (TM) Parallel Processor Overview," Bolt
Beranek and Newman Inc., Cambridge, MA, June
1985.

[3] Bokhari, S. H., "On the Mapping Problem," IEEE-TC,
Vol. C-30, No. 3, Mar. 1981, pp. 207-214. ·

[4] Browne, J. C., "Formulation and Programming of
Parallel Computations: A Unified Approach," Proc. of
Int' l Conj. on Parallel Processing, Aug. 1985, pp.
624-631.

[5] Browne, J. C., "Framework for Formulation and
Analysis of Parallel Computation Structures," Parallel
Computing 3, 1986, pp. 1-9.

[6] Bryant, R. M., and Finkel, R. A., "A Stable Distributed
Scheduling Algorithm," 2nd Int' l. Conf on Distributed
Computing Systems, 1981, pp. 314-323.

[7] Chiang, W. P., "Optimal Graph Clustering Problems
with ~pplications to Information System Design,"
Technical Report CRL-TR-30-84, The Univ. of Michi­
gan, June 1984.

[8] Coffman, E. G., Jr., and Graham, R. L., "Optimal
Scheduling for Two-Processor Systems," Acta Informa­
tica 1, 1972, pp. 200-213.

[9] Coffman, E. G., Jr. (Ed:). Computer and Job-Shop
Scheduling Theory, John Wiley and Son, N. Y., 1976.

8

[10) Eager, D. L., Lazowska, E. D., and Zahorjan, J.,
"Dynamic Load Sharing in Homogeneous Distributes
Systems," IEEE-SE, Vol. SE-12, No. 5, May 1986, pp.
662-675.

[11) Forsdick, H., Schantz, R., and Thomas, R., "Operating
Systems for Computer Networks," IEEE Computer,
Vol. 11, Jan. 1978.

[12) Garey, M. R., and Johnson, D. S., Computers and
Intractability: A Guide to the Theory of NP­
Completeness, W. M. Freeman and Company, New
York, 1979.

[13] Gottlieb, A~, Grishman, R., Kruskal, C. P., McAuliffe,
K. P., Rudolph, L., and Snir, M., "The NYU Ultracom­
puter - Designing an MIMD Shared Memory Parallel
Computer," IEEE-TC, Vol. C-32, No. 2, Feb. 1983, pp.
175-189.

[14] Haessig, K., and Jenny, C. J., "Partitioning and Allocat­
ing Computational Objects in Distributed Computing
Systems," IFIP, 1980, pp. 503-508.

[15) "iPSC User's Guide," Intel Corporation, Apr. 1987.
[16) Karp, R. M., and Miller, R. E., "Properties of a Model

for Parallel Computations: Determinacy, Termination,
Queueing," SEAM J. Appl. Math., Vol. 14, No. 6, Nov.
1966, pp. 1390-141 l.

[17] Kim, S. J., "A General Approach to Multiprocessor
Scheduling," TR-88-4, The Univ. of Texas at Austin,
Feb. 1988.

[18) Pathak, G. C., "Towards Automated Design of Multi­
computer System for Real-time Applications," Ph. D.
Thesis, North Carolina State Univ., 1984.

[19) Pfister, G. F., "The Architecture of the IBM Research
Parallel Processor Prototype (RP3)," IBM Research
Report RC 11210, June 1985.

[20) Shen, C.-C., and Tsai, W.-H., "A Graph Matching
Approach to Optimal Task Assignment in Distributed
Computing Systems Using a Minimax Criterion,"
IEEE-TC, Vol. C-34, No. 3, Mar. 1985, pp. 197-203.

[21] Ullman, J. D., "NP-complete Scheduling Problem," J.
of Computer System Science, Vol. 10, 1975, pp. 384-
393.

[22) Wang, Y.-T., and Morris, R. J. T., "Load Sharing in
Distributed Systems," IEEE-TC, Vol. C-34, No. 3, Mar.
1985, pp. 204-217.

[23) Wittie, L. D., and van Tilborg, A. M., "MICROS, A
Distributed Operating System for MICRONET, A
Reconfigurable Network Computer," IEEE-TC, Vol.
C-29, No. 12, Dec. 1980, pp. 1133-1144.

Parallel Algorithms For River Routing1

(Extended Abstract)

Shing-Chong Chang

Department of Electrical Engineering
and

Systems Research Center
University of Maryland
College Park, MD 20742

Abstract

We develop efficient parallel algorithms for
several river routing problems. These algorithms
can be implemented on the CREW-PRAM model
in O(log n) or O(log2 n) time with 0(n) proces­
sors, where n is the size of the input. Our algo­
rithms have fast implementations on other par­
allel models such as the mesh or the hypercube.

1 Introduction

It is well-known that many of the optimization problems
arising in VLSI routing are NP-complete (e.g. [KL],[L],
[SB],[S]). One notable exception is the class of river rout­
ing problems associated with a hierechical layout strategy
such as Bristle-Blocks([J]). See ([CS],[D et al],[LM],[LP],
[M],[P],[SD],[T]) for more examples. In this paper, fast
parallel algorithms for several river routing problems are
presented. In particular, O(log n) or O(log2 n) time al­
gorithms with O(n) processors are developed for the sep­
aration problem and for the routability problem around
a rectilinear polygon ([P]).

The above problems are considered in the CREW­
PRAM model, which is characterized by the presence
of an unlimited number of processors which can access
a shared memory unit. Concurrent read is allowed while
concurrent write is not. We are aiming for efficient paral­
lel algorithms that run in 0(~), where p is the number
of processors and T(n) is the running time of the best
known sequential algorithm with input length n. In the
rest of the paper, we assume that the reader is familiar
with some of the basic parallel techniques such as path
doubling, parallel prefix, and the Euler tour technique.
Our algorithms can be mapped into fixed-interconnection
parallel architectures such as the array architecture or the
hypercube. For example, all the algorithms stated in this
paper can be implemented on a yin x yin mesh in time
0(yin), where n is the input length.

1Supported in part by NSA.Contract No. MDA-904-85H-0015,
NSF Grant No. DCR-86-00378 and by the Systems Research Cen­
ter Contract No. OIR-85-00108.

9

Joseph JaJa

Department of Electrical Engineering
Institute For Advanced Computer Studies

and
Systems Research Center
University of Maryland
College Park, MD 20742

The class of general river routing problems involves
routing between ordered sequences of terminals such that
the final layout is planar. One such problem is the wiring
of two ordered sets of terminals {bo, bi, ... , bn-d and
{ t0 , ti, . .. , tn-I} across a channel between the parallel
boundaries of two rectangles. The width of the chan­
nel is the vertical distance between the two lines forming
the channel. The separation problem is to find the mini­
mum width of the channel necessary to wire all nets such
that any two wires are separated by a unit distance. We
will restrict ourselves to the case where the wires are rec­
tilinear, i.e., there is a grid structure such that each wire
consists of a set of grid line segments. Our methods gen­
eralize for all the other kno~n variations ([SD],[T]).

A more general version of the river routing problem
that is known to have an efficient serial algorithm is to
perform planar routing where the ports lie on the bound­
ary of a simple rectilinear polygon. In this case, we are
interested in whether the routing is possible or not and,
if it is possible, we have to provide the detailed route
ing. Several interesting subproblems such as finding the
contour of the union of a set of rectilinear polygons or
determining whether a set of nets can be wired within a
set "passages" are also tackled.

2 The Separation Problem

Let {N; =< b;,t; > I 1 ~ i ~ n} be an instance of the
channel separation problem. Notice that b; and t; will
be also used to denote the horizontal coordinates of the
terminals relative to an arbitrary origin. A net N; is a
right net if b; < t;. If b; > t;, then N; is a left net.
Otherwise, it is a vertical net. We can partition the nets
into right blocks, left blocks and vertical blocks. A set
of right nets N;, N;+i, ... , Np is a right block if it is a
maximal block with the property bk < bk+I ~ tk, for
any i ~ k < p. We can similarly define left blocks and
vertical blocks.

The wiring problem is reduced to wiring each block
separately. We will concentrate on the wiring of right
blocks. Obvious changes can be made to deduce the cor­
responding algorithm for left blocks.

The wiring of a net can be specified by the coordi­
nates of its bend points. For example, net N1 of Figure
1 has the bend points Au, Bu. For each net N;, we have
2k bend points, A;i, A;2, ... , A;k and B;1 , B;2 , ••• , B;k, for
some k. Not all of these bend points are needed to de­
termine the overall wiring. Let's call A;1 and B;1 (bend
points closest to the bottom row) the characteristic bend
points and all the others ordinary bend points. Notice
that the characteristic bend points uniquely define the

, overall wiring since once we have the wiring of N;_1 and
the characteristic bend points A;1 and B;1 , we can de­
termine all the ordinary bend points of N; very easily.
Figure 1 shows an example of a river routing problem
and a wiring achieving the minimum separation.

... . ..

Figure 1: Basic river routing problem

The algorithm to find the minimum separation is based
on the following lemma.

Lemma 1 Let N; be a net in a right block and let 3 be
the minimum j $ i such that t; + (i - j -1) ;::: b;. Then
the coordinates of the characteristic bend points of N; are
A1 = (b;,i -3+1) and B;1 = (t3 + i -3,i -3 + 1).

We now show how to compute in parallel the index
3(i) for each i.

Algorithm Index

input: A set of nets < b;, t; >, 1 $ i $ n, forming a right
block.
output: J (i) such that 3 (i) is the minimum j such that
b; - ti $ i - j - 1, for each 1 $ i $ n.

1. Compute b: = b; - i and tj = ti - j - 1 for each i and
j.
2. Sort the tjs, say tP1 $ tp2 $... $ tPn.
3. For each p;, determine f(p;) = min{Pkli $ k $ n}.
4. Sort the bis and the tjs such that if a b: = tj, the b: is
pushed to the lower rank.
5. For each bi, let t~, be the closest t~k ;::: b:. Then

f(pj) = 3(i).

Now we can find the minimum separation as well as
the charactersitic bend points of all the nets by partition­
ing the nets into blocks and by using algorithm Index and
Lemma 1.

time with O(n) processor on a CREW-PRAM. If all ter­
minals lie in the range [1, NJ, where N = O(n), then the
running time is 0(; + log n) with p processors, for all

1 $ p $ n 1-• (any E > 0).

3 Routing In a Simple Polygon

The routing problem of nets within a simple rectilinear
polygon introduced in([P]) is a generalization of the stan­
dard river routing problem. In this case we are supposed
to connect a set of terminals ai, a2 , ••• , an on the bound­
ary of a simple rectilinear polygon to another set of ter­
minals bi, b2 , ••• , bn on the boundary of the same poly­
gon such that all the wires lie within the polygon and
no two wires intersect. Routability testing is to deter­
mine whether or not a one layer routing is possible and
detailed routing is to specify the actual wiring of the n
nets, if they are routable. We will restrict ourselves to
the rectangle case. However all the algorithms can be
generalized to any rectilinear polygon.

3.1 Detailed Routing

Let N; =< a;, b; > be an arbitrary net. The terminals
a; and b; divide the boundary of a rectangle R into two
parts. The part of smaller length will be called the in­
ternal boundary of N;. The other part will be called the
external boundary. A net N; is covered by another net N;
if the terminals of Nj are in the external boundary of N;
and the terminals of N; are in the internal boundary of
Nj. A representative net is a net that is not covered by
any other net. Figure 2 shows an example of a detailed
routing problem such that N1 , NB and Ni4 are the rep­
resentative nets. We can partition the nets into groups
such that each group consists of a representative net and
all the nets covered by it. The groups in Figure 2 are
{Ni, N2, N3, N4, Ns},{NB, N1, Na, Ng, Nio, Nu, Ni2, Ni3},
and {N14, Nis}. One can show the following.

••
6,

6,
6,

•• •• (1,0)

Figure 2: Basic river routing around a rectangle bound-

Theorem 1 The minimum separation and the charac- ary
teristic bend points of n input nets can be found in O(log n)

10

Lemma 2 Suppose a given instance of the above problem
is routable. Then the routing can be performed by routing
each group of nets separately.

The general strategy for specifying the routing will
be the following: (i) identify the proper groups , (ii) find
the representative nets, and (iii) specify the routing of
each group. By the parallel techniques of sorting, path
doubling and prefix computation, we can create a chain of
the nets involved in each group such that a representative
net is a sink and the chains have following properties:

Lemma 3 Let Nr1, Nr2 , ••• , Nrk be all the representative
nets and let R(Nr.) be the number of nets in the internal
boundary of Nr,. Then 2:~=1 (R(Nr.)+l) = n. Moreover,
there exists a wiring strategy such that Nr; has at most
2(R(NrJ + 1) bend points.

Corollary: The total number of bend points of all the
representative nets is O(n), where n is the number of
nets.

Lemma 4 Let n be the number of nets. Then all the
groups and representative nets can be identified in time
O(log n) with O(n) processors on the PRAM. With p
processors, we obtain O(~ + logn), 1 Sp S n1-< and
€ > 0.

We now turn to the problem of routing each group
separately. Our goal here is to identify the bend points
of each representative net. Let N =< x, y >be a net in a
group whose representative is Nr. Let k be the number of
nets between N and N"' including both N and Nr. The
bounding perimeter of rank k is the rectilinear boundary
of the region determined by N such that the wiring of Nr
cannot lie inside it, i.e., this is the boundary of the region
within the rectangle of all the points of distance S k
of the rectangle boundary determined by N. Consider
again the case of Figure 2. Let Bk,i be the bounding
perimeter of rank k induced by net N;. Figure 3 shows
the contours B3,3, B3,s, B2,2, B2,4 and B1,1· We claim
that the following lemma is true.

Lemma· 5 The union of all the bounding perimeters of
all the nets within a group determines the contour of the
group and hence determines the wiring of the representa­
tive net.

To determine the union, flatten the rectangle into
a line. Suppose a terminal p gets mapped into p. A
bounding perimeter connecting p and q of rank k will get
mapped into a simple rectangle with endpoints p and ij_

and height k. Denote the mapped bounding perimeters
by R1 , R2 , ••• , Rz. These rectangles determine a (union)
contour R given by its extreme points. Then map these
extreme points back to the original rectangle to get the
wiring of the representative net. Few of these points

11

l&rm~;;
a 1 • 2 •a 6a 6~

I

I ~~·~ --- -------,
: c==i:

:-·,·---d
' '• ..

I
.. '• .. ,--1

B11 : :- ~ --- ------ - - - -- - _:

le v1.
..

.-------------- ---·---------·,
' ' : :

,------------, .-------------. . ' . :
~- -:. - --------.{ ~ - ~ - --- ---------~

\- -~ ----------~. -:- -;- . ------. ----t -:

Figure 3: The union of all bounding perimeters

around the corners may not be mapped into extreme
points of the contour within the rectangle, but rather
onto the boundary. These can be determined quickly
and then eliminated. We are now ready to state the al­
gorithm.
Algorithm Contour

Input: A group of nets with their representative.
Output: The bendpoints of the corresponding contour.

1. Determine the rank of each net, i.e. the number of
nets between itself and the representative net.
2. Determine all the bounding perimeters.
3. Flatten the rectangle boundary into a line. Map the
bounding perimeters into this line . Each corresponding
perimeter can be identified by (p, ij_, k).
4. Sort the triplets (p, ij_, k) according to k. For each k,
determine the union of line segments at distance k.
5. From each line segment generated at step 4, determine
the corresponding bendpoints. The overall contour can
be specified by the bend points.
6. Map the bend points of the contour on the line back
into the rectangle. Eliminate those points within the
rectangle which are not bend points.

Lemma 6 If the number of nets in the group is n, then
algorithm contour can be implemented in time O(log n)
with 0(n) processors.

Theorem 2 Detailed routing of the representative nets
of n nets within a simple rectilinear polygon can be done
in time O(log n) with 0(n) processors. With p processors,
we have O(~ + logn), 1 Sp S n1-< and f. > 0.

3.2 Routability Testing

The problem may be unroutable for one of the following
reasons: (1) The graph determined by the nets when

restricted to lie within the rectangle is nonplanar. (2)
The wiring of all the nets requires more area.

Lemma 7 Whether the interconnection pattern of the
given nets is planar can be determined in time O(log n)
time with O(n) processors on the PRAM model.

A single side net is a net whose terminals lie on the
same side of the rectangle. If the terminals lie on adjacent
sides then the net is called corner net. It is a cross net
if the terminals lie on opposite sides. Partition the single
side nets corresponding to each specific side into single
side blocks such that each net except one (cover net) is
covered by one or more nets in the block. Moreover each
such block is m~imal. A corner block is a maximal set of
corner nets corresponding to the same corner such that
each net except one (cover net) is covered by one or more
nets within the block. Moreover no other net outside
a block is covered by the cover net. For example, in
Figure 2, N2 is a single side net, N1 is a corner net and
N6 is a cross net. The single side blocks are {N2 , N3 },

{N1}, {N11,N12} and {N14,N1s}, whose corresponding
cover nets are N2,N1,N11 and N14. {N4,Ns}, {N9,N10}
and {N13} are the corner blocks with N4 ,N9 , N13 as the
corresponding cover nets.

To decide whether the above, blocks are routable, first
determine the wiring of all the cover nets by algorithm
Contour then check whether there is any intersection be­
tween the wires of the cover nets.

Lemma 8 Whether or not the single side blocks and the
corner blocks can be wired within the rectangle can be
determined in O(logn) time with O(n) processors.

Once the block cover nets are wired, it should checked
if there is enough space to route the remaining nets. Our
approach consists of determining the wiring capacity and
the wiring density between blocks. The wiring capac­
ity between two blocks is the number of nets that can
be wired between these two blocks, while the wiring den­
sity is the number of wires that have to be wired between
these two blocks. The capacity between blocks on two or­
thogonal sides of the rectangle boundary ,is computed as
follows. Given a block B consider all the convex corners
of B. Generate 45 degree "rays" from each such corner
and determine the line segment where it intersects an­
other block contour or the original rectangle boundary.
Based on this information, one can determine the width
of the narrowest passage between B and any other block.
The details are given in the full paper.

Algor~thm Intersection

Input: Contours of single side and corner blocks on two
orthogonal sides of rectangle boundary.
Outpu~: Intersection points of rays emanating from con­
vex corners.

12

1. Consider the case of the the lower right corner. The
other cases can be dealt with in a similar fashion. Sort
all the line segments determined by the block contours
and the right side of the rectangle R. Determine the pro­
jection of each line segment on the diagonal, say line
segment i is projected into line segment p(i) on the diag­
onal.
2. Sort the projections according to their order on the
diagonal and compute p'(i) = p(i) -U~~ip(i).
3. For each ray y coming out of a corner of contour
on the horizontal side of the original rectangle, find its
intersection with the diagonal. If the intersection point
lies in p'(j), then ray y intersects segment j. Determine
the intersection point of ray y and line segment j.
4. If a ray y intersects the original rectangle boundary,
then rotate to find the intersection with the next line
segment belonging to some block contour (see Figure 4
and ray YB). Now determine the point of intersection.

For example, one can check that in Figure 4 p'(CD) =
C'D' andp'(EF) = D'F'. Hence rays YA and YB intersect
CD and EF respectively. If we rotate YB, we can find
the intersection with tbe next line segment GF.

y

Lx

/
/

,
/

/

,
/ ' ' ,

'' /
' /

' /
' /

' "
B

Figure 4: Intersection between rays and block contours

Lemma 9 Algorithm Intersection finds the intersection
points of rays emanating from convex corners with the
line segments of contours on two orthogonal sides of the
bounding rectangle in time O(log n) time with 0(n) pro­
cessors.

Use algorithm Intersection to compute the intersec­
tion point of each ray with a single side contour, corner
block contour or the original boundary of the rectangle.
The capacity between blocks can then be calculated eas­
ily. Then compare with the density between blocks to
determine the routability between blocks.

Lemma 10 Testing the routability of n nets between two
orthogonal sides of a rectangle can be done in O(log n)
time with O(n) processors on the CREW PRAM model.

We now address the routability problem between two
opposite sides of the bounding rectangle. The genera-

tion of horizontal, vertical and 45 degree rays from each
convex corner is not enough to determine the routability
between two opposite sides. We will use a divide-and­
conquer strategy to handle this case.

Assume without loss of generality that all cross nets
are between the top and the bottom sides. Select two
adjacent cross nets N; and Ni that split the nets almost
evenly. Let N; be to the left of Nj. (Figure 5) Find the
temporary wiring of N; as close to the left as possible and
the temporary wiring of Ni as close to the right as possi­
ble. Check whether any intersection will result. Repeat
above procedure recursively for the cross nets to the left
of N; and for the cross nets to the right of Nj separately.

Figure 5: Routability between two blocks in opposite
sides

Theorem 3 Testing the routability of n nets within a
simple rectilinear polygon could be done in O(log2 n) time
with O(n) processors on the CREW PRAM model.

4 References

[AH] M. Atallah and S. Hambrusch, " Solving tree
problems on a mesh-connected processor array,''
Proceedings of the 26th Symp. FOCS, 1985, pp.
222-231.

[CS] R. Cole and A. Siegel, " River routing every which
way, but loose," 25th FOCS, October 1984, pp. 65-
73.

[D et al] D. Dolev, K. Karplus, A. Seigel, A. Strong and
J. Ullman, "Optimal wiring between rectangles,''
Proc. 13th Annual ACM Symposuim STOC, May
1981, pp. 312-317.

[J] D. Johannsen, "Bristle blocks: a silicon compiler,''
Proc. 16th Design Automation Conference, June
1979, pp. 310-313.

[KL] M. Kramer and J. van Leeuwen, "Wire rout-
ing is NP-complete," technical report, University
of Utrecht, the Netherlands, February 1982.

13

[L] A. LaPaugh, "Algorithms for integrated circuit
layout: an analytic approach,'' Ph.D. dissertation,
MIT, Cambridge, MA, November 1980.

[LM] C.E. Leiserson and F.M. Maley, "Algorithms for
routing and testing routing of planar VLSI layout,''
17th ACM STOC, May 1985, pp. 69-78.

[LP] C. Leieserson and R. Pinter, "Optimal placement
for river routing," SICOMP 12(3), August 1983,
pp. 447-462.

[M] A. Mirzaian, " Channel routing in VLSI,'' 16th
ACM STOC, May 1984, pp. 101-107.

[P] R. Pinter, "River routing: methodology and anal­
ysis,'' Proceedings of the third CALTECH Confer­
ence on Very Large Scale Integration, March 1983,
pp. 141-163.

[SB] S. Sahni and A. Bhatt, "Complexity of the Design
Automation Problem,'' Proceedings of the 17th De­
sign Automation Conference, June 1980, pp. 402-
411.

[SD] A. Seigel and D. Dolev, "The separation for gen­
eral single layer wiring barriers," Proceedings of the
CMU Conference on VLSI Systems and Computa­
tions, October 1981, pp. 143-152.

[SJ T. Szymanski, "Dogleg Channel routing is NP-
complete,'' manuscript, Bell Laboratories, Murray
Hill, NJ, September 1981.

[T] M. Tampa, "An optimal solution to a wire routing
problem,'' Proceedings of the 12th Annual Sym­
posuim on Theory of Computing, April 1980, pp.
161-176.

NEARLY OPTIMAL CLOCK SYNCHRONIZATION UNDER
UNBOUNDED MESSAGE TRANSMISSION TIME

(Extended Abstract)

Kazuo Sugihara1 and Ichiro Suzuki 2

1 Department of Information and Computer Sciences
University of Hawaii at Manoa

Honolulu, HI 96822

2 Department of Electrical Engineering and Computer Science
University of Wisconsin-Milwaukee

Milwaukee, WI 53201

Abstract Consider a fully connected network of n;::: 3
processes in which a process can send messages to a
set of other processes simultaneously. Messages sent
from a process to other processes simultaneously at time
t are guaranteed to be delivered in the time interval
[t + o, t + o + e] for some o and e, where e is a constant
but o can vary and no upper bound on o is known. We
show that, under this assumption, the clocks of the n
processes cannot be synchronized any more closely than
(1 + n(L2))e, even if the clocks run at the rate of real
time. A simple algorithm that synchronizes the clocks to
within (l+~)e is presented. The (l+~)e upper bound on
the imprecision of clock synchronization, together with
the (1 - ~)e lower bound found in the literature for the
case in which both o and e are known constants, implies
that whether or not there exists a given upper bound on
the message transmission time becomes less and less sig­
nificant when the number of processes increases. This is
the first known solution for clock synchronization under
unbounded message transmission time.

1 '- Introduction

The problem of synchronizing clocks in a distributed sys­
tem has been investigated under various assumptions.
For example, in [7], Lundelius and Lynch considered the
problem in an error-free system of n processes in which
there is an uncertainty of e in the message delivery time.
That is, for some known constants o and e, a message
sent by a process at time t is guaranteed to be delivered
at the destination within the time interval [t+o, t+o+e].
They show that, under this assumption, it is impossible
to synchronize the clocks of n processes any more closely
than (1 - ~)e, even if all clocks run at the rate of real
time. They also present an algorithm that achieves this

. bound. Clock synchronization when processes and com-

14

munication links can fail has been studied extensively in
[1] [2] [3] [5] [6] [8].

All clock synchronization algorithms reported in the
literature [1]-[8] have been obtained under the assump.:
tion that an upper bound on the message transmission
time is given. Although this may be a reasonable as­
sumption in many practical situations, achieving clock
synchronization when no upper bound on the transmis­
sion time is available is interesting, not only from the
thebretical point of view.

In this paper we consider the problem of clock syn­
chronization in a fully connected, error-free network of
n ;::: 3 processes in which a process can send messages
to any set of processes simultaneously. We assume that
if a process P sends messages to a set S of processes
simultaneously at time t, then

1. the messages addressed to the processes P' E S
such that P' 'I- P are received within the time
interval [t + o, t + o + e] for some finite o > 0 and
e ;::: O, where e is a constant but o can vary and no
upper bound on o is known, and

2. if P E S, then the transmission time of the mes­
sage from P to P itself may not be related to those
of the messages addressed to the processes P' 'I- P '.

That is, messages sent by a process to other processes
simultaneously are delivered within a time interval of
size e, but the message transmission times can be un­
bounded.

If messages sent by a process P simultaneously to
a set S of processes such that P E S are all delivered
within a time interval of size e, then clock synchroniza­
tion becomes a trivial problem. It is conceivable, how­
ever, that in certain systems messages sent by a process
to itself are processed locally and delivered immediately,
whereas messages sent to other processes are delivered

more or less simultaneously when the com:r:nunication
channel becomes available after an unpredictable delay.1

The model we consider can be a close approximation of
such a system.

It should be easy to see, at least intuitively, that syn­
chronizing clocks without using an upper bound on the
message transmission time is more involved compared
to the case in which an upper bound is known. For ex­
ample, in the algorithm of [7], a process which receives a
message assumes that the transmission time of the mes­
sage was exactly /j + E/2, the average of the lower and
upper bounds. If no upper bound is given, such a simple
approximation is not possible.

We show that, under the assumption described
above, the clocks of n processes cannot be synchronized
any more closely than (1 + n L2))E for any n 2:: 3, even
if the clocks run at the rate oi real time. The proof is by
the "many scenarios" techniques [1] [7] used commonly
for this purpose. Next, we present a simple algorithm
that synchronizes the clocks of n processes to within
(1 + ~)E for any n 2:: 3. The algorithm achieves opt'.mal
clock synchronization for n = 3 and is nearly optimal
for n > 4.

A;interesting observation is in order. The (1 - ~)E
lower bound on the imprecision of clock synchroniza­
tion proved in [7]-for the case in which the message
transmission time is in the range [6, 6 + E] for known
constants /j and E-increases and approaches E when n

becomes larger. In contrast, the (1 + ~)E upper bound
obtained under the assumption of this paper decreases
and approaches E when n becomes larger. This implies
that whether or not there exists a given upper bound
on the message transmission time becomes less and less
significant when the number of processes increases.

2 The Model

Let Pi, P2 , ••• , Pn be n 2:: 3 processes. We assume that
messages sent by a process to other processes simulta­
neously at real time t are received in the time interval
[t + 6, t + /j + E] for some finite /j > 0 and E 2:: O, where
E is known but /j can vary and no upper bound on 6 is
known. Other than this, the model we use is essentially
that of [2] [7].

Process P; has a physical clock C; which is a real­
valued function of real time. We assume that the phys­
ical clocks run at the rate of real time and they cannot
be reset by the processes; that is, C;(t) = C;(O) + t at
every real time t 2:: 0. The processes have no access to
the real time.

1 For example, in a local area network consisting of sites running
UNIX™ connected by Ethernet, messages sent from a process to
itself are routed through a local "loopback" interface whose delay
is independent of the load of the Ethernet.

15

Destination Transmission Time

d+(l-~~;)€
d + (1 - i-1)€

n-2
d+(l- _i)€

n-2

d + (1 - n-3)€
n-2

d

Table 1: Message transmission times from P; to other
processes in ei.

Process P; has a local variable A; (for adjustment)
which provides the difference between the logical and
physical clock times of P;. That is, the logical time L;(t)
of process P; at real time t is given by L;(t) = C;(t) +
A;(t), where A;(t) is the value of A; at t.

Following [2], we assume that a clock synchroniza­
tion algorithm is a deterministic algorithm in which the
state transition and the action of sending messages of
process P; at real time t is determined only by the value
of C;(t) and the message history of P; at t. Here, the
message history of P; at real time t is the sequence con­
sisting of tuples of the form < Pi> m, T, y > for ev­
ery message P; has sent or received before t, where
< Pi, m, T, y > represents that message m was either
sent (y =sent) or received (y =received) to or from
Pi when the value of C; was T. An algorithm is said
to synchronize the logical times to within / if the algo­
rithm eventually terminates, and when it terminates at
real time t, IL;(t) - Lj(t)I :S /holds for any i =f j.

3 Lower Bound

In this section, we show that no algorithm can synchro­
nize the logical times of n processes any more closely
than (1 + n(L2))€ in our model. The proof is by the
standard "many scenarios" techniques [1] [7].

Theorem 1 No algorithm can :Jynchronize the logical
times of n processes to within /, for any / < (1 +
l)f
n(n-2) ·

Proof (Sketch) Fix an algorithm that synchronizes the
logical times to within /. Let e1 be an execution of the
algorithm in which the transmission times of messages
from P; to other processes are as given in Table 1, where
d > (1 + -1-)€ is a constant. The transmission time of n-2
a message from P; to P; itself is an arbitrary constant.
Since in e1 messages sent by a process to other processes
at real time t are received within the time interval [t +
d, t + d + €] of size E, e1 is a valid execution.

Consider another execution e2 which is obtained from
e1 by "shifting" (7) P1 by (1 + n:2)e. That is, e2 is iden­
tical to e1 except that

1. at any given real time, the physical clock reading
of P1 in e2 is larger than that in ei by (1 + n:2)e,

2. the transmission time of a message from P1 to P;
(j # 1) is increased by (1 + n:2)e,

3. the transmission time of a message from P; (j # 1)
to P1 is decreased by (1 + n:2)e, and

4. all state transitions and actions of sending mes­
sages of P1 take place earlier in e2 than in ei by
(1 + n:2)e in real time.

The execution e2 is valid, since all messages sent by a
process to other processes are received within a time
interval of size €. Similarly, for 2 < i s; n, we can
obtain a valid execution e; from e;_1 by shifting P;-1 by

(1 + n:2)e.
Now assume that in ei, the logical times of P1,P2,

... , Pn are Ti, T2, ... , Tn, respectively, at real time t f
when the algorithm has terminated at every process.
By assumption we have

Since during the execution of the algorithm each process
has the same message history in e1 and e2 when its phys­
ical clock has the same value, the values of A; computed
by the algorithm are the same in e1 and e2 • Thus the
logical times of P1 and P2 at t f in e2 are Ti + (1 + n:2)e
and T2 , respectively. Then by assumption we have

Similarly, for 2 < i s; n, the logical times of P;_1 and P;
at t1 in e; are '.Il-i + (1 + n:2)€ and T;, respectively, and
thus by assumption we have

By adding the n inequalities we obtain

0

1
l~(l+n(n-2))e.

4 A Simple Algorithm

There exists a simple algorithm which synchronizes the
logical times of n processes to within (1 + ;)€ for any
n ~ 3.

The concept of "view" introduced below is essen­
tial in describing the algorithm. Suppose that P; sends
the message SNAPSHOT; to P1 , ... , P;_i, P;+i, . .. , Pn

16

simultaneously, and let v; (j # i) be the value of the
physical clock C; at the moment SNAPSHOT; is re­
ceived by P;. Then then-tuple

is called a view of P;, where'-' represents "don't care."
Since messages sent simultaneously by a process to other
processes are received within a time interval of size e, the
following lemma is immediate.

Lemma 1 Let V = (v1,v2, ... ,v;-1,-,v;+i, ... ,vn) be
a view of P;. There exist some real time t and ai, a 2 , ••• ,

a;-1,a;+l,···,an such that for eachj # i, 0 s; a; s; €

and v; = C;(t) +a;.

The algorithm can be divided into the following two
phases. It is a straightforward exercise to represent the
algorithm in any given language in such a way that its
execution will eventually terminate at every process.

Phase 1 Obtain a view

of P; for each 1 s; i s; n.

Phase 2 Compute Ai,A2, ... ,An from Vi, V2, ... , Vn as
follows. For 1 s; i s; n,

where for 1 s; k, i s; n,

Dk . = n-2 L..1:5/$n, l#k,i V/,k - V/,i I • {
1 '""' () 1"f k -1- ;

" 0 if k = i.

For k # i, Dk,i is the average of the differences be­
tween the physical clock readings of Pk and P; observed
in views Vi such that l # k, i. A; is the average of Dk,i

over all k, including D;,; = 0.
By Lemma l, for each view

there exist t; and a;,1, a;,2, ... , G'i,i-1, a;,;+i, ... , a;,n such
that 0 <a·· < e and v· · = C·(t·) +a·· for J. -1- i In - i,3 - 1,3 i 1 1,3 r ·
the following let t be any real time when the execution
of the algorithm has terminated at every process.

Lemma 2 For ls; is; n,

L;(t) = .!. L Ck(t)
n 1kn

1
+ () L L (a1,k - a1,;).

n n - 2 1kn,k#i 19$n,1#,i

Proof Since Ck(t1) - C;(t1) = Ck(t) - C;(t), for k -1- i Thus
we have

Thus

L;(t)

D

C;(t) + A;(t)
1

C;(t) + - L Dk,i
n Ikn

C;(t) + .! L (Ck(t) - C;(t))
n Ikn,k#i

1 + L L (a1 k - a1 ;)
n(n - 2) 1kn, k# 1$1$n, l#k,i ' '

1 - L Ck(t)
n Ikn

1 + 2 L L (a1,k -a1,;).
n(n -) Ikn,k#i 1$1$n,1#,i

Theorem 2 The algorithm synchronizes the logical
times of the n processes to within (1 + *)f. That is,
IL;(t) - Lj(t)I $ (1 + *)f for any i "I- j.

Proof (Sketch) By Lemma 2,

L;(t) - Li(t)

1 { L L (a1,k - a1,i)
n(n - 2) Ikn,k#i 1$1$n,1#,i

L L (a1,k - a1,i)}
1kn,k#j 1$1$n,l#k,j

1
n(n -2)(X - Y),

where

CXj,k + (n - 1) L a1,j + (n - 2)ai,j
1kn, k#i,j

and

Y = L a;,k + (n -1) L a1,i + (n - 2)aj,i·
1kn, k#i,j 1$1$n, l#i,j

Since 0 $ a1,k $ f for l -1- k, we have

0 $ X, Y $ {(n - 2) + (n - l)(n - 2) + (n - 2)}f

(n + l)(n - 2)f.

17

(n+l)(n-2)
$ f

n(n - 2)
1

(1 + -)f.
n

D

5 Remarks

Since the (1 + n(,;_2)f lower bound and the (1 + *)f
upper bound prove~ in this paper coincide with each
other if n = 3, the algorithm achieves optimal clock
synchronization for n = 3. Closing the small gap of
n(n-:._32) f between the two bounds for n ~ 4 remains as an
open problem.

References

[1] D. Dolev, J. Halpern and R. Strong, "On the pos­
sibility and impossibility of achieving clock synchro­
nization,'' J. Computer and System Sciences 32,
1986, pp. 230- 250.

[2] J. Halpern, N. Megiddo and A. Munshi, "Optimal
precision in the presence of uncertainty,'' Journal of
Complexity l, 1985, pp. 170-196.

[3] J. Halpern, B. Simons, R. Strong and D. Dolev,
"Fault-tolerant clock synchronization,'' Proc. 3rd
Annual ACM Symposium on Principles of Dis­
tributed Computing, Vancouver, Canada, 1984, pp.
89-92.

(4] L. Lamport, "Time, clocks and the ordering of events
in a distributed system,'' Communications of the
ACM 21, No. 7, 1978, pp. 558-565.

[5) L. Lamport and P. M. Melliar-Smith, "Byzan­
tine clock synchronization,'' Proc. 3rd Annual ACM
Symposium on Principles of Distributed Computing,
Vancouver, Canada, 1984, pp. 68-74.

[6J. J. Lundelius and N. Lynch, "A new fault-tolerant
algorithm for clock synchronization,'' Proc. 3rd An­
nual A CM Symposium on Principles of Distributed
Computing, Vancouver, Canada, 1984, pp. 75-88.

[7] J. Lundelius and N. Lynch, "An upper and lower
bound for clock synchronization," Information and
Control 62, 1984, pp. 190-204.

[8) T. K. Srikanth and S. Toueg, "Optimal clock syn­
chronization,'' Proc. J,th Annual ACM Symposium
on Principles of Distributed Computing, Ontario,
Canada, 1985, pp. 71-86.

Parallel Algorithms For Channel Routing
in the Knock-Knee Model1

Shing-Chong Chang

Department of Electrical Engineering
and

Systems Research Center
University of Maryland
College Park, MD 20742

Abstract

We consider the channel routing problem of a
set of two-terminal nets in the knock-knee model.
The known strategy to handle this problem seems
to be inherently sequential. We develop a new
approach to route all the nets within d tracks,
where dis the density, such that the correspond­
ing layout can be realized with three layers. Both
the routing and the layer assignment algorithms
have linear time sequential implementations. In
addition, they both can be implemented on the
CREW-PRAM model in O(logn) time with O(n)
processors, where n is the number of nets. With
1 ::; p ::; n1-< processors, E any positive constant,
the running time of the algorithms is 0(~ + logn).

1 Introduction

The recent advances in the VLSI technology allow the
fabrication of highly complex systems on single chips.
Sophisticated software tools are needed to successfully
design such systems. In particular, the routing phase is
a critical and time-consuming part of the overall design
process. Unfortunately, it turns out that most routing
problems are NP-complete and hence no efficient solu­
tions seem to be likely. There are few exceptions, how­
ever. For example, various river routing (one-layer) prob­
lems, the two-layer channel routing with no constraints,
and few routing problems in the knock-knee model are
known to have efficient solutions ([D et al],[MP],[O],[P],
[PL]). Our goal is to develop a good set of techniques to
obtain fast and efficient parallel routing algorithms.

In this paper, we consider the channel routing prob­
lem of two-terminal nets in the knock-knee model. A
routing algorithm that uses d tracks, where dis the den­
sity, is presented in ([PL]) such that the routing can be
realized with three layers. This algorithm can viewed
as a nontrivial extension of the left edge algorithm ([OJ)
in which the routing is done row by row, left to right

1Supported in part by NSA Contract No. MDA-904-85H-0015,
NSF Grant No. DCR-86-00378 and by the Systems Research Cen­
ter Contract No. OIR-85-00108

18

Joseph JaJa

Department of Electrical Engineering
Institute For Advanced Computer Studies

and
Systems Research Center
University of Maryland

College Park, MD 20742

according to a greedy strategy. However, this method
seems to be inherently sequential even for the case when
each column has at most one terminal. We develop a
novel strategy to obtain the optimal routing (which is
in general different from the one obtained by the [PL]
method) such that both the routing and the layer assign­
ment algorithms have linear time sequential implemen­
tations. Moreove, they are both fully parallelilzable in
the sense that they can be implemented on the CREW­
PRAM model in O(log n) time with 0(n) processors,
where n is the number of nets. If all the terminals lie
in the range [1, NJ, where N = O(n), then these algo­
rithms will run in time O(~ + logn) time with p :S n 1-'

processors, where E is any positive constant.

The rest of the paper is organized as follows. The ba­
sic definitions needed for the rest of the paper are intro­
duced in the next section, while in section 3 we develop a
novel routing strategy and establish its correctness. The
layer assignment algorithm is presented in the last sec­
tion.

2 Definitions

We assume that the reader is familiar with the basic
definitions related to channel routing (See for example
[O],[PL]). In this paper, we restrict ourselves to two­
terminal nets N = < t, b >, where t is the top terminal
(on the top row) and b is the bottom terminal. t and b
will also represent the integer displacements of these ter­
minals relative to a fixed origin. N is a left (right) net
if t < b (t > b). Otherwise it is a vertical net. We will
also represent a net N as N = [I, r], where l :::; r,
l = min{t, b} and r = max{t, b}. We refer to land r
as the left and right terminals of N respectively. An in­
stance of the channel routing problem (CRP) is a channel
consisting of a rectangular grid and a set of nets whose
terminals lie on the grid points of the (horizontal) par­
allel boundaries. The local density dx at x is defined to
be the number of nets [li, ri] such that li :S x < ri. The
density dis given by d = maxx{dx}. A routing in the
knock-knee model consists ofa set of edge-disjoint paths
(made up of gridline segments) connecting the terminals
of each net. Hence a shared grid point could be one of
two types: crossing and knock-knee (Figure 1).

-1--
Figure 1: Types of shared grid points

Let Li, L 2 , ... , L 1 be a set of conduction layers stacked
on top of each other such that Li is on the bottom and
L 1 is on the top. A wiring layout is an assignment of
single layer to each routing segment such that (1) no two
segments of two distinct nets share a grid point on the
same layer, (2) a routing path may change layers at a via
and (3) no wire can use a grid point on a layer which
is between two layers with a via at that grid point. It
is known that any routing in the knock-knee model can
be realized with four layers ([BB]) and that three layers
suffice for the channel routing problem ([PL]).

Given a routing of an instance of CRP, the diagonal
diagram can be obtained by inserting a diagonal for each
knock-knee, a half-diagonal for each bend. If we remove
the half-diagonals, we obtain the core layout. It is known
that a wire layout can be realized with three layers if its
core can [PL]. A partition grid is a grid containing all the
diagonals (see [PL] for a formal definition). A set P of
edges of the partition grid is called a legal partition if the
following properties hold:

1. Every internal vertex in incident on an even number
of edges of P.

2. The set of diagonals in P is identical to that of the
diagonal diagram.

3. None of the forbidden patterns in Figure 2 appear
in P.

A legal partition of a core layout W exists if and only
if W can be wired with three conducting layers.

We use the standard CREW (Concurrent Read Ex­
clusive Write) shared memory model. All our results will
be stated in this model. However, our algorithms have
fast implementations on fixed-interconnection networks
such as the mesh or the hypercube. For example, all the
algorithms stated in this paper can be implemented on
a vn x vn mesh in time 0(fo), where n is the input
length.

V1 N Z S
L ~ ~ 71

Figure 2: Forbidden Patterns

19

3 Channel Routing

Given an instance of CRP of density d, our goal is to
determine a wiring of all the nets ind tracks. In addition,
the resulting layout or a slight modification of it should
he realizable in three layers.

The algorithm developed in [PL] constructs the wiring
track by track by lying each track from left to right. The
overall strategy can be viewed as a nontrivial extension of
the line packing (or left edge) algorithm, where a mech­
anism is provided to solve conflicts arising in columns.
This approach seems to be inherently sequential even
if there is at most one terminal in each column. Our
method is quite different and consists of two main steps:

1. Partition the nets into d chains satisfying certain
properties to be outlined below. In particular, the
nets 'in each chain define a set of nonoveralpping
intervals.

2. Assign a track number to each chain. Then wire all
the nets simultaneously.

We will outline how to perform each step next. The
algorithm below creates chains of nets which will be mod­
ified later to satisfy all the desired properties. We will
denote the successor (predecessor) of a net N by succ(N)
(pred(N)).

Algorithm Create Chains

Input: terminals l;'s and r;'s of all the nets Ni, N2, ... , Nn.

Output: d chains of nets, where d is the density of the
corresponding channel routing problem.

1. Mark all terminals as active. For each left terminal li of
a net Ni, find the nearest right terminal rj of some other
net such that rj is to the left (or in the same column) of
li. If two such choices are possible, pick the one whose
corresponding net is of the same type as Ni. Set p(li) =
rj. If no such rj exists, then set p(l;) =nil. Similarily,
define p(ri) for each right terminal.

2. If p(li) = rj and p(rj) = li, then set succ(Nj) = Ni,
and mark rj and li as inactive. Create a reference point
k between rj and li.

3. Let Ri, R 2 , ••. , Rm be the intervals determined by the
reference points. For each Ri, create L(Ri) consisting of
all the active left terminals, and R(Ri) consisting of all
the active right terminals in Ri.

4. Find the corresponding terminal pairs in R(Ri) and
L(Ri+i) and create links as before. Mark all terminals
used as inactive and merge intervals R2i-i and R2i for all
i. Repeat this step until there is one interval left.

As an example, consider the channel routing instance
of Figure 3. The chains produced by the above algorithm
are given in Figure 4. We also have the following.

a i a a '7 e a t314.5 12 u 10 201718182125152.t2310 22 + •

.
l • 3 45 8789 101112 13 141518 171819202122 2324 25

Figure 3: A channel routing problem

1. Ni -+ N14 -+ Nis -+ N2s

2. N, -+ N1 -+ Na -+ Nio -+ Nie --+ N2s

3. N2 -+ Ns -+ Ni2 -+ Nl8 -+ N2i -+ N2,

4. Na -+ N& -+ Nia -+Ni 1 -+ Ni9

5. Ng -+ Nu -+ N2o -+ N22

Figure 4: The chains created by Algorithm Create Chains

Lemma!: The number of chains created by the above al­
gorithm is exactly d, where d is the channel density. This
algorithm can be implemented on the CREW-PRAM in
time O(log n) with 0(n) processors, where n is the num­
ber of nets.

Proof : Let Ri, R2 , •• • , Rm be the intervals created by
the above algorithm, prior to a set of merging operations

of step 4, such that K; is the reference point between
R;_1 and R;. Let nr., n1, be respectively the numbers of
active right and left terminals in R; and let nk; be the
number of nets with terminals on different sides of K;.

Claim: The following inequalities hold true before each
set of merging operations performed in step 4 of the above
algorithm:

nr; + nk,+1 :::; d

ni. + nk, :::; d

Proof of Claim: Notice that initially all active right ter­
minals in R; must be to the right of the rightmost left ter­
minal lj in R;. If at the completion of step 3, nr; +nk;+i >
d, then the density of the channel at a point between the
right and left terminals of R; is 2:: nr; +nk;+i > d, which is
impossible. Similarily we can establish the other inequal­
ity. We now show that after each set of merging opera­
tions, the inequalities will hold. Consider the merging of
the intervals R2i-1 and R2i· We know that nr2,_1 + nk2; :::;

d and n12 , + nk2; :::; d. Let c = min{ n12,_,, nr20 _ 2 }. We
distinguish between two cases:

1. Suppose that n12 , 2:: nr2,_1 • Then the number of left
terminals in the new merged interval R;1 is given by
n1,, = n12,_1 + n12 , - nr2,_1 - c and hence n1., + nk,, =
n12 ,_1 + n12, - nr2,_1 + nk,._1 - c. But n1,._1 + nk2,_, =
n.,._, +nk2 ; and therefore n1,, +nk,, = n12, +nk2 ; -c :::;
d.

2. Suppose that n12, < nr,._,. Then the number of left
terminals in the merged interval R;1 will be n1,, =
n12,_1 -c and thus n1,,+nk,, = n12 ,_1 +nk,,_,:'c S d.

20

In a similar fashion, we can establish the other inequality.
This concludes the proof of the claim.

Let d' be the number of chains created by the above
algorithm. Clearly, d' ;::: d. At the termination of the
algorithm, the number of chains is equal to the number
of left terminals. Using the claim above, we deduce that
d' :::; d and hence d' = d.

We now establish the time and processor bounds. One
can check that a couple of sorting steps and few simple
operations will take care of step 1-3. Step 4 consists of
O(log n) merging operations each of which can be done
in 0(1) time.

The above chains can be used to wire all the nets in
d tracks. However, the corresponding layout may not be
realizable in three layers. We modify the above chains
so that they have the following property. Let c be any
column. Then either

1. c is empty, or

2. c contains one terminal, or

3. c contains two terminals of nets N; and Ni. Let
N; = < c,b; >and Ni =<the>.

li=C

6;)N,

t;~N;

6;=c

C;=c

b;)N;

C; :JN;

i;=c

• If both N; and Ni are either right or left nets,
then they both belong to the same chain and
one is the successor of the other.

• Suppose that N; is a right net and Ni is a left
net. The other case can be dealt with similar­
ily. Let Nf = succ(N;) and NJ = succ(Nj)·
Then they either share a column or the col­
umn of Nf or NJ which is closer to c has only
one terminal (see Figure 5(b)).

tt=c li=c

c: "N·'
1,)N1 Cji ~··--~,'''Ni

N;' ,. ' t; ::JN; &,· I; "') N; _(_ _(

b;=c 6;=C

{•)

li=c C.=c

c: 1,)N; Cji'
----;JN:-· -,-

:.Ni• b; N, N,' '-.-, N·'
N;'

t;~N; {!" .. C;:JN; (L
b;=c 6;-c

{b)

Figure 5: Possible successors of two nets with right ter­
minals in the same column

The following algorithm outlines how to modify the
chains so that the above property holds.

Algorithm Modify Chains

Input: A set of chains produced by the algorithm create
chains.
Output: A set of chains satisfying the property stated
above.

1. Mark each column with two right or two left terminals
as active.

2. For each active column c with a top right terminal t;
and a bottom right terminal bi, do the following:

• If the left terminals of succ(N;) and succ(Nj) are
in the same column c', then mark both c and c' as
inactive.

• If the left terminals are in two distinct columns,
say c' containing the left terminal of succ(Ni) is
the left one, then mark c inactive if c' has only one
terminal.

• Otherwise, c1 contains another left terminal b~. Let
Nk = pred(N£). Then create the pair < N;, Nk >.
Mark c and c' as inactive.

3. Group the pairs < N;, Nk > into maximal groups <
Nko,Nk1 >,< Nki,Nk2 >, ... ,< Nkt-1,Nkt >. Update
the successors of these nets by setting the new successor
of Nki to be the previous successor of Nki+I for all 0 ::;
i < t - 1. In addition, set the new successor of Nkt to be
the previous successor of Nko·

4. Repeat procedure for active columns with two left
terminals.

5. Adjust chains in such a way that whenever the con­
figurations of Figure 5(a) occur, they will be replaced by
the corresponding configurations of Figure 5(b) (similar­
ily for columns with two left terminals).

As an example, consider the chains of Figure 4. Then
the above algorithm creates the new set of chains given
in Figure 6.

1. Ni --+ N5 --+ N10 --+ N15 --+ N19

2. N• --+ N1 --+ N 8 -+ N11 --+ N20 --+ N 23

3. Nz --+ Ns --+ Ni2 -+ Nis --+ N2i -+ N2<

4. N3 --+ Nu --+ Nis --+ N22

5. Ng --+ Ni3 --+ Ni 1 --+ N2s

Figure 6: New chains generated by Algorithm Modify
Chains

Lemma2: The above algorithm modifies the chains gen­
erated by the algorithm Create Chains such that the new
chains satisfy the desired properties. Moreover, the algo­
rithm runs in O(log n) time with 0(n) processors on the
CREW-PRAM model.

Proof: To simplify the presentation we will introduce a
new graph called the link graph. There is vertex Ve corre­
sponding to each column c. There is an edge between Ve

and Ve' if and only if c contains a terminal of a net whose
successor or predecessor has a terminal inc'. Notice that
the link graph of each of the groups created in step 3 has
the form shown in Figure 7(a). If c~ has another link to
a, then a cannot appear between c0 and c1 . After the
modifications performed in step 3 the link graph of the

21

group will be of the form given in Figure 7(b) with 2
link loops or paths of length 2. Hence it is clear that
after step 3 no column with two right terminals could
cause any problem. Each group may have generated one
column with two left terminals which donot satisfy the
desired property. Then step 4 of the above algorithm
takes care of all these columns (Figure 5). Step 5 insures
that columns with two terminals will be of the form given
in Figure 5(b). The time and processor bounds of the al­
gorithm can be easily established.

(a)

·~··:\\
~

(b)

Figure 7: Forms of groups in the proof of Lemma2

The track assignment and the wire layout will be de­
~cribed next. Suppose that track k has been assigned to
net N = < t, b >. Then the wire of N will consist of the
interval [tk, bk] on track k, a vertical line segment from
b to bk, and a vertical line segment from t plus a pos­
sible detour to tk. Therefore the problem comes down
to determining how to connect a terminal on the upper
row down vertically to its track. The algorithm below
describes how to achieve this.

Algorithm Wire Nets

Input: A chain of nets as modified by the algorithm Mod­
ify Chains.

Output: A wire layout for each net.

1. For each chain, assign the leftmost terminal l; as the
primary key, and, if l; is a bottom terminal, assign 0
as the secondary key and 1 otherwise. Sort the chains
according to their keys. The track number of each chain
is its corresponding rank.

2. For each column c, do the following:
1. if c contains one terminal of a net N, then connect

that terminal vertically to the track of N.

2. Suppose c contains two terminals of a single net.
Then connect these two terminals vertically.

3. Suppose that c contains two terminals of two dis­
tinct nets N =< c, b > and M =< t, c >. If N and
NI have the same track number, then wire the ter­
minals to this track using a knock-knee. Otherwise
there is detour only if the track number of N is less
than that of M. In this case, it is a left or right
detour depending on whether c is a right or left ter­
minal. The detour extends to either to the column
of successor (for a right detour)or predecessor (for
a left detour)of either Nor M whichever i§ closer.
All the cases that can arise and the corresponding
routing are shown in Figure 8.

N:J jN•

"=1 L
(3)

-~JL·~~
:-:::i_~ "' L" "~ ~

(6} {7) lS) (9)

(5)

Figure 8: Possible detours of nets with terminals in the
same column

Consider the example of Figure 2 again. Then the
routing obtained by the above algorithm is given in Fig­
ure 9.

./

/ / / /" ::_
/" " // (b} < " ·· .. :···-" ..

(c) \\\ \ \\ \6'0:.\
Figure 9: (a) The layout generated by Algorithm Wire
Nets, (b) its corresponding diagonal diagram and (c) its
corresponding constraint graph

Lemma3: Given an instance of the channel routing prob­
lem, the above algorithm provides a legal routing of all
the nets in the knock-knee model.

Theoreml: Given an instance of the channel routing
problem of density d, it is possible to wire all the nets ind
tracks in time O(log n) time on the CREW-PRAM model
with O(n) processors, where n is the number of nets. If
all terminals lie in the range [1, NJ, where N = O(n),
then the above algorithm can be implemented in O(n)
sequential time and in 0(~ + log n) parallel time with p

processors on the CREW-PRAM model, where p::::; n1-',

and t is any positive constant.

Proof: The first statement of the theorem follows from
the previous lemmas. If all the terminals lie in the inter­
val [l, N], N = O(n), then sorting (most expensive step)
takes 0(n) sequential time. For the parallel implementa­
tion, the most expensive steps are sorting and traversing
linked lists. Using the results of ([Ket al]) we obtain the
bounds stated in the theorem.

4 Layer Assignment

In this section, we show that a modified version of the
routing produced by the algorithm of the previous section
can be laid out in three layers. [PL) provides a necessary
and sufficient conditions for the realization of a wiring
in three layers. As stated in section2, the problem is es­
sentially reduced to finding a legal partition of the core

22

of the diagonal diagram. The routing layout produced
by the algorithm in [PL) has a special property, namely
every column is either empty or contains one diagonal or
a diagonal \ on the bottom and a diagonal / above it.
Their algorithm proceeds from left to right, looking at
each column and making vertical connections (and possi­
bly changing the routing) so that the resulting partition
is legal. Unfortunately, we encouter a major difficulty in
our case. Each column of our routing layout could have
two diagonals (\ and /) in an arbitrary order (because
our routing uses left and right detours). This makes it
necessary to change the wire layout much more substan­
tially than was done in [PL). In the rest of this section,
we outline how to overcome this difficulty.

By adding dummy diagonals if necessary, we can as­
sume that each column is either empty or contains ex­
actly two diagonals. As in [PL), our partition will be
constructed by adding vertical edges only. Define a ref­
erence line as a vertical line that touches the endpoint
of some diagonal. For each reference line, the diagonals
touching this line will partition it into several line seg­
ments. Number these line segments starting from the top
most segment. Notice that there are two possible ways
of adding vertical segments (to create a legal partition):
add the odd-numbered or the even-numbered segments.
We have to choose (if possible) those segments that will
not create a forbidden pattern.

We define the constraint graph as follows. The two
possible choices of vertical segments corresponding to ref­
erence line L; are represented by two vertices V2;-1 and
v2;. Two vertices are connected by an edge if and only
if the corresponding choices create a forbidden pattern.
Notice that forbidden patterns can be created only be­
tween adjacent reference lines.

Lemma4: The total number of the edges between the
vertices corresponding to adjacent reference lines is :S 2.

Proof: Since the maximum number of diagonals between
two adjacent vertical reference lines is 2, there are at most
two "constraints" between { V2i-i, V2;} and { V2i+i, V2;+2},

for each i.

Our goal is to pick for each reference line one of its
vertices such that no two such vertices are connected by
an edge. This may not be possible, in which case the
routing layout has to be modified. We introduce the pat­
terns that can create potential problems. A forbidden
column is a pair of vertices corresponding to a reference
line such that no selection of its vertices will lead to a
legal partition. The set of configurations that may give
rise to a forbidden column are shown in Figure 10.

Our goal is to modify the wiring layout if necessary
so that the resulting constraint graph has no forbidden
columns. We start by showing that any such graph will
lead to a legal partition. The following algorithm shows
how to select the proper set of vertices.

7_· 7/ ~-. ·-~

.-L /L 7L
Figure 10: Configurations that may give rise to forbidden
columns

Algorithm Select

Input: Reference lines and the corresponding constraint
graph with no forbidden columns.

Output: A subset of the vertices which will induce a legal
partition of the wiring layout.

1. Mark all reference lines as active. For each reference
line L;, select V2; (v2;-1) if v 2;_1 (v2;) is incident on two
edges to a single adjacent column. If such a selection is
made, mark L; as inactive and assign weight 0 if v2; is
selected, otherwise assign weight 1.

2. Create a sorted list for each set of active reference
lines between two inactive reference lines.
3. For each list created in step 2, do the following. As­
sign a weight 0 to each line Lk in the list if there is an
edge between V2k-3 and V2k or between v2k_2 and v2k-l·

Otherwise, assign a weight of 1 to Lk.

4. Calculate the rank of each reference line. Then select
V2k if the rank of Lk is even; otherwise select v 2k-I·

Lernma5: Given a partition graph with no forbidden
columns, Algorithm Select will generate a subset of the
vertices that determine a legal partition of the wiring
layout.

Proof: Let's start by observing that the selection made
in step 4 for inactive reference lines is consistent with
that of step 1 because the graph contains no forbidden
columns. For the rest of the proof, it is enough to show
that there is a selected vertex for each reference line such
that no two selected vertices are connected by an edge.
The algorithm clearly selects exactly one vertex for each
reference line. Suppose that there is an edge between two
selected vertices, say V2k and vk_2 • Then the weight of
Lk must be 0 (because both have even ranks). But then
either V2k is connected to v 2k_3 or v2k-l is connected to
V2k-2· In the first case, v2k-l would have been selected;
in the second case, V2k-J would have been selected. Sim­
ilarily we can handle the other cases. Notice that the
selection made in step 4 for inactive reference lines is
consistent with that of step 1 because the graph contains
no forbidden columns.

In the rest of this section, we will show how to modify
the wiring in such a way that the corresponding con­
straint graph has no forbidden columns. We first in­
troduce the following classification of reference lines (cf
[PL]): Trivial (Figure 11), Overlap (Figure 12), Disjoint
(Figure 13), Inclusion (Figure 14). Each type is shown
with its possible constraint graph. The only possible for-

23

bidden columns could come from: Di, D3 , D6 , D8 , h, I4 ,

Ia, Is. In most of these cases, the wiring has to be modi­
fied by adding diagonals in such a way that no forbidden
column could possibly arise. The procedure involves a
detailed case study which is summarized by the follow­
ing algorithm.

o,

i [),
V: i
:N
'.'-! i

D,

~;
N·
i V: :N

(
)

1,

[), : ; vi
:w N;

x

T, Ti T, T,

'' n N n N
N n N h

Figure 11: Trivial reference lines

o,

i hJ
N·
i l).
V: :

o, o,

N:
:N
~:
: V:

Figure 12: Overlap reference lines

D,
~:

N:
iN
i V:

x

Ds

! [),
:N
V: i N·

(

)

D,

iN
: V:
~:

N:
x

Do

N: V: '
i V: :N
x

D,

)
(

Figure 13: Disjoint reference lines

1, r, r, 1, 1,

:~ : hJ [), i Ni hJ :
:N iN : Y: V: i V: :
:~ :~ :N f-...l: w:
N: ''' V: ' iN i Y: v: : '''

< x > x >
) ((

Figure 14: Inclusion reference lines

D,

x

l1

''' !!---J
N·
~:
: V:

x

Algorithm Modify

o,

hJ :
i Y:
~:
:N

>
(

Io

:~ N:
~:
:N

(

>

Input: Wiring layout produced by Algorithm Wire Nets.

Output: A new wiring with its modified constraint graph
and a set of selected vertices.

1. Generate the diagonal diagram, delete all half diago­
nals and add necessary dummy diagonals as follows. If
there exists exactly one diagonal \, then add a dummy
diagonal / in an additional row above all the rows. If
there exists exactly one diagonal /, then add a dummy
diagonal \ in an additional row below all the rows. De­
termine the constraint graph and mark all reference lines
which may give rise to forbidden columns as active.

2. Handle type I 2 active reference lines as follows. Let
Lj, Lj-2, ... , Lj-2k be a maximal chain of active [z's. We
want to modify every other L; starting with Lj in a way
that depends on the type of its left neighbor L;_1 . All
the cases that can arise are shown in Figure 15 with the
corresponding modifications. In each such case, a ver­
tex of L;_1 is selected (its degree is 0), edges between
reference line L;_1 of selected vertex and its neighbors
removed and the reference lines L;, L;_1 , L;_2 are marked
inactive. Handle type Is reference lines in a similar fash­
ion.

3. Handle type active I 4 as shown in Figure 16. Select
v2; and remove edges between L; and its neighbors. Mark
L;,L;-1,L;+1 as inactive. Handle type Is similarily.

4 .. Handle active type D1 as shown in Figure 17. Select
V2i-l and remove edges between L; and its neighbors.
Mark L;_1 , L;, L;+1 as inactive. In Figure 18 a maximal
chain of D1 'sis considered. L;, L;+1 , ••. , Lk are all of type
D1 . If L; or Lk can give rise to a forbidden column, then
modify as shown and remove all edges of L; - Lk. All the
odd vertices of of L; - Lk are selected. As before edges
are removed for selected columns and adjacent reference
lines are marked inactive. Repeat the same procedure for
types D3, Da and Ds.

(1)

(•l

·<
>­

(2) (3)
(•) (5)

(7) (8) (9)

Figure 15: Transformations on type I2 reference lines.

Lemma6: Algorithm Modify will change the wiring lay­
out produced by Algorithm Wire Nets in such a way that
the corresponding constraint graph contains no forbidden
columns.

Proof: Consider the original constraint graph in which
L; was of type I2 (hardest case). Then we have to show

24

>
<

x

Figure 16: Transformations on type I4 reference lines

<
> x

Figure 17: Transformations on type D1 reference lines

that L;_3 will create no problems. The only nontrivial
cases are the following:

1. L;_3 is of type I 2• In this case the algorithm selects
vertices in the columns corresponding to L;-1 and
L;_4 and hence there are no edges left between L;-2

and L;_1 , and between L;_3 and L;_4.

2. L;_3 is of type Is. Suppose that there are no dummy
diagonals between L;_3 and L;-2 or between L;-1

and L;. The only possible wiring configurations
are shown in Figure 19 with their corresponding
diagonal diagrams. If there is a dummy diagonal
between L,_1 and L;, then we can have one of the
three possibilities shown in Figure 20. In each of
these cases, one of L; or L;_3 cannot generate a
forbidden column.

3. L;_3 is of type I 4 , Is, Di, D3, Ds or Ds. One can
check that none of these cases can possibly generate
a forbidden column.

The remaining cases can be dealt with similarily.

If we go back to the example of Figure 2, then the
routing produced by the algorithm of the previous section
is given in Figure 9. The layer assignment algorithm will
change the wiring of N16 and N21 (Figure 21) and the
final layout is shown in Figure 22.

Figure 18: Maximal chain of D1 's.

(1) (2)

Figure 19: Possible wiring configurations for case 2 of
lemma6

(1) (2)
(3)

Figure 20: Possible configurations with dummy diagonals
between L; and Li-1·

16 21 Jtl 21

~I =~~~
__ ._ -

,. ZI •• ZI

(a) (b)

Figure 21: Changes in the wiring of N16 and N 21

Theorem2: Given an instance of the channel routing
problem, it is possible to determine a three-layer assign­
ment of the routing layout in time O(log n) time with
O(n) processors on the CREW-PRAM model. If all ter­
minals lie in the range [1, NJ, where N = O(n), then the
above algorithm can be implemented in O(n) sequential
time and in 0(~ + log n) parallel time w.ith p processors

on the CREW-PRAM model, where p S: n 1 -<, and Eis
any positive constant.

25

I? II II l!O ZI ZZ

/ / ///'-.. ~
(6) /'-.. '-.. // /

< '-.. . '-.. ..

(<) \\ \ \ \\ ~\
Figure 22: (a) The final layout after the modification of
layer assignment algorithm, (b) its corresponding diago­
nal diagram and (c) its corresponding constraint graph

. 5 References

(BB] Brady, M. and D. Brown, "VLSI Routing: Four
Layers Suffice," Advances in Computing Research
2 (VLSI Theory), ed. Preparata, JAI Press, Inc.,
Greenwich, CT, pp. 245-257, 1984.

[D et al] Dolev, D., K. Karplus, A. Seigel, A. Strong
and J. Ullman, "Optimal Wiring Between Rectan­
gles," Proc. 13th Annual ACM Symposuim STOC,
May 1981, pp. 312-317.

(K et al] Kruskal, C., Rudolph, L. and M. Snir, "The
Power of Parallel Prefix," IEEE Transactions on
Computers, vol. C-34 (10), pp. 965-968, Oct. 1985.

(L] Lipski, W., "On the Structure of Three-Layer
Wirable Layouts," Advances in Computing Research
2 (VLSI Theory), ed. Preperata, JAI Press, Inc.,
Greenwich, CT, pp. 231-243, 1984.

[MP] Melhorn, K. and F. Preparata, "Routing through
a rectangle," JACM, vol. 33(1), Jan. 1986, pp.60-
85.

[OJ Ohtsuki, T., "Layout Design and Verification,"
Advances in CAD for VLSI, vol. 4, North-Holland,
1986.

[P] Pinter, R., "River Routing: Methodology and Anal­
ysis," Proceedings of the third CalTech conference
on VLSI, March 1983, pp. 141-163.

[PL] Preparata, F. and W. Lipski, "Optimal Three­
Layer Channel Routing," IEEE Trans. on Com­
puters, C-33, pp. 427-437, 1984.

PARALLEL ALGORITHM FOR MINIMUM DUAL-COVER
WITH APPLICATION TO CMOS LAYOUT

Y. M. Huang and M. Sarrafzadeh
Department of Electrical Engineering and Computer Science

The Technological Institude
Northwestern University

Evanston, IL 60208

Abstract - In a pair of planar graphs (G, Gd), with
Gd being dual graph of G, a sequence of distinct edges is
a dual-Euler trail if it is a trail both in G and in Gd. A
set of disjoint dual-Euler trails that simultaneously cover G
and Gd is called a dual-cover. We present an O(logn) time
and O(n) processors algorithm, in PRAM model, based on
the graph separator theory, for obtaining a minimum cardi­
nality dual-cover in a pair of series-parallel graphs (G, Gd),
where n is the total number of edges. We employ the pro­
posed algorithm to obtain a minimum-area VLSI layout of
CMOS functional cells.

1 Introduction

Algorithm design is the development of better proce­
dures and data structures to reduce the time to solve a
given problem on a given computing system. Exploitation
of a multiprocessor system requires a radical departure from
the traditional Von Neumann environment. Detection of
parallelism in sequential programs is essential to the disci­
pline.

In the parallel-random-access memory model (PRAM)
there is a group of processors, with access to a shared mem­
ory, cooperating to solve a given problem. An effective al­
gorithm in PRAM model should aim to minimize the com­
putation time and the number of processors.

Consider a planar graph G = (V, E) along with its dual
graph Gd = (Vd, Ed), where there is a one-to-one correspon­
dence between E and Ed, as shown in Figures la and lb. A
trail in G is a sequence of vertices r = (va, Va+l > ••• , vb+i),

where e; = (v;,V;+1) E E, v; =/= v;+l, and e; =/= ei for
a ~ i, j :=:; b. To each trail r we associate a label L(r) =
(ea, ea+l> ... , eb)· Consider a trail r of G and a trail rd of Gd.
A pair t = (r, rd), with r being a trail in G and rd being a
trail in Gd, is called a dual-Euler trail (DET) if L(r)=L(rd).
A set of disjoint DETs { t1 , •.. , t. } is called a dual-cover if
L(t;) n L(ti) = 0, for i =/= j, and u:=1 L(t;) = E. An optimal
dual-cover of (G, Gd) is a minimum cardinality dual-cover,
that is, a dual-cover with minimum s.

A CMOS functional cell consists of two parts: the p-part
representing PMOS transistors, and then-part representing
NMOS transistors. Each transistor has a polysilicon strip;
one side of the polysilicon strip being a source and the other
side being a drain. The p-part is a series-parallel inter­
connection of PMOS transistors; similarly, the n-part is a
series-parallel interconnection of NMOS transistors, and is
the dual of the p-part. Representing the p-part and n-part
interconnections by GP = ("V;,, Ep) and Gn = (V,., E,,), re­
spectively the GP= G~ and Gn = G~. In CMOS circuits, it

This work was supported in part by the National Science
Fundation under Grant MIP-8709074.

26

·@<(D·
t

(•1 lbJ

.,/~--
.,!\,. /\/• /\ .,~. .. /\/\ . "

Figure 1: (a) NMOS graph. (b) PMOS graph.
(c) Binary decomposition tree of (a)/(b).

is possible to implement complex logic functions supported
by complementary NMOS and PMOS transistors instead
of by conventional NAND and NOR logic elements. The
former implementation requires about half the area of the
latter implementation, has less time delay and better per­
formance.

A systematic approach to layouts of CMOS functional
cells has been proposed by Uehara and VanCleemput [UV];
we will refer to it as UV style. A UV layout can be viewed
as a set of vertical polysilicon lines corresponding to gates,
and a set of horizontal metal lines, corresponding to inter­
connections among the transistors. A source or a drain of
a transistor is connected to a source or a drain of another
transistor either by horizontal metal lines or by adjoining
their corresponding gates (their polysilicon vertical lines).
The former requires metal connections; thus, it increases
the height of the layout area. The latter does not require
any connection.

Consider a UV layout. Let a polysilicon pitch be the
minimum separation between two polysilicon lines and a
diffusion pitch be the minimum separation between two dif­
fusion regions. Two polysilicon strips with common source
or drain have a polysilicon pitch separation; otherwise they
have a polysilicon plus diffusion pitch separation. An opti­
mal UV layout is obtained when the transistors are ''chained"
(i.e., placed adjacent to each other) in an "optimal" man­
ner. It has been shown [UV] that an optimal UV lay­
out corresponds to an optimal dual-cover of (Gp,Gn)· A
heuristic algorithm for obtaining a dual-cover of (GP, Gn)
has been proposed in [UV]. Subsequently, two optimal al­
gorithms running in O(IEPI) time in the RAM model were
proposed (NBR,MH]. If (Gp,Gn) does not have a single
dual-cover, then the algorithm of (NBR] cannot produce
a layout [WPF].

In this paper, we will show an O(loglEvl) time and

O(IEPI) processors algorithm, in the PRAM model, for ob­
taining an optimal dual-cover of (GP, Gn)· As a subprob­
lem, we will show how to separate a series-parallel graph
G = (V,E) using 0(1) time and O(\EI) processors - an
improvement over previous O(log2\E\) time and O(IE\H•)
processors result, t > 0 [GM] (algorithm of [GM] works on
arbitrary planar graphs). The proposed algorithm is based
on the divide-and-conquer principle. Aim is to recursively
partition (Gp, Gn) into two "equal-size" subgraphs using a
dual-graph separation theory. Then the processors collec­
tively obtain an optimal dual-cover in each subgraph and
combine them to produce an optimal dual-cover of (GP, Gn)·
The technique we use in the combination step is an exten­
sion of the Algebra proposed in [MH].

This paper is organized as follows. In Section 2 prelimi­
nary definitions and results are given. The proposed parallel
algorithm, for obtaining an optimal dual-cover, is presented
in Section 3. An application of the proposed parallel algo­
rithm to optimal UV-style layout of CMOS functional cells
is described in Section 4 and experimental results are in­
cluded. Details of the proposed implementation are given
in Appendix A.

2 Preliminaries

A series-parallel graph (SP graph) is constructed by re­
cursively applying "series" and "parallel" connections. It is
a subclass of planar graph. We will introduce an effective
method for finding all dual-covers of a pair of SP graphs
with a fixed topology (non-permutable topology).

Figure 2: (a) A series connection. (b) A parallel connection.

2.1 Abstract Model

A Boolean logic function is modeled as a series-pal,'allel
graph G = (V, E) with E corresponding to the input sig­
nals and V corresponding to the AND/OR operators. In
each graph G, there are two distinguished terminal vertices
labeled as N (the northern terminal) and S (the southern
terminal).

Definition 1 : Two subgraphs G1 and G2 have a series
connection if they have one common vertex, and have a
parallel connection if they have two common vertices (see
Figure 2).

Recursive combinations of a SP graph are described by
a binary decomposition tree (BDT) T. Consider a SP graph
G = (V,E) and a BDT T = (Vr,Er)· Each leaf of T

27

corresponds to an edge of G and each internal vertex of
T corresponds to a combination of two subgraphs G1 and
G2, either in series (noted as *) or in parallel (noted as
+). Let T1 and T2 be two BDTs corresponding to G1 and
G2, respectively. The BDT T corresponding to SP graph
G = G1 #G2 has a vertex labeled # with T1 and T2 as its
left subtree and right subtree, respectively (see Figure 1),
where# is used as a generic symbol for (+, *).

Consider a 2x2 terminal-matrix [zd ~d] correspond­

ing to (G, Gd), where N and S are the two distinguished
vertices of G, and Nd and Sd are the two distinguished ver­
tices of Gd. Let two SP graphs Gi and G2 have terminal-

. [N1 Si] d [N2 S2] matrices Nf Sf an Nf Sf , respectively. A SP

graph G = Gi * G2 has a terminal-matrix [Zf ~f] if
S _ N. [Ni N2] 'f S S [Si N2] . i - 2, Nf Sf i i = 2, Nf Sf if Ni = S2,

[~f ~f] if Ni = N2 • Since the dual SP graphs Gt and

cg are connected in parallel when Gi and G2 are connected
in series, then Nf = Nf and Sf = sg. Similarly, a SP

graph G = Gi +G2 has a terminal-matrix [Zt ~g] if
Sd - Nd [Ni Si] 'f Sd - Sd [Ni Si] 'f d d

i - 2' Nf Nf i i - 2' Sf Nf i Ni = S2'

[~ ~t] if Nf = Nf. Since the dual SP graphs Gt and

G~ have a series connection when Gi and G2 have a parallel
connection, then Ni = N2 and Si = S2 •

2.2 Dual-Euler Trail
Consider a pair of graphs (G, Gd) and a dual-Euler trail

t with L(t) = (ea,ea+i,. . .,eb)- We call the starting and
terminating vertices of a trail in G boundary vertices; simi­
larly, we call the starting and terminating vertices of a trail
in Gd dual-boundary vertices (or, for short, d-boundary ver­
tices). Note that a DET t with L(t) = (ea,ea+l'' .. ,eb) and
its "reverse" tr with L(t') = (eb, ... , ea+i, ea) are equivalent.
The boundary vertices Va and vb+l' and the cl-boundary ver­
tices v~ and vt+l are used as the subscript of a DET label

L(t) =(ea, ea+i' · · ·, eb) (va,v~) -+ (vb+,,vg+,l'

Following [MH] we say (v;, vt) is a terminal pair if v; is
a boundary vertex of a DET t, vt is a cl-boundary vertex
of the same DET t, and both V; and vt are distinguished
terminal vertices of a pair of graphs (G, Gd). A DET is
distinguished if it has at least one terminal pair and two
DETs are incompatible if they cannot be "joined" with each
other.

Each boundary vertex of a DET has type N, S, or I if it
is the northern, the southern, or the internal vertex of the
corresponding SP graph, respectively. A DET t has type
('T., 7,d)/ ('T., T/), where T. and T. are types of the bound­
ary vertices, and, T,,d and T,,d are types of cl-boundary ver­
tices. A boundary and cl-boundary vertices pair (v;, vt) can

be of type (N,N), (N,S), (S,N), (S,S), or (1,1) ((N,1), (S,1),
(1,N), and (1,S) are included in (1,1)). Therefore, a DET has
25 possible types. Eliminating equivalent DET types (for
example (N,S)/(S,S) is equivalent to (S,S)/(N,S)) and the
(N,N)/(N,N), (N,S)/(N,S), (S,N)/(S,N), and (S,S)/(S,S) are
four imposible DET types yields 11 possible types. Let Z
denote incompatible DET types. The set of DET types are:

r = { (N,N)/(S,S), (N,S)/(S,N), (S,N)/(S,S),
(N,N)/(S,N), (N,N)/(N,S), (N,S)/(S,S),
(S,N)/(1,1), (S,S)/(I,I), (N,N)/(I,1),
(N,S)/(1,1), (1,1)/(I,1), Z }

Theorem l[MH] : The triplet (f, +,*)form an Algebra.

Example : Consider Figure 1. A DET ti with L(ti)=
(a,b)(i, 6)-+(2, 6) has type (N,N)/(S,N), since its terminal-

matrix is [~ ~] . Another DET t2 with L(t2) = (c,d,f,e)

(4, 7~ c4,r) has type (1,1)/(1,1), because its terminal-matrix

is I ; ;0 l and neither of the boundary and cl-boundary
L . - J

vertices pairs is a terminal pair.

An (l,I)/(1,1) trail is called an internal DET. Note that
an incompatible DET is not necessarily an internal DET,
because two distinguished DETs cannot join together with­
out compatible boundary and cl-boundary vertices pairs.

Theorem 2 : There are at most four distinguished DETs
in a dual-cover.
Proof : We recall the definition of a dual-cover. All the
DETs in a dual-cover are disjoint incompatible DETs. There­
fore, any two distinguished DETs t and t' in a dual-cover
have types (T., T.d)/(T., T_d) =f. (T'., T1~)/(T'e• T1~). It causei;
a compatibility for two distinguished DETs t and t' when
(T., 7_d)/(T., T_d) = (T'., T1~)/(T'e• T'~), since the types T.,
T.d, T., and 7_d of a DET are constructed according to the
same terminal-matrix. A graph can only have four dis­
tinct types of terminal pairs (N,N), (N,S), (S,N), and (S,S).
Note that the (N ,I) and (S,1) are not legal types of terminal
pairs. These construct four distinct types of a maximum
cardinality incompatibie distinguished DETs (N,N)/(1,1),
(N,S)/(1,I), (S,N)/(I,I), and (S,S)/(I,I) iri a dual-cov~r. Any
other distinguished DET in the same dual-cover is compat­
ible with two of those DETs (e.g., a DET with (N,N)/(S,N)
is compatible with the DET (N,N)/(I,I) and with the DET
(S,N)/(1,1)), and this contradicts the definition of a dual­
cover. We conclude that there are at most four distin­
guished DETs in a dual-cover. D

Let a concatenation step be the process of concatenating
two dual-covers, that is, ti concatenates with t2 ifL(t1) nL(t2)

= 0 and ti and t2 have a common vertex in Gi and G2 (or
Gt and G~). In the resulting DET t, L(t)=L(t1) U L(t2).

Lemma 1 : An internal DET is not able to concatenate
with any other DET.

28

• U11lrel11\erl1ngYtr1.llC. N

Ca) (bl

Figure 3: (a) An internal D ET of (G2 , G~) _and a
distinguished D ET of (G1 , Gt).

(b) Incompatible DETs.

Proof: Consider an internal DET t; of a pair of SP graphs
and a distinguished DET t; of another pair of SP graphs.
The two pairs of graphs are joined at terminal vertices.
Therefore, a DET must be distinguished and have compat­
ible terminal vertices with other DET for concatenation.
However, t; has neither distinguished vertices nor compati­
ble terminal vertices with t; in the combination step. There­
fore an internal DET is unable to concatenate with the
other distinguished D ET. D

An example showing incompatible DETs is depicted in
Figure 3.

Let Match(t;, ti)= 1 if DET t; is compatible with DET
tj; otherwise Match(t;,tj) = 0. We define a trail-match to
be the process of matching two distinguished DETs. Ac­
cording to Lemma 1 and Theorem 2, a concatenation step
can be done in at most 16 trail-matches.

Let a dual-cover type 8 represent a set of distinguished
DETs types in a dual-cover. Each series-parallel operator
constitutes a pair of semigroup Algebras. Let ~0, ~i.
~2• ~3• and ~4 represent the five styles (consisting of O, 1,
2, 3, 4 distinguished DETs) of dual-cover types. That is :

~o = { (I,I)/(I,I) }

~t = { (N,N)/(S,S), (N,S)/(S,N), (S,N)/(S,S), (S,S)/(I,1),
(N,N)/(N,S),(N,S)/(S,S), (S,N)/(I,I), (N,N)/(I,I),
(N,N)/(S,N), (N,S)/(I,I) }

~2 = { ((N,N)/(S,N), (N,S)/(S,S)], [(N,S)/(S,N), (N,N)/(S,S)],
[(N,N)/(I,I), (S,S)/(I,I)], [(N,N)/(I,I), (N,S)/(I,I)],
((N,N)/(l,I), (S,N)/(1,I)], [(N,N)/(I,1), (N,S)/(S,S)],
[(N ,N)/(I,I), (S,N)/(S,S)], [(N ,N)/(I,I), (S,N)/(N,S)],
[(S,S)/(I,I), (S,N)/(I,I)], [(S,S)/(I,I), (N ,S)/(1,1)],
[(S,S)/(1,1), (N,N)/(S,N)], [(S,S)/(I,I), (N,N)/(N,S)],
[(N ,S)/(I,I), (N ,N)/(S,N)], [(N ,S)/(I,I), (S,N)/(I,I)],
[(N ,S)/(1,1), (S,N)/(S,S)], [(N,S)/(I,1), (N,N)/(S,S)],
[(S,N)/(1,1), (N ,S)/(S,S)], [(S,N)/(1,I), (N,N)/(S,S)],
[(S,N)/(I,I), (N,N)/(N,S)], [(N,N)/(N,S), (S,N)/(S,S)]}

~a= { [(N,N)/(I,I), (N,S)/(1,I), (S,S)/(I,I)],
[(N,N)/(I,I), (N,S)/(1,I), (S,N)/(S,S)],
[(N,N)/(I,I), (N,S)/(I,1), (S,N)/(I,1)],
[(N,N)/(I,I), (S,N)/(I,I), (S,S)/(1,I)],
[(N,N)/(I,I), (S,N)/(I,I), (N,S)/(S,S)],
((N,S)/(I,I), (S,S)/(I,I), (N,N)/(S,N)],
((N,S)/(I,1), (S,S)/(I,1), (S,N)/(1,1)),

((S,S)/(1,1), (S,N)/(1,1), (N,N)/(N,S)],
[(N,N)/(S,S), (N,S)/(1,I), (S,N)/(1,1)],
[(N,N)/(I,I), (S,S)/(I,I), (N,S)/(S,N)]}

.1.4 = { ((N ,N)/(I,I), (N,S)/(I,I), (S,N)/(I,I), (S,S)/(I,I)] }

Note that an internal-type DETs is not involved in ~i.
~2 , ~3 , and ~4 • The type (I,I)/(I,I) in ~o is a single-trail
dual-cover.

Theorem 3[MH] : There are exactly 42 dual-cover types
in a series-parallel combination.

Consider a set of SP graphs (G,Gd). Let a dual-cover
set V be an optimal set of dual-covers with minimum car­
dinality. V is obtained by series or parallel combinations of
two dual-cover sets Vi and 'D2 (i.e., V = 'Di#'D2)·

Lemma 2 : No two dual-covers in a dual-cover set have
the same dual-cover type except in ~0 •
Proof : Each dual-cover set is an optimal set. Consider a
set of dual-cover V. As we mentioned in Lemma 1, the dual­
cover V(i) with c(i) E ~o is unable to combine with V(j),
where j #- i. If two dual-covers V(j) and V(k) have c(j) =
c(k) with c(j)andc(k) E ~;, where i E {l, 2, 3, 4}, they
will have the same concatenations in the next combination
step. This contradicts the definition of a dual-cover set. D

Lemma 3 : Each dual-cover has the smallest possible in­
ternal DETs.
Proof: Consider a dual-cover of a SP graph. Since it is a
set of optimal disjoint DETs, then, except the distinguished
DETs, all the internal DETs in the internal DETs set must
be the smallest possible set and disjoint with each other. D

Lemmas 2 and 3, and Theorem 3 establish the following
conclusion : Every dual-cover set obtained by a combination
step of two dual-cover sets contains at most 42 different
dual-covers.

We call the combinations of dual-covers 'Di (i) and V 2(j)
from two dual-cover sets V1 and V2 a trailhunt step, where
'Di(i) E 'Di, Vh) E V 2, 1 S i S l'Dil, and 1 S j S IV2I·
There are at most 42 x 42 x 16 = 28224 trail-matches for a
trailhunt. In fact, there is only one dual-cover with ~4 type
in a dual-cover set. Moreover, usually much fewer than 42
dual-covers are included in an optimal set of dual-covers.
Therefore, far fewer than 28224 trail-matches need to be
performed in a trailhunt.

2.3 Graph Separator Theory
Consider a BDT T = (VT, ET). Let a cut-edge ec be an

edge separating Tinto two "equal-size" sub-BDTs. There
exists a cut-edge in every BDT [LT]. The edge ec partitions
Tinto Ti = (V:r,, ET,) and T2 = (VT., ET2), where ET =
ET, UET, U{ec} ~d llVTI S /VT,/, IVT2 I S ~/VT/· .

Every vertex v; in a BDT T = (VT,ET), where 1 Si S
/VTI is the root of a (possibly empty) sub-BDT T;. Consider
the cut-edge ee = (ve, vd)· We call ve a cut-vertex if vd is the
parent of Ve- Two sub-BDTs Ti and T2 are obtained from T

29

by removing the cut-edge. After the separation, the roots
of Ti and T2 are ve and the root of T (e.g., Figure 4a), or

o Root var11x

I Cut Vtrtlll v, T1

a Parent vertexMI e,
' T,

1 ~ A C ~
l•l

T

~4L~
lbJ

Figure 4: Two kinds of tree separation.

ve and the other child of vd te.g., Figure 4b).

When T is separated into two "equal-size" sub-BDTs
Ti and T2 , the corresponding graph G is separated into
two "equal-size" SP subgraphs Gi and G2 with Ti being
the BDT of Gi and T2 being the BDT of G2 • Subgraphs

. 1 . [Ni Si] d Gi and G2 have new termma -matrices Nf Sf an

[Zf ~f] , respectively. Consider a SP graph G = Gi #G2

with the terminal-matrix [zd ~d] . If Gi and G2 have

two common vertices, then # = '* ', and, Ni = N2 and
Si = S2 which are not necessarily N or S of G (see Fig­
ure 5a). If Gi and G2 have one vertex in common, then
= '+', Ni = N, Si = N2 , and S2 = S (see Figure 5b).
The same rules apply to Gd, Gt, G~. For efficient imple­
mentation of trailhunt, the terminal-matrices of (Gi, Gt)
and (G2 , G~) have to be stored in order to decide the types
of DETs.

A SP graph C=(Ve, Ee). Let C = A ltJ B be the union
of two SP graphs A=(VA,EA) andB=(VB,EB), where Ve=
VA U VB and Ee= EAU EB.

Example : Consider Figure 5a with G = A l±J B l±J C,
when l±J denotes a composition of two graphs. When G
is separated into Gi = B and G2 = A l±J C, we observe
that the new boundary vertices of Gi and G2 are the same
as the vertices being split by the separation line. There­
fore, the terminal-matrices of Gi and G2 derived from G

are described as follows : [! :] G ---+ [! ~]
01

&

[2 3) . Again, consider Figuer 5b. As before, G = A
4 5 G

l±J B l:!:J C. 2When G is separated into Gi = A and G2 = B
l:!:J C, the separation line cuts Gi and G2 at vertex 2 of G.
Hence, the terminal-matrices of Gi and G2 are not the same

= [! : L ---+ [! : L, & [! ~ L. ·

(o)
N

. N ,~ 0 N N

I ~~ ~. ~D s I A -7 ~

I @' C l B C '

• • ~ ... ~ s o: a:
s

0 O' o,
(b)

--- thlU'6ret1cnltne.

Figure 5: (a) A SP graph corresponding to Figure 4a.
(b) A SP graph corresponding to Figure 4b.

3 Parallel Algorithm for
Minimum Dual-Cover

Utilizing the concepts discussed in Section 2, we will de­
velop a parallel algorithm for solving subproblems of mini­
mum dual-covers. After then, we integrate the algorithms
to obtain a minimum dual-cover.

Here, we assume that a binary decomposition tree has
been constructed (the construction of a BDT will be dis­
cussed in the next Section). We aim to employ the divide­
and-conquer principle for separating the SP graphs and the
corresponding BDTs. First procedure is called TREE SEP­
ARATION which decomposes a BDT into two sub-BDTs,
thus the corresponding SP graph will be separated into two
subgraphs. The procedure TRAILHUNT combines two op­
timal dual-cover sets into one optimal dual~cover set. Each
dual-cover set shows the optimal DETs of the corresponding
SP graphs.

3.1 Tree Separation
In the procedure TREE SEPARATION, first we find a

cut-edge and then separate the given BDT T= (VT, ET).
In the last step we delete the leaves no longer belonging to
the vertices on the path from cut-vertex up to the root. A
formal description of TREE SEPARATION is given below.

Procedure TREE SEPARATION
begin

(1) pardo for all sub-BDTs T; at vertices v;
begin

ifllVTI ~ IVT,I ~ SIVTI
then /; := TRUE;
else f; := FALSE;

parend;
(2) select a cut-edge ec from all v; with /; = TRUE;
(3) separate the tree into two "equal-size" sub-BDTs by ec;
(4) pardo for all tree vertices v; Ethe path (vc---> the root);

delete the leaves not belonging to T;;
end;

30

Lemma 4 : TREE SEPARATION runs in 0(1) time and
uses O(IVTI) processors.
Proof: Consider the BDT T= (VT,ET)· Assume the tree
path (v; __. the root) and the leaves under v; have been
constructed, where 1 ::; i ::; IVTI· It is trivialy seen that Step
1 can be done in constant time using IVTI processors. Steps
2 and 3 run in constant time, as well. The last step takes
constant time, for it involves cutting off the leaves under
the sub-BDT Tc from the sub-BDT T; while i E the path
(vc __. the root). Thus, we conclude that TREE SEP­
ARATION runs in 0(1) time and uses O(IVTI) processors.
0

The separation technique of [GM] can be used to sep­
arate the SP graph, too. But their algorithm, devised for
arbitrary planar graphs, runs in O(log2 IVTI) time and uses
O(IVTIH•) processors, c: > 0. In the series-parallel graph
applications, our algorithm TREE SEPARATION is much
better than the algorithm in [GM].

3.2 Trailhunt

Consider a SP graph G = (V, E) and its BDT T=(VT, ET)
with IVTI = 2IEI - 1. When G is separated into IEI single­
edge subgraphs, T is decomposed into IEI single-leaf sub­
BDTs. The TRAILHUNT recursively combines two pairs
of subgraphs and generates all possible concatenations from
two optimal dual-cover sets. An optimal dual-cover cover­
ing new graph is thus obtained by applying TRAILHUNT
recursively.

Consider two subgraphs G1 and G2 and their optimal
dual-cover sets V1 and 'D2 • A dual-cover V1(i) E 'D1 with
81(i) E {~2,~3,~4 } might be compatible with 'D2(k) E 'D2
having 82(k) fj. ~o while a single-DET V1 (j) E 'D1 with
81(j) E ~1 is incompatible with V 2(k). Consequently, ex­
cept keeping the single-DET dual-covers we need to keep all
the possible dual-covers Va(i) that satisfy Lemmas 2 and 3
in a dual cover set Va.

For an optimal dual-cover set V3 = V1#V2 , we define
a function COMBINE(V1(i), Vh)) for obtaining a com­
bination of V 1(i) and Vh), where 1 ::; i ::; IV1 1 and 1 ::;
j ::; IV2 1. Consider two distinguished DETs t 1 with L(t1) =
(e1,e2, .•• ,en)(v;,v1d)-+ (Yn+i.Y:+il and t 2 with L(t2) =
(e'1 , e'2 , ••• , e')(v:' V'dl -+ (V' y•d)• A trail-match step checks

m l' 1 m+11 m+l

the boundary and d-boundary vertices pairs of t 1 and t2

(Vi, v;_d), (Vn+l• V,:'+1), (V{, V'~), and (V,:.+1' V'~+l). ti and
t2 are concatenated into one DET t if they match each
other at the boundary vertices and the cl-boundary vertices,
that is, (Vi, v;_d) = (V{, V'~), (Vi, v;_d) = (V,:.+1' V'~+i),
CVn+1' V,:'+1) = (V{, V't), or (Vn+l• V,:'+1) = (V,:.+i' V'~+l).
Otherwise, they are incompatible.

After a COMBINE step, let d be the resulting dual­
cover. In order for V3 to be an optimal set, every dual­
cover in V3 needs to satisfy Lemmas 2 and 3. If any dual­
cover 1J3 (k) E V3 has 83(k) = S(d), we choose the one with
less internal DETs and discard the other non-optimal dual­
cover. If no such dual-cover V3 (k) exists then dis included
in 1J3 •

In TRAILHUNT, first, COMBINE('D1(i), Vh)) sequen­
tially matches two distinguished DETs from 'D1 and 'D2 to
generate a new dual-cover d. Then, d is checked against
the restrictions imposed by Lemmas 2 and 3. If d satisfies
the conditions then V3 = V3 U { d}; otherwise dis discared.
Therefore, the optimality of V3 is ensured. Now, we give a
formal description of TRAILHUNT algorithm.

Procedure TRAILHUNT(V1, V2)
begin

for i := 1 to IV1I

(1)
(2)

(2.1)
(2.2)

for j := 1 to IV2I
begin

d = COMBINE(V1(i), V2(j));
if o(d) = 03(k), 1::; k::; IV3I and
!internal DETs of di< !internal DETs ofV3(k)I
then begin

end

V3 := V3 - {V3(k)};
V3 := V3 U { d};

else if o(d) 1' 03(k), Vk, and 1 ::; k ::; IV3I
(2.3) then V3 := V3 U { d};

end
end;

Lemma 5 : TRAILHUNT runs in 0(1) time and uses one
processor.
Proof: Size of a set of dual-cover, as proved in Theorem
3, is at most 42. Therefore, IV1 I x IV2 I :=::; 1762, that is,
the number of iterations. Step 1 performs at most 4 X 4 =
16 trail-matches, because in Theorem 2 it was proved that
there are at most 4 distinguished DETs in a dual-cover.
Step 2 clearly takes constant time, for IV31 :=::; 42. Steps 2.1
to 2.3 each takes constant time, as well. Thus total running
time is 0(42 x 42 x (16 + 42)) = 0(1). We conclude that
TRAILHUNT takes 0(1) time and employs oneprocessor.D

Example : Consider Figure 6. When the BDT in Figure
6a is separated into two sub-BDTs, the SP graphs in Fig­
ures la and lb each is split into two subgraphs as shown
in Figures 6b and 6c, respectively. Now, we take one pos­
sible dual-cover of (G1,Gf) V 1(i) = { (b,a)(2,1)-+ (1,~i
(g,h)(l,lO) -+ (2,10) } and one possible dual-cover of (G2, G2)
Vh)= { (c,d) (l, 7) (l, lO)i (e,f)(2, 7) (2, io) } and com­
bine them. As the SP graphs are described in DET forms,
the trail-match steps are independent of whether the com­
bination of two dual-covers is in series or is parallel. It is
obvious that the boundary and cl-boundary vertices pairs
of V1(i) and Vh) are matched: (1,7) of (a,b) and (1,7)
of (c,d), (1,10) of (g,h) and (1,10) of (c,d), (2,10) of (g,h)
and (2,10) of (e,f), and (2,7) of (b,a) and (2,7) of (e,f)
are matched. A new dual-cover can be concatenated for
example as (a,b,e,f,h,g,d,c)(1,7) -+ (l, 7) (see Figure 6d) or
(b,a,c,d,g,h,f,e)c2, 1) -+ (2, 1)· . .

The following theorem is readily established by virtue
of Lemmas 2 and 3.

Theorem 5 : Two dual-covers can be optimally combined
in 0(1) time using one processor.

31

T
+/, 1 ft•OptrHtr/p•OptlHOI

/•r\/~ . •r .,.
·1.· ~ /"-. A

j\ #l\ /\ . ')\ x. l\ l\
/\/\l\/\·••""'
• b ~ d • t ';I h Ti 1j

(•I

<) B:e>-O"iO:·
' I
o, o, o:

'" (ol

0 1\tlllltlrtlngYll'ttM.

(di

Figure 6: (a) The BDT of Figures la and lb.
(b) (c) The separated SP subgraphs (G1, Gf) and

(G2, G~) of Figure(la, lb).
(d) One optimal dual-cover of Figures (la, lb).

3.3 Optimal Dual-Cover
We have derived a technique (TREE SEPARATION) for

partitioning a pair of SP graphs in parallel. After log IEI
iterations of TREE SEPARATION the graphs G = (E, V)
and Gd = (Ed, Vd) are partitioned into IEI pairs of single­
edge SP subgraphs. After then, these subgraphs are com­
bined in parallel; after log IEI iterations of TRAILHUNT
the optimal dual-covers with minimum cardinality gener­
ated. In TREE SEPARATION and TRAILHUNT, the par­
allel separations and combinations are independent of the
types of operations (series or parallel) in the correspond­
ing SP graphs. The terminal vertices of SP graphs are of
concern.

The algorithm OPTIMAL DUAL-COVER separates a
BDT T = (NT, ET) and the respective SP graphs G =
(V, E) and Gd= (Vd, Ed) each IEI sub-BDTs and IEI pairs
of subgraphs. Next, it combines the subgraphs to get the
desired optimal dual-covers of (G, Gd). A one-edge dual­
cover set is initialized as V = { (e)(vN,vj(,.) -+ (vs,v~)i

(e)(VN.v~) -+ (vs,vj(,.) }.

Procedure OPTIMAL DUAL-COVER(T)
begin

(1)
(2)
(3)
(4)

(5)

(6)

pardo for all active processors each associating
with a sub-BDT T;

begin
TREE SEPARATION;
push terminal-matrix of T;;
set two new terminal-matrices of sub-BDTs T;1 and T;2 ;

activate an available processor to perform the T;2 ;

pardo for T;k and k E {1, 2}
if IVT,kl > 1
then OPTIMAL DUAL-COVER(T;k);
else initialize the dual-cover set of T;k;

parend;

(7) pop terminal-matrix of T;;
(8) TRAILHUNT(1J;1 , D;,);
(9) release a processor;

end;
end;

Lemma 6 : OPTIMAL DUAL-COVER runs in O(log jEI)
time and uses O(jEI) processors with IEI being the number
of edges of the input SP graph.
Proof : With an input set of SP graphs G = (V, E) and
Gd = (Vd, Ed), employing IEI processors, the parallel al­
gorithm OPTIMAL DUAL-COVER takes O(log jEI) it­
erations of TREE SEPARATION to get IEI single-edge
subgraphs. Additional O(log jEI) iterations of TRAIL­
HUNT are required to combine these subgraphs to obtain
the resulting dual-cover set. Step 5 is performed recursively.
Steps 1 and 8 each takes constant time as proved in Lemma
4 and lemma 5, respectively. Steps 2 and 7 require con­
stant time to access the shared memory. Step 3 utilizes the
concepts introduced in Section 2.3 and is done in constant
time. Steps 4 and 9 need constant time to acknowledge the
processors, and Step 6 clearly requires constant time for ini­
tializations. \X/e conclude that OPTI1'fAL DUAL-COVER
runs in O(log IEI) time and uses O(IEI) processors. D

4 Optimal Layout Of CMOS
Functional Cells

In this Section, we will apply the algorithm OPTIMAL
DUAL-COVER proposed in Section 3 to get optimal lay­
outs of CMOS functional cells. We consider UV style [UV]
layout of CMOS functional cells. As is customary, we as­
sume the p-part and the n-part interconnections are series­
parallel graphs with fixed topologies.

4.1 Graphs Models Of CMOS Circuits

Consider a pair of SP graphs (G, Gd) representing a
CMOS circuit. Let G represent the n-part of CMOS circuit,
and Gd represent the p-parl of CMOS circuit. For instance,
Figure la represents the NMOS transistors of Figure 7b and
Figure lb represents the PMOS transistors of Figure 7b.

4.2 Graph and Tree Transformations
F:rom Boolean Expressions

We assume the input is a Boolean expression represent­
ing the NMOS interconnections. In order to apply the
OPTIMAL DUAL-COVER algorithm proposed in Section

~&·· ' . .
"' ,.,

"' Figure 7: (a) A logic diagram withZ= (a• b)+((c+d) • (e+f))+(g • h).
(b) The CMOS circuit. (c) The optimal layout.

3, the input function is transformed into a pair of series­
parallel graphs (Gn, GP) with Gn =Gd and GP= G~, and
the corresponding binary decompositio"n tree T is to be ob­
tained. We find postfix notation m<>,~t convenient for input
representation.

From the Boolean expression, we define Gn = (Vn, En)
representing the n-part, GP = (VP, EP) representing the p­
part, and T= (Vr, ET) representing the corresponding SP
graphs (Gn, Gp)· The number of transistors in p-part and n­
part are jEPI =I En I= HIVTI + 1). Each vertex in (Gn, GP)
dictates the interconnection of sources and drains of a sub­
set of transistors.

In BDT TRANSFORMATION, We define NODE[!] to
be the lth input symbol, OP[i] to be the ith operator, and
VARLl] to be the jth variable. OP[i]'s two child- vertices
can be of VARLl-1] and VARLl], VARLl] and OP[i-1], or
OP[i-1] and OP[i-k - 2] while one of the child-vertices
dominates k operators. Each VARLl] is a leaf of BDT. In
BDT TRANSFORMATION, first, we scan the input string
representing a Boolean function and store the symbols in
OP[i] or in VARLl] appropriately. Then each symbol links
to its parent OP[p] with p > i and p 2: j - 1, and points to
its two child-vertices if this symbol is an operator.

Lemma 7: BDT TRANSFORMATION runs in O(log n)
time and uses O(n) processors with n being CMOS gates.

The algorithm GRAPH TRANSFORMATION constructs
a pair of SP graphs (G, Gd) by assigning a terminal-matrix
to each BDT vertex, which is applied after the tree struc­
tures have been established. In the GRAPH TRANSFOR­
MATION, MT, M~ and Mf are defined as the terminal­
matrices of a BDT T, of its left sub-BDT, and of its right
sub-BDT, respectively.

Lemma 8: GRAPH TRANSFORMATION runs in 0(1)
time and uses O(n) processors with n being CMOS gates.

By virtue of Lemmas 7 and 8, we conclude :

Theorem 4: A set of SP graphs (Gn,Gp) and its corre­
sponding BDT T are established in O(log IEI) time using
O(jEI) processors from an input Boolean expression, where
IEI is the CMOS gates.

Based on Theorem 4 and Lemma 6, OPTIMAL LAY­
OUT is used for obtaining the dual-cover set of SP graphs
(G, Gd). The dual-covers with minimum cardinality of DETs
minimize the CMOS layout area.

Procedure GRAPH TRANSFORMATION
begin

set the terminal-matrix of Troot to be Mroot := [~ ~] ;
pardo for all ToP[i] with matrix MoP[i] := [~ ~] ;
begin

if OP[i] = '*'
then MbP[i] := [af] r [fb] c d & MoP[i] := c d ;

[ab] r [ab] c f & MoP[i] := f d ' where .
f E VToP[iJ>

1 M l ·-e se OP[i] .-

parend;
end;

32

Procedure OPTIMAL LAYOUT
begin

(1) BDT TRANSFORMATION;
(2) GRAPH TRANSFORMATION;
(3) OPTIMAL DUAL-COVER;
(4) output the dual-covers with minimum cardinality of DETs;

end;

Lemma 9: OPTIMAL LAYOUT runs in O(log n) time
and uses O(n) processors with n being the CMOS gates.

Figure 7c has different gates permutation from the lay­
out in [MH], and has one metal tracks less than [MHJ's 6
tracks, which leads to a smaller area. Therefore, the opti­
mal dual-cover is not unique. In fact some are preferred to
others, and any arbitrary dual-cover may require a "large"
number of tracks [SJ. From Lemma 9, the following Theo­
rem 6 is readily established.

Theorem 6 : An optimal UV style layout of a CMOS
functional cell is obtained in O(log n) time using O(n) pro­
cessors in PRAM model with n being the CMOS gates.

4.3 Experimental Results

The divide-and-conquer algorithm outlined in this paper
has been implemented in the C programming language on
VAX/UNIX BSD 4.3 and the output is displayed on SILI­
CON GRAPHICS IRIS 2400 work station. The bottleneck
running time of this simulation program is TRAIL HUNT.
Therefore, we use one processor (VAX machine) to approxi­
mate the longest TRAILHUNT running time in OPTIMAL
DUAL-COVER as an time unit, then multiply it by log n
as the OPTIMAL DUAL~COVER running time shown in
Figure 8. We also use the algorithm [GLL] which runs in
O(n log n) time using one processor (RAM model) in our
simulation program to compact the layout, that is, to co_m­
pact the layout height.

•K ,,
" " ..
"

;:;· ..
"
"
"

Figure 8: The OPTIMAL LAYOUT running time using
n processors (n is the gates number).

Reference

[GLL] U. I. Gupta, D. T. Lee, and J. Y. Leung," An Optimal So­
lution for the Channel Assignment Problem", IEEE Transactions
on Computers, Vol. C-28, No. 11, November 1979, pp. 807-810.
[GM] H. Gazit and G. L. Miller, "A Parallel Algorithm for Find­
ing a Separator in Planar Graphs", Proceedings of 28th Symposi­
um on Fundations of Computer Science, 1987, pp. 238-248.
[LT] R. J. Lipton and R. E. Tarjan, "A Separator Theorem for
Planar Graphs", SIAM Journal on Applied Mathematics, Vol. 36
No. 2, April 1979, pp. 177-189.

33

Figure 9:

Ii h- h
II II
I!!

., .,,=.,. ~
(a) (b)

(a)An 11 gates CMOS layout using 6 tracks with
input: a b * c + d * e f * g + h i * j + + k + +
(b)A CMOS layout using 7 tracks in same input.

Figure 10: A 50 gates CMOS layout using 13 tracks.

(MH] R. L. Maziasz and J. P. Hayes, "Layout Optimization of
CMOS Functional Cells", 24th ACM/IEEE Design Automation
Conference, 1987, pp. 544-551.

(MR] G. L. Miller and J. H. Reif, "Parallel Tree Contraction and
Its Application", manuscript, 1985.

(NBR] R. Nair, A. Bruss, and J. H. Reif, "Linear Time Algo­
rithms for Optimal CMOS Layout", VLSI Algorithms and Arch­
itectures (P. Bertolazzi and F. Luccio, ed.), North-Holland, 1985,
pp. 327-338.

[SJ C. C. Su, "Optimal Gate-matrix Layout of CMOS Functional
Cells", manuscript, Department of Electrical Engineering and
Computer Science, Northwestern University,1987.

(TNS] K. Takamizama, T. Nishizeki, and N. Saito, "Linear Time
Computability of Combinatorial Problems on Series-Parallel Gr­
aphs", Journal of ACM, Vol. 29, No. 3, July 1982, pp. 623-641.

[U] J. D. Ullman, Computational Aspects of VLSI, Computer
Science Press, 1984.

[UV] T. Uehara and W. M. VanCleemput, "Optimal Layout of
CMOS Functional Arrays", IEEE Transactions on Computers,
Vol. C-30, No. 5, May 1981, pp. _305-312.

[WE] N. Weste and K. Eshraghian, Principles of CMOS VLSI D­
esign A System Perspective, Addison Wesley, 1985.

[WPF] S. Wimer, R. Y. Pinter, and J. A Feldman, "Optimal
Chaining of CMOS Transistors in a Functional Cell", IEEE trans­
actions on Computer-Aided Design, Vol. CAD-6, No. 5, Septem­
ber 1987. pp. 795-801.

J

LOOKAHEAD IN PARALLEL DISCRETE EVENT SIMULATION

Richard M. Fujimoto1

Computer Science Department
University of Utah

Salt Lake City, UT 84112

Abstract

Empirical performance evaluations of parallel, discrete event simulation
algorithms using deadlock avoidance and deadlock detection and recovery
techniques developed by Chandy and Misra have been performed using the
BBN Butterlly™ multiprocessor. Experiments using synthetic workloads
reveal that the degree to which processes can look ahead in simulated time
plays a critical role in the performance of distributed simulators using
these algorithms. These results are applied to a queueing network
simulation where as much as an order of magnitude improvement in
performance is observed if the distributed simulator is programmed to fully
exploit the lookahead available in the application. Performance
measurements of several hypercube-based communication network
simulators provide additional empirical data to support these claims.
These results demonstrate that substantial improvements in performance
are obtainable if the application can be programmed to have good
lookahead characteristics. On the other hand, other applications inherently
contain poor lookahead properties, and appear to be ill-suited for these
simulation algorithms.

1. Introduction

Discrete event simulation has long been a task with computation
requirements that challenge the fastest available computers. For example,
simulations of communication networks, parallel computer architectures,
and battlefield scenarios often require hours, days, or even weeks of CPU
time using traditional, single processor techniques. Simulator performance
may be improved using vectorizing techniques [Chan83a], processors
dedicated to specific simulation functions [Comf84a], execution of
independent trials on separate processors [Bile85a], or the execution of a
single instance of a simulation program on a parallel computer. The last
technique, referred to as distributed simulation, is the subject of this paper.

Simulation would initially appear to be a natural candidate for parallel
processing because many of the aforementioned applications contain a
high degree of parallelism. However, the exploitation ()f this parallelism is
elusive because the global notion of simulated time does not easily map
onto a distributed computer. This pr()perty distinguishes distributed
simulation from other forms of parallel computation.

Several schemes have been pr()pOsed to solve this problem. A survey of
the literature has been reported by Kaudel [Kaud87a]. One important class
of distributed simulation algorithms is the so-called "conservative"
mechanisms. Chandy and Misra develqped a mechanism based on a
deadlock avoidance technique where null messages are used to distribute
clock information among the processes taking part in the simulation
[Chan79a, Misr86a]. Another mechanism, also developed by Chandy and
Misra, is based on a deadlock detection and recovery paradigm - the
simulator runs until deadlock, the deadlock is detected, and an algorithm is
executed to break the deadlock [Chan8la,Misr86a]. Other approaches to
distributed simulation have been pre>p0sed, notably the Time Warp
approach proposed by Jefferson [Jeff85a], but the work discussed here will
be confined to deadlock avoidance and deadlock detection and recovery
techniques.

In [Fuji88a] several experiments using synthetic workloads were
described that were designed to evaluate the effectiveness of distributed
simulation strategies using the deadlock avoidance and the deadlock
detection and recovery algorithms. These experiments were performed on
a distributed simulation testbed that was implemented on the BBN
Butterfly,™ a shared-memory multiprocessor. Here, we apply these
results to specific application problems to provide empirical data to support
these results. In particular, parallel simulations of queueing networks and
the communication subsystem of a hypercube-based multicomputer
demonstrate the relationship between lookahead in the simulation
application and performance of the parallel simulator.

1This work.was supported by ONR contractnumberN00014-87-K-0184 and NSF grant
number DCR-8504826.

34

2. Logical Processes. Activities. and Lookahead

Logical processes, activities, and lookahead form the basis for the
synthetic workload model that is used here. The simulation program
consists of some number of logical processes, each of which models some
portion of the system being simulated. For example, in simulating a digital
logic network, each gate (or some collection of gates) could be modeled by
a logical process. Logical processes communicate exclusively by
exchanging timestamped messages. Messages typically correspond to
events that trigger a change in system state. Each logical process must
process incoming messages in non-decreasing timestamp order to ensure
that cause-and-effect relationships are faithfully reproduced by the
simulator.

We informally define an activity as a sequence or thread of events that
propagates among the logical processes in the simulation. These events
model some sequence of cause-and-effect relationships in the system being
simulated. For example, in a logic simulation, individual events are logic
signal transitions and each activity corresponds to a signal propagating
t!Lrough a sequence of logic gates. In a queueing network sLrnulation, each
activity corresponds to a job traveling through the network. Activities are
usually dynamic. A new activity is created in the logic simulation
whenever an existing activity reaches a fanout point in the network. The
activity disappears when (for instance) it reaches an AND gate with a logic
zero on one of the other input lines. For. our purposes, this informal
definition of activities and logical processes will suffice.

Logical processes often "look ahead" into the simulated time future to
schedule new events. For example, upon receiving a signal transition
event in a logical process for an inverter gate, the process can predict and
schedule a new event (a signal transition at the output of the gate) one gate
delay later in simulated time. The lookahead abilities of the process
determine how readily it will schedule new events. Processes such as the
inverter with good lookahead abilities can "see" sufficiently far into the
future that "effect" events can be scheduled as soon as the "cause" event
is received. On the other hand, processes with poor lookahead ability must
first wait until simulated time is advanced before they can schedule the
effect event. For example, in a queueing network simulation with
prioritized jobs, the "departure" event for a low priority job cannot be
scheduled until it is first determined that no higher priority job will
preempt it

Quantitatively, lookahead is defined as follows: if a process has
knowledge of all events that will occur up to simulated time T, and can
predict all new events it will generate with timestamp T + L or less, then
the process is said to have lookahead L . In general, lookahead is a
complex function that varies with time and the type of event, and is highly
dependent on details of the simulation problem and the way it is
programmed. A process can schedule a future event so Jong as the
timestamp on that event is less than or equal to the process's local clock
plus its lookahead. Such events are said to be within the "lookahead
horizon'' of the process.

Consider a "cause" event with timestamp T.,,.,. that leads to an
"effect" event with timestamp T•Jfec•. The absolute value of lookahead is
not as important as the lookahead relative to T•Jf«• - T •,., because this
will determine how far the process must advance in simulated time to
generate the new event Therefore, we define a quantity referred to as the
lookahead ratio (LAR):

T•Jfect - Tcaus•
LAR = lookahead

A low (e.g., 1.0) LAR corresponds to a high degree of lookahead.

3. The Distributed Simulation Testbed

An 18 processor BBN Butterlly multiprocessor was used for
experimentation. Each processor node contains a 16 MHz MC68020 with
MC68881 floating point coprocessor, 1 to 4 MBytes of memory, and a

Table 1. Hardware Parameters

Operation

Local memory reference
Remote memory reference
Register-to-register instruction
16 bit Load (Local Memory).
16 bit Load (Remote Memory)
Parameterless function call
Atomic inclusive OR

Execution Time
(microsecond&

0.60
4.0
0.71
1.3
6.3
6.9
20

processor node controller (PNC), a microcoded engine that processes local
and remote memory requests. The interconnection switch is configured as
an Omega network. Atomic test-and-set like memory operations are also
implemented in the PNC. Execution times of various instructions and
operations are shown in table 1. Experimental data indicate that switch
contention, and hot spot congestion in particular, is unlikely [Thom86a].

Each processor executes a single operating system process. This
process is a scheduler that time multiplexes execution of the simulation
processes mapped to the processor. This strategy avoids excessive context
switching overhead, and allows more direct control over the process
scheduling mechanism. Asynchronous message passing primitives were
constructed using direct memory accesses to the mailbox in the receiving
simulator process. Only a few simple Butterfly primitives, namely lock
and atomic-add operations, are used by the testbed after initialization is
complete.

4. The Simulation Algorithms

Two distributed simulation algorithms were implemented in the testbed:
one based on deadlock avoidance and another based on deadlock detection
and recovery. The shared memory architecture of the Butterfly was used
to improve the efficiency of these algorithms, as described below. A single
processor, event list implementation was also developed in order to
compute speedup.

4.1 Deadlock Avoidance Strategy

The deadlock avoidance scheme developed by Chandy and Misra was
implemented first. Each logical process sends a null message to each of its
neighbors whenever it blocks. The timestamp on this message represents a
lower bound of the timestamp on any message that will .be sent to the
receiver in the future. It is equal to the local clock value of the process
plus the lookahead value because, by definition, the process cannot predict
the occurrence (or non-occurrence) of events further into the future.
Chandy and Misra have shown that this approach is sufficient to avoid
deadlock [Chan79a].

In the testbed, one optimization was performed to streamline the
processing of null messages. Rather than enqueueing each null message
sent .to another processor, a single variable is associated with each input
link that contains the timestamp of the last null message that was received.
This !lvoids unnecessary enqueue and dequeue operations and leads to
more efficient memory utilization.

4.2 Deadlock Detection and Recoverv Strategy

The second simulation approach is based on deadlock detection and
recovery. The simulation runs until deadlock, the deadlock is detected,
and an algorithm is initiated to break the deadlock [Chan8la]. A central
controller is used to coordinate the deadlock recovery procedure.

Deadlock in the testbed is easily detected by maintaining a global
counter indicating the number of processes that are either scheduled or
running. The system is deadlocked whenever the counter reaches zero and
there is at least one process that has not yet terminated (otherwise, the
computation has terminated). Each scheduler checks the deadlock counter·
whenever it fails to find a process to run, and initiates a computation to
break the deadlock if it finds the counter is zero.

The deadlock recovery algorithm locates the message in the system with
the smallest timestamp and arranges for it to be processed next. A
distributed algorithm is used to perform this computation. A central
controller is used to coordinate this activity. By convention, the scheduler
executing on PE 0 acts as the controller.

An alternative deadlock recovery algorithm was also implemented in
which messages are propagated throughout the system in order to restart as

35

many processes as possible. This algorithm is described in [Chan8 la]. It
was found, however, that the additional time required to execute this
algorithm yielded a net loss in performance. The performance figures
reported here are based on the former deadlock recovery approach.

4.3 Uniprocessor Simulation Algorithm

Finally, a single processor, event list simulator was developed to allow
comparison of distributed simulation programs with sequential event list
implementations. In order to obtain a fair comparison, the uniprocessor
simulator was constructed by modifying the distributed simulator. Both
implementations maintain the same overall structure, organization,
programming style, and conventions. All code specific to parallel
computation (e.g., synchronization locks) was eliminated.

The event list was implemented as a splay tree [Slea85a]. Empirical
evidence suggests that splay trees are among the fastest methods for
implementing an event list [Jone86a]. An alternative implementation
using a singly linked linear list was also developed. It was found that this
implementation yielded performance comparable to the splay tree for small
simulations but, as expected, ran much more slowly for the larger
simulations. The splay tree implementation is used in all comparisons with
uniprocessor simulations reported here.

4.4 Performance Metrics

Three metrics are defined to evaluate the performance of the distributed
simulation programs:

• Speedup. SU (n), the speedup using n processors, is defined as the
execution time of the single processor, event list implementation using a
splay tree divided by the execution time of the distributed simulation
program when n processors are used.

• Null Message Ratio. NMR is defined as the number of null messages
processed by the simulator using deadlock avoidance divided by the
number of real (non-null) messages processed. This measures the
overhead of the deadlock avoidance approach.

• Deadlock Ratio. DR is the number of messages processed by the
distributed simulator using deadlock detection and recovery, divided by
the number of deadlocks that occur. This figure measures the efficiency
of the deadlock detection and recovery algorithm.

The single processor execution times were obtained by running the splay
tree simulator on a single node of the Butterfly. The same compiler as that
used by the distributed simulator was used. Therefore, compiler and
processor speed dependencies are factored out of the speedup figures.

The experiments were performed with no other applications running on
the Butterfly. Facilities, such as the window manager, were run on
processors different from those executing the simulation program. These
measures were taken to minimize interference with the computation.

Experimental data were, for the most part, well behaved. The 95
percent confidence intervals for the measured data· were typically less than
one or two percent of the reported value. Only in a few instances were
significant variations observed from one measurement to another. These
were related to the avalanche effect described later, and do not affect the
conclusions that follow from these experiments.

S. Experiments Using Synthetic Workloads

Synthetic workloads were constructed based on the notions of logical
processes, activities, and lookahead, described earlier. Workloads
contained 16 and 64 logical processes organized in 4 by 4 and 8 by 8
toroids, respectively (a toroid is a nearest neighbor mesh with wrap-around
edge connections). Toroids were used because they do not contain
inherent bottlenecks that might color the results, and because they are rich
in cycles, and therefore represent a reasonably challenging configuration
for the simulation algorithms. It is assumed that the number of activities in
the simulation remains constant, and the lookahead of each process
remains fixed throughout the simulation and does not depend on the type
of event. Within each experiment, a fixed number of messages (the
message population) circulates in a manner similar to jobs traveling
throughout a closed queueing network. Simulation activity in each process
was emulated using busy wait loops.

The experiments discussed next assume a message population of four
messages per process and an average computation time of 1 millisecond
(selected from a random variable with a negative exponential distribution)
to process each incoming message. A static process to processor mapping

Speedup Using Deadlock Avoidance
4 Messages per Process

s~_up~~~~~~~~~~~~~~
~ Ni°J"f!,~,ili:i (LAR = I.I)
o Moderate lookahead (LAR = 5.5)
D Low lookahead (LAR = 11.0)

9 ~~~~~~(LAR=l.1)
V Moderate lookahead (LAR = S.S)
• Low lookahead (LAR = 11.0)

6

3

0 4 8 12

Number of Processors

16

Figure 1. Speedup of synthetic worldoad as lookahead is varied.

was used that balanced the workload assigned to the available processors
while minimizing interprocessor communications.

Numerous experiments were conducted to exainine the effects of
computation granularity, dynamic load balancing, message population,
message routing, and other factors. A detailed description of these results
is beyond the scope of the present discussion, but is described elsewhere
[Fuji87a,Fuji88a]. We will summarize some of these results and discuss
how they can be applied to a specific application.

5.1 Effect of Lookahead

The speedup curves in figure 1 show the effect of varying lookahead in
the deadlock avoidance simulator. As can be seen, lookahead plays a
critical role in determining simulator performance. Performance degrades
significantly as the lookahead ability of each process is reduced. Processes
with poor lookahead characteristics must delay generating new events,
reducing the amount of parallelism available in the simulation.

Performance of the 16 node toroid is somewhat less than the 64 node
toroid because the simulation does not contain sufficient parallelism to
keep all of the processors busy. In addition, as the number of processes
per processor is decreased, each process is afforded less time to collect
messages before it is executed by the scheduler. As a result, a process may
be scheduled more often th;,m if there were more processes mapped to the
processor. The additional scheduling overhead and increased idle time
lead to poorer performance in the 16 node simulator, particularly as the
number of processors is increased.

5.2 Message Avalanche

Experiments using the deadlock detection and recovery strategy also
revealed an "avalanche" phenomenon. This behavior is depicted in figure
2 where the deadlock ratio is plotted as a function of the message
population. Performance remains poor (only a few messages processed
between deadlocks) at low and moderate message populations, but then
increases dramatically once message population reaches a certain critical
level. It was found that message avalanche was a prerequisite tor
achieving good performance for this simulation strategy.

Message avalanche occurs when a message arriving at a process causes
the transmission of one or more additional messages, which in turn trigger
the transmission of still others, and so on. A multiplicative effect occurs
whereby an "avalanche" of message traffic results from the original,
accounting for the dramatic improvement in simulator efficiency.

As shown in figure 2, the message population required to induce
avalanche was found to be dependent on the lookahead ability of the
processes. Smaller populations were required to induce avalanche if
processes were able to see far into !he simulated future. This is again
because poor lookaltead characteristics reduce the amount of parallelism in
the simulator.

36

DR

Message Avalanche
Deadlock Detection and Recovery Strategy

10000~~~~~~~~~~_.,.,._~~~~

1000

100

10

~ ~~~!h!'!d (LAR=l.11)
o Low lookahead (LAR=ll.0)

16 process toroid:
D Highlookahead(LAR=!.11)
x Low lookahead (LAR=l 1.0)

1~~~~~~=-_J
0.25 4 16 64 256

Message Population (messages per process)
Figure 2. Message avalanche occurs as the message population is increased.

5.3 Processes with Different Lookaheads

The experiments described above used homogeneous workloads where
each process behaved in the same way as the others. Many real
simuiations contain a variety of logical processes with different lookahead
characteristics. Additional experiments were performed in which some
processes had poorer lookahead characteristics than the others.

Figures 3 and 4 show simulator overhead for the deadlock detection and
recovery, and deadlock avoidance simulators, respectively, when some
number of processes with poor lookahead characteristics are mixed with
processes with good lookahead characteristics. Experiments were
performed in which one, one fourth, one half, and finally all processes
have poor lookahead (high LAR). Figure 3 indicates that the presence of a
few processes with poor lookahead results in a perceivable performance
degradation in the deadlock detection and recovery simulator (the
avalanche point is moved to higher message populations). When a
significant fraction of the processes have poor lookahead, performance is
almost the same as that when all processes have poor lookahead. The
deadlock avoidance simulator was found not to be as susceptible to such
behavior (see figure 4), though some degradation results if a sufficiently
high fraction have poor lookahead properties.

6. Queueing Network Simulations

To illustrate the applicability of the above results in a specific
application, queueing ne~ork simulations were performed. A five
process, central server network was simulated on the testbed. As shown in
figure 5, this network contains three first-come-first-serve (FCFS)
processes that service incoming jobs in the order in which they a{rive, a
fork process that stochastically routes each incoming job to one of its
output ports (assume for now that either port is equally likely to be
selected), and a merge process that combines streams of incoming jobs into
a single output stream. Each server process also computes the average
number of jobs in the server and reports this figure to the user.

Simulation and empirical studies by Seethalakshmi and Reed
respectively concluded that the central server network is ill-suited for the
conservative distributed simulation algorithms discussed here
[Seet79a,Reed88a]. We reproduce and explain the poor results that these
researchers observed in terms of message population and lookahead, and
utilize this knowledge to improve performance.

The "classical" implementation of the FCFS process uses two types of
events: arrival events (scheduled by other processes) denote jobs arriving
at the server, and departure events (scheduled by the FCFS process itself)
denote jobs completing service. The actions executed by the server
process for each event type are shown in figure 6. NJobs indicates the
number of jobs currently residing in the server, and ServiceTime indicates
the time required to service each job. Code for computing statistics is not
shown.

The ch issical server process has very poor lookahead properties. This is
because it will not transmit an arrival event message with timestamp TS

Deadlock Ratio with Non-Uniform Lookahead
Deadlock Recovery Strategy DR

l()(JOO~--~--...,....---r--.-....,.---,

1000

100

10

~ f I',}~; t/;!J:rAA~x~)4)
D I in 4 LPs w/ High LAR (4x4)
x I in 2 LPs w/ High LAR (4x4)
V All LPs w/ High LAR (4x4)
• No LPs w/ High LAR (8x8)
+ I LP w/ High LAR (8x8)
t I in 4 LPs w/ High LAR (8x8)
t I in 2 LPs w/ High LAR (8x8)
; All LPs w/ High LAR (8x8)

4 16

Messages Per LP

64 256

Figure 3. Overhead with non-uniform lookahead - deadlock recovery.

Null Message Ratio with Non-Uniform Lookahead
NMR Deadlock Avoidance Strategy
10001~---~--~---~--~

100

10

• NoLPswith
rugh LAR (4x4l

o I LP with rugh LAR (4x4)
D I in 4 LPs with rugh LAR (4x4)

~ ~[},P!i~~'i8i'.ltM~'l4>
0.1 • No LPs with rugl!: LAR (8x8)

+ I LP with llls!i LAR (8x8)
t I in 4 LPs with rugh LAR (8x8)
t I in 2 LPs with rutbtR (8x8)

O.ol+-;_AJ_lL_P_s_w,ith_ru_·=-gh __ (:..,B_xB.:.) __ ~----1

0.25 4

Messages Per LP

16 64

Figure 4. Overhead with non-uniform lookahead- deadlock avoidance.

until it has first advanced its local simulated time clock to TS by
processing a departure event. In effect, it has a lookahead value of zero.

The lookahead properties of the FCFS process can be improved by
eliminating the departure event, and generating a new arrival event as soon
as one is received. Because an FCFS queueing discipline is used, the
departure time can be determined as soon as the message is received. The
optimized program is shown in figure 7. EndService denotes the time at
which the server process will become idle if no additional jobs are
received in the future. This program exhibits very good lookahead abilities
because it can schedule events far into the simulated time future.

6.1 Performance Using Identical Servers

Simulators using each of these server programs were developed and
executed on the Butterfly testbed. In all of the experiments described
below, each logical process was mapped to a separate processor, and static
scheduling was used. Service times for server processes were selected
either deterministically or from a random variable with a negative
exponential distribution.

The resulting speedup and simulator efficiencies for the central server
queueing model using the deadlock detection and recovery strategy are
shown in figures 8 and 9, respectively. The deadlock avoidance simulator
yielded similar speedups. As can be seen, reprogramming the server to
have better lookahead characteristics dramatically improves performance.
Speedup is improved by as much as an order of magnitude. These results
are consistent with those obtained using synthetic workloads.

The performance results of the classical server process are qualitatively
similar to those reported by Reed and Seethalakshmi. The serve· s used in

37

Server

Merge 1---=3~ Server Fork

Server

Figure 5. Central server queueing model.

ARRIVAL EVENT at TIME T:
NJobs := NJobs + l;
IF (NJobs = 1) THEN /*if server was previously idle*/

Schedule (local) Departure Event at time T + ServiceTime;

DEPARTURE EVENT at TIME T:
Schedule (remote) Arrival Event at time T;
NJobs :=NJ obs· l;
IF (NJobs > 0) THEN /* if job(s) waiting in queue* I

Schedule (local) Departure Event at time T +Service Time;

Figure 6. ''Classical'' program for FCFS server (poor lookahead).

ARRIVAL EVENT at TIME T:
IF (T < EndService) THEN /* if server busy * /

BEGIN
Schedule (remote) Arrival Event at time EndService+ServiceTime;
EndService := EndService + ServiceTime;
END

ELSE /*server idle*/
BEGIN
Schedule (remote) Arrival Event at time T + ServiceTime;
EndService := T + ScrviceTime;
END

Figure 7. Optimized program for FCFS server (good lookahead).

those studies are a variation of the classical server described above, and
share the same (poor) lookahead properties - a message will not be
forwarded until another message is first received with a timestamp at least
as large as the departure time of the first Therefore, lookahead provides
an explanation for the poor performance that they observed.

Although the above results are encouraging, it is important to keep in
mind that reprogramming the application to exhibit greater lookahead
ability is not always possible. The above optimization relied on the servers
using an FCFS scheduling discipline. As we shall soon see, many
applications inherently contain poor lookahead properties.

Finally we note that, at first glance, reprogramming logic_al p~ses to
maximize lookahead may complicate other aspects of the s1mulat1on, e.g.,
statistics collection. For example, the optimized server does not pause for
departure events, so statistics that are most easily collected at job departu:e
must be collected at other points in simulated time. This problem is easily
reconciled by scheduling local departure events (as was done before) that
are only used for statistics collection purposes.

6.2 Performance Using Mixed Servers

Additional experiments were performed to examine the effect of mixing
processes with poor and good lookahead characteristics. Recall that
experiments using synthetic workloads revealed that a small number of
processes with poor lookahead could significantly degrade performance of
the deadlock detection and recovery simulator. The deadlock avoidance
simulator was found not to be as susceptible to such behavior.

The central server queueing network simulations were repeated where
one of the three servers was implemented using the classical server

Speedup of Central Server Queueing Model
Speedu~ock Detection and Recovecy Strategy
41~~~~~~~~~~~~~~~~

3

2 "Classical" FCFS process
• Detenn.inistic service time
o Exponenlially distributed un.

Revised FCFS process
0 Deterministic service time
x Exponentially distributed serv. un.

01+-~~~~~~~~~~~~~~--l

1 4 16 64 256 1024

Message Population
Figure 8. Speedup of central server queueing model

Deadlock Ratio for Queueing Network Simulator
Deadlock Detection and Recovery Strategy

DR
10000.,.-~~~~~-bd-~~~~~~~~~

1000

100
"Classical" FCFS process
• Deterministic service time
o Exponenlially distributed serv. tm.

Revised FCFS process
0 Detenninistic service time
x Exponentially distn'buted serv. tm.

l-t-~~-.-~~-r~~--..-~~-...~~--1

1 4 16 64 256 1024

Message Population
Figure 9. Overhead of central server queueing networlc simulator.

program described earlier, and the remaining servers used the optimized
program. The resulting simulator is not unlike one that would result if one
of the servers was (say) a prioritized queue while the others were FCFS.

The speedup and efficiency of the deadlock detection and recovery
simulator is shown in figures IO and 11. When the central server (the
process receiving messages from the merge process) has poor lookahead
properties, performance is almost as poor as when all of the servers have
poor lookahead. When one of the secondary servers (the servers receiving
messages from the fork process) has poor lookahead, performance is
better, but still well below that of the simulator using only optimized
servers. These results are consistent with those obtained using synthetic
workloads, and demonstrate that a few processes with poor lookahead can
significantly degrade overall performance in the deadlock detection and
recovery simulator.

When the classical program was used to implement a secondary server,
the routing probabilities in the fork were modified so that 10, 50, and
finally 90 percent of the message traffic was routed to the classical server.
It is interesting to note that performance improves as more traffic is routed
toward the server with poor lookahead. If little traffic is directed toward
this server, the simulator is constantly deadlocking because the merge
process is forced to block because it cannot determine whether or not it is
safe to proceed without first receiving a message from this server. Routing
additional message traffic toward this server helps the simulator to
overcome (somewhat) the server's poor lookahead characteristics.

38

Speedup

Speedup of Central Server Network
Deadlock Detection and Recovery

4·~~~~~~~~~~~~~~~~

• Classical centtal server, det. serv. tm.
o Classical central server, exp. serv. tm.
0 Clsssical sec. server (10 pereent traffic) det. serv. tm.

3 x Classical sec. server (10 pen:ent traffic) exp. serv. tm.
V Classical sec.server(SOpen:ent traffic) det. serv. un.
• Classical sec. server (SOpen:ent traffic) exp. serv. tm.
+ Classical sec. server (90 pen:ent traffic) det. serv. un.
t Classical sec. server (90 pereent traffic) exp. serv. un.

2

0'+-~~~~~~~~~~~~~~-J

1 4 16 64 256 1024

Message Population
Figure 10. Speedup of detection and recovery simulator with one classical server.

DR

Deadlock Ratio for Central Server Network
Deadlock Detection and Recovery

10000~~~~~~~~~~~~~~~

1000

100

• Classical central server. det. serv. tm.
o Classical central server, exp. serv. tm.
0 Classical sec. server (10 pereent traffic) deL serv. tm.
x Clsssical sec. server (lOpen:ent traffic) exp. serv. tm.
V Classical sec. server (SO percent traffic) deL serv. tm.
• Clsssical sec. server (SO percent traffic} exp. serv. tm.
+ Clsssical sec. server (90 pen:ent traffic deL serv. tm.
t Clsssical sec. server (90 pen:ent traffic exp. serv. tm.

1024

Message Population
I

Figure 11. Overhead of detection and recovery simulator with one classical server.

Speedup and overhead curves for the deadlock avoidance simulator are
shown in figures 12 and 13. The deadlock avoidance simulator tends to be
more forgiving of processes with poor lookahead. Poor perfonnance
results when the central server process has poor lookahead. However,
performance begins to approach that of the optimized simulator in some
situations where one of the secondary servers has poor lookahead. In
particular, good performance is obtained if a significant fraction of the
message traffic (50 to 90 percent) is routed around the process with poor
lookahead. Unlike the deadlock detection and recovery simulator, null
message traffic is generated by the classical server to allow the merge
process to proceed. Because processes with poor lookahead tend to buffer
messages rather than immediately forwarding them, it is best to minimize
the amount of traffic routed to the classical server because this only
detracts from the available parallelism.

7. Communication Network Simulations

Simulations of the message passing subsystem of a hypothetical
multicomputer were also performed. The multicomputer is organized in a
hypercube topology, and Sullivan's algorithm is used to route messages to
their respective destinations [Sull77a]. Like the queueing network and
synthetic worldoad e~riments, a fixed message popolation was used to
control the amount of available parallelism. Initially, each message is
assigned a destination to which it is to be routed, and a message length.
"'he destination is selected from a unifonn distribution (excluding the

Speedup

Speedup of Central Server Network
Deadlock Avoidance

5.,-~~--,-~~--.~~~-r-~~-.--~~---,
• Classical central server, det. serv. tm.
o Classical central server, exp. serv. tm.
D Classical sec. server (10 percent traffic) det serv. tm.
x Classical sec. server (10 percent ttaffic) exp. serv. Im.

4 V Classical sec. server (50 percent traffic) det. serv. tm.
+ Classical sec. server (50 percent traffic) exp. serv. tm.
+ Classical sec. server (90 percent traffic) det serv. tm.
t Classical sec. server (90 percent traffic) exp. serv. tm.

4 16 64 256 1024

Message Population

Figure 12. Speedup of deadlock avoidance simulator with one classical server.

processor where the message initially resides), and the message length is
selected from an exponential distribution. When a message reaches its
final destination, a new destination and message length are selected. All
communication links in the hypercube are assumed to provide the same
bandwidth. Three simulators were developed that contain varying degrees
of lookahead, as will be described next.

7.1 A Simulator with High Lookahead

FCFS is a simulator in which messages are simply forwarded on the
output link selected by the routing algorithm in FCFS order. Like the
FCFS queueing network described earlier, this simulator has great
lookahead ability because messages arriving at a logical process (with
timestamp denoting the arrival time in the hypercube) can be immediately
forwarded.

7.2 A Simulator with Moderate Lookahead

PRIO is a simulator with intermediate lookahead properties. Here,
messages are classified as either high priority or low priority.
Communication links in the hypercube give preference to high priority
messages when selecting the next message to be transmitted. A low
priority message is only forwarded if there are no high priority messages
waiting to use the link. Messages within each priority level are processed
in FCFS order. Each message is assigned a new priority whenever a new
destination address and message length are selected and maintains this
priority until it reaches the destination processor.

No preemption occurs in this simulator. Once the link begins
forwarding a low priority message, it will continue to send it, even if a
high priority message arrives before transmission is complete.

The parallel simulator for this system has intermediate lookahead
properties. Logical processes have excellent lookahead for high priority
messages, but poorer lookahead for those with low priority. Just as is the
case for the FCFS simulator, high priority messages can be forwarded as
soon as they arrive because the departure time can be immediately
determined. However, a low priority message cannot be forward until
simulated time in the logical process has advanced to the departure time
(the time the hypercube begins sending the message) because it must first
be determined that no high priority message will receive service ahead of
it.

7.3 A Simulator with Poor Lookahead

The third simulator, PREEMPT, is identical to the PRIORITY simulator
except that high priority messages preempt service of low priority
messages. When a low priority message is preempted, it is assumed that
the message must be completely resent once no other high priority
messages remain that are waiting to use the link. The simulator for this
system cannot forward a message to another logical process until simulated
time has advanced to the arrival time (the time the tail of the message
reaches the receiving hypercube node), so it has even poorer lookahead
properties than the preceding simulator.

39

Null Message Ratio for Central Server Network

NMR
Deadlock Avoidance

100-..-~~....----,--~-.-~~~~-~

0.1 • Classical central server, deL serv. bn.
o Classical central server, exp. serv. tm.
0 Classical sec. server (lOpercent traffic) det serv. tm.
x Classical sec. server (10 percent traffic) exp. serv. tm.
V Classical sec. server (50 percent traffic) det serv. tm.

0.01 • Classical sec. server (50 peteent traffic) exp. serv. tm.
+ Classical sec. server (90 percent traffic) det. serv. tm.
t Classical sec. server (90percent traffic) exp. serv. tm.

0.001-t---.----.----,----,----j

4 16 64 256 1024

Message Population

Figure 13. Overhead of deadlock avoidance simulator with one classical server.

7.4 Performance Results

The hypercube simulations were performed on the Butterfly, and
compared with execution of the sequential event list implementation.
Unlike the previous experiments, these were performed on the Butterfly
Plus, an upgraded version of the Buttedly .that features 32 bit data paths
(the original Buttedly has 16 bit data paths). The switch remains the same,
so this effectively increases the cost of interprocessor communications.
Because the simulation testbed already minimizes interprocessor
communication, no program modifications were required. Experiments
indicated that this hardware modification did not significantly affect the
speedup measures derived earlier.

Overhead for these three simulators is shown in figures 14 and 15 for
hypercubes of dimensions 4 and 6 (16 and 64 nodes respectively). Eight
processors were used in these experiments. Upon reaching its destination,
each message is assigned a high priority with probability P hp..W • In these
experiments, Phprio was selected to be either 0.01or0.50.

As predicted, the observed overhead steadily increases as the lookahead
properties of the simulation are diminished. This is reflected in higher null
message ratios in the deadlock avoidance simulator, and a larger message
population required to induce avalanche in the detection and recovery
simulator. Overheads are generally lower in the dimension four hypercube
than the cube of dimension six for a fixed message population (as
measured in messages per process) because there are fewer
communication links; the simulators operate at peak efficiency when there
is at least one message on each incoming link because no blocking occurs.

The lookahead properties of the simulator increase as P hprio increases
because more high priority messages are generated that can be forwarded
as soon as they are received. This explains the lower overheads that were
observed when P hprio was increased.

Speedup curves for the hypercube simulators are shown in figures 16
and 17. Using eight processors, the parallel simulator executed anywhere
from 5.7 times faster to nearly 20 times slower than the splay tree
simulator, depending on the lookahead properties of the application. Some
data points for very high message populations are missing because
insufficient memory was available on a single processor to conduct an
event list simulation.

The hypercube simulations provide additional evidence to support our
contention that lookahead properties of the application are crucial to
obtaining efficient performance for simulators using the deadlock
avoidance and deadlock detection and recovery strategies. While the
queueing network simulations demonstrated that it is possible to obtain
dramatic speedups by reprogramming the simulation to fully exploit its
lookahead properties, these experiments demonstrate that some simulations
inherently contain poor lookahead, and cannot be improved by
reprogramming. Such simulations appear to be poorly suited for the
conservative simulation algorithms using deadlock avoidance and
deadlock detection and recovery techniques, except in a few special
circumstances such as networks that contain no feedback loops.

DR

Deadlock Ratio for Hypercube Simulator
8 processors

100001..-~~-.-~~-..~~--.~~~..--~---,

1000

100

10

16 nodes
• FCFS
o PRIO (no preemption), P;,.;.= O.SO
0 PRIO (no preemption), P-= O.o!
x PREEMPT,P-=0.50
V PREEMPT,P-=0.01
64nodes
• FCFS
+ PRIO (no preemption), P-= 0.50
t PRIO (no preemption~ P-= 0.01 * PREEMPT,P-=0.50
= PREEMPT, P-= 0.01

1l35'~~~~~::::!__J
1 4 16 64 256 1024

Message Population (messages per LP)

Figure 14. Overhead in hypercube simulator using deadlock recovery.

Null Message Ratio for Hypercube Simulator

NMR
8 processors

10

1.0 16nodes
• FCFS
o PRIO (no preemption), Pg.;.= 0.50
0 PRIO (no preemption), P-= 0.01
x PREEMPT, P-= 0.50

O. l V PREEMPT, P,,..,= 0.01
64nodes
• FCFS
+ PRIO (no preemption), P-= 0.50
t PRIO (no preemption), P-= O.o! * PREEMPT, P-= 0.50

0.ot+-=-P_R_E_EM--.PT~, P=~·=-0...,.0_l __ _,----.-----1
4 16 64 256 1024

Message Population (messages per LP)

Figure 15. Ovemead in hypercube simulator using deadlock avoidance.

8. A Perspective on Lookahead: Non-Events

The influence of lookahead on performance can be viewed from another
perspective: processes with very good lookahead ability are able to act in a
largely autonomous fashion; their behavior is not heavily influenced by the
activities of other processes, so they can perform simulation work at "full
speed," limited only by the rate at which they can be fed work, and the
number of CPU cycles (or other resources) that they can obtain. The
optimized queueing network server process is a good example of such
autonomous behavior.

On the other hand, processes with poor lookahead ability must
frequently obtain additional information from other processes before they
can safely proceed. This is unfortunate because not only must such
processes wait for real events to be generated by other processes
(corresponding to data dependencies that cannot be circumvented), but
often they must also wait to be sure other events will not occur. The fact
that an airplane will not crash and close the airport in the next moment of
simulated time must be discovered before the airport process can go about
its business of deciding what will happen next. We call these "phantom"
events that never materialize non-events. Chandy and Misra recently
captured these notions in an elegant formalism called conditional and
unconditional knowledge [Chan87a].

40

Speedup

Speedup of Hypercube Simulator
Deadlock Recovery (8 processors)

6~--~---~------~--~
16 nodes
• FCFS
o PRIO (no preemption), P;,.i.= 0.50

5 0 PRIO (no preemption), P-= 0.01
x PREEMPT,P-=0.50
V PREEMPT, P-= 0.01

64nodes
4 • FCFS

+ PRIO (no preemption), P,,..,= 0.50
t PRIO (no preemption), PlpriD= 0.01 * PREEMPT,P.,...,.=0.50

3 = PREEMPT,P-=0.01

2

4 16 64 256
Message Population (messages per LP)

1024

Figure 16. Speedup of hypercube simulatorusing deadlock recovery.

Speedup

Speedup of Hypercube Simulator
Deadlock Avoidance (8 processors)

61~--~---..----~--~--~
16 nodes
• FCFS
o PRIO (no preemption), P!!Prio= 0.50

5 0 PRIO (no preemption), P.,.,.= 0.01
x PREEMPT,P.,...,.=0.50
V PREEMPT, P-= 0.Dl

64nodes
4 • FCFS

+ PRIO, P-= 0.50
t PRIO,P-=0.01 * PREEMPT,P-=0.50

3 = PREEMPT, P-= 0.Dl

2

0+----.-------~--~-----l

1 4 16 64 256 1024

Message Population (messages per LP)
Figure 17. Speedup of hypercube simulator using deadlock avoidance.

In the deadlock avoidance simulator, knowledge of non-events is passed
explicitly through the use of null messages. In the deadlock detection and
recovery simulator, t!Jis information is obtained by system deadlock -
processes with messages waiting to be processed must wait until they can
be certain that specific events will not occur. Certainty as to the
eventuality of non-events comes about when the deadlock is broken, and
the deadlock resolution protocol is invoked. Sequential, event list
simulators incur little or no overhead for non-events.

If non-events are possible, but occur infrequently, the simulator is often
forced to wait needlessly, leading to very poor performance. The
hypercube simulator containing preemption and few high priority messages
is one example of such behavior. Optimistic simulation methods such as
Time Warp appear to offer the greatest potential for addressing this
problem, if the associated state saving and rollback overheads can be
overcome.

9. Conclusions

Extensive empirical performance evaluations of distributed simulation
programs were performed using the deadlock avoidance and deadlock
detection and recovery algorithms developed by Chandy and Misra. The
principal results of these studies are:

• The lookahead ability of logical processes plays a critical role in
determining the efficiency of the deadlock avoidance and deadlock
detection and recovery algorithms. This is attributed to the fact that
processes must spend an excessive amount of time waiting to be sure that
certain events will not occur if their lookahead ability is poor.

• Message avalanche was observed in the deadlock detection and recovery
simulator for moderate to high message populations, and was necessary
to achieve efficient execution. The poorer the lookahead ability of a
process, the larger the message population necessary to achieve
avalanche. If lookahead is sufficiently poor, avalanche may never be
observed for workloads of practical interest.

• Deadlock detection and recovery simulators containing different types of
logical processes can be adversely affected by a small number of
processes that exhibit poor lookahead ability. The existence of a few
such processes can greatly increase the message population necessary to
achieve avalanche, even if many other processes contain very good
lookahead properties. The deadlock avoidance simulator is not as
severely affected by this behavior if the bulk of the simulation activity
avoids processes with poor lookahead.

• Queueing networks that contain cycles, previously thought to be ill­
suited for conservative distributed simulation algorithms, can achieve
good performance if servers are reprogrammed to take advantage of all
available lookahead.

• Simulation applications such as those containing infrequent preemptive
events inherently have poor lookahead properties, and appear ill-suited
for these algorithms. Applications containing state dependent behavior
(e.g., load balancing mechanisms) similarly contain moderate to poor
lookahead properties.

• Simulations of several hypercube-based communication networks with
varying degrees of lookahead provide empirical data to support the above
conclusions.

These studies demonstrate that parallel simulation algorithms can
achieve significant speedups over sequential event list implementations if a
moderate to high degree of parallelism is present, even if there are many
feedback loops in the logical process topology. However, good lookahead
properties are essential to obtaining good performance in simulations using
deadlock avoidance or deadlock detection techniques. The fact that a few
processes with poor lookahead properties can significantly degrade
performance also limits the usefulness of these approaches.

Because conservative simulation algorithms must continually predict
what will not happen in order to be able to safely proceed, these studies
raise considerable doubt as to whether any conservative parallel simulation
algorithm can obtain significant speedup in applications containing poor
lookahead properties. In these situations, optimistic simulation algorithms
such as Time Warp appear to offer much greater potential for achieving
significant speedups.

REFERENCES

[Bile85a] W. Biles, "Statistical Considerations in Simulation on a
Network of Microcomputers," 1985 Winter Simulation
Conference Proceedings, pp. 388-393 (December 1985).

[Chan83a] A. Chandak and J. C. Browne, "Vectorization of Discrete
Event Simulation," Proceedings of the 1983 International
Conference on Parallel Processing, pp. 359-361 (August
1983).

41

[Chan79a] K. M. Chandy and J. Misra, "Distributed Simulation: A
Case Study in Design and Verification of Distributed
Programs," IEEE Transactions on Software Engineering
SE-5(5) pp. 440-452 (Sept. 1979).

[Chan8la] K. M. Chandy and J. Misra, "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,"
Communications of the ACM 24(4) pp. 198-206 (April
1981).

[Chan87a] K. M. Chandy and J. Misra, "Conditional Knowledge as a
Basis for Distributed Simulation," Technical Report
525l:TR:87, Computer Science Department, California
Institute of Technology (1987).

[Comf84a] J.C. Comfort, "The Simulation of a Master-Slave Event Set
Processor," Simulation 42(3) pp. 117-124 (March, 1984).

[Fuji87a] R. M. Fujimoto, "Performance Measurement of Distributed
Simulation Strategies," Technical Report UUCS-87-026a,
Computer Science Department, University of Utah, Salt
Lake City, UT (November 1987).

[Fuji88a] R. M. Fujimoto, ''Performance Measurement of Distributed
Simulation Strategies," Proceedings of the 1988 SGS
Multiconference - Distributed Simulation, San Diego,
California, (February 1988).

[Jeff85a] D. R. Jefferson, "Virtual Time," ACM Transactions on
Programming Languages and Systems 7(3) pp. 404-425
(July 1985).

[Jone86a] D. W. Jones, "An Empirical Comparison of Priority-Queue·
and Event-Set Implementations," Communications of the
ACM 29(4) pp. 300-311(April1986).

[Kaud87a] F. J. Kaudel, "A Literature Survey on Distributed Discrete
Event Simulation," Simuletter 18(2) pp. 11-21(June1987).

[Misr86a] J. Misra, "Distributed-Discrete Event Simulation," ACM
Computing Surveys 18(1) pp. 39-65 (March 1986).

[Reed88a] D. A. Reed, A. D. Malony, and B. D. McCredie, "Parallel
Discrete Event Simulation: A Shared Memory Approach,"
IEEE Transactions on Software Engineering, (to appear
1988).

[Seet79a] M. Seethalakshmi, "A Study and Analysis of Performance
of Distributed Simulation," MS Report, University of
Texas, Austin, Texas (May 1979).

[Slea85a] D. D. Sleator and R. E. Tarjan, "Self-Adjusting Binary
Search Trees," Journal of the ACM 32(3) pp. 652-686 (July
1985).

[Sull77a] H. Sullivan and T. R. Bashkow, "A Large Scale,
Homogeneous, Fully Distributed Parallel Machine,"
Proceedings of the 4th Annual Symposium on Computer
Architecture 5(7) pp. 105-117 (March 1977).

[Thom86a] R. H. Thomas, ''Behavior of the Butterfly Parallel Processor
in the Presence pf Memory Hot Spots,'' Proceedings of the
1986 International Conference on Parallel Processing, pp.
46-50 (August 1986).

A BLOCKED JACOBI METHOD FOR THE
SYMMETRIC EIGENPROBLEMa

David E. Foulser
Computer Science Department

Yale University
Box 2158 Yale Station
New Haven, CT 06520

Abstract -A block matrix generalization of the Jacobi rotation
method for computing the eigendecomposition of a symmetric ma­
trix is presented. This Blocked Classical Jacobi (BCJ) algorithm
selects for block rotation at each step the off-diagonal block(s) of
largest mass. The BCJ algorithm exhibits substantially shorter
run times than other Jacobi-like methods, even though it performs
more work per iteration. A probabilistic analysis of the BCJ selec­
tion method is presented. Timings and other data are presented
from experiments on random matrices.

1 Introduction

The class of Jacobi rotation methods [4,7,10,12] for computing the
symmetric eigenvalue decomposition

A= unuT (i)

of an n x n real matrix A, where U is orthogonal and D is diagonal,
has generated substantial interest in recent years, particularly in
the context of parallel computer architectures. Algorithms have
been developed for systolic processor arrays as well as for more
general purpose parallel computers. These methods differ princi­
pally from the original method of Jacobi in that they choose a
fixed sequence of matrix elements for the necessary orthogonal ro­
tations. Jacobi's method performs a rotation to zero out the largest
off-diagonal element at each step; the sequence of rotations is data­
dependent.

This paper presents a novel block matrix or "hypermatrix" adap­
tation [2,3,16] of the original algorithm, which we label the Blocked
Classical Jacobi (BCJ) algorithm. The matrix A is treated as a
smaller m x m matrix of bx b submatrices; computations work on en­
tire submatrices rather than on scalars. Furthermore, the sequence
of submatrices to be rotated is chosen to locally maximize the re­
duction of A to diagonal form by selecting the off-diagonal blocks
of largest mass. BCJ reduces serial run times compared with other
Jacobi methods and thus may prove useful where Jacobi methods
are preferred over other eigensolvers, such as the QR algorithm.

For computers with a hierarchical memory system, in which
successively larger yet slower memories are located at increasing
distances from the arithmetic processor, many numerical calcula­
tions are efficiently structured in terms of block algorithms [3,8,15].
Rather than computing with scalar quantities, block algorithms
operate on small square or rectangular. submatrices of data. The
resulting "surface-to-volume" effect of a single block data transfer
followed by several computations allows a fast processor with local
memory to achieve nearly full utilization even when supplied by a
significantly slower bus or main memory.

The blocked organization of BCJ reduces the overhead cost of
determining the maximum off-diagonal elements. It also makes
BCJ especially well-suited for implementation on multiprocessors
with a hierarchical memory system (e.g., [8]). As well, BCJ is
suitable for parallel implementation.

The organization of the paper is as follows. Section 2 gives a
brief review of serial Jacobi methods for the symmetric eigenprob­
lem. Section 3 gives the motivations for BCJ and presents the
algorithm as implemented in this study. Section 4 lays out the

4 Research supported by Office of Naval Research grant N00014-86-K-0310.

42

numerical experiments with BCJ, including timings and numbers
of iterations to convergence. Section 5 presents the analysis of the
block selection method using the theory of order statistics, and
discusses the implications for the experimental data. Concluding
remarks and indications for parallel implementations are presented
in section 6. Section 7 contains the proofs of two probabilistic
results from section 5.

2 Review of Serial Jacobi Methods

The Jacobi method of solving (1) constructs a sequence of orthog­
onal rotations U1 = U(91 , i1, j1, A<0l), U2 = U(l12, i2, h, A(ll), ... ,
such that U = U1 U2 · • • diagonalizes A (that is, UT AU is diag­
onal), 0 ~ 9; ~ 7r /4, and lirn;_00 11; = 0. In practice the com­
putation is terminated after a finite number of rotations, leaving
U = U1U2 ... , UN. The rotation Uu is selected to zero out the
matrix elements in positions (iu,iu) and (iu,iu)·

Given (i,j) = (iu,iu), the rotation angle llu is computed so that
A(u) = U'[A(u- 1)Uu, according to

)
T ((u-1) (u-1)) (s11 a.. a.. c11

Cu a~~-l) a(~-l) --:Bu
J• JJ

Bu)
Cu '

(2)
with a\~) =a\~) = O·, here A(o) =A. The cosine Cu and sine Bu of

,, 3'
the angle 11. may be calculated by [9]

T = (al:-l) - a~j- 1))/(2a~j- 1l),

then solving for t in

t 2 + 2tr = 1 (sign(r))
t = lrl + Vl + T2

and substituting in

Cu= (1 + t2)-1/2'

(3)

(4)

(5)

u. is set to the identity matrix, except in rows and columns iv and
iv, where it is zero everywhere but in the 2 x 2 principal submatrix;

there it is (.:._• Bv). If alj-l) = 0 then Cv is set to 1 and Bu to
Sv Cv

0, for 9u is obviously 0.
There are several methods for choosing the rotation index pair

(i,j). The classical Jacobi method selects (i,j) at each step to lo­
cally minimize the resulting off-diagonal Frobenius norm by choos­
ing (i, j) as the location of the largest off-diagonal element. How­
ever, the effort of determining the location of the maximum ele­
ment (O(n2) operations) exceeds the work in calculating and ap­
plying the orthogonal rotation u. (approximately 18n operations
neglecting symmetry). For this reason the method is rarely used
on computers.

The cyclic-by-rows ordering of elements ((i, j) = (1, 2), (1, 3),
... , (1, n), (2, 3), ... , (2, n), ... , (n - 1, n)) is more amenable to
automatic computation. However, the successive index pairs are
almost always dependent (sharing a row or column), and thus not
suited for parallel computation. Parallel orderings have featured
other index pair selections chosen for data locality and utility on
a systolic processor .. The Brent-Luk and Sameh orderings [4,13]
have many desirable features. They preserve data locality and
are amenable to systolic or other parallel implementations, they

converge faster than the cyclic-by-rows ordering, and they rotate
each off-diagonal element exactly once in a "sweep." A particularly
useful feature is that at each step, the n/2 independent rotations
(operating on n/2 mutually distinct pairs of rows and columns)
may be carried out simultaneously.

3 Algorithm BCJ

We now develop a blocked analogue of the classical Jacobi al­
gorithm for the symmetric eigenproblem (1) that performs more
work in selecting the index pairs yet requires less run-time than
a blocked Brent-Luk ordering. BCJ also generalizes to computa­
tion of the singular value decomposition of a rectangular matrix.
The new Blocked Classical Jacobi (BCJ) method selects the largest
off-diagonal block(s) for rotation, in order to locally minimize the
off-diagonal mass of A. Through a suitable choice of the block size,
the extra computations to determine the off-diagonal block of max­
imum mass are offset by a reduced number of iterations; BCJ is
more efficient on a serial computer than the other Jacobi methods
tested.

BCJ is also highly parallel in nature. Where several processors
are available to solve a single eigenproblem, the I< > 1 largest
independent off-diagonal blocks may be selected for simultaneous
rotations, leading to a straightforward parallel implementation.

At each iteration, BCJ selects an off-diagonal block submatrix
(j, j) for rotation and computes a block orthogonal rotation matrix
Uv, which it then applies to help reduce A to block diagonal form.
The block orthogonal rotation can be chosen as a sequence of scalar
Jacobi rotations or from the eigendecomposition of the small block
matrix; we use a full scalar Sameh sweep on the small block matrix.
(However, there is no restriction that the small block matrix must
be diagonalized, only that its off-diagonal mass be reduced. Com­
putations by Bischof (1) on the SVD indicate that the extra effort
of completely diagonalizing the block matrix at each step may be
wasted.) The method then proceeds by selecting another block ele­
ment of A to rotate. A final processing step ofSameh sweeps forms
the eigenvalues and eigenvectors from the block diagonal elements
of A. On an m x m block matrix, a BCJ "sweep" is (m2 - m)/2
two-block by two-block rotations.

The precise block algorithm for carrying out BCJ to compute
the symmetric eigendecomposition (1), with D overwriting A, is
as follows. Assume, for ease of exposition, that the block size b
divides the matrix size n exactly, so that n = mb. I< ;:::: 1 indepen­
dent off-diagonal blocks may be selected for simultaneous rotation.
The iterations continue until a tolerance criterion TOL is met. The
method begins with U =I, v = 0, and continues

1. Compute the squared masses {M;; }7.'i=l• with

2. Select I< independent rotation pairs (ik,jk), 1:::; k:::; I< with

3. Compute I< block rotations {U(Ok, ik, jk, A(v))}f=l to reduce
the block off-diagonal mass of A (as indicated below).

4. Apply the block rotations of step 3 to U and to A(v), forming
A(v+1).

5. If the block off-diagonal mass of A(v+l) is not less than TOL

times the block diagonal mass, then set v := v + 1 and go to
step 1.

6. Diagonalize the diagonal blocks of A(v) (until the off-diagonal
mass is less than TOL times the diagonal mass) and update U.

43

Step 3 of our BCJ implementation uses a single scalar Sameh
sweep to reduce the off-diagonal mass of the two-block by two­
block submatrix. This sweep includes b(2b-1) point wise rotations
performed sequentially. Step 6 uses successive Sameh sweeps to
diagonalize the block diagonals of A(v).

The BCJ algorithm is to be compared against the "block Brent­
Luk" algorithm, which omits step 1 and replaces step 2 by selecting
m/2 block index pairs according to the Brent-Luk ordering. A
block Brent-Luk sweep also involves (m2 - m)/2 two-block by two
block rotations. It is important to note that the two methods under
comparison differ only in their index selection methods.

4 Experimental Results

Several numerical experiments were conducted to compare the
efficiency of BCJ and blocked Brent-Luk symmetric eigensolvers
on matrices of random data. The test matrices were generated as
matrices of uniform random deviates from (0,1); in each case 10
tests were run to give non-parametric error bounds to within 10%.
All computations were carried out with a tolerance of TOL = 10-8 .

Table 1 summarizes the run times of the two methods on problems
with various values of n, m, b, and k. (Comparable average Eispack
times from TRED2/TQL2 are 1.46, 0.26, and 0.05 seconds for n =
64, 32, 16, respectively.) Figures 1-4 display iteration counts and
relative efficiencies of the two algorithms.

These experiments show that the extra work of finding the largest
independent off-diagonal blocks is offset by faster algorithmic con­
vergence of BCJ, which makes the present method competitive with
other blocked Jacobi rotation techniques. While, the QR algorithm
is obviously superior on these random, dense matrices, its advan­
tage will be reduced on nearly diagonal or quite sparse problems.

BCJ execution times Blocked Brent-Luk times I
BCJ BCJ BCJ B-L B-L B-L

N B MIN AVG MAX MIN AVG MAX
64 2 26.04 26.93 28.68 44.96 79.39 136.12
64 4 22.11 25.48 29.98 30.02 63.13 146.09
64 8 31.48 39.97 66.47 38.19 145.70 424.32
64 16 58.36 107.90 253.24 97.38 242.68 513.49
32 2 3.60 4.09 4.71 3.70 8.04 15.39
32 4 3.71 5.20 7.66 5.34 9.14 19.00
32 8 5 .. 91 13.50 23.14 9.41 16.55 31.36
16 2 0.51 0.72 0.83 0.45 2.47 14.23
16 4 0.52 1.40 7.11 0.62 1.04 2.36

Table 1: Multif!ow Trace/7 execution times (sec.) for BCJ, blocked
Brent-Luk, TOL = 10-8 , 10 trials.

5 Algorithmic Analysis

An important factor in determining the efficiency of the algorithm
is the block size. BCJ has the following computational work per
iteration (n = mb):

Step Computations
1 2n2

2 O(m2 logm)
3 6K(2b)(2b - 1)/2
4 18nK(2b)(2b - 1)/2
5 2n2

6 2n2 b + O(nb2)

'The work for step 1 is actually completed in step 5, where the
block masses are computed, so that after the first iteration step 1
contributes no work. Step 2 can be done in O(Km2) operations,
which is an improvement if I<= o(logm). Step 6 is performed once
at the end of the calculation and has asymptotically negligible work
if b = o(n); for very large b step 6 dominates the total work.

A moderate value of b should be preferable in order to maximize
the sum of off-diagonal block masses. Indeed, Figure 1 reflects this

..
·;; s 150

J
~ 100

0

·• ,
0 .
0

~ so
,;:

K=I

K=2

o 0~_.._.._.._.._~.....J__J__J___j_l~·-·L__j__J__J_i~ __J_L__.L_.1_ 20

Blool< size b

.
0

60

_sso -

VI 40 -

ll
~
~30 -

·~ .
g20 -

J
10 -

F!gur-e I. Rvc.-ogc BCJ solullon limo for N=fi1, lAL = 100-8
on o Hultlflow Troco/7 compulcr

n=61

"=32

L...-....J! _l_l.___J_J __ J __ ...J ___ .t_.J J __ L. I .. - l ___ 1__.1

s 10 1s 2o
Rloel< size b

Figure 2. Average BCJ sweeps. 10L = IOU-A, K:::n/2b

behavior. For small b, the overhead of determining the largest block
exceeds the work of diagonalizing A. As b increases, the maximal
off-diagonal squared block mass will approach the average block
mass, reducing the effect of each block rotation, and consequently
lengthening BCJ computations. Figure 3 shows that for several
matrix sizes n, increasing the block size b increases monotonically
the number of sweeps of BCJ, as expected. Furthermore, the ex­
ample of Figure 5 indicates that with relatively few blocks, two
large off-diagonal masses are likely to be dependent.

We now examine BCJ's behavior with a brief review of relevan_t
order statistics theory [6, 11], which describes the behavior of sorted
random variates in terms of the probability distributions of the in­
dividual elements. Given independent and identically distributed
random variables Xi, X 2 , •• ., XN, the N order statistics Xi,N•
x; N> .•• , x;, N are the random variables associated with the low­
est' ranked to highest ranked X;.

A particular instance of the theory is instructive with regard to
BCJ, which starts with the (n2 - n)/2-sized upper triangular array
from an n x n symmetric matrix A(o) of uniform random variates.
Let Yi be one of (n2-n)/2 iiduniform variates on the interval (0, 1],
and set X; = Y;2. Then an average off-diagonal element of A(O) has
squared mass E[X;] = 1/3, while the maximum has mean squared
mas~ E[X(n•-n)/2,(n•-n)/2] = 1 - 2/(n2 - n + 2). Selecting the
maximum off-diagonal element, rather than an average element,
increase~ the reduction to diagonal form of an individual rotation.

Assuming further that each X;, 1 :=; i :=; (m2 - m)/2, is dis­
tributed as the sum of b2 squares of uniform random values from
the interval (0, 1], as is M;; in the first step of our blocked ex-

44

1 -

,.,_
0

0

0

~2 -

g
~ n=32

I -

10

.
~30
0

.
ll
~20

'• 0

g
-~

Blod< sl:i.:e b

- ______-b=1

- '---------·-------------b=2

0 o~~-~~~ i\i-1-L----'--L-i~ _ _.__L_J_L_Zo
K ::: Number of blocks rololcd slmullancolJS:ly

r1guro 4. Rre..-oge number of BCJ sweeps. n = 61. JfJL ::: IOU D

perimen ts, it is clear that the central limit theorem applies to the
block mass distributions. For large b, one may represent the off­
diagonal squared block mass as a normal random variable with
mean µ = b2 /3 and variance u2 = 4b2 / 45 (corresponding to the
sum of b2 uniform random variables).

The maximal order statistic for these large blocks tends toward
a standard limiting distribution, from which we may determine the
moments. Although the example employs sums of uniform vari­
ates, the proposition holds for any blocks that have asymptotically
normal squared mass.

Proposition 1. Let {X;}~;:';-m)/2 be iid normal variates with
mean µ and variance u2 • In the limit as m· --> oo, the expected
largest variate is

E[X(m•-m)/2,(m•-m)/2] = µ + uJ2log((m2 - m)/2) (6)

+ 0 (log log m/ ~)
and the variance is

• _ 2 r 11(1) - r 1(1)2

Var[X(m•-m)/2,(m•-m)/2] - u 2log((m2 - m)/2) (7)

+o (loglogm/(logm)2),

where_ r'O and r"O are the first two derivatives of the gamma
function, respectively. {Note that f"(l)- f'(1) 2 ~ 1.64.)

Thus the expected largest squared mass is about 2v'Jogm stan­
dard deviations above the mean, with asymptoticlly vanishing vari­
ance. Cohen [5] has derived similar results for generalized matrix
products. The proof of Proposition 1 is left to section 7.

BCJ operates by maximizing the mass of the selected off-diagonal
blocks. This works well when the ratio (µ + 2uv'Jog m)/ µis large
while the additional cost to determine the largest block is low. Both
cost and benefit decrease with increasing blocksize.

For certain values of b, BCJ inherits the fast convergence of
the classical Jacobi method without paying a large cost for max­
imal selection. If b is chosen approximately b = (log n)113 and
K = m/2, the work of computing and selecting the independent
maximal blocks is 0 (n 2 (Iog n)113) per iteration, as is the rotation
work, so that the two are of comparable sizes. For larger block
sizes b, the block selection cost is asymptotically negligible. If b
grows as y'TQgn, then the largest squared block mass is a constant
multiple of the average squared block mass, while the extra cost of
determining the maximal off-diagonal blocks is of smaller order.

Figure 1 clearly indicates the benefits of choosing a moderate
blocksize, as the average solution time initially decreases as b grows.
However, the use of a large b produces longer run times.

The selection of K > 1 maximal independent off-diagonal blocks
(step 2) forms a more complex sum of conditional order statistics,
which we now examine. Let Xi, 1 ::; i ::; M 1 , be iid random
variates with density f(x) and distribution F(x). Denote by X;.}1

the maximal order statistic. Now fix a particular subset of size M2
of the remaining variates (excluding the selected maximum and
others), and let X'!J1 ,M2 be the maximal variate in the subset. It

is clear that xrf,,M2 :::: x;.},. Inductively define x;;;;:.1.,Mu1 from

XAJ',, ... ,M. as the maximal order statistic in a chosen subset of Mk+ 1

variates selected from the previous subset of size Mk (excluding
the previous maximum and others). We call XAJ',, ... ,M. the k'h

conditional maximal order statistic of the {X;};';'.,11 .

Proposition 2. For M1 > M2 > · · · > Mk > 0, the probability
distribution of the k'h conditional maximal order statistic is

k k (
Pr {X~,, .. ,M.::; x} = LF(x)M' II ~)

i=l J=l MJ - Mi .
j,;i

(8)

Letting µM, = E[XM-,] be the unconditional mean of the maxi­
mum on Mi observations, we have

(9)

We briefly indicate the formulation of the first step of BCJ in
terms of Proposition 2. In BCJ, K maximal off-diagonal blocks are
selected in K stages from an m x m upper triangular array of (m 2 -

m)/2 iid random variates. Independence of the selected locations
requires striking out the row and column of the maximum. At stage
i, 1::; i::; K, the maximal variate will be drawn from a subset of
(m+;- 2;) blocks in the strict upper triangle of the array and then
two rows and columns of the array will be struck out, corresponding
to the row and column indices of the selected maximal element.

For instance, in the 6 by 6 example of Figure 5, the first max­
imum is 10 (row 1, column 4). Thereafter rows and columns 1
and 4 are struck from the array (to preserve independence) and
the second conditional maximum is selected; it is 5 (row 2, column
3). Note that larger elements that are dependent upon the first
maximum may be ignored in the selection of the second maximum.
Finally, rows and columns 2 and 3 are struck from the array and
the final maximum of 4 (row 5, column 6) is selected.

The selection of the K maximal independent off-diagonal blocks
(which forms the more complex sum of conditional order statis­
tics discussed above), determines on average a smaller sum of off­
diagonal masses than K successive iterations choosing the single
largest block. However, it is observed in Figure 4 that the number

45

2 4 10 6 7
5 9 2 3

3 4 4
8 4

4

Figure 5: Conditional maximum selection X(l,4)

X(2,3) = Xjg,6 = 5,X(s,6) = Xi~,6,1 = 4.

X •l
15 10,

of sweeps to convergence initially declines as K increases. This
probably reflects the amortization of step 5 costs over additional
blocks. As expected, BCJ requires slightly more iterations to con­
verge as K reaches its upper limit of m/2 (e.g., b = 2, 4).

Figure 2 presents in graphical form the ratios of the average BCJ
and blocked Brent-Luk execution times on a Multiflow Trace/7
computer. The efficiency ratio shows the speedup of BCJ, with
improvements up to a factor of 3.6 due entirely to improved index
selection. Examination of Table 1 shows that, for almost all cases,
BCJ run times have lower deviations from the mean.

Asymptotically, b = fl ((Iogn)113) guarantees that the work of
selecting the maximal blocks will be at most comparable to the
other arithmetic operations. However, assuming normality of ini­
tial data and intermediate results, the optimal b so that Jar est
blocks are substantially larger than average (b2 = O(b logm2),

from eq. (6)) is b = 0(y'IOgn). For b "'=' (log n)", 1/3 ::; °' ::; 1/2,
BCJ should be asymptotically faster than a blocked Brent-Luk
method. The numerical experiments show speedups for problems
of moderate size.

In general, the distribution of the elements of A (v) will be more
complex than described here and the order statistic argument must
be specialized to include the distributions of intermediate results,
in order to rigorously prove rates of convergence. However, the
improved performance of the new algorithm is consonant with the
analysis performed here.

In cases where the matrix has few large elements or is close to di­
agonal, one expects BCJ to acheive shorter run times than indicated
by these experiments on uniform random data. For instance, the
method may prove useful in adaptive signal processing algorithms
that rely on eigenvalue decompositions [14].

6 Conclusions

The improved index selection process of BCJ produces a substan­
tial overall reduction in the program running time, compared to a
blocked Brent-Luk algorithm. In particular, the extra work of de­
termining the largest off-diagonal blocks is offset by fewer iterations
needed for convergence. Furthermore, because the algorithm em­
ploys blocked data concepts, it is appropriate for computers with
a hierarchical memory system. The concentration of work on the
relatively small and numerous block elements is advantageous for
parallelization of the algorithm.

The selection of parameters b and K is important to the effi­
ciency of BCJ. A moderate value of b gives the lowest run times
(though not the lowest number of block sweeps). The extra benefit
of increasing K falls off rapidly for small n.

Nearly all stages of the algorithm are amenable to efficient par­
allel computation. Step 1 can be computed independently on m2

processors; step 2 on various combinations of processors and inter­
connections; step 3 on K large-grained or Kb fine-grained proces­
sors, depending on whether the block rotation is parallelized or not;
step 4 on up to bK n processors; step 5 on m 2 or more processors;
and step 6 on K or more processors.

This investigation of BCJ was prompted by the use of a blocked
Brent-Luk method in the Saxpy Computer Corp. mathematical
subroutine library. It appears that a BCJ method could be more
efficient than the current approach. Although Eispack routines
are obviously quite fast for the dense examples used here, BCJ
may improve upon the QR algorithm in cases of sufficiently sparse
symmetric eigenvalue problems.

7 Calculation of Distributions of the Maximal
and kth Conditional Maximal Order Statistics

Proof of Proposition 1. David [6] presents the limiting distribu­
tional behavior of the maximal order statistic X~ n, which depends
upon the well-known distribution '

-oo<x<oo (10)

in the case of iid 0-1 normal variates. We now carry through the
analysis for general iid normal variates.

Let q,,.,,2(x) = (IT-/21r)- 1 exp(-(x-µ) 2 /21T2) be the normal den­
sity function and let cJ>,.,,2(x) = J~00 <fJ,.,,2(y)dy be the normal dis­
tribution function corresponding to mean µ and variance 1T2 , re­
spectively. For large x,

1 - cf>µu•(x) 1T2

</Jµu•(x) R:! x-µ'
(11)

based on a change of variables from the. case µ = 0 and IT = 1.
Thus Theorem 9.3.5 [6) applies and

nl~1! Pr { (X~,n - ln)n</Jµu•(ln)::; x} = A(x) (12)

holds uniformly for every x E (-oo, oo), where In is selected so that
cf>µu•(ln) = 1-1/n.

According to (11),

1 IT2 1 (-(In -µ)2) - = 1- cJ>,.,,2(ln) R:! -1-- ~exp 2 2 •
n n - µ uy 27r IT ,

(13)

The asymptotic form of In is then

In= µ+IT (J2logn- (logl~g47r)) +0(1/logn). (14)

Using the relation n</J,.,,2(/n) =(In - µ)/IT 2 + 0(1;:;- 1), we see that

nl~1! Pr { (X~ - ln)(ln - µ)/IT2 ::; x} = A(x). (15)

It follows directly from (15) that

E[X~] In + rl'(l)IT2 + o(l;:;- 1) (16)
n-µ

µ+ITJ2logn+O (loglogn/~) (17)

where r'(l) (Euler's constant) is the mean associated with A(x).
The variance vanishes asymptotically according to

Var[X~) =
4 r"(l) - r'(1)2

IT (/n _ µ) 2 (18)

r 11 (1) r'(1)2
1T2 - + 0 (loglogn/(logn)2) (19)

2logn '

where f"(l) - r'(1) 2 is the variance associated with A(x). (Here
we have used r'(-) and r"(-) to represent the first two derivatives
of the gamma function, respectively.) D

Proof of Proposition 2. Let {XM-.,M. = x JX;::; y} denote the
event that the maximal order statistic on Mk observations is x,
conditioned on all observations X; in the subset of size Mk be­
ing bounded above by y. Then the density of the k'h conditional
maximal order statistic obeys the relation

Pr { xiJ, , ... ,M. = x} (20)

= Pr x•k-l = Pr X* = x X· < d 100

"' { M,, ... ,M.-1 y} { M.,M. I I - y} y,

where

* { d (~)M• Pr {xM.,M. = x IX;::; y} = ti; Ffil. '
0 .
'

-oo < x::; y < 00

-oo < y < x < 00

(21)
is the probability distribution of the maximal order statistic on Mk
bounded observations.

46

Define V,.(x) = Pr{XiJ,, ... ,M. ::;x}. Then Vi(x) = F(x)M1.

Inductively assuming that Vk(x) = I:7=l a;,kF(x)M' gives a recur­
rence relation on the a;k of

a;k = a;k-1 Mk -M;' 1::; i < k, (22)

and
k M;

akk = Laik-1 M1 - M '
i=l • k

(23)

where au = 1. Consideration of the k - 1 degree Lagrangian
polynomial interpolating the points (M;, 1), 1::; i::; k, establishes
that

The distri):>ution is thus

Pr x•k < x = F x M; __ 3 __ k k (M·)
{ M,, .. .,M. - } L () IT M· - M· .

References

i=l j=l J I

j¢i

(24)

D (25)

[1] C. Bischof. Computing the Singular Value Decomposition on a Dis­
tributed System of Vector Processors. Technical Report TR-87-869,
Department of Computer Science, Cornell University, Ithaca, New
York, September 1987.

[2] C. Bischof and C. Van Loan. Computing the singular value de­
composition on a ring of array processors. In J. Cullum and R.
Willoughby, editors, Large Scale Eigenvalue Problems, pages 51-66,
Elsevier, 1986.

[3] K. A. Braun aJ)d Th. Lunde Johnsen. Hypermatrix generalization
of the Jacobi and Eberlein method for computing eigenvalues and
eigenvectors of Hermitian or non-Hermitian matrices. Computer
Methods in Applied Mechanics and Engineering, 4:1-18, 1974.

[4] R.P. Brent and F.T. Luk. The solution of singular-value and sym­
metric eigenvalue problems on multiprocessor arrays. SIAM J. Sci.
Stat. Comput., 6(1):69-84, 1985.

[5] J.E. Cohen. Subadditivity, generalized products of random matri­
ces and operations research. SIAM Review, 30(1):69-86, 1988.

[6] H.A. David. Order Statistics. J. Wiley and Sons, 2nd edition, 1981.

[7] P. J. Eberlein. On the diagonalization of complex symmetric matri­
ces. J. Inst. Math. Applic., 7:377-383, 1971.

[8] D.E. Foulser and R. Schreiber. The Saxpy Matrix-1: A general­
purpose systolic computer. IEEE Computer, 20(7):35-43, 1987.

[9] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hop­
kins Press, 1983.

(IO] C.G.J. Jacobi. Uber ein leichtes verfa.hren die in der theorie der sac­
ularstorungen vorkommendern gleich ungen n umerisch aufzulosen.
Crelle's Journal, 30:51-94, 1846.

[11) S. Karlin and H. Taylor. A Second Course in Stochastic Processes.
Academic Press, 1981.

[12] D.J. Kuck and A.H. Sameh. Parallel computation of eigenvalues
of real matrices. In Information Processing 1971, pages 1266-1272,
North-Holland, 1972.

[13] A.H. Sameh. On Jacobi and Jacobi-like algorithms for a parallel
computer. Math. Comp., 25:579-590, 1971.

[14] R.O. Schmidt. A Signal Subspace Approach to Multiple Emitter
Location and Spectral Estimation. PhD thesis, Stanford University,
November 1981.

[15] R. Schreiber and B. Parlett. Block reflector computation and appli­
cations. In R. Glowinski and J.L. Lions, editors, Computing Meth­
ods in Applied Sciences and Engineering, North Holland, 1986.

[16] C. Van Loan. The block Jacobi method for computing the singular
value decomposition. In C. Byrnes and A. Lind<:tuist, editors, Com­
putational and combinatorial methods in systems theory, pages 245-
256, North-Holland, 1986.

An Optimal Parallel Jacobi-Like
Solution Method

for the Singular Value Decomposition

G. R. Gao and S. J. Thomas •

January, 1988

Abstract

A new parallel Jacobi-like solution method for the
singular value decomposition (SVD) is presented which
is optimal in achieving both the maximum concurrency
in computation and the minimum overhead in commu­
nication. Unlike previously published parallel SVD al­
gorithms based on a nearest neighbour ring topology for
communication, the new algorithm introduces a recur­
sive divide-exchange communication pattern. As a re­
sult of the recursive nature of the algorithm, proofs are
given to show that it achieves the lower bounds both in
computation and communication costs. In general, the
recursive pairwise exchange communication operations
of the new algorithm can be efficiently supported by
multiprocessors with interconnect patterns used in many
networks that have been proposed to support large-scale
parallelism. As an example, this paper illustrates that
the new algorithm can be mapped efficiently and natu­
rally onto hypercube architectures. Preliminary results
with an implementation of the new algorithm are re­
ported. Convergence aspects of the new algorithm are
briefly discussed. A comparison with related work is
outlined.

1 Introduction

Rapid technological advances in multiprocessor architectures
have aroused much" interest in parallel computation. Parallel
methods to compute the singular value decomposition (SYD)
have received attention due to its many important applications
in science and engineering. A recent paper by Heath et al [8]
includes a history of various Jacobi-like SVD algorithms.

An early investigation into parallel computation for the
symmetric eigenvalue problem, on the SIMD Illiac IV is de­
scribed by Sameh in (18]. Sameh outlines the criteria for max­
imal parallelism in a Jacobi-like algorithm. More recently, a
number of authors including Berry et al [1] advocate the one­
sided SVD of Hestenes [9], [8], [15] for parallel computation
of the SVD. Luk and his co-workers have examined various
systolic array configurations to compute the SVD [12], [3], [4].
Brent and Luk (4] have invented a linear array of n/2 proces­
sors which implements a one-sided Hestenes algorithm, that
in real arithmetic, is an exact analogue of their Jacobi method
applied to the eigenvalue problem. The array requires O(mnS)
time, where S is the number of sweeps (typically ~ 10). Brent
and Luk demonstrate that their algorithm is computationally
optimal in the sense that it requires the minimum number of
computational steps per sweep i.e. n - 1, to ensure the exe­
cution of every possible pairwise column rotation. Maximum
concurrency is maintained throughout the computation. Their
systolic array is comparable to the architecture of a nearest­
neighbour linear array of processors, where communication is
based on a ring topology.

Brent and Luk's algorithm is not optimal in terms of com­
munication overhead. Unnecessary costs are incurred by map­
ping the systolic array architecture onto a ring connected linear
array due to the double sends and receives required between
pairs of neighbouring processors. Eberlein [5], Bischof [2] and

"School of Computer Science, McGill University, Montreal, Quebec,
Canada, H3A 2K6. This work was partially su.pported by the Natural
Sciences and Engineering Research Council of Canada under Grant A9236.

47

others have proposed various modifications for hypercube im­
plementations, which require the embedding of rings via binary
reflected Gray codes.

In this paper, we present a new parallel Jacobi-like solu­
tion method for the SVD which is optimal in achieving both
the maximum concurrency in computation and the minimum
overhead in communication. Unlike previously published paral­
lel SVD algorithms based on a nearest neighbour ring topology
for communication, the new algorithm proposed in this paper
introduces a recursive divide-exchange communication pattern.
As a result of the recursive nature of the algorithm, proofs
are given to show that it achieves the lower bounds both in
computation and communication costs. Convergence aspects
of the new algorithm are briefly discussed. The paper illus­
trates that the new algorithm can be mapped efficiently and
naturally onto hypercube architectures. We have implemented
the new algorithm on the Intel hypercube through simulation
and the preliminary results will be discussed. A comparison
with related work is briefly outlined. We believe that the new
algorithm can be efficiently mapped onto multiprocessors with
interconnection patterns that have been proposed to support
large-scale parallelism such as the many PM2I-based or cube-
based networks (20].

2 Jacobi-like Algorithms

2.1 The Singular Value Decomposition

The singular value decomposition (SVD) of a general non­
square matrix may be given as follows,

Theorem 2.1 For a real matrix A(m x n) of rank r, there
exists orthogonal matrices U(m x m) and V(n x n), such that

UT AV= E = diag(ui,u2,···) ~ O,

where the elements of E(m X n) may be ordered so that

u1 ~ u2 ~ ··· ~ u, > Ur+l = ··· = Uq = O, q = min{m,n}.

If m = n, Eis a square diagonal n x n matrix [11].
In order to compute the SVD in an iterative fashion, a se­

ries of plane rotations may be applied to the matrix A(m x n)
described in theorem 2.1 above. This approach is similar in
nature to Jacobi's original method for computing the eigenval­
ues of a symmetric matrix where orthogonal matrices J(i,j, 0)
are applied so as to annihilate a symmetrically placed pair of
the n(n - 1) off-diagonal elements. These rotation matrices
differ from the identity matrix of order n by the principal sub­
matrix formed at the intersection of the row and column pairs
corresponding to i and j. A 2 x 2 submatrix has the form

[~s : J

The cosine and sine of the rotation angle 0 are the constants
c = cos 0 and s = sin 0. Initially A1 = A and at the k-th
iteration,

A11+1 = J(i1o,J1o,fJ1o)T A1oJ(i1o,J1o,fJ1o).

Rotations are applied simultaneously, in a symmetric fashion
from the left and right. Cyclic Jacobi methods refer to a se­
quence of rotations which update row and column pairs in some
predetermined order. For a square matrix, a cyclic sweep.refers
to the updating of n{n-1}/2 elements. A number of sweeps-are
required in order to effectively reduce the off-diagonal mass of
the matrix to a sufficiently small value, which eventually can be
ignored. A diagonal containing the eigenvalues then re!Ilains.

Annihilation of 2 off-diagonal elements of a symmetric matrix
takes the form,

(~+1) .]
a;;

Kogbetliantz appears to have been the first to apply this method
to general nonsymmetric matrices [10] {see [8] and [7]). We can
generalize the above equation to the computation of a 2 X 2
SVD, by using two different orthogonal rotation matrices [8].
A serial-cyclic sweep of a general m X n matrix A can be per­
formed either by a cyclic-by-row or a cyclic-by-column·scheme.

As noted by Brent et al [4] and others, serial cyclic-by-row
and cyclic-by-column schemes are not suitable for parallel com­
putation due to column and row conflicts throughout. In §2.2
we shall indicate that orderings suitable for parallel computa­
tion would apply l n/2 j rotations simultaneously. In terms of
convergence for algorithms which compute the SVD in a cyclic
manner we may appeal to the results of Paige and Van Dooren
[16].

2.2 Exploiting Parallelism

Sameh was one of the first researchers to observe that there
is a bound on the number of rotations which may be applied
in parallel [18], [1], [19]. Given a general m x n matrix, a
Kogbetliantz cyclic sweep consists of a maximum of

N = max{m,n}(max{m,n}-1)
2

pairs of rotations. Our goal is to complete a sweep in the mini­
mum number of parallel steps each consisting of the maximum
number of rotations applied in parallel. In addition the maxi­
mum number of processors should be kept busy at all times.

Criteria such as these were originally formulated by Sameh
[18]. For square matricecs with n(n - 1)/2 elements above
the main diagonal, it is possible to update or annihilate ln/2J
elements at a time. Defining r = l{n + 1)/2J, we can have
(2r - 1) rotation sets applied per sweep. To summarize,

1. An orthogonal rotation set must annihilate or update
ln/2J elements.

2. A sweep should annihilate each off-diagonal element only
once. This implies each of {2r - 1) orthogonal rotation
sets should annihilate or update l n/2 J elements.

The size of a rotation set is simply determined by the max­
imum number of non-conflicting column pairings possible. For
example, given an n x n square matrix with n = 4 we may
simultaneously apply 2 rotations from the left or right. This is
equivalent to multiplication by an orthogonal matrix V of the
form,

v - [-~. ~:. :: :: l
48

The number of parallel iterations in a computation is therefore
bounded below by

n(n-1) 1
2 x ln/2J

{2.1)

or equivalently,

2r _ 1 = { n n odd
n-1 neven

Proposition 2.2 For n a positive integer, if r = l(n + 1)/2J
then

n(n - 1) 1

2 x ln/2J

Proof, Consider two cases,

2r -1

n odd
n even

Case 1. When n is even, ln/2J = n/2 so that,

n(n -1) 1
2 xln/2J=n-1.

{2.2)

Furthermore since n is even, n + 1 is odd, hence l(n +
1)/2J = ln/2J = n/2 and

2r - 1 = 2 (~) - 1 = n - 1.
~/

Case 2. When n is odd, ln/2J = l(n -1)/2J = (n-1)/2 and

n(n -1) 1
2 xln/2J=n.

With n odd, n+ 1 is even, so that l(n+ 1)/2J = (n+ 1)/2
and

(n+l) 2r - 1 = 2 - 2- - 1 = n.

If we assume that n is even, then not all algorithms de­
scribed in the literature have achieved the n - 1 lower bound.
Sameh's implementation of Hestenes' one-sided computation
on a linear array of processors requires 3n - 2 parallel itera­
tions per sweep [19], whereas Brent and Luk report that they
achieve the minimum with their systolic array [4].

2.3 A One-sided Computation

When we consider general non-square m x n matrices where
m > n there exists a convenient computation for the SVD
whi-;;-h is appropriate for parallel implementation. This method
is based on a one-sided computation originally due to Hestenes
[9]. It is referred to as one-sided because orthogonal rotations
are only applied from the right, updating columns. Brent and
Luk's [4] systolic array implements Hestenes' algorithm. Basic
operations in each processor of their array reflect a tournament
ordering scheme for rotations performed in parallel. The per­
formance of their scheme is analyzed in §3. Eberlein [5] has pro­
posed a block variant of Heste:µes' algorithm on a hypercube,
suitable for computing either singular values or eigenvalues of
symmetric matrices.

Hestenes' one-sided computation produces an orthogonal
matrix V and a matrix Q with orthogonal columns such that

(2.3)

where A is m x n, m ~ n. The Euclidean norms of the columns
will be equated with the singular values of A.

qf q; = o}S;;, i, j = 1, .. . ,n.

By normalizing the columns, we see that the SYD of theorem
2.1 is implicit in (2.3)

Q = UE, A= UEVT

A one-sided algorithm is somewhat different from its earlier
counterparts, as rotations are applied from the right and there­
fore only columns are affected. Off-diagonal elements are no
longer annihilated, instead rotations are designed in order to
produce two orthogonal columns. As with similar Jacobi-like
algorithms, the orthogonal matrix V may be accumulated from
plane rotations J(i,j,IJ) which differ from the unit matrix In
in a 2 x 2 principal submatrix containing the cosines and sines
of the rotation. Setting Ai = A, the k-th iteration updates A.1:

Ak+1 = AkJ(i,j,IJk)·

If the matrix sequence Ak converges, the result is Q in (2.3).
A column update via a 2 x 2 submatrix takes the form

[(k) (k)] [c -8] = [(k+l) (k+l)] a, , a3 8 c, a, , a, ,

The orthogonality condition determines the rotation angle IJ.

(2.4)

By avoiding a potential loss of significant digits the magnitude
of the angle may be restricted to IOI ~ n:/4 and provides for­
mulae for the rotation (see Nash [15] and Rustishauser [17]).

As noted by Brent and Luk [4], if a cyclic-by-row rotation
ordering is chosen to update the n(n - 1)/2 column pairings
determined by the off-diagonal elements above the main diago­
nal, convergence would follow. Hestenes' computation is math­
ematically equivalent to a Jacobi algorithm applied to AT A,
therefore we expect that the convergence analyses of Forsythe
and Henrici [6] or Wilkinson [22] are applicable und~r these cir­
cumstances. Rather than testing for convergence, the threshold
Jacobi method originally introduced in the symmetric eigen­
problem is often employed [23, pp. 277-278], (17].

3 Parallel Computation

3.1 Maximizing Concurrency

In this paper the computation cost is measured by the number
of parallel computation steps. The methods discussed process
(i,j) pairings consisting of partitions containing at least 1 col­
umn or row. When n is even, if we assume one parallel com­
putation step has unit cost, then of the algorithms presented
the minimum cost achieved is n - 1 per sweep. The systolic ar­
ray and associated algorithm proposed by Brent and Luk were
proven to achieve this lower bound in [4]. We have illustrated
their basic scheme in figure 1 for the case n = 8, where a linear
array of four processors {Pi,~' Ps, P4} is used.
3.2 Minimizing Communication Costs

Another important performance criteria for a parallel algorithm
is the total communication cost. For our purposes the commu­
nication cost can be measured by the total number of inter­
processor transactions (messages). A transaction consists of a
column transmission between a pair of processors. The total
communication cost of one sweep will be denoted C.

From the last section, we know that the minimum number
of computation steps in a sweep is K = n - 1. The minimum
number of interprocessor transactions is achieved when each
processor retains one column from a pairing, and transmits the
other to a destination processor. As a result, if there are p pro­
cessors, p transmissions are performed between two consecutive
steps. Hence the minimum total communication cost Cmin is

49

Step

Pl

P2

Pl

P4

Figure 1: Brent and Luk's Systolic Array

defined by the following.

Cmin = (K - l)p. (3.1)

In the parallel one-sided SYD algorithm each processor is as­
signed one of n/2 column pairs at each step, assuming n is even.
The total number of processors required is p = n/2 in (3.1) and
the communication costs are O(n2).

Cmin (K- l)p
n(n - 2)

2

As a contrast, a global broadcasting strategy may request
each processor to send both columns to all other p-1 processors
between each step. The total cost for this case will be O(n3).

Brent and Luk's algorithm has the following communication
cost.

CBL (K - 1) X 2p

(n-2)x2G)

n(n - 2).

Therefore their algorithm is close to, but not quite optimal.
In fact the inefficiency lies in the double sends and receives
between processors in the systolic array which are dictated by
the tournament ordering.

Several ways of modifying Brent and Luk's algorithm to
avoid the double sends and receives have been proposed [13],
[14], [5], [2]. These algorithms all represent a communication
regimen based on a ring topology. A ring topology resembles
the architecture of a linear array of processors. Embedding a
ring within another topology, for example the bin~ry n-cube,
requires a special mapping scheme.

4 An Optimal Parallel SVD Algorithm

In this section we present a new parallel Jacobi-like algorithm
which is optimal in terms of both achieving maximum concur­
rency and minimum communication overhead. The algorithm
relies on a recursive divide-exchange of n = 2" columns.

Unlike several orderings cited earlier, the new algorithm
maps naturally onto parallel architectures which support re­
cursive pairwise exchanges. A mapping onto a hypercube is
presented as an example in §5. Pairwise exchanges of columns
here are specified by a Perfect Shuffle of processor addresses
[21].

4.1 The Parallel Algorithm

Let us first illustrate the basic principle of the new algorithm
through an example where n = 8 and p = 4. The computation
steps K1 and communication steps X1 consisting of pairwise
exchanges, are shown in figure 2.

Pl

P2

P3

P4

Figure 2: Recursive Divide-Exchange

Initially the 8 column indices are divided into two sets.

G1={1,3,5,7}, G2={2,4,6,8}. (4.1)

The pairs {(1,2), (3,4), (5,6), (7,8)} E Gi x G2 are assigned,
in order, to processors in the set P = {P1, P2, Ps, P4}.

The algorithm for n = 2ct = 28 = 8 consists of three parts:

Part 1: Compute-Exchange stage. The first stage consists of
n/2 = 4 computation steps {K1, K2, Ka, K4} and n/2 -

1 = 3 communication (exchange) steps {Xi,X2,X8}. In
one computation step, each processor performs a plane
rotation on an (i,j) pairing. A communication step X1
exchanges columns with indices in G2 between processor
pairs.

Part 2: Divide step. Processors are divided into two sets

The column indices in G1 are divided into two subsets,

Gs= {1, 3}, G4 = {5, 7},

and are assigned to P1. Similarly, G2 is split into

G5 = {2,4}, Ge= {6,8},

and assigned to P2, as indicated in figure 2 by step D 1 •

Part 3: Recursively solve the two subproblems using a scheme
similar to parts 1 and 2. A subproblem consists of n' =
n/2 = 4 column pairs and n' /2 = 2 processors.

In order to specify the pairwise exchange of columns be­
tween processors described in part 1 above we introduce the
notion of distance between processors. Given an index set
S = {1, 2, ... , N} synonymous with processor addresses and
a set of processors P = {P;: i ES} we have,

Definition 4.1 The distances E S between processors P;, E P
and P;2 E P is defined to be · .

s =Iii - i2I

50

The algorithm (for n = 2ct, d = 3) .can be unwound into a
sequence of d = 3 compute-exchange stages (with one divide
step between each pair of successive compute-exchange stages)
as shown in figure 2.

{K1,X1,K2,X2,Ks,Xs,K4,D1,K5,X5,Ks,D2,K1}.

Each exchange step X1 is a parallel pairwise exchange of
column indices in G2 between processor pairs (P;.,P;2), where
P;, and P;2 are at a distance 2\ (h 2".: O, h an integer and
ii < i2). Furthermore, the binary representations of i1 and
i2 may only differ in bit position h. For example, the three
communication steps X1, X2 and Xs result in the exchange
pairings illustrated in figure 3.

X1 P; ,P; s
X1 (P1,P2), (Ps,P4) 2
X2 (Pi, Ps), (P2, P4) 21
Xs Pi,P2), (Ps,P4 2°

Figure 3: Parallel Processor Pairings

In general, the algorithm (for n = 2d) can be unwound into
a sequence of d compute-exchange stages (with one divide step
between each pair of successive compute-exchange stages). If
we number the d compute-exchange stages by k : k = 1, ... , d,
the k-th compute exchange stage consists of 2d-!: = n/2k com­
putation steps K1, l = 1, ... , 2d-k and 2ct-k - 1 communication
(exchange) steps X1, l = 1,. .. , 2d-k - 1 forming

{K1,X1, K2,X2, ... , X2d-•-1, K24-•}.

1. At each computation step Ki, processors concurrently
compute rotations on their assigned column pairings.

2. At each communication step X1 a parallel pairwise ex­
change of columns with indices in G2 is performed be­
tween processors pairs at a distance 2h, where h is given
by the function,

q is the largest integer which satisfies 2q ~ l.

4.2 Computation and Communication Costs

Let n = 2ct, and the total number of computation steps be f (n).
If g(n) is the number of computation steps in stage 1 then a
recurrence relation for f (n) is

f(n) = g,(n) + f(n/2)

From our description of the algorithm we have g(n) = n/2,
hence

f(n) = { n/2 + f(n/2) n ~ 2,
1 n-2. (4.2)

Solving the recurrence (4.2), we have f(n) = n - 1. Therefore,
we have verified the fact that the new parallel algorithm has
achieved the optimal computation cost. The reader should note
that in solving the' above recurrence, a geometric progression
corresponding to the stage lengths results.

To establish that we have achieved the optimal communi­
cation cost consider a stage k consisting of 2d-!: computation
steps and 2d-!: -1 cor:rununication steps. For n- 1 total compu­
tation steps, d stages are required. The inter-stage divide steps
account for d - 1 of the total. The total number of communi­
cation steps c(n) may be derived from a recurrence relation.

() - { n/2+c(n/2) n > 2,
c n - 0 n = 2. (4.3)

Solving (4.3), we obtain c(n) = n - 2. Multiplying by the
number of processors p = n/2 gives the communication costs
ODE for our recursive divide-exchange algorithm. We have
achieved the optimum since ODE= Omin·

n(n - 2)
OvE = (n - 2)p = 2 .

Referring to our example in figure 2, 4 column transactions
have occurred at each communication step with a total cost of
6 x 4 = 24 transactions, which is optimal.

5 Mapping onto the Hypercube

In order to map the recursive divide-exchange algorithm of §4
onto a hypercube architecture we must first specify the oper­
ations performed by each processor in the cube. Given the
two major components of our algorithm, namely a compute­
exchange and a divide, deriving an algorithm for individual
processors is straightforward. Due to the tail-recursion in the
parallel SVD algorithm, it may be transformed into an iterative
form.

Algorithm Divide-Exchange

for k = 1 to d do
for I = 1 to 2d-k - 1 do

Compute (i,j)
q = h(l)
Exchange 2q

end
Compute (i,j)
Divide 2d-k-l

end

The step "Compute (i,j)" refers to a column update in the
parallel version of Hestenes' one-sided computation. Using the
terminology introduced in §4, each processor cycles through a
Jacobi-sweep consisting of d stages. A divide step, exchanging
at a distance of 2-1 would not be carried out. The function
h(l) computes the height of an exchange node Xi, where I is
the label number derived by an inorder traversal of a complete
binary tree.

Function h(l)

begin
q= llog2 lj
t = 1- 2q
ift = 0 then

return q
else

return h(t)
end

end

51

The relative ease of mapping a recursive divide-exchange
onto the hypercube is due to the recursive nature of the hyper­
cube itself. The fact that a hypercube is recursively constructed
out of lower dimensional subcubes may be exploited. A di­
vide step in our algorithm corresponds to a subdivision of the
problem, allowing computations to proceed on the subcubes.
Exchanges will always consist of communication between pairs
of nearest neighbours on the hypercube. A cube of dimension
d - 1 is required for a problem with n = 2d. The computa­
tion and communication steps are determined by the exchange
sequence shown in figure 3.

5.2 Processor Pairings

Nearest neighbour processor pairings on the hypercube may
be determined by a Perfect Shuffle of node addresses. Stone's
original paper [21] details the generation of such pairings via
a left cyclic shift of the bits in an address. A perfect shuffle
of an N element vector is a permutation P of the indices or
addresses a of the elements such that

{ 2a 0::; a::; N/2 - 1,
P(a)= 2a+l-N N/2::;a::;N-1. (5.1)

Consider the binary representation of an integer address for
which N = 2d. Individual bits at position i are denoted a;.

a = ad-12d-l + ad-22d-2 + · · · + a12 + ao (5.2)

A perfect shuffle (5.1) of an address a creating a new address
a' corresponds to a left cyclic shift of all bits a; to a;+1 with
the leftmost bit ad-1 wrapped around to ao [21].

a'= ad-22d-l + ad-32d-2 + · · · + ao2 + ad-1

Our earlier requirement for a pairwise exchange of columns
at a distance 2h is easily satisfied, due to the geometry of a
hypercube. The implication is that for addresses of the form
(5.2), a difference in a single bit a; indicates a distance of 2i. We
also note that the addresses of neighbouring processors in the
hypercube differ in only one bit position. Exchanges, therefore,
will always be between directly connected neighbours.

Processor nodes in a hypercube are labelled from 0 to 2d -1,
for example in a 3-dimensional cube there are 8 processors with
addresses 0 to 7. We can use the perfect shuffle to generate
processor pairings required for exchanges at a distance which is
a power of 2. This may be illustrated by an example with d = 3.
Initially processor pairings for exchanges are at a distance of

node a node O! node a"
0 000 0 000 0 000
1 001 2 010 4 100
2 010 4 100 1 001
3 011 6 110 5 101
4 100 1 001 2 010
5 101 3 011 6 110
6 110 5 101 3 011
7 111 7 111 7 111

Figure 4: 3-Dimensional Processor Pairings

1. After a perfect shuffle from addresses a to a' exchanges may
take place at a distance of 2, from a' to a" at a distance of 4
and so on. Processor pairings before and after a perfect shuffle
are given in figure 4.

The exchange and divide steps required to complete one
sweep of a Jacobi-like algorithm, when n = 24 = 16 are illus­
trated in figure 5.

There are 15 computation steps, The column pairs
(i,j) at each step are w~itten in the processor nodes,
The communication links ·used between the computation
steps are marked,

Figure 5: Divide-Exchange on a 3-Cube

5.3 Computational Results

An implementation of Hestenes' one-sided SVD via the non­
recursive version of our algorith~ was written in 'C' for sub­
sequent testing and analysis on the Intel iPSC hypercube. A
simulator for the hypercube was provided by Intel Scientific
Corp. to McGill University for a SUN 3/280 running the BSD
4.3 operating system. This SUN has an IEEE 754 standard
co-processor with a floating point precision of e = 2.22 x 10-16

in double precision arithmetic.
A threshold Jacobi method, as described in §2, was em­

ployed to insure proper termination of the algorithm. Following
the methods introduced by Berry et al in [l] for computation
on an array processor, each node processor in the hypercube
maintains a counter istop. The counter is incremented by a pro­
cessor when one of its assigned column pairs (i,j) is deemed to
be orthogonal according to a threshold parameter r. For the
purposes of our tests we chose T = ellAllF·

The parallel computation terminates at the end of a sweep
if each of the n/2 processors report istop counts of n - 1. For a
series of random 8 x 8 matrices generated using the interactive
matrix software package Matlab, we typically observe conver­
gence in the hypercube computation after 6 sweeps.

Finally we have observed a communication pattern for ran­
dom 16 x 16 matrices matching exactly with that shown in
figure 6.

52

6 Conclusions and Future Research

We have described a new optimal parallel Jacobi-like algorithm
for the singular value decomposition (SVD). We have demon­
strated that the new algorithm can be mapped naturally onto
hypercube architectures, effectively utilizing the nearest neigh­
bour communication capacity throughout the computation. In
general, the recursive pairwise exchange communication opera­
tions of the new algorithm can be efficiently supported by mul­
tiprocessors with interconnect patterns used in many networks
that have been proposed to support large-scale parallelism [20].
For example, we believe that the new algorithm can be mapped
effectively onto SIMD or MIMD parallel computers with inter­
connection networks such as PM21-based networks and cube­
based networks These interconnection networks have the par­
titionability property: the ability to divide the network into
independent subnetworks of different sizes [20], which match
the recursive divide-exchange structure of the new parallel al­
gorithm proposed in this paper.

We suggest the following future research directions: Study
extensions of the new algorithm to various forms of the SVD,
to the unsymmetric eigenvalue problem and to the generalized
eigenvalue problem A:z: =>.Bx. Furthermore, we would like to
gather empirical information concerning convergence properties
from numerical simulations.

7 Acknowiedgements

Intel Scientific Corp. provided us with a hypercube simulator
which allowed us to test the new algorithm. Martin Santavy
gave many valuable comments concerning the details of soft­
ware development for. the hypercube, particularly in the area
of synchronization problems. The figures were prepared with
the help of Peggy Gao. We would especially like to thank Prof.
Chris Paige for many helpful comments and corrections related
to historical background and convergence results.

References

[l] M. Berry and A.H. Sameh, "Multiprocessor Jacobi algo­
rithms for dense symmetric eigenvalue problems and singu­
lar value decompositions", Proceedings of the International
Conference on Parallel Processing, 1986.

[2] C. Bischof, "The two-sided Jacobi method on a hyper­
cube", SIAM Proceedings of the Second Conference on Hy­
percube Multiprocessors, 1987.

[3] R. P. Brent, F. T. Luk and C. F. Van Loan, "Computation
of the singular value decomposition using mesh-connected
processors", J. VLSI Computer Systems, 1, (1985), pp.
242-270.

[4] R. P. Brent and F. T. Luk, "The solution of singular-value
and symmetric eigenvalue problems on multiprocessor ar­
rays", SIAM J. Sci. Stat. Comput, 6 (1985), pp. 69-84.

[5] P. J. Eberlein, "On using the Jacobi method on the hy­
percube", SIAM Proceedings of the Second Conference on
Hypercube Multiprocessors, 1987.

[6] G. E. Forsythe and P. Henrici, "The cyclic Jacobi method
for computing the principal values of a complex matrix",
Trans. Amer. Math. Soc., 94, (1960), pp. 1-23.

[7] G. H. Golub and W. ·Kahan, "Calculating the singular
values and pseudo-inverse of a matrix", J. SIAM Ser. B:
Numer. Anal. 2, (1965), pp. 205-224.

[8] M. T. Heath, A. J. Laub, C. C. Paige and R. C. Ward,
"Computing the singular value decomposition of a product
of two matrices", SIAM J. Sci. Stat. Comput., 7 (1986),
pp. 1147-1159.

[9] M. R. Hestenes, "Inversion of matrices by biorthogonal­
ization and related results", J. Soc. Indust. Appl. Math.,
6 (1958), pp. 51-90.

[10] E. G. Kogbetliantz, "Solution of linear equations by diag­
onalization of coefficients matrix", Quart. Appl. Math., 13
(1955), pp. 123-132.

[11] C. Lawson and R. Hanson, Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, N .J ., 197 4.

[12] F. T. Luk, "A triangular processor array for computing
singular values", Linear Algebra Appl., 77 (1986), pp. 259-
273.

[13] F. T. Luk and H. Park; "On parallel Jacobi orderings",
Cornell University, School of Elec. Eng. Report, EE-CEG-
86-5, 1986.

[14] J. J. Modi and J. D. Pryce, "Efficient implementation of
Jacobi's diagonalization method on the DAP", Nu.mer.
Math., 46 (1985), pp. 443-454.

[15] J. C. Nash, "A one-sided transformation method for the
singular value decomposition and algebraic eigenproblem",
Comput. J., 18 (1975), pp. 74-76.

[16] C. C. Paige and P. Van Dooren, "On the quadratic conver­
gence of Kogbetliantz's algorithm for computing the singu­
lar value decomposition", Linear Algebra Appl. 77 (1986),
pp. 301-313.

[17] H. Rutishauser, "The Jacobi method for real symmetric
matrices", Nu.mer. Math., 16, (1966), pp. 205-223.

[18] A.H. Sameh, "On Jacobi and Jacobi-like algorithms for a
parallel computer", Math. Comp., 25, (1971), pp. 579-590.

[19] A. H. Sameh, "Solving the linear least squares problem on
a linear array of processors", Algorithmically Specialized
Parallel Computers, Academic-Press, 1985, pp. 191-200.

[20] H. J. Siegel, Interconnection Networks for Large-Scale
Parallel Processing, Lexington Books, D.C. Heath and Co.,
Mass., 1985.

[21] H. S. Stone, "Parallel processing with the perfect shuffie",
IEEE Trans. Comput., c..:20 (1971), pp. 153-161.

[22] J. H. Wilkinson, "A note on the quadratic convergence of
the cyclic Jacobi process", Nu.mer. Math., 4 {1962), pp.
296-300.

[23] J. H. Wilkinson, The Algebraic Eigenvalue Problem,
Clarendon-Press, Oxford, 1965.

53

Modeling and Optimal Scheduling of Parallel Sparse Gaussian Elimination

P. Sadayappan

Department of Computer and Information Science
The Ohio State University, Columbus, Ohio 43210

V. Visvanathan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Directed Acyclic Graphs (DAGs) have been extensively used to
model parallel sparse Gaussian Elimination and its scheduling on
1m1ldprocessors, even though their use leads to sub-optimal
schedules. In this paper, task graphs containing directed edges as
well as undirected edges, called Minimally Constrained Task
Graphs (MCTGs) are proposed to model parallel sparse
Gaussian Elimination. An algorithm for scheduUng MCTGs on
1m1ldprocessors Is presented and the generated schedule Is
proven optimal The scheme ls evaluated using a number of
pracdcal matrices arising from circuit simulation and shown to
be slgnlftcantly better than scheduling using DAGs.

1. Introduction

The repeated solution of large sparse linear systems
of equations using Gaussian Elimination (GE), or a variant
thereof, is a computationally intensive component of many
practical applications such as structural analysis, circuit
simulation etc. Consequently there is considerable interest in
parallelizing the solution of sparse matrices[l-9,11-15]. In
order to identify the maximal degree of potential parallelism
in sparse GE, it has been customary to view the computation
at the level of elementary arithmetic operations using a
directed acyclic graph (DAG). The vertices of such a DAG
denote elementary arithmetic operations and edges between
vertices represent execution dependencies between the
operations. The dependence structure of the DAG is
determined by a "symbolic" trace of the sequential form of
the GE algorithm, creating edges from each given vertex to
all vertices that use the value generated by it [2,5]. h has
been recognized that the use of such a DAG for scheduling
the operations of GE on a multiprocessor can result in sub­
optimal schedules [5], but the resolution of this problem has
not been previously pursued.

The problem with the use of a DAG based on
symbolic unraveling of the sequential GE algorithm, for
identifying dependence constraints on parallel execution of
GE, is that the accumulative updates to any matrix element
are unnecessarily constrained to take place in exactly the
same order that they would be performed with sequential
GE. In this paper, we propose the use of task graphs with
directed edges as well as undirected edges to model parallel
GE. Directed edges are used only to represent strict temporal
dependencies, while undirected edges model constraints on
the non-simultaneity of execution of multiple updates to a
common matrix element. We refer to these task graphs as
Minimally Constrained Task Graphs (MCTGs) and present
an algorithm to schedule such graphs on a shared-memory
multiprocessor. The optimality of scheduling parallel GE

54

using the proposed scheduling algorithm is proved under the
idealized model of a Concurrent Read Exclusive Write
(CREW) multiprocessor with unbounded number of
processors.

Optimal scheduling of DAGs on an idealized
unbounded multiprocessor is very simply done using
critical-path scheduling. Thus previous studies on parallel GE
under the CREW model have typically focussed on heuristics
for one of the following two (NP-<:omplete) problems: 1)
Given the zero-nonzero structure of a matrix, find a
permutation for the rows/columns of the matrix so that the
task graph (DAG derived from the dependence structure of
the operations constituting sequential GE on the permuted
matrix) has minimum depth (and hence minimal finishing
time) [2,5,12,15]; and 2) Given a specific ordering
(permutation) of rows/columns, find a schedule for a finite
number of processors that minimizes finishing time [13,14].
In this paper, we do not focus on either of the above issues -
matrix reordering for parallelism or seheduling on a limited
number of processors. Rather, we focus on the fact that the
underlying DAG-based model of parallel GE used by earlier
studies is inherently overconstraining, and we provide an
approach to avoid this problem using the notion of MCTGs.
We present this framework under an idealized machine
model; however the concept of MCTGs has wider
ramifications and is more appropriate than a DAG-based
model for the other problem formulations in this context.

The paper is organized as follows. In section 2, we
use an example from [5] to explain the problem of
suboptimality of scheduling with overconstrained DAGs. In
section 3, we propose the use of MCTGs and provide an
algorithm for scheduling MCTGs on an idealized
multiprocessor. In section 4, we prove the optimality of the
assignment generated by the scheduling algorithm for
MCfGs arising with sparse GE. Section 5 is concerned with
empirical evaluation of the algorithm. Various test matrices
arising from the application domain of circuit simulation are
used in the study. The scheduling algorithm proposed in this
paper results in completion times that are up to forty percent
less than that achieved by the DAG-based algorithm.
Section 6 concludes the paper with a brief .discussion.

2. DAG Based Scheduling of Parallel Sparse GE

We first outline the sparse GE algorithm for the
solution of linear systems of equations. In solving the system
Ax :::: b, where A is a sparse N xN matrix and b is an N­
vector, values for the N-vector x are sought that satisfy the
simultaneous equations. As is usual, for convenience of

representation of the algoritlun, we represent the right hand
side vector b as an additional N + l 'st colwnn of A.

In sparse GB, the order in which the variables ~
eliminated has a significant impact on the number of fill-ms
(zero elements of A that become non-zero during the
elimination process) created and hence the tot~ ~um~r ~f
arithmetic operations. Therefore, the actual elimination 1s
preceded by an ordering phase, in whi~h: b~ on the ze~
nonz.ero stmctwe of the matrix an elimination order which
reduces the number of fill-ins is detennined[lO]. This
ordering is then used for repeated solution of different sets. of
equations with the same zero-nonzero_ structure. Also •. during
the ordering phase the actual locations of the fill-ms are
detennined. Thus, in the following when we refer to a non­
zero element of A it pertains to the filled-in matrix rather
than the original one.

/* MA1RIX TRIANGULATION */
Ml for k = l.)'I
M2 for each j in [k+l.)'I +l] such that At; :ii: 0 do

At; t- At/A11:
endfor M2

M3 for each i in [k+l.)'I] such that A;t :ii: 0 do
M4 for each j in [i+l.)'l+l] such that At; :ii: 0 do

A;1 t- A;; - ~*AtJ
end for M4

end for M3
end for Ml

/* BACK SUBSTITUTION */
Bl fork = N,1,-1 ·
B2 for each j in [k+l .)'I] such that Aki :ii: 0 do

At,N+l t- At,N+I - At/Aj,N+I
end for B2

end for Bl

Figure 1. Sparse Gaussian Elimination Algorithm

GB (outlined in figure 1) consists of two steps - 1)
matrix triangulation, and 2) back substitution. Matrix
triangulation may be viewed as a sequence of elementary
operations - either the division of a matrix element by the
diagonal element in that row, or an incremental multiply­
subtract (update) operation on a matrix element. The back­
substitution phase of GE involves only update operations.
We focus in our exposition only on the triangulation phase of
GE, but all our observations relating to the update operations
in the triangulation phase are directly applicable to the
update operations of the back-substitution phase also. Thus,
in the following, we sometimes refer to the triangulation
phase of GB simply as GE. The scheduling issues for
variants of Gaussian Elimination, such as LU factorization
with forward/back substitution are also essentially the same.

Figure 2 shows an example of a sparse matrix (taken
from (5)) and the sequence of elementary operations that
constitute the triangulation phase of GB for this matrix. 1 This
sequence of operations is obtained by symbolically tracing
the above GB algorithm. A sequential execution of the GE
algorithm involves stepping through this operation list in

I. Jn onler to remain conais- with the example used in [S] the operations
on the r.h.a. vectcr ..., omitllOd. However, this doea not affioct our
praentation.

55

order. A parallel implementation of GB will req~ the s~e
set of operations to be performed, each operati~ being
executable as soon as data-dependence constraints are
satisfied. The dependence constraints can be captwed by a
graph, as shown in figure 3a. Vertices of _this ~h re~sent
the elementary operations of the operation list. A directed
edge is drawn from a vertex to another if the value. generated
by the sowce vertex is utilized by the computation at the
destination vertex. Such a DAG can be used to schedule the
operations of GE on a parallel computer - a vertex (task) can
be scheduled as soon as all the tasks that are represented as
sowce vertices of its incoming edges have completed
execution. Assuming an idealized shared-memory
multiprocessor with arl>itrary nwnber ?f processors, where ~
divide operation and an update operation each take one urut
of time, the parallel completion time is clearly the length of
the critical path of the DAG.

1
2
3
4

5
6

2 3 4 6
2. A44 +- A44 - A41xA14 1 5
3. A25 +- A2slA22 x x
4. Ass +-Ass - As2 XA25

x x s. A34 +- A34/A33

x x x 6. A36 +- A36/A33

x x x *
7. A44 +- A44 -A43 XA34

8. A46 +- A46 -A43 xA 36

x x x 9. A64 +-A64 -A63 xA34

x * x 10. A66 +- A66 -A63 xA36

11. A46 +- A46/A44

* . fill-in 12. A66 +- A66 -A64 xA46 .
13. Ase; +-Ase;/ Ass

14. A66 +- A66 -A6S XAsc;

Figure 2. A Spars., Matrix and Its Triangulation [5]

(a)

DAG derived from operation
list shown in figure 2

Level 4

Levels

Level 6 (b)

DAG obtained by ieon!ering
operations 12 and 14

Figure 3. Non-Optimality of DAG-Based Scheduling

DAGs have formed the basis for prior studies relating
to the parallel scheduling of GB [2,5,7,8,11-15). They are
however overly constraining because they require that
multiple updates to a matrix element during a parallel
execution occur in exactly the same order that they would
have taken place if executed sequentially. The order in which
multiple independent updates to a matrix element occur is
clearly irrelevant as long as all of them are completed before
the fully updated matrix element is used as an operand in
some other operation. In the example used, as pointed out by
Huang and Wing, operations 12 and 14 both represent
(indqoendent) update operations on A 66 , and can therefore be

executed in any order without affecting the final iesults
computed. Figuie 3b shows the DAG that results from
inten:hanging these two operations; it has a shorter critical
path compaied to the original DAG.

3. Minimally Constrained Task Graphs and their
Scheduling

The use of DAGs based on the dependence structure
of. operations of sequential GE is thus overly constraining
with iespcct to the update operations in scheduling GE for
parallel execution. All independent update operations to a
matrix element should be independently schedulable except
that no two of them can occur simultaneously. The use of
diiected edges between such update operations thus fon:es an
unnecessary and aibitrary pieccdcncc constraint, wheieas all
that is ieally required is a weaker "non-simultaneity"
constraint. We propose the use of task graphs, called
Minimally Constrained Task Graphs (MCTGs), wheie a clear
distinction is made between strict temporal ordering
constraints and non-simultaneity constraints.

MCTGs use both diiected edges and undiiected
edges. Directed edges are used as bcfoie to iepiesent
temporal dependence constraints. Non~simultaneity
constraints are expiessed using undiiected edges. Two
operations that are prohibited from occurring at exactly the
same time, but are otherwise executable in either order are
connected by an undirected edge. The set of update
operations to a matrix element in GE can be performed in
any order and will pr9<1uce the same final result (except for
round-off errors) .due to the commutativity and associativity
of the addition. Thus all update operations on any matrix
element fonn a clique of vertices in the MCTG, connected
among themselves by undirected edges, as shown in figuie 4
for the same example as before. Directed edges are used
between each update operation and succeeding operations
that use the final updated value. As a matter of terminology,
we iefer to nodes that are connected by undirected edges as
sibling nodes and the relationship represented by the edge as
a sibling relationship. The notation (i,j) is used to denote
the undirected edge between nodes i and j. A directed edge
from node n to node m is denoted by <n,m >. The node n is
refexred to as a parent of the node m, while the latter is
called a child of the former.

Figure 4. Minimally Constrained Task Graph for Example

We now present the fonnal definition of GE MCTGs.
Given a sparse matrix and the sequence of operations that
constitute its triangulation (see figuie 2 for an example):

For each update operation i, di, fi and S· denote the
destination, factor and source elements re~vely, i.e.,
di +- d;-/i X s;. By definition, d; and fi belong to the same
row of the matrix. For each normalization operation i, d; and

56

f; denote the destination and factor elements respectively,
i.e., d; +-d;f fi. For each operation i, r; denotes the positioo
of i in the operation list. Further

D(i) !!ii arg max r,,
{k lr1 <r,mcl4,•4.}

and,

F(i) !!ii arg max r,,
(I: I r1 <r, rod/,•41 }

In addition, for update operations we similarly define

S(i) !!ii arg max r,,
{/J: I r1 <r, &,. •41 }

We now define the GE MCTG as follows:

For any pair of update operations, i,j, the undirected edge
(i,j) exists if and only if:

d; =d;

For each update operation i, the directed edge <j,i> exists if
and only if:

1. j = S(i) or
2. j =F(i) or
3. (j,F (i)) exists

For each normalization operation i, the diiected edge <j,i>
exists if and only if:

1. j = D(i) or
2. (j,D (i)) exists or
3. j = F(i) or
4. (j,F (i)) exists

Note from the definition of undirected edges in the GE
MCl'G that they form cliques between tasks that constitute
the updates of a common matrix element. We refer to this
feature as the clique property. Regarding directed edges, first
note that for any update operation i, S(i) exists, and is a
normalization operation. Hence, if a task has a sibling, it
must have a parent. Further, S (i) does not belong to a clique.
Therefore, the child of any member of a clique is a child of
every member of that clique. We refer to this last feature as
the common children property.

For purposes of comparison, we now use the above
terminology to define the GE DAG used by Huang and
Wing[5] and subsequent iesean:hers.

Ina GE DAG:

For each update operation i, the directed edge <j,i> exists if
and only if:

1. j = D(i) or
2. j = F(i) or
3. j = S(i) or

For each normalization operation i, the directed edge <j.i>
exists if and only if:

1. j =D(i) or
2. j =F(i) or

Thus, the interpretation of diiected edges in MCTGs
is slightly diffeient from the interpretation when using

2. ~~ ft.x) is the value of x in X at which the maximum value of Jr.x) is
attainod.

DAGs. With DAGs, an edge represented a temporal
constraint in that a data result produced by a parent operation
was needed and directly used by a child operation in the
DAG. With MCTGs, a directed edge again represents a
temporal execution constraint in that the parent operation
necessarily has to be completed before the child operation
can be executed. However, the value produced by the
execution of the parent operation is not necessarily directly
used as an operand for the child operation. Tiris
interpretation of a directed edge permits the necessary
flexibility in scheduling the multiple updates of a matrix
element to optimize GE completion time. Thus, unlike GE
DAGs that are irredundant [14], an MCTG is not an
irredundant graph; but as can be seen in the next section, this
poses no problems in its optimal scheduling.

We now present an algorithm for scheduling MCTGs
on an idealized CREW multiprocessor. As has typically been
assumed in prior treatments on scheduling parallel GE
[2,13,14], we consider an update operation and a divide
operation to take the same (unit) amount of time. The
algorithm however can be trivially generalized to handle
non-uniform execution times for the various operations. The
scheduling problem may be viewed as that of the assignment
of positive integer level numbers to the nodes of the MCTG
so that:
1) each node has a level number that is higher than that of

any of its parent nodes (if any),
2) no two sibling nodes are assigned the same level, and
3) the highest assigned level number is as small as possible.

I* ALA: ALGORTIHM for LEVEL ASSIGNMENT*/

/* initialization */
z 0
for each root node m of G do

L 1;
z.,_zU{m};

end for
for each non-root node n of G do

~,,..._Number of parent nodes of n ;
~ 1;
F,,._false;

end for

/*main*/
while Z is not empty do

Remove a node n from Z ·
for each child m of n in G do

E.,+-max(E,,. .L,. + 1);
P.,+-P,,.-1;
if P., = 0 then

L,,.+-E,,.;
while any sibling i of m has

(F, =true andL, =[,,.)do
- L,,.+-L,,. + 1;
F,,.+-true;

Z+-ZU{m};
end if

end for
end while

Figure 5. Level Assignment Algorithm

57

Assuming unit execution times for the operations of
the MCTG, the level number assigned to a node corresponds
to the earliest time at which that operation can be scheduled
for execution on an idealized CREW multiprocessor. The
level assi~~n_! ~gorithm shown in figure 5 assoc~tes a
quadruple (P,L,E,F) with each node of the MCTG G. P,. is a
counter associated with node n that is initialized to the
number of parent nodes of n in G. L,. is the level number
assigned to n. E,. represents the earliest possible level
assignable to n, based on directed-edge constraints; it is
initialized to 1, and successively modified as the algorithm is
executed. F,. is a flag associated with node n, to keep track
of whether or not its level assignment has been finalized yet.

The algorithm essentially traverses the directed edges
of G, ensuring that temporal dependence constraints are
satisfied. Each directed edge <n,m> is only traversed once,
and only after the source.node n has been assigned a level
number by the algorithm. All root nodes (nodes without any
incoming directed edges or undirected sibling edges) are
initially assigned a level number of 1 and placed into an
operating set Z. Tiris set Z is used to temporarily maintain
nodes whose level numbers have been finalized, until all
outwardly directed edges from them have been traversed by
the algorithm. As ea~h edge <n.m > is traversed,_£., is
updated to be at least L,. + 1, if it is not already so. P .,, the
counter associated with node m is decremented by one. If the
currently traversed edge <n,m > is the last incoming edge to
m to be traversed, then P., becomes zero, and node m is
assigned its finalized level number [,,.. The earliest level it is
schedulable at is its current value of E.,, provided that none
of !,!s siblings (if any) has already been assigned at that level.
!! E,,. is prohibited for node m due to sibling conflict, then
E,,. + 1 is tried, and so on until the lowest conflict-free level
is determined and assigned to L,,.. F., is now set true to marlc
the assignment of a level to node m, and m is added to the
operating set Z.

For graphs without undirected edges. the above
algorithm reduces to the conventional DAG critical-path
scheduling algorithm, and will clearly produce a unique,
optimal levelization irrespective of the order of selection of
nodes from the operating set Z for edge traversal. However,
in general, when undirected edges are present, different
orders of selection of nodes out of Z and of traversing the
directed edges emanating from them can result in different
schedules. This is illustrated by the examples in figure 6. In
figure 6a, after node 1 (the only root-node) is assigned level
number one, its outgoing edges could be traversed in any
order. If <1,2> is traversed before <1,3>, the levelization in
(ii) results, but if child node 3 is selected before node 2, then
the different levelization shown in (iii) is the outcome.

Nevertheless, in the case of GE MCTGs, it can be
sho~ that all possible schedules, produced by various
~election orders, have the same (optimal) finishing time. Tiris
is a consequence of the Clique and Common Children
r,roperti~s .?f GE M~Gs that gu~te~ the opti_mality of the
greedy , on-the-fly approach to sibling conflict resolution

adopted by ALA. Considering a set of nodes of G that form
a clique, if these nodes have distinct earliest-schedulable­
tim~s, then they will each be so scheduled, leading to
optimal scheduling. If some of these earliest-schedulable­
times coincide at a value, say /, the fact that these nodes
form a clique guarantees that no matter which node is visited
first and assigned the level /, there will be a conflict of the

Level I

Level 2

Level 3

Level 4

(i) (ii) Level 5

MCTG Level assignment if Level assignment if
2 is scloctcd befmo 3 2 is selected after 3

(a) Example where Common-Children property is not satisfied by MCTG

Level I

Level 2

Level 3

Level 4

(i) (ii) Level 5

Ml.JG Levei assignment ii Level assignment if
4 is selected befmo 3 4 is selected after 3

(b) Example when: Clique propcny is not satisfied by MCTG

Figure 6. Selection-Order Dependence of Schedule

same number of clique sibling nodes at level I+ 1. As a
result, the maximum of the levels assigned to the members
of the clique will be the same (and optimal) independent of
the specific level that is assigned to each of them. Due to
the common-children property, any child of a clique node is
also a child of all other nodes of that clique. Thus, the
earliest-schedulable-time of the child of a clique is the same,
independent of the order in which its parentS in the clique
were visited. These two properties therefore R!sult in the
fact that the ALA schedule for GE MCTGs is optimal.

The examples in figure 6 demonstrate the necessity of
the clique property and the common-children property. The
example of figure 6a violates the common-children property,
and the two diffeR!nt selection orders shown result in
different schedules, one of which is suboptimal. Figure 6b
demonstrates the same point with respect to the clique
property. In the following section, we first prove the
optimality of the schedule generated by ALA for GE
MCTGs. We then prove that any schedule that satisfies the
constraints of the GE DAG for a matrix also satisfies the
constraints of the corresponding GE MCTG. These two
Rlsults imply that for any matrix, the ALA scheduling of the
MCTG will Rlsult in a finishing time that is less than or
equal to that produced by critical path scheduling of the
co~sponding DAG. The empirical .results reported in
section 5 show that the R!duction in finishing time can be as
much as forty percent for matrices arising in cin:uit
simulation.

4. Optimality of the Algorithm for Level Assignment

As has been discussed in the pR!vious section, GB
MCTGs have the following three properties which will be

58

used to prove the optimality of ALA for scheduling GE
MCTGs.

Property 1: Sibling nodes form cliques. •

Property 2: Any two sibling nodes have the same set of
children nodes. • '

Property 3: If a node has a sibling, then it must have a

parent. •

4.1 Preliminaries

We begin by introducing some notation.

V = set of all nodes in the MCTG
S ;;;; {n e V I n has no sibling} (solitary nodes of V)
R = {n e V I n has no parent} (root nodes of V)

Property 3 can now be R!stated as:

R cS

For a node m,

P,,. = {n e V In is a parent of m} (parents of m)
S,,. = P,,. (1 S (solitary parents of m)

(1)

For GE MCTGs, since sibling nodes form cliques, we have
the following additional notation:

C = family of all cliques in the MCTG (of cardinality ge 2)

For a node m,

Q., = {/ e C I I (1P.,~0} (clique parents of m)

and,

Q.,= UI
(& Q..

Using the above notation, we can restate Property 2 as:

P., =S,,.UQ,,. V me V (2)

We now introduce some definitions and notation
pertaining to level assignment algorithms. We use L; to
denote the level assigned to node i.

Definition 1: Given an MCTG G, a valid assignment is an
assignment of levels (natural numbers) to the nodes of G
such that:
1) If <i,j> is a dill!cted edge of G, L; <Li• and
2) H (i,j) is an undirected edge in G, L1 ~ L1 •

For a clique /, let

C1 = maxL;
i e I

that is, C1 denotes the completion time of clique /. It follows
from the above definitions that

VmeV (3)

The minimum possible level that can be assigned to the
sol~tary node~. by any valid assignment is denoted by L,,.,
while the mirumum possible completion time that can be
assiped to the clique I by any valid assignment is denoted
bye,.

Definition 2: A valid assignment (that assigns levels L1) is
said to be optimal if

A

L1 =l.,; Vies
C, = C1 VI e C•

We now prove a simple result pertaining to optimal
assignments.

Lemma 1: For all m e S--R,

£,,.=max (maxi;, maxC1) + 1
ieS,. IEQ.

Proof: Consider any assignment (which assigns levels L;)
that is optimal. Due to its optimality,

L,,.=maxL;+l
i E P.

It now follows from (2) and (3) that

L,,. =max (maxL;, maxC1) + 1
iES,. l&Q.,

The lemma now follows from Definition 2. •

4.2 Clique Resolution Procedure

The key step in proving the optimality of ALA is
showing the optimality of the resolution of sibling conflicts
in the algorithm. We therefore consider an abstract clique
resolution procedure in this section, prove its optimality and
then use this result in the following subsection to prove the
optimality of ALA.

Problem R(l,E;): Given a set I and E; e N (the set of
natural numbers}, associated with each i e /, assign L; e N
such that

1. L; ~ E;V i e I

2. L; '# L1: V i,k e /, i '# k •

Any assignment of values for L; that satisfies the above two
requirements is called a valid resolution for R(l,E;}, while
one that minimi7.es max L; over all possible valid resolutions

; r; I
is called an optimal resolution for R(l,E;). As we shall
prove in the following, the procedure outlined below results
in an optimal resolution for R (l,E1}.

/* CRP : Clique Resolution Procedure • /
for all i e I do

F;+-false;
L;+-E;;

end for
while there exists i e I with F; = false do

while there exists m e I with F,,. = true and L,,. = L; do
L;+-L; + 1;

F;+-true;
end while

Note that as stated, CRP does not specify a precise sequence
in which the F;'s are set to true. We therefore have the
following definition.

Definition 3: A CRP Selection Order is the sequence in
which the F;' s are set to true by a particular instance of
CRP. •

For an assignment corresponding to a selection order, we
define

C = maxL;
; EI

_ {1 if 3- k e I I L1: = j
Ti = 0 otherwise

It follows from the definition of Ti that

59

C = max j
u I T,•t}

Observe that for any selection order, when an element i is
selected for the assignment of a value to L;, the value that is
assigned is the smallest available integer that is greater than
or equal to E;. We formalize this fact in the following
lemma.

Lemma 2: For any CRP Selection Order, if Ti = 0, then

L; > j => E; > j V i e I •

We now present the main result of this subsection.

Theorem 1: Every CRP Selection Order results in an optimal
resolution for R (l,E; }.

Proof: Let 0 (that assigns values L;) denote the "worst"
CRP Selection Order, that is,

- -
C = max L; = max C

; E I all CltP ···- onion

Let,

_ = {l if 3- i e I I L; = j
TJ - 0 otherwise

Suppose that the proposition of the tJieorem is false. Then
tjiere exists a valid resolution (called 0) which assigns levels
L; such that

A A -

C:=maxL; <C
i E 1

(4}

Since any valid resolution assigns a unique value L1 for each
i e I (requirement 2 of problem R(l,E;}).jt follows fropi (4)
that there exists at least one level I < C at which 0 has
assigned an element but 0 has not, that is,

- A

T1 =0andT1 =1

Let r• be the largest such I. For all/> I', one and only one
of the following is true:

r,=r,=1
r1 =T1 =OA
T1 = 1 and T1 = 0

Let,

if= I {i e I I ia >I'} I
M = I {i e I I L; >I'} I

From (4) and (5),

M>M

Since Tr = 0, it follows from Lemma 2 and (6) that

I {i e I I E; >I'} I ~ M > M

(5a}
(5b)
(5c)

(6)

which contradicts the assumption that 0 satisfies requirement
1 of problem R (l,E;). Hence the lemma. •

4 3 Proof of Optimality

We return now to the proof of the assertion that
ALA results in the minimum possible number of levels.
Recall from_Section 3 that the levels assigned by ALA are
denoted by L;. Further,

Vie V-R

and

L; =E; Vie S-R

For a clique /, let

C1 11 max I,
; EI

(7)

(8)

that is, C1 is the completion time assigned to clique I by

ALA.

Lemma 3: For all m e V-R

I, = i;V i e s,,, and c, = c,V I e Q,,,
A A

=> E,,, =max (maxL1, maxC1) + 1
ieS. /eQ.

Proof : Let m e V -R be aibitrary. By the construction of the
algorithm,

E,,, = maxI; + 1
i E P.

But due to (2) and (3),

E,,, =max (maxi;. maxC1) + 1
ieS,, /eQ.

The lemma now follows. !!

Lemma 4: For all I e C

Li= ijV j e us, and c, = c,V J e U Q,
A ; EI i EI

=> c, = c,
Proof : Let A, which assigns levels L., ,. be an optimal
assignment. Let I e C be arbitrary. Since A is optimal, for
allie/

V j e S1

Vie Q,

It now follows frorq the assumptions of the lemma, Lemma
3, and the fact that A is a valid assignment that

L1 <?:E1 V j e S1

L1 * Li V i,j e /, i * j
In other words, the assignment produced by A for the nodes
in I is a valid resolution for R(l,E1). Now, in ALA, different
selection orders for the nodes in the operating set Z and the
directed edges to their children will result in different
sequences in which the F;'s are set to true. However, each
one of ~se sequences corresponds to a CRP Selection Order
for R(I,E,), which by Theorem 1 is an optimal resolution.
J)ut since we have already sho~ that the optimal_assig(llllent
A is a valid resolution for R (l.E1), it follows that C1 = Cr. •

Theorem 2: ALA results in the minimum possible number of
levels.

Proof: Note first that due to (1) and the construction of the
operating set Z in the initialization phase of ALA that

L, = 1 = L1 V i e R (9)

From Lemmas 1 and 3 and (8)

L1 = i;V i e S,,, and Cr= CrV I e Q,,. (10)

=> L,,, = L,,, V m e S-R

Now consider a graph derived from the MCTG in which
each clique is collapsed into a single node. It follows from

60

[14, Lemma l] that this graph is a DAG. Hence from (9),
(10) and Lemma 4, it follows via induction that ALA is an
optimal assignment, which implies that it results in the
minimum possible number of levels. •

We conclude this section by proving that for any
matrix, the number of levels generated by any level
assignment procedure that satis~es th~ const~ts of the
corresponding GE DAG (defined m secllon 3) will be greater
than or equal to the number resulting from an application. of
ALA to the corresponding MCTG. This is done by showing
that any valid assignment for the DAG is a valid assignment
for the MCTG.

Definition 4: A level assignment A (that assigns level Lt to
node k) is said to be valid for a given DAG if:

<i,j> is a directed edge of the DAG => L; <Li •

Theorem 3: A level assignment that is valid for the GE DAG
corresponding to a matrix is a valid assignment for the
corresponding GE MCTG.

Proof: Let A be a valid assignment for the DAG and (n,m)
an arbitrary undirected edge in the MCTG. Since n and m
represent updates to the same matrix element, in the DAG
there exists a chain of edges from n to m or vice versa. In
either case A cannot assign the sam.e level to bot.'1 n a..'!.d m,
i.e., A satisfies all the constraints imposed by the undirected
edges of the MCI'G.

Let <j,i> be an arbitrary directed edge in the MCI'G.
If <j,i > exists in the DAG then clearly A satisfies the
constraint imposed by it. If <j,i > does not exist in the DAG,
it follows from the definition of the DAG and the MCTG
(c.f. section 3) that j belongs to a sibling clique in the
MCI'G. Suppose that j belongs to the same clique as F(i).
Since in the DAG there is a chain of edges from j to i that
goes through F (i), A will assign a level to j that is less than
the level it assigns to i. The same argument holds if i is a
normalization operation and j belongs to the same clique as
D (i). Hence A satisfies all the constraints imposed by the
directed edges of the MCTG. •

5. Empirical Evaluation and Discussion

The MCTG scheduling algorithm ALA was
evaluated empirically using matrices deriving from the
application domain of circuit simulation. The three examples
used arose in the simulation of portions of a Digital Signal
Processor, a Digital-to-Analog Converter, · and a Memory
circuit respectively. The matrices were first reordered using
the Markowitz ordering scheme (10]. The elementary
arithmetic operations for GE under this ordering were
generated and scheduled using a) the conventional DAG­
based scheme, where the dependencies were determined
using a symbolic trace of the sequential GE algorithm, and
b) using the MCTG scheduling algorithm ALA presented in
Sec. 3.

Table 1 lists some of the characteristics of the test
matrices used and presents the results obtained for scheduling
the triangulation phase of GE. We report the number of
levels in the generated schedules and the average number of
operations per level. The former represents the finishing time
using an idealized CREW multiprocessor while the latter is
representative of the average degree of parallelism

exploitable in GE triangulation. The MCTG-based schedule
can be seen to provide 23% - 39% percent improvement over
the DAG-based approach for the examples considered.

TABLE 1. Comparison of DAG-Based Levelization and
ALA

Matrix Size No. of Ops.
No. of Levels
DAG ALA

DSP 93 812 30 23
DAC 147 882 49 30
MEM 587 7048 109 77

The reduction in finishing time obtained with the
MCTG-based scheduling scheme is comparable to that
reported in the literature for matrix reordering schemes
targeted at increasing parallelism in GE. Further, the decrease
in finishing time obtained by the various proposed reordering
heuristics is -unlike the MCTG-based approach-- typically at
the expense of increased total number of arithmetic
operations [2,3,12]. An interesting open question is whether
the use of the MCTG-based scheduling scheme will provide
comparable improvements in the number of levels with these
matrix reordering schemes targeted at increasing parallelism,
as it has for schedules based on the Mlllkowitz ordering
scheme. In any case, comparisons of different matrix
reordering schemes with respect to the degree of parallelism
exploitable, should be based on the less constrained MCTG­
based schedule rather than the conventionally used DAG­
based schedule.

The MCTG-based approach also has implications on
the scheduling of practical finite-processor parallel systems.
One approach to the parallel execution of GE on a
multiprocessor is to use barrier synchronization between
levels in the schedule. The greater average degree of
parallelism obtainable with an MCTG-based schedule than
the conventional DAG-based schedule implies better load­
balancing on a multiprocessor with the former schedule.
Further, since there are fewer levels with the MCTG-based
schedule, fewer barrier synchronization points are required.
Thus less overhead can be expected with an MCTG-based
schedule, even though the actual performance improvement
achieved will depend significantly on various machine
characteristics and implementation dependent factors. It can
be expected though, that the use of the inherently less
constrained MCTG model, in conjunction with an appropriate
ch~terization of the performance of a practical
multiprocessor, can lead to more effective scheduling
schemes than the use of the conventional DAG-based model.

6. Conclusions

. In sum, we have presented a: new approach to
mod~ling task: graphs for scheduling on a shared-memory
multiprocessor. The key idea is the use of undirected edges
to C~Illlect tasks (such as the additive updates of a matrix
location) that cannot be done simultaneously but can be
execut~d. in either o~r. Such a task: graph is inherently less
constrauung than one m which only directed edges are used.

. . We have developed .a scheduling algorithm for these
Minimally Constrained Task: Graphs, and showed the
algorithm to _be optimal for Gaussian Elimination task: graphs
under an idealized Concurrent Read Exclusive Write
multiprocessor model. We have empirically evaluated the
proposed scheduling algorithm using sparse matrices derived

61

from circuit simulation of sample electronic circuits, and
showed it to provide up to forty percent improvement over
the conventional approach.

Even though an idealized machine model has been
used in this paper to present the Minimally Constrained Task:
Graph approach, the approach holds promise in the context
of scheduling computations on real multiprocessors. Tite
refinements required to accommodate characteristics of
practical finite-processor systems for their effective
scheduling are open questions for future research.

Acknowledgements

The authors would like to thank Eric Grosse and
Sailesh Rao for their careful scrutiny of the manuscript and
valuable comments.

References

[l] G. Alghband and H.F. Jordan, "Multiprocessor Sparse L/U
Decomposition with Controlled Fill-in," Tech. Rep. 85-48,
ICASE, NASA Langley Rsch. Center, Hampton, VA. 1985.

[2] R. Betancourt, "Efficient Parallel Processing Technique for
Inverting Matrices with Random Sparsity," IEE Proceedings.
Vol. 133, Pt. E, No. 4, pp. 235-240, July 1986.

[3] P. Cox, R. Burch and B. Epler, "Circuit Partitioning for
Parallel Processing," Proc. Intl. Conf. on Computer-Aided
Design, pp. 186-189, Santa Oara, CA. Nov. 1986.

[4] I. S. Duff, "Parallel hnplementation of Multifrontal Schemes,"
Parallel Computing, vol. 3, pp. 193-204, 1986.

[5] J. W. Huang and 0. Wing, "Optimal Parallel Triangulation of
a Sparse Matrix," lEEE Trans. on Circuits and Systems, Vol.
CAS-26. No. 9, pp.726-732, September 1979.

[6] G. K. Jacob, A. R. Newton and D. 0. Pederson, "Parallel
Linear-Equation Solution in Direct-Method Circuit
Simulators," Proc. Intl. Symposium on Circuits and Systems,
pp. 1056-1059, Philadelphia, PA. May 1987.

[7] J. A. G. Jess and H. G. M. Kees, "A Data Structure for
Parallel L/U Decomposition," IEEE Trans. on Computers, Vol
C-31, No. 3, pp. 231-238, March 1982.

[8] J. W. H. Liu, "Computational Models and Tuk Scheduling
for Parallel Sparse Cholesky Factorization," Parallel
Computing. vol. 3, pp. 327-342, 1986.

[9] R. Lucu, T. Blank and J. Tiemann, "A Parallel Solution
Method for Large Sparse Systems of Equations," IEEE Trans.
on Computer-Aided Design, Vol. CAD-6, No. 6, pp. 981-991,
November 1987. '

[10] H. M. Markowitz, "The Elimination Fonn of the Inverse and
its Application to Linear Programming," Management Science,
Vol. 3, pp. 255-269, April 1957.

[II] F. J. J>_eters, ."Par,:11lel Pivoting Algorithms for Sparse

[12]

[13]

[14]

[15]

Syrnmetnc Matnces, Parallel Computing, vol. l, pp. 99-110,
1984.

D. Smart and J. White, "Reordering Algorithm.. to Reduce
Parallel Solution Time of Sparse Matrices Associated with
Circuit Simulation," Proc. inti. Symposium on Circuits and
Systems, to appear, 1988.
M. A. Srinivu, "Optimal Parallel Scheduling of Gaussian
Elimination DAG's" IEEE Trans. on Computers, Vol. C-32,
No. 12, pp. 1109-1117, December 1983.
0. Wing and J. W. Huang, "A Computational Model of
Parallel Solution of Linear Equations," IEEE Trans. on
Computers, Vol. C-29, no. 7, pp. 632-638, July 1980.
V. Zhou, "Optimal Parallel Triangulation of a Sparse Matrix -
A Graphical Approach," Proc. Intl. Symposium on Circuits

· and Systems, 1981, pp. 624-627.

PERFORMANCE OF PARALLEL PARTITIONING ALGORITHMS t

Sridhar Madala
James B. Sinclair

Department·of Electrical and Computer Engineering
Rice University

Houston, Texas 77251-1892

Abstract
Task graphs of parallel algorithms which are based on

the divide-and-conquer strategy often exhibit a characteristic
structure known as the partitioning structure. We present
some new methods for bounding and approximating the mean
execution time of a partitioning structure when the execution
times for the tasks are non-deterministic and compare them
with previous approaches. Distribution-driven simulation
results show that two of the methods, the iterative approxima­
tion and the independent paths approximation, provide accu­
rate estimates, usually to within 10 percent. Results from
program-driven simulation of a parallel quicksort algorithm
running on the Rice Parallel Processing Testbed indicate that
the. methods give good esti.111ates even when certain indepen­
dence assumptions are violated. The independent paths
approximation is used to derive an analytical expression for
the mean execution time of a parallel mergesort algorithm.

1. Introduction
A common approach to solving problems is to partition

the problem into smaller parts, find solutions for the parts,
and then combine the solutions for the parts into a solution
for the whole. This divide-and-conquer strategy, applied
recursively, is the basis for several classes of parallel algo­
rithms, including a number of sorting and searching algo­
rithms. These algorithms typically consist of three phases: a
divide phase during which work is partitioned, a work phase
during which computation is performed on the partitions, and
a merge phase during which results from the previous steps
are combined. Task graphs of such algorithms have a charac­
teristic structure known as the partitioning structure [l]. A
classic example of such an algorithm is the quicksort algo­
rithm which partitions an array of elements to be sorted into
two subarrays, each of which is subdivided recursively until
the number of elements in a subarray is below a threshold.
The work phase consists of sorting the elements in the subar­
ray. The merge phase is either non-existent (if the partition­
ing and sorting are done in place), or trivial (if the partition­
ing and sorting are done on copies). The mergesort is a simi­
lar algorithm with a non-existent or trivial divide phase and
non-trivial work and merge phases.

Figure 1 shows a two-stage partitioning task graph struc­
ture. Each node in the graph represents a computational task
and each edge represents a dependency between tasks. A
task a is said to be a predecessor of a task b if there is a

t This research was supported by a grant from Texas Instruments
Inc., and by a grant from the Office of Na val Research, under Research
Contract No. N00014-K-0324.

62

Figure 1: Task graph for a partitioning algorithm

directed edge from a to b . Tasks without predecessors are
called initial tasks and tasks that are not the predecessors of
any task are called final tasks. A task cannot start until all its
predecessor tasks have completed execution and once started
a task runs to completion without interruption. The level of a
task is the length of the longest path from an initial task to
that task. The execution time for the graph is the time from
the start of an initial task to the completion of all the tasks.
The number of stages in a partitioning structure is the number
of divide levels or the number of merge levels. The branch­
ing factor is the number of successors to each divide task or
equivalently the number of predecessors to each merge task.
Many algorithms have a small constant branching factor, usu­
ally two or three. The task graph in Fig. 1 has two stages,
five levels and a constant branching factor of two.

If the execution times of each of the tasks in a partition­
ing structure are deterministic, the computation of the execu­
tion time· for the entire graph is be trivial. However, the task
execution times in real programs are often non-deterministic
because of queueing delays due to contention for resources
such as memory or communication channels, and because of
data-dependent computation times.

Non-deterministic execution" times generally result in
synchronization delays where one task has to await the com­
pletion of other tasks. Synchronization delays and

communication costs are considered to be the most important
factors effecting the performance of parallel algorithms [2].
Our goal is to determine the effect of non-deterministic task
execution times on the total execution time of the algorithm.
We will show that, given information about the nature of task
execution times, it is possible to make accurate statements
about the mean execution time of a parallel algorithm with
the partitioning structure by drawing on results from extreme
order statistics.

It is important to be able to determine the effects on per­
formance of synchronization delays in parallel programs for
several reasons. First, this gives a lower bound on execution
time that is independent of the number of processors, the
structure of the interconnection network, and the communica­
tion bandwidth. Also, in those cases in which a task that
becomes ready to execute always finds an available proces­
sor, if the interprocessor communication times are negligible
or deterministic, they can be included as part of the task exe­
cution times to obtain accurate execution time estimates for
the entire program. Finally, we can compare the perfor­
mances of algorithms based on their synchronization struc­
tures which may in tum lead us to better parallel algorithm
design.

We make the following assumptions:

1) There are enough processors, i.e., if a task is ready to
execute it does not have to wait for a free processor.

2) Communication costs are either negligible or are incor­
porated into the task execution times.

3) The execution time for each task is a random variable,
and either the probability distribution or at least the
mean and the variance are known.

4) The execution times for tasks at a particular level are
independent of each other and identically distributed
(i.i.d.), and the execution time of a task is independent
of the execution time of its predecessors.

Assumptions 1 and 2 are necessary to isolate the effect
of non-deterministic execution times on synchronization
delays. It may not be possible to have complete information
about the probability distribution of a task execution time, but
the mean and variance can often be experimentally estimated
from performance measurements when dealing with real sys­
tems. The assumption that tasks at a level are identically dis­
tributed is usually justified since all tasks at a particular level
in partitioning algorithms do an identical computation albeit
on different data. However, more often than not tasks at a
particular level are not independent of each other.

The rest of the paper is organized as follows. In the next
section we review some previous work that is relevant in this
area. We then present five methods for bounding and approx­
imating the mean execution times for partitioning structures.
This is followed by an evaluation of the accuracy and appli­
cability of each of the various methods. The evaluation is
based on distribution-driven simulations. We also present
results for a parallel quicksort algorithm running on the Rice
Parallel Processing Testbed (RPPT). Finally we derive an
analytical expression for the mean execution time of a paral­
lel mergesort algorithm and compare its predictions with

63

results from the RPPT.

2. Previous Work

Kung [3] in an early work in the area classified parallel
algorithms as synchronous or asynchronous algorithms and
analyzed examples of both in detail. Briggs and Dubois [4]
analyzed the performance of synchronized iterative algo­
rithms on three different machine architectures. Models
based on deterministic execution times are discussed by
Vrsalovic et al. Weide [5] used order statistics to study the
anomalous behavior of a specific algorithm structure.

Classification of parallel algorithms based on the struc­
ture of task graphs has been developed by Mohan [l]. He
used a hybrid simulation tool, PEP, that accepts distribution
information about tasks and determines the execution time
for a task graph. PEP can be used to model resource conten­
tion by means of simple queuing models. Mohan studied the
partitioning structure in particular using PEP but did not give

, any analytical results for the case when the task times are
non-deterministic.

Robinson [6] gave an upper bound for the mean execu­
tion time of a general task graph under the assumption that
execution times for tasks at the same level are i.i.d. His
bound is applicable for any task graph provided the means
and variances of the task execution times at each level are
known. A well known result from order statistics (see pages
57-59 [7]) states that if i.i.d. random variables X 1' X2, ••• , Xm
have mean µ and variance cr2 then

~ J m-1
E maxX; ::;; µ + 'l:z <J

:5i:5m (2m-1)

Robinson used this to derive

E(Tc) ::;; ~ rµj +
r-1 L

J (J m-1 J
(2mrlf2 j

(1)

(2)

where T G is a random variable denoting the execution time
for the general task graph G, mj is the total number of tasks
at level j, µj and crj are the mean and standard deviation,
respectively, of the execution time of a task at level j, and L
is the number of levels.

Eq. (2) can be interpreted as follows. In a general task
graph, tasks at a particular level cannot start execution until
their respective predecessors in the previous level have com­
pleted execution. With the restriction that the tasks at a level
start execution only after all the tasks in the previous level
have completed execution, an upper bound on total execution
time for the task graph can be obtained. Loosely speaking,
Robinson's upper bound is the mean execution time of a
modified task graph where all tasks at a level synchronize at
the end of execution.

Eq. (2) is a strict but loose upper bound. It can be
improved if the nature of the distribution of execution time
for tasks at each level is known. Results for the behavior of
extremes for some common distributions such as exponential,
normal, and uniform are applicable under these cir­
cumstances. We will use Robinson's bound for comparison
in evaluating the accuracy of the bounds and approximations
to be presented. We will also present and use an extension of
Robinson's approach based on an expression analogous to (1)

but dealing with dependent random variables.

3. Analysis

We have developed five methods for bounding and
approximating the mean execution time of a partitioning
structure. The first uses Robinson's approach for specific dis­
tributions. A second bound is based on an expression analo­
gous to (1) for dependent variables. We then provide two
approximations for the mean execution time based on the
number of paths from the initial task to the final task in the
partitioning structure. Our last approximation is an iterative
technique that takes advantage of the recursive nature of the
partitioning structure. All the methods draw on results from
extreme order statistics.

3.1. Bounds for Specific Distributions
Eq. (2) requires that only the mean and variance of task

times are known. If information is available about the nature
of the task time distributions, it is possible to improve upon
(2). If Xi. X2, ... , Xm are i.i.d. random variables distributed
exponentially with parameter A., then from extreme value
theory [8]

(3)

where y is Euler's constant (0.5772 ...). All log functions in
this paper are natural logarithms. If the variables are uni­
formly distributed between a and b then

E rffi!lXxi]:::: b- (b-a) (4)
l.ls,s,,, m

If the variables are normally distributed with parameters µ
and cr then

E rmaxx,] :::: µ
l.lsism

+ cr [(2 log m)112 log log m+log 4 7t y] (5)
2(2 log m)112 + (2 log mf2

Eqs. (3), (4), or (5) can be used in place of (1) to obtain
tighter upper bounds for the mean execution time of a parti­
tioning structure. These will not be strict bounds since (3),
(4), and (5) are approximations that become exact for large
values of m. However, these can be used in deriving approx­
imate upper bounds that are asymptotically correct.

This approach cannot be used in all cases since some
distributions do not have tractable expressions for extreme
values. An example is the beta distribution.

3.2. Bound for Dependent Task Times

Frequently, the assumption that the tasks at a level are
independent is violated in real programs. For example, in a
quicksort algorithm the execution times for the two successor
work tasks of a divide task will be negatively correlated since
more work for one task would result in less work (a smaller
subarray to be sorted) for the other task. Under such cir­
cumstances we can use an expression analogous to (1) (see
pages 78-79 [7]) that states

64

to give

E rmaxxil ~ µ+ (m-1)112a
l.lsiSm J (6)

(7)

This bound gives a higher estimate for the mean execution
time than would (2).

3.3. Independent Paths Bound
Both of the above methods, as well as Robinson's bound

. apply to general task graphs and do not take advantage of the
regularity of the partitioning structure. A partitioning struc­
ture has a single initial task, a single final task, and b 8 dif­
ferent paths from the initial to the final task, where b is the
branching factor and s is the number of stages. Under the
assumption that the execution times of tasks at a level are
i.i.d., the execution times for all paths are identically distri­
buted random variables with mean and variance given by

i=2s+l
µpath = l:, E(Ti)

i=l

i=2s+l
cr'ffath = l: variance(Ti)

i=l

(8)

(9)

where Ti is the random variable denoting the execution time
of a task at level i. If the paths are independent of each other,
the execution time of the partitioning algorithm is the max­
imum of b 8 random variables with the given mean and vari­
ance. Using (1) and (3) we get

k-1
E(T o) ~ µpath+ 112 crpath (10)

(2k-1)

where k = b 8• The assumption that the paths are independent
of each other is clearly false since each path shares two or
more tasks with every other path. Paths which share a large
number of tasks will have highly correlated execution times.
Nevertheless, simulation results have shown that this is an
improvement over Robinson's bound.

3.4. Independent Paths Normal Approximation
The independent paths bound does not make any

assumptions about the nature of distribution of the path exe­
cution times. If we assume that the path execution time is
normally distributed, the execution time for the entire task
graph will be the maximum of b" i.i.d random variables
which are normally distributed. Using (5) the expected value
of the partitioning algorithm can be approximated by

E(T o) :::: µpath

+ cr [<210 k)'h log logk+log 47t + y] (11)
path g 2(2logk)'h (2logk)Y2

where k is the number of different paths.

This approximation will be poor if the number of tasks
along a path is small or if the execution time for the path is
dominated by a single task. In either case the normal distri­
bution assumption will be invalidated. Nevertheless this
approximation is quite accurate as is shown by comparison
with simulation results in Section 4.

3.5. Type I Iterative Approximation
The recursive nature of the partitioning task graph sug­

gests an iterative solution. The execution time for an i-stage
algorithm can be written as follows:

T; = Tdivide, +maximum (T;_1, ... ,Ti-l) + T merge,

where Ti is a random variable denoting the execution time for
an i-stage structure and Tdivide, and T merge, are the execution
times for the divide and merge tasks from the appropriate lev­
els. T0 will be the execution time for a work task. The
number of terms in the maximum operation is the branching
factor of G . If we further assume that the three terms in the
expression are independent random variables we can itera­
tively sum the means and variances of the three variables pro­
vided we have information about the behavior of the max­
imum of several i.i.d. random variables.

Since determining the execution time for an s-stage
algorithm using this iterative approach indirectly involves
taking the maximum of b 8 random variables we will assume
that it will tend asymptotically to an extreme value distribu­
tion. If the maximum of several i.i.d random variables tends
to a distribution asymptotically it has to be one of three types
.of distributions, usually referred to as Type I, Type II, or
Type III extremal distributions [8]. Extreme values from dis­
tributions with an exponential tail behavior tend to the Type I
or Gumbel distribution, those from distributions with a poly­
nomial tail behavior tend to the Type II distribution, and
those from bounded distributions tend to the Type III distri­
bution. The exponential and normal distributions are exam­
ples of distributions whose maximum values tend to the Type
I distribution.

The Type I distribution has the properties that the max­
imum of n i.i.d. variables from a Type I distribution will
remain Type I, and further the distribution of the maximum
has the same shape as the distribution of the i.i.d. random
variables but is shifted to the right. In particular

µn= µ+ crlog n
a;

a:2=L
6 cr2

whereµ and a are the mean and variance, respectively, of the
Type I distribution, µn and an are the mean and variance of
the extreme value distribution for n variables and a; is a
shape parameter. The mean is increased while the variance
remains the same. Under the assumption that the execution
time for an i-stage algorithm has a Type I distribution and
that the distribution will remain Type I even with the addition
of the divide and merge time distributions the mean execution
time can be computed iteratively as follows:

begin

E[To] = E[Tworkl
<ro = <rwork

for i = 1 until s do

65

begin
E[T;] = E[T divide,] + E[T;_ i]

.../6log b a;_1
+ + E[T merge)

7t

2 _ 2 2 2
ai - adivide, + cri-1 + amerge;

end
end

The addition of variances follows from the assumption that
task times are independent of their predecessor tasks.

The Type I Iterative method makes use of the fact that
there is a simple relation between the means and variances of
a Type I distribution and its extreme value distribution. Such
convenient relations are npt available for Type II and Type

' III distributions. In particular the variance of the extreme
value of a Type II distribution increases as the number of
terms in the maximum operation is increased.

4. Performance Comparison

We evaluated the methods presented above by com­
parison with simulation results and with Robinson's bound.
We first present distribution-driven simulation results for the
exponential, uniform, and beta distributions. Results
predicted by each of the methods are compared against simu­
lation values to determine the accuracy of the methods. We
then present a comparison of three of these methods with
simulation results for a quicksort algorithm running on the
Rice Parallel Processing Testbed (RPPT). The quicksort
algorithm violates the independence assumptions on which
the methods are based. Nevertheless, as will be seen, the
methods predict the mean execution times with reasonable
accuracy.

4.1. Stochastic, Independent Task Execution Times
Results from simulation and analysis were obtained for

three different distributions, namely, the exponential, uni­
form, and beta distributions. In each case the three task
types, divide, work, and merge, were assumed to have the
same type of distribution and the parameters were chosen
such that the mean executions times would differ by an order
of magnitude.

Fig. 2(a) and 2(b) are graphs of the mean execution time
of as a function of the number of stages for the exponential
case. Results obtained from Robinson's bound, the indepen­
dent paths (IP) method, the independent paths normal approx­
imation (IPN), the Type I iterative approximation, and the
simulation are shown. The exponential distribution has a
well known extreme value behavior, and the curve labeled R
+ Dist. .in the graph is for results predicted by Robinson's
bound when modified by extreme value formula for the
exponential distribution. Fig. 2(a) gives results for the case
where the divide and merge tasks are exponentially distri­
buted with A.= 10 and the work task is exponential with
A.= 1. Fig. 2(b) gives results for the case where all three task
types are exponentially distributed with A.= 1.

The following observations can be made from the
results. Most methods predict the mean execution time

40 200

-a- Robinson -a- Robinson
30 IP IP

Q) R +Dist. Q) R +Dist E +- Iterative I E +- Iterative I i= i= c 20
... Simulation c

100
... IPN .2 IPN 0

'S -0- s -0-

w ~ >< w 10 w

0 0
0 2 4 6 8 1 0 12 0 2 4 6 8 1 0 12

Stages Stages

a) Divide= exp(lO), work= exp(l), merge= exp(lO) b) Divide= exp(l), work= exp(l), merge= exp(l)

Figure 2: Comparison of bounds and approximations for exponential distribution

Q)

E
i=
c
0 s
~ w

50

-a- Robinson
40 IP

..... R+Dist.

30 !PN ... Simulation

20

10

0-1----T'--............... ~,...... --.~...--r~.--..,....---.___,

0 2 4 6
Stages

8 1 0 12

a) Divide= unif(0,1), work= unif(O,l), merge= unif(O,l)

20

-a- Robinson IP

Q)
..... IPN

E Slmu!at!on
i=
c

10 0 s
w
>< w

o-+-----..---.-~.----r~..---r~..--r~-..--i

0 2 4 6 8 1 0
Stages

b) Divide= beta(0,1), work= beta(O,l), mergt> = beta(O,l)

Figure 3: Comparison of bounds and approximations for uniform and beta distributions

accurately for up to a four stage structure. Beyond four
stages, Robinson's bound diverges rapidly from simulation
values. The IP method is better than Robinson's bound but it
also diverges. Additional information about the distribution
improves Robinson's bound (R +Dist.) considerably. The
independent paths normal approximation (JPN) is accurate
to within 30 percent in Fig. 2(a) and is accurate to within 5
percent in Fig. 2(b). This is due to the fact the choice of
parameters in Fig. 2(a) results in a poor normal approxima­
tion to the path execution time since the path time is dom­
inated by a single task, the work task. The Type I iterative
method is the most accurate of all and is within 5 percent of
the simulation results in both figures.

Figs. 3(a) and 3(b) give similar results for the uniform
and beta distributions, respectively. In both cases parameters
for all task times were chosen to be identical. The Type I
iterative method is not applicable for either distribution. No
results are given for R+Dist. in Fig. 3(b) since formulae for
extreme value behavior of the beta distribution are unavail­
able. Both these graphs reinforce our earlier observations.
The IPN method proves to be highly accurate in both cases,

66

predicting the simulation values to within 5 percent.

If a strict (asymptotic) upper bound is required and the
task time distributions are known, the method of choice is
Robinson's method as modified by distribution information.
However the extreme value behavior is not analytically avail­
able for all distributions and one has to revert to Robinson's
original bound in these cases. The JPN method requires only
the means and variances of task execution times and provides
a good approximation even when the normal distribution
assumption for path execution times is not satisfied. The
Type I iterative is highly accurate but can be justified only for
distributions whose extreme values converge to the Gumbel
or Type I asymptotic distribution.

4.2. Program Driven Task Execution Times

Program driven results were obtained for the quicksort
algorithm running on the Rice Parallel Processing Testbed
(RPPT) (9]. The RPPT is a software simulation tool that
facilitates the performance evaluation of parallel programs on
parallel architectures. Parallel programs are analyzed for

timing information at the assembly language level. The pro­
gram then drives an architectural model to provide accurate
statistics about resource usage and execution times.

The architecture used for the RPPT simulation was a
single bus, shared memory multiprocessor with enough pro­
cessors so that ready tasks did not have to wait. During the
simulation, statistics on individual task execution times were
collected for a task at each level. Communication times,
which were negligible, were included in the task execution
times.

The partitioning quicksort algorithm works as follows.
The divide tasks partition the input array using a median ele­
ment and start further divide or work tasks depending on the
level. Each work task sorts its input array using quicksort.
The merge tasks are trivial and simply terminate after inform­
ing the next level merge tasks. The number of stages of the
algorithm was varied from 1 to 8 and the algorithm was run
with random integer input.

'iii'
'ti c

i
GI
E
i=
c
0

5
~
)C
w

0.800 "T""----------------

0.600

0.400

0.200

l.000
0 2 4

Stages

-m- Dep. Robinson
..... Simulation
.. lier
+ IPN

6 8

Figure 4: Quicksort of 8192 integers

10

Fig. 4 shows the execution times for the quicksort algo­
rithm along with the predictions by Robinson's method, the
IPN method, and the iterative method. The tasks at a particu­
lar level are not independent and tasks close together are
highly correlated. Thus the independence assumptions on
which all the methods are based fail. However, it is possible
to correct for dependence among tasks at a level for the
Robinson's method using eq. (6). The plot in Fig. 4 reflects
this. Results for the iterative method are presented even
though the distribution types are not known and the indepen­
dence assumptions are violated. Nevertheless, the iterative
method gives results that have accuracy compar1tble to the
IPN method.

The resulis show that Robinson's method when
.... corrected for dependencies still bounds the simulation values

from above. The IPN and iterative methods are close
together and consistently underestimate the mean execution
time. This is to be expected since the quick sort algorithm
violates the independence assumptions.

67

S. Analysis of a Parallel Mergesort Algorithm

The IPN approximation is a useful method for numeri­
cally estimating program execution times. It can also be used
as a basis for finding an analytic expression for the expected
execution times of parallel programs with a partitioning
structure .. We now derive and expression for the mean execu­
tion time of a mergesort algorithm using the independent
paths normal approximation method. Predictions from the
analysis are compared against simulation results from a mer­
gesort algorithm running on RPPT.

The mergesort algorithm is an example of a partitioning
algorithm which has no divide tasks. Each work task sorts a

subarray of size ~ where N is the number of elements to be

sorted, and k is the number of work tasks. Each merge task
accepts two sorted subarrays of equal size from its predeces­
sor tasks, merges them into a single sorted array, and passes it
to its successor. Task execution times at a particular level are
i.i.d. since all tasks at a level do the same type of work but on
different sections of data.

Let the number of work tasks be k , a power of two, and
let N be the number of elements to be sorted. Assuming that
the time to mergesort "an array of size N has mean a/.flog(N)
and standard deviation b/o/ 112, and the time to merge two
subarrays of size N has mean 2a,JV and standard deviation
bm [10] we get:

N N 1
µpath = ask log(k) + a,JV(l-k)

and

2 2N 2
crpath = b5 k + bmlog(k)

where µpath and crffath are the mean and variance respectively
of the execution time for a path from a work task to the final
merge task. Using the independent paths approximation we
obtain

E[mergesort] = µpath

+a 'h [c210 k)11z _ log log k +log 4 7t + .]
path g 2(2 log k)l!z (2 log k)'h.

'iii'
'ti c

l
GI
E
i=
c

0.7 .-----------------.

0.6

-m- Simulation
..... IPN analysis

.2 0.5 ~o :;
~ ~o
w

0.4 +-----~---r---T"'""--.--..--........ --1
0 2 4 6 8 1 0

Stages

Figure 5: Mergesort of 8192 integers

Fig. 5 shows the results from the IPN analysis and from
an RPPT simulation of the mergesort algorithm. The
coefficients am, bm, a., and b8 , were estimated from task time
measurements made during the simulation. The analysis and
simulation agree to within five percent.

6. Conclusion
Results from extreme value theory are applicable in

predicting the execution times of certain parallel program
structures. Two of the methods we have presented, which are
based on Robinson's approach, can be used to bound the
mean execution time of a general task graph. The three other
methods, the independent paths approximation, the indepen­
dent paths normal approximation, and the iterative approxi­
mation, can be used to approximate the mean execution of a
parallel program with a partitioning structure. The IP
approximation is empirically shown to be slightly better than
Robinson's bound and of a general applicability since it does
not require complete information about the probability distri­
bution of task execution times. The IPN approximation gives
excellent results and is again of a general applicability as has
been shown by our analysis of a parallel mergesort algorithm.
The iterative method is very accurate, but is based on task
time distributions whose extreme values tend to the Type I
asymptotic distribution. However, simulation results show
that the iterative method gives good results even when the
distributions are unknown and independence assumptions are
violated.

Since bounded distributions are common in practice, an
iterative method for the Type III asymptotic distribution
would be of considerable interest and we are currently work­
ing on such a method. We are also studying the problem of
predicting the execution times of other parallel program
structures such as the multiphase algorithms and general
pipeline algorithms. Another area of future study in parti­
tioning algorithms is to consider the effects of non-negligible
communication costs and resource contention, both for pro­
cessors and communication bandwidth.

68

References

1. J. Mohan, "Performance of Parallel Programs: Model
and Analyses," Ph.D. dissertation, Department of Com­
puter Science, Carnegie-Mellon University (July 1984).

2. B. Lint and T. Agerwala, "Communication Issues in the
Design and Analysis of Parallel Algorithms," IEEE
Trans. Software Engineering SE-7(2) pp. 174-188
(March 1981).

3. H. T. Kung, "Synchronized and Asynchronous Parallel
Algorithms for Multiprocessors," pp. 153-200 in Algo­
rithms and Complexity: New Directions and Recent
Results, ed. J. F. Traub,Academic Press, New York
(1976).

4. M. Dubois and F. A. Briggs, "Performance of Synchron­
ized Iterative Processes in Multiprocessor Systems,"
IEEE Trans. Software Engineering SE-8(4) pp. 419-431
(July 1982).

5. B. W. Weide, "Analytical Models to Explain the
Anomalous Behavior of Parallel Programs," Proc. 1981
Int. Conj. on Parallel Processing, pp. 183-187 (August
1981).

6. J. T. Robinson, "Some Analysis Techniques for Asyn­
chronous Multiprocessor Algorithms," IEEE Trans.
Software Engineering SE-5 pp. 24-31 (January 1979).

7. H. A. David, Order Statistics, John Wiley & Sons Inc.,
New York (1981).

8. A. H-S. Ang and W. H. Tang, Probability Concepts in
Engineering Planning and Design Volume II, Rainbow
Bridge Book Co. (1984).

9. R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and
J. B. Sinclair, "The Rice Parallel Processing Testbed,"
1988 ACM Sigmetrics Conference, (May 1988). to
appear

10. D.E. Knuth, The Art of Computer Programming Vol.3,
Addison-Wesley, Reading, MA (1973).

A RANDOMIZED PARALLEL BRANCH-AND-BOUND ALGORITHM

Virendra K. Janakiram
Dharma P. Agrawal

Ravi Mehrotra

Computer Systems Lab, ECE Department
North Carolina State University

Raleigh, NC 27695-7911

Abstract - A new technique for the parallel execution of
branch-and-bound algorithms using "randomization" is proposed.
The algorithm requires relatively little inter-processor communica­
tion, while achieving good speedups over the uniprocessor execu­
tion times; in precisely those cases where the problem size becomes
very large, randomization is found to be extremely successful in
achieving very good speedups. A probabilistic model has been
devised to explore the effectiveness of this technique, and to esti­
mate the expected speedups that could be obtained. The model
has been validated by extensive simulation work on a multiproces­
sor simulator. Besides being very simple to implement, the tech­
nique also ensures high reliability, flexibility, and fault-tolerance.

I. INTRODUCTION

Branch and bound has often been the algorithm of choi~e
for the solution of combinatorial search problems. Some of the
classical combinatorial problems involving discrete optimization
include the Travelling Salesman problem, the Knapsack problem,
Job Scheduling, and Integer Linear Programming. These problems,
which occur commonly in different forms in diverse areas belong to
the class NP-hard [4]. We propose a "randomized" parallel
branch-and-bound algorithm, which, by introducing an element of
randomness into the conventional branch-and-bound algorithm,
makes parallelization simple, yet effective, while, at the same time,
ensuring that interprocessor communication does not get out of
hand. Additionally, a system employing this randomization tech~
nique would have good fault tolerance and reliability, in the event
of processor failures, and can be easily expanded by adding more
processors.

In the next section, we describe the randomized algorithm
vis-a-vis the conventional one. Section III establishes a simple
model that is used effectively in Section IV to estimate the speed­
up performance of the randomized algorithm. Section V then
presents some simulation results that were obtained from a mul­
tiprocessor simulator. Finally, conclusions and suggestions for
future work is given in Section VI.

II. THE RANDOMIZED BRANCH-AND-BOUND ALGORITHM

The branch-and-bound algorithm has been exhaustively
described and analyzed in the literature (See for example, [4]). A
rigorous analysis of the branch-and-bound procedures in [8] shows
that the expected time to solve some problems is a polynomial
function of time. Stone and Sipala [9] present related results.
Wah and Yu have given a stochastic model for the branch-and­
bound algorithm in [10].

The branch-and-bound process may be visualized as
searching a branch-and-bound tree, with each node representing a
subproblem, each leaf representing either a feasible solution, or a
sub-problem that will not yield a possible solution. Each node will
have a value associated with it which is simply the value of the
bounding function, g. From this point on, we will assume, without

This work has been supported by the U.S. Army Research Office under
contract no. DAAG 29-85-K-0236

69

loss of generality, that a solution with the minimum cost is being
sought. Further, we assume that the selection rule results in the
search of the branch-and-bound tree in a depth-first fashion. Our
method seems to be applicable to best-first searches also, as will be
apparent, but we are yet to study its performance.

The success of the branch-and-bound algorithm stems pri­
marily from the fact that the bounding function, g, can be used to
remove from consideration, faidy early in the proceedings, sub­
problems that will not yield solutions better than the one at hand.
As time progresses, successively better solutions will have been
found, and with this "experience" gained, the branch-and-bound
algorithm is able to eliminate progressively larger sub-trees. Thus,
the branch-and-bound algorithm dynamically prunes the search
tree. The branch-and-bound algorithm just described is called
lfbb, (left first branch and bound).

A parallel version of this conventional branch-and-bound
algorithm has been considered by Wah and Ma [11]. MANIP is a
special-purpose machine proposed by them solely for the solution
of branch-and-bound problems. The selection rule used here is
best-first, but depth-first search is used when secondary memory
runs out. They have indicated that simulation studies have shown
a speedup of k, for k processors. However, the speedup is calcu­
lated only with respect to the number of iterations; important fac­
tors such as (secondary) memory access times which could have a
serious impact on the performance have been neglected.

El-Desouki and Huen [3] have considered a scheme some­
what similar to the one we are about to describe. Here, the work­
load of each processor is deterministically apportioned at the
outset. Suppose that (as is very likely) one processor finishes exa­
mining its portion of the solution tree before the others. It then
enters into a complicated and lengthy dialogue with each of the
other processors to determine which particular portion of the solu­
tion tree is most suitable for exploration. Not only is there extra
communication cost involved here, but also an unknown amount
of extra computation overhead incurred by all the processors.
Another serious drawback of this scheme is apparent when consid­
ering what would happen should a processor fail: In such a case, a
portion of the of the tree will remain unexamined, thereby produc­
ing erroneous results. The method to be described avoids these
problems.

Consider the conventional branch-and-bound algorithm,
lfbb. Instead of choosing the next node to be evaluated in left-first
fashion, we will "randomize" the search by making a random
choice for the next node from among the unexamined children.
The cost of the best feasible solution available currently is made
available globally to all processors. Other details of the algorithm
remain unchanged. This algorithm is called rsbb (for random
search branch and bound) and is given below:

minfeas : real { Goat of the minimum feasible solution }
function rsb b (instance)

cost ~ g(instance) { bounding function }
if (cost < minfeas) then

if (not feasible(instance)) then
repeat

nextinstance ~ { randomly chosen child of instance }
rsb b(nextinstance)
quit ~ { all children of instance have been e:i:amined
}

until (quit)
else

minfeas ~ cost

It can be shown that the expected solution time on a uni-processor
using rabb is the same as that of lfbb for a very general class of
problems. However, the advantage of rabb is that, under parallel
execution, the decision as to the next node to evaluate can be
made locally, without global information. If we use k processors,
for example, each processor will, in the main, examine a different
portion of the tree. Of course there is a finite probability that
replication of work will occur, but by allowing a very small
amount of simple and terse communication between processors,
this probability can be kept relatively small, and good speedups
can be achieved. Another advantage of the decentralized opera­
tion is that fault-tolerance and easy expandability are inherent in
such a system.

Randomization techniques have been used as effective
heuristics to obtain sub-optimal solutions for many combinatorial
problems [7]. Stochastic annealing is one example. The paralleli­
zation of these kinds of searches would be an interesting research
area. We, however, consider here search algorithms for optimal
solutions. We use randomization not as a search heuristic, but as
a scheduling technique.

Janakiram et al. have described a randomized parallel ver­
sion ~t the backtracking algorithm in [5], where a similar tech­
nique has been employed. Three classes of backtracking problem­
types have been identified, and for each class the expected speedup
has been determined. The expected speedup has been shown to
vary from (k +1)/2, to k (k is the number of processors), depend­
ing on the problem-type.

In the next section we discuss the randomized branch­
and-bound algorithm in more detail, and attempt to derive a
model that is used estimate the speedups obtainable by using
parallel rabb.

ill. MODEL D,ESCRIPTION

We will first establish that the expected solution time for
a branch-and-bound problem solved using lfbb is the same as when
using rsbb.

A probabilistic model for the kind of solution trees gen­
erated by the branch-and-bound algorithm has been given by
Smith [8]. A random branch-and-bound tree may be generated as
follows:

(i) Let a root node exist, which is unsprouted (level=O).

(ii) Each unsprouted node, n, at leveLi, is sprouted as follows:
Let n have S children, where S is a random integer whose
probability mass function (p.m.f.) is given by p5 (t;i),
(Ps(t;i=O)>O). Each node will be assigned a cost that is the
sum of the node costs of its ancestors, together with a ran­
dom number called Q, whose distribution is given by PQ (t).
(PQ(t=O)=O).

70

(iii) Repeat (ii) until there are no unsprouted nodes.

The above procedure is slightly more general than that
given by Smith. The node cost obtained in this way is the simu­
lated equivalent of the value of the bounding function g, described
in the last section. The cost of a particular node is at least equal
to that of its parent. The increase in node cost (viz., the r.v. Q)
over its parent is termed the incremental node coat, and is a non­
negative number.

Consider a random tree being searched by a processor
using rsbb. Suppose that the left sub-tree is selected first, and it
happens that the best solution lies in this subtree. Let /(1) be the
number of nodes examined by rabb in this instance. Now consider
the case when two processors are deployed to solve the same prob­
lem. It is possible that both processors choose the right sub-tree
first, and the two processor system solves the problem in /(2)
steps, where /(2)2:/(1). This is the kind of anomalous behavior
observed by Lai and Sahni [6], for the best-first branch-and-bound
algorithm. For parallel rabb, however, we prove the following:

Theorem 1: Let the expected speedup obtained by parallel rabb,

using k processors be Sk. Then Sk, 2: Sk, 2: 1, (k1 2: k2 2: 1),
even if there is no inter-communication between processors. D

Theorem 1!: For all the trees generated by the above procedure, the
probability distribution of the solution times using depth-first
search,. is independent of the order in which successive nodes are
chosen. D

It is thus clear that lfbb and rsbb take the same time to
solve a problem; on average. The next step is to estimate the
expected solution time of lfbb. This has been determined by Smith
[8], and by Wah and Yu [12]. The latter paper has given a con­
ceptually satisfying model of the branch-and-bound process which
is also very accurate. The extension of this model to the multipro­
cessor case, however, does not seem to be possible. We have,
instead, devised a simpler model, which is adequate for our pur­
pose, viz., to estimate the speedup on a parallel system.

First, some assumptions are made regarding the structure
of the branch-and-bound tree which are similar to those made by
Wah and Yu:

(i) We assume that the solution tree is finite and of constant
degree. As trees of degree two are the most commonly
occurring ones, we have confined ourselves to binary trees;
but this is not a restriction on the analysis.

(ii) We assume the tree is full, and of depth D.

(iii) The incremental node cost is assumed to be e:i:ponentially dis­
tributed. This assumption is made not only because it
makes the mathematics tractable, but because this has been
the distribution . that has been observed in practice. Wah
and Yu have shown that it occurs in the Knapsack problem
[12], and in integer programming [10], while Smith [8]
reports that for the Travelling Salesman problem, the distri­
bution is geometric, which is the discrete analogue of the
exponential distribution.

Each node of the branch-and-bound tree is identified by
the pair (i ,j), where i is the level and j the serial number of the
node, beginning from the left with 0. As lfbb proceeds, it will fol­
low the path (0,0),(1,0), ... , (D ,O), where D is the depth of the
tree. Node (D ,0) is a feasible solution. Now lfbb will backtrack
and look for other feasible solutions, each time updating the vari­
able minfeaa, which contains the cost of the best possible solution
obtained thus far. When lfbb encounters a node whose cost hap-

pens to be greatert than, or equal to, minfea8, it will simply dis­
card the children of this node.

Let N;,i be the number of nodes examined by lfbb in a
tree rooted at (i,j). We want to find N 0 ,0 , the number of nodes
examined in the entire tree. N;,; can be expressed as a recurrence:

N;,i + P;,;(N,+i,2; + N;+1,21+i) i

Po,o

Nv,J 1 .. (1)

where Pi,i is the probability that the node cost of (i ,j) is less than
minfea8.

Eq. (1) states that lfbb must examine node (i ,i), and then
with probability p;,;, examine the subtrees rooted at its children.
The root (O,O) is examined with probability 1 (p0 ,0 =1) and a leaf
node is terminal (Nv,; =1). The computation of Pi,; is now
described.

Consider the scenario in Fig. 1. Here, lfbb has encountered
the I solutions in subtrees T2 , T3 , and T 4 , and is now examining
node a, deciding whether to select the subtree rooted at a for
searching or to backtrack. The best feasible solution, will be the
one with minimum cost among those obtained so far. Each solu­
tion is the sum of D (not necessarily independent) random vari­
ables, each random variable being the incremental node cost.

An exact analysis would proceed as follows: First, the pro­
bability distribution of the cost of the best solution in a given sub­
tree must be found. This may be represented as a recurrence rela­
tion:

where

t

1 - [1-J fq*hc(d-1)(x)dx] 2 .. (2)
0

FLc(<1)(t) is the probability distribution of the best solution
cost in a subtree of depth d.

f Q (t) is the probability density of the incremental node
cost and,

* stands for convolution.

The convolution in Eq. (2) represents the probability den­
sity function of the sum of the incremental cost of a node and the
random variable that is the minimum cost solution in the sub-tree
rooted at this node. The minimum solution cost in a tree is then
the minimum of two random variables (for the right and left sub­
trees), each of which is distributed as the sum just described.

Next, using the tree in Fig. 1 as an example, the probabil­
ity of the following two (in this case) events must be calculated
(the q's denote the incremental node costs):

(i) {The minimum cost solution in tree T1 + q' 1_i} s
{ ql-1 +qi}.

(ii) {Minimum cost solution in T4 + q',}s {qi}.

Let Pc be the probability of both events (i) and (ii) occur­
ring, i.e., the cut-off probability at node a. Then P;,; for a is
simply (1-p,). Unfortunately, the analysis, if pursued as above,
quickly becomes intractable. The treatment we follow makes cer­
tain simplifying assumptions. The results thus obtained are
approximate, but are of sufficient accuracy for limited purpose for
which they will be used.

tRecall that we are dealing with minimization p.ro blems.

Suppose that I solutions have been found by the time node
a, at level m is encountered .. (See Fig. 1). Now the cost of a par­
ticluar solution is the sum of D incremental costs. This sum may
be considered in two parts: (a) The sum of the incremental cost of
the node at level m-1, and the cost of its parent, and (b) the sum
of the remaining incremental costs. Although, in general, node a

and all the solution nodes before node a is encountered may not
have all their ancestors in common, we assume that this is indeed
the case, and thus ignore the contribution of these ancestors to the
variation in node costs amongst the solution nodes, and also node
a. The contribution to the solution cost under part (b) above will
be due to the nodes at and below level (m -1). Many of these
ancestors are common to the I solution nodes. However, we will
assume that these ancestors are not common, i.e., the events that
lead to the generation of the solutions are independent. The
approximations made in computing the sums (a) and (b) are
"opposite", in a sense. In (a), we assume complete dependence
when independent events exist, while in (b) we assume indepen­
dence when dependence exists. Hence, the errors caused by these
approximations could be expected to compensate each other, to
some extent.

A chain of nodes, then, from level m -1 to level D will
have on it some n, (n = d - m + 1), nodes. The contribution of
these n nodes to the solution cost will be the sum of n random
variables, each of which is the incremental cost of each node. This
sum is termed the length of the chain. The situation is depicted in
Fig. 2. There are I such chains, corresponding to the I solutions.
By the assumptions made earlier, the length of each chain is an
independent random variable. If the minimum length of these I
chains is less than, or equal to, the incremental cost of node a,
then we conclude that there is no solution in the subtree rooted at
a that is any better than the best one found so far. Further
exploration of this subtree is useless, and hence node a will be cut
off.

Let p, be the probability of cutoff, and Q a random
number that is the incremental node cost. Then,

dp, = Pr{min(cost of I chains) s t}

xPr{tsQst+dt}

{1-[1-Fq,n(t)] 1 } fq(t) dt .. (3)

FQ,n(t) is the probability distribution of length of a
chain. A chain is ma.de up of n nodes, each of which contributes a
random amount Q to the length. Q has a density function f Q (t).
So,

t

Fq,,.(t) = J f~"l(x) dx .. (4)
0

where the power is in the sense of convolution. The cut-off proba­
bility can then be written:

t

p,(n,1) = J {1-[1-J/~")(:i:) d:i:] 1} fq(t) dt .. (5)
0 0

Because of the reasons adduced earlier; we set f Q (t) to be
the exponential distribution:

fq(t) = >-.e-~t

Then (5) becomes:

.. (6)

Although the integral in (6) can be obtained for small
values of I and n by applying the multinomial expansion, this
technique is impractical for large I. (I may take values in the
order of 106). An alternative is to use the Guass-Laguerre quadra­
ture. But for large I, this method gives rise to significant inaccu­
racies. An asymptotic expression may, however, be derived for
large I, using the Laplace method [2]:

00 1_ 1,.... r (!:~)
p0 (n,I)- 1-_H:__~~. ~---'-

n + 1 i~ i! .i±.!.
·I n+l .. (7)

where
1

fL = [(n+l)!J n+l

The convergence of the infinite sum in (7) is quite rapid:
when l"=lOn, about four terms are required for a 1% error. For
larger I, an even smaller number of terms is sufficient.

The quantity Pi,j is related to p0 (n ,I) by:

Pi,j = 1 - p0 (d-i+1,j2d-i) .. (8)

At this point all the elements are in place to solve the ori­
ginal problem given in (1), using (8), (7), and (6). The expected

number of nodes examined by the branch-and-bound algorithm,
for trees of various depths can be calculated. The results are
shown in Table 1, which compares the model with a simulation
using 1000-2000 trials on random trees. For trees of depth 10 and
below, the discrepancy between the model and the simulation is
about 5%, increasing to about 14% for a depth of 12.

Suppose there are two processors working on two different
subtrees, each exchanging information as to the cost of the best
solution. Then the decision whether to cut off at some node will
have the benefit of both these searches: twice the number of
independent chains have been generated. The effect of this mutual
assistance can be represented in our model by simply replacing I
by kl in (6), where k is the number of processors. The result is
the speedup given that each processor has chosen a different sub­
tree to work upon. In the next .section we will derive an expression
for the unconditional expected speedup for a k-processor system
with global memory.

IV. SPEEDUP CALCULATIONS

We now proceed to use the results obtained from our
model to estimate the expected speedups. In the derivation we
have neglected to account for the queueing and communication
delays. In the next section, we observe that these are quite small.

Suppose some k processors are deployed to search the tree
using rabb. At each level each processor makes a random decision
regarding the next child to examine. , Given a sufficiently large
tree, there is but an infinitesimal probability that two processors
follow the exact same path while searching the tree. Of more con­
cern is the likelihood that a processor will take a path already
trodden earlier by another processor, resulting in replication of
work. To avoid this occurring, a global list is maintained that
keeps the status of the subtrees at each level. It is easy to show by
calculating the probability of the occupancy numbers, that the
level to which this list must be maintained does not need to be
large. In the next section it will be shown that a list maintained
for the first five levels is adequate for up to 10 processors.

72

We define the following terms. Let Sk be the expected
speed up using k processors; T (i, n) be the expected time taken by
j processors to search the left subtree, which has n nodes; and
T'(i,n) be the expected time to search the right subtree, after the
left has been searched. The time to examine one node is taken as
1 unit. Define "I"" T 1 (i, n)IT (i, n). It is clear that

T(i,2n) = T(i,n) + T'(i,n) + 1

::::: T(j,n) + T'(i,n) (for large trees)

So, ignoring the error due this approximation,

~ = (l+'Y)
T(j,n)

.. (9)

Eq. (9) expresses the ratio of the time that f processors
take to search a tree of 2n nodes to the time taken for a tree of n
nodes. Evidently, this ratio is independent of f. Eq. (9) may thus
be used to estimate ')' from Table 1, which gives an average value
of 'Y:::::0.4. Extending (9),

T(. 2•+i)
f(~",1) = (l+'Y)i+l .. (10)

Now, 2D+l::::N is the total number of nodes. Let 2i+l:::::n be the
size of the subtree searched at time t. Then,

T(j,n) = T(j,N)(l+')')log,n-log,N

which gives:

where:
'3(t)=n!N = fraction of nodes examined at time t,
TN = time to search the entire tree of N nodes, and,
ex = l/log2(1 +')').

.. (11)

.. (12)

Suppose there are some k processors working on one part
of the tree, with I processors working elsewhere in another sub­
tree, assisting these k processors. Let Sk,l be the expected speedup
obtained in the first subtree. (Sk =Sk,o)· At the node rooted at
this sub-tree, the k processors will randomly choose their next
sub-tree to examine. Of the k, some k1 will choose the left sub­
tree and k2 , the right. Let Pi be the probability of this partition,
{k11k2}. Without loss of generality, we can assume that k1?.k2 •

Let a; be the speedup, given this partition.

..(13)

where the sum is over all the possible partitions. Consider the
partition {k1 ,k2}; k1 2!k2 , k2 '¢'0. The k1 processors - now assisted
by I+ k2 processors - will finish searching the left subtree consist­
ing of N/2 nodes in an expected time t 1 = T(k 1 ,N/2).

11 = T(k1 ,N!2) = T(l,N/2)
S1r.1,t+k2

1 .11hfil
1 +'Y • sk,,l+k,

.. (14)

In time t1 , the k2 processors have finished some fraction
'3(t1) of their work. From (11),

'3(ti) = [T(k::N/2 r .. (15)

Now, T(k 2 ,Nl2) can be written as:

L.!b.fil _1_
1+'Y · 8k.,1+k, .. (16)

whence,

.. (17)

After time t1, all the processors will combine to work
upon the unfinished portion of the tree. Let t2 be the expected
time to finish the remaining work. By properly juxtaposing the
13-curves for k2 and k1 + k2 processors, t 2 can be calculated:

..!.
t2 = T(k ,N/2) - T(k ,N/2)13 a (t1)

= L.C!ifil.-1-.[1-13-!-(t1)]
81;,1 l+'Y

.. (18)

The total time to search the tree, T(k ,N) is t1 + t2 and is given
by:

T(k,N) = T(1,N) [-1- + 1-13-!-(t1) l
1+'Y 8k,.1+k, 8,.,,

Transposing terms, the speedup <T;, for a given partition can then
be written:

O"; = (1 + 'Y) [s-1-- + 1-13-!-(t1) i-1 .. (19)
A: 11 1+11: 1 S1c,1

Now, (13) can be expanded as:

8k,I = Po 81;,1 + LP; <T;
i

where the summation is over all partitions.

.. (20)

Eq. (20) expresses a recurrence relation for the expected
speedup. The calculation of the probability p;, of a particular
partition {k1,k2 } is a straightforward matter of considering the
probability of the occupancy numbers: l k! 1

k1!k2! . 2k-l j k1 *k2

P; = kl 1
--·--· k =k
[(k/2)!]2. 2k ' 1 2

.. (21)

The terminating condition for the recurrence, viz., the set 81,1 can
be obtained from the model as explained in the previous section.
Table 2 gives the speedup calculated in this fashion, and Fig. 3
shows a plot of these values. Setting 8 1.1 =1, (all I), gives the case
when only local versions of the best solution are kept by each pro­
cessor.

In the next section, we will describe the simulations and
present results obtained.

V. SIMULATION RESULTS

The performance of the randomized branch-and-boun.d
algorithm was obtained on a multiprocessor simulator MPSIM [1],
(implementing the PRAM-CREW model), running under ULTRIX

on a MICROVAX. The randomized algorithm rsbb is implemented
in C. The software can be divided into three parts: (i) The mul­
tiprocessor simulator, (ii) the skeletal algorithm rsbb, and (iii)
problem specific procedures and data-structures. Mutual exclusion
is enforced by the use of a monitor.

73

The problem that was chosen was the 30-element 0/1
knapsack problem [4]. The knapsack problem was chosen because
of its relative ease of formulation. In order to fully explore the
possible range of the problem space, we have used a suggestion of
Horowitz and Sahni [4]. Six sets of 50 problems (300 in all) were
used, with the problems in each set being randomly generated .
The sets are described in Table 3. To determine the effect of keep­
ing a global list of the nodes visited, the same problems were
solved using three different si1es of lists: (i) For the first 5 levels
(31 nodes in all), (ii) The first 4 levels (15 nodes), and (iii) No glo­
bal list. The results are shown in Table 4.

An important observation about the behavior of the algo­
rithm is that large speedups occur in precisely those problem
instances that take large times ·to solve. Fig. 4 shows a scatter­
plot of the speedup obtained versus the solution time for a single
processor, where this trend is readily discernable .

A detailed analysis of the trace files produced by the simu­
lator was done in order to obtain real time information. Table 5
shows the speedups obtained as ratios of actual times. Unfor­
tunately, the size of the trace file thus obtained grows enormously
as the solution time or the number of processors increases, and is
beyond the capacity of our machine. We have, hence, been able tO
obtain results only for a few of the problems, and only for up to
five processors. A comparison with Table 4 shows that the degra­
dation because of global memory accesses is quite small. The
analysis for these instances showed that, on average, processors
spent about 20% of the total time in accessing the global location
containing the cost of the best solution; and about 8% of the time
accessing the global list of searched subtrees (for a list size of 15
nodes). It should be noted in this connection that for the Knap­
sack problem relatively simple bounding functions and branching
rules can be formulated which incur little computation costs, as
compared to, say, the Travelling Salesman problem. The global
memory access percentages would be even better in the latter case.

VI. CONCLUSION

We have proposed a randomized version of the branch­
and-bound algorithm suitable for multi-computing. With little
communication overhead, we are able to obtain reasonable speed­
ups for small numbers of processors. The proposed method has
the following advantages:

(i) It is application independent, and transparent to the user.

(ii) Each processor is capable of solving the problem by itself.
So if any processor were to fail, the other processors would
still be able to perform unhindered. The overall performance
would depend on these working processors. The same would
apply if the communication links should fail.

(iii) The scheduler is very simple to implement, and is very flexi­
ble. There is no need to modify it when more processors are
added. Changes due to modification of global memory size
are trivial.

A system based on deterministic search would be hard
pressed to provide these advantages.

A model was devised to estimate the speedups, and
predicts the behavior of the system to a good degree. Finally
detailed simulation results were presented, which show the actual
performance of the new system.

Future research will be directed towards exploring the
·best-first branch-and-bound.algorithm as a candidate for randomi­
zation. The present model neglects delays caused by queueing and
communication times. A better model must be devised which will

be able to account for these delays.

(1]

(2]

(3]

(4]

(5]

(6]

VU. REFERENCES

E. D. Brooks, "A multitasking kernal for the C and Fortran
programming languages,'' Tech. Rep. UCID 20167, Lawer­
ence Livermore National Laboratory, Livermore, CA, Sept.
1984.

N. G. De Bruijn, Aavmptotic Methods in Analysis. Amster­
dam: North Holland Publishing Co., 1961.

0. I. El-Dessouki and W. H. Huen, "Distributed enumeration
on network computers,'' IEEE Transactions on Computers,
vol. C-29, no. 9, pp. 818-825, Sept. 1980.

E. Horowitz and S. Sahni, Fundamentals of Computer Algo­
rithms. Maryland: CSC Press, 1984.

V. K. Janakiram, D. P. Agrawal, and R.
Mehrotra, "Randomized parallel algorithms for PROLOG
programs and backtracking applications," in Proc. 1987 Intl.
Con/. on Parallel Proceaaing, Chicago, IL, pp. 278-282, 1987.

T. Lai and S. Sahni, "Anomalies in parallel branch-and­
bound algorithms,'' in Proc. 1984 Intl. Con/. Parallel Pro­
cessing, Chicago, IL, pp. 183-190, 1983.

l solutions

(0,0)

qi-I

node a

Fig. 1: Branch-and-bound Solution in Progress.

Ex pee ted Speedups (Predicted)

Processors

Fig. 3: Estimated Speedup.

level 0

level m

level D

74

[7] F. Maflioli, "Randomized algorithms in combinatorial optim­
ization: A survey," Discrete Applied Mathematica, vol. 14,
pp. 157-170, 1986.

(8]

(9]

(10]

[11]

(12]

D. R. Smith, "Random trees and the analysis of branch and
bound procedures,'' J. ACM, vol. 31, no. 1, pp. 163-188, Jan.
1984.

H. S. Stone and P. Sip ala, "The average complexity of
depth-first search with backtracking and cutoff,'' IBM Jour­
nal of Research and Development, vol. 30, no. 3, pp. 242-258,
May 1986.

B. W. Wah and C. F. Yu, "Probabilistic modelling of
branch and bound algorithms,'' in Proc. of the COMPSAC,
pp. 647-653, 1982.

B. W. Wah and Y. W. Eva Ma, "MANIP - A Multicomputer
architecture for solving combinatorial extremum-search
problems,'' IEEE Trana. on Computers, vol. C-33, no. 5, pp.
377-390, May 1984.

B. W. Wah and C. F. Yu, "Stochastic modeling of branch­
and-bound algorithms with best-first search," IEEE Trana.
on Software Eng., vol. SE-11, no. 9, pp. 922-933, Sept. 1985.

n
nodes

level m-i

level D

l solution-chains

Fig. 2: Calculation of Cut-Off probabilities

, .
. ..

a,." D

' .

a VS Solution Times
Knapsack Problem eize 30
Random IJ(iJ .r:rom U.1001
Random P[i) .f:rcm Cl.100] i
M = 2 • max<li/CiJ)I
Globel Memory Size = 15 nodes
For 1 to 10 proce.

8+-~~~~~~~~~~~~~~~~~~~~~~~~

"- 180 200

Solution lif".les '" •10 1 '" '"

Fig. 4: Scatter-plot of Solution Times for Data-set 2.

TABLE 1: Expected number of nodes examined TABLE 2: Expected Speedups (Predicted)

Tree depth Simulation Model Procs. 2 3 4 5 6 7 8 9 10
2 6.34 6.58

12.59
s d . 1.33 1.87 2.41 2.97 3.45 3.96 4.40 4.88 5.27

3 11.50
4 19.83 21.85
5 32.36 34.43
6 49.32 50.45
7 76.76 73.57
8 110.72 107.21
9 160.19 156.64

10 229.83 230.03
11 321.37 340.06
12 443.40 506.45

TABLE 3: Details of Data-sets for the Knapsack Problem

Data-set No. Profits (P;) Weights (W J. Capacity lMJ
1 Random Random 2,W;12
2 Random Random 2Xmax{W;}
3 w,+10 Random 2,W,12
4 W;+lO Random 2Xmax{W;}
5 Random P;+lO °2,W;/2
6 Random P;+lO 2Xmax{W;}

Note: Random = random integer in the range [1,100].

TABLE 6: Average Speedups Obtained from Simulation

Speedup
Data Procs.

(Global Range of Uniproces-
Set No. Mem. Size= sor Soln. Times

15 node'!}

2 1.63

1
3 2.13 3.0X 104-1.70X 106
4 1.88
5 2.73

2 1.51
3 2.26

1.88X 106-5.20X106 2 4 2.16
5 2.91

2 1.62
3 2.80 7.ox104-5.1x106 3 4 2.26
5 2.55

Notes: (i) For a description of the data sets see Table
3.
(ii) Speedups are real time ratios.
(iii) Unit of time is 1 VAX Instruction.

75

TABLE 4: Average Speedups Obtained from Simulation

Data
Speedup

Range of
Processors for Uniprocessor

Set Global Memory Size Solution Times
No. 31 15 Nil

2 1.72 1.78 1.50
4 2.21 2.00 1.77

1 6 4.23 4.09 2.26 120-880
8 4.37 4.53 2.83

10 4.79 4.39 2.90

2 1.57 1.51 1.37
4 2.11 2.19 2.04

- 2 6 4.16 4.67 2.62 580-2600
8 4.44 4.19 3.32

10 6.01 5.64 3.98

2 1.67 1.64 1.54
4 2.51 2.34 1.97

3 6 3.67 3.92 2.69 280-3200
8 5.90 6.08 3.33

10 5.47 6.21 3.23

2 1.51 1.46 1.52
4 2.23 2.12 2.25

4 6 4.15 4.84 2.68 2500-24100
8 3.79 3.43 3.79

10 4.91 5.29 4.14

2 1.40 1.27 1.44
4 1.65 1.70 1.64

5 6 1.74 1.89 1.70 62-235
8 1.73 1.90 1.78

10 1.86 1.74 1.70

2 1.48 1.42 1.23
4 2.34 1.78 1.50

6 6 5.08 4.79 3.55 120-2240
8 5.34 4.97 3.88

10 6.30 4.94 3.65

Notes: (i) For a description of the data sets see Table 3.
(ii) Time to examine a node is taken as 1 time unit.

Generalized Parallel Processing Models for Database Systems

Pramanik, Salcti
&

Kim, Myoung Ho

Michigan State University
Computer Science Department,
East Lansing, MI 48824-1027

Abstract

In this paper we propose a two stage abstract parallel processing

model to facilitate systematic design of parallel processing database sys­
tems. The objective of this model is to maximize throughput and
minimize response time through concurrent I/O and processing of data­

bases.

Based on the classification of database queries whose parallel pro­

cessing characteristics are different, we present two specific parallel pro­
cessing models which follow the abstract model. One is the FX model
for partial match retrieval type applications, and the other is the Multi­

dir_ectory Hashing model where database accesses are based on primary

keys. We show t.1tat these proposed models perform better than those
proposed earlier.

This two-stage modeling approach presents a new basis on which
parallel processing systems for various database applications can be
easily constructed.

1. Introduction

Parallel processing in database systems is important because it can
maximize throughput and minimize response time by increasing con­

currency in query processing. However, parallel processing by itself

does not necessarily leads to high performance. Some of the reasons are

attributed to overhead due to interprocessor communication, remote
memory accesses and data access conflicts. For parallel database opera­
tions external I/O also causes serious bottleneck [3].

Most past research in this area have focused on machine architec­
tures [23,24] which are specifically designed for database work. Our

objective here is to investigate database processing model for general

purpose parallel processing systems.

Stone [25] showed that parallel query algorithms in a multiproces­
sor system may perform poorly than efficient serial algorithms on single
processor system. The advantage of indexing was also emphasized in

that paper. Hillyer, et al. [10] and Hawthorn, et al. [9] investigated the
performance of several database machines and the results show that the
performance improvement depends on the query type as well as the
architecture.

We observe that a parallel processing model which is appropriate

for one database application may not be appropriate for another. For
example, the granularity of parallel processing which is suitable for one
application mat not be so for others. Thus, it may be necessary to

develop different parallel processing algorithms for various typeS of
applications. In the following paragraph we classify applications based
on their parallel processing characteristics.

This research is supported in part by National Science Foundation Grant No.
CCR-8706069, and Naval Research Laboratory Grant No. N00014-87-K-2022.

76

The types of queries whose parallel processing characteristics are

different are classified, as follows.

(Al) Single query with multiple hits

(A2) Single query with a single hit

(A3) Single complex query

(A4) Multiple queries accessing the same relation

(AS) Multiple queries accessing different relations

Examples of queries of type Al are partial match retrieval and
range queries. Here, intra-query parallel processing is advantageous
because a single query requiring many data records can be processed in
parallel by multiple processors. Rosenau, et al. have also applied this
type of parallel processing for projection operation on a relation [21].

It is rather difficult to exploit parallel processing of type A2 query

because applying parallelism for this type of query may require finer
granularity which may result in lower throughput of the system. On the
other hand, parallel processing may achieve the lower bound on access

time for these types of queries when appropriate software and hardware
architecture is used. Achieving and guaranteeing this lower bound are

important for many real-time critical applications. Parallel processing
models of type A2 queries can be found in [17, 18].

Queries of type A3 include join functions, sorting of files, and
complex qualifications. Several database machines which use function­

ally distributed architectures have been proposed for this type of query

[11, 23].

For type A4 and AS queries, transaction processing applications

are good examples, where many independent queries can be processed in
parallel. The throughput of the system for these applications can be

improved by maximizing concurrency among the queries. Parallel pro­
cessing models for these applications may also be developed based on

the parallel processing models of type Al, A2 and A3 queries.

The remainder of this paper is organized as follows. In section 2

we propose an abstract parallel processing model for database systems.

Section 3 describes optimal file distribution for Al type queries. In sec­
tion 4 we propose Multi-directory hashing model for A4 type queries.

Section 5 contains concluding remarks.

2. Two Stage Abstract Parallel Processing Model for Database Sys·

tems

We propose an abstract database parallel processing model as

given in Figure I. The basic idea is to partition data mapping into two

stages.

As shown in the Figure, the first stage, HI, is called Data Distribution
algorithm and the second stage, H2, is called Data Construction algo­

rithm. Qi represents a parallel access node. This can be a memory

module or a disk, depending on the parallel processing environment.

Di .ta distribution algorithms determine how the data is appropri­
ately distributed to the parallel access nodes so that maximum con-

HI @

/:
I DATA I ~- > @)_H2-------j>> ~
~ B

@
Figure 1. Abstract parallel processing model for database systems

currency is achieved between the access nodes. Data construction algo­

rithms, on the other hand, determine the appropriate data structure to
minimize the access time. It receives data from the data distribution

algorithm and then create local access structures such as hashed or

indexed files.

In general, the following strategies can be employed for data distri­

bution:

(Bl) Declustering based on query's data reference pattern

(B2) Random distribution

(B3) Objective specific declustering

(B4) Clustering based on data reference pattern

In method BI, the data distribution technique takes advantage of

the data reference pattern of a query. For example, if a query references

numerous records, the strategy may be to distribute the data so that these

records are stored uniformly among the nodes. This approach may be

useful for A I type applications discussed in the previous section. In
method B2, records are randomly distributed between the nodes. This

method is simple, but may not guarantee a good distribution. In tlie

objective specific method, records are allocated to optimize certain

objective functions. For example, [17] proposes a data distribution tech­

nique to construct multiple directories for a single relation, where a
record is allocated to the node which has the smallest directory size. It

has been shown in that paper that this approach gives the minimum total

directory size. However, declustering of data may not be always

beneficial. For example, if the interconnection network topology is

based on point-to-point connection and the communication cost is large,

clustering may give better performance than declustering. So, B4 type

strategies may depend on the interconnection network topology.

Data distribution algorithm can be a functional mapping which

depends only on data values. It maps a set of data values into a set of

nodes. For example, if node addresses are determined by hashed values
of input data, distribution algorithm is a mapping which is independent of

time or other system parameters. On the other hand, the distribution

algorithm need not be functional. For example, random distribution may

map the same record to different nodes at different time. Since data

accesses are content-based for most database applications, it is advanta­

geous to make a data distribution algorithm functional depending only on •

data values.

Let D be a set of data and ZM = {O, I, ... , M-1} be a set of paral­

lel access nodes. Let data distribution algorithm be a function from D to

ZM. Since actual data are quite unevenly distributed in the domain of

data, data distribution algorithms are commonly designed based on the

hashed values of data which are evenly distributed in hashed address

space. Thus, we define data distribution algorithm HI as a ccmposition

77

of two functions, H I <1> and H I CZ>, such that HI <1> is a mapping from D

to T and HI C2l is a mapping from T to ZM, where T is the set of hashed

values. Figure 2 shows two level implementation of Hl for the abstract

database parallel processing model. This model can be thought of as

one class of database parallel processing model described in Figure 1.

Figure 2. Two level implementation of Hl for the abstract model

Let H2 be a hash-based data construction algorithm and LD be a set of

entries in all local directories generated by H2 for a given file system. 1f
there exists one-to-one correspondence between T and LD, T is called a

real global directory. Otherwise, it is called a virtual global directory.
When T is a real global directory, the set of all the local directories can

be thought of as a partition of T. H 1 <1> is usually static because the use

of dynamic hashing for H 1 <1> will cause significant overhead due to

intemode data movement. However, static hashing scheme for H 1 <1l

may result in very sparse local directories or long overflow chains.

These problems can be avoided by using a virtual global directory, where

the actual local directories are determined by H2.

When Tis a real global directory, the ratio ITl/IDI directly affects

the data retrieval time as well as storage utilization. On the other hand,

we have more flexibility when Tis a virtual global directory. The com­

parison of these two approaches will be described in more detail in sec­

tion 3.2 and 4.2. Functional distribution, and real/virtual global directory

concepts are used for FX model and Multi-directory hashing model

presented in section 3 and 4.

3. Parallel Processing Model for Partial Match Retrieval Type

Queries

In this section we present parallel processing model to process par­

tial match retrieval type queries. Partial match queries are queries where

. some of the attributes are specified, hence a set of qualified records need
to be retrieved.· For example, q = [Age = *, Department = "mathemat­

ics", State= "Ohio"] is a partial match query, where *denotes a don't

care condition.

It has been shown that multi-key hashing is effective for partial

match retrieval type applications. Multi-key hash function, H, for a

database consisting of n fields is a set of n functions {Hi. · · · , H n}

such that given a record r = <ri. • · · , rn>, H(r)
<H 1 (r1) ... · , Hn(rn)>. H(r) is usually called a bucket. Rothnie, et al.

[22] and Rivest [20] have independently proposed the use of multi-key

hashing, as an alternative to inverted files, to reduce the total search time

for partial match retrieval type queries. The design of multi-key hash
functions was considered in [4]. The determination of each field size for

minimum search time based on query statistics was also investigated by

[l, 2]. In [5] it has been shown that the problem of finding the optimal

field sizes for multi-key hashing scheme is NP-hard.

The main objective of this section is to minimize the total number

of bucket accesses for a partial match query by distributing buckets in
multi-key hashing.

3.1. Data Distribution Algorithm For Partial Match Retrieval

The data distribution is said to be optimal for a partial match
query, when no device has more than r total number of qualified buckets I
number of devices l buckets. It has been shown in (26] that there does
not exist an optimal data distribution method in certain types of file sys­
tems.

There are a few heuristic methods for distributing data in partial
match retrieval type queries. Du, et al. have proposed data distribution
method based on modulo allocation [6]. Modulo allocation is simple but
does not work in many cases. For example, it may not give optimal dis­
tribution if some of the field sizes are less than the given number of dev­
ices. So, for a large number of parallel processing nodes such as
Butterfly machines[27], Modulo distribution may not be appropriate.
Generalized Disk Modulo (GDM) method has also been proposed in [6]
to overcome this problem. This method gives a sufficient condition to

achieve optimal distribution. However, no general method has been
given to find the optimal distribution parameters. In fact, the problem of
finding the optimal parameter values could be very complex [6]. Several
useful properties of these modulo based distribution methods have also
been given in (26]. Data distribution methods based on minimal span­
ning trees and short spanning paths have also been proposed in [8].

In this section we propose Fieldwise eXclusive-or (PX) distribu­
tion method which gives better performance for a wider range of param­
eter values than existing methods. The basic idea of the PX distribution
method is the use of bitwise exclusive-or operation on the field values
which are computed by multi-key hashing. Here, we show several use­
ful characteristics of exclusive-or operation for optimal data distribution.
Field transformation techniques have been used to extend the scope of
optimality in PX distribution.

Before describing PX distribution method, it is necessary to intro­
duce some notations as well as relevant definitions and assumptions for
this section.

Definition :

f; = (0, l, ... , F i-1). a set of hashed values of field i.

Fi denotes If; I.

M denotes the number of parallel devices.

N is the set of all natural numbers including 0.

ZM is the set of all integers from 0 to M-1.

(am-1 ... ao)n is a binary notation of an integer, where ai is a
binary digit.

If; I is assumed to be a power of 2 which is common for hash
directory files for partitioned (l] or dynamic hashing schemes (7, 13, 14].
The number of devices M is also assumed to be a power of 2.

Definition : Let R(q) be the set of buckets which satisfy qualifications
for a partial match query q. The distribution method is called strict
optimal for a partial match query in a given file system if each device has
no more than r1R(q)l/Ml number of buckets. When the distribution
method is strict optimal for all possible partial match queries in a given
file system, it is called perfect optimal for that file system.

Definition : [+] denotes exclusive-or operation between two bits. We
will use the same notation [+] to denote exclusive-or operation between

integers and sets of integers as follows. When X = (am-l ... ao)n and Y
= (bm-1 .•• bo)a are two integers, X [+] Y =(am-I [+] bm-1 ... ao [+]
b0)8 . If Xis an integer and Y = (y 1, •.• , yd is a set of integers, X [+] Y

is defined as [X [+]Yi I Yi E Y) . If both X = (x" ... , xK) and Y = [y"

78

... , yd are sets of integers, X [+] Y is defined as

{xi [+] YJ I X; E X, YJ E Y)

For example, if X1 =2and Y1 =3 thenX 1 [+] Y 1 =1. If X2 = 2 and Y2

= (0, 1, 2, 3} thenX2 [+] Y2 = {0, l, 2, 3).

•
Definition : [+](Y;) = y I [+] y 2 [+] y 3 ••• [+] Y •.

i=1 .
Note that [+] is a shorthand notation for performing exclusive-or opera­

i=l

tion between sets of integers Y 1, Y 2, ... , Y •.

Because of space limitation, the proofs of the lemmas and the
theorems are not given. They can be found in [12, 19].

Compared to the abstract model of Figure 2, H 1 (ll is a multi-key
hashing and PX distribution in this section corresponds to H 1 (2). In PX
distribution model, T described in Figure 2 is a set of ordered n-tuple

produced by multi-key hashing.

3.1.1. Basic FX Distribution

Let f 1 xf2x ... xf. be a set of all buckets. Basic PX distribution

method allocates bucket <./ 1' •.• , l.> into device TM r(~J(l1)], where
~=I

TM : N ~ ZM is a function which returns only the rightmost log2M bits
of domain values, and 11 E fj for j = l, ... , n.

Example 1. Table 1 shows the bucket distribution by Basic PX distribu­

tion method, where f 1 = (0, 1). Ji= (0, 1, 2, 3, 4, 5, 6, 7) and M = 4.
In this table, binary numbers are used for field values and decimal
numbers are used for Device No. (This convention will be used in all

examples of PX distribution). Here, Device No= TM ~1 (+]12), where

l 1 E f 1, l 2 E Ji and TM returns the rightmost two bits of the result of

11 [+]l2.

.£ .i:z.. Device No
000 000 0
000 001 l
000 010 2
000 011 3
000 100 0
000 101 1
000 llO 2
000 111 3
001 000 1
001 001 0
001 010 3
001 011 2
001 100 1
001 101 0
001 110 3
001 111 2

Table 1. Basic PX distribution

As shown in the Table 1, Basic PX distribution is strict optimal for any
partial match query in the file system of example 1. For example, when
(OOl)n is specified for the first field and the second field is unspecified,

we have to access eight buckets <(001)8 ,(000)n>. ... , <(OOl)a.(lll)n>·

Since each device has two qualified buckets for this partial match query,

PX distribution is strict optimal for this query.

Lemma 1.1. ZM is a set which contains M different nonnegative

integers from 0 to M-1. Let k be some integer 0:;;; k:;;; M-1. Then ZM

(+] k=ZM.

Example 2. Let Zs= (0, 1, 2, 3, 4, 5, 6, 7} and k = 3. Then Zs [+] k

= (3,2, 1,0, 7,6,5,4} =Z8•

Lemma 1.1 is a basic property which is used in the proofs of several

theorems.

Theorem 1. Basic FX distribution is strict optimal for any partial
match query in which the number of unspecified fields is 0 or 1.

Theorem 2. For any partial match query which has two or more
unspecified fields, Basic FX distribution is strict optimal, if there exists at

least one unspecified field i such that F; ?. M.

Note that Theorem 1 works for partial match queries with only one
unspecified field while Theorem 2 applies to partial match queries with
more than one unspecified fields.

Theorem 1 and 2 show general characteristics of exclusive-or
operation for optimal file distribution. This is mainly due to the pro­

perty described in Lemma I.I. However, Basic FX distribution does
not give optimal distribution for partial match queries with 2 or more
unspecified fields, when the size of none of the unspecified fields is
greater than or equal to M. For example, when M = 16 and all others are
the same as in example I, the distribution is not optimal. Since every

element in / 1 and fz is much smaller than M, the reason of not being
optimal is clear. Theorem 3 gives the sufficient conditions for optimal
distribution for these cases.

Theorem 3. Let q(f) = !ii. i 2, ...• it} be the set of unspecified fields
for partial match query q, where Fi < M, for all j e q(f). Basic FX dis­
tribution is strict optimal for partial match query q, if there exist a set of

fields {ii. ... , ii} !:;; q(f) such that l.fi, x · · · xfi; I ?. M and

#((J:· · · ·].) E Ji X • • • Xfi I TM r({](J.,.)] = z) =
'•' 1i 1 J ~=1

l.fi,x · · · xfi;l/Mforallze ZM.

Theorem 3 says that we can guarantee optimal distribution, if (1)

there exists a subset of the unspecified fields whose size of cartesian pro­

duct is greater than or equal to M and (2) the records projected on these
fields are distributed uniformly among the M devices.

However. when the size of none of the unspecified fields is greater

than or equal to M, the conditions given in Theorem 3 is not satisfied in
Basic FX distribution. In the next section we will introduce field

transformation techniques. These field transformation techniques

increase the scope of optimality by themselves, and also utilize Theorem

3.

The following paragraph exemplifies the idea of field transforma­

tion techniques. Let/1 = (0, l},/z = (0, 1, 2, 3, 4, 5, 6, 7} and M = 16.
Ai!. we discussed, Basic FX distribution method does not give an optimal
distribution for this file system. Let X be an one-to-one mapping such

that X(j1) = (0, 8}. When Basic FX distribution method is applied for
X (j1)xfz, the distribution is perfect optimal. (It can be easily verified by

substituting (lOOO)B for (OOl)B in f 1 column of Table I.) Now, the
problem is to find a general one-to-one mapping, X, such that Basic FX
distribution method for X (ji)xfz gives optimal distribution.

We will present several field transformation functions such as, X,

described above. Even though the techniques developed in this paper
may not achieve perfect optimal distribution in all the cases, this
extended FX distribution method will give strict optimal distribution for
a large class of partial match queries.

3.1.2. FX Distribution With Field Transformation Functions

In the previous section Basic FX distribution method was defined.
In this section we extend Basic FX distribution method by using the field
transformation techniques.

Letf1xfzx ... xf,. be a set of all buckets. Extended FX distribu-

79

tion method allocates bucket <Ji. ... , J,.>, Ji e fj for j = 1, ... , n, into

device TM ~!}<XM, '!;'(Ji)+ where

i) if IJjl?. M, XM, t/;t is an identity function,

ii) if !fil < M, XM, 'I;' is an element of set of injective (one-to-one)

functions whose domains are fj and ranges are ZM.

XM. 'I; 1 is called field transformation function.

When XM,t/jt is identity function for all j=I, ... , n, Extended FX

distribution method reduces to Basic FX distribution method. From now
on, we will simply call FX distribution instead of Extended FX distribu­

tion.

It is easy to see that all lemmas and theorems that hold for Basic

FX distribution also hold for FX distribution. Since the fields whose

sizes are no less than the given number of devices M, do not cause any
problem (whether it is specified or not), in this subsection we will focus

only on the fields whose sizes are less than M.

Definition : Let M be a power of 2.

(1)

(2)

(3)

I : N ~ N is an identity function.

For each proper subset Ji of ZM. where l.fi I is some power of 2,
UM,IJit : Ji~ ZM is a function such that UM,IJil(l)=ld1M,IJit,

h I ' dM,IJil M
w ere e Jh 1 = l.fi 1 .

For each proper subset f1 of ZM, where !fil is some power of 2,
IUlM,tJit : Ji ~ ZM is a function such that

IUlM,tJil(l)=l[+Jld1M,IJil,wherele.fi,d1M.1Jil = 17,1 .

(4) For each proper subset Ji of ZM, where !fil is some power of 2,
IU2M, tJit : Ji ~ ZM is a function such that
1u2M,tJit(l)=l[+Jld11M,tJit [+Jld12M,tJit, where I e Ji, d11M,1Ji1

M M,IJil fd11M,IJil!lfil if l.fil 2 <M
= l.fi 1 • d12 = lo otherwise

We have defined the four groups of basic functions, I, UM,IJil,

JU IM, IJi 1 and JU iM· 'ii 1 which will be used in various combinations for

optimal file dis1Iibution. For example, for any values of l.fi I, lfj I and
M, FX distribution method distributes elements of /(Ji) x UM, IJil ({;)

optimally.

It is not difficult to see that for any proper subset Ji of ZM whose
!fil is some power of 2, all the functions defined above satisfy the require­

ments of field transformation functions described previously.

Because of notational complexity, when the context is clear, we
will leave out the superscripts M, I Ji I from transformation functions and
their parameters.

Theorem 4. When there are only two fields i, j whose sizes are less
than the given number of devices M, FX distribution with I (Ji) and U ({;)

is perfect optimal.

Example 3. Letfi = (0, 1, 2, 3},/z = (0, I, 2, 3} and M = 16. Table 2
shows bucket distribution by FX and Modulo methods. Note that I if 1)

= (0, 1, 2, 3} and U(j2) = (0,4, 8, 12) are I and U transformed values of

j 1, fz and denoted by binary numbers in the table. Here, Device No =
TM(/(1 1) [+] U(J2)) for FX distribution, and Device No =

(J 1 + J 2) mod M for Modulo distribution, where J 1 e !1,J2 e /z.

The FX disliibution in Table 2 is optimal. But in Modulo distribu-
• tion, it is skewed. GDM method can also give optimal disliibution by

multiplying 3 to the first field values and by 4 to the second field values.
However, these parameters should be found by 1Iia1 and error method.

I u DeviceNo FX Device No odulo
0 0 0000 0000 0 0
0 1 0000 0100 4 1
0 2 0000 1000 8 2
0 3 0000 1100 12 3
1 0 0001 0000 1 1
1 1 0001 0100 s 2
1 2 0001 1000 9 3
1 3 0001 1100 13 4
2 0 0010 0000 2 2
2 1 0010 0100 6 3
2 2 0010 1000 10 4
2 3 0010 1100 14 s
3 0 0011 0000 3 3
3 1 0011 0100 7 4
3 2 0011 1000 11 s
3 3 0011 1100 lS 6

Table 2. FX distribution with I and U transformation

On the other hand, FX distribution techniques give a specific method.

Theorem S When there are only two fields i, k whose F; and Fk are

less than the given number of devices M, FX distribution with I (Ii) and

JU l(fl) is perfect optimal.

Theorem 6. When there are only two fieldsj, k whose Fi• Ft are less
than the given number of devices M, FX distribution with U (fj) and

JU 1 (fl) is perfect optimal.

Example 4. Let/1 = (0, l, 2, 3),/2 = (0, 1, 2, 3) and M = 16. Table 3
shows the FX distribution with U(f1), JU1(f2). Here, Device No=

TM(U(J1) [+]/Ul(/z)), where/1 e /1.l2 e /z.

UJEi JU:ilfJ": Device No
0000 0000 0
0000 0101 s
0000 1010 10
0000 1111 lS
0100 0000 4
0100 0101 1
0100 1010 14
0100 1111 11
1000 0000 8
1000 0101 13
1000 1010 2
1000 1111 7
1100 0000 12
1100 0101 9
1100 1010 6
1100 1111 3

Table 3. FX distribution with U and IUl transformation

Theorem 7; When there are only two fields i and k whose Fi and F k

are less than the given number of devices M, FX distribution with I (Ii)
and JU2(fl) is perfect optimal.

Theorem 8. When there are only two fields j and k whose Fi and F k
are less than the given number of devices M, FX distribution with U(fj)
andJU2ift.) is perfect optimal.

Lemma 9.1. When there are only three fields i, j and k whose sizes are

less than the given number of devices M, FX distribution with I (Ii),
U(fj) and/U2(fl) is perfect optimal, if either

(1) there exist at least 2 fields p and q such that p,q e (i, j, k) and

Fpf"q "2M or

(2)Fk"2FiandFk2 <M

Theorem 9. Let L be the set of fields whose sizes are less than the

given number of devices M in a given file system. FX distribution with

I, U and IU2 transformation can be always perfect optimal, if IU S 3.

Example 5. Let/1 = (0, l, 2, 3),/2 = (0, l},/3 = (0, 1} and M = 16.

Table 6 shows theFX distribution with/({1), U(f2) and/U2(f3).

80

I u JU Device No
0000 0000 0000 0
0000 0000 1101 13
0000 1000 0000 8
0000 1000 1101 s
0001 0000 0000 1
0001 0000 1101 12
0001 1000 0000 9
0001 1000 1101 4
0010 0000 0000 2
0010 0000 1101 lS
0010 1000 0000 10
0010 1000 1101 7
0011 0000 0000 3
0011 0000 1101 14
0011 1000 0000 11
0011 1000 1101 6

Table 4. FX distribution with I, U and IU2 transformation

We have determined, through theorems, the class of partial match

queries whose qualified buckets are distributed optimally under FX dis­

tribution. Even though FX distribution does not always guarantee strict

optimal distribution, FX distribution gives optimal distribution for a large

class of partial match queries.

3.1.3. Performance Comparisons to Other Distribution Methods

In this section we compare FX distribution with Modulo and GDM

method. The performance comparisons are based on the probability of

strict optimality and response time for a given partial match query. In the

following subsections, it is assumed that the probability of each field

being specified is the same for all fields and some field being specified is

independent of each other.

3.1.3.1. Probability of Strict Optimality

In this section we show that the probability of strict optimality for
FX distribution is higher than Modulo distribution. Even for the worst

case the decrease of probability of strict optimality for FX distribution is

not much. On the other hand, in Modulo distribution the decrease is

quite large. Since no general method has been given to determine the

existence of parameter values for strict optimal distribution in GDM

method, we compare FX distribution to only Modulo distribution in this
section.

Figure 3 and 4 show the percentage of strict optimal distribution

for all possible partial match queries in a given file system consisting of

ten fields. In all these Figures MD denotes Modulo Distribution and FD
denotes FX Distribution. Here, results are computed from sufficient

conditions given for each method. Figure 3 shows the case where any

two fields p and q satisfy the condition, F pf" q "2 M. In this figure FX

distribution used I, U and IUI transformation methods.

:t
100,-------=::------

2
;::
a. 80
0 ,_
u e 60
Ill

....
0

~
40

~ 20
u
a: w
a.

FD

MD

O-i----.---------__, o 2 8 10
NUMBER Of F1ELDS WHOSE

SIZES ARE LESS THAN M

Figure 3. Probability of strict optimality

Figure 4 shows the case when for any two fields p,q, FpFq < M
but for any three fields p,q,r FpFqFr <: M. Here, in PX distribution I, U
and IU2 transformation methods are used.

_,
< :.
;=
a_ BO
0
f­
u
~ 60

U1 \

....
0
w 40

~
z
w 20

~o~
0

NUMBER OF FIELDS WHOSE
SIZES ARE LESS THAN M

Figure 4. Probability of strict optimality

3.1.3.2. Average Response Time

10

Definition : For a given partial match query q, r;(q) is defined as the
number of qualified buckets in device i for a partial match query q. We
call this a response size for device i. Then, the largest response size for
apartialmatchqueryqisdefinedasMAX(r 1(q), r 2(q), ··· rM_1(q)).

For the response time of a partial match query, we consider two
factors, namely, largest response size and CPU computation time for
bucket distribution and inverse distribution, where inverse distribution is
a procedure used to find qualified buckets. In parallel disks environ­
ment, largest response size is the most important factor, while in main
memory databases CPU computation time is more important.

(1) Largest Response Size

When systems are configured such that data retrieval time for any
device is the same, the response time for a partial match query is

determined by the device which has the largest number of qualified buck­
ets.

Table S through 7 show the largest response size of Modulo, GDM
and PX distribution for some typical file system environments. The
number of fields is assumed to be 6 for all these experiments. The first
column denotes the number of unspecified fields. For GDM method we

used three different sets of multiplication parameters. These sets are
GDMl : 2, 3, S, 7, 11, 13 and GDM2 : 2, S, 11, 43, 51, 57 and GDM3 :
41, 43, 47, 51, 53, 57. The PX distribution of Table S and 6 used I
transformation for fields 1 and 4, U transformation for fields 2 and S, IUl
transformation for fields 3 and 6. The PX distribution of Table 7 used

IU2 transformation instead of IU 1 transformation and others are the
same as in Table S and 6. In all Tables, each entry is computed as an
average value of largest response sizes from all possible partial match
queries for that entry.

The tables show that except for first row of Table 6 and 7, PX dis­
tribution gives smaller largest-response-size than the other methods. PX
distribution is also very close to optimal. It should also be noted that
there may be a set of multiplication parameters by which GDM method
can give better performance than those of GDMl, GDM2 and GDM3.
However, even though such a set of parameters may exist, it can only be
found by trial and error method.

(2) CPU Computation Time

In GDM method we reduce computation time by changing Modulo
function into AND operation. This can be done because the number of
devices is assumed to be a power of 2. In PX distribution, since the

81

Modulo GD Ml GDM2 GDM3 FX OPt;mal
2 8.0 3.3 3.6 3.7 3.2 2.0
3 48.0 18.1 18.9 18.9 16.0 16.0
4 344.0 130.5 132.7 132.5 128.0 128.0
5 2460.0 1026.3 1029.7 1031.7 1024.0 1024.0
6 18152.0 8196.0 8198.0 8202.0 8192.0 8192.0

Tables. M=32, Fi= . .. =F6=8

Modulo GD Ml GDM2 GDM3 FX O_.mimal
2 8.0 2.1 2.2 2.4 2.4 1.0
3 48.0 10.2 10.3 10.6 8.0 8.0
4 344.0 68.3 68.1 67.5 64.0 64.0
5 2460.0 520.5 517.0 517.3 512.0 512.0
6 18152.0 4114.0 4102.0 4102.0 4096.0 4096.0

Table 6. M = 64, FI = ... = F 6 = 8

Modulo GD Ml GDM2 GDM3 FX Optimal
2 9.6 1.7 1.3 1.4 2.3 1.0
3 91.2 10.0 5.5 5.6 5.1 3.2
4 911.2 90.3 40.5 42.2 37.3 35.2
5 9076.0 909.5 397.3 408.67 384.0 384.0
6 90404.0 9176.0 4144.0 4313.0 4096.0 4096.0

Table7. M=S12, F 1 = ... =F 3 =8 and F 4 = ... =F6 =16

multipliers for U, IUl and IU2 transformation are always power of 2, we
can substitute multiplication by shift operation. Note that we cannot do
this in GDM method because multipliers in GDM method are usually
chosen from prime or odd numbers. Function TM is done by AND
operation.

In MC68000 processor, computation time of PX method is much
faster than GDM method (In MC68000, XOR takes 8 cpu clock cycles,
ADD takes 4 clock cycles, AND takes 4 clock cycles, n bit shift takes 6
+ 2n clock cycles. But multiplication takes about 70 clock cycles). In
intel 80286/80386 processor the ratios of clock cycles between different
operations are almost similar to those of MC68000.

For main memory database systems PX method is more efficient

than GDM method. The computation time for Modulo distribution is
shorter than PX distribution. However, as shown in Table S through 7,
Modulo distribution is not suitable for a large number of parallel devices.

3.2. Data Construction Algorithms For Partial Match Queries

Multi-key hashing for a given file with n fields produce a subset of
T, where T = / 1 xfzx ... xf.. As discussed in section 2, T can be used as
either a real global directory or a virtual global directory.

3.2.1. Data Construction Using T As A Real Global Directory

Let GD= [0 .. F 1-l, ... , 0 .. F.-11 be a multi-dimensional array in
which the range of i-th dimension is O .. F,-1. This is the same range of
multi-key hashing for field i. Here, GD serves as a real global directory.
Each element of GD contains an address of a bucket. PX distribution
partition multi-dimensional array GD into M subsets. Note that a direc­
tory is also distributed among the nodes to achieve maximum con­
currency. Then, we have to have efficient storage rule of this multi­
dimensional array (e.g., the local address of array elements in each dev­
ice). The storage rule for the distribution of this multi-dimensional array
can be found in [19].

Using T as a real global directory is advantageous when for most t
e T, En-1(1) * <j>, where EH is a given multi-key hash function. How­
ever, since T consists of cartesian product of all fields, many elements in

1
GD may be empty. For example, when only W of GD are actually

used, the waste of storage to construct a whole directory is quite
significant.

3.2.2. Data Construction Using T As A Virtual Global Directory

Let< Ii. 12 , .•. , In> be an ordered n-tuple produced by multi­

key hashing 81. The local hash function 82 use this ordered n-tuple as

an input key for its local directory when T is used as a virtual global

directory. Note that the local directories physically exist and are consid­

erably smaller than virtual global directory T which does not exist in this

case. The local directories can dynamically grow and shrink while the

virtual global directory is static.

This mapping scheme for local data construction is quite useful

when for most t e T, er1(t) = cj>. The diSadvantage of this approach is

that it may cause more probings to find qualified records. This is

because different buckets produced by 01 can be mapped into the same

local directory entry by 92.

Let Vl be a set of buckets produced by 81 for a given file which

are allocated into a same device. Let V2 be the range of local hash

function 92. Let µ1 = IVll and µ2 = IV21. Let 't be an average number

of elements in Vl which are mapped into same v e V2 by 82. Then,

the probability p that 0:Z-1(v) = cl> for some v E V2, is given by

p = [1 - µ21)
111

Let c = µ2/µ1. Then, 't ::: 1 _11 • This can be
c(l-e c)

derived by using 11¥!!;,.<1- c~l {1 = e-11c, and 't= (l~l)µ2 . 't

decreases with the increase of c and converges to I .

Achieving efficient storage utilization, e.g., c = l, causes more

probings to find a bucket. To reduce the number of probings, larger local

hashed directory is needed. Compared to the multi-dimensional array

view of a real global directory, if the empty portion of GD is large, the

mapping scheme of a virtual global directory can achieve data retrieval

as fast as a real global directory scheme, while it requires less amount of

memory than a real global directory. Otherwise, both methods have

time/space trade-off.

4. Multi-Directory Hashing for Key Access Applications

In this section we present another application of the abstract paral­

lel processing model. This application is for.random access file system

and is based on multi-directory hashing scheme [PrCh87]. Multi­

directory hashing is a class of hashing schemes which use multiple direc­

tories to maximize concurrent accesses to a single relation. Each one of

the directories can be of different size and it grows and shrinks dynami­

cally.

It will be shown that multi-directory hashing provides better per­
formance than single directory hashing schemes. The performance

difference between single directory and multi-directory hashing schemes

becomes significant in main memory databases. This is because short

overflow chain (e.g., one record) is needed for main memory databases

to reduce the main memory processing cost (e.g., comparing key values).

In the following section we present one possible method for implement­

ing multi-directory hashing.

4.1. Construction of A Multi-Directory Hashing

The algorithm for a multi-directory hashing is described below.

(1) The hashed address is partitioned into two parts. One part is used

for directory number and the other part is used for locating the

record within a local directory.

(2) Each directory of a multi-directory hashing is created based on a

hashing method.

Figure 5 shows the address mapping scheme of a proposed multi­

directory hashing. This figure also shows relationship between the func­

tions of this model and those of an abstract model in Figure 2.

82

DATA

___ _,__n_1'~" ---"iHASH ADDRESS

Figure 5. Hash address Mapping in Multi-Directory Hashing

In the next section the performance improvement of a multi­

directory hashing over single directory hashing is described.

4.2. Performance Comparison for Multi-directory Hashing

Here, we show the reduction. in main memory requirement while

achieving near optimal response time (i.e., one access for a record and

one key comparison). Extendible and linear hashing schemes are used

for constructing the directories.

In the following figures the directory size for a multi-directory

hashing corresponds to the toial size of ali the directories. Figure 6

gives the directory sizes for a multi-directory ~ing when 5000 unique

key values are inserted into the file. In this figure the total directory size

decreases considerably with increasing number of directories.

Figure 7 shows the cases of various file sizes. We see that the

reduction in directory sizes is significant for larger files when the number

of directories increases.

The lower bound on response time can be achieved in multi­

directory hashing at a much lower main memory requirement On the

other hand, the throughput increases considerably by concurrent process­

ing of the multi-directory hashing. Here, we process data requests in

parallel by accessing multiple directories concurrently.

30

"26

" ~ ..
~ 22

¥ 20

~ 18

~ 16

14

12

10 L-~~~~-----.~~~~~.~~.-~~~1.~~
nwnbH' of directories (Loe 2)

Figure 6. Total directory size in multi-directory hashing

5. Conclusion

In this paper we propose abstract parallel processing model for

database systems which consists of data distribution stage and data con­

struction stage. This two-stage model pelps in systematically develop­

ing an efficient parallel processing database system.

We classify database queries whose parallel processing charac­

teristics are different. Parallel processing models for two of these

classes are then presented. Maximizing concurrency and minimizing

response time are the most important objectives for these two models.

22 n • 1

n • 2
20 n • 4

n • 8
18 n • 16

16

14
D • 1024

12

10

Dumber of records it 1000

Figure 7. Multi-directory hashing for various file sizes

First, we propose the FX model for partial match retrieval type

queries. In the distribution stage of FX model, several characteristics of

exclusive-or operation are exploited to achieve optimal file distribution.

The optimality conditions are derived through lemmas and theorems.

We compare the FX distribution method with others and show the per­

formance improvement of our methods. In the construction stage of FX

model, two data construction methods based on the real and virtual glo­

bal directory, are presented. Here, performance trade-off for these
methods are investigated.

Second, we propose the multi-directory hashing scheme which is

suitable for concurrent accesses to a single file. Our focus here is main

memory database accesses on primary keys. We show that the proposed

multi-directory hashing scheme gives improved performance over single

directory hashing.

Acknowledgement

The authors would like to thank Hsiao-Yu Chou for the simulation

results of Figure 6 and 7.

6. References

[l) Aho, A.V. and Ullman, J.D., "Optimal Partial-Match Retrieval

When Fields Are Independently Specified," ACM Trans. Database

Systems, vol. 4 no. 2, June 1979, pp. 168-179.

[2) Bolour, A., "Optimality Properties of Multiple-key Hashing Func­

tions," JACM, vol. 26, no. 2, April 1979,pp.196-210.

[3) Bora!, H. and Dewitt, DJ., "Database Machines: An Idea Whose

Time Has Passed? A Critique of the Future of Database

Machines," Database machines, Leilich, H.O. and Missikoff, M.,

eds., Springer-Verlag, 1983, pp. 166-187.

[4) Burkhard, W.A., "Hashing and Trie Algorithms for Partial Match

Retrieval," ACM Trans. Database Systems, vol. 4, no. 2, June

1976, pp. 175-187.

[5) Du, H. C., "On the File Design Problem for Partial Match

Retrieval," IEEE Trans. Software Eng. Vol. SE-11, No. 2, Feb.

1985, pp. 213-222.

[6) Du, H.C. and Sobolewski, J.S., "Disk Allocation for Cartesian Pro­

duct Files on Multiple-Disk Systems," ACM Trans. Database Sys­
tems, vol. 7 no. 1, March 1982, pp.82-101.

[7) Fagin, R., "Extendible Hashing - A Fast Access Method For

Dynamic Files,"ACM Trans. Database Systems, vol. 4 no. 3, Sept.

1979, pp.315-344.

83

[8) Fang, M.T., Lee, R.C.T. and Chang,C.C., "The idea of De-

clustering and Its Applications," Proc. Conj. on Very Large Data

Bases," Aug. 1986, pp. 181-188.

[9) Hawthorn, P.B. and Dewitt, DJ., "Performance Analysis of alter-

native Database Machine Architecture," IEEE Trans. Software
Eng.," vol. SE-8, Jan. 1982, pp. 61-75.

[10) Hillyer, B., Shaw, D.E. and Nigarn, A., "NON-VON's Perfor-

mance on Certain Database Benchmarks," IEEE Trans. Software
Eng. vol. SE-12, no. 4, April 1986, pp. 577-583.

[11) Kakuta,T., Miyazaki,N., Shibayarna,S., Yokota,H. and

Murakami,K.,"The Design and Implementation of Relational Data­

base Machine Delta," Database Machines, Fourth International

Workshop, March 1985, pp.

[12) Kim, M.H. and Prarnanik, S., "Optimal File Distribution For Par­

tial Match Retrieval," Proc. ACM SIGMOD Conf, 1988.

[13) Larson, P., "Dynamic Hashing," BIT, 1978, pp. 184-201.

[14) Litwin, W., "Linear Hashing : A New Tool for File and Table

Addressing," Proc. 6th VLDB, 1980, pp.212-223.

[15) Pramanik, S., "Performance analysis of a Database filter search

hardware," IEEE Trans. on Computers, vol.C-35, no.12, Dec.

1986.

[16) Pramanik, S. and Chou, H., "Performance of Multi Directory

Hashing," Technical Report, Computer Science Department,

Michigan State University, Oct. 1987.

[17) Pramanik,S., Davis, H., "Multi Directory Hashing," Technical

Report, Computer Science Department, Michigan State University,

Oct. 1986.

[18] Pramanik, S. and Kim, M.H., "HCB_tree: A B_tree Structure for

Parallel Processing," Proc. Int' l Conj. on Parallel Processing,

Aug. 1987, pp. 140-146.

[19] Pramanik, S. and Kim, M.H., "Parallel Processing Models for

Database Systems," Techinical Report, Computer Science Depart­

ment, Michigan State University, 1987.

[20] Rivest,R.L., "Partial-Match Retrieval Algorithms," SIAM J. Com­

puting, vol.5, No.I, March 1976, pp. 19-50.

[21] Rosenau,T. and Jajodia,S., "Parallel Relational Database Opera­

tions on the Butterfly Parallel Processor : Projection Results,"

Technical Report, Naval Research Laboratory, July 1987.

[22] Rothnie,J.B.Jr. and Lozano,T.,"Attribute based file organization in

a paged memory environment," Comm. ACM, vo/.17, no.2, 1974,

pp. 63-69.

[23] Schweppe,H., Zeidler,H.Ch., Hell,W., Leilich,H.O., Stiege,G. and

Teich,W.,"RDBM-A Dedicated Multiprocessor System for Data­

base Management," Advanced Database Machine Architecture,

Hsiao, D.K. ed., Prentice Hall, 1983, pp. 36-86.

[24) Stanley Y.W.Su, L.H. Nguyen, A. Eman and G. J. Lipovski, "The

Architectural Features and Implementation Techniques of multicell

CASSM," IEEE Trans. on Computers, June 1979, pp. 430-445.

[25] Stone, H., "Paralle Querying of Large Databases: A Case Study,"

IEEE Computer, Oct. 1987, pp. 11-21.

[26] Sung, Y. Y., "Performance Analysis of Disk Modulo Allocation

Method for Cartesian Product Files," IEEE Trans. on Software

Eng., Vol. SE-13, No. 9, Sept. 1987, pp. 1018-1026.

[27) Butterfly Parallel Processor Overview, BBN Report No. 6148 ver­

sion 1, March 6, 1986.

IMAGE TEMPLATE MATCHING ON SIMD HYPERCUBE MULTICOMPUTERS +

Sanjay Ranka and Sartaj Sahni

Department of Computer Science

UniverBity of Minnesota

Abstract

Efficient algorithms for image template matching on fine
grained SIMD hypercube multicomputers are developed. Our algo­
rithms are asymptotically faster than previously known algorithms
for this problem.

Keywords and Phrases

Hypercube multicomputer, image template matching, SIMD
and MIMD multicomputers, one and two dimensional convolution

1. INTRODUCTION

The inputs to the image template matching problem are an
NxN image matrix J[O .. N -1, O .. N -1] and an- MxM template
T[O .. M -1, 2':¥ -J.1 The output is an NxN matrix C2D where

02D[i, i] = :E EI[(i +u) mod N, (i +v) mod NJ* T[u,v]
um() '11=0

C2D is cailed the two dimensional couvoluLion of I and T. Tem­
plate matching, i.e., computing G2D, is a fundamental operation
in computer vision and image processing. It is often used for edge
and object detection; filtering; and image registration [BALL85]
[ROSE82]. Because of the fundamental nature of this problem and
because of its high complexity (O(Af If) on a single processor com­
puter), much attention has been devoted to the development of
efficient fine grain multicomputer parallel algorithms. For exam­
ple, Chang, Ibarra, Pong and Sohn [CHAN87] have studied this
problem on an SIMD pyramid computers; Ranka and Sahni
[RANK87a], Maresca and Li [MARE86] and Lee and Agarwal
[LEE87] have considered mesh connected computers; and Fang, Li
and Ni [FANG85], Fang and Ni [FANG86], and PrassanaKumar
and Krishnan [PRAS86] have considered SIMD hypercube multi­
computers; and Ranka and Sahni [RANK88] have considered
MIMD hypercube multicomputers.

In this paper, we restrict our attention to SIMD hypercube
multicomputers. We develop three asymptotically optimal algo­
rithms that require If processors. These require O(M), 0(/ogM)'
and 0(1) memory per processor, respectively. The O(M) memory
algorithm is faster than the algorithms for O(logM) and 0(1)
memory by a constant factor. While the O(logM) and 0(1)

memory algorithms are of comparable complexity, the former is
conceptually simpler. [PRAS87] considers only the cases of O(M)
and 0(1) memory. The algorithms developed in [PRAS87] require
a broadcast capability in the SIMD hypercube. Our algorithms do
not require this. While the algorithm in [PRAS87] for the case of
O(M) memory is optimal, ours uses fewer interprocessor routes and
so is faster even though no broadcasting is used. The algorithm of
[PRAS87] for 0(1) memory is suboptimal by an O(logM) factor.
Our algorithm runs in the asymptotically optimal time of O(Af).
Using the techniques of [PRAS87], each of our three algorithms
may be generalized to obtain asymptotically optimal algorithms
for SIMD hypercube computers with Jf K 2, l~K ~M processors
and O(M/K), O(log(M/K)), and 0(1) memory per processor
respectively.

. Section 2 describes our hypercube model. In addition, nota-
t10n and some fundamental data movement operations are
developed in this section. In section 3, we develop fine grained algo-

+This research was supported in part by the National Science Foundation
under grants DCR8420935 and MIP 86-17374

84

rithms for one dimension convolution. These form a basic com­
ponent of our two dimensional convolution algorithms which are
developed in Section 4. ·

2. PRELIMINARIES

2.1. Hypercube Multicomputer

The important features of an SIMD hypercube and the pro­
gramming notation we use are:

1. There are P = 2P processing elements connected together via
a hypercube interconnection network (to be described later).
Each PE has a unique index in the range [O, 2P -1]. We
shall use brackets([]) to index an array and parentheses('()')
to index PEs. Thus A[i] refers to the i'th element of array A
and A(i) refers to the A register of PE i. Also, A[j](i) refers
to the j'th element of array A in PE i. The local memory in
each PE holds data only (i.e., no executable instructions).
Hence PEs need to be able to perform only the basic arith­
metic operations (i.e., no instruction fetch or decode is
needed).

2. There is a separate program memory and control unit. The
control unit performs instruction sequencing, fetching, and
decoding. In addition, instructions and masks are broadcast
by the control unit to the PEs for execution. An
instruction mask is a boolean function used to select certain
PEs to execute an instruction. For example, in the instruction

3.

4.

5.

A(i) :=A(i) + 1, (i0 =1)
(i0 = 1) is a mask that selects only those PEs whose index has
bit 0 equal to 1. I.e., odd indexed PEs increment their A
registers by 1. Sometimes, we shall omit the PE indexing of
registers. So, the above statement is equivalent to the state­
ment:

A:=A+l, Uo = 1)
A P dimensional hypercube network connects 2P PEs. Let
iv-I iP~ i 0 be the binary representation of the PE index j.

L~t ik be the complement of bit ik. A hypercube network
directly connects pairs of processors whose indices differ in
exactly ~ne bit. !:_e., ~rocessor ip-lip---2"'i0 is connected to wo­
cessors ·•p-1 · · · •,, 10, O~k~p-1. We use the notation i() to
represent the number that differs from i in exactly bit b.

lnt~rp:ocessor assignments are denoted using the symbol +-,

while mtraprocessor assignments are denoted using the sym­
bol :=. Thus the assignment statement:

B(i 2l) +-B(i), U2 = 0)
is executed only by the processors with bit 2 equal to o.
These processors transmit their B register data to the
corresponding processors with bit 2 equal to 1.

In a unit route, data may be transmitted from one processor
to another if it is directly connected. We assume that the
links in the interconnection network are unidirectional. Hence
at any given time, data can be transferred either from PE i
~ i6 = 0) .to PE i(6) or from PE i (i6 = 1) to PE i(6). Hence the
mstruct10n.

B(i(2)) +-B(i), (i 2 = 0)
takes one unit route, while the instruction:

B(i(2)) -R(i)
takes two unit routes.

.\ll logarithms are assumed to have base 2

6. Since the asymptotic complexity of all our algorithms is
determined by the number of unit routes, our complexity
analysis will count only these.

2.2. Hypercube Embedding of a Grid

Figure 1 gives a two dimensional grid interpretation of a 4

Figure 1: Embedding of a 4 X 4 mesh in a
hypercube of dimension 4

dimensional hypercube. The index of the PE at position (i, j) of
the grid is obtained using the standard row major mapping of a
two dimensional array onto a one dimensional array [HOR085].
Le, for an NxN grid, the PE at position (i, j) has index iN + j.
Using this mapping, a two dimensional image grid
l(O .. N -1, O .. N -1) is easily mapped onto an ff hypercube (pro­
vided N is a power of 2) with one element of I per PE. Notice that
in this mapping, image elements that are neighbors in I (i.e., to the
north, south, east, or west of one another) may not be neighbors
(i.e., may not be directly connected) in the hypercube. This does
not lead to any difficulties in the SIMD algorithms we develop.

2.3. Basic Data Manipulation Operations

2.3.1. Data Circulation

Consider a P = 2P processor hypercube. We are required to
circulate the data in the A register of these PEs so that this data
visits each of the P processors exactly once. A near optimal circu­
lation for SIMD hypercubes results from the use of the exchange
sequence XP [DEKE81] defined as

x 1 =O, xq =Xq-1, q-1, xq-1 (q >1)
This sequence essentially treats a q dimensional hypercube as two
q-1 dimensional hyT'~rr11bes. Data circulation is done in each of

these in parallel using X,-1· Next an exchange is done along bit
q-1. This causes the data in the two halves to be swapped. The
swapped data is again circulated in the two half hypercubes using
X,_1. Let f (q, i) be the i 'th number (left to right) in the sequence
X,, 15i<2'. The resulting SIMD data circulation algorithm is
given in Figure 2. Because of our assumption of unidirectional

procedure CIRCULATE(A);
{data circulation}

for i = 1 to P - 1 do
A(j/(p, i)) +-A(j);

end

Figure 2: Data circulation in an SIMD hypercube

85

links, each iteration or the for loop of Figure 2 takes 2 unit routes.
Hence Figure 2 takes 2(P-1) unit routes . The function f can be
computed by the control processor in O(P) time and saved in an
array of size P-1 (actually it is convenient to compute f on the fly

using a stack of height logP). The following Lemma allows each
processor to compute the origin of the current A value.

Lemma 1: Let A 0, A 1, , A 2,_ 1 be the values in

A(O), A(l), , A(2P-1) initially. Let index(j, i) be such that
A [index(j, i)] 1s m A(j) following the i'th iteration of the for
loop of Figure 2. Initially, indexJ j, p) = j. For every
i, i>O, index(j, i) = index(j, i -1) 0 2 (p,.) (0 is the exclusive
or operator).

Proof: See [RANK87b].

Some of our algorithms will require the circulating data to
return to the originating PEs. This can be accomplished by a final
data exchange along the most significant bit. For convenience, we
define f(p, 2v) =p -1.

2.3.2. Data Broadcast

In a dat'a broadcast, data originates at one PE and is to be
transmitted to the remaining P-1 PEs. This can be done using
logP unit routes [DEKE81].

2.3.3. Window Broadcast

Assume that W is a power of 2 and that a P processor
hypercube is tiled by windows of size 1 X W such that each win­
dow forms a subhypercube with W PEs. In a window broadcast,
data originates in one of these windows (different data in different
PEs of the window). The data in this window is to be copied to the
remaining (P /W) -1 windows. This copying can be done using
log(P/W) unit routes [DEKE81].

2.3.4. Data Sum

Assume the window tiling of Section 2.3.3 .. The data in each
of the windows is to be summed and the sum left in a prespecified
PE (same relative PE for each window). For example, if we are
summing the A rifiS_!~ter data, we may be required to compute:

Sum(iW) = :EA(iW+j), 05i<(P/W)
j={J

Here, the sum is left in the first PE of each window. Data sum can
be done in log W unit routes [DEKE81].

2.3.5. Shift

SHIFT(A,i, W) shifts the A register data circularly counter­
clockwise by i in. windows of size W. Le, A(qW+j) is replaced by
A(qW +(j-i) mod W), 05 q <(P/W). SHIFT(A, i, W) on an
SIMD computer can be performed in 2logW unit routes [PRAS87].
A minor modification of the algorithm given in [PRAS87] performs
i = 2m shifts in 2 log(W /i) unit routes ([RANK87b]).

2.3.6. Two Dimensional shift

SHIFT2D(A, i, j, W, L) is used in conjunction with a two
dimensional interpretation of a hvpercube (or a grid mapping);
A(a, b) is shifted to A((a-i) mod 11', (b-j) mod L) in each WXL
window. This can be done by first using SHIFT along one dimen­
sion and then along the other.

In a SHIFT2P, a WX W window is assumed and the amount
of shift in each window can be different. A SHIFT2P takes at most
4log W unit routes on an SIMD hypercube.

2.3.7. Data Accumulation

For this operation, PE j has an array A [O .. M -1] of size M.
The notation A[i](j) refers to the element A[i] in PE j. In addi­
tion, each PE has a value in its I register. After the data accumu­
lation, the M elements of A in each PE j are such that:

A [i](j) = I((j + i) mod P), 05i<M, 05j<P

Data accumulation may be done efficiently by adapting the
data circulation algorithm of Figure 2. Procedure ACCUM(A, I, M)
can be completed in 2(M -1) + log(N /M) unit routes [RANK87b].

2.3.8. Adjacent Sum

This operation is defined in [PRAS87]. For each PE, p,
05,p <P, the sum M-,i

T(p) = I;A [i]((p + i) mod M))
i=ll

is to be computed. Data accumulation may be done efficiently by
adapting the data circulation algorithm of Figure 2. The number
of unit routes required to complete AdjacentSum(A, M) is
4M -4 +2/og(P/M) [RANK87b].

3. ONE DIMENSIONAL CONVOLUTION

The inputs to the one dimensional convolution problem are
vectors I[O .. N -1] and T[O .. M - 1]. The output is the vector ClD
where:

M4

OlD[i]=L;I[(i+v)modN]*T[v] ,0$v<N
•=ll

We use the computation of ClD as a basic step in our algo­
rithms to compute C2D. In this section, we develop algorithms for
ClD. We consider three cases:

(i) Each PE has O(M) memory

(ii) Each PE has O(log M) memory

(iii) Each PE has 0(1) memory

Our algorithms assume that there are P = N processors and
that the vector I is mapped onto the hypercube using the identity
mapping (i.e., /(i) on PE i) . Further, we assume that there are
(N/M) copies of Tin the hypercube with one copy in each block of
M processors. Within a block, the mapping of T is this same as
that of I.

3.1. O(M) Memory

When each processor has O(M) memory, the most effective
way to compute ClD is to first perform a data accumulation on I.
Following this, each processor has all the I values needed to com­
pute the corresponding entry of ClD. Next, the T values are circu­
lated through each ·block of M processors. During this circulation,

procedure ClD_M(M)
{ O(M) memory one dimensional convolution}
begin

ACCUM(A, I, M);
cm :=O;
in := p mod M { in = index of T in processor p}
for j := 1 to M do
begin

ClD :=CID +A[in] * T;
I :=f(logM, j);
T +-T(fJ.
• • n' l
m :=mo 2;

end
end; { of ClD_M}

Figure 3: O(M) memory computation of ClD

86

the T values are multiplied by I values and the ClD values com­
puted. Procedure ClD_M (Figure 3) provides the details. The data
accumulation takes 2(M -1) + log(N /M) unit routes and the for
loop requires another 2M. The total number of unit routes is there­
fore 4M + log(N / M) - 2. Note that while the final shift on T is
not necessary for the computation of ClD, our algorithms for C2D
assume that T is unchanged by the ClD algorithms. This final shift
restores the original T values.

3.2. O(log M) Memory

Since O(lqg M) memory is not sufficient to perform a data
accumulation, we need to devise another strategy to compute ClD.
Following the strategy in procedure AdjacentSum, each PE com­
putes two sums A and B. A is the sum of all terms in the ClD for
that processor for which the I values are in the M block containing
the processor. B is the sum of all terms in the ClD for the
corresponding processor in the previous M block for which the I
values are in this M block. Figure 4 shows the components of the A
and B sums for each processor in an M block of processors (in the
figure, M=8). The processor and I value indexing is relative to the
block. The absolute index is obtained by adding Mk, where k is
the block index, to the relative index. Values above and including
the off diagonal correspond to A while those below correspond to
B.

P,1 l 0 T0 + / 1 T 1 +l2 T2 +13 T3 +/4 T4 +15 T5 + l 6T 6 + l 7 T
~ ~~+~~+4~+~~+4~+~~+~T o 1

P2 l 2 T0 +I3 T 1 +I4 T2 +I6 T3 +I6T 4 +I7 T 0 6 +I1T1

~ ~~+~~14~~~~+~T o 6~~~1~~
P4 I4T0 +I5T 1 +I6T2 +I7 T 0 4 +I1T5 +I2T6 +!3T7

P5 l 6T0 +I6T 1 +I7 T 0 3 +I1T4 +l2T6 +I3T6 +I4T7

~ ~~+~T o 2+~~+~~+4~+~~+4~
P1 !1 T 0 1 +I1T2 +I2 T3 +I3 T 4 +I4 T5 +I5 T 6 +!6T7

Sums above and including the off diagonal are A
Sums below the off diagonal are B

Figure 4: A and B values to be completed by each PE

A and B can be computed recursively by decomposing a prob­
km of size M into four problems of size (M/2) each as shown in
Figure 5. Problems (a) and (c) can be solved in parallel and so also
can problems (b) and (d). The algorithm is given in Figure 6.

The number of unit routes required by Recursive ClD is
given by the recurrence:

() {
2routes(M/2) +8 M >1

routes M = 0 M = 1

=8M-8
Adding to this the number of unit routes required by the

SHIFT(-M, B, p), we get 8M + log(P /M)+ 0(1) as the number of
unit routes required to compute ClD using O(logM) memory,

Note thitt M invocations of the above algorithm will require
sM2 + O(MlogN) unit routes. In case the image values remain the
same for all invocations the O(MlogN) factor can be reduced to
O(logN). This is achieved by making each block of size M calcu­
late all the result values itself. A SHIFT(-M, A, P) is performed
before invoking ClD_logM. Now each block has all the I values it
requires for its convolution values. For every invocation of one
dimension convolution two ClD_logM (without line 4, and 5) pro­
cedures are invoked. The first with the original I values and the
second with the new I values recieved (i.e the one from the next
block). By adding the A values of the first call with the B values of
the second, we get the desired convolution. Thus M invocations will
require 16Ar + O(logP) +O(M) unit routes. Further optimization
is possible. Notice that if all the /1 terms below the off diagonal of
the matrix are replaced by /(i +M) ,,.., P> then the sum B will
represent the values corresponding to its own block. Moreover the I
values are not moved in the algorithm. Thus by passing M values
along with their index values and by modifying line 10

Po I0 T 0 +I1T 1 +I2T 2 +I3T 3 Po IoT4 + I1 To+ I2T6 + I3T7

pl I1 T 0 + I2T 1 + I3T 2 . I0 T 3 pl I 1T 4 +I2T 5 +I3T 6 . I0T7

Pz I2 T0 + I3T 1 • I0 T2 + I 1 T3 Pz I2 T 4 + I3 T 5 • I0 T 6 + I 1 T7

P3 I3T0 • I0 T 1 + I1 T 2 + I2T3 P3 I3T 4 • I0 T 5 + I 1 T 6 + I2 T 7

(a) (b)

P4 I4T4 + IsTs + I6T6 + I1T1 P4 I4T 0 +I5 T 1 +I6T 2 +I1T 3

P5 I5 T 4 +I6T 5 +I1T 6 . I4T1 P5 I5T0 + I6T 1 + I1 T 2 • I4 T 3

Po I6 T 4 +I1T 5 • I4 T 6 +I5 T 1 Po I6T 0 + I7 T 1 • I4 T 2 + I5 T 3

P1 I1T 4 . I4T 5 +I6 T 6 +I6T 1 P1 I1T 0 • I4 T 1 + I5 T2 + I6T 3

(c) (d)

Figure 5: 4 decomposed problems with M = 4

appropriately we can make sure that each term is calculated by
usin~ either I; or I(i +M) mod p· It can be easily shown that
12M' + O(logN) + O(M) unit routes are required.

3.3. 0(1) Memory

First, we develop two data rotation patterns that are needed
by our 0(1) memory algorithm. The first pattern obtains all circu­
lar shifts of even length in the interval [1,M -1]. There are
exactly (M/2)-1 such shifts (recall that M = 2m is a power of 2).
A shift distance sequence, Ek, is a sequence d1d2 • · · d2k_,_ 1 of

positive integers such that a clockwise shift of di> followed by one
of d2, followed by one of d3, etc. covers all even length shifts.

Note that E 0 = E 1 = null as there are no even length shifts in
the range [1, 2m -1] when m = 0 and 1. E 2 = 2. This transforms the
length M = 22 sequence abed into the sequence cdab. In general,
the choice Ek = 2, 2, 2, · · · will serve to obtain all even length
shifts. From the complexity standpoint this choice is poor as each
shift requires 2log(M /2) unit routes. Better performance is
obtained by defining

E 0 = E 1 = null, E 2 = 2 k--1
Ek = InterLeave(Ek--i> 2), k)I}.

where InterLeave is an operation that inserts a 2k--1 in front of
Ek--1> at the end of Ek--1> and between every pair of adjacent dis­
tances in E•--i· Thus,

E 3 =Interleave (E2, 4)

=424
E 4 = Interleave(E3, 8)

=8482848

W~en a shift sequence Ek is used, the effective shift following

d; is (I;d;) mod 2• Thus when E 3 is used on the sequence
;=<

87

line procedure OlD_logM(M)

{ O(log M) memory algorithm for ClD}

2 begin

3 RecursiveClD(M, A, B);

4 SHIFT(B, -M, P);

5 om :=A+B;

6 end; { of 01D_log M}

7 procedure RecursiveOlD(M, A, B)

8 { compute A and Bin M blocks}

9 begin

10 i/M=l then [A := I*T; B :=O; return]

11 RecursiveClD(M/2, Al, Bl); {problems (a) and (c)}

12 b :=log#- l;

13 T(p) +-T(p(b)); {P0-P3 and PcP1 exchange T values}

14 RecursiveClD(M/2, A2, B2); {problems (b) and (d)}

15 T(p) +-T(p(b)); { restore T values}

16 X :=B2; (Pb = 1)

17 X :=Bl; (Pb =0)

18 Y :=Al; (Pb = 1)

19 Y :=A2; (Pb =0)

20 X +-_x(b); {move partial sums to correct PEs}

21 Y +-y(bJ; {move partial sums to correct PEs}

22 A:=Al+X+Y;(pb=O)

23 A :=A2 +X +Y; (Pb =1)

24 B :=B2; (Pb =0)

25 B:=Bl;(pb=l)

26 end; { of Recursive ClD}

Figure 6: O(log M) memory computation of ClD

abcdef gh, we get
d sequence

ef ghabcd
ghabcdef
cdef ghab

effective shift
4 4

2 6
4 2=10 mod 8

Theorem,I: Let E[k, i] bed; in the sequence Ek, k?_2. Let

ESUM[k, i] =(I_;E[k, j]) mod 2k. Then {ESUM[k, i]

. k-'1 j=l k
1::::;1::::;2 .-1} ={2, 4, 6, 8, ... , 2 -2}.

Proof: See [RANK87b].

Theorem 2: The shift sequence Ek can be done in
2(2k - k -1) unit routes, k?_2.

Proof: See [RANK87b].

The result of the preceding theorem is ipportant as it says
2(2 -k -1)

that the average cost of rotation in Ek is < 4. So,
2k-1_1

we can perform even length rotations with 0(1) average cost. This
is crucial to our algorithm.

Let Fk be the sequence obtained by dividing each distance in
Ek by 2. So, F0= F 1= null, F 2= 1,F3= 2, 1, 2, etc.

i

Theorem 3: Let FSUM[k, i] =(I.;F[k, j]) mod 2k-l where

F[k, j] is the j'th distance in Fk

(a) {FSUMlk, i]i1SiS2k 1-1} ={1, 2, 3, .. ., 2H-1}

(b) All the shifts in Fk can be done in a window of size 2k-l in
2(2k - k -1) unit routes.

Proof: Similar to the proof of Theorems 1 and 2.

As in our earlier algorithms each PE will compute two quan­
tities A and B. For any PE, A is the sum of all the ClD terms
that are in the M block containing the PE. B is the sum of all ClD
terms that are needed by the corresponding PE in the previous M
block. The terms contributing to A and B are shown in Figure 4.
The AB values are computed in two stages. In the first, we com­
pute the contribution to A and B by all I terms Ii for j even. In
the next stage, we do this for the case j odd.

Consider the case M=8. If we begin by computing the terms
on the major diagonal of Figure 4 , then PEs (0, 1, 2, ,,, 7) compute
(I0 T 0, l 2T 1, l 4 T2, l 6T3, l 0 T 4, l 2 T5,l4T6, I6T7). The I and T values
required by each of the 8 PEs are shown in the first two rows of
Figure 7. Notice that if we rotate the I values in windows of size 4
by some amount j, then the T values need to be rotated by 2j so
that each PE has a pair (I, T) whose product is needed in the
computating of its A or B value. For this rotation we use the
sequences F 3 and E 3. Rotating I by F[3, OJ in size 4 windows and T
by E[3,0] in a size 8 window gives the next two rows of Figure 7.
The result of performing the remaining rotations is also given m
Figure 7. Figure 8 gives the computation of the odd terms.

PE 0 2 3 4 5 6 7
I Io I2 I4 [6 Io I2 I4 I6
T To T1 T2 Ta T4 Ts Ta T1

I I4 Ia Io I2 l4 Ia Io I2
T T4 Ts T6 T1 To Ti T2 Ta

I I, Io I2 I, Ia Io I2 l4
T T6 T1 To T1 T2 Ta T4 Ts

I I2 I4 I, Io I2 I4 I, Io
T T2 Ta T4 Ts T6 T1 To Ti

Figure 7: Computing the even terms

88

PE 0 2 3 4 5 6 7

I1 Ia Is I1 I1 I3 Is I7
T Ti T2 Ta T4 T5 Ta T1 To

I !5 !7 I1 !3 !5 I1 I1 Ia
T T5 T, T1 To Ti T2 T3 T4

I1 I1 13 15 17 I1 I3 Is
T T1 To Ti T2 T3 T4 Ts T6

I !3 Is I1 11 I3 Is !7 I1
T Ta T4 Ts Ta T1 To Ti T2

Figure 8: Computing the odd terms

The initial configuration for the I's can be obtained by con­
centrating the even l's using the strategy described in Figure 9 for
the case of M = 16. This requires logM unit routes. Let
CONCENTRATE(!, M) be the algorithm that does this. The algo­
ritlun for one dimensional convolution now takes the form given in
Figure 10. Note that the E's and F's are known only to the control
unit. These may be computed, on the fly, in linear time using a
stack of height m = logM. The memory required in each hypercube
PE is only 0 (1). Lines 5 through 15 handle the even terms .
Notice that (GShift + 2p) mod M gives the index of the I value
currently in G(p). So, if this index is less than p the term CD
corresponds to the previous block. Otherwise the term CD is for
this PE. The fact that each PE always has a C and a D whose
product contributes to either A or B follows from the observations
that this is so initially and on each iteration, D rotates twice as
much as C. The total number of unit routes is
SM+ O(logP) + O(logM).

Let us consider M invocations of one dimensional convolution
with the same I values. By an argument similiar to the one
presented in the previous sub-section, M invocations can be com­
pleted in 16M2 + O(logN) +O(MlogM). We perform a SHIFT(-M, I,
P), followed by Line 7, 18, 19 on the old and new I values and
store these results for the later invocations. Now by defining C =
{ I 01d, [new} and modifying steps 11 and 23 so th~t they calculate
terms for this block, we can show that M mvocat10ns can be com­
pleted in 12M2 + O(logN) + O(MlogM).

4. TWO DIMENSIONAL CONVOLUTION

Assume that P = N 2 PEs are available. These may be viewed
as an N X N array as described in Section 2. We assume that
I(i, j) is initially in the I register of PE(i, j). Further since N and
M are assumed to be powers of 2, the N X N array may further
be viewed as composed of (ff/ M 2) arrays of size M X M. We
assume that T is initially in the top left such array.
4.1. O(M) Memory

When O(M) memory is available, PE(i,j), lSiSN, lSjSN
computes M one dimensional convolutions S[q], o:s;q <M defines
as below

M-1

S[q] = ~J[(i, (j + r) mod N]*T[q, r]
r=O

Next, C2D is obtained by performing an adjacent sum opera­
tion along the columns of the N X N PE array. A high level
description of the algorithm is given in Figure 11.

The total number of unit routes is 2M2 + O(M + logM} The
number of unit routes for Steps 1-4 are log(N /M2J,
2M +log(N/M), M(2M +log(N/M) and 4M-4 +2/og(N/M)
respectively.

Route
0 Io II I2 ls I4 l5 [6 l7 lg lg [ID lu I12 I13 l14 [16

1 Io I2 I4 [6 lg [ID l12 I14
2 Io [2 l4 [6 lg [ID I12 l14
3 Io I2 I4 [6 lg [ID I12 l14
4 Io I2 !4 [6 lg [ID I12 l14 Io I2 l4 [6 lg lw !12 l14

Figure 9: Initial configuration for even terms

line procedure ClD_l (M)

1 { 0(1) Memory ClD algorithm}

2 begin

3 A := O; B := O; m =log M;

4 { even terms}

5 C :=I; D:=T;

6 Cshift := O;

7 CONCENTRATE (C, M);

8 for j := 1 to M /2 do

9 begin

10 A :=A +C * D; ((CShift +2p) mod M 2'. p)

11 B :=B +C * D; ((CShift +2p) mod M <p)

12 SHIFT(C, F[m, j - 1], M/2);

13 CShift := (CShift + F[m, j - 1]) mod (M/2);

14 SHIFT(D, E[m, j - 1], M);
15 end

16 { odd terms}

17 C :=I; D :=T;

18 SHIFT(C, -1, P); CShift := 1; SHIFT(D, -1, M);

19 C.ONCENTRATE(C, M);

20 for j := 1 to M/2 do

21 begin

22 A :=A+ C * D; ((CShift + 2p) mod M 2'. p)

23 B :=B + C * D; ((CShift + 2p) mod M <p)

24 SHIFT(C, F[m, j - 1], M/2);

25 CShift :=(CShift +F[m, j - 1]) mod (M/2);

26 SHIFT(D, E[m, j - 1], M);

27 end

28 SHIFT(B, -M, P);

29 ClD :=A +B;

30 end,; { of ClD_l}

Figure 10: 0(1) memory SIMD ClD algorithm

89

procedure C2D_M(N, M)
{assumes O(M) memory per PE}

Stepl: Broadcast T to all M X M blocks in the N X N PE ar-

Step2:

Step3:

Step4:

end

ray

Perform a data acumulation on L Now each PE con­
tains the MI values it needs to compute its S(q)'s.

Compute the S(q)'s. Each S(q) is a one dimensional
convolution. However, the data accumulation step of
the algorithms of Figure 10 may be omitted as the I
values have already been accumulated in Step 2. To
go from one S to another, the T values need to be cir­
culated along the columns of each M X M block. This
can be done using the data circulation algorithm of
Section 2.

M4

Compute C2D[i, j] = ES[r]((i + r) mod N, j). This
r=()

is done using the adjacent sum algorithm of Section 2
on the columns of the N X N PE array

Figure 11: High level description of two dimensional convolution
with each PE having O(M) memory

Now, it is not possible for each PE to accumulate the M
values of I it needs from its row. Nor is it possible for a PE to com­
pute the values S[q], 0 5,q <M. The new strategy is similar to that
used in computing ClD when only 0(1) memory is available. We
may rewrite the 1lil_nition of C2D as

02D[i, j] = E OXD[i, r, j]

where
M4

OXD[i, r, j] = EI[(i + r) mod N, (j +a) mod Nj*T[r, a]
a.{)

Since each CXD is a one dimensional convolution, it can be
comiw~~od Af'l~ing algorithm ClD_l. PE(i, j) computes

E = E GXD[i, r j] and

r=O

M-<

F= CXD[(i-M) mod N, r, fl. Thus each PE com-
r =M-i mod M

putes a value for itself (i.e., E) and a value for the corresponding
PE in the adjacent upper M X M block (i.e., F). The F values are
then shifted M units along the columns and added to the E values
to get the C2D values. A high level description of the algorithm is
provided in Figure 12. In iteration k of Step 3, the PEs in column j
of an M X M PE block compute the CXD terms needed for the E
and F of PE(Li/MlM + k, j). Then in Step 4, these terms are
added together to get the E and F for this PE. The time complex­
ity of Steps 1, 3, 4 and 5 is log(N2/M\ 12M + O(logM), 31ogM
and 2log(N/M) respectively. The total number of unit routes
taken is 12M2 + O(M logM) + O(logN). A slightly more efficient
algorithm results if we iJil}~rpret C2D as:

C2D[i, ii= ~X[i, j, r] * Y[r]
r=<l

where X[i, j, rl is the 1 X M vector
I[(i+r) mod N, j .. (j+M-l) mod NJ and Y[rl is the l XMvector
T [r, 0 .. M-11. Thus C2D is viewed as the one dimensional convo­
lution of X and Y where X and Y are vectors. We can extend algo­
rithm ClD_l to obtain an algorithm that requires
12M2 + O(M) + O(logN) unit routes and computes this one dimen­
sional convolution. This algorithm is quite a bit more complex than
Figure 12 and is omitted.

procedure C2D_l(N, M)
{assumes 0(1) memory per PE}

Stepl: Broadcast T to all M X M blocks in the N X N PE ar­
ray

Step2:

Step3:

Step4:

Step5:

Repeat Steps 3 and 4 for k := 0 to M-1

Compute CXD[(l ~JM+ k) mod N, i mod M- k, ii

if i mod M 2': k using ClD_l(M) and put the result
in A, otherwise A = O;
Compute

CXD[(l ~JM +k-M) mod N, i mod M-k +M, ii

if i mod M < k using ClD_l(M) and put the result in
B, otherwise B = O;

Use the data sum operation, described in Section 2, to
sum the results for the adjacent upper block and itself,

by summing up B's and A's in PE(l ~JM + k, j) in

F and E respectively. Shift the T values along
columns by 1, using the algorithm of Section 2.

Shift(F, -M, N) along columns. E :=E +F.

Figure 12: High level description of two dimensional convolution
with each PE having 0(1) memory

4.2. O(log M) Memory

The algorithm for two dimensional convolution for Each PE
having O(logM) memory is the same as that of Figure 12. The
only difference is that the one dimensional convolution used in Step
2 refers to one dimensional convolution with O(logM) memory. The
number of unit routes required is 12M2 + O(MlogM)+O(logN).

90

5. EXTENSIONS

It is easy to see that the algorithms developed for two dimen­
sional convolutions in the previous section can be extended to win­
dows of size M 1 X M2 (where M 1 and M2 are powers of 2). Let us
consider the case where we have an M X M window and Mis not a
power of 2. In this case, let m 1mH m 0 be the binary represen­
taion of M. The M X M T matrix may be viewed as several 21 x zk
matrices (m1 = mk =l). A two dimensional convolution is performed
for each such matrix and the results added.

When the number, P, of processors is N2K2, l<K<M the
techniques of [PRAS87] may be used to extend our algorithms to
obtain optimal N 2K 2 PE algorithms.

6. CONCLUSION

In this paper, we have presented optimal algorithms for 1-D
convolution and Image Template Matching (2-D Convolution).
These algorithms use novel strategies to achieve optimal speed-up
using O(M), O(logM) and 0(1) memory per PE for an M X M
Template. Our algorithm for 0(1) memory is asymptotically

faster then previously known algorithms. Unlike previous algo­
rithms for this problem, our algorithms do not use data broadcast­
ing.

7. REFERENCES

[BALL85] D. H. Ballard and C. M. Brown, " Computer Vision",
1985, Prentice Hall, New Jersey.

[CHAN87I J. H. Chang, 0. Ibarra, T. C. Pong, and S. Sohn,
"Convolution on a Pyramid Computer", International
Conference on Parallel Processing, 1987, pp 780-782.

[DEKE86I E. Dekel, D. Nassimi and S. Sahni, " Parallel matrix
and graph algorithms", SIAM Journal on computing,
1981, pp. 657-675.

[FANG85] Z. Fang, X. Li and L. M. Ni, "Parallel Algorithms for
Image Template Matching on Hypercube SIMD Com­
puters", IEEE CAPAMI workshop, 1985, pp 33-40.

[FANG86I Z. Fang and L. M. Ni, "Parallel Algorithms for 2-D
convolution", International Conference on Parallel Pro­
cessing, 1986, pp 262-269.

[HOR085] E. Horowitz and S. Sahni, "Fundamentals of Data
Structures in Pascaf', Computer Science Press, 1985.

[KUNG82I H. T. Kung and S. W. Song, "A Systolic 2-D Convolu­
tion Chip", Multicomputers and Image Processing:
Algorithms and Programs, editors: Preston and Uhr
(Academic Press, New York}, 1982,.pp 373-384.

[LEE87I S. Y. Lee and J. K. Aggarwal, "Parallel 2-D convolu­
tion on a mesh connected array processor" , IEEE
Transactions on Pattern Analysis and Machine Intelli­
gence, July 1987, pp 590-594.

[MARE86] M. Maresca and H.Li, "Morphological Operations on
Mesh-connected Architecture : A generalized convolu­
tion Algorithm", Proceedings of 1986 IEEE Computer
Society Workshop on Computer Vision and Pattern
Recognition ,1986, pp 299-304.

[PRAS87] V. K. Prasanna Kumar and V. Krishnan, "Efficient
Image Template Matching on SIMD Hypercube
Machines", International Conference on Parallel Pro­
cessing, 1987, pp 765-771.

[RANK87a] S. Ranka and S. Sahni, "Convolution on an SIMD
mesh-connected computer", University of Minnesota
Tech. Report, 1987.

[RANK87b] S. Ranka and S. Sahni, "Image Template Matching
on SIMD hypercube multicomputers" , Univer&ity of
Minne&ota Tech. Report, 1987.

[RANK88] S. Ranka and S. Sahni, "Image Template Matching
on MIMD hypercube multicomputers", u,,;,.,.,..sity of
Minnesota Tech. Report, 1D87.

[ROSE82] A. Rosenfeld and A. C. Kak, "Digital Picture Process­
ing", Academic Press, 1082

91

IMAGE TEMPLATE MATCHING ON MIMD HYPERCUBE MULTICOMPUTERS +

Sanjay Ranka and Sartaj Sahni

Univeraity of Minneaota

Abstract

Efficient algorithms for image template matching on fine
grained as well as medium grained MIMD hypercube multicomput­
ers are developed. Template matching algorithms for MIMD hyper­
cube multicomputers have not, to our knowledge, been previously
developed. The medium grained MIMD algorithm is developed
specifically for the NCUBE multicomputer. This algorithm is com­
pared experimentally with an algorithm that is optimized for the
CRAY2 supercomputer. In addition, customized algorithms are
developed for Kirsch templates.

1. INTRODUCTION

The inputs to the image template matching problem are an
NxN image matrix J[O .. N -1, O . .N -1] and an MXM template
T[O .. M - 1, 9'# -J.1 The output is an NxN matrix C2D where

02D[i, i] = :E L:;I[(i + u) mod N, (i + v) mod NJ * T[u,v],

o si, i<N
02D is called the two dimensional convolution of I and T. Tem­
plate matching, i.e., computing 02D, is a fundamental operation
in computer vision and image processing. It is often used for edge
and object detection; filtering; and image registration [ROSE82,
BALL85]. Because of the fundamental nature of this problem and
because of its high complexity (O(W N2) on a single processor com­
puter), much attention has been devoted to the development of
efficient fine grain multicomputer parallel algorithms. For exam­
ple, Chang, Ibarra, Pong and Sohn [CHAN87] have studied this
problem on an SIMD pyramid computer; Ranka and Sahni
[RANK87a], Maresca and Li [MARE86], and Lee and Agarwal
[LEE87] have considered mesh connected computers; and Fang, Li
and Ni [FANG85], Fang and Ni [FANG86], Prasanna Kumar and
Krishnan [PRAS86] and Ranka and Sahni [RANK87b] have con­
sidered SIMD hypercube multicomputers.

In this paper, we restrict our attention to MIMD hypercube
multicomputers. We assume that M and N are powers of 2 and
develop two asymptotically optimal algorithms that require .N2
processors. These require O(M) and 0(1) memory per processor,
respectively. The algorithms developed in [PRAS87J, [LEE87J,
[FANG85], [FANG86], and [MARE86] require a broadcast capabil­
ity. Our algorithms do not require this. Using the techniques of
[PRAS87], both our algorithms may be generalized to obtain
asymptotically optimal algorithms for MIMD hypercube computers

with .N2K2, lSK sM processors and O(M/K) and 0(1) memory
per processor respectively. Our medium grain MIMD algorithm is
developed for the NCUBE hypercube. This algorithm is evaluated
experimentally and a comparison with a single processor ORA Y2 is
made.

Section 2 describes our hypercube model. In addition, nota­
tion and some fundamental data movement operations are
developed in this section. In Section 3, we develop fine grained
algorithms for one dimensional convolution. These form a basic
component of our two dimensional convolution algorithms which
are developed in Section 4. Section 5 considers Kirsch templates
and in Section 6, the medium grain MIMD algorithm for the
NCUBE together with one for the CRAY2 supercomputer are
d·eveloped. Experimental results are also presented in this section.

+This research wa.s supported in pa.rt by the National Science Foundation
under grants DCR84-2093o and MIP 86-17374

2. PRELIMINARIES

2.1. Hypercube Multicomputer

The important features of an MIMD hypercube and the pro­
gramming notation we use are:

1. There are P = 2P processing elements connected together via
a hypercube interconnection network (to be described later).
Each PE has a unique index in the range [O, 2P -1]. The
local memory of each PE holds both the data and the pro­
gram that the PE is to execute. Throughout this paper, we
shall uses brackets([]) to index an array and
parentheses('()') to index the PEs. Thus A[i] refers to i'th ele­
ment of the array A while A(i) refers to the A register of PE
i. Likewise A [i](j) refers to the i'th element of array A of
PE j.

2. A p dimensional hypercube network connects 2P PEs. Let
ip-l. ip-e" .. i0 be the binary representation of the PE index I.
Let I; be the complement of bit 1j,. A hypercube network
directly connects pairs of processors whose indices differ in
exactly one bit. I.e., processor ip-l iv-e··. i 0 is connected to riro­
cessors ip-i • • · ;; i 0, Osksp-1. We use the notation i() to
represent the number that differs from i in exactly bit b.

3. At any given instance, different PEs may execute different
instructions. In particular, PE i may transfer dat;t to PE ;<6>,
while PE j simultaneously transfers data to PE ;t•l, ari'b.

4. An inatruction maak is a boolean function used to describe
PEs which will remain active during an instruction. For
example, in the instruction

A(i):=A(i)+l, (i0 =1)
(i0 =1) is a mask, which states that only PEs with index bit
0 equal to 1 remain active during the instruction. I.e., odd
indexed PEs increment their A register value by 1. We shall
often omit the PE index from our instructions. Thus, the
above statement can also be written as

A:=A+l, (i0 =1)

5. Interprocessor assignments are denoted using the symbol +-,

while intraprocessor assignments are denoted using the sym­
bol :=. Thus the assignment statement:

B(;l2)) +-B(i), (i2 = 0)
is executed only by the processors with bit 2 equal to 0.
These processors transmit their B register data to the
corresponding processors with bit 2 equal to 1.

6. In a unit route, data may be transmitted from one processor
to another to which it is directly connected. We assume that
the links in the interconnection network are unidirectional.
Hence at any given timel data can be transferred either from
PE i (i6 = 0) to PE i(b or from PE i (i6 = 1) to PE i(6).

Hence the instruction.
B(i(2J) +-B(i), (i2 = 0)

takes one unit route, while the instruction:
B(i(2)) +-B(i)

takes two unit routes.

7. Since the asymptotic complexity of all our algorithms is
determined by the number of unit routes, our complexity
analysis will count only these.

92

2.2. Hypercube Embedding of a Grid

Figure 1 shows an embedding of a 4X4 image grid into a
hypercube of dimension 4. The number inside a box is the binary
representation of the index of the PE to which that element is
mapped. The embedding of Figure 1 uses the binary reflected gray

code mapping of [CHAN86J. An i bit binary gray code S; is defined
recursively as below: R

sl =O, 1; sk = O[Sk-1],l[Sk-ll
where [Sk-l is the reverse of the k -1 bit code Sk-l and b [SJ is
obtained from S by prefixing b to each entry of S. So,
S2 = 00, 01, 11, 10 and S3 = 000, 001, 011, 010, 110, 111, 101, 100.

Figure 1: Embedding of a 4 X 4 mesh in a hypercube of dimension 4

If N = 2•, then S2• is used to map an N X N grid into a
P =ff hypercube. The elements of S20 are assigned to the ele­
ments of the NxN grid in a snake like row major order
[THOM77]. This mapping has the property that grid elements that
are neighbors are assigned to neighboring hypercube nodes.
Another interesting property is evident from the definition of sk
and the linear drawing of Figure 2. In this figure, PEs appear ill
the order given by Sk. A hypercube has circular lists of length 21

for all i embedded in it. Furthermore, these circular lists of length
2; are present in every row and column of. the grid .embedding.
Also, the PEs in each circular list of length 21 form a 21 PE subhy­
percube, i > 1.

Figure 2: Rings of size 2, 4 and 8 in an 8 PE hypercube

For a hypercube with P = 2P PEs, we define the function
gray(i) such that gray(O) = 0 and gray(i) is the index of the PE
that immediately follows the PE gray(i-1) in the circular list of
size 2P obtained from the above gray code embedding. For the
example of Figure 2, P = 23 = 8, gray(0 .. 7) = (0, 1, 3, 2, 6, 7, 5, 4).
The function igray is the inverse of gray. So,
igray(O .. 7) = (0, 1, 3, 2, 7, 6, 4, 5). pp

93

2.3. Basic Data Manipulation Operations

2.3.1. Data Circulation

Consider a P = 2P processor hypercube. We are required to
circulate the data in the A register of these PEs so that this data
visits each of the P processors exactly once. This operation is easy
to accomplish on an MIMD hypercube using the binary gray code
mapping and the observation that we have a P processor circular
list (Figure 2). We simply shift the contents of the A registers cir­
cularly clockwise by 1 each time (Figure 3). Procedure CIRCU­
LATE circulates the A register data through the P processors in
O(P) time. This is trivially optimal.

procedure CIRCULATE(A);
{data circulation}

for i = 1 to P - 1 do
A(gray(j)) -+-A(gray((i + 1) mod P));

end

Figure 3: Data circulation in an MIMD hypercube

2.3.2. Data Broadcast

In a data broadcast, data originates at one PE and is to be
transmitted to the remaining P-1 PEs. This can be done in logP
unit routes using a tree broadcast scheme [DEKE81].

2.3.3. Window Broadcast

Assume that W is a power of 2 and that a P processor
hypercube is tiled by windows of this size such that each window
forms a subhypercube with W PEs. In a window broadcast, data
originates in one of these windows (different data in different PEs
of the window). The data in this window is to be copied to the
remaining P / W - 1 windows. This copying can be done using
log(P /W)+2 unit routes [DEKE81].

2.3.4. Data Sum

Assume the window tiling of Section 2.3.3 .. The data in each
of the windows is to be summed and the sum left in a prespecified
PE (same relative PE for each window). For example, if we are
summing the A register ~a, we may be required to compute:

Sum(inde:r(ilV)) = ~A(index(iW+j)), O~i<(P/W)
;..(]

Here, index(q) gives the physical index of the q 'th PE in the tiling
scheme. We assume that the P PEs are first ordered (for example
using an S,) and then tiled using 1 X W tiles. Thus, iW + j is the
j'th PE in the i'th tile and iW is the O'th PE in the i'th tile. Data
sum can be done in log W unit routes [DEKE81].

2.3.5. Shift

SHIFT(A,i, W) shifts the A register data circularly counter­
clockwise by i in windows of size W. I.e., A(gray(qW+j)) is
replaced by A(gray(qW +(j-i) mod W)), O~ q <(P/W),
0 ,:::; j < W. In a gray code indexing, the indexing within each size
21 window also corresponds to a gray code (consider . the least
significant j bits). Hence each pair of adjacent size 21 windows
differs in exactly one bit. Now suppose the shift amount i is a
power of 2. We can get data to the correct size i window by rout­
ing along the single bit in which adjacent size i windows differ

Following this, the data in each size i window needs to be reversed
(unless i =I). This reversal may be accomplished by exchanging
data in the two size i/2 windows that make up a size i window.
The total number of unit routes required when i is a power of 2 is
therefore at most 2 to get the data to the correct size i window
(note that 2 routes are needed when i = W /2 and one otherwise)
plus at most 2 to reverse within the size i window. Hence at most
4 unit routes are needed to perform a shift of size i. When i is not
a power of 2, i can be written as the sum of powers of 2 and the
shift obtained by performing successive power of 2 shifts. Since
only one of these can be a W /2 shift, the number of unit routes is
at most 3#I(i) +I, where #I(i) is the number of ones in the
binary representation of i. The worst case performance can be
kept at 3(log W)/2 +I by noting that if there are more than
(logW)/2 one bits, we can do a W-I-i clockwise shift followed by
a unit clockwise shift. Also note that the special cases of i =I, 2,
and 3 are easily done in i unit routes unless W = I (in this case, a
shift of I takes 2 unit routes).

2.3.6. Data Accumulation

For this operation, PE j has an array A [O .. M - 1] of size M.
In addition, each PE has a value in its I register. After the data
accumulation, the M elements of A in each PE j are such that:

A [i](gi·ay(j)) = I(gray((j + i) mod P)), OSJ<M, O~j<P

This can be accomplished in M-I unit routes (for P > 2) by
repeatedly shifting by -I in windows of size P. The algorithm is
given in Figure 4.

procedure ACC:UM(A, I, M)
{each PE accumulates in A, the I values of the next M PEs
including itself}
begin

A[OJ :=I;
for i := I to M-I do
begin

SHIFT(!, -I, P);
A[i] :=I;

end
end {ACCUM}

Figure 4: Data accumulation

2.3.7. Adjacent Sum

This operation is defined in [PRAS87J. For each PE, p,
O~p<P, the sum M-1

T(gray(p)) = ,EA [i](gray(p + i) mod M))
i=<l

is to be computed.

As mentioned earlier, every hypercube of size P can be
viewed as consisting of P / M subhypercubes (blocks) each of size M.
For every PE p, some (or all) of the A's needed to compute
T(gray(p)) are in the block containing PE p .The remainder are in
the next block of PEs. The strategy to compute T is as follows:

I)

2)

Each PE, p, begins with two variables S and T (initially 0).
These values circulate through the M PEs in the block. T
accumulates the A values in the block needed in the sum for
T(gray(p)). S accumulates the A values needed for
T(gray((p - M) mod P)).

The S values are shifted clockwise by M positions and added
to the T values.

The formal algorithm is given in Figure 5. The number of
unit routes is 2M + 4 (recall that M is a power of 2 and a power 2
shift takes at most 4 unit routes). This can be reduced to .M + 4 by
shifting S and T as a single packet.

94

procedure AdjacentSum(A, M)
begin

S:= O; T:=O;
for i :=0 to M-1 do
begin

T(p) := T(p) +A[i](p); (igray(p) mod M ~ i)
S(p): =S(p) +A[i](p); (igray(p) mod M <i)
SHIFT(T, I, M);
SHIFT(S, 1, M);

end
SHIFT(S, -M, P);
T :=T +S;

end {of AdjacentSum}

Figure 5: Adjacent Sum

3. ONE DIMENSIONAL CONVOLUTION

The inputs to the one dimensional convolution problem are
vectors J[O .. N - I] and T[O .. M -1]. The output is the vector CID
where:

M-1

CID[i] = .EI[(i + v) mod NJ*T[v] , O~i<N
v=<l

We use the computation of ClD as a basic step in our algo­
rithms to compute C2D. In this section, we develop algorithms for
ClD. We consider two cases:

(i) Each PE has O(M) memory

(ii) Each PE has O(I) memory

Our algorithms assume that there are P = N processors and
that the vector I is mapped onto the hypercube using the gray
code mapping (i.e., I[i] on PE gray(i)) . Further, we assume that
there are N / M copies of T in the hypercube with one copy in each
block of M processors. Within a block, the mapping of T is this
same as that of I.

3.1. O(M) Memory

When each processor has O(M) memory, the most effective
way to compute CID is to first perform a data accumulation on I.
Following this, each processor has all the I values needed to com­
pute the corresponding entry of CID. Next, the T values are circu­
lated through each block of M processors. During this circulation,
the T values are multiplied by the I values and the CID values
computed. Procedure CID_M (Figure 6) provides the details. Note
that while the final shift on T is not necessary for the computation
of ClD, our algorithms for C2D assume that Tis unchanged by the
CID algorithms. This final shift restores the original T values. The
number of unit routes taken is 2M.

procedure ClD_M
{ O(M) memory algorithm for one dimensional convolution}
begin

ACCUM(A, I, M);
b := igray(p) mod M; {relative index of PE in M block}
CID :=0;
for j := 1 to M do
begin

end

ClD := ClD +A[b] * T;
b := (b+l) mod M;
SHIFT(T, -I, M);

end; {of ClD_M}
Figure 6: O(M) memory computation of CID

3.2. 0(1) Memory

When only 0(1) memory per PE is available, we begin by
first pairing I values in the processors. The pair in processor p is
(A(p), B(p)) =(I [(jM +2k) mod NJ, I[(jM+2k+l) mod NJ) where
i = igray(p), j = [i/MJ, and k = i mod M. Figure 7 gives the ini-
tial AB pairs in each PE for the case N = 16, M = 4. The algo-
rithm to obtain this is given in Figure 8.

p i=i'gray(p) j k AB
0 0 0 0 Io Iol1
1 1 0 1 I, /2/3
3 2 0 2 12 14!5
2 3 0 3 !3 15!7
6 4 1 0 !4 !is
7 5 1 1 !5 !5!7
5 6 1 2 le / 8/ 9

4 7 1 3 17 110111
12 8 2 0 Ia / 8/ 9

13 9 2 1 lg 110111
15 10 2 2 110 l12I1a
14 11 2 3 In I,4I15
10 12 3 0 112 l12I1a
11 13 3 !13 I,4I1s
9 14 3 2 114 Iol1
8 15 3 3 /16 12!3

lq=I[q]
Figure 7: Initial AB pairs for N = 16, M = 4

procedure PAIRING(M)
{pairing I values in AB registers}
begin

i := igray(p); { p is processor index}
B :=I;
SHIFT(B, -1, P);
A :=I;
for j := 1 to logM-1 do
begin

0 :=B; SHIFT(B, -2j-t, M);
B :=0· (i. =0) ' , ;-1
0 :=A; SHIFT(A, -2 , M);
A :=0; (ij =0)

end
0 :=B; SHIFT(B, -(M/2), P);
B :=0; (ilogM-1 =0)
0 :=A; SHIFT(A, -(M/2), P);
A :=0; (iloqM-1 =0)

end; {of PAIRING}
Figure 8: Pairing of the l's

The number of unit routes is at most 8 log M. This can be
reduced to 4 logM by routing (A, B) pairs as single packets.

Once the A_B pairing has been done OlD may be computed
by rotating the AB values clockwise in a window of size P (in a
single rotation, B's move to A's in the same PE and A's move to
B's of the next PE) and rotating the T values clockwise in a win­
dow of size M. Figure 9 shows the initial AB pairs and T values
for the case N = 16 and M = 4. Throughout the algorithm, the pro­
duct of A(p) and T(p) will give one of the terms needed to compute
OlD(igray(p)) for every PE p. B(p) will be the next I value needed.
Initin lly, this is true for all processes except those with
igray(p) mod M = M - 1. This situation is remedied by replacing
B with I in these processors to get the first row labeled AB'. Fol­
lowing a rotation of AB, we get the second row labeled AB. Now,
the B value in processors with igray(p) mod M = M - 2 needs to
be changed to I(p). With this insight, one arrives at the algorithm

95

of Figure 10. Its correctness is easily established. The number of
unit routes (including those for pairing) is at most M + 8/ogM.

4. TWO DIMENSIONAL CONVOLUTION

Assume that P = N 2 PEs are available. These may be viewed
as an N X N array as described in Section 2. We use (i, i) to refer
to the PE in position(i, i) of the N X N array. Thus, for the
example of Figure 2, PE(O, 0) is PE 0, PE(2, 3) is PE 7, and PE(3,
3) is PE 6. The index of PE(i, i) is gray(iN + j) if i is even and
gray(iN + N -1 - i) if i is odd. This corresponds to the snake
like row major interpretation. We assume that J[i, j] is initially
in the I register of PE(i, j). Further since N and M are assumed to
be powers of 2, the N X N array may further be viewed as com­
posed of N2 / M2 arrays of size M X M . We assume that T is ini­
tially in the top left such array.

4.1. O(M) Memory

When O(M) memory is available, PE(i,j), 05_i<N, 05_j<N
computes Mone dimensional convolutions S(q), o::;q <M defined
as below

M--1

S(q) = EI((i, (j + r) mod N)*T(q, r)
r=O

Next 020 is obtained by performing an adjacent sum opPra­
tion along' the columns of the N X N PE array. A high level

description of the algorithm is given in Figure 11. The total
number of unit routes is M 2 + O(MlogM). The number of unit
routes for each of the steps of Figure 11 is log(N / M) + 4, M-1,
M(M -1) and 2M + 4 respectively.

4.2. 0(1) Memory

Now, it is not possible for each PE to accumulate the M
values of I it needs from its row. Nor is it possible for a PE to com­
pute the values S(q), 0 5_q <M. We may rewrite the definition of
020 as

M--1

C2D[i, j] = ECXD[i, r, j]
r=O

where M-1

CXD[i, r, j] = EI[(i +r) mod N, (j +a) mod N]*T[r, a]

Some of the OXD terms needed for the computation of
C2D(i, j) can be computed within the M X M PE block that con­
tains PE(i, j) as all the needed I and T values are in the block.
The remaining terms can be computed by the corresponding PE in
the next lower M X M block as this block contains the needed I
values. Thus each PE computes an E value (for itself) and an F
value (for the corresponding PE in the adjacent upper M X M
block).

The E and F values are computed in k iterations. During
iteration k, the PEs in the k'th row of each M X M PE block com­
pute their E and F values. These rows have index k, M+k, 2M+k,

Also
M--1--k

E(aM +k, j) = E CXD[aM +k, r, j] and

Jll'=ll.

F(aM +k, j) = E CXD[((a-l)M +k) mod N, r, j].
r=M--k

For this, we note that PE(i, j) is in the i mod M row of the

li/Mhh M X M block. So, each PE needs to compute
A= CXD[li/MJM + k, i mod M -k, j] if i mod M ~ k and
B = CXD[li/MJM +k -M, i mod M-k +M, j] if
i mod M <k

AB T AB' AB T AB' AB T AB' AB T AB'
0 Io Ioli To Ioli 1,12 T, I1I2 I2Is T2 I2Is l3I4 Ts Islo
1 I, I2Is T, I2Is l3l4 T2 l3l4 Iio Ts Iii 1,12 To I1I2
2 I2 l4l5 T2 l4l5 l5I6 Ts l5I2 I2Is To I2Is l3I4 T, l3l4
3 Is 1617 Ta I6ls l3l4 To Isl4 l4l5 Ti li5 l5I6 T2 l5I6
4 l4 l4l5 To l4l5 l5I6 T, Isl6 Inl1 T2 Iol1 I1Ia Ts l7l4
5 Is Inl1 T1 Inl1 I1Ia T2 I1Ia Ial9 Ts Ial5 l5Io To Isln
6 In 1819 T2 18!9 Iul10 Ts Iuln Inl1 To Iel1 1718 T, I1ls
7 l7 I10I11 Ts l1of1 I1Ia To I1Ia 1819 T1 I8l 9 l9l10 T2 l9I10
8 Is lglg To 1819 I9I10 T, l9I10 lwln T2 I10I11 I11I12 Ta In ls
9 lg Iwlu T, l1ofu lul12 T2 Iul12 l12I1s Ta I12Io I9I10 To l9I10

10 110 I12I1s T2 I12l1s I13I14 Ts l1sl10 lwln To Iwlu I11I12 T1 I11I12
11 Iu I14I10 Ta I14I11 I11I12 To I11I12 I12l1s T1 I12I13 l1al14 T2 l1sl14
12 112 I12l13 To l1i1s I13I14 T1 l1sl14 l14I15 T2 l1i1s I16Io Ts l1ol12
13 !13 I1i10 T1 l1i10 l15lo T2 l15lo Ioli Ts lol1s l13l14 To l1sl14
14 114 Ioli T2 Ioli I1I2 Ts 11! 14 I,4I10 To I14I1s I15Io T1 l1slo
15 1,. I2Is Ts I2I1s I,slo To I,slo Ioli T1 Ioli I1I2 T2 I1I2

Figure 9: Execution Trace N = 16, M = 4

procedure ClD_l(M)
{ 0(1) memory one dimensional convolution}
begin

PAIRING(M);
C!D :=O;
for j :=() to M-1 do
begin

end

B(p) := I(p); (igray(p) mod M =M -1 -i)
ClD :=ClD +A* T;
SHIFT(A, -1, P);
C := B; B :=A; A := C; { interchange A and B}
SHIFT(T, -1, M);

end {of ClD_l}

Figure 10: 0(1) memory computation of ClD

procedure C2D_M(N, M)

Stepl:

Step2:

Step3:

Step4:

end

{ assumes O(M) memory per PE}

Broadcast T to all M X M blocks in the N X N PE ar­
ray

Perform a data accumulation on I. For this operation,
the N X N PE array is viewed as N independent hy­
percubes with each row forming one such hypercube.
Following the operation, each PE contains the M I
values it needs to compute its S(q)'s.

Compute the S(q)'s. Each S(q) is a one dimensional
convolution. However, the data accumulation step of
the algorithm of Figure 9 may be omitted as the I
values have already been accumulated in Step 2. To
go from one S to another, the T values need to be cir­
culated along the columns of each M X M block. This
can be done using the data circulation algorithm of
Section 2.

M--1

Compute C2D(i, j) = ~S[r]((i + r) mod N, j). This is
r=O

done using the adjacent sum algorithm of Section 2 on
the columns of the N X N PE array

Figure 11: High level description of two dimensional convolution
with each PE having O(M) Memory

96

Then, the PEs in rows aM + k, 0 ::; a < N / M can compute E and
F by summing the As and Bs in their column and ia their M X M
block. Once this has been done, C2D is computed by shifting the
F's up the columns by M units and adding to the E's. A high level
description of the algorithm is provided in Figure 12. The number
of unit routes for Steps 1, 3, 4 and 5 of Figure 12 is
3/og(N /M) + 2, 2M + O(logM), logM + 0(1) and 4 respectively.
The total number of unit routes is 2M2 +O(MlogM).

procedure C2D_l(N, M)

Stepl:

Step2:

Step3:

Step4:

Step5:

{ assumes 0(1) memory per PE}

Broadcast T to all M X M blocks in the N X N PE ar-
ray

Repeat Steps 3 and 4 for k := 0 to M-1

PE(i, j) computes GXD[l ~JM+ k, i mod M- k, j]

if i mod M ~ k using ClD_l(M) and puts the result
in A, otherwise A = O;
PE(i, j) computes

GXD[(l ~JM+ k-M) mod N, i mod M -k +M, j]

if i mod M < k using ClD_l(M) and puts the result in
B, otherwise B = O;

Use the data sum operation, described in Section 2, to

sum the B's and A's in PE(l ~JM+ k, j) in F and E

respectively. Shift the T values up the columns by 1.

SHIFT(F, -M, N) along columns. C2D :=E +F.

Figure 12: High level description of two dimensional convolution
with each PE having O(M) Memory

5. KIRSCH MOTIVATED TEMPLATES

Kirsch templates, [BALL85] are commonly used in image pro­
cessing. Kirsch templates of size 1 (M = 3) and 2 (M = 5) are
shown in Figure 13.

By exploiting the special structure of these templates, tem­
plate matching can be done more efficiently. A high level descrip­
tion of the algorithm is given in Figure 14. Its complexity is O{M).
The amount of memory required per PE is O(M). While efficient
O(i) memory algorithms can also be developed, we shall not do
this here as Kirsch templates usually have small M and it is rea­
sonable to assume this much memory is available.

Steps 3, 4, 5, 6 can be done efficiently by a simple adapta­
tion of procedure AdjacentSum of Section 2.

~
00

(a)

~
t±tii

{b)

1-11-~01 i111 I 01 ii ii 1111

I~~ ~1 ~I ~I ~I
1~:1 ~'Agl :1 :1

- 0 i 1 1
- - 0 i 1
- - - 0 i
- - - - 0

li1ili1i1i1
I ii ii 11 11 11

lttJtJ
1-"-il-~-" 01
-i -1 - 0 1
-i -i 0 i 1

I ~1 1 ~I ! I ! I ~I
(e) {f) (g) {h)

Figure i3: Kirsch templates of size 1 {M = 3) and 2 {M = 5)

Stepl: ACCUM(A, I, M);
Step2: B[-1] := O; C[-1] := O;

for i := 0 to M-i do
begin

B[i] :=A[i] +B[i-ij;
C[i] :=A[M-1-i] + C[i-i]

end;
Do exactly one of the following steps depending on
the template type.

Step3: {Templates of types (a) and (e)}

M-l.

C2D(i, j) = :E(O[(M-3)/2]-B[(M-3)/2])({i+a) mod N, j)
a=()

Step4: {Templates of types (b) and (f)}

M-l.

C2D(i, j) = I;{O[M-2-a]-B[a-l])((i +a) mod N, j)
4=()

Step5: {Templates of types (c) and (g)}

(M-ll)/2

C2D(i, j) = E O[M-l]((i +a) mod N, j)
a=()

(M-1)

:E O[M-l]({i +a) mod N, j)
(M+l)/2

Step6: {Templates of types (d) and (h)}

M-1

C2D(i, j) = L:;(O[a-1]-B[M-2-a])((i +a) mod N, j)
a=()

Figure 14: Algorithm for Kirsch templates of Figure 13

6. MEDIUM GRAIN TEMPLATE MATCHING

In the previous sections we have developed algorithms to per­
form template matching on a fine grain hypercube. Such a com­
puter has the property that the cost of interprocessor

communication is comparable to that of a basic arithmetic opera­
tion. In this section, we shall consider the template matching prob­
lem on a a hypercube in which interprocessor communication is
relatively expensive and the number of processors is small relative
to the image size n. In particular we shall experiment with an
NCUBE/7 hypercube which is capable of having up to 128 proces­
sors. The NCUBE/7 available to us, however, has only 64 proces­
sors. The time to perform a two byte integer addition on each
hypercube processor is 4.3 microseconds whereas the time to com­
municate b bytes to a neighbor processor is approximately
447 + 2.46 microseconds.

Several cases of the template matching problem can be stu­
died. These vary in the initial location of the image and the

template and the final location of the convolution (result matrix).
We consider the following cases . In all of these, the template is
initially in the host.

1. Host-to-host: The image is in the host initially and the result
is to be left in the host also.

2. Hypercube-to-host: The iinage is initially in the host but the
result is left in the hypercube.

3. Hypercube-to-hypercube: The image is initially in the hyper­
cube and the convolution is to be left there too.

97

Let p be the number of hypercube processors. We assume
that p is a perfect square and that Yp divides n. Hence, the
hypercube may be visualized as a Yp X Yp mesh and the n X n
ctmvolution matrix can be mapped onto this with each processor
getting an n/Yp X n/Yp block. We assume that each processor
has enough memory to hold one copy of the m X m template. As
far as mapping the nXn image is concerned, we consider the two
possibilities:

(1) Overlap Mapping: In this, each processor gets enough of the
image to compute all its convolution values. Hence, the pro­
cessor in position (O~ of the mesh gets
I[O .. n/Yp +m -2,0 .. n/ p +m -2].

(2) Nonoverlap Mapping: The image is decomposed into n/Yp
X n/Yp blocks. This is done in the same way as the convo­
lution decomposition. Each processor gets the image block
that corresponds to its convolution block.

Notice that if overlap mapping is used, then the host must
transfer more data to each hypercube processor than when the
nonoverlap mapping is used. However, no interprocessor communi­
cation is needed when the overlap mapping is used. Interprocessor
communication is, however, needed when the nonoverlap mapping
is used. This can take the form of each processor communicating to
its north, east, and northeast neighbor processors the image values
they need to compute their convolution. Alternatively, each proces­
sor can compute the partial convolution values for its north,
northeast, and east neighbors and then communicate these values.
In either case, the communication overhead is the same. In our pro­
grams, we adopt the latter strategy.

It is also important to note that the communication overhead
in the template matching problem is small relative to the comput­
ing cost. When the overlap mapping is used, O(nm Yp + pm2)

additional data is transmitted from the host to the hypercube
nodes (i.e., in addition to the transfer of n2 image values). However
since the host can send data to several nodes in parallel, the over­
head penalty is not as severe. While the same amount of data has
to be transferred between processors when the nonoverlap mapping
is used, the p processors can work in parallel so that the transfer
time is approximately that for the transfer of O(nm/Yp + m2)

data. In either case, this overhead is exrected to be small com­
pared to the time required for the 0 (n m 2 / p) computing to be
done by each node.

In each of the three cases listed above, we have assumed that
the host broadcasts the template to the hypercube processors using
a tree expansion scheme.

The NCUBE/7 run times for p = 1, 4, 16, and 64;
n = 32, 64, 128, 252, and 512 and m = 4, 8, 16, and 32 for the
overlap memory mapping are given in Figures 15 through 17. For
smaller values of p, the template matching can be done only for
small n as there isn't enough memory on a hypercube processor to
hold the convolution and the image subblocks assigned to it. The
figures show that for the case n = 512, m = 32, and p = 64, the
run times for the host-to-host case are approximately 2.6% higher
than that for the hypercube-to-host case and approximately 13.0%
higher than the hypercube-to-hypercube case. This reflects the cost
of transmitting the image and the convolution between the host
and the hypercube. The observed speed up is almost equal to the
theoretical maximum of p. The speedup and efficiency (speedup /p)
for n = 64 and m = 8 are shown in Figure 18.

I!

1

4

16

64

n

32
64

32
64

128

32
64

128
256

32
64

128
256
512

m

4 8

0.456 1.479
1.832 5.867

0.142 0.383
0.524 1.480
2.022 5.869

0.104 0.176
0.238 0.507
0.790 1.754
2.925 6.592

0.270 0.421
0.428 0.643
0.933 1.273
2.724 3.293
9.365 10.597

Times are in seconds
m =template ·size

n = image size

16

5.391
21.169

1.366
5.392

21.170

0.478
1.477
5.394

21.173

0.910
1.246
2.349
7.205

25.243

p =number of processors

32

20.439
81.485

5.223
20.440
81.487

1.596
5.225

20.442
81.491

2.590
3.172
7.029

22.069
81.491

Figure 15: Overlap Mapping: Host-to-Host

m

I! n 4 8 16 32

1
32 0.407 1.308 4.773 18.200
64 1.600 5.211 18.891 72.268

32 0.126 0.355 1.233 4.666
4 64 0.462 1.364 4.860 18.226

128 1.810 5.367 18.974 72.391

32 0.069 0.146 0.426 1.483

16
64 0.198 0.456 1.402 5.022

128 0.695 1.643 5.199 18.830
256 2.620 6.279 19.875 73.350

32 0.108 0.190 0.459 1.424
64 0.200 0.350 0.832 2.533

64 128 0.511 0.880 2.111 6.539
256 1.645 2.786 6.788 21.405
512 5.968 9.831 24.341 79.440

Times are in seconds
Figure 16: Overlap Mapping: Hypercube-to-Host

98

m

.12 n 4 8 16 32

1
32 0.376 1.274 4.727 18.134
64 1.504 5.094 18.763 72.105

32 0.096 0.320 1.184 4.572
4 64 0.378 1.275 4.729 18.136

128 1.506 5.096 18.764 72.107

32 0.028 0.084 0.299 1.146
64 0.098 0.322 1.185 4.573

16
128 0.380 1.277 4.731 18.138
256 1.508 5.097 18.767 72.109

32 0.013 0.027 0.086 0.291
64 0.030 0.086 0.301 1.148

64 128 0.100 0.324 1.187 4.575
256 0.381 1.279 4.733 18.139
512 1.510 5.099 18.768 72.110

Times are in seconds
Figure 17: Overlap Mapping: Hypercube-to-Hypercube

I! 1 4 16 64

Host-to-host Speedup 1.00 3.96 11.57 9.12
Efficien£I_ 1.00 0.99 0.72 0.14

Hypercube-to- Speedup 1.00 3.82 11.43 14.89
host Efficiency 1.00 0.95 0.71 0.23
Hypercube-to- Speedup 1.00 3.99 15.82 59.23
hrl>_ercube Efficien~y_ 1.00 0.998 0.99 0.93

Times are in seconds
Figure 18: Overlap Mapping: Speedup and Efficiency

for n =64 and m =8·

The run times for the nonoverlap mapping are presented only
for the hypercube-to-hypercube case. In this case, there are two
possibilities:

1. Overlap of computation and communication between nodes

2. No overlap of computation and communication between
nodes

Our experiments indicate that there is no substantial
difference in the run times in the above two cases. This is because
the amount of computation is much larger than the amount of
communication between nodes. The run times for the nonoverlap
mapping are given in Figure 19. For small template sizes the
nonoverlap method is significantly slower than the overlap method.
For larger template sizes the difference in run time is not so
significant. Much of the difference in the run time is attributable to
the following observations:

1. The program for the nonoverlap case is considerably more
complex and so has greater overhead than that for the over­
lap case.

2. The data transfer rate from the host to the nodes is much
higher than that between nodes.

Figure 20 shows the time required by a ORA Y-2 supercom­
puter to perform template matching. These are approximately one
fifth of the hypercube-to-hypercube times on the NCUBE/7 with
64 processors.

m

Jl n 4 8 16 32

1 32 0.505 1.857 7.000 20.450

4
32 0.139 0.482 1.417
64 0.514 1.872 7.026 20.497

32 0.045 0.115
16 64 0.142 0.484 1.422

128 0.516 1.874 7.031 20.510

32 0.021

64
64 0.047 0.118

128 0.144 0.487 1.426
256 0.519 1.878 7.036 20.520

Times are in seconds
Figure 19: Nonoverlap Mapping: Hypercube-to-Hypercube

m
n 4 8 16 32
64 0.007 0.023 0.086 0.345

128 0.022 0.080 0.300 1.205
256 0.073 0.283 1.118 4.485

512 0.273 1.082 4.273 17.350

Times are in seconds
Figure 20: Template Matching on CRAY-2

7. CONCLUSIONS

In this paper, we have presented optimal algorithms for 1-D
convolution and image template matching (2-D Convolution) on an
MIMD hypercube multicomputer. In addition, efficient algorithms
for Kirsch templates were developed. Also, we have experimented
with a 64 processor NCUBE hypercube and found that this com­
puter can perform template matchings for large images and tem­
plates in about five times the time needed by the CRAY-2 super­
computer. Thus, the NCUBE has a very good cost-performance
ratio for this problem.

8. REFERENCES

[BALL85] D. H. Ballard and C. M. Brown, " Computer Vision",
1985, Prentice Hall, New Jersey.

[CHAN86] T. E. Chan and Y. Saad, "Multigrid algorithms on
hypercube multiprocessor", IEEE Transactions on
Computers", Nov. 88, pp 969-977.

[CHAN87) J. H. Chang, 0. Ibarra, T. C. Pong, and S. Sohn,
"Convolution on a Pyramid Computer" , International
Conference on Parallel Processing, 1987, pp 780-782.

[DEKE81] E. Dekel, D. Nassimi and S. Sahni, " Parallel matrix
and graph algorithms" , SIAM Journal on computing,
1981, pp. 657-675.

99

[FANG85] Z. Fang, X. Li and L. M. Ni, "Parallel Algorithms for
Image Template Matching on Hypercube SIMD Com­
puters", IEEE CAPAMI workshop, 1985, pp 33-40.

[FANG86] Z. Fang and L. M. Ni, "Parallel Algorithms for 2-D
convolution" , International Conference on Parallel Pro­
cessing, 1988, pp 262-269.

[HOR085] E. Horowitz and S. Sahni, "Fundamentals of Data
Structures in Pascaf', Computer Science Press, 1985.

[KUNG82] H. T. Kung and S. W. Song," A Systolic 2-D Convolu­
tion Chip", Multicomputers and Image Processing:
Algorithms and Programs, editors: Preston and Uhr
{Academic Press, New York), 1982, pp 373-384.

[LEE87] S. Y. Lee and J. K. Aggarwal, "Parallel 2-D convolu­
tion on a mesh connected array processor", IEEE
Transactions on Pattern Analysis and Machine Intelli­
gence, July 1987, pp 590-594.

[MARE86] M. Maresca and H.Li, "Morphological Operations on
Mesh-connected Architecture : A generalized convolu­
tion Algorithm", Proceedings of 1986 IEEE Computer
Society Workshop on Computer Vision and Pattern
Recognition , 1988, pp 299-304.

[PRAS87] V. K. Prasanna Kumar and V. Krishnan, "Efficient
Image Template Matching on SIMD Hypercube
Machines", International Conference on Parallel Pro­
cessing, 1987, pp 765-771.

[RANK87a] S. Ranka and S. Sahni, "Convolution on an SIMD
mesh-connected computer" , University of Minnesota
Tech. Report, 1987.

[RANK87b] S. Ranka and S. Sahni, "Image Template Matching
on an SIMD hypercube multicomputers" , University of
Minnesota Tech. Report, 1987.

[ROSE82] A. Rosenfeld and A. C. Kak, "Digital Picture Process­
ing", Academic Press, 1982

[THOM77] C. D. Thompson and H. T. Kung, "Sorting on a mesh­
connected parallel computer" , Communications of the
ACM, 1977, pp 263-271.

COMPUTATIONAL GEOMETRY ON A HYPERCUBE

Ivan Stojmenovic

Department of Mathematics and Computer Science
University of Miami, P.O.Box 249085

Coral Gables, FL 33124, USA

Abstract. This research focuses on implementing al­
gorithms to solve basic geometric problems on hypercube
computers which are recently introduced on the commer­
cial market. Two solutions for the planar convex hull prob-
lem are presented, both in O(log2 n) time which is the
best one can expect with existing sorting algorithms. An
O(log3 n) Voronoi diagram algorithm is given. O(log n)
solutions for detecting and finding intersection of two con­
vex polygons, computing minimal distance between two
convex polygons and finding critical support lines of two
convex polygons and O(log2 n) solutions to the diameter,
smallest enclosing box, width, minimax linear fit, vector
sum of two convex polygons, ECDF searching, 2-D and 3-
D maximal elements, 2-set dominance counting and closest
points problems are described. Several data communica­
tions techniques used to solve geometric problems are also
presented.

Introduction
A d-dimensional hypercube computer consists of n =

2d synchronized processing elements (or nodes), linked to­
gether in a d-dimensional binary cube network. Each
node has associated a constant size memory. Each
node m is given a unique d-bit identification number
(md-i, ... ,m1,mo) (henceforth referred as the node i.d.).
In the lexicographic order of nodes, node and its i.d. num­
ber are related by m = 2d-lmd-l + ... + 2m1 +mo. Two
nodes in a hypercube are said to be neighboring if they
share a communication link, i.e. iff their corresponding
i.d.'s differ in exactly one bit position. The notation ®1c(m)
will be used to denote the node m with k-th bit flipped (for
example, ®s(OlOOl) = 00001). The neighbors of a node m
are exactly ®o(m), ®1(m), .. ., ©d-i(m). The communica­
tion diameter of hypercube networks is logarithmic.

We use a model of hypercubes in which communica­
tion time is assumed to predominate. We ignore the time
for start-up and termination and the transfer rate when
sending messages. Thus, we assume that, in unit time,
each processor may send at most one message to one of
its neighbors or perform at most one operation (processor­
bound model). Using the model described, we solve some
geometric problems, assuming that we are given one ele­
ment (point, edge,. ..) per processor (we suppose that in­
put/output procedures are done in constant time via a
processor with large memory connected with all other pro­
cessors). The next section describes data communication
techniques used in our solutions.

Data communication on hypercubes

Broadcasting. One node has to send the same mes­
sage to all the other nodes in the hypercube. A O(log n)
solution is presented in [20].

Parallel prefix. Given an array bo, ... ,bn-1' one ele­
ment per processor, compute bo*b1 *···*bi for 1 ~ i ~ n-1,
where'*' is arbitrary binary associative operation. We im­
plement the standard parallel prefix algorithm (cf. [7]) on a
hypercube, to run in O(log n) time. Each node m of hyper­
cube stores three data: t, r and c, where t is initially equal
to bm and finally to bo*b1 * ... *bm. We use 1 a +-i b'('b --+i a')

to denote sending data b from ®i(m)(m, resp.) to node
m(®i(m), resp.) which receives it and stores as data a.
1 :=i is used for assignements made in node ®i(m). The
algorithm runs for each node z in parallel.
FOR i = 0 TO d - 1 DO IF z + 1 = O(mod 2H1) THEN

BEGIN r +-i t; t := r * t END;
FOR i = d - 2 DOWNTO 0 DO

IF z + 1 = O(mod 2H1) and z =f. 2H1 - 1 THEN
BEGIN c +-i t; r --+i r; t :=i r * t; r := r * c END

Maximum. For 1 *' being maz the first step of our
algorithm will report (in node n -1) the maximal element.

Ranking. Some nodes are selected. The rank of a node
is the number of selected nodes with a smaller index. A
O(log n) ranking algorithm has been presented in [15]. Our
parallel prefix algorithm solves also the ranking problem
(for'*' being'+' and bm being 0 or 1) with less number of
data movenment operations than in [15].

Sorting. Given an element per processor, the sorting
can be done in O(log2 n) time [4,22]. After sorting the
elements are kept in nodes in the lexicographic order.

Merging. Given two sorted arrays A and B each
stored in a hypercube of size n/2, their merging can be
done in O(logn) time [22]. We present an iterative and
simple code of merging procedure from [22].
FOR i. = 0 TO d- 2 DO IF z < n/2 THEN z--+ ®i(z))
FOR i = d - 1 DOWNTO 0 DO

100

IF Zi = 0 THEN order(z,®i(z))
If the data in z is less than the data in ®i(z) then

z and ®i(z) will exchange data as the effect of function
order(z, ®i (z)). The symbol 1 --+ 1 is used for passing data
from one node to the other.

The cousins of a E A in B are two consecutive ele­
ments in B so that a is between them in sorted list A I) B.
The cousins in B of each element in A can be deterrmned
in O(logn) time on a hypercube by merging and inter­
val broadcasting operations. The ranks of two cousins bl
and b2 from B for an element a E A are determined by
r(bl,B) = r(a,AUB)-r(a,A) andr(b2,B) = r(bl,B)-1,
where r(e, X) denote the rank of an element e in the sorted
set X (the rank of the first element being 0).

Reversing. The effect of the first step in the merging
procedure is to reverse data in nodes O,. .. ,n/2-1. It means
that a list of data can be reversed in O(logn) time.

Distribution. We assume that some nodes m of the
hypercube store a record rm and a node destination ad­
dress hm such that if i < j then hi< h;. The distribution
operation consists of routing, for each m the record rm to
the node hm. It can be performed in O(log n) time [15].

Translation. Node z has to send a message to the
node z + s (mod n) concurrently for several nodes z. This
can be done in O(log n) time by two distributions (ones for
nodes with z + s < n and ones for the remaining nodes).
For s = 1 it gives an access for each node to the data in
its succesor in the lexicographic order.

Compression. Some nodes of hypercube contain "ac­
tive" elements while others do not. Compress the active
elements, i.e. store them in nodes 0,1,2,. .. ,s-1 where s is

the number of active elements. After ranking active ele­
ments compression became inverse distribution operation
and a solution is presented in [15].

Unmerging. Given a sorted list of elements so that half
of elements belong to a set A (thus the remaining belong
to A, the complement of A) and each element knows the
corresponding rank in A or A, permute the list to return
each A and A to a hypercube of size n/2. The problem
can be solved by running the merging algorithm in reverse
order, or by two compressions and a translation.

Interval broadcasting. Certain of nodes 0,1,. .. ,n - 1
are leaders; they possess data that they must share with
all the higher numbered nodes, up to but not including the
next leader (the interval of nodes between two leaders).
Interval broadcasting can be done in O(log n) time on a
hypercube ([22, Theorem 6.9], and [15, Theorem 1]).

Many - one routing. Both origin and destination
nodes have keys, with keys of origin nodes being different
between each other. Each destination node should receive
data from the origin with the same key. The problem can
be solved in O(log2 n) time on a hypercube[22], by apply­
ing sorting and interval broadcasting techniques.

Pairing elements. Given two sets A and B each con-
taining fo data distributed one per node of a hypercube of
size n, broadcast these data in such a way that each node
of the hypercube contains exactly one pair of data (taken
one from each A and B) and all pairs are distributed. First
we compress data from A. These data will be stored in
a sub-hypercube A' having nodes (0,. .. , O, Zd/2-1,. .. , zo).
Also we compress data from B and translate them to
the sub-hypercube B' having nodes (zd-i, .. ., zd;2, 0, .. ., 0).
Now, we broadcast data from each node of A' and B'
to all nodes of a hypercube of size fo. As a result,
each node (zd-1,. . .,zo) of hypercube receives a pair of
data by broadcasting from nodes (0,. .. , 0, Zd/2-1,. . ., zo)
and (zd-1, ... ,zd/2,0, .. .,0).

Planar convex hull algorithms

We present two O(log2 n) solutions for planar con­
vex hull problem on a hypercube model of computation.
One uses merging slopes technique (indenpendently used
in [10,14,18] for solving several problems on mesh comput­
ers and in (18] for solving all problems mentioned in the
section on CREW PRAM; the corresponding sequential
technique is presented in (21,5]) while the other is based
on CREW PRAM algorithm of [2].

Divide-and-conquer is a common strategy to find
the convex hull H(S) of a set of points S sorted by z­
coordinate: Partition the points of S into two separated
sets P and Q of half the size, each stored in a hypercube of
size n/2, recursively compute H(P) and H(Q) and merge
H(P) and H(Q) to form H(S) by computing common tan­
gents of H(P) and H(Q). Two proposed solutions differ
in the way to merge H(P) and H(Q).

Merging slopes technique. a-distance of a point to an
oriented edge p is its distance to the an edge p' obtained
by rotating p for the angle a (with distances of points to
the left (right) of p' being positive (negative, resp.)).

Let A and B be two convex polygons in the plane,
each containing O(n) edges given in counterclockwise or­
der. Given an angle a, consider the following problem
(we call it the extremal search problem ES(A,B,a)): For
each edge p E A find a vertex P E B with the smallest o:­
distance top among vertices from B (Pis associated point
of pin direction a). It is easy to see that for o:=O (a= 7r)

101

Pis the vertex with the smallest (greatest, resp.) distance
from p among vertices of B. For a= 7r/2(o: = 37r/2) Pis
the easternmost (westernmost, resp.) point of p. .

To describe the procedure ES(A,B,a), we first in­

crease slopes of edges of Abra. The edges with mini.ma!
slopes in A and B are recogruzed and by some translations
they are moved to first nodes of corresponding h~perc~b~s.
Since slopes of edges of both polygons are then given m 11?-­
creasing order, the sets A and B can be merged (by their
slopes) in O(logn) time. Now sets A, B and AU B are
sorted and each edge e of A can find its cousins in B, the
common elements of which is associated point of e. We use
unmerge technique to return all edges to initial positions.

In order to to merge H(P) and H(Q), we decide for
each their edge whether it is an external or internal ~dge,
i.e. if it is convex hull edge of H(S) as well. To judge
if an edge is external, we need to test if H(P) and H(Q)
are in the same half-plane bounded by the edge. How­
ever instead of testing all the vertices of H(Q) with an
edg: e of H(P), we only test two representatives (associ­
ated points of e) such that if they are in the same half­
plane bounded by e as H(P), every point in H(Q) is.

These two representatives fore in H(P)(H(Q)) are nearest
and furthest extreme points from H(Q)(H(P), resp.) and
are obtained by calling procedures ES(H(P),H(Q),O),
ES(H(P),H(Q),7r), ES(H(Q),H(P),O) and ES(H(Q),
H(P),7r). Now each edge can decide in constant time if it
is external or not. Then each extreme point of H(P) or
H(Q) can learn if it is an extreme point of H(S) (trans­
lation by 1 can be used to find the neccesary data). Two
of them in both H(P) and H(Q) share an external and an
internal edge. These four points determine two common
tangents of H(P) and H(Q). Then the computation of the
circular edge list of H(S) can be done in O(logn) time by
some translations.

The time complexity of all procedures in merge step
is O(logn). Because of O(logn) recursive calls, the overall
time complexity of presented algorithm is O(log2 n). ·

Using the merging slopes technique the diameter,
smallest enclosing box, width and minimax linear fit of
a set of n points and vector sum and critical support lines
of two convex polygons (see (21,5,16,18,19] for definitions)
can be found on a hypercube. The details of these solutions
are presented in a full version of the article (19].

Another convex hull algorithm on a hypercube can be
derived by using Atallah and Goodrich (2] CREW PRAM
solution. The main point in the algorithm [2] is to divide P
and Q into fo equal portions by considering fo vertices
and, by examining each pair of considered vertices, to find
common tangent of polygons of size fo obtained in this
way. Then one of polygons P or Q can be reduced to size
fo and, in one more iteration, the common tangent of P
and Q will be constructed [2]. The pairing elements and
the broadcasting (to construct the tangent passing through
a point) techniques are applied. A similar approach was
used in [6] to solve the convex hull problem in O(log2 n)
time on CREW PRAM and cybe connected cycle models.
The later one is directly implementable on hypercube in
O(log2 n) time.

The problem of computing minimal distance between
two convex polygons involves similar techniques, and is
solved in (2] for CREW PRAM model of computation.
Using pairing elements and other techniques a O(log n)
hypercube solution can be obtained.

Planar point location and Voronoi diagram

In order to locate 0(n) points into the planar sub­
division defined by 0(n) edges we use the chain method
described by Lee and Preparata [11), a parallelization of
which for mesh-connected computers is given in [12). We
slightly modify both methods in order to get an O(log2 n)
planar point location algorithm on a hypercube.

First we sort regions by a:-coordinate of selected in­
terior points (called centers). Then a monotone complete
set of chains is defined as in [11,16,12). These chains are
nodes of a balanced binary tree the leaves of which corre­
spond to regions of subdivision. Each chain has its level
and index (the rank of the chain in the chains of given
level). Chains may share common edges. If an edge e be­
longs to more than one chain it belongs to all members of
a set (an interval) of consecutive chains. We assign e to
hierarchically the highest chain to which e belongs. The
level and index of the chain is determined in constant time
by the rule described in [12). Now we sort all edges by
their level as the primary key, their index as the secondary
and the y-coordinate of the endpoint of edge as the ternary
key (endpoint with less y-coordinate among two endpoints
of an edge is chosen). Also, we sort all query points by
their y-coordinates. Initially, all query points are assigned
highest level r1og n l and index 0. Then, for each level i,
from i = r1og n l to i = 0 do the following:

(i) Merge the set of edges and query points (note that
all q~~ry points have the s~me level, equ~ to i),'

(ii) Perform interval broadcasting to find, for each
query point Z, the corresponding edge e the query point
should be discriminated against. If the y-coordinate of Z
is not between y-coordinates of endpoints of e then Z has
been discriminated at level before. Depending on which
side of e the query point Z is, Z calculates the index of
chain at the next level it should be discriminated,

(iii) Unmerge edges and query points (using former
indices of query points),

(iv) Re-sort query points by new indices, by compress­
ing query points with answer "left" of corresponding edge
in Step (ii) (query points with answer "right" will be also
compressed) and (since both subsets of query points are
sorted by new indices after compressing) merging "left"
and "right" query points by their new indices. Give next
level to all query points.

All query points will be located in the Step (ii) when
i = 0. Since all steps (i)-(iv) take O(log n) time, the time
complexity of planar point location algorithm is O(log 2 n).

An O(log3 n) algorithm to construct Voronoi diagram
of a set S of n planar points on a hypercube with n proces­
sors can be obtained by using Jeong and Lee [10) algorithm
to solve the problem on mesh-connected computers, planar
point location technique and presented data communica­
tion techniques. In [19] it is shown that all operations in
the merge step of the algorithm can be implemented in
O(log2 n) time.

Finding intersection of two convex polygons

We give a parallel algorithm for finding the intersec­
tion of two convex polygons P and Q with 0(n) vertices
all together by modifying the sequential method of [17].

By drawing a vertical line through each vertex of P
and Q we divide P and Q into slabs. The leftmost and
the rightmost vertices of P and Q (they can be found
in O(logn) time) divide both P and Q into two chains:
the upper and the lower chain of vertices (denote them
up, lp, uq and lq respectively). The intersections Al, A2
and A3 of a vertical line passing through a vertex A of a

102

chain with remaining three chains can be obtained in paral­
lel (one processor per each vertex A) by computing nearest
points A' and A" of A to the left and to the right respec­
tively in the considered chain and finding the intersection
of A'A" with vertical line through A. Clearly A' and A"
are the cousins of A in the chain. Upper and lower chains
of P and Q can be formed by some translations and rever­
sions from P and Q. Then desired intersections can be ob­
tained by merging upUuq,upUlq,upUlp, lpUuq, lpUlq,
and uq U lq and unmerging between two steps. Let PU Q
denote the list of vertices of P and Q sorted together by
x-coordinate (it can be constructed in O(log n) time by
merging upper and lower chains of P and Q). Consider
each slab defined by two neighboring points A and B. On
the basis of the coordinates of points A, Al, A2, A3, B,
Bl, B2 and B3 (translation by 1 can be used to exchange
the data) one can decide in 0(1) time in parallel whether
P and Q intersect within the slab and determine (at most
two) points of p n Q which are located in the slab (these
are either intersections of edges of P and Q or vertices of
P or Q which are located inside the other polygon). So
far we have detected all vertices of intersection of P and
Qin O(logn) time. However, we should order them to ob­
tain their convex hull. For each vertex of intersection we
decide whether it is an vertex of upper or lower chain of
P n Q (this can be done in constant time). Also, we assign
the vertex to left vertex cf corresponding slab defined by
points of PU Q. Thus each vertex of P or Q will have as­
signed zero or one vertex of P n Q from upper convex hull
chain (and similarly for lower convex hull chain). Now, up­
per chain of P n Q can be obtained by simply compressing
points of PU Q, assuming that active points of PU Qare
those having assigned a vertex of P n Q. Similarly we find
lower convex hull chain and finally order vertices of P n Q
by some translations and reverse steps.

This algorithm solves also the problem of detecting
intersection of two convex polygons in parallel (linear sep­
arability). Clearly they intersect if at least one vertex of
P n Q is found. The time complexity is still O(logn).

The described clgorithm can be also implemented in
optimal time on a mesh computer and in O(logn) time on
a CREW PRAM.

ECDF searching problem

Given a set S = {p1,. . .,pn} of n points in 2-
dimensional space. A point Pi dominates a point Pi(Pi >
Pi) iff p;[k] > Pi[k] fork = 1,2, where p[k] denotes the
k-th coordinate of a point p. The 2-dimensional ECDF
searching problem consists of computing for each p E S
the number D(p, S) of points of S dominated by p.

Let the rank B(p, S) of a point p in the set S con­
taining n points be the position of p in the set S sorted
according to the y-coordinate of points, the rank of bot­
tommost and uppermost points being 0 and n - 1, resp.

As a preprocessing step of ECDF searching algorithm,
we sort points by x-coordinate. The rest of algorithm
is best described recursively. Suppose S is divided into
two subsets L and R of equal size with l[l] '.::: r[l] for
all l E L and r E R, both sorted by y-coordinate. Af­
ter the recursive calls for L and R in parallel we will
have D(l,L),D(r,R),B(l,L) and B(r,R) for all l EL and
r E R. The main point is that the number of points from
L which are below r E R is max{B(l, L)ll[2] '.::: r[2]} =
B(r, S) - B(r, R). Therefore the final result will be ob­
tained directly from the relations:

D(l, S) := D(l, L) for all l E L,
D(r, S) := D(r, R) + B(r, S) - B(r, R) for all r ER.

Unfolding resursion yields the iterative solution. Ini­
tially B = D = P = 0 for each node a: of hypercube.
FOR i = 0 TO d - 2 DO

BEGIN
MERGE consecutive blocks of size 2; in pairs;
IF :i:; = 1 THEN D := D + P - B;
B:=P

END
In the merge procedure values B,D and P are ex­

changed whenever data are exchanged between nodes. The
ranks of elements after merging are denoted by P and are
easily obtained as the relative node's i.d. in the corre­
sponding block of size 2i+l.

The running time of merging step is O(logn) which
give a total O(log2 n) time for ECDF searching problem.

The same algorithm solves also the maximal elements
problem, i.e. the problem of determining points which are
dominated by no other point. We replace the sign > by <
in the definition of domination and look for points p with
D(p, S) = 0. Maximal elements can also be determined
directly by sorting and parallel prefix (with * = maa:) op­
eration, as suggested in [3] for CREW PRAM model.

The 2-set dominance counting problem (computing for
each point from A the number of points from B dominated
by the point) and the maximal element problem for point
sets in three-dimensional space can be solved on hypercube
in O(log2 n) time by a similar iterative algorithm, using
labeled functions from [3].

Closest points problem

A O(log2 n) hypercube solution to the problem of
co~puting. two points with the s~allest distance among
n given pomts based on a sequential method presented in
[16] will be described. We again apply iterative approach
rather than recursive one.

First we sort n points from given set S of points by :i:­

coordinate. At a stage i (where i ranges from O to d-1), let
L and R. be left and right halves of points in a given block
of size 2•, respectively. Suppose L and R are both sorted
by y-coordinate, and t5i (t52) (the smallest distance between
points in L(R, resp.)) are found. Let active elements of S
be those with distance from a line separating L and R less
than t5=min(t5i, t52). Compress a copy of active elements
in both L and R and merge them to form list S' of active
elem~nts.. Each active element from L(R) should calcu­
late its distance to constant number of active elements in
R(L) (at most six, as shown in [16]). By repeating inter­
val _broadcasting technique constant number of times (six)
we mform each active .element about neighboring elements
in other set. Then active elements choose the nearest ele­
Jllent from other set and minimum over obtained distances
is found and compared to t5. Now broadcast new value of
t5 and merge L and R for the next stage.

Acknowledgements
The author would like to thank Frank Dehne (Car­

leton University) and the referees for valuable comments.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing
and C. Yap, "Parallel computational geometry,"
IEEE Syrop. Found. Comp. Sci. (1985), pp. 468-477.

[2] M.J. Atallah and M.T. Goodrich, "Parallel algo­
rithms for some functions of two convex polygons "
Algorithmica, to appear. '

[3] M.J. Atallah and M.T. Goodrich, "Efficient plane
sweeping in parallel,'' ACM Syrop. Comp. Geom.
(1986), pp. 216-225.

103

[4] K.E. Batcher, "Sorting networks and their appli­
cations," Proc. Spring Joint Computer Conf. (1968),
pp. 307-314.

[5] K.Q. Brown, Geometric transforms for fast
geometric algorithms, Dept. of Computer Science,
Carnegie-Mellon Univ. (1979).

[6] A.L. Chow, "A parallel algorithm for determining
convex hulls of sets of points in two dimensions,''
Proc. Allerton Conf. Comm. Control and Comp.
(1981), pp. 214-223.

[7] R. dole and U. Vishkin, Faster optimal parallel
prefix sums and list ranking, Ultracomputer Note
117, Comp. Sci. TR 277, (Feb. 1987).

[8] F. Dehne, "O(y'n) algorithms for the maximal el­
ements and ECDF searching problem on a mesh­
connected parallel computer,'' Inform. Process. Lett.,
22(1986), pp. 303-306.

[9] F. Dehne and I. Stojmenovic, "An 0(y'n) algorithm
for the ECDF searching problem for arbitrary dimen­
sions on a mesh of processors," Inform. Process. Lett.,
to appear.

[10] C.S. Jeong and D.T. Lee, Parallel geometric
algorithms on mesh - connected computers, Dept. of
Electr. Eng. and Comp. Sci., Northwestern Univ.,
TR 87-02-FC-01, (1987).

[11] D.T. Lee and F.P. Preparata, "Location of points
in a planar subdivision and its applications,''
SIAM J. Comp., 6,3 (1977), pp. 594-606.

[12] M. Lu, "Constructing the Voronoi diagram on a mesh­
connected computer," IEEE Conf. Par. Proc. (1986),
pp. 806-811.

[13] R. Miller and S.E. Miller, "Using hypercube multi­
processors to determine geometric properties of digi­
tized pictures,'' Proc. IEEE Conf. Par. Proc. (1987),
pp. 638-640.

(14] R. Miller and Q.F. Stout, Mesh computer
algorithms for computational geometry (revised),
Dept. Comp. Sci., Univ. Buffalo, State Univ. of
New York, TR 86-18, (1987).

(15] D. Nassimi and S. Sahni, "Data broadcasting in
SIMD computers," IEEE Trans. on Comp. C-30, 2
(Feb. 1981), pp. 101-106.

(16] F.P. Preparata and M.I. Shamos, Computational
Geometry, An Introduction, Springer-Verlag, N.Y.,
(1985).

(17] M.I. Shamos and D. Hoey, "Geometric intersection
problems," IEEE Syrop. Found. Comp. Sci. (1976),
pp. 208-215.

(18] I. Stojmenovic, Parallel computational geometry,
Washington State Univ., Pullman, CS-87-176, (1987).

(19] I. Stojmenovic, Computational geometry on a
hypercube, Washington State Univ., Pullman, CS-87-
180, (1987).

[20] Q.F. Stout and B. Wager, Intensive hypercube
communication I : Prearranged communication in
link - bound machines, Comp. Res. Lab. Univ.
Michigan, CRL-TR-9-87, (1987).

(21] G.T. Toussaint, "Solving geometric problems with
the rotating calipers," Proc. IEEE MELECON '83,
Athens, Greece, (1983).

(22] J.D. Ullman, Computational aspects of VLSI, Comp.
Sci. Press, Potomac, MD (1984).

CONSTANT-TIME GEOMETRY ON PRAMS
Preliminary Version

Quentin F. Stout

Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109-2122 USA

Abstract

Given n points chosen uniformly and independently from the unit

square, it is shown that a parallel random access machine (PRAM)

with n processors can solve several geometric problems in constant

expected time, achieving linear speedup. The PRAM is assumed to be

synchronous, with concurrent read and "collision detecting" write,

where if two or more processors write to the same memory location

simultaneously then the memory value becomes "collision". Problems

solvable in constant expected time include determining for each point

whether it is an extreme point of the convex hull, determi!'ing for each

point if it is dominated by any other points, determining for each domi­

nated point a maximal point that dominates it, finding the closest pair

of points, and finding the furthest pair of points. These.results extend

to points chosen uniformly from the unit cube ind-dimensional space,

and to many nonuniform distributions.

1. Introduction

It has well-known that synchronous concurrent read, concurrent

write parallel random access machines (CRCW PRAMs) are strictly

more powerful than most other parallel computers. For example, an n

processor CRCW PRAM can determine the minimum of n numbers in

E>(log log n) time [Val], while it is easy to show that on a PRAM with

either an exclusive read (ER) or an exclusive write (EW), or on a dis­

tributed memory machine, at least O(log n) time is needed. However,

V aliant's results do not really need the full power of concurrent writes,

and we show that a weaker property, here called detecting write (DW),

can solve many problems equally rapidly. DW is intermediate between

CW and EW, in that if two or more processors write to the same mem­

ory location at the same time, then the value becomes "collision", no

matter what values were being written. Valiant's approach can be util­

ized on a CRDW PRAM and still finish in only E>(log log n) time.

It is also well-known that some geometric problems involving data

known to be chosen from a uniform distribution can be solved faster,

in the expected case, then the same problems for arbitrary data. For

example, n points chosen uniformly and independently from the real

interval [0,l] can be serially sorted in E>(n) expected time, as opposed

to the O(n log n) expected time for comparison-based sorts. Given n

points chosen uniformly and independently from the unit square in

2-space, the convex hull and nearest neighbor of each can be deter­

mined by a serial computer in E>(n) expected time [BeSh, BWY], as

104

opposed to the O(n log n) time needed for arbitrary planar data sets

[Yao].

This paper shows that by combining the synchronous CRDW

PRAM model with use of randomization in the algorithms and data

sets generated randomly via uniform distributions, several geometric

problems can be solved in constant expected time. Note that the best n
processor CRCW PRAM algorithm known for sorting n points chosen

uniformly from [0, 1) takes 0(log n) time, i.e., it is not known how to

sort such data sets any faster than arbitrary data sets. Since determin-

ing the extreme points of the convex hull of a set cf points in the plane
requires as much time as sorting [Yao], this would seem to imply that

it takes O(log n) time for a CRCW PRAM to determine which points

are extreme points, even when the data is generated from a uniform

distribution. However, the proof that determining extreme points is as

hard as sorting holds only for a worst-case analysis, and we will show

that the extreme points can be determined in constant expected time in a

CRDW PRAM with a linear number of processors. To the best of our

knowledge, these are the first constant expected-time algorithms for

these problems on any parallel machine with only a linear number of

processors.

Because of length limitations, results will be given with only

sketches of their proof. The algorithms involve doing preliminary

work which, with high probability, reduces the data set to a small

number of points remaining to be considered. For these points, the

processor to point ratio is very high and significantly different tech­

niques can be utilized. However, the remaining points must be first

moved together into a small array so that all the processors can locate

them and help in the processing. Usually the points would be packed

into the initial positions of the array, but this would take more than

constant time. Therefore the array is made larger than the expected

number of points remaining, and the points are mapped lo random

locations. The array must be large enough so that with high probabil­

ity no two points are mapped to the same location, but it must also be

small enough so that the processor to array size ratio remains suffi­

ciently high.

The algorithms also have the property that if a step is reached

where something undesired happens, then they resort to a standard

worst-case polylogarithmic time CREW PRAM algorithm. Since this

happens with very small probability, the expected time remains 9(1).

Throughout, no attempt has been made to optimize constants.

2. Results

The phrase randomly chosen points will mean points chosen inde­

pendently and uniformly on the unit square [0,1] x [0,1] in Euclidean

2-space. Algorithms will also require that processors (PEs) generate

pseudo-random integers in given intervals. It is assumed that these

can be computed in constant time, and that they are uniformly and

independently distributed on the interval. Distance will be measured

with the Euclidean metric, though any other LP-metric could be used.

A point in a finite set Sis an extreme point of S if it is one of the cor­

ners of the smallest convex polygon containing S. The point (x1,y1)

dominates the point (x2,y2) if x1 ~ x2 and YI~ y2. A point is maximal

in a set if it is not dominated by any other point in the set.

The following lemma is used whenever many points have been

eliminated from further consideration, and those remaining must be

compressed into a small array so that processors can find them. If the

expected number of points remaining is k, then the array will be at

least of size kl. Each processor holding such a point must find a place

in the array to put the point.

2.0.1 Lemma On a CROW PRAM of k processors, in 0(1) time

each can probably be allocated a unique position in an initialized inte­

ger array of k2 positions, with probability of failure o(k-0·5).

Sketch: Suppose each position of the integer array is initialized to -1.

Each PE writes its ID (a unique positive integer) to a random array

position, and then reads that position. If it reads its ID then that is its

allocated position, while otherwise a conflict occured. To determine if

any processors experienced conflicts, PE 0 writes "false" to a boolean

variable problems. Next, if any PE experienced a conflict it writes

"true" to problems, while otherwise it pauses. Now all PEs read

problems, and are finished if and only if it is false. Otherwise (i.e.,

if it is true or conflict), another round is repeated by those PEs without

allocated positions, where now each such PE first reads the location it

picked and does not write to it if it is already allocated. The process is

repeated 3 times. One can show that the probability that some PE still

has not been allocated a position is o(k -0.5).

The proof of the lemma can be extended to show that for any a> 1

and b > 0, there is a constant C(a,b) such that k processors can be allo­

cated a position in an array of k'1 positions in C(a,b) iterations, with

probability of failure o(k -b).

2.1 Maximal Points and Extreme Points

The following lemma is based on a modification of Valiant's observa­

tion that a synchronous CROW PRAM of k1 processors can determine

the maximum of k values in constant (worst-case) time. The reason

for including "Not a Point" as a value is because later algorithms will

place a few points into a large array, and hence many entries will not

correspond to points.

105

2.1.1 Lemma In a CROW PRAM of n processors, suppose each

entry of a global array p[O .. n1!3-l] contains a point or the value NAP

(Not A Point). Then in constant worst-case time the maximal points

can be determined, and for each nonmaximal point a maximal domin­

ating point can be determined.

Proof: Let s=n1!3, and assume that arrays maximal:[O .. s-1] of boolean

and dominator:[O .. s-1] of point are initialized to true and NAP, respec­

tively. When finished, maximal[i] is true if and only if p[i] is a maxi­

mal point, and if p[i] is a nonmaximal point then dominator[i] is one of

its maximal dominators. Each PE executes the following algorithm,

where i represents the index of the PE (0 ~ i ~ n-1), a local variable

which is already initialized. Other local variables in each PE are il, i2,

and i3. A temporary global boolean array T:[O .. s-1, O .. s-1] is also

used. Throughout, whenever conditional instructions occur where

some PEs may take one branch and others take the other branch, it is

implied that pauses are inserted so that all PEs complete each branch in

the same time.

1. Read p[i], and if it is NAP then write false to maximal[i].

2. Let il=i div s2, i2=(i divs) mods, and i3=i mods.

(Notice that for each il ,i2,i3 triple with 0 ~ il ,i2,i3 ~ s-1,

there is exactly one PE with that triple}.

3. If i3=0 then write true to T[il ,i2]. (At the end of step 5,

T[il,i2] will still be true only ifp[i2] dominates p[il].}

4. Read p[il], p[i2], and p[i3]. Ifp[il] or p[i2] are not points,

or if p[i2] does not dominate p[il], then write false to

T[il,i2] and go to 6.

5. Otherwise, if p[i3] is a point and p[i3] dominates p[il] and

i3<i2 then write false to T[il ,i2]. (This signals that, even

though p[i2] could be used to show that p[il] is not maximal,

there is a dominating point of smaller index and p[i2] should

not be used. It doesn't matter whether T[il,i2] ends up with

the value false or "collision"}.

6. If i3=0 then read T[il,i2], and if it is true then write false to

maximal[il].

7. (At this point, maximal is correctly determined for all

positions. Now for eac)l nonmaximal point we locate the

maximal dominator of minimal index. These steps are

similar to steps 3-6}

If i3=0 then write true to T[il,i2].

8. Read maximal[i2] and maximal[i3]. Ifp[il] or p[i2] is not a

point, or if p[i2] does not dominate p[il], or if p[i2] is not

maximal, then write false to T[il ,i2] and go to 10.

9. Otherwise, if p[i3] dominates p[il], p[i3] is maximal, and

i3<i2 then write false to T[il ,i2].

10. If i3=0 then read T[il ,i2], and if it is true then write p[i2] to

dominator[ii].

Since each step takes constant time, the algorithm finishes in constant

time.

0
0

Figure 1

2.1.2 Theorem On a CRDW PRAM with n processors, given a

set of n randomly chosen points, in constant expected time it can be

determined which points are maximal. Further, in constant expected

time, for each dominated point one of the maximal points dominating it

can be determined.

Sketch: A sequence of steps is used to continually reduce the number

of candidate extreme points for the next step. First it is determined if

there are any points in the "comer" [1-n-0.45,1] x [1-n-0.45,1]. With

probability close to 1 there are some, but not more than n°·11. If there

are points in the comer, then they are moved to an array of size n l/3,

and the maximal points are determined. In this set, the points with

greatest x-coordinate and greatest y-coordinate are put in prespecified

locations. Every PE i reads them and determines if the i1h point is

dominated by them. If so the point is marked as not maximal, and

dominator is set.

For those remaining there are two groups: those in section A and

those in section B of Figure 1. These are treated similarly, so only A

will be discussed. Now it is determined if there are any points in A

with x-coordinates in [l-n-0·5,1-n-0.45]. With high probability there

are some, but not more than n°·11 . These are also moved to an array

of size n1/3 and the maximal points determined. Then the point with

the largest y-coordinate of this set is read by all PEs corresponding to

points not yet dominated, and if they are dominated by this point they

set maximal and dominator to appropriate values. This leaves a set A'

as in Figure 2.

The process is repeated using regions with x-coordinates in the

ranges [l-n-0·55 ,1-n-0·5], [l-n-0·6 ,l-n-0·55], .. ., [0,l-n-0.95]. With

probability o(n-0.0l) each step is completed successfully. If any step

does not complete successfully (i.e., either there are no points in the

region, or else the PEs corresponding to the points cannot be allocated

a position in the array of size n1/3 in constant time) then all PEs revert

to using a deterministic CREW PRAM algorithm taking E>(log n)

worst-case time [AtGo]. The total expected time is 0(1).

A similar approach can be used to determine extreme points of the

convex hull of the points, starting at the comers and working inwards.

In case of failure at some step, CREW PRAM algorithms which finish

in polylogarithmic worst-case time [ACGOY, AtGo, MiSt] are used.

106

• Maximal point

A

Figure 2

2.1.3 Theorem On a CRDW PRAM with n processors, given a set

of n randomly chosen points, in constant expected time it can be deter­

mined which points are extreme points. Further, in constant expected

time, for each point which is not extreme, three extreme points which

contain the point in the triangle they form can be determined (or two

can be determined, if the point is on the boundary of the convex hull).

Let E denote the number of extreme points. One can show that the

expected value of Eis E>(log n) [ReSu], which implies that, for any

integer k, with probability close to 1 the ratio n/E is Q(Ek). Using

this, in constant expected time one can apply algorithms which

examine all possible combinations of k of the extreme points. This

easily yields the following.

2.1.4 Corollary On a CRDW PRAM with n PEs, given a set of n

randomly chosen points, in constant expected time the maximal dis­

tance between any pair of points can be determined, and enclosing rec­

tangles and circles of minimal area can be determined.

2.2 Closest Pair

A significantly different problem is to determine the closest pair of

points. For this problem there is no immediate technique to eliminate

points, since even if n-1 points are known it is not possible to deter­

mine the closest pair without knowing the last point, and the closest

pair might consist of the last point and any of the previously examined

points. However, one can reduce the expected number of pairs for

which the distance must be determined, by partitioning the unit square

into subsquares of edgelength L. If it is known that at least one square

has two points in it, then the answer is known to be no more than "2
L. In this situation, if a point is in square S in Figure 3, then it may be

part of the closest pair only if there are points in S or the 20 nearby

squares. By choosing L to be n-0.99, then with probability close to 1

there is a square with at least 2 points, no square has 4 or more points,

and the number of squares with 2 or more points is o(n°·1).

s

Figure 3. The 20 neighbors with points within '12 L of S.

Using this fact, first points are written to their squares. All points

in squares with collisions, or which are in one of the 20 squares near a

square with colJisions, are written to a new array of size no.2. The

closest pair within this new array is determined, and also the closest

pair involving a square and one of its 20 nearby squares, where all 21

have at most one point in them. The closest pair for the original set is

the closer of these two pairs. As before, if any steps cannot be com­

pleted properly, then the PEs resort to using a polylogarithmic CREW

PRAM algorithm [AtGo].

2.2.1 Theorem On a CRDW PRAM with n processors, given a set

of n randomly chosen points, in constant expected time a closest pair

can be determined.

3. Flnal Remarks

This short preliminary version of the paper sketches some ways to

accomplish constant time algorithms using random data on a synchro­

nous CRDW PRAM. To the best of my knowledge, these are the first

constant expected time algorithms for these problems on any parallel

model using a linear number of processors. It seems that the CRDW

PRAM is the "weakest" parallel computer which can solve these prob­

lems in constant time using only a linear number of processors, but it

is not clear how to formalize this properly, let alone prove it.

Many existing algorithms for CRCW PRAMs can be modified to

work in the same time on CRDW PRAMs. This occurs because the

only concurrent writes they utilize have the property that whenever two

PEs are writing to the same memory location at the same time, then

they are writing the same value. Such algorithms can often be con­

verted to a scheme as in Lemma 2.0.1, where "conflict" is as useful as

the value that was being written. However, not all CRCW PRAM

algorithms are of this form, and more work needs to be done to under­

stand which problems can be solved faster on a CRCW PRAM than on

, a CRDWPRAM.

107

The algorithms given herein extend quite naturally higher dimen­

sional data. For any fixed dimension d, given n random points chosen

from the d-dimensional unit cube, an n processor CRDW PRAM can

solve the d-dimensional domination, extreme points, furthest pair,

smallest enclosing box, smallest enclosing sphere, and closest pair

problems in constant expected time.

The algorithms can also be easily extended to many nonuniform

distributions, such as the d-dimensional normal distribution. How­

ever, some distributions will cause difficulties because the number of

maximal or extreme points may be too large to permit the use of

techniques which assume a high processor/point ratio. For example,

using the uniform distribution on the unit sphere will result in 0(n112)

extreme points, on average [Rayn], rendering the approach of

Corollary 2.1.4 invalid.

Acknowledgements

This research was partially supported by Incentive for Excellence

Awards from Digital Equipment Corporation, and by National Science

Foundation grant DCR-85-07851.

References

[ACGOY] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and

C. Yap, "Parallel computational geometry", Proc. IEEE Symp.

on Found. Comp. Sci. 26 (1985), pp. 468-477.

[AtGo] M.J. Atallah and M.T. Goodrich, "Efficient parallel solutions

to geometric problems", CSD-TR-504, Dept. of Comp. Sci.,

Purdue Univ., 1985.

[BeSh] J. Bentley and M.I. Shamas, "Divide and conquer for linear

expected time", Info. Proc. Let. 7 (1978), pp. 87-91.

[BWY] J. Bentley, B.W. Weide, and A.C. Yao, "Optimal expected

time algorithms for closest point problems", ACM Trans. Math.

Software 6 (1980), pp. 563-580.

[MiSt] R. Miller and Q.F. Stout, "Parallel algorithms for convex

hulls", Proc. Comp. Vision and Pat. Recogn.1988, to appear.

[Rayn] H. Raynaud, "Sur l'enveloppe convexe des nuages de points

aleatoires dans Rn. I", J. Appl. Prob. 7 (1970), pp. 35-48.

[ReSu] A. Renyi and R. Sulanke, "Uber die konvexe Hulle von n

zufallig gewahlten Punkten, I", Z. Wahrschein. 2 (1963), pp.

75-84.

[Val] L. Valiant, "Parallelism in comparison problems", SIAM J.

Computing 4 (1975), pp. 348-355.

[Yao] A.C. Yao, "A lower bound to finding convex hulls", J. ACM

28 (1981), pp. 780-789.

.Parallel Implementation of a Kalman Filter
on the Warp Computer

David R. O'Hallaron and Radhakisan S. Baheti
GE Research and Development Center, Schenectady, NY 12301

Abstract
A parallel implementation of a 9-state square-root
extended Kalman filter for target tracking applica­
tions on the Warp computer is described. The Warp
computer is a linear array of ten powerful and pro­
grammable cells with a maximum performance of
100 million floating-point operations per second (100
MFLOPS). The Kalman filter uses numerically reli­
able square-root filtering algorithms to estimate the
position, velocity and acceleration of a maneuvering
target from noisy radar measurements at high data
rates. The computations include matrix multiplica­
tion, matrix triangularization, coordinate transfor­
mation, and Jacobian transformation. We describe
the current implementation of the Kalman filter and
compare its performance on Warp to a variety of ma­
chines.

I. Introduction

Kahnan filtering is a general technique for recursively esti­
mating the state variables of a dynamic system from noisy
measurements. Applications of the Kahnan filter include
spacecraft orbit determination, target tracking, image pro­
cessing, economic forecasting and industrial process con­
trol.

This paper describes a parallel implementation on the
Warp computer of a 9-state square-root extended Kalman
filter for subsonic aerial target tracking applications. The
filter estimates, from noisy measurements, the state (posi­
tion, velocity, and acceleration in each of the x, y, and z
coordinates) of a maneuvering aircraft.

We chose Warp [1] as the target machine for a num­
ber of reasons. First, we had access to a working machine.
Second, linear arrays such as Warp can be highly scalable.
Third, Warp is specifically designed for applications (such
as Kalman filters) where the ratio of floating-point com­
putations to inputs and outputs is large. Fourth, Warp is
programmed in a high-level language and has a rich pro­
gramming environment. Finally, Warp will be introduced
as an Intel product in 1990; the programs we write and the
lessons we learn today using the current Warp will be di­
rectly applicable to this new, smaller, more powerful, and
less expensive machine.

108

Sections 2 and 3 give background information on
Kahnan filtering and the Warp computer. Section 4 charac­
terizes the computations of the Kalman filter as a directed
graph, describes the mapping of the nodes of this graph
onto the Warp cells, and compares the performance of the
Warp filter to the performance of an identical filter running
on a Vax 11/780, a Sun-3, and a Cray-2.

II. Kalman Filter

A discrete-time equation of target motion can be expressed
by the following state variable model [2]:

x(t + 1)
y(t)

«Ii(.6.t, a)x(t) + w(t)

h(x(t)) + v(t) (1)

t = 0,1,2, ...

where t is the normalized discrete-time; .6.t denotes the
sampling; x(t) is a nine-dimensional state vector with po­
sition, velocity, and acceleration in each of the Cartesian
coordinate axes x, y, z. The first-order Markov parameters
of stochastic acceleration models in x, y and z axes are de­
noted by a (3 x 3) matrix a = Diag[ax, ay, az]· The (9 x 9)
state transition matrix «Ii(.6.t,a) is given by

[
I (.6.t)I 1/2(.6.t)2 I l

<I>(.6.t,a) = 0 I (.6.t)I
0 0 a

(2)

where I denotes the (3 x 3) identity matrix. The state
vector x(t) is represented by

x(t) = [x, y, z, x, y, z, x, y, zjT (3)

where T is the transpose operation. The (3 x 1) vector
h(x(t)) is the transformation from the Cartesian coordi­
nates to the polar coordinates defined by

r Jx2 + y2 + z2

Br tan-1 (~)
x

BE sin-1(-:)
r

(4)

where r, Br, and (} E denote the target range, azimuth angle,
and elevation angle, respectively. The measurement vector

y(t) = [r,9r,9Ef (5)

contains the noisy radar measurements of range, azimuth,
and elevation angles.

It is assumed that the state and the measurement noise
sequences {w(t)} and {v(t)} have the properties:

E{w(t)} = O; E{v(t)} = 0

E{w(t)wT(r)} = R1(t)81r

E{v(t)vT(r)} = R2(t)8tr

E{w(t)vT(r)} = 0

(6)

t, T = 0, 1, 2, ...

where 8tr denotes the Kronecker delta function and Ede­
notes the expectation operator. The elements of the state
noise {w(t)} are assumed uncorrelated in x, y, z axes. The
radar measurement errors in the target range, azimuth an­
gle, and elevation angle are assumed uncorrelated and may
depend on the target range. Let uh, uh, and u~E denote
the variance of the measurement noise in range, azimuth
angle, and elevation angle, respectively. The (3 x 3) mea­
surement noise covariance matrix R 2 (t) is given by

(7)

The dynamics and the measurement models presented
above are commonly used in many tracking and naviga­
tion applications. The extended Kalman filter recursively
estimates the (9x 1) state vector x(t+l) using the following
equation:

x(t + 1) = ~x(t) + K(t){y(t + 1) - h[~x(t)]} (8)

where x(t) denotes the state estimate based on the mea­
surements y(t). The (9 x 3) gain matrix K(t) is given by

where P(t+llt) denotes the (9x9) covariance matrix of the
filtered error at time t + 1 before processing measurements
y(t + 1). The extended Kalman filter recursively computes
the (9 x 9) estimation error covariance matrix using the
following equations:

P(t +lit)

P(t +lit+ 1)

~P(tlt)~T + R1(t)

= (I - K(t)H.,)P(t +lit)

(10)

(11)

The (3 x 9) matrix H., represents the Jacobian matrix of
h(x) evaluated at x(t).

H _ oh(x) I _ ~(t)
x- OX X-X (12)

The square-root extended Kalman filter implemented
on Warp is a variant of Equations (8)-(12) that manipu­
lates a factored form of the covariance matrix P l3]. The

109

Sun-3
Master

Input Cluster Output Cluster

r··--------------------------.
:····· .. ·······················:

I
I---'---'- ! I -'---'---I

!
~---- ·----------------·------= i :

IU

t ... 1

Warp Array

Figure 1: Architecture of Warp

motivation for using a square-root filter is to improve nu­
merical accuracy by reducing the dynamic range of the
numbers in the covariance matrix. Loosely speaking, a
square-root filter that uses 32-bit floating-point arithmetic
provides the same accuracy as a conventional filter that
uses 64-bit arithmetic. This was important for our applica­
tion because the Warp performs only 32-bit floating-point
arithmetic.

Measurement samples for the Warp Kalman filter were
obtained from a simulated benchmark trajectory [2] where
a maneuvering target makes a high-g turn past a stationary
radar. The target starts at an initial range of 2000 meters,
and approaches at a velocity of 400 knots at an altitude of
50 meters. Samples of the simulated trajectory were taken
every 20 ms. and noise samples with respective standard
deviations of 15 meters, 2 milliradians, and 3 milliradians
were added to the sampled range, azimuth angle, and ele­
vation angle to generate the noisy measurement samples.

III. The Warp Computer

The Warp computer [1 J (or simply Warp) is a linear
array of 10 or more identical and programmable cells con­
nected to a general-purpose host. Warp is designed for
computationally intensive applications such as image pro­
cessing [5], and scientific computing [6].

Figure 1 shows the architecture of the current 10-cell
Warp. A Sun-3 workstation called the master is connected
via a VME repeater to a pair of clusters. Each cluster
consists of an MC68020 processor(P) with an MC68881
floating point coprocessor, 3 Mbytes of data memory(M), 1
Mbyte of program memory, and a switch(S), all connected
by a local VSB bus. The clusters are known collectively
as the external host, so called because they are external to
the Master.

The Warp array is a linear array of 10 programmable

cells, each containing a pipelined floating-point adder and
multiplier, SK instruction words, and 32K data words. The
clock cycle of each cell is 200ns. Each functional unit can
emit one result per cycle, for a maximum performance of
5 MFLOPS per functional unit, 10 MFLOPS per cell, and
100 MFLOPS for the 10-cell Warp array. Each cell is con­
nected to its nearest neighbor by two 32-bit data channels
(X and Y). Data flows from left to right along the X chan­
nel; the Y channel can be statically reconfigured to pass
data in either direction. Each cell can transfer up to 20
million 32-bit data words to its neighboring cells each sec­
ond.

W2 is an Algol-like language with send and receive
statements for cell/cell and host/array data transfers. The
W2 compiler inputs a W2 source file, generates microcode
for the Warp array and IU, and generates C code for the
clusters. WPE is a programming environment that pro­
vides a programmable shell for interactively running and
debugging W2 programs, as well as a set of lower-level rou­
tines that allow user-written C and Lisp programs to access
Warp.

IV. Implementation

In this section, we characterize the computations per­
formed by the Warp Kalman filter, describe the implemen­
tation of these computations on Warp, and compare the
performance of Warp to other machines.

Kalman Filter Computations
For our purposes, a computation graph is a directed acyclic
graph consisting of a starting node, s, which has no input
edges, an ending node, e, which has no output edges, and
m computation nodes, {v1 , ••• , vm}, which represent a par­
tial ordering of computations. Edges are labeled with an
integer number of data items. An edge (v;, v;) labeled with
d indicates that node Vi produces d data items which are
consumed by node v;. Edge (v;, v;) also represents a weak
precedence relation between nodes v; and v; in that node
v; is guaranteed not to complete its computation until node
Vi has produced all d data items.

The computations required to process one sample can
be characterized at a coarse level by the computation
graph, G, in Figure 2. Node v1 computes state propa­
gation «I>x(t) in Equation (8). Node v2 computes the Ja­
cobian 1transformation of Equation (12). Node v3 com­
putes a factored form of the right hand side of Equation
(10), as described in [3]. Node V4 computes the Carte­
sian to polar coordinate transformation, h[«I>x(t)], in Equa­
tion (8). Node v5 computes a factored form of the co­
variance matrix P(t + ljt) in Equation (10) by triangular­
izing the matrix produced by node v3 using a modified
weighted Gram-Schmidt orthogonalization technique de­
scribed in [3]. Node V6 computes a factored form of the
covariance matrix P(t +lit+ 1) in Equation (11) and the
updated state vector x(t + 1) in Equation (8) using the
scalar measurement update technique described in [3].

54 e

Figure 2: Kalman Filter Computation Graph

I Node I Adds I Mults I In I Out I Computation

V3 324 324 45 180 Matrix multiply
vs 1458 1602 180 55 Matrix triangularize
V1 9 12 9 9 Matrix times a vector
V4 47 73 12 3 Coordinate transform
V2 14 55 9 27 Jacobian transform
V6 708 810 84 54 Measurement update
total 2560 2876 57 54 Kalman filter

Figure 3: Warp Kalman Filter Operation Counts

Figure 3 lists the number of floating-point additions,
floating-point multiplications, inputs, and outputs for each
node in G. Note that the bulk of the computation occurs
in nodes va, vs, and v6 and that these nodes are totally
ordered.

Mapping on Warp
The current implementation of the Warp Kalman filter is
700 lines of W2 code. It uses the extremely simple mapping
shown in Figure 4. We start with a topological ordering,
T =< va,vs,v1,v4,v2,v6 >,of the computation nodes in
G. (Recall that a topological ordering of a directed acyclic
graph is a total ordering, < s1, s2, ... , Sm > such that an
edge from s; to s; implies that i < j. Further, such an
ordering is guaranteed to exist[4].) Using T as a guide, we
then assign node va to cell 1, node vs to cell 2, node v1

to cell 3, and so on. The assignment of nodes to cells in
topological order guarantees that data produced by a cell
is not needed by cells to its left.

110

Data flows through the Warp array from left to right
along the X channel. For each sample, the measurement
vector, state vector, and factored covariance matrix from
the previous iteration are received by the leftmost cell from
the input cluster. The updated state vector and covariance
matrix are sent by the rightmost cell to the output cluster
for use with the next sample.

Each cell has the same simple behavior. A cell re­
ceives all of its inputs from its left neighbor. Data that
is needed for the computation is stored in local memory
and data that is required by cells to the right is sent to
its right neighbor. The cell then performs its computation
and sends the results to its right neighbor. This is repeated

Figure 4: Mapping on Warp

Machine I Sample Time I
Vax 11/780 128 ms.

Sun-3/75 96 ms.
Warp 12 ms.
Cray-2 3 ms.

Figure 5: Performance

for each sample.
The mapping we chose for our first implementation is

unbalanced, does not scale to linear arrays of arbitrary size,
and does not "exploit all of the potential parallelism". The
simple mapping did, however, enable us to quickly imple­
ment and debug the filter on Warp, to test it using realis­
tic data, to alleviate our concerns about software divides
and square-roots, and to gather some baseline performance
data.

Performance
The key performance measure for the Kalman filter is sam­
ple time, that is, the real time required to process one mea­
surement sample. To compare the sample time of the Warp
with other machines, we used the first 50 samples from the
benchmark trajectory. We ran a C version of the Kalman
filter, with compiler optimization enabled, on a Sun-3/75
with 68881 floating-point coprocessor, a Vax 11/780 with
floating-point accelerator, and a Cray-2. The sample times
for Warp and these machines are listed in Figure 5.

The C programs do not access disk; all data are loaded
with the programs and are available when the programs be­
gin executing. The C program for the Cray was compiled
using Cray's new vectorizing C compiler. Since the bench­
mark was not fine-tuned for the Cray-2, we are probably
not getting the full benefit of the Cray-2 vector units. How­
ever, with vectorization turned off, the sample time for the
Cray-2 was identical to the sample time for Warp.

The sample times in Figure 5 for the Sun-3/75, Vax
11/780, and Cray-2 were obtained using the time command
of the Unix shell. Total user CPU seconds was divided by
a factor of 50 (the number of samples) to arrive at the
sample time. We also ran the filters using thousands of
measurements, with no significant effect on sample time.

The sample time for Warp was obtained using a built­
in timing facility on the external host .. We noted the time
that the input cluster started executing before processing
the first sample and we noted the time that the output
cluster finished executin.e: after processing the last sample.

111

We divided the difference by 50 to arrive at the elapsed
time per sample. The Warp sample time includes the time
required to transfer data between the external host and the
Warp array, as well as startup times for the external host
and Warp array.

We are encouraged by the Warp numbers, especially
in view of the naive mapping. Only six of the ten available
cells are used and the mapping is unbalanced. Further,
in order to simplify the implementation, we restarted the
external host and Warp array from the Sun master for each
new sample. This (completely avoidable) restart accounted
for 1/2 of the 12 ms. sample time for the Warp. Our
current goal is to reduce the sample time to 1 ms. by
developing a more balanced implementation that uses all
10 cells, by eliminating the restart for each sample, and
by passing the updated state vector and estimation error
covariance matrix from the rightmost cell to the leftmost
cell along the Y channel rather than going back through
the clusters.

V. Conclusions
We have described the implementation of a 9-state ex­
tended Kalman filter for target tracking applications on
the Warp computer. It was shown that Warp, using a
very simple mapping of the Kalman filter, achieved speeds
within a factor of four of a Cray-2. The work has expanded
the application domain of the Warp computer to include
Kalman filtering, a general technique with many applica­
tions.

VI. Acknowledgements
Many thanks to the GE Aerospace Business Group for sup­
porting the work, and to Prof. H. T. Kung, Ed Clune, Etta
LeBlanc, Phil Shaffer, and Ko-Haw Nieh for their help.

References
[1] M. Annaratone, E. Arnould, T. Gross, H. T. Kung,

M. Lam, 0. Menzilcioglu, and J. Webb. The warp
computer: architecture, implementation, and per­
formance. IEEE Transactions on Computers, C-
36(1?):1523-1538, December 1987.

[2] R. S. Baheti. Efficient approximation of kalman
filter for target tracking. IEEE Transactions on
Aerospace and Electronic Systems, AES-22(1):8-14,
January 1986.

[3] G. Bierman. Factorization Methods for Discrete Se­
quential Estimation. Academic Press, New York, 1977.

[4] D. Knuth. The Art of Computer Programming - Fun­
damental Algorithms. Addison-Wesley, Reading, MA,
1973.

[5] H. T. Kung and J. Webb. Mapping image processing
operations onto a linear systolic machine. Distributed
Computing, 1:246-257, 1986.

[6] D.R. O'Hallaron. Computing the cholesky decomposi­
tion on the warp computer. In 9rd International Con­
ference on Supercomputing, May 1988.

SOLVING LINEAR PROGRAMMING ON FIXED-SIZE
HYPERCUBES

H.F. Ho G. H. Chen, S. H. Lin J.P. Sheu
Dept. of Elec. Engr.,

National Taiwan Univ.,
Taipei, Taiwan, R.0.C.

Dept. of Comp. Sci. & Info. Engr.,
National Taiwan Univ.,
Taipei, Taiwan, R.O.C.

Dept. of Elec. Engr.,
National Central Univ.,

Chung-Li, Taiwan, R.O.C.

Abstract -- Although many solution methods are available for
the linear programming problem, the simplex method is
undoubtedly the most widely used one for its simplicity. In
this paper, we shall propose an implementation of the simplex
method on fixed-size hypercubes. A partitioning technique and
a mapping technique are also presented to fit large-size problem
instances into relatively small-size hypercubes. Two cases,
pipelined broadcastings allowed and pipelined broadcastings
not allowed, are considered. We have shown that the proposed
implementation achieves the optimal speedup asymptotically for
the both cases. In addition, we have derived sufficient
conditions for optimal partitionings when the problem instance
sizes are considered finite. These sufficieni conditions will be
useful to obtain better partitionings. Further, optimal
partitionings are found for some special cases.

1. Introduction

Linear programming is a fundamental problem in
operations research, and has received much attention for its
importance. Mathematically, this problem can be formulated in
standard form [11] as follows.

minimize
subject to

z=cx
Ax=d
x:;:::.O

(1)

where A=[ai) is an MxN constraint matrix, 0.$..i~M-1,

Oggv-1, d=[d0,dl' .. .,dM_1]T is a positive column vector of

length M, c=[c0,cl' .. .,cN_1] is a row vector of length N, and
x=[.x0,.xp ... ,.XN_1]T is a column vector of length N. The linear
programming problem is to find the minimum of z. Dantzig [5]
has proposed a well-known solution, the simplex method, for
this problem. The simplex method starts from an initial
feasible solution, and then moves continuously from one
feasible solution to another, if improvement is obtained. Since
the feasible solution space is a convex set, the optimum will be
reached eventually after a finite number of iterations. The
sequential time for each iteration is O(MN).

The simplex method have been implemented on several
parallel machines. For example, a VLSI wavefront array
processor implementation was proposed by Onaga and
Nagayasu[lO], and a VLSI mesh of trees implementation was
proposed by Bertossi and Bonuccelli[2]. Onaga and
Nagayasu's approach uses MxN processors and requires
O(N+M) time for each iteration. Bertossi and Bonuccelli's
approach uses MxN mesh of trees with 0(MNlogMlog3N) area
and requires O(logN) time for each iteration. Both approaches
need extra hardware and more complicated control when no
sufficient processors are available. In Onaga and Nagayasu's
approach, some fixed-size chips are connected together to fit
problem instance sizes. The extra hardware connections incur

112

a lot of cost, and the intra-chip controls and communications
are not trivial. Moreover, they proposed an alternative that the
constraint matrix is folded into a linear array. So, each
processor holds a submatrix. However, this still complicates
the necessary controls and communications. Bertossi and
Bonuccelli proposed another partitioning approach in which
the constraint matrix is partitioned into submatrices, each with
the same size as the mesh of trees. Their approach needs to
perform several successive inputs and outputs during each
iteration, which may slow down the execution. Finally, both
of them can not achieve the optimal speedup.

The hypercube is a high-connectivity and regular parallel
architecture. These two properties favor communications
among processors. In practice, any two processors can
communicate each other within log2p steps, where p is the
number of processors in the hypercube. Further, the ability of
fault tolerance enhances its reliability. To fully utilize these
advantages, several practical hypercube machines have been
built, such as the Caltech's Cosmic Cube[13], the NCUBE
computer [6], the Intel iPSC[8], the Connection Machine[?],
and the Butterfly Machine[3]. In this paper, we shall propose
an implementation of the simplex method on fixed-size
hypercubes. We consider two cases: pipelined broadcastings
allowed and pipelined broadcastings not allowed. We have
shown that both cases can achieve the optimal speedup
asymptotically. In addition, we focus our attention on
minimizing communication overheads when the problem
instance sizes are considered finite. Sufficient conditions for
optimal partitionings (here, optimal partitionings mean those
that optimize communication given the mapping method) are
derived which will be useful to obtain better partitionings.
Also, optimal partitionings are found for some special cases.

The remainder of this paper is organized as follows. The
next section briefly reviews the simplex method. Section 3
describes the hyprecube and the embedded hypercube. In
section 4, we present an implementation of the simplex method
on fixed-size hypercubes. A partitioning technique and a
mapping technique are presented to fit large-size problem
instances into relatively small-size hypercubes. Also, we have
a discussion on optimal partitionings. Finally, concluding
remarks are given in section 5.

.2. The Simplex Method

In this section we shall briefly review the simplex method.
For more detailed description, the interested reader may consult
[14]. Given a linear programming problem in standard form of
(1), the simplex method starts from an initial feasible solution
and moves toward the optimal solution. The execution is
performed by an iterative procedure. In each iteration, a basic
solution will be obtained by setting N-M variables equal to zero.
These variables are called nonbasic variables; the remaining
ones are called basic variables. With respect to the simplex
method, the basic variables in adjacent iterations are only

different by one. Therefore, the basic solution for the next
iteration can be obtained from the current basic solution by
exchanging one nonbasic variable for one basic variable. The
nonbasic variable that "enters" the basic solution is called the
entering variable, and the basic variable that "leaves" the basic
solution is called the leaving variable. These two variables can
be determined according to the optimality condition and the
feasibility condition as stated below.
Optimality condition. The entering variable is the nonbasic
variable with the most negative coefficient ci. A tie is broken
arbitrarily. When all the nonbasic variables have nonnegative
c/s, the current value of z is optimal.
Feasibility condition. Assume thatx" is selected as the entering
variable. Then, the leaving variable is the basic variable xv
satisfying atv=l and d/a1u=min{d/aiul 0,S.i.$111-1 and aiu>O}.
Further, a1u is called the pivot element, and the (t+l)-th row
(the (u+l)-th column) of A is called the pivot row (the pivot
column).

After determining the entering variable and the leaving
variable, the constraint matrix A and the vectors c,d ,and z are
updated as follows.

at/ <-- at/atu (2)

ai/ <-- aij- aiuat/ 'i:tt (3)

d' t <-- d/atu (4)
d.'

I <-- di - aiud; ,i# (5)

C.'
J

<-- cj- cuat/ (6)

z' <-- z +cud/, (7)

where j=0,1, ... ,N-1, and aij' di, ci, and z (a;/• d/, c/. and z')
denote the old (new) values. The use of both the optimality
condition and the feasibility condition will result in a better
feasible basic solution in each iteration. Since all the feasible
basic solutions correspond to the vertices of a convex polytope
in N dimensions, the optimum will be reached eventually after a
finite number of iterations. Let us assume that performing each
binary operation requires the same time and therefore counts
one computation step. Then, the total number of (sequential)
computation steps required for each iteration is
2MN+2N+3M-1.

3. The Hypercube and the Embedded Hypercube

In general, there are two classifications of parallel
processing models [9]. The shared memory model
characterizes the tightly coupled processing, and the distributed
memory model characterizes the loosely coupled processing.
In the latter, it is assumed that each processor has its own local
memory and communicates with others through the
interconnection mechanisms. The hypercube belongs to the
distributed memory model.

An h-dimensional hypercube contains p=2h (h is a positive
integer) identical processors. Each processor is given an h-bit
address (bh,bh_1, ... ,b1), bFO,l, 1.s_i5}i, and there exists a link
between two processors if and only if their addresses differ in
exactly one bit position. The hypercube has a recursive
structure as explained below. Anh-dimensional hypercube can
be regarded as composed of two (h-1)-dimensional
hypercubes, one with bh=O and the other with bh=l.
Similarly, each of the two (h-1)-dimensional hypercubes can be
further regarded as composed of two (h-2)-dimensional

113

hypercubes, one with bh_1=0 and the other with bh_1=1, and so
on. Generally, each of the sets of processors whose addresses
differ in k (15}c5}!) specified bit positions bil,bi2•···•bi/c and
are the same in remaining (h-k) bit positions forms a
k-dimensional hypercube. Such a hypercube is called a
k-dimensional embedded hypercube on (bil,bi2, ..• ,bik).

One important issue to implement the simplex method on
the hypercube is data broadcasting on some embedded
hypercubes. That is, some designated processors are
necessary to transmit data to all the other processors belonging
to the same embedded hypercubes. These data include the
pivot element, the pivot row, the pivot column, etc. To
broadcast on a k-dimensional embedded hypercube (on
(bil,bi2 , ••• ,bik)), k communication steps are necessary.
Initially, the data to be broadcast are located in the designated
processor. In the r-th step (l~). each of the processors
owning the data sends a duplicate to the processor whose
address differs from its address in the bit position bir· Thus, k
communication steps are sufficient to complete the
broadcasting. By taking advantage of the property of fast
broadcasting, we can implement the simplex method efficiently
on the hypercube.

From the above discussion, two properties of the
hypercubes immediately follow.
Property 1. . Broadcasting on a k-dimensional embedded
hypercube requires k communication steps.
An operation is called a semigroup operation if it is associative.
Some well-known semigroup operations are addition,
multiplication, finding maximum, and finding minimum. The
following property can be obtained from Property 1.
Property 2. Performing semigroup operations on a
k-dimensional embedded hypercube (one operand in each
processor) requires k communication steps and k computation
steps. Additional k communication steps are necessary if the
computation result is required by every processor.

4. The lmp!ementatjon of the Simplex Method
on Fjxed-Sjze Hypercubes

In this section, we shall propose an approach to implement
the simplex method on fixed-size hypercubes. Suppose that
the hypercube is h-dimensional and therefore contains p=2h
processors, where MN~ is assumed. The case of MN<p is
trivial. Further, we assume that each processor can
simultaneously communicate (send data or receive data) with
its neighbor processors within a communication step.
'Therefore, if a processor wants to broadcast w data on a
k-dimensional embedded hypercube, it can send out these data
in consecutive w communication steps. After k+w-1
communication steps, the broadcasting can be completed[4].
Broadcasting in such a way is called pipelined broadcasting.

Before presenting our approach, let us discuss the
partitionings of data and then the mappings of data onto the
hypercube. First, we consider the simple case of MN=p. In
this case, the data partitionings are not necessary since the
sizes of A, c, and d are not larger than the size of the
hypercube. Accordingly, A, c, and d are mapped directly onto
the hypercube as follows (let q=logty).

1. a ij is placed into the processor with address

(bh,bh_1, ... ,bq+J•bq•····b1), where bhbh_1 ••• bq+l is the binary
representation of i and b q ... b1 is the binary representation of j.

2. cj is placed into the processor with address

(0,0, ... ,0,bq, •.. ,b1), where bq ... b1 is the binlll)'. representation
ofj.

3. di is placed into the processor with address

(bh,bh·l'···•bq+l'l,l, .•. ,l), where bhbh_1 ••• bq+l is the binary
representation of i.

In the case of MN>p, the size of A is larger than the size of
the hypercube. Therefore, A must be partitioned into p
equal-size submatrices before it can be mapped onto the
hypercube. Since A is an MxN matrix, each of the submatrices
is of size k1xkz, where k1kz=MN/p. Without loss of generality,
let us assume that M=k12m and N=kz2n (m+n=h) (if not so, we
can extend A appropriately by adding dummy rows and
dummy columns to A) in the following discussion. The
partitioning of A is shown in Figure l(a), where Ai/s
(Og~m-1 and O!!.j~n-1) represent the submatrices. As for c
and d, they must be partitioned as well. The partitionings of c
and d are shown in Figure l(b) and Figure l(c) respectively,
where c/s (Osjs2n-l) and d/s (0Sis2m-1) represent row
subvectors of length kz and column subvectors of length k1

respectively. The mappings of A, c, and d onto the hypercube
are as follows.

1. A ij is placed into the processor with address

(bh,bh·1'···•bn+l•bn•··.,b1), where bhbh_1 ••• bn+l is the binary
representation of i and bn ... b1 is the binary representation of j.

2. c i is placed into the processor with address
(O,O, ... ,O,bn, ... ,b1), where bn ... b1 is the binary representation
ofj.

3. di is placed into the processor with address

(bh,bh-l'"""'bn+l'l,1, ... ,l), where bhbh_1 ••• bn+l is the binary
representation of i.

In both cases, z is placed into the processor with address
(0,0, ... ,0,1, ... ,1) (that is, bh=bh_ 1= ... =bn+i=O and
bn= ... =b1=1).

According to the above mappings, four facts are as
follows.
Fact 1. For any fixed i, the submatrices Ai/s. 0Sjs2n-l, are
mapped onto an n-dimensional embedded hypercube on
(bn, ... ,b1). Moreover, each of the processors in the embedded
hypercube has the most significant m bits equal to the binary
representation of i. For easy description, we shall refer to this
embedded hypercube as row-i embedded hypercube.
Fact 2. For any fixedj, the submatrices Aij's, Osis2m-1,
are mapped onto an m-dimensional embedded hypercube on
(bh,bh·l'···•bn+l). Moreover, each of the processors in the
embedded hypercube has the least significant n bits equal to the
binary representation of j. In the following discussion, we
shall refer to this embedded hypercube as column-j embedded
hypercube.
Fact 3. The row vector c is mapped onto the row-0
embedded hypercube.
Fact 4. The column vector d is mapped onto the
column-(2n-1) embedded hypercube.

Now, it is time to describe the implementation of the
simplex method on the hypercube. Since the simplex method
consists of a finite number of iterations, we shall concentrate
our efforts on the necessary operations of each iteration. These

114

operations include, determining the pivot row, the pivot
column, and the pivot element, and updating A, d, c, and z as
stated by (2), (3), (4), and (5) respectively. In the following,
we describe the implementation of these operations.

Determine the Pivot Column

The operands required for this operation are c. According
to Fact 3, we know that k2 elements of care distributed in each
processor of the row-0 embedded hypercube. Thus, the most
negative element in each processor is determined first. This
takes k2-1 computation steps. Then, according to Property 2,
the most negative element of c can be determined taking 2n
communication steps and n computation steps. The pivot
column is the (u+l)-th column of A, if cu, 0!!.uSN-1, is the
most negative element. In case of no negative elements, the
current value of z is optimal.

Determine the Pivot Row and the Pivot Element

The operands required for this operation are d and the
pivot column. First, each subvector di, og~m-1, is sent

to the processor that holds Aiy• where y=u DIV lei and u
is the index of the pivot column. Since di and Aiy are in the
same embedded hypercube (the row-i embedded hypercube),
the transmissions can be pipelined and performed in parallel.
Therefore, k1 +n-1 communication steps are required. Then,
the minimum of d/aiu's with aiu>O is determined in each.
processor. This takes at most 3kcl computation steps.
Finally, the minimum of these 2m minima is determined. Since
these minima are in the column-u embedded hypercube, 2m
communication steps and m computation steps are required.
The pivot row is the (t+ 1)-th row of A, if d/a 1" is the
minimum. Besides, a1u is the pivot element.

Update A. d. c. and z

(a) The pivot element is broadcast on the row-(t DIV k1)

embedded hypercube, and then the pivot row is updated as
stated by (2). This takes n communication steps and one
computation step.

(b) The elements of the pivot column belonging to Aiy• where
og~m-1 and y =u DIV Jci, are broadcast on the row-i
embedded hypercube. Since these broadcastings can be
pipelined and performed in parallel, k1 +n-1 communication
steps are required.

(c) cu is broadcast on the row-0 embedded hypercube. This
takes n communication steps.

(d) The elements of the pivot row belonging to Axj' where
O~~n-1 and x=tDIV kl' are broadcast on the column-j
embedded hypercube. This takes k2+m-1 communication
steps.

(e) d1is updated as stated by (4). This takes one computation
step.

(f) d1 is broadcast on the column-(2n-l) embedded hypercube.
This takes m communication steps.

(g) A, c, d, and z are updated as stated by (3), (5), (6), and
(7) respectively. This talces totally 2(k1k2+k1+"2+ 1)
computation steps.

Thus, the total numbers of (parallel) computation steps and
(parallel) communication steps required for each iteration are

and
(8)

(9)

respectively. Since k1"2 is equal to MN/p, the optimal speedup
is achieved asymptotically. On the other hand, if MN is
considered finite, then we choose k1 and "2 to minimize (9)
(It is quite necessary as the communication steps are much
costly, compared with the computation steps). By substituting
MN/pk1 for k2 and log2(pkifM) for n, (9) becomes

(10)

Then, differentiating (10) at k1 and equalizing it to 0, we have

(11)

where e denotes the base of the natural logarithm. It is
impossible to solve (11) for integer k1. However, we think that

it is useful to obtain a better k1•

In the above discussion, we assume that pipelined
broadcastings are allowed. In case pipelined broadcastings are
not allowed, broadcasting k1 (k2) data on an n(m)-dimensional
embedded hypercube requires k1n (k2m) communication
steps. In this case, the total number of communication steps
required for each iteration is equal to

(2k1+1)n+lcim+3h. (12)

It is clear that the optimal speedup can still be achieved
asymptotically when pipelined broadcastings are not allowed.
On the other hand, if MN is considered finite, then k1 and k2

must be chosen carefully to minimize (12). By substituting
MN/pk1 for k2 and log2(pk/M) for n, (12) becomes

Then, differentiating (13) atk1 and equalizing it to 0, we have

2log2(pk1/M)-(MN/pk12)log2(M/k1)+(2+(l/k1)
-(MN/pk12))log2e = 0. (14)

It is very difficult (even impossible) to solve (14) for integer
k1. However, the constant 1 in (13) is negligible when
compared with 2kp and (13) can therefore be simplified to

In the following, we show that 2k1=k2 will minimize (15)

when 2M=N.

Lemma 1. If the number of communication steps required can
be expressed in the form of

115

(16)

where c is a constant, then k1=k2 =(MN/p)112 minimizes (16)
whenM=N.
Proof. Substituting MN/pk1 for "2 and log2(pk1tM) for n,
(16) becomes

By differentiating (17) at k1 and equalizing it to 0, we have

log2(pkif M)-(MN /pkl 2)log2(M/k1)
+(l-(MN/pk12))log2e = 0.

(17)

(18)

It is not difficult to check that k1="2=(MN/p)112 is a solution of
(18) when M=N. Thus, this lemma follows. Q.E.D.

Lemma 2. If the number of communication steps required can
be expressed in the form of

(19)

where a,b and care constants, then ak1=bk2 minimizes (19)
whenaM=bN.
Proof. This lemma is a generalization of Lemma 1.
Substituting MN/pk 1 for k2 and log2(pk1/M) for n, (19)
becomes

Let k1'=akl' M'=aM, and N'=bN. Then, k2'=M'N'/pk1'=bk2•

By introducing k1', M' and N' into (20), we have

(21)

which is in the same form as (17). Thus, according to Lemma
1, we know that k1'="2' minimizes (21) when M'=N'. Thus
the lemma follows. Q.E.D.

Since (20) is a general form of (15), it is proved that 2k1="2
minimize (15) when 2M=N.

5. Concluding Remarks

The simplex method is a well-known solution method for
the linear programming problem. In this paper, we have
proposed an implementation of the simplex method on
fixed-size hypercubes. Two cases, pipelined broadcastings
allowed and pipelined broadcastings not allowed, were
considered. For both cases, the optimal speedup can be
achieved asymptotically. When the problem instance sizes are
considered finite, we derived two sufficient conditions for
optimal partitionings. It is difficult to obtain optimal
partitionings from these two conditions. However, we think
that suboptimal partitionings can be obtained with the aid of
them. Besides, we have obtained optimal partitionings for
some special cases. Although the simplex method can also be
implemented on other parallel architectures [2],[10], they can
not achieve the asymptotically optimal speedup. Besides, the
numbers of processors they used are dependent upon the
problem instance sizes.

Since the linear programming problem we considered in
this paper is in standard form, a basic feasible solution must be
provided initially. This initial feasible solution can be obtained
by using the two-phase technique [11]. In the proposed
implementation, the processor with address (0,0, ... ,0,1, ... ,1)
(bh=bh_ 1= ... =bn+i=0 and bn= ... =b 1=1) have more
computation loads than others. If its computation loads can be
shared by the other processors, then the number of
computation steps required for each iteration can be further
reduced. To do this is not difficult. We can simply let
M=k12m-1 and N="22n-1 and reduce the sizes of A0/s and
Ai(2n_1J°s, where OSj~n-1 and OSi~m-1, to (k1-l)x(k2-1).

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

References

Ametek Corporation, Hypernet System 14/n, 1985.
A. A. Bertossi and M.A. Bonuccelli, "A VLSI
Implementation of the Simplex Algorithm," IEEE Trans.
on Comput., Vol. C-36, No. 2, Feb. 1987, pp.241-
247.
C. M. Brown, C. S. Ellis, J. A. Feldman, T. J. LeBlanc,
and G. L. Peterson, "Research with the Butterfly
Multicomputer," Comput. Sci. and Comput. Eng. Res.
Rev., Univ. Rochester, Rochester, N.Y., 1985.
P. R. Cappello, "Gaussian Ellimination on a Hypercube
Automaton," Joµrnal of Parallel and Distributed
computing. Vol. 4, 1987, pp .288-308.
G. B. Dantzig, Linear ProETamming and Extensions,
Princeton University Press, Princeton, N.J., 1963.
J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J.
Palmer, "Architecture of a Hypercube Supercomputer,"
Proc. Int'l Conf. on Parallel Processing, Aug. 1986,
pp. 653-660.
D. Hillis, The Connection Machine, MIT Press, 1985.
Intel Corporation, The iPSC Data Sheet. Beaverton, OR,
1985.
T. N. Mudge and T. S. Abdel-Rahman, "Vision
Algorithms for Hypercube Machines," Journal of Parallel
and Distributed Computing, Vol. 4, 1987, pp. 79-94.
K. Onaga and H. Nagayasu, "A Wavefront-Driven
Algorithm for Linear Programming on Dataflow
Processor-Arrays," Proc. of Int'l Computer Syrop.,
1984, pp. 739-746.

116

[11] C.H. Papadimitriou and K. S. Steiglitz, Combinatorial
Qptimization: Algorithms and Complexity, Englewood
Cliffs, NJ., Prentice-Hall, 1983.

[12] F. P. Preparata and J. Vuillemin, "The Cube Connected
Cycles: A Versatile Network for Parallel Computation,"
Commun. Ass. Comput. Mach., Vol. 24, 1981, pp.
300-309.

(13] C. L. Seitz, The Cosmic Cube, Jan. 1985, pp. 22-23.
[14] A.H. Taha, Operations Research: An Introduction.

Macmillan, Inc., N.Y., 1971.

Azm..20 Azm..21

Azm..10 Azm..11

Az.-2 2

Az.-1 2

(a)

(b)

Azm.. 2 2•-1

Az....1 2•-1

C = [C0 , C1 , C2 , ... , C2 2 , C2 .. 11

(c)

Fig. 1. The partitionings of(a) A, (b) d, and (c) c.

PARALLEL COMPUTATION FOR STOCHASTIC DYNAMIC PROGRAMMING:
ROW VERSUS COLUMN CODE ORIENTATION<•>

Floyd B. Hanson
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439-4844

and
Department of Mathematics, Statistics, and Computer Science<bl

University of Illinois at Chicago
Chicago, IL 60680, Box 4348

Abstract -- Parallel computations are presented for stochastic
dynamic programming problems arising from the optimal control of
nonlinear, continuous time dynamical systems, perturbed by Poisson
as well as Gaussian random white noise. The numerical formulation
is highly suitable for a vector multiprocessor. Column-oriented code
can run more than twice as fast as row-oriented code for highly
refined meshes, but row-oriented code is more efficient and practical
for coarser meshes. Advanced computing techniques and hardware
help alleviate Bellman's curse of dimensionality in dynamic
programming computations.

1. Problem Summary

The governing Markov dynamical system is the stochastic
differential equation (SDE):

dy(s) = F(y,s,u)ds + G(y,s)dW(s) + H(y,s)dP(s) ,

y(t) = X ; 0 < t < s < Z, ; y(s) E D1 ; u E D" ,
(1.1)

where y(s) is the mxl state vector at time s starting at time t,
u = u(y,s) is the nxl feedback control vector, W is the r­
dimensional normalized Gaussian white noise vector, P is the
independent q-dimensional Poisson white noise vector with jump rate
vector A., F is the nxl deterministic nonlinearity vector, G is an
nxr diffusion coefficient array, and H is an 1fX4 Poisson amplitude
coefficient array. Some applications are models of resources in an
uncertain environment [8], [10], [7], and flight dynamics under
random wind conditions [2].

The control criterion is the optimal expected cost performance,

v*(x,t) =MIN [MEAN [V[y,s,u,P,W] I y(t) = x]] ,
u P,W

't (1.2)
V[y,t,u,P,W] = J ds C(y(s),s,u(y(s),s)) ,

I

on the time horizon (t, t1), where the instantaneous cost function
C = C(x,t,u) is assumed to be a quadratic function of the control,

C(x,t,u) = C0(x,t) + Cf(x,t)u + Y.iuTC2(x,t)u . (1.3)

The unit cost of the control increases with u when C2 is positive
definite. In addition, the dynamics in (1.1) are assumed to be linear
in the controls,

F(x,t,u) = Fo(x,t) + F1(x,t)u,

remaining nonlinear in the state variable x.

The Bellman functional PDE of dynamic programming,

0 = v;' + L[v*J "'v;' + F&'Vv* + 1hGGT(x,t):VVTv*

(1.4)

+ t A.,-[v*(x+H,(x,t),t}-v"(x,t)] +Co+ ('hU0-URlC2U", (1.5)
1=1

follows from the generalized ItO chain rule for Markov SDEs as in
[6] and [10], where u• is the optimal feedback control computed by
constraining the unconstrained or regular control,

(o) This research was supported in part by Faculty Research Participantships, a
Faculty Reseatcb Leave at Argonne National Laboratory Advanced Computing
Reseatcb Facility, and by the Applied Mathematical Sciences subprogram of the Office
of Energy Researdt, U.S. Depanment of Energy, under Conbact W-31-109-Eng-38.

b) Pennanent address.

117

(1.6)

to the control set D". In gener.il, the PDE (1.5) is nonlinear with
discontinuous coefficients.

As the number of state variables, m, increases, the spatial
dimension rises, and computational difficulties are present that can
compare to those of three-dimensional fluid dynamics computations.
This is the famous Bellman's curse of dimensionality [3]. Thus there
is a great need to make use of advanced-architecture computers, to
use parallelization as well as vectorization.

2. Numerical Summary

The integration of the PDE in (1.5) is backward in time,
because v* is specified finally at the final time t =It, rather than at
the initial time. A summary of the discretization in state and
backward time is given below:

x -7 XJ = [Xi;~-1 = [Xii + (h - 1)-DXiJ-1 ,

j = Uil-1 , where ji = 1 to Mi , for i = 1 to m ;

s -7 Tt = Z, - (k - l)-DT , for k = 1 to K ;

v* (XJ,T J -7 V Jk ; L[v"](XJ,T t-t...J -7 LJ.k+'h ;

(2.1)

where DXi is the mesh size for state i and DT is the step size in
backward time.

The numerical algorithm is a modification of the predictor­
corrector Crank Nicolson methods for nonlinear parabolic PDEs in
[5]. Modifications are made for the switch tenn and delay term
calculations. Derivatives were approximated with an accuracy that
was second order in the local truncation error. Variations of this
algorithm have been successfully utilized in [10] and [7].

Prior to calculating the values, VJ,k+I> at the new (k+ l)" time
step for k = 1 to K-l, the old values, V'.it and VJ,k-1> are assumed to
be known, with '!'Jo"' VJ!· The algorithm begins with an extrapolator
(x) start:

(2.2)

These evaluations are used in the extrapolated predictor (xp) step:

vt,ci, = V1t + DT · Y.iLji.,... (2.3)

which are then used in the predictor evaluation (:xpe) step:

vjx:~ = 1h(vj~1 + VJJ . (2.4)

The evaluated predictions are used in the corrector (:xpec) step:

vjx:f·1"1l = 'l'Jt + DT · LjX:f;·"fJ (2.5)

for 'Y = 0 to 'Ymax while stopping criterion unmet, with corrector
evaluation (xpece) step:

~,Tf'll = Y.i(vj'.'f:f·Tf'll + v1J . (2.6)

The stopping criterion for the corrections is a heuristically motivated
comparison to a predictor-corrector convergence criterion for a
linearized, constant coefficient PDE [9].

Parallelization and vectorization of the algorithm was done by
what might be called the "Machine Computational Model Method",
i.e., tuning the code to optimizable constructs that are automatically
recognized by the compiler, with the Alliant FX/8 vector
multiprocesor [l] in mind. All inner double loops were reordered to

fit the Alliant concurrent outer - vector inner (COVT) model. All
non-short single loops were made vector-concurrent Short loops
became scalar-concu"ent only. Multiple nested loops were
reordered with the two largest loops innermost A total of 37 out of
39 loops was optimized.

Dongarra, Gustavson, and Karp [4] have demonstrated that loop
reordering gives vector or supervector performance for linear algebra
loops on a CRAY-1 type column-oriented FORTRAN environment
with vector registers. Here performance measurements have been
made with both column-oriented loop code and row-oriented loop
code, in order to make a comparison for our particular problem and
machine environment. In the column-oriented loop, the most inner
loop iterates on the first subscript, · · · , and the most outer loop
iterates on the last subscript, as in the following code fragment that
is the main not inner-GOV/ loop from the corrector step (2.5):

do 211=1,m
do 21 j2=1,M2
do 21 jl=l,Ml
ss(jl, j2J)=Fl(jl, j2,l)*DV(jl, j2J)

& + GSQ(jl,j2J)*DDV(jl,j2,l)
& + lambda(l)*(HV(jl, j2,f) - VM(jl, j2))

21 continue

whre m = 2 = n with the array subscripts and loop nesting ordered so
that the major part of the finite difference work is done in the two
most inner loops. In the row-oriented loop the inner two subscripts
are iterated in reverse order as follows:

do 221=1,m
do 22 jl=l.Ml
do 22 j2=1,M2
ss(l, jl, fl)=Fl(l, jl, ;2)*DV(l, jl, ;2)

& + GSQ(l, jl, fl)*DDV(l, jl, j2)
& + lambda(l)*(HV(l, jl, j2) - VM(jl, j2))

22 continue

The row orientation in this do 22 loop refers to an array slice with
the state counter I fixed. In the two above code fragments,
GSQ = 111.GTG and VM =Vat Tl+'h.

The advantages of the algorithm is that it 1) permits the
treatment of general continuous time Markov noise or deterministic
problems without noise in the same code, 2) permits the cheap
control limit to linear singular control to be found from the same
quadratic cost code, and 3) produces very vectorlzable and
parallelizable code whose performance is described in the next
section.

3. Results Summary

The vector multiprocessor used for our performance
measurements was the Alliant FX/8 in the Advanced Computing
Research Facility (ACRF) at Argonne National Laboratory. This
Alliant FX/8 has 8 vector Computing Elements (CEs). Each of the
CEs has eight vector registers whose length is 32 eight-byte
elements, and the CEs are connected to a 128 KB cache.

The two state and two-control resource model in [7] was used
as the test example. The two controls represent removals from the
system by respective commercial and recreational users of the
system. In this test example, only Poisson noise was used for both
state populations.

Figure 1 shows the dependence of the user or CPU time on the
common number of mesh points, M1 = M = M 2, in a log-log plot, for
the column-oriented 2-state and 2-control code. K = 4-(M-l) + 1 to
maintain stability propeajes. When M is between 16 and 64, the
user time T(p;M;col) = 0(M3), because the slope is quite close to
three. This COITe§POnds to a COVI loop dominated limit with m = 2
states and K = 0(M) time steps. However, when Mis 96 or greater,
T(p;M) = 0(M4), implying that additional overhead from the
memory hierarchy is present that is equivalent to an extra state
dimension (m-+ m+l). This change is reflected in the assembler
code for the do 21 loop for M ~ 65.

118

'b

(ij'
'C
c
o~
oO
Cl>
.!!!,.

~
t=_o
Cl>
UI

:::>

Figure 1. Column Timings vs. M
Stochastic Dynamic Programming

ANL ACRF Alliant FX/8

Legend
a p = 1 CEs
o p = 2 CEs
,, p =4 CEs
+ p =8 CEs

100
M, Number of Mesh Points

1000

In Figure 2, the dependence of the user execution time for
row-oriented code is shown versus the common mesh size M. The
transition between T(p;M;row) = 0(M3) to 0(M4) overhead occurs
between M = 126 and M = 127, but is much sharper than in the
column-oriented Figure 1. The assembler encoding of the do 22 loop
exactly reflects this transition, even for pure double loops. The extra
overhead in the 0(M4) region is nominally due to the fact that
multiples of 32 beyond 64 are not treated as multiples by the Alliant
compiler.

Figure 2. Row Timings vs. M
Stochastic Dynamic Programming

ANL ACRF Alliant FX/8

Legend
a p = 1 CEs
o p = 2 CEs
"' p :4 CEs
+ p =8CEs

100
M, Number of Mesh Points

1000

In Figure 3, the ratio of the row-oriented to ~olumn-oriented
user execution time is displayed in a 3-D representation versus both
M and the number of processors p. The effect of the number of
processors pis much weaker on the ratio of the timings ~~at ~f
the mesh size M is on the timings, because the array onentat1on is
primarily a memory problem. While the row-oriented version is
slightly faster for M s 64, the column-oriented version is up !° m:o
times faster for finer meshes. Hence the column advantage m ~1s
FORTRAN environment is present only for the finer m~hes with
this stochastic dynamic programming code and the Alliant FX/8.
Unfortunately, this advantage occurs in a region of extra overhead,
where the timings are 0(M").

Figure 3. Row to Column Ratio vs. p & M
Stochastic Dynamic Programming

ANL ACRF Alliant FX/8

119

4. Conclusions

Stochastic dynamic programming is practical for several to a
moderate number of state variables using a vector multiprocessor. In
order to handle a large number of state variables, a large number of
parallel processors would be desirable, but Bellman's curse of
dimensionality appears to very much weakened. These techniques are
generally applicable to other vector and parallel computers, e.g.,
CRAY X-MP as applied to the most inner loops. Row-oriented
codes can be very competitive with column-oriented codes for small
to moderate mesh sizes (M S 64), but are twice as slow for finer
meshes.

References

[l] Alliant, FX/FORTRAN Programmer's Handbook, Alliant
Computer Systems Corporation, Acton, Mass., (1985).

[2] M. Athans, D. Castanon, K. P. Dunn, C. S. Greene, W. H. Lee,
N. R. Sandell, Jr., and A. S. Willsky, The stochastic control of the
F-8C aircraft using a multiple model adaptive control (MMAC)
metlwd - Part I: Equilibrium flight, IEEE Trans. Autom. Control,
AC-22, (1977), pp. 768-780.

[3] R. E. Bellman, Adaptive Control Processes: A Guided Tour,
Princeton University Press, Princeton, (1961).

[4] J. J. Dongarra, F. G. Gustavson, and A. Karp, Implementation of
linear algebra algorithms of dense matrices on a vector pipeline
machine, SIAM Rev., 26, (1984), pp. 91-112.

[5] J. Douglas, Jr., and T. DuPont, Galerkin metlwds for parabolic
equations, SIAM J. Num. Anal., 7, (1970), pp. 575-626.

[6] I. I. Gihman and A. V. Skorohod, Controlled Stochastic
Processes, Springer-Verlag, New York, (1979).

[7] F. B. Hanson, Bioeconomic model of the Lake Michigan alewife
fishery, Can. J. Fish. Aquat. Sci., 44 Suppl. 2, (1987), pp. 1-29.

[8] D. Ludwig, Optimal harvesting of a randomly fluctuating
resource I: Application of perturbation methods, SIAM J. Appl.
Math., 37, (1979), pp. 166-184.

[9] K. Naimipour and F. B. Hanson, Convergence of a numerical
metlwd for the Bellman equation of stochastic optimal control with
quadratic costs, In Preparation, (1988).

[10) D. Ryan and F. B. Hanson, Optimal harvesting of a logistic
population in an environment with stochastic jumps, J. Math. Biol.,
24, (1986), pp. 259-277.

PARALLEL LAGRANGIAN INTERPOLATION
G.H.Atwood

Department of Computing Science
The University of Alberta

Edmonton, Canada, T6G 2Hl
Abstract

Fast parallel algorithms for the computation and evalua­
tion of interpolating polynomials in the Lagrangian basis are
presented. On n+I data points, the interpolation algorithm
requires rlog n 1 +2 parallel arithmetic steps and n (n + 1) pro­
cessors. The results are compared with Egecioglu, Gallo­
poulos and Koc's [2] parallel Newtonian algorithm, and an
extension to their work is presented. The algorithms dis­
cussed are suitable for a shared memory PRAM architecture.

Introduction
Given a set of n+l pairs of real values, (xi,fi) for

i = 0,1, ... ,n with distinct xi's, there exists a unique polynomial
Pn(X) of degree n such that Pn(xi)=/i for i =0,1, ... ,n. This
interpolating polynomial p,. (x) can be written in the
Newtonian form

11

p,. (x) = J:,f O,i (X-Xo)(X-X1) ... (x-xi-1) (1)
i=O

in which the coefficients f o,i are the divided dijf erences off .

Alternatively, p,. (x) can be written in the Lagrangian form
n

Pn(x)= '1:,li fi (x-xo) · · · (x-xi-1)(x-xi+1) · · · (x-x,.) (2)
i=O

where ti is the real factor of the Lagrange polynomial l; (x).

Various forms of polynomial interpolation have been stu­
died in both the context of numerical analysis and in compu­
tational complexity. However, Egecioglu, Gallopoulos and
Koc [2] seem to be the first to study the problem in terms of
the Newtonian form with respect to parallel solution. In fact,
the typical form discussed is the classical form

Pn (x) = i:Pi xi •
i=O

(3)

Equations (1), (2) and (3) represent the same polynomial
function under different bases. The usefulness of a particular
basis depends on the application. Divided differences in par­
ticular are useful for the evaluation of derivatives and
integrals. The Lagrangian form has its own benefits including
ease of derivation as will be shown, without adversely
affecting such properties as permanence and evaluation.

Egecioglu et. al. remark that fast interpolation algorithms
(those with time complexity less than O(n2)) are still based
on slow serial schemes which require O(n 2) operations (in the
sequential i;nachine). Because of the increasing availability of
parallel systems, they suggest that existing methods are
impractical because: 1) the constant multiplier of the order
tends to be relatively large and 2) the current fast interpola­
tion algorithms are subject to significant roundoff errors when
implemented in finite precision arithmetic.

The first reason suggests that the size of the problem must
be sufficiently large to make these algorithms competitive.
However, polynomial interpolation is not usually recom­
mended on a large number of data points. The second reason
is self-explanatory, why use fast algorithms if their numerical
accuracy is unstable? Factors which affect both these areas
are requirements such as equidistant points or the use of con-

120

volution techniques (e.g. fast Fourier transforms).
The reader should note that over some fields, polynomial

interpolation of a large number of data points is desirable.
Modular techniques (c.f. McClellan [5]) can be used to solve
large problems efficiently. In this respect the Chinese
Remainder Theorem often occurs, and Zhang, Shirazi and
Yun [8] have recently shown that the CRT problem can be
solved in<•> O(log n) parallel steps. This result is applicable to
modular techniques and may affect the complexity of parallel
algorithms for large polynomial interpolation problems.

In an attempt to address the concerns enumerated above,
Egecioglu et. al. present a fast (O(log n)) and practical paral­
lel algorithm for the computation of interpolating polynomi­
als (in Newtonian form). By practical they intend that the
proposed algorithm be numerically stable and can be imple­
mented in floating-point with resulting error accumulation
similar to stable serial algorithms. Recently, Reif [6] showed
that polynomial interpolation of n points in the classical form
(3) can be performed in O(log n) time complexity, with a cir­
cuit of sizeCb> of 0(n21og n). As the method makes use of
discrete Fourier transforms the constant multiplier in the time
complexity for this algorithm is greater than 4. Thus, both
Egecioglu et. al.'s results and those presented in this paper
can be implemented with a circuit of smaller size and depth
and without the use of convolution techniques.

In this paper two separate problems are investigated. The
first involves extending Egecioglu et. al.' s results to include
the permanence property of the Newtonian form. The second
problem is to show that the Lagrangian form can be interpo­
lated and evaluated in a manner competitive with Egecioglu
et. al.' s results.

The algorithms discussed may be implemented · on a
shared memory PRAM architecture. Borrowing the descrip­
tion from Kruskal, Rudolph and Snir [3] the PRAM computa­
tional model consists of p autonomous processors, executing
synchronously, all having access to a common shared
memory. The processors execute in SIMD fashion, and
memory access is assumed to be accomplished in one cycle.

Parallel Newtonian Interpolation
The success of Egecioglu et. al.' s algorithm depends on

two key observations: 1) Computing the divided differences
in an alternative form and 2) Using the parallel prefix compu­
tation (see Kruskal, Rudolph and Snir [3] and Ladner and
Fischer [4]) for the evaluation of the divided differences.

Once the divided differences are computed the Newtonian
representation of p,.(x) is completely defined. Typically, the
divided differences are computed by

fiJ-1 - li+lJ
f-·=----

1,J Xi -Xj
(4)

where fi,i=fi and ~i<j~n. f 0,f0,1, ... ,f0,n are the
divided differences required by the Newtonian form. Note

(a) All logarithms are base 2.

(b) Size refers to the number of productive nodes in a circuit.

that from (4) the li/s for a particular j-i value can be calcu­
lated independently of each other, and depend only on the
divided differences calculated for the j-i -1 value and the
xi's. This yields a straightforward parallel algorithm where
the divided differences for a particular j-i value are com­
puted in parallel. Thus O(n) operations using O(n) processors
are required to compute all the divided differences.

Egecioglu et. al. present an alternative method that
requires O(n2) processors and solves the problem in O(log n)
steps. Let Yij =x; -xi for i 'f:.j and Yi,i = 1, i,j =0,1, ... ,n.
Then the kth (n2:k2:0) divided difference of I (f o.k) can be
expressed as a linear combination of the Ii 'sand the products
of the Yi/ s as follows

k lj
I OJ<= L

j=OYj,OYj,l Yi.Jc
(5)

Consider the reciprocals of the coefficients of Ii in
I o,i, I o,i+t• ... , I o,n (the coefficient of I; in I oj is always
zero for j <i). These are of the form Yi,oYi,t · · · Y;,;.
Y;,oY;,1 · · · Yi,i+t , ... , Yi,oY;,1 · · · Y;,,.. But these arejus~ the
prefixes of Yi,OYi,t · · · Yi,n and the parallel prefix algonthm
can generate all of them in r1og n l using only n processors
(c.f. Kruskal, Rudolph and Snir [3] and Ladner and Fischer
[4]). Ladner and Fischer also show that such a parallel prefix
algorithm may be constructed with a circuit of size O(n).
There are n+l data points, thus n+l concurrent instances of
the parallel prefix algorithm are needed to compute the
prefixes of the term Yi,OYi,t · · · Yi,n for O:>;i:>;n. Hence 0(n2)
processors are needed to perform this calculation. Note,
Yi,i = 1 for all i, thus it can be omitted from the prefix calcula­
tions without affecting the results.

Egecioglu et. al. show that the Newtonian interpolation
polynomial for n+l points can be computed in less than
2 r1og(n+l>l +2 parallel arithmetic steps using n(n+l) pro­
cessors and can be implemented as an arithmetic circuit of
size O(n2). Their assumptions require that all processors be
able to perform any of the four arithmetic operations in one
unit step and that the processors may be reused.

Improving the Parallel Newtonian Algorithm
The permanence property, or the ability to add a new data

point and obtain the new interpolating polynomial Pn+i(x) on
n+2 data points without recalculating all the divided
differences is an aspect of the Newtonian form that Egecioglu
et. al. leave open. From (4) it is clear that the divided
differences l;j for Q::;;i:>;n would remain the same (provided
the first n + 1 data points are kept in the same sequence), and
that n+2 additional divided differencesln+tjwould have to be
computed for O:>;j :>;n + 1. This assumes that some of the
divided differences are not discarded once Pn (x) is calculated.
As stated, the parallel Newtonian algorithm does not retain
any information once it has calculated the coefficients of
Pn (x), thus, adding one data point requires that the algorithm
execute again with (n+l)(n+2) processors. There is no prob­
lem if that many processors are available but if not, it would
be desirable to retain the capability of computing Pn+1(x) in a
reasonable amount of time. By sacrificing some storage the
number of processors needed for the computation can be
reduced significantly without increasing the computation time
by more than a few arithmetic steps.

Suppose the parallel Newtonian algorithm is executed
again with n+2 data points (in the same sequence as in the

121

initial run that generated Pn(x), adding the new data point to
the end). Then, from (1) it follows that

Pn+i(X) =pn (x) +I 0,11+! (x-xo}(X-X1) · · · (X-Xn) •

The only difference between Pn+i(x) and Pn(x) is in the last
coefficient that is calculated. Now from (5) and with k = n+l
it follows that

n+l lj
I o,,.+1 = I: y y ... y j=O j,O j,l j,n+l

Provided that the denominators of the coefficients of I o.n have
been previously stored, it is easy to calculate I o,n+t·

Theorem 1: The Newtonian interpolating polynomial
for n+2 points can be computed from the Newtonian interpo­
lating polynomial for n+l points (where the first n+l data
points are in the same sequence) in at most 2 r1og (n+2) l + 4
parallel arithmetic steps using n+2 processors.
Proof: First, calculate Yi ,,.:1 and Yn+l,i for O:>;i :>;n + 1 followed
by <Yi,oY;,1 · · · Y;,n)Y;,n+l for O:>;i:>;n+l (recall that the left­
hand factor is available from the previous computation of
Pn(x)). This requires two parallel steps and one parallel .step,
respectively, using n+2 processors. Now perform a bmary
tree multiplication to compute Yn+1,0Yn+1,1 · · · Yn+l,n Yn+t,n+l•
followed by n+2 parallel divisions. This requires n+2 proces­
sors and r1og (n+2) l+l parallel steps. Finally, use a binary
tree addition algorithm to sum the n+2 elements and obtain
I O,n+2· This requires r1og (n +2) l further parallel steps. D

Parallel Lagrangian Interpolation
Egecioglu et. al.' s parallel computation of certain features

in the Newtonian basis (1) suggests that similar features in the
Lagrangian form (2) might also be computed in parallel. The
typical formulation of the Lagrangian representation (c.f.

n
Abramowitz and Stegun [l]) is Pn(x)= I;li(x)li where

i=O
(x-x0) • • · (x-xi_1)(x-x;+1) · · · (x-xn)

l·(x) = for Q::;;i:>;n.
' (xi-xo) · · · (x;-Xi_1)(xi-Xi+l) · · · (xi-Xn)
Using the notation developed earlier it follows from (2) that

1
~= ~

Y;,oYi,t · · · Yi,n

for O:>;i:>;n (recall that Yi i = 1). This product is easily com­
puted in r1og n l parallel' steps using n processors. n+l such
products are required, thus n+l parallel instances of (6) are
sufficient to calculate all the li 's. Thus, n (n + 1) processors are
needed to compute Pn(x) in the Lagrangian form. The algo­
rithm is given by the following steps, assuming the data point
pairs are stored in memory, and n(n+l) processors are avail­
able:

Parallel Lagrangian Interpolation
1) Compute Yij =x; -xi for i,j =0,1, .. .,n, i 'f:.j. Y;,; = 1

already set.
1 n

2) Compute - = TIYij ·
li j=O

3) Compute and store l; for O:>;i :>;n •

Theorem 2: The Lagrangian interpolating polynomial
for n + 1 points can be computed in at most r1og n l + 2 paral­
lel arithmetic steps using n (n+ 1) processors and can be imple­
mented as an arithmetic circuit of size O(n 2).
Proof: Clearly, Step 1 of the above algorithm requires one
parallel step while Step 2 takes r1og n l parallel steps using a

binary tree multiplication algorithm. Finally, Step 3 takes one
step to perform in parallel a division over n + 1 processors.
The processors involved are assumed to be reusable and able
to perform the four basic arithmetic operations. In the case of
an arithmetic circuit a binary tree multiplication of n inputs
requires a circuit of depth flog n 1 and size n . The division
step requires one operational node and there are n + 1 such
divisions. The computation of the Yi/s requires n(n+l)
operational nodes. Thus, the parallel Lagrangian algorithm
for n+l inputs can be performed with a circuit of depth
flog n 1 + 2 and size O(n2). D

Why should any of the bases (1), (2) or (3) be used? Why
not go directly to the evaluation step with the data point pairs
(xi.Ji) using the basic Lagrange formula

n n (x -x.)
Pn (x) = "f.,f i IT (1) ? While this computation could

i=O j=Oj*i Xi - Xj
be done in about 3 flog n 1 + 3 parallel arithmetic steps with
n (n+l) processors, it it not competitive since, as is shown
later, n+l such evaluations could be performed by either the
parallel Newtonian or parallel Lagrangian algorithm in about
the same amount of time.

Still another possibility would be to store the product
li f i. This increases the interpolation algorithm by one step
and decreases the evaluation by one step.

The Parallel Lagrangian Algorithm with Fewer Processors

It has been assumed that there are sufficient processors to
handle the entire problem simultaneously. Suppose there are
a limited number of processors p, where p =m(n+I) and
l::;rn <n is an integer. All those operations which can be done
in one step using n concurrent instances may also be done in
at most f n I m 1 steps.

Theorem 3: The parallel Lagrangian algorithm for n+l
data points can be performed in at most
2 f(n+l) Im 1 + flog m 1 arithmetic steps when p = m(n+l)
processors are available.

Proof: First, the Yij 's can be calculated in f n Im 1 steps
using p processors for all i,j =0,1, ... ,n, i '¢'j. Now, using
n+I concurrent instances of a binary tree multiplication algo­
rithm n+l elements can be multiplied together to compute
each l / ti using m processors in each instance. This is done
by breaking the n+l elements into m blocks each with at most
f(n+l) Im 1 elements, and allowing each processor to multi­

ply these elements together. This requires f (n+ 1) Im 1 - 1
steps. Now the m blocks can be multiplied together in
flog m 1 steps. Finally, n+l concurrent parallel divisions

yields ti for OSi Sn . D
If the number of available processors p is less than n + 1

then pieces of each instance may be performed in parallel.
However, even the first step of the parallel Lagrangian algo­
rithm, calculating all the Yi/s requires f n(n+l) Ip 1 parallel
computations. This is likely be uncompetitive except when p
is fairly large since the serial equivalent to this algorithm is of
complexity O(n 2).

Similar results for the parallel Newtonian algorithm are
shown by Egecioglu et. al. and are summarized in Table 1.

Permanence Property for Parallel Lagrangian Interpolation

As with the Newtonian form, it is possible to calculate the
interpolating polynomial Pn+1(x) using Pn (x) in the Lagran­
gian form. However, the Lagrangian form requires no addi­
tional storage to perform the computation.

122

Theorem 4: The parallel Lagrangian interpolating poly­
nomial for n+2 points can be computed from the Lagrangian
interpolating polynomial for n+l points (where the first n+l
data points are in the same sequence) in at most
flog (n+l) 1 + 4 parallel arithmetic steps using n+l proces­

sors.
Proof: The original n+l li 's need only be divided by
xi -Xn+I• which takes two parallel arithmetic steps using n+l
processors. tn+I can be computed in flog (n+l) 1 + 2 arith­
metic steps, one to calculate in parallel all the Xn+I -xi's for
ili;;i Sn, and the remainder to apply a binary tree multiplication
algorithm to obtain 11 ln+I followed by a division to compute
ln+I• D
Evaluation of the Lagrangian Interpolating Polynomial

Egecioglu ei. al. show that the Newtonian interpolating
polynomial of degree n can be evaluated in 2 flog (n+l) 1+2
parallel arithmetic steps using n processors and can be imple­
mented as an arithmetic circuit of size O(n). A similar result
for the Lagrangian interpolating polynomial can be shown
and the algorithm is given by the following steps, assuming
the Lagrangian form is stored in memory, and n processors
are available:

Parallel Lagrangian Evaluation
n~ i

1) Compute the prefixes of fI(x-xi) and let zi+l = fI(x -xi)
j=O j=O

for OSi <n and z 0 = 1.
n-1

2) Compute the prefixes of fI(x-xn_i) and let
n-i j=O

Zi-1 = fI(x -Xn-j) for 1SiSn and Zn= 1.
j=O

3) Compute ti fi zi z; forili;;iSn.

4) Sum the n+l terms computed in steps 3) and store, the
result.

Theorem 5: The Lagrangian interpolating polynomial of
degree n can be evaluated in at most 3 flog n 1 + 9 parallel
arithmetic steps using n processors and can be implemented
as an arithmetic circuit of size O(n).

Proof: Equation (2) shows that for OSiSn (x-x0) · · · (x-xi-1)
(x-x;+1) · · · (x-xn) must be computed. Naively, the entire pro­
duct (without omitting the term x-xi) can be computed, and
then the required term can be divided out in n+l separate
copies. Unfortunately, this introduces a slightly larger error,
as redundant floating point operations are performed for each
i . With a slight increase in complexity the precision of the
data can be preserved.

First, compute the parallel prefixes of the product
(x-x 0) • • • (x-xn_1) and let zi+l = (x-xo) · · · (x-xi) for OSi <n
with z 0 = 1. Then compute the parallel prefixes of the product
(x-xn)···(x-x 1) and let z;_1 =(X-Xn)···(x-xi) for lSiSn
with zn = 1. Each parallel prefix calculation requires flog n 1
steps, and it is easily seen that
(x-xo) · · · (x-x;_1)(x-xi+1) · · · (x-xn) = zi z; for OSiSn.

All the terms x-x; for OSiSn can be computed in two parallel
steps. Thus, the entire sequence requires n processors to per­
form two parallel prefix operations on n inputs followed by n
processors performing three multiplications in parallel (to
compute li f i zi z; for OSi <n) and another three for the n +1th
term. Finally, a binary addition algorithm can be used to sum
the n + 1 terms in flog n 1 + 1 parallel steps with n processors.

To prove the result for an arithmetic circuit, observe that both
the parallel prefix algorithm, and a binary addition (multipli­
cation) algorithm may be implemented in a circuit with depth
at most r1og n l and size O(n). D

It is left to the reader to show that the evaluation can be
done in 2 pog n l +4 parallel arithmetic steps if 2(n+l) pro­
cessors are available.

Conclusions and Comments
A fast parallel algorithm for computing the Lagrangian

interpolating polynomial similar to that for the Newtonian
interpolating polynomial as shown by Egecioglu et. al. has
been developed. It remains to be shown that this algorithm is
practical (numerically stable). This, however, is left for
future investigation. Both methods are competitive with each
other since their input constraints and required number of pro­
cessors are the same, and their time complexities differ only
by very small constants for both interpolation and evaluation.

With regard to the parallel Newtonian algorithm a small,
but useful change is proposed that allows the use of the per­
manence property of the Newtonian form. This change only
increases the constant term in the time complexity of the
algorithm and doubles the storage requirements from n+I real
values to 2(n+l). However, it decreases the required number
of processors from (n+l)(n+2) to n+2. The permanence pro­
perty is also demonstrated for the Lagrange form and is
shown to require about half the time that the Newtonian form
does, with only n+l processors.

The Lagrangian representation also has a property that
may be valuable in certain applications. Once the l; 's have
been calculated, the Lagrangian interpolating polynomial can
be evaluated for different sets of data points f; without recal­
culating the l; 's. While the same result can be obtained from
the parallel Newtonian algorithm by modifying it so that with
a slight increase in _its storage requirements it can compute
new divided differences in only pog (n+l) l + 1, it requires
the use of the full n(n+l) processors. Once computed the
evaluation would only take another 2 riog (n+l) l + 2. Thus,
the whole process would be six arithmetic steps faster than
simply evaluating the Lagrangian interpolating polynomial at
new values f; with only n processors.

Any problem which requires the computation of a large
number of interpolating polynomials on a small number of
points, and then requires the repeated evaluation of these
polynomials at a large number of test points, without requir­
ing these polynomials in classical form should benefit greatly
from either of these algorithms. The nature of the application
will determine which of the two methods is most suitable.

While useful as a model, the shared memory PRAM
architecture is not realistic as far as interprocessor communi­
cation is concerned. Egecioglu et. al. provide an example
implementation of their algorithm on a cube-connected com­
puter. Because of the similarities between the two methods it
should be possible to implement the Lagrangian algorithm in
much the same way. A shuffle-exchange architecture might
also be suitable since Schwartz [7] has shown how to perform
the parallel prefix algorithm in O(log n) time.

123

In terms of circuits the binary addition (or multiplication)
algorithm (circuit) can also be implemented using the parallel
prefix algorithm (circuit). Thus all the circuits described may
be uniformly implemented using just a parallel prefix circuit.
The depth of these circuits remains the same, but the size of
these circuits increases by a constant (multiplied) amount.

Table 1 summarizes the results and compares them with
the corresponding results of Egecioglu. et. al.

Problem

Interpolating

n+l

data points

Permanence
Property

Evaluation

Number of Parallel
Processors Newtonian

n (n+l) 2 l"log (n+l) 1+2

m(n+l) 6 r n;l l
lSrn <n +2 r1ogml-4

p<n+l ~O(n(n+l))
p

n+2 2 l"log (n+2)1+4

n 2 r1og (n+l) 1+2
2(n+l) 2 l"log (n+l) 1+2

Table 1
Summary of Results

Acknowledgement

Parallel
Lagrangian

r1ognl+2

2 r n;l l
+ r1ogml

~O(n(n+l»
p

r1og (n+l) 1+4

3 r1og n 1+9
2r1ogn1+4

Thanks to Dr. X. Li and Dr. S. Cabay for their comments,
and to C. Smith for text processing and system help.

References
[l] M. Abramowitz and I. A. Stegun, eds., Handbook of

Mathematical Functions, Dover, (1972), pp. 878.

[2] 0. Egecioglu, E. Gallopoulos and C. K. Koc, Fast and
Practical Parallel Polynomial Interpolation , Center for
Supercomputing Research & Development, The Univer­
sity of Illinois, Report No. 646, (Jan, 1987).

[3] C. P. Kruskal, L. Rudolph and M. Snir, "The Power of
Parallel Prefix," IEEE Trans. on Comp. , (Oct, 1985), pp.
965-968.

[4] R. E. Ladner and M. J. Fischer, "Parallel Prefix Computa­
tion," J. ACM, (Oct, 1980), pp. 831-838.

[5] M. T. McClellan, "The Exact Solution of Systems of
Linear Equations with Polynomial Coefficients," J. ACM,
(Oct, 1973), pp. 563-588.

[6] J. H. Reif, "Logarithmic Depth Circuits for Algebraic
Functions," SIAM J. Comput., (Feb, 1986), pp. 231-242.

[7] J. T. Schwartz, "Ultracomputers," ACM Trans. on Pro­
gram. Lang. and Syst., (Oct, 1980), pp. 484-521.

[8] C. N. Zhang, B. Shirazi and D. Y. Y. Yun, "Parallel
Designs for Chinese Remainder Conversion," Proc. of the
1987 Inter. Conf. on Parallel Processing, (Aug, 1987), pp.
557-559.

A NEW APPROACH TO THE IMPLEMENTATION OF MULTIDIMENSIONAL SIGNAL PROCESSING ALGORITHMS

Winser E. Alexander and Seong-Mo Park
Department of ECE, Box 7911
North Carolina State University

Raleigh, N. C. 27695
Tel. (919) 737 -2336

Abstract -- This paper presents a new approach to the
implementation of multidimensional (N-D) digital signal
processing algorithms in a multiprocessor environment.
We develop a computational primitive for N-D signal pro­
cessing algorithms using a state space model. We then
map the state space model onto a linear finite state
machine and implement the computational primitive in the
combinational logic block of the linear finite state machine.
The state variables are stored in the delay elements of
the machine. With our approach data communications
requirements among processors have been minimized
without increasing the computational requirements for the
given algorithms. We present an efficient multiprocessor
system using our approach for implementing N-D signal
processing algorithms.

Introduction

Extensive research and development have been devot­
ed to N-D digital signal processing over the last decade
[1,2]. Practical applications include military intelligence,
remote sensing, industrial inspection, robot vision, data
compression for communications, processing biomedical
images for diagnosis, character recognition, finger prints,
weather forecasting, etc. These applications are computa­
tionally intensive and require substantial data communica­
tions. In many cases, the reduction of computer hardware
cost makes the design of special purpose computer sys­
tems tailored to the specific requirements of a given class
of algorithms practical [3]. However, the complexity of
most digital signal processing tasks is such that real-time
implementation using single processor system will not be
feasible in the near future [4]. In this paper, we have con­
centrated on the development of algorithms which can be
effectively used for high speed N-D digital signal process­
ing in a multiprocessor or multicomputer environment. The
data communication requirements for many digital signal
processing algorithms are of the same order of magnitude
as the computational requirements. In particular, the trans­
fer of a data word between chips in a multiple chip system
can require as much time as for a 16 by 16 integer multiply
(typically on the order of 50 to 100 nanoseconds). Thus,
data communication requirements should be given at least
equal consideration in developing algorithms for multipro­
cessor systems.

Algorithm Decomposition

A discrete, linear, shift-invariant (DLSI) system is a

This work was supported by the National Security Agency under con­
tract number MDA904-86-H-003.

124

JungH. Kim
Department of EE

North Carolina A&T State University
Greensboro, N.C. 27411
Tel. (919) 334 - 7760

discrete system for which the system parameters do not
vary with changes in the independent variables (time,
space, distance, range, etc.). Many practical digital signal
processing and digital control problems can be represented
as DLSI systems. Our approach is to design computation­
ally efficient algorithms for N-D DLSI systems which can
be implemented on a multiprocessor system with localized
data communication requirements. We also emphasize the
preference for on chip data communications compared to
data communications between chips.

In the 1-D case, partial fraction expansion or factoriza­
tion can be used to partition the system into an efficient
computational structure for a multiprocessor system. How­
ever, N-D systems can not be partitioned in this way,
except for the special cases of product or sum separable
systems [5]. An arbitrary multivariate transfer function can
not be factored into distinct poles and zeros and can not be
expanded into partial fractions. These approaches to
developing a parallel or cascade implementation of transfer
functions can not be extended to N-D systems. Thus, we
must explore alternate means of partitioning N-D DLSI sys­
tems.

We use a state space representation as a vehicle to aid
in the decomposition of N-D DLSI systems for implemen­
tation on a multiprocessor system. The state space
representation provides the potential for minimizing the
data communications requirements for a given algorithm
without increasing computational complexity. Other advan­
tages of the state space implementation over direct imple­
mentation include decreased sensitivity to parameter varia­
tions and improved performance when finite arithmetic is
used. In order to clearly explain the concepts involved in
this approach, we first discuss the state space implementa­
tion of 2-D DLSI systems. We then show that the concepts
used in this special case can be extended to the N-D case
(N > 2).

State Space Implementation of 2-D DLSI Systems

A set of finite difference equations is one of the forms
commonly used for representing DLSI systems. A general
order, causal 2-D DLSI system with quarter plane support
can be represented by finite difference equations [1] as
given by equation (1)

LL L L
g(m,n)= LL a(j,k)f(m-j,n-k)-L L b(j,k)g(m-j,n-k). (l)

j=Ok=O j=O k=O
j+k>O

An input-output relationship between the transform of
the input sequence F(z1,Zi) and the transform of the output
sequence G(zi.z:z) can be written as equation (2)

(2)

+ ± ± [a(j,k)F(z1,z2) - b(j,k)G(z1,Zi)]z1iqk.
j=O k=O

j+k>O

Figure 1 gives a block diagram representation of the
2-D DLSI system partitioned as specified by equation (2).
Note that the number of vertical delays is the same as the
order of the filter in the Zi variable which is the minimum
possible number. We can obtain the state space representa­
tion by assigning a horizontal state variable to the input of
each of the horizontal delay blocks (associated with z1 vari­
able) and by assigning a vertical state variable to each of
the vertical delay blocks (associated with the z2 variable).
For convenience, we define

y(n1,n2) = Cir,(n1-l,n2) + rL(n1,n2-l) (3)

Cu = a(j,k) - a(O,O)b(j,k); C21 = - b(j,k).

Then, the typical vertical state equation for the 2-D DLSI
system can be represented by

r1(n1,ni) = c11f(n1,n2) + c21y(n1,n2) + qi(ni-l,n2) (4)

+ r1-1(n1,n2-l).

In a similar way, the typical horizontal state variable is
given by

qi(n1,ni) = c11f(n1,n2) + c21y(ni.n2) + qi(n1-l,n2). (5)

The output equation is given by

g(n1,n2) = a(O,O)f(n1,n2) + y(n1,n2). (6)

The equation for the vertical state variables as given in
equation (4) is a computational primitive for the 2-D DLSI
system since the vertical state variables, the horizontal state
variables and the output can be mapped into this equation
with a suitable interchange of variables.

State Space Implementation ofN-D DLSI Systems

The general multivariable difference equation for the
causal, discrete, linear, shift invariant (DLSI) system with
first section support (the N-D equivalent of quarter plane
support) is given by [1]

L1 LN ,

g(n1, .. .,nN) = L · · · L a(i1,. .. JN)f(nd1. · · · , nN-jN)
i1=<> j..={l

i1+'' '+jN>O

The input f(n1,. . .,nN) is assumed to be sampled at uniform
intervals in each of the independent variables and
g(n1,. . .,nN) is the corresponding output. The parameters
a(i1,. .. JN) and b(j1, ... jN) are coefficients which determine
the characteristics of the algorithm. Since the coefficients
can take on arbitrary values as appropriate, this equation
can represent many common N-D problems.

We can extend the approach used for the 2-D DLSI

125

system to obtain a state space representation of the N-D
DLSI system. Using the transform of the input sequence
F(Z) and the transform of the output sequence G(Z), we
can show the input and output relationship as follows:

G(Z) = a(O)F(Z)

. . . ~ [a(K)F(Z)-b(K)G(Z)]z-K
k..=<J (8)

K -k -~
Z = (z1, .. .,zN); K = Cki.···•kN); z- = (z1 1 • • • zN).

We can extend the block diagram structure presented above
for the 2-D DLSI system to N-D systems and obtain the
desired state space representation by assigning a state vari­
able to the input of each delay block in each tuple. After
doing this the most complicated section will have a single
delay element in each tuple. Other subsections may be

equivalent or they may be simpler in that one or more of
the delays may be missing. For convenience, we define

N
y(n1, ... ,nN) = L<lk,1...i.(... ,nk-l, ...) (9)

k=l

cu = a(K) - a(O)b(K); c21 = - b(K).

Then, the typical state equation for the N-D DLSI system is
given by

~.1(n1 ,. .. ,nN) = c11f(n1,. .. ,nN) + c21y(n1, .. .,nN) (10)

N
+ Q.;,1-1(... ,llj_-l, ...) + L~.J(... ,nk-1, ...).

k=l
k,<i

The output equation is given by

g(n1, ... ,nN) = a(O, ... ,O)f(n1, ... ,nN) + y(n1, ... ,nN)· (11)

Equation (10) can be considered to be a computational
primitive for the N-D DLSI system since the state variables
for each tuple and the output can be mapped into it with a
suitable interchange of the variables. Thus, N-D DLSI sys­
tems can be implemented by solving equation (10) repeat­
edly with proper parameter substitutions. Note that equa­
tion (10) is a generalization of the 2-D computational prim­
itive as given in equation (4).

Multiprocessor System for N-D Signal Processing

We now consider the implementation of DLSI systems
in a multiprocessor environment. We can derive the compu­
tational primitives for N-D signal processing from equation
(10). These computational primitives then form the basis
for the design of special purpose processors for the imple­
mentation of the overall system. These computational
primitives require two multiplications and N+l additions to
calculate a state variable or an output for a N-D DLSI sys­
tem. We can use a tree structure to implement them with
two multipliers and N+l adders arranged in a pipeline and
parallel fashion as shown in Figure 2. All inputs in Figure
2 use shift registers or queues to hold appropriate data and

system coefficients for the computation. The current N-D
input- data f(ni. ... ,nN) is stored in F register and the tem­
porary value y(n1, ... ,nN) is stored in Y register for the
current computation and replaced by new data for the next

computation. The system coefficients c11 and c21 are stored
in C1 and C2, respectively. The coefficients are arbitrary
and can be changed by software. Therefore an arbitrary N­
D DLSI system can be implemented using this structure.
The Qic's are the queues holding the previous state vari­
ables for the current computation and are updated for each
input. The pipeline will have r1og2(N+4)l stages to calcu­
late a state variable or an output and will produce a result
at every cycle once all the pipeline stages have been filled.
Since the computational primitives depend only upon the
dimensions of the system and not upon the order of the
system nor upon the size of the input data, we can design
programmable special purpose processors to implement the
computational primitives.

There are (L+ 1)N -1 state variables ·to be calculated for
each input data value for an N-D Lth order system. Thus,
the computational requirements are too high for a single
processor system or for a general purpose multiprocessor
system to implement the DLSI systems in real-tLme at typi­
cal sampling rates. In this paper, we consider a multipro­
cessor system for the 2-D and 3-D cases. A spatial domain
digital filter system for image processing will be presented
as an example of 2-D signal processing and a motion pic­
ture analysis system will be presented as an example of a
3-D system. Higher dimensional systems can be developed
using the same concept and the general computational
primitive.

A Multiprocessor System for 2-D signal Processing

A multiprocessor architecture to implement the spatial
domain digital filter in real-time has been proposed by Kim
and Alexander [6]. The proposed system requires ten pro­
cessors for a second order filter, each of which implements
the computational primitive as given in equation (4). Each
processor has two multipliers and three adders arranged
in a pipeline and parallel fashion and can generate a state
variable or an output at every cycle. These processors are
connected in a linear array, as shown in Figure 3, where
each processor is assigned to a separate row of data and
the vertical state variables are passed to the next proces­
sor in the array for use in computing the output for the sub­
sequent row of data. In this scheme, the processor
assigned to the first row is available to be assigned the
eleventh row because it has completed the processing for
the first row when the eleventh row becomes available.
Thus the vertical state variables which are output from the
tenth processor can be inputs to the first processor for use
in computing the outputs for the eleventh row.

This scheme can be extended to higher order spatial
domain filters by increasing the number of processor in the
linear array. For example, seventeen processors are
required for a third order filter and twenty six processors

126

are required for a fourth order filter, etc. This multiproces­
sor system is practical for implementing spatial domain fil­
ters in real-time for images with 512 rows by 512 pixels
per row at 30 frames per second. The time interval
between pixels for such an image is 127 nanoseconds if no
allowance is made for latency periods. Thus, a practical
computation cycle time for a system design is 100
nanoseconds. It is currently possible to design 16 by 16
integer multipliers and adders with cycle times significant­
ly less than 100 nanoseconds [7].

A Multiprocessor System for 3-D Signal Processing

The above multiprocessor system for 2-D can be
extended to 3-D signal processing. To implement 3-D
DLSI systems each processor would be required to imple­
ment equations with two multiplications and four additions
in order to update any state variable or to compute the out­
put. There are eighteen q 1 horizontal state variables, six
q2 vertical state variables, two q3 frame state variables
and an output to be computed for each input for a second
order 3-D system. Considering the pipeline fill up time,
twenty nine cycles will be required to calculate and update
the output and all the state variables for a single input
data for a second order 3-D system. Since outputs are
generated at every 29th cycle, twenty nine processors can
be arranged to achieve the throughput of one output per
cycle for real-time signal processing.

A multiprocessor system for second order 3-D DLSI
system is given in Figure 4. Each processor is assigned
to a separate row of data and the q2 state variables are
passed to the next processor through Q2BUF. In this
multiprocessor system, the q3 state variables are trans­
ferred between processors through Q3BUFFER with one
frame delay. Q3BUFFER is a first-in-first-out type mem­
ory buffer which could be partitioned by row for the row by
row data processing operation. This multiprocessor sys­
tem is practical for implementing 3-D digital filters in real­
time for moving images with 512 rows by 512 pixels per
row changing 30 frames per second. A higher order system
can be built by adding processors and buffer memories.

Conclusion

We proposed a new approach to the design of a multi­
processor system which can implement multidimensional
DLSI systems in real-time. This approach also has the
advantage that the complexity and number of computa­
tions per input does not increase as the size of the input
data is increased. Thus, very large multidimensional input
data can be processed in near real-time with such a sys­
tem. We are currently developing a special purpose digital
signal processor and an associated multiprocessor system
for the real-time implementation of 2-D DLSI systems
using the approach proposed in this paper.

References

[1] D. E. Durgeon and R. M. Mersereau, Multidimension­
al Digital Signal Processing, Prentice-Hall, Englewood
Cliffs, N.J., 1984.

[2] S. G. Tzafestas, Ed., Multidimensional Systems, Mar­
cel Dekker, Inc., N.Y., 1986.

[3] S. Y. Kung, H. J. Whitehouse, and T. Kailath, Eds.,
VLSI and Modem Signal Processing, Prentice-Hall,
Englewood Cliffs, N.J., 1985.

[4] K-S. Lin, G. A. Frantz, and R. Simar,Jr., "The TMS320
family of digital signal processors," Proc. IEEE, vol.75,
no.9, pp.1143-1159, 1987.

[5] M. Morf, B. C. Levy, and S. Y. Kung, "New results in
2-D systems theory, Part I : 2-D polynomial matrices,
factorization, and coprimeness, Proc. IEEE, vol.65,
no.6, pp.861-872, 1977.

[6] J. H. Kim and W. E. Alexander, "A multiprocessor
architecture for two-dimensional digital filters," IEEE
Trans. Comp., vol.C-36, no.7, pp.876-884, 1987.

[7] D. A. Henlin, M. T. Fertsch, M. Mazin, and E. T.
Lewis," A 16 bit X 16 bit pipelined multiplier macro­
cell," IEEE Journal of Solid-State Circuits, vol.SC-20,
no.2, pp.542-547, 1985.

f(m,n)

Figure 1. A block diagram of general order 2-D DLSI system.

127

-.•...

···... ··

OUTPUT

Figure 2. Computational primitive for N-D DLSI systems.

INPUT OUTPUT
SYSTEM CONTROLLER

Figure 3. A multiprocessor system for a second order 2-D DLSI system.

INPUT
SYSTEM CONTROLLER OUTPUT

Q3 BUFFER

Figure 4. A multiprocessor system for a second order 3-D DLSI system.

1

Parallel Depth First Search on the Ring Architecture*

Vipin Kumar! V. Nageshwara Rao and K. Ramesh
Department of Computer Sciences,

University of Texas at Austin,
Austin, Texas 78712

Abstract

This paper presents the implementation and
analysis of parallel depth-first search on the ring
architecture. At the heart of the parallel formula­
tion of depth-first search is a dynamic work distri­
bution scheme that divides the work between dif­
ferent processors. The effectiveness of the parallel
formulation is strongly influenced by the choice of
the work distribution scheme. In particular, a com­
monly used work distribution scheme is found to
give very poor perform~ce on large rings(> 32
processors). We present a new work distribution
scheme that is better than the work distribution
scheme used by other researchers, and gives good
performance even on large rings (128 processors).
We introduce the concept of iso-efficiency function
to characterize the effectiveness of different work
distribution schemes.

Introduction

rings (128 processors). The performance is tested by solving the
15-puzzle problem(ll]. The ri.ng architecture is embedded on
an 128-node Intel Hypercube. We introduce the concept of iso­
efficiency function (representing the required growth in problem
size with respect to number of processors to maintain the effi­
ciency) to characterize the effectiveness of different work distri­
bution schemes. We have also implemented parallel depth first
search on Hypercube and shared-memory architectures(9,10].
The ring architecture is important because it is simple to con­
struct and is highly scalable.

A detailed treatment of depth-first search is given in (11,5).
The unit of computation in a search algorithm is the time taken
for one node expansion. The total time taken by a sequential
search algorithm is roughly proportional to the total number of
nodes it expands. Total number of nodes expanded by a search
algorithm for a particular instance is called the problem size
W of the instance. If the depth of the search tree is d, then the
effective-branching factor bis defined as logdW.

2 A Parallel of Depth-First Search
We parallelize depth-first search by sharing the work done among

Depth-First Search(DFS) is a general technique used in Artifi- a number of processors. Each processor searches a disjoint part
cial Intelligence for solving a variety of problems in planning, of the search space in a depth-first fashion. When a processor
decision making, theorem proving, expert systems, etc. (11,5]. has finished searching its part of the search space, it tries to get
It is also used under the name of backtracking to solve various an unsearched part of the search space from other processors.
combinatorial optimization problems and constraint satisfac- When a solution is found, all of them quit. If the search space
tion problems. Execution of a Prolog program can be viewed is finite and has no solutions, then eventually all the processors
as depth-first search of a proof tree. Iterative-Deepening al- would run out of work, and the (parallel) search will terminate.
gorithms perform cost-bounded DFS in successive iterations to Since each processor searches the space in a depth-first man-
solve discrete optimization problems[4] and theorem proving[12]. ner, the (part of) state-space to be searched is easily represented
A major advantage of depth-first search strategy is that it re- by a stack. The depth of the stack is the depth of the cunently
quires very little memory. Since many of the problems solved explored node, each level of the stack keeps track of untried
by DFS are highly computation intensive, there has been a great alternatives. Each processor maintains its own local stack on
interest in developing parallel versions of depth-first search (3,14,6,2]. which it executes DFS. When the local stack is empty, it sends

This paper presents the implementation and analysis of par- a request for work to another processor. Each processor peri-
allel depth-first search on the ring architecture. At the heart of odically checks for incoming work requests. If it has untried
the parallel formulation of depth-first search is a dynamic work alternatives in the stack, then it sends some of them to the re-
distribution scheme that divides the work between different pro- questing processor;1 otherwise it sends a null message back. In
cessors. The effectiveness of the parallel formulation is strongly our implementation, at the start of each iteration, all the search
influenced by the choice of the work distribution scheme. In space is given to one processor, and other processors are given
particular, a most commonly used work distribution scheme null space (i.e., null stacks). From then on, the state-space is
is found to give very poor performance on large rings(> 32 divided and distributed among various processors. A detailed
processors). We present a new work distribution scheme that treatment of our parallel formulation can be found in [9,10).
is better than the work distribution scheme used by other re- In the first formulation we implemented, an idle processor
searchers [2,13,14], and gives good performance even on large requests for work only from an immediate neighbor. This is

*This work was supported by Army Research Office grant #
DAAG29-84-K-0060 to the Artificial Intelligence Laboratory, and Of­
fice of Naval Research Grant N00014-86-K-0763 to the computer sci­
ence department at the University of Texas at Austin.

tTel:512-471-9571,Arpanet: Kumar@sally.utexas.edu

128

1 It is important to make sure that the work given out is not too
small (otherwise the requesting processor will be out of work soon
again) or too large (otherwise the donor processor will be out of work
soon). The best strategy is to try to give nearly half of the local work.

a simple and natural scheme and has been used by many re­
searchers (see Section 6). Other work distribution schemes are
possible, and will be considered later.

3 Performance of Parallel DFS

To test the effectiveness of Parallel DFS, we have used it to solve
the 15-puzzle problem [11]. The 15-puzzle is a 4x4square tray
in which are placed 15 square tiles. The remaining sixteenth
square is uncovered. Each tile has a number on it. A tile that
is adjacent to the blank space can be slid into that space. A
game consists of a starting position and a specified goal position.
The goal is to transform the starting position into the goal
position by sliding the tiles around. The 15-puzzle problem is
particularly suited for testing the effectiveness of parallel DFS,
as it is possible to create search spaces of different sizes (W) by
choosing appropriate starting configurations. IDA* is the best

·known sequential algorithm to find optimal solutions for the
15-puzzle prob1em[4]. It is much faster than simple depth-first
search, as it is able to use the Manhattan distance heuristic
[11] to focus the search. Since each iteration of IDA* is a cost­
bounded depth-first search, a parallel formulation of IDA* is
easily obtained.

We implemented Parallel cost-bounded depth-first search
(i.e., the last iteration of IDA*) to find all optimal solutions
of the 15-puzzle problem on 1-ring and 2- ring embedded on
an Intel Hypercube. On 1-ring (i.e., the unidirectional ring),
a processor could ask for work from only one neighbor. On a
2-ring, a processor could ask for work from both of its neigh­
bors. We ran our algorithm on a number of problem instances
given in Korf's paper [4]. As shown in Fig 1, we are able to
get linear speedup up to 16 processors, but for more processors,
the performance is not very good. The performance of a 2-ring
is better than a 1-ring, but the maximum speedup obtained is
only 25 even on 128 processors. In general, for a given number
of processors, we get more speedup for bigger problems and less
speedup for smaller problems. The size of a problem is deter­
mined by it's sequential execution time. The average execution
time of the problems for which the speedups of Fig. 3 were
obtained is roughly 200 minutes. On smaller problems (sequen­
tial execution time 16 minutes), the maximum speedup for 128
processors for 2-ring is approximately 10. But even for very
large problems, we were not able to get speedups significantly
higher than 25. It seems that parallel depth-first search with
the simple work distribution scheme is incapable of effectively
utilizing larger rings. The next section presents an analysis of
this scheme which explains this poor performance.

4 Analysis of Performance

In this section we analyze the performance of parallel cost­
bounded DFS. We assume that the effective branching factor of
the cost-bounded search space is greater then 1 + e (where e is
a positive constant). To avoid speedup anomalies, we assume
that both sequential and parallel DFS search the whole cost
bounded space for all solutions. All these conditions are met
by the parallel formulation presented in Section 3.

129

126

64

~, ., .,
0....

\[)

32

16

16

2 ·ring
Ja----~r---------- 25/128

1- rin

16.3/128

32 64 128

Number of processors

Figure 1: Average speedup vs Number of processors for
parallel cost-bounded depth-first search on a ring embed­
ded in Intel Hypercube. Sequential Exec. time :::: 10500
secs, problem size :::: 9 M nodes

4.1 Definitions and Terminology
1. Running time TN: is the execution time on N processors.

T1 is the sequential execution time.

2. Computation time Tcalc: is the sum of the time spent
by all the processors in useful computation. Since, both
sequential and parallel versions search exactly the same
cost-bounded space (to find all optimal solutions),

Tcalc on N processors = Tcalc on 1 processor ·= T1

3. Communication time Tcomm: is the sum of the time spent
by all processors in communicating with neighboring pro­
cessors, waiting for arrival messages, time in starvation,
etc. For single processor execution, Tcomm = O. Since,
at any time, a processor is either communicating or com­
puting,

Tcomm + Tcalc = N * TN

4. Speedup S: is the ratio l;;.
5. Efficiency E: is the speedup divided by N. E denotes the

effective utilization of computing resources.

s 1
E = N = 1+ Tf:::C"

6. Unit Computation time Ucalc: is the mean time taken for
1 node expansion.

7. Unit Communication time Ucomm: is the mean time taken
for sending a work request to a processor and receiving
a response (work or a null message). In the work dis­
tribution scheme of section 3, Ucomm is a fixed constant
(determined by the speed of the communication).

Figure 2: Linear Chain of processors

4.2 Isa-efficiency Functions
As discussed in the previous section, the efficiency obtained in
parallel DFS is determined by the number of processors and
the problem size.2 For a given problem size W, increasing the
number of processors N causes the efficiency to decrease be­
cause Tcomm increases while Tcalc remains the same. For a fixed
N, increasing W improves efficiency because Tcalc increases and
the work distribution scheme with a-splitting does not cause a
proportionate increase in Tcomm . If N is increased, then we can
keep the efficiency fixed by increasing W. The rate of increase
of W with respect to N is dependent upon the architecture and
the work distribution algorithm. The required rate of growth
of W w.r.t N (to keep efficiency fixed) essentially determines
the scalability of the architecture for the work distribution al­
gorithm. For example, if W is required to grow exponentially
w .r .t. :N, then it would be difficult to utilize the architecture for
a large number of processors. On the other hand, if W needs to
grow only linearly w.r.t N, then the work distribution scheme is

highly suited for the architecture. If W needs to grow as f(N) to
maintain an efficiency E, then f(N) is the iso-efficiency func­
tion and the plot of f(N) w.r.t N is the iso-effi.ciency curve.

Next we derive the iso-efficiency function of parallel cost­
bounded DFS for 1-ring. The analysis for 2-ring is similar and
is left out. We present a theoretical model that give us bounds
on total communication time Tcomm in terms of problem size
W and number of processors N for different work distribution
schemes. Predictions from our model seem to closely agree with
experimental data, hence we feel that the model is reliable.

4.3 Isa-efficiency Analysis of the simple
work distribution scheme

Consider a linear chain of N processors of Fig. 2. A 1-ring is a
linear chain with a fold back from processor N-1 to O. In a 1-ring
a processor can get work from its left neighbor and send work
to its right neighbor. Initially W work is available in processor
0. In order to achieve good work distribution every processor
needs to get roughly i for itself!. Suppose that whenever work
Wis split between a donor and a requester, then the requester
gets at most aW (for some constant a such that 0 < a < 1.0).
Then

Maximum piece of work coming into processor 0 is W
Maximum piece of work coming into processor 1 is aW
Maximum piece of work coming into processor i is aiW
From the above, we can see that in order to get i work

2It is also determined by the architecture; eg., hypercube and
shared memory architectures provide better efficiencies for parallel
DFS [10]. In this paper we restrict our discussion to the ring archi­
tecture only.

3 This is true only if the efficiency is high. Hence the analysis given
here is not valid for ''low-efficiency" iso-efficiency curves

130

w
Processor i has to get at least a1fv transfers (i ;::: 0).

N-1 l
Hence the total number of stack transfers 2: L N ;

i=O a

1 N-1 . 1 f3N - 1 1
= - L f3' (where f3 = -) = -- * -

Ni=O a /3-1 N

f3N -1 1
Tcomm = Ucomm * Jf='"1 * N (lower bound)

Tcalc = UcalcW

1 1
Efficiency= -

1+~ -1+~*(3;-1
calc UcalcN W -1

For constant efficiency,

f3N _ 1 . f3N
UcalcNW = Ucomm lf='"1 i.e., w = n(N)

(since Ucomm and Ucalc are constant)
Thus the iso-efficiency function is exponential.4 The Iso­

efficiency function for 2-ring can be obtained similarly, and is
also exponential. This explains the poor performance of 1-ring
and 2-ring.

4.4 An Improved Strategy

li1 the previous work distribution scheme, we restricted commu­
nication to occur only between immediate neighbors of the ring.
The analysis in the previous section clearly indicates a weakness
due to this: the total count of stack transfers grows exponen­
tially in a ring of processors because the size of the work pieces
coming into successive processors decreases geometrically (in
the ratio 1, a, a 2 , ...). To solve this problem, We designed the
following work distribution scheme.

In this scheme, we designate a special processor that selects
the target for each requesting processor. This special processor
maintains a variable I whose value denotes the next donor pro­
cessor. Whenever a processor needs work, it sends a message
to the special processor, which returns the current value of I
and also increments it. The requesting processor now sends a
request for work to processor I.

This work distribution scheme app-:;ars to have lots of over­
head, as even to decide the identity of the next donor, a proces­
sor needs to wait for O(N) time. Actual request for work and
receiving a response again takes O(N) time. On the other hand,
requesting work and receiving a response takes only a constant
time in the simple scheme. But, as the analysis of the next
section shows, the new scheme needs to make far fewer requests
for work. Therefore it has a substantially better iso-efficiency
function and speedup performance.

4.5 Isa-efficiency analysis of the Improved
Scheme

Let E be the minimum amount of work transferable. (The ab­
solute minimum amount of work transferable is one node ex­
pansion. If we give out work only from levels that are above
a CUTOFF depth, then E can be increased by increasing the

4Since the value of Tcomm used in the analysis is only a
lower bound, the actual iso-efficiency function can be worse than
exponential.

CUTOFF.) We now present an upper bound on the number of
stack transfers.

Let us assume that in every V(N) requests made for work,
every processor in the system is requested at least once. Clearly,
V(N) ~ N. In general, V(N) depends on the load balancing
algorithm. Recall that in a transfer, work (w) available in a
processor is split into two parts (aw and (1 - a)w), and one
part is taken away by the requesting processor. Hence after a
transfer, neither of the two processors (donor and req nester) has
more than (1 - a)w work (assuming without loss of generality
that a ::=:; 0.5). The process of work transfer continues until work
available in every processor is 'less than £. Initially processor 0
has W units of work, and all other processors have no work.

It is easy to see that after (log-1- .!:!'..)V(N) requests, maxi-
1-a f

mum work available in any processor is less than E.

Hence, the total number of transfers ::::; V(N)log 1 -'t
r=;;

w
Tcomm ~ Ucomm * V(N)log-1- - (upper bound)

1-o: €

Tcalc = Ucalc W

Efficiency= ~
1+~

1
Ucomm•V(N)logrb; ~

l + Ucalc*W -a

For the improved work distribution scheme, V(N) = N, and
Ucomm = O(N). Hence for iso-efficiency,

W...., O(N2)logW or W...., O(N2 logN)

This iso-efficiency function is much better than 13N. We im­
plemented the scheme and tested it's performance. As shown,
in the Fig. 3, the speedups are substantially higher than the
previous scheme.

4.6 Finkel and Manber's Scheme

Finkel and Manber used a different work distribution scheme
in their implementation of parallel depth-first search [2]. In
their scheme, each processor maintains a local variable, target,
to point to a donor processor. Target is incremented (modulo
N) every time the processor seeks work. We can compute the
iso-efficiency function of this scheme by following the method
in section 4.5. For this scheme, V(N) = N 2 in the worst case.5

But Ucomm is still O(N). Hence the iso-efficiency function can
be as bad as O(N3 logN).

The superiority of our improved work-distribution scheme
over this and the first scheme is clearly seen in the speedup
curves of Fig 3. Initially our second scheme is slightly worse
than the other two schemes due to the extra overhead of re­
questing the value of target before requesting for work. But,
for larger number of processors, our second scheme makes suffi­
ciently fewer requests than the other schemes, and hence gives
higher speedups.

5 Related Research.

Many researchers have implemented parallel DFS on the ring
architecture and studied its performance for around 16-20 pro­
cessors. Monien[13] and Wah[14] present parallel depth-first
~arch procedures on a ring network. The work distribution

131

128

16

16 32 64

Number of processors

Our second scheme

47/128

Finkel 's scheme

16.3/128

The simple scheme

128

Figure 3: Average speedup vs Number of processors for
parallel cost-bounded depth-first search on a ring embed­
ded in Intel Hypercube. Sequential Exec. time ~ 10500
secs, problem size ~ 9 M nodes

schemes in these formulations is very similar to the first scheme
presented in this paper. From the analysis of Section 4.3 (and
our experiments) it is clear that this work distribution scheme
is not able to provide good speedup on large rings.

Manber presents an abstract model in [8] that captures the
distribution of work being done in parallel depth-first search.
For this model, Manber presents different work distribution
schemes and computes lower bounds on the amount of inter­
ference in a shared-memory system. (Part of the analysis pre­
sented in Section 4.5 uses the same technique that Manber used
for the analysis of interference). Manber's analysis served as a
basis for the design of parallel depth-first search scheme pre­
sented by Finkel and Manber in [2]. This scheme has a bet­
ter iso-efficiency function (0(N 3 log W) worstcase) for the ring
than the simple work distribution scheme (see section 4.6). But
this function is worse than the iso-efficiency function (N 2logW)
of the improved scheme in Section 4.4. Superiority of our im­
proved scheme is clearly seen in the speedup curves of Fig 3.

6 Conclusions.

We have presented experimental and analytical evaluation of a
number of work distribution schemes used in parallel depth-first
search on the ring architecture. We found that the choice of the
work distribution algorithm has a significant impact on the per­
formance of the parallel depth-first search algorithm. We have
introduced the concept of iso-efficiency function to characterize
the effectiveness of different work distribution schemes. Table
1 shows iso-efficiency functions of parallel depth-first search for
different work distribution schemes. The development of the
new work distribution scheme for the ring was mbtivated by
the iso-efficiency analysis of the other two work distribution
schemes. Even though, the new scheme appeared to have a lot

5This result was proved by Manber[8] while analyzing the memory
interference in shared memory architectures.

!so-efficiency Function Load balancing scheme

PN Section2, Wah Tl 4]",Momen[13J"
N 3 logN Finkel iµid Manber[2]
N 2logN The improved scheme (Section4.4)

Table 1: !so-efficiency functions of different
work-distribution schemes.

of overhead, it had a better iso-efficiency function, and was ex­
pected to perform better on larger rings. We were pleased to
find that the experimental results were in close agreement with
our theoretical results.

The performance of parallel depth-first search is also greatly
dependent upon the architecture. Our experimental results and
iso-efficiency analysis shows that the hypercube and shared­
memory architectures are significantly better than the ring.
In[lO] we also present a work distribution scheme that has al­
most optimal performance on shared-memory/w-network-with­
message-combining architectures (such as RP3[1]). The iso­
efficiency function has been found useful in characterizing the
scalability of many other parallel algorithms as well.

Acknowledgements: We would like to thank Ralph Brick­
ner and Randy Michelson of Los Alamos National Lab for pro­
viding access to a. 128-processor Intel Hypercube.

References

[1] G. F. Pfister et al. The ibm research parallel processor
prototype (rp3). In Proceedings of International confer­
ence on Pamllel Processing, pages 764-797, 1985.

[2] Raphael A. Finkel and Udi Manber. Dib - a distributed
implementation of backtracking. ACM Tmns. of Progr.
Lang. and Systems, 9 No. 2:235-256, April 1987.

[3] M. Imai, Y. Yoshida, and T. Fukumura. A parallel search­
ing scheme for multiprocessor systems and its application

to combinatorial problems. In IJCAI, pages 416-418, 1979.

[4] R.E. Korf. Depth-first iterative-deepening: an optimal
admissible tree search. Artificial Intelligence, 27:97-109,
1985. Also a chapter in 'Search and Artificial Intel­
ligence',Vipin Kumar and Laveen Kana! Eds, Springer­
Verlag,1987(to appear).

[5] Vipin Kumar. Depth-first search. In Stuart C. Shapiro,
editor, Encyclopaedia of Artificial Intelligence: Vol 2,
pages 1004-1005, John Wiley and Sons, Inc., New York,
1987.

[6] Vipin Kumar and Laveen N. Kana!. Parallel branch-and­
bound formulations for and/or tree search. IEEE Trans­
actions on Pattern Analysis and Machine Intelligence,
PAMI-6, November 84.

[7] T. H. Lai and Sartaj Sahni. Anomalies in parallel branch
and bound algorithms. In Proceedings of International
.conference on Parallel Processing, pages 183-190, 1983.

[8) Udi Manber. On maintaining dynamic information in a
concurrent environment. SIAM J. of Computing, 15 No.
4:1130-1142, 1986.

132

[9) V. Nageshwara Rao, and Vipin Kumar Parallel Depth­
First Search on Multiprocessors, Part I: Implementation.
To appear in International Journal of Parallel Pro­
gramming, 1988.

[10] Vipin Kumar and V. Nageshwara Rao Parallel Depth-First
Search on Multiprocessors, Part II: Analysis. To appear
in International Journal of Parallel Programming,
1988.

[11] Nils J. Nilsson. Principles of Artificial Intelligence, Tioga
Press, 1980.

[12] M.E. Stickel and W.M. Tyson. An analysis of consecu­
tively bounded depth-first search with applications in au­
tomated deduction. In IJCAI, pages 1073-1075, 1985.

[13) Monien B. and Vornberger O. The Ring Machine. Tech­
nical Report No. 27, Dept. of Math./Computer Science,
University of Paderborn, Dec. 1985, Also in Computers
and Artificial Intelligence, 3(1987).

[14] Benjamin W. Wah and Y. W. Eva Ma. Manip -

[15)

a multicomputer architecture for solving combinatorial
extremum-search problems. IEEE Tmnsactions on Com­
puters, c-33, ~v1ay 1984.

V. Nageshwara Rao and V. Kumar. Superlinear speedup
in depth-first search. In Submitted for publication, 1988.
Also AI Lab TR, University of Texas at Austin, March 88.

PARALLEL ALGORITHMS FOR ANSWERING THE TAUTOLOGY QUESTION

Professor Gary D. Hachtel and Peter H. Moceyunas
Department of Electrical and Computer Engineering

University of Colorado, Boulder, CO 80309

Abstract ·This paper presents parallel multilevel and 1-level algorithms
for answering the tautology question for Boolean Networks. These paral­
lel algorithms recursively bipartition and assign work to available proces­
sors. The results from the implementation on a network of Sun 3 worksta­
tions, on an Encore Multi-Max multiprocessor and on an Intel hypercube
computer are presented. A model for predicting speedups in a general
divide and conquer setting is developed which includes communication
delays and start up costs of the host multiprocessor system. This model
accurately predicts speedups for problems with balanced recursion trees
and can be used to characterize the parallelization potential of the host
systems. For the specific context of Boolean tautology checking, this
model can be used to show that unit parallel efficiency (i.e., linear
speedup) is indeed possible, but that parallel efficiency is limited in the
1-level algorithm by tree imbalance and by size. The addition of dynamic
processor scheduling to overcome tree imbalance is presented, along with
preliminary results.

Introduction

In the computer aided design of VLSI circuits, the designer may
describe pieces of the digital system as a Boolean function (I-level func­
tion) or as a set of interconnected Boolean functions (Multi-Level func­
tion). Applications like test generation, logic minimization and
equivalence checking, which use as input these Boolean functions, require
an algorithm to check if these functions are tautologous. Note:

A Boolean function or network of interconnected Boolean func­
tions is tautologous if and only if all its outputs are equal to one
for all possible combinations of its inputs.

We will call an algorithm which determines whether or not a Boolean
function is tautologous a tautology algorithm. Single level and mul­
tilevel tautology algorithms have been previously studied by [4] , [6], [9] ,
[7], [5] and [8]. These algorithms utilize Shannon cofactoring with
recursive divide ~d '\onquer strategies. Due to the nature of the problem
run times are 0 q29J, where q is the number of inputs to the Boolean
function, althoug heuristics are often effective in reducing run times for
certain problem classes.

With the exception of [9], these previous tautology algorithms were
implemented for serial processing. We have developed from a I-level
tautology algorithm [4], and a multilevel algorithm [7], corresponding
parallel algorithms that use a recursive bipartitioning scheme to divide the
work among processors. These new parallel tautology algorithms have
been implemented on a network of SUN 3 workstations, on an Encore
shared memory multiprocessor and on an Intel hypercube computer. With
regard to purpose they are similar to that of [9], but differ with regard to
domain of applicability and in method employed (cf., the conclusions sec­
tion presented below).

The paper begins by briefly presenting how parallel computations
can occur in divide and conquer algorithms and then develops a model for
expected speedups of the parallel algorithm for a class of divide and con­
quer algorithms. The serial and parallel tautology algorithms using a
static processor assignment are presented with further development of the
speedup model specifically for tautology. This parallel speedup model is
designed for the problem of Boolean Tautology checking. It is, however,
generalizable with minor variations, to any of the following divide and
conquer applications: nested dissection for linear algebraic equations,
binary sorting, shortest path calculations, and VLSI placement. The
results of the experiments run on the three computer systems are then
given along with comparisons to the speedup models developed for both
multilevel and I-level tautology algorithms. Further improvements in run
time for the parallel algorithms through dynamic processor scheduling are
discussed followed by some conclusions and further work.

133

Divide and Conquer Algorithms

Given a particular problem, a recursive divide and conquer algo­
rithm will generate a set of recursive calls. This set of recursive calls can
be represented in a tree data structure, where a node in the tree represents
a recursive call to the routine. We will assume that the divide and conquer
algorithm is a binary recursive algorithm.

The manner in which a problem is divided and the size of the result­
ing smaller problems depends on the nature of the particular divide and
conquer algorithm. Algorithms which can divide problems into equal
pieces will always produce a full recursion tree. Other algorithms, like
tautology, attempt to create two equally sized problems but cannot
guarantee it and thus unbalanced recursion trees may occur.

Concurrency in Divide and Conquer

An underlying implication in a divide and conquer algorithm is that
the computational problem at each node of the recursion tree is indepen­
dent of the computations at all other nodes on the same level in the tree,
thus the work done in each node could be performed in parallel. If an
unlimited number of processors were available, all nodes on each level of
recursion could be processed concurrently. It is clear that in the worst
case an exponential number of processors is required.

Parallel processing is still possible with a limited number of proces­
sors. Let N, the number of processors, be a power of 2. For each of the
first log;2N levels of recursion there are enough processors to process in
parallel all nodes of a level. For each level 0 through log;2N , assign a pro­
cessor to each node on the level. Each processor assigned to perform the
work of a node at level log;2N is also assigned the work of all the node's
progeny. Figure I shows a recursion tree and the processor assignment for
a four processor system. Here, we assign a processor to each subproblem
generated at level log;2N in the recursion tree and let each processor find
its solution through serial computation. Note that processor assignment is
fixed relative to the recursion tree. Later, in the results section, we will
discuss the use of dynamic processor scheduling.

Clearly this strategy will have low parallel efficiency if the max­
imum level of recursion is not greater than log;2N . It is also evident that
as the maximum level of recursion (problem size) increases, the parallel
efficiency approaches IOO percent for problems with balanced recursion
trees. The details of how the parallel efficiency depends on the problem
size are not immediately evident. This is the motivation for developing a
model to predict speedup as a function of maximum recursion depth.
With such a model, we can get some insight into how speedups will
increase with problem size and determine the potential of this algorithm.
Furthermore, parallel processing overheads, such as communications and
startup costs, can be included in the model which can characterize the dif­
ferent computer environments.

Speedup Model for Divide and Conquer Algorithms

Our development of the speedup model begins with the following
observation: Not all divide and conquer algorithms produce a recursion
tree with a predictable structure. This unpredictable tree structure inhibits
the development of accurate timing models for all possible data inputs to
such an algorithm [3]. However, an accurate model can be made if we
restrict ourselves to those algorithms or sets of inputs to an algorithm
which produce recursion trees with some predictable structure, i.e., which
satisfy suitable constraints. In order to develop our speedup model, the
following assumptions are made about the divide and conquer algorithm
and the structure of its recursion tree:

1) The algorithm produces a full binary recursion tree for any input
data.

2) All nodes on a particular level of the tree will perfonn the same
amount of work.

3) The amount of work perfonned by a node in the recursion tree is
11 + 1. where 11 is equal to f times the 11 work done by its parent
node (O<k <2) and 1 is some constant for the particular problem.

In order to develop an accurate timing model, we assume communi-
cations and process start up costs (i.e. delays) to be non-zero. Clearly,
communications and start up costs are a function of the type of computer
system being used. Let a. be a parameter representing the way in which
the characteristics of a computer system influence these costs. In general
both costs depend on the characteristics of the particular divide and con­
quer algorithm employed. They also depend on the level of recursion. Let
A be a parameter embodying the properties of the particular algorithm and
denote the particular recursion level in the algorithm by i. Then the com­
munications and start up costs for a level i node in the recursion tree can
be modeled by the functions C (a., A , i) and I (a., A , i) respectively. For
any given computer system, the communications delay between different
pairs of processors can be different. Therefore the communications costs
are also a function of the different processor pairs. It may also be possible
that start up cost is influenced by the identity of the processor starting the
process and the processor which the new process is being started on.
Therefore let C.,,n(a.,A, i) represent the communications costs for pro­
cessor m to transmit data to processor n on level i +I in the recursion tree.
Similarly, let I,,.,n(a., A, i) represents the start up cost for processor m to
start a new process on processor n on level i+ I in the recursion tree.

We also define a quantity Al (a.,A) which is an initialization cost. In
the general case this parameter can be both a function of the particular
algorithm and oi the computer system. This cost represents the seriai
work a program may have to perfonn prior to the execution of the recur­
sive divide and conquer part of the program.

Before developing the timing models, we Connally define speedup.
The speedup due to N processors, SN, is

11
SN= tN , (1)

where t 1 is the run time for a serial divide and conquer algorithm and tN is
the run time for an N processor parallel divide and conquer algorithm. In
order to obtain a speedup model, models for the serial and parallel run
times must be developed.

Serial Run Time Model

Let I be the maximum number oflevels of recursion in the tree. We
define 110+1 to be the amount of work performed at the level 0 node in
the recursion tree (assumption 3). Following the algorithmic constraints
given above, the amount of work done by any node on a level can be
found in tenns of 110 and 1 by recursively ~Eying assumption 3. The

amount of work at any node on level i is 11o f ' + 1· There are 2i nodes

at a level i and / levels in the tree, thus the amount of work done or
the serial run time is

t1=t,[11o<f/ +~2;.
This can be further simplified to

t1 =11oi;f +1[21+1-1]

Finally, if there is some initial cost associated with starting the serial pro­
gram on this computer system, then an additional cost At (a.,A 1) must be
added to the serial run time, where A 1 represents the parameter embody­
ing the properties of the serial algorithm. The serial run time becomes

t I = 110,tki + 1[21+1 - l] +At (a.,A 1) • (2)

Parallel Run Time Model

The parallel run time model is developed as follows. Assume, as in
the serial run time model, I is the maximum level of recursion and 11o + 1
is the amount of work done at the level 0 node in the recursion tree. Let
the number of processors be N, such that N = 2i for some j E (1,2, ... } .
The N processor run time can be detennined by first calculating the run
time for those levels in which the nodes are outnumbered by the

134

processors, and then determining the run time while all N processors are
being used.

Let µ=min(/ ,logi-V). During the first µ-1 levels in the recursion
tree the work to be counted to obtain the run time for the first µ-1 levels is
the sum of the work done by nodes along any path from the root to a node
on level µ-1 , including the last node. This sum is explicitly

This simplifies to

:t[11o(f); +~

~ k j
11061\("T) +µ1. (3)

The parallel work done in the remaining levels of the recursion tree,
µ through I, is the sum of the work done to finish a µlevel node and all its
progeny. This is similar to the sum found for the serial algorithm.

t[11o(f)i + ~ 2i;t

simplifies to

(4)

As in the computation of the serial time, a At (a..AN) tenn is
required to include any initial start up costs for the N processor program.
Combining equations (3) and (4) and At (a.AN) produces the concurrent
run time IN, which is

IN=11o'.t[tf +µ1+ ~ 1~ki+1(2i+l;i_1] +At(AN,a.). (5)

This model for the parallel algorithm does not include communications
and process start up costs. To include these costs we observe that each
node in the recursion tree from the root to level µ- l, where
µ=min(l ,logiN) , will have a start up and communications cost associated
with it. In the model for IN developed above (5), it was possible to
assume that processing at each level of the recursion tree finished at the
same time because of the assumptions 1 and 2. If either the communica­
tions or start up costs are not equivalent for different pairs of processors,
then this assumption becomes invalid. After level µ-1, no more new
processes are started and the time for each processor to complete its work
is equivalent. However, processors may not begin processing the levelµ
nodes at the same time. The last processor to reach a level µ node will be
the last processor to finish processing. Therefore the overall run time is
governed by this last processor. The sum of the communications and start
up costs along a path from the root to a level µ node is the extra time
required to reach that level µ node. The path with the largest sum will be
the last node to begin processing at the µ level. Given a node z on level
µ-1, the binary recursion tree follows a unique path L from the root node
to z . Let Z be the set of all such paths for a particular set of µ-1 level
nodes. Each node in a particular path L is on a recursion level i and has a
processor m assigned to it. A new process on some processor n will be
started by processor m. Let p(L) be the set of all triples (m ,n ,i)
corresponding to nodes on the path L. Therefore the delay due to com­
munications and start up for an N processor algorithm is

max [Y [c .. ,n(a.,i.AN)+I.,,n(a.,i.AN)l] (6)
LEZ (m,n/rep(L) ~

Combining equations (5) and (6) the general model for the con­
current run time now becomes

IN= 110'.t[tr+ µ1+ ~ tki + 1[2l+l;t_ t] + At(AN,0.)

+max [~. (c (a..i.AN)+I .. ,n(a.,i,AN)l] (7)
LeZ (m,•frep(L) ~

Model for Speedup

The speedup now can be formulated by substituting the equations
(2) and (7) for t1 and IN in equation (1). This yields

+max [~. [c,,.,n(a,i,AN)+l,,.,n(a,i,AN)l]. (8)
LeZ (m,nf}ep{.l.) ~

Thus a general model for speedup has been developed. It can be easily
specialized to a specific algorithm and computer system. This model is a
function of Ai.AN, k,N, TJo. y, a, I and initialization, startup and commun­
ications costs. After the tautology algorithm has been presented, further
simplifications will be made to the model which are due to specific pro­
perties of the algorithm.

The Tautology Algorithms

In this section we will present both a serial and a parallel tautology
algorithm in coarse detail. The algorithms for multilevel functions and 1-
level functions are very similar. Since the I-level algorithm is a special
case of the multilevel algorithm, we will present the multilevel algorithm
with notations where the I-level version would differ.

Serial Tautology

The multilevel tautology algorithm described by [7] is a recursive
divide and conquer algorithm. A high level outline of the algorithm is
shown in figure 2. The term cover is defined to be the description of
either a I-level or multilevel Boolean function. A brief description of
each routine will be given here. For a more complete description of the
multilevel and I-level algorithms see [7] and [4] respectively.

The routine SPECIAL_CASES corresponds to the termination step
of any divide and conquer algorithm [11]. The outputs of cover F are
scanned: if any are set to 0 or all are set to I, then a O or I are returned
correspondingly. Otherwise a -1 is returned. In the I-level algorithm,
other attributes of I-level cover are checked which can give an immediate
answer to the tautology question. The I-level algorithm then calls
UNATE_REDUCTION [4] (not shown) if SPECIAL_CASES returns a
-1. This routine checks the cover for special unate properties and if they
exist allow the recursion tree to be trimmed. If an answer cannot be
determined by SPECIAL_CASES (or by UNATE_REDUCTION in the
I-level case), then an input variable is heuristically selected by the routine
SELECT_SPLIT. Due to the nature of the tautology problem, an optimal
choice of the splitting variable is not guaranteed by SELECT_SPLIT.
Next the routine COFACTOR is called twice, which creates two new cov­
ers by cofaetoring F with respect to xi and xi. In the multilevel algo­
rithm, the cofactoring procedure copies the cover F to create new mul­
tilevel covers F ., and F x, and asserts the primary input xi to a I or 0 . The

SIMULATE routine then propagates the value towards the primary out­
puts through logic simulation. In the I-level algorithm, this step is not
necessary because the input functions are only one level.
ML_TAUTOLOGY is recursively called using the two simplified func­
tions. If either returns 0, then the original function F is not tautologous.
Otherwise F is tautologous.

The major differences between the I-level algorithm and multilevel
algorithm is that the simulation step is not required for the I-level algo­
rithm and the I-level algorithm uses a unate filter. We will refer to the
work done by the SIMULATE routine as simulation work and the work
done by SPECIAL_CASES, SELECT_SPLIT and COFACTOR as
simplification work.

The Parallel Tautology Algorithm

The parallel tautology algorithm is shown in figure 3. This algo­
rithm is similar to the serial tautology algorithm up to the last call to
COFACTOR. After the last call to COFACTOR, the algorithm branches
to follow either a parallel processing path or a serial processing path,
based on the number of processors and the current level of recursion. If
the number of processors is greater than or equal to the maximum number
of nodes in the tree at the next level of recursion, then the parallel pro­
cessing path is taken. Otherwise, the parallel algorithm takes the serial
processing path and behaves exactly like the serial algorithm. In the con­
current processing path, a new process is started on another processor.

135

Let m be a label for the current process and n be a label for the new pro­
cess on another machine. Next, process m sends the cover F x, to process

n. Process m calls SIMULATE and then ML_ TAUTOLOGY with F,1 as
the input cover, and similarly process n calls SIMULATE and
ML_ TAUTOLOGY with F x, as the input cover. Like the serial tautology

algorithm, if either function is found not to be the tautology, then the
cover F is not the tautology. If both are found to be the tautology, then F
is the tautology. Note that the answer produced by process n must be sent
back to its parent process m and in tum process m must wait for the
answer from process n. The variable ii indicates at what level in the
recursion tree a processor began processing. If the current level of recur­
sion is equal to ii, then this indicates that the result from tautology should
be sent back to it's parent process. Otherwise, the answer should be sim­
ply returned. The parameter parent contains the information regarding
the identity of a process's parent. Each process must know this informa­
tion in order to send the tautology answer back to it's parent.

Speedup Model for Tautology

Using the characteristics of the multilevel tautology algorithm and
of our computer systems the speedup model developed previously (8) can
be simplified.

The work done by a node in the recursion tree for multilevel tautol­
ogy consists of simulation and simplification work. The simplification
work at the level 0 node for problems which result in full recursion trees
is proportional to j2i, where j is the number of inputs in the cover.
Further j is equal to /, the maximum level of recursion. The
simplification work decreases at each level of recursion, thus it
corresponds to the TJ term in assumption 3. We let

Tio= 121 . (9)

The simulation work can be roughly modeled as the number of functions
in the Boolean network, f, times a computer dependent factor ro(a).
Again for a set of problems which produce full recursion trees, f is pro­
portional to /, thus

y= ro(a)/. (10)

Also, since the SELECT_SPLIT routine attempts to choose a variable
which after cofactoring and simplification, produces two networks equal
in size, the simplification work of a child node is 1(1. of that done by its
parent. Thus we will let

k = 1. (11)

Approximate expressions for C,,.,n(IX,i ,AN) ,l.,,n(a,i ,AN) .ru(a,A.1)
and t.t(a,AN) are now given. For the computer systems involved, the
start up cost is assumed to be independent of the nature of the divide and
conquer algorithm AN, the recursion level i, and the identities of the pair
of processors involved, (m,n) . Thus we assume that start up cost depends
only on a , the nature of the particular computer system being used.
Therefore l,,.,n (cx,i .AN) is modeled as

l,,.,n(a,i,AN)=s(a), (12)

for all m, n, i and A . The parameter s(a) , is the computer dependent
scaling factor for startup costs. The distance between any pair of Sun 3
workstations is approximately equal to the distance between any other
pair. Also, the processors were selected on the hypercube such that com­
munications occurred only between nearest neighbor processors. There­
fore we assume that the communications costs between any pair (m,n) is
independent of m and n, but proportional to the amount of data transmit­
ted. The amount of data transmitted in the tautology algorithm is propor­
tional to the amount of simplification work done by the node receiving the
data, which decreases as 2-i . Thus the communications cost can be stated
as

. [k] i+l Cm,n (a,z ,AN)= c (a)TJo "1" (13)

for any level i-1 processor m which is transmitting data to a level i pro­
cessor n. The parameter c (a) is a computer system dependent scaling
factor for communications costs. The parameters At(a,AN) and Af(a,A. 1)
are assumed to be constants which are only a function of the particular
computer system. They are not a function of the number of processors
involved and therefore we let

tJ.t (a)= tJ.t(a,AN) = tJ.t(a,A 1), (14)

where tJ.t (a) is the computer dependent initialization scale factor. Now
substituting (9-14) into (8) and simplifying sums we get

I I ml(2'+'-J)+.:11(a)
SN= + + /'}}

[I] /-log,N+l s(a)log,N+.:1/(a)+ml(l];-t+log,N) (lSa)
(c(a)+2) 1-N +-w--+ 12,

for l> log2N and

1+1 + rol(21+'-l)+Ll.l(<X)
SN= 121

c(a)[l+(l /J+2-(1)' + s(a)I +<iijiil+(l+l)rol
2 2 2'

(lSb)

for I gog2N. The speedup model has been reduced to a function of I, N,
c(a), s(a) ro(a), and !J.t(a). For a particular computer system, N, c(a),
s(a), ro(a) and tJ.t(a) will be fixed and the multilevel speedup model will
be only a function of I. Figure 4 shows a plot of speedup as predicted
from the model versus /, the level of recursion, for N = 8. The plot con­
tains a family of curves for different values of the startup cost scaling fac­
tor s (a) given specific values for the communications and initialization
scaling factors c(a) and !J.t(a) and ro(a)=O. Several observations can be
made from this plot. Note as s (a) grows larger, the larger the problem
(greater level of recursion) required to obtain a speedup greater than 1.0.
As the problem size grows, the effect of the start up cost will become
negligible and the speedups will be practically the same as for s(a)=O.
Other plots using larger values of c (a), not shown here produce curves
with similar shapes but with decreased speedups as expe~ted. In a similar
manner it was found that the speedup model predicts that the initialization
cost !J.t(a) effects only those problems which have relatively few levels of
recursion. As tJ.t (a) is increased the speedup moves closer to 1.0 for small
values of I. As either l or s (a) is increased the the effect of tJ.t (a)
becomes less significant

To o~tain the speedup model for the 1-level algorithm, we set ro(a)
to zero, usmg the fact that there is no simulation work performed by that
algorithm.

Figure 5 shows a plot of speedup versus maximum level of recur­
sion for N = 8, c (a)= .55, s(a) = 8000 and tJ.t = 100. The plot contains
several curves, each with a different value for ro(a). As ro(a) becomes
larger, the predicted speedups for all problem sizes increases. Thus the
multilevel algorithm is expected to see higher speedups than the I-level
algo~thm. In fact, if the ro(a) is large enough, linear speedups would be
obtamable even for small problems.

The Computer Systems

The tauto~ogy algorithms were implemented on a network of eight
Sun 3 workstations, a twenty processor Encore Multi-max and on a 32
node Intel hypercube. The implementations on the Multi-Max and Hyper­
cube used the mechanisms for parallel computations provided by Encore
and Intel. Two software package developed at the University of
Colora?o, Boulder, DPUP [I] and GRAIL [10], were used in the imple­
me?tanon on the Sun 3 network. The packages provide routines which
which perform the necessary tasks for distributed processing. The 1-level
and multilevel versions were initially implemented using DPUP. The
dynamic scheduling versions of tautology used GRAIL.

Initial Results

This section presents a range of topics related to the data collected
from the 3 computer systems. The description of the measured data
descriptions of the test input covers are given before the actual results ar~
presented.

Definitions

Tests were done which would measure the real time required by the
serial and concurrent tautology programs to produce an answer. On the
Sun 3 network and on the Encore Multi-Max the run times include all sys­
tem and communications time which result from processes being started
and from data transfer. The run times from the Intel hypercube include all
system and communications times from data transfer but not process start
up times. The time to input the description of the cover was not included
in the run time on any computer system. Each set of input data for tautol­
~gy was run several times through the programs and the best/shortest
nmes were used to calculate the speedup numbers. Program run times
were measured on all computer systems at times when the systems had a

136

low probability of usage by other users. If other users were observed,
then those measurements were discarded.

Test Data

The example 1-level covers in [4] were used for testing 1-level tau­
tology. Multilevel covers generated by BOLD [2] (using the I-level cov­
ers as input) were used for testing multilevel tautology. Also, special tau­
tologous 1-level were generated which have the following properties:

1) A full binary recursion tree is produced when run through tautology.

2) Whenever a recursion occurs the cover is split into two equally sized
covers which are one-half the size of the original.

3) The depth of the recursion tree is the worst case, i.e., the maximum
possible for the number of inputs.

The first and second properties fulfill the constraints of the speedup model
developed previous! y. The final property indicates that for a particular
number of inputs, the tautology algorithm will be required to do the worst
case (i.e. the maximum amount) work. A set of similar multilevel covers
were generated which have properties 1 and 3. Covers with these pro­
perties are important because they match the model for speedup
described previously which allows the empirical determination of the
communications and startup parameters. The I-level covers which
have these properties are called covers of all minterms. The multilevel
covers with these properties are created from XNOR of the outputs of two
n-bit adder circuits and will be referred to as the adder circuits.

Results from 1-level Tautology

Variations in the run times for a given inout (cover) were observed.
especially on the Sun 3 network. Communications collisions are probably
the reason this occurs and it is more observable on the Sun 3 network
because its communications is much slower relative to its processor speed
as compared to the Intel hypercube or Encore Multi-max systems.
Further, larger variances in run times are observed between the results
from tests using 4 and 8 processors on the Sun network. This again is
most likely due to the increase in the number of processors which causes
more messages, more message collisions and thus a larger variance from
run to run.

The maximum level and the total number of leaves in the recursion
tree were recorded for each cover. Figure 6 contains plots of the speedup
model for I-level tautology (ro(a)=O) developed previously and the speed­
ups obtained with the covers of all minterms for the Sun 3 network, Intel
hypercube and Encore multi-max (labeled Sun 3, Hypercube, MultiMax
respectively). The Sun 3 network and Encore results were collected using
8 processors and the Intel results using 32 processors. Values for c (a) ,
s(a) and !J.t(a) that best matched the data were chosen (table 1). The
model corresponds very well with the special covers of all minterms. The
models using the same values for the 3 parameters but for different values
of N also matched very well, but are not shown here. Figure 7 shows a
plot of the speedup model and the speedups from the other covers from
the Sun 3 Network using 8 processors. Similar plots for the Encore and
Intel systems are very similar and omitted.

As one would expect, the model applied to the three computer sys­
tems produced very different values for the scaling factors c (a) , s (a) and
!J.t (a) (see table I). The start up cost on the Sun 3 network is expected to
be much larger due to the communications between the user program and
the DPUP System [11] . The Encore computer system uses a fork call and
has a much faster communications so it should have a less costly start up.
~he run times from the Intel system did not include processor start up
nmes and therefore s (a)=O. The communications scaling factor c (a) is
not nearly as different, but again is higher on the Sun 3 network as would
be expected. These differences in the speedup and communications scal­
ing factors account for the better speedups achieved by the Encore com­
puter versus the Sun 3 network.

Those covers which generate points below and to the right of the
model's curve in figure 7, produced recursion trees with less than 21 leaf
nodes, where l is the maximum level of recursion. This indicates that the
recursi~n tree was not full and therefore these covers do not satisfy the
constramts of the model. The accuracy of the model can be increased
across all problems by introducing the concept of the "effective level of
recursion". A plot of speedup versus the effective level of recursion is
shown in figure 8 for each of the 3 computer systems using the maximum
number of processors available. The effective level of recursion is

defined as the log:zR , where R is the number of leaf nodes in the recursion
tree . The model's curve is also shown in these plots. Since the model
assumes a full and balanced tree, the effective level of recursion .is equal
to the maximum level of recursion assumed by the model, and thus the
model's curve does not change. Notice that the data points have moved
much closer to the model's curve. By using the effective level of recur­
sion we are attempting to model an unbalanced recursion tree by a bal­
anced tree with a maximum level of recursion log:zR , which is less than
the maximum level of recursion for the unbalanced tree. It appears that
this approximation works quite well.

In several cases it was observed that a significant increase in
speedup was not observed when the number of processors was increased
for a given input cover. The speedup model reveals that this behavior is
to be expected for those problems which recur only a few levels. Figure 9
contains a plot containing a family of speedup model curves resulting
from using different values of N and the same values for c (a), s (a) and
/lt(a) found for the Sun 3 network. There is a region where the models
for different N processors are very close together and if the tautology
algorithm achieves a maximum level of recursion in this region for a
given input, no appreciable improvements in speedup will occur even if
the number of processors is increased. The plots in figure 8 show that
nearly all the data points are within this saturation region for the computer
systems. The Encore Multi-Max and the Intel hypercube (plots not
shown) have smaller saturation regions than the Sun 3 Network. This is
due to the smaller (zero) start up scaling factor s(a) on the Encore Multi­
Max (Intel Hypercube). The smaller the saturation region the larger the
set of problems which will see speedup improvements as the number of
processors is increased.

Results from Multi-level Tautology

The multilevel algorithm has only been implemented on the Encore
Multi-Max and on the Sun 3 workstations. The results obtained from the
parallel multilevel tautology on the Encore are very similar to those seen
from the I-level tautology program. The speedup model constants were
chosen to give the best fit to results from the adder circuits described
above. Table 2 shows the values of the computer dependent speedup
model parameters chosen. Figure 10 shows a plots of speedup versus the
maximum level of recursion on the Encore. Each curve represents the
speedup model's prediction for 2, 4 and 8 processors. The data points
near each curve are the .actual speedup obtained for the respective number
of processors using the adder circuits described above. The speedup
model matches the data very well. The value of s(a) for the multilevel
algorithm is much larger than the value for the I-level algorithm. This
suggests that at least on the Encore machine that startup cost is not
independent of the algorithm. The mechanism used to create a new pro­
cess is the "fork". Since a fork must physically copy the program from
one processor's memory to another, it is clear that the time of a fork is
dependent on program size. The multilevel program was 2.6 times larger
than the I-level program therefore it is understandable that the startup
time would be larger. Figure 11 shows a plot of the speedups from other
examples run through the multilevel tautology algorithm using 8 proces­
sors versus maximum level of recursion . Most speedups are observed to
be generally below the speedup model curve. All of the circuits which
produced speedups less than what the model predicted were problems
which did no~ produce full recursion trees. If, however, a plot of speedup
versus effective level of recursion is made, there is a shift to the left of
data points towards the speedup model's curve. Figure 12 is a plot of
speedup versus effective level of recursion from data obtained using 8
p~ssors and !'1e values of the speedup model constants used in the pre­
vious plot As m the I-level case the speedup model curve remains the
same since it assumes a full recursion tree, but the data points are now
closer to the curve.

The speedups obtained from the multilevel problems appear to be
hig?er than similar I-level problems. A cover of all minterms problem
which recurs the same level as a adder circuit does not see as great a
speedup as the adder circuit does even though they both produce a full
recursion tree. This better performance by the multilevel algorithm is due
to the extra simulation work done at each node in the recursion tree. The
speedup model for the multilevel algorithm predicts near linear speedups
for reasonable recursion depths, as compared to the I-level speedup
model which predicts linear speedups at depths greater than 100, beyond a
practical problem size.

137

Improving Results: Dynamic Processor Assignment

Clearly with this static processor assignment, problems which pro­
duce unbalanced recursion trees always produced low speedups. Another
version of multilevel tautology has been developed which dynamicly
schedules the tautology work among the processors. This algorithm
begins, as the previous algorithm, by assigning a processor to each sub­
problem generated at each level of recursion up to level log:iN. However,
when a processor is finished, any processor which has available work will
attempt to give part of its problem to it. In this way, large problems which
are highly unbalanced (i.e. c432) can balance the load by using proces­
sors which finish early.

The multilevel algorithm using dynamic processor scheduling has
been implemented on the Encore Multi-Max and on the Sun 3 Network.
The Sun 3 network implementation uses the GRAIL distributed software
package.

The results obtained to date are encouraging. On a large problem,
C432, a 36 input 7 output boolean network, very good results were
obtained. This problem produces a highly unbalanced recursion tree.
There are 2.2 million leaves in its recursion tree whereas a full tree would
have a leaf count around 69 billie!n. Table 3 contains the results. When
the dynamic processor scheduling program was run through smaller
examples, the results were not as impressive. In many trivial problems,
degradation in speedups occurred. Since these problems take only a short
amount of time to process (less than a few minutes), we are not too con­
cerned with these problems. However, it should be noted that even with a
large problem, there is room for improvement. For example, the c432
result using 20 processors on the Encore is below 19. The cause of this
less than linear speedup may be caused by a poor scheduling algorithm
which results in too many small problems are being given to available
processors instead of larger ones and the overhead is causing a reduction
in speedup. Currently we are investigating the possibility of modeling
processing time of a cover so that the scheduler can better deal out work.
Early experiments suggest that this may be feasible. It is believed with an
accurate model of processing time, both the small problems and the large
problems will see significant improvements in speedup the dynamic pro­
cessor scheduling algorithm.

Conclusions and Further Work

The parallel I-level and multilevel tautology algorithms can be
practically applied to both the distributed and multiprocessor computer
environments. Covers which produce full or nearly full recursion trees
produce the best speedups and these problems are the most time consum­
ing for the serial algorithms.

Both algorithms are designed for a distributed computer environ­
ment Each process6r is given a substantial portion of work and there is
not a tremendous amount of communications between processes. From
the plots of the speedup model it is clear that the bipartitioning along the
recursive call boundaries cannot achieve linear speedups for practical
examples in the case of I-level tautology. It would be interesting to
investigate the possibilities of parallelizing the routines of the I-level tau­
tology algorithm.

The computer system can have a substantial effect on the speedups
obtained. It was observed that communications, startup and initialization
costs will affect the results. Startup costs degrade speedup for problems
with covers which only recur a few levels. Because of startup costs, prob­
lems which recur only a few levels will see little or no increase in speed­
ups if the number of processors is increased. Figure 3 shows a plot of the
speedup models for several values of N which shows a region where pro­
cessor saturation occurs (between maximum level of recursion I and 6).
It is apparent that the startup cost is quite substantial on the Sun 3 network
and non-trivial on the Encore Multi-Max. Data taken from the Intel
hypercube did not include startup costs. Thus these results indicate the
type of improvements that could be obtained by reducing the the startup
costs. Research in the area of reducing startup costs, especially on the
Sun 3 network should be pursued.

The speedup model for tautology has been developed under the
assumption that startup and communications costs are not a function of
the number of processors attempting to communicate simultaneously over
the channel. However, as the number of processors increases, the number
of message collisions increases. The results from the Sun 3 Network
presented in this paper were obtained using at most 8 processors and the
the effect of message collisions may have been very small. However, if a
larger number of processors is used then this effect could become

significant. It is not clear how well the model will extend as number of
processors is increased.

Finally, the model was developed in a general manner and should
be easily applicable to recursive divide and conquer algorithms with the
properties given previously (section titled Speedup model for Divide and
Conquer Algorithms). The model can also be applied to a particular
divide and conquer algorithm which has a subset of inputs which produce
the properties stated above. The speedup model for tautology make
several assumptions specific to the tautology algorithm and the computer
systems (section titled Speedup Model for Tautology). Alterations to the
communications and startup cost models will be necessary if these
assumptions are not true for the particular recursive divide and conquer
algorithm or the particular computer system.

Our results have shown that almost linear speedups are available for
problems which are of sufficient size and lead to full or effectively full
recursion trees. Examples are the covers of all minterms in the I-level
case (c.f. asymptote figure 1), and the adder circuits, other data path cir­
cuits (multipliers, alu's), and c432 in the multilevel case. We note that
while c432 recurred to the full depth of its number of inputs, it still had an
imbalanced tree, and so required dynamic scheduling to achieve nearly
linear speedup. This scheduling algorithm did not work well, however, on
problems with limited effective recursion level, and we are now working
on improvements to the scheduler which correct this deficiency.

We have observed that dynamic scheduling results obtained from
partially loaded computer system have produced acceptable run times.
The scheduling algorithm appears to be robust enough to correctly shift
work from the slower/loaded processors to the faster/unloaded processors.
Although efficiencv is degraded. the initial results indicate that the avail­
able computing re~ources-of the- loaded system are being used efficiently.
Future work includes a further study of the effects of uneven processor
loading, which represents a more practical setting, on the tautology run
times.

We observe that in the context of multilevel logic minimization, [2],
analogous tautology checking for c432 has been achieved in as little as 5
seconds, as opposed to 8 hours. Yet, further tautology requests in the
same context required 5-8 hours. This nonuniformity of resource
consumption is a formidable obstacle to extending the size capability of
multilevel minimization. Nevertheless, it does seem that all cases that
lead to "large" cpu requirements also lead to linear speedups in the
corresponding parallel implementations. Thus parallel processing does
appear to offer the hope of directly extending the size limitations of mul­
tilevel logic minimization algorithms, most of which are based on tautol­
ogy checking or other divide and conquer type algorithms.

In fact, the parallel tautology has been implemented in the mul­
tilevel logic minimizer, MLMIN. Using this parallel MLMIN, we were
able to finish the c432 problem in 10.1 hours on the Encore Multi-max
using 16 processors versus 69.1 hours serially.

We have at this time no direct way to compare our results to those
reported in [9], since that work was done on a different computer, and
used a different (although still divide and conquer) algorithmic approach.
Further, that work was designed for a testing and logic verification (rather
than for a logic minimization) context. Thus it was applicable only to a
restricted class of Boolean networks (in which the individual functions
were required to be typical primitive logic gates, such as NAND's,
NOR's, XOR's, etc). However, it does seem that the general conclusions
stated above are supported by that work as well.

Acknowledgements

This work was supported in part by The National Science Founda­
tion Grant #DMC-8419744, The Air Force Office of Scientific Research
Grant AFOSR-85-0251, with additional funding provided by IBM the
Corporation. We gratefully acknowledge the help of Reily Jacoby in pro­
viding theoretical consultation on tautology checking as well as detailed C
code libraries for our use.

I. T. Adachi, Proceedings 19th Design Automation Conference, 1981,
785-791.

2. K. A. Bartlett, D. G. Bostick, G.D. Hachtel, R. M. Jacoby, M. R.
Lightner, P. H. Moceyunas, C. R. Morrison and D. Ravenscroft,
"BOLD: A Multiple-Level Logic Optimization System",
ICCAD87, 1987.

138

3. J. Bentley, D. Haken and J. Saxe, "A General Method for Solving
Divide-and-Conquer Recurrences'', SI GA CT News News, Fall 1980
'36-44.

4. R. K. Brayton, G. D. Hachtel, C. McMullen and A. Sangiovanni­
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Kluwer Academic Publishers, Boston, 1984.

5. G. D. Hachtel and R. M. Jacoby, "Algorithms for Multi-Level
Tautology and Equivalence", Proceedings of the IEEE
International Symposium on Circuits and Systems, Kyoto, Japan,
June 1985.

6. G. D. Hachtel and R. M. Jacoby, "Algorithm for Multilevel
Tautology Checking", IEEE Trans. on CAD (accepted), January
1986.

7. G. D. Hachtel and R. M. Jacoby, "Verification Algorithms for
VLSI Synthesis", Proceedings, NATO AS! on Logic Synthesis and
Silicon Compilation for VLSI, The Netherlands, 1987.

8. R. M. Jacoby, "Algorithms for Equivalence and Tautology
Checking for Boolean Networks", Master's Thesis, University of
Colorado, January 1986.

9. H. T. Ma, S. Devadas, A. Sangiovanni-Vincentelli and R. Wei,
"Logic Verification Algorithms and their Parallel
Implementation", 1987 Proceedings from the 24th ACM/IEEE
Design Automation Conference, Miami Beach, Florida, 1987, 283-
290.

10. P. Maybee, "Grail: An Environment for Parallel Distributed
Programming ", PhD Thesis, Department of Computer Science,
University of Colorado, Boulder, Colorado, In Progress.

11. P. H. Moceyunas, "A Parallel Implementation of a Tautology
Algorithm", M.S. Thesis, Department of Electrical Engineering
and Computer Engineering, University of Colorado, Boulder,
Colorado, May 1987.

Table 1

1-Level Tautology_ Speedu)l_Model Constants
Computer c (ex) s(ex) 6(ex)
~tern

Sun 1.0 80,000 0.0
Encore .55 600 100.0

Intel .1 0 600.0

Table 2

Multilevel Tautolo eedu
Computer s (ex) 6(ex) co(ex) s stem

Encore 8000 100.0 50

Table 3

Computer System Number of Run time Speedup
Processors J_hour&

Sun 3 1 12.1 -
8 1.6 7.6

Encore 1 33.2 -
8 4.3 7.75
20 1.9 17.1

Level of
Recursion

0

I 0------0

Figure 1

. .
0-----0

. .
0-----0 0------0

Processor 1 's subtree Processor 3's subtree Processor 2's subtree Processor 4's subtree

Figure3

procedure ML_ TAUTOLOGY (F , I, N, parent, il)
Inputs:

F - is a multilevel cover
i - is the current level of recursion
N - is the number of processors in the computer system
parent - is information about the parent process of this process
ii - Level in the recursion tree that this processor

made its first call to TAUTOLOGY
Output: Returns a 1 if the cover is a tautology otherwise returns 0

r ~ SPECIAL_ CASES(F)
if (r #-l) return (r)
j ~ SELECT_SPLIT (F)
Fx, ~ COFACTOR(F,x;)
Fx, ~ COFACTOR(F ,ij)

/* Start a new process*/
if (i ~ (logiN)-1)

Start new process on another processor
Send F x, to the new processor

/* newparent is information of the new process's parent*/
Call SIMULATE (F x,) on the new processor

Call ML_TAUTOLOGY(Fx,, i+l,N 11ewparent, i+l)

Fx, ~ SIMULATE (Fx,)
if (ML_TAUTOLOGY(Fx,, i+l, N ,parent, ii)= 0)

a. if ii ti return (0)
b. Send a 0 back to the parent process.

Wait for the child process to send an answer back
a. if ii -Fi return the answer
b. Send the answer back to the parent process.

/* Perform Serial tautology *I
else

Fx, ~ SIMULATE (Fx,)
Fx,~ SIMULATE(Fx,)

if (ML_TAUTOLOGY(Fx,, i+l,N ,parent, ii)= 0) return (0)
if (ML_TAUTOLOGY(Fx,,i+l,N .parent ,ii)= 0)) return (0)

return(l)
end procedure

139

Figure2
procedure ML_ TAUTOLOGY (F)
Input F - a multilevel cover
Output: Returns a 1 if F is a tautology otherwise returns O

r ~ SPECIAL_ CASES(F)
if (r #-l) return (r)
j ~ SELECT_SPLIT(F)
F,, ~ COFACTOR(F,x;)
Fx, ~ COFACTOR(F,ij)

Fx, ~SIMULATE(Fx,)
F; ~ SIMULATE(F;)

if C TAUTOLOGY(Fx) = 0) return (0)
if (TAUTOLOGY (F;) = 0)) return (0)
return (1) '
end procedure

lllJHduD
8,00

8.50

5.00

4.50

4.DD

Figure4

1·
::: /?' / I 2.!IOl- /
2.00 ~ s=r s=1~ s=10900
t.&oh 1 j I
1.00 ~ I . - s=1000000
D.50t_ /. I
D.OOO -r l -r· J !~~ I~ I~ I~ ~ ~ 24 ~

Mix!.,. LaYll of Rear1!an

Speedup Figure 5 w=1000
B.OOr - - - - - -w=100
7.00.- / ,,,,,..---·-·-·-·-

6.00 ~I / - _J1=10

; I I /-' ,,--- - _____.t1=0
5. 00 !- / ------
4 .00~ l I/
3.00\- / / I I
::::~LL .LLL .L L .. LJ

' O 2 4 6 B 10 12 14 16 18 20 22 24 26
Maximum Level of Recursion

Speedup
9.0o r
B. 00 [_

Figure6

Hy~ercube /"
i /'

7 .OO [I /./MultiMax
6. 00 : i -0- l
5.oot /~ _
4.00 / ~---..-.~I
3.oo~ . ? /. r
2.00 r / ll()* / San 3

~·~~ ~_L_J_L_L _ _J
. 0 2 4 6 B 10 12 14 16 18 20

Maximum Level of Recursion

Speedup
6.oo r

:::: ~r
3.00

2,00

i.00

Figure?

0

[J g

0
[J [J

a
[J

o a
0. 00 0_L--1;t8adtl1fi---D~--OIJI L__L.D.-_J

5 10 IB ~ ~ ~ ~

Speedup
a.oo r
5.00 I
4.oo r-

l

3.00 i-
i

2.00 ~
i

1.00 r-

Maximum Level of Recursion

Figures

0 · 00 o'---a-5mmlllll!'-'.1~-- i~---2~--- -2~ -·· -3~-- -·is

Speedup
4.50 ;-

4.00 ~
3,50 f-
3.00 t-
2 .50 1-

1,50

Effective Level of Recursion

Figure9

2.00 L~
1.00 .~·
0.50 ~Y' o. 00

0
--2

11---1..-._1 <-=·~_L _ _l __ _l __ L __ L_J
4 6 8 10 12 14 16 18 20
Maximum Leval of Recursion

140

Figure 10
Speedup

8.00 [

7.00 ~ N'"8

6.00 ~
5.00 f-

l I

4.00 j- / ? _._ .--- -ill- -N=o4 3.ool-L'
2.00 ~ .~·--·~-+-·--·N·2

~:~~ t L .. 1. . .L L L L L L .. J J J
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Maximum Level of Recursion

Speedup
8.00 r

i
1.00 r
6.00 r
5.00 [

4.00 [

Figure 11

x

x
)C x

~ ! xx x xx x 3,00 t
2.00

1.00

0 oo I • 0

I x x x x x
1 J? I M I I _j_ __ j__L_J __ J _ _l_J_J
2 4 6 8 10 12 14 16 18 20 22 24 26

Maximum Level of Recursion

Figure 12
Speedup

8,00 l
1.00 I

::~~ ~
4.00 ~
3.00

2.00

1.00

x

x
x x

x

)(x
x x
x

x
0 00 ,__~..__.L_J__J_L__J __ _J__L_l_L _ _J_ _ _J

. 0 2 4 6 8 10 12 14 16 18 20 22 24 26
Effective Level of Recursion

Parallelism in Knowledge-Based Systems with Inheritance

Michael Greenberg and Janice E. Cuny

Department of Computer and Information Science
University of Massachusetts, Amherst, MA 01003

Abstract: Applications that use domain expertise often
require repeated queries of large databases; these queries
typically involve the determination of attributes through
inheritance. We present a parallel inheritance algorithm
using inferential distance that does not require any form of
network conditioning. It achieves speedup both in the par­
allel spreading of search activations within a single query
and in the simultaneous processing of multiple queries.
We also show that it is possible to significantly improve
the performance of some specific networks by adding small
amounts of additional processing capacity.

1 Introduction

Applications that use domain expertise - medical di­
agnosis, mechanical design, and computer assisted instruc­
tion, for example - often require repeated queries of large
knowledge bases. In order to provide concise descriptions,
these knowledge bases are usually organized as taxonomies
of objects and classes of objects with their properties stored
as high as possible within the hierarchy. This avoids a sub­
stantial amount of redundancy but it means that queries
must be answered using inheritance. Inheritance is the
process of inferring properties about objects from group
membership: a prototypical chair has four legs, so we
can infer that a specific chair has four legs; all mammals
are warm blooded, so we can infer that dogs are warm
blooded. The efficient implementation of inheritance is
critical to performance.

Inheritance is complicated by ezceptions; "Birds fly"
but "penguins are birds" and "penguins don't fly." The
most successful approach to dealing with exceptions [1)
uses inferential distance, introduced by Touretzky [2]. With
this approach, attributes are inherited from their "closest"
ancestor according to a partial ordering:

"The essence of this ordering is that an indi­
vidual or class A is 'nearer' to class B than to
class C iff A has an inference path through B

to C." [2, p. 12]

For example, in Figure 1, Opus is nearer to Penguin than
to Bird because there is a path from Opus to Bird that
goes through Penguin.

ANIMAL

t is-a

BIRD (locomotion: fly)

t is-a

IS-a swim)

OPUS

Figure 1: Sample Network. OPUS should inherit the value swim
for locomotion because swim at node PENGUIN overrides fly at
node BIRD.

It was first suggested that inheritance algorithms using
inferential distance could not be done in parallel [3). Later,
Touretzky showed that it could be done on appropriately
conditioned networks [2) but the conditioning requires n 2

time [1] and must be repeated after each network modi­
fication. We present a parallel inferential distance algo­
rithm that does not require network conditioning. It has
two sources of parallelism: the spreading activation of a
single query and the simultaneous processing of multiple
queries.

In Section 2, we describe the parallel algorithm for an­
swering a single query and give an experimental analysis
of the speedup obtained. In Section 3, we extend the al­
gorithm to permit the simultaneous processing of multiple
queries and in Section 4, we consider the effects of adding
additional processing capacity to alleviate bottlenecks at
frequently accessed nodes. In Section 5, we summarize
our results.

2 Single Query, Parallel Inferen­
tial Distance Algorithm

A query to a knowledge base begins with the request
for an attribute value and ends when all legal values sat­
isfying that request have been sent to the originating uodc.

141

Our algorithm assumes an underlying MIMD message pass­
ing model of computation and does not make use of any
global state information. Each process contains the de­
scription of a single concept and communicates with pro­
cesses containing related concepts. We make no any as­
sumptions about the transit time or the arrival order of
communications.1

The algorithm has two variants: in the first, processes
do not have local memory other than that needed to store
attribute values; in the second, they do have local memory
available for status information.

2.1 First Variant: No local memory

The algorithm is initiated when a request for an at­
tribute value arrives at an originating node. If that node
has a val~e locally, it is returned; otherwise, the knowledge
base is searched. As the search progresses, activity spreads
through the network using PLUS messages meaning "Do
you have any values?" and MINUS messages meaning "Any
values that you have are overridden." Both types of mes­
sages contain the name of the originating node; PLUS mes­
sages contain the requested attribute name as well. An­
swers are returned to the originating node using FOUND
messages meaning "I have a legal value." and IGNORE
messages meaning "Ignore any values that I've given you."
FOUND messages contain a located attribute value and the
name of the node where it was found; IGNORE messages
contain the name of their source node.

Each node reacts to incoming messages as follows:

• If a node without a value for the attribute receives
either a PLUS or MINUS message, then a copy of the
message is sent to each parent.

• If a node with a value for the attribute receives a
PLUS message, then a FOUND message is sent to the
originator and a MINUS message is sent to each par­
ent.

• If a node with a value for the attribute receives a
MINUS message, then an IGNORE message is sent to
the originator and a MINUS message is sent to each
parent.

The final answer is computed by the originating node as
the set of all "found" values minus the set of all "ignored"
values. The originating node cannot complete its calcu­
lations until all message activity within the network has
terminated. In order to detect this, we use a notion of
conservation of mass:

1Touretzky's model differs in several ways. His algorithm does not
arcumulate the answer at a specific location but leaves it distributed
throughout the network. In the case where two incomparable values
arc found, our algorithm will report both while his algorithm reports
only one. In addition, Touretzky assumes an SIMD model of com­
putation in which the system can detect the cessation of message
activity.

142

A mau is attached to each message. If a node
sends out n messages in response to a received
message with mass in, each outgoing message
is assigned a mass of in/n. Initial requests
enter the system with a mass of 1. The origi­
nator can terminate when it has received back
a total mass of 1.

A fifth type of message MASS is used to transmit mass from
a node without ancestors to the originator.

To see that the algorithm is correct, notice that the
activation must reach every node on an ancestor path ex­
tending from the originator: nodes up to and including
the first node with a value on a path receive PLUS mes­
sages and the remaining nodes on the path receive MINUS
messages. If a node is on more than one path, it can re­
ceive both PLUS and MINUS messages; if it does, the MINUS
indicates the presence of a value that is on an inference
path from the originating node. Thus a node with a value
will receive only PLUS messages in exactly the cases where
it has a valid value as defined by the inferential distance
criteria. Further, the algorithm must halt for networks
without cycles (inheritance hierarchies, by definition, do
not have cycles): mass is always conserved and all mass is
eventually returned to the originating node after reaching
either a node with a value or a node without a parent.

Example. If the node OPUS in the network shown in Fig­
ure 1 receives a message requesting its mode of locomo­
tion, the following activity should result (assuming unit
time for operations and message transmissions):

Time Unit 1: The initial message is sent to OPUS re­
questing his method of locomotion.

Time Unit 2: OPUS sends <PLUS, .5, locomotion, OPUS>
to PENGUIN (a PLUS message with mass .5; the orig­
inator is OPUS) and <PLUS, .5, locomotion, OPUS>
to BIRD.

Time Unit 3: PENGUIN sends <FOUND, .25, swim> to
OPUS and <MINUS, .25, OPUS> to BIRD. BIRD sends
<FOUND, .25, fly> to OPUS and <MINUS, .25, OPUS>
to ANIMAL

Time Unit 4: BIRD sends <MINUS, .125, OPUS> to
ANIMAL and <IGNORE, .125, BIRD> to OPUS. ANIMAL
sends <MASS, .25> to OPUS.

Time Unit 5: ANIMAL sends <MASS, .125> to OPUS.

Time Unit 6: OPUS has received back a mass of 1 and
calculates the answer is swim.

Spreading activation requires a time proportional to
the depth of the search tree rather than its size; thus,
there is more parallelism available in "bushy" networks.
Defining bushiness to be the average of the number of

nodes in a search tree divided by its depth, the knowledge
bases we have investigated have a bushiness value between
2 and 3. The speedup achieved for the overall processing
of a query is further limited by the need to accumulate
the final answer in the originating node. While some of
the accumulation can overlap with the search itself, the
originating node is potentially quite busy, receiving mes­
sages from every node on an ancestor path that either has
a value or has no parents.

Before presenting our experimental results, we describe
the second variant of our algorithm in which message traf­
fic (including that directed to the originating node), is
reduced with the use of local memory.

2.2 Second Variant: Local memory

For this version, we add a single memory cell to each
node that keeps track of the history of that node's par­
ticipation in a query. The cell can record one of three
status values indicating that (1) neither PLUS nor MINUS

messages have been received, (2) PLUS but not MINUS mes­
sages have been received, or (3) MINUS messages have been
received. The use of this information can reduce message
traffic. Nodes with values that receive a second message
need only send their mass back to the originator (possibly
in an IGNORE message). Nodes without values do the same
unless they receive a PLUS followed by a MINUS in which
case the MINUS must still be propagated forward. If used
for the query described above, for example, this algorithm
would decrease the number of time units needed from 6
to 5 and the number of messages from 10 to 8.

We have simulated the performance of both variants
of our inferential distance algorithm on three knowledge
bases. The first, DATATYPEl, is an 80 node data type
lattice. DATATYPEl has a single node that is the ances­
tor of every node in the network. Since this is not typical,
our second network, DATATYPE2, is the 79 node network
that resulted from removing DATATYPEl's top node; it
has five top nodes. ·our third network, CALL, is a 569
node call graph that has been randomly seeded with val­
ues.

The results of our simulations are shown in Figure 2.
We assumed that processes could respond to incoming
messages in unit time and that direct connections were
available to all processes for outgoing messages; we did
not charge for communication overhead. Thus, our re­
sults do not measure the parallelism that can be realized
on a specific machine, but instead measure the parallelism
inherent in the algorithm.

The table shows the average time needed to answer a
query and the average number of messages sent. It can
be seen that the algorithm's performance is improved by
memory. Assuming the running time of the best sequen­
tial algorithm for inferential distance is approximately the
same as the number of messages sent using the second

143

Size
DATATYPEl 80

without memory
with memory

DATATYPE2 79
without memory

with memory

CALL 569
without memory

with memory

Bush-
1ness

2.0

2.5

2.6

Average
Time

8.33
6.90

7.53
6.35

8.51
7.47

Average
Messages

19.45
12.94

14.96
10.81

21.06
15.06

Figure 2: The effect of adding memory to the Parallel Inferen­
tial Distance Algorithm.

variant, we find that our parallel algorithm reduced the
response time for single queries roughly by a factor of 2.

3 Multiple Query Algorithm

For many applications, it is necessary to provide si­
multaneous access to- a knowledge base for more than one
user. Sharing a single copy of the knowledge base avoids
the problems of maintenance and coherence and provides
higher utilization. In this section, we demonstrate that
our algorithm permits the simultaneous processing of mul­
tiple queries without significantly affecting individual re­
sponse times.

Multiprocessing of queries requires a few modifications.
Messages are tagged with a query id allowing processes to
distinguish messages relating to different queries and orig­
inating nodes are required to keep track of a number of
sets of partial results. In addition, when the local mem­
ory variant is used, all nodes are required to store status
information for the active queries. Since processes have
fixed size memory (cells for status information) and are
not notified that a query has completed, memory is man­
aged with an Least Recently Used policy. If this results in
the destruction of information before the associated query
completes, the algorithm performs correctly but may ex­
ecute redundant computations.

We have experimentally evaluated the processing of
multiple queries on the three knowledge bases. We used a
number of different memory sizes. Each experiment was
performed with a fixed memory size, varying the arrival
rate of queries. Queries were randomly selected from the
set of possible queries and their arrival was controlled by
a Poisson process. The effect of increased arrival rates on
response time was observed.

Figures 3, 4, and 5 show the results of the experiment
for the three knowledge bases. In each case, the y-axis is
the average time to answer a query and the :i:-axis is the
arrival rate normalized with respect to the rate at which

Avg.
Response

Til'le

25

20

15

10

5

NeMory
Si2e
• 0
• I
a 2
• 3
0 5

0-1-~~~~~~~~...-~~~-.---~NorMali2ed

0 2 3 Arrival
Rate

Figure 3: Multiprocessing of queries on the DATATYPEl
knowledge base.

isolated queries are processed. Thus, for example, with
a memory size of 2, 3 or 5, multiprocessing allows the
arrival rate to increase substantially before response time
is affected.

Avg.
Response

T il'le

25

20

15

10

5

Ne Mory
Si2e
• 0
• 1
a 2
• 3
0 5

0+-~--.~~-r--~--.~~-.-~--.~----.NorMali2ed

0 2 3 4 5 6 Arrival
Rate

Figure 4: Multiprocessing of queries on the DATATYPE2
knowledge base. Axes labeled as in Figure 3.

As the arrival rate increases, the average time to an­
swer a query increases. Eventually, the network reaches a
saturation point at which incoming messages arrive faster
than they can be. processed and the average time to answer
a query skyrockets. If we consider the (normalized) arrival
rate just before saturation is reached as the mazimum ar­
rival rate, we see that the three data bases achieve maxi-

144

Avg.
Response

Til'le

25

20

15

10

5

NeMory
Si2e
• 0
• 1
a 2
• 3
0 5

0 NorP1ali2ed
0 2 4 5 8 10 12 14 16 Arrival

Rate

Figure 5: Multiprocessing of queries on the CALL knowledge
base. Axes labeled as in Figure 3.

mums of 2.5, 4.5, and 13.5. The amount of improvement
available depends on the structure of the network. The
effect of increasing memory is twofold: the average time
to answer a query is lowered and the maximum arrival
rate is increased. Only small amounts of local memory
are needed; a memory size of 2 or 3 appears sufficient.

Examination of the simulation data showed the pres­
ence of a few bottlenecks significantly degraded perfor­
mance. In the DATATYPEl knowledge base, a single
node was an ancestor to all nodes and acted as a serial
bottleneck. In the next section, we explore the possibility
of improving throughput by adding processing capacity at
heavily utilized nodes.

4 Utilizing Additional Processing
Capacity

If additional processing nodes are available for use, it is
possible to alleviate congestion at heavily utilized nodes.
As shown in Figure 6, heavily utilized nodes can be copied,
partitioning their inputs. In the figure, C is copied so that
queries originating at D and Eno longer compete for its
processing capacity with quer~es originating at F.

To investigate the effect of additional processing ca­
pacity, we used a simple processor allocation scheme. The
system was run at its maximum arrival rate (just before
saturation) to determine which node had the highest av­
erage input queue length. This node was duplicated and
its original inputs were partitioned so that the sums of the
average utilizations of the nodes for each partition were as
close to equal as possible. Figure 7 shows the results for

BEFORE SPLIT AFTER SPLIT

A B A B

' / t ::><:: t
•C •C •C'

It\ t\ t
D E F D E F

Figure 6: Example of node duplication used to reduce the
processing requirements at heavily utilized nodes.

the DATATYPEl knowledge base. 2

~lax.
Arrival
Rate

30

25

20

15

10

5

0 Processors
80 90 100 11 0 I 20 I 30 140 I 50 I 60

Figure 7: Speedup achieved by adding processing capacity to
the DATATYPEl network. The y-axis gives the maximum nor­
malized arrival rate and the :i:-axis gives the number of proces­

sors.

The figure shows the increase in maximum arrival rates
as a function of the number of nodes in the network for
varying amounts of memory. The initial additions achieve

substantial speedups. Adding a single node, for exam­
ple, increases the throughput almost two-fold; adding five
nodes increases the throughput almost four-fold. This is
because initially there were a few very heavily utilized
nodes in the knowledge base. As more and more proces­
sors are added, the utilization of the nodes in the system
becomes more uniform and the speedup becomes linear.
Note, however, that this speedup reflects the potential

parallelism available in the algorithm; it does not take
into account the communication overhead that would be

2 We present data for only one network. The results for
DATATYPE2 are identical after the first few splits; the resnlts for
CALL show similar improvements.

145

present in a specific implementation. As the machine size
increases, the effect of this overhead increases and, at some
point, the performance of an actual system would degrade.
Thus, we can divide the performance graph into three re­
gions. Performance gains should be accomplished, in the
first region, by expanding the existing network and, in the
last region, by copying the entire network; performance
gains in the middle region can be accomplished in either
manner.

5 Conclusions

We have presented a. MIMD algorithm for inferential
distance inheritance that doei;; not require network condi­
tioning. It achieves speedup both in the parallel spread­
ing of search activations and in the multiprocessing of
queries. In each case, the parallelism available depends
on the structure of the knowledge base. We have shown
that it is often possible to significantly improve the per­
formance of a specific network by adding small a.mounts
of additional processing capacity.

This work analyzes the parallelism available in our in­
ferential distance algorithm; it does not analyze the per­
formance of the algorithm on a. real ma.chine. Any actual
implementation will be limited by the overhead of com­
munication. We are currently developing strategies for
allocating processes on specific architectures to determine
the extent to which the available parallelism can be ex­
ploited in practice.

References

[1) David W. Etherington, "More on Inheritance Hierar­
chies with Exceptions," Proc. AAAI-87, pp. 352-357
(1987).

[2] David S. Touretzky, The Mathematics of Inheritance
Systems. Morgan Kaufman Publishers, Inc., Los An­
geles California (1986).

[3) David W. Etherington and Raymond Reiter, "On In­
heritance Hierarchies with Exceptions,'' Proc. AAAI-
83, pp. 104-108 (1983).

ASSOCIATIVE MEMORIES ON THE CONNECTION MACHINE
Stephen D. Simmes and Charles J. Turner

Science Applications International Corporation
5151 E. Broadway, Suite 900
Tucson, Arizona 85711-3796

Abstract

We study the Hopfield associative memory on
a Connection Machine. We derive a synchronous
algorithm that allows up to 1600 memory patterns,
each 16K in size, on a 16K processor machine. The
memory recall time for such a setup is estimated to
be approximately 8 minutes on a CM-1. A n
expression for the asynchronous energy ch an g e
during an interation is derived which shows that
the diagonal terms in the synaptic coupling matrix
have an effect on the memory recall process. These
terms are generally set to zero in studies of
associative memory. We show that this may not be
the best strategy.

1.0 Introduction

There has been much recent interest in
computer algorithms which model or emulate
biological systems. Much of this work has appeared
under the appelation neural networks which,
generally, refer to large networks of
communicating simple processors. Such systems
perform computations exhibiting qualities of living
organisms such as learning, recognition, or
interaction with a complex environment. One such
algorithm which has attracted a wide base of
interest is the associative memory as formulated by
Hopfield (1982).

The Hopfield associative memory consists of a
fully interconnected network of N simple processors
which are capable of computing a linear
combination of scalar input values along with a
nonlinear thresholding operation. Each processor
can be in one of two states, S iE { -1, 1), and the state of
the entire network is represented by an N­
dimensional vector S=(St, S2 , SN). The memory
works according to the following dynamic updating
algorithm: Each processor receives the current
state values from all other processors which are
multiplied by synaptic weights and .summed to give
the net input. The processor state value is then
updated according to the sign of the net input minus
a threshold. Two modes of processing are o f
interest, synchronous and asynchronous. In the
asynchronous mode, the processors are updated
without global timing whereas in the synchronous
mode all processors are updated in unison. The two
modes are not equivalent and may lead to different
limiting behavior from identical initial states.

If the synaptic weights are chosen
appropriately the system is capable of exhibiting a
memory property. In this case the weights store
fundamental memory patterns s(k), k=l, ... , M, and
when M is not too large, each memory S (k) is a
stable attractor for the dynamic updating algorithm.
That is, if the system is initialized with a pattern in a
sufficiently small neighborhood of one of the
fundamental memories, the updating algorithm will
converge to this memory as time increases. Thus,

146

the system associates the stored memory with the
noisy input version when the noise level (measured
by the number of incorrect bits in the pattern) is
not too large. This is a useful error correcting
property in systems where the next stage of
processing is sensitive to noise in the patterns.

2.0 Associative Memory Algorithm

The synaptic weight for the path connecting
processor to processor j is denoted by Jij, It is
assumed that Jij=Jji so that the matrix of weights J is
symmetric. The dynamic updating rule for zero
threshold may then be expressed

s. (t+l) =sign (f Iij sj (t)J
1 j=l

(1)

where sign(x) = + 1 if x ~ 0 and -1 if x < 0. The state of
the system at t = 0, S (0), is set to the noisy pattern.
Equation (1) is then iterated until a stable behavior
is realized.

When the i-th processor is changed
independently of the other processors, the global
energy

E(S) = - (1/2) t Jij S; Sj
i,j = 1

is non-increasing whenever
the following computation.
change in energy when the
t.S i then

N

Jii~O. This is seen by
If t.E (i) denotes the
i-th state changes b y

Let v. (t) = ~ J .. S. (t) be the input to the i-th processor,
I L.J I J J

j= 1

then Yi(t) = Sj(t+ 1) IVi(t) I and the change in energy
can be written

~E(i) =-(Ji i +I Vi (t) 1) (1-Si (t) Si (t+l))

:::; 0 if J .. ~ 0.
11

(2)

This implies that the asynchronous updating
algorithm always converges to a steady state. In the
synchronous mode, it is no longer true that the
energy must decrease at every time step and the
system converges to either a steady state or a
periodic orbit.

Consider the case where the fundamental
memories are orthogonal vectors, that is

In this case the weights may be defined by the
correlation matrix

M

J .. = L s~k) s~k) (3)
IJ k=l I J

This is the formulation used by Hopfield (1982)
except we have put no restriction on Jii (Hopfield
assumed Jii = 0). Since Jii = M in (3) independent of
the set of memorized patterns, it is clear that the
~iagonal. terms play no role in the storage of
mformat10n. However, from equation (2) we
conclude that the diagonal terms do play some role
relating to the stability of the patterns. This
observation is reinforced by the fact that as Jii> O
increases without bound (holding the off diagonal
terms fixed), equation (1) predicts Si(t+l) = sign
(JiiSi(t)) = Si(t) and thus all patterns become stable.
On the other hand, as Jii<O decreases without bound
it follows that Si(t+ 1)=sign(JiiS i(t))=-Si(t) and ever;
pattern destabilizes into a flip-flop.

Several recent papers have studied the
question of stability of fundamental memories
(McEliece et al (1987), Newman (1987) and Komlos
and Paturi (1987)). These authors study the
correlation matrix memory using probabilistic
methods when the fundamental memories are
random vectors. The following results have been
proved by Komlos and Paturi (1987); <Xa, as, Pa· Ps are
positive constants and distance between patterns is
measured by the Hamming distance (number of bits
which differ).

Asynchronous updating: If M~aaN and the
initial pattern is within distance p aN from a
fundamental memory, then the system will
converge to a steady state within a distance
Nexp(-N/4M) from the fundamental memory.
When M<N/4lnN the system will converge to
the fundamental memory.

Synchronous updating: If ~a sN and the
initial pattern is within distance PsN from a
fundamental memory, then in about ln(N/M)
steps the system will enter a region of radius
Nexp(-N/4M) about the fundamental memory
and remain there. When M<N/4lnN the
system will converge to the fundamental
memory in O(lnlnN) time steps.

By means of numerical experiments, Hopfield (1982)
showed for asynchronous updating that a a~O. 15.
Later, Amit, Gutfreund and Sompolinsky (1985)
extended the analysis to a nonzero temperature (T)
Monte Carlo process (the Hopfield dynamics
correspond to T=O). They gave convincing
arguments that there was a critical value aa:O .13 8
above which no reliable memory was possible. A
restriction on M is natural since when M gets too
large the fundamental memories .crowd one another
and the basins of attraction begin to coalesce. In
fact Komlos and Paturi (1987) have shown that there

147

are 0(2M) stable extraneous memories stored by the
correlation matrix memory, equation (3).

3 0 Implementation on the Connection Machine

The Connection Machine (CM) is a system of
64K processors interconnected by a 16 dimensional
hypercube network. The network is implemented as
a 12 dimensional wired hypercube with 16
processors at every node. Each processor is a simple
bit-serial machine with 4K bits of local memory
(CM-1). The CM is controlled by instructions sent
from a front-end computer. Each instruction is
broadcast to all processors in parallel making the
CM a synchronous machine. However, an
instruction is executed only if a processor's context
flag is set. Thus the context flag may be used to
control the pattern of computation. Further
information on the CM may be found in Hillis (1985).

It is natural to implement the updating rule
of equation (1) by assigning each state component
S i to a processor in a one-to-one fashion. All
processors then simultaneously execute a time step
by computing the sign of the local input

N

vi(t) = L Jij sj (t).
j = 1

However, this method requires that the i-th
processor have access to the N weights Jij. j=l, ... , N.
Since these weights differ from processor to
processor, there is no scheme by which they can be
broadcast to all processors in N parallel steps. On
the other hand, if these weights are stored in the 4K
bits of local memory as 16-bit integers, then N would
~e restricted to a maximum of 256 processors, which
is unacceptable. (The situation is actually worse
than ~his since the CM uses local memory for
dynamic stack allocation). A similar limitation
arises if one attempts to assign weights to
processors.

This problem does not arise when the
correlation memory is incorporated directly into the
computation. Using equation (3) it is possible to
rewrite equation (1) as

(~ (k) (k))
Si (t+ 1) = sign L W (t) Si

k=l

w~l (t) = s (t) • s~l

(4)

(5)

Here the updating rule appears as a linear
combination of fundamental memories weighted by
the inner product ·of the current state with the
fundamental memory. It is clear that this process
will converge to a fundamental memory S (k 0)

whenever the fundamental memories are (more or
less) orthogonal and the initial pattern S (0) is close
enough to S (ko). In this case we find that w(ko) = N
and w(k) = 0, k * ko so that S(l)=sign(NS(ko))=s(ko)
and the algorithm converges in one time step.

Each processor has the responsibility to keep
track of one state component. Instead of storing
weights, however, we now store the fundamental
memories distributed across the processors so that
processor i stores all memory components Si(k), k=l,
. . .,M. The same inner products w(k)(t), k=l, ... ,M
are used in (4) for every memory component. The
elements of the k-th inner product are computed by
a simple one bit parallel multiplication Si(t)Si(k).
These results are then summed over all processors
and rebroadcast using CM scan operations (Blelloch
(1986)). Each processor then multiplies the k-th
inner product times the k-th fundamental memory
component and updates the sum appearing in
equation (4). This process is repeated until k=M
when the sign operation on the sum is executed. All
memories are represented internally as binary
numbers (Si=O or 1). This formulation uses about 2K
bits of local memory for stack space, which leaves
an upper bound of about M=2K memories in a
network of N=64K processors. This corresponds to a
capacity of a=M/N:;;0.0312 which is acceptable.

4 0 Numerical Experiments

Numerical experiments of the associative
memory were run on a 16K processor Connection
Machine (CM-1) located at Science Applications
International Corporation, Tucson, Arizona. The
fundamental memories consisted of 128x 128 pixel
images. A small number of the images Mt =27, were
selected from the USC Image Processing Institute
data base (Schmidt (1977)). The original USC data,
which is eight bit, was mapped into binary format
by either a dithering process or a thresholding
operation, depending on the input scene. The
dithering algorithm, which creates a halftone
image similar to reproductions of pictures in daily
newspapers, was found to work well on uncluttered
high resolution images containing specific objects
like faces, airplanes, etc. On the other hand,
thresholding was found to work better on complex
scenes like aerial photos, although the resulting
quality was only marginal on such scenes. No
attempt was made to optimize the visual quality of
the fundamental memories.

The full memory capacity for 16K processors
is roughly 1600 images. Since our image data base is
nowhere near this large, a set of randomly
generated 128x128 patterns was used to simulate the
remaining M-Ml fundamental memories. These
patterns were generated by assigning pixels values
-1 or +1 with equal probability. The patterns were
not actually stored on disk but were created in the
CM during the memory initialization phase. The
fundamental memories were all stored and
referenced in local memory as one-bit binary data
via the transformation {-1,+l} ~ {0,1}.

A single recall experiment consisted of the
following steps. One of the fundamental memories,

148

k=ko was chosen as the test image. A noisy copy of
the test image was made by flipping pixel values
with probability Pn <0.5. The iteration was then
initialized by loading the noisy copy into S (0). The
iterations were monitored by computing the
distance between the current state S (t) and the test
memorr s (k 0) as well as the distance between
successive states S(t) and S(t-1). The distances were
computed using the metric in equation (6) which
gives the fraction of pixels which differ between
two images.

Convergence
between two
threshold.

was decided when
successive iterations

the
fell

distance
below a

Figures 1 and 2 show the results of recall
experiments for M=800 fundamental memory
patterns, corresponding to a =0.0488. The noisy
inputs were generated with noise levels at Pn=0.3 so
that approximately 30% of the pixels were flipped
from their correct value. The iterations were
carried out until successive iterations differed by at
most two pixels. Convergence typically occurred in
about six iterations. It was found that the updating
algorithm was able to process about 20 memory
patterns per second. This gives a cycle time of about
40 seconds for an iteration and 4 minutes for
location of the correct memory pattern in the M=800
memory experiments.

We tested the hypothesis that the diagonal
weights Ji i, have a specific effect on the
convergence of solutions of equation (1) (or
equation (4)). In order to directly control the
diagonal terms, equation (4) was replaced by
equation (7).

(
~ (k) (k))

Si (t+l) =sign Lt w (t) Si -(M-l>)Si(t)
k=l

(7)

where the diagonal terms now are forced to take on
the constant value Jii= 8. Setting 8=M regains the
weights defined by equation (3) whereas 8=0 gives
the Hopfield (1982) formulation Jii=O. The inner
products W(k) are still given by equation (5). It is
interesting to note that for 8<M, the effect of the
new term is a tendency to switch the sign of each
Si (t). This tendency depends on the magnitude of
the w(k)(t) terms and is weak when M<<N. Several
experiments were run with a fixed noisy input
pattern and several values of 8 ranging from -M to
+M. The results of these runs are summarized in
Figures 3 and 4. As can be seen from these plots,
there is a clear indication, for sufficiently large M,
that as the diae:onal terms increase from -M to +M,
the convergence of the algorithm improves
significantly.

Figure 1. Results of experiment
using a dithered image with M=800
memories. (top) Original, (middle)
original with 30% noise, and
(bottom) reconstructed image.

149

Figure 2. Results of experiment
using a binary image with M = 800
memories. (top) Original, (middle)
original with 30% noise, and
(bottom) reconstructed image.

0.04

• c

i 0.03

...

" • 0.02

! ...

0.01
-2 -1 0 2

deHlllM

0.08

ii + delta=-M
c + dellasO.O :r 0.06 • delta•M 0 ...

\:~
c •
i 0.04
c

I 0.02 • •
! ...

0.00
0 2 4 6 8

It-Ion

Figure 3. Convergence results for M=800 memories.
(a) Error after 5 iterations for various values of
delta ranging from -M to M. (b) Error at each
iteration for delta = -M, 0, and M. Errors are the
difference between the iteration value and the
original, using equation 6.

1.10&-3

• 1.00e-3
c
.!!

J 9.00e-4

N

" 8.00e-4 •
!

7.00e-4 ...

6.00e-4

0.400

i
g

0.300 0 ...
c •
i 0.200
i::

I 0.100

g ...
0.000

-2 -1

0

0

deltlllM

2
Iteration

+ della=-M
+ delta.o.o
• delta• M

3

2

4

Figure 4. Convergence results for M=lOO memories.
(a) Error after 2 iterations for various values of
delta ranging from -M to M. (b) Error at each
iteration for delta = -M,O, and M. Errors are the
difference between the iteration value and the
original, using equation 6.

150

References
Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1985)
"Storing infinite numbers of patterns in a spin­
glass model of neural networks," Phys. Rev. Lett.
55:1530-1533 .

Blelloch, G. (1986) "Scans as primitive parallel
operations," Thinking Machines Corporation
technical report.

Hillis, D. (1985) "The Connection Machine," MIT
press, Cambridge, Mass.

Hopfield, J. J. (1982) "Neural networks and physical
systems with emergent collective computational
abilities," Proc. Natl. Acad. Sci., USA 79:2554-2558.

Komlos, J., Paturi, R. (1987) "Convergence results in
the Hopfield model," Caltech preprint .

McEliece, R. J., Posner, E. C., Rodemich, E. R.,
Venkatesh, S. S., (1987) IEEE Trans. Info. Theo. IT-
33:461-482.

Newman, C. M., (1987) "Memory capacity in neural
network models: rigorous lower bounds," Univ. of
Arizona preprint.

Schmidt, R. (1977) "The USC-Image Processing
Institute data base, revision l," USC technical report.

Parallel Generation of LR Parsers

Manuel E. Bermudez
George Logothetis

Richard Newman- Wolfe

University of Florida, Gainesville, FL 32611 U.S.A.

Abstract

We present a novel technique for carrying out the
automatic generation of an LR parser in a totally parallel
fashion. The generation of an LR parser consists of con­
structing a parse table, with one row per state (in a
push-down automaton), and one column per terminal
symbol. Traditionally, this is carried out row by row, in
which case the computation of one row depends ' on
(potentially) all others. In contrast, our technique per­
forms the computation by column. We show that the
computation is totally independent for each column, mak­
ing it ideal for parallelization. The speedup factor of the
technique is min(N,M), where N is the number of proces­
sors and M is the number of terminal symbols.

1. Introduction

LR parsing [6,15] is the technique of choice for gen­
erating parsers for context-free languages. An LR parser
is generated automatically from a context-free grammar,
with a technique that consists of three phases. In the
first, the LR(O) automaton is constructed. This automa­
ton usually has a number of conflicts, which are of two
types: shift/reduce conflicts and reduce/reduce conflicts.
The second phase, lookahead computation, is invoked to
resolve these conflicts. This consists of computing suit­
able "FOLLOW" sets for each nonterminal in the gram­
mar. The most popular techniques for computing looka­
head are SLR(l) (pronounced "Simple LR(l)") and
LALR(l) (pronounced "Lookahead LR(l)"). In the third
phase a transition table is built, based on the FOLLOW
sets computed in the second phase. This transition table
is traditionally known as the ACTION table, and it
encodes the appropriate move(s) (shift, reduce, accept, or
error) for each state and each terminal symbol, in the
basic form shown below.

Serial SLR(l) and LALR(l) algorithms [2,7,8,16,17,21,22]
fill in the "reduce" entries of the ACTION table by row,
i.e. a lookahead set is computed for each reduce move at
each state. The lookahead set is the result of unioning
certain FOLLOW sets which, in turn, are obtained by
unioning other FOLLOW sets with certain First sets.

151

Thus the computation for one state (i.e. one row)
depends, in general, on all the others. In contrast, our
algorithms fill in the ACTION table by column. For
each terminal symbol t (i.e. for each column), our algo­
rithms use relations that describe how (1) t becomes a
member of a First set, (2) how a member of a First set
becomes a member of a FOLLOW set, (3) how a member
of one FOLLOW set becomes a member of another FOL­
LOW set, and (4) how a member of a FOLLOW set
triggers a reduce move at some state. The computation
of each column is completely independent from all other
columns; thus one parallel processor can be assigned to
the task of filling in each column.

Previous work [3,4,5,9,10,11,18,20,23] on parallel pars­
ing have focused on parallelizing the activity of parsing,
rather than parallelizing the activity of parser genera­
tion. Thus there exist languages and compilers that
allow parallel computations, and allow the development of
application programs that exploit the parallel architecture,
but there are no environments suitable for the use of
parallel processing in the development of a compiler, or
one of its components, e.g. the parser. Giving the source
code of an existing parser-generator to a parallelizing
compiler will not dramatically improve the parser
generator's performance. At best, some of the parser­
generator's operations will be vectorized. Specifically, a
popular parser-generator such as YACC [14] can be com­
piled and run on a parallel computer, but it will use no
more than one of the parallel proce8sors, and thus will not
exploit the machine's parallel architecture. This is due to
the algorithms used in parser-generators, which are
inherently serial, as discussed above.

In this paper we present a technique whereby the gen­
eration of an SLR(l) parser can be carried out in a totally
parallel fashion. The technique allows for the totally
independent decomposition of the problem into as many
subtasks as there are symbols in the terminal vocabulary
in the language. Thus, if one has N parallel processors,
and M terminal symbols, the speedup factor in the time
required to generate the parser is min(N,M). The paral­
lelization technique also applies to LALR(l) parsers [19],
but we will omit that discussion for the sake of clarity.

The remainder of this paper is organized as follows.
In section 2 we present an overview of SLR(l) parsing. In
section 3 we present a discussion of FOLLOW computa­
tion. In section 4 we present the parallel algorithm for
generating SLR(1) parsers, analyze the storage require­
ments for each processor, and justify the speedup factor.
Finally, in section 5 we present conclusions.

2. Overview of SLR(!) Parsing

We assume that the reader is familiar with context-free
grammars and languages, and with shift-reduce parsing.
We also assume some familiarity with LR parsers, in par­
ticular the construction of the LR(O) automaton. There
are many good texts that cover this material, such as
[1,12,13]. We also adhere to the following notational con­
ventions.

A,B,C, .. .
t, a, b, c, .. .
... , x, y, z
... ,X,Y,Z
a, /3, /, ... , w
E

A->W
==}

First(a)
p, q, r, s

nonterminal symbols
terminal symbols
terminal strings
grammar symbols
strings of grammar symbols
the empty string
a production in a CFG
right-most derivation
{t I a=}'tx, for some x}.
states in the LR(O) automaton

A context-free grammar that generates arithmetic expres­
sions in a typical programming language is shown in fig­
ure 1, along with its LR(O) automaton. In both the figure
and the automaton, "1" is the end-of-file marker.

The LR(O) automaton has ten states, two of which have
shift/reduce conflicts. In state 5, the parser cannot decide
between reducing using production "E-+E;+ T" and shift­
ing on "*"; in state 6 the conflict is between shifting on

S--+El
E--+E+T
E--+T T F
T-+T•F 6

T--+F E--+T
n

F--+n F--+n

F
T--+F

Figure I. The LR(O) parser of a context-free grammar.

"*" and reducing using "E-+T". The construction of this
automaton constitutes the first phase of the generation of
the parser. The second phase, namely lookahead compu­
tation, is invoked to resolve the conflicts at states 5 and 6.
In the SLR(l) technique, this consists of computing
FOLLOW(A), where A is the left-part of the production
involved in the conflict. FOLLOW(A) is defined as {t I S
=}\:i;Atz}. This is the set of terminal symbols that can
appear after A in a sentential form, i.e. a string that can
be derived from the start symbol S. In our example, we
should compute FOLLOW(E) for both conflicts. We will
discuss in detail the computation of FOLLOW sets, which
are obtained from the grammar, in the next section. For
now, the reader should be easily convinced that
FOLLOW(E) = {+,i}, since these are the only symbols
that may legally appear after E in a sentential form. The
FOLLOW sets are shown in the boolean table in figure 2,
in which "•" in entry [A,t] indicates that tEFOLLOW(A).

We shall see shortly that explicitly representing the FOL­
LOW sets in this manner is unnecessary. Instead, one
parallel processor will compute each column.

E
T
F

+ *
•
• •
• •

n 1

•
•
•

FOLLOW(E)={+,1}
FOLLOW(T)={+,•,l}
FOLLOW(F)={ +,•,l}

Figure 2. A FOLLOW Table.

Having computed the necessary FOLLOW sets, we
proceed to the third and last phase, the generation of the
parse table. As mentioned before, this is traditionally
done by row, i.e. state by state. Each state is examined,
and information regarding terminal transitions leading
from it, as well as reductions available there, are encoded
into the ACTION table. The procedure for filling the
entries of the ACTION table is as follows.

for each state q do
for each transition q J.. p do

Add "S/p" to ACTION[q,t]
{A "shift top" move};

for each reduction on A--+w do
for each tEFOLLOW(A) do

Add "R/A--+w" to ACTION[q,t]
{A "Reduce using A--+w" move};

After these entries have been added, blank entries are
filled as "error". The table should have no multiple
entries. If it does, the grammar is not SLR(l). For our
example, the ACTION1 table is shown in figure 3.

152

State/Symbol + * n 1

1 error error S/9 error

2 S/4 error error error

3 Accept Accept Accept Accept

4 error S/7 S/9 error

5 R/E--+E+T S/7 error R/E--+E+T
6 R/E--+T S/7 error R/E--+T
7 error error S/9 error

8 R/T--+T•F R/T--+T•F error R/T--+T•F
9 R/F--+n R/F--+n error R/F--+n
10 R/T--+F R/T--+F error R/T--+F

Figure 3. An SLR(l) ACTION Table.

Historically, there have been good reasons for filling in
the ACTION table by row rather than by column. In
practice, only a small portion of the states in the LR(O)
automaton have conflicts; in our case there were two such

1 We have neglected the nonterminal transitions in the LR(O)
automaton. These are encoded into a separate table called the "GOTO"
table which is of no interest to us because the nonterminal trans1t10ns
are e~tirely unaffected by lookahead.

states out of a total of ten. This proportion (about 20%)
i~ in fact quite common. Thus, the table is traditionally
filled by row so that states that have no conflicts (which
are in the majority) incur in no lookahead computation.

It is well known that some FOLLOW sets are subsets
of others. In our example, FOLLOW(E) ~ FOLLOW(T)
~ FOLLOW(F). Thus FOLLOW(E) must be computed
before concluding the computation of FOLLOW(T), and
before computing FOLLOW(F). In principle, to obtain
the FOLLOW set of some nonterminal A, one may have
to first compute the FOLLOW sets of all the other non­
terminals. Such is the case here for F. Because of these
dependencies, the FOLLOW computation has not been
deemed suitable for parallelization. The same occurs for
the generation of the ACTION table. Allocating two
separate processors for rows p and q of the ACTION
table yields no significant advantage, since there may be
reductions at p and q, on productions whose left-parts are,
say, ~ and Aq, whose FOLLOW sets are not indepen­
dent.

Our approach to the problem is simply to consider fil­
ling in the ACTION table by column, rather than by row.
Doing so produces completely independent computation
for each column. We must first discuss in detail the com­
putation of FOLLOW, as shown in the next section.

3. Computation of FOLLOW

We begin by reversing the order of the "for" loops in
the procedure shown earlier, so that the iteration on states
is nested within the iteration on terminal symbols, rather
than the other way around. The resulting equivalent pro­
cedure is as follows.

for each symbol t do
for each state q do

if q ~ p is defined then
Add "S/p" to ACTION[q,t] ;

for each reduction on A-+w do
if tEFOLLOW(A) then

Add "R/A-+w" to ACTION[q,t] ;

Our intent is to allocate a separate parallel processor to
each individual terminal symbol. The processor will
fill in the entire column for that symbol. This can be
accomplished because of a critical observation: the re­
formulated procedure requires knowledge of whether or
not tEFOLLOW(A) (a boolean value), for which the
entire set FOLLOW(A) is not necessary. This is in con­
trast with the earlier procedure, in which the entire set is
required because a for loop is used to enumerate the ele­
ments of FOLLOW(A). Thus the core of the problem of
parallelizing the generation of the parser lies in computing
whether or not tis an element of FOLLOW(A), without
explicitly computing FOLLOW(A) itself. We now show
how this can in fact be achieved. We begin by breaking
down the FOLLOW set into "Direct" and "Indirect"
FOLLOW sets.

153

FOLLOW(A)
IFOLLOW(A)
DFOLLOW(A)
First(A)
First(t)

= IFOLLOW(A) u DFOLLOW(A),
= u {FOLLOW(B) IB-+aA.1, ')'=}°c},
= U {First(X) IB-+aA-yX8, ')'=}*E},
= u {First(X) IA-iX8, ')'=}°c},

{t}.
A symbol may follow nonterminal A directly, by appear­
ing at the beginning of a phrase (-VC8) that immediately
follows A in the right-part of some production. On the
other hand, a symbol may follow nonterminal A
indirectly, by appearing in FOLLOW(B), where
FOLLOW(B) ~ FOLLOW(A). The recursive nature of
these equations suggests that terminal symbols propagate,
from a First set to other First set(s), from there to FOL­
LOW set(s), and from FOLLOW set(s) to other FOL­
LOW set(s). The following relations capture this propa­
gation.

Definition: X ff A if there is a production A-rX8 such
that ')'=}*E. •

"ff" (pronounced "first-to-first") describes how one First
set contributes symbols to another First set. Clearly,
tEFirst(X) iff t fr* X.

Definition: X fF A if there is a production B--+aA1X8
such that ')'=} • E. •

"fF" (pronounced "first-to-follow") describes how a First
set contributes symbols to a direct FOLLOW set, and
thereby to a FOLLOW set. Clearly, tEDFOLLOW(A) iff
tEFirst(X) and X fF A, for some X. Furthermore, the

composition of fr* and fF describes all symbols in
DFOLLOW(A), i.e. tEDFOLLOW(A) iff t (fr*of'F) A.

Definition: B FF A if there is a production B-+aA.1
such that ')'=} • E. •

"FF" (pronounced "follow-to-follow") describes how one
FOLLOW set contributes symbols to an indirect FOL­
LOW set, and thereby to a FOLLOW set. Clearly,
FOLLOW(B) ~ FOLLOW(A) if B FF+ A. Thus, the
necessary and sufficient conditions for t to be in
FOLLOW\A) are (1) t (fr*of'F) A, i.e. t follows A directly,
or (2) t (ff 0fF°FF+) A, i.e. t follows A indirectly. Factor­
ing out relation (ffof'F) from these two cases, we conclude
that tEFOLLOW(A) iff t (ff*of'FoFF*) A.

4. Parallel Generation of SLR(l) Parsers

Having characterized SLR(l) lookahead symbols, a
very simple algorithm for filling the entries of the
ACTION table can now be formulated. The algorithm
must compute the reflexive, transitive closure of both
relations "ff" and "FF". During the computation of this
closure, it is desirable to avoid repeatedly visiting any
nonterminals. Thus we require two bit-valued structures
"fLVisited" and "FF_Visited". The algorithm is
presented below.

Algorithm Compute...SLR..Actio11-Table:
lnput:LR(O) automaton, ff, fF, FF;
Output: ACTION table;

var
ff_ Visited: a bit vector indexed by symbols;
FF-Visited: a bit vector indexed by nonterminals;

procedure Follow_to_Follow(A):
begin

end;

if FF_ Visited[A] then return;
set FF_Visited[A];
for each B such that A FF B do

Follow_to_Follow(B);

procedure First_to_First(X):

begin

end;

begin

end;

if ff_ Visited[X] then return;
set fLVisited[XJ;
for each A such that X IF A do

Follow_to_Follow(A);
for each Y such that X ff Y do

FirsLto_First(Y);

for each terminal t do
begin

end;

clear fLVisited[XJ, for each symbol X;
clear FF_Visited[AJ, for each nonterminal A;

First_to_First(t);

for each state q do
begin

end;

if p=Go(q, t) is defined then
Add "S/p" to ACTION[q,t];

for each (q,A-+W) do
ifFF_Visited[A] then

Add "R/A->w'' to ACTION[q,t];

In this algorithm, procedure "Add" announces that the
grammar is not SLR(I) if another move already exists in
ACTION[q,t]. For each terminal symbol t, the "Visited"
vectors are cleared, and FirsLtoJ'irst(t) is called. This
results in setting fLVisited[X], and calling
Follow_toJ'ollow(A), for all X such that t fr* X, and for
all A such that X fF A. The call to Follow:-toJ'ollow~A),
in turn, sets FF_ Visited[B], for all B such that A FF B.
Thus the net effect of calling FirsLtoJ'irst(t) is setting
FF_ Visited[A], for all A such that t (ff*0fF°FF*) A. After
this call, FF_ Visited is "true" for those nonterminals
whose FOLLOW sets contain t. After the call, each state
in the LR(O) machine is examined, and both shift and
reduce entries are made in the ACTION table, as
required.

It is critically important to note that the computation
performed for each symbol t is completely independent of
all the other symbols. Thus one parallel processor can be
assigned to each symbol t. The parallel processors may
share the memory in which the three relations ff, fF and
FF are stored. Individually, each processor must 1) run

its own copy of the algorithm, 2) have its own column of
the ACTION table to fill in, and 3) have its own
"Visited" vectors. In fact, the "Visited" vectors are

154

more aptly named "t_js..JnJ'irst" and "t-1s...inJ'ollow".
The algorithm executed by each parallel processor is as
follows.

Algorithm Compute-8LR-Action_Table_t:
lnput:LR(O) automaton, ff, IF, FF, t;

var

Output: ACTION: a vector indexed by states;

t....is..in_First: a bit vector indexed by symbols;
t....is..in_Fol!ow: a bit vector indexed by nonterminals;

procedure Follow_to_Fol!ow(A):
begin

end;

if t....is..in_Follow[A] then return;
set t....is..in_Follow[A];
for each B such that A FF B do

Follow_to_Follow(B);

procedure First_to_First(X):

begin

end;

begin

end;

if t....is..in_First[X] then return;
set t....is..in_First[X];
for each A such that X IF A do

Follow_to_Follow(A);
for each Y such that X ff Y do

FirsUo_First(Y);

clear t....is..in_First[X], for each symbol X;
clear t....is..in_Follow[A], for each nonterminal A;

First_to_First(t);

for each state q do
begin

end;

if p=Go(q, t) is defined then
Add "S/p" to ACTION[q];

for each (q,A-+W) do
if t....is..in_Follow[A] then

Add "R/ A->w'' to ACTION[q];

The storage requirements of each processor are quite rea­
sonable: a bit-vector of length the number of symbols
(t-1s...inJ'irst), another bit vector of length the number of
nonterminals (t-1s...inJ'ollow), and a vector of length the
number of states (the ACTION table column for t). In
the last of these, each element usually requires an integer
to represent (in packed form) the corresponding shift or
reduce move.

One processor must be reserved to allocate tasks to
the others, but the task allocation scheme is trivial. Any
processor can be assigned to any symbol, as long as the
ACTION table is re-constructed in a consistent manner.
If there are N processors and M terminal symbols, the
computation is sped up by a factor of min(N,M). The
typical grammar that describes the phrase-structure of a
programming language contains several hundred terminal
symbols; hence our approach can be profitably imple­
mented on a wide range of parallel computers.

5. Conclusions

We have presented a technique for carrying out the
automatic generation of an SLR(l) parser in a totally
parallel fashion. The technique consists of computing (in
parallel) one column of the parse table independently for
each terminal symbol. We have shown that the speedup
factor is min(N,M), where N is the number of processors,
and M is the number of terminal symbols. We have also
shown that the storage requirements are reasonable for
each processor.

SLR(l) is one of the best known LR parsing methods.
It is well known that LALR(l) is more powerful and more
popular than SLR(l). Although not presented here for
the sake of simplicity, the parallelization technique shown
in this paper also applies to the LALR(l) method, as
shown in detail in [19].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Aho, A., R. Sethi and J. Ullman, Compilers.
Principles, Techniques and Tools, Addison­
Wesley, 1986.

Anderson, T.J., J. Eve and J.J. Horning, Efficient
LR(l) Parsers, Acta Informatica 2(1), pp. 12-39,

1973.

Babichev, A.V., Some theoretical aspects of
parallel parsing, Cybernetics Vol. 18, No. 2, pp.
189-195, March-April, 1982.

Baer, J, and C. Ellis, Model, Design, and
Evaluation of a Compiler for a Parallel Pro­
cessing Environment, IEEE Transactions on
Software Engineering, SE-3 6, Nov. 1977, pp. 394-
405.

Cohen, J., T. Hickey and J. Katsoff, Upper
Bounds for Speedup in Parallel Parsing,
JACM Vol. 29, 1982, pp. 408-428.

DeRemer, F., Practical Translators for LR(k)
Languages, Ph.D. Thesis, Department of Electrical
Engineering, M.I.T., Cambridge, Mass., 1969.

DeRemer, F., Simple LR(k) Grammars, CACM
14(7), pp. 453-460, July 1971.

DeRemer, F. and T. Pennello, Efficient Compu­
tation of LALR(l) Look-ahead sets, ACM
TOPLAS 4(4), pp. 615-649, 1982.

155

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Donegan M.K. and S. Katzke, Lexical Analysis
and Parsing Techniques for a Vector
Machine, SIGPLAN Notices Vol. 10, No. 3, March
1975, pp. 138-145.

Ellis, C.A., Parallel Compiling Techniques,
Proc. ACM 26th National Conference, 1971, pp.
508-519.

Fischer, C., On Parsing Context-free
Languages in Parallel Environments, Ph.D.
Dissertation, Computer Science Dept., Cornell
University, Ithaca, N.Y., 1975.

Fischer, C. and R.J. LeBlanc, Crafting a Com­
piler, Benjamin Cummings, 1988.

Harrison, M., An Introduction to Formal
Language Theory, Addison-Wesley, Reading,
Massachusetts, 1978.

Johnson, S.C., YACC - Yet another compiler
compiler, Tech. Report CSTR 32, Bell Labs, Mur­
ray Hill, N.J., 1974.

Knuth, D., On the Translation of Languages
from Left to Right, Information and Control 8,
pp. 607-639, 1965.

Kristensen B.B. and O.L. Madsen, Methods for
Computing LALR(k) Lookahead, ACM
TOPLAS 3(1), pp. 60-82, 1981.

LaLonde, W.R., An Efficient LALR Parser
Generator, Technical Report 2, Computer Sys­
tems Research Group, University of Toronto, 1971.

Lincoln, N., Parallel Programming Techniques
for Compilers, SIGPLAN Notices 5, 10, Nov.
1970.

Logothetis, G. and M. Bermudez, LALR(l)
Parser Construction in a Nutshell, Technical
Report UF-CIS-TR-87-7, Department of Computer
and Information Sciences, University of Florida,
November 16, 1987.

Mickunas, M, and R. Schell, Parallel Compila­
tion in a Multiprocessor Environment, Proc.
ACM 1978 Annual Conference, 1978, pp. 241-246.

Pager, D., A Practical General Method for
Constructing LR(k) Parsers, Acta Informatica
7, pp. 249-268, 1977.

Park, J.C.H., K.M. Choe and C.H. Chang, A New
Analysis of LALR Formalisms, ACM TOPLAS
7(1), pp. 159-175, 1985.

Zosel, M., A Parallel Approach to Compila­
tion, Proc. ACM Symposium on Principles of Pro­
gramming Languages, Oct. 1978, pp. 59-70.

CONCURRENT SYNTHESIS OF COMPOSITE EXPLANATORY HYPOTHESES

Ashok Goel, P. Sadayappan and John R. Josephson

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 4321 O

Abstract

The information processing task of abduction is to infer
a hypothesis that best explains a set of data. A typical subtask
of this is to synthesize a composite hypothesis that best explains
the data set from elementary hypotheses that can explain vari­
ous portions of the data. In this paper, we present a computa­
tional model for concurrent synthesis of composite explanatory
hypotheses that can be realized on a distributed memory, mes­
sage passing, parallel machine. In this model, a process is as­
sociated with each datum to be explained as well as with each
elementary hypothesis that can explain some portion of the data,
and the control of processing alternates between the data and hy­
potheses' processes. In each cycle of processing, the data and
the hypotheses' processes view the problem solving from their
perspectives, and add to the growing composite explanatory hy­
pothesis until a best explanation is synthesized. We analyze the
time complexity of the concurrent algorithms, and discuss the
architectural implications of the model.

Abductive Inference

Abduction is the very general information processing task of in­
ferring a hypothesis that best explains a set of data [2,7]. Abduc­
tion occurs, for instance, in diagnostic problem solving, where
the data is in the form of manifestations (or symptoms), and the
explanatory hypotheses are about component malfunctions (or
diseases) [9, 10]. A typical subtask of abduction is classification
of the observed data onto stored elementary hypotheses. In sim­
ple abductive problems, e.g., diagnosis under the single fault
assumption, the classification subtask often yields elementary
hypotheses that can individually explain the entire data. For
such problems, the elementary hypothesis that most plausibly
explains the data represents the best explanation. In general,
however, an elementary hypothesis that can account for the en­
tire data may not be available. Instead, a composite hypothesis
has to be synthesized from elementary hypotheses that can ex­
plain various portions of the data. Synthesis of composite ex­
planatory hypotheses is thus another typical subtask of abduc­
tion.

Synthesizing a composite hypothesis that best explains a
set of data can be computationally very expensive, especially in
the presence of certain types of interactions between the elemen­
tary hypotheses [l]. This suggests exploitation of concurrency
in performing the synthesis subtask [8]. We have elsewhere re­
ported [3] on a computational model for concurrent synthesis
of composite explanatory hypotheses based on a shared mem-

156

ory, multiprocessor architecture. Our work on the "blackboard"
model led us to think that a distributed memory, message passing
parallel architecture may provide a more modular organization
of knowledge and processing for the synthesis subtask. Thus
in this paper we present a computational model for distributed
synthesis of composite explanatory hypotheses.

Characterization of the Synthesis Task

Let D = { d1li = 1, ... , n} be a finite set of n observed data.
Let H = { h h" = 1, ... , m} be a finite set of m elementary
explanatory hypotheses. Let e be a map from subsets of H to
subsets of D; e : 2H --> 2D. We interpret e(Hj) = Di, where
Hi ~ Hand Di ~ D, as the explanatory coverage of Hi, i.e.
Hi can explain all members of Di. Let V = {vklk = 1, ... ,l}
be a finite set of l discrete values. Let b be a map from H to V,
i.e., b : H --> V. We interpret b(hj) as the primafacie belief
in hypothesis hi. We may characterize the task of synthesizing
a composite explanatory hypothesis by its input: D, H, e and b,
and its output: 0, where 0 is a subset of H that best explains
D. The synthesis task is linear [1] if

and monotonic [l] if

In this paper we consider only the linear version of the general
synthesis task. We note that linearity of the task entails mono­
tonicity. Thus we assume that the elementary hypotheses are
non-interacting and offer explanatory alternatives where their
coverages overlap.

Characterization of the "Best" Explanation

This characterization of the synthesis task is incomplete since
we have not yet specified what is meant by the best explanation.
A general operational characterization of the "best" explanation
is based on the following three criteria:
Maximal explanatory coverage of data: A hypothesis 0 1 is a bet­
ter explanation of D than another hypothesis 02 if e(02) C
e(01) (strictly, if e(02) n D c e(01) n D). Ideally, the synthe­
sized 0 should provide complete explanatory coverage of D.
Maximal belief in hypothesis: If e(01) = e(02), then 0 1 is a bet­
ter explanation of D than 0 2 if b(0 1) > b(0 2) which denotes that
'1d E D, '1h2 E 0 2 such that d E e(h2), 3h1 E 0 1 such that
d E e(h 1)" b(h 1) 2:: b(h2). This criterion specifies that the ele­
mentary hypotheses in 0 should be locally optimal in terms of
their belief values.

Minimal hypothesis: If e(C1) = e(C2) and b(C1) = b(C2), then
C1 is a better explanation of D than C2, if C1 C C2. This global
optimization condition specifies that C should be parsimonious.

We note the precedence relation between the three cri­
teria according to which maximal coverage of the data has the
highest precedence and parsimony of the composite hypothesis
has the lowest. We note also that depending on the maps e and
b, the synthesis task may be underconstrained, in which case the
synthesized explanation would only be a "best" explanation.

A Concurrent Model of the Task

Decomposition of the Synthesis Task

The task of synthesizing a C that "best" explains D may be
decomposed into two phases: generation, and testing. In the
generation phase, a C that achieves the goal of complete ex­
planatory coverage of the data and satisfies the local constraints
on the choice of elementary hypotheses may be generated. In
the testing phase, the generated C may be tested for the global
constraint of parsimony and if possible, further optimized. The
generation phase itself is further decomposable into three steps
corresponding to the three types of hypotheses that need to be
included in C. In the first step, the hj E H that are neces­
sary for explaining d; E D may be found qy a specialized form
of means-ends mechanism which views explaining each d; as
a subgoal of the synthesis of C. A hypothesis h1 is necessary
for explaining some datum d if there exists no other h2 that can
explain the d. We denote this set of hypotheses as CEssential.
In the next step, the hj E H that are the best explanations for
some d; E D-e(CEssential) are found by the same means-ends
mechanism, where a hypothesis h1 is clearly the best explana­
tion for some datum d if its belief value b(hi) is above some
high threshold 0, and there is no h2 that can explain the d and
has a belief value above 0. We denote this set of hypotheses as
Cpirm. In the final step, the hj E H that are needed for explain­
ing d; E D-e(CEssential)-e(CFirm) are found; we denote this
subset of components as C1n. The composite hypothesis gener­

ated is given by C = CEssential u CFirm u Gin·
The hypotheses in CEssential, CFirm and C1n differ from

each other in the firmness with which they are included in C.
The In components are only weakly included in C, and should
to be tested for explanatory superfluousness, where a hypothe­
sis is explanatorily superfluous if removing it from C does not
reduce e(C). The Essential components are strongly included in
C, cannot be removed from C without reducing e(C), and need
not be tested for explanatory superfluousness, Similarly, by the
manner in which CFirm was generated, the Firm hypotheses are
firmly included in C, cannot be removed without reducing b(C)
(relative to other composite hypotheses), and need not be tested
for explanatory superfluousness.

Concurrency in the Synthesis Mechanism

It is clear that certain aspects of synthesizing C are inherently
sequential, e.g., the testing of the composite hypothesis for par­
simony should serially follow the generation phase, and even
in the generation phase, the sequential order of the three steps

157

should be maintained. However, there also is significant con­
currency in the process. There are really two types of questions
that are raised during the synthesis of C. The first type is from
the perspective of each datum d.; E D and is of the form "which
hypothesis hj E H can best explain me?". This question can
be asked and answered for each datum concurrently with oth­
ers. The second type of question is from the perspective of each
hypothesis hj E H and is of the form "which elements of D can
I be used to explain?". Again, this question can be asked and
answered for each hypothesis concurrently with others.

This suggests that a process be assigned to each d; E D
as well as to each hj EH. Let P = {P;li = l, ... ,n} be a
set of n processes, one for each d; E D. Each process Pi E P
represents the perspective of the corresponding datum d; E Din
the synthesis of C. The P processes use identical algorithms and
can execute concurrently. Similarly, let Q = { Qj Ii = 1, ... , m}
be a set of m processes, one for each hj E H. Each process Qj E
Q represents the perspective of the corresponding hypothesis
hj E H. Again, the Q processes use identical algorithms and
can execute concurrently.

A Distributed Mechanism for the Task

In distributed synthesis of composite explanatory hypotheses,
each process has access only to its own local memory. Commu­
nication between the processes occurs by message passing only;
there is no global updating of shared variables. Synchronization
between the processes can be achieved by adopting the frame­
work of Communicating Sequential Processes (CSP) [6]. In
CSP, communication between processes occurs when one pro­
cess names another as the destination and the second process
names the first as the source. Synchronization is achieved by

delaying the execution of an input or output command until the
other process is ready with the corresponding output or input.

The messages between the P and Q processes are se­
mantically encoded and the response of a process to a message
depends on the semantics of the message it receives. For exam­
ple, if process p 1 E P corresponding to datum d1 determined
that that some h1 E H was necessary for explaining d1, then
it sends an Essential! message to process Qi E Q representing
h1• On receiving this message, Qi sends an Explained! message
to the processes Pi E P corresponding to di E D that h1 can
explain. In addition to messages of this type, the processes are
allowed to send (and receive) Null messages.

The control of processing alternates between the P pro­
cesses and the Q processes. In each cycle of processing, when
the P processes are executing the Q processes are idle; when
the P processes have finished executing some step, they com­
municate their results to the Q processes, and the Q processes
can start executing. Similarly, when the Q processes are execut­
ing the P processes are idle; again, when the Q processes have
finished executing some step, they communicate their results to
the P processes, and the P processes can start executing. Thus
in each cycle of processing, the P and the Q processes view the
synthesis task from different perspectives and add to the grow­
ing composite explanatory hypothesis. After three such cycles

that correspond to computing CEssential, CFirm and C1n re­
spectively, a composite hypothesis C that achieves the goal of
complete explanatory coverage and satisfies the local constraints
on the choice of elementary hypotheses is generated. The gen­
erated C is now tested for the global constraint of parsimony in
a similar manner.
Distributed Hypothesis Generation

We now present concurrent algorithms for distributed genera­
tion of C; detailed concurrent algorithms written in CSP are
given in [4]. Since then processes in P use identical algorithms,
and the m processes in Q also use identical algorithms, it suf­
fices to describe the processing from the perspectives of a datum
d E D represented by a process p E P and an elementary hy­
pothesis h E H represented by a process q E Q. The process q
initially has information specifying the hypothesis h that it rep­
resents, the explanatory coverage e(h) of the hypothesis, the be­
lief value b(h) of the hypothesis, and the data D to be explained.
Similarly, the process p initially has information specifying the
datum d that it represents, the cardinality of H.

In the first cycle of processing, the Essential components
are identified. The processing begins when process q sends an
Essential? message to processes in P corresponding to data
d; E e(h), and Null messages to other processes in P. Pro­
cess p receives messages from processes in Q. Now from the
perspective of d, one of three things can happen:
(i) p receives no Essential? messages. Then dis Unexplainable,
and p does nothing;
(ii) p receives exactly one Essential? message. Then the hy­
pothesis corresponding to the process in Q from whom p re­
ceived the message is necessary for inclusion in C, and p sends
an Essential! message to that process;
(iii) p receives more than one Essential? message. Then p sends
a Null message to the processes in Q from whom p had received
the Essential? messages.

Process q receives messages from processes in P corre­
sponding to d; E e(h). In the second cycle of processing, the
Firm hypotheses are identified. At the end of the first cycle,
from the perspective of h one of two things can happen:
(i) q receives at least one Essential! message. Then q sends an
Explained! message to processes in P corresponding to d; E
e(h);
(ii) q receives only Null messages. Then q sends Firm? mes­
sages, along with the belief value b(h) of the hypothesis it rep­
resents, to processes in P corresponding to d; E e(h).

Process p receives messages from the processes in Q cor­
responding to the hypotheses that can explain d. Now from the
perspective of d, one of three things can happen:
(i) p receives at least one Explained! message. Then p does
nothing;
(ii) p receives only Firm? messages. Then if there is some h1

among the hypotheses that can explain d such that b(h1) is above
some high threshold 0, and there is no h2 that can explain d and
has a belief value above 0, p sends a Firm! message to the q1

process representing the h1 hypothesis, and Null messages to

158

processes in Q corresponding to other hypotheses that can ex­
plain the d;
(iii) p receives only Firm? messages, and there is no hypothe­
sis that is clearly the best explanation for d. Then p sends Null
messages to processes in Q corresponding to hypotheses that
can explain the d.

Process q receives messages from processes in P corre­
sponding to d; E e(h). In the third cycle of processing, the In
hypotheses are identified. At the end of the second cycle, from
the perspective of h one of two things can happen:
(i) q receives at least one Firm! message. Then q sends an Ex­
plained! message to processes in P corresponding to d; E e(h);
(ii) q receives only Null messages. Then q sends In? messages
to processes in P corresponding to d; E e(h).

Process p receives messages from the processes in Q cor­
responding to the hypotheses that can explain d. Now from the
perspective of d, one of two things can happen:
(i) p receives at least one Explained! message. Then p does
nothing;
(ii) p receives only In? messages. Then p selects the h with
the highest belief value among the hypotheses that can explain
d. If two (or more) hypotheses can explain equally well, then
p breaks the tie between them by selecting the hypothesis with
the largest explanatory coverage. If even this would not break
the tie, then the selection is made at random. p then sends an
In! message to the q corresponding to the selected hypothesis,
and Null messages to processes in Q corresponding to other hy­
potheses that can explain d.

q receives messages from processes in P corresponding
to d; E e(h). At the end of the third cycle, a C consisting of the
Essential, Firm, andin hypotheses has been generated.

Distributed Hypothesis Testing

If C1n ~ C is empty, then the generated C is best explanation
since the Essential hypotheses cannot be removed from C with­
out reducing e(C), and the Firm hypotheses cannot be removed
without reducing b(C). If, however, C1n is nonempty, then C
should be tested for parsimony by testing the In hypotheses in
it for explanatory superfluousness. Again, it suffices to present
an algorithm for distributed testing of C from the perspectives
of a datum d E D represented by a process p E P and a hy­
pothesis h E C1n represented by a process q E Q. The testing
of C begins when process q sends a Superfluous? message to
processes in P corresponding to data d; E e(h). Process pre­
ceives messages from the processes in Q corresponding to the
In hypotheses that can explain d. Now from the perspective of
d, one of three things can happen:
(i) p receives no messages. Then p does nothing;
(ii) p receives exactly one Superfluous? message. Then if the
d is explained by some Essential or Firm hypothesis, p sends a
Superfluous! message to the qi from whom it had received the
message, else it sends back a Null message;
(iii) p receives more than one Superfluous? message. Again, if
the d is explained by some Essential or Firm hypotheses, then
p sends back a Superfluous! message to all processes in Q from
whom it received messages. If, however, dis not thus explained,

then p selects the hypothesis with the highest belief value among
the In hypotheses that can explain d. Again, if two (or more)
hypotheses can explain d equally well, then p breaks the tie be­
tween them by selecting the hypothesis with the largest explana­
tory coverage, and if this would not break the tie, then the se­
lection is made at random. p then sends a Null to the process in
Q corresponding to the selected hypothesis and a Superfluous!
message to processes in Q corresponding to other In hypotheses
that can explain d.

Process q receives messages from processes in P corre­
sponding to d; E e(hj). Now from the perspective of h, one of
two things can happen:·
q receives only Null messages. Then q does nothing and h re­
mains In;
q receives at least one Superfluous! message. Then if the num­
ber of such messages received equals ie(h)i, his explanatorily
superfluous and is no longer In.

We note that under certain conditions h could be ex­
planatorily superfluous even if the number of Superfluous! mes­
sages received by q in the last step is less than le(h)I. This
could happen, for instance, if the explanatory coverages of two
or more hypotheses completely overlap and their belief values
are exactly equal. In such case, each p process corresponding
to some datum in the overlapping explanatory coverages would
randomly select one of the candidate hypotheses for inclusion
in C. Moreover, since each such p process makes its selection
locally, the randomness in hypothesis selection may also result
in the retention in G of more than one of the candidate hypothe­
ses even though all but one of them is explanatorily superfluous.
This problem can be solved if during testing of G for parsimony,
when faced with random hypothesis selection, each p process
alerts a special process, say R, of the situation by sending a
message containing a list of the candidate hypotheses. Process
R receives the messages from each such p process and makes a
random choice between the hypotheses. It then retains the se­
lected hypothesis in G and removes the other hypotheses from
it.

A similar problem may occur if the belief values of more
than two In hypotheses are exactly equal and their explanatory
coverages overlap cyclically. Let us consider as an example
a situation in which h 1,hz,h3 E C1n, b(h1) = b(hz) = b(h3),
e(h1) = {d1,dz}, e(hz) = {dz,d3} and e(h3) = {d3,d1}, where
d1, dz, d3 E D. Since the belief values and the cardinality of
explanatory coverages of h 1, hz, h3 are equal, the p processes
corresponding to d1, dz, d3 make their choices randomly. Again,
the p processes inform process R of the situation, and again R
makes a random choice between the hypotheses retaining in G,
for this example, any two of the hypotheses and removing the
third. At the end of processing by R, a G that "best" explains D
has been synthesized.

Discussion of the Concurrent Model
Analysis of Algorithms

The worst case time complexity for distributed generation of G
is given by

159

Thypothesis generation= O(m + n)

where m is the cardinality of H and n is the cardinality of D.
Similarly, the worst case complexity for distributed testing of G
for parsimony is given by

Thypothesis testing= O(mrn x n)

where min is the number of In hypotheses in G. We may com­
pare this to the complexity of a non-optimal serial algorithm that
has been used to build to several major abductive knowledge­
based systems [7]. The worst case time complexity for these­
quential generation of G is given by [l]

Thypothesis generation= O(n x (m + n X log(n))

and the worst case complexity of testing G for parsimony is
given by

Tparsimony testing= O(m X n X log(n))

Moreover, in the sequential algorithm, the Essential hypotheses
are not found during the generation of G. Instead, a G is assem­
bled without regard for the Essential hypotheses and then tested
for essentialness of the hypotheses. The worst case time com­
plexity for testing of G for essentialness of hypotheses is given
by [1]

Tessentialness testing= O(m x n x (m + n x log(n)))

We note that the constants in the time complexities for
sequential and distributed synthesis of G are comparable since in
both cases they arise from linear search. It thus appears that the
concurrent algorithms provide a linear speed up of processing
over the sequential algorithms. However, there are several rea­
sons for caution about this claim. Firstly, the serial algorithms
are non-optimal. Secondly, the time complexities are for the
worst case, and not for the "average" case since the "average"
case is domain dependent. Thirdly, the complexities are valid
only under the assumptions of linearity of the synthesis task.
Finally, we have not accounted for the costs of communication
between the P and the Q processes in calculating the complex­
ities of the concurrent algorithms. Despite these caveats, it is
clear that distributed synthesis provides an attractive model for
the synthesis of composite explanatory hypotheses.

Architectural Implications

There are several interesting and somewhat unusual aspects to
the computational model for concurrent synthesis of G from the
viewpoint of realizing it on a distributed memory, message pass­
ing, parallel computer architecture. Firstly, the parallelism be­
tween the semi-autonomous P and Q processes is fine-grained.
Secondly, at any given time during the processing, the P and
Q processes are either idle or executing the same instruction on
different data. Thirdly, the process of synthesizing G is com­
munication intensive. For instance, in the first cycle during the
generation of C, each process qi E Q communicates with every

process Pi E P. Fourthly, for real world problems, the num­
ber of P and Q processes is potentially very large. Even for
small knowledge-based systems that use abductive inference to
perform medical diagnosis in limited domains, for instance, the
number of P and Q processes is typically in the hundreds. A full
scale medical diagnostic system may well require thousands, or
even tens of thousands of such processes.

It appears that among the existing machines, the Con­
nection machine [5] may be the most suitable architecture for
realizing this model for distributed synthesis of G. The Connec­
tion machine is a distributed memory, message passing, parallel
computer which is precisely the architecture required for real­
izing the model. It is a single-instruction, multiple data stream
machine which suits the control of processing in the model. It
is based on the hypercube architecture which helps to keep the
communication costs within acceptable limits. Finally, it sup­
ports the type of massive, fine-grained parallelism between a
large number of small, semi-autonomous processes that is present
in this model for synthesizing G.

Interactions between Hypotheses

So far we have discussed only the linear version of the general
synthesis task, where we assumed that the hypotheses hi E H
are non-interacting. In fact, several distinct types of interaction
between two hypotheses h 1, h2 E H have been identified [7]:
Associativity: The inclusion of h 1 in G suggests the inclusion
of h2. Such an interaction may arise if the generator has knowl­
edge of, say, a statistical association between h 1 and h2 •

Additivity: h1 and h2 cooperate additively where their explana­
tory capabilities overlap. This may happen if h1 and h2 can sep­
arately explain some d E D only partially, but collectively can
explain it fully.
Incompatibility: h 1 and h2 are mutually incompatible, i.e., if one
of them is included in G then the other should not be included.
Cancellation: h1 and h2 cancel the explanatory capabilities of
each other in relation to some d E D. For example, h1 may im­
ply that some data value will increase, while h2 may imply that
the value will decrease, thus canceling each others explanatory
capability with respect to that datum.

We note that the general synthesis task is nonlinear in
the presence of incomptability interactions and nonmonotonic in
the presence of cancellation interactions. The concurrent model
for distributed synthesis of composite explanatory hypotheses
presented in this paper can be extended to accommodate the
above interactions by allowing for message passing between the
Q processes. This enables the hypotheses' processes to negoti­
ate among themselves and resolve the conflicts that arise due to
the presence of these interactions.

Acknowledgments
This paper has benefited from discussions with B. Chan­

drasekaran and N. Soundararajan, and comments by anonymous
reviewers. This work has been supported by the Defense Ad­
vanced Research Projects Agency, RADC Contract F30602-85-
C-0010, and the Air Force Office of Scientific Research, grant
87-0090.

References

[1] D. Allemang, M. Tanner, T. Bylander and J. Josephson,
"On the Computational Complexity of Hypothesis As­
sembly," in Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, Milan, Italy, August
1987, pages 1112-1117.

[2] E. Charniak and D. McDermott, Introduction to Artificial
Intelligence, Reading, MA: Addison-Wesley, 1985.

[3] A. Goel, J. Josephson and P. Sadayappan, "Concurrency
in Abductive Reasoning," in Proceedings of the DARPA
Workshop on Knowledge-based Systems, St. Louis, April
1987, pages 86-92.

[4] A. Goel, P. Sadayappan, J. Josephson and N. Soundarara­
jan, "Distributed Synthesis of Composite Explanatory Hy­
potheses," Technical Report, Laboratory for Artificial In­
telligence Research, Department of Computer and Infor­
mation Science, The Ohio State University, November
1987.

[5] W. D. Hillis, The Connection Machine, Cambridge, MA:
MIT Press, 1986.

[6] C. A. R. Hoare, "Communicating Sequential Processes,"
Communications of the ACM21(8):666-677, August 1978.

[7] J. Josephson, B. Chandrasekaran, J. Smith and M. Tanner,
"A Mechanism for Forming Composite Explanatory Hy­
potheses," IEEE Transactions on Systems, Man and Cy­
bernetics 17(3):445-454, 1987.

[8] J. Pearl, "Distributed Revision of Composite Beliefs," Ar­
tificial Intelligence 33(2):173-215, 1987.

[9] H. Pople, ''The Formation of Composite Hypotheses in Di­
agnostic Problem Solving: An Exercise in Synthetic Rea­
soning," in Proceedings of the Fifth International Joint
Conference in Artificial Intelligence, Cambridge MA, Au­
gust 1977, pages 1030-103 7.

[10] J. Reggia, "Diagnostic Expert Systems Based on a Set
Covering Model," International Journal of Man-Machine
Studies 19:437-460, 1983.

160

ALGORITHM AND PERFORMANCE NOTES
FOR BLOCK LU FACTORIZATION

by
Jim Armstrong

Research Mathematician
CONVEX Computer Corporation

Abstract

Block algorithms for matrix factoriza­
tions have gained much attention in recent
years as an approach that takes advantage of
computer architectures with a relatively
small amount of very high speed cache
memory. The advantage of this approach is
efficient re-use of data while it is in cache.
Block algorithms are also useful for general
purpose single or multi-headed vector
machines with interleaved memory. How­
ever, their performance advantage over tradi­
tional matrix-vector algorithms is very
problem-dependent. An example of such
behavior is the LU factorization of a general,
dense matrix. This paper presents a block
LU factorization algorithm that is appropri­
ate for the CONVEX C Series machines.
Performance comparisons are provided
against the matrix-vector Crout algorithm.

1. Introduction

Gaussian elimination can be viewed as
the reduction of a matrix, A, to upper tri­
angular form using multiplication by
transformation and row permutation
matrices as follows:

where the Pk are row permutation matrices
and the Mk are defined by

where there are k zeros in 'Yti ek is the k-th
column of the identity matrix and mk is the
vector of negative multipliers. A simple
manner of applying a block p x p reduction is
to develop an algorithm for the update

161

or an update based on the product of p Gauss
transformation and row permutation
matrices. This approach is similar to that in
Dongarra [4]. The upper left-hand corner of
A, will be ak+,,k+, and the lower right-hand
corner will be a,.,.. The notation x(J) will be
used to denote a section of a vector beginning
at element ;. Define

m(J) = [m m · · · m]1
k k; kj+l k,.

ak = [au ak+1,k • • · ant]'

iik = [ak+ 1,k ak+2.k · · · a,.k] 1

Following is the rank-p update formula for
p = 2. Operations relating to pivoting are
deleted to conserve space.

k=l
while k < n-1

sk = 1/au

mk = skak

ah1 := ak+1 - ak,k+lmk

v~+1 = [ak+1,k+2 ak+1,k+s

8t+l = 1/ahl,k+l

mh1 = 8 k+1 at+1

Any remaining portion of the computation
that cannot be included in the paired updat­
ing scheme is finished off with a scalar ver­
sion of the rank-1 algorithm. The algorithm
for p = 3 is

k=l
while k < n-1

Bk= 1/au

m1 = 81a1

a1+1 := a1+1 - a1,1+1m1

I I I
vk+1 = tk+1 - mt vk

1

8t+1 = l/ak+1,t+1

m1+1 = 81+1ak+1

I _ I (2)' (2)'
V1+2 - t1+2 - m1 vk - m1+1 vk+1

2 1

81+2 = l/ak+2,k+2

mk+2 = 81+2 a1+2

A . - A (8) (2)1 (2) (2)1 I
a.- a - m1 vk - mk+1V1+1 - mk+2vk+2

k := k + 3
end k

AB before, scalar cleanup with p = 1 is
used. The rank-2 algorithm requires two
multiply-adds per two memory references in
the update, which runs at full speed on a
machine with one path to memory. The
rank-3 approach runs even faster because the
columns of the submatrices at each stage are
loaded and stored fewer times. The rank-3
updates can also be coded to run the column
memory references one column ahead of the
current update. This eliminates the
load/store pipeline latency upon branching to
the top of the loop. This approach saves a
significant amount memory start-up time in
the updates.

These algorithms are different than
traditional block LU algorithms in that the
initial "block" reduction is not performed on
a 2 x 2 or 3 x 3 block. Instead, the opera­
tions are performed in a manner similar to
the standard algorithm. This method ret8.ins
the same (longer) vector lengths as the stan­
dard algorithm. It is also very easy to
integrate the block column and row opera­
tions with the pivoting memory traffic. In
fact, the block p x p LU factorization is a side
effect of the current algorithm! Based on the
work in Armstrong [1], the best performance
to date from such a method has been to use

162

rank-3 updates and switch to rank-2 updates
after the reduction reaches a certain point.
The current crossover is when the submatrix
order reaches 128 or less. If the entire factor­
ization is coded in assembly language, then
the first 128-element (or less) section of the
last multiplier array can be retained in a vec­
tor register for use in the first block section
of the rank-p update. This is currently the
approach used on the 0120. Because of the
increased memory subsystem efficiency on the
0210, this method has only a negligible
advantage over the rank-3 algorithm. The
performance in Megaflops (Mflops) is pro­
vided in the tables below. Dongarra's matgen

routine (from the UNPACK benchmarks)
was used to generate the system of equations
and the flop count used was 2/3n8 + 2n 2 •

The M-V column represents the matrix­
vector Crout algorithm implemented in FOR­
TRAN with calls to assembly language
IDAMAX and DGEMV.

0120 Rank~ 1,!pdate performance 64-bit MB~

n M-V Rank-3 Rank-(3,21

50 5.4 7.2 7.4
100 9.3 11.5 11.5
200 12.9 13.8 14.2
300 14.5 14.9 15.3
400 14.6 15.3 15.7

1000 15.0 15.9 16.6

0210 Rank-3 update performance 64-bit Mfl~

n M-V Rank-3

50 13.9 20.5
100 25.7 33.7
200 34.8 40.7
300 38.9 43.2
400 40.8 43.9

1000 41.1 44.0

2. General Block LU Factorization
Algorithm

An excellent introduction to the
rationale and development of block algo­
rithms is provided in references [2,3,5,6].
This section presents an algorithm which gen­
eralizes the rank-p approach. The diagram
below illustrates the fundamental idea behind
the algorithm. The p x p block submatrix B

contains - in effect - an LU factorization of a
block of the sub matrix at stage k. However,
the computation of multipliers and row
updates is extended to the extremes of the
submatrix, which produces sub-blocks B 1 and
B 2 • As before, the main idea of the algo­
rithm is to compute B 1 and B2 • The block
LU factorization in B is the result this com­
putation. This is in contrast to traditional
block algorithms that compute B first, and
use this result to generate B 1 and B2 • The
remainder of the submatrix, A , is updated

• p
accordmg to a formula of the form

where a. = + /-1 depending on whether posi­
tive or negative multipliers are used. The
algorithm is implemented in two parts. The
first part computes the submatrices B 11 and
B 2 for a given value of p. The second part
simply consists of a call to _GE:MM from the
level III BLAS.

B 1 and B2 are generated, from a
matrix-vector algorithm that applies rank-1
updates one column and row at a time. The
advantage of this approach is fewer memory
references than in a standard SAXPY algo­
rithm for applying the updates. The algo­
rithm requires an initial pivot operation to
"prime" it. The main loop consists of com­
puting a vector of multipliers for the j-th
stage. This vector, along with the previous
multiplier vectors from the beginning of the
block, are used to update the next column.
This update can be formulated as a matrix­
vector product since all the updates are not
done at once. Instead, they are applied "on
the fly". Next, the pivot operation for the

163

following stage is performed. A transposed
matrix-vector product is then used to apply
all the previous row updates to the remainder
of row j + 1 of U.

The above summary can be mathemati­
cally illustrated by partitioning the sub­
blocks of B 1 and B2 at stage j as follows

B' = [Bi-1 b] 1 1 I

Also, define 11+ 1 as the first row of the sub-
. J

matrix B~-1 • At this point, everything has
been computed except b 1 and b~. These vec­
tors are generated by the following equations:

b ·- b BJ-1 1 .- 1 - 1 "J+l bt ·= bt - t BJ-1 2 . 2 J+ 1 2

Following is the algorithm for comput­
ing B 1, and B 2 , which is a black bock in the
main algorithm. The current stage of the
reduction is denoted by k and the block size
by p. The main loop is executed for
j = k, k + 1, .'.., k + p -2. Inside this loop, the
submatrix Bi-1 has its upper left-hand corner
at ai+l.k and is an (n-J) x (j-k+l) matrix.
BJ-1 h .

2 as its upper left-hand corner at a, . 2 1'",]+

and is a (j-k+l) x (n-j-1) matrix. The
vectors ui+ 1 and /~ + 1 are of length j -k + 1.
u,+ 1 has its initial element at a, . 1 , and t ,.,;+ 1+1

starts at aJ+l,<· b1 has its initial element at

aJ+l,J+i• and b~ starts at ai+l,J+ 2 • In the fol­
lowing algorithm, the phrase "pivot for stage
j'' indicates the operation of finding the pivot
row for stage j and performing the row inter­
change. A test for zero pivots is assumed.
Also, a, has the same definition as in previous
algorithms.

pivot for stage k - primer for the algorithm

For j = k,k+p-2
s = 1 la I' JJ - -

b ·- b BJ-1 1 .- 1 - 1 UJ+l

pivot for stage j + 1

bt ·= bt _ 11 BJ-1
2 • 2 J+ I 2

end j

8 = 1/at+7-1,h1-1 - -

An interesting feature of the above
algorithm is that, if the block size is set to n,
the result is the same basic approach as the
matrix-vector version of Crout factorization.
Thus, one can derive such factorization algo­
rithms from the viewpoint of compact elimi­
nation or from applying rank-1 updates "on
the fly."

The complete block LU factorization
can now be presented for a given block size p.
Let m = n -k -p + 1. Then the submatrix A,
that is updated has its upper left-hand corner
at ak+p,k+p and is an m x m matrix. B 1 has
its upper left-hand corner at ak+,,k and is an
m x p matrix. B 2 has its upper left-hand
corner at ak,k+p and is a p x m matrix.
Assume that n /p is computed as in Fortran.

I= n/p
k=l
For i = 1,/

compute B 1 and B2

k := k + p
end i

Clean up leftover submatrix beginning at au

using the rank-2 update algorithm described
in section 4.

3. Performance Notes

Experiments conducted on the CON­
VEX 0120 have indicated that in order to
approach the performance of the specific
rank-2 and rank-3 algorithms in section 1,
large block sizes are required. The asymp­
totic performance seems to be reached with
p = 200. This indicates the use of a multi­
algorithm approach. For n :s: 200, the rank-
3 algorithm can be used. For n > 200, the
general block algorithm is used with rank­
(211) cleanup in FORTRAN.

The general block algorithm with
assembly language IDAMAX, DGEMV, and
DGEMM executes at 14.98 Mfiops for a 300 x

164

300 system. For n = 1000, it executes at
15.75 Mfiops. For n > 1000, the general
block algorithm asymptotically performs 1.2
Mfiops faster than matrix-vector Crout. On
the 0210, the asymptotic performance advan­
tage is 2.3 Mfiops

An advantage to the general block algo­
rithm is that it can be easily implemented in
FORTRAN with calls to the level II and III
BLAS. A disadvantage over the specific
rank-p update algorithms with small values
of p is the inability to merge the computation
of B 1 and B2 with the pivoting memory
traffic. This is reason for the performance
advantage of the rank-p approach.

A later paper will describe the imple­
mentation and parallel performance on a
dual-headed CONVEX 0220.

4. References

[1] Armstrong, J., 1987, "Optimization of
Householder Transformations. Part I:
Linear Least Squares", Proceedings of 1987
International Conference on Parallel Process­
ing, Pennsylvania State Univ. Press, Univer­
sity Park, PA.

[2] Bischof C. and VanLoan C., 1987, "The
'WY Representation for Products of House­
holder Matrices", SIAM SISSC 8, 2

[3] Demmell, Dongarra, Du Oroz, Green­
baum, Hammarling, Sorensen, 1987, "A Pros­
pectus for the Development of a Linear Alge­
bra Library for High-Performance Comput­
ers", Technical Memorandum No. 97,
Argonne National Laboratory, Argonne, Illi­
nois.

[4] Dongarra, J. and Hewitt, T., 1985 "Imple­
menting Dense Linear Algebra Algorithms
Using Multitasking on the CRAY X-MP-4",
Technical Memorandum No. 99, Argonne
National Laboratory, Argonne, Illinois.

[5] Dongarra, Hammarling, Sorensen, 1987,
"Block Reduction of Matrices to Condensed
Forms for Eigenvalue Computations",
LAPACK Working Note #2, Technical
Memorandum No. 99, Argonne National
Laboratory, Argonne, Illinois.

[6] Dongarra, Du Oroz, Duff, Hammarling,
1987, "A Proposal for a Set of Level 3 Basic
Linear Algebra Subprograms", SIGNUM
Newsletter, Vol. 22, No. 3, July, 1987

THE GRANULARITY OF PARALLEL HOMOTOPY ALGORITHMS
FOR POLYNOMIAL SYSTEMS OF EQUATIONS

D. C. S. Allison, S. Harimoto, and L. T. Watson
Department of Computer Science

Virginia Polytechnic Institute & State University
Blacksburg, VA 24061

Abstract - Polynomial systems consist of n polynomial functions
in n variables, with real or complex coefficients. Finding zeros of
such systems is challenging because there may be a large number
of solutions, and Newton-type methods can rarely be guaranteed to
find the complete set of solutions. There are homotopy algorithms for
polynomial systems of equations that are globally convergent from an
arbitrary starting point with probability one, are guaranteed to find
all the solutions, and are robust, accurate, and reasonably efficient.
There is inherent parallelism at several levels in these algorithms.
Several parallel homotopy algorithms with different granularities are
studied on several different parallel machines, using actual industrial
problems from chemical engineering and solid modeling.

1. Introduction.
Solving nonlinear systems of equations is a central problem in

numerical analysis, with enormous significance for science and en­
gineering. A very special case, namely small polynomial systems
of equations, occurs frequently enough in solid modeling, robotics,
computer vision, chemical equilibrium computations, chemical pro­
cess design, mechanical engineering, and other areas to justify spe­
cial algorithms. To put polynomial systems in perspective and for
the purpose of this discussion, there are three classes of nonlinear
systems of equations: (1) large systems with sparse Jacobian ma­
trices, (2) small transcendental (nonpolynomial) systems with dense
Jacobian matrices, and (3) small polynomial systems with dense Ja­
cobian matrices. Sparsity for small problems is not significant, and
large systems with dense Jacobian matrices are intractable, so these
two classes are not counted.

Large sparse nonlinear systems of equations, such as equilibrium
equations in structural mechanics, have two characterizing aspects:
highly nonlinear and recursive scalar computations, and large ma­
trbc, vector operations. There is a great amount of parallelism in
both aspects, but the nature of the parallelism is very different (or
so it seems). Small dense transcendental systems of equations pose
a major challenge, since they involve recursive, scalar intensive com­
putation with a small amount of linear algebra. Finally, polynomial
systems are unique in that they have many solutions, of which several
may be physically meaningful, and there exist homotopy algorithms
guaranteed to find all these meaningful solutions. The very special
nature of polynomial systems and the power of homotopy algorithms
are often not fully appreciated, perhaps because globally convergent
probability-one homotopy methods are not widely known.

These globally convergent homotopy algorithms for polynomial
systems have inherent parallelism at several levels. The purpose of
the present paper is to study different granularities of parallel homo­
topy algorithms for polynomial systems, corresponding to different
decomposition and communication strategies.

Much work has been done on solving linear systems of equa­
tions on parallel computers, mostly on vector machines [4), [5), [7),
[8], [10]-[12), [14)-[16), [18), [23], [25). Some work has been done on
nonlinear equations and Newton's method [28), [31), [36), [37), and
on finding the roots of a single polynomial equation [9), [27). Par­
allel algorithms for polynomial systems were proposed by Morgan
and Watson [22], but have not been studied much, nor have parallel
homotopy algorithms for nonlinear systems of equations.

Section 2 summarizes the mathematics behind the homotopy
algorithm, Section 3 discusses the special case of polynomial systems
in some detail, and computational results on several parallel machines
are presented and discussed in Section 4.

2. Homotopy algorithm.
Let En denote n-dimensional real Euclidean space. The fun­

damental mathematical result behind the homotopy algorithm for
solving the nonlinear system of equations

165

F(x) = 0, (1)

where F: E" -+En is a C 2 (twice continuously differentiable) func­
tion, is as follows:

Proposition 1 ([6), [33]). Let p: Em x [O, 1) x E" -+ E" be a C 2

map and define Pa(.A,x) = p(a,.A,z). Suppose that
1. the nx (m+n+l) Jacobian matrix Dp has full rank on p- 1(0),

the set of zeros of p;
2. p0 (0,x) = 0 has a unique solution W of E" (depending on the

homotopy parameter vector a of Em);
3. Pa(l, x) = F(x);
4. the set of zeros of Pa(A, z) is bounded.

Then for almost all a of Em there is a zero curve r of Pa(A, x) along
which the Jacobian matrix Dpa(.A,z) has full rank, emanating from
(0, W) and reaching a zero ii of F(x) at ,\ = 1. Furthermore, r has
finite arc length if DF(ii) is nonsingular.

The general idea of the algorithm is to follow the zero curve r of
Pa from (0, W) until a zero ii of F(z) is reached at ,\ = 1. Although
the homotopy algorithm for solving the nonlinear system of equations
is conceptually simple, it is nontrivial to develop a viable numerical
algorithm for tracking the curve. A typical form for the homotopy
map is

Pw(.A, z) = .AF(x) + (1- .A)(x - W) = 0, (2)

which has the same form as a standard continuation or embedding
mapping. However, two crucial differences exist. In standard contin­
uation methods, the embedding parameter ,\ increases monotonically
from 0 to 1 as the trivial problem z - W = 0 is continuously deformed
to the problem F(x) = 0. Homotopy algorithms permit ,\ to both
increase and decrease along r with no adverse effect. The second dif­
ference is that in homotopy algorithms there are no "singular points"
which afflict standard continuation methods. This is guaranteed by
the way in which the zero curve r of Pa is followed and the fact that
Dpa has full rank along r .

The zero curve r of the homotopy map p0 (,\, z) can be tracked by
many different techniques. The present work used HOMPACK [34),
a software package for solving systems of nonlinear equations based
on the homotopy method. HOMPACK provides three approaches for
tracking r : 1) an ODE-based algorithm with some special refine­
ments for the homotopy context; 2) a predictor-corrector algorithm
whose corrector follows the flow normal to the Davidenko flow (a
"normal flow" algorithm); and 3) a version of Rheinholdt's linear pre­
dictor, quasi-Newton corrector algorithm (an "augmented Jacobian
matrbc" method). Since the "normal flow" algorithm is the technique
used by HOMPACK to solve polynomial systems of equations, the
other two algorithms will not be discussed in this paper.

The normal flow algorithm has three phases: prediction, cor­
rection, and step size estimation. In the prediction phase, the next
point on the zero curve is predicted. Starting from the predicted
point, the correction phase then iterates until a point on the zero
curve is reached. An "optimal" step size is then estimated for the
prediction of the next point on the curve.

The normal flow algorithm is so called because the iterates of the
correction phase converge from the predicted point back to the zero
curve along the flow normal to the Davidenko flow. The Davidenko
flow is the family of zero curves formed from varying the parameter
vector a of the homotopy map Pa.

The zero curve r of Pa(.A,z) is C 1 and can be parametrized by
the arc lengths. Thus,\= .A(s) and x = x(s) with initial conditions
,\(0) = 0 and x(O) = W. When .A(s) = 1, the corresponding x(s) =ii
is a zero of F(x).

Given that the following are available from previous calcula­
tions : two previous points on the curve, P(s 1) = (.A(si), z(s1)) and

P(s2) = (>.(s2), :i:(s2)), their corresponding tangent vectors, P'(s1) =
(d>./ds(si), d:i:/ds(si)) and P'(s2) = (d>./ds(s2), d:i:/ds(s2)), and h,
an estimate of the next "optimal" step size (in arc length) to take
along 'Y , the next point on the zero curve can be estimated by

z(O) = H(s2 + h), (3)

where H(s) is the Hermite cubic polynomial which interpolates P(s)
at s1 and s2. Thus, H(si) = P(s1), H'(s1) = P'(s1), H(s2) = P(s2),
and H'(s2) = P'(s2).

Since
Pa(>.(s),:i:(s)) = 0 (4)

on the zero curve 'Y ,

d
ds [pa(>.(s), :i:(s))] = Dpa(>.(s), :i;(s))(d>./ds, d:i:/dsf = 0, (5)

where (d>.jds, d:i;/ds) is the tangent vector to the curve. Thus, the
tangent vector can be calculated by finding the kernel of the Jacobian
matrix Dpa(>.(s), :i;(s)), which has rank n by Proposition 1. Once the
kernel is found, the derivative (d>./ds, d:i:/ds) at a given point on the
zero curve can be uniquely determined by

ll(d>./ds, d:i;/ds)l'2 = 1 (6)

and continuity of the tangent vector.
Starting at the predicted point z(o), the iteration in the correc­

tion phase is

k = 0, 1,... (7)

where [Dpa(z(k))] tis the Moore-Penrose pseudoinverse of DPa· Re­
ordering the equation, the corrector step ll.Z = z<k+1) - z(k) is the
unique minimum norm solution of

(8)

Fortunately ll.Z can be calculated at the same time as the kernel of
[DPa] with just a little more effort. Normally for dense problems the
kernel of [DPa] is found by computing the QR factorization of [Dpa],
followed by back substitution. By applying this QR factorization to
-pa and using back substitution again, a particular solution v to (8)
can be found. Let u be any non-zero vector in the kernel of [Dpa].
Then the minimum norm solution is

(9)

Since the QR factorizations of [Dp 0] are computationally very
expensive, the number of iterations required for convergence of (7)
should be kept small (say <= 4) by adjusting the step size. An al­
ternative is to use the QR factorization of D Pa at the first predicted
point z(o) for several iterations. However, this results in linear con­
vergence, which is not cost effective when compared to the asymp­
totically quadratic convergence of (7).

Note that the kernel of [DPa] is needed for the tangent vector
used in the Hermite cubic interpolation at the beginning of the next
step. When the iteration converges, the final iterate z(k+l) is ac­
cepted as the next point on 'Y . Rather than calculating the tangent
vector at the new point z(k+l) on 'Y , a Jacobian matrix evaluation
and a QR factorization can be saved by using the tangent vector
calculated at z(k). This substitution should not seriously affect the
calculation of the next point on the curve since this tangent is used
only in the prediction of the next point, and the tangent vector at
z(k) is a good estimate of the tangent vector at z(k+l).

The estimation of an "optimal" step size h is an attempt to bal­
ance the number of iterations in the correction phase of the algorithm
with the number of steps necessary to reach the "end" point on the
zero curve where >.(s) = 1. Increasing the step size decreases the

166

number of steps necessary to reach the "end" of the curve. However,
taking too large a step size would result in a substantial increase
in the number of iterations necessary to correct the predicted point.
The estimation and control of the step size h is discussed in detail in
[38].

3. Polynomial systems.

Section 2 described a homotopy algorithm for finding a single
solution to a general nonlinear system of equations F(:i;) = 0. Propo­
sition 1 provided the theoretical guarantee of convergence. The rich
structure and multiple solutions of polynomial systems dictate that
the general theory in Section 2 must be sharpened. This section
develops a globally convergent (with probability one) homotopy al­
gorithm that finds all solutions to a polynomial system, and provides
the theoretical justification for that algorithm.

Suppose that the components of the nonlinear function F(:i;)
have the form

F;(:i;)=fa,kIT:i;J;;>, i=l, ... ,n. (10)
k=l j=l

The ith component F;(:i;) has n; terms, the a;k are the (real) coeffi­
cients, and the degrees d;; k are nonnegative integers. The total degree
of F; is d; = maxk "'L,'j=1 d;;k· For technical reasons it is necessary to
consider F(:i;) as a map F: en-+ en, where en is n-dimensional
complex Euclidean space. A system of n polynomial equations in n
unknowns, F(:i;) = 0, may have many solutions. It is possible to de­
fine a homotopy so that all geometrically isolated roots of (10) have at
least one associated homotopy path. Generally, (10) will have roots
at infinity, which forces some of the homotopy paths to diverge to
infinity as >. approaches 1. However, (10) can be transformed into
a new system which, under reasonable hypotheses, can be proven to
have no roots at infinity and thus bounded homotopy paths. Because
scaling can be critical to the success of the method, a general scaling
algorithm [34] is applied to scale the coefficients and variables in (10)
before anything else is done.

Since the homotopy map defined below is complex analytic, the
homotopy parameter >. is monotonically increasing as a function of·
arc length [21]. Define G: C"-+ C" by G;(:i;) = b;:i;/; -a;, j =
1, ... , n, where a; and b; are nonzero complex numbers and d; is the
(total) degree of F;(:i;), for j = 1, ... , n. Define the homotopy map

Pc(>., :i;) = (1- >.) G(:i;) + >. F(:i;), (11)

where c = (a,b), a= (a1, ... ,an) EC" and b = (b1, ... ,bn) EC".
Let d = d1 · · · dn be the total degree of the system. The fundamental
homotopy result, proved and discussed at length in [19]-[21], is:

Theorem. For almost all choices of a and b in en, p~ 1 (0) consists
of d smooth paths emanating from {O} x C", which either diverge to
infinity as >. approaches 1 or converge to solutions to F(:i;) = 0 as >.
approaches 1. Each geometrically isolated solution of F(:i;) = 0 has
a path converging to it.

A number of distinct homotopies have been proposed for solving
polynomial systems. The homotopy map in (11) is from [20]. As
with all such homotopies, there will be paths diverging to infinity if
F(:i;) = 0 has solutions at infinity. These divergent paths are (at least)
a nuisance, since they require arbitrary stopping criteria. Solutions
at infinity can be avoided via the following projective transformation.

Define F'(y) to be the homogenization of F(:i;):

FJ(y) = Yn+id; F;(YifYn+1, · · ·, Yn/Yn+1), j = 1, ... , n. (12)

The set of all lines through the origin in cn+l is called complex pro­
jective n-space, denoted C P", and is a smooth compact (complex)
n-dimensional manifold. The solutions of F'(y) = 0 in GP" are iden­
tified with the (finite) solutions and solutions at infinity of F(:i;) = 0
in the usual way [38]. A basic result on the structure of the solu­
tion set of a polynomial system is the following classical theorem of

Bezout [21]:

Theorem. There are no more than d isolated solutions to F'(y) = 0
in cpn. If F'(y) = 0 has only a finite number of solutions in cpn,
it has exactly d solutions, counting multiplicities.

Recall that a solution is isolated if there is a neighborhood containing
that solution and no other solution. The multiplicity of an isolated
solution is defined to be the number of solutions that appear in the
isolating neighborhood under an arbitrarily small random perturba­
tion of the system coefficients. If the solution is nonsingular (i.e., the
system Jacobian matrix is nonsingular at the solution), then it has
multiplicity one. Otherwise it has multiplicity greater than one.

Define a linear function u(yi, ... , Yn+1) = eiY1 + e2Y2 + · · · +
en+IYn+I where 6, ... ,en+l are nonzero complex numbers, and de­
fine F" : cn+i --+ cn+i by

Fj'(y) =Ff (y), j = 1, ... , n,

F~'+ 1 (y) = u(y) - 1.
(13)

So F"(y) = 0 is a system of n + 1 equations in n + 1 unknowns,
referred to as the projective transformation of F(x) = 0. Since u(y)
is linear, it is easy in practice to replace F"(y) = 0 by an equivalent
system of n equations in n unknowns. The significance of F"(y) is
given by

Theorem[19]. If F'(y) = 0 has only a finite number of solutions in
cpn, then F"(y) = 0 has exactly d solutions (counting multiplicities)
in cn+l and no solutions at infinity, for almost all e E cn+i.

Under the hypothesis of the theorem, all the solutions of F'(y) =
0 can be obtained as lines through the solutions to F"(y) = 0. Thus
all the solutions to F(x) = 0 can be obtained easily from the solutions
to F"(y) = 0, which lie on bounded homotopy paths (since F"(y) = 0
has no solutions at infinity).

The import of the above theory is that the nature of the zero
curves of the projective transformation F"(y) of F(x) is as follows:
There are exactly d (the total degree of F) zero curves, which are
monotone in .A and have finite arc length. The homotopy algorithm
is to track these d curves, which contain all isolated (transformed)
zeros of F.

4. Computational results.

There are two extreme approaches for parallelizing the homo­
topy algorithm. For the coarsest form of parallelism, each individual
processor tracks as many solutions (paths) as possible until all the
solutions for the system of polynomial equations are found. In the
other extreme, where the granularity is the finest, the primary task of
tracking the solutions is delegated to one of the processors and only
during polynomial system evaluations, Jacobian matrix evaluations,
and other numerical calculations is the work distributed among the
processors.

In the first case, the division of work is at the highest level. Ini­
tially, the parameters defining the system of polynomial equations
(F(x) = 0) are distributed to the processors. Each processor then
works independently of the other processors. When a processor com­
pletes the tracking of a path, it takes the next path to be tracked.

Since there is no knowledge about the paths, they are assigned on a
first-come-first-serve basis. Thus, if a "bad" path exists (one which
requires a large number of function evaluations with respect to the
remaining paths to be tracked), the load would not be distributed
evenly among the processors. The processor with the "bad" path
would cause the other processors to remain idle after all the remain­
ing paths have been tracked.

The second approach is an attempt to balance the load more
evenly, hopefully, resulting in an overall speedup over the coarser
grained algorithm. In this paper, the fine-grained parallel homotopy
algorithm distributes the work of evaluating the system of polyno­
mial equations and its partial derivatives to N processors, where N
is the number of equations or the maximum number of processors,
whichever is smaller.

167

Two parallel versions, a coarse-grained version and a fine-grained
version, of the homotopy algorithm for polynomial systems were de­
veloped from the parallelization of HOMPACK. They were executed
on several parallel machines: Balance 21000, Elxsi 6400, Alliant
FX/8, and the Intel iPSC-32. The execution times are shown in
Table 1 of [38] along with those for the execution of the serial al­
gorithm. The efficiencies are listed in Table 2 of [38]. The total
degree of a problem refers to the number of solutions in the system
of polynomial equations. Thus, if a machine has infinitely many pro­
cessors, the maximum number of processors which can be utilized by
the coarse-grained algorithm is determined by the total degree of the
problem.

This paper is primarily concerned with the results obtained on
bus-oriented, shared-memory parallel machines. The primary dif­
ference between implementations of parallel homotopy algorithms
on shared-memory machines and implementations on distributed­
memory machines is that, in distributed-memory machines, the mas­
ter processor must communicate the tasks to the slave processors
individually and wait for the results through some form of commu­
nication medium. After a set of results is received from one of the
slave processors, the master processor assigns the next task to that
free processor. Both the master processor and the slave processors
must handle the processing of the communication protocols.

In shared-memory machines, the task of communicating the
problem and obtaining the results is much simpler. It is handled
through shared-memory, which is accessed by all the processors. The
primary processor sets up the problem in the shared-memory, ini­
tiates the processors, and handles portions of the problem like the
other spawned processors. Since the coordination of the processors
is done through mutual exclusion of certain critical shared memory
locations, no master processor is needed.

The calculations for the coarse-grained efficiencies are based on.
the maximum number of processors used on each of the parallel ma­
chines. The number of processors used on Sequent's Balance 21000,
Elxsi's 6400, and Alliant's FX/8 are 8, 10, and 8, respectively, except
for problems where the total number of paths to be tracked is less
than the number of processors.

The efficiencies for the coarse-grained algorithm with various
number of processors on Alliant 's FX/8 are shown in Table 3 of [38].
As one would expect, the efficiency improves as the number of pro­
cessors decreases.

5. Conclusions.

When the efficiencies of the two algorithms are compared using
an equal number of processors, the coarse-grained algorithm is found
to be more efficient than the fine-grained algorithm. In terms of
speedup, the coarse-grained algorithm outperforms the fine-grained
algorithm.

The problem with the coarse-grained algorithm is that when
some solutions have long paths with respect to other solutions, the
efficiency can be very low. This depends on the order in which the
solutions are found and the total number of solutions with respect to
the number of processors. Figure 1 demonstrates that by changing
the order in which the solutions (of problem 602 in [38]) are found, the
distribution of the work load can either be very unbalanced or very
well balanced. In Figure 1, curve 1 shows that the work load can be
distributed quite evenly among the processors when the "long'' paths
are assigned first. The distribution of the work load in the actual
assignment of the paths is shown by curve 2. The worst distribution
(curve 3) occurs when the "longest" path is assigned last while the
rest of the paths are assigned in decreasing order in terms of the num­
ber of function evaluations. From these distributions, curve 1 has the
"best" efficiency (0.99) and curve 3 has the "worst" efficiency (0.56),
whereas the actual efficiency was 0.67.

In general, the coarse-grained parallel homotopy algorithm is
more efficient and permits a higher degree of parallelism than the fine­
grained algorithm. However, since the number of function evaluations

required for each path can not be predicted, the efficiency of the
coarse-grained algorithm can be very low.

6. References.
[1] E. Allgower and K. Georg, "Simplicial and continuation methods for ap­

proximating fixed points," SIAM Rev., 22 (1980), pp. 28-85.
[2] S. C. Billups, An augmented Jacobian matrix algorithm for tracking ho­

motopy zero curves, M.S. Thesis, Dept. of Computer Sci., VPI & SU,
Blacksburg, VA, (Sept., 1985).

[3] P. Businger and G. H. Golub, ''Linear least squares solutions by Householder
transformations," Numer. Math., 7 (1965), pp. 269-276.

[4] A. C. Chen and C. L. Wu, "Optimum solution to dense linear systems
of equations," Proc. 1984 Internal. Conf. on Parallel Processing, (August,
1984), pp. 417-425.

[5] M. Y. Chern and T. Murata, "Fast slgorithm for concurrent LU decompo­
sition and matrix inversion," Proc. futernat. Con/. on Parallel Processing,
Computer Society Press, Los Alamitos, CA, (1983), pp. 79-86.

[6] S. N. Chow, J. Mallet-Paret, and J. A. Yorke, "Finding zeros of maps: Ho­
motopy methods that are constructive with probability one," Math. Com­
put., 32 (1978), pp. 887-899.

[7] E. Cloete and G. R. Joubert, "Direct methods for solving systems of lin­
ear equations on a parallel processor," Proc. 8th South African Symp. on
Numerical Mathematics, Durban, South Africa, (July, 1982).

[8] M. Cosnard, Y. Robert, and D. Trystran, "Comparison of parallel diago­
nalization methods for solving dense linear systems," Sessions of the French
Acad. of Sci. on Math., (Nov., 1985), p. 781!£.

[9] G. H. Ellis and L. T. Watson, "A parallel algorithm for simple roots of
polynomials," Comput. Math. Appl., 10 (1984), pp. 107-121.

[10] D. D. Gajski, A. H. Sameh, and J. A. Wisniewski, "Iterative algorithms
for tridiagonal matrices on a WSI-multiprocessor," Proc. Internat. Con!.
Parallel Processing, Bellaire, MI, (Aug., 1982), pp. 82-89.

[11] W. Gentzsch and G. Schafer, "Solution of large linear systems on vector
computers," Parallel Computing 83, North Holland, Amsterdam, (1984),
pp. 159-166.

0.15

Processor Number

;;
I

' ' I
I

' I

' ' I

' I

' ' ' I
I
I
I

' I
I
I
I
I

L.#,,~2

i/''/
/ t

.' I

/ :
.' I

/ l
.' I

/ f
/ I

: ' / /

7

Figure 1. The distribution of work in coarse-grained parallelism for
various orderings of paths for problem 602 on the Alliant FX/8.

168

[12] D. Heller, "A survey of parallel algorithms in numerical linear algebra,"
SIAM Rev., 20 (1978), pp. 74(}-777.

[13] Intel Corporation, iPSC Users' Manual, Intel Corp., (1985).
[14] Y. Kaneda and M. Kohata, "Highly parallel computing of linear equations

on the matrix-broadcast-memory connected array processor system," 10th
IMACS World Congress, Vols. 1-5, (1982), pp. 320-322.

[15] J. S. Kowalik, "Parallel computation of linear recurrences and tridiagonal
equations," Proc. IEEE 1982 Internat. Conf. on Cybernetics and Society,
(1982), pp. 580-584.

[16] J. S. Kowalik and S. P. Kumar, "An efficient parallel block conjugate gradi­
ent method for linear equations," Proc. Internat. Conf. Parallel Processing,
Bellaire, Ml, (Aug., 1982), pp. 47-52.

[17] M. Kubicek, "Dependence of solutions of nonlinear systems on a parameter,"
ACM '.frans. Math. Software, 2 (1976), pp. 98-107.

[18] S. Lakslnnivarahan and S. K. Dhall, "Parallel algorithms for solving certain
classes of linear reCUITellces," Foundations of Software Technology and Th~
oretica.1 Computer Science, Lecture Notes in Computer Science, Vol. 206,
Springer-Verlag, Berlin, (1985), pp. 457-477.

[19] A. P. Morgan, "A transformation to avoid solutions at infinity for polyno­
mial systems," Appl. Math. Comput., 18 (1986), pp. 77-86.

[20] --• "A homotopy for solving polynomial systems," Appl. Math. Com­
put., 18 (1986), pp. 87-92.

[21] --1 Solving polynomial systems using continuation for engineering and
scientific problems, Prentice-Hall, Englewood Cliffs, NJ, (1987).

[22] A. P. Morgan and L. T. Watson, A globally oonvergent parallel algorithm
for zeros of polynomial systems, Dept. of Computer Sci., VPI & SU, Blacks­
burg, VA, TR 86-24, (Sept., 1986).

[23] D. Parkinson, "The solution of N linear equations using P processors," Par­
allel Computing 83, North Holland, Amsterdam, (1984), pp. 81-87.

[24] W. Pelz and L. T. Watson, Message length elfects for solving polynomial
systems on a hypercube, Dept. of Computer Sci., VPI & SU, Blacksburg,
VA, TR 86-25, (Sept., 1986).

[25] D. A. Reed and M. L. Patrick, "A model of asynchronous iterative algo­
rithms for solving large ~se linear systems," Proc. 1984 Internat. Conf.
on Parallel Processing, (August, 1984), pp. 402-410.

[26] W. C. Rheinholdt and J. V. Burkardt, "Algorithm 596: A program for a
locally parameterized continuation process," ACM Trans. Ma.th. Software,
9 (1983), pp. 236-241.

[27] T. A. Rice and L. J. Siegel, "A parallel algorithm for finding the roots of a
polynomial," Proc. Internal. Conf. Parallel Processing, Bellaire, Ml, (Aug.,
1982), pp. 57~1.

[28] H. Schwandt, "Newton-like interval methods for large nonlinear systems of
equations on vector computers," Computer Phys. Comm., 37 (1985), pp.
223-232.

[29] C. L. Seitz, ''The cosmic cube," Commun. ACM, 28 (1985), pp. 22-33.
[30] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differ­

ential Equations: The Initial Value Problem, W. H. Freeman, San Francisco,
(1975).

[31] H. J. Sips, "A parallel processor for nonlinear recurrence systems," Proc.
1st Internat. Con!. on Supercomputing Systems, IEEE Computer Society
Press, Los Alamitos, CA, (1984), pp. 66CHl71.

[32] L. T. Watson and D. Fenner, "Chow-Yorke algorithm for fixed points or
zeros of C2 maps," ACM '.frans. Math. Software, 6 (1980), pp. 252-260.

[33] L. T. Watson, "A globally convergent algorithm for computing fixed points
of C2 maps," Appl. Math. Comput., 5 (1979), pp. 297-311.

[34] L. T. Watson, S. C. Billups, and A. P. Morgan, HOMPACK: A suite of
codes for globally convergent homotopy algorithms, Dept. of Industrial and
Operations Eng., Univ. of Michigan, Ann Arbor, MI, Tech. Rep. 85-34,
(Nov., 1985), and ACM Trans. Math. Software, 13 (1987), pp. 281-310.

[35] L. T. Watson, Numerical linear algebra aspects of globally convergent ho­
motopy methods, Dept. of Computer Sci., VPl&SU, Blacksburg, VA, Tech .
Report TR-85-14, (1985), and SIAM Rev., 28 (1986), pp. 529-545 .

[36] R. White, "Parallel Algorithms for Nonlinear Problems," SIAM J. Algebraic
Discrete Methods, 7 (1986), pp. 137-149.

[37] R. White, "A Nonlinear Parallel Algorithm with Application to the Stefan
Problem," SIAM J. Numer. Anal., 23 (1986), pp. 63!H>52.

(38] D. C. S. Allison, S. Harimoto, and L. T. Watson, The granularity of par­
allel homotopy al.gorithms for polynomi.al systems of equations, Dept. of
Computer Sci., VPI & SU, Blacksburg, VA, TR 88-4, (Jan., 1988), 17 pp.

A New VLSI 2-D S_ystolic Array for Matrix Multiplication
and Its Applications

Shie-Tung Peng
Moon S. Jun

Department of Computer Science
University of Maryland, Baltimore County

Abstract This paper proposes a new systolic architecture and a
systolic algorithm for fast matrix multiplication. The computation
time is !m - 1 on the systolic array of m2 processing elements. No
any other known systolic algorithms can reach this time complexity
by using a systolic array of m2 processing elements.

To demonstrate the power of these methods, we apply them to
solve the shortest path problem using a partition approach. The
proposed block algorithm for the shortest path problem overcomes
difficulties in the management of a large-size graph.

1. Introduction
With the advance of VLSI technology, a new technological en­

vironment is now available for manufacturing computers with high
computation speed. It is now possible to implement a logic circuit
consisting of hundreds of thousands of components and to build a
large scale computing network with many inexpensive processing
elements to perform parallel computation.

Among the several approaches to the parallel organization that
can take advantage of the new technologies, the systolic arrays are
of great potential to achieve high concurrency and parallel com­
putation. Systolic arrays[H.T.Kung80, 82, S.Y.Kung 82, 87] have
been developed to be efficient architectures for the solution of reg­
ular, computationally intensive peoblems.

A systolic array is an array of individual processing elements
each of which is locally connected with its nearest neighbours to
perform the same basic operations and to distribute the signal and
the data across the entire processor array in a highly parallel and
pipelined fashion. The simplicity of the processors and the unifor­
mity of the processor interconnection allow the large systolic arrays
to be implemented effectively on VLSI chips.

Matrix multiplication is one of the most important operations
in diverse fields of computer sciences such as signal processing,
image processing, graph theory and linear algebra.

In this paper, we propose a new systolic array and a systolic
algorithm for computing matrix multiplication.

2. An Efficient VLSI 2-D Systolic Array

2.1 Description of Systolic Array Architecture
The proposed systolic array contains m2 processing elements(PEs).

Each PE can perform basic arithmetic and logic operations. There
are two communication lines for each PE. The diagonal line sup­
ports two-way routing, while the vertical line supports only top­
down transmission. The diagonal lines of boundary PEs are con­
nected to the boundary PEs of the next row/column on the op­
posite side. There are serveral input/output buffers connected to
the boundary PEs. More specifically, we have five m-by-1 array
buffers, named tM•, tMw, fMb, rMb, and bMw. Each of the first
four array buffers holds a row of the input matrices, the bottom
array buffer, bMw, will hold the output. The connections among
PEs and between array buffers and boundary PEs are depicted in
Figure 1.

The following rules specify formally the interconnection of PEs
to PEs and PEs to array buffers or vice versa.

Interconnection Rules for Architecture Design
(1) PEs to PEs

Rl(PE;,;) = PE((i+l)mod(m).i)
R2(P E;,;) = P E((i+l)mod(m),(;+l)mod(m))
Ra(PE;,;) = PE((i-l)mod(m),(j-l)mod(m))

169

(2) PEs to array buffers and vice versa
R(Mt) = R(tMf) = PE1,;
R(fMf) = PE(i+l)mod(m),1)
R(rMf) = PE;,m
R(bMf) = P Em,(i+l)mod(m)

2.2 A New Systolic Array Algorithm
A new systolic algorithm for computing the product matrix W

of two m-by-m matrices A and Bis described below. The product
matrix W is defined by the formula w,,. = E;;'=l a,,y * byz, where
w,,y £ W, a,,y f A, and byz f B. The following notations will be used
to describe the algorithm :

0 { 0 if initial
(l) w,,. = previous result otherwise

(2) w~. = w~; 1 + (a,,y * byz)
(3) w,,, = w~,

We assume that the input matrices in the memory modules
can be accessed one row at a time. The ordering of rows of each
input matrix that are loaded from memory modules are specified
as follows: Matrices A and W are loaded from the low-numbered
row to the high-numbered row starting with loading the first rows

of A and W to tM• and tMw respectively. Matrix B is loaded in
a slightly different way, two rows of B are loaded simultaneously,
starting with loading the (m/2)th and the (m/2 + l)th rows to
fMb and rM1 respectively, then the (m/2 - l)th and the (m/2 +
2)th rows at the next computing cycle and so on until the first and
the last rows are reached.

At the first step of the algorithm, elements of matrix B ate
piped from the column array buffers, rM1 and fMb, into the 2-D
systolic array as shown in Figure 2(a). Then the contents of PE1,m,·

PE2,m, .. ., PEm,m are b(m/2)+1,m• .. ., b(m/2)+1,2• b(m/2)+1,1 respec­
tively, and the contents of PE1,i, PE2,1, .. ., PEm,1 are bm/2,1•
bm/2,m• .. ., mm/2,2 respectively. Within m/2 steps, all elements
of matrix B can be piped into the 2-D systolic array as shown in
Figure 2(b).

At the ((m/2)+1)th step, the following computations are exe­
cuted in PE1,1 1 PE1,2, .. ., PE1,m respectively, where wu, W12, .. .,
W1m and au, a12, .. ., alm are piped from upper buffers into first
row of the array.

wW = w\~) + au *bu,

w(~l = wW + ai2 * b22,

. (1) (0) *
Wlm = Wlm + a1m bmm

Then the w,,, is piped into the lower&right neighbor PE, the
by, is stored in each the RAM of each PE to be used repeatedly,
and the a,,y is piped into the lower neighbor PE as shown in Figure
2(c). After m-1 more steps, all elements of matrix A and W will
be piped into the systolic array.

During each computation cycle, all the PEs in the array per­
form the same multiply-and-add operation. Eacli PE takes the
value from its upper&left neighbor and adds it to a,,y * by., and
then passes the new value to its lower&right neighbor for use at
the next step. At each computation cycle, the data stream of a;k
is piped one row down and w,,. is piped one position lower&right
while by• is waiting in the original PE. The result w.,. will be piped
into the bottom array buffers during the last m steps of the algo­
rithm from the bottom boundary PEs.

ALGORITHM 1(Matrix Multiplication Problem)

Procedure Multiply(var : A, B, W ; m-bym matrices) ;
begin
r~ 1;
while (r ~ If) do (* Assume that m is even *)

begin (* for 1 ~ i ~ m do simutanously *)
if j ~If in PE;;

then shift by., left
else shift by., right ;

r+--r+l;
end;

store byz ;(*store byz into the RAM of each PE*)
move a.,y;(*move a.,y from tM• into PE1,1*)
move w.,, ;(*move w.,, from tMw into P E1,1*)
repeat

begin (* all PEs that have all their data available *)
mult a.,y,by,,w.,, ;
move a.,y;(*into the lower neighbor PE*)
move w.,, ;(*into the lower&right neighbor PE *)

end;
until there are no more data entering the PE ;

end.

Next, we prove that this systolic algorithm 1 works correctly by
the following lemma and theorem:

(Lemma 1) : After the first m/2 steps of Algorithm
1, PE(i,i) will hold b;,(i-i+l)mod(m)• for all 1 ~ i, j ~ m.
(Proof)

(i) b;,; of the front memory modules at the first step will be
loaded into PEm~;+2 , 1 for all 1 ~ j ~ m. Then b;,; is moved
lower&right during the rest (i-1) steps. Therefore b;,; will halt at
PE((m-;+2)+(i-l)))mod(m),l+(i-1) = PE(i-;+l)mod(m),i·

(ii) b;,; of the rear memory modules at the first step will be
loaded into PEm-;+l,m for all I~ j ~ m. b;,; is moved upper&eft
during the rest m-i steps. Therefore b;,; will halt at
P E(m-;+1-(m-i))mod(m),m-(m-i) = P E(i-i+l)mod(m),i.
By (i) and (ii), PE;,; holds b;,(i-i+l)mod(m)- D

(Theorem 1): Algorithm 1 generates the product matrix
W of matrices A and B.

From the algorithm, we know the following facts:
(a) w;,; passes through m PEs from top down.
(b) Them PEs passed by w;,; are

PE1,;, PE2,(j+l)mod(m)> PEa,(i+2)mod(m),.••., PEm,(i+m-l)mod(m).
(c) The A values of the PEs in (b) while w;,; passes are

a;,;' ai,(i+l)mod(m)> ai,(j+2)mod(m) .. ··., ai,(i+m-l)mod(m).

By Lemma 1, the B values of the PEs in (b) are b;,;, bc;+1)mod(m),j,
bc;+2)mod(m),j ,. .. .,bc;+m-l)mod(m),; · (d)
From (c) and (d), we know that the value of w;,; is

m-1
:L: a•,(i+k)mod(m)b(j+k)m•d(m),j
k=O

Therefore the algorithm generates the product of matrices A
and B.D

2.3 Performance Analysis and Comparison with Other
Arrays

In the proposed algorithm 1, a PE, once activated, performs the
multiply-and-add operation at every computation cycle, until there
are no more data entering the PE. At the peak of computation,
about 100 percent of the m2 PEs compute simultaneously. Average
utilization of PEs is about 50 percent. This rate is higher than in
other systolic arrays.

170

The computation time is ~m - 1 time units assuming that each
computing-and-routing cycle takes one unit of time. This can be
verified by the following facts:

(1) In If time units, all elements of matrix B are piped into
the array,

(2) The time difference between the bottom and the top row
elements of either A or Wis (m-1) units due to startup time delay
as shown in Figure 2, and

(3) The bottom row elements of either A or W are piped out
of the array after m computing cycles.

It can be seen easily that our systolic algorithm has better per­
formance than all other systolic algorithms in term of AT2 measure
for VLSI implementation as shown Table 1. For more efficient VLSI
implementation, the operation of each PE is controlled locally and
handles asynchronously[Peng & Jun 87, 88]. The basic idea is that
a PE does not have to wait until the previous PE completes its
computation. The approach speeds up the computation time by

allowing the individual PE to operate independently to reduce the
waiting time. The architectural design of PE will be discussed in
next section.

I Table.1: Comparision of Systolic Array I
II Systolic Array II Time Complexity I Control System II

Guibas 79] 5m synchronous
H.T.Kung 8![3m+mi~p,ql synchronous
Rote 85] 5m-3 synchronous

(McCanny 86] 4m-1 synchronous
(S.Y.Kung 87] 4m-2 asynchronous

II [this paper] 11 !m-1 I asynchronous

2.4 Architectural Design of Processing Element
In this section we will discuss the organization of the PE to

be used as a basic module in our 2-D systolic array. In order to
minimize the impact of both internal and external processor com­
munication, each PE is partitioned into an Arithmetic Unit, three
network control I/O units which can operate asynclironously, an
EPROM(Errasible Programmable Read Only Memory), a RAM(
Random Access Memory), and a control unit which can control
the execution of both the memory unit and the arithmetic unit.
The organization of the PE is illustrated in Figure 3(a).

Each PE is connected to its three neighbors via indicated busses
in the control unit. This device can be used to control its speed,
internal RAM, I/0 pins, and byte manipulation. The data in the
PE move over a multiplexed n'-bits data/address bus.

Computation is accomplished in the Arithmetic Unit, see Fig­
ure 3(b). This unit is capable of performing several formats (fixed
point or floating point formats). Many operations are available
such as addition, subtraction, multiplication, division, square root,
trigonometric functions, etc.

The EPROM is used to store algorithms whicli perform data
manipulation. This gives the system an efficient implementation so
that the system can operate asynchronously and with local control.
The RAM can be used for data storage. This memory space is
important for partitioned matrix operations.

The RAM can also be used for storage of programs during
algorithm development. Once the algorithms have been completed,
they will be put into EPROM.

The control unit is partitioned into eight units as shown in
Figure 3(d). They control RAM, EPROM, AU, and I/O units
in each PE and are used to control I/O communication with the
neighbor PEs in the network and allow messages to be sent to or
received from several PEs simultaneously. Each NCIOU can de­
termine whether the data are needed by the AU and/or other PEs
with no intervention from the AU. Figure 3(c) 6 shows the basic ar­
chitecture of one NCI OU. This unit is divided into four functional
units.

3. Applications for the new 2-D systolic Array

3.1 Mapping a Partitioned Graph into a Systolic Array
In this section, we describe a partition approach for large size

directed graphs. The partition method is the key to extend the
computational capability of VLSI architectures and to overcome
difficulties in the mapping of a large-size graph into a fixed systolic
array.

A directed graph G with n nodes can be represented as a pair G
= (V ,E), where V is the set of vertices and E is the set of weighted
edges in the graph. As shown in Figure 4(a) and (b), we use a
matrix adjacency matrix W to represent the directed graph with
six nodes as follows.
(1) w;j =the weight from node i to node j if there is an edge
from i to j;
(2) W;j = oo if there is no edge connecting i and j;
(3) w;; = 0 ifi = j.

Suppose that the size of the systolic array is m 2 , the adjacency
matrix W of size n2 can be partitioned into k2 submatrices each
of size m 2, where k = n/m. We can do computation on these
submatrices separately using the proposed systolic array of size m 2
and then combine the results to get the solution for the original
large size problem.

The partition approach can avoid the unrealistic assumption
that an unlimited number of PEs can be used to execute required
computation. The size of the systolic system should be fixed once
it is built.

3.2 Shortest Path Problem
In the all-pairs shortest path problem, we are required to pro­

duce a matrix w+ of size n2 such that W;j is the weight of the
shortest path from v; to Vj in G.

We use Floyd's approach for this problem. Let wfj denote the
length of the shortest path from v; to Vj that has intermediate
vertices with indexes smaller or equal to k. Then wf,j will be the
shortest path we need. Since there are no negative weight cycles in
G, we can easily modify the multiplication algorithm 1 to find w+
by replacing "+" and "*" in the multiplication algorithm 1 with "
min " and "+" as follows :

w:t 1 := min{ w:,,[w:9 + w:,] }

Following this modified version of algorithm 1 and the Floyd
algorithm, the all-pairs shortest path problem can be solved here in
5/2n - 1 time on the 2-D systolic array with n2 PEs: It is illustrated
by partitioning an example of a graph of order 6 using a systolic
array of size 2-by-2 as shown in Figure 5(a) and (b). Here the ratio
k is n/m = 3.

The sequences of submatrix computations for the i th iteration,
where 1 ~ i ~ 3, of this algorithm are shown in Figure 5(c). At
the end of i th iteration, w,,y is updated to be the shortest paths
through intermediate nodes contained in submatrix W;;. This is
done by comparing Wxy with w,,,; + W;y. The above processing
is done through three steps (1),(2), and (3) of the algorithm as

ALGORITHM 2 (Shortest Weight Path)

Procedure allweight (var W: adjacencymatrix; k: integer);
begin

for i := 1 to k do
(1) W;; := min(W;;, W;; + W;;) ;
(2) for j := 1 to k with j -::/; i do

W;; := min(W;;, W;; + W;;) ;
Wj; := min(W;;, W;; + W;;) ;

end-for ;
(3) for h := 1 to k with h -::/; i do

for g := .1 to k with g -::/; i do
Whg :=min(Wh9 , Wh; + W;9);

end-for ;
end-for ;

end-for ;
end;

171

depicted in figure 5(c). After k iterations, all w,,9 will have the
correct values of the shortest path from x to y.

The correctness of this algorithm follows easily from the Floyd
algorithm. Now, we analyze the time complexity as below: For
each i, the number of submatrix computations is 1 + 2(k - 1) +
(k -1)2 = k2, and each submatrix computation takes 3m - 1 units
of time. Therefore, the total computing time is (3m - l)*k2*k =
3n3 /m2 using a systolic array of size m2 • All the computations at
steps (2) or (3) in the algorithm can be done independently. There­
fore, the time complexity can be further improved ifthere are more
systolic arrays of size m 2 available.

4. Conclusion
In this paper, we describe a new systolic system for matrix

multiplication and its relative problems. The proposed systolic
array achieves better performance than the previously reported
systolic arrays. Other advantages of our array include: (1) no
need for global propagating control signals, (2) no need for data
pre-arrangement, (3) no need for data interleaving to achieve this
optimal rate, and (4) only two I/O lines required.

For applications, we mention only the shortest path problem
for directed graphs. There should be many other applications that
the proposed system can be used. Image processing and signal pro­
cessing are two possible examples. More research needs to be done
to explore the potential of the new systolic system.

REFERENCES

[Floyd 62] R.W. Floyd, Algorithm 97: Shortest Path, Comm.
ACM 5, 1962, pp.345.

[Guibas 79] L.J.Guibas, H.T.Kung, and C.D.Thompson, Direct
VLSI Implementation of Combinatorial Algorithms, in
Proc. Caltech Conference on VLSI, L.A., 1979.

[Hwang 82] K.Hwang and Y.Cheng, Partitioned Matrix Algorithm
for VLSI Arithmetic Systems., IEEE Transc.on Comp.,vol
c-31 No.12,December 1982,pp1215-1224

[H.T.Kung 80] H.T.Kung and C.E.Leiserson Algorithms for VLSI
Processor Arrays, in C.Mead and L.Conway, Introduction
To VLSI System. Reading, MA: Addison-Wesley, 1980,
pp .263-332.

[H.T.Kung 82] H.T.Kung, Why Systolic Architectures?, Computer
Magazine, Vol.15,No.l,Jan.1982,pp.37-46.

[S.Y.Kung 82] S.Y.Kung, Wavefront Array Processor: Lan-
guages, Architecture, and Applications ,IEEE Trans.on
Computers,pp.1054-1066, Nov.1982.

[S.Y.Kung 87] S.Y.Kung, S.C.Chung, and P.S.Lewis, Optimal Sys­
tem Design for the Transitive Closure and the Shortest Path
Problems, IEEE Trane. Comp., Vol.C-36, No.5, May 1987.
pp.603-614.

[McCanny 86] John McCanny and John McWhirter, The Deriva­
tion and Utilization of Bit Level Systolic Array Architec­
tures , "Systolic Array" in the First Int 'l workshop on sys­
tolic Arrays, Oxford,2-4 July 1986, pp 47-59.

[Moldovan 83] DJ.Moldovan, On the Design of Algorithms for
VLSI Systolic Arrays, Proc. IEEE,Vol.71,No.1,Jan.1983

[Peng & Jun 87] Shie-Tung Peng and Moon S. Jun, A New VLSI
2-D Systolic Array for Matrix Multiplication and Its Appli­
cation , Univ. of Maryland, Baltimore Conuty, TR CS-PP-
001, 1987.

[Peng & Jun 88] Shie-Tung Peng and Moon S. Jun, A Local and
Asynchronous Control for Advanced Systolic Arrays, Univ.
of Maryland, Baltimore County, TR CS-PP-003, 1988.

[Rote 85] G.Rote, A Systolic Array Algorithm for the Algebraic
Path Problem(Shortest Paths, Matrix Inversion), Comput­
ing, no.34, Sprin-Verleg, 1985, ppl91-219.

Figure.I. The connection between the boundary PEs
and the array buffers.

Figure.2. A new systolic matrix multiplication

W35

(a) A directed graph with weight.

0 W12 W13 00 00

00 1 W21 w,, WH W':!S co

W=
00 00 0 W34 00 00

co 00 co 0 W45 W46

00 00 00 00 0 1Ll56

JC XJ JC '11(;4 00 0

Figure.4. (b) The adjacency matrix for the directed graph.

172

(a) Processing Element(PE)

(b) Arithmetic Unit (c) Network Control 1/0 Unit

Figure.3. (d) A Control Unit

--+ot11!1nAl weight
-···•i>vei11ht Afler(l)
-·-·-+ vetl!hl ofter (2)
-·-•vei11ht ,.r,"r (3)

'"------'

(a) The shortest path graph of Fig.3(a).

I 0 w,, II w., w,. II w,, "''" il
w+= J

W21 0 I W23 w,. w,. W:G

I l
00 00 0 w,. W35 W35

00 00 00 0 W.s w.,
00 00 00 W54 0 W5(l i
00 00 00 w,. W05 01

(b) The shortest path matrix w+ of (a)

(i = l) (i = 2) (i = 3)

Fi~ure.5. (c) The ordering of submatrix-operations
in algorithm 2.

PARALLEL ALGORITHMS FOR MULTIPLYING VERY LARGE INTEGERS

Shie-Tung Peng (peng@umbc2.umd.edu) Thomas F. Hudson, jr.
Department of Computer Science

University of Maryland, Baltimore County
5401 Wilkens Avenue Catonsville, Maryland 21228

Abstract - Parallel algorithms for multiplying large integers
are considered in the EREW PRAM model. A parallel addition
algorithm is discussed, followed by a shift-and-add multiplication
algorithm which runs in O(logn) time with O(n2) processors.
Two FFT-based algorithms are discussed, one in the field of com­
plex numbers, which runs in O(log n log log n) time, and in the
ring of integers modulo 2°+ 1 (Schiinhage-Strassen), which runs in
O(log n) time.

1. Introduction

Many problems in Applied Algebra and Number Theory require the
exact product of two very large n -bit integers, where n is too large
for an ordinary machine multiply instruction. We assume no bound
on n. We consider only the multiplication of positive integers, since
the product of negative integers can be computed from their positive
counterparts with a simple test for final sign. We discuss four paral­
lel algorithms - one for addition, one for shift-and-add multiplica­
tion, and two for multiplication using FFr' s. Detailed presentations
of the algorithms discussed herein can be found in [15].

1.1. Parallel Processing Model

There are many parallel processing models available [7, 9, 12, 16,
18, 20, 24], each of which has advantages and disadvantages. We
work within the context of a global shared memory model (some­
times called the PRAM [24] model), where we have p processing
elements (PE's) connected to a global memory. The PE's constitute
an SIMD machine. Each PE is assumed to have local memory of
size 0 (log n). We selected this model because it poses no architec­
tural restrictions or delays on access to atomic data, and is conse­
quently ideal for asymptotic time analysis.

Three modes of the global shared memory model have been
identified by [20]. These affect how PE's may access the global
memory. They are - CRCW (concurrent read, concurrent write),
CREW (concurrent read, exclusive write), and EREW (exclusive
read, exclusive write). The EREW mode is the most restrictive of
the three [12]. We chose to use the EREW PRAM model, since

·cRCW or CREW could prevent us from easily transferring algo­
rithms to a model or architecture which does not permit concurrent
access.

2. Parallel Addition

We present an algorithm, based on ideas primarily from [11] and
also from [7, 17, 18, 23], which adds two n-bit binary integers r and
s, where n = 2N. If we think of r + s as a modulo 2n addition with a
carry into the n -th position, we can write this sum as two
modulo 2n12 sums of the upper and lower halves of r and s with
carry into the n -th position and carry between these two sums (i.e.
into the (n/2)-th position). Applying this recursively log n times, we
reach the "bottom" where the sums are modulo 2 and we have carry
(modulo 2) into each bit position. r + s can be computed from the
bit-wise exclusive-or of r,, s,, and these carries.

To compute the carries, we start at the "bottom" point and compute
the carry out of the modulo 2 sums with a boolean operation. We
then unwind the recursion to the "top" (modulo 2n sum), generating
"carry-out" data as we go. We then wind the recursion down again,
distributing the carry-out information as "carry-in". This gives us
the carry into each of the modulo 2 sums r, Ell s,. The carry-in to
the lowest sum is forced to be 0. This recursion requires 0 (log n)
time with n PE's. We refer to this as ALGORITHM A.

This algorithm can compute r - s by inverting s and forcing the
lowest order carry-in to be 1.

173

BEGIN ALGORITHM A

1.0 Let r and s be two n -bit numbers where n = 2~ N > 0. Let
c,,1, fiJ• and z,,1 represent the j-th value of c, f, and z at the
i -th level of recursion. c, f, and z are used in accumulation
and distribution of the carry information. The large right
braces imply parallel computation, with the range indicated to
the right. We compute the (n+l)-bit sum t = r + s thus:

1.1 Initialize.

co· ~ r· /\ s·} • ' '05i<n
fo,i ~ r, Ells,

1.2 FOR k ~ 1 TO N

Ck,i ~ Ck-1,2i+I V (fk-1,2i+l /\ Ck-1,2i)} O $ i < ~-k
h.• ~ h-1,2i+l /\ h-1,2i

END FOR

1.3 Compute

1.4 FOR k ~ N DOWNTO 1

Zk-l,2i ~ zk,i }

zk-1.U+I ~ ck-1,2i V <h-1,u /\ zk,i)

END FOR

1.5 Compute

t; ~ f o,i Ell zo;} 0 5 i < n

END ALGORITHM A

3. Multiplication by Direct Computation

05i<2N-k

The "natural" method of multiplication we are taught as children
consists of multiplying the multiplicand by the individual digits of
the multiplier, shifting each of these results to the left as the order of
the multiplier digit increases, and summing the shifted results to
form the final product. Binary multiplication is a special case of this
method where the values summed are simply repeated copies of the
multiplicand shifted to the left i places wherever the i -th bit of the
multiplier is 1.

With 0 (n 2) PE's, we can distribute copies of the multiplicand over
an 0 (n 2)-sized memory in 0 (log n) time. We can also distribute
the multiplier in 0 (log n) time, and logical-and the multiplier and
multiplicand bits (to remove the undesired rows) in constant time.
This reduces the problem to that of summing n rows of (2n)-bit
numbers. If two rows can be added in constant time, we can sum
them up in 0 (log n) time using a typical binary-tree summation.
Clearly we cannot use ALGORITHM A for this, since summation
would require 0 (log2 n) time.

3.1. Carry-Save Addition

There is a valuable addition technique known as a Carry-Save
Adder [17], which we abbreviate CSA. A CSA can add three n -bit
numbers giving two (n + 1)-bit numbers in time independent of n.
Specifically, if a , b, c, and d are n -bit binary numbers, and e is an
(n+l)-bit number, we can computed +e~a +b + c by computing

d, ~ a, e b, e c, ,
e;+1 ~ (b, /\ c,) V (a, /\ (b, e c;)),

eo~ 0.

So, if we have n rows to sum, we can reduce this to 2n /3 rows in
constant time with O(n2) PE's. Since each reduction is by a factor
of 2/3, it takes log312 n = 0 (log n) applications of this technique to
reduce the number of rows to two, where they can be added in
0 (log n) time using ALGORITHM A. Therefore, we can multiply
two numbers in 0 (log n) time with 0 (n 2) PE's. We refer to this as
ALGORITHM B.

4. FFT Techniques

Owing to the relationship between the Fourier Transform domain
and convolution, the Fast Fourier Transform (FFT) can be used to
multiply finite polynomials, and hence integers, very rapidly. The
use of the FFT for multiplication of finite polynomials has been well
studied. Presentations can be found in [I, 5, 10, 16, 19] among oth­
ers. The FFT was apparently first applied to this problem by
S trassen in 1968 [10].

For computation of exact convolution results, there are two common
families of FFT algorithms. One family uses the ring of integers
rrwdulo 2"+ 1 for some a (the Schonhage-Strassen algorithm) [l, 10,
19] and selects a large enough that the correct result is obtained.
The other family uses the field of complex numbers with sufficient
floating point precision to guarantee the result [10, 19]. The FFT in
parallel has been discussed by [8, 16, 19, 21, 22] among others.

4.1. FFT's in the Complex Field

The FFT has its origins [5, 6, 14] in the field of complex numbers.
The nth root of unity is ro = e <:1=1>2:rt!• where the transform is over a
vector of n values. Strassen's approach, as presented in [10, 19]
works this way: Let u and v be n -bit numbers. Let

2n 5, 2k / < 4n , K = 2k , L = 2' .
We view u and v as K-place base-£ integers, whose upper K 12

digits are 0. We perform k stage FFT's on u and v yielding their
transforms [il 0, ili. · · · , uK-il and [v 0, vi.· · · , vK_iJ, compute the
piecewise products [w 0, w" · · · , wK-il of the two transforms, and
compute the inverse FFT [W0, Wi. · · ·, WK_1] of those products.

Since the w, 's are the convolution of K-place base-£ numbers, each
w, is upperbounded by KL2 and we cannot simply concatenate these
results to form 1-!r answer. The desired result can be obtained by

computing w = L w, L'.
i=O

We now examine the algorithm in detail. Select k and / such that
k = l . k and l are both slightly smaller than log n . This makes for
an awkward exact form for K, k, and / , but they are approximately
k =l = O(logn) and K=O(n/Iogn).

All numbers are converted to binary fixed point fractions so that
they will have a magnitude less than 1. Assuming we use m-bit pre­
cision, the initial error in any number is Tm. Each complex opera­
tion has one of the two forms a ~ b ro + c or a ~ b ro. Either of
these forms will cause the loss of two bits of accuracy from both the
real and imaginary components.

We begin both forward FFT' s by shifting the base-£ integers to the
right (/ +k) places. Shifting I places makes each number a fraction.
Shifting k additional places ensures that none of the intermediate
results exceed 1, since no butterfly can do more than double the
intermediate values. Since the FFT is a linear operation [13], divid­
ing the inputs by 2k+l reduces the output values by the same factor.
So the piecewise products have the form

r WK-I] r llK-1 VK-1] . L 22k+2I = L 2k+1 2k+1 • The final output of the mverse FFT

must be multiplied by 22k+2I to reconstruct the desired answer.
Therefore the error must not propagate any higher than T2k-z1-1 =
2-4k-1• The k stages of the forward FFT's induce 2k bits of error, so
the error after the forward FFT's is 22k-m. The complex multiplica-

174

tion of the a 's and v 's induces an additional two bits of error, rais­
ing the error to 22k-m+z. The inverse FFT induces another 2k bits of
error, but the division by K reduces half of that, so after the inverse
FFT the propagated error is 23k-m+2• Thus m must be at least 7k+3
to limit the error to 2--1• Since k < log n, we simplify and use the
figure 7 log n as the number of bits required to obtain the correct
result.

Addition and subtraction of 0 (log n)-bit numbers can be done using
ALGORITHM A in 0 (log log n) time without any significant altera­
tion. The scaling in the FFT algorithm prevents additions from
overflowing into a number greater than 1. Multiplication can be
done using ALGORITHM B in 0 (log log n) time with the alteration
that we shift rows to the right (for fractional accumulation) instead of
to the left.

In each butterfly in each stage of each FFT, we must perform one
complex multiplication and two complex additions. These can be
done in 0 (log log n) time. With k = 0 (log n) stages, an entire FFT
requires 0 (log n log log n) time.

The multiplication of the piecewise products takes 0 (log log n)
time. The inverse FFT is the same as the forward FFT. The divi­
sion by K and multiplication by 22k+ZI at the end of the inverse FFT
are simply shifts and are insignificant. Once the inverse FFT has
been comp~~<;d and properly shifted, we need to compute the final

result w = 1: w, L'. Since each w, is no more than k+2l = 3 logL
i=O

bits long, we can rearrange them into three numbers, and use one
carry-save addition and one application of ALGORITHM A to com­
pute the sum. The entire convolution requires 0 (log n log log n)
time.

We now address the computation of the sinusoid table. Each entry
in the table must be accurate to 7 log n bits. We compute the table
by computing ro = e<:l=l>ZTrlK using the conventional series for e', then
computing the powers of ro from it. There are K=O(nllogn)
powers of ro in the table. Each computation of a power of ro is a
complex multiply which can be done in 0 (log log n) time. 0 (log n)
such computations are required, so the table can be computed and
copied in 0 (log n log log n) time. Each ro, we compute is the com­
plex product of no more than k other roi values, so only 2k bits of
error are induced. If we compute ro with 9 log n correct bits, we will
have 7logn correct bits in each power of ro. We can compute ro to
this accuracy in O(logn loglogn) time [2, 3, 4, 15].

This FFT algorithm multiplies two n -bit integers in
O(logn loglogn) time with O(n logn/loglogn) PE's. We refer to
this as ALGORITHM C.

4.2. FFT's in the Ring of Integers

The classic form of the Ring-of-Integers approach is the well-known
Schonhage-Strassen algorithm. This algorithm is relatively complex,
and [l, 19] give good presentations of it. The FFT is computed in
the ring of integers modulo some number whose results will be
smaller than the original operands. These results must then be multi­
plied together, which is done recursively with successively smaller
and smaller FFT' s until the numbers are small enough to multiply
with some temporally faster technique.

Given two numbers u and v, we represent them as n -bit binary,
numbers where n = 2k and u; = v, = 0, n/2 5, i < n. Let b = 2 Lml
and let l = n lb. Let u and v be represented as b (/)-bit numbers
such that

b-1

u =LU• 2u and
i=O

b-1

y = LVi 2''
i=O

We compute the product of u and v rrwdulo2"+1 using FFT's
where each butterfly is computed in the ring of integers
rrwdulo 221 +1. b and / are both approximately ..Jn, so a single FFT
leaves us with ..Jn multiplications of (2 ..Jii)-bit numbers. The algo­
rithm is used recursively to perform these multiplications. The origi­
nal multiplicands are padded with O's so the answer rrwdulo 2• + 1 is
exact. Recursive multiplications do not require padding since we
only need the modular congruent result.

For speed in the butterflies, we use a two-valued representation for
the numbers, and design each FFI' butterfly computation so that it
operates on this two-valued representation instead of the normal
single-valued representation. If we have an x -bit number a , which
is modulo2x, we can represent a as the sum of two x-bit numbers ti
and ii (which we call "carry-save notation" (CSN)), such that

a modulo2x "'(ti +ii) modulo2x .

The presentation in [l] uses butterfly computations modulo221 +1.
Performing binary arithmetic on numbers in this ring is awkward. In
[19], Schonhage and S ttassen suggest computing in the ring of
integers modulo 241 , then converting the number back to
modulo221 +1 when the computations are finished. Performing binary
arithmetic modulo241 is more convenient than modulo221 +1. This
representation has duplicate values, but als0 has several noteworthy
advantages, since 241 "'1 modulo221 +1and221 "'-1 modu/0221 +1.

Multiplication by 2x is a shift left of x places. To maintain
congruence modulo 221 +1, since i41 "' l, each bit shifted off the left
end of a number is shifted back into the right end. Thus multiplica­
tion by '2" is simply a rotate left of x places. Addition with a CSA
is the same - the carry out of the highest position is written into the
unoccupied lowest order position of sum. Since
221 "'-1 modulo221 +1, subtraction can be done with the formula
a -b "'a +221 b, and is consequently a combination of rotation and
addition.

The CSN number u = (u + ii) modulo 241 can be converted back to
modulo 221 +1 in the following manner [19]: first add u and ii using
ALGORITHM A (except that the carry out must be routed to the
carry in). This converts u from CSN to a single (41)-bit number.
View u as u = 221 a + e, where a and e are (21)-bit numbers. Since
221 5-l, we can write u =(e-S) modu/0221 +1, which is computed
by

{
ea e2:S

u= 2~+l+e-a e<S.
(1)

With these concepts, we now give a parallel version of the
Schonhage-Strassen multiplication algorithm. The majority of the
presentation is similar to that given in [l], but we have made four
significant chanJes. In the FFI''s, we perform the butterfly computa­
tions modulo2 instead of modu/0221 +1, and represent the numbers
in CSN. At the end of each FFI' we resolve the (41)-bit CSN form
of the results to single modulo 221 +1 numbers. The third change is in
the multiplication modulo b . Schonhage and Strassen make clever
use of the Karatsuba 0(n1oS3) multiplication algorithm - we use
ALGORITHM B instead. The fourth change is the final reconstruc­
tion of the result in the last step. As we did with the last step of the
complex-field FFT, we convert the summands to three large numbers
and add them .. The algorithm is shown at the end of this paper.

Resolving a modulo241 number in CSN to a single-valued
modu/0221 +1 number using equation (1) requires a constant number
of applications of ALGORITHM A and takes 0 (log l) time.

An FFI' requires log b stages, each of which computes b butterflies
modulo 241 • Each butterfly computation can be done in constant
time. A complete FFI' takes O(logb) time with O(bl) PE's.

Step 2.1 takes O(logb) time with O(bl) PE's.

Step 2.2 takes O(logl) time with O(bl) PE's.

Step 2.3 is a recursive call to this algorithm for b pairs of (21)-bit
numbers. We will examine this step further in a moment.

Step 2.4 is the same as step 2.1.

Step 2.5 takes O(logl) time with O(bl) PE's.

Step 2.6 takes O(loglogb) time with O(b log2b) PE's.

Step 2.7 takes O(logl) time with O(bl) PE's.

Step 2.8 takes O(logn) time with O(n) PE's.

Excluding step 2.3 for. the moment, the dominant time required is
O(logn) with O(n) PE's. To include step 2.3, we need to know the
total number of levels of recursion. We observe that 21 decreases
from level to level in the following manner:

175

2..fil , 2../2Tn, 2..J2'12..fil , ...
which we can write as

2'+1-1 1

2--:;- 2'+1
n , i=0,1,2,3,···

1

and is approximately 4n 2•+1 • Taking the log, we get 2-i-11ogn +2
which is a constant when i =log log n - l, so the recursion proceeds
through 0 (log log n) levels. Since the time required is 0 (log n) for
a single level of recursion on arguments of size n, the 2-•-11og n
form for the log of the argument size gives an overall time require­
ment of O(logn) with O(n loglogn) PE's.

In [19], Schonhage and Strassen give a depth complexity of
O (log n) for a logic net which implements their algorithm. We have
shown that we can achieve the same time in the EREW PRAM
model by representing the numbers in CSN and using CSA's in the
butterfly computations.

5. Conclusions and Further Research

The FFI' is well-known as a useful tool for serial multiplication of
large integers, and we have shown that it is quite powerful for paral­
lel integer multiplication as well.

Since the original preparation of this paper, more detailed work has
been performed. Work has been done in three models - a version of
the EREW PRAM model where each memory cell contains 1 bit and
each PE can perform 1-bit boolean operations (abbrev. PRAM-1), a
version of the EREW PRAM model where each memory cell con­
tains 32 bits and each PE can perform 32-bit boolean and arithmetic
operations (including multiplication) (abbrev. PRAM-32), and an
interconnection model where 32-bit PE's were connected via a barrel
shifter (abbrev. Bsh). The performance was estimated based on run­
ning time and on cost (running time x number of PE's).

In all models, ALGORITHM Chad a consistently higher cost than
ALGORITHM D. This is due largely to the high constant factor
associated with the 0 (log log n) time required by the butterfly com­
putations in ALGORITHM C. ALGORITIIM B was faster than
other algorithms, and for small values of n had a lower cost, but the
cost rows much more rapidly, crossing ALGORITHM D at about
n = 2 . In the PRAM-32 model, the appearance of a 32-bit addition
capability had a dramatic effect. ALGORITHM A is no longer
necessary, since probabilistic arguments weigh heavily in favor of a
simple riprle-carry addition approach with a small expected running
time relatively independent of n . A faster version of ALGORITHM
B was developed which used the 32-bit addition instructions instead
of carry-save addition. The cost of this crosses the cost of ALGO­
RITHM D at about n = 212• The 32-bit multiplications make ALGO­
RITHM C faster than ALGORITHM D for small values of n, but
ALGORITHM D is still faster after about n = 214•

In the Bsh model, ALGORITIIMs C and D require about the same
time. With a fast 32-bit multiplier and communication delays more
than about four times the instruction time, ALGORITHM C is
definitely faster than ALGORITHM D. Across the board, however,
the cost of ALGORITHM D is still consistently less than that of
ALGORITHM C. This apparent improvement in ALGORITHM C is
actually the result of the difficulty encountered by ALGORITHM D
when moved to an interconnection network. Except for the
butterfly-to-butterfly communication, which is well understood,
ALGORITHM C only needs to transfer data over a range of
O(log2 n) PE's in the floating point multiplications, while ALGO­
RITIIM D needs to transfer data over a range of 0 (../ii) PE's for the
modulo 241 rotations. Once communication delays become a function
of the distance travelled, the time required by ALGORITIIM D
increases.

There are still a number of open questions, including the specific
type of FFI' to use and the possibility of VLSI implementation. We
suspect VLSI implementation of ALGORITHM C would be more
effective since it is simpler and has shorter PE-to-PE communication
requirements. An investigation into the possible improvements
which come from an MIMD implementation is also warranted.

BEGIN ALGORITHM D

Input: The input is two n-bit integers, u and v, where n = 2k. At the topmost level of recursion, the uppermost n/2 bits
of u and v must be 0. This is not required at any subsequent level of recursion.

Output: The output is the (n+l)-bit product of u and v modulo2n + 1.

2.0 If n is small, multiply u and v modulo 2n + 1 using any method. Otherwise let b = 2 Lk!2J and let 1 =nib.
b-1 b-1

Express u and v as u =LU; 21; and v = LV; 21;, and convert each to CSN modulo241 •

i=O i=O

2.1 Compute the FFI"s modulo221 +1 (using modulo241 CSN) of [u 0, 'JfU1> 1jf2u 2, · · ·, ~-1ub-il and
[v 0, 'JfVi. 'Jf2v 2, • • ·, 'Vb-lvb-il where 1jf=2211b and 0>=1jf2 is ab-th root of unity.

2.2 Resolve the CSN modulo241 results [i2'0, · · ·, u'b-il and [Y'0, · · ·, y'b-ll to their single-valued modulo221 +1
equivalents [i2 0, • • • , ub-tl and [Y0, · · · , Yb-1] using equation (1).

2.3 Compute the pairwise modulo221 +1 products [(u0xY0) modulo221 +1, · · · ,(ub-l xvb_1) modulo221 +l] of the two
FFT's by recursive use of ALGORITHM D.

2.4 Compute the inverse FFT modulo221 +1 of the pairwise products from step 2.3. The result is
[w0, 'JfWi. · · ·, ~-1wb_1] where each ~w; product is modulo241 and is in CSN.

2.5 Compute the single-valued numbers w "; = w; modulo 221 +1 by first computing

w; = (~w; X1jf-i) modulo241 , then computing w"; = w; modulo221 +1 using equation (1).

2.6 Compute w '; = W; modulo b by computing w '; f-- ((u; modulo b) x (v; modulo b)) modulo b using ALGO­
RITHM B.

2.7 Compute the exact w; values by computing w; = (221 +l)((w'; -w";) modulo b) + w";, where each w; is positive
and no more than b 221 •

b-1

2.8 Construct three n -bit numbers with non-overlapping sequences from L w; 21i modulo 2" + 1 and add them
i=O

modulo 2n+ 1. This is the desired result.

END ALGORITHM D

References

1. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The
Design and Analysis of Computer Algorithms, Addison-Wesley
Publishing Company, Reading, Massachusetts (1974).

2. Carl M. Bender and Steven A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers, McGraw-Hill Book
Company, New York (1978).

3. P. B. and J. M. Borwein, Pi and the AGM, John Wiley and
Sons, New York, (1987).

4. P. B. and J. M. Borwein, "Ramanujan and Pi," Scientific
American (Feb. 1988).

5. E. 0. Brigham, The Fast Fourier Transform, Prentice-Hall,
Englewood Cliffs, New Jersey (1974).

6. J. W. Cooley, P. A. Lewis, and P. D. Welch, "The Fast
Fourier Transform Algorithm and its Applications," IBM
Research report RC 1743 (Feb 9, 1967).

7. Eliezer Dekel and Sartaj Sahni, "Binary Trees and Parallel
Scheduling Algorithms," IEEE Transactions on Computers C-
32, No. 3 pp. 307-315 (March 1983).

8. B. Pomberg, "A vector implementation of the fast Fourier
transform," Math. Comput. 36, pp. 189-191 (1981).

9. Kai Hwang and Faye A. Briggs, Computer Architecture and
Parallel Processing, McGraw-Hill Book Company, New York
(1984).

10. Donald E. Knuth, The Art of Computer Programming - Volume
2 I Seminumerical Algorithms, Second Edition, Addison­
Wesley Publishing Company, Reading, Massachusetts (1981).

11. V. M. Krapchenko, "Asymptotic Estimation of Addition Time
of a Parallel Adder," Syst. Theory. Res. [trans. from Probl. Kil­
bern, 19 (1967), 107-122], 19 pp. 105-122 (1967).

176

12. Clyde P. Kruskal, Larry Rudolph, and Marc Snir, "Efficient
Parallel Algorithms for Graph Problems," IEEE 1986 Interna­
tional Conference on Parallel Processing, pp. 869-876 (1986).

13. Clare D. McGillem and George R. Cooper, Continuous and
Discrete Signal and System Analysis, Holt, Rinehart, and Wins­
ton, Inc., New York (1974).

14. Alan V. Oppenheim and Ronald W. Schafer, Digital Signal
Processing, Prentice-Hall, Englewood Cliffs, New Jersey
(1975).

15. Shie-Tung Peng and Thomas F. Hudson, jr., "Parallel Algo­
rithms for Multiplying Very Large Integers," UMBC Dept. of
Computer Science tech. report TR CS-PP-002 (February,
1988).

16. Michael J. Quinn, Designing Efficient Algorithms for Parallel
Computers, McGraw-Hill Book Company, New York (1987).

17. John E. Savage, The Complexity of Computing, John Wiley &
Sons, Inc., New York (1976).

18. Udo Schendel, translated by B. W. Conolly, Introduction to
Numerical Methods for Parallel Computers, Ellis Horwood
Limited, Chichester (1984).

19. Arnold SchOnhage and Volker Strassen, "Schnelle Multiplika­
tion gro~er Zahlen," Computing 7 pp. 281-292 (1971).

20. Marc Snir, "On Parallel Searching," ACM Symposium on Dis­
tributed Computing, pp. 242-253 (August 1982).

21. Paul N. Swarztrauber, "Multiprocessor FFT's," Parallel Com­
puting 5 pp. 197-210 (1987).

22. Paul N. Swarztrauber, "Vectorizing the FFT's," pp. 490-501
in G. Rodrigue, ed., Parallel Computations, Academic Press,
New York (1982).

23. Shmuel Winograd, "On the Time Required to Perform Addi­
tion," Journal of the ACM 12, No. 2 pp. 277-285 (April 1965).

24. J. C. Wyllie, "The Complexity of Parallel Computations,"
PhD. dissertation, Dept. of Computer Science, Cornell
University, (1979).

A Parallel Pivoting Algorithm on a Shared Memory Multiprocessor

with Fill-in Control
Gita Alaghband

Department of Electrical Engineering and Computer Science
University of Colorado at Denver
1200 Larimer St., Campus Box 110
Denver, Colorado go204t

Abstract -- During LIU decomposition of a sparse matrix, it is pos­
sible to perform computation on many diagonal elements simultaneously.
Pivots that can be processed in parallel are related by a compatibility
relation and are grouped in a compatible set. The collection of all maxi­
mal compatibles yields different maximum sized sets of pivots that can
be processed in parallel. Generation of the maximal compatibles is based
on the construction of an incompatible table which gives information
about pairs of incompatible pivots. The algorithm to generate all maxi­
mal compatibles involves a binary tree search and is exponential in the
order of the matrix. A technique to obtain an ordered compatible set
directly from the ordered incompatible table is given. The ordering is
based on the Markowitz number of the pivot candidates. This technique
_generates a set of compatible pivots with the property of generating few
fills. A new heuristic algorithm is presented that combines the idea of an
ordered compatible Sl't with a limited binary tree search to generate
several sets of compatible pivots in linear time. An elimination set to
reduce the matrix is generated and selected on the basis of a minimum
Markowitz sum number. The parallel pivoting technique is a stepwise
algorithm and can be applied to any submatrix of the original matrix.
Thtis it is not a preordering of the sparse matrix and is applied dynami­
cally as the decomposition proceeds. Parameters are suggested to obtain
a balance between parallelism and fill-ins. A sample result of applying
the proposed algorithms on an application matrix using the HEP mul­
tiprocessor is presented.
1. Introduction

In this paper we present a parallel triangularization algorithm for
solving large, sparse systems of linear equations. The algorithms
described are designed for a shared-memory MIMD model for parallel
computation, in which the total memory address space is accessible uni­
formly to all parallel units. This computational model provides syn­
chronization mechanisms to allow multiple memory updates. If multiple
updates are aimed at the same memory cell, the penalty paid is a short
delay in access time.

The triangulation of an n Xn matrix A = [a;j] can be described by
the following procedure.

for K = 1,2, ... ,n-1 and for each ajk "¢()

Ojk ~ {},jk/Okk j>k (1.1)

For each pair a;k ·akj * 0

aii +-- aij-aifc.Xati i>k,j>k (1.2)

In (1.2) if a;j=O but Oik"Okj "¢(),a fill-in is generated. If we have sufficie?t
processors, the divide operations (1.1) for each column K can be done_m
parallel. Also, for each k the update ope~n (~.2) for ~l P3u:s
aik ·akJ "¢fJ can be done in parallel. Our expen~nce_ m emp~oymg this
approach has indicated that the sparsity of api>licatton m~tnces lea".es
parallel processes with little work to perform if only reductton ~~r a ~i~­
gle pivot is done in parallel [1]. During Sp~ LU decompos~uon it is
possible to perform computation on many diagonal elements ~ultane­
ously. In parallel LU decomposition ~f general unsymmetnc sparse
matrices several key issues must be considered:

a) Parallelism and fill-in are two competing issues and ~ ~ce
between the two must be obtained. In other words mimmizmg
fill-ins results in limited parallelism, and maximizing parallelism
results in uncontrolled generation of fill-ins.

b) A test for numerical stability of pivots must be made to ensure the
accuracy of the solution process.

tResearch was supported in part by NASA Contract No. NAS!-17070 and by the Air
Force Office of Scientific Research mder Grant No. AFOSR 85-1089 while the author was
in residence at !CASE, NASA Langly Research Center. Hampton. VA 23665.

177

c) In applications where the sparse linear system must be solved
repeatedly, it must be possible to decompose structI1rally identical
matrices using the information produced for the first decomposi­
tion of such matrix.

d) A storage structure suitable for parallel processing must be deter­
mined.

In the remaining of this paper we will present the design of a heuristic
algorithm [2] [3], and [4] which identifies parallel pivot candidates and
allows the matrix to be reduced for multiple pivots simultaneously while
it minimizes fill-ins. Other parallel pivoting strategies have been sug­
gested [5], [6], [7], [8], [9], [10], [11], [12]. The proposed algorithm is a
dynamic algorithm which can be applied at any point during the decom­
position phase and does not require a preordering of the input matrix.
Therefore pivots can be tested for numerical stability and unsymmetric
permutations are possible between consecutive applications of the paral­
lel pivoting algorithm to the sparse matrix under consideration. This
technique also allows the decomposition of structurally identical matrices
to be carried out as required in (c).

A description of the parallel pivoting algorithm is given in section
2. Section 3 gives an analysis of the order of the algorithm. Section 4
describes several program-controlled parameters to control generation of
fill-ins. Finally in section 5 some results and concluding remarks are
given.
2. Parallel Pivoting Algorithm

In the technique described here parallel pivot candidates are
obtained from the diagonal elements of the matrix, thus allowing only
symmetric permutations during the application of the parallel pivoting
algorithm. However, since it is a stepwise algorithm, it is possible to
perform unsymmetric permutations in between the applications of the
parallel pivoting procedure.

Pivots that can be processed in parallel are related by a compatibil­
ity relation and are grouped in a compatible. In other words pivots
Pu, Pii, Pkk are compatible and can be processed in parallel if and only
if elements a;i, Oji, aik, aid, Ojk, Oki are all zero. A compatibility relation
classifies the elements of a set into nondisjoint subsets, so that all
members of a subset are compatible. Thus collection of all maximal
compatibles [13], yields different maximum sized sets of pivots that can
be processed in parallel. Several methods for generating maximal com­
patibles exist and they are all based on the construction of an implication
(incompatible) table. The incompatible table gives information about
pairs of incompatible pivots. Let the incompatible table be represented
by an array, imptbl, of dimension n, order of the matrix, with elements
of imptbl being sets of n elements each. Each set corresponds to a
column of the table. If we assume the diagonal elements of the matrix
are numbered 1 through n, then column i of the table, imptbl; holds the
incompatible information for pivot i of the matrix. Figure 2.1.b shows
the incompatible table for the matrix of Figure 2.1.a in the given order.
Column one of the table is constructed by scanning row and column 1 of
the matrix. For each nonzero encountered, the corresponding position in
imptbl 1 is marked. Therefore pivot p 1 is incompatible with pivots p1 and
pg. Next, ignoring row/column 1 of the matrix, imptbl 2 is constructed by
scanning row/column 2. The process is repeated until all (n-1) columns
of the table are complete.

A systematical approach for extracting the maxinlal compatibles
involves a binary tree search. This approach is exponential in the order
of the matrix, however, its description is essential in the derivation of the
target algorithm. Initially, it is assumed that all pivots are compatible.
They are grouped in one set consisting of all pivot. This set, S, will be at
the root of a binary tree, level zero. Next, the set of pivots incompatible
with, P 1, obtained from imptbl 1 is used to split S into a left S 1 and a right
S 2 set, constituting level one. Si consists of all elements of its parent S
except those incompattble with P 1. S 2 consists of the same elements as
S except P 1 itself. Next using imptblz we split every set at level 1 to

1
2
3
4
5
6
7
8

2
3
4
5
6
7
8

2 3 4 5 6 7 8
x x

x x x
x x x

x x
x x x x
x x x x

x x x x
x x x x

Figure 2.1.a Matrix Al

,---.,

x

x x
x

x x x xl
x x x xJ J

2 3 4 5 6 7

Figure 2.1.b Incompatible Table
generate the four sets at level 2. This process is repeated until no more
splitting of the sets are possible. Figure 2.1.c illustrates this procedure
for the matrix of Figure 2.1.a. The leaf sets are checked and any set
included in a larger set is eliminated. The remaining sets constitutes all
possible maximal compatibles.

Among the maximal compatibles generated, sets b, c, and d are of
maximum size 4. This suggests we need a mechanism to select a set
among all the candidate sets which would generate fewest fill-in. The
technique used here is based on the Markowitz criterion for minimizing
fill-ins in sparse matrices in sequential programming. The Markowitz
[14] number of an element aii is defined by (ri-l)(crl), where r; and
Ci are the number of nonzeros in row i and column j of the reduced
matrix respectively. At each step, the element with minimum Markowitz
number is selected as pivot The strategy used here is called
Markowitz Sum and is the sum of the Marlcowitz number of all pivots in
a set. At each step, among all the maximal compatibles of equal max­
imum size we select the one with minimum Markowitz Sum to reduce
the matrix. Sets b, c, and d have Markowitz Sum of 11, 22, and 22
respectively. Therefore the compatible pivots 1,3,4,6 in set b is the one
to be selected to reduce the matrix in parallel.

The exponential characteristics of this algorithm prohibits its use.
However, over a number of analysis done for several small test cases
arising from electronic circuits, we found that many parallel computation
steps are possible and during these steps the matrices are often reduced
completely. Most importantly our results show that by reducing the
amount of parallel work at each step slightly it is possible to reduce the
generation of fill-in significantly and still reduce the matrix in the same
number of steps [2]. The goal of our heuristic algorithm therefore is to
obtain enough parallel work by just considering a sub-maximal set of
compatible pivots at each step.

By a more careful analysis of the incompatible table we can pro­
duce a compatible without searching the binary tree. Column i of imptbl
yields all pivots Pi, j >i, incompatible with Pi. lf imptb/; is null, then Pi
is compatible with every pivot Pi with j>i. By scanning the table, we
find a set of pivots, compset, whose columns in the table are null.
Clearly, such pivots are compatible. Furthermore, if the set of

incompatible pivots of Pk are disjoint from compset, then Pk is also com­
patible with every pivot in compset. The procedure to produce an
ordered compatible , compset, can be summarized as follows:

scan imptbl from right to left
for each column i of imptbl do

begin
if (imptbl; n compset is empty) then
(*add [i] to the set of compatibles*)
compset = compset + [i]
else
delete row i of imptbl
end

178

75,6,7,8]

~,6] ~ •• ,.,

r1.1.4'i' [l,3\,5,6J [2,4,~,6,1,8J
:1,3,~,5,6] :.4i1,7,8]

b c (inbandL\

[4,6,7,8] [5,6,7,8]
(in b, c and d)

Figure 2.1.c: Binary Tree Search to Obtain the

Set of Maximal Compatibles
Applying this procedure to the incompatible table of Figure 2.1.b results
in:

Null columns= (7 ,8), Compset = (4,7 ,8)
Markowitz Sum= 1 + 12 + 3 = 16

Pivot 7 is the pivot with maximum Markowitz number in the matrix. We
would like to have compatible pivots with as low Markowitz numbers as
possible in order to minimize fill-in. It is clear that pivots with low Mar­
kowitz number generally have fewer incompatibilities. Changing the
order of construction of the incompatible table can eliminate the inclu­
sion of pivots with high Markowitz number in the ordered compatible.
The table is constructed for pivots in decreasing order of Markowitz
number. This is illustrated for the same matrix of Figure 2.1.a in Figure
2.1.d, where a larger compset, size 4, of lower Markowitz Sum, 11, is
obtained.

Now we can combine the idea of an ordered compatible with the
tree search algorithm to obtain a limited tree search algorithm which pro­
duces an acceptable set of compatible pivots for reducing the matrix.
This is done by partially searching the binary tree up to a given level,
ULEVEL, generating a number of sets. Each of these sets are some sub­
set of the root and can be considered as a starting sel Thus by scanning
the incompatible table corresponding to each of the starting sets at
ULEVEL, we can construct an ordered compatible .

Among all ordered compatibles, the one of maximum size and
minimum Markowitz Sum is chosen as the elimination set to reduce the

5
6
2
8
3
1
4

-·--..,
x
x

x
x

7

x x
x x

x x
x 1 x

5 6 2 8 3

Markowitz Number 12 12 6 6 3 2 2

Figure 2.1.d Ordered Incompatible Table
Null columns: (l,3,4), Compset (1,3,4,6)

Markowitz Sum: 2+2+ I +6 = 11

]

matrix. Uitlerent orderings for producing the starting sets at ULEVEL
have been considered [2], [3]. The most promising one is to split the
sets with pivots in increasing order of their Markowitz numbers. This
process seems to give a good balance to the binary tree for the first few
levels used to generate the starting sets. It also has the property to keep
pivots of low Markowitz numbers within the starting sets.

3. Order of Parallel Pivoting Algorithm

The algorithm is no longer exponential in time. It consists of the
following steps:

1. Construct the incompatible table.

2. Sort pivots according to Marlcowitz numbers.

3. Produce starting sets at ULEVEL .

4. Generate an ordered compatible for each of the starting sets at
ULEVEL.

The algorithm involves some set manipulation operations. These
operations are listed for each section separately as required.

1. Construction of the incompatible table requires scanning the
non-zero elements of the matrix. The set operations involved are adding
an element to a set and test for membership which are both 0 (1) opera­
tions. Therefore, the incompatible table can be constructed in 0 (NZ)
operations where NZ is the number of nonzeros in the matrix.

2. A sorting algorithm is needed to order the pivots according to
their Markowitz numbers. The Batcher son [15] is used here and it has
been shown that with enough parallel operations, sorting is completed in
1/2flog ti\ (flog ti\+ 1) steps. Employing an efficient son would improve
the performance of the algorithm.

3. Production of all starting sets at ULEVEL takes a constant time,
say K, proportional to the number of starting sets. It involves the set
operations intersection, difference, deletion of an element from the set,
and test for a null set. These operations are of order n with a constant
factor equal to the inverse of the number of bits per computer word. The
set operations are usually implemented in machine language or micro­
code and thus have a small time factor. They could be considered to
have a constant time (rather than order of n) compared to the time taken
to execute a high level language statement. Therefore, an efficient
implementation of the set operations is important to the efficient execu­
tion of the algorithm. If we denote the time to do a set operation with
setop then this section can be done in 0 (K ·setop).

4. Generation of an ordered compatible from the incompatible
table requires scanning n sets corresponding to the columns of the table
and performing intersection and difference operations on the sets. Thus
ordered compatibles can be produced in 0 (K ·n ·setop), where K is the
number of starting sets at ULEVEL . For reasonable values of ULEVEL,
all ordered compatibles can be qerived in parallel for different starting
sets.

4. Fill-in Minimization

It is possible to minimize generation of fill-ins significantly by
reducing the amount of parallel work slightly. Trading off parallelism
for fill-in reduction is done according to the size of the elimination set
and a number of parameters:
1. Shrinkage parameter: By allowing a small percentage of the

elimination set to be discarded we can control ihe number of com­
patible pivots to a degree that does not limit our parallel work by
too much.

2. Upper limit parameter: This limit would allow just enough parallel
work to keep our parallel processes busy.

3. Threshold parameter: In shrinking the size of an elimination set
only pivots with Markowitz number higher than a threshold value
in the ordered list of pivots may be discarded. Pivots with low
Markowitz numbers do not tend to generate many fills and need
not be discarded.

5. Result and Conclusion

The above algorithm has been simulated on a VAX l ln80 and
implemented on the HEP pipelined shared-memory computer [16]. Test
cases from application programs such as the SPICE circuit simulation
[17] and SPAR structural analysis program [18] have been used and
results of different analysis are available [2]. Here we represent the tim­
ing results of running the parallel program over a 144 by 144 matrix
from the circuit of an 8-bit full adder and employing different values for
trade off parameters. Figure 5.1 represents the execution time of parallel
LU Decomposition program for different numbers of processes from 1
to 25. The result is for the case when maximum parallelism is used. For
NPROC=l, the matrix is completely reduced in 10 parallel steps. The
number of compatible pivots at each step is 72, 25, 16, 11, 6, 5, 3, 2, 2,
and 1 respectively. Note that in the first step half of the matrix is reduced
in parallel. The execution time decreases with an increase in the number
of processes up to NPROC=ll. In fact there is llNPROC reduction in
execution time for small values of NPROC as new processes make
efficient use of the execution pipeline. This decrease in execution time

179

bottoms out as the pipeline becomes full (the execution pipeline on the
HEP has eight steps, resulting in a speed up of about 8). The slope of the
linearly rising tail of the curve indicates the length of time spent in criti­
cal sections in various points in the program. A complete model for
analysis of parallel programs can be found in [19]. Defining the speed up
to be:

S = T(l) I T(NPROC)

where T(l) is the time to execute the program with one process and
T(NPROC) is the same time using NPROC processes. Then a speed up
of 4.82 is obtained for 11 processes. Note that this is not speed up meas­
ured with respect to the best sequential algorithm, but only gives insight
to the parallelism in this program.

For a small number of processes, execution time versus number
NPROC of processes can be represented as:

T(NPROC) = C 1+C2 I NPROC

where C1 represents the sequential portion of the work and C2 the paral­
lel portion. A simple least squares fit to determine C 1 and C 2 is applied
to a linear portion of the execution time versus NPROC curve to estimate
the degree of parallelism. This analysis shows that the code is 87%
parallel. The speed up of 5.81 was obtained when the following trade off
parameters where used

Threshold 1(3 Shrinkage Parameter 30%

Upper Limit 25 ULEVEL 4

4.0
,.--..
(fl
0
z
0
0 3.0
w
(fl ..._,,

w
~ 2.0
z
0
f==
3 1.0
w
x
w

0.0

Figure 5.1

*

0

*

*

I I I

5
I I I I

20
I I
25

I I I I I I 11

10 15
NPROC

Execution Time vs. Number of Processes
No Trade off
144x144, NZ=616, 8-Bit Full Adder

The higher speed up indicates that by employing the above parameters a
better balance between number of compatible pivots generated at dif­
ferent steps is achieved. A reduction of 23 % in fill is obtained as the
result of the above parameter variations which compares reasonably with
results from the best sequential program. The fill-in can further be
decreased by assigning different values to trade off parameters.

The sparse LU decomposition technique described in this paper
employs a parallel pivoting strategy to solve the problem of having
enough parallelism in sparse matrices. The main features of the heuristic
algorithm can be summarized as follows:

-It can identify a good set of parallel pivots in linear time.

-It is a stepwise algorithm and can be applied to any submatrix of
the original matrix. Thus it is not a preordering of the sparse matrix and
is applied dynamically as the decomposition proceeds.

-Pivots can be tested for numerical stability and unsymmetric per­
mutations can be performed if necessary.

-Trade off between parallelism and fill-in is possible under several
program controlled parameters.

-The information produced by the algorithm can be stored to
decompose structurally identical matrices.

We have presented the parallel reduction combined with parallel
pivoting techniqµe, control over the generation of fills and check for
numerical stability, all done in parallel with work being distributed over
the active processes. The program verifies that it is actually possible to
do parallel pivoting in sparse matrices on multiprocessors and take
advantage of the existing parallelism in the problem and in the hardware.

References

[l] G. Alaghband and H. F. Jordan "Parallelizing a Sparse Matrix
Package," Report CSDG 83-3, Computer System Design Group,
Electrical and Computer Engineering Department, University of
Colorado, Boulder, June 1983.

(2) G. Alaghband "Multiprocessor Sparse LU Decomposition with
Controlled Fill-in," Ph.D. thesis, Department of Electrical and
Computer Engineering, University of Colorado, Boulder, May
1986.

[3) G. Alaghband and H. F. Jordan "Multiprocessor Sparse LIU
Decomposition with Controlled fill-in," /CASE Report No. 85-48,
NASA Langley Research Center, Hampton, Virginia 23665, 1985.

[4) G. Alaghband "Parallel Pivoting Combined with Parallel Reduc­
tion," /CASE Report No. 87-75, NASA Langley Research Center,
Hampton, Virginia 23665, 1987.

[5] D. A. Calahan, "Parallel Solution of Sparse Simultaneous Linear
Equations," Proc. 11-th Annual Allerton Conf Circuits and System
Theory, pp. 729-735, Oct. 1973.

[6] J. W. Huang and 0. Wing "Optimal Parallel Triangulation of a
Sparse Matrix," IEEE Trans. on Circuits and Systems, vol. CAS-
26, No. 9, pp. 726-732, Sept. 1976.

[7] Y. F. Zhou "Optimal Parallel Triangulation of a Sparse Matrix- A
Graphical Approach," IEEE 1981 Symp. on Circuits and Systems.

[8] K. Nakajima "A Graph Theoretical Approach to Parallel Triangu­
lation of a Sparse Asymmetric Matrix," Proceedings ef 1984 Conf
on Information Science and Systems.

[9] J. A. G. Jess and H. G. M. Kees "A Data Structure for Parallel LU
Decomposition," IEEE Trans. on Computers, vol. C-31, no. 3, pp.
231-239, March 1982.

[10] F. J. Peters "Parallel Pivoting Algorithms for Sparse Symmetric
Matrices," Parallel Computing 1, pp. 99-110, 1984.

[11] M. R. Leuze "Parallel Triangularization of Substructured Finite
Element Problems," !CASE Report no. 84-47, Sept. 1984.

[12] I. S. Duff "Parallel Implementation of Multifrontal Scheme,"
Argonne National Laboratory, Mathematics and Computer Science
Division, Technical Memorandum no. 49, March 1985.

[13] Z. Kohavi "Switching and Finite Automata Theory," Computer
Science Series, Second Edition, McGraw Hill Book Company,
1978.

[14] H. M. Markowitz "The Elimination Form of the Inverse and its
Application to Linear Programming," Management Science, 3, pp.
255-269, 1957.

[15] K. E. Batcher Proc. AF/PS Spring joint Computer Conference, 32,
pp.307-314,1968.

180

[16] J. S. Kowalik The HEP Supercomputer and Its Applications, Ed.,
MIT Press, 1985.

[l 7] L.W. Nagel, "SPICE2: A Computer Program to Simulate Semicon­
ductor Circuits," Memorandum ERL-M520, Electronics Research
Laboratory, University of Calif., Berkeley, CA 94720, 1975.

[18] "SPAR," NASA CR 158970-1, Engineering Information Systems
Inc., San Jose, CA, Dec. 1978.

[19] H. F. Jordan "Interpreting Parallel Processor Performance Meas­
urements," Report CSDG 85-1, Computer System Design Group,
Electrical and Computer Engineering Department, University of
Colorado, Boulder, November 1985.

Optimal Decomposition of Matrix Multiplication
on Multiprocessor Architectures

Whelan, M., Gao, Guang R. 1 and Yum, T. K.2

Philips Laboratoris, North American Philips Corporation,
Briarcliff Manor, NY 10510

1. Introduction. Exploiting parallelism in matrix
multiplication on a shared memory multiprocessor will
encounter problems common to many other
applications: determination of both an appropriate
grain size for the parallel tasks for each processor, and
an allocation which keeps the processors usefully busy.

in this paper, we study the problem of decomposing
matrix multiplication so that it achieves optimal
speedup on a multiprocessor. In scientific and
engineering applications, matrix multiplication is
frequently used as a kernel benchmark in the evaluation
of supercomputer performance [4, 5]. Many other linear
algebra algorithms may be transformed or reduced to
contain matrix multiplication as their kernel [1].

Our approach is based on the observation that matrix
multiplication has a regular iterative nature and that
task decompositions based on iterations have fixed
computation and communication patterns. Therefore,
an analytical model calculating the cost of such
computation/ communication patterns is possible.
Compared with other recent related work [2, 7], our
work computes the effect of computation and
communication cost in the case of the execution of a
single matrix multiply as opposed to the overlapped
execution of many matrix multiplies. The results of
this work derives optimal partitioning and allocation
strategies for matrix multiplication on a shared memory
multiprocessor.

In section 2, we describe the model of a
multiprocessor architecture which is used in the
analysis. In section 3, we formulate the decomposition
problem, and derive analytically the optimal condition
for program partitioning and an optimal allocation
strategy. In section 4 we present a summary of
simulation experiments which were performed to
determine the validity of assumptions made in the
analysis. In section 5, derive an optimal speedup
function. In section 6, we discuss computation /
communication tradeoffs, and in section 7 we conclude

1Current address: McGill Univ., School of Computer Science,
805 Sherbrooke St. West, Montreal, Canada H3A 2K6

2current address: Nynex Corporation, White Plains, NY

181

with a comparison of our work with other related work.

2. Architecture Model. The main features of the
machine model our study is based on are:

1. There are n identical processors (PEs) connected by a
single bus.

2. The bus is a packet oriented data transfer medium,
as opposed to a backplane interconnect .

3. The memory system is organized in two levels. At
the first level, each PE has its private local memory
(PM) and a cache (CM); and at the second level,
there is a common shared memory (SM).

The time to transfer a block of L words from SM to a
CM is T1 where T1 = T8 + LXTw. Where Ts and Tw are
respectively the packet overhead and the transfer time
per element of data after start-up. Define
T1 =(T8 +LXTw)/L i.e., T1 is the average time to
transfer a data element. Each PE can compute
multiply accumulate operations in the context of a
matrix multiplication at the rate of one per T* time
units. It must be noted that this cost must include the
average cost of the conditional tests, loop counters, and
address arithmetic which must be performed on a real.
machine.

In determining the load a task imposes on the shared
bus, we do not account for the following items.

1. Fetching code from the shared memory.
2. Cache organization, e.g. replacement strategy.
3. Finite cache sizes.

Our rationale is that 1 is minimal since the code
required to specify matrix multiplication is very small.
Points 2 and 3 are justified on the assumption that
even for relatively small caches, the frequencies with
which cache collisions occur is very small, thus once a
variable is accessed once by a processor, it will
thereafter with very high probability reside in that
processor's cache. It is our contention that within
certain constraints, the analysis will still accurately
predict the properties of a realistic machine. The
results of simulations, which do account for these
effects, verify this assumption.

3. Optimal Decomposition. The impact of
decomposition strategy on the performance of matrix
multiplication can be demonstrated by considering the
following three decompositions for C = AXB (where A
and B are MXM matrices): (1) uniprocessor; (2) M
processors with each computing one row of C; (3) M2

processors each computing one elements of C.

T Tcm O(Ttot) cp

1. MT* 2M2 T 1 M 3 T*

2. M 2 T* (l+M)M2T1 M 3T 1
3. MT* 2MT1 2M3 T 1

Figure 1: Three simple partitioning cases.

The first two columns of the table in Figure show the
computation time per processor T and communication cp
time per processor Tcm required for each of the three
cases. The third column of the table lists the dominant
term of the total time. We assume that the matrices A
and B are stored in shared memory and their elements
will be transferred to processors as required by the
computation. We may immediately observe that
between cases 2 and 3 the total time doubled although
M times as many processors are used.

For simplicity, we study the multiplication of two
MXM square matrices A and B, although the extension
to arbitrary matrix multiplication is relatively
straightforward [8]. In this paper, the cost metric being
used is total elapsed time. Thus, optimizing
performance means minimizing the total time required
to complete a single matrix multiplication. It should be
noted that this is not the cost function used in other
related work [2], where throughput is used.
Throughput is an appropriate cost measure if one has
many such computations to be performed and the
computations may be overlapped. However, if one does
not have many such computations, or, if the
computations cannot be overlapped (e.g because of
dependencies), then elapsed time is more appropriate.

The resultant matrix C is partitioned into rectangular
submatrices to be computed by each PE using the basic
block matrix multiplication algorithm [6]. The two
aspects of decomposition strategy are closely related to
each other, and must be considered together in order to
determine the shape and size of the submatrices as the
optimal condition for decomposition. The computation
and communication of each task should be arranged so
that optimal performance may be achieved.

It is natural to speculate that a square shape would be

182

an optimal choice of the submatrices. This is indeed
the case, although it is also the case that any row
column interchange equivalent to an optimal square
partitioning is also optimal [8]. For the remainder of
this paper, we will assume that square partitioning is
used, that is the result matrix C is partitioned into
square submatrices to be computed by individual PE's.
We must now determine the optimal size of the
submatrices, and the manner in which a processor will
compute its submatrix.

3.1 Problem Formulation. The matrix
multiplication is partitioned into HXH square
submatrices of C. For simplicity assume M is divisible
by H. The number of PEs required is n = M2 /H2•

The manner in which PEs compute their subtasks
must now be chosen. We will use the outer product
method, with a parameter R determining the size of the
subtask. The partitioning strategy is:

1. Each PE is assigned the task of computing a
submatrix of C, e.g. C1 J , I,J in {0,1,2 ... (M/H-1)} .

2. Tasks assigned to PEs1 are further divided into M/R
subtasks (1 ~ R ~ M), each subtask computes a
partial result of C1 J using the outer product method.

'
This task decomposition can be expressed

algorithmically as :
FORALL I, J in (0 . . . (M/H - 1)) /* M*M/ (H*H) tasks*/

FOR i,j in (1. .H) C(I*H+i,J*H+j)=O; ENDFOR/*init*/
FOR l in (o . . (M/R - 1)) /* the subtasks */

FOR k in (1 . . R)
FOR i,j in (1 .. H)

C(I*H+i,J*H+j) = C(I*H+i,J*H+j)

END FOR
END FOR

END FOR
END ALL

+ A(I*H+1, l*R+k)*B(1*R+k, J*H+j);

The allocation of subtasks to the PEs is done in an
overlapped fashion. The subtasks are grouped into sets
with the kth set containing the subtasks computing the
kth partial results for each PE. Hence there are a total
of M/R sets and the number of subtasks in each set is
n. The computation and communication is performed
in rounds, each round computes one set of the subtasks.
For our purposes, each subtask can be considered as
one indivisible access and computation process, i.e.
HXR elements from A and RXH elements of B are
read into by a procesor and the partial result is
computed.

3.2 Partition Regions.In Figure 2, we show several
different partitions and allocations (for M 16), where
shaded and unshaded boxes indicate communication

IL ~· ----5ff72 (A) r .. 16 , b - 4

V/L/
IL--· ----

(C) r-":4 ----
Figure 2: Computation/communication overlap.

and computation respectively. Let Ttot be the total
time for performing the entire matrix multiplication.
Let tcp' tern be the time for the computation and
communication time for an individual subtask. In
Figure 2 (a) R = M, note that there is only one round
in the process. In Figure 2 (b), the partition is such
that the communication time dominates the total time.
We can see that the bus will be busy most of the time.
During the process, processors become idle while
awaiting access to the bus. In Figure 2 (c), the
partition is such that the computation time is
dominant. In this case the processors are busy most of
the time, but the bus becomes idle from time to time.

As illustrated by the examples, the system may
operate in two different regions depending on the
partitioning: computation bounded or communication
bounded.

3.3 Overlapped Computation/Communication.
For a subtask, we have:

(3.1)

~m=2XHXRX~ ~-~

where T * and T 1 are as defined in Sections 2. In the
computation-bounded region the total time is

M
Ttot = R X(tcp + tcm) + (n-l)Xtcm (3.3)

p

=H2XMXT* +2HXT1 X(M+R(M2 /H2-1)) (3.4)

In the communication-bounded region the total time is
M

Ttot = nX R Xtcm + tcp (3.5)
c

M3
=2XHXT1 +H2xRXT* (3.6)

We note that as R increases, both equations will result
in longer finishing times. Therefore we should choose
the minimum possible R to reduce the total time in
either case. Therefore, letting R = 1, equations (3.4)
and 3.6 become:

183

Ttot =H2xMxT*+2HXT1 X(M+(M/H)2 -1) (3.7)
p

M3 2
Ttot = 2XHXT1 + H XT* (3.8)

Now !etc us determine the value of H which will
minimize the total time, this will be referred to as H .

opt
Let us first determine the value of H at which the
computation and communication times are totally
overlapped. This happens precisely when the
computation time of a subtask on one processor can be
exactly overlapped with the communication time of the
other (n-1) processors. Under this condition, for
example, the ith round is ready to start to use the bus
for the first subtask at exactly the moment when the
communication for the (i-l)th round completes. In this
case, we have:

(n-l)t = t (3.9) cm cp
Substituting (3.1) and (3.2) into (3.9) and noting that
n = Af2 / H 2, we obtain:

FxT* +2xH2xr1 -2xM2xr1 =O (3.10)

Equation (3.10) establishes the key condition for
maximum overlap between computation and
communication time for matrix multiplication.

We have derived the condition of partitioning for
maximum overlap from the argument of optimum tiling
of the computation/communication timing graph. We
have also deduced separately the formula for computing
the total time valid for either the computation-bounded
or the communication-bounded region such as (3.7) and
(3.8). It is easy to show that the value of H at the
intersection point of Ttot (H) and Ttot (H) satisfies

p c
equation (3.10). This can be shown by subtracting (3.8)
from (3.7) and setting the result to zero, which yields
equation (3.10). Thus the maximum overlap condition
happens at precisely the intersection of the computation
and communication bounded region.

3.4 Optimal Partition Size. It seems intuitive
that the value of H which satisfies equation (3.10)
should lead to a minimum total time because the
processors and the bus are kept usefully busy all the
time (except for initial and terminal transient
behavior). From (3.7), we can compute the derivative
of Ttot in the computation-bounded region and rewrite
it in the following form:

dTtot 2XM 2
dH = H2 X(FXT* +H xT1

1 2
- MXH XT1 - MXT1) (3.11)

According to (3.10), when H > Hopt we have

FxT* +H2xT1 >2x.M2xT1 -H2xT1 (3.12)

Therefore, from (3.11) and (3.12) we deduce that when
H > Hopt the following holds in computation-bounded
region:

dTtot 2XM . • .!! • ..2 1
- > --XT X(2XM- -1-r -XW -M) (3.13)

dH H2 1 M

Since M ~ H, from (3.13) we claim when H > Hopt

the following is true for all M ~ 2:

dTtot
-d- > 0 (H > H 0 t) (3.14)

Similar~, from (3.~) we can show that in
comm uni cation-bounded region

dTtot
<JH < 0 (H < H0 t) (3.15)

From l3.14) and (3.15), we know that the total time in
the communication bounded region is a decreasing
function of H until H = H t" After that, in the op
computation-bounded region the total time become an
increasing function of H. Therefore, H t must be the op
one and only value in the range 1 ... Mat which Ttot

reaches its minimum. We have thus proved the fact
that the maximum overlapping point is indeed the
optimal partitioning point.

Since equaion (3.10) is cubic in H, and that there is no
linear term of H present, it can be shown [8] that there
always exists a unique solution in the range 1 . . . M
for Hopt which satisfies equation (3.10). For large M,
the solution can be approximated by

Tl
H =(2XM2x-)1/ 3

opt T*
(3.16)

4. Simulation. In this section, we describe a
simulation study which was performed to validate the
assumptions made in the preceeding analysis. A sample
of the simulation results are shown in the following
plot. The solid line indicates the results predicted using
the analysis presented in the previous sections, while
the simulation results are represented by point markers.

Time
6

5.4 ...
4.2

3.6

2.4 ...

l.8

1.2 IC

0.6

cache Line Size Indicators

• L = 4
"' L = 8
.. L = 16
• L"' 32

•
Figure 3: Simulation results M=64,T*=10

184

In Figure 3, the difference of execution times for
different cache line sizes are significant for small values
of H, (H<8). For larger values of H, i.e. H ~ 8, the
difference is much less substantial. As was shown in
Section 4, the execution time becomes computation
bounded for large values of H, i.e. H > H t" op
Therefore, the change of communication cost due to
different cache line size has little impact on the
execution time. On the other hand, for H less than
Hopt' the execution time is communication bounded,
therefore, any increase in the communication cost will
directly contribute to execution time.

From Figure 3, it can be seen that the line size can
have a significant effect on execution time (a factor of
3) in terms of the optimum attainable performance.
The smaller the line size (from the data shown) the
better would seem to be the case. However, for very
small line sizes, where small depends on the packet
overhead, the additional overhead causes performance
degradation. Thus there is a window of appropriate
cache line sizes. In summary, the simulation results do
indeed validate the analysis.

5. Optimal Speedup. The optimal decomposition
can be used to derive a speedup function. Let us derive
the optimum speedup, denoted by S t' for our op
partitioning scheme. Here the speedup means the total
uniprocessor time Tu divided by the multiprocessor

processing time Ttot' i.e. S = TufTtot . We can derive
the optimal speedup from either Ttot or Ttot . For

p c
example, substitute Ttotc in (5.1), we arrive at

Tu
S=---

Tcm+tcp
(5.1)

Since T = nXMXt , T = nXMXt , and
ti cp cm cm

t cp = (n-1) X t cm at optimal partition, we have

nXM tcp
s = x- (5.2)

opt nXM+(n-1) tcm

Assuming M > > 1 and consider the optimal
condition, we have

1 T*
S =-XH X­opt 2 opt Tl

From (5.3) and (3.16), we get

(5.3)

1 T*
S "'='-X(2XM2)1/ 3x(-)2/ 3 (5.4)

opt ~ T
Comparing l5.4) with the cohesponding result in [2], we
can observe that, in both approaches, the optimal
speedup is proportional to (T* / T1)213• However, our

result is different from the result in [2] by the factor
((2lvf-)113)/2. This factor implies that the optimal
speedup increases with the size of the matrix.

6. Communication/Communication Tradeoffs.
The study reported here is interesting because the task
in question, matrix multiplication, is regular enough
that it can perform well on very powerful processing
elements, but has sufficient parallelism to be exploited
on very large numbers of processing elements. What
the results of this study indicate is that for a fixed
communications speed, one can use less powerful
processing elements to achieve comparable speedup,
provided one has sufficiently many of them.

Time •

um. processo)j

I
I

T* : Tl

Processors
JOO

270

240

2l0

180

150

120

90

60

JO

Figure 4: Effect of proc. speed on opt. performance

Figure 4 shows the time required for a large matrix
multiply at the optimal partition size as the processor
speed is varied. The two identified points represent T *
= 3 and T * = 6, i.e. a halving of the speed of each

PE, while maintaining the communications costs fixed.
The resulting optimal performance shows a decrease of
about 26%, with an increase in the number of
processing elements to achieve this performance of
about 50%. Thus we pay a penalty for the loss of
processor speed, but it is much less than a halving of
performance. Hence in considering alternatives, one
should keep in mind the non linear relationship between
individual element speed, and system speed.

7. Discussion. Some related results are reported in
the recent work described by Vrsalovic et, al, and
Cvetanovic [2, 7]. In contrast to the work reported in
[2], however, we analyse the time for a single matrix

multiplication, as opposed to the rate of execution of
matrix multiplies (i.e. latency vs throughput).

We are able to show analytically, for the ideal
machine model, square partitioning is necessary for
optimality and our analysis is applicable for both
square and non-square matrices [8]. Jalby and Meier

185

[3] in the Cedar Project have reported a study on
optimal partitioning of matrix multiplication for their
machine. Under a different partitioning scheme, their
results show that a rectangular submatrix may be the
best choice for a processor architecture with combined
vector and parallel capabilities. However, their work
does not provide a complete analysis of the combined
computation and communication time. Instead, by
stating that such combined minimization problem is
difficult, they consider each as an independent problem
by considering only the dominant terms.

We have studied the critical problem of
computation/communication tradeoffs for
multiprocessor systems. We have demonstrated that
there exists an optimal decomposition under which the
matrix multiplication problem can achieve a maximum
speedup on a shared memory multiprocessor with single
bus interconnection. The size for the optimal
partitioning is analytically characterized, and an
allocation is formulated which can achieve optimal
performance. Simulation results have confirmed our
analytic frame work.

I. Aho A, Hopcroft J, Ullman J, The Design and
Analysis of Computer Algorithms, Addison-Wesley
1974

2. Cvetanovic Z, The Effects of problem Partitioning,
Allocation, and Granularity on the Performance of
Multiple-Processor Systems, IEEE Trans. on
Computers C-36(4), April 1987

3. Jalby W, Meier U, Optimizing matrix Operations on
a Parallel Multiprocessor with a Hierarchical
Memory System, Proceedings of 1986 ICPP
Conference.

4. Masaaki Shimasaki Performance Analysis of Vector
Supercomputers by Hockney's Method Proceedings of
the 2nd International Conference on Supercomputers,
Santa Clara, CA May 1987

5. Neves K, Simon H, Supercomputer Performance
Evaluation: Benchmarking Applications Proceedings
of the 2nd International Conference on
Supercomputers, Santa Clara, CA May 1987

6. Strang G, Linera Algebra and its Applications
Academic Press, 1976

7. Vrsalovic D, Gehringer E, Segall Z and Siewiorek D,
The Influence of Parallel Decompositiopn Strategies
on the Performance of Multiprocessor Systems
Proceedings 12th Ann. Int. Symposium on Computer
Architecture, Boston June 1985

8. Whelan M, Gao G, Yum T.K., Decomposition of
Matrix Multiplication for Computation on
Multiprocessor Architectures, TR-87-044, Philips
Laboratories, Briarcliff Manor, NY

Performance Analysis of an Optimistic Concurrency
Control Algorithm in Replicated Database Systems

Muk:esh Singhal
Dept. of Computer & Information Science

The Ohio State University
Columbus, OH 43210

Abstract: In this paper, we present an analysis of a con­
currency control algorithm for replicated database systems.
We present a model of distributed database systems, which
provides a framework to study the performance of different
concurrency control algorithms and use the model in the
analysis of a concurrency control algorithm. We show that
even after making some assumptions, detailed performance
model of a concurrency control algorithm is so complicated
that it is impossible to find its closed-form solution. We
circumvent this problem by making two assumptions: first,
we assume that the state of a site is statistically indepen­
dent of the state of other sites, which permits us to analyze
a single site rather than the whole system. Second, we
assume that an update sees the average state of the system
and all the updates exhibit the average steady-state
behavior, which permits us to work with averages rather
than with probability distributions. Therefore, the technique
used in the analysis is approximate and iterative.

l. Introduction
In this paper, we analyze the performance of an

optimistic concurrency control algorithm for replicated
database systems. In optimistic concurrency control algo­
rithms, an update is executed concurrently with other
updates without performing any synchronization. How­
ever, before its computed values are written into the data­
base, it enters a validation phase which determines if the
update has conflicted with any concurrent update. In case
of conflicts, lower priority update is aborted, else its com­
puted values are written into the database. Depending upon
the way intersite communication and validation phase are
carried out, several optimistic algorithms have appeared in
the literature. The optimistic algorithm which is analyzed
in this paper functions in the following way: A site Si
maintains three queues - SuspendQi which contains local
updates which can not be executed due to conflicts with
local updates awaiting the results of their validation;
LocalQi which contains local updates that have been tenta­
tively executed and are awaiting the results of validation;
RemoteQi which contains remote updates that are awaiting
the results of their validation.

When a site Si receives a user request to execute an
update U, it performs the following sequence of actions: if
there is no entry in LocalQi that has w-r conflict with U,
then it assigns U a timestamp TS(U), places an entry for U
into LocalQi, tentatively executes U, and sends out
validation(write_set(U), TS(U)) messages to all other sites.
When a site S., i;tj, receives this message, it places
(write_set(U), TS(U)) into RemoteQi, updates its clock, and
returns a reply message to Si which contains the current
timestamp of Si. After Si has received a message with
timestamp larger than TS(U) from all other sites (called

186

condition Rl), it checks if there is an entry in RemoteQi
which has w-r conflict with U and has smaller timestamp
than TS(U). (Negation of this condition is denoted by R2.)

If condition R2 passes, then U is committed: site Si
writes the computed values in its database copy and sends
these values in update-commit messages to all other sites.
When a site Si receives these values, it writes them into its
database copy, discards the corresponding entry from
RemoteQi, and aborts all local updates from LocalQi which
have r-w conflict with U. If condition R2 fails, then U is
aborted, its entry is removed from LocalQi, and update- ·
abort messages are sent to all sites. On the receipt of this
message, a site removes the entry for U from its RemoteQ.
A site executes write action of an update using Thomas­
\Yrite rule (TWR) [4] where write to a data object is
ignored if it has already been written by an update of
higher timestamp.

2. Performance Model
We model arrivals of updates by a Poisson process.

This is justified because a database is usually shared by a
large number of independent users. We assume that the
size of the readset and the writeset of updates are identi­
cally and independently distributed random variables with
Geometric distribution. This assumption is justified because
the updates that reference a small number of data objects
occur more frequently than the updates that reference a
large number of data objects. We assume that access to
data objects is uniformly distributed across the entire data­
base, i.e., every data object is accessed with equal likeli­
hood.

A computer system, or site, provides the users with
the facilities such as CPU for processing and main memory
and secondary memory (usually disk) for storage capabil­
ity. Execution of an update requires service at CPU for
queue manipulation, update computations, message han­
dling, etc. Secondary memory holds the data objects of a
database, and in practice, it may consists of several disks.
For simplicity, we assume only one disk in the model. An
update makes a disk access for reading data objects or for
writing computed values into the database. Disk service
time depends upon seek-time, rotational delay, and data­
transfer delay. We assume that the disk service time is
exponentially · distributed and the disk serves requests in
FCFS order. Usually, concurrency control algorithms
require data structures such as queues, lock tables, graphs,
etc. We assume that the main memory at each site is large
enough to hold these data structures.

Communication medium affects the performar;.;e by
introducing finite delay in every intersite communication.
This delay is modeled by an infinite server, i.e., the com­
munication medium serves all intersite communication in
parallel. In practice, this usually holds in store and for-

conflict

arrival

Commit
(write)

depart

Figure 1. Flow diagram of the life-cycle of an update

ward networks. To simplify the model, we assume that the
service time of the communication medium (i.e., time taken
by a message to travel from one site to another site) is
constant.

Parameters of the Model
(1) N: The number of sites in the system.
(2) A.: Update arrival rate which is the rate of update

arrivals at a site. (Poisson distributed with parameter
A..)

(3) rs/ws: Update size which is the average number of
data objects in the readset/writeset of updates.
<Geometrically distributed with mean rs/ws.)

(4) M: Size of database which is the number of data
objects in each copy of the database.

(5) T: Message propagation time which is the average
time taken by a message to propagate through the
communication medium.

(6) 1/µ: Disk access time which is the average time to
read data objects in the readset or write data objects
in the writeset of an update. (Exponentially distri­
buted with parameter µ.)
Time spent by CPU in comparing timestamps, mani­

pulating queues, computing updates, and processing mes­
sages is usually much smaller than disk access time and
message propagation time. Therefore, we neglect CPU in
the performance analysis.

In the performance study, we will be interested in
computing update response time which is the time interval
between the instants when an update is submitted by a user
to a site and when the update is completely executed at
that site.

3. Performance Analysis of the Algorithm

The life-cycle of an update is depicted in figu~e _ 1.
When an update arrives, it is diverted to SuspendQ 1f its
host site already has a conflicting entry in its LocalQ. Oth­
erwise, the update proceeds with its tentatiye execution
where it performs its read and compute operations and IJC?r­
forms all its writes on a temporary storage. Then the site
performs validation for the update by exchanging mes­
sages. If the update_ fails the validation, it aborts and res­
tarts, else it commits its writes to the database at all the
sites using TWR.

3.1. Difficulties in Analyzing the System
Computation of update response time requires compu-

187

tation of the probability of going to SuspendQ (denoted by
P sus), average wait time in SuspendQ, average wait in
LocalQ, the probability of passing validation (denoted by
P eass), and time taken to commit the writes. Computation
ot Psus and P pass for an update requires detailed knowledge
of the system state when these decisions/checks are made.
For example, to determine P sus for an update, we should
know the exact data requirements for each update in
LocalQ; likewise, we should know the exact data require­
ments of all global updates to determine Ppass· We can
model such a system by a Markov chain by making
appropriate assumptions about the probability distribution
of service rates. However, the Markov chain will have
such a large number of states and such a complex structure
that it will not be feasible to analyze it even for a database
system of small size.

3.2. Approach Taken
We handle the state space explosion by making two

approximations. First, we assume that the state of a site is
statistically independent of the states of other sites. As a
result, we can analyze each site in isolation and the effect
of other sites on a site can be reflected by write/update
activity due to other sites. Since we assume that the system
is homogeneous, on the average all sites will perform
identically and performance measures can be obtained by
analyzing only one site. (Note that it is easier to analyze
one site rather than the entire system.) Such decomposition
technique has already been applied in the analysis of load
balancing algorithms [l], concurrency control algorithms
[3], multiple access protocols and store-and-forward packet
switching networks [2].

After making appropriate assumptions about the pro­
bability distribution of service rates, we can model a single
site by a Markov chain whose states are detailed enough to
capture concurrency control activities at that site, e.g.,
number of running/blocked transactions, data objects
held/acquired by them, etc. It is not difficult to see that
even for a database system of small size, Markov chain for
a site will have such a huge state space with very complex
structrure that obtaining its closed-form solution will be
practically impossible. Here we make the second approxi­
mation: rather than working with the probability distribu­
tions, we work with the averages - we assume that an
update sees the average state of the system and all updates
exhibit average behavior.

We exploit the interdependence among the variables
to derive a set of equations and solve it using an iterative
technique. Initially, we assume that the probability of ari
update restart is zero, or very small, and compute waiting

time in different stages of an update. From these waiting
times, we estimate new probability of an update rest~
which in tum gives new waiting times. This process is
repeated until the difference in the value of a variable of
interest (e.g., the probability of restart or wait time)
between two successive iterations is less than a desired
value.

The probability that two independently selected
groups of data objects of size a and b out of the M data
objects have a conflict is (denoted by <l>(a, b)):

<l>(a, b) = 1 - Prob(there is no data object common
between the groups) (: _ J [J

= 1- LMb a I t1 ::: a*b/M.

This result is used heavily in the analysis.

3.3. Performance Analysis
An update may undergo execute-restart cycle s~ver~

times before it actually commits. If the average waits m
SuspendQ and LocalQ are Wsus and W1oc• respectively,
then the average duration of an execute-restart cycle, R, is:

R=Psu.*Wsus+W1oc ... (1)

We assume that the probability of an update restart is
independent of the probabilities of its earlier restarts.
Therefore, the number of restarts an update undergoes
before it commits is Geometrically distributed. If the pro­
bability of an update restart is Pres (= 1 - Ppass) and the
average time to commit writes of an update is W write• then
the update response time is,

Resp= [(1-P res)*R+Pres(l-Pres)*2R+]+w write

R +W.
Resp (l-Pres) wnte . .. (2)

If on the average there are N1oc entries in LocalQ,
then an arriving update will go to SuspendQ if _it intends to
read any data objects which belon15s to the wr.iteset of any
of the N1oc updates; that is, there is a data object C<?~on
between rs and N1oc *ws data objects. The probability of
this happening is,

N *ws*rs *) _ loc (3) Psus = <l>(rs, N1oc WS - M ...

The effective rate of update arrival at a site is AJ(l­
p) because aborted updates are retried. Therefore, the
a;:rage number of entries in LocalQ is (Little's law),

N1oc=AJ(l-Pres)*W1oc ... (4)

S. sends validation
' message to S.

J
x

t1

S.
J

Computation of W10c

An entry stays into LocalQ until it is aborted by a
committed entry in RemoteQ (the committing entry has w-r
conflict with the aborted update and has priority over it) or
until condition Rl holds for it (at that instant, it may com­
mit or abort depending upon whether it passes condition
R2 or not). If there are Nrem entries in RemoteQ on the
average, then Nrem *(1-P res) of them will commit on the
average and can potentially abort entries in LocalQ. Since
a committing entry in RemoteQ aborts all the entries in
LocalQ which have r-w conflict with it, the probability that
an entry in LocalQ is aborted before condition Rl holds
for it is,

Nrem *(1-Pres)*ws*rs
P1 = <l>(rs, Nrem *(1-Pres)*ws) = M ... (5)

For an entry in LocalQ, condition Rl holds for it after
a delay of 2T after it has been placed in LocalQ. An entry
can get aborted at any instant with equal probability before
Rl holds for it (an assumption). Therefore, on the average
an entry stays in LocalQ for duration T given that it gets
aborted before R 1 holds for it. If an entry is not aborted
before Rl holds for it (this happens with the probability 1-
P1), it may get aborted after Rl holds for it provided there
is a smaller timestamp entry in RemoteQ which has w-r
conflict with it (i.e., R2 does not hold). Since entries arrive
in RemoteQ at a rate (N-l)A/(1-Pres), on the average
2T*(N-l)/..J(l-Pres) entries in RemoteQ can cause an update
to abort due to R2 (only if they commit and have w-r
conflict with this update). The probability of this happen­
ing is:
P 2 = Prob(R2 does not hold for UI U is not aborted before

Rl holds for it)
2T(N-l)A.*ws 2T(N-l)A.*ws*rs

=<l>(rs,) = --'----"----
(1-P res) (1-P res)M

The update is committed if condition R2 also holds
for it when condition Rl holds for it. The probability of
this happening is:

p pass=l - pres

= Prob(R2 holds for UI U is not aborted before Rl
holds for it)* Prob(U is not aborted before Rl holds for it)

=(1-P2)*(1-P1)

= [l 2T(N-l)A.*ws*rs]*(l-Pi)
(1-PreJM

S. sends commit or
I

abort message to Si

time-----+

.•• (6)

S. places the entry
into RemoteQ

j

S removes the entry
i from RemoteQ i

Figure 2.

188

Irrespective of the outcome of R2 check, the update
on the average waits for 2T time units. Also, an entry
waits in LocalQ until it is aborted before Rl holds for it or
after Rl holds for it. Therefore,

W10c = E[wait in LocalQ I update is aborted before Rl
holds]* Prob(update is aborted before Rl holds) +
E[wait in LocalQlupdate is not aborted before Rl holds]*
Prob(update is not aborted before Rl holds)

W1oc=T*P1+2T*(l-P1) ... (7)

Computation of W rem
If on the average an entry waits in RemoteQ for W rem

time units, then from Little's law (note that entries arrive
in RemoteQ at a rate (N- l)A/ (1-P res)):

... (8)

Next, we compute the average wait in RemoteQ,
Wrem· To determine W rem• we first establish a relationship
between the time interval entries for an update stay in
LocalQ of its host site and RemoteQ of a remote site. Con­
sider the scenario shown in figure 2. At instant tl site S;
sends out a validation message for an update to site Si
which reaches Sj at instant t 1 + T and site Si then places an
entry for the update in RemoteQj.

At instant t2, S; commits or aborts the update and
sends the corresponding message to Si. Si receives the mes­
sage at instant t2+ T and removes the corresponding entry
from RemoteQi. (Interval x, for which the entry stays in
LocalQ;, depends upon whether the update was aborted
before condition Rl held for it or not.) Note that the dura-

. tion for which the corresponding entry stays in RemoteQj,
(t2+T) - (tl+T) = x, is the same as the duration for which
the corresponding entry stays in LocalQ;. Therefore, for an
update, its entries stay in LocalQ and RemoteQs for the
same amount of time and

... (9)

Computation of Wsus
An entry in SuspendQ is checked for the possibility of

getting unblocked whenever an entry departs
(commits/aborts) from LocalQ. The average interdeparture
time of updates at a site, r, is (1-Pres)/A. because update
departure rate is the same as the effective arrival rate,
A/(1-P res), in the equilibrium. Since a departing update
releases ws data object on the average, the probability that
a data object previously unavailable to an update in
SuspendQ, now becomes available is ws/(N1oc *ws) =
l/Nioc· If the average conflict size * is cs, then the proba­
bility that an update in SuspendQ gets unblocked when an
update departs from LocalQ is p= (1/N1ocr (which is the
probability that all the conflict-causing data objects are
freed by the departing update). If we assume that the pro­
bability of an update in SuspendQ getting unblocked is
independent for different departures of entries in LocalQ,
then the number of departures before an update in
SuspendQ gets unblocked follows a Geometric distribution
with parameter p. As a result, the average wait in
SuspendQ is,

... (10)

* Conflict size is the number of conflict creating data objects;
i P. .. the data objects which are common in two conflicting updates.

189

Computation of W write
Data objects at a site are stored on a secondary

storage device, say a disk. Therefore, an access to the disk
is made when read and write actions of updates are exe­
cuted. Note that the read and the write actions arrive the
disk at rates A/(1-Pres) and NA., respectively. If we assume
that the read and the write requests arrive at t}le disk
according to Poisson distribution with parameter A. = A/(1-
p res) + NA. and the disk service time is exponentially distri­
buted with parameter µ for all these requests, then the
average response time at the disk is (M/M/l server),

1
Tclis1c=--, =Wwrite ... (11)

µ-A.

We obtain the performance of the algorithm by solv­
ing the system of equations in the following manner: we
start with small values for waiting time in LocalQ and
RemoteQ and compute the probabilities of update restarts -
Pres and P1 - using equations (3), (4), (5), (6), (7), and (8).
We use these values in equations (7) and (9) to compute
new values for waiting times - W1oc and W rem· This pro­
cess is repeated until difference of waitinll: times between
two successive iterations is less than small quantity, say 5
percent. Finally, the average update response time is com­
puted using equations (1), (2), (3), (10), and (11).

4. Concluding Remarks
We have presented a performance model of distri­

buted database systems and used it to analyze the perfor­
mance of an optimistic concurrency control algorithm in
replicated database systems. We have shown that even after
making some simplifying assumptions, detailed perfor­
mance model of a concurrency control algorithm is so
complicated that it is impossible to find its closed-form
solution. We have solved this problem by assuming (i) that
the state of a site is statistically independent of the state of
other sites, which permits us to analyze a single site rather
than analyzing the whole system and (ii) that an update
sees the average state of the system and all the updates
exhibit the average steady-state behavior, which permits us
to work with averages rather than with probability distribu­
tions. The performance analysis not only provides a sim­
ple and quick method to compute the performance meas­
ures of an optimistic concurrency control algorithm but
also it gives an approximate method to analyze other dis­
tributed concurrency control algorithms.

References

1. EAGER, D. L., LAzOWSKA, E. D., AND ZAHORJAN, J.,
''Adaptive Load Sharing in Homogeneous Distributed
Systems," IEEE Transactions of Software Engineer­
ing, pp. 662-675 (May 1986).

2. LAM, S. S., "Store-and-Forward Buffer Requirements
in a Packet Switching Network,'' IEEE Transactions
on Communications, pp. 394-403 (April 1976).

3. SINGHAL, MUKESH AND AGRA WALA, A. K., "Perfor­
mance Analysis of an Algorithm for Concurrency
Control in Replicated Database Systems," Perfor­
mance Evaluation Review, Vol. 14, No. 1, (May
1986).

4. THOMAS, R. H., "A Majority Consensus Approach
to Concurrency Control for Multiple Copy Data­
bases," ACM Trans. of Database Systems, pp. 180-
209 (June 1979).

Hypercube Algorithms for Some String Comparison Problems*

Oscar H. Ibarra, Ting-Chuen Pong and Stephen M. Sohn

Department of Computer Science
University of Minnesota

Minneapolis, Minnesota 55455

Abstract

We give parallel algorithms for solving some string comparison prob­
lems on the hypercube. For strings x and y with length(x) = m,
length(y) = n, and assuming n ;::: m, we show the following: the
string edit problem, the longest common subsequence problem and the
minimum-length time-warping problem can be solved in O(log2 n) time
using 0(1) space per processing element (PE) on an SIMD hypercube
of O(n3 /log2 n) PE's. We also show that the longest common sub­
string problem can be solved in O(logn) time using 0(1) space per
PE on an SIMD hypercube of O(n2) PE's. Finally we show that the
substring problem (where typically mis much smaller than n) can be
solved in 0(m +log n) time using 0(m) space per PE on an MIMD hy­
percube of O(n/m) PE's. We note that this algorithm has an optimal
processor-time product if m = n(log n). The results of implementing
this algorithm on the NCUBE/7 hypercube machine are also presented.

1 Introduction
String comparison techniques are important in many diverse fields such
as text processing, image and signal processing, pattern recognition
and artificial intelligence [20]. The string edit problem is to compute
the minimum cost of transforming one string into another string using
the edit operations insert, delete and replace (22]. Each edit operation
has an associated cost which is a function of the alphabet from which
the strings were composed. The cumulative cost is a measure of the
dissimilarity or distance between two strings and is called the edit dis­
tance or the weighted Levenshtein distance (18]. The longest common
subsequence problem (LCS) is to determine the length of the longest
subsequence (not necessarily a contiguous substring) common to both
strings (22]. The minimum-length time-warping problem has particular
importance in the domain of speech processing and is concerned with
matching strings based on compression and expansion [20]. Many other
sequence comparison problems may be found in [20).

The three problems just mentioned may be broadly characterized
as inexact string matching problems. A slightly less difficult class of
problems concerns finding only exact matches between strings or sub­
strings. The substring problem asks whether a shorter string (called the
pattern) is contained in a longer string (called the text) (16].The longest
common substring problem (LCG) is to find the longest substring that
is common to both strings (20].

2 The String Edit Problem
The string edit problem is formally defined as follows (22]: let x =
x1x2 ... Xm and y = Y1Y2 ... Yn be strings over a fixed finite alphabet.
We are given the edit operations insert, delete and replace in order to
transform x into y. Associated with these operations are costs Ia, Db,
and Ra,b, respectively, for all symbols a and b in the alphabet. The
minimum cumulative cost (called the edit distance) can be found using
dynamic programming: let M be a (m + 1) x (n + 1) table such that
M(i,j) is the minimum cost of transforming x1 •• • x; into Y1 .• ·Yi. The
table entries can be computed using the recurrence:

M(0,0) = O;

M(i,O)
r=l

j

M(O,j) = l:Iy,;
r=l

•This research was supported in part by NSF Grants DCR-8420935,
DCR-8604603 and ECS-8505662.

{
M(i - l,j -1) + R.:1,9;,

M(i,j) = min M(~-;1,j)+D,,.,
M(i,J - 1) + ly;-

The longest common subsequence problem is a special case of the string
edit problem using the following cost function [22]:

la= Da = 1;

R -{ O if a= b,
a,b - 2 otherwise

for all symbols a and b in the alphabet. The minimum-length time­
warping problem is solved by restricting the form of the recurrence as
well as the cost function (also, the table is m x n) (20]:

M(O,O)

M(i,j)

O· ,
M(i- 1,j -1) + rR,,,,9;,

M(i-1,j) + 1/2rR,,1,y;,

M(i,j-1) + 1/2rR,,1,y;·

Now suppose that n ::'.: m. It has been observed that virtually all
sequence comparison problems are variants of the string edit problem
and hence can be solved by the same dynamic programming technique
(18]. This approach takes O(mn) time sequentially (22]. An asymp­
totically faster algorithm using a divide-and-conquer approach taking
0(mn/ min{ m, log n}) time was given in (19] (All logarithms mentioned
in this paper are base two.) In [18] it was shown that the edit distance
can be computed in parallel on a two-dimensional systolic array in 0(n)
time using mn processing elements (PE's). An algorithm yielding the
actual edit sequence in O(n) time using a one-way two-dimensional it­
erative array of mn PE's was given in [5]. The number of PE's can be
reduced to n using a one-way one-dimensional systolic array with the
same time bound of O(n) (6, 12]. A similar algorithm with these same
bounds but using an SIMD parallel machine that can simulate a linear
array was given in (8]. On a bus automaton the LCS can be computed
in constant time (3].

Our algorithm is essentially a parallelization of the dynamic pro­
gramming technique, as are the parallel algorithms just noted. We will
first indicate how to reformulate the recurrence relation as a weighted
directed graph. Let us define a family {Gn}, n ::'.: 1, of weighted directed
graphs as follows: Gn = (V, E) where

190

v = {(i,i)IO ~ i,j ~ n-1},

E = {(i,j)-+ (k,l) lk= i+ 1or1=j+1 or both,

for 0 ~ i,j,k,l ~ n-1}.

Associated with each edge is a weight C(i.i)-(k,1)· The graph G4 is
illustrated in Figure 1.

Figure 1: The graph G4.

Now focus on the string edit problem since the other two problems
are subproblems and hence solvable using this same technique. Edge
weights are assigned to the graph Gn+l as follows:

for i = k, I= j + 1,
fork= i+ 1,j =I,
fork= i + 1, I= j + 1

for 0 $ i, k $ m, 0 $ j, I $ n. If m f. n then the remaining edges
are weighted with +oo. It is not difficult to see that the edit distance
between x and y is equal to the length of the shortest path from vertex
(0, 0) to vertex (m, n). Furthermore, the sequence of edges comprising
this shortest path correspond to the optimal sequence of edit operations
used.

The algorithm we give uses divide-and-conquer to decompose the
problem. Even though only one path is ultimately desired, it will be
necessary to compute many paths in parallel at early stages of the
algorithm. The perimeter-pairs shortest path problem for this family
of graphs is to determine the lengths of the shortest (directed) paths
between all pairs of vertices lying on the perimeter of Gn.

2.1 Overall Scheme

Initially the n2 vertices of a given graph Gn are partitioned into n2

subgraphs, called blocks, one vertex per block .. These blocks are then
merged pairwise to form a collection of n2 /2 blocks, each containing two
vertices and the edge that connects them. We then solve the perimeter­
pairs problem for each of these blocks taken individually, which is trivial
for these blocks. The resulting blocks are then merged pairwise again
and the perimeter-paths problem is solved for these enlarged blocks.
This procedure is repeated until one block containing all of the graph
remains. At this point, we have solved the problem for Gn. Notice that
at a given level of the merging, the perimeter-pairs problem is being
solved for disjoint subgraphs. Hence it can be performed on every block
in parallel. Also, it is not difficult to solve the perimeter-pairs problem
for a newly merged block if we previously have solved the problem for
the two component blocks.

The initial partitioning and subsequent merging must preserve the
topology of the graph. In other words, we must merge subgraphs that
are adjacent in the graph. For this family of graphs there is a natu­
ral and symmetric merging procedure that obeys this constraint. For
k = 2;, 0 $ i $ log n - 1, we alternately merge k x k blocks pair­
wise horizontally and then merge the resulting k X 2k blocks pairwise
vertically. This is illustrated in Figure 2 for the graph G4.

;Oi-.iO; ;Oi-.iO; ;~-------; ;~-------;
t __ ! . - _ ! ~ __ ! . - _! ~- - --- _! t. - - -- _!

[QHQ] [QHQ] [__:: ___] [__ :: ___]
:.0r-0_-_· .• ·.-_-_ .. : :.0r-0_-_ •• : ·.-_-_ .. : ~~-------~ ~~-------:

~-- ----~ ~-- ----·
~QHQJ iQHQ1 [__~~---] [__~~---1 :OO: :~ _______ (1;>)__ _____ 1

L ______ ~ ·-------~ L _________ ____ J

:~-------:·-------::-- -- -- :
I I I I I
I I I I I I
I I I I I
I I I I t _______ ! . _______ J t _________________ J

(c) (d)

Figure 2: (a) First, (b) second, (c) third, and (d) fourth stages of
merging for the graph G4.

2.2 A Graph-theoretical Discussion

Consider the graph Gn where n is a power of 2. Now focus on a given
stage where we are merging two k x k blocks horizontally. Denote
the left-hand block as the A-block and the right-hand block as the
B-block. Also denote the resulting adjoined block as the AB-block.
The perimeter pairs problem has previously been solved for these k x k
blocks at earlier stages of the procedure. Let PA be the set of vertices
lying on the perimeter of the A-block and let PB be similarly defined.
PAB is the set of vertices that lie on the perimeter of the adjoined
AB-block. Denote by lsp(u, v) the length of the shortest path between

191

vertex u and vertex v, or +oo if there is no path from u to v. We
can define the lengths of the perimeter-pairs paths for the A-block as
a set of triples A= {(u, v, lsp(u, v)) I u, v EPA}· B (AB) is similarly
defined for the B-block (AB-block). Let D be the edges going directly
from the A-block to the B-block.

In order to compute AB we need only A, Band D. Initially, we will
indicate how to compute AB = {(u,v,lsp(u,v)) lu,v E (PA UPB)}
from which AB is easily obtained. AB can be written as the union
of four disjoint sets: AB = A U B U A"""' B U B """' A where

A"""'B={(u,v,lsp(u,v)) luEPA,vEPB},

B"""' A= {(u, v, lsp(u, v)) I u E PB, v EPA}.

We can immediately simplify B""" A= {(u, v, +oo) I u E PB, v EPA}·
Consider splitting the edges of D and inserting a unique "imagi­

nary" vertex within each edge as follows: for each (r --+ s) E D define
two new weighted edges (r--+ wn and (w~ --+ s) where w~ is a new ver­
tex that now lies directly between rands. Let I= {w~ I (r--+ s) ED}
be this set of imaginary vertices. Furthermore, define the weights of
these new edges as Cr-w• =Cr-• and Cw•-• = 0. This is illustrated in
Figure 3. ' '

Figure 3: The set of imaginary vertices lies between the A-block and
the B-block.

The motivation for this construction is to write an expression for
A """ B in terms of the shortest paths to and from the imaginary
vertices:

A"" B = { (u,v,~Jy{lsp(u,w)+lsp(w,v)}) ju E PA,v E PB}.

A""" B can be thought of as follows: the shortest path from u E PA to
v E PB must include exactly one edge of D. Due to the construction of
the imaginary vertices and new edges given above, we can equivalently
state that the shortest path from u E PA to v E PB must pass through
exactly one vertex w E /. Also, because the path from u to v is the
shortest path, the paths from u to w and from w to v must also be
shortest paths. Therefore, having computed these component paths
A""" I and I""" B, they can be merged to yield the desired A""" B.
The case where two k x 2k blocks are merged vertically is handled in a
similar manner.

2.3 Using the Hypercube

Dekel, Nassimi and Sahni [7] have given a matrix multiplication algo­
rithm for the hypercube. It was shown that two n x n matrices can
be multiplied in O(n/p + logp) time when n2p, 1 $ p $ n PE's are
available. Conceptually, they treat the hypercube as an p x n x n ar­
ray. We refer to this virtual configuration as the cube configuration, as
distinguished from the actual physical configuration of the hypercube.

The sets mentioned above are implemented as matrices which are
then manipulated via matrix operations with suitable transform ma­
trices. It is difficult to describe hypercube parallel operations in terms
of atomic PE operations. Our algorithm is written as a sequence of
matrix operations that are successively applied to the input (the edge
costs). This algorithmic representation is a straightforward and sim­
ple way to express a parallel algorithm. The matrix of path costs for
a merged block of vertices is formed by computing the "product" of
the constituent path cost matrices, where the "product" operation is
obtained by replacing the multiplication and addition operations of
ordinary matrix multiplication with the addition and minimum opera­
tions, respectively. The hypercube is partitioned into sub-cubes and the
merging of the path cost matrices is done in parallel for the particular
block of vertices assigned to each sub-cube. The sub-cubes themselves
are then coalesced to form larger sub-cubes for the next level of merg­
ing. For the sake of brevity we omit further details of the algorithm,

which can be found in (13]. It can be shown that the overall time
needed is O(log2 n) for a hypercube of O(n3 /1og2n) PE's using 0(1)
space per PE (a detailed analysis is given in [13]). Furthermore, the
actual sequence of edges (corresponding to .the edit sequence) can be
found in the same time and space by a parallel divide-and-conquer
search through the intermediate path cost matrices.

3 The Longest Common Substring Problem

A related but distinct measure of string distance is the length of the
longest common substring (LCG) (20]. Let x and y be strings over a
fixed finite alphabet, lxl = m, IYI = n and n ~ m. (Henceforth we ab­
breviate length(x) = Ix j.) There is a straightforward sequential method
that is obtained by considering all possible alignments between the two
strings which takes O(mn) time [20]. Subsequently this time bound
was improved to 0((m + n) log(m + n)) [15] and finally to the optimal
bound O(m+n) (23] (see also (1]). We give a parallel adaptation of the
straightforward method where the actual substring satisfying the LCG
constraint as well as its length are obtained. On an SIMD hypercube of
size O(n2), we show that the LCG can be found in O(logn) time using
0(1) space per processing element. Consider the following definitions:

Definition 1 Given strings x and r~, r~ is said to be a rotation of x
if there exist strings u and v such that r~ = uv and x = vu.

Definition 2 Given strings x :;: x1x2 ... Xn and y = Y1Y2 . .. Yn, the
aligned longest common substring (ALCG) of x and y is the LCG
u of x and y with the additional constraint that u = x;x;+1 ... Xk =
YiYi+l ·. ·Yk for some 1 $ i $ k $ n.

Now suppose that we wish to find the LCG of x and y, where
n = IYI ~ lxl. Let "#" and "$" be two distinct symbols not occurring
in the alphabet of x and y. Further suppose that we already have a
function ALCG(u, v) that returns the ALCG ofu and v for strings such
that lul = lvl. The following is a reformulation of the straightforward
algorithm using the terms just defined.

input(x, y);
u := v := fj //f is the empty string//
y' := y#;
x' := x$1Y'H~I;
for all rotations ry• of y' do begin

u := ALCG(x',ry•);
if lul > lvl then

v := u
end;
output(v);

Definition 3 Given strings x = x1x2 .. . x,., y = y1y2 ••• y,. and c =
c1 c2 .•• Cn, c is said to be the characteristic matching string of x and y
if

{ 1 if:&;= y;,
c; = 0 otherwise.

Now note that the ALCG(:i:, y) function returns the substring of :i: and
y corresponding to the longest substring of 1 's in the characteristic
matching string of x and y.

Again suppose that we are given strings :i: and y, n = IY#I ~ l:i:I.
Also suppose that n is a power of 2. If n is not a power of 2 then y can
be padded on the right end with additional "#"s to form the string
y#2P•••l -n. From now on we will denote the padded string as y. We
pad the right end of:& to yield the string :&$2 r1or•L1~1. Again, from now
on we will denote the padded string as:&. We will need a hypercube of
n2 PE's. The hypercube can be conceptualized as a two-dimensional
array where each row and column of the array is itself connected as a hy­
percube (e.g., see (4]). In this configuration we can alternately describe
a PE by either its row-major array coordinates (i, j), 1 $ i, j $ n, or its
binary address in the overall hypercube. The mapping from coordinate
form to binary index form is: PE (i,j) has index (i - 1) · n + (j - 1).
Initially suppose that x and y are stored in the hypercube such that
PE (1,j) contains both z; and y;, 1 $ j $ n. The algorithm can be
divided into four phases:

192

Phase 1 We wish to store the symbols z; and Y; in PE (i,j), 1 $
i,j $ n. It is well known that a datum can be broadcast to all nodes
of a hypercube of size n in exactly log n time [7]. Each column of the
conceptual array is a hypercube of size n and z; and Y; are initially
stored in PE (1,j). Hence, the broadcasting is done in parallel on the
n columns with the result that PE (i,j) holds z; and Y; after O(logn)
time.
Phase 2 Stringy is now circularly shifted (i - 1) places to the right
along row i, 1 $ i $ n. The result is that Y; is now stored in PE
(i, (j + i - 1 mod n) + 1) in row i. This shifting is done on every
row in parallel. Each row of the conceptual array is a hypercube of
size n. It has been shown that circular shifting of k positions for any
0 $ k $ n - 1 can be performed in O(logn) time on a hypercube of
size n (17, 7]. Hence Phase 2 takes O(logn) time overall.
Phase 3 In Phase 2, all n possible rotations of y have been generated,
one unique rotation per row. The ALCG will now be computed in
parallel for each row i using z and rL'), where r~i) is the rotation of y
on row i. The output of this phase will be the initial index (with respect
to z) and length of the ALCG solution for each row. These values will
be stored in PE's (i, 1), 1 $ i $ n, corresponding to the rows. Let us
assume that each PE has stored its column index. We will focus on the
ALCG computation for a particular row i but the following procedure
will be performed in parallel on every row 1 $ i $ n. Initially the
characteristic matching string c is formed for z and rLi), one symbol
per PE. This is easily done in parallel in 0(1) time by comparing z;
and rL? at PE (i, j) and setting some register to 1 if z; = rL?, otherwise
0. Therefore, the problem is reduced to finding the initial index and
length of the longest substring of l's in the string c, which is distributed
over the n PE's of row i one symbol per PE. Since this subproblem is
of independent interest we will state it as a lemma.

Lemma 1 Given a string z composed of O's and J's, lxl = n, the length
of the longest substring of J's in z can be found in O(log n) time using
0(1) space per PE on an SIMD hypercube of size O(n). Furthermore,
the initial index of the satisfying substring also can be found in the same
time, space and number of PE's if each PE has stored its hypercube
index. (A proof can be found in (13].)

Therefore, after computing the characteristic matching string, we
can apply Lemma 1 with the result that the initial index and length of
the ALCG of z and ri is stored in PE (i, 1), 1 $ i $ n after O(logn)
time.
Phase 4 The overall solution to the LCG problem now is found by
taking the maximum of the length values stored in PE (i, 1), 1 $ i $
n. The indices corresponding to the lengths are carried along in the
computation. Since this column of PE's is a hypercube, the maximum
can be computed in a straightforward way in O(logn) time [7].

4 The Substring Problem

Let z and y be strings over a fixed finite alphabet. The substring prob­
lem asks whether z is a substring of y. Typically the string z (called
the pattern) is much shorter than the string y (called the te:&t) [16].
Sequential solutions to the substring problem have been extensively
studied. The straightforward algorithm consists of aligning the pattern
starting at the beginning of the text and comparing symbols pairwise in
order from left to right. If the pattern matches the text for this align­
ment then the occurrence is noted. Otherwise, the pattern is shifted
one position to the right and the procedure repeated (see [1]). In the
worst case this approach takes 0(mn) time. An optimal algorithm tak­
ing 0(m + n) time can be obtained by using the results of the previous
partial match [16]. Some related results and extensions were given in
(2, 10] while a general discussion of this technique can be found in [1].

Parallel algorithms have also been given. On a concurrent-read
concurrent-write parallel random access machine (CRCW PRAM) of
O(n/logn) processing elements (PE's), a time bound of O(logn) was
obtained (9, 21]. We will show that on an MIMD hypercube of O(n/m)
PE's, the substring problem can be solved in O(m + logn) time using
O(m) space per PE. This algorithm possesses an optimal processor­
time product if m = O(log n), i.e., m is asymptotically greater than
logn. Our algorithm will use the sequential algorithm given in [16] as
a subroutine. Therefore it is appropriate to consider the MIMD model
since this subroutine can be performed asynchronously on each node in
parallel.

4.1 The Algorithm

We need an MIMD hypercube of n/m PE's. (Without loss of generality
assume that m evenly divides n; if not, then the text y can be padded
on the right with some symbol not occurring in the alphabet of the
pattern :i: and the text y.) Let :i: = :i:1:i:2 •.. :i:m and y = YtY2···Yn·
It is well known that a hypercube can optimally simulate a two-way
one-dimensional array of processors (e.g., see [4]). This technique uses
a Gray code to map the PE's 0, 1, ... , n/m-1 such that PE i is directly
connected to PE i - 1 and i + 1. Initially suppose that the pattern :i: is
stored in PE 0 and the text y is distributed over the PE's such that PE
i contains Ymi+1Ymi+2 .. ·Ym(i+!)· The algorithm is divided into four
phases:
Phase 1 We wish to broadcast the pattern :i: to all other PE's. A
technique given in [11] uses an embedding of spanning trees in order to
obtain the optimal time bound of O(m + log(n/m)) for broadcasting
m items to all PE's in a hypercube of size n/m. Each PE stores the
pattern as it is received.
Phase 2 After Phase 1 PE i has stored the pattern :i: and a segment
of the text Ymi+1Ymi+2 .•. Ym(i+l) Now it is possible that the pattern
occurs in the text overlapping a boundary imposed by this segmen­
tation. This is alleviated by reading a portion of the text stored in
PE i + 1 and then searching for the pattern in this enlarged segment.
Hence we want PE i+ 1 to send Ym(i+l)+1Ym(i+1)+2 •.. Ym(i+2)-l to PE
i, for all i + 1 ~ n/m - 1 in parallel. Using the one-dimensional array
connections this can be done in O(m) time in parallel.
Phase 3 After Phase 2 PE i, i < n/m - 1, holds an enlarged segment
of the text Ymi+I Ymi+2 ... Ym(i+2)-1 which is 2m - 1 symbols long. PE
n/m - 1 has stored Yn-m+1Yn-m+2 ... Yn· In parallel each PE now
searches for :i: in its respective segment. Using the technique given
in [16] this takes O(m) time. The PE then notes whether or not the
pattern was found.
Phase 4 In O(log(n/m)) time the n/m PE's can be polled in parallel
to see if any match occurred [7].

4.2 Implementation on the NCUBE/7

While the above algorithm has an optimal processor-time product for
O(n/m) PE's, in practice the size of a given hypercube machine is fixed.
Hence, it is desirable to obtain an algorithm that yields an acceptable
speed-up using a fixed number of PE's for a pattern and text of arbi­
trary size. With slight modifications, our algorithm was implemented
on the NCUBE/7 hypercube machine using a maximum of 64 PE's.
The overall time for a given run can be decomposed into two parts:
communication and computation. The communication time consists
of the time needed to broadcast the pattern to all PE's plus the time
needed to send and receive the appropriate portions of text between
neighboring PE's in the conceptual linear array. The computation time
is the time needed to search for the pattern within the enlarged seg­
ment of text. The results are summarized in Figure 4 for a text of
length 10,000 and a pattern of length 12. Additional experiments were
performed to consider various ways of loading the text and pattern into
the hypercube, as well as various searching techniques [14].

T
i

m
e

100
90
80
70
60
50
40
30

o =Overall
x = Computation
+ = Communication

' w ' .
10 'X- -~ ·" .·+ .. . ·+,.. ·..:.·-,.:--x
0-1-~-r~--.-~-+-~--.-~-,-~-,-~~

2 4 8 16 32 64

Number of PE's

Figure 4: Normalized timing values for the NCUBE/7 implementation
of the substring algorithm.

5 Summary
We have given parallel algorithms for solving some string compari­
son problems on the hypercube. The problems include both inexact
and exact matching problems. Our algorithm for the inexact matching

193

problems, of which the string edit problem is the most general represen­
tative, was presented in terms of a shortest path problem for a special
family of graphs. The exact matching problems were solved in a more
direct fashion. Our algorithms use many different conceptualizations
of the hypercube architecture. For example, at certain instances it may
be useful to treat the hypercube as a mesh or array. At other times
a tree-like structure may be appropriate. The hypercube is very well
suited for this due to its high connectivity.

References
[l] A. V. Aho, J.E. Hopcroft and J. D. Ullman, The Design and Analysis of

Computer Algorithms. Reading, Mass.: Addison-Wesley, pp. 346-361,
1974.

[2] R. S. Boyer and J. S. Moore, "A fast string searching algorithm," Com­
mun. ACM, 20, pp. 762-772, 1977.

[3] D. M. Champion and J. Rothstein, "Immediate Parallel Solution of the
Longest Common Subsequence Problem," in Proc. 1987 Int'/ Conj. on
Parallel Processing, pp. 70-77, 1987.

[4] T. F. Chan and Y. Saad, "Multigrid algorithms on the hypercube mul­
tiprocessor," IEEE Trans . .Comput., vol. C-36, no. 1, pp. 64-75, Jan.
1987.

[5] J. H. Chang, 0. H. Ibarra and M. A. Palis, "Parallel parsing on a one­
way array of finite-state machines," IEEE Trans. Comput., vol. C-36,
no. 1, pp. 64-75, Jan. 1987.

[6] H. D. Cheng and K.-S. Fu, "VLSI Architectures for Pattern Matching
Using Space-Time Domain Expansion," in Proc. IEEE Int'I Conj. on
Computer Design ICCD, pp. 181-184, 1985.

[7] E. Dekel, D. Nassimi and S. Sahni, "Parallel matrix and graph algo­
rithms," SIAM J. Comput., vol. 10, no. 4, pp. 657-675, Nov. 1981.

[8] E. Edmiston and R. A. Wagner, "Parallelization of the Dynamic Pro­
gramming Algorithm for Comparison of Sequences," in Proc. 1987 Int'I
Conj. on Parallel Processing, pp. 78-80, 1987.

[9] Z. Gali!, "Optimal parallel algorithms for string matching," in Proc.
16th ACM Symp. on Theory of Computing, pp. 240-248, 1984.

[10] Z. Gali! and J. I. Seiferas, "Time-space-optimal string matching," J.
Comput. Syst. Sciences, 26, pp. 280-294, 1983.

[11] C.-T. Ho and S. L. Johnsson, "Distributed Routing Algorithms for
Broadcasting and Personalized Communication in Hypercubes," in
Proc. 1986 Int'I Conj. on Parallel Processing, pp. 640-648, 1986.

[12] 0. H. Ibarra and M. A. Palis, "VLSI algorithms for solving recurrence
equations and application," IEEE Trans. on Acoustics, Speech, and Sig­
nal Processing, vol. ASSP-35, no. 7, pp. 1046-1064, July 1987.

[13] 0. H. Ibarra, T.-C. Pong and S. M. Sohn, "Hypercube Algorithms for
Some String Comparison Problems," Tech. Report 88-8, Univ. of Min­
nesota, 1988.

[14] 0. H. Ibarra, T.-C. Pong and S. M. Sohn, "Hypercube Algorithms for
the Substring Problem," Tech. Report, Univ. of Minnesota, 1988.

[15] R. M. Karp, R. E. Miller and A. L. Rosenberg, "Rapid identification
of repeated patterns in strings, trees, and arrays," in A CM Symp. on
Theory of Computing, vol. 4, pp. 125-136, 1972.

[16] D. E. Knuth, J. H. Morris and V. R. Pratt, "Fast pattern matching in
strings," SIAM J. Comput., vol. 6, no. 2, pp. 323-350, June 1977.

[17] V. K. P. Kumar and V. Krishnan, "Efficient Image Template Matching
on Hypercube SIMD Arrays", in Proc. 1987 Int'/ Conj. on Parallel
Processing, pp. 765-771, 1987.

[18] H.-H. Liu and K.-S. Fu, "VLSI arrays for minimum-distance classifica­
tions," in VLSI for Pattern Recognition and Image Processing, K.-S.
Fu, ed., pp. 45-63, 1984.

[19] W. Masek and M. Paterson, "A faster algorithm for computing string­
edit distances," J. Comput. Syst. Sci., vol. 20, pp. 18-31, 1980.

[20] D. Sankoff and J. B. Kruskal, ed.s, Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence Comparison.
Reading, Mass.: Addison-Wesley, 1983.

[21] U. Vishkin, "Optimal parallel pattern matching in strings," in Proc.
12th !GALP, Lecture Notes in Computer Science 19,4.. Springer-Verlag,
pp. 497-508, 1985.

[22] R. Wagner and M. Fischer, "The string-to-string correction problem,"
J. Assoc. Comput. Machinery, vol. 21, pp. 168-173, 1974.

[23] P. Weiner, "Linear pattern matching algorithms," in IEEE Symp. on
Switching and Automata Theory, vol. 14, pp. 1-11, 1973.

Time Lower Bounds for Sorting on
Multi-Dimensional Mesh-Connected Processor Arrays

Yijie Hant* and Yoshihide lgarashitt

fDepartment of Computer Science
University of Kentucky

Lexington, KY 40506-0027

ttoepartment of Computer Science
Gunma University
Kiryu, 376 Japan

Abstract

We provide a useful technique called the Chain
Theorem to derive good time lower bounds for sorting on
the multi-dimensional mesh-connected model. For any
d>2 we derive a lower bound which is significantly better
th-;;:n the distance bound of dn on the d-dimensional
model. We also distinguish between indexing schemes by
showing that there exists a poorer indexing scheme than
the snake-like indexing scheme on the multi-dimensional
model. All these results are obtained using the chain
theorem.

L Introduction

A mesh-connected processor array is widely accepted
as a realistic model of a parallel computer. The problem
of sorting on a mesh-connected processor array has been
studied by many researchers[3-7, 9-14]. It is known that
that (2d-l)n steps are optimal computing time within the
leading term for sorting nd items into d-dimensional
snake-like order on the d-dimensional mesh-connected
model[3, 4, 13]. However, up to now we do not know
whether the snake-like order is the best indexing scheme
for sorting. A question whether the distance bound 2n-2
is ultimately achievable on a two dimension nXn mesh­
connected model by using some super indexing scheme has
also been raised[6].

The authors of the present paper have shown that
2.2247n steps are a time lower bound independent of
indexing schemes for sorting n2 items on the nXn mesh­
connected model[l]. Thus, the question posed by Ma et
al.[6] has been answered. Time lower bounds for various
indexing schemes on the nXn mesh-connected model and

the existence of a poor indexing scheme with 4n:._2\12rl -3
time lower bound have also been shown[l]. These results
have been obtained using a new technique called the chain
argument[l].

In this paper we develop the chain argument in order
that we can apply its extended version to derive nontrivial
lower bounds for sorting. We show a theorem that gives a
relation between computing time for sorting nd items and
the number of processors in a certain region of the mesh­
connected model. We can numerically calculate the best

Work reported herein was partially supported by the
University of Kentucky research initiation grant.

194

lower bound obtainable from the theorem. For each d"2_2
our result is significantly better than the distance bound
of dn on the d-dimensional model.

2. Preliminary

We consider a general model of a synchronous d­
dimensional mesh-connected processor array consisting of
nd identical processors. It is denoted by M[l..n, .. ., l..n]
or M[(l..n)d]. Each processor at location (i11 .. ., id),
l~i 11 ... , id~n, is denoted by M[i1,. . ., id]· The distance
between M[i1,. .. , id] and M[j1,. . ., jd] is defined to be

d

I; lik-jd and denoted by dis((i 11 .. .,id), (j11 .. .,jd)). Proces­
k=l
sor M[i1,. . ., id] is directly connected with processor
M[j1,. . ., jd] if and only if dis((i1, .. ., id), Uv · · · , jd))=l.
All n d processors work in parallel with a single clock, but
they may run different programs. As for sorting computa­
tion, the initial contents of M[(l..n)d] are assumed of nd
linearly ordered items, where each processor has exactly
one item. The final contents of M[(l..n)d] are the sorted
sequence of the items in a specific order. In one step each
processor can communicate with all of its directly­
connected neighbor processors. The interchange of items in
a pair of directly-connected processors or the replacement
of the item in a processor with the item in one of its
neighbor processors can be done in one step. The comput­
ing time is defined as the number of parallel steps of the
basic operations to reach the final configuration.

An indexing on processor array M[(l..n)d) is a one­
to-one mapping from {1, ... , n}d to {1, .. ., n }. For an
indexing I, the index of M[i1,. . ., id] is denoted by
I(i11 .. ., id). Some indexing schemes on the 2-dimensional
model are shown in Fig. 1.

2 3 4 1 2 3 4
5 6 7 8 8 7 6 5
9 10 11 12 9 10 11 12
13 14 15 16 16 15 14 13

(a) (b)

Fig. 1. (a) Row-major indexing
(b) Snake-like row-major indexing

A subset of M[(l..n)4] is called a region. The distance
between processor M[iv···· i4] and region S is defined by
min{dis((i1, ... , i4), Uv···,j4))1M[j1, ... ,j4] is in S} and
denoted by dis((iv ... , i4), S). A sequence
<(iw ... ,i14), ... , Ucv···• ic4)> is called a chain under index­
ing I if and only if <I(i11, .•• , i 14), .. , I(icl•···· icd)> is a
consecutive integer sequence in increasing order. For the
above chain its length is c-1. Processor M[iv···· i4] is
called a corner if and only if for each j (l::=;j ::=;d) i; is 1 or
n. For an integer i we denote integer n-i+l by !. If
M[iv···· i4] is a corner and k is a positive integer,
{M[iv···,j4Jldis((i11 ••. , i4),(iv···,j4))<k} is called a
corner region and denoted by CREG((iv···· i4), k). If Sis
a region, the cardinality of S is defined as the number of
processors in S and denoted by llSll. An ordered pair of
corner regions CREG((i1, ••. , i4), k1) and
CREG((!i,. .. , id), k2) is called a sweep. The first corner
region of the sweep is called the residing region and the
second one is called the stretching region. The length of
the sweep is defined to be d(n-l)+kck2•

3. The Chain Theorem

Sweeps play an important role in deriving time lower
bounds for sorting on the mesh-connected model. Our first
theorem gives a relation among the computing time, the
length of a sweep and the length of a chain.

Theorem 1 (Chain Theorem): For an indexing I on the
d-dimensional mesh-connected model and a sweep of
length T, if there is no chain in its residing region such
that its length is equal to the cardinality of the stretching
region, then there is no algorithm of time complexity less
than T for sorting n 4 items on the model into the order
specified by I.

Proof: Let (CREG((iv···• i4), k1), CREG((!i, ... , id), k2)) be
a sweep, where each i;(l::=;j::=;d) is 1 or n. Then the length
of the sweep is T=d(n-l)+kck2. Let S be the cardinal­
ity of the stretching region. Suppose that an algorithm of
time complexity T-1 is executed on the d-dimensional
mesh-connected model. The effect of the initial contents of
the stretching region to corner M[iv···· i4] does not
appear before ((n-l)d-k2+1)-st step of the computation.
Let a be the item in M[iv···· i4] immediately after the
((n-l)d-k2)-th step of the computation. The destination
of item a depends on the initial contents of the stretching
region. By assigning different initial values to the proces­
sors in the stretching region, we can force item a into S+l
different sorted positions. These different positions form a
chain of length S, and should be within the residing region
since the computing time is T-1. D

Kunde[3] has shown a time lower bound for sorting in
lexicographic order on the multi-dimensional mesh­
connected model. We first show how to use the Chain
Theorem by applying it to derive Kunde's lower bound.

Lemma 1: Let R={(iv ... , i4)1 for each j (l::=;j::=;d) i;
d

is a positive integer and E(i;-l)<k}. Then
·-1

k 4 /d!::=;llR ll::;(k+d-1)4 /d!, where l(R II is the cardinality
of R.

195

d-2

k-E•,
I

Proof: llR II = (
k+d-1) k k-•1

d , and J dx 1 J dx 2•••
0 ll-2

I
0

k+d-l k+d-l-z 1

llRll < J dx 1 J dx2···
0 0

k+d-1-E.,
1

I
0

k 4 /d! < llR II< (k+d-1)4 /d!. D

dx4 • Therefore,

Corollary 1: Let M[i11 ... , i 4] be a corner and V be the
cardinality of CREG((i1, ... , i4), k). If 1::;k::=;n,
k 4 /d!<V<(k+d-1) 4 /d!.

Theorem 2: A time lower bound for sorting n 4 items on
the d-dimensional mesh-connected model into lexico­
graphic order is (2d-l)n-f(d!n4- 1)114l-2d+2 steps.

Proof: Consider the sweep
(CREG\(1, n, ... , n), (d-l)n-d+2), CREG((n, 1, ... , 1),
f(d!nd-)1141)). The length of the sweep is
(2d-l}n-f (d!n 4- 1)114l-2d+2. From Corollary 1 the car­
dinality of the stretching region is greater than n 4- 1. The
length of the longest chain in the residing region is
n 4- 1-l. Therefore, from the Chain Theorem any algo­
rithm for sorting n 4 items on the model into lexicographic
order takes at least (2d-l)n - f(d!n 4- 1)114l - 2d + 2
steps. D

The above lower bound is also a lower bound for the
snake-like order.

4. A Poor Indexing Scheme

Kunde[4] has shown that within the leading term,
(2d-l)n steps are the asymptotically optimal computing
time for sorting n 4 items into snake-like order. We show
the existence of a poorer indexing scheme than the snake­
like indexing.

Theorem 3: There exists an indexing scheme such that
any algorithm for sorting n d items by the indexing scheme
on the d-dimensional mesh-connected model takes at least
2dn-2f(d!)114n1121-2d+l steps.

Proof: Let k=f(d!)114 n1121. Consider the sweep
(CREG((l, .. , 1), d(n-1)-k+l), CR~q((~12 .. , n), k)). The
length of the sweep is 2dn-2f(d!) I n ''l-2d+l. From
Corollary 1 the cardinality of the stretching region is not
smaller than f n 4121. We define an indexing scheme as fol­
lows: The first f n 4121 sorted positions are in the residing
region, the (f n 4121+1)-st sorted position is in the stretch­
ing region, the next r n 4121 sorted positions are in the
residing region, the (2f n 4121+2)-nd sorted position is in the
stretching region, and so on. Then the length of the long­
est chain in the residing region is f n 4121-L This length is
smaller than the cardinality of the stretching region.
Therefore, from the Chain Theorem this theorem holds.
D

5. Cardinality of Various Regions

In this section we describe how cardinalities of corner
regions, center regions and unions of co_rner regions are
evaluated. The union of k-corner regions on the d-
dimensional model is defined by

U CREG((iv . ., i4), k), and denoted by
(i 1, ... , id)E{l, n }d . .
UCREG(k, d). The r-center region of the d-d1mens1onal
model is denoted by CENT(r, d) and defined as follow~:
CENT(O, d) is the empty set. If n is even, CENT(l, d) is

{M[iv ... , id]I for each j (IS}Sd) i; is n/2 or n/2+1},
and otherwise CENT(l, d) is {M[r n/21, ... , r n/21]}. For
r:2::2 CENT(r, d)= {M[iv···i idJI dis((iv ... , id),
CENT(l, d))<r }.

Lemma 2: Let tnsk::;(t+l)n, OStSd-1. Then for each
(cv···i cd) in {1, n}d, the following inequalities hold:

kd (k-n)d (k-2n)d ... (-l)' (k-tn)d
d! (d-1)! + 2!(d-2)! + t!(d-t)!

<llCREG((cv ... , cd), k)ll

< (k+d-l)d (k-n+d-l)d +(k-2n+d-l)d
d! (d-1)! 2!(d-2)!

+(-l)' (k-tn+d-l)d
t!(d-t)!

Proof: Let us first evaluate the volume of a region on the
d-dimensional real space. Let R(k) be {(iv ... , id)I for
each j (lSjSd) i; is a positive real number, and

d
I;i;<k}, and let V(k) be {(iv···,id)I for each
j=l
j (lSjSd) i; is a positive real number not greater than

d
n, and :~ . .>;<k}. If S is a region on the d-dimensional

j=l
real space, the volume ?!2 S is denoted by llSll. Then

•-:Bx,
k k-x, l

llR(k)ll=Jdx1 J dx 2•·· J dxd=kd/d!, and
0 0 0

llV(k)ll<llCREG((cv···i ca), k)ll<llV(k+d-1)11. Let
{av ... , ad} be the set of properties on elements in
R(k), where a; is the property that the value of the i-th
coordinate is greater than n. Let R(a;, k) be the subre­
gion of R(k) having property a;, and let N(a;) be the
volume of R(a,, k). We also define R(a/, k) as the subre­
gion of R (k) not having property a; and N(a/) as the
volume of R(a/, k). Since an element in R(k) can have
more than one property, we also use the following nota­
tions: N(a; 1, ••• , a;,) is the volume of the subregion of R(k)

having properties a; 1, ••• , a;, and N(a;1
1, ••• , a;,') is the volume

of the subregion of R(k) not having properties a; 1, ••• , a;,·

Then llV(k)ll=N(a 11, ... , a/). From the principle of

inclusion and exclusion[8], llV(k)ll = llR(k)ll - I;N(a;,) +

I;N(a; 1, a;J I;N(a; 1, a;.z a;J + +
(-l)d N(av a2, ... , aa), where the sum of I;N(a; , ... ,a;)

1 I

is taken over all combinations of t properties. If kstn,
then all the terms after the t-th term in the right hand
side of the above formula are 0. By a simple integration

th . L 1 h N() (k-tn)d . as e one m emma , we ave a;, ... , a; 1f
l I d!

k>tn. Hence llV(k)ll = .E.!_ - (d)(k-n)d + (d)(k-2n)d
- d! 1 d! 2 d!

_ ... + (-l)t (~ (k-tn)d = .E.!_ _ (k-n)d + (k-2n)d
tJ d! d! (d-1)! 2!(d-2)!

- ··· + (-1)1 (k-tn)d where k2tn. Therefore the
t!(d-t)!'

lemma holds. D

We consider that each element in UCREG(k, d)
belongs to its nearest corner region. That is, we define
DCREG((cv ... , cd), k) to be the set
{M[i1, ... , id)ldis((cv ... , cd), Uv ... , id))<k and
for each j (lsjsd) lc;-i;lsln/2J-1}. If n is even,
UCREG(k, d) LJ DCREG((cv···i cd), k). If

(c,, ... , cd)E{l, n}d

n 1s odd, UCREG(k, d)
C LJ DCREG((cv···, cd), k).

(c 1, ... , cd)E{l, n}d

Lemma 3: If tln/2JSk::;(t+l)Ln/2J and ostsd-1, then

fill"._ (2k-n)d +(2k-2n)d ···+(-l)' (2k-tn)d
d! (d-1)! 2!(d-2)! t!(d-t)!

sllUCREG(k, d)ll
< (2(k+d-l))d (2(k+d-1)-n)d + (2(k+d-1)-2n)d
- d! (d-1)! 2!(d-2)!
+(-l)' (2(k+d-1)-tn)d.

t!(d-t)!
Lemma 4: If (d-t-l)tn/2JskS(d-t)Ln/2J and
o::;t::=;d-1, then

nd (dn-2k)d +((d-l)n-2k)d ((d-2)n-2k)d +··
d! (d-1)! 2!(d-2)!

+(-1)'+1 ((d-t)n -2k)d
t!(d-t)!

SllUCREG(k, d)ll
<nd (dn-2(k+d-l))d +((d-l)n-2(k+d-l))d
- d! (d-1)!

((d-2)n-2(k+d-I))d +··+(-l)t+l ((d-t)n-2(k+d-l))d
2!(d-2)! t!(d-t)!

The proofs of Lemmas 3 and 4 are similar to that of
Lemma 2[2]. The values of the formulae bounding
llUCREG(k, d)ll in Lemma 3 is exactly the same as the
values of the formulae in Lemma 4. If ksdn /4 then the
evaluation of llUCREG(k, d)ll by Lemma 3 is easier than
by Lemma 4, and otherwise the evaluation by Lemma 4 is
easier than by Lemma 3.

6. A Lower Bound for an Arbitrary Sorting Order

In this section we derive a time lower bound indepen­
dent of indexing schemes on the d-dimensional model.

Theorem 4: Let V=llUCREG(kv d)ll and

196

llCREG((I, ... , I), k2)ll:2::nd-rv/2l, where
1Sk1, k 2S(n-I)d+l. Then a lower bound for sorting nd
items by any indexing scheme on the d-dimensional mesh­
connected model is 2d(n-1)-k1-k2+1 steps.

Proof: We consider an arbitrary indexing I on the d­
dimensional mesh-connected model. There exists a position
(i.e., a processor) in UCREG(kv d) such that
rv12lsI(b)Snd-LV/2J+1 or LV/2JsI(b)snd-rv121+1.
Such a position b is in at least one corner region
CREG((i1, ... , id), k1). Without loss of generality we may
assume that b is in GREG((n , ... , n), k1). Consider the
sweep, (CREG((l, ... , 1), (n-l)d-k1+1),
CREG((n, ... , n), k 2)). Since b is outside of the residing
region, the length of the longest chain in the residing
region is at most nd-r V /21-1. Since the cardinality of
the stretching region is not less than nd -r V /21, from the
Chain Theorem a lower bound for sorting nd items by
indexing I on the model is 2d(n-1)-k1-k2+1 steps. D

Good time lower bounds for arbitrary sorting order
can be obtained from Theorem 4 by minimizing the value
of k 1+k2. Although it is difficult to give a general formula
of the maximized lower bound as a function of n and d,
we can numerically derive it for an arbitrary d.

Proposition 1: A time lower bound for sorting nd items
into an arbitrary order on the d-dimensional mesh­
connected model is L(d-0.5+(0.5)1fd)nJ-d steps.

Proof: Let k1 be ln/2J Then 2d corner regions
CREG((i 11 ... , id), k1) are mutually disjoint. From
Lemma 1 V=llUCREG(k1, d)ll is not less than lnd /d!j.
Let k2 be d(n-1)+1-l(l/2)114 nJ Then the cardinality of
corner region CREG((i1, ••. , i4), k2) is not less than
n"-r V /2l Hence, from Theorem 4, a lower bound for
sorting n 4 items by any indexing scheme on the d­
dimensional mesh-connected model 1s
l(d-0.5+(0.5)114)nJ-d steps. D

Since we are mainly interested in asymptotic lower
bounds, we hereafter omit minor terms, ceilings and floors
in formulae of lower bounds.

From Lemma 3
V=llUCREG(n, d)ll~((2n)4 -dnd)/d!. If the cardinality
of GREG((i 11 ..• , id), r) is not less than nd-V /2, from
Theorem 4 a lower bound for sorting nd items on the d­
dimensional model is (2d-l)n-r steps. In this case there
exists such r in the range between (d-l)n and (d-2)n.
Let r=(d-1-t)n, where o<t<I. Then
llCREG((i 11 ••. , i4), r)ll~n 4 -V/2 if and only if
(I+t)4 -dtd g24-d)/2. Let t +1=((24-d)/2)1/d. Then
llCREG(i 11 •.. , i4), r)ll~n 4 -V/2. Therefore,
(((2 4 -d)/2)1fd+d-l)n is a time lower bound for sorting

nd items on the model. Hence we have the next proposi­
tion.

Proposition 2: A time lower bound for sorting nd items
into an arbitrary order on the d-dimensional mesh­
connected model is (((2d-d)/2)114 +d-l)n steps.

Time lower bounds given by Proposition 2 are listed
in Table 1. These lower bounds are not the best ones
obtainable from Theorem 4.

d
2
3
4
5
6
7
8

time lower bound
2.0000n
3.3572n
4.5650n
5.6829n
6.7528n
7.7969n
8.8267n

Table 1: Asymptotic
lower bounds obtained
by Proposition 2.

For d=2 we choose k1=(1-\/6/6)n
k2=(2-\!6/3)n. Then llCREG(i11 ••. , id), k2)11
n2-llUCREG(k11 d)ll/2. Therefore, from Theorem
4n-kck2~2.2247n is a time lower bound[l].

and

~
4,

Theorem 5: An asymptotic time lower bound for sorting
n 2 items into any sorting order on the 2-dimensional
mesh-connected model is (1+\/6/2)n~2.2247n steps.

For d=3, let k1=0.87n and k2=1.7294n; for d=4, let
k1=1.12n and k2=2.2667n; for d=5, let k1=1.395n and
k2=2.7893n. From Theorem 4 we have the following
theorems.

Theorem 6: An asymptotic time lower bound for sorting
n3 items into any sorting order on the 3-dimensional
mesh-connected model is 3.4086n steps.

Theorem 7: An asymptotic time lower bound for sorting
n4 items into any sorting order on the 4-dimensional
mesh-connected model is 4.6133n steps.

Theorem 8: An asymptotic time lower bound for sorting
n5 items into any sorting order on the 5-dimensional
mesh-connected model is 5.8207 n steps.

197

Lower bounds listed in Theorems 6, 7, 8 are the best
ones obtainable from Theorem 4. The proofs of these
theorems are given in [2]. For each d we can derive a
time lower bound better than the lower bound given in
Table 1.

7. Concluding Remarks

The question whether there exists a sorting algorithm
with less than (2d-l)n time for some indexing scheme still
remains open. The snake-like row-major order and its
trivial variations are only the known indexing schemes for

which optimal sorting algorithms within the leading term
have been found. We are interested in finding optimal
sorting algorithms for other indexing schemes on the
multi-dimensional mesh-connected model.

References

[1]. Y. Han and Y. Igarashi, Time lower bounds for sorting on
a mesh-connected processor array, 1988 Proceedings of
Aegean Workshop on Computing, (Lecture Notes in Com­
puter Science, Springer).

[2]. Y. Han and Y. Igarashi, Time lower bounds for parallel
sorting on a multidimensional mesh-connected processor
arrays, TR No. 107-88. Dept. Comput.' Sci., Univ. of
Kentucky-Lexington(Jan. 1988).

[3]. M. Kunde, Lower bounds for sorting on mesh-connected
architectures, Acta Informatica, 24(1987), pp. 121-130.

[4]. M. Kunde, Optimal sorting on multi-dimensionally mesh­
connected computers, 4th Symp. on Theoretical Aspects of
Computer Science, LNCS 247 Springer, 1987, pp. 408-419.

[5]. H.-W. Lang, M. Schimmler, H. Schmech and H. Schroder,
Systolic sorting on a mesh-connected network, IEEE
Trans. Comput., C-34(1985), pp. 652-658.

[6]. Y. Ma, S. Sen and I.D. Scherson, The distance bound for
sorting on mesh-connected processor arrays is tight, 27th
Symp. on Foundations of Comput. Sci., IEEE, 1986, pp.
255-263.

[7].

[8].

[9].

[10].

D. Nassimi and S. Sahni, Bitonic sort on a mesh-connected
parallel computer, IEEE Trans. Comput., C-27(1979), pp.
2-7.

F.S. Roberts, Applied Combinatorics, Prentice-Hall, Engle­
wood Cliffs, 1984.

K. Sado and Y. Igarashi, A divide-and-conquer method of
the parallel sort, IECE of Japan, Tech. Commit. of Auto­
mat_a and Languages, AL84-68, pp. 41-50(1985).

K. Sado and Y. Igarashi, Fast parallel sorting on a mesh­
connected processor array, Proc. of Japan-U.S. Joint Sem-
inar, Discrete Algorithms and Complexity Theory(Johnson,
D.S. et al. eds), Academic Press, New York, 1986, pp. 161-
183.

[11]. K. Sado and Y. Igarashi, Some parallel sorts on a mesh­
connected processor array, J. Parallel and Distributed
Computing, Vol. 3(1986), pp. 389-410.

[12]. I.D. Scherson, S. Sen and A. Shamir, A true two­
dimensional sorting technique for VLSI networks, Proc.
1986 Int. Conf. on Parallel Processing, 1986, pp. 903-908.

[13]. C.P. Schnorr and A. Shamir, An optimal sorting algorithm
for mesh-connected computers, Proc. 18-th ACM Symp. on
Theory of Computing, 1986, pp. 255-263.

[14]. C.D. Thompson and H.T. Kung, Sorting on a mesh­
connected parallel computer, Commun. ACM, 20(1977),
pp. 263-271.

Accounting for Parallel Tree Search Overheads

E. Altmann; T.A. Marsland, T. Breitkreutz

Computing Science Department
University of Alberta
Edmonton, Alberta
Canada T6G 2Hl

Abstract

Loosely coupled parallel systems are an appealing architecture for in­
creased computing power, because of the comparative simplicity of co­
ordinating individual networked processors to work on a single problem.
However, the appeal of such systems for many search problems is off­
set by their marked failure to achieve linear speedup as the degree of
parallelism grows.

Here, the overheads (losses) that result in sub-linear speedup for search
are examined in light of the vertex cover problem. Although this task is
less complicated than other combinatorial search problems, such as chess,
it exhibits similar overheads when solved using loosely coupled parallel
systems. Such overheads arise because pruning causes the search trees
to become skewed, which in tum makes it difficult to schedule work to
keep all processors productive.

The combined overheads comprise solution time overrun, the amount
by which a solution time is slower than linear speedup. We present
and discuss experimental data in an attempt to account for solution time
overrun and communication and synchronization losses, as they occur in
loosely coupled parallel search.

Acknowledgements. Financial support from the Canadian Natural
Sciences and Engineering Research Council through Grant A7902 made
the experimental work possible.

1 Introduction

Using a loosely coupled network of processors is a simple way to in­
crease the processing power available to an application. This simplicity
is appealing, especially given the increasing number of computing facili­
ties that feature netwmked workstations. Any such facility is a candidate
for becoming a loosely coupled parallel system, with the addition of soft­
ware to control processor communication and scheduling. Thus loosely
coupled parallel systems have the potential to be a comparatively simple,
low-cost answer to the demand for increased computing power.

However, for important problems such as game tree search, such sys­
tems can exhibit heavy computational overheads that undermine their
efficiency and limit their effective speed. Our primary motivation for
this study was the investigation of a particular type of overhead, termed
synchronization loss (defined in Section 2), which can severely impair
the performance of computer chess programs. Control of this overhead
is made especially difficult in the chess case by the ccmplexity of the
program itself and the difficulty in subdividing the work into smaller
chunks that can be distributed equitably across all processors. Therefore
we sought a simpler application whose parallel implementation exhibited
a similar serious synchronization overhead. We chose the vertex cover
problem, which may be stated as follows: Given an undirected graph,
find the smallest set of vertices such that every edge in the graph is
incident to at least one vertex in the set [5].

2 Types of Overheads

Overheads in loosely coupled parallel search fall into three broad cat­
egories:

*Prei::ent address: Computer Science Department, Carnegie Mellon University, Pitts­
burgh PA, 15213-3890.

198

I. Communication overhead, in which processors wait while they ex­
change information that may improve their efficiency. Typically this
exchange involves updating or retrieving data from a global shared
table, or sending and receiving messages.

2. Search overhead, in which more nodes are searched in the parallel
implementation than in a sequential one. One form of search over­
head occurs when processors unwittingly do redundant calculations.
Because work is not being done in the strictly sequential style of a
single processor, information must be shared if processors are to de­
tect and avoid the duplication of work; redundant calculations arise
when information that should be shared does not arrive in time to
prevent the initiation of extra work. Another form of search over­
head occurs when work is deliberately assigned to processors on a
speculative basis, in the absence of anything better for them to do.
Here duplicated or unnecessary effort is a direct trade-off against
idleness.

3. Synchronization overhead, in which processors become idle after
completing their assigned work, and cannot continue until some
(even all) others finish completely. Clearly, if processors are idle
due to poor synchronization, then overall speed of the system is far
less than optimal.

Normally there is a trade-off between communication, search, and syn­
chronization overheads. For example, if speculative computing is em­
ployed to reduce synchronization loss, there will normally be some in­
crease in search overhead, and perhaps also extra communication.

3 Effective Power of Parallel Solutions

The power of parallel solutions is often demonstrated via the solution of
classical combinatorial problems [13]. Especially popular is the traveling
salesman problem, since all combinations might have to be searched and
hence nearly linear speedup is possible [9]. Almost all combinatorial
search problems are well-suited to a multiprocessor solution, provided
that most work is independent (i.e., negligible data sharing is needed and
subproblems can be solved in any order). In the ideal case, subproblems
are also predictable in size, allowing nearly perfect processor scheduling.

If search tree pruning techniques are used in a sequential solution,
then in parallel adaptations of that solution processors must share infor­
mation that leads to cutoffs. Information-sharing entails communication
cost. More importantly, pruning in a parallel solution introduces syn­
chronization overhead because it renders the size of a chunk of work
unpredictable. Thus pruning, while improving sequential solutions, con­
tributes to overheads in parallel solutions, making ideal (linear) speedup
over the best available sequential solution difficult to achieve.

The effective power of a parallel solution may be overestimated if
the uniprocessor solution against which it is compared is not the fastest
available. Consider sequential minimax search of a uniform tree (i.e.,
exhaustive search of a decision tree of fixed depth and constant branching
factor). Simple tree-splitting will yield close to ideal speedups. There
is no pruning, so there is no need for communication, and subproblems
are of uniform size. However, in current parallel implementations of the
u - /3 pruning algorithm [10], tree-splitting clearly fails to achieve linear
speedup.

Given that pruning effects are equally desirable in a parallel solution,
methods must be devised to control the overheads that stem from them.

One such method is to dynamically reconfigure communication paths so
that idle processors can be assigned to those that are still busy [12].
An alternative that is appealing for the relative simplicity of its control
structure is to tailor a static processor configuration to the application at
hand.

4 Parallel Solutions to Vertex Cover

A multiprocessor solution to vertex cover was one of several potential
applications for the MANIP architecture proposed by Wah and Ma [14].
A follow-up study by Zariffa [15] used a 7 processor system to gain
working experience with some pragmatic aspects of multicomputer sys­
tems. Sufficient implementation details were provided in that study for
us to replicate its experiments, and thereby compare computer systems
and processor configurations. This paper presents data gathered in the
course of our replication.

In the original experiments, 15 graphs were searched with 2, 4, and
7 processors, statically configured, and scheduled using three different
schemes. Of the scheduling methods, dynamic first level (djf) proved
the most effective, and is the method on which our study is based. Dj/
assigns a first-level tree node to each processor, then dynamically assigns
the remaining ones on a first-come, first-serve basis.

The original search algorithm prunes branches whose solutions cannot
better the best found so far, and therefore builds trees similar to chess
trees in that they are somewhat skewed to the left. We devised a faster
algorithm that builds smaller and highly skewed trees [l], but used the
original one in our experiments to allow comparison of results. The
existence of this faster sequential algorithm implies that our speedups
do not necessarily reflect the effective power of parallel vertex cover
solutions.

We note that Zariffa 's data on the occurrence of acceleration anoma­
lies [6,4] is inconsistent. In our own experiments acceleration anomalies
were not observed, although they do occur in game trees [8].

5 Implementation Details

In this section we present implementation factors that bear on the anal­
ysis that follows in Section 6.

5.1 Non-homogeneous Processor Systems

The hardware in Zariffa 's system consisted of Data General Nova 4s
and one Nova 3. The system was non-homogeneous, the Nova 3 being
roughly 10 percent faster than the others. However, because the Nova 3
provided disk access for the system, it participated in all experiments.

Our system had an analogous feature: six Motorola 68010s, running
with limited operating system support, were roughly 20 percent faster
than the seventh, which was identical but ran under UNIX1 and pro­
vided full multitasking. The UNIX-based processor (named sunshine)
was also the only one that provided disk access for the system. To re­
duce operating system overhead to a minimum, the kernel of the other
processors (referred to as standalones) supported Ethernet access as the
only I/0 function, and did not support multiple application processes.
Sunshine necessarily participated in all the experiments, but usually only
as a master data gatherer.

5.2 Processor Configurations

The topology of communication paths in our system (henceforth the
processor configuration) was different than that in the original work,
where constraints imposed by the hardware dictated that a particular ring
configuration was the simplest and most effective.

In this form of ring, a record of control information, such as a list of
completed chunks of work, is maintained by each processor. When the
record changes, as upon the selection of a new chunk by a processor,
the updated record is passed around the ring. Because P copies of the
control information are maintained, updating the information requires that

1 UNIX is a registered trademark of Bell Laboratories.

199

a packet travel P - I successive hops before the update is complete. In the
original experiments, an update was delayed at least 10 milliseconds (ms)
before reaching the last processor. Thus it was possible for two nodes to
claim the same chunk of new work within the period of communication
latency, since they used their own copy of the control information when
looking for work [15].

A broadcast bus (Ethernet) and our Virtual Tree Machine (VTM) [11]
allowed us greater flexibility in designing a processor configuration. We
used a single-level process tree, in which slave processes executed the
search, and spoke only with a master process. (Although arbitrary and
dynamic configurations are possible with the VTM, such static processor
trees remain the most common [II].) The slave processes resided on the
standalones, and the master, responsible for file I/0, resided on sunshine.
The master also coordinated the search, maintaining the unique copy of
the control record. The advantages of such a configuration are twofold:

I. Faster broadcasting of updates. Although information must still
travel P hops for an update (1 slave-to-master message and P - 1
master-to-slave messages), the processor configuration imposes no
sequential ordering on messages. The master queues all outgoing
messages in a tight loop, without waiting for any particular one to be
sent. Thus the P - 1 messages are broadcast nearly simultaneously.

2. No possibility of duplicating a chunk of work. All reads and writes
of search control information are executed sequentially on a single
copy of the record, so the information is always consistent.

A master/slave configuration can be susceptible to message-processing
bottlenecks in the master, particularly at higher degrees of paral­
lelism [15]. Our systems did not exhibit significant communication over­
head, implying that such a bottleneck is not a factor up to parallelism of
degree 7 [l].

Another issue that arises from employing a master process is the se­
lection of a physical processor on which to place it. In our system the
master, requiring file I/0 capability, had to reside on sunshine for all
experiments. Each slave process was assigned to its own standalone pro­
cessor in our 2 and 4 processor systems. However, because of limited
hardware availability when our experimental work began, it was initially
convenient to allow sunshine to host both the master and a slave for the 7
processor experiments. Later the effects of a doubled versus an indepen­
dent master were explored, using a seventh (newly acquired) standalone
processor; the results are presented in Section 6.2.

5.3 Message Passing Operations

Three message passing operations occur in our systems: polls, sends,
and receives. Sends and receives copy information into and out of system
buffers, respectively, taking small and constant amounts of time. Polls
are of two sorts, non-blocking and blocking. Non-blocking polls are used
by slaves to check for new bounds before node expansion, and so take
small and bounded time.

Immediately after a slave sends results to the master, it issues a blocking
poll so that it can wait for new work. The interval spanned by this poll
incorporates the time for the results to reach the master, the time for the
master to process them and build a new piece of work, and the time for
the new work to reach the slave's system buffer. Thus the polling interval
embodies all time spent in communication between processes during the
search, as well as time spent waiting for work.

6 Identifying Overheads

Our averaged speedup figures show the declining effectiveness of addi­
tional processors as the degree of parallelism is increased. For the graphs
in our test set the speedups were as follows: 1.81 for 2 processors, 3.26
for 4 processors, and 4.69 for 7 processors. In this section we identify
and quantify the overheads that limited the performance of our parallel
systems.

We note that a positive correlation between problem size and speedup
was discovered, which indicates that experiments with larger graphs
might yield different figures. We have addressed the generation of large

graphs having specified statistical properties, and have explored a variety
of binary-tree processor configurations for solving vertex cover [2].

6.1 Estimating Communication Overhead
Data that measures idle time per processor suffices to quantify commu­

nication overhead. In the 4 processor case slaves ran as the only process
on their respective machines, while in the 7 processor case the master
process and one slave were doubled up. Our prediction that the doubled­
up processor would be capable of less work as a slave is borne out by
lower-than-average node counts (counts of nodes searched) [l].

The salient feature in the 4 processor data agrees well with intuitive
prediction. For each problem at least one processor has effectively 0 idle
time relative to solution time. (Solution times for 4 processors appear
in the Elapsed column of Table 2. Idle times were between 30 and 40
ms, with once exception of 118 ms.) Since the calculation of idle time
includes time spent on communication, the communication loss for that
processor is also effectively zero. If we assume that total communication
overhead is equally distributed across processors, it follows that com­
munication overhead is negligible for all processors. This assumption
is intuitively rational, there being no apparent reason to suspect that the
"busy" processor is biased toward a lesser degree of communication.

The 7 processor data exhibits an interesting anomaly in the elapsed
times of the last processor to finish. When the doubled-up processor
is last to finish, it usually has an idle time of exactly 0. Each of the
other processors, when last to finish, has an idle time in the range 76
to 196 ms, a roughly constant discrepancy from the range of minimum
times found in the 4 processor data. This noise may be an effect of the
doubling-up of master and slave, a factor for which control was lacking.
We subsequently investigated the effects of doubling-up, and present a
discussion of the results in Section 6.2.

Two other aspects of the 7 processor data bear mention. First, the noise
in the idle-time data reinforces the need to experiment with sufficiently
large problem instances, so that solution times overwhelm small and con­
stant overheads that are difficult to identify. Second, there are examples
where several processors have long idle times (on the order of 30% of
the total running time), highlighting the inefficiency of dft scheduling.

6.2 Placement of Master Process
In Table 1 we present data on the effect of doubling a master and a slave

on one machine. For this experiment five of the computationally more
expensive problems were chosen, and a seventh standalone processor
was used for the 7 processor independent master tests. Solution times
with an independent master appear in the Master Alone columns, and the
increases in solution time when the master was doubled up appear in the
Master Doubled columns.

limes (seconds)
2 Processors 4 Processors 7 Processors

Prob. Master Master Master Master Master Master
Alone Doubled Alone Doubled Alone Doubled
11 288.64 +48.99 158.59 +17.91 106.32 -1.56
12 188.60 +25.52 109.39 +12.39 75.00 -0.06
13 251.36 +35.01 127.61 +14.11 86.33 +10.78
14 310.72 +45.86 163.50 +33.71 107.56 +4.30
15 226.05 +51.60 128.94 +2.93 76.61 +4.95
av. 253.07 +41.40 137.61 +16.21 90.36 +3.68

Table 1: Timing Effects of Doubling Master and Slave

The data shows that for 2, and 4 processor systems an independent
master increases performance by a non-trivial amount. However, with
7 processors an independent master led to some slower solution times
(Problems 11 and 12). For these instances the increase in processing
power was small enough to be oftSet by random, detrimental changes
in the order of work allocation. Our conclusion is that, as the degree
of parallelism increases, the benefit from an independent master tends to
zero.

200

We infer that having one slightly faster processor will have just as little
effect with 7 or more processors as having a slightly slower one. This
justifies a direct comparison [l] between our 7 processor system and the
one used in the original study. On the other hand, in the 4 processor case
our solution times may overestimate the power of our system, since the
master resided on an independent fifth processor. The general conclusion
drawn from the data is that the greater the degree of parallelism, the less
significant the effect of having a processor of different capability.

6.3 Estimating Synchronization Overhead
Table 2 compares solution time Overrun with estimates of synchro­

nization loss for the 4 processor case. The estimates, which appear in
the Clocking and Node Counts columns, are derived from two different
measurement methods. Solution times appear in the Elapsed column.

Overrun is simply Elapsed-Linear Speedup, where Linear Speedup is
the sequential solution time divided by the number of processors. Thus
overrun quantifies the difference between the effective and the ideal power
of a parallel solution. ·

The Clocking method of estimating synchronization loss is just the
sum of clocked polling intervals over all slaves, divided by the number
of slaves. The results appear in the Average Idle column under Clocking.

The Node Counts method is slightly more complex. A cost per node
value is derived for a given search tree, by dividing the largest of the
processor node counts into the solution time. The working time for each
processor is computed as cost per node x node count, where node count
is for that processor. The idle time for each processor is then Elapsed -
working time. The average of these times appears in the Average Idle
column under Node Counts.

Times (seconds) Synch. Loss Estimators
Clocking Node Counts

Pr. Linear Av. Error Av. Error
Elapsed Speedup Overrun Idle (%) Idle (%)
1 8.47 5.79 2.69 2.28 15.2 1.02 62.2
2 9.35 5.82 3.53 1.83 48.2 1.68 52.3
3 24.63 13.19 11.44 8.05 29.6 7.94 30.6
4 37.56 33.44 4.12 4.57 -10.7 4.32 -4.9
5 10.74 8.45 2.29 1.33 41.9 0.97 57.8
6 11.26 8.98 2.28 1.64 28.1 1.41 38.3
7 22.02 17.14 4.88 3.87 20.9 3.47 28.9
8 22.86 19.34 3.52 3.56 -1.1 3.20 9.1
9 90.75 64.63 26.13 17.43 33.3 18.15 30.5
10 29.78 21.59 8.19 5.90 28.0 5.51 32.7
11 158.59 135.19 23.40 17.47 25.3 17.05 27.2
12 109.39 81.75 27.64 18.66 32.5 18.87 31.7
13 127.61 114.20 13.41 10.50 21.7 9.89 26.3
14 163.50 142.40 21.10 13.52 36.0 13.49 36.1
15 128.94 106.74 22.20 11.14 49.8 10.96 50.6
av. 63.69 51.91 11.78 8.12 31.1 7.86 33.3

Table 2: Synchronization Overhead Estimates for 4 Processors

We interpret the data in Table 2 with the following reasoning:

1. Communication overhead is negligible, as found in Section 6.1.
Since Clocking embodies only communication and synchronization
losses, it accurately measures the latter. Now, comparing Average
Idle columns in Table 2, the two measurement methods correlate
well, especially for larger problems. Thus the Node Counts method
is also accurate as a measure of synchronization loss.

2. Cost per node has the same expected value for all regions of the
search tree, given the correctness of Node Counts. If this were
not so, then some regions would be more expensive to search than
others, and Node Counts would not generate average idle times that
consistently agree with Clocking. Moreover, clocked working times
per processor correlate well with node counts per processor [l],
showing that cost per node is uniform over subtrees.

3. Poor speedups cannot be blamed on a higher distribution of expen­
sive nodes in a parallel search tree, given a uniform cost per node.
Therefore, sub-linear speedup, and hence overrun, are directly linked
to lost potential in the parallel solution. More specifically, overrun
is linked to synchronization loss, since communication and search
overheads are negligible [I].

Our reasoning derives the conclusion that each of Clocking, Node
Counts, and Overrun accurately measure synchronization loss. Unfor­
tunately, although the two former methods correlate well, there is a non­
trivial discrepancy when they are compared to the latter. The discrepan­
cies are presented as percentages of Overrun in Table 2.

This inconsistency between arguably valid results is a matter for fur­
ther investigation, pointing to the more general difficulty of determining
the exact cause of reduced effective power in parallel solutions. Over­
heads other than communication, search, and synchronization might be
involved. It is also possible that a systematic variation in cost per node,
not manifested in our data, causes parallel search tree nodes to be more
expensive than sequential ones on average.

One hypothesis was that losses due to additional startup costs in a
parallel solution must be factored into the analysis. However, such over­
heads are invariant over problems, and the discrepancy between methods
is proportional to Overrun, so the category of constant overheads was
ruled out as a possible explanation.

6.4 Variance in Solution Times

In order to be certain that there was no significant variance in solution
times under different Ethernet traffic, we solved one particular problem
ten successive times [l]. There is a slight variation in node counts be­
tween runs, confirming the evidence of the 7 processor data in Table 1,
namely that parallel search can be affected by small changes in the tim­
ing of inter-processor communication. However, the differences are not
significant, and we conclude that variance in solution times was not a
factor in our experiments.

7 Summary and Conclusions

Our goal in this study was to identify and quantify overheads that re­
duce the effective power of loosely coupled parallel systems. We chose
vertex cover as a problem simpler than chess, but whose parallel solu­
tions suffer comparable synchronization losses [8]. Given the analogy,
we expect that insights that help to characterize overheads will transfer
between the two problems.

Through replicating a previous study [15], we were able to compare
two hardware and software systems, and assess how their differences
influenced solution speed and choice of processor configuration. The
greater speed of our systems identified a need to experiment with bigger
problem instances, so that data is not affected by small and random vari­
ances introduced through parallelism. Using a single-level process tree
led us to assess where best to place the master process, and to the conclu­
sion that adding a non-standard processor to an otherwise homogeneous
set has decreasing effect as the degree of parallelism increases.

In implementing the original search algorithm, we devised a faster
algorithm that searches highly skewed trees [l]. The existence of this
faster algorithm makes it clear that the effective power of a parallel
solution can only be assessed relative to the fastest sequential solution
available. Design of processor configurations to effectively search highly
skewed trees in parallel has been undertaken [2].

Our experiments with the original search and processor scheduling al­
gorithms showed negligible effects from search and communication over­
head, isolating synchronization overhead as the detrimental factor. Esti­
mates were computed using three empirical methods, only two of which
converged to similar numbers. The discrepancy between the Overrun
method and the Clocking and Node Count methods is a matter for fur­
ther research, and highlights the difficulty of accurately identifying and
quantifying overheads.

Once the source of losses in loosely coupled systems is clearly iden­
tified, analysis can be extended to processor scheduling methods more

201

complex than dfl. One such method currently under study is the dy­
namic re-allocation of processors when they become idle, either on a
buddy basis or by stopping a given subtree search and re-starting with
more processors [3]. Another approach employs speculative computing,
in which newly idle processors continue with the next phase of their
work, after assuming that the outcome of searches underway on other
processors will not affect their work choice [10].

References

[l] E. Altmann, T. Breitkreutz, and T.A. Marsland, "Overheads in
Loosely Coupled Parallel Search," TR87-15, Computing Science
Department, University of Alberta, pp. 1-27, Edmonton, July 1987.

[2] T. Breitkreutz, T.A. Marsland, and E. Altmann, "Parallel Search of
Skewed Trees," TR87-16, Computing Science Department, Univer­
sity of Alberta, pp. 1-27, Edmonton, August 1987.

[3] R. Hyatt, "Parallel Search with Cray Blitz," presented at ACM/IEEE
FJCC Computer Chess Workshop, p. abstract, Dallas, October 1987.

[4] Ten-Hwang Lai and Sartaj Sahni, "Anomalies of Parallel Branch­
aud-Bound Algorithms," Communications of the ACM, pp. 594-602,
June 1984.

[5] Eugene L. Lawler, "Covering Problems: Duality Relations and a
New Metl1od of Solution," SIAM Journal on Applied Mathematics,
pp. 1115-1132, September 1966.

[6] Guo-jie Li and Benjamin W. Wah, "Coping with Anomalies in Par­
allel Branch-and-Bound Algorithms," IEEE Transactions on Com­
puters, pp. 568-573, June 1986.

[7] T.A. Marsland, M. Olafsson, and J. Schaeffer, "Multiprocessor Tree­
Searching Experiments," pp. 37-51, 1985.

[8] T.A. Marsland and F. Popowich, "Parallel Game-Tree Search," IEEE
Transactions on PAM!, pp. 442-452, July 1985.

[9] J. Mohan, "A Study of Parallel Computation - The Traveling Sales­
man Problem," TR CMU-CS-82-136, Computer Science Depart­
ment, Carnegie Mellon University, Pittsburgh, August 1982.

[10] M. Newborn, "Unsynchronised Iteratively Deepening Parallel
Alpha-Beta Search," IEEE Transactions on PAM!, 1988.

[11] M. Olafsson and T.A. Marsland, "A Unix Based Virtual Tree Ma­
chine," CIPS'85 Congress Proceedings., pp. 176-181, Montreal,
June 1985.

[12] Jonathan Schaeffer, "Improved Parallel Alpha-Beta Search,"
ACM/IEEE FJCC Proceedings, pp. 519-527, Dallas, 1986.

[13] Benjamin W. Wah, Guo-jie Li, and Chi Fen Yu, "Multiprocessing
of Combinatorial Search Problems," IEEE Computer, pp. 93-108,
June 1985.

[14] Benjamin W. Wah and Y. W. Eva Ma, "MANIP - A Multicomputer
Architecture for Solving Combinatorial Extremum-Search Prob­
lems," IEEE Transactions on Computers, pp. 377-390, May 1984.

[15] N. Zariffa, "Implementation and Analysis of Three Parallel Branch­
aud-Bound Algorithms for the Vertex Covering Problem," M.Sc.
Thesis, School of Computer Science, McGill University, pp. 1-96,
Montreal, March 1986.

SORTING WITH LINEAR SPEEDUP ON A VLSI NETWORK

Peter Varman Kshitij Doshi

Electrical and Computer Engineering
Rice University

Houston, Texas 77251-1892.

Abstract

This paper presents a parallel algorithm to sort n data items on an
architecture consisting of p processor-memory-switch modules intercon­
nected in the topology of a binary cube. The switches form a pipelined,
packet switched interconnection network that is used to route data
between the processors. The time complexity, including both communi­
cation and computation costs is 0(n log n Ip + log2p), yielding linear
speedupforallp, 1 Sp Sn/log n.

1. Introduction

Sorting is a fundamental computational problem that has been
investigated for several decades. Several parallel sorting algorithms that
achieved poly logarithmic execution times and linear speedups on the
idealized parallel random access machine model (e.g
(3,5,7,8,11,16,17,21]) have been discovered. Efficient sorting on network
and VLSI computational models are described in [l,4,6,13,14,18,20]. A
coarse-grained parallel sorting algorithm for a (non-pipelined) hypercube
[9] achieves linear speedup only for for l Sp S log n. The reader is
referred to [2, 10] for several sorting methods, and for further references.

In this paper we present a coarse-grained parallel sorting algorithm
that can be mapped onto a pipelined hypercube architecture of p PEs.
The latter is one of a class of parallel architectures referred to as ensemble
architectures [19]. These represent a cost-effective means of implement­
ing parallel systems and are rapidly becoming available commercially.
Our sorting algorithm requires O(n log n Ip + log2 p) time, including
both computation and communication costs, and thereby achieves linear
speedup for all p, l Sp S n !log n.

The rest of the paper is organized as follows. In Section 2, the pipe­
lined hypercube architecture is described. Section 2.1 introduces com­
munication graphs (CGs) and formalizes their relation to routing on the
pipelined hypercube. In section 2.2 we show that communication traffic
patterns arising in the sorting algorithm can be mapped onto the hyper­
cube, to achieve conflict-free routing. Section 3 describes the sorting
algorithm and its implementation on the pipelined hypercube.

2. Architectural Model

A pipelined hypercube network consists of p = 2k nodes, k ~ 0,
indexed from 0 to 2k - l, and connected in the topology of a binary cube
of dimension k; i.e nodes i and j are connected, whenever the binary
representations of i and j differ in exactly one bit. Figure l(a) shows a
binary cube for p = 8.

In the following h-1i0 ... i1io denotes the binary representation of
integer i, 0 s i s 2k -1, and i; denotes the integer whose binary represen­
tation differs from that of i in the bit numbered j . Each node in the
binary cube is a processor-memory-switch (PMS) module. PMS[i] con­
sists of a processor-memory module (denoted by PE[i]), and k switch
boxes, (0, i), (1, i), ... , (k-1, i), one for each dimension. PE[i] is con­
nected by a shared bus to the switches in its module. Each switch (I, i),
0 S l S k - 2, is connected by a bidirectional, full-duplex intra-module
link to switch (/ + l, i). Inter-module links connect switches in different
PMS modules. Formally, for each pair of nodes, i and i;, that are con­
nected in the binary cube, thE?re is a bidirectional, full-duplex link between
switch (I, i) and switch (/, i1). Figure l (b) shows a PMS module for a
three-dimensional cube.

The switches form a synchronous, pipelined packet-switched net­
work that is used to transfer blocks of data between the PMS modules.
Three types of communication traffic that arise in the sorting algorithm
must be supported by the network. These will be referred to as forward
routing, reverse routing and cube routing respectively. We now describe
the functional requirements of the switches for each type of routing.

A cycle of a switch consists of an odd phase and an even phase:- '
The odd phase consists of data transfer between switches in the same
PMS module along intra-module links; in the even phase data is
transferred between different modules using inter-module links. In for­
ward routing; communication during the odd phase is from switch (I, i) to
(l+l, i), while for reverse routing it is from (I, i) to (/-1, i). On receiv­
ing a packet, switch (I, i) decodes the destination address associated with
the packet, and buffers it for l!__ansmission on either the intra-module link
or the inter-module link to (I, i 1) as appropriate. If the packet is buffered
for transmission on the intra-module link, the packet will be transferred to
the switch (I + l, i) (or (l - l, i)) in .!_he odd phase of the next cycle. Oth­
erwise, it will be transferred to (I, i 1) in the even phase of the current
cycle.

Cube routing is employed to emulate the point-to-point connections
of a binary cube. We require at most one switch to send (or receive) a
packet to (from) the PE in its PMS module in the same cycle. Thus a
shared bus between a PE and the switches in its module represents an ade­
quate connection.

In the next section, a formal graph-theoretic model of the intercon­
nection network is presented, and communication traffic patterns that
arise in the sorting algorithm are proved to be conflict free.

2.1. Communication Graphs

A CG (communication graph) is a directed graph whose nodes
represent switches and whose edges represent unidirectional communica­
tion links between the switches. Nodes with no incoming (outgoing)
edges will be called sources (sinks). We define two CGs, F and R, on
which the required traffic patterns are proved to be conflict free. We then
show that a conflict-free set of routes in either F or R corresponds to
conflict free routing on the pipelined hypercube.

Both F and R have p (k + 1) nodes arranged in k+l levels, with
p = 2k nodes at each level. A node is denoted by (l, i), where I is the
level number, 0 SI S k, and i is the index of the node within the level,
OS i Sp - l. In F, a node (I, i) _!t level I, 0 SI S k-1 is connected to
the two nodes (I+ l, i) and (I+ l, i1), by edges directed from the former
into the latter. In R, a node (I, i), 0 s I s k - l, is connected to the two
nodes (l+l, i) and (/+l, ft-1-1). F will be referred to as the forward net­
work and R will be referred to as the reverse network. (See figure 2.)

202

A switch at level I, 0 s I s k, examines a bit of the address associ­
ated with a packet, and passes it at the next cycle to a switch at level
I + l. We describe two routing operations that the switches support,
namely least significant bit (LSB) routing and most significant bit (MSB)
routing. The switches in F employ LSB routing while those in R employ
MSB routing.

In LSB routing, node (I, i) of_F 0 s I s k-1, routes a packet to
either node (l+l, i) or to node (l+l, i1) depending on whether the I'" bit
Os l s k-1, of the address field AF matches the I"' bit of i ornot, respec­
tively. In MSB routing, node (I, i) of & 0 s I s k-1, routes a packet to
either node (l+l, i) or to node (l+l, ik-1-1) depending on whether the
k-1-1'" bit, 0 s I Sk-1, of the address field AR matches the I'" bit of i
or not, respectively.

The switches in R also support a variant of MSB routing referred to
as MSB routing with copy. This is used to implement a broadcast facility,
in which a data packet can be sent simultaneously from a node (0, i) to all
to the consecutively indexed destination nodes, (k, STAR Ti),
(k,STARTi+l), ... '(k,ENDj-1), (k,ENDj). The address field AR now
consists of the pair of integers (STARTj, ENDi), STARTi s ENDi, which
define the limits within which the packet must be sent. Each switch node
(I, j), Os I s k-1, performs the following actions on receiving a packet
of this form. If the k-/-l'h bits of STARTi and ENDi are the same, the .
node implements the usual MSB routing to route the packet to the node

indicated by the address STARTi. If the two bits are diffe_!Ynt, then the
packet is forwarded to both the nodes (/ + 1, j) and (/ + 1, ik-H). How­
ever, the addresses STARTi and ENDi that are forwarded to the two nodes
are updated as follows. The copy forwarded to the node with the smaller
index will have ENDi set to 2k - 1 and that forwarded to the node with the
larger index will have STARTi set to zero.
Definitions : The route in F (R) from node (0, i) to node (k, j) is the

ordered sequence of nodes in F (respectively R), ((0, i), (1, i 1), ... (I,
i'), ... (k, j)), that a packet with address Ap = j (respectively Aa =
j) passes through. The sequence of edges between nodes in the route
is the path of the route. A route in F is referred to as a forward
route, while a route in R is referred to as a reverse-route. Two routes
are said to be conflict free if they are node disjoint. A set of routes is
conflict free if they are pairwise node disjoint

We now relate F and R to the pipelined hypercube of section 2.1,
and show how conflict-free routes in F (or R) imply link-disjoint routes in
the pipelined hypercube.

In the following let Hp (Ha) refer to the graph obtained from F
(respectively R) by replacing the directed edge ((/, u), (l+l, U,)) (respec­
tively ((/, u), (/+ l, uk-1-1))) with the directed edge ((/ + l, u), (/ + l, U,))
(respectively ((I+ 1, u), (/ + 1, uk-1-l))). Figure 3 shows Hp and Ha
corresponding to F and R of figure 2. To demonstrate the similarity of the
switches and links of the pipelined hypercube network to the nodes and
edges of Hp and Ha, the nodes in figure 2 have been renumbered as fol­
lows. Node (I, u) in Hp is renanied (/ - 1, u), and node (I, u) in Ha is
renamed (k -l, u), lSI Sk. Node (0, u) is shown as PE[u]. It maybe
seen that with this renaming of nodes, Hp maps directly onto the switches
and links of the hypercube network used for forward routing, and Ha to
the switches and links used for reverse routing.
Definition : A route in Hp is obtained from a route in F by replacing

every edge ((/, u), (I + l, U,)) in the latter path, by the two directed
edges ((I, u), (I + 1, u)) and ((/ + l, u), (/ + l, Ui)), 0 S l S k-1.
Similarly, a route in Ha is obtained from a route in R by replacing
every edge ((I, u), (/ + 1, uk-1-1)) by the two directed edges
((/, u), (I + 1, u)) and ((I + 1, u), (/ + 1, uk-1-1)), 0 S l S k-1.

Theorem 2.1 : Let P 1 and P 2 be the paths of two node disjoint routes in F
(or R) and P; and P,J. be the corresponding paths in Hp (respectively
Ha). Then P 1 and P 2 are edge disjoint.

Proof: By contradiction. If an edge e exists that is common to P 1 and P 2
then,
if e = ((/, u), (l+l, u)), the node(/, u) is common to both Pi and

P2,
else e = ((I, u), (I, U:)), where u = Ui-1 or iik-1 according to whether

P 1 and P 2 are from F or R , and it follows that the node (1-1,
u) is common to the two paths.

The theorem shows that if the required set of routings can be shown
to be conflict-free in F (or R), then the routes using forward (respectively
reverse) routing on the pipelined hypercube will be link disjoint.

2.2. Conflict Free Routing

In a series of lemmas we describe several routing patterns that arise
in the sorting algorithm, and show that they are conflict-free in F or R .
Closely related results for performing certain of these routings on a binary
cube have been previously reported in [15]. As a consequence of
Theorem 2.1, these routings can be performed without link conflict in the
pipelined hypercube using forward or reverse routing respectively.
Lemma 2.1: Let (I, u) be a node on the route from (0, i) to (k, j) in F

(R). Then the binary representation of u is ik-1ik-Z···i1 i1-1i1-z ... jo
(respectively, ik-1ik-Z···ik-I ik-1-1ik-l-2···io).

Proof: Direct consequence ofLSB (MSB) routing.
Lemma 2.2:Let ((0, s(i)), (k, t(i))), 0 Si S r-1, be a collection of r

pairs such that, 0 s s(O) < s(l) < ... < s(r-1) S 2k -1, 0 s t(O) <
t (1) < ... < t (r-1) s 2k - 1, and s(i + 1) - s (i) :<: t(i + 1) - t(i), for all i,
0 S i S r-2. Then the set of routes in F from each node (0, s (i)) to
the node (k, t(i)) is conflict-free.

Proof:Consider any pair i , j and without loss of generality assume that i
>j. Letu =s(i), v =sU),x =t(i) andy =tU).

Assume, contrary to the lemma, that (I, w) is a node that is
common to the two routes. From lemma 2.1 above, w = uk-1uk-Z···u1
X1-1X1-z .. .xo = vk-!Vk-2···vl Y1-1Y1-z ... yo. Then, u - v < 21 and
x - y :<: 21, which contradicts the fact that u - v 2: x - y. Since i

203

and j were arbitrary, the set of routes is conflict free.
A similar lemma holds for the routes in R:
Lemma 2.3: Let ((0, s(i)), (k, t(i))), Osi sr-1 be a collection of r

pairs such that, 0 s s(O) < s(l) < ... < s(r-1) s 2k -1, Os t(O) <
t(l) < ... < t(r-1) s 2k -1, and, s(i+l) - s(i) s t(i+l) - t(i), for
all i, 0 s i s r-2. Then the set of routes in R from each node (0,
s (i)) to the node (k, t (i)) is conflict-free.

Definition: Broadcast routing is defined as follows. Let { (0, i) I
0 s i s r-1 }, be a set of sources in R. Associated with each source
(0, i), is a pair of integers, STARTi and ENDi such that
ENDj 2: STARTj. For all i' 0 s i s r-2, STARTi+I = ENDj + 1, and
END, .. 1 = p-1. Route data from (0, i) to all (k, u),
START; Su SEND1.

Broadcast routing is performed using MSB with copy in R. The fol­
lowing lemma can be shown to hold (see [22]) for broadcast routing:
Lemma 2.4 : Let (0, i) and (0, j) be two sources involved in a broadcast

operation. Then the routes from (O,i) to (k, u) and from (0, j) to
(k, v), for any pair u, v, STARTi s u s ENDj and START; s v s END;
are conflict free.

Corollary : Broadcast routing is conflict free.

Combinations of special cases of the routings implied in the above
lemmas arise in the sorting algorithm. The special case of lemma 2.3
when t(i)=i, is known as Concentrate. A Concentrate followed by a
Broadcast is known as Scatter. The special case of lemma 2.3, when
s(i) < t(i), 0 Si S r-1, is known as Right Transfer routing; the case
when s(i) > t(i) for all i, is correspondingly referred to as Left Transfer.
A Left Transfer followed by a Right Transfer is referred to as a Weave.
All of these routings can be performed using link disjoint routes on the
pipelined hypercube.

3. Main Algorithm

The sorting procedure is a parallelization of the standard merge-sort
as shown below in the procedure Parallel Merge Sort. The crux of the
procedure is the parallel algorithm for merging two ordered lists, as
described in section 3.1. Section 3.2 contains the complexity analysis.

Parallel Merge Sort (W[O .. N-1], M)
/*SortarrayWusingM =2K PEs. Letm =NIM*/
I* Let W[im (i+ l)m - lJ be denoted by W1 *I

1. PE[i], i, 0 s i s M - 1, is loaded with Wi.

2. Each PE[i] independently sorts W1 into increasing order.

3. For j = 0 to K - 1 do

End.

For each s, 0 s s s 2K-i-; - 1, do independently and con­
currently:

I* Let i = s 2i+l */
I* Let A,= (Wj ... wi+21-1> andB, = (Wi+2J•••Wi+2J·~1> *I

Merge A, andB, using procedure Coarse Merge(A., B., 2i+l).

End Parallel Merge Sort.

3.1. The Merging Procedure CoarseMerge

Let A[O ... n-1] and B[O ... n-1] be the two sorted arrays of ele­
ments to be merged, where the elements are drawn from a totally ordered
set. The arrays will be merged using 2p, p =2k-1, PEs. Let m =nip.
The elements A[im ... (i+l)m-1] are stored in PE[i] and elements
B[im ... (i+l)m-1] inPE[p +i], OSi Sp-1, and are referred to as blocks
A and B; respectively. The output of the merge is the sorted array
C[0 ... 2n-1], such thatPE[i] contains elements C[im ... (i+l)m-1].

The merging algorithm consists of three phases. The first phase
consists of a fine-grained merging procedure that is performed on a list of
representative elements, one from each block. The outcome of the fine­
grained merge is used to pair each block of A with some block of B and
each block of B with some block of A. If block Au (Bu) is paired with
block Bv (Av), then in the second phase, Bv (Av) is transferred to the PE
containing Au (B.). After this data transfer step, a PE will have two
blocks A. and Bv. The PE merges the two blocks into a single sorted list,
removing duplicates in the process. In the final phase, the individually
merged blocks are routed to the appropriate processors, so that the output
is ordered according to the chosen convention.

In the first phase, ele~ents A[im] (and B[im]), the smallest ele­
ments in each of the blocks and denoted by a; (respectively b;), are
merged into a sil)gle sorted subsequence r =to, t 1 ... t2p-I·

Definitions : An element t;, 0 Si s 2p-l, in r is a border element if
either t; =a, and t;+1 = bw, or t; = b, and t;+1 =aw (0 S v, w Sp-1).
It is convenient to define non-existent elements L 1 and t2p as border
elements. A subsequence of r consisting of elements t; t;+i t;..,. is a
run if none oft;, t;+i. ••. t;+r-1 are border elements. If i '= o,' then the
run is called the first run. For each i, 0 Si S 2p-I,partner(i) =kif
tk is a border element, and tk+i. tk+2• •.. t; is a run. If t; occurs in the
firstrun then partner (i) = -1. For each element t;, 0 S i S 2p-l, if t;
= ai, OSj Sp-1, then define block T; to be Ai ; if t; =bi then
define T; to be Bi. It is convenient to consider the non-existent block
T _1 as a block of m elements, each of value - oo (the smallest possi­
ble value), and the non-existent block T2p as a block of m elements
each of value+ oo (the highest possible value).)

For phase 2 of the algorithm, block T; is paired with Tparrner(i)- An
example for the case p = 4, is shown in figure 4. PE[O] through PE[3]
contain the 4 blocks of A, Ao, Ai. A2 and A3, and PE[4] through PE[7]
contain the blocks Bo, Bi. B 2 and B 3 respectively. The pairings of blocks,
as reqUired by the partner relation are shown by arrows. In the example,
Bo, B1 and B2 are all paired with block Ai. A2 is paired with B 2, B 3 is
paired with A 2 and A 3 is paired with B 3• Each block is sequentiai1y
m~ged with the block with which it is paired. When merging block T;
wtth Tparrner(i)o the PE; removes duplicates by enforcing the following
uniqueness conditions:

(i) discard all elements less than t; (ii) discard all elements greater
than or equal to t;+i·

In the example, the merge of Bo and A 1 retains only the elements in the
range [bo, b1). Similarly the merge of A2 with B 2 retains only the ele­
ments in the range [a2, b3); and the merge of B3 withA2 retains only the
elements in the range [b3, a 3).

Let U;, 0 S i s 2p-1 be the block resulting from the merge of T;
and Tpar11Wr(i) and the removal of duplicates. I U; I denotes the cardinality
of U;. Let U; = [u;,o, u;,i. ... , u;,r], with I U; I= r +1. Define rank(u;J),
0 S j S r, as the number of elements of A and B that are less than u; J.
Let a; and j3; be the number of elements removed due to uniqueness con­
ditions (i) and (ii) respectively. (Define a; = m for blocks paired with
T-i. and define J32p-I = 0.)

In the final step, we construct the block C; of the sorted sequence
by discarding the first m - ot; elements of U; and concatenating to the end
of the list that remains, the first m - ot;+1 elements of U;+1• Corollary to
lemma 3.4 in this section will establish that this can be done concurrently.
(Proofs of the following lemmas have been omitted due to space limita­
tions and are available in [22].)
Lemma 3.1 :For each i, OSi < 2p -1, j3; + ot;+l = m.
Lemma 3.2: For each i, OS is 2p-1,I U; I= 2m -{ot; + j3;).
Lemma 3.3: Foteach i, 0 Si S 2p-l, rank(u;,o) = m (i-1) + ot;.

Lemma 3.4: Fot each i, 0 sis 2p-l,I Ud > m - a;.
Corollary : (m - ot;) elements can be simultaneously transferred from U;

to U;-i. 0 sis 2p-1.
Theorem 1 : The sequence of blocks Co C 1 C 2 ... C 2p-1 is sorted, with I

Cd =m foreachi,OSi S2p-1.
Proof : I C; I = I U; I + a; - Cl;+1 = m from lemmas 3.1 and 3.2. That all

elements of C;_1 are in sorted order and smaller than elements of C;
is immediate from the fact that U; are in sorted order.

Following is the formal description of the procedure Coarse Merge.

Procedure Coarse Merge (A, B, p)
I* Merge 2 sorted sequences A and B, each of size 1h mp, on a p PE sys­
tem. The first p/2 PEs contain elements of A, while the last p/2 contain
elements ofB. *I

denote : the processor element i by PE;, the data in PE; by D;, and the
minimum element of D; by d;.

define the following macros :
left(i) = {-1 if i = 0 or p/2; i-1 otherwise}
right(i)= {p ifi =pl2-I orp-l;i+l otherwise}
border(i) ={TRUE iffRIGHTRANK{i) > RANK(i) + 1}.
firstrun(i) = {({i < p/2)/\{RANK{i) = i)) v ((i ~p/2)/\{RANK(i) =

i-p/2))} /*BOOLEAN*/
The following integers are used by each PE;:

RANK{i) : the rank of d; fellowing the fine-grained merge. Define
RANK[-1] = -1 andRANK[p] = p.

RIGHTRANK(i) : the rank of dright (i)·
PARTNER(i) : the block with whfr;h D; is paired.
RIGHTLIMIT(i): = dj, whereRANKI/] = RANK[i]+l.
NEXT(i): defined if (border(!)); =Id. of next ranked block.
BEGIN-SCAITER(i) : defined if (border(i)); =Id. of the first block to

pair with D;.
END-SCA'ITER(i) : defined if (border(z)); = Id. of the last block to

pair with D;.
ot; : Elements discarded due to condition 1.
COUNT(i) : Number left after duplicate removals.
BORDERRANK(i) = number of PEj, j < i, such that both j and i

are from the same half of the PE array and border(]) is TRUE.

begin

204

1 (a). Each PE;, 0 s i Sp-I, creates arecordX; = (VAL, INDEX) with
VAL= d; and INDEX= i.

1 (b). The processors sort { X; } using a fine-grained parallel compu­
tation. At the end of this step, each PE;, has RANK{i) and
RIGHTLIMIT(i) correctly initialized.

2 (a). Every PE; except PEo and PEp12 creates the record R = (
rightrank), with rightrank = RANK(i), and sends it toPE;-1.

2 (b). Every PE; except PEpn-1 andPEp-I receives records R sent in
step 2 (a). All PE; perform the following assignments:
1. if (right(i) * p) then R!GHTRANK{i) = R.rightrank

else RIGHTRANK(i) = p.
2. if (NOT(firstrun(i)) thenPARTNER(i) = RANK(i)- i + p/2-1.
3. if(border (i)) then

if(firstrun(i)) then NEXT{i) = rank(i) - i + p/2
else NEXT(i) = right(PARTNER(i))

BEGIN-SCA'ITER(i) = NEXT(i)
if(right(i) * p) then END-SCATTER(i) = NEXT(i) +

RIGHTRANK(i) -RANK (i) - 2
else if(i = p 12-1) then END-SCATIER(i) = p -I
else END-SCATTER(i) = p 12-1.

3. Using FINE-GRAINED PREFIX, each PE; such that border(i) is
TRUE computes BORDER-RANK(i).

I* Border PEs scatter data blocks *I

4. if(border (i)) then scatter{D;, At (i), {A,1(i), Ari(i)}) where,
At = BORDER-RANK(i), Ari = BEGIN-SCATIER(i), and A,1 =
END-SCATTER(i).

5. Each PE;, 0 Si Sp -1 such thatfirstrun(i) =FALSE receives
the block DPARTNER(i) sent in step 4, merges the block D; with
the block DPARTNER(iJ• discards duplicates (elements < d; or ~
RIGHTLIMIT{i)), and sets Cl;.

Each PE; such thatfirstrun(i) is TRUE, sets a;= m.

Let V; denote the data that remains in PE;. COUNT(i) =I V; I·

!*Permute data blocks into increasing order of rank *I

6 (a). Each PE; sends (V;, COUNT{i), ot;) to PERANK(i)-

6 (b). Each PE; receives the data sent out from some PEi (such that i
= RANK(j)) in step 6 (a). Let U; denote the data received by
PE;; i.e., U; = Vj. PE; sets a= Clj andCOUNT=COUNT(j).

I* Equalize data in each PE *I

7 (a). Each PE;, 0 < i Sp -1 sends the first m-a elements of U; to
PE;-i. and deletes them from U;.

7 (b). Each PE;, 0 Si < p -1 receives the elements sent in step 6(a),
and concatenates them to U;.

end

Steps 1 and 3 of Coarse Merge consist of fine-grained parallel com­
putations. By fine-grained computation we mean computations which
deal with sparse data sets, one data record pet processor. In step 1 the
two sequences of representative elements ao ... ap12-1 and bo •.. bp12-1 are

merged into the sorted sequence r. This is most simply performed using
the well known bitonic merge algorithm to merge the records X;,
0 ~ i ~ p 12 - 1 and X;, p 12 ~ i < p - 1. (The implementation is standard
and details appear in [22].) Following bitonic merge, PE[i], 0 ~ i ~p-1;
contains the record X1, whose rank is equal to i. The rank and the value
of the next higher element are returned to PEI/]. At the end of step l,
each PE[i] has its local variable RANK(i) set equal to the position of its
representative in r and its variable RIGHTLIMIT(i) set to the value of
t RANK(i)+l· the representative immediately to its right in r. Figure 5(a)
shows the situation assuming the sorted list of representatives of Figure 4.

In step 2, each PE determines if its representative is a border ele­
ment, and if so determines the range of addresses over which it has to
broadcast its data block. PE[i], i '1'pl2-1 and i '1'p -1, is a border PE
only ifRANK(i+l)> RANK(i) + 1. (PE[p/2-1] and PE[p-1] are handled
specially.) In step 3 each border PE[i], 0 ~ i ~p - 1 determines BORDER­
RANK(i), the number of border PEs to its left and in its half of the proces­
sor array. This information is used to route the data blocks in a conflict
free manner in step 4.

In step 4, the requisite data blocks are broadcast The details are
discussed in section 3.1.1. With respect to the example (see figure 5(b)),
PE[l] broadcasts block A 1 to PE[4], PE[5] and PE[6], A2 is broadcast to
PE[7], B 2 to PE[2] and B 3 to PE[3]. In step 5, processors merge the
resident block with the block broadcast to it, and remove duplicates to
obtain the sorted blocks, Vi, 0 ~ i ~ p - 1. Note that the blocks will be in
permuted order, the permutation being determined by RANK(i) (see figure
5(c)). In step 6 the blocks are permuted into rank order. Finally in step 7,
each PE[i] transfers m - a; elements to PE[i - l], to equalize the number
of elements in each PE.

The FINE-GRAINED-PREFIX operation of step 3 of Coarse Merge is
implemented as follows. Each PE[i] such that border(i) is true sets a flag,
Flag (i) to one; the other PEs set Flag (i) to zero. Each half of the proces­
sor array performs a parallel prefix computation [15] (also referred to as
partial sums computation), to determine the sum of the flag values that lie
in its half and with indices smaller than it. (The details of the implemen­
tation on a hypercube appear in [22].)

3.1.1. Mapping on the Network

In this section we discuss how the various steps of procedure
Coarse Merge can be implemented on the pipelined hypercube. Step 5
consists of a sequential merging algorithm executed concurrently and
independently by each PE. Transfers of data blocks are required in steps
4, 6 and 7. We discuss each of these now, starting with the simplest.

Step 7 consists of a Left-Shift by one. By Lemms 2.2 (or 2.3), this
can be accomplished by the in a conflict-free manner, by using LSB rout­
ing (or MSB routing) on the forward network.

The data transfer required by step 6 is a Weave routing. It is there­
fore performed in two stages. The first stage is a Right-Transfer where all
blocks A; are transferred from PE[i], O~i ~pl2-l, to PE[RANK(i)].
The second stage is a Left-Transfer where all blocks B; are transferred
from PE[i + p/2], to PE[RANK(i)]. Note that for each pair A;, A1, (and
for each pair B;, B1), j > i, RANKLJ] - RANK[i] ?.j -i. Hence, in both
cases the conditions for conflict-free routing are satisfied. Each stage can
be accomplished using MSB routing on the reverse network.

Data routing required in step 4 is also done in two stages. In the first
stage, all blocks from a border PE[i] are transferred to PE[BORDER­
RANK{i)}. This is a Concentrate operation performed independently on
each half of the processor array and is conflict-free under LSB routing on
the forward network (Lemma 2.2). In the second stage, the concentrated
blocks are broadcast from PE[BORDER-RANK(i)] to PEs in the range
PE[BEGIN-SCATIER(i)] to PE[END-SCATTER(i)]. Note that both the broad­
cast operations can occur concurrently.

The remaining steps can be performed directly using the cube rout­
ing portion of the network. At the end of step 1, ranks of X; are returned
to PE[i], which is exactly the reverse of that occuring in step 5 -- except
that only 1 record per PE is involved. This can be accomplished in a 2
step conflict-free manner: first all PE[i] containing representatives from A
send their records using LSB routing; next those containing records from
B do the same. The time required is upper-bounded by 2 log p routing
steps.

205

3.2. Complexity Analysis

The time required for procedure Coarse Merge can be upper
bounded as follows. Note that the algorithm uses p PEs and each PE has
m data items. The time required for the fine-grained computations in
steps 1,2 and 3 is O(log p). The data routing required in steps 4, 6 and 7
can be performed in O(m + log p) time. The sequential merging of two
blocks of size m each in step 5, requires O(m) time. Thus the time for
procedure Coarse Merge is given by :

T,.,,,,. (m,p) = O(m + logp).
The time required for procedure Parallel Merge Sort, T sort (N, P), is
derived as follows. Note that the procedure sorts a list of N items using
P = 2K PEs. The time required to perform the independent sort in each
PE, using sequential mergesort (for instance) is 0(NIP log(N IP)). The
time for the j'h iteration, 1 ~ j ~ K, is T merge (NIP, 2i). Hence :

T,0 r1(N,P) ~ c1(NIP+NIPlog(NIP))+c2
1
t(NIP+j)

which is O((N log N)IP + log2 P).
Selected References

1. M. Ajtai, J. Komlos, E. Szemeredi, "An O(n log n) Sorting Net­
work," Combinatorica 3. (1983)

2. S.G. Akl, "Parallel Sorting Algorithms," Notes and Reports in
Comp. Sci. and App. Math., Academic Press, Orlando. (1985)

3. S.G. Akl and N. Santoro, "Optimal Parallel Merging and Sorting
Without Memory Conflicts," IEEE Trans. Comput., C-36, 11.

4. K.E. Batcher, "Sorting Networks and their Applications," Proc.
AF/PS Spring Joint Computer Conf, 32, (1968) pp. 307-314.

5. G. Bilardi and A. Nicolau, "Bitonic Sorting with O(n log n) Com­
parisons," Proc. 20th Ann. Conf Info. Sci. and Sys., (1986).

6. G. Bilardi and F. P. Preparata, "A Minimum Area VLSI Network
for O(log n) Time Sorting," IEEE Trans. Comput., C-34, 4. (1985).

7. A. Borodin and J. Hopcroft, "Routing, Merging and Sorting on
Parallel Models of Computation" Proc. 14th ACM Symp. Theory af
Computing.

8. R. Cole, "Parallel Merge Sort," Proc. 27th IEEE Symp. Foundations
of Computer Science.

9. L. Johnsson. "Combining Parallel and Sequential Sorting on a
Boolean n-Cube," Proc. Intl. Conf on Parallel Processing. (1979).

10. D. E. Knuth, The Art of Computer Programming Vol. 3., Addison­
Wesley, Reading MA, (1973).

11. C.P. Kruskal, "Searching, Merging and Sorting in Parallel Compu­
tation," IEEE Trans. Comput., C-32, 10. (1983).

12. C. P. Kruskal, L. Rudolph and M. Snir, "The Power of Parallel
Prefix," IEEE Trans. Comput., C-34, 10. (1985).

13. F.T. Leighton, "Tight Bounds on the Complexity of Parallel Sort­
ing," IEEE Trans. Comput., C-34, 4. (1985).

14. D. Nassimi and S. Sahni, "Bitonic Sort on a Mesh-Connected Paral­
lel Computer," IEEE Trans. Comput., C-28, 1.

15. D. Nassimi and S. Sahni, "Parallel Permutation and Sorting Algo­
rithms and a New Generalized Connection Network," JACM, 29(3).

16. F.P. Preparata, "New Parallel Sorting Schemes," IEEE Trans. Com­
put., C-27, 7. (1978).

17. Y. Shiloach and U. Vishkin, "Finding the Maximum, Merging, and
Sorting in a Parallel Computation Model," J. Algorithms, 2. (1981).

18. H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE
Trans. Comput., C-20, 2. (1971).

19. C. Sietz "Concurrent VLSI Architectures" IEEE Trans. Comput.,
C-33, 12. (1984).

20. C. D. Thompson and H. T. Kung, "Sorting on a Mesh-Connected
Parallel Computer," Comm. ACM, v. 20, 4.

21. L. Valiant, "Parallelism in Comparison Problems," SIAM J. Com­
put., 4, 3. (1975).

22. P. Yarman and K. Doshi, "Sorting With Linear Speedup on a VLSI
Network," TR- 8802, Rice University. (Feb. 1988.)

level 3

level 2

level 1

level O
0

level

level

level 1

level 0
0

0 2 3

level 0

level 1

with levels
renumbered HR_.

level 2

Processors

3 4

Forward routing

2 3 4

Processor-Memory-Switch [i J
fjgum_1(Jll

The FGraph

6 7

The R Graph

6 7

Inter-module links
Intra-module links

Reverse Routing

level 2

level 1

._ H with levels
F renumbered

level 0

Processors

206

i= 0 2 3

\ 9.
5 6 7

D D D D D D D
Ao A, A2 Aa B1 B2 63

RANK[i]= 0 5 7 2 3 4 6

BORDER[i]= T T T T

Note that a, , b 2 , a2 and b3 are border elements

Sorted sequence (of representatives) : a cf11b0b1 b2a2b3~

Block pairings : j A0 ffi3}9J?£ I
Eillw:tl

i= 0 2 3

\ 9.
5 6

D D D D D D
Ao A, A2 A3 Bt B2

RANK[i J = 0 5 7 2 3

RIGHTLIMIT[i] = a, bo b3 b, b
2

7

D
83

4

a2

6

a
3

Fig 5(a) : Situation after step 1 of Coarse Merge, for the example of figure 4.

I At ..eoRDEA·RANK(I] Ar1•BEGIN-SCATTER[i] Ar2•EN0.SCATTER [I)

1 0 • '
2 1 7 7

Broadcast of A and B blocks for pairing. ' • 2 2

7 5 3 3

FORWARD (Concentrate) REVERSE(Broadcast)
Figure 5(b)

The blocks ate permul&d lnto rank order.

Left Transfer
Figure S(c)

Right Transfer

Concurrent Insertions and Deletions in a Priority Queue*

V. Nageshwara Ra:o and Vipin Kumart
Department of Computer Sciences,

University of Texas at Austin,
Austin, Texas 78712

1

Abstract

The heap is an important data structure used
as a priority queue in a wide variety of parallel al­
gorithms (e.g., multiprocessor scheduling, branch­
and-bound). In these algorithms, contention for
the shared heap limits the obtainable speedup. This
paper presents an approach to allow concurrent in­
sertions and deletions on the heap. Our scheme
has much lower overheads and gives a much better
performance than a previously reported scheme.
The scheme also retains the strict priority ordering
of the serial access heap algorithms; i.e., a delete
operation returns the best element of all elements
that have been inserted or are being inserted. Our
experimental results on the BBN Butterfly parallel
processor demonstrate that the use of concurrent
heap algorithms in parallel branch-and-bound im­
proves its performance substantially.

Introduction

The heap is an important data structure used as a priority
queue in a wide variety of parallel algorithms (e.g., multipro­
cessor scheduling, branch-and-bound[lO]). In these algorithms
each processor performs an access-think cycle. Every proces­
sor executes its current subproblem at hand (thinking), then

accesses the shared heap to insert subproblems if it generated
any and takes the best available subproblem in the heap to solve
next. Since many processors are sharing the heap and they may
access the heap at the same time, the simplest way to provide
consistency in updates is to serialize the updates. A lock is
associated with the heap and the processors access the heap
under mutual exclusion. This serial access scheme limits the
number of processors that can be used to speedup the problem.
If Tthink is the mean think time and Taccess is the mean access
time, then clearly the maximum speedup
achievable is

< Taccess + Tthink

- Taccess

Tthink is a characteristic of the problem being solved. Taccess

depends on the priority structure being used. For the heap,
Taccess is O(log N), where N is the size of the heap.

One way to alleviate the limitation is to let many processors
access the heap simultaneously. Updates on different parts of

*This work was supported by Army Research Office grant #
DAAG29-84-K-0060 to the Artificial Intelligence Laboratory, and Of­
fice of Naval Research Grant N00014-86-K-0763 to the computer sci­
ence department at the University of Texas at Austin.

tTel:512-471-9571,Arpanet: Kumar@sally.utexas.edu

207

a heap can proceed concurrently provided they do not interact
with each other. Let us view the heap as a binary tree with
the root at 6e top and leaves at the bottom. In the ordinary
serial heap algorithm, the deletes manipulate the heap level by
level going from top to bottom, while inserts manipulate it from
bottom to top. Hence many insertions (or many deletions) can
be executed in parallel by using a simple locking scheme[l].
But inserts and deletes can not be active together, as they pro­
ceed in opposite directions ;md hence can deadlock. Biswas and
Browne[l] present a scheme to handle this problem. But their
scheme has a substantial overhead, and performs worse than
the sequential heap unless the heap size N is very large.

This paper presents a new concurrent heap access scheme
that has small overhead, a.nd is able to perform better than the
sequential heap even for small heaps. Two important ingre­
dients of this scheme are (i) a heap insertion algorithm which
manipulates the heap from top to bottom; and (ii) a scheme to
combine a delete operation with the most recent unfinished in­
sertion operation. Since these new insertions and the deletions
move from top to bottom in the heap, they can both be active
together without causing deadlock.

2 Preliminaries

A heap is a complete binary tree of depth d[5]. with the property
that the value of the key at any node is less than the value of
the keys at its children (if they exist).

It is efficient to implement the heap using an array. The
root occupies location 1 and the node i occupies location i. The
children of node i occupy locations 2i and 2i+l. The parent of
node i is at l~J. We assume that each node in the heap has a
key pointing to a field of data. Key(i) denotes the key located
at node i. VAL UE(i) denotes the value or priority order of the
key at node i. Empty nodes in the heap are assumed to have
keys with value MAXINT (= oo).

We denote the left son and the right son of node i by
LSON(i) and RSON(i) respectively. The parent of node i is de­
noted by PARENT(i). Associated with the heap are the data
fields lastelem and fulllevel 1 . lastelem is the index of the last non­
empty node of the heap. The keys of all nodes beyond lastelem
is MAXINT. fulllevel is the index of the first node in the deepest
level of the heap (that contains at least one non-empty node).
For an empty heap, lastelem = fulllevel = 0. Fig 1 shows a
sample heap of twelve elements, and the value of lastelem and
fulllevel.

1The conventional delete and insert operations[5] do not need to
maintain fulllevel but it is needed for the insert_t operation which
traverses the heap from top to bottom.

The operations supported on a heap are insertion and dele­
tion. The insert operation inserts a new key, nkey, in the heap
and the delete operation returns the smallest key in the heap.
The reader is referred to [5] for the details of these serial-access
heap algorithms.

3 Inserting from Top

It is possible to perform insertions from the top by using the
following (infocmally stated) algorithm2 :

k <-1;
if VAL UE(k) > VALUE(nkey)
then Exchange(key(k),nkey)) ;
while (k h:ts both successors)

k <-any successor of k;
ifVALUE(k) > VALUE(nkey)
then Exchange(key(k) ,nkey)) end if

end while
Put nkey at one of the empty leaves of k.

This naive insertion algorithm is not guaranteed to grow
the heap level-by-level, which is crucial for the efficiency of in­
sertions and deletions.3 Our new insertion algorithm, which we

call inserLt, performs reheapification in such a way that each
insertion adds a key to the first empty node in the heap (just
as in the conventional insert operation).

Let target be the first empty node in the heap. The in­
sertion path is the path between the root and target. This
path is unique (and can be easily computed) because the heap
has a tree structure. Values of the nodes on the insertion path
(from root to target) are nondecreasing. To insert a new key in
the heap, we need to put the new key at a proper node on the
insertion path, and move all the keys at and below this node
one level down (filling the target node). The conventional in­
sert algorithm does this by visiting the nodes on the insert path
from bottom to top. The insert_t algorithm given below does
it in the opposite order.

insert_t(nkey,heap)
Lock(heap)
lastelem <-lastelem + 1 ;
target <-lastelem ;
if (lastelem 2'. fulllevel* 2)
then fulllevel = lastelem endif
i +-target - fulllevel ;
/* i is the displacement of target * /
j +--fulllevel/2 ; /* j = 21ength of in•ertion path -l * /
k +--1 ; /* k is the current position

in the insertion path * /
/* Reheapification Loop * /
while (j "I 0)

if(VALUE(k) > VALUE(nkey))
then Exchange(nkey,key(k)) endif
if (i 2'. j)
then {k <-RSON(k); i +--i - j;} /*Go llight*/
else {k <-LSON(k)}; /* Go Left * /
end if
j +--j/2 ;

end while
key(k) <-nkey ;
U nlock(heap) ;
end_insert_t

208

Nate that the insertion path is being computed on the fly.
Let i be the displacement of target at the last level (i.e., i =
lastelem - fulllevel), and p be the length of the insertion path.
If we view i as a p bit binary number, then the bits of the
binary representation of i (from the most significant to the least
significant) tell us whether to go right (if 1) or left (if 0) when we
go from the root downward. For example, the first element at
the last level (given by fulllevel) has displacement 0 and its path
is left,left,left· · .. Fig 2 shows the twelve element heap of Fig 1
to which a thirteenth element is being added. It also shows the
values of fulllevel, lastelem, and i just before the execution of

Status code Meaning
Present A key exists at the node.

An insertion is currently in
Pending progress which will ultimately

insert a key at the node
Wanted A deleter is waiting for the key.
Absent No key is present at the node.

Table 1: Meaning of various status codes.

the reheapification loop in insert_t. For a proof of correctness
of insert_t, see [9].

4 Concurrent access algorithms
A simple locking strategy is embedded into delete and insert_t
routines to achieve concurrency in access maintaining consis­
tency in updates and avoiding deadlocks. Instead of locking
the whole heap (as done in the serial access scheme), we lock
only a small portion of the heap at a time. This portion is
called window. It consists of 3 nodes for the delete algorithm
and 1 node for the insert operation. In order to allow window
locking, we associate a lock with every element. Each processor
accesses the contents of a node only after locking it to ensure
mutual exclusion. The two other data fields of the heap, ful­
llevel and lastelem, are modified only in the initialization phase
of the insert_t and delete routines. Hence we associate the lock
of node 1, the root, with these fields also; i.e., a processor can
access these locations only when the root has been locked.

Although insert_t and delete both manipulate the heap from
top to bottom, there is one problem in letting them work to­
gether. Recall that the delete operation deletes the key at the
root and replaces it with the most recently inserted leaf key (and
starts reheapification). If the last insert_t operation is still in
progress, then this last leaf node does not have a key. If delete
picks up the key of any other leaf node, then the resulting heap
may become unbalanced. If the delete operation waits for the
last insertion to finish, then we loose concurrency.

To solve this problem, we associate a field called status with
every node in the heap. The status of a node can have four val­
ues, each associated with the semantics given in Table 1. When
an insertion starts, the status of its target is set to pending. If
a deleter starts working when an insertion is still in progress, it
changes the status of the target of the last inserter to wanted,

2Throughout the paper we present algorithms in a C-like English
pseudo-code.

3If the heap becomes unbalanced, then inserts and deletes can take
up to O(N) operations rather than O(log N) operations.

and waits. After every step of reheapification on the insertion
path, the inserter checks to see if the status of target has be­
come wanted. If this is the case, then nkey is placed at the

root and the inserter quits. Once the key is placed at the root,
deleter starts working. The concurrent deletion and insertion
algorithms are presented below.

Concurrent Delete(heap)
Lock(l);
/* Lock the root of the heap * /
if (las tel em = 0)
then {Unlock(l); Return(NULL)} endif
least <-key(l) ;
i <-1 .
j <-l~telem ;
lastelem <-lastelem - 1 ;
if (lastelem < fulllevel)
then fulllevel <-fulllevel/2 endif•
if (j=l)
then{ key(l) <-MAXINT; status(l) <-ABSENT;
Unlock(l); Return(least)} endif
Lock(j) ;
if (status(j) = PRESENT)

then {key(l) <-key(j); status(j) <-ABSENT;
key(j) <-MAXINT;}

else {status(l) <-ABSENT; status(j) <-WANTED};
endif
Unlock(j) ;
while (status(i) =ABSENT) do {Wait()}

endwhile /* i = 1 at this point*/

Lock(LSON(i)) ; Lock(RSON(i)) ;
/* Reheapification Loop * /
/* Let MIN(i) give index of the son of i which
has lower VALUE*/
/* Let MAX(i) give index of the son of i which
has higher VALUE*/
while (VALUE(i) > VALUE(MIN(i))) do

Exchange(key(i) ,key(MIN (i))) ;
Unlock(i) ; Unlock(MAX(i)) ;
i <-MIN(i) ;
Lock(LSON(i)) ; Lock(RSON(i)) ;

end while
Unlock(i) ; Unlock(LSON(i)) ; Unlock(RSON(i)) ;
Return(least) ;
end_Concurrent_Delete

Concurrent Insert(nkey,heap)
Lock(l) /* Lock root of the heap * /
lastelem <-lastelem + 1 ;
target <-lastelem ;
if (!astelem 2': fulllevel* 2)
then fulllevel <-lastelem endif
i <-target - fulllevel ;
/* i is the displacement of target * /
j <-fulllevelj2 ; /* j = 2length of insertion path -1 * /
k <-1 ; /* k is the current position

in the insertion path * /
status(target) <-PENDING ;

/* Reheapification Loop * /
while (j # 0)

if (status(target) =WANTED)
then break endif

if (VALUE(k) > VALUE(nkey))
then Exchange(nkey,k); endif

if (i 2': j)
then /* Go Right * /
{Lock(RSON(k)); Unlock(k);
k <-RSON(k); i <-i - j}
else /* Go Left * /
{Lock(LSON(k)); Unlock(k);
k <-LSON(k)};

endif
j <-j/2 ;

end while

209

if (status(target) =WANTED)

endif

then /*Some deleter is waiting at the root
to pick the key at target * /

{key(l) <-nkey; status(target) <-ABSENT;
status(l) <-PRESENT}

else
{key(target) <-nkey;

status(target) <-PRESENT};

Unlock(k) ;
end_Concurrent Insert

Whenever an inserter or a deleter moves down 1 level by
incrementing k or i, it first locks the next node and then releases
the current lock. This ensures that concurrent deletes or inserts
proceeding in the same path progress in a strict queue order
without any interference. Sil).ce the locking sequence is in the
strict increasing order of node indices, there are no deadlocks.
See [9] for a proof of correctness.

5 Experimental Evaluation
We have implemented the concurrent access heap algorithms
and the serial access heap algo'rithms on BBN Butterfly to test
their performance. Using each scheme, P processors performed
a total of 1000 delete or insert operations (each processor per­
formed 1000/P operations. P was varied between 1 and 30).
Think time Tthink was set to roughly 5 times the heap access
time of the serial operation. The speedup was computed as
follows:

Time taken by P processors for 12/1operations

Time taken by 1 processor for 1000 operations ·

Relative performance of the concurrent heap was studied
for the following cases.

Case I: Deletes
In this case each processor performed one delete operation. in

each access-think cycle. A total of 1000 delete operations were
performed on a heap that initially had 2048 elements. Thus,
the depth of the heap remained 10 for all the deletions. For
the serial access scheme, the speedup was fairly linear up to 5
processors, but saturated after that. For the concurrent heap,
the speedup did not saturate until over 11 processors. These
results are shown in Fig. 3.

Case II: Inserts

In this case, each processor performed one insert operation
in each access-think cycle. A total of 1000 insert operations
were performed on a heap that initially had 1024 elements.
Thus, the depth of the heap remained 10 for all the insertions.
If the values of the inserted keys are randomly distributed, then
the number of iterations of the heapification loop executed by
insert_b are very small[5]. On the other hand, insert_t executes
strictly log(N -1) iterations (N is the size of the heap). Hence
for inserting keys with random key values, our concurrent heap
scheme does not perform better than the serial access heap in­
sert. (The speedup figures are roughly the same for both cases.)

In parallel branch-and-bound algorithms[S,10] the inserted
keys tend to have small values. For such keys, both insert_b and
insert_t would execute roughly the same number of iterations.
To test the performance in this case, we generated keys whose
values were in the decreasing order. In this case, just as in
Case II, the speedup of the concurrent heap scheme saturated

much later than the serial access heap scheme. Fig. 4 shows
the speedup curves.

Case III: Two Inserts and One Delete

In this case, each processor performs one delete and two
insert operations in each access-think cycle. The heap initially
has 1024 elements. This case simulates the behavior of a typical
parallel branch-and-bound algorithm in which each processor
picks a least cost node from the heap, generates 2 successors
and puts them back on the heap. In this case, the concurrent
heap scheme is able to provide a speedup of 13.5, where as the
serial access scheme saturates at 5.

6 Related Research

Biswas and Browne[l] present a scheme, called CHEAP, that
allows insertions and deletions to proceed in parallel. In their
scheme, an insert or delete operation is decomposed into a se­
quence of update steps at different levels of a heap. An auxiliary
task queue stores the steps of insertions and deletions currently
in progress. By appropriately scheduling these update steps,

a set of service processes concurrently perform insertions and
deletions without causing deadlocks. If enough service proces­
sors are available, then this scheme can perform insertions and
deletions in constant time. This approach is not able to per­
form better than the serial access scheme except for very large
heaps due to the overheads associated with scheduling window
updates through the server queue.

Unlike the scheme in [1], our scheme does not require spe­
cial server processors to update the heap. Also the number
of locks needed for each operation are much smaller. Unlike
their scheme, our scheme also retains the strict priority order­
ing of the serial access heap algorithms; i.e., a delete opera­
tion returns the best element of all elements that have been
inserted or are being inserted at the time the delete operation
is started. The scheme presented in this paper was motivated
by the work of Biswas and Browne. Initially, we wanted to l.n­
corporate CHEAP in our parallel branch-and-bound algorithms
to improve their performance. But experiments conducted by
Biswas 4 showed that CHEAP was not able perform better than
the serial access scheme even for heaps with 1,000 elements.

Ellis and Gaffar5 have developed a scheme that also does
not require the use of separate special service processors. In
this scheme, inserts and deletes proceed in opposite directions,
but avoid deadlock using a "sliding-lock" scheme. Performance
re8ults of this scheme are not yet available.

A number of concurrent-access schemes have been devel­
oped for manipulating dictionaries that are represented as bal­
anced trees[4,7], B-trees [3], and the balanced cube[2]. Most
of these concurrent schemes allow O(log N) operations (delete
the smallest key, delete a key, insert a key, search for key, etc.)
to be done simultaneously. A major exception is the balanced
cube which permits O(N) search, insert and delete operations
to done concurrently. However, even the balanced cube permits
only O(log N) operations "delete-the-smallest-key" operations
at a time. In a priority queue, the only operations of interest
are "delete-the-smallest-key" and "insert-a-key". For these op­
erations, on a sequential processor, the heap is clearly a mor.!
efficient data structure than B-tree, balanced trees and the bal­
anced cube. Since our concurrent-access heap scheme has the

4 Personal communication
5 Private communication with Carla Ellis

210

same degree of concurrency as others and has smaller overhead,
it is better than other concurrent schemes for manipulating a
strict priority queue.

7 Conclusions
We have presented a new concurrent heap access scheme that
has small overhead, and is able to perform better than the se­
quential heap even for small heaps. The insert and delete op­
erations of this scheme keep the heap balanced; hence each
operation still takes O(log N) steps, where N is the size of the
heap. The scheme also retains the strict priority ordering of
the serial access heap algorithms; i.e., a delete operation re­
turns the best key of all keys that have been inserted or are
being inserted at the time delete is started. In this scheme,
O(log N) processes can manipulate the heap simultaneously. A
detailed analysis of the expected performance is reported in [9],
where we also discuss a number of possible improvements that
can be made to reduce the overhead of the scheme. We have
incorporated the concurrent heap scheme in a parallel branch­
and-bound algorithm for solving the traveling salesman prob­
lem, and have obtained much better speedups than with the
serial access schemes[6].

Note that even in the concurrent-access heap scheme, at­
most O(log N) processors can manipulate the heap concurrently.
To allow greater concurrency, it seems necessary to relax the
strictness of the priority queue. In [6], we present several "dis­
tributed" formulations of priority queue that permit O(N) con­
currency, and test their effectiveness in parallel branch-and­
bound.

Acknowledgements: We would like to thank Jit Biswas for
many useful discussions concerning CHEAP.

References
[1] Jit Biswas and James C. Browne. Simultaneous update of

priority structures. In Proceedings of International confer­
ence on Parallel Processing, page XXXXX, 1987.

[2] William Dally. A VLSI Architecture for Concurrent
Data Structures. Kluwer Academic Puhl, Boston, Mas­
sachusetts, 1987.

[3] Carla S. Ellis. Concurrent search and insertion in 2-3
trees. Acta Informatica, 14:63-86, 1980.

[4] Carla S. Ellis. Concurrent search and insertion in avl
trees. IEEE Transactions on Computers, C-29 No 9:811-
817, Sept 1980.

[5] Ellis Horowitz and Sartaj Sahni. Fundamentals of Com­
puter Algorithms. Computer Science Press, Rockville,

Maryland, 1978.

[6] V. Kumar, K. Ramesh, and V. Nageshwara Rao. Paral­
lel heuristic search of state-space graphs: a summary of
results. In Proceedings of the 1988 National Conference
on Artificial Intelligence, August 1988. Also AI Lab Tech.
Report 88-70, University of Texas at Austin, March 88.

[7] U. Manber and R.E. Ladner. Concurrency control in a
dynamic search structure. ACM Trans. on Database Sys­
tems, 9, 3:439-455, 1984.

[8] Joseph Mohan. Experience with two parallel programs
solving the traveling salesman problem. In Proceed­
ings of International conference on Parallel Processing,
pages 191-193, 1983.

[9] V. Nageshwara Rao and V. Kumar. Concurrent Access
of Priority Queues. Technical Report TR88-06, Computer
Science Dept., Univ. of Texas at Austin, February 1988.

[10] V. Nageshwara Rao, V. Kumar, and K. Ramesh. Paral­
lel Heuristic Search on a Shared Memory Multiprocessor.
Technical Report AI TR87-45, Univ. of Texas at Austin,
January 1987.

fulllevel = 8

Figure 1: A heap of twelve elements. Upper half of the circle
contains the node number, 'and the lower half contains the
value of the key.

',,

'',,,~ Insertion path

fulllevel = 8 Jastelem = 13

Displacement I = 5

Figure 2: An example of how the insertion path is com­
puted in insert_t. A new key is inserted into the heap
at node 13. I = 5 = (101) in the binary representation;
length of the insertion path = 3.

211

20

10

10 20

Number of processors

Concurrent Heap
15.7

Serial Heap

7.1

30

Figure 3: Plot of speedups obtained in execution of ac­
cess-think cycles for delete operation.

:LO

10

5 10 20

Number of processors

Concurrent Heap

11 .6

Serial Heap

5.04

30

Figure 4: Plot of speedups obtained in execution of ac­
cess-think cycles for insert operation. The numbers in­
serted are in a decreasing order.

CONVOLUTION ON SIMD MESH CONNECTED MULTICOMPUTERS +

Sanjay Ranka and Sartaj Sahni

University of Minnesota

Abstract
I/O Convolution is an important primitive in computer vision and

image processing. In this paper, we present efficient and optimal
algorithms for convolution on a mesh connected computer. Our
algorithms do not assume any broadcast feature for data values as
assumed by previously proposed algorithms.

l Control Program

Keywords and Phrases

Convolution, mesh connected multicomputer

1. INTRODUCTION

The inputs to the image template matching problem are an
NxN image matrix I[O .. N -1, O .. N -1] and an MXM template
T[O .. M -1, O .. M -1]. The output is an NxN matrix C2D where

M-1 M-1

02D[i, j] = E EI[(i +u) mod N, (j +v) mod NJ* T[u,v]

0 ~ i, j <N
02D is called the two dimensional convolution of I and T. Tem­
plate matching, i.e., computing 02D, is a fundamental operation
in computer vision and image processing. It is often used for edge
and object detection; filtering; and image registration [ROSE82,
BALL85]. Because of the fundamental nature of this problem and
because of its high complexity (O(lfff) on a single processor com­
puter), much attention has been devoted to the development of
efficient fine grain multicomputer parallel algorithms. For exam­
ple, Chang, Ibarra, Pong and Sohn [CHAN87] have studied this
problem on an SIMD pyramid computer; Fang, Li and Ni
[FANG85J, Fang, Li and Ni [FANG86], Prassana Kumar and
Krishnan [PRAS86J, and Ranka and Sahni [RANK87a] and
[RANK87b] have considered it on a hypercube multicomputer;
Fang, Li and Ni [FANG86] have considered perfect shuffle multi­
computers; Kung and Song [KUNG81] have considered systolic
arrays; and Lee and Aggarwal [LEE87], and Maresca and Li
[MARE86] have considered mesh connected computers.

In this paper, a parallel algorithm for 2-D convolution is
presented for an SIMD mesh connected multicomputer. Our algo­
rithm differs from those of [LEE87] and [MARE86] in that our algo­
rithm does not use any broadcast of data values. Further, the
amount of result value movement in our algorithms is an order of
magnitude less than in the algorithms of [LEE87] and [MARE86].
Thus when the size of the image and template values is small (e.g,
binary images and templates) as compared to the convolution
values, our algorithms will be more efficient.

Section 2 describes our computer model. In addition, notation
and some fundamental data movement operations are developed in
this section. In Section 3, we develop fine grained algorithms for
one dimensional convolution. These form the basic component of
our two dimensional convolution algorithms which are developed in
Section 4.

2. PRELIMINARIES

2.1. Mesh Connected Multicomputer

+This research was supported in part by the National Science Foundation
under grants DCR84-20935 and MIP 86-17374

212

r-- Unit 1----i Memory

l T
r

I n I

I
I t I e

r I I c
I 0 I
I n I

Processing I n I
Element

I
e I I
c
t I

rt--E=J
i I 0 I

I n I
I N I

I I I e I
I I .. I t I
I I I w I
I I I 0 I
I I I r I

I I I k I

~ I I
I I Processing

Element

Memory

Figure 1 : An SIMD multicomputer

Figure 2 : A 4 X 4 mesh connected computer

A block diagram of an SIMD mesh connected multicomputer
is given in Figures 1 and 2. The important features of such a mul­
ticomputer and the programming notation we use are:

1. There are P X P processing elements connected together via
a mesh interconnection network (to be described later). Each
PE has a unique index (O .. P-1,0 .. P-1). Sometimes we will use
a one dimensional indexing of the mesh. This is obtained

using the standard row major mapping in which (i, f) is
mapped iP + f. The local memory of each PE ran hold
data only (i.e no executable instructions). Hence PEs need be
able to perform only the basic arithmetic operations (i.e., no
instruction fetch or decode is needed). Throughout this
paper, we shall use brackets([]) to index an array and
parentheses('()') to index the PEs. So, A[i, f] refers to i,f'th
element of the matrix A while A(i, f) refers to the A register
of PE(i, i).

2. There is a separate program memory and control unit. The
control unit performs instruction sequencing, fetching, and
decoding. In addition, instructions and masks are broadcast
by the control unit to the PEs for execution. An
instruction mask is a boolean function used to select certain
PEs to execute an instruction. For example, in the instruction

3.

A(i, i) :=A(i, i) +1, (i mod 4 =0)
(i mod 4 = 0) is a mask that selects only those PEs whose
row index satisfies this property. l.e, all PEs with indices
which are multiples of 4 increment their A register by 1.

The topology of a 16 node mesh connected computer is shown
in Figure 2. AP X P mesh contains P2 PEs. PE(i, f) is con­
nected to PE((i-1) mod P, i), PE((i+l) mod P, i),
PE(i, {i-1) mod P) and PE(i, {i+l) mod P).

4. Interprocessor assignments are denoted using the symbol +-,

while intraprocessor assignments are denoted using the sym­
bol :=. Thus the assignment statement:

B((i+l) mod N, f) +-B(i, f)
implies that each processor transmits its B register value to
the B register of the processor on its right.

5. In a unit route, data may be transmitted from one processor
to another only if the two are directly connected. We assume
that the links in the interconnection network are unidirec­
tional. Hence at any given time, data can be transferred
either from PE((i+l) mod N, i) to PE(i, f) or vice versa.

6. Since the asymptotic complexity of all our algorithms is
determined by the number of unit routes, our complexity
analysis will count only these.

2.2. Basic Data Manipulation Operations

In this section, we develop algorithms for some basic opera­
tions on a one dimensional array. Such an array with P PEs has
the topology shown in Figure 3. The PEs are indexed 0 through P-1
left to right.

2.2.2. Data Accumulation

For this operation, PE i has an array A[O .. M -1] of size M.
The notation A[i]{i) refers to A[i] in PE f. In addition, each PE
has a value in its I register. After the data accumulation, the M
elements of A in PE i are such that:

Ai =l((i +i) mod P), 0-5,i<M, 0-5,f<P

This operation can be performed in (M-1) unit routes using
the algorithm given in Figure 4.

procedure ACCUM(A, I, M)
{each PE accumulates in A, the I values of the next M PEs
including itself}

begin

A[OJ :=I;
for i := 1 to M-1 do
begin

SHWT(I, -1);
A[i] :=I;

end
end {ACCUM}

Figure 4: Data accumulation

2.2.3. Adjacent Sum

For each PE, p, 0-5,p<P, the sum

M-4

T(p) = L;A [i]((p + i) mod P)) (1)

is to be computed. M -5, P is a parameter to the operation. This
can be performed in 2(M -1) unit routes using the algorithm of Fig­
ure 5. The strategy here is that each processor initiates a T value
that circulates through the M processors containing its A terms (cf.
eq(l)). Once the M terms have been accumulated, the T values
need to move back to the originating PEs. This requires a clock­
wise shift of M-1.

procedure AdjacentSum(A, M)
begin

T:=A[OJ;
for i := 1 to M-1 do
begin

SHIFT(T, 1);
T :=T +A[i];

end
SHWT(T, -M +1);

end {of AdjacentSum}

Figure 5: Adjacent Sum

Figure 3: One dimensional array

2.2.1. Shift

SHWT(A,i) shifts the A register data circularly counter
clockwise by i. It can be performed in I i I unit routes unless P = 2.
In this case, a shift of =io-1 requires 2 unit routes because of the
assumption of unidirectional links. For convenience, we shall hen­
ceforth assume P >2.

213

3. ONE DIMENSIONAL CONVOLUTION

The inputs to the one dimensional convolution problem are
vectors J[O .. N -1] and T[O .. M -1]. The output is the vector ClD
where:

M-1

CID[i] = :EI[(i + v) mod N]*T[vj , OS v <N

•=ll

We use the computation of CID as a basic step in our algo­
rithms to compute C2D. In this section, we develop algorithms for
CID on a one dimensional processor array. We consider the two
cases:

(i) Each PE has O(M) memory

(ii) Each PE has O(I) memory

Our algorithms assume that the controller cannot broadcast
data values to the processors. There are P=N processors and the
vector I is mapped onto the one dimensional processor array such
that processor p contains I[p]. Further, there are N/M copies of
T in the processor array with one copy in each block of M proces­
sors (processors iM + j, 0 S j <M form a block for each i,
0 S i < N / M). Within a block, the mapping of T is the same as
that of I. The case when N=16 and M=4 is given in Figure 6. The
first row of this figure gives the processor index.

0 2 3 4 5 6 7
Io II I2 ls I4 !5 !6 !7
To T1 Tz Ts To T1 Tz Ts

3.2. 0(1) Memory

When only 0(1) memory per PE is available, we begin by
first pairing I values in the processors. The pair in processor p is
(A(p), B(p)) = (I[(q +2k) mod N], I[(q+2k+I) mod NJ) where
q = lP / MJM and k = p mod M. Figure 8 gives the initial AB
pairs in each PE for the case N = I6, M = 4. This pairing is
easily obtained in M unit routes. Once the AB pairing has been
obtained, the CID may be computed by rotating the AB and T
values clockwise. Throughout the algorithm, the product of A(p)
and T(p) will give one of the terms needed to compute
CID(p), 0 S p < P. B(p) will be the next I value needed. Initially,
this is true for all processors except those with p mod M = M - I.
This situation is remedied by replacing B with I in these processors
to get the first column labeled AB'. Following a rotation of AB, we
get the second column labeled AB. Now, the B value in processors
with p mod M = M - 2 needs to be changed to l(p). With this
insight, one arrives at the algorithm of Figure 9. Its correctness is
easily established. The number of unit routes (including those for
pairing) is at most 3M.

8 9 10 11 I2 I3 I4 I5
lg lg 110 In I12 l1s !14 I15
To T1 Tz Ts To T1 Tz Ts

Figure 6: Initial configuration for I-D convolution

3.1. O(M) Memory

When each processor has O(M) memory, the most effective
way to compute CID is to first perform a data accumulation on I
(Figure 4). Following this, each processor has all the I values
needed to compute the corresponding entry of CID. Next, the T
values are circulated through the M processors. During this circula­
tion, the T values are multiplied by I values and the CID values
computed. It is worth noticing that, unlike the algorithms of
[LEE87] and [MARE86], no results are moved in our algorithms.
Thus when the size of the results is much larger than the size of
the template or image values, our algorithm will perform better.
The algorithm is presented in Figure 7. The total number of unit
routes is 2M -1. Note that while the last iteration of SHIFT(T, -I)
is unnecessary for the computation of CID, it restores the original
T values. This is required by our C2D algorithm.

procedure CID_M(M)
{ O(M) memory algorithm for one dimensional convolution}
begin

ACCUM(A, I, M);
CID :=0;
for j :=0 to M-I do
begin

end

CID :=CID +A[(j +P) mod M] * T;
SHIFT(T, -I);

end; {of CID_M}

Figure 7: O(M) memory computation of CID

214

4. TWO DIMENSIONAL CONVOLUTION

We assume that C2D is to be computed on an N X N mesh
co_n~ecte~ SIMD multicomputer. Further, we assume that I[i, j] is
1mtially m the I register of PE(i, j), the result C2D is to be com­
puted such that C2D[i, j] is in the C2D register of PE(i, j), and
that N is a multi)?le of M. Thus the N X N array may be viewed
as composed of N"/M2 arrays each of size M X M (Figure 10). We
also assume that processor PE(i, j) contains
T[i mod M, j mod M] in its T register.

4.1. O(M) Memory

In this case, PE(i,j), 0Si<N, Osj<N first computes M one
dimensional convojy_!jons S[q], 0Sq <Mas defined below

S[q] = :EI[(i, (j +r) mod N]*T[q, r]

Next, C2D is obtained hy performing an adjacent sum opera­
tion along the columns of the N X N PE array. A high level
description of the algorithm is given in Figure II. The total
number of unit routes is M2 +O(M). Notice that result movement
is restricted to adjacent sum, which takes O(M) time. The algo­
rithms of [LEE87] and [MARE87] require O(Af) result movement.

4.2. 0(1) Memory

We develop two algorithms for this case. The first is concep­
tually simpler but requires 4M2 + O(M) unit routes. The second
requires only 2Af + O(M) unit routes. For the first algorithm, we
rewrite the definill<.J.P of C2D as

C2D[i, j] = :E CXD[i, r, j]
r=ll

i AB T AB' AB T AB' AB T AB' AB T AB'

0 Io Ioli To Ioli I1I2 T1 IJz lzla Tz lzla l3l4 T3 l3Io
1 II Izla T1 lzl3 l3I4 Tz !3!4 I4I5 T3 I4I1 I1I2 To I1I2
2 lz I4I5 Tz lio !5!6 T3 lsfz I2Ia Ta I2I3 I3I4 T1 I3l4
3 /3 [6[7 Ts [6[3 l3l4 To !3!4 I4l5 T1 l4ls Isle T2 !5!6
4 I4 l4I5 To lio I5Ie Ti I5l6 I5l1 T2 [6[7 !7!8 Ta I7I4
5 1. [6[7 Ti [6[7 !7! 8 T2 l7lg !8!9 T3 ! 8!5 !5!6 To !5!5
6 [6 lgl9 Tz ! 8! 9 ! 9! 10 Ta ! 9!6 [6[7 To [6[7 I1ls T1 l7lg

7 !7 I10I11 Ts I10I1 l7lg To !7! 8 !8! 9 Ti lglg ! 9! 10 Tz !9!10
8 lg !8! 9 To !8! 9 Igl10 T1 !9!10 I10I11 Tz f 10!11 I11I12 Ts I11ls
9 lg I10I11 T1 I10I11 I11I12 Tz l11I12 l12l1s T3 I12Ig lgl10 To !9!10

10 !10 I12I13 T2 I12I13 l13I14 Ts I13l10 I10I11 Ta f 10!11 I11I12 T1 I11I12

11 !11 l14l1s T3 l14I11 l11I12 To I11I12 l12I13 T1 l1zl13 l13l14 Tz l13l14
12 !12 I12I13 To l12l1s l1al14 T1 l13l14 lul1s Tz l14I10 l1slo T3 l1sl12
13 !13 l14l1s T1 I14I10 l15Io Tz l1slo Ioli T3 Iol13 l13l14 To l13I14
14 114 Ioli Tz Ioli I1I2 T3 I1l14 l14l15 Ta l1i15 l15Io T1 l15lo
15 115 lzl3 Ts lzlis lislo To l1slo Ioli Ti Ioli I1I2 Tz I1I2

Figure 8: Execution Trace N = 16, M = 4

procedure ClO_l (M)
{ 0(1) memory ClD algorithm}
begin

P AIRING(M); {obtain initial AB pairs}
ClD :=0;
for j :=0 to M-1 do
begin

end;

B(p) :=l(p); {p mod M =M-1-j)
ClO :=ClO +A* T;
SHIFT(A, -1);
C := B; B :=A; A:= C; {Exchange A and B}
SHIFT(T, -1);

end; { of ClD_l}

-

Figure 9: 0(1) memory computation of ClO

M

N

LPF'Jo.__Q]_
.......J7

Figure 10: A N X N array viewed as N2 / M2
M X M arrays

procedure C20_M(N, M)

Stepl:

Step2:

Step3:

end

{ assumes O(M) memory per PE}

Regard the N X N mesh as N one dimensional array
processors. Each row forms one such array. Perform a
data acumulation on I. Now each PE contains the M I
values it needs to compute its S(q)'s.

Compute the S[q]'s. Each S[q] is a one dimensional con­
volution. However, the data accumulation step of the
algorithm of Figure 7 may be omitted as the I values
have already been accumulated in Step 1. To go from
one S to another, the T values need to be shifted along
the columns of each M X M block. This can be done us­
ing the vertical inter PE connections.

M--1

Compute C2D(i, j) = ES[r]((i +r) mod N, j) This is

r=O
done using the adjacent sum algorithm of Section 2 on
the columns of the N X N PE array

Figure 11: High level description of two dimensional convolution
with each PE having O(M) Memory

215

procedure C2D(N, M)

Stepl:

Step2:

Step3:

{ 0(1) memory C20 algorithm}

Repeat Steps 2, 3 and 4 for q := 0 to M-1

PE(i + r, j) computes OlD(i + r, j) = CXD[i, r, j]
where i mod M = q and 0 ~ r <M. This is done using
procedure ClO_l of Figure 9.

PE(i, j) Mjor i mod M = q computes

C2D(i, j) = E CXD[(i + r) mod N, j] by repeatedly

r-0
shifting the ClO values up the columns of the processor
array.

Step4: T(i, j) +-T((i +1) mod N, j)

end; {of C20}

Figure 12: 0(1) memory computation of C2D

M-1

CXD[i, r, j) = I.;I[(i + r) mod N, (j +a) mod N)*T[r, a)

a=fl

A high level description is provided in Figure 12. The number
of unit routes is 4M2 + O(M). In the q'th iteration of Steps 1 and
2 of this algorithm C2D(i, j) is computed for all PEs with
i mod M = q. This is done .by first having PE(i + r, j). Compute
CID(i+r,j)=CXD[i,r,j) for imodM=q and O~r<M.
Next C2D(i, j) is computed by summing CXD[i, r, j) for
i mod M = q and 0 ~ r <M. This summation is done only in PEs
(i, j) with i mod M = q and requires shifting the CXD[i, r, j)
values up along the columns. Each iteration of Steps 2 and 3 takes
4M + 0(1) unit routes. Thus the unit route count for the entire
al(!iorithm is 4M2 + O(M). Note also that this algorithm requires
Al - M movement of the CID values.

The strategy for the second algorithm is similar to that used
in computing CID when only 0(1) memory is available. We may
rewrite the definition of iSJjD as

C2D[i, j) = I.;X[i, j, r] * Y[r]
r=fl

where X[i, j, r) is the 1 X M vector
I[(i+r) mod N, j .. (j+M-l) mod NJ and Y[r] is the 1 X M vector
T[r, 0 .. M-1]. Thus C2D is viewed as the one dimensional convo­
lution of X and Y where each term X and Y is a vector. The
algorithm is presented in Figure 13. Figure 14 shows the initial AB,

II I2 Al A2 and Bl B2 pairs created by the first four PAIRING
oper~tion when N=8, and M=i.The total number of unit routes is
2AJ2 + O(M). Unlike the first algorithm, there is no result move­
ment in this algorithm.

procedure C2D_l(N, M)
{assumes 0(1) memory per PE}
begin

PAIRING(M) along rows of I; {obtain AB pairs}
PAIRING(M) along columns of I; {obtain I1 I2 pairs}
PAIRING(M) along columns of A; {obtain Al A2 pairs}
PAIRING(M) along columns of B; {obtain Bl B2 pairs}
C2D :=0;
for a := 0 to M-1 do
begin

end;
end{ of C2D_l}

A2(i, j) :=A(i, j); (i mod M =M-1-a)
B2(i, j) := B(i, j); (i mod M = M-1-a)
I2(i, j) := I(i, j); (i mod M = M-1-a)
AA :=Al; BB :=Bl;
for b := 0 to M-1 do
begin

end

BB(i, j) := Il(i, j); (j mod M = M-1-b)
C2D(i, j) := C2D(i, j) + AA(i, j) * T(i, j);
SHIFT(AA, -1) along rows;
C :=BB; BB :=AA; AA := C;
SHIFT(T, -1) along rows;

SHIFT(Al, -1) along columns;
SHIFT(Bl, -1) along columns;
SHIFT(Il, -1) along columns;
C :=Al; Al :=A2;A2 :=C;
C :=Bl; Bl :=B2; B2 :=C;
C :=11; 11:=I2;12 :=C;
SHIFT(T, -1) along columns;

Figure 13: Two dimensional convolution
with each PE having 0(1) Memory

216

5. CONCLUSION

In this paper, we have developed optimal algorithms for 1-D
convolution and image template matching (2-D Convolution) on a
mesh connected SIMD multicomputer. None of our algorithms
require a data broadcast. Further, our algorithms require less or no
movement of results. Hence, these algorithms will be more efficient
when the size of the image and template values is small as com­
pared to the size of the convolution values.

6. REFERENCES

[BALL85] D. H. Ballard and C. M. Brown, "Computer Vision",
1985, Prentice Hall, New Jersey.

[CHAN87] J. H. Chang, 0. Ibarra, T. C. Pong, and S. Sohn,
" Convolution on a Pyramid Computer" , International
Conference on Parallel Processing, 1987, pp 780-782.

[DEKE86] E. Dekel, D. Nassimi and S. Sahni, " Parallel matrix
and graph algorithms", SIAM Journal on computing,
1981, pp. 657-675.

[FANG85] Z. Fang, X. Li and L. M. Ni, "Parallel Algorithms for
Image Template Matching on Hypercube SIMD Com­
puters", IEEE CAPAMI workshop, 1985, pp 33-40.

[FANG86] Z. Fang, X. Li and L. M. Ni, "Parallel Algorithms for
2-D convolution", International Conference on Parallel
Processing, 1986, pp 262-269.

[HOR085] E. Horowitz and S. Sahni, "Fundamentals of Data
Structures in Pascar', Computer Science Press, 1985.

[KUNG82] H. T. Kung and S. W. Song, "A Systolic 2-D Convolu­
tion Chip", Multicomputers and Image Processing:
Algorithms and Programs, editors: Preston and Uhr
(Academic Press, New York), 1982, pp 373-384.

[LEE87] S. Y. Lee and J. K. Aggarwal, "Parallel 2-D convolu­
tion on a mesh connected array processor" , IEEE
Transactions on Pattern Analysis and Machine Intelli­
gence, July 1987, pp 590-594.

[MARE86] M. Maresca and H. Li, "Morphological Operations on
Mesh-connected Architecture : A generalized convolu­
tion Algorithm", Proceedings of 1986 IEEE Computer
Society Workshop on Computer Vision and Pattern
Recognition ,1986, pp 299-304.

[PRAS87] V. K. Prasanna Kumar and V. Krishnan, "Efficient
Image Template Matching on SIMD Hypercube
Machines", International Conference on Parallel Pro­
cessing, 1987, pp 765-771.

[RANK87a] S. Ranka and S. Sahni, "Image Template Matching
on an SIMD hypercube multicomputers", University of
Minnesota Tech. Report, 1987.

[RANK87b] S. Ranka and S. Sahni, "Image Template Matching
on MIMD hypercube multicomputers", University of
Minnesota Tech. Report, 1987.

[ROSE82] A. Rosenfeld and A. C. Kak, "Digital Picture Process­
ing", Academic Press, 1982

AB
11 12
Al A2
Bl B2

AB
11 I2
Al A2
Bl B2

AB
11 I2
Al A2
Bl B2

AB
11 I2
Al A2
Bl B2

AB
11 I2
Al A2
Bl B2

AB
11 12
Al A2
Bl B2

AB
11 I2
Al A2
Bl B2

AB
11 12
Al A2
Bl B2

10,olo,1 lo,zlo,3 lo,io,5 lo,610,1 lo,4lo,5 lo,610,1 10,olo,1 lo,2lo,3
lo,ol1,o lo,J1,1 10,211,2 lo,sf1,3 lo,411,4 lo,511,5 lo,611,6 lo,1l1,1
lo,ol1,o 10,211,2 10,411,4 Io,6I1,6 Io,4I1,4 Io,6I1,6 Ia,0I1,o Io,2I1,2

Io,J1,1 Io,311,3 lo,5I1,5 Io,1I1,1 Io,5I1,5 lo,1I1,1 lo,Jl,1 Io,3I1,3

I1,0I1,1 I1,2I1,3 l1,4l1,5 l1,6l1,1 l1,4l1,5 ll,611,7 I1,ol1,1 l1,2l1,3

l2,ol3,o 12,113,1 12,213,2 Iz,313,3 12,413,4 Iz,513,5 12,613,6 l2,1l3,1
lz,ol3,0 12,213,2 12,413,4 12,613,6 12,413,4 12,613,6 lz,ol3,o 12,213,2

12,/3,1 12,3!3,3 Iz,5I3,5 I2,1I3,1 I2,5l3,5 I2,1l3,7 Iz,/3,1 12,313,3

I2,0I2,1 I2,2l2,3 I2,4I2,5 l2,6I2,1 Iz,4lz,5 I2,6I2,1 l2,ol2,1 I2,2I2,3

I4,0I5,o 14,115,1 I4,2l5,2 14,315,3 r.,.15,4 !4,515,5 I4,,15,6 14,7!5,7

I4,0Is,o I4,2l5,2 I4,4I5,4 I4,6l5,6 I4,4I5,4 I4,6I5,6 14,015,0 l4,zl5,2
14,115,1 14,315,3 14,515,5 14,715,7 14,515,5 14,715,7 14,115,1 14,315,3

13,013,1 13,213,3 13,413,5 13,613,7 13,413,5 13,613,7 13,013,1 13,213,3

l6,0I1,o 16,117,1 l6,2I1,2 16,317,3 16,417,4 16,517,5 16,611,6 16,111,1
16,011,0 l6,2I1,2 16,417,4 16,617,6 16,417,4 16,617,6 I6,ol1,o 16,217,2

16,/7,1 16,317,3 16,517,5 l,,111,1 16,517,5 16,717,7 16,117,1 16,317,3

14,014,1 14,214,3 14,414,5 14,614,7 14,414,5 14,614,7 14,014,1 I4,zl4,3
14,015,0 14,115,1 14,210,2 14,315,3 14,415,4 14,515,5 14,,15,6 14,715,7
14,015,0 14,215,2 14,415,4 14,615,6 14,415,4 14,6!5,6 14,ols,o 14,215,2

l4,1ls,1 14,315,3 14,515,5 14,115,1 14,515,5 14,115,1 14,/5,1 14,315,3

15,015,1 15,215,3 15,415,5 15,615,7 15,415,5 15,615,7 15,015,1 15,215,3

16,011,0 16,117,l 16,217,2 16,317,3 16,417,4 16,517,5 16,617,6 16,717,7
l,,ol1,o 16,217,2 l6,i7,4 16,617,6 16,417,4 16,617,6 l,,ol1,o 16,217,2

16,117,1 16,317,3 16,517,5 16,111,1 16,517,5 16,111,1 16,117,1 l,,317,3

16,016,1 16,216,3 16,416,5 16,616,7 16,416,5 16,616,7 15,016,1 16,216,3
la,ol1,o 10,111,1 lo,2l1,2 lo,311,3 lo,411,4 lo,5l1,5 lo,el1,6 la,111,1
lo,ol1,o 10,211,2 lo,411,4 lo,el1,6 lo,•11,4 la,611,6 lo,ol1,o Io,211,2

la,111,1 lo,311,3 10,)1,5 lo,111,1 lo,511,5 10,111,1 lo,111,1 la,al1,3

l1,ol1,1 11,211,3 11,417,5 17,617,7 11,417,5 l1,el1,1 11,011,1 11,211,3
lz,ola,o 12,113,1 12,213,2 12,313,3 12,413,4 12,513,5 lz,613,6 lz,713,7
lz,ols,o 12,213,2 lz,413,4 lz,613,6 lz,413,4 12,613,6 12,013,0 l2,2la,2

l2,1ls,1 12,313,3 12,513,5 12,113,1 12,513,5 lz,1Ia,1 12,113,1 12,313,3

Figure 14: Configuration after the four PAIRING operations in Figure 13
for the case N =8 and M =4

217

Parallel Solutions to Geometric Problems
on the Scan Model of Computation*

Guy E. Blelloch and James J. Little
M.l.T. Artificial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts 02139

Abstract
This paper describes several parallel algorithms that solve geometric

problems. The algorithms are based on a vector model of computation
- the scan-model. The purpose of this paper is both to illustrate how
the model can be used and to describe a set of simple algorithms.

We describe a k-D tree algorithm that, for n points, requires O(lg n)
calls to the primitives, a line-drawing algorithm that requires 0(1) calls
to the primitives, a line-of-sight algorithm that requires 0(1) calls to the
primitives, and finally two convex-hull algorithms. All these algorithms
should be noted for their simplicity rather than complexity; many of
them are parallel versions of known serial algorithms or variants of
known parallel algorithms.

Most of the algorithms discussed in this paper have been implemented
on the Connection Machine, a highly parallel single instruction multiple
data (SIMD) computer.

1 Introduction
The purpose of this paper is twofold. Firstly, it describes a set of ele­
gant, practical algorithms for solving a diverse set of problems in com­
putational geometry and graphics. Secondly, it helps demonstrate that
the scan-model is a viable model of computation. These two purposes
complement each other: the model allows a simple description of the
algorithms, and the algorithms demonstrate the power of the model.

Researchers have suggested several synchronous parallel models of
computation. The most popular of these models are the parallel ran­
dom access machine (P-RAM) models [13]. A P-RAM consists of a set
of conventional processors attached to a single shared memory. Proces­
sors communicate through the shared memory: one processor can write
a value into the memory and another processor can read this value.
Researchers have suggested several variations of the P-RAM models.
These variations mostly differ in whether or not they permit concur­
rent reads from, or concurrent writes to, a unique memory location.
By assuming that memory references take unit-time, the P-RAM mod­
els have been used to determine the asymptotic running time of many
parallel algorithms.

We suggest another class of synchronous parallel models of compu­
tation defined in terms of a set of primitive operations that operate on
arbitrarily long vectors of atomic values. We call these models vector
models [8]. The models differ from P-RAM models both in that they
are single instruction multiple data (SIMD) models, and in that there
is no concept of a memory shared among many processors. Elements
in a vector communicate through a permutation primitive rather than
a shared memory. As with the P-RAM models, vector models can be
used to analyze the asymptotic running time of algorithms, by making
assumptions about the relative running times of the primitives.

Since vector models are SIMD, they can be efficiently mapped onto
a wider range of architectures than P-RAM models can. As well as
being implementable on standard serial computers and on multiple in­
struction parallel computers, they can be efficiently implemented on
vector processors, such as the vector processor of the CRAY systems
[24], or single instruction parallel computers, such as the Connection
Machine [16]. On the other hand, since P-RAM models are multiple

0 • This report describes research done within the Artificial Intelligence Labora­
tory at the Massachusetts Institute of Technology. Support for the A.I. Laboratory's
artificial intelligence research is provided in part by the Advanced Research Projects
Agency of the Department of Defense under Army contract DACA 76-85-0-0010 and
in part under the Office of Naval Research contract N00014-85-K-0124.

instruction multiple data (MIMD) models, they are more powerful than
vector models. As should become evident in this paper, and as argued
elsewhere [8], this additional power is not necessary for a broad range
of practical algorithms. We also believe that vector models tend to lead
to simpler and more concrete algorithm descriptions than do P-RAM
models.

The scan-model is a particular vector model. The name comes from
the inclusion of a scan, also known as prefix, primitive. In this paper
we describe several algorithms based on the scan-model. Most of the
algorithms we describe in this paper have been implemented on the
Connection Machine. All the algorithms described in this paper are
described in more detail in [10,8]. Before describing the algorithms,
we define the scan-model and introduce some techniques based on the
model.

218

2 The Scan-Model
The scan-model [8] is defined in terms of a set of primitive operations
that operate on arbitrarily long vectors of atomic values. By a vector
we mean a one dimensional array (an ordered set). By atomic values
we mean values that can be represented in O(lg n) bits - in this paper
we only use integers, floating point numbers and boolean values. We
assume that the primitives require approximately an equivalent dura­
tion of time when operating on equal length vectors. The scan-model
has three classes of primitives: element wise arithmetic and logical oper­
ations, permutation operations, and scan operations, a type of parallel
prefix computation.

Each elementwise primitive operates on equal length vectors, produc­
ing a result vector of equal length. The element i of the result is an
elementary arithmetic or logical primitive - such as +, - , *•or and not
- applied to element i of each of the input vectors. For example:

A
B

A+B
AxB

[5
[2

(7
[10

3 4 9 6]
3 3 2]

6 12 4 12 8 8]
24 27 12 12]

The permutation primitive takes two vector arguments - a data vec­
tor and an indez vector - and permutes each element in the data vector
to the location specified in the index vector. For example:

Vector Index [o 4 7]

A (data vector) [o m e g y]
I (index vector) [2 4 0 7]

permute(A, I) [g 0 m y]

It is an error for more than one element to have the same index
- the permutation must be one-to-one. This restriction is similar to
the restriction made in the exclusive read exclusive write (EREW) P­
RAM model. To allow communication between vectors of different sizes,
we include a version of the permute primitive that returns a vector of
different length than the source vectors by masking out elements or
putting in defaults.

The scan primitives execute a scan operation, sometimes called a
prefix computation, on a vector. The scan operation takes a binary
associative operator 6), and a vector [a0 , a1, .. ., an-tl of n elements, and
returns the vector [ao, (aoffia1), .. ., (aoffia16) ... 6)a,._t)J. In this paper we
will only use plus, maximum, minimum, or and and as operators for the
scan primitives. We will henceforth call these scan operations +-scan,
max-scan, min-scan, or-scan and and-scan. Some examples:

A [5 l] [3 4 9) [2 6)
B [l OJ [2 0 3 l} [O l]
+-scan(A) [5 6] [3 7 10 19] [2 8]
permute(A, B) [l 5) [4 9 3} [2 6)

Figure 1: Examples of the segmented versions of the primitive operations.

A

+-ocan{A)
max-tcan(A)

[5

[5
[5

9

4

13 16 25
9

6]

27 33}

9J

In [9,8] we argue why, in the analysis of algorithms, the scan primi­
tives should be considered no more expensive (timewise) than the per­
mutation primitive. The basic argument is that the scan primitives can
be implemented, both in practice and in theory, to run as fast as the
permutation primitive.

In the description of algorithms we will often loosely refer to vectors
in which each element contains some fixed number of atomic values. At
the primitive level such a structure vector would be implemented with
multiple vectors but a higher level language could support record-like
vectors in which each element has some constant number of values.

2.1 Segments

This section describes a method that allows a programmer to take a
vector routine defined to operate on a single set of data and then apply
it to many sets in parallel. For example, if we had a vector routine
that sorted a set of values, we could apply it to sort many sets of
data in parallel. Or, if we had a vector routine that, given endpoints,
determines the pixels on a line, we could apply it to draw many lines
in parallel.

The technique involves dividing a vector into segments and placing
one set of data in each segment. To keep track of how a data vector
is segmented, we associate with the data vector a segment-descriptor.
A segment-descriptor is itself a vector which has as many elements as
segments of the data vector; each of these elements contains an integer
which specifies the length of the segment1 . For example:

A'
aegment.ducriptor

A

Henceforth, the notation

A [5 l}

[5
[2

[5

[3

4

lJ

4

3

2J
[3

4

4

9}

9J

[2

2 6)

[2 6J

6}

is shorthand for a pair of vectors: the data vector along with its segment­
descriptor.

For each primitive of the scan-model we define a segmented version
that operates independently within each segment. Figure 1 illustrates
examples of segmented versions of the primitives. The segmented ver­
sion of the permutation primitive bases its indices relative to the be­
ginning of each segment so values permute within a segment - it is
an error for an index to reference outside of the segment. The seg­
mented version of the scans primitives restart at the beginning of each
segment2 • The segmented version of the elementwise operations are
unchanged. All the segmented versions can be simulated with a small
constant number of calls to the unsegmented versions [8].

The Segment Lemma: With a segmented version of all the prim­
itives of the scan-model, we can apply any routine defined in terms
of those primitives to operate on a single set of data, to multiple
sets of data independently and in parallel.

We won't prove this lemma in this paper, but it should be intuitive;
a proof is given in [8]. This lemma allows great simplification of the
code needed to describe parallel algorithms.

1 There are several other ways of representing segments [8] but we find this rep­
resentation the most convenient.

2 A similar operation was suggested by Schwartz [26].

219

A [7 8}
L [2 4 2}
I [O 2 l}
B [5 lJ [3 4 3 9J [2 6J
c [l OJ [2 OJ (0 IJ
F [T FJ [T F F TJ (T TJ
distribute(A, L) (7 7] [3 3 3J (8 8J
index(L) (0 lJ (0 2 3J [O lJ
element(A, I) [5 3 6]
+-reduce(B) [6 19 8J
max-reduce(B) [5 9 6}
pack(B, F) [5J [3 9J [2 6J
split(B, F) [l) [5} [4 3) (3 9J D [2 6J
delete-split(B, F) [l] [5] [4 3} [3 9] [2 6)
rank-split(C, F) [OJ [OJ (0 IJ [l OJ D [O lJ

Figure 2: Examples of a set of simple operations based on the primitives.

2.2 Some Simple Operations
In this section we describe several useful, simple operations that can
be implemented with a small constant number of calls to the primitive
operations [9]. As with the segmented versions of the primitives, these
operations are useful enough that they might themselves be considered
primitives and be implemented directly. Many of these operations are
similar to primitives of APL [18]. Figure 2 illustrates examples of each
of the operations.

The distribute operation takes a vector of values and a vector of lengths
and distributes each value into a segment of length specified by lengths.
The index operation takes a vector of lengths, creates a segment for
each length, and returns the index of each element within each seg­
ment. The element operation takes a segmented vector values, and a
vector of indices with one element per segment. Each index i is used
to extract the i'h element from the corresponding segment in values.
The reduce operation takes a segmented vector of values and combines
all the elements in each segment using one of five binary operators:
+, maximum, minimum, or or and. It returns a vector with as many
elements as segments.

The append operation takes two segmented vectors of values with the
same number of segments and appends the two vectors segmentwise.
The pack operation takes a segmented vector of values and a segmented
boolean vector of flags, and packs all the elements with a T in their
flag into consecutive elements, deleting elements with an Fin their flag.
The split operation takes a segmented vector of values and a segmented
boolean vector of flags, and packs all the elements with an F in their
flag to the bottom of each segment and elements with a T in their flag
to the top of each segment. It also splits each segment in two at the
boundary between the T and F elements. We also define a delete-split
operation which is the same as split but deletes any empty segment. The
rank-split operation is similar to the split operation except that the ranks
argument must be a valid set of indices for the permutation primitive.
As well as splitting these indices, the rank-split operation renumbers
them so they are valid within the new segments but maintain the same
order.

2.3 Recursive Splitting
The segment abstraction and the primitives we described allow simple
definitions of recursive routines that start with some set of values, split
this set into subsets and recursively solve the problem on each subset.
We will call this technique recursive splitting. As an example of such a
technique, consider the following parallel version of quicksort. As with
the serial algorithm, the algorithm picks one of the keys as a pivot value,
splits the keys into two sets, one with greater valued keys and one with
lesser valued keys, and then recurses on each set.

The parallel version picks a random element from each segment as a
pivot value using the element operation3 • The algorithm distributes this
pivot value over each segment using a distribute operation, and splits
the keys based on whether a key is greater or less than the pivot using
the delete-split operation4 . The algorithm is now applied recursively to

3 1 assume that there is a primitive dementwise random operation which in each
element takes an integer and returns a pseudo-random number less than that integer.

4 We use the delete-split operations instead of the split operation so that we never

y

• k
a e •
• 1'

t-zn .g
• r-----1 i

j •
f b. •

t---
o. c

t----1 •
n d.

I •
• h

•

x

point [a b c d g h k rn n 0 p)

x-rank [O 6 15 10 7 2 4 12 14 8 13 3 5 11 9)
y-rank [13 7 4 15 6 11 0 9 8 14 10 2 5 12)

above-splil-line? (F F T T F F F T T T T F F F T T)

rank-split x-rank = [O 6 7 4 3 5) [7 4 6 0 5 3 1)
rank-split y-rank = [6 3 7 2 0 4 1) [2 0 4 7 3 6)

Figure 3: An example of a 2-D tree. The top diagram shows the final
splitting. The vectors below are generated during the first step - when
splitting along the line L 2 •

the result. When the numbers within all segment are in non decreas­
ing order, we return. As with the serial algorithm, this algorithm is
expected to complete in O(lgn) steps5 • In the scan-model, each step
requires a small constant number of operations.

The code needed to implement quicksort in the scan-model is as fol­
lows:

define quicksort(keys){
if-any (shift-left(keys) <keys)

then
pivots<- element(keys, random(length(keys)));
flags <- distribute(pivots, length(keys)) :::; keys;
quicksort(delete-split(keys, flags));

else keys}

This general recursive splitting technique can be used in many divide
and conquer algorithms. In this paper we will use it in the k-D tree
algorithm discussed in Section 3, and the quickhull algorithm discussed
in Section 6.1.

3 Building a k-D Tree
A k-D tree is technique for splitting n points in a k dimensional space
into n regions each with a single point [6]. It starts by splitting the
space in two along one of the coordinates using a k - 1 dimensional
hyperplane. It then recursively splits each of the subspaces in two.
Figure 3 illustrates an example of a 2-D tree. At each step the algorithm
must select which dimension to split within each subspace; the criterion
for selection depends on how the tree will be used. A common criterion
is to select the dimension along which the spread of points is greatest.

The k-D tree is often used as a step in other algorithms. 3-D trees
are used in ray tracing algorithms for rendering solid objects. In such
algorithms, objects need only be stored in the regions they penetrate
and rays need only examine regions they cross. This can greatly reduce
the number of objects each ray needs to examine. k-D trees are also
used in many proximity algorithms such as the all.closest pairs problem
[15] or the closest pair problem. k-D trees have also been suggested for
use in some machine learning algorithms [20].

have more segments than elements.
5 This is actually only true if either the keys are unique, or we split into three

groups at each step (<, =, >), or we switch between ~ and ~ on alternating steps.

220

The algorithm we describe here is a parallel version of a standard
serial algorithm [22]. For n points, our algorithm takes O(klgn) calls
to the primitives on vectors of length n. This algorithm is optimal in
the sense that even if simulated on a serial machine, it will run in the
same asymptotic running time as the best serial algorithm .

Our algorithm consists of one step per split. Each step requires O(k)
calls to the primitives. Before executing any steps, the algorithm sorts
the set of points according to each of the k dimensions. The sort­
ing can be executed with the quicksort algorithm discussed earlier, an
enumerate-pack sorting algorithm discussed in [9], or a version of Cole's
sorting algorithm (11]. Instead of keeping the actual values in sorted
order for each dimension, we keep the rank of each point along each di­
mension. The rank of a point is the position the point would be located
at if the vector were sorted. We call the vectors that hold these ranks,
rank-vectors - there is one rank-vector for each dimension. Figure 3
illustrates an example for a 2-D tree, the initial rank-vectors, and the
result of the first step.

At each step of the algorithm the rank-vectors will contain a segment
for each subspace, and the ranks within each segment will be the correct
ranks for that subspace. It suffices to demonstrate that we can execute
a split along any dimension and generate new ranks within the two
subspaces. The algorithm is then correct by induction.

To split along a given dimension the algorithm distributes the cut line
and determines for each point whether it is above or below the line6 •

The algorithm now uses the rank-split operation defined in Section 2.2
to split each rank-vector based on whether a point is below or above
the split line. The rank-split operation as defined correctly generates
the rank within each subspace. Each step therefore requires O(k) calls
to the primitives: some operations to determine whether each point
is below or above the split, and k rank-split operations. Since there
are O(lg n) steps, the whole algorithm requires O(k lg n) calls to the
primitives.

A two dimensional closest-pair algorithm can be implemented based
on the k-D tree algorithm. This algorithm is a parallel version of an
algorithm of Bentley and Shamos [7] and is described in (10]. For n
points in a two dimensional space, our algorithm requires O(lg n) calls
to the primitives using vectors of length O(n).

4 Line Drawing
Two dimensional line drawing is the problem of: given a pair of points
on a two dimensional grid (the two endpoints ofa line), determine what
pixels in a finite resolution grid lie on a line between the endpoints.
Line drawing is used extensively in practice in generating computer
images, especially in computer aided design. In this section we describe
a very simple line drawing routine. It generates the same set of pixels
as generated by the simple digital differential analyzer (DDA) serial
technique (19]. The routine takes a small constant number of calls to
the primitives on vectors at niost as long as the number of pixels in the
output. Because of the segment lemma (Section 2.1), the routine can
be used to draw many lines in parallel. The routine we describe has
been extended by Salem [25] to render solid objects.

The basic idea of the routine is to calculate the number of pixels in a
line and allocate a set of vectors of that length with the line information
distributed across the vectors. Then based on the line information and
a unique index for each element, the elements can calculate their final
position on the grid. The number of pixels in a line is one more than
the maximum of the "' and y differences - we will call this number L.
We distribute one endpoint and the slope of the line across vectors of
length L using the distribute operation and generate the unique index
for each position in the vector with the index operation. Based on the
index, the endpoint, and the slope, we can calculate the position of each
pixel using some simple arithmetic. This is described in more detail in
[10].

5 Line of Sight
Given an .,fii, by .,fii, grid of altitudes and an observation point on or

above the surface, a line of sight algorithm finds all points on the grid

6 As stated earlier, the method for choosing a cut line will depend on the particular
use of the k~D tree.

Figure 4: An example of a line of sight problem. The X marks the
observation point. The numbers represent the altitude of each contour
line. The elements visible from the observation point arc shaded.

visible from the observation point. Figure 4 illustrates an example. A
line of sight algorithm can be applied to help determine where to locate
potential eyesores. For example, when designing a building, a highway
or a city dump, it is often informative to know from where the "eyesore"
will be visible.

The algorithm we describe requires 0(1) calls to the primitives using
vectors of length 0(n). The basic idea is to allocate a segment in a
vector for every ray that propagates in the plane from the observation
point, henceforth referred to as X, to a boundary position. Based on
some calculations on the points in each ray, we can determine if the
point is visi hie.

The algorithm consists of four basic steps. Each point p in the grid
calculates the vertical angle between the horizontal plane that passes
through X (the observation point) and the line from p to X. Secondly,
the algorithms allocates a set of rays - one for each boundary grid
point - and distributes the angles from each point pin the grid to all
the rays it belongs to. Each ray is a segment in a vector we will call
the ray structure. Thirdly, following a ray from X to the boundary, a
point pis visible if its angle is greater than all the angles that precede
it in the ray. This can be determined for all points in all rays with
a single segmented max-scan, and a comparison. Fourthly, visibility
information is returned back to the grid points. Since a grid point can
have a position in many rays, the visibility flags are combined using an
or-reduce. Some permutations are required to distribute the information
to the ray structures and to reduce it back to the grid; this is described
in [10].

The longest vectors required by the algorithm will be the vectors of
the copy and ray structures. It is not hard to show that for a ,,fii, by ,,fii,
grid, independent of the location of X, these vectors will have length
2n.

6 Convex Hull
The planar convex hull problem is: given n points in the plane, find
which of these points lie on the perimeter of the smallest convex region
that contains all points. The planar convex hull problem is probably
the most studied problem in computational geometry, both because
it is a simple problem, making it easy to study, and because it has
many applications - applications range from computer graphics [14]
to statistics [17].

In this section we describe two scan-model based algorithms for deter­
mining the convex hull of a set of points. The first algorithm, a parallel
quickhull algorithm, is very simple and likely to perform well in practice
but is not provably optimal. The second algorithm is more complicated
and impractical but is theoretically optimal. The algorithm is based
on a parallel algorithm designed for the concurrent read exclusive write
(CREW) P-RAM model [1,3].

6.1 QuickHull

This is a parallel version of the quickhull algorithm [22,12]. The
quickhull algorithm was given its name because of its similarity with

J

p

[A BC DEF G H I J KL M N 0 PJ
A [B D F G H J K M OJ P [C E IL NJ

A [BF] J [OJ P N [C E]

ABJOPNC

Figure 5: An example of the quickhull algorithm. Each vector shows one
step of the algorithm. The line AP is the original split line. J and N are
the farthest points in each subspace from AP, and are therefore used for
the next level of splits. The values outside the brackets are hull points that
have already been found.

the quicksort algorithm. Like quicksort, the quickhull algorithm picks
a pivot element, a point; splits the data based on the pivot; and is
then recursively applied to each of the split sets. Also like quicksort,
the pivot element is not guaranteed to split the data into sets with any
particular ratio of sizes, so that in the worst case, the algorithm can
require n steps.

Figure 5 illustrates an example of the quickhull algorithm. The algo­
rithm first splits the points into two sets with a line that passes between
the two "' extrema - lets call these points l and 7'. In the scan-model
this is executed with a few reduce and distribute operations, some ele­
mentwise arithmetic calculations, and a split operation.

The algorithm now recursively splits each of the two subspaces into
two using the following steps. It determines for each point p in the
subspace the perpendicular distance from the point to the line IT. This
can be calculated with a cross product of the lines Ir and lp. The
algorithm selects the farthest point from the line Ir and distributes it
to all other elements in the subspace - lets call this point t. It should
be clear that t lies on the convex hull. Points within the triangle /tr
cannot be on the convex hull and are eliminated with a pack operation.
The point t is now used to further split each segment based on which
of the two sides of the triangle, lt or rt, they fall. The algorithm is now
applied to the new segments recursively. The algorithm is completed
when all segments are empty.

Each step requires a small constant number of calls to the primitives.

221

As with the serial quickhull, for m hull points, the algorithm runs in
O(lg m) steps for well distributed hull points, and has a worst case
running time of O(m) steps.

6.2 yin Merge Hull
This algorithm is a variation of a parallel algorithm suggested in [1] and
independently in [3]. Their algorithm is based on the concurrent read,
exclusive write (CREW) P-RAM model. We cannot use their algorithm
directly because the scan-model does not permit concurrent access to
a single value, a necessary part of their algorithm. The variation we
describes keeps all elements that require the same data in a contiguous
segment so the data can be distributed using a distribute operation. The
contribution of our version is showing how the concurrent read operation
can be replaced by the distribute operation and involves a tree search
method discussed in the next section. Like the original algorithm, the
variation we describe runs with O(lgn) calls to the primitives.

Unfortunately, we do not have space here to review the CREW al­
gorithm and we refer the reader to the two papers mentioned above.
A review of the CREW and a more complete description of our varia­
tion can also be found in [10]. The only difficult part of converting the
CREW algorithm to the scan-model is in the step that finds the up­
per tangent line-segments when merging the ,,fii, subhulls into a single

convex hull. The step uses the algorithm of Overmars (21] to find the
upper tangent line segment for all pairs of subhulls. Overmars method
executes a binary search alternating between the two subhulls, and re­
quires O(lg n) time. At the k'h step of the binary search, an element
will either go down the left branch, the right branch or will stay still in
the search tree.

The merging step cannot be implemented directly on the scan-model
since each pair of subhulls independently finds the upper tangent-line
segments using the algorithm of Overmars, and will therefore require
concurrent reads: several pairs, while executing the binary search, will
require access to the same elements. To avoid the concurrent read, we
place each of the sets of ..Jii points that belong to the same subhull in
its own segment. We then use a general binary search method described
in [10] to execute the binary search. This search will require O(lg n)
time. The basic idea of this binary search method is to use the split
operation to split the elements going down each branch of the search,
and to use the append operation to append the elements that stay at
a vertex of the tree to the elements that come down from a parent.
This guarantees that all elements at any vertex of the search tree are
in a contiguous segment so that the distribute operation can be used
to distribute information to them. Each element also needs to keep
a pointer to the matching element in the other subhull to which it is
trying to find an upper tangent line.

Our variation of the CREW algorithm runs with the same number
of calls to the primitives as the original since, as with the original, the
sort runs in O(lgn) time, and, as argued above, the merge also runs in
O(lgn) time.

7 Conclusions
This paper introduces the idea of a vector model of computation; de­
fines a particular vector model, the scan-model; and describes several
algorithms implemented on the scan-model. Since many of the algo­
rithms discussed in this paper are variants of known algorithms, we
believe that much of the contribution of this paper is to methodology
rather than to algorithms.

We believe that the algorithms we describe are very practical for im­
plementation on a wide range of architectures, both serial and parallel,
and should in most cases be almost as fast on a particular architecture as
algorithm designed specifically for that architecture7 • This generality is
one of the main advantages of the scan-model over the P-RAM models.
The advantage arises both because the scan-model is a vector model,
allowing efficient implementations on vector processors and single in­
struction parallel processors, and because it treats the scan operation
as taking no more time than a permutation, a realistic assumption for
almost all architectures. The algorithms described in this paper have
been implemented on the Connection Machine.

In more recent research we have been considering the effect of in­
cluding other operations as primitives. The operation we have found
most promising is a variation of the merge operation8 . This operation
can be implemented efficiently on a wide range of architectures and
is useful for many algorithms. To implement the merge operation on
serial architectures we can use the standard merge operation, and on
parallel architectures we can use a variation of Batcher's bitonic merge
network (5]. Algorithms to construct and manipulate the plane-sweep
tree data structure [2,1,4,23] can be greatly simplified with a primitive
merge operation. We have also found the merge primitive useful for
manipulating sets. We have also considered sorting as a primitive, but
we find it hard to argue that sorting should be assumed to require the
same time as a permutation.

We hope that the paper will help spur further interest in designing
algorithms for vector models of computation.

Acknowledgments
We would like to thank Charles Leiserson and Guy Steele for their
contributions. We would also like to thank Thinking Machines for the

7This is not true for architectures with low connectivity stich as grid architectures
or tree architectures.

8 Given two vectors A and B of numbers, it returns a vector C of length A with
indices into the vector B. These indices point to where in B an element in A should
merge.

opportunity to work on the Connection Machine.

References
[l] Alok Aggarwal, Bernard Chazelle, Leo Guibas, Colm O'Dilnlaing, and

Chee Yap. Parallel computational geometry. In Proceeding• Sympoaium
on Foundation• of Computer Science, pages 468-477, October 1985.

(2] Mikhail J. Atallah, Richard Cole, and Michael T. Goodrich. Cascading
divide-and-conquer: a technique for designing parallel algorithms. In
Proceeding• Sympoaiv.m on Foundationa of Computer Science, pages 151-
160, October 1987.

[3] Mikhail J. Atallah and Michael T. Goodrich. Efficient parallel solutions
to some geometric problems. Journal of Parallel and Diatributed Com­
puting, 3(4):492-507, December 1986.

[4] Mikhail J. Atallah and Michael T. Goodrich. Efficient plane sweeping
in parallel. In Proceeding• ACM Sympoaium on Theory of Computing,
pages 216-225, 1986.

(5] Kenneth E. Batcher. Sorting networks and their applications. In AFIPS
Spring Joint Computer Conference, pages 307-314, 1968.

[6] Jon L. Bentley. Multidimensional binary search trees used for associative
searching. Communication• of the ACM, 18:509-517, 1975.

[7] Jon L. Bentley and Michael I. Shamos. Divide-and-conquer in multidi­
mensional space. In Proceeding• ACM Sympoaium on Theory of Com­
puting, pages 220-230, 1976.

[8] Guy E. Blelloch. Scana and Other Primitive• for Parallel Computation.
PhD thesis, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA, to be completed June 1988 (hopefully).

(9] Guy E. Blelloch. Scans as primitive parallel operations. In Proceeding•
International Conference on Parallel Proceuing, pages 355-362, August
1987.

[IO] Guy E. Blelloch and James J. Little. Parallel Solutio,.. to Geometric
Problem• on the Scan Model of Computation. Technical Report TM-952,
Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
1988.

[11] Richard Cole. Parallel merge sort. In Proceeding• Sympoaium on Foun­
dation• of Computer Science, pages 511-516, October 1986.

(12] W. F. Eddy. A new convex hull algorithm for planar sets. ACM Tra,...

222

Math. Software, 3(4):398-403, 1977.

[13] Steven Fortune and James Wyllie. Parallelism in random access ma­
chines. In Proceeding• ACM Sympoaium on Theory of Computing,
pages 114-118, 1978.

[14] H. Freeman. Computer processing of line-drawing images. Computer
Survey•, 6:57-97, 1974.

[15] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An
algorithm for finding best matches in logarithmic expected time. A CM
Tranaactiom on Mathematical Software, 3(3):209-226, 1977.

(16] William D. Hillis. The Connection Machine. MIT Press, Cambridge,
MA, 1985.

[17] J. G. Hocking and G. S. Young. Topology. Addison-Wesley, Reading,
MA, l96J.

[18] Keneth Iverson. A Programming Language. Wiley, New York, 1962.

[19] William M. Newman and Robert F. Sproull. Principle• of Interactive
Computer Graphic•. McGraw-Hill, New York, 1979.

[20] Stephen M. Omohundro. Efficient algorithms with neural network be­
havior. Comp/ea: System•, 1, 1987.

[21] Mark H. Overmars and Jan Van Leeuwen. Maintenance of configurations
in the plane. Journal of Computer and Syatem Science•, 23:166-204,
1981.

[22] Franco P. Preparata and Michael I. Shamos. Computational Geometry
~An Introduction. Springer-Verlag, New York, 1985.

(23] John H. Reif and Sandeeep Sen. Optimal randomized parallel algorithms
for computational geometry. In Proceeding• International Conference on
Parallel Proceuing, pages 270-277, August 1987.

(24] Richard M. Russell. The CRAY-1 computer system. Communicationa
of the ACM, 21(1):63-72, January 1978.

[25] James Salem. *Render: A Data Parallel Approach to Polyg.'!n Render­
ing. Technical Report, Thinking Machines Corporation, January 1988.

(26] Jacob T. Schwartz. Ultracomputers. ACM Tmmaction• on Program­
ming Language• and Syatema, 2(4):484-521, October 1980.

PARALLEL TEMPLATE MATCHING ALGORITHMS

Xiaoqing Qu and Xiaobo Li
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2Hl

Abstract -- This paper describes two parallel template
matching algorithms on an SIMD array processor with a
hypercube interconnection network. These algorithms
improve the algorithm proposed by Fang et al[l]. The first
algorithm proposed in this paper modifies the local address
computation scheme, so that only one permute-multiply phase
is needed. The computation time is reduced to half. The
second algorithm treats window columns the same way as
rows. Permute-multiply operations in Gray code sequence are
also implemented among columns. For an N by N image and
M by M window, the overall time complexity is reduced from
0 (M 2+MlogN) to 0 (M 2+logN). The trade-off is that the local
memory size of each PE is increased from M to M 2•

Introduction

Image template matching is a basic image processing
operation. A large N by N image G is searched with an M by
M template (window). The similarity measure between the
window and the M by M subimage of G is defined as

M-IM-1
Cii = l:: l:: Gi+sJ+t *W,1 where G (i J) is the upper-left corner

s=O t=O
element of the subimage. In filtering operation, array C is the
final result. The tremendous computation load (0 (N2M 2))

and the independence of subimages make the template match­
ing suitable for SIMD machines.

Several parallel template matching algorithms have been
proposed [l-2]. Fang's algorithm [1] uses hypercube inter­
connection network, because of its popularity in commercial
products[3-6]. The algorithm on N 2 PEs proposed in [1].
with the time complexity 0 (M 2+MlogN). requires that each
PE has M local memory locations to store a window column
and a register initialized to image element Gij. The window
elements are broadcast to PEs one column at a time. Within
each image column, image elements in registers are permuted
according to Gray code, then multiplied with the correspond­
ing window element in local memory. The computation of
local address is designed to provide correct correspondence.
This broadcast-permute-multiply operation above is repeated
M times, one window column each.

In this paper, we propose two algorithms improved over
the above algorithm. Section 2 describes a different scheme
for computing the local address, so that the inter-PE commun­
ica~on time is cut in half. In Section 3, an algorithm is given
to rmplement the Gray code permutation to window columns
as well as to window rows. Since the permutation­
multiplication is implemented in 2 dimensions instead of one
dimension, the overall inter-PE communication time is
reduced to M 2+logN.

The second author is supported in part by the Canadian
National Science and Engineering Research Council under
Grant A9198,

223

Local Address Computation

In this section, we present an algorithm CUBE-N2-l, an
improved version of CUBE-N2 given in [1], on a hypercube
network with N2 PEs. It is assumed that image G has been
distributed in N2 PEs, i.e. PE(i J)=Gii• Each column of
image G is divided to NIM segments, where each segment
has M consecutive elements. The window elements are broad­
cast from control memory to local memory, one column at a
time during executing the algorithm. Also, we assume that
N=2" andM=2m.

In the original algorithm CUBE-N2 given in [l], there are
two phases (phase 2 and 3) to perform permute-multiply­
accumulate operations. Careful investigation reveals that in
phase 2 the PEs without "*" mark could also perform multi­
plication which is not used in generating Cij at its own loca­
tion but for Ci-MJ· The algorithm CUBE-N2-1 presented in
this section has only one phase, phase 2, to perform
permute-multiply-accumulate steps. Every PE is permitted to
perform multiplication in phase 2. The result of multiplica­
tions with mark "*" is accumulated to one register, say C,
whereas the result of multiplications of the other PEs without
"*" mark is accumulate to another register,. say B. After phase
2, the partial result in B is rotated one segment up and added
to C to get the final result of Cii at each PE (I ,J). In order for
all PEs to perform correct multiplications, a new Lemma 3 is
presented below for local address computation. Since the
address may become negative, to obtain correct local
addresses, the window column is viewed as a circular array.

Lemma 3: After executing A (p <1~<-A (p), the MAR (p) is
incremented by 21 if p1=0, decremented by 21 if p1=1.

The algorithm CUBE-N2-1 is given below. This algo­
rithm computes C(i,J) = Cii• OSiJSN-1. The procedure uses
three registers, A, B and C. It is assumed that A (I J) is ini­
tialized to Gii· B and C are used to accumulate the partial
results during execution and initialized to 0. The PEs are
indexed by p or (I ,J) with p =IN+}. A data movement exam­
ple for N=32 andM=S is given in Fig. 1.

procedure CUBE-N2-1 (A ,B ,C)

begin
1 C(p):=O;
2 B(p):=O;
3 fort :=Oto M-1 do begin
4 MAR (p):=O;
5 for s :=O to M -1 do
6 CMAR :=a+t*M +s;
7 M[MAR(p)]<=CM[CMAR];
8 MAR(p):=MAR(p)+l;
9 end for;

10 MAR (p):=O;
11 C(p):=C(p)+A(p)*M[MAR(p)];
12 PHASE-2;
13 A (p (n+m-1>)<-A (p);
14 ROTATE(A ,O,n-1,0);
15 endfor;
16 ROTATE(B ,n+m,2n-l,O);
17 C(p):=C(p)+B(p);

end

procedure PHASE-2

begin
1 MAR (p):=0;
2 for k:=n to n+m-1 do begin
3 A<p<k>)<-A(p);
4 MAR(p):=(_MAR(p)+2k-n)mod M (pk=O);
5 MAR(p):=(MAR(p)-2k__,,)mod M (pk=l);
6 C (p):=C (p)+A (p)*M [MAR (p)] (pk=O);
7 B (p):=B (p)+A (p)*M [MAR (p)] (pk=l);
8 F:=false;
9 U:=k-n;

10 Gray(U ,F);
11 endfor

end

procedure ORA Y(U ,F)

begin
if U =O then return else
begin
1 flag :=true;
2 GRAY(U-1,jlag);
3 A(p(U+n-1>)<-A(p);
4 if F then
5 MAR (p):=(MAR (p)+2U-l) mod M (pu+n-1=0);
6 MAR (p):=(MAR (p)-zU-l) mod M (pu+n-1=1);
7 else
8 MAR (p):=(MAR (p)-2U-l) mod M (pu+n-1=0);
9 MAR (p):=(MAR (p)+zU-l) mod M (pu+n-1=1);

10 endif;
11 C (p):=C (p)+A (p)*M [MAR (p)] (pk=O);
12 B (p):=B (p)+A (p)*M [MAR (p)] (pk=l);
13 flag :=false;
14 GRAY(U-1,flag);
end if;

end;

In the algorithm above, It takes M2 steps to broadcast
window elements to local memory, and 0 (M2) multiplications
to compute the Cij. With the same initialization, these two
terms are the same for any network. So we only consider the
inter-PE communication time.

In the loop t of CUBE-N2-l, PHASE-2 takes approxi­
mately M unit routes[l]. Rotating one column left of line 14
takes logN unit routes. Outside the loop t, rotating one image
segment up of line 16 requires logN-logM unit routes. The
total inter-PE communication time is
M (M +logN)+logN-logM, which is 0 (M2+MlogN). Compar­
ing with the 2M2+2M(logN-logM)+MlogN inter-PE commun­
ication time given in [l], the time saving is about half,
though it is still in the same order as that in algorithm
CUBE-N2.

A New Algorithm on Hypercube with N2 PEs

In this section, a new algorithm CUBE-N2-2 on hyper­
cube network with N 2 PEs is presented. This algorithm not
only permutes image rows but also permutes image columns
as well. The algorithm first computes the window column
address and then computes the row address within a window
column, both using Lemma 3. Since all the window columns
should be held in local memory, M 2 local memory are needed.
The algorithm CUBE-N2-2 is given below. A data movement
example with N =8, M =4 is given in Fig. 2.

The procedure CUBE-N2-2(A ,B ,C ,D ,E) uses five regis­
ters from A to E. It is assumed that A (i ,j) is initialized to
G (i J). Registers C, B, D and E are used to accumulate the
partial results of Cii during execution and all of them are ini­
tialized to 0. Match_along_column of line 13 computes par­
tial results of Cii at each image element G(iJ) and stores
them to register C ,B ,D andE respectively. Lines 14-17 rotate
the contents of D and E one segment left and add them to B
and C. Lines 18-19 rotate the content of B one segment up
and add it to register C. Upon completion, the register C of
each PE contains the final result of Cii at image element
G(l ,j).

In the procedure Match_along_column, variable t is the
window column index, initialized to 0. The loop l of lines 3-
12 executes the permute-multiply-accumulate along the
column direction. The procedure
Match_ within_column(A ,B ,C ,t) has four parameters. Regis­
ter A holds image data, C and B are used to accumulate the
partial results. Variable t is the window column index and it
is different for different PE columns. Variable s is window
row index, initialized to 0. Line 2 calculates the local address
of the window element of each PE. The loop k executes
permute-multiply-accumulate along row direction.

procedure CUBE-N2-2(A ,B ,C ,D ,E)

begin
1 B(p):=O;
2 C(p):=O;
3 D(p):=O;
4 E(p):=O;
5 MAR (p):=0;
6 for t :=O to M -1 do
7 fors:=O toM-1 do
8 CMAR :=cx+t*M +s;
9 M[MAR(p)]<=CM[CMAR];

10 MAR(p):=MAR(p)+l;
11 end for;
12 end for;
13 Match_along_column;
14 ROTATE(D,m,n-1,0);
15 C (p):=C (p)+D (p);
16 ROTATE(E,m,n-1,0);
17 B (p):=B (p)+E(p);
18 ROTATE(B ,n+m,2n-l,O);
19 C (p):=C (p)+B (p);

end;

procedure Match_along_column

begin
1 t:=O;
2 Match_within_column(A ,C ,B ,t);

224

3 for /:=Oto m-1 do begin
4 A(p(l))<-A(p);
5 t:=(t+z!) mod M (p1=0);
6 t:=(t-2') mod M (p1=1);
7 Match_within_column(A ,C ,B ,t) (p1=0);
8 Match_ within_column(A ,D ,E ,t) (p1 =1);
9 F:=false;

10 U:=l;
11 Gray_column(U ,F);
12 end for;

end;

procedure Match_ within_column(A ,C ,B ,t)

begin
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

end;

s:=O;
MAR(p):=t*M;
C (p):=C (p)+A (p)*M [MAR (p)];
for k :=n to n +m -1 do begin

A (p(k))<-A (p);
s :=S+zk-n mod M (pk=O);
s:=S-2k-n mod M (pk=l);
MAR (p):=t*M +s;
C (p):=C (p)+A (p)*M [MAR (p)] (pk=O);
B (p):=B (p)+A (p)*M [MAR (p)] (pk=l);
F:=false;
U:=k-n;
Gray_row(U ,F);

end for;
A (p(n+m-1))<-A (p);

procedure Gray_column(U,F)
begin

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

end;

if U =O then return else
begin

flag :=true;
Gray_column(U-1,flag);
A (p(U-1))<-A (p);
if F then

t:=t+zu-i mod M (pu_1=0);
t:=t-zu-i mod M (pu_1=1);

else
t:=t-zu-i mod M (pu_1=0);
t:=t+zu-i mod M (pu_1=1);

end if;
Match_ within_column(A ,C ,B ,t) (p1=0);
Match_ within_column(A ,D ,E ,t) (p1=1);
flag :=false;
Gray _column(U -1,flag);

end if;

procedure Gray _row(U ,F)

begin
1
2
3
4
5
6
7
8

if U =O then return else
begin

flag :=true;
Gray _row(U -1,flag)
A(p(U+n-1>)<-A (p);
if F then

s :=s+zU-I mod M (pu+n-i=O);
s:=S-2U-I mod M (pu+n-i=l);

225

9 else
10 s :=S-2U-I mod M (pu+n-1=0);
11 s:=S+2u-i mod M (pu+n-1=1);
12 end if;
13 MAR(p):=t*M+s;
14 C(p):=C(p)+A(p)*M[MAR(p)] (pk=O);
15 B(p):=B(p)+A(p)*M[MAR(p)] (pk=l);
16 flag :=false;
17 Gray_row(U-1,flag);
18 end if;

end;

In the algorithm CUBE-N2-2, there is no rotation in
Match_along_column, nor in Match_within_column. The
procedure Match_ within_column takes M unit routes. In
lines 7-8 of the loop l of Match_along_column, the procedure
Match within column is called twice. Thus
Match=along_~olumn requires 2M 2 unit routes. Three
ROTATEs oflines 14-18 of CUB2-N2-2 needs 3(logN-logM)
unit routes. Therefore the total inter-PE communication time
is 2M 2+3(logN-logM), which is O(M2+logN).

Conclusion

Two template matching algorithms on hypercube SIMD
computer with N 2 PEs are presented. The first algorithm
improved the local address computation scheme over the
algorithm given by Fang[l]. The time complexity is reduced
to half. The second algorithm extends the permute-multiply­
accumulate operations in Gray code sequence to both column
and row direction. The inter-PE communication time is
reduced to O (M 2+logN). The template matching computation
is intrinsically a shift(rotate)-multiplication in nature, while
the hypercube network can only perform exchange. Therefore
the rotation must be implemented by sequences of exchanges,
which takes 0 (logN) steps. In the second algorithm CUB­
N2-2, we have the minimum rotation time, thus the
0 (M2+logN) inter-PE communication time is optimal in this
sense. The trade-off is that the local memory of each PE is
increased to M 2•

References

[1] Z. Fang, X. Li and L.M. Ni, "Parallel Algorithm for Image
Template Matching on Hypercube SIMD Computers,"
IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. PAMI-9, N0.6, Nov. 1987.

[2] V.K. Prasanna Kumar and V. Krishnan, "Efficient image
template matching on SIMD hypercube machines",
Proceedings of International Conference on Parallel Pro­
cessing, 1987, pp. 765-771.

[3] G. Fox and S. Otto, "Algorithms for concurrent proces­
sors," Physics Today, pp. 50-59, May 1984.

[4] W.D. Hillis, The connection Machine. Cambridge, MA:
M.I.T. Press, 1985.

[5] F. Preparata and J. Vuillemin, "The cube-connected
cycles: A versatile network for parallel computation," in
Proc. IEEE Symp. Foundations of Computer Science,
1979, pp. 140-147.

[6] A.P. Reeves and C.H. Francfort, "Data mapping and rota­
tion functions for the Massively Parallel Processor," in
Proc. 1985 IEEE Comput. Soc. Workshop Computer
Architecture for Pattern Analysis and Image Database
Management, 1985, pp. 412-419.

k=n k=n+l u=l
PE(O) *O 0 *l 1 *3 3 *2
PE(l) •o 1 7 0 *1 2 *2
PE(2) •o 2 *1 3 7 1 6
PE(3) •o 3 7 2 s 0 6
PE(4) •o 4 *1 s *3 7 *2
PE(S) •o 5 7 4 *1 6 *2
PE(6) *0 6 *1 7 7 s 6
PE(7) •o 7 7 6 s 4 6
PE(8) •o 8 *1 9 *3 11 *2
PE(9) •o 9 7 8 *1 10 *2
PE(lO) •o 10 *1 11 7 9 6
PE(ll) •o 11 7 10 s 8 6
PE(12) •o 12 *1 13 *3 lS *2
PE(13) •o 13 7 12 "1 14 *2
PE(l4) •o 14 *1 lS 7 13 6
PE(lS) •o lS 7 14 s 12 6
PE{l6) *O 16 *l 17 *3 19 *2
PE{l7) •o 17 7 16 *1 18 *2
PE(18) •o 18 *l 19 7 17 6
PE(19) •o 19 7 18 s 16 6
PE(20) •o 20 *1 21 *3 23 *2
PE(21) •o 21 7 20 *1 22 *2
PE(22) •o 22 •1 23 7 21 6
PE(23) •o 23 7 22 s 20 6
PE(24) •o 24 "1 25 *3 27 *2
PE(2S) •o 2S 7 24 *1 26 •2
PE(26) •o 26 •1 27 7 2S 6
PE(27) •o 27 7 26 s 24 6
PE(28) •o 28 •1 29 *3 31 "2
PE(29) •o 29 7 28 *l 30 "2
PE(30) •o 30 •1 31 7 29 6
PE(31) •o 31 7 30 s 28 6

2
3
0
1
6
7
4
s

10
11
8
9

14
lS
12
13
18
19
16
17
22
23
20
21
26
27
24
2S
30
31
28
29

k=n+2 u=l u=2 u=l
*6 6 *7 7 •s s *4 4
*6 7 •s 6 *3 4 "4 s
*2 4 *3 s •s 7 *4 6
*2 s "1 4 *3 6 "4 7
6 2 7 3 s 1 4 0
6 3 s 2 3 0 4 1
2 0 3 1 s 3 4 2
2 1 1 0 3 2 4 3

*6 14 *7 lS •s 13 *4 12
*6 lS •s 14 *3 12 "4 13
*2 12 *3 13 '"S lS *4 14
*2 13 •1 12 *3 14 *4 lS
6 10 7 11 s 9 4 8
6 11 s 10 3 8 4 9
2 8 3 9 s 11 4 10
2 9 1 8 3 10 4 11

*6 22 *7 23 •s 21 *4 20
*6 23 •s 22 *3 20 *4 21
*2 20 *3 21 •s 23 *4 22
*2 21 *1 20 *3 22 *4 23
6 18 7 19 s 17 4 16
6 19 s 18 3 16 4 17
2 16 3 17 s 19 4 18
2 17 1 16 3 18 4 19

*6 30 "7 31 •s 29 "4 28
"6 31 •s 30 *3 28 "4 29
•2 28 "3 29 •s 31 *4 30
•2 29 •1 28 *3 30 "4 31
6 26 7 27 s 2S 4 24
6 27 s 26 3 24 4 25
2 24 3 25 s 27 4 26
2 25 1 24 3 26 4 27

Fig. 1. A data movement example of the algorithm CUBE-N2-1 for N =32 and M =8.

t 2 2 2 2 2 2 2

j 0 1 2 3 4 s 6
s i

recover
0
1
2
3
4
s
6
7
8
9

10
11
12
13
14
lS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

2

7

T 0 i ~~ ~~ c 12 M ~ ~~ ~ ~ ~~ ~~ i ~~ ~ i ~~ ~~ ~ ~~ t,: ~~~- ~ 3 1 B 32
1 2
3 3
1 4
3 s
1 6
3 7

c 12 32 c 12 33 D 12 30 D 12 31 c 12 36 c 12 37 D 12 34 D 12
B 32 22 B 32 23 E 32 20 E 32 21 B 32 26 B 32 27 E 32 24 E 32
c 12 52 c 12 S3 D 12 so D 12 Sl c 12 S6 c 12 S1 D 12 S4 D 12
B 32 42 B 32 43 E 32 40 E 32 41 B 32 46 B 32 47 E 32 44 E 32
c 12 72 c 12 73 D 12 70 D 12 71 c 12 76 c 12 77 D 12 74 D 12
B 32 62 B 32 63 E 32 60 E 32 61 B 32 66 B 32 67 E 32 64 E 32

Fig. 2. One step of a data movement example of the algorithm CUBE-N2-2 for N =8 and M =4 is
given here. In the table above, i , j is PE index, s , t is window index, A , B , C, D are registers to
accumulate the result.

The table shows the combined result of the loop k of lines 4-14 for k=n=3 in
Match_within_column for both p1;:(J and p1=1 of line 13-14 in Gray_column of line 11 in
Match_along_column.

226

3S
25
SS
4S
1S
6S

LINEAR QUADTREE ALGORITHMS ON THE HYPERCUBE

S. K. Nandy, Rajat Moonat, and S. Rajagopalan*
Center for Computer Aided Design

tDepartment of Computer Science and Automation
*Department of Electrical Communication Engineering

Indian Institute of Science
Bangalore 560 012 INDIA

Abstract In this paper we provide an begin
adaptation of the algorithms for neighbor finding if K=root node then EQUAL_ADJ_NEIGHBOR:=FALSE
(NFA) and boundary following (BFA) on the else begin
hypercube architecture. We encode quadtree on a i:=max level;
linear array and analyse two schmes for embedding while K[i]=O do
them on the hypercube. We observe that the begin
communication delay in NFA using block embedded K ret[i] :=O;i:=i-1
linear quadtree is low. Finally, we provide a end;
parallel adaptation of the BFA on the hypercube repeat K_ret[i]:=mirror(K[i],d);i:=i-1
based on block embedding and derive an expression until (adjacent(K[i+l],d)-FALSE) or (i<l);
for its speedup. if adjacent(K[i+l],d)=TRUE then

1. Introduction

Region representation of images play an
important role in image processing, VLSI design
and computer graphics[2,3,5-9]. Most commonly used
algorithms deal with finding the boundary of a
region, finding the neighbors of nodes in the
tree, and performing operations on these
trees[2,3,5-9]. With the advent of multiprocessor
systems, the need for development of parallel and
efficient algorithms is being increasingly
realised. In this paper we attempt to provide
parallel adaptations for the existing
algorithms[2,3] on the hypercube architecture[4].

2. ENCODING OUADTREES IN A LINEAR ARRAY[6-9]

A node in a quadtree is a number called
K_value where, K_value=kn kn-l ... k 1 and O<=ki<S.
Each digit k. denotes the path to be taken at
level i, (O=t~rminal l=NW, 2=NE, 3=SW, 4=SE) to
reach the node from root which is assigned a level
0. For an image and its corresponding quadtree
shown in Fig. 2.1, node 10 has a K value 0441. The
K value gives a unique path from root to any node
in the tree and the most significant non-zero
entry in K_value specifies its sontype.
n-l A K_va~~z yields to a unique decimal number

4 *k + 4 *k _ + + . . . 4*k2 + k1 which may be
used £0 index thR ±inear array represention with
dimension [O .. (4n+ -1)*4/3] for a quadtree of
depth n. Each element of this array contains 2
bits of information used to represent the
colortype of the node as follows.
type colortype=(white,gray,not_used,black);

A white or black node is a terminal node and
has no children. However, with regard to the array
representation of quadtrees, the nodes allocated
for their children are labelled "not used".
In the rest of the paper, we adopt the definitions
and algorithms given in [2,3].

3. ALGORITHMS USING LINEAR OUADTREES[7-10]

The BFA and the related NFAs have been
reproduced here in pseudo Pascal.
Algorithm NFA 3.1 EQUAL ADJ NEIGHBOR
function EQUAL ADJ NEIGHBOR (K:K value;

var K ret:K value; d:side):boolean;
finds -an equal size node K ret which is

adjacent along the d side of node K. Function
returns FALSE if such a node doesn't exist }

227

EQUAL ADJ NEIGHBOR:=FALSE
else begin -

for i:=i downto 1 do K ret[i]:=K[i];
EQUAL ADJ NEIGHBOR:=TRUE

end - -
end

end;

Algorithm NFA 3.2 CORNER ADJ NEIGHBOR
function CORNER ADJ NEIGHBOR (K:K value;

var K ret:K value; d:side; c:quadrant):boolean;
{finds a non-gray neighbor K_ret which is adjacent
along side d of K and is aligned to the other side
d' such that c=quadrant(d,d'). Function returns
FALSE if such a node doesn't exist }
begin

if K=root node then CORNER ADJ NEIGHBOR:=FALSE
else begin

i·=max level·
while K[i]=O,do

begin
K ret[i]:=O;i:=i-1

end;
repeat K_ret[i]:=O;i:=i-1
until (adjacent(K[i+l],d)=FALSE) or (i<l);
if (adjacent(K[i+l],d)=FALSE) then

begin
for j:=l to i do.K_ret[j] :=K[j];
i:=i+l;
while gray(K_ret) do

begin
if level(K)>level(K ret) then

K ret[i]:=mirror(K[i],d)
else K ret[i]:=mirror(c,d);
i:=i+C

end;
CORNER ADJ NEIGHBOR:=TRUE

end
else CORNER ADJ NEIGHBOR:=FALSE

end
end;

Algorithm NFA 3.3 ALIGNED
function ALIGNED (Kl,K2:K value; d:side):boolean;
{Given two nodes Kl and K2 such that K2 is
adjacent along counterclockwise side of d of Kl,
function returns TRUE if Kl and K2 are aligned
along d side of Kl else a FALSE. }
begin

if (Kl=root node) or (K2=root node) then
ALIGNED:=FALSE

else begin
i:=l;

while (Kl[i]<>O) or (K2[i]<>O) do i:=i-1;
if level(Kl)=level(K2) then ALIGNED:=TRUE
else if level(Kl)<level(K2) then

interchange(Kl,K2);
repeat

if (K2[i]=O) and adjacent(Kl[i],d) then
i:=i-1

until (i<l) or (K2[i]<>O) or
not adjacent(Kl[i],d);

if i<l then ALIGNED:=FALSE
else if K2[i]=O then ALIGNED:=FALSE

else ALIGNED:=TRUE
end

end;

Algorithm BFA 3.4 BFA
procedure BFA(Kl,K2:K_value;d:direction);

which
the
The
the

{ Given two nodes Kl(black) and K2(white)
are adjacent along direction d of Kl,
algorithm traces the boundary of the region.
algorithm outputs a sequence of strings giving
direction and the length of the path to
traversed along that direction }

The BFA algorithm is not reproduced here
to space limitation and can be found in [10]

4. EMBEDDING LINEAR OUADTREES ON THE HYPERCUBE

be

due

The hypercube is a MIMD machine having a d­
dimens ional cube interconnection topology with one
processor module at each node of the cube. Each
edge in the cube is constituted by a physical
communication link[4]. A hypercube of dimension
four is considered for embedding of quadtrees. The
address of a PE is denoted by A= (a3a2a1a0) 2 and
the K_value of a node in the quadtree is denoted
by k k 1 ... k1 where 0 <= k. < 5. The quadtree can
be ~mReaded in the hyperBube in two ways viz.
Block Embedding and Complete Embedding. Details of
the embedding are given below.

4.1 Block Embedding

In this case, sub-trees of the quadtree are
assigned to different PE's in the hypercube as
shown in Fig. 4.1. The address of a PE in which a
node in the quadtree would lie is given by the K1
and K2 digits of the node's K_value.

4.2 Complete Embedding

All the quadtree nodes are distributed to the
PE's in the hypercube. The hashing procedure to
find the PE address (pe addr) of a quadtree node,
is as follows : -
initial pe_addr ~ (0000) 2 .
for i := 1 to max level ao

if ki<>O then c~mplement (ki)th bit of pe_addr;

5. COMPLEXITY ANALYSIS OF NFA

Our adaptations of NFAs involves manipulation
of K value. The K values of interest are initial
and final ones and-execution time depends on the
communications delay between PEs in which the
nodes reside. We assume a random image comprising
many uniformly distributed connected regions such
that a node is equally likely to appear in any
position and level in a quadtree and the
perimeters of regions have low standard deviation.

Consider a block embedded quadtree. With
regard to the NFA Equal_adj_neighbor the possible

228

communication delay is between the neighbors which
fall on the boundary such that two adjacent
neighbors are on two different processors.

For 16 processor allocation, there will be 6
boundaries of total 2n leafnodes each (see Fig.
4.la). The adjacent neighbor pairs of size
leafnode falling on the boundarx will be 6 *
Similarly for pairs ofn~ize 4 falling on
boundary will be 6 * 2 . Total number
neighbor pairs falling on the boundary

one
2n.
the
of

will
therefore, be

6 * (2n + 2n-l + ... + 1) = 6 * (2n+l -1).

the
However, total number of neighbor pairs in

image [3] is
n-1
I 2n-i * (2n-i _ l)

i=O
Communication requirement (C) on the average

will therefore be,
6 * (2n+l -1)

n-1 l 2n-i * (2n-i - 1)
i=O

or, C = 9 * 2-n for n very large.
Assuming an average communication length of

two hops between processors, the total
communication delay can_ge expressed as

(C*2)/16 = (9/8)><2 for large n.
Similarly, it can be shown that all the other

NFAs will also have the same communication delay,
for large n.

Whereas for a completely embedded quadtree,
it is difficult to derive similar expressions for
the average number of hypercube nodes visited.
Programs were run for different NFAs and the
results are presented in Table 5.1.

TABLE 5.1

Algorithm

Equal_adjacent_neighbor
GT_Equal_adj_neighbor
Equal_corner_neighbor
Corner_Adj_neighbor
Aligned

Average number of hops

2.0000
2.0000
1.8450
2.0000
1.1200

6. BFA ON THE HYPERCUBE

Prior to the description of BFA on the
hypercube, we lay down the following assumptions.
1. An image comprises R regions which are
uniformly distributed over the entire area A of
the image. The area A is defined as number of
pixel in the image-2nx2n for a n-level tree.
2. The density of the image D is specified as
ratio of black area to total area. Total area
occupied by all regions, will therefore, be (D><A).
3. The number of regions R in the image is very
large. (R >> number of PEs)
4. The image has been block embedded

procedure Parallel_BFA;
var startl,start2:array [l .. R] of K_value;
co begin

for i:=l to R do {for all regions in image}
begin

locate startl[i] and start2[i];
BFA(startl[i],start2[i] ,N)

end
coend;

6.1 Speedup

For this algorithm, the time required to
trace one boundary of perimeter pis O(p). The
computation time on the parallel machine will
therefore be 0(@/16),@ being the total perimeter.
The maximum communication delay will occur only
when boundary of the region coincides with the
processor boundary, and all black and white node
pairs are at leafnode level. In such a case, there
can be a maximum 6 * 2n communications. If the
communication time is t and execution time is t
then total time requirea on the parallel systeffi
will be, (@/16) * t + (6 * 2n) * t
and the speedup will be, c

(@ * te)

((@/16) * t + (6 * 2n) * t)
Assuming squaree regions, a m~ximum of R

regions, and average area per region given by
(D*A/R), the total perimeter@ of all the~regions
in the image can be expressed as 4*(D*A*X)

Further, A=2n*2n, and with regards to VLSI
Layouts[!], R~A, or R=µ*A. Hence speedup is

16

1 + 24 * 2-n * (D *µA)-~* (t / te)
16 (for large n). c

7. CONCLUSIONS

From the simplicity and efficiency of
implementation, it can be concluded that our
approach to parallel processing can be readily
extended to CAD tools, viz. design rule
checker[5], circuit extractor, routers etc. that
are designed based on NFAs and BFA.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the
contribution of Prof. V. Rajaraman for initiating
this research. Help rendered by YVSP Rao towards
manuscript preparation is also acknowledged.

(a) Image C16 X 161

(b) Ou.dtree for the Image

F'IG. 2.1 An Image ·and its correspondlng Ouadtree

229

: 'i --1 •11 •1•
1 .,. 1111 1111 1111

11• 1111 1111 1111

Cal 16 Blacks of &n Image and their PE «sslg,.ments

II II l!I 14 II II+-""'-

tbl Ou•dtree c.orl"espondl"g to the Image in fa)

F'IG. 4 .t An Image and Its part It Ions

REFERENCES

[1] Bentley, J L, Haken, D and Hon, R W
"Statistics on VLSI Designs", Department of
Computer Science, CMU, CS-80-111 (April 1980).

[2] Dyer, R, Rosenfeld, A and Samet H "Region
Representation: Boundary Codes from Quadtrees",
CACM, Vol. 23, No. 3, March 1980, pp. 171-179.

[3] Samet, H "Neighbor Finding Techniques for
Images Represented by Quadtrees", CGIP, Vol. 18,
1982, pp. 37-57.

[4] Tuazon, J, Peterson, J,
Leberman, M "Caltech/JPL Mark
Concurrent Processor", Proc.
Processing Conference, pp. 663-673.

Pniel, M and
II Hypercube

1985 Parallel

[5] Nandy, S K and Patnaik, L M "Linear Ti111e
Geometrical Design Rule Checker Based on Quadtree
Representation of VLSI Mask Layouts", Computer­
Aided Design, Vol. 18, No. 7, September 1986, pp.
380-388.

[6] Samet, H "The quadtree and related
hierarchical data structures", ACM Comput. Surv.,
Vol. 16, June 1984, pp. 187-260.

[7] Samet, H "Region Representation Quadtrees
from Binary Arrays",CGIP,Vol. 13, 1980, pp.88-93.

[8] Gautier, N
efficiency of
representation",
Computing, Vol,. 3,

K, et.al. "Space and Time
the Forest

Jr. on Image
No. 2, May 1985.

of Quad trees
and Vision

[9] Ravindran, S andManohar, M "An Algorithm for
converting Forest of Quadtrees to Binary Array",
Jr. on Image and Vision Computing, Nov. 1987.

[10] Nandy, S K, Rajat Moona and S. Rajgopalan
"Primitive Quadtree Algorithms based on K_values",
Tech. Report, Center for CAD, I.I.Sc., Jan 88.

OPTIMISING A RECONFIGURABLE MIMD TRANSPUTER MACHINE FOR LINE-OF-SIGHT
CALCULATIONS ON LARGE DIGITAL MAPS

J s ward and J B G Roberts
Royal Signals and Radar Establishment

Great Malvern

Abstract
A major demand for computing power

in simulators and in systems for
evaluating and optimally siting sensors is
the tracing lines of sight to determine
intervisibilities and calculating 'depths
of shadow' between arbitrary points above
3-D landscapes represented by large, high
resolution digital maps.

We show how a MIMD parallel
machine with a switched interprocessor
connection topology can be configured and
programmed for these problems; the machine
topology and allocation of tasks being
rearranged to achieve spectacular
performances on maps of differing
resolution and for various graphical
display requirements. The machine
architecture is a modular network of
Transputers capable of making arbitrary
interconnections between as many as 1000
processors.

1. Philosophy of Machine Architecture

Compact computers of very high
potential performance can now be assembled
rather easily from the present generation
of single chip processing elements (PE).
Realising a high proportion of the
potential performance may be difficult
however, particularly with irregular or
data dependent algorithms. Even
systematic problems need careful
allocation of the tasks between processors
to avoid serious under utilisation of the
machine, and the communication strategy
between processors assumes a vital role in
preventing wasteful bottlenecks. However
VLSI allows us to implement complex
interconnection networks between
processors to alleviate this problem.

With several partners in an ESPRIT
consortium [l), we are developing
multi-transputer [2) processor machines
based on the Communicating Sequential
Processes (CSP) [3)/0CCAM model of
computing [4). A machine built on this
model is characterised by distributed
memory and point to point communication
links. This model allows great hardware
and software flexibility and versatility.
For example it allows MIMD processing,
modular construction of machines, fixed or
floating point PEs and individual
processor memory sizes, all augmented by
the extra freedom to reconfigure the
machine, dynamically if desired, by
software control of the switches.

UK

230

This architecture, known as RTF
(Reconfigurable Transputer Processor)
differs crucially from machines based on
shared memory or shared communications
buses, both of which entail heavy hardware
costs in achieving high memory and
communication bandwidths [5). Like
'hypercube' machines, it is a coarse grain
MIMD machine using 16 or 32-bit transputer
PE's which execute distinct programs.
However the RTP topology consists of
one-to-one channels set up by switches
rather than a fixed low-diameter network
through which data messages are routed.

Any connection topology possible
with the four bidirectional links
available on each transputer can be
realised for as many as 1000 PEs,
including the use of multiple links
between transputers. The RTP philosophy
being to employ hardware techniques to
match the machine to the problem. The
network is set up automatically from the
'harness' (known as the wiring diagram)
which is always written to describe the
allocation of processes to processors. In
cases where a problem involves several
phases such as I/O, data sorting,
scatter/gather operations etc., the
configuration may optimised for each and
set accordingly. There is no hardware
obstacle to altering the switch
connections dynamically, but operating
system tools are not yet available to
decide routings and to prevent the
interruption of current transfers.

2. Hardware

Although the RTF is still in
development, several prototypes have been
built and programmed in order to verify
ideas. The standard hardware module for
RTF machines is a 'SuperNode' built around
16 'worker' PE's which are normally
Floating Point transputers (T800s). This
transputer was developed as part of the
ESPRIT project and is capable of
calculation at a sustained rate of between
1 and 2 MFlop/s. The worker transputers
in a supernode are connected to each
other, to a memory server, a hard disc
unit and to other supernodes through two
72 x 72 crossbar link switches, controlled
by a 'control' transputer. These all
communicate via standard Inmos links but
the control transputers have an
independent low bandwidth bus connected to
all the transputers in the machine to

allow diagnostics information to be
extracted without disturbing the state of
the RTP links. The 72 x 72 crossbar
switch has been implemented using two
15000-gate CMOS gate arrays. ·

In the prototype RTP machines each
worker PE has 256 KBytes of static RAM in
addition to the T800's 4 KBytes of
internal memory. In later versions this
will be optionally extended to 4 MBytes of
dynamic RAM each.

Larger machines are built up by
interconnecting 'supernodes' together
using a further layer of switches.
Sufficient links are available for the
internode switches to allow the switching
network to make any possible transputer
graph in a 'rearrangeable' manner [6).

3. Terrain Visibility and Shadowing

A demanding application we have
programmed on the RTP is the calculation
of lines of light using digital maps. The
programs calculate the ground that is
visible to an observer at a given height
and position over the map and also the
depth of concealment (or 'shadow' if we
think of the observer as a light source).

Computation on digital maps
presents an interesting combination of
benchmark tests. These computations are
numerically intensive and can be done with
either integer or floating point
arithmetic. The maps involved can be
large and the distribution of this
database amongst many processors to allow
multiple access to the database is in
itself an interesting problem.
Furthermore these applications are
considerably enhanced by good graphical
displays. Manipulating images to provide
rapid response times is a further
computational load and exercises the
machines I/O capability.

A major factor in the performance
of the visible area calculations is the
number of rays traced. Computing N2 rays
for an N x N map is highly redundant and a
reduction by a factor of order N is
possible. A profile of the ground along
each ray is formed and the the look
elevation angle to each point on it. The
program then decides if each point along
the the profile is visible or not and
colours the display accordingly.

Two versions of the programs
developed are described in sections 3.1
and 3.2 below.

3.1 Small Map

When implem~nting this algorithm
for a 256 x 256 byte map of the Isle of
Wight, the future need to use much larger
maps, which because of their size could
not be stored in the memory of a single
processor, was allowed for. With this in

231

mind a pipelined solution with different
processors doing different tasks was
adopted. Four stages of the algorithm were
identified:

i) Calculate the (x,y) coordinates
along each ray using Bressenham's
Algorithm [7). The change in x and/or y
per step is at most 1.

ii) Using the (x,y) coordinates of a
ray fill in the heights of the terrain
along the ray creating a profile.

iii) Starting from the observer end of
the ray decide if each point along the ray
can be seen. This is done by comparing
the tangent of the angle between the
observer and the height at that point
along the ray with the maximum tangent
calculated so far. If the tangent at that
point is less than the maximum tangent so
far that point along the ray is not
visible, if greater it is visible.

iv) From the result of stage (iii)
decide what colour to display on the
graphics screen and where, for each point
along the ray. The colour convention
adopted had the underlying terrain heights
displayed as a red/green (or brown) colour
bar and areas not visible coloured black
or as a grey scale in the depth of shadow
computations.

For the small map implementation
(256 x 256 bytes) the first two stages
above were implemented in one processor.
The network of processors used is shown in
figure 1. There are 4 parallel pipelines
which work on 8 adjacent rays - the rays
are chosen to be adjacent to ensure good
load balancing. The first processor in
each pipeline performs stages (i) and (ii)
above, each pipeline then splits into two,
each sup-pipeline performing the
shadowing computation (iii). The two
sub-pipelines in each pipeline then come
together in the the fourth processor which
does the colour computation (iv). Several
other networks were used during program
development but this one was chosen as it
had gave the most balanced load amongst
the processors. The load on each of the
processors by the use of an 'efficiency
monitor' which shows how busy each of the
processors was in the network.

3.1.1 Performance

Table 1 gives the execution times
for a two metre high observer both at the
centre of the map and in one corner.

The depth of shadow calculation
shown .in the table is a calculation of how
high a target would have to be to seen at
that point on the map if the ground is not
directly visible from the observer. The

shadow is displayed as a graduated grey
scale that saturates black at a user
definable depth.

In its final form the program ran
in the times shown in table 1 on 16 T414
17 MHz 'worker' transputers, a T414-15
8007 graphics board with 0.5 M8yte Video
RAM and 0.5 M8yte DRAM and a 8004. The
8004 is a transputer card with 2 MBytes of
DRAM that acts as a host in an IBM-AT.

The use of an efficiency monitor
showed that for many cases the rate of
execution of the program was limited by
the speed at which the graphics processor
could display the results. In this case
there is nothing to be gained from using
more 'worker' processors. Cases where the
graphics processor load dominates are
characterised by similar times for integer
and floating point calculations.

With sub-second calculation times
the use of a tracker-ball or mouse to move
the position of the observer gives
impressive interactive displays.

3.2 Larger Maps

Comparison
map of the Isle of
Survey (paper) map
inaccuracies and a
map was obtained.
points of 16-bits,
grid as opposed to
earlier map.

of the 256 x 256 byte
Wight with an Ordnance
revealed several
more detailed digital
This map was 1024 x 512
each spaced on a 50m
the lOOm grid for the

As the B007 graphics board drives
a 512 x 512 screen, it was decided to
limit the shadowing calculation to a 512 x
512 section of the map at any one time,
the rest of the map being held in RAM on
the B004. With this limitation the
storage required by the used area of the
map was 0.5 MBytes. As each of the
processors in the network has 256 KBytes
of RAM, at least three processors have to
be dedicated to the storage of each copy
of the map. Splitting the map up amongst
processors then allows parallel access to
parts of the map, speeding up the height
lookup process.

The final network of processors
used is shown in figure 2. This has beeri

-QDtimised to approximatelv equalise the
load across the processors for shadowing
calculations using integer arithmetic on
T414s. The loading on the processors was
measured using the efficiency monitor.
Figure 2 should be viewed as two pipelines
each of which split into two. The four
sub-pipes process adjacent rays to balance
the load between pipelines. Various
configurations were readily explored
because the machine configuration is
automatically set up from the normal Occam
description of the program.

The main differences between the
256 x 256 byte map and 512 x 512 16-bit
map are discussed in the following
sections

232

3.2.1 Map Look Up

As noted above, the map storage is
split amongst three processors. The
x.y.list process calculates where the each
ray enters or leaves each of the three map
sections and passes these as parameters to
the three look-up processors. This was
found to be the most efficient way of
organising the lookup.

3.2.2 Performance

Table 2 summaries the performance
achieved on the larger map with the same
processors described in section 3.1.1
above. Performance could be improved by
using faster processors (20 or 30MHz
parts) and faster links with overlapped
acknowledge. The processors used for the
timings below link used 10 Mbit/s links.

3.3.4 Displays

The two photographs illustrate
some of the points mentioned above, both
photographs how part of the larger map.

Photograph 1 shows the area
visible to a 2m high observer on st
Catherines Down at the cursor position.
The version of the program used to
calculate this required 5.89 sec and used
integer arithmetic throughout. In the
bottom left hand corner of all these
photographs is a display of the
utilisations of all the processors in the
network during the calculation. The level
of the white line indicates 100%
utilisation. The first 8 columns refer to
the top pipeline in figure 2, the next 8
the lower pipeline and the most righthand
column is the 8007 graphics processor.
The order of display within the pipelines
is:

(x.y.list, lookup 0, look up 1, look up 2,
top shadow, top colour, lower shadow and
lower colour.)

Notice that no processor is 100% utilised.
This shows that either the processors are
waiting for inputs whilst doing no useful
work or that the link bandwidth is
saturated. The network was configured to
maximise processor usage on visible area
integer calculations.

The second photograph is a display
of the depth of shadow for an observer at
the same point. The depth of shadow is
displayed as a grey scale which saturates
black when the the depth of shadow exceeds
lOOm. This calculation has been done
using floating point arithmetic and took
17.35 sec. Notice here that the 4
processors performing the the shadowing
computations are 100% used and limit the
computation. The network was not
optimised for this mode of calculation.

T800 floating point transputers execute
the point point version of the code faster
than the integer version of the code.
This is because the floating point code is
much simpler than the integer version as
it applies no range checking or scaling of
numbers.

4. Summary and Conclusions

This paper has described the
performance of a small (1 cubic ft)
prototype node for large MIMD machines
built from transputers. The key features
of this machine are distributed memory and
reconfigurable point-to-point
communications.

The Intervisibility calculations
demonstrate the power and versatility of
the machine. The different processor
configurations were easy to generate and
program using the switches. This is the
great strength and flexibility of the
machine. Without the switches the
tendency is to set up one network and use
that regardless of how inefficient it is.

The processing power of the
machine can be seen from the execution
times quoted above. The speed of
execution of the visibility calculations
allows the effects of arithmetic
precision, interpolation etc to be quickly
and easily investigated. The speed of
execution allows searches for optimum
sensor sites a realistic proposition.
These investigation are rarely done on
conventional machines due to excessive CPU
time requirements.

6. Acknowledgement

This work has been partly funded
by the Advanced Information Processing
program of ESPRIT.

7. References

1.

2.

Harp J G,
Phase 2 of the Reconfigurable
Transputer Project - Pl085,
ESPRIT '87: Achievements and
Impact, pp 583 - 591
North Holland 1987.

INMOS Ltd,
Transputer Reference Manual,
Prentice-Hall, London, 1988.

3. Hoare C A R
Communicating Sequential
Processes,
Prentice-Hall, London, 1985.

233

4.

5.

6.

7.

INMOS Ltd,
Occam2 Reference Manual,
Prentice-Hall, London, 1988.

Hwang K,
Advanced Parallel Processing with
Supercomputer Architectures,
Proc IEEE, Vol 75, Oct 87,
ppl348-1379.

Nicole D A, LLoyd E K and
Ward J s,
Switching Networks for transputer
Links,
8th Occam Users group Meeting,
Sheffield, UK, March 88.

Bressennam J E,
Algorithm for Computer Control of
a digital plotter,
IBM System Journal, Vol 4, No 1,
1955.

Figure 1
Small Map 256 x 256 bytes,
Rays from Edge of picture.

ITrackerballl

Loo~ up Loo¥ up

Loo~ up Loo~ up

Figure 2
Large Map Processor Layput

8007
Graphics

Observer Calculation I Arithmetic type
Position I
x y I type Floating pt Integer

128 128 Shadow 1.13 0.51
0 0 Shadow 1. 73 1. 74

128 128 Depth of shadow 2.00 l 2.00
0 0 Depth of shadow 2.85 2.84

Table 1 Summary of execution times in seconds for 256 x 256 map
These timings are largely limited by the speed of the graphics processor

Relative Calculation Arithmetic type
Position
x y type Floating pt Integer

256 256 Shadow 8.93 3.93
0 0 Shadow 13. 00 5.68

256 256 Depth of shadow 17.27 5.15
0 0 Depth of shadow 18.74 9.10

Table 2 Summary of execution times in seconds with 512 x 512 map

Photograph 1
Shadowing Calculation with Integer

Arithmetic

234

Photograph 2
Depth of Shadow Calculation with

Floating Point Arithmetic

IMPLEMENTATION AND ANALYSIS OF A NAVIER-STOKES ALGORITHM
ON PARALLEL COMPUTERS

Raad A. Fatoohi

Sterling Software, Inc.
Palo Alto, CA 94303

Abstract -- This paper presents the results of the
implementation of a Navier-Stokes algorithm on three
paralleVvector computers. The object of this research is to
determine how well, or poorly, a single numerical algo­
rithm would map onto three different architectures. The
algorithm is a compact difference scheme for the solution
of the incompressible, two-dimensional, time dependent
Navier-Stokes equations. The computers were chosen so
as to encompass a variety of architectures. They are: the
MPP, an SIMD machine with 16K bit serial processors;
Flex/32, an MIMD machine with 20 processors; and
Cray/2. The implementation of the algorithm is discussed
in relation to these architectures and measures of the per­
formance on each machine are given. Simple performance
models are used to describe the performance. These
models highlight the bottlenecks and limiting factors for
this algorithm on these architectures. Finally conclusions
are presented.

L Introduction

Over the past few years a significant number of paral­
lel computers have been built Some of these have been
one of a kind research engines, others are offered commer­
cially. Both SIMD and MIMD architectures are included.
A major problem now facing the computing community is
to understand how to use these various machines most
effectively. Theoretical studies of this question are valu­
able. However, we believe that comparative studies,
wherein the same algorithm is implemented on a number
of different architectures, provide an equally valid way to
this understanding. These studies, carried out for a wide
variety of algorithms and architectures, can highlight those
features of the architectures and algorithms which make
them suitable for high performance parallel processing.
They can exhibit the detailed features of an architecture
and/or algorithm which can be bottlenecks and which may
be overlooked in theoretical studies. The success of this
approach depends on choosing "significant" algorithms for
implementation and carrying out the implementation over a
wide spectrum of architectures. If the algorithm is trivial
or embarrassingly parallel it will fit any architecture very
well. We need to use algorithms which solve hard prob­
lems which are attacked in the scientific and engineering
community.

In this paper we present the results of the implementa­
tion of an algorithm for the numerical solution of the
Navier-Stokes equations, a set of nonlinear partial
differential equations. In detail, the algorithm is a compact
difference scheme for the numerical solution of the
incompressible, two dimensional, time dependent Navier-

235

Chester E. Grosch

Old Dominion University
Norfolk, VA 23529

Stokes equations. The implementation of the algorithm
requires the setting of initial conditions, boundary condi­
tions at each time step, time stepping the field, and check­
ing for convergence at each time step. Equally important
to the choice of algorithm is the choice of parallel comput­
ers. We have chosen to work on a set of machines which
encompass a variety of architectures. They are: the MPP,
an SIMD machine with 16K bit serial processors; Flex/32,
an MIMD machine with 20 processors; and Cray/2. The
basic comparison which we make is among SIMD instruc­
tion parallelism on the MPP, MIMD process parallelism on
the Flex/32, and vectorization of a serial code on the
Cray/2. The implementation is discussed in relation to
these architectures and measures of the performance of the
algorithm on each machine are given. In order to under­
stand the performances on the various machines simple
performance models are developed to describe how this
algorithm, and others, behave on these computers. These
models highlight the bottlenecks and limiting factors for
algorithms of this class on these architectures. In the last
section of this paper we present a number of conclusions.

IL The numerical algorithm

The Navier-Stokes equations for the two-dimensional,
time dependent flow of a viscous incompressible fluid may
be written, in dimensionless variables, as:

~~ + ~ = 0, (2.1)

~ - ~ = '· (2.2)

~ + _£_(u ') + _£_(v ') = - 1 V2 '· (2.3) ot ox oy Re

where ii= (u,v) is the velocity, ' is the vorticity and Re is
the Reynolds number.

The numerical algorithm used to solve equations (2.1)
to (2.3) was first described by Gatski, et al. [6]. This algo­
rithm is based on the compact differencing schemes which
require the use of only the values of the dependent vari­
ables in and on the boundaries of a single computational
cell. Grosch [8] adapted the Navier-Stokes code to ICL­
DAP. Fatoohi and Grosch [3] solved equations (2.1) and
(2.2), the Cauchy-Riemann equations, on parallel comput­
ers. The algorithm is briefly described here.

Consider equations (2.1) to (2.3) in the square domain
0 S x S 1, 0 S y S 1 with the boundary conditions u = 1
and v = 0 at y = 1 and u = v = 0 elsewhere. Subdivide the
domain into rectangular cells. The center of a cell is at
(i+ l/2j+ 1/2). Apply the centered difference operator to

equations (2.1) to (2.2), to get

axui+ll2J+112 + a,vi+l/2j+l/2 = 0, (2.4)

axvi+l/2j+l/2 - a,ui+112j+112 = ti+l/2j+l/2· (2.5)

The adaptation of this algorithm to different parallel
architectures can be simplified by the introduction of box
variables to represent fl. The box variables, F, are defined
at the corners of the cells so that the average of two adja­
cent rs is equal to the fl on the included side. The set of
difference equations and boundary conditions in terms of
the box variables are solved using a cell relaxation scheme
which is equivalent to an SOR method [6], [8].

The compact difference approximation to equation
(2.3) results in an implicit set of equations which are
solved by an ADI method [4]. This method consists of
two half steps to advance the solution one full step in time.
Let !l.t be the full time step and apply finite difference
operators to equation (2.3), to get

f3fJ t'f!:f{ - (1 + 2af>) t'/j112 + fiJ t'f:lJ = F ij• (2.6)

f3W t'IJ.!1 - (1 + 2af>'>) t'lj1 + Yr) t'!ft1 = Gij• (2.7)

where

F;j = -f3W t7;-1 - (1 - 2af>'>) t7j - irJ t7j+I•

G;j = -f3fJ t'tlJ - (1 - 2aJx» t'lj112 - f.J t'!:lJ.
ay> = !l.t I 2(&)J Re, ap> = !l.t I 2(/l.y)~ Re,

f3fJ = aJx> + !l.t ui-lj /4(&)j, f3W = af>'> + !l.t V;;-114(/l.y);.

it)= ay> - & ui+Ij /4(&)j, Yr)= af>'> - t.t Vij+114(t.y);.

The velocity field is not defined at the corners of the cells
in this scheme; however, it can be computed using the box
variables at the two immediate interior neighbors along the
vertical and horizontal lines. Equation (2.6) represents a
set of independent tridiagonal systems (one for each verti­
cal line of the domain). Similarly, equation (2.7)
represents a set of independent tridiagonal systems (one for
each horizontal line of the domain). The ADI method for
equation (2.3) is applied to all interior points of the
domain. The values of t on the boundaries are computed
using equation (2.2), see [2] for details.

The key to the adaptation of the relaxation scheme for
solving equations (2.1) and (2.2) to parallel computers is
the realization that each P is updated four times in a
sequential sweep over the array of cells. This fact is util­
ized by using reordering to achieve parallelism. The com­
putational cells are divided into four sets of disjoint cells
so that the cells of each set can be processed in parallel
[3]. It is therefore clear that the cell iteration for the box
variables is a four "color" scheme. Thus four steps are
necessary for a complete relaxation sweep.

The main issue in implementing the ADI method for
equation (2.3) on parallel computers is choosing an
efficient algorithm for the solution of tridiagonal systems.
Two algorithms are considered here: Gaussian elimination

236

and cyclic elimination, [4], [9]. The Gaussian elimination
algorithm is based on an LU decomposition of the
tridiagonal matrix. This algorithm is inherently serial
because of the recurrence relations in both stages of the
algorithm. However, if one is faced with solving a set of
independent tridiagonal systems, then Gaussian elimination
will be the best algorithm to use on a parallel computer; all
systems of the set are solved in parallel. The cyclic elimi­
nation algorithm is a variant of the cyclic reduction algo­
rithm [9] applying the reduction procedure to all of the
equations and eliminating the back substitution phase of
the algorithm. Cyclic elimination is most suitable for
machines with a large natural parallelism, like the MPP.

The solution procedure for the Navier-Stokes equa­
tions can be summerized as follows:

(1) Assume that t is zero everywhere at t = 0. The vari­
ables and boundary values are initialized.

(2) The vorticity at the comers of the domain, undefined
in this scheme, is approximated using the values of its
neighboring points. The values of ti+l/2j+l/2 are com­
puted using the values of t at the comers of the cells.

(3) The relaxation process is implemented for each
"color", i.e. four times in order to complete a sweep.
The maximum residual is computed and tested against
the convergence tolerance. The whole process is
repeated until the iteration converges.

(4) The coefficients aJx>, ap>, f3fj>, f3W, it), irJ for both
passes of the ADI method are computed.

(5) The values of t on the boundaries are computed.

(6) The tridiagonal equations distributed over columns,
equation (2.6), are solved.

(7) The tridiagonal equations distributed over rows, equa-
tion (2.7), are solved.

These steps were implemented using the following subpro­
grams: setbc, step (1); zcntr, step (2); relaxd, step (3); cof,
step (4); zbc, step (5); triied, step (6); and trijed, step (7).
The repetition of steps (2) through (7) yields the values of
the velocity and vorticity at any later time.

IIL Implementation on the MPP

The Massively Parallel Processor (MPP) is a large­
scale SIMD processor built by Goodyear Aerospace Co. for
NASA Goddard Space Flight Center [l]. The MPP is a
back-end processor for a VAX-11n80 host, which supports
its program development and 1/0 needs.

The MPP's high level language is MPP Pascal [7]. It
is a machine-dependent language which has evolved from
Parallel Pascal, an extended version of Pascal with a syntax
for specifying array operations. These extensions provide a
parallel array data type and operations on these arrays.

The Navier-Stokes algorithm, described in section II,
was implemented on the MPP using 127 x 127 cells
(128 x 128 grid points). The computational cells are
mapped onto the array so that each comer of a cell
corresponds to a processor. The seven subprograms of this
algorithm (see section P) were written in MPP Pascal.

These subprograms were executed entirely on the MPP;
only 1/0 routines were run on the VAX.

The relaxation process, subprogram relaxd, was
implemented on the array using the four color relaxation
scheme [3]. The ADI method, subprograms triied and
trijed, was implemented by solving two sets of 128 tridiag­
onal systems using the cyclic elimination algorithm. This
is done in parallel on the array with a tridiagonal system of
128 equations being solved on each row or column.

One of the problems in solving Navier-Stokes equa­
tions on the MPP is the size of the PE memory. The
relaxation subprogram uses almost all of the 1024 bit PE
memory; 22 parallel arrays of floating point numbers, all
but 5 of which are temporary. Although the staging
memory can be used as a backup memory, this causes an
I/0 overhead and reduces the efficiency. This problem was
solved by declaring all parallel arrays as global variables
and using them in procedures for more than one purpose.
Beside this memory problem, there are problems in using
MPP Pascal to perform vector operations and to extract
elements of parallel arrays. Operations on vectors are per­
formed by expanding them to matrices and performing
matrix operations; thus the processing rate is 1/128 of that
for matrix operations. MPP Pascal does not permit extract­
ing an element of a parallel array. This means that scalar
operations involving elements of parallel arrays need to be
expanded to matrix operations or performed on the VAX.

The relaxation subprogram is quite efficient; almost
all of the operations are matrix operations, no vector and
only two scalar operations per iteration, with data transfers
only between nearest neighbors. The ADI subprograms are
reasonably efficient; mostly matrix operations with few
scalar and no vector operations. However, both algorithms
have some hidden defects. In updating the box variables
for each set in the relaxation scheme only one forth of the
processors do useful work; the remaining processors are
masked out. This is because only one comer of each cell
of a set is updated each time. For each level of the elimi­
nation process in the cyclic elimination algorithm, a set of
data is shifted off the array and an equal set of zeros is
shifted onto the array. This means that some of the pro­
cessors are not doing useful work; here they are either
multiplying by zero or adding a zero. This is a problem
with many algorithms on SIMD machines.

Table I contains the execution time for each subpro­
gram of the algorithm, that for one iteration in the case of
relaxd; the percentage of the total time spent in that sub­
program; and the processing rate. It is clear, from Table I,
that the majority of the time was spent in relaxd for this
particular run. This is because the average time step
requires about 270 iterations and the total time spent in the
other subprograms (zcntr, cof, zbc, triied, trijed) is only
about the time to do two iterations of relaxd. The number
of iterations in relaxd per time step depends on the data
used during a given run. A different input data set could
result in a smaller number of iterations per time step and
relatively less time spent in the relaxation subprogram.

237

Table I. Measured execution time and processing rate of
the Navier-Stokes subprograms for the 128 x 128 problem
on the MPP.

Sub- Execution Pere. of Processing
~~m time (msec) time(%) rate (MFLOPS)

setbc 0.587 0.00 84
zcntr 2.694 0.06 24

relaxd 15.265* 99.23 156
cof 1.933 0.05 136
zbc 1.833 0.04 1.1

triied 12.717 0.31 125
tr@d 12.725 0.31 125

overall# 41.597 100.00 155

* per iteration.

for ten time steps (execution time is in seconds here).

The processing rates in Table I are determined by
counting only the arithmetic operations which truly contri­
bute to the solution. Scalar and vector operations which
were implemented as matrix operations are counted as
scalar and vector operations. This is the reason why the
subprograms zbc and zcntr have low processing rates; zbc
has only vector operations while zcntr has some scalar
operations implemented as matrix operations. The subpro­
gram setbc has mostly scalar and data assignment opera­
tions which reduce its processing rate. Beside these three
subprograms, the processing rate ranges from 125 to 155
MFLOPS with an average rate of about 140 MFLOPS.

In order to estimate the execution time of an algo­
rithm on the MPP, the numbers of arithmetic and data
transfer operations are counted and the cost of each opera­
tion is measured. This is illustrated in the following
model. Only operations on parallel arrays are considered.

The execution time of an algorithm on the MPP, T,
can be modeled as:

T = T cmp + Temm• (3.1)

Temp = te (Na Ca+ Nm Cm+ Nd Cd), (3.2)

Temm = te (Nsh Csh + Nst Cs,), (3.3)

where Temp and Temm are the computation and communica­
tion times; te is the machine cycle time (te = 100 nsec); Na,

Nm, Nd, Nsh• and Ns1 are the numbers of additions, multipli­
cations, divisions, shift operations, and steps shifted; and
Ca, Cm, Cd, Csh• and Cst are the numbers of cycles for
addition, multiplication, division, startup shift operation,
and each step of shift operation. Table II contains the
measured values of the basic floating point operations.

Table II. Measured execution times (in machine cycles) of
the floating point operations in MPP Pascal.

Add Multiply Divide One step k step
shift shift

965 811 1225 168 136 + 32 k

Table m contains the operation counts per grid point
for the Navier-Stokes subprograms on the MPP using the
cyclic elimination algorithm for solving the tridiagonal sys­
tems. Note that scalar and vector operations (in zcntr and
zbc), which were implemented as matrix operations, are
considered here as matrix operations. Table N contains
the estimated computation and communication times using
equations (3.2) and (3.3) and Tables II and m. The cost of
scalar operations is not included in this model; this
explains the differences between the estimated and meas­
ured times for setbc and cof Apart from these two subpro­
grams, the difference between the total estimated and
measured times ranges between 3% to 8% of the measured
times. The amount of time spent on data transfers is quite
modest; from 6% for relaxd to 25% for triied and trijed.
This is because this algorithm does not contain many data
transfers and these . transfers are only between nearest
neighbors except for the tridiagonal solvers.

Table III. Operation counts per grid point for the Navier­
Stokes subprograms on the MPP, using the cyclic elimina­
tion algorithm for solving the tridiagonal systems.

Sub- Add Multiply Divide Shift Steps
progt!lll shifted

setbc 1 1 1 - -
zcntr 15 9 - 19 28

relaxd* 119 26 - 42 84
co/ 8 8 - 8 8
zbc 5 7 4 8 11

triied 30 45 22 44 764
trijyd 30 45 22 44 764

* per iteration.

Table N. Estimated execution times (in milliseconds) of
the Navier-Stokes subprograms on the MPP.

Sub- Comp. Comm. Total est. Measured
_l?!"Ogram time time time time

setbc 0.300 - 0.300 0.587
zcntr 2.177 0.348 2.525 2.694

relaxd 13.592 0.840 14.432 15.265
co/ 1.421 0.134 1.555 1.933
zbc 1.540 0.144 1.684 1.833

triied 9.239 3.043 12.283 12.717
tri}!d 9.239 3.043 12.283 12.725

IV. Implementation on the Flex/32

The Flex/32 is an MIMD shared memory multiproces­
sor based on 32 bit National Semiconductor 32032
microprocessor and 32081 coprocessor [5]. The results
presented here were obtained using the 20 processor
machine at NASA Langley Research Center.

The machine has ten local buses; each connects two
processors. These local buses are connected together and
to the common memory by a common bus. The 2.25
Mbytes of the common memory is accessible to all proces­
sors. Each processor contains 4 Mbytes of local memory.
Each processor has a cycle time of 100 nsec.

238

The Navier-Stokes algorithm, described in section II,
was implemented on the Flex/32 using 64 x 64 grid points
(63 x 63 cells) and 128 x 128 grid points (127 x 127
cells). The main program as well as the seven subpro­
grams of the algorithm were written in Concurrent Fortran,
which comprises the standard Fortran 77 language and
extensions that support concurrent processing.

The parallel implementation of the Navier-Stokes
algorithm is done by assigning a strip of the computational
domain to a process and performing all the steps of the
algorithm in each prQCess. The main program performs
only the input and output operations and creates and
spawns the processes on specified processors. In our
implementation, we used l, 2, 4, 8, and 16 processors of
the machine. The domain is decomposed first vertically for
the first six subprograms (setbc, zcntr, relaxd, co/, zbc,
and triied) and then horizontally for the subprogram trijed.
The relaxation scheme for each strip was implemented
locally. After relaxing each set of cells, each process
exchanges the values of the interface points with its two
neighbors through the common memory. The tridiagonal
equations were solved using the Gaussian elimination algo­
rithm for both passes of the ADI method. Data is stored in
the common memory, in the local memory of each proces­
sor, or in both of them.

In order to satisfy data dependencies between seg­
ments of the code, a counter is used. This counter, which
is a shared variable with a lock assigned to it, can be incre­
mented by any process and be reset by only one process.
It is implemented as a "barrier" where all processes pause
when they reach it. A set of flags are also used for syn­
chronization in the relaxation subprogram.

Table V contains the speedups and efficiencies as
functions of the number of processors for the 64 x 64 and
128 x 128 problems. The measured execution times and
processing rates using 16 processors are listed in Table VI.
The efficiency of the algorithm ranges from about 94%, for
the 64 x 64 problem using 16 processors, to about 99%,
for the 128 x 128 problem using two processors.

Table V. Speedup and efficiency as functions of the
number of processors, p, of the Navier-Stokes algorithm on
the Flex/32.

p 64 x 64 _£_oints 128 X 128 J!.Oints
S}leedup efficien~ ~eed'l!P_ efficien~

1 1.000 1.000 1.000 1.000
2 1.959 0.980 1.976 0.988
4 3.893 0.973 3.941 0.985
8 7.715 0.964 7.850 0.981
16 15.027 0.939 15.483 0.968

Table VI. Measured execution times for ten time steps and
processing rates for the Navier-Stokes algorithm using 16
processors of the Flex/32.

Problem size Execution time Processing rate
(grid J!.Oint~ (sec) (MFLOPS)

64 x 64 268.7 1.09
128 x 128 2587.1 1.13

The performance model is based on estimating the
values of the overheads resulting from running the algo­
rithm on more than one processor. The execution time of
an algorithm on p processors of the Flex/32, TP, can be
modeled as:

(4.1)

where T cmp is the computation time and Tovr is the over­
head time. Let !rd be a load distribution factor where
ftd = 1 if the load is distributed evenly between the proces­
sors and !rd > 1 if at least one processor has less work to
do than the other processors. Then the computation time
on p processors can be computed by

Temp = frd Ti Ip, (4.2)

where T1 is the computation time using a single processor.

The overhead time can be modeled by:

(4.3)

where Tcnw is the common memory overhead time, T spn is
the spawning time of p processes, and T syn is the synchron­
ization time. Three components of the common memory
overhead time can be identified:

Tcnw = Tcma + Tep/+ Tcml• (4.4)

where Tcma is the common memory additional time - this
results from storing additional variables in the common
memory; Tep/ is the common plus local memory time - this
results from storing variables in both the common and
local memories; T cm/ is the common minus local memory
time - this results from storing variables in the common
memory instead of local memory. The values of T spn• T syn•

T cma• Tep/> and Tcm1 can be estimated as follows:

T spn = p tspn• (4.5)

T syn= p k1ck t1ck> (4.6)

Tcma = n kcmafbc(p) tcma, (4.7)

Tep/= n kepi (fbc(p) tcma + t1ma), (4.8)

Tcm1 = n kcm1 (f bc(p) tcma - t1ma), (4.9)

where tspn is the time to spawn one process - a reasonable
value is 13 msec; tick is the time to lock and unlock a vari­
able - a reasonable value is 47 µsec; tcma is the time to
access a variable in common memory - a reasonable value
is 6 µsec; t1ma is the time to access a variable in local
memory - a reasonable value is 5 µsec; kick is the number
of times a variable is locked and unlocked for each pro­
cess; kcma is the number of times an additional variable is
referenced; kepi is the number of times a variable is stored
in both local and common memory; kcm1 is the number of
times a variable is stored in common memory instead of
local memory; andfbc(p) is the bus contention factor - it is
a function of p. It is assumed that all memory operations
are performed on vectors of length n.

The performance of the Navier-Stokes algorithm is
heavily influenced by the performance of the relaxation

239

subprogram; about 98% of the total time was spent in this
subprogram. Since the number of cells is not divisible by
the number of processors used, the last processor has less
work to do than the other processors. Therefore, the load
distribution factor, equation (4.2), can be computed by

!rd= rn - 11 (_p__). (4.10)
p n-1

Using the performance model, equations (4.1) through
(4.10), the overhead time represents at most 5% of the exe­
cution time of the algorithm, including the load distribution
factor. The overhead time of the relaxation subprogram
dominates the total overhead time. The values of kick and
kcma for each iteration of the relaxation process are 1 and
8. The spawning time has a minor impact on the overhead
time because the processes are spawned only once during
the lifetime of the program. The synchronization time is
insignificant because the routines that provide the locking
mechanism are very efficient and overlap with the memory
access. The bus contention factor is very small. The com­
mon memory additional time, Tcma• dominates the overhead
time. This overhead results from accessing the interface
points for each iteration of the relaxation subprogram. The
other components of the common memory overhead time,
Tcpl and Tcml• have a negligible impact on the total over­
head time because these operations are performed only
once during every time step.

V. Implementation on the Cray/2

The Cray/2 is an MIMD supercomputer with four
Central Processing Units, a foreground processor which
controls 1/0 and a main memory. The results reported here
were obtained using the old Cray/2 at NASA Ames
Research Center; the new one has a shorter main memory
access time than the old one.

The Navier-Stokes algorithm, described in section II,
was implemented on one processor of the Cray/2 using
64 x 64 and 128 x 128 grid points. The reordered form of
the relaxation scheme, the four color scheme, was imple­
mented on the Cray/2 with no major modifications. The
reordering process removes any recursion because each of
the four sets (colors) contains disjoint cells. The two sets
of the tridiagonal systems were solved by the Gaussian
elimination algorithm for all systems of each set in parallel.
This was done by changing all variables of the algorithm
into vectors running across the tridiagonal systems. The
inner loops of all of the seven subprograms of the Navier­
Stokes algorithm were fully vectorized. The local memory
was used to store some of the variables, whenever that was
possible. This reduces main memory conflicts and speeds
up the calculation.

Tables VII and VITI contain the execution time for
each subprogram, the percentage of the total time spent in
that subprogram, and the processing rate for the 64 x 64
and 128 x 128 problems. Most of the time was spent in
relaxd, and the average time step requires about 110 itera­
tions for the 64 x 64 problem and about 270 iterations for
the 128 x 128 problem. The subprogram setbc has a low
processing rate because it has mostly memory access and

scalar operations; however, this subprogram is called only
once during the lifetime of the program. Beside this sub­
program, the processing rate ranges from 57 to 97
MFLOPS with an average rate of about 70 MFLOPS for
the subprograms of both problems.

Table VII. Measured execution time and processing rate of
the Navier-Stokes subprograms for the 64 x 64 problem on
one processor of the Cray/2.

Sub- Execution Pere. of Processing
.Pr~am time (msec) time (%) rate (MFLOPS)

setbc 0.480 0.02 25
zcntr 0.252 0.08 63

relaxd 2.719* 99.02 96
cof 0.720 0.24 85
zbc O.Q15 0.01 66

triied 1.007 0.33 57
tr@d 0.928 0.30 62

overall# 3.048 100.00 96

* per iteration

for ten time steps (execution time is in seconds here).

Table VIII. Measured execution time and processing rate
of the Navier-Stokes subprograms for the 128 x 128 prob­
lem on one processor of the Cray/2.

Sub- Execution Pere. of Processing
_p_ro_g£am time (msec) time(%) rate (MFLOPS)

setbc 1.651 0.01 29
zcntr 1.059 0.03 61

relaxd 11.001 * 99.60 97
cof 3.036 0.10 84
zbc 0.034 0.00 59

triied 4.014 0.13 59
trikd 3.870 0.13 62

overall# 30.286 100.00 97

* per iteration

for ten time steps (execution time is in seconds here).

Based on the fact that Cray vector operations are
"stripmined" in sections of 64 elements, the time required
to perform arithmetic and memory access operations on
vectors of length Lvcr can be modeled as follows:

r
Lvcr l Tfl = (64 Lt+ Lvcr) Nfl CP, (5.1)

T = <rLvcr l L + Lvcr) N CP cs.2>
f2 128 'f 2 f2 '

(5.3)

T = (rLvcrl L + R Lvcr) N CP (5.4)
m2 128 m 2 2 m2 '

240

where T fl and T f2 are the times to perform floating point
operations with strides of 1 and 2; T ml and T m2 are the
times to perform main memory access operations with
strides of 1 and 2; CP is the clock period (CP = 4.1 nsec);
Lm is the length of main memory to registers path
(Lm = 56 CPs); L1 is the length of floating point functional
unit (L1 = 23 CPs); R1 and R2 are the data transfer rates
through main memory with strides of 1 and 2 (reasonable
values are R1 = 1 and R2 = 3.5, although competition from
other processors causes a lower transfer rates and hence
increased values of R1 and R2); Nfl and Nf2 are the
numbers of floating point operations with strides of 1 and
2; and N ml and N m2 are the numbers of main memory
access operations with strides of 1 and 2.

Table IX contains the operation counts per grid point
for the Navier-Stokes subprograms using the Gaussian
elimination algorithm for solving the tridiagonal systems.
These operations are performed on all grid points of the
domain except for zbc where they are performed on vec­
tors. Tables X and XI contain the estimated times of the
Navier-Stokes subprograms for the 64 x 64 and 128 x 128
problems. These times are obtained using equations (5.1)
to (5.4) and Table IX. It is assumed that each division
takes four times the multiplication time. The main
memory access time for each subprogram represents about
50% to 70% of the total estimated and measured time.
This shows that the Cray/2 is a memory bandwidth bound
machine. The memory stride of 2 in relaxd causes more
than a 50% slowdown in data transfer rate. The difference
between the total estimated and measured values can be
attributed to several causes. Among these are: the memory
access and arithmetic operations can overlap, the time to
perform scalar operations is not included, and there is up to
20% offset on the results depending on the memory traffic
and the number of the active processes. Finally, this
model does not take into account the overlapping between
segments of long vectors for the same operation. How­
ever, it was found that this overlapping is insignificant for
Fortran programs.

Table IX. Operation counts per grid point for the Navier­
Stokes subprograms on the Cray/2, using the Gaussian
elimination algorithm for solving the tridiagonal systems.

Sub- Add Multiply Divide Memory
_J>rogram access

setbc 1 1 1 8
zcntr 3 1 - 5

relaxd* 46 20 - 31
cof 8 8 - 16

zbc# 5 7 4 20
triied 6 7 2 17
tr@d 6 7 2 17

* per iteration # vector operations.

Table X. Estimated and measured execution times (in mil­
liseconds) of the Navier-Stokes subprograms for the
64 x 64 problem on one processor of the Cray/2.

Sub- Mem. Add Mult. Est. Measured
__p_ro_g, time time time time time
setbc 0.246 0.022 0.111 0.379 0.480
zcntr 0.154 0.067 0.022 0.243 0.252

relaxd 1.915 1.206 0.551 3.672 2.719
cof 0.480 0.173 0.173 0.826 0.720
zbc 0.010 0.002 0.008 0.020 0.015

triied 0.510 0.130 0.324 0.964 1.007
tr~d 0.510 0.130 0.324 0.964 0.928

Table XI. Estimated and measured execution times (in mil­
liseconds) of the Navier-Stokes subprograms for the
128 x 128 problem on one processor of the Cray/2.

Sub- Mem. Add Mult. Est. Measured
_p_ro__& time time time time time
setbc 0.996 0.090 0.450 1.536 1.651
zcntr 0.622 0.270 0.090 0.982 1.059

relaxd 6.826 4.144 1.802 12.772 11.001
cof 1.967 0.711 0.711 3.389 3.036
zbc 0.019 0.004 0.016 0.039 0.034

triied 2.090 0.533 1.333 3.956 4.014
tr@d 2.090 0.533 1.333 . 3.956 3.870

VI. Comparisons and Concluding Remarks

There are a number of measures that one can use to
compare the performance of these parallel computers using
a particular algorithm. One is the processing rate and
another is the execution time (see Tables I, VI, VII and
VIII). However it must be borne in mind that both of
these measures depend on the architectures of the comput­
ers, the overhead required to adapt the algorithm to the
architecture, and the technology, that is, the intrinsic pro­
cessing power of each of the computers.

H we consider a single problem, a ten time step run
of the algorithm on a 128 x 128 grid, then the processing
rate is a maximum for the MPP, 155 MFLOPS, compared
to 97 MFLOPS for the Cray/2, and only 1.13 MFLOPS on
16 processors of the Flex/32. The low processing rate of
the algorithm on the 16 processors of the Flex/32 is simply
due to the fact that the National Semiconductor 32032
microprocessor and 32081 coprocessor are not very power­
ful. Although the algorithm has a higher performance rate
on the MPP than on the Cray/2, it takes less time to solve
the problem on the Cray/2 than on the MPP. This is due
to the algorithm overhead involved in adapting the algo­
rithm to the MPP. As shown in Tables ill and IX, each
iteration of the relaxation process has 145 arithmetic opera­
tions per grid point on the MPP compared to 66 operations
per grid point on the Cray/2. Also, the cyclic elimination
algorithm, used on the MPP, has 92 arithmetic operations
per grid point while the Gaussian elimination algorithm,
used on the Cray/2, has only 10 operations per grid point;
not including computation of the forcing terms.

241

The implementation of the algorithm on the Flex/32
has the same number of arithmetic operations per grid
point as on the Cray/2; there is only a reordering of the
calculations and no additional arithmetic operations in the
overhead. The algorithmic overhead for the Flex/32 ver­
sion is the cost of exchanging the values of the interface
points and setting the synchronization counters for the
relaxation scheme and accessing the common memory for
the ADI method. This means that the code on each pro­
cessor is the serial code plus the overhead code. When the
code is run on one processor, it is just the serial code with
the overhead portion removed.

Another measure of performance is the number of
machine cycles required to solve a problem. This measure
reduces the impact of technology on the performance of
the machine. For the 128 ·x 128 problem, for example, the
ten time step run requires about 416 billion cycles on the
MPP, 7387 billion cycles on the Cray/2, and 25871 billion
cycles on 16 processors of the Flex/32. This means that
the MPP outperformed the Cray/2, by a factor of 18, and
the latter outperformed the Flex/32, by a factor of 3.5, in
this measure. This also means that one processor of the
Cray/2 outperformed 16 processors of the Flex/32 even if
we assume that both machines have the same clock cycle.
The problem with the Flex/32 is that, although each pro­
cessor has a cycle time of 100 nsec, the memories (local
and common) have access times of about 1 µsec.

One simple comparison between the MPP and Cray/2
is the time to perform a single arithmetic operation using
the models developed in sections ill and V. Using equa­
tion (5.1), the time to perform a single floating point opera­
tion (addition or multiplication) on an array of size
128 x 128 elements on the Cray/2, excluding the memory
access cost, is 91.3 µsec. The time to perform the same
operation on the MPP using MPP Pascal, see Table II,
ranges from 81.1 µsec (for multiplication) to 96.5 µsec (for
addition). This shows that the processing power of a sin­
gle functional unit of the Cray/2 is comparable to the pro­
cessing power of the 16384 processors of the MPP. How­
ever, much of the overhead is not included in this com­
parison: memory access cost on the Cray/2, data transfers
on the MPP, and so on.

This experiment showed that by reordering the com­
putations we were able to implement the relaxation scheme
on three different architectures with no major
modifications. Two different algorithms, Gaussian elimina­
tion and cyclic elimination, were used to solve the tridiago­
nal equations on the three architectures; the two algorithms
were chosen to exploit the parallelism available on these
architectures. The algorithm exploits multiple granularities
of parallelism. The algorithm vectorized quite well on the
Cray/2. A fine grained parallelism, involving sets of single
arithmetic operations executed in parallel, is obtained on
the MPP. Parallelism at higher level, large grained, is
exploited on the Flex/32 by executing several program
units in parallel.

The performance model on the MPP was fairly accu­
rate on predicting the execution times of the algorithm.
The performance model on the Flex/32 showed the impact

of various overheads on the performance of the algorithm.
The performance model on the Cray/2 was based on
predicting the execution costs of separate operations. This
model is used to identify the major costs of the algorithm
and reproduced the measured results with an error of at
most 35%.

The ease and difficulty in using a machine is always a
matter of interest. The Cray/2 is relatively easy to use as a
vector machine. Existing codes that were written for serial
machines can always run on vector machines. Vectorizing
the unvectorized inner loops will improve the performance
of the code. Unlike parallel machines, vector machines do
not have the problem of "either you get it or not". The
Flex/32 is not hard to use, except for the unavailability of
debugging tools which is a problem for many MIMD
machines (a synchronization problem could cause a pro­
gram to die). On the other hand, the MPP is not a user­
friendly system. The size of the PE memory is almost
always an issue. MPP Pascal does not permit vector
operations on the array nor does it allow extraction of an
element of a parallel array. The MCU has 64 Kbytes of
program memory. This memory can take up to about 1500
lines of MPP Pascal code. This means that larger codes
can not run on the MPP. Finally, input/output is somewhat
clumsy on the MPP. However, other machines with archi­
tectures similar to the MPP may not have the same prob­
lems that the MPP does.

There is on~ further observation of interest. This
algorithm can be implemented concurrently on four proces­
sors of the Cray/2 (multitasking). The code will be similar
to the Flex/32 version except that most of the variables
should be stored in the main memory. Adapting this algo­
rithm to a local memory multiprocessor with a hypercube
topology should be relatively easy. A high efficiency is
predicted in this case because all data transfers are to
nearest neighbors and their cost should be very small com­
pared to the computation cost.

Acknowledgements

We would like to thank David Wildenhain of SAR,
Tom Crockett of ICASE, and Chris Willard of NAS for
their assistance. This research was supported in part by
NASA Contract NASl-18107 while the authors were in
residence at ICASE, NASA Langley Research Center,
Hampton, VA 23665. Also, research was supported in part
by NASA Contract NAS2-11555 while the first author was
an employee of Sterling Software under contract to the
Numerical Aerodynamic Simulation Systems Division at
NASA Ames Research Center, Moffett Field, CA 94035.

242

References

[l] Batcher, K. E., "Design of a Massively Parallel Pro­
cessor," IEEE Trans. Comput., Vol. C-29, 1980,
pp. 836-840.

[2] Fatoohi, R. A., Implementation and Performance
Analysis of Numerical Algorithms on the MPP,
Flex/32 and Cray/2, Ph.D. dissertation, Old Domin­
ion Univ., Norfolk, VA, 1987.

[3] Fatoohi, R. A. and Grosch, C. E., "Implementation of
a Four Color Cell Relaxation Scheme on the MPP,
Flex/32 and Cray/2," Proc. 1987 Int. Conf. Par.
Proc., pp. 424-426.

[4] Fatoohi, R. A. and Grosch, C. E., "Implementation of
an ADI Method on Parallel Computers," J. Scientific
Computing, Vol. 2, No. 2, 1987, pp. 175-193.

[5] Flexible Computer Co., Flex/32 Multicomputer Sys­
tem Overview, Publication No. 030-0000-002, 2nd
ed., Dallas, TX, 1986.

[6] Gatski, T. B., Grosch, C. E., and Rose, M. E., "A
Numerical Study of the Two-Dimensional Navier­
Stokes Equations in Vorticity-Velocity Variables," J.
Comput. Phys., Vol. 48, No. 1, 1982, pp. 1-22.

[7] Goddard Space Flight Center, MPP Pascal
Programmer's Guide, Greenbelt, MD, 1987.

[8] Grosch, C. E., "Adapting a Navier-Stokes code to the
ICL-DAP," SIAM J. Scientific & Statistical Com­
puting, Vol. 8, No. 1, 1987, pp. s96-sl17.

[9] Hockney, R. W. and Jesshope, C. R., Parallel Com­
puters: Architecture, Programming and Algo­
rithms, Adam Hilger, Bristol, England, 1981.

SOWTION OF VISCOUS FWID FWWS
ON A DISTRIBUTED MEMORY CONCURRENT COMPUTER

Mark E. Braaten

Engineering Systems Laboratory

GE Research and Development Center
P.O. Box 8

Schenectady, New York 12301

ABSTRACT

A concurrent algorithm for the solution of the Navier-Stokes
equations expressed in curvilinear coordinates has been developed
for execution on a distributed memory parallel computer. This
algorithm offers the ultimate promise of near-supercomputer per­
formance on relatively low-cost parallel computers. The new
algorithm is based on an existing serial pressure-correction-based
algorithm, and partitions the problem onto the processors using
areal decomposition. The algorithm is demonstrated on an Intel
iPSC for a complicated two-dimensional laminar flow problem
fo~ various grid sizes and numbers of processors. Speedup per iter~
atlon approaches 100% parallel efficiency as the grid size is
increased. However, the convergence rate of the concurrent proce­
dure tends to deteriorate somewhat relative to the original serial
algorithm as the grid size and the number of processors are
increased, limiting the maximum speedup that was achieved to a
factor of 9.16 with 16 processors. The degradation in convergence
rate is traced to a poorer solution of the pressure correction equa­
tion that is obtained in the concurrent procedure, and several reme­
dies are proposed. Overall, the results are very encouraging.

1. INTRODUCTION

A major obstacle to the increased use of computational fluid
dynamics in engineering design continues to be the long run times
and high cost of the computer simulations. As an example, a run
of a 3-D finite volume combustor code developed at the GE
Research and Development Center [1] requires one to two hours
of cpu time on a Cray-XMP supercomputer, for a grid with 75 000
grid points. Such a calculation would require hundreds of h~urs
on a minicomputer or engineering workstation, making it imprac­
tical for routine design purposes. More exotic codes such as those
used for the direct simulation of turbulence require even greater
computational resources.

Parallel processing offers the promise of greatly reducing the
execution times for CFD codes by using many processors to attack
the problem simultaneously. Recent advances in VLSI technology
have led to the development of a class of relatively low-cost con­
current computers, which use a moderate number of inexpensive
processors, that offer near-Cray performance at a fraction of the
cost, making them appear attractive for more routine use. The com­
putational power of the individual processors ranges from that
of a 16-bit microcomputer, in machines such as the Intel iPSC
and Ametek System 14, to fast vector processors in machines such
as the Alliant FX/8 and the Intel iPSC/VX. Other parallel super­
computers with small numbers of supercomputer processors are
available or under development (such as the ETAIO and Cray 3)
which offer higher ultimate performance, but their high cost and
limited availability make them less attractive for routine use for
the foreseeable future.

243

If low-cost processors are to be used, many will be required
to provide the level of performance required for CFD codes. Con­
curr~nt _computers of this type can either be of a shared memory
or d1stnbuted memory architecture. Memory conflicts can limit
the number of processors that can be effectively used in a shared
memory system. Distributed memory systems do not suffer from
this limitation, and can be scaled up to hundreds of processors
w~ile retaining high parallel efficiencies. The disadvantage of dis­
tnbuted memory architectures is that the problem to be solved must
be explicitly partitioned by the programmer onto the various
processors in such a way that load balancing is maintained and
comm~nication between processors is minimized. For some prob­
lems, 1t may not be easy or even possible to find a satisfactory
means of doing this partitioning. Fortunately, for finite volume
~~id ?1-echanics algorithms, a simple and natural geometrical par­
t1t10mng of the problem meets the requirements very nicely. Con­
sequently, distributed memory architectures appear very well suited
for the solution of CFD problems, as has been noted by other
researchers [2,3], and are the focus of attention here.

It is interesting to note that the evolution of both architectures
appears to be toward hybrid systems offering aspects of both local
and global memory, which will tend to blur the distinction between
the two types of machines. Examples are the shared memory
Flex/32 [2], whic~ ~ows the memory to be allocated either locally
or globally, and distnbuted memory machines like the experimental
I-machine under development at MIT [4], in which the commu­
nication between the processors is so rapid that a virtual global
memory addressing system can be implemented. In any case, since
the fi.eld of parallel processing is developing so rapidly, with
machines appearing (and disappearing) daily, the concurrent
algorithm developed here was designed to be generally applicable
to the general class of distributed memory computers, rather than
to a particular machine.

In this work, the development of a concurrent algorithm for
the solution of the Navier-Stokes equations expressed in curvilinear
coordinates is described. First, the original serial algorithm is
reviewed, and then the development of the concurrent algorithm
is detailed. A theoretical analysis of the potential speedup availa­
ble from the concurrent algorithm is followed by a demonstra­
tion of the algorithm on an Intel hypercube for a complicated 2-D
laminar flow problem.

2. REVIEW OF ORIGINAL ALGORITHM

The numerical algorithm developed here for execution on a
distributed memory parallel processor is a direct extension of the
serial incompressible flow algorithm described in [5,6]. Only a brief
outline of the original algorithm is given here; the reader is referred
to the original references for the details. For simplicity the dis­
cussion is limited to incompressible laminar flows, ' but the

algorithm is extendable to turbulent, compressible, and chemically
reacting flows.

The governing conservation equations typically can be writ­
ten in the Cartesian coordinates for the dependent variable </> in
the following form

__i_ (r a</>)
ax ax

+ __i_ (I' a</>) + R (x, y) (I)
ay ay

where r is the effective diffusion coefficient and R is the source
term. When new independent variables ~ and 17 are introduced,
Eq. (1) changes according to the general transformation~ = ~ (x,
y), 17 = 17 (x, y). Equation (1) can be rewritten in(~, 17) coordinates
as follows:

I a 1 a - - (QU<f>) + - - (eV</>)
J a~ J a11

= - - - (q1<f>< - qz</>) 1 a [r J
J a~ J ry

I a [r J + - - - (- qz<f>< + q3cf>ry) + S (~, 17)
J a11 J

(2)

where U and V are the contravariant velocity components, q1, q2,

and q3 are metric terms arising from the coordinate transforma­
tion, J is the Jacobian of the transformation, and S(~, 17) is the
source term in the ~ -17 coordinates.

A staggered grid system is adopted, following the standard prac­
tice for incompressible finite volume algorithms. The scalar vari­
ables (p, e) are located at the center of the control volumes and
the Cartesian and contravariant velocity components are located
on the faces of the control volumes. Discretization of Eq. (2), along
with suitable interpolation for the variables whose values are
unknown on the control volume faces, leads to the following
general form of the conservation equation for the variable cf>:

(3)
i = E,W,N,S

The subscripts P,E,W,N, and S refer to the grid point at the center
of the control volume and the four neighboring grid points, respec­
tively. The term (S1,)p includes the original source term in the
equation, plus the additional terms that cannot be approximated
by the values of cf> at the five grid points. A successive-line­
underrelaxation method is used to solve the resulting finite differ­
ence equations for each variable </>.

The momentum and continuity equations, along with appropri­
ate boundary conditions, make up the complete description of a
laminar flow. The solution of these coupled equations makes up
the kernel of any computational fluid mechanics algorithm. Lami­
nar flows are commonly used to test the performance of numeri­
cal algorithms since the effects of the pressure-velocity coupling,
which usually controls the convergence of the algorithm, are most
clearly evident for such flows [7].

The method used to solve the coupled system of momentum
and continuity equations is a pressure-correction method similar
to that described in [8]. Following the notation of Ref. [5], the
momentum equations can be written as

Ajiup = I: A~u; + IY' + (Bup< + C"pry) (4)
i = E,W,N,S

ApVp = I: A'jv; + nv + (BVP< + cvpry) (5)
i = E,W,N,S

The Ds represent coefficients ansmg from the viscous cross­
derivative terms, and the Bs and Cs represent the projected areas
acted on by the pressure gradients in the ~ and 11 directions, respec­
tively. The momentum equations can be solved, for a given pres­
sure distribution p*, to yield a tentative velocity field u*, v*. Since
u*, v* do not necessarily satisfy the continuity equation, they and
the guessed pressure fieldp* must be updated. The corrected veloc­
ities and pressure are obtained from:

p = p* + p'

u u* + u'

v V* + VI (6)

Through manipulation of the momentum equations, and the for­
mulas defining the contravariant velocities U, Vin terms of u, v
and the various metric derivatives, the velocity corrections U', V'
can be expressed in terms of p', through the relations:

(7)

These expressions are then substituted into the discrete continuity
equation:

244

0 (8)

leading to the final form of the pressure correction equation:

- (eV*)s - (f3e)s (p'p - P's)= 0 (9)

where a and (3 are the coefficients derived by combining Eq. (7)
and Eq. (8). This equation is solved, and the pressure and the veloc­
ity components are updated, completing one global iteration. Due
to the nonlinearity of the problem, a number of global iterations
are required to obtain a converged solution.

3. CONCURRENT IMPLEMENTATION

Effective implementation of the algorithm described in Sec­
tion 2 on a distributed memory concurrent computer requires the
satisfactory resolution of three major computational issues,
namely: 1) load balancing, 2) minimization of communications
costs, and 3) the development of an efficient concurrent algorithm.
The development of an efficient concurrent algorithm is the criti­
cal step in making effective use of any parallel architecture. In the
attempt to keep all of the processors busy generating floating point
numbers at impressive combined mflop rates, it is easy to lose sight
of the fact that the true goal is to achieve the same solution to
the physical problem in less time than with a single processor.

The concurrent algorithm described in this section was
implemented on a 16-node, memory-enhanced Intel hypercube.
Each processor is rated at only 0.03 mflop; consequently, ideal
performance with a 16-node system is only about 0.5 mflops. Con­
sequently, the emphasis here is not on the absolute performance
of the code, but on the speedup obtained with multiple proces­
sors relative to a single processor. The ultimate goal is to run the
code on a machine with faster processors to achieve near­
supercomputer performance. Although the basic concurrent
algorithm is applicable to any distributed memory parallel proces­
sor, details of the implementation motivated by the specific
architecture of the iPSC are mentioned when appropriate.

A widely used technique for partitioning the solution of a par­
tial differential equation onto a number of processors is the areal
decomposition method [9]. This method represents an extension
of the classical Schwarz alternating method [10] to a parallel
architecture. The solution domain is divided up into a number of
overlapping subdomains, and each subdomain is assigned to a
different processor. Overlapping is necessary so that each interior
grid point is treated as an interior point in at least one subdo­
main. In parallel, the coefficients of the equation are calculated
in each subdomain, and an iterative solution is obtained in each
region to some reasonable level of convergence. The boundary
values are then exchanged with the neighboring subdomains, and
the solution is iterated further. When some suitable global con­
vergence criterion is satisfied, the solutions on each subdomain
can be assembled into the complete solution for the entire domain.

Since the areal decomposition method appears to be a natu­
ral (and general purpose) way of partitioning problems involving
the solution of pde's by either finite volume or finite element
methods for execution on a parallel computer, it was the method
adopted here. The solution domain is divided up into a number
of overlapping subdomains, one per processor, with the number
of grid points in each subdomain approximately equal. Since the
work required for each node point is roughly the same, this ensures
that load balancing is excellent.

In a curvilinear coordinate code, much of the storage burden
is taken up by the storage of the grid point positions and the many
metric derivative terms that arise from the coordinate transfor­
mation. Since the grid is held fixed in the course of the calcula­
tion, it is far more computationally efficient to compute the metric
terms once and for all at the beginning and store the results, rather
than recomputing the metric terms repeatedly throughout the cal­
culation. A geometrical decomposition has the advantage that this
metric information needs only be stored in the local memory of
the processor that is assigned to that region of the domain, and
does not need to be communicated between processors. Only the
interfacial values of the solution variables, which are updated in

245

the course of the solution, need to be passed between processors,
The only storage penalty that arises from the areal decomposi­
tion method is due to the need to store the metric information
and solution variables in the overlapping regions twice.

The solution domain can be divided into strips, boxes, or
arbitrarily shaped regions with roughly the same number of points.
The key factor for minimizing the communications costs is to max­
imize the ratio of computation in each processor to the commu­
nication between processors. The computational work in each
subdomain is dependent on the number of control volumes (vol­
ume) of the subdomain, while the amount of communication
between subdomains depends on the number of boundary cells
(surface area) of the subdomain. For a large enough problem and
a moderate number of processors, decomposition by strips leads
to a smaller surface-to-volume ratio of the subdomains than does
a boxwise decomposition. With the structured grid used in a finite
volume formulation, there is'no need to resort to arbitrarily shaped
regions, although they are useful in a finite element context. The
disadvantage of stripwise decomposition is that the number of
processors that can be effectively used is limited to something on
the order of n, where n is the largest number of control volumes
in any given direction. For both two- and three-dimensional prob­
lems, n will seldom exceed 100; consequently, the number of proces­
sors that can be effectively used is similarly limited. In
three-dimensional problems, boxwise decomposition may be a bet­
ter choice since it will allow a larger number of processors, and
consequently more computational power, to be applied to the prob­
lem.

The best choice for the partitioning of the problem depends
on the number of processors available and the ratio of computa­
tional speed to communications speed for the machine under con­
sideration. The Intel iPSC hypercube consists of an Intel
80286-based host machine and a computational cube, consisting
of up to 128 Intel 80286-based processors connected in a: hyper­
cube arrangement. All communication is slow relative to the speed
of computation. With this number of processors and .communi­
cation speed, stripwise decomposition is a good choice for this
machine.

Due to the nature of the staggered grid used, two rows of grid
points must be overlapped to ensure that all interior u velocities
appear as interior points in at least one subdomain. This also causes
one extra row of v velocities and pressures to be solved redundantly
in each subdomain, which increases the computational effort for
the concurrent algorithm somewhat over that of the original serial
algorithm.

There are a number of characteristics of the iPSC that influence
the detailed coding of the algorithm required to achieve good con­
current performance. There is a significant overhead associated
with routing messages from one processor to the next, putting a
premium on nearest neighbor communication. This overhead is
overcome by mapping the hypercube to the required linear array
through the use of binary reflected Gray codes [11]. Gray codes
are sequences of n-bit binary numbers with the properties that any
two successive numbers differ only in one bit, and all binary num­
bers with n bits are included. Each processor is then a nearest neigh­
bor to the two processors that are handling the two adjacent
subdomains. As the code is implemented here, the host machine
is used only to read in the grid file and the input variables, moni­
tor convergence, and write out the final solution. Note that on
the existing iPSC, all I/O must be done on the host machine. An

efficient concurrent broadcast routine, contained in Intel's proto­
code library, is used to pass all of the input information from the
host to each processor in the form of identical messages. In par­
allel, each processor then extracts the portion of the grid file that
it needs, and the input variables from these messages. This proce­
dure is much more efficient than having the host machine sequen­
tially create and send individualized messages to each node. The
host machine is slow, and the cost of host-to-processor messages
is high. The concurrent broadcast routine requires only one host­
to-processor message, with all the other messages passed via a span­
ning tree from processor to processor, with some message pass­
ing occurring in parallel. Convergence is monitored by sending
the mass residual to the host machine and comparing it to the
prescribed convergence criteria. A partial mass residual is com­
puted by each processor and summed together using a concur­
rent concentration routine that forms the total mass residual and
sends it to the host via a spanning tree, in a reverse manner to
what was done in the concurrent broadcast. This convergence check
is performed every fifth iteration to reduce the overhead of the
node-to-host communication.

The existing serial solution algorithm solves the governing equa­
tions in the following order: x-momentum, y-momentum, and
finally pressure correction. The same structure is retained in the
concurrent implementation. In parallel, the coefficients for the
x-momentum equation are computed for each subdomain. In par­
allel, a few sweeps of an iterative, block-corrected, line-by-line solu­
tion procedure [12) are performed in each subdomain. During this
process, the boundary values for u in each subdomain are held
fixed. Next, the boundary values for u are exchanged between sub­
domains, and the line-by-line solution procedure is repeated. The
number of repetitions of the line-by-line solution and the exchange
of the boundary values is prescribed by the user.

Upon completion of the x-momentum equation, the procedure
is repeated for the y-momentum equation, and finally for the pres­
sure correction equation. This equation by equation procedure was
selected for several reasons. First, it reduces to the original
algorithm for a single processor. Thus, comparison of the speedup
obtained with p processors over p subdomains is made relative
to the original algorithm on a single processor over the entire solu­
tion domain, which reflects a comparison of the parallel algorithm
with the best serial algorithm, in the spirit of S'p as defined by
Ortega and Voigt [13). Second, if enough repetitions of the line­
by-line solver and the exchange of boundary points are performed
so that a converged solution is obtained for each equation before
proceeding to the next equation, then the overall rate of conver­
gence of the algorithm will be the same as for the serial algorithm
if each equation is also solved to convergence at each stage.
Although it is not the usual practice to solve each equation fully
to convergence at each step, since the coefficients are only tenta­
tive, this similarity suggests that the new concurrent algorithm will
show comparable convergence behavior to the serial algorithm,
which has proved to converge well for a large variety of problems.

4. THEORETICAL SPEEDUP ANALYSIS

Theoretical estimates can be made of the speedup that can be
attained with p processors relative to a single processor for the
current algorithm. The speedups achieved will be somewhat less
than linear due to the following factors: 1) the additional com­
putational work due to the overlapping regions, 2) the cost of the
message passing, and 3) the reduction in convergence rate due to
the change in the solution procedure from line-by-line over a sin­
gle domain to the concurrent Schwarz alternating procedure.

246

Expressions for the degradation factors resulting from over­
lapping and communication costs can be formulated by counting
the number of arithmetic operations and messages passed as a
function of the problem size and the number of processors. The
overlapping of the subdomains causes more lines of control
volumes to be solved than in the serial algorithm, increasing the
computational work, and the cost of message passing represents
an overhead not found in the serial algorithm.

The computational effort in each subdomain is proportional
to the number of control volumes in the subdomain, and can be
expressed as:

(10)

where kcpu represents the cpu time per control volume per itera­
tion of the algorithm. Each processor exchanges essentially the
same mix of messages with its two adjacent processors at each
iteration. On the Intel iPSC, the overhead for message passing
is so high that messages less than 1024 bytes all take essentially
the same amount of time to transfer [9]. Since most of the mes­
sage traffic consists of short messages, the time per iteration that
a processor spends passing messages can be expressed as

(11)

Here km represents the average time required to send and receive
a short message, and nm represents the number of messages
exchanged with an adjacent processor per iteration. In this sim­
ple analysis, the time processors spend idle waiting for messages
that have not yet been sent, due to a lack of synchronization
between processors, is included in this term.

The ratio of cpu time per iteration, including both computa­
tion and message passing, for the concurrent algorithm with p
processors to the cpu time for the original serial algorithm becomes

f_p_

fs

(NI+p-1)
kcpu P NJ+ 2kmnm

kcpu Nl•NJ
(12)

The ratio of the total computational time for the concurrent
algorithm to that for the serial algorithm is given by

(13)

where ip and is are the number of iterations required to obtain a
solution to the same level of convergence for the parallel and serial
algorithms, respectively. After rearrangement, the following expres­
sion for the speedup obtained with the concurrent algorithm with
p processors over the original serial algorithm on one processor
is obtained:

[I p-1 +-­
NI

l JP + km 2nmP
kcpu NJ.NJ

(14)

In a general sense, the speedup S can be expressed as:

S=Ep=(~)[1]p
ip l+O+C

(15)

Here, the term E equals the parallel efficiency, which is less than
unity due to the three factors listed above, namely the overlap­
ping penalty 0, the communication cost C, and the reduction in
convergence rate (i5 / ip).

The important thing to note from the above expressions is that
the penalties due to overlapping and communication become
smaller and smaller as the problem size gets bigger, with every­
thing else fixed. Hence, for a large enough problem, the only degra­
dation from a linear performance improvement will result from
any reduction in convergence rate that may result. Unfortunately,
this degradation cannot be predicted analytically and must be
determined from computational experiments. Note, that due to
the particular formulation of the concurrent algorithm adopted
here, the same convergence rate as the original serial algorithm
can always be achieved by increasing the number of line-by-line
sweeps. However, since this increases the cpu work per iteration,
the total cpu time may or may not decrease. The optimum num­
ber of sweeps for each variable for the concurrent algorithm must
also be determined via numerical experiments, and is not neces­
sarily the same as for the original serial algorithm.

5. DEMONSTRATION RUNS

A series of demonstration runs of the new concurrent algorithm
was made on a 16-node, memory-enhanced Intel iPSC hypercube
at the University of Lowell, MA. The concurrent version of the
algorithm was first developed and tested using Intel's hypercube
simulator, running under Unix 4.2 on a SUN 3/160 workstation.
Although it certainly would be useful to confirm the performance
of the concurrent algorithm for a much wider range of flow con­
figurations, the similarity of the concurrent algorithm to the serial
algorithm, which has been widely tested, gives confidence that the
limited results presented here will be representative of the perfor­
mance of the algorithm in general.

The test case selected involves steady laminar flow in the
axisymmetric afterburner configuration shown in Figure 1. As
described earlier, it is useful to study laminar flows since the solu­
tion of the coupled momentum and continuity equations forms

FLAM EHOLDERS <- E3 '-.......
--.... 8.....- WAKE REGIONS

the kernel of any computational fluid dynamics algorithm and
can be most clearly studied in laminar flow. The solutions presented
here are a first step towards a realistic afterburner simulation, which
will include equations for turbulence and combustion that can be
solved by the same basic procedure.

Due to limitations on cpu time, very large grid sizes could not
be attempted. 1Wo body-fitted grids, one with 32 x 20 nodes, and
the second with 64 x 20 nodes, were used in the calculations. Both
grids are shown in Figure 2. For reference, the converged solution
for the fine grid is shown in Figure 3, by means of plots of the
calculated velocity vectors and the streamlines. Although the flow
is laminar, the flowfield is not simple and contains wake regions
behind the flameholders and a recirculation zone near the trail­
ing edge of the centerbody.

Although the performance of the original serial algorithm is
affected by the choice of such parameters as underrelaxation fac­
tors for the velocities and pressure, and the number of line sweeps
for each variable, previous studies [14] have shown the sensitivity
is not that great, provided reasonable values are used. In this work,
no attempt has been made to optimize these factors for each run;
rather, reasonable values of these parameters were held fixed for
all runs. The underrelaxation factors for the x- and y-momentum
equations were taken equal to 0.3, and that for pressure was taken
equal to 0.5. Two sweeps of the line-by-line procedure were used
for both x- and y-momentum, with three sweeps taken for pres­
sure correction.

The number of iterations required for. convergence is depen­
dent on the choice of convergence criterion. Here, the solutions
were taken to be converged when the normalized mass residual
was less than 10-3• It was confirmed that the converged solutions
obtained with the concurrent algorithm were independent of the
number of processors used, and identical to those obtained with
the original serial algorithm.

5.1 Results

As discussed earlier in Section 4, as the grid size is increased,
the speedup per iteration of the algorithm should approach a lin­
ear speedup with the number of processors, since the penalties
associated with overlapping and communication become less sig­
nificant. Figure 4 demonstrates that the speedups obtained on the
test problem for the two grid sizes exhibit this trend. With 16
processors, the maximum speedup per iteration increased from

OUTER WALL

~RECIRCULATION

~'-.) ZONE

EXIT
--1--PLANE

CENTER BODY

CENTERLINE

Figure 1. Axisymmetric afterburner configuration.

247

(a)

(b)

Figure 2. Computational grids for test problem, a) coarse 32 x
20 grid, b) fine 64 x 20 grid.

(a)

(b)

Figure 3. Converged solution for the fine grid, a) velocity vec­
tors, b) streamlines.

11.12 for the coarse grid to 12.84 for the fine grid, representing
parallel efficiencies of about 700Jo and 800Jo, respectively. The major
contribution to the efficiency being less than lOOOJo comes from
the overlapping of the subdomains, rather than from the commu­
nications costs, which appear minimal.

However, the speedup in terms of total computational time,
shown in Figure 5, does not show the same improvement as the

248

16

14

12

10

a.
::>

"O
Q) 8 Q)
a.
en

6

4

2

0
0 2

Legend

•Ideal
D 32x20 grid

• 64x20 grid

4 6 8 10

Number of Processors

12 14 16

Figure 4. Speedup per integration for concurrent algorithm on
Intel iPSC

16

14

12

10

a.
::>
"O 8 Q)
Q)
a.

(J)

6

4

2

0
0

Legend

•Ideal
D 32x20 grid

• 64x20 grid

2 4 6 8 10

Number of Processors

12 14 16

Figure 5. Speedup of total time for concurrent algorithm on Intel
iPSC

number of grid points is increased, due to a degradation in the
convergence rate of the algorithm as the number of grid points
and the number of processors is increased. The convergence paths,
as a function of the number of processors, are shown for the coarse
grid and the fine grid in Figures 6 and 7, respectively. Note that
for both grids, the original serial algorithm (1 node) shows a
smooth monotonic reduction in the mass residual, reaching an
asympototic rate of convergence that is substantially less than the

10
Legend

• 1 processor
D 2 processors

• 4 processors
<ii
:J o 8 processors

"O . .,
Q) 0.1

t:i. 16 processors
a:
<f)
<f)

"' ::;;
O.Q1

0.001

0.0001 '---'--~'---'---'---'----''----''---'----''----''----'
0 10 20 30 40 50 60 70 80 90 100 110

Iterations

Figure 6. Convergence behavior of concurrent algorithm on coarse
32 x 20 grid.

o;
:J

"O . .,
Q)

a:
<f)
<f)

"' ::;;

0.1

0.01

0.001

Legend

• 1 processor
D 2 processors

• 4 processors
O 8 processors
6 16 processors

0.0001 '-----'----''----'------L--..._ _ _._ ___ _ _._ _ __.

0 20 40 60 80 100 120 140 160 180

Iterations

Figure 7. Convergence behavior of concurrent algorithm on fine
64 x 20 grid.

initial convergence rate. The concurrent algorithm shows a nois­
ier convergence path with a slower initial rate of convergence, but
with a similar asymptotic rate of convergence. With 16 processors,
the convergence rate was 240Jo less for the coarse grid, and 400Jo
less for the fine grid, than the corresponding rates for the serial
algorithm.

Earlier studies of the serial algorithm have shown that the ellip­
tic nature of the pressure correction equation makes it more dif­
ficult to converge than the momentum equations, which tend to
be convection-dominated [15]. Schwarz's alternating method is also
known to be slowly convergent for highly elliptic problems when
many subdomains are used [16]. A series of runs was made vary­
ing the number of line sweeps for the pressure correction equa­
tion, for the fine grid test case using the concurrent algorithm with
16 processors. Figure 8 shows that the convergence rate of the con­
current algorithm approaches that of the serial algorithm as the
number of pressure correction sweeps is increased, as expected.
This indicates that the reason for the slower convergence of the
concurrent algorithm in the original case was a poorer solution

249

of the pressure correction equation with the same number of sweeps
used in the serial procedure. It is interesting to note from Figure
9 that the total computational time required by the concurrent
algorithm is relatively insensitive to the number of line sweeps used
for pressure correction, provided that at least three sweeps are per­
formed. Any improvement in convergence rate achieved by per­
forming more than five sweeps is more than offset by the increased
cost per iteration that results.

6. CONCLUDING REMARKS

A concurrent algorithm for the solution of the Navier-Stokes
equations expressed in curvilinear coordinates has been developed
and demonstrated on a distributed memory parallel processor. The
speedup per iteration approaches 100% parallel efficiency as the
grid size is increased. However, a reduction in the convergence rate
of the algorithm as the grid size and the number of processors
are increased, caused by a poorer solution of the pressure correc­
tion equation, limits the speedup in terms of the total computa­
tional time relative to the original serial algorithm to less than

450

400

<f) 350
c
0

~ 300 ~
0
Q; 250
.c
E
:J
z 200

150

D

~00

3 4 5

Legend

• Concurrent Algorithm
D Serial Algorithm

6 8

Number of P' Sweeps

9

Figure 8. Effect of number of line sweeps for pressure correction
equation on number of iterations required for conver­
gence (64 x 20 grid, 16 processors).

1100

1000

u 900
Q)

e
Q)

E 800 ;::
o;

~
700

600

500

Figure 9.

3 4 5 6 7 8 9

Number of P' Sweeps

Effect of number of line sweeps for pressure correction
equation on total time required by concurrent algorithm
(64 x 20 grid, 16 processors).

linear. Despite this, the algorithm looks very promising, with the
potential for giving near-supercomputer performance on a dis­
tributed memory machine with faster processors.

Further work is needed in the following areas:

1) Block correction or multigrid techniques should be investigated
to improve the parallel solution of the pressure correction equa­
tion, in an attempt to minimize the degradation in convergence
rate observed here for large grids and large numbers of proces­
sors. Multigrid methods have been successfully implemented
on hypercubes [17], and have been shown to improve the con­
vergence of the pressure correction equation fot serial
algorithms [18].

2) A convergence criterion should be used for the solution of each
individual equation, rather than a fixed number of line sweeps,
to ensure the best tradeoff between cost per iteration and overall
convergence rate.

3) More test problems should be studied to verify the performance
of the concurrent algorithm under a wider range of conditions.
Problems involving turbulence and chemical reactions should
be included in the study.

4) The concurrent algorithm should be run on a distributed mem­
ory machine with vector processors, such as Intel's iPSC/VX,
to measure the speedup relative to a single processor and the
total computational time. A successful demonstration will prove
the practical utility of such machines for running CPD codes.

7. ACKNOWLEDGMENTS

The author would like to thank his colleague S.S. Tong of the
GE Research and Development Center for his assistance in get­
ting the hypercube simulator operational on his SUN workstation,
Professors G. Pecelli and S. Smith of the Computer Science depart­
ment of the University of Lowell for allowing me access to the
university's Intel hypercube, and to P. Kautz and G. MacDonald
of Intel for their assistance. Thanks are also due to my colleagues
R. Mani and W. Shyy for helpful discussions, and to C. Cowsert
for typing the equations.

8. REFERENCES

[1] W. Shyy, M.E. Braaten, and D.L. Burrus, ''A Numerical Study
of Flows in an Annular Gas-Turbine Combustor," GE TIS
Report 86CRD257, Schenectady, NY, 1986.

[2] J. Townsend, T.A. Zang, and D.L. Dwoyer, "Fluid Dynamics
Parallel Computer Development at NASA Langley Research
Center," in A.K. Noor, ed., Parallel Computations and Their
Impact on Mechanics, ASME, New York, 1987.

[3] D.E. Keyes and M.D. Smooke, "A Parallelized Elliptic Solver
for Reacting Flows," in A.K. Noor, ed., Parallel Computa­
tions and Their Impact on Mechanics, ASME, New York,
1987.

[4] W.J. Dally, "Concurrent Computer Architecture," in A.K.
Noor, ed., Parallel Computations and Their Impact on
Mechanics, ASME, New York, 1987.

250

[5] W. Shyy, S.S. Tong, and S.M. Correa, "Numerical Recirculat­
ing Flow Calculation Using a Body-Fitted Coordinate Sys­
tem," Num. Heat Trans., 8, 99-113, 1985.

[6] M.E. Braaten and W. Shyy, ''A Study of Recirculating Flow
Computation Using Body-fitted Coordinates: Consistency
Aspects and Mesh Skewness," Num. Heat Trans., 9, 559-574,
1986.

[7] G.D. Raithby and G.E. Schneider, "Numerical Solution of
Problems in Incompressible Fluid Flow: Treatment of the
Velocity-Pressure Coupling," Num. Heat Trans., 2, 417-449,
1979.

[8] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hem­
isphere Publishing Co., New York, 1980.

[9] O.A. McBryan and E.F. Van de Velde, "Hypercube
Algorithms and Implementations," SIAM J. Sci. Stat. Com­
put., 8, 5227-5287, 1987.

[10] QY. Dihn, R. Glowinski, and J. Periaux, "Solving Elliptic
Problems by Domain Decomposition Methods with Appli­
cations," in G. Birkhoff, A. Schoenstadt, eds., Elliptic Prob­
lem Solvers II, Academic Press, Inc., New York, 1984.

[II] T.F. Chan, "On Gray Code Mapping for Mesh-FTTS on
Binary N-Cubes," RIACS Technical Report 86.17, NASA
Ames Research Center, Moffett Field, CA, 1986.

[12] SY. Patankar, ''A Calculation Procedure for Two-Dimensional
Elliptic Situations," Num. Heat Trans., 4, 409-425, 1981.

[13] J.M. Ortega and R.G. Voigt, "Solution of Partial Differen­
tial Equations on Vector and Parallel Computers," SIAM
Review, 27, 149-240, 1985.

[14] W. Shyy, "Numerical Outflow Boundary Condition for
Navier-Stokes Flow Calculations by a Line Iterative Method,"
AIAA Journal, 23, 1847-1848, 1985.

[15] W. Shyy and M.E. Braaten, "Three-Dimensional Analysis of
the Flow in a Curved Hydraulic Turbine Draft Tube," Int.
J. Num. Meth. Fluids, 6, 861-882, 1986.

[16] M.E. Braaten, "Development and Evaluation of Iterative and
Direct Methods for the Solution of the Equations Govern­
ing Recirculating Flows," PhD Thesis, Department of
Mechanical Engineering, University of Minnesota, Min­
neapolis, MN, 1985.

[17] T.F. Chan and R.S. Tuminaro, "Implementation of Multigrid
Algorithms on Hypercubes," RIACS Technical Report 86.30,
NASA Ames Research Center, Moffett Field, CA, 1986.

[18] M.E. Braaten and W. Shyy, "Study of Pressure Correction
Methods with Multigrid for Viscous Flow Calculations in
Nonorthogonal Curvilinear Coordinates," Num. Heat Trans.,
11, 417-442, 1987.

Parallelizing An Electron Transport Monte Carlo Simulator (MOCASIN 2.0)

Herb Schwetman and Stephen Burdick

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, TX 78759

Abstract ---- Electron transport simulators are
important tools for studying electrical properties of
semiconducting materials and devices. As demands for
modeling more complex devices and new materials have
emerged, so have demands for more processing power.
This paper documents a project to convert an electron
transport simulator (MOCASIN 2.0) to a parallel pro­
cessing environment. In addition to describing the
conversion, the paper presents PPL, a parallel program-­
ming version of C running on a Sequent multiprocessor
system. In timing tests, models that simulated the
movement of 2,000 particles for 100 time steps were
executed on ten processors, with a parallel efficiency of
over 97%. In this revision to MCC Technical Report
ACA--ST/CAD--328--87, an additional table has been
added to explain the apparent discrepancy in the timing
results found in Table 1.

Introduction
Device simulators play an important role in the

characterization and advancement of semiconductor
technology. They are used to characterize and predict
the electrical behavior of various devices, such as
transistors and diodes, fabricated from different materi­
als including germanium, silicon and gallium arsenide.
Currently, the most common device simulators are
based on the drift-diffusion approximation [7, 8, 12].
Drift-diffusion based simulators enjoy the properties of
familiarity (due to widespread use), rapid execution
(due to the simplifying approximations made about the
physical properties of the devices}, and reliable predic­
tions for a large class of problems. Unfortunately, the
drift-diffusion approximation becomes less accurate as
device sizes shrink, as the electric field inside of the
devices becomes stronger, and as the electric field varies
rapidly in space or time. These trends are becoming
more evident as semiconductor technology advances.

Device simulators that model transport of a carrier
(an electron or a hole) at the scattering level and that
use Monte Carlo simulation remove several of the
assumptions made in the drift-diffusion simulators
about device behavior [5, 6]. This new form of simula­
tor has several advantages over the drift-diffusion based
simulators, including: (1) they can be easily modified to
include new scattering processes; (2) they can model
intrinsic noise phenomena; and (3) they represent the
physical behavior more accurately. However, a disad­
vantage is that it can require enormous amounts of
CPU time; runs requiring hours or days of computing
time on a Sun 3/260 workstation are common.

251

At MCC, a program to model electron tra,nsport in
planar MESFET's (MEtal Semiconductor Field Effect
Transistors) was developed as part of the Computer
Aided Design (CAD) project. This program, named
MOCASIN 2.0 [2], was implemented for the the Apollo
660 workstation and the Sun 3 workstation [BuBl86]
over a two year period. In the middle of 1987, a colla­
boration between the CAD project and the Parallel Pro­
cessing project at MCC led to the development of a
parallel version of MOCASIN 2.0 which runs on the
Sequent Balance multiprocessor system. This paper
describes the the implementation of parallel MOCASIN
2.0, with emphasis on the changes required to convert
the serial version to the equivalent parallel version. A
key factor in facilitating this conversion was PPL [9, 10,
11], a superset of C with enhancements to facilitate
parallel processing.

The Simulator -- MOCASIN 2.0

MOCASIN 2.0 is a two-dimensional, scattering-­
level transport simulator for planar MESFET's fabri­
cated from III--V compounds. The program places
charged particles (representing the carriers) in a rec­
tangular simulation region (representing the MESFET)
and solves for the electric field due to charged particles,
ionized dopants, and boundary conditions. The parti­
cles are moved according to the local electric field and
scattered according to local material properties. After
each particle has been moved for a very short time
interval (sxrn--14 seconds), the electric field is updated.
These two steps -- field determination and particle tran­
sport -- are repeated until the device behavior has been
simulated for the specified time interval.

The carrier transport process also consists of two
stages. In the first stage, each particle is moved under
the influence of the local electric field for a randomly
selected length of time. During the second stage, a
scattering process is randomly selected from a set of
possible processes, and the particle's energy-momentum
state is randomly altered according to the selected
scattering process.

This procedure is very general and uses the more
accurate approximations mentioned above. In particu­
lar, drift-diffusion based simulators assume that the car­
riers instantaneously reach a mean velocity determined
by the local electric field. This assumption prevents
drift-diffusion based simulators from accurately predict­
ing the electrical behavior of submicron sized
MESFET's in Gallium Arsenide. Scattering-level based
transport simulations, such as MOCASIN 2.0, model
the experiment more accurately, but they require much
more CPU time.

To address the problem of long running times, a
project was established to implement a parallel version
of the simulator. The first step of this project was to
select a portion of the simulator code to execute in
parallel. The next steps were to define a process struc­
ture and redefine the data structures for parallel execu­
tion. After implementation of the parallel version, tests
were conducted, to verify correct operation and to
measure the impact of the changes.

The section of the simulator chosen as the portion
of the simulator to be converted to parallel execution
was the particle transport section, for three reasons:

• it was easily isolated,

• it consumed a major percentage of the CPU
time in the serial version, and

• the movement of each particle is independent of
the movement of all of the other particles.

As will b1~ seen later on, this selection was fortuitous.

Once this selection was made, MOCASIN 2.0 was
moved to the parallel environment used for this project.
This environment was the Sequent Balance 8000 mul­
tiprocessor system [13], together with PPL, a parallel
programming language based on C. PPL had been
developed at MCC for the Balance system and, based
on prior experiences [4], seemed to be a good choice for
the conversion project. The remainder of this paper
gives a brief overview PPL and then details the major
changes required to arrive at a parallel version of the
simulator.

Overview of PPL
As stated above, PPL is a superset of C. The

extensions all deal with creating and controlling multi­
ple (parallel) processes within a single C program. The
primary construct is the PPL process. PPL processes
correspond to tasks or microtasks in some other parallel
environments. The underlying runtime support pack­
age uses UNIXt processes (created using the fork system
call) to serve as "workers". In the remainder of this
paper, the term "process" will refer to a PPL process,
and the term "worker" will refer to a UNIX process
which is associated with a processor. PPL processes
which are eligible to execute are placed on a single
"ready-to-run" queue. As processes are placed on this
queue, the idle workers are stimulated to examine this
queue; one of the idle workers will remove the next eli­
gible process and start its execution. PPL is designed
to encourage the use of processes, and it completely
hides the existence of the workers. The only control a
programmer has over the workers is to specify the
number of workers dedicated to the program. Each
worker uses one physical processor, so the number of
workers corresponds to the maximum level of parallel­
ism which could be exploited by the program. A PPL
program can have many simultaneously active processes
with only a few workers. In fact, executing a PPL pro­
gram with only one worker assigned (and consequently

t UNIX is a trademark of Bell Laboratories.

252

with all processes executing sequentially on one proces­
sor) is a useful debugging technique.

Processes are created dynamically. There are no
implied relationships between processes. Processes can
terminate any time after they are created. In addition,
they can suspend execution, to await the occurrence of
an event caused by another active process. Processes
can initiate additional instances of themselves or other
processes. The input arguments and variables local to a
process are automatically preserved as the process
progresses through alternating periods of being active
and then being suspended. Processes can call functions
and procedures, just as normal C procedures do. The

PPL programmer is able to concentrate on implement-
ing the parallel program, while the details of process
management and process scheduling are handled by
procedures in the PPL runtime library.

In an environment with simultaneously active
processes, there must be mechanisms for synchronizing
the activities of these processes. Often, these synchron­
ization mechanisms are used to guarantee that only one
process at time is active in a critical section of the code.
A classic example would be updating a variable which is
located in shared memory (see below). PPL supports
two kinds of synchronization operations: those based on
suspending and resuming processes and those which use
a "busy wait". The first kind has the advantage that
while a process is in the suspended state in some queue
of suspended processes, the worker it was using can be
assigned to another eligible process. However, there is
some processing overhead required to place a process in
this queue and to start another process. The second
kind has very low overhead, but it does "waste" a
worker while the process is waiting for something to
happen. PPL programmers are encouraged to use the
suspend-resume form of synchronization if there is a
high probability of being forced to suspend or if the
process will be in the critical section for a long period of
time. The busy-wait form is appropriate if there is a
low probability of being forced to wait or if the time in
the critical section will be short.

While PPL has several different kinds of synchroni­
zation mechanisms, the only ones used in the parallel
version of MOCASIN 2.0 are locks, a mailbox, and a
counter. On the Sequent, locks are busy-wait mechan­
isms which are implemented using the test-and-set-bit
instruction and an array of lock bits. PPL provides
statements to declare and initialize locks and to lock
and unlock these locks. Mailboxes and counters are
both suspend-resume synchronization mechanisms. A
mailbox is used to coordinate the exchange of messages
between processes. A process can send a message
(either an number or a string of bytes) to a mailbox.
Another process can do a receive operation on that
mailbox. If there is a pending message, the receiving
process will consume the message and continue; if there
are no pending messages, the receiving process will be
suspended, until a message arrives at the mailbox. A
counter is often used by a parent process to wait until

all of the child processes have completed their process­
ing. A counter used in this fashion is initialized to an
integer value (the number of children to be initiated).
After the children are initiated, the parent suspends by
performing a c_wait operation on the counter. As each
child process completes, it does a c_set operation on the
counter. As the last child does this, the parent process
resumes and continues execution.

In the parallel version of MOCASIN 2.0, several
locks are used to guarantee that only one process at a
time updates a variable in shared memory. A mailbox
is used to implement a queue of particles which need to
be moved during a time step, and a counter keeps up
with the number of moved particles, so that the parent
can resume processing after all of the particles have
been moved in a single time step.

The Sequent system provides a (logical) segment of
memory which can be shared by all of the processes
associated with a program. The C compiler provided
by Sequent has been modified, to accept shared as part
of the declaration of a variable. Variables declared as
shared are located in the shared segment and can be
accessed by PPL processes. Thus, there are three kinds
of storage which can be used by PPL programs: storage
which is globally defined and located in the shared seg­
ment, storage which is globally defined, but located in
the private segment of each worker, and storage which
is automatically allocated on the runtime stack as each
process or procedure is entered. Placing data in the
correct class of storage is a crucial consideration in the
design and implementation of a parallel program.

The Parallel Version of MOCASIN 2.0

As stated earlier, it was decided to parallelize that
portion of MOCASIN 2.0 which moved the particles
within a time step, and to leave the portions dealing
with determining the electric field and advancing to the
next time step in serial mode. It was hoped that by res­
tricting the portion to be modified, the anticipated per­
formance enhancements could be quickly obtained.

MOCASIN 2.0 can be viewed as a main program
that contains a time-step for-loop. (See Figure 1). This
outer loop steps time from zero to the final simulation
time. The electric field is determined at each time step
as a function of the charge locations and boundary con­
ditions. Then each particle is moved in the local

electric field. In the serial version, this was accom­
plished with a particle for-loop that steps through an
array containing each of the simulated particles. This
particle loop was the only section of MOCASIN 2.0 to
be parallelized. The particle loop was parallelized by
sequentially assigning the movement of each particle in
turn to the next free processor. The lack of interaction
between particles during the movement phase vastly
simplified the serial-to-parallel conversion.

253

MAIN:
FOR EACH TIME STEP {

DETERMINE ELECTRIC FIELD;
MOVE_F ARTICLE PROCEDURE {

FOR EACH PARTICLE
PERFORM ONE MOVE STEP;

}
}

Figure 1
Structure of MOCASIN 2.0.

Two kinds of changes were made to parallelize
MOCASIN 2.0. One was to convert from serial execu­
tion to parallel execut.ion, to take advantage of the
architecture of the Sequent. These modifications were
accomplished using the constructs provided by PPL [9].
The parallel version was modified still further, to insure
that repeated simulations of the same model would
yield identical results. The possibility for different (but
correct) results comes from the use of a single stream of
random numbers in the serial version. In the parallel
version, it is likely that particles would be moved in
different ways on repeated executions of the program,
because different sequences of random numbers would
control each particle on successive runs. An alteration
of the parallel version (see below) removed this kind of
variability and guaranteed repeatable behavior. While
not essential to correct operation of the model, these
changes greatly simplified verification of the parallel
version. Both kinds of changes could be implemented
and tested on a single processor machine, in the PPL
environment.

As indicated in Figure 2, the user-requested
number of mover processes is created prior to entering
the time step loop. Then, the time-step loop is entered
and, after the electric field is determined, the mailbox is
filled by sending it a sequence of messages, each con­
taining the index of a particle that must be moved.
Control is turned over to the mover processes until they
signal completion. This parallel phase replaces the
serial for-loop control structure. When all of the parti­
cles have been moved, the main procedure regains con­
trol and the next time step is started.

Another change required for parallelization was to
insure that all variables that were being altered by the
particle moving processes were located in shared
memory. Some of the data structures in MOCASIN
had to be relocated to shared memory, to enable correct
operation of the parallel version. Conflicts can arise
when multiple mover processes try to simultaneously
modify data values in that part of main memory which
is shared by all of the processes. These conflicts are
resolved by using locks.

Some additional changes were required, to insure
that the parallelized version of MOCASIN 2.0 would
give reproducible results for different runs that used the
same random number seed. There were two such

changes. The first was to associate an individual ran­
dom seed with each electron being simulated. With this
change, each particle was guaranteed to be moved in
the same way, regardless of the temporal ordering of
events in successive runs of the program. This is simi­
lar to the technique reported by Fredrickson, et al [3].

MAIN:
CREATE MOVER PROCESSES; (one per processor)
FOR EACH TIME STEP {

DETERMINE ELECTRIC FIELD;
MOVE_P ARTICLE PROCEDURE {

}

FOR EACH PARTICLE
SEND MESSAGE (particle index);

WAIT FOR COMPLETION
OF ALL PARTICLES MOVES;

}

MOVER PROCESS:
DO FOREVER {

RECEIVE MESSAGE (particle index);
PERFORM ONE MOVE STEP;
SIGNAL COMPLETION OF ONE PARTICLE;
}

Figure 2
Structure of Parallel Version of MOCASIN 2.0.

The second change was to modify the procedure
used to delete particles that left the simulation region
through a contact. In the serial version, each particle
was deleted from the array of active particles and
replaced with a particle from the end of the array,
which kept the array in a compact form. When execut­
ing in parallel, this technique would have meant that
the order of the particles in the resulting array would
have been different each time the parallel version was
executed. The parallel version was changed so that as a
particle was deleted from the region, its index was
added to a list. At the end of the moving phase, this
list was sorted, the particles then deleted in order, and
the "holes" in the array filled as before. In addition to
preserving the order of the particles in the array, this
technique was required for two other reasons: (1) using
the list allowed the program to postpone deleting parti­
cles until the end of the transport phase so that the size
and structure of the array did not change during the
parallel phase of execution, and (2) sorting the list of
deleted particles meant that they would be removed in
descending order by indices and the delete procedure
from the serial version could be reused.

Timing Results
Correct operation of the parallel version of

MOCASIN 2.0 was verified by comparing the results
with those from the original serial version. The new
results were not identical, because of the different order­
ing of movements caused by the new procedure for gen-

erating random numbers. However, these results where
judged to be valid, based on a thorough analysis of
them. Next, performance of the parallel version was
measured using "N" processors, with N ranging from 1
to 10. These tests simulated the same MESFE'J:'. with
two different sets of parameters [2], as follows:

254

• A short set of parameters, with 100 electrons, for
10 time steps, and
• A long set of parameters, with 2000 electrons, for
100 time steps.
As mentioned earlier, the system used in the pro­

ject was the Sequent Balance 8000, at MCC. This sys­
tem has 12 CPU's; each CPU has a NS32032 (lDMhz)
processor, a floating point coprocessor, a memory
management unit, and 8 kilobytes of local cache. The
size of the main memory is 16 megabytes, and all of
this memory can be accessed by any processor. The
local caches employ a write-through strategy, and spe­
cial circuitry insures that the contents of each cache
remain consistent, even when cached data is being
updated by another processor.

Some results from the experiments on the Sequent
are shown in Table 1. The speed up factor in Table 1
is the elapsed time with N = 1 processors divided by
the elapsed times for other values of N.

Short Problem Long Problem
Elapsed Speed-up Elapsed Speed-up

Time Time
N=l 991 1.0 171,422 1.0
N=2 523 1.9 85,310 2.0
N=4 294 3.4 43,334 3.9
N=8 181 5.5 21,943 7.8
N= 10 159 6.2 17,512 9.7

Table 1
Elapsed Times (Seconds) and Speed-up Factors on Sequent

A common way of evaluating parallel speed up is
to compare the elapsed times of the parallel version to
the elapsed time of the purely serial version. When this
was done with the two versions of MOCASIN 2.0, the
serial version required more time than the parallel ver­
sion with one processor (by about 10 to 20 per cent).
This result was counterintuitive and more studies were
performed, to try to understand the cause. Additional
analysis pointed out that the user mode times for the
serial version and the parallel version were about the
same, but that the system mode time for the serial ver­
sion was much greater than for the parallel version.
Some detailed runtime statistics showed that the
number of page reclaims (page faults which were
satisfied without doing any 1/0) for the serial version

was nearly a factor of between 5 and 10 greater than
the number of page reclaims in the parallel version. In
addition to introducing parallel processes, the parallel

version also used shared memory, while the serial ver­
sion used unshared memory. The data in Table 2 sum­
marizes these findings. It is fair to conclude that in the
version of the Sequent operating system being used for
these tests, page replacement is biased in favor of keep­
ing pages in shared memory over keeping pages in
unshared memory, to such a degree that comparisons of
running times for programs using shared memory and
programs using nonshared memory can be invalid.

Elapsed User System Page
Time Time Time Reclaims

Serial 1070 937 128 130,126
N=l 991 963 24 15,767
N=2 523 1010 20 14,769
N=4 294 1111 28 18,931
N=8 181 1323 39 18,327
N= 10 159 1434 45 16,861

Table 2
Times (Seconds) and Page Faults for Short Problem

Summary

The goals of the project were met. First, a C pro­
gram written for a single processor system was quickly
(about two man weeks) converted to run on a multipro­
cessor system. Second, measurements made on the
parallel version showed that this program could make
very efficient use of multiprocessor system. That fact
that the program, executing the large model, ran 9.7
times faster on a 10 processor system demonstrates
efficient performance.

The project, while achieving the stated goals, also
raises some additional issues. For example, how critical
is the fact that in this problem, the particle movements
were all independent from each other (in the same time
step)? Could an equally efficient implementation be
done, even when there are some dependencies between
particles as they are moved? Another issue involves the
style of the parallel version of MOCASIN 2.0. The
current parallel version uses the simple technique of
sending a message for each particle which needs to be
moved. There are other techniques, such as assigning
blocks of particles to each of the mover processes at
each time step, which would eliminate the need for
sending 2000 messages (in the long problem) at each
time step. Also, there are probably other approaches
which would eliminate the sort (of the deleted particles)
at the end of each time step while maintaining a repro­
ducible set of results. Such a change could reduce the
CPU time required at each step.

Finally, there was no attempt to extrapolate the
performance efficiencies which would be obtained with
increasing numbers of processors. The current project
was limited to ten processors by the system being used.
It would be interesting to continue the study by
increasing the number of processors. In the extreme

255

case, how would a 2000 processor system handle this
problem? How does efficiency "tail off" as the number
of processors increases?

The current project was important in one other
respect, namely it provided a concrete example of a use­
ful parallel program. The practicality of parallel pro­
gramming, to solve scientifically interesting problems,
has not yet been generally established. This project is
another step in the process of discovering both the use­
fulness and the limitations of parallel processing.

List of References

[1] Burdick, S.A. and P. Blakey, "MOCASIN 1.0 User's
Manual", MCC Technical Report, CAD-028-87,
Feb. 1987.

[2] Burdick, S.A., "MOCASIN 2.0 User's Manual'',
MCC Technical Report, CAD-303-87, Sept. 1987.

[3] Frederickson, P., Hiromoto, R. and J. Larson, "A
Parallel Monte Carlo Transport Algorithm Using a
Pseudo-random Tree to Guarantee Reproducibil­
ity'', Parallel Computing, (4), North-Holland, pp.
281-290, 1987.

[4] Glenn, R. and H. Schwetman, "The Performance of
the Burstein Hierarchical Router Using MCC's
Parallel Programming Language on the Sequent
Balance B-8000", MCC Technical Report, PP-322-
86, August 29, 1986.

[5] Moglestue, C., "Monte Carlo Particle Simulation of
a GaAs MESFET with Gate Trench Sloping
Towards the Source", IEE Proceedings, (132),
1985, p. 217.

[6] Moglestue, C., "A Self-Consistent Monte Carlo Par­
ticle Model to Analyze Semiconductor Microcom­
ponents of any Geometry", IEEE Transactions on
Computer Aided Design, March, 1986, pp. 326 -
345.

[7] Pinto, M., "Two-Carrier Simulation of Complex
Device Structures in Minicomputer Environments",
2nd SIAM/ IEEE Con/ erence on Numerical Simula­
tion of VLSI Devices, Boston, MA, November 13,
1984.

[8] Price, C., Two-Dimensional Numerical Simulation of
Semiconductor Devices, Ph.D. Thesis, Stanford
University, 1982.

[9] Schwetman, H.D., "PPL: A Parallel Programming
Language Based on C", MCC Technical Report,
PP-096-86, March 1986.

[10] Schwetman, H.D., "PPL Reference Manual", MCC
Technical Report, PP-219-86, July 1986.

[11] Schwetman, H., "Parallel Programming with PPL'',
MCC Technical Report, ACA-ST-007-88, January,
1988.

[12] Selberherr, S. and A. Schutz, "MINIMOS - A Two­
Dimensional MOS Transistor Analyzer", IEEE
Transactions on Electron Devices, (27), 1980, pp.
1540 - 1550.

[13] Sequent Computer Systems, Inc., Balance 8000 Sys­
tem Technical Summary, Order No. MAN-0110-00,
1984.

[14] Sequent Computer Systems, Inc., Balance 8000
Guide to Parallel Programming, 1003-41030 Rev.
A, November 26, 1985.

256

PROTEIN SEQUENCE COMPARISON ON A DATA
PARALLEL COMPUTER

Eric Landert
Whitehead Institute for Biomedical Research

9 Cambridge Center, Cambridge, Massachusetts 02142
and

Harvard University
Cambridge, Massachusetts 02138

Jill P. Mesirov
Washington Taylor IV

Thinking Machines Corporation,

245 First Street, Cambridge, Massachusetts 02142-1214

(May 4, 1988)
Abstract

In this paper we discuss the issues involved in im­
plementing a general dynamic program on a data paral­
lel computer to compare proteins for good subsequence
matches, based on a variety of scoring metrics. A stan­
dard serial algorithm can be optimally parallelized. Care­
ful allocation of machine resources has enabled us to
compare an entire database of 2000 proteins against it­
self in about the same time that it would take to run
one protein against the database using conventional com­
puters. The results gleaned from this program provide
information about scoring metrics and allow clustering
of groups of related proteins. This information can be
of assistance in determining the biochemical function of
some proteins.

ot Eric Lander was supported in part by National Science Foundation
grant #NSF-DCB-8611317 and System Development Foundation grant
#SDF612

1 Introduction

In many fields, including molecular biology, speech recogtli­
tion, and cryptology, there are problems whose solutions in­
volve comparing sequences of symbols to determine correlations
between them. Often, this task involves finding an optimal
alignment of the sequences in question, which may require in­
troducing gaps into one or both of these sequences. One way
of measuring the optimality of an alignment is by computing
a score based on a matrix of weights reflecting the similarity
between pairs of symbols. In some situations a penalty is sub­
tracted for each gap introduced. Such a score can be computed
by a dynamic programming algorithm in time proportional to
the product of the lengths of the sequences [1,12].

In biology, this technique is particularly useful. Although
it is possible to determine the amino acid sequence for virtu­
ally any protein, there is no general method for determining
the protein's biochemical function from this information alone.
One of the most successful approaches has been to find a simi­
larity between a subsequence of a newly sequenced protein and
one of a protein of known function [5]. However, because com-.
parison of a single protein to a database of 4,000-5,000 proteins
using the complete dynamic programming algorithm can take
several hours on conventional computers, biologists frequently

257

employ more approximate, heuristic methods [llj. Also, be­
cause of the computational difficulty of performing exhaustive.
studies of many alternative scoring systems, the few scoring
systems that are typically used are relatively ad hoc. Only a
few computationally intensive studies, using a single scoring
system, have been done [3,14].

In order to examine the methodology underlying these scor-.
ing systems more completely and to initiate a systematic search
through the databases for statistically significant correlations
between pairs or groups of proteins, we have implemented a
parallel version of this dynamic programming algorithm on the
data parallel CM-2 Connection Machine® system. Through an
analysis of the data layout and careful coding of the inner loop'
we have written a program which enables us to run every pro­
·tein in a database of 2000 proteins against the entire database
in under an hour.

In this paper, we discuss the implementation issues involved
in this application. We also mention preliminary results from
our systematic investigation of some scoring systems. Section
2 discusses the architecture of the CM-2 Connection Machine
system, Section 3 reviews the basic dynamic programming al­
gorithm for subsequence comparison, and Section 4 indicates
how it can easily be parallelized. Section 5 contains a detailed
description of the implementation on the CM-2, Section 6 dis­
cusses generalizations of the algorithm in Section 3, and Section
7 contains timings and a brief description of some of the results
obtained using this software.

2 The CM-2 Architecture

The algorithms for this project were programmed on the Con­
nection Machine CM-2 data parallel computer [4,7]. The CM-
2 is composed of a microsequencer and a maximum of 64K
single-bit processing elements. The processors run in SIMD
mode, with the instruction stream broadcast by the sequencer.
The sequencer is controlled by an external front end machine,
usually a SYMBOLICS® Lisp Machine, or VAX® . Parallel
extensions of familiar programming languages allow the user
to program the front end to do serial computation, with an
expanded instruction set providing access to the "data paraJ-,
lel" part of the system. Each processor is associated with 64K

bits of RAM, and there is a single high-speed floating point
unit for every 32 processors. The processors are connected in a
boolean n-cube topology, however the communication system
is general enough that an arbitrary connection scheme can be
imposed by the user. Thus, data can be rapidly exchanged
between the memories of different processors as necessary to
complete any computation. One very communication efficient
. way to configure the machine is as a k dimensional grid, which
is automatically superimposed by the system software onto the
boolean cube using a multidimensional gray-code mapping. In
this paper we will deal with the CM-2 as if the processors were
configured in a 1-d grid. In this situation every processor has a
unique identifying coordinate denoted by p, such that processor
p only communicates with processors p - 1 and p + 1, where p
ranges from 0 to N - 1, where N is the number of processors
in the CM-2.

3 The Subsequence Matching Problem

The subsequence problem can be formulated as follows:

Given two sequences A, B, of symbols chosen from a domain

A= (ai,a2, ... ,an), B = (bi,b2, ... ,bm),
find the subsequences

a;,b_; E :F,

A'= (a;10 a;., ... ,a;,), B' = (b;.,b;., ... ,b;.)

[where 1 :5 ii < i2 < ... < i, :5 n, 1 :5 ;, < ;2 < ... < ;. :5 m] which
maximize the comparison function C(A', B'). C can depend on
the symbols%• b;1 in A' and B' and on the numbers of symbols
in A and B which are omitted between successive symbols in
A' and B' (gaps).

We denote by u1 = i1+i - i1 - 1, 7}, = ilc+i - i1c - 1, the
"gap" sizes between a;1 and a;1+i, b;1 and b;>+, respectively, for
1 $ l, k < z. Let A' -< A denote that A' is a subsequence of A,
and define A(j) to be the subsequence of the first j elements of
A, i.e., Aw = (ai, ... , a;).

In this paper, we consider prinlarily scoring systems which
are defined recursively as follows:
C(A',B') =C(A(.J>B(.i)

= C(A(z-l)' B(.-ii} + D(a;.,b;.) + g • (uz-1 + r._i)
•

= 2: D(a;.,b;.) + g • (i. - ii - z + j. - ii - z + 2),
k=l

where the gap constant g < 0, and D is a correlation function
between single elements of :F.

For such comparison functions, one can use a dynamic pro­
gramming algorithm to determine the best subsequence match
for a given pair of sequences A,B in serial time O(mn) where
n and mare the lengths of the sequences A and B.

This dynamic programming algorithm can best be under­
stood by considering the matrix

Cr,•= max{C(A',B') + g • (r - i. + s - j.)
Ii.$ r,j. $ s},

258

Where max is taken across all A' = (a;,, .. . , a;.), B'
(b;,' ... 'b;.).

It is then clear [13] that

Cr,•= max { C~r-1,a-1 + D(ar,b.)
r-1,• + g

Cr,1-1 + g

Thus, to compute maxA•,s•{C(A',B')IA'-< A,B'-< B}, one
need only compute maxCr,• where the matrix elements Cr,•
can be computed inductively in time O(mn).

4 Parallel Implementation

A parallel version of the dynamic programming algorithm is
quite straightforward to derive [see for example [6]]. Since com­
puting the value of Cr,• only depends on knowing the values
of Cr-1,•• Cr,•-1' and Cr-1,•-l• we see that all of the elements
on one anti-diagonal of the matrix can be computed simulta­
neously if the values along the two previous anti-diagonals are
known. That is, for a fixed value of t, the matrix elements
Ct-•,• can be computed simultaneously for all s provided that
they are known for t - 1 and t - 2. Thus, one can parallelize
the above algorithm by computing successive anti-diagonals of
the matrix Cr,• on successive time steps. This is represented
schematically in Figure 1. The algorithm requires n + m - 1
time steps and m processors to compare proteins of length m
and n. If the proteins are ordered so that m $ n, then we
obtain optimal speedup since O(m)O(n) = O(mn).

Processor #

0 2 3 m-1 m

2

time step

n+m-2

n+m-1

Figure 1: Diagram indicating activity of processor p at time step t. If
lSt-p'.Sn, ~~ p~essor p computes C,.p,p+l at step t. Otherwise, the
processor tS mactive.

5 CM-2 Implementation

The basic goal was to develop software which would calculate
the scores between every pair of proteins in a given database
according to an arbitrary scoring metric of the kind described
above. Since many individual pairwise comparisons have to be
done for a single database search, it is worthwhile to efficiently
pack the data so that the overall time spent is minimized. (Note
that here :F is the set of all amino acids with several extra
symbols added to denote unknowns. Since this domain consists
of only 23 distinct symbols, we can represent each as a five bit
integer, ranging from 1 to 23.)

5.1 Data Mapping

Since the CM-2 has far more processors than most proteins have
amino acids, it is possible to perform the dynamic programming
algorithm on many proteins at the same time. To this end, the
proteins in the chosen data base are first sorted by length and
then partitioned sequentially into sets S d such that the total
number of amino acids in the proteins of each Sd is as large
as possible but is less than or equal to the total number of
processors available in the CM-2. The proteins in each set
Sd are then compared in parallel to the entire database, one
protein at a time.

We denote the nth smallest protein in the database by Pn,
and its length by l(Pn)· If the CM-2 we are working on has N
processors, then we set Sd = {P.,._,, ... ,P.,._1 }, where a 0 = 1,
and

''d

L l(Pa)•

is used to determine ad inductively from °'cl-1·

We will denote the ith protein in Sd by P;a, i.e.,

and the qth amino acid in this protein by Pl(q).

If Mis the total number of such sets Sd, and K is the total
number of proteins in the database, then the basic structure of
the serial part of the program to compare all pairs of proteins
is:

for d = 1 to M do
set up Sd on CM-2
for k = 1 to K do

compare in parallel all proteins in sd to pk
retrieve results and store on front end

where setting up sd involves laying out the amino acids in the
proteins in sd in linear fashion into the memory of the pro­
cessors with the CM-2 configured as a 1-d grid as described in
Section 2 (see Figure 2]; the inner loop which compares Sd to
Pk is implemented using the parallelized dynamic programming
algorithm just described. Thus, on each pass through the inner
loop, all the proteins in sd will be compared simultaneously

259

with some protein Pk which we will designate henceforth as a
"target" protein. We will use pf to denote the coordinate of
the processor containing P;d(l). Thus,

i-1

pf= Ll(Pf).
j=l

We make the following comments:
I. Since in practice the correlation function D is usually

symmetric, in order to compare all pairh of proteins in
the database it is only necessary to compare the proteins
in Sd to the proteins in all Sd' where d' ~ d. This is more
efficient than using the proteins in sd" where d" ::; d as
target proteins since this uses the longer proteins as target
proteins as recommended in Section 4.

2. It is preferable not to have large variations in the lengths
of the proteins in a set Sd. Observe that the time needed
to compare sd to a protein p is

T(d, P) l(P) + max{l(P') \ P' E Sd} - 1

l(P) + l(P1~.t) - 1.

This was the motivation for sorting the database before
partitioning into sets Sd. Even though this does not
necessarily yield an optimal packing of the proteins into
groups of bounded size, in most situations it seems to do
well at optimizing ~T(d, P), which is the value we really
want to minimize. This heuristic is related to the First
Fit Decreasing algorithm for bin packing, which can be
shown to come within a factor of 11/9 of the minimal
number of sd needed [9].

3. From Figure 1, it is clear that processors are idle some
fraction (less than half) of the time. One might try to re­
duce the number of cycles in which processors are idle by
overlapping comparisons with consecutive target proteins.
Although this might give a slight performance improve­
ment, the increased complexity of the inner loop code
makes it unclear what, if any, gain would be made.

0000 00
O=p~ 1 2 3 N-2 N-1

....____ -~~~~----------------~ v
processors

Figure 2: Diagram indicating mapping of amino acids in proteins in

Sd= (P~,Pg, ... , P~astl onto CM processors.

5.2 Inner loop implementation

·In this section we will describe the actual Connection Machine
implementation of the parallel algorithm for the inner loop of
our code. We assume that ·the proteins in some set' Sd have
been put into the CM-2's memory according to the scheme
described in the previous section. For a given target protein P1c,
at each iteration step t the value of Ct-q,q(P1c, Pl) is computed
by processor p = pf + q - 1 We will denote a parallel variable
Joo by Joo[], where Joo[p] is the value of the variable Joo[] in
processor p. fo0t(p] is the value of Joo[p] at the end of iteration
t. Thus, we can describe the data from Sd as being stored in a
parallel variable (also called a "pvar") so[], so that

so(pf + q - 1] = Pl(q),

recalling that Pl(q) is the qth amino acid in Pl in its five bit
integer form. At the time of initialization of so(] for Sd we
also initialize a boolean pvar a[] marking the beginning of each
protein, i.e.,

H(p] +- { 1 {:} proc~ssor p contains Pl(l) for some i
0 otherwise

The target protein P1c is stored in the memory of the front end
machine. The amino acids from the target protein will be sent
from the front end to the Connection Machine memories one
per time step. They will shift across a pva.t TGT, and thus be
aligned with the amino acids sequences held in the pvar SD, so
that the comparisons can be performed [see Figure 3).

TGT,

proces801$ --7
0 8

~(l) ~(2) pd(3)
1 t:<•> ~(l) ~(2) ~(3) P~(4) ~~

0 0 0 0 0 0 0

Pk(ll 0 0 0 PkCll 0 0 0 0
.......... -- -

Figure 3: Data Layout for the fim three iterations of the inner loop for a set of
proteins in a typical Sd, where length(Pt)=4.

We will make use of the following pvars in the code

SD holds the amino acid sequences for the proteins
in sd as described above.

H indicates the beginning of each protein in so.

CNOWt gets the values of the C matrix on the anti­
diagonal currently being computed, i.e., Ct-q,q•
(It starts with the values from the previous row
of C, Ct-q-1,9 .)

CLASTt gets the values of the C matrix entries from
the previous column ofC, i.e., C(t-1)-(q-l),q-1 =
Ct-q,q-1·

CDIAGt gets the values of the C matrix entries from
the 2nd previous anti-diagonal of C, i.e.,

Cct-2)-(q-1),q-1 = Ct-9-1,q-1·

260

CMAXt gets the cumulative maximum score for the
corresponding column of the C matrix, i.e.,
maxt•::;t Cct' - q, q).

TGT holds the shifting copies of the amino acid se­
quence for P1c

The code for the inner loop now proceeds as follows:

/* initialize pvars * /
(1) CLAST(pj +- 0

CNOW(pj +- 0
CMAX(p) +- 0
TGT[p) +- 0

/* compute score matriz C * /
fort= 1 to T(d, P9) do

(2) TGT[pj +- TGT(p- 1)
(3) where H(p] = 1,
(4) TGT(pj +- P1c(t)
(5) CDIAG[p] +- CLAST(p] + D(so[p], TGT(p])
{2) CLAST[pj +- CNOW[p- 1)

CNOW(p] +- max{O, CLAST(p] + g, CNow(p] + g,

CDIAG(p] + D(so[p], TGT[p])}
CMAX[p) +- max{ CMAX(p), CNOW(p]}

{6) CMAX[] +- maz-scan (CMAX[]), with segmentation pvar a[]

At the completion of the algorithm, we assert that:

CMAX(pf+i -1) = max{C(A',B') J.A'-< P;",B'-< P1c},

so the results of the comparison can be directly retrieved from
CM-2 memory and stored on the front end for later use.

Algorithm notes:

1. All assignment statements are assumed to be carried out
in all processors, unless otherwise indicate..l. Thus Joo(p] +-

0 means that the pvar Joo[] is given a value of 0 simulta­
neously in all processors.

2. Assignment statements involving pvar data in different
processors are accomplished using ld grid communica-
· tions.

3. The where command evaluates some expression in every
processor simultaneously, and only carries out the conse­
quent operation in those processors in which this logical
expression is true.

4. We assume that P1c(t) = O, fort> l(P1c).

5. The evaluation of the function D(so[p], TGT(p]) was im­
plemented using an indirect table lookup, where the 5-bit
bytes so(p] and TGT (p] are concatenated into a 10-bit
word used as an offset into a locally stored table. Setting
D(O,a) = D(a,O) = 0 for all a ensured that the values of
C computed in processors during "inactive" time steps of
were less than the maximum valid value of C computed
in the same processor during the same comparison. Thus,
it was not necessary to explicitly determine which proces­
sors were active at each time step.

6. The scan operation is a primitive used in many parallel
algorithms (2,8,10]. Scans can be defined as follows: given
an associative operator Ell ((a Ell b} Ell c = a Ell (b Ell c}}, the
function Ell -scan (![]) returns a pvar z[] whose value at
processor p is given by

z(p] = /[1] Ell /[2] e ... Ell /(p].

So-called "segmentation" bits a.re boolean pvars used to
break up the scan into disjoint segments, over which the
scan is independently performed. For example,

z(p] +- Ell-scan (![]) with segmentation pvar H []

means

z(p] +- /[t/Jp = max{p'jp' ~ p,h[p'] = l}]Gl/[t/Jp+l]Gl .•. Gl/(p]

Thus, line (4) of the above pseudocode results in:

CMAx(pf + q] = max { CMAx(pf + p1]}
0:5P':5q

from which it can be seen that the above assertion about
CMAX follows.

6 Generalizations

In many situations one wishes to know more than just the
score of the best subsequence matches. For instance, it is of­
ten useful to know where along the protein these matches oc­
cur or how many gaps are inserted into them. The algorithm
described above can be modified to retain such information
without suffering a significant decrease in performance. As an
illustration, we sketch the modified algorithm used to deter­
mine the locations of the initial and final amino acids of the
best subsequences for each comparison, as well as the scores.

Assume that for every comparison of proteins A and B, we
wish to compute not only max{C(A',B'}IA'-< A,B' -< B},
but also the positions of the first and last amino acids in the
subsequences A', B'. That is, if A'= (a,,,a;., ..• ,a,.),B' =
(b;,, b;., ..• , b;.) maximize C(A', B'), we want the dynamic pro­
gramming algorithm to give us the values of C(A', B'), ii, i.,
i1, and iz· The algorithm can be modified to do this by asso­
ciating with each matrix entry Cr,• the values of i1 and it for
the subsequences ending at r, s which yield the maximum score
for Cr,•· These can be stored in matrices Ir,., Jr,., and when
the values of Cr,• are computed inductively, the values of Ir,•
and Jr,• and be simply carried over from the previous values of
the appropriate c matrix entries. If we introduce the notation
AIB to denote the concatenation of two variables, and define

max{AIB CID} = { AjB, A> C ~r (A= C and B 2:: D}
' CID, otherwlSe

then our new recursion relation can be defined as:

{
Olrls

C IL IJ =max (Cr-l,•-1 + D(ar, b,)}IIr-l,a-1IJr-l,a-l
r,a r,a r,• (Cr,a-1 + g}jir,a-1IJr,a-l

(Cr-1,• + g)IIr-1,.IJr-l,•

And the values of C,i1,ii.iz, and iz for the optimal subse­
quence a.re given by:

261

It is fairly easy to modify the code described in Section 5.2
to implement this algorithm. One could use a similar approach
to retain other information about the best subsequences, such
as the number of times a particular pair of amino acids ap­
pear as a;,., b;,. for any n, or the values of z for each sequence
comparison.

In fact, one can also generalize the dynamic programming
algorithm to deal with a broader class of comparison functions
C. For instance, one might wish to use a scoring function of
the form:

z z-1

C(A', B'} = L: D(a,., b;.) + L:lu · (111c + T/c) + x(111c) + x(r1c)]
k=l lc=l

where x(n) = { o, n = 0 .
• G otherwise

This function is similar to the general case considered above,
however it incurs an extra penalty ·for having any gap at all
between consecutive amino acids in a sequence, making the
penalty for continuing a gap once it has begun relatively smaller.
This is of interest in comparing proteins since the random pro­
cess of mutation is more likely to remove an entire group of·
amino acids by breaking protein sequences than to remove the
same number of individual proteins from different locations on
the same protein.

To implement such a function, one must modify the dy­
namic program slightly more than in the previous example, but
the main idea remains the same. For a scoring system such as
this, one sets up a new set of variables which keep track of the
best scores in all four of the possible combinations of situations
where the subsequences A' and B' either end in gaps or do not.
Actually, since any situation in which both subsequences end
in gaps can be expressed as a gap in one of the sequences fol­
lowed by a gap in the other, these values can be put into three
matrices defined as follows:

COOr,• = max{C(A',B')liz = r,jz = s},

ClOr,• = max{C(A', B') + G + g • (r - iz)
liz < r,jz = s},

COl.,, = max{C(A',B') + G + g· (s -iz)

liz = r,jz < s}.

Where max is taken across all A' = (a1,, • •• , a;.), B'
(b;l' ... 'b;.).

We then have the recursion relations:

COOra =max { ~lOr-1,•-l + D(ar,b,)
' COlr-l,a-1 + D(ar,b,)

COOr-1,a-1 + D(ar,b,)

a01.,.=-{

aio ••• =-{

COOr,a-1 + G + g
ClOr,a-1 + G + g
COlr,•-1 + g

COOr-1,a + G + g

COlr-1,• + G + g
ClOr-1,a + g

which, as in the basic algoritlun, allow us to compute the best
subsequence by computing max COO,., •• Thus, the dynamic pro­
gramming method allows us to do sequence comparisons with
a variety of scoring metrics, and to save any information about
those comparisons which could be useful.

7 Results

Using the software described here we have begun to experiment
on databases of proteins using a variety of scoring metrics. The
inner loop of the basic algorithm takes about 300 µseconds on a
CM-2 with a clock speed of 7Mhz when no position information
is computed, and about 600 µseconds when the positions of the
best subsequences are calculated as in Section 6. We ran a
database of 2192 proteins against itself using a simple scoring
metric of the form D(a;, aj) = (25;j - 1) + a, g = /3 < O, where
a, f3 determine the relative penalties for mismatches and gaps.

This is one of the matrices most frequently used by biolo­
gists. The run took about 6 hours on an SK CM-2 to compute
scores between all pairs of proteins and the positions of the sub­
sequences giving these scores. (This represents about 1.8 X 1011

matrix entry computations, and would have taken Ri 45 min­
utes on a 64K machine.) We have begun to analyze the results
of this comparison search using various clustering heuristics to
find multiple-sequence similarities.

Another set of experiments which we carried out compared
a variety of scoring systems on several small databases. It can
be shown mathematically [15] that when one compares ran­
dom proteins with a scoring metric of the form D(a;,aj) =
(25;j - 1) +a, g = /3, the mean length of the subsequences in
the optimal matches varies according to the values of a and /3

in a regular manner. The a/3 plane divides into two regions,
one where the mean length of optimal matches varies as the log
of the lengths of the proteins, and another whare the optimal
matches vary linearly with the protein lengths. There is a re­
gion on the a/3 coordinate plane where the transition between
these two domains occurs, but an explicit determination of this
phase transition point has never been made. By computing the
mean

{iz-il +iz-Ji)
2

across all pairwise comparisons for varying values of a,{3, we
were able to locate this transition region empirically, and to de­
termine the qualitative behavior of this scoring function under
changes in the parameters a and /3, [see Figure 4]. We repeated
this experiment for actual and random proteins, i.e., sequences
of amino acids generated according to the observed distribu­
tion of amino acids in the set of proteins in the database, and
obtained essentially the same results, indicating that the con­
clusions drawn here could be applied to comp9Xisons of actual
databa,ses.

8 Summary

The use of highly parallel computers has enabled us to make
progress in several areas of biological research (Section 7), which
woulcl have been difficult without software tools to do high­
speed subsequence comparisons using arbitrary scoring metrics.
The methods used here could easily be modified to be used in
other contexts such as speech recognition.

,. ' a• I -f.Dil -11.15 -11.63 -8.58 -8.811 -11.is -11.13 1.88 1.13 1.25 I.ail 1.541 1.63 1.15 1.88 I.II --------·---.. -------------··-----------------------------·-----------------------

Figure 4: A protein database consisting of fifty (50) proteins with lengths between 192 and 22(1
was compared with itself using a scoring matrix D(aj. aj) = (Uiij-1) +a, g = p. The figure gives

the mean length of the best subsequence match for various a, p pairs. The phase ttansition region
is highlighted in gray.

References

[1] Bellman, Richard. 1957. Dynamic Programming. Prince­
ton University Press. Princeton, NJ.

[2] Blelloch, G.E. "Scans as Primitive Parallel Operations",
Proc. Int. Conf. on Parallel Processing, 1987.

[3] Collins, J.F. and Coulson, A.F.W. 1984. "Applications of
parallel processing algorithms for DNA sequence compar­
ison." Nucleic Acid Research 12, 181-192.

262

(4] Connection Machine® Model CM-2 Technical Summary
Thinking Machines Corporation. 1987.

[5] Doolittle, Russell F. 1986. Of Urfs and Orfs, A Primer
on How to Analyze Derived Amino Acid Sequences. Uni­
versity Science Books. Mill Valley, CA.

[6] Edmiston, Elizabeth and Robert A. Wagner. 1987.
Parallelization of the Dynamic Programming Algorithm

for Comparison of Sequences. Proceedings of the 1987
International Conference on Parallel Processing. Penn
State Press. Pennsylvania, PA. 78-80.

[7] Hillis, W. Daniel. 1985. The Connection Machine. MIT
Press. Cambridge, MA.

[8] Hillis, W. Daniel and Guy L. Steele, Jr. 1986. "Data Par­
allel Algorithms." Communications of the ACM. Vol. 29,
No. 12., 1170-1183.

[9] Johnson, D.S. 1973. "Near-Optimal Bin Packing Algo­
rithms." Doctoral Dissertation, Department of Mathemat­
ics, Massachusetts Institute of Technology. Cambridge,
MA.

[10] Ladner, R.E. and M.J. Fischer.1980. "Parallel Prefix Com­
putation". J. Assoc. Comput. Math. Vol. 27, No. 4, 831-
838.

[11] Lipman, D.J. & W.R. Pearson (1985) "Rapid and Sensitive
Protein Similarity Searches." Science 227, 1435-1441

[12] Needleman, S.B. and C.D. Wunsch. 1970. "A General
Method Applicable to the Search for Similarities in the
Amino Acid Sequences of Two Proteins." J. Mol. Biol. 48,
444-453.

[13] Smith, T.F. and Waterman, M.S. 1981. "Identification of
common molecular subsequences." Journal of Molecular
Biology 147, 195-197.

263

[14] Smith, T.F., Waterman, M.S. and Burks, C. 1985. "The
statistical distribution of nucleic acid similarities." Nucleic
Acid Research 13, 645-656.

[15] Waterman, M.S., L. Gordon, and R. Arratia. 1987. "Phase
Transitions in Sequence Matches and Nucleic Acid Struc­
ture." Proc. Natl. Acad. Sci. USA 84, 1239-1243.

LINEAR OPTIMIZATION VIA MESSAGE-BASED PARALLEL PROCESSING

Craig B. Stunkel
Computer Systems Group

Coordinated Science Laboratory
University of Illinois
1101 West Springfield
Urbana, Illinois 61801

ABSTRACT

Linear optimization problems are commonly solved via an iterative
technique known as the simplex method. This paper proposes and exam­
ines the perfonnance of several, parallel variants of the simplex and
revised simplex algorithms on the Intel iPSC, a message-based parallel
system. Linear optimization test data are drawn from commercial sources
and represent realistic problems. Analysis shows that the speedup
obtained is sensitive to both the structure of the underlying data and the
data partitioning.

1. INTRODUCTION

Linear optimization problems are underconstrained linear systems
that maximize or minimize some objective function. These linear
optimiration problems are natural formulations of many business plans
and often contain hundreds of equations with thousands of variables.
Changing economic conditions dictate that many organizations solve
these large linear optimization problems daily.

Historically, linear optimization problems have been solved via the
simplex method [Luen73]. Although it is well-known that the·
computational complexity of the simplex method is not polynomial in the
number of equations, experience has shown that its average case behavior
is linear. Despite the excellent perfonnance of the simplex method, the
size of the optimization problems and the frequency of their solution
make linear optimization a computationally taxing endeavor. This
computational complexity, coupled with the wealth of research on the
simplex method, make parallel solution of linear optimization problems
an attractive research problem. Implementations of simplex utilizing
special purpose VLSI arrays have been proposed [BeBo87, OnNa84].

This paper examines the perfonnance of several, parallel variants of
the simplex and revised simplex algorithms on a message-passing system.
A review of the linear optimization problem including a dis'cussion of the
simplex and revised simplex algorithms is presented in §2. In §3,
possible parallelizations of the simplex algorithm are discussed, together
with their potential advantages and disadvantages, and results of
benchmark studies of the alternatives are shown. In §4, this discussion is
continued for the revised simplex algorithm, and the simplex and revised
simplex algorithm performance is compared using linear optimization
data drawn from commercial sources. This performance analysis shows
that the speedup obtained is sensitive to both the structure of the
underlying data and the data partitioning. A summary of the work is
presented in §5.

2. LINEAR OPTIMIZATION AND THE SEQUENTIAL SIMPLEX
ALGORITHM

2.1. General Linear Optimization Problem

Mathematically, the linear optimization problem can be stated as:

Minimize: c T x (1)

Subject to: Ax = b, where b ~o

x ~o

Acknowledgment: This research was supported in part by a Shell
Doctoral Fellowship and in part by a Digital Faculty Incentives for Excel­
lence Award.

264

Here, cT is an n vector of variable coefficients that defines the objective
function (i.e., the function being minimized). For a maximizing problem,
the negative of the objective function can be minimized. The objective
function can thus be viewed as a cost function, where the object is to
minimize total cost. The m x n linear system Ax = b defines the linear
constraints on the objective function x. Each of the m rows of the
matrix A defines a constraint on the n variables of the objective function.

The optimization problem arises because the linear system Ax = b
is underconstrained (i.e., m is smaller than n , and the matrix A contains
many more columns (variables) than rows (constraints)). Consequently,
there are many possible x vectors that satisfy the system Ax = b. A
fundamental theorem of linear programming states that an optimal
solution, if it exists, occurs when n - m elements of x are zero (i.e.,
when there are precisely m non-zero elements of x). This corresponds to
the solution of an m x m linear system, the basis, obtained by selecting
m of the n columns of the matrix A . The simplex method is a search
algorithm that decreases the value of the objective function at each
iteration by selecting a non-zero element of x, a so-called basic variable,
and replacing the corresponding column of A with another column.

In this paper, two forms of the simplex method are examined: the
simplex algorithm and the revised simplex algorithm. Although these
two algorithms are based on the same underlying principles, they use
different types of operations to reach the solution. In the remainder of
this section a brief, and by no means complete, overview of the
algorithms is presented. For more thorough treatments of the simplex
method and optimization theory, see [Foul81, Murt83, Llew64, Luen73].
See [Ku1Z71, Solo84] for helpful hints on practical implementation of
the simplex and revised simplex algorithms.

2.2. Simplex Algorithm

In most practical problems some or all of the equations in Ax = b
are inequalities. There is a simple method of transfonning these
inequalities into equalities while maintaining the x ~ 0 constraint. In
addition, one must obtain an initial feasible solution (an initial solution
that satisfies the constraint x ~ 0). Thus, each equation forming Ax = b
is transformed as follows:

If Ya;iXi ~ b;, a slack variable is added: f.a;iXi + s; = b;
r='i ,';tJ.

If ,ta;iXi ~ b;, a surplus variable and an artificial variable are

added:
n
~.a;iXi - s; + r; = b;
,';tJ.

n n
If ~a;jXj = b;, an artificial variable is added: ~.a;jXj + r; = b;

r='i r='i
The artificial variables must be zero when the optimum value is found.
They aid in obtaining an initial feasible solution. The slack and surplus
variables may or may not be zero when the optimum is found. Clearly,
the x ~ O constraint can be still be satisfied by these new equations.

To explain the notion of a feasible solution, the notion of a basis
must be reviewed. A basis of A is a linearly independent collection of m
columns of A. It can be represented as B = [Aj, · · · Aj.]. With a valid
basis of A, a basic solution can be found by setting all components of x
corresponding to columns. of A not in B to zero and solving the resulting
m equations to determine the remaining components of x. These are the
basic variables. If the solution to these equations satisfies x ~ 0, then it
is a basic feasible solution. The initial basis is commonly chosen as the

A columns corresponding to the slack and artificial variables, because
this basis always results in a basic feasible solution.

The simplex method systematically moves from basic feasible
solution (bfs) to bfs. This movement, called pivoting, will terminate in
an optimal solution if one exists. This pivoting consists of three steps:
(!) finding a new basis column that decreases the objective (cost)
function value, (2) finding the column to remove from the basis that
maximizes the decrease in the objective function value while maintaining
the requirements of a bfs, and (3) replacing the old basis column with the
new one.

If B is an mxm matrix representing the current basis, and AB(i) is
the column of A that is currently the i-th basis vector of B, any column
Ai in the original A matrix can written in terms of the basis vectors of B:

Ai = fiiiiAB(i)
1=1

(2)

Let XB (i) represent the i-th value of the current bfs, and let CB (i) represent
the element of the objective row corresponding to this variable XB(i).
Equation (2) can be interpreted as meaning that for every unit of the
variable Xj that enters the basis, an amount a;i of the each of the
variables XB(i) must leave. Thus a unit increase in the variable Xj results
in a net change in the objective function equal to:

(3)

It is then profitable to make Xj basic and to bring Ai into the basis when
0 < 0. Also, if all Cj ;::: 0, then a local (and global) optimum has been
reached, and simplex terminates.

Ai is _!!le representation of Ai with respect to B, and can be
obtained as Ai = B-1Ai. Also, because b is si'!!ply another column, it
can also be represented in terms of the basis as b = B-lb. The value of
0 can now be calculated in terms of B :

Cj = Cj - .ta:ijCB(i) = Cj - cIAj = Cj - cIB-1Ai

where TtT = cIB-1

Any Xj with ci < 0 can become basic and decrease the objective row
function, but generally the Xj corresponding to the minimum 0 is chosen.
Although there is no theory that guarantees this to be the best choice for
decreasing the objective row function, empirical data show that it
suffices. The corresponding A column entering the basis is also termed
the pivot column.

Now, a column must be chosen to leave the basis. The column
must be chosen such that replacing it with the entering basis column will
guarantee that a bfs still exists with the new basis. Although the details
will be omitted, the following criterion guarantees that a new bfs will be
reached (for entering basis column= Api•_co1):

find the row i which minimizes =-1z- for all iii .piv col > 0
ai,piv_col -

!!ituitively, the purpose of this criterion is to ensure that the new solution
b of the bfs is non-negative. This row i (also known as the pivot row)
indicates that column AB (i) of the basis representation should be replaced
by Apiv _col· Correspondingly, Xpi• col replaces XB (i) as a basic variable.
This completes one iteration of the-simplex algorithm.

It can been shown [Foul81] _!!lat simpl~ matrix row operations via
Gauss-Jordan elimination produce A , c, and b without altering the set of
feasible solutions. The simplex algorithm uses this Gauss-Jordan
transformation of the tableau to move from bfs to bfs. Figµre_ 1 shows
the initial simplex tableau, with the starting values for A, b, and c
simply equal to A, b, and c. xo is the current optimum value of the
objective function. Figure 2 enumerates the computational steps for each
iteration. The third step uses Gauss-Jordan elimination to manipulate the
entire coefficient matrix in a pivot operation. This places a 1 at the pivot
point (the intersection of the pivot column and row) and zeros elsewhere
~the pivot column, including the objective row, and updates A, b, and
c.

265

Analysis of Figure 2 shows that the complexity of the simplex
algorithm is O(mn-m2+n+m) additions and comparisons,
O(mn-m2+m) multiplications, and O(m+I) divisions per iteration.

a11 a12 a1. bi
a21 a22 a2. b2

Om 1 Om 2 Om n b.,

Cl c2 c. XO

Figure 1. Simplex Tableau

Phase Operation

Locate piv _col min_obj =minimum (0) j=l, ... ,n

if min_ obj ;::: 0 then exit, optimum has been found!

piv _col = j for the column with this minimum 0
-

Locate piv _row min ratio = min __ b_;_
i=l, .. .,m'(i;.piv_col

for a;.p1._col >0

piv _row = i for the row with this minimum ratio

Gauss-Jordan for i * piv _row

Elimination factor;= aiie.iv col

apiv _row ,piv _col

~J = ~J - factor;Qpiv_rowJ j=l, ... ,n
- - -
b; = b; - factor;bpi•Jow

end for

0=0- C,eiv col

apjy _!'OW ,piv _col
Zipiv_rowJ j=l, ... ,n

--
apiv_rowJ = apiv row.i j=l, ... ,n

apiv _row ,piv _col

- bpi11 row
bpiY_rOW = -

apiv - row ,piv - col

Figure 2. Simplex Algorithm

2.3. Revised Simplex Algorithm

Unlike the simplex algorithm, which continually updates all of the
A columns, the revised simplex algorithm [Solo84] maintains only
enough information_ to reproduce an updated objective row or any
updated column of A , and relies _on B and Tt as in the explanation of the
general simplex method. The b column is handled identically to the
simplex algorithm. The original A matrix and objective row are never
changed, and since A is usually quite sparse, it can be stored in sparse
form. The B matrix is never Eeeded in computations, but its inverse B-1
is used for calculating Tt and A values. Although the proof is beyond the
scope of this introduction, B-1 and -Tt can be maintained through
elementary row operations.

The search for the pivot column (the "find piv _co/" step) in a
revised simplex iteration uses -Tt to calculate the updated CT row as
shown in Figure 3, and the search for the pivot row (the "find piv _row"
step) uses B-1 to calculate the updated Ap;, col· Matrix B-1 is initially an
m xm identity matrix, and -Tt is initially- a 0 vector. Once the pivot
column and pivot row have been identified, the B-1 matrix and -Tt vector
can be_ updated through a process similar to Gauss-Jordan elimination,
using Ap;, _col to determine the row fractions as shown in Figure 3.

In the revised simplex, more time is spent in finding the minimum
objective and ratio values, but less time is required for updating the

matrix. If s is a fraction representing the percentage of non-zero values
in the sparse A matrix, then the number of addition and compare
operations per iteration is O(mns+m2+n+m). Similarly, the number of

Phase

Find piv _col

Find piv _row

Operation

Cj = c; -nTA; j=l, ... ,n

min_obj = minimum(Cj), j=l, ... ,n

if min_ obj ~ 0 then exit, optimum has been found !

piv _col = j for column with this minimum C;

Apiv_col = B-1Apiv_col

min ratio = min ~ for ii;,piv_co1>0
- i=l,. .. .m'{i;,p;.,_col

piv _row = i for row with this minimum ratio

Gauss-Jordan for i c# piv _row

Elimination factor; = _ iiiJ?iv col
ap;,., -row ,piv _col

Br;} =Br:}- factor;BpiJ_rowJ

ht=~ - factor;bpiv_row

end for

-'It; = -'ltj _ _ Cpi, col Bp;J rowJ
api.,,_row.,,;v_col -

Bp;J_rowJ = BprJ row,j
apiv - row piv _col

bp;.,,_row = _..;.b.:::pi"-v """"'"'-­
api'I_ row .piv - col

Figure 3. Revised Simplex Algorithm

j=l, ... ,m

j=l, ... ,m

j=l, ... ,m

multiplications performed per iteration is 0 (mns+m2+m). The number
of divisions is 0(m+1). Overall, it can be seen the algorithm requires
0 (2mns+2m2) floating point operations per iteration, compared to
0(2mn-2m2) for standard simplex. For a sparse A tableau and
m < n - m , revised simplex requires fewer floating point operations.
Another advantage of revised simplex is the algorithm's computational
robustness. Revised simplex does not update the entering variable
column until it actually enters the basis. Because of this, the
accumulation of round-off errors on the coefficients of the column is
reduced.

3. PARALLEL SIMPLEX ALGORITHMS

The message passing algorithms of this paper were developed on
an Intel iPSC hypercube with 16 processors, each with an extended
memory of 4.5 Megabytes. A 32 node Intel hypercube with 0.5
Megabytes of memory per node was also used for experiments measuring
communication times. The extended memory on the 16 node machine
supported larger problem sizes, and made it possible to measure single
node performance for calculating speedups and efficiencies on large
problems.

In this implementation, there is little difference between a serial
version of the simplex or revised simplex algorithm and the parallel
version running on only I node, except for down-loading and up-loading
of data from and to the host at the start and the finish of the program.
This facilitated the measurements of serial execution time. Serial
execution time was defined as the time between when the last data is
down-loaded from the host to the time when up-loading of the answer to
the host begins (i.e., all host-node interactions were excluded). Parallel
execution time for I or more nodes included the time for down-loading
and up-loading data. Hence, calculated speedups for a single node are
less than 1.

266

The linear optimization test data are drawn from commercial
sources and represent realistic problems. We benchmarked several
problems with a range of sizes from "afiro" (m=27 and n=59) to
"bandm" (m=305 and n=777) on 1, 2, 4, 8, and 16 nodes of the iPSC.
Larger problems were also run on 16 nodes, but did not fit into the
memory of a single hypercube node, hindering speedup calculations.

In message passing architectures, many implementation details are
determined once the data distribution decisions are made. This is
primarily a consequence of the relatively high cost of communication
versus local memory access. The simplex and revised simplex
algorithms share many characteristics with linear equation solution,
matrix multiplication, and other matrix operations. Previous work on
distributed linear system solvers has advocated row or column
partitioning of matrices [GeHe85, Mole85, Ay0z87]. Similar methods
are pursued here, and two data distribution strategies are presented for
solving the simplex algorithm efficiently on hypercubes.

3.1. Column Partitioned Simplex

In the column partitioned method (method A) complete columns
(including the objective value) are divided equally among the processors.
The pivot column determination requires two steps: (1) finding the local
minimum of the objective values for those columns at each node, and (2)
using a global minimum communication process to identify and distribute
piv _col, the identity of the column containing the minimum objective
value. Implementation of the global minimum communication is
discussed in §3.3.

Because one processor contains the entire pivot column Ap;v_co1,

that processor <;!Ill now determine the pivot row if it also possesses the
vecl<!' column b. Hence, one must balance distributing and maintaining
this f!. column at each node against adding a communication step to pass
Q!e b column from its resident processor to_ the processor containing
Api• col· Once the pivot row is determined, Api• col is passed to every
11!oCessor node along with the value of piv _row~ Each node then uses
Ap;, col to perform the Gauss-Jordan elimination, exchanging the basic
colUmns, and the simplex iteration is complete.

Another consideration for column partitioning is the assignment of
processors to tableau columns. Both the column block and the column
wrap methods [GeHe85] were considered, however in the standard
tableau format, basic columns were initially concentrated on the right side
of the A matrix. Basic columns require less work to maintain because
they need not participate in the Gauss-Jordan elimination. To equally
divide these basic columns among the processors, the column wrapping
method of partitioning was chosen.

The potential performance advantage of distributing b to every
node was investigated. Benchmarks shQwed that, for the Intel hypercube
with dimensions 0 to 5, keeping the 1l_ column on only one node and
sending it to Q!e node possessing Ap;v _col was more efficient than
distributing the b column. Figure 4(a) summarizes the column partition
data placel!!enL Figure 5 s,hows the speedups obtained both for a
distributed b column and for b maintained at only one node. This figure
illustrates the effect of problem size on speedup. For a given hypercube
dimension, the time required for the parallel Gauss-Jordan elimination
step increases with both m and n, whereas the overhead for global
communication remains constanL Also, the time required for the serial
computation of piv _row and the global send of Api,_col increases with m.
Thus, as the product of m and n increases, the parallel steps consume a
larger portion of the total execution time, so ~up and efficiency
increase. For the problems shown, keeping the b column on one node
provides marginally greater speedups. For the "scsdl" problem, the
difference in speedup is quite small. This is because updating the b
column is_inexpensive (small m) in comparison to the total cost of
updating A (large n, resulting in many columns per node) through
Gauss-Jordan elimination.

3.2. Row Partitioned Simplex

In the row partition s!f<ltegy, complete rows of the tableau
(including the value from the b column) are divided equally among the
processors. There are two different options for distributing the er

0

3

r.--

0

I
I
I

...J I

A1 ma1Dx
I I
I
I
I

2 3 0

(a) Column partitioning

b

2 3

r.-------------------------~
I
I

A matrix ---------------------

: ObjJctivci row :
I I I I

0 2 3 0 2 3

(b) Row partitioning

Figure 4. Data placement for simplex column and row partitioning.
(form= 4, n = 7, and 4 processors)

16

14

12

10

Speedup 8

6

4

2

1 2 4 8 16

14

12

10

8

6

4

2

Number of processors

Simplex column method A,
b on every node:

CL- ----.C 220 X 469 brandy
,.. _____ "' 77 x 837 scsdl
G------€l 305x 777 bandm

Simplex column method A,
b on only one node:

D • • • • • • • • • • .IJ 220 X 469 brandy
,.,. 77 x 837 scsdl
O••••••••••O 305 X 777 bandm

Figure 5. Speedups for gie simplex column method with
two different b column distributions

(objective) row: equally divide the elements of the C1' row among the
processors, or give each node the entire C1' row.

If each node possesses the entire objective row, then the search for
piv _col can be done separately by each processor and requires no
communication. If each node contains only a portion of the objective
row, then a global search is required to find piv _col , but each processor
can find its locally minimum piv _col in parallel with the other

processors. These options again illustrate the communication versus
computation trade-off. The benchmark results show that it is more
efficient to partition the C1' row and proceed with the global
minimization, even for the smaller problem sizes that were tested. For
the larger problems the difference was large (e.g., in one case speedup
increased from 8 to 11 when the C1' row was partitioned).

After piv _col is detell!!ined, piv _row is calculated. E_ach node
possesses a portion of the Ap1v col column along with the b column
elements of the same ro'!Ys. Thus each node has enough information to
find the minimum ratio bJii; ,piv _col for all of its 'ii; .piv _col > 0. A global
minimum of each locally minimum piv _row is needed to find the global
piv _row, and piv _row is distributed to every processor.

For the Gauss-Jordan elimination step, the entire row
corresponding to piv _row must be resident on every processor.
Therefore, the processor holding this row sends it to every other node,
and the elimination step executes. Figure 4(b) shows the row partition
data placement, and Table 1 compares differences in the simplex
algorithm variants, along with the revised simplex algorithm variants to
be discussed later.

3.3. Methods for Global Minimum

Each simplex algorithm partitioning requires at least one
computation of a global minimum during each iteration. For all cases,
the result of this global minimum is needed at every node. Two different
methods were compared for obtaining the global minimum. These two
methods are illustrated in Figure 6. Method EXCHANGE pairs nodes for
an exchange of minima during a step. On each step, nodes that differ by
a single bit of a particular power of 2 (i.e., a particular dimension) are
paired. Log N of these exchange steps are required, with a different
dimension used to pair processors for each step. Method CONDENSE
starts by passing all local minima from the upper half of the hypercube to
the lower half. Then the lower half splits and passes its newly calculated
minima from its own top half to its bottom half again. This process
continues until one node (node 0 in this implementation) contains the
global minimum. This phase of CONDENSE can be viewed as an
inverse global send Node 0 then globally sends this minimum to every
other node. 2 log N steps are required, but at each step, a processor is
either sending or receiving, but not both as in EXCHANGE. In addition,
no intermediate computation is needed during the log N steps required to
globally send the minimum.

Table 2 shows the results benchmarking the comparison of these
two methods. The numbers are normalized to the CONDENSE
communication times to show relative communication costs; these costs
include waiting time. The results show that CONDENSE is slightly less
efficient than EXCHANGE for a 2-node hypercube but becomes
increasingly more efficient as the dimension of the hypercube increases.

267

Simplex Major step within the algorithm

Algorithm

Partitioning Find piv _row Gauss-Jordan elim.

Column (A) Sequential computation Ap;v _col global send

Parallel computation

Row (B) Parallel computation A row global send

Global minimization Parallel computation

Revised (C), Parallel computation B-1 row global send

entire A on node Global minimization Parallel computation

Revised (D), Apiv _col global send B-1 row global send

partitioned A Parallel computation Parallel computation

Global minimization

Table 1. Summary of Hypercube algorithm dift'erences
(finding piv _col is similar for all partitionings)

6 7

2 3

~ - -
~'4 5 ,

0

CONDENSE Step 1

2

6

~ --
,' 4
,_

0 1

7

CONDENSE Step 4
Start global send

6

2~ I

I

I

~ - -

7

3~

(14 ~ 5
0

EXCHANGE Step 1

6

2 3

! l-1 --
,'4 ,

0

CONDENSE Step 2

6

2 3

f
0

CONDENSE Step 5

6

0

EXCHANGE Step 2

7 6 7

2 3

~ --
5 , , 4 5 ,_

0 1
CONDENSE Step 3

Global minimum, node 0

7

7

6 7

2 3

~5

0 1
CONDENSE Step 6

Global min. at all nodes

2

0-1
EXCHANGE Step 3

Global min. at all nodes

Figure 6. CONDENSE and EXCHANGE methods
for finding a global minimum.

Because the Intel iPSC hypercube does not support simultaneous bi­
directional ttansmission, the EXCHANGE method actually requires
2 log N node-to-node message delays and 2 log N comparisons of
minima at each node. The CONDENSE method requires 2 log N
message delays and only log N comparisons of minimums. The main
reason for CONDENSE's superiority is that messages received out of
order will not deslroy the global minimum calculation (e.g., if node 0
receives the current minimum from node 2 before it receives the
minimum from node 4 in Figure 6). This is because each node does not
send any information until it first receives all of its required minimum
information. The EXCHANGE method has no similar property, and
messages arriving out of order must be saved until the proper time, so
more synchronization overhead is inherent. The chance of out of order
messages rises with increasing hypercube dimension, favoring
CONDENSE for larger hypercubes. There is a further advantage to the
CONDENSE method - most communication steps require only a subset
of the processors, so any computation occurring concurrently will
proceed with fewer interruptions.

In light of these results, the CONDENSE method was chosen for
all global minimum calculations. On a hypercube implemented with two
physical links between nodes, the EXCHANGE method should be
superior, since the number of steps will reduce to log N.

3.4. Performance Comparisons between simplex methods A and B

The simplex column partition method A and the row partition
method B use an identical method for finding piv col. Finding piv row,
however, is quite different. The column method-is a serial computation
with no communication. The row method is a parallel computation but
requires a global minimization step. This provides another computation
versus communication lrade-off.

268

Problem

Hypercube "sharelb" problem "israel" problem

Dimension CONDENSE EXCHANGE CONDENSE EXCHANGE

1 1.00 0.98 1.00 0.99

2 1.00 1.04 1.00 1.00

3 1.00 1.05 1.00 1.01

4 1.00 1.21 1.00 1.02

5 1.00 1.54 1.00 1.18

Table 2. Normalized global minimization communication delays
(normalized to the CONDENSE delays)

The Gauss-Jordan step requires a column global send for the
column partition and a row global send for the row partition. In most
cases, m < n , and the column global send is more efficient. However,
the column partition requires each node to calculate a row multiplication
factor for all rows during the Gauss-Jordan step. In the row partition,
each node only calculates these factors for the rows it possesses.

Figure 7 compares the column method A to the row method B for
various small to medium sized linear optimization problems. For most
problems that were tested, row partitioning achieves a higher speedup for
2 - 16 processors. The extta serial computation required for the column
method is more costly than the extta global minimum required for the
row method. Also, as the problem size increases, the cost of the serial
portion of the column method increases faster than the costs for finding
piv_row in row method B. One interesting exception is "scsdl," which
has a small number of rows m with a number of columns n » m. For
this small number of rows, the serial piv _row phase of method A is not
expensive, but for method B the communication of the long pivot row
required for Gaussian elimination is expensive, and method A has much
better speedup.

16 16

14 14

12 12

10 10

Speedup 8 8

6 6

4 4

2 2

1 2 4 8 16
Number of processors

Column method A:
&-- ---"'11 96 x 175 share2b
a. _____ .., 220x 469 brandy
,.. _____ .., 77 x 837 scsdl

G------..i 305 x 777 bandm

Row method B:
96 x 175 share2b

......._ __ ..., 220 x 469 brandy
77 x 837 scsdl

"'"""" __ .., 305 x 777 bandm

Figure '1. Speedups for simplex column and row partitioning methods

4. REVISED SIMPLEX PARTITIONING METHODS

The revised simplex algorithm usually offers a reduced amount of
computation, but increases the complexity of interaction between various
elements of the data structure, and thus potentially incurs more
communication overhead. The A matrix is static and sparse - typically
between 5 and 10% [Solo84] of the elements are non-zero - and all
operations involving this matrix use an entire A column (vector-vector or
matrix-vector multiplication). A rows carry no significance in revised
simplex. Thus, either partitioning columns equally among the nodes or
placing the entire matrix in each processor's memory are the viable
options. Since the A matrix is not manipulated, there is no penalty for
keeping the entire matrix at every node unless there is not enough
memory space. For now, it is assumed that the entire A matrix and
objective row are stored at each node, and A is stored in a sparse data
structure.

It was found in the simplex algorithm that the piv _col calculation
should be performed through a global minimization, and this is even
more valid for revised simplex since the piv _col search must be preceded
by the computationally intensive update of the objective row
Cli = cr'ltTA;). Every node also needs a copy of-'lt before the piv_col
search begins. In the Gauss-Jordan elimination, -'It is functionally
another row of B-:.., Also, a !!.ode participating in the piv_row search
needs elements of Ap;v col and b from each row it is assigned to search.
These observations will facilitate the B-1 discussion that follows.

Storing the B-1 matrix (m by m) generally requires more memory
than the tableau, and in sequential computation the Gauss-Jordan
elimination step on the matrix is the most expensive step. Hence a
parallel implementation should partition B-1 among the processors to
parallelize the Gauss-Jordan elimination. The natural_ ways of
partitioning this matrix (which is also used in the A; = B-'A;
calculation of the new pivot column) are by rows or by columns. Unlike
in the simplex algorithm, however, partitioning by rows is clearly better
than partitioning by columns. A step by step comparison will make this
apparent For the piv _col step, assume column partitioning of B-1. Then
-'It must be distributed among the nodes, since the update of -'It; depends
upon elements in the i-th column of B-1. Hence -'It needs to be gathered
and sent to every node (similar communication complexity to global
minimization) before each step to find piv _col. If B-1 is row partitioned,
the entire -'It row can reside on one node (necessitating a global send of
-'It during each iteration), or on every node (no communication for -'It

needed). Either of these row partition options for the -'It vector are
superior to the column partition's option.

In the piv_row step with column partitioned B-1,
Ap;v_col = B-1Ap;v_col produces m partial sums which must then be

combined through a global sum communication. In contrast, row
partitioning allows B-IAp;v_col to produce comple.!_e sums for those rows
of B-1 that are on that node. In addition, if the b elements of the same
row are present, a local piv _row minimum can be found with no
communication.

The Gauss-Jordan elimination step is similar for both partitions.
Because of the inherent advantages in finding piv _col and piv _row, the
B-1 row partitioning was chosen for method C, with b partitioned as if it
were an extra column of the B-1 matrix.

Now the options for the -'It distribution will be readdressed
(maintain -'It at on~ node or at every node). It was found in simplex
method A that the b column should reside on only one node and be sent
the node possessing Ap;v _col • In contrast, the -'It vector is needed by
every node during every iteration, requiring a global send if -'It is
maintained by only one node. Benchmark tests showed that it was less
expensive to maintain -7t through Gauss-Jordan elimination on every
node than to perform this global send. The data partitioning for method
C is shown in Figure 8. Figure 9 demonstrates that -'It should be
maintained by every node.

4.1. Overlapped Communication and Computation

There is potential for overlapping the communication required in
each new iteration's piv _col global minimization step with th·~ Gauss-

269

r.----------------~
0

B-1 matrix b

3 : :
~----------------~

a11 :I -'It row I IOptl:

~----------------~
B-1 row partitioning (methods C and D)

r.--

0

I
I
I I I I

A ihatri~ (spal-se ftk)
I I I I

I I I
I I I
I I I
1 I I
I I I
I I I

2 3 0

--~

2

Sparse tableau partitioning for method D
(in method C, entire A matrix & objective row

resides on each node)

Figure 8. Data partitioning for the revised simplex methods C & D
(form= 4, n = 7, and 4 processors)

Jordan elimination step that terminates the previous iteration.
Overlapping these two procedures can reduce the waiting and
synchronization time that is inevitable in the global minimization. The
Gauss~Jordan elimination step can compute the new c row (for simplex)

Speedup

1 2 4 8 16
Number of processors

Revised simplex method C,
-'It on every node:
ci.-----.ci 220x 469 brandy
,.._ --- -"" 77 x 837 scsdl
G------oEJ 305x 777 bandm

Revised simplex method C,
-'It on only one node:

IJ •••••••••• 0 220 x 469 brandy
,.,. 77 x 837 scsdl
0 ••••••...• 0 305 x 777 bandm

Figure 9. Speedups for revised simplex method C
with two dift'erent -7t distributions

or the new -7t row (for revised simplex) before any other rows. With
this information the locally minimum piv col can be found at each node,
and the global minimization communication steps can begin. Insread of
waiting for sends or receives to complete, the processors perform the
Gauss-Jordan elimination, checking the status of pending messages
before starting the elimination step on a new row. When a status check
reveals that a message is ready to be sent or received, the processor
handles the communication step immediately, and then resumes the ·
Gauss-Jordan step. This communication overlap was implemented for
simplex method B and revised simplex method C (and method D to be
discussed shortly). A modest increase in speedup was observed, but not
as much as expected (only about 2 - 3% for large problems). This is
partly because the computation processor on the Intel hypercube is
utilized for much of the sending and receiving work. It is expected that
overlaps of this type will have a greater effect on hypercubes with more
separation of computation and communication hardware.

4.2. Revised Simple~ with Partitioned A Tableau

For the problem sizes tested and the small number of nodes on the
hypercubes used in this study, storing the entire sparse A tableau at each
node was no more of a problem than storing the partitioned B-1 matrix.
However, as the number of nodes increases, the B-1 matrix partition at
each node becomes smaller, while the A tableau storage remains
constant. So, for larger problems and large numbers of nodes, it may not
be practical to keep the entire A matrix at each processor. Therefore a
solution (method D) was investigated that involved a column partitioned
A matrix (see Figure 8). The major change required is an extra
communication step after piv _col is found. The node possessing Apiv_col

globally sends this sparse column to every other node. Figure IO shows
the speedup of the original revised simplex method C and the new
method D for various problem sizes. The difference in speedup for the
two methods decreases as the problem size increases, because the time
required for method D's extra communication is relatively constant while
the computation time is increasing. In fact, for the problems tested in
this study, Apiv_col was sparse enough that its message length was always
under the lK packet size of the Intel machine, and so the communication
overhead was fixed. For large problems the change in speedup is
minimal.

16 16

14 14

12 ... 12 ... ,,.
IO ,. .. 10 ,.,. ,. ,. ,.,.

Speedup 8 ,.,.' ;,.,."".,..,-:.-:. 8 go': . .,.-·"' -:.:"·:"·····
6

,.Po,,.'.·· 6 I"~.,·~-~::.···
,,.,,.,~.

4
,.~.,,,.. ..

.~.~·.·· 4

2 / 2 ii'
rl'

1 2 4 8 16
Number of processors

Revised simplex method C:
c. __ - - _.c 220 x 469 brandy
,.. __ - - -->< 173 x 435 beaconfd
G-------€> 305x 777 bandm

Revised simplex method D:
a o 220 x 469 brandy
,.,. 173 x 435 beaconfd
o · · · · · · · · · · o 305 x 777 bandm

Figure 10. Performance speedup for revised simplex methods.

4.3. Comparison of Simplex B and Revised Simplex C Methods

Despite the more complicated structure of the revised simplex
algorithm, a method of partitioning the data was found such that
communication requirements are quite similar to that of the row­
partitioned simplex method. Each method requires two global
minimization steps, and each method requires a global send before the
Gauss-Jordan elimination step can proceed. The global send for the
simplex case is a full row of the A tableau (length of n), but for the
revised simplex case a row of the B-1 matrix (length of m) is sent. Since
m is typically less than n , the revised simplex method requires smaller
messages. Figure 11 compares execution times of methods B and C for
several optimization problems. Execution time is used instead of
speedup since the basic sequential algorithms for the two methods are
different.

The key observation to make from Figure 11 is that the method
(simplex or revised simplex) that performs fastest sequentially will also
perform fastest in parallel. This is a consequence of the similar
communication structure, which makes it easy to predict relative
performance of the parallel algorithms. For most larger problems,
m < n - m, which favors the revised simplex method. A large
difference in execution time is seen for "scsdl", for which m « n .
"Share2b" has m > n - m, which favors the standard simplex.

270

10000 10000

5000 5000

1000 1000

Execution 500 500
time

(seconds)

100 100

50 50

10 10

2 4 8 16
Number of processors

Simplex method B:
&-----..i. 96x 175 share2b
,.. - - - - - "' 77 x 837 scsdl
G-------€> 305x 777 bandm

Revised simplex method C:
96 x 175 share2b
77 x 837 scsdl

<>----<> 305 x 777 bandm

Figure 11. Execution times for method B and revised method C
(Execution times plotted on log scale)

5. SUMMARY

Several partitioning and communication strategies were explored
for executing the simplex and revised simplex algorithms on a hypercube.
Column and row partitionings were compared for the simplex algorithm,
and the row partitioning method was found to be general! y superior.
Column partitioning is more efficient when the number of rows m is
small, and the number of columns n is much greater than m.

Although revised simplex is a more complex sequential algorithm
than simplex, it was found that by partitioning the B-1 matrix by rows
and maintaining both the -7t vector and the static A matrix on every
processing node, communication costs could be kept roughly equivalent
to that of the row-partitioned simplex. Comparisons made between
actual execution times of these simplex and revised simplex algorithms
showed that whichever algorithm performed better sequentially also
performed faster in parallel. If m < n - m , the revised simplex version
should execute faster.

A revised simplex algorithm that partitioned the A matrix by
columns among the processors was also investigated. This partitioning
reduces the memory requirement for each node but necessitates an extra
message during each iteration. This message is generally small and
showed very little impact on performance for the larger problems we
tested.

Although in theory the simplex and revised simplex algorithm
calculations can be almost completely parallelized, communication costs
are a significant factor in the actual iPSC execution time. This is
primarily a result of the two global minimizations. Identical calculations
done by each node, such as maintaining -It in the revised simplex
method, also contribute to a drop in efficiency as the number of nodes
increases. Options were explored for optimizing the communication
required for obtaining global minima The best strategy is to use an
"inverse" global send communication pattern to collect the global
minimum at one node and then send the answer to every other node.

In summary, the revised simplex algorithms presented seem
superior to the simplex algorithms. The revised simplex method with a
partitioned A matrix provides the best alternative for practical linear
optimization of large problems on a hypercube because of its reduced
memory requirement. The speedups obtained show the feasibility of
using hypercubes for linear optimization, particularly because many
practical problems are far larger than tested here, and because the ratio of
communication to computation costs were relatively high for the Intel
iPSC.

Acknowledgments

Thanks go to Dan Reed, who originally suggested studying the
linear optimization problem, made many valuable suggestions for
performance experiments, and provided access to his Intel iPSC/dS
hypercube. Thanks also go to W. Kent Fuchs for his support and
guidance during the experiments and the work on this paper.

REFERENCES

[Ay0z87] C. Aykanat and F. Ozguner, "Large Grain Parallel Conjugate
Gradient Algorithms on a Hypercube Multiprocessor," Proc.
Int. Conf. on Parallel Processing, pp. 641-644, August 1987.

[BeBo87] A. A. Bertossi and M. A. Bonuccelli, "A VLSI
Implementation of the Simplex Algorithm," IEEE Trans. on
Computers, Vol. C-36, No. 2, pp. 241-247, Feb. 1987.

[Foul81] L. R. Foulds, Optimization Techniques: An Introduction,
Springer-Verlag, New York, 1981.

[GeHe85] G. A. Geist and M. T. Heath, "Matrix Factorization on a
Hypercube Multiprocessor," in Hypercube Multiprocessors
1986, ed., M. T. Heath. Philadelphia: SIAM, pp. 161-180,
1986.

[HoJo87] C.-T. Ho and S. L. Johnsson, "Algorithms for Matrix
Transposition on Boolean n-cube Configqred Ensemble
Architectures," Proc. Int. Conf. on Parallel Processing, pp.
621-629, August 1987.

[KulZ71] H. P. Kunzi, H. G. Tzschach, and C. A. Zehnder, Numerical
Methods of Mathematical Optimization, Academic Press,
New York, 1971.

[Luen73] D. G. Luenberger, Introduction to Linear and Nonlinear
Programming, Addison-Wesley, Reading, Massachusetts,
1973.

[Mole85] C. Moler, "Matrix Computation on Distributed Memory
Multiprocessors," in Hypercube Multiprocessors 1986, ed.,
M. T. Heath. Philadelphia: SIAM, pp. 181-195, 1986.

[Murt83] K. G. Murty, Linear Programming, John Wiley and Sons,
New York, 1983.

[0nNa84] K. Onaga and H. Nagayasu, "A Wavefront-Driven Algorithm
for Linear Programming on Datafiow Processor-Arrays,"
Proc. Int. Computer Symp., pp. 79-94, 1984.

[Solo84] D. Solow, Linear Programming: An Introduction to Finite
Improvement Algorithms, North-Holland, New York, 1984.

271

RESULTS OF A MULTIPROCESSOR IMPLEMENTATION
FOR SEQUENTIAL DECISION PROCESSES

Marc Diamond, Jim Newhouse, and Jeff Kimbel

FMC Corporation
Advanced Systems Center
1300 South Second Street

Minneapolis, Minnesota 554 59

Abstract

We present a multiprocessor realization for sequential
dynamic programming problems defined on a state space
which is represented by a directed acyclic graph. Our
approach applies, in particular, to problems in which an
upper and lower bound on the (intially unknown) cost
can be determined for each node in the search graph as
soon as it is generated, a framework often referred to as
an "informed model". We demonstrate how a recursive
relationship between the bounds on successive states
can be exploited to develop a technique in which state
space generation and pruning are carried out in an asyn­
chronous homogeneous manner on a loosely coupled
architecture. The process is controlled by a message
passing scheme utilizing three basic message types for
(1) generating and (2) pruning nodes, and (3) backing
up costs. Issues related to the design of the messages,
correctness of the approach, and potential problems cre­
ated by race conditions and deadlock are discussed. Re­
sults obtained in the context of a large scale sequential
(Markov) decision problem are presented which indicate
that near 100% efficiency in the use of processors can
be achieved. Because many common problems in game
playing, combinatorial optimization, and discrete state
optimal control can be adapted to an informed model
framework, the techniques presented here are quite gen­
eral in their potential application.

1 Introduction

Background. The techniques presented here apply to
any member of a broad class of discrete-state discrete­
time sequential decision problems defined on a directed
acyclic graph, referred to as a decision gra.pl1. The de­
cision graph is an explicit representation of state space
and possible state transitions. It has a node associated
with each state in the system and arcs from a given
node Ni to another node N 2 if there exists a means by
which the system can transit from the state associated

272

with node Ni to the state associated with node N2. A
certain subset of the set of all nodes in the system are
distinguished as decision nodes from which a controller
has the ability to influence the next stat~ to which the
system will progress. Other nodes (outcome nodes) rep­
resent states in which an opponent or nature has control
over the next state transition.

There is a real-valued cost c(N) associated with each
node N. The cost associated with each leaf or terminal
node is assumed to be directly computable. The cost
associated with a non-terminal node, N, is given by
a (recursive) function of the costs associated with the
set, SUCC(N) ={Ni. N 2 , ... , Nr}, of successors of N.
For example, if the objective is to minimize the overall
cost1 , then the cost of each decision node is given by:
c(N) = min{c(Ni), c(N2), ... , c(Nr)}.

Minimax2 [1] and discrete space and time Markov
[2,3) decision processes are perhaps the most prevalent
examples of sequential decision processes, although, in
the most abstract sense, any combinatorial optimization
problem, e.g. an integer program solved using implicit
enumeration (branch and bound), could also be consid­
ered a form of polyadic sequential decision making in
which all nodes are decision nodes. For a Markov deci­
sion process the cost associated with an outcome node is
given by the weighted average: c(N) = L:;=i Pi c(Ni),
where Pi is the probability of making the transition from
state N to state Ni. For a minimax decision process,
the cost associated with an outcome node is given as
c(N) = max{c(Ni),c(N2), ... ,c(Nr)}.

We will assume here that the decision graph is finite,
and that there exists a root node which corresponds to

1 a.s will be assumed, without loss of generality, in all further
discussion

2 In most discussions of minimax decision processes, decision
nodes a.re maximizing nodes. In all references to minimax in
the sequel, we assume the opposite in order to maintain uni­
formity with discussions on Markov decision processes and our
application as discussed in section 4. Extension to the case in
which decision nodes are maximizing should be obvious. Sim­
ilar extensions can easily be made to the equivalent negama.x
and negamin formulations.

a unique starting state for the process. A generative
dynamic programming algorithm is used to determine
what action to apply at every decision point in order
to minimize total cost. The process (1) involves an ex­
pansion queue (or "open" list) to which a mechanism
for generating the state of all successors of a node is
applied according to some strategy to generate the de­
cision graph 3 . The part of the decision graph that has,
at a given point in time, already been generated is called
the seard1 grapl1. The optimal decision graph is a sub­
graph of the decision graph generated from the root
node and all optimal decisions from that point.

Informed Models. In an informed model [4) each
node, N, in the state space is assigned an upper bound,
U(N), and a lower bound, L(N), on its actual cost
c(N) as soon as it is generated. We require that
U(N) ;::: c(N) ;::: L(N) by definition. When U(N) =
L(N) = c(N) the node N is said to be fatl1omed. Fi­
nally, we will assume that U(N) = L(N) = c(N) for
any terminal node N.

Recursive formulation of bounds. We assume that
nodes and bounds are generated and updated at dis­
crete points in time. We denote the "current" up­
per, lower, and cost values for node N at time t by
U 1(N), V(N), and c1(N). There is a recursive relation­
ship that exists between the updated bounds for node N
and the bounds of its offspring. Assume the cost c(N)
is given as some function (depending on the node type)
f(N1,N2 1 ... ,N,.) of the successors, N1,N2 1 ... ,N .. , of
N. Then we have [4]:

ut+t(N) =

min{U1(N), f(U 1(Ni), U1(N2), ... , U1(Nr))},

and,

Lt+i(N) =
max{L1(N), f(L1(Ni), L1(N2), ... , L1(N,.))}.

For the Markov decision process we have,

and,

L1f 1 (N) = max{Lt(N), min {L1(Ni)}}, (2)
N;ESUCC(N)

if N is a decision node, and,

U1+1(N) = miu{U1(N),
N;ESUCC(N)

3 The process of expancling a node is assumed here to be
atomic, although a more general case can be considered.

273

and,

£f+1 (N) = max{L1(N), L: Pi L1(Ni)},
N;EStTCC(N)

if N is an outcome node.
For a minimax decision process, equations 1-2 give

the recursive formulation at a decision (in our case, min­
imizing) node, and we have

u1+1 (N) = min{U1(N), max {U 1(Ni)} }, (3)
N;ESUCC(N)

and,

if N is an outcome node.
Pruning. The upper bound is a non-increasing, and

the lower bound is a non-decreasing, function oft. Thus
we can use the bounds associated with nodes in an in­
formed model to curtail generation of the entire state
space. Let N be a decision node, and assume the
process generates a trre. If L1(Ni) ;::: U1(N;) for
Ni, N; E SCTCG(N), the node Ni can be "removed
from further consideration", since no optimal decision
tree will contain it. For minimax decision processes, a
similar relationship, i.e., U(Ni) ::; L(N3) can be used
to prune the successor Ni from an outcome node N,
provided that we assume that our "opponent" is work­
ing with the same objective function. In contrast, in a
directed graph, a node may have more than one prede­
cessor. As such, it cannot be assumed that once a node
becomes pruned (or, "deactivated") that it will not be­
come the offspring of some node (hence, "activated"),
possibly in the optimal decision graph, at some future
point in time. This has significant implications for the
design of our approach, as discussed below.

Relation to other work. The process discussed above
defined on informed models provides a generalization
for most common search strategies, because we can al­
ways assign U(N) = +oo and L(N) = -oo for any
non-terminal node N when it is first generated. In
this case, for the minimax decision processes, if bounds
are backed up according to equations 1-4 and pruning
is implemented as discussed above, the familiar alpha­
beta pruning strategy results4 . (Refer to [5,6, 7 ,8) for
other discussions on parallel implementations of alpha­
beta pruning). For branch and bound enumeration of
integer programs we can assign as an upper bound (in
a minimization problem) the objective value of any in­
cumbant solution or the objective value of any feasible
completion of a given partial solution as. generated for

t Certain aspects of alpha-beta, part.icularly deep cutoffs, re­
quire minor extensions to the message passing scheme proposed
here.

example by a "greedy" algorithm. Linear programming
relaxations are often used to generate lower bounds.

Parallel search algorithms have received treatment in
a broad range of contexts (9,10,11,12), although, for
the most part, the assumption is that the underlying
process generates a tree. Hence the focus of attention
tends to be on issues that differ from those discussed
here. Most notable are the problem of mapping nodes
to the interconnection topology of the processors in a
manner that preserves adjacency, or focusing processor
resources on specific areas of the search tree. In (6,7,12)
issues related to anomalies that occur in parallel search
are discussed. Often, search processes that endeavor
only to find a feasible solution (e.g. a "path" through
a state space from a start state to a goal, or a proof
tree for a predicate logic theorem) will be represented
as numerical optimization problems in order to guide the
search process itself (13). In this case, the techniques
discussed here are also applicable.

Search algorithms defined on informed models for spe­
cific problem areas have received some study, particu­
larly among the Al community. Most notably, Berliner's
B* (14] and descendent algorithms (15,16,17,18] show
performance gains over earlier alpha-beta variants. Re­
cently, lbaraki, et at (4) have generalized the analysis
of informed models, and introduced the algorithm H*
which is a member of a class of algorithms that typi­
cally outperform alpha-beta. We are aware of no other
work treating the parallel implementation of search pro­
cesses defined on informed models, in particular, when
the state space for the process is a directed acyclic
graph, which is the most general case.

Outline. In the sequel, section 2 defines the message
passing approach, section 3 contains a discussion on the
correct operation of the procedure we have defined, and
section 4 covers results derived from an implementation
of our approach. A synopsis is given in section 5.

2 Approach

In our approach, a hashing function, applied, e.g., to the
binary representation of the state vector for the node,
is used to determine which processor is responsible for
a node once it is generated. Clearly it would be more
desirable to map nodes participating in a predecessor­
successor relationship to adjacent processors. But be­
cause each node may have more than one predecessor,
this is difficult to do in general without very specific
knowledge of the topology of the decision graph. In
order to realize the distributed algorithm, three basic
message types are required, corresponding to the basic
actions required in the state space generation and prun­
ing. They are: (1) add predecessor link, (2) remove
predecessor link, and (3) re-evaluate bounds.

ADD PREDECESSOR

IF the target node has not been created THEN
create the node with predecessor link to sender
and put node on the expansion queue

ELSE
add predecessor link back to sender
IF the offspring node is marked inactive THEN

mark the node as active
IF the node has not been expanded THEN

put node on expansion queue
ELSE

send add predecessor messages
to all successors

Figure 1: THE ALGORITHM FOR THE ADD PRE­
DECESSOR MESSAGE HANDLER.

Tl1e ADD PREDECESSOR message. The purpose
of the add predecessor message is to (re-)establish a
link from a successor (offspring) node to a parent (pre­
decessor). The receipt of an add predecessor message
indicates to the offspring node that there is a predeces­
sor in the decision graph that (1) is in the current search
graph, and (2) requires the minimal expected cost (as
well as the current upper and lower bounds) associated
with the offspring node in its current and future compu­
tations. As such, if the offspring node is inactive at the
time the message is received, it must re-activate itself in
order to resume the on-going process of generating more
and more refined upper and lower bounds, leading even­
tually to a fathomed node. If the node has not yet been
created, then the host processor must create the target
node, generate its upper and lower bounds, and put it
on the expansion queue. The algorithm for handling an
add predecessor message is given in figure 1.

Tl1e REMOVE PREDECESSOR message. A re­
move predecessor message is sent from a parent (pre­
decessor) node to an offspring (successor) node when
the parent node no longer needs current and updated
state information from the offspring node in calculating
its current state. This can occur for two reasons: (1)
the parent node has become inactive, or (2) the branch
of the search graph rooted at the offspring node has
become pruned.

Upon receipt of a remove predecessor message, the
offspring node removes the link back to the (sending)
predecessor node. If the offspring node remains active
(i.e., it still has predecessors in the current search graph)
then no further action is required. However, removal of
the link back to the parent node may reduce message

274

REMOVE PREDECESSOR

Remove link to predecessor node

IF list of predecessor nodes is now empty THEN
IF the node is on the expansion queue THEN

remove the node from the expansion
queue

ELSE
send remove predecessor messages to all
offspring

Figure 2: THE ALGORITHM FOR THE REMOVE

PREDECESSOR MESSAGE HANDLER.

traffic by removing a potential channel along which re­
evaluate bounds messages can pass. Otherwise, if the
list of predecessor links becomes empty as a result of the
removal of the link, then the node becomes inactive. It
removes itself from the expansion queue if it is on it,
or else it sends remove predecessor messages to all of
its offspring. The algorithm used by the handler for a
remove predecessor message is given in figure 2.

Tlie RE-EVALUATE BOUNDS message. The re­
evaluate bounds message indicates to the receiving (par­
ent) node that the bounds of the sending (offspring)
node have changed, and hence it is appropriate for the
parent to recalculate its bounds according to the re­
cursive formulation given in section 1. The re-evaluate
bounds message is sent when the bounds of an offspring
node have changed. This can occur either if the off­
spring node itself has received a re-evaluate bounds mes­
sage, or when the bounds are set for the first time (i.e.
when its data structure is established). The algorithm
used by the handler for a re-evaluate bounds message is
given in figure 3.

3 Correctness of the Approach

Several potential problems exist with processes defined
on graphs that do not occur in the context of prob­
lems defined on a tree. Observing the message behavior
around a typical node reveals that it may be generated,
deactivated, and reactivated several times during the
course of expanding the decision graph. We must show,
therefore, that when (and if) the process terminates, any
node in an optimal decision tree is active. Furthermore,
we must show that there is no possibility for "infinite
message loops", caused by a sequence of message initi­
ations that eventually "loop back" to the original node
in the sequence, thereby resulting in a ever-increasing

275

RE-EVALUATE BOUNDS

Re-calculate the upper and lower bounds according to
the recursive formulation for the receiving node

IF the bounds have changed THEN
send re-evaluate bounds messages to all
predecessors

IF one or more successors can be pruned THEN
send remove predecessor messages to those
successors

IF the upper bound is equal to the lower bound THEN
mark the node as fathomed

Figure 3: THE ALGORITHM FOR THE

RE-EVALUATE BOUNDS MESSAGE HANDLER.

flow of message traffic. In the following discussion we
show that the message passing scheme proposed here is
guaranteed to produce the correct result, and terminate
in a finite amount of time assuming the decision graph
is finite6 •

In the sequel, the following strategy will be used. First
we define the concept of the state of the system at a
given time t. We then show that the system has a finite
number of states, provided the number of nodes in the
decision graph is finite. Next we show that the state
transition diagram is finite. From these two results it can
be concluded that the algorithm will terminate, provided
that the number of message initiations is finite. We will
then show that at termination, all nodes on the optimal
decision graph are fathomed, and hence the root node is
fathomed. Finally, we show that the number of message
initiations is always finite. This is done by first showing
that the result holds when the process generates a tree,
and then extending this result to the case where the
process generates a graph.

Definitions. The state of a node N at a point in time
t will be given as

where crt(N) (respectiv~ly. L1(N)) is the upper (re­
spectively, lower) bound of node N at time t. If node
N has not been generated (i.e .. not in the current
search graph) at time t, then we set ut(N) = +oo
and Lt(N) = -oo. The distance between two nodes
in a directed graph is the length of the shortest (in this
case, directed) path between the two nodes. The deptl1,

5 Many oft.he arguments provided here are given in out.line
form only due to space limitations. F'ull details can be found
in [19).

d(N), of a node Nin a directed acyclic graph is the dis­
tance from the root node to N. The separation of two
nodes is the length of the longest direct path between
them. The sound, <T(N), of a node N is the separation
between the root node and N.

3.1 Finite Termination

Lemma 3.1. The number of states for any node in the
system is finite.

Proof: The proof proceeds by induction on the sound
of a node N in the decision graph. The assertion
holds for any leaf node NL since it can be in only two
states: 5 1 (NL) = (+oo, -oo) if it is not in the current
search graph, and st(NL) = (U(NL), L(NL)) other­
wise, where U(NL) and L(NL) are the bounds gener­
ated by the initial bound generation procedure6 . Since a
leaf node has no successors, its upper and lower bounds
will never be changed once it is generated. This provides
the basis.

Assume the result holds for all nodes at a sound
greater than or equal to s, and let <T(N) be s - 1.
Note that for any successor N; of N, we must have
<T(N;) ;::: s, so N; has a finite number of states by the
inductive hypothesis. The set of states for node N is
contained in a set generated by the application of the
recursive formulation for the costs to the cross product
of the set of states for each of its successors. The latter
set is finite from the inductive hypothesis. •

Theorem 3.2. The number of states for the system is
finite.

Proof: By its definition:

Every element in the cross product is finite by lemma
3.1, and there is a finite number of nodes in the decision
graph. •

Theorem 3.3. The state transition diagram for the
process is acyclic.

Proof: The upper bound for any node is a non­
increasing function, and the lower bound for any node
is a non-decreasing function oft. Hence each element
in the sequence of states through which a given node
passes is unique. •

Because the number of states is finite and the state
transition diagram is acyclic, we have the following.

Theorem 3.4. Given that the number of nodes in the
decision graph is finite, then the system will reach a
terminal state in finite time, provided that the number
of message initiations is finite. •

6 As noted above, it is reasonable to assume t.hat U (NL) =
L(NL) = c(NL) for any leaf node N, that is, that leaf nodes
are fathomed upon generation. This is not required for this
result, however.

276

Next we wish to show that when the system reaches
a terminal state, the root node is fathomed. That is,
the upper bound for the root node is equal to the lower
bound. First we first show that the optimal decision
graph is always generated.

Theorem 3.5. Let Ni and N 2 be two nodes in the
search graph such that Ni is a parent of N 2 and that
(1) Ni and N 2 are both in an optimal decision graph, (2)
there is a directed path in the current search graph from
the root node to Ni that is contained entirely within an
optimal decision graph, and, (3) there is an arc from Ni
to N2 in the current search graph. Then, the arc from
Ni to N 2 will never be removed and the node N 2 will
never become inactive.

Comment: This result can be established [19) by in­
duction on the depth of a node in the search graph. •

Corollary 3.6. If the node N 2 in the conditions for
theorem 3.5 is on the expansion queue, it will never be
removed from the expansion queue.

Theorem 3. 7. At any point in the operation of the
distributed algorithm, as above, either (1) there is at
least one processor, with at least one node in an optimal
decision graph on its expansion queue, or (2) the optimal
decision graph is generated entirely in the current search
graph.

Comme11t: This result can be established by a simple
inductive argument on the sequence T = t0 , ti, ... , tn, ...
of times at which the system changes state. •

Theorem 3.8. The optimal decision tree is always
generated in its entirety by the distributed algorithm.

Proof: This result follows directly from corollary 3.6
and theorem 3. 7. •

Theorem 3.9. Upon termination, every node in the
optimal decision graph is fathomed.

Proof: The proof is again by induction on the sepa­
ration from the root node to a particular node N in the
optimal decision graph. For any leaf node, the result
follows directly from theorem 3.8, that is, when the leaf
node is generated it will be fathomed according to our
basic assumptions as stated above.

For a node, N, at a sound s - 1. consid"r t hi' li>t,
Ni, N2, ... , Nr of its successor nodes. Let N; be the
last of these successors to become fathomed. When that
happens, a re-evaluate bounds message is sent to each of
its predecessors, including node N. Upon receipt of the
re-evaluate bounds message, the node N will re-evaluate
its bounds. Since all of its offspring have been fathomed
at this point, the node N itself becomes fathomed. •

This result shows, in particular, that the root node is
fathomed when the system reaches a terminal state.

3.2 Finite Message Initiation

Most of the discussion presented above has been pred­
icated upon the fact that the message initiations are
finite. We now show that this holds.

Theorem 3.10. In the case where the process gener­
ates a search tree, the number of messages of each type
that are generated is finite.

Proof: In a search tree, each node will have at most
one predecessor (parent). Because the upper bounds
are non-increasing, and the lower bounds are non­
decreasing, once a node becomes inactive in a search
tree, it remains inactive for all future time. Hence, a
node is added and removed from the parent list of an
offspring node at most once. As such, there can be
no more than one add predecessor and one remove pre­
decessor message per node. Since, by assumption, the
number of nodes is finite, the number of add and remove
predecessor messages is finite.

A re-evaluate bounds message is sent either as a result
of a state change or in response to an add-predecessor
message. The number of states is finite, as are the
number of add predecessor messages. Hence, the num­
ber of re-evaluate bounds messages that are initiated
are finite. •

Theorem 3.11. In the case where the process gener­
ates a decision graph, the number of message initiations
of each type is finite.

Outline of Proof: Any directed acyclic graph can be
"unwound" to a tree which is in some sense "equiva­
lent" to the original graph. This is achieved by duplicat­
ing nodes with multiple parents, giving each parent an
equivalent copy of the original node. This process pro­
ceeds recursively, starting at the root node and working
down the graph until no nodes with multiple parents re­
main. Because the state vectors are duplicated when the
nodes are, the decision process defined on the equivalent
tree is the same as that defined on the original graph, in
the sense that (1) the optimal cost associated with each
node in the graph is the same as the optimal cost as­
sociated with the equivalent nodes in the decision tree,
and (2) the optimal decision graph maps to the optimal
decision tree.

In the strategy used to prove this theorem, we show
that the number of message initiations are bounded by
the number of message initiations for the equivalent
search tree. Consider first the add predecessor mes­
sages. Assume that there there is a node, N which dur­
ing the course of expanding the search graph receives
two add predecessor messages from the same predeces­
sor Nn (otherwise, there would be at most one add
predecessor message sent along each arc in the decision
graph, which is finite by assumption). From the condi­
tions under which the add predecessor message is initi-

277

ated (figure 1), it can be shown that for this to happen
there must exist:

(1) a directed path from some ancestor N1 of N.,. along
which least two sequences of add predecessor mes­
sages has been transmitted, leading to the two add
predecessor messages from NN to N, and,

(2) two distinct predecessors N0 and N0 ' of Ni such
that an add predecessor message from No to Ni
was responsible for generating the first of the two
sequences, and an add predecessor message from
No' to N 1 was responsible for generating the sec­
ond of the two sequences.

Because of the procedure used in generating the
equivalent search tree from the search graph, the two
sequences of add predecessor messages would therefore
occur on distinct branches of the tree, one rooted at
N0 and the other rooted at N0 1• Using this fact as a
basis, it can then be shown that there can be at most
one message sequence in the graph for each message
sequence in the corresponding tree, which, from theo­
rem 3.10 establishes the result for the add predecessor
messages.

The proof for the remove predecessor messages is sim­
ilar. As in theorem 3.10, the fact that a finite number
of re-evaluate bounds messages are sent is established
from the fact that the add and remove predecessor mes­
sage transmissions are finite and the assumption that the
state space is finite. •

Race Conditions and Deadlock. In general, race
conditions created by messages between two nodes ar­
riving out of sequence will not create a problem for th.e
operation of the distributed algorithm being discussed
here, although some precautions must be taken as out­
lined below.

First, if messages between two specific nodes are cer­
tain to arrive in the same order they are sent, then it
is easy to show [19] that the process will always gen­
erate the correct result regardless of the order in which
those messages arrive relative to messages sent by other
nodes. In practice, it is difficult to guarantee this, unless
special precautions are taken in the communication pro­
tocols. Arguments very similiar to that used in the proof
of theorems 3.10 and 3.11, can be used to show that the
order of arrival of re-evaluate bounds messages is still
not important. But problems can occur in sequences of
add and remove predecessor messages.

For example, consider a node Ni and its offspring N2,
and a sequence of:

add predecessor, remove predecessor, add predecessor
which is assumed to be received as,

add predecessor, add predecessor, remove predeces­
sor.

If the second add predecessor message is ignored by
node N2, then upon receipt of the remove predecessor
message, node N2 will remove the link back to Ni. Any
subsequent re-evaluate bounds messages will therefore
not be propagated from N 2 to Ni and it is possible that
the final result will be incorrect. In our implementation,
these types of problems are managed by maintaining a
count of the number of add predecessor messages minus
the number of remove predecessor messages received
from a given predecessor, in the successor node. If the
count is zero or negative the successor considers itself to
be pruned. Otherwise, it is not, and re-evaluate bounds
messages are propagated back to it.

Deadlock does not occur in the context of the
scheme presented here because the processor activities
are driven by the work in the message handling and ex­
pansion queues, and no message explicitly requires a
reply before its desired "effect" on the search graph is
completed.

4 Results

The results reported here apply to a large scale resource
allocation problem modeled as a Markov decision pro­
cess. The specific application is to a problem in naval
command and control. The process of solving the prob­
lem involves expanding a decision graph to enumerate
all possible ways (in the worst case) in which resources
can be allocated to tasks over time. The reader is re­
ferred to (20,21] for more detailed discussions of the ap­
plication. The message passing scheme discussed above
was implemented in "(" on a BBN Butterfly parallel
processor7 • The Butterfly machine consists of processor­
memory units, with memory on any processor accessi­
ble to any other processor through a delta network as
described in detail in several recent reports [22,23,24].
Although the Butterfly is a tightly coupled machine, our
implementation simulates a loosely coupled environment
that has a crossbar interconnection topology.

In our emulation of a loosely coupled architecture,
each processor's outbound message packets are stored
directly into a buffer on the receiving processor, then
enqueued for processing. Memory access time across
the switch has been reported to be 4 to 7 times slower
than access to local memory, and contention for mes­
sage buffer space (controlled by semaphores provided
with the Butterfly's "Chrysalis" operating system) cre­
ated other delays in the transmission of messages. How­
ever, no further delays were introduced into the simu­
lated "channels". Although it might be argued that the
results discussed here may not accurately reflect the sit-

7 Butterfl.y is a trademark of Bolt, Beranek, and Newman,
Advanced Computers Inc.

278

uation that would be obtained in a truly loosely coupled
environment, there are good arguments to the contrary
as discussed further below. We are currently implement­
ing the approach on a network of Transputer8 processing
elements, which should provide a resolution to this issue
in the near future.

There are several different measures for the perfor­
mance of parallel algorithms. We will use relative ef­
ficiency of parallelism, Ep. as .defined in (25), which
gives Ep = §.ii.. where Sp is the speedup factor over a
single procestor obtained by dividing the elapsed time of
the message passing algorithm on one processor by that
on p processors. We present results related to efficiency
as a function of problem size (number of nodes in the
search graph) and the number of processors in the sys­
tem. To this end, experiments were conducted against
a range of problem sizes, by varying the value of the
major input parameters. Data was collected for a range
of problems resulting in search graphs with 6 to 1832
nodes, with the number of processors ranging from 1 to
15. Memory limitations of the system configuration on
which the initial experiments were conducted precluded
the generation of larger search graphs, which would have
been highly desirable9 . Nonetheless, the trends from the
data that are available are fairly clear, and hence we be­
lieve, will be consistent with results derived from larger
experiments.

A search graph consisting of 1832 nodes requires
about 133 seconds to generate on a single Butterfly
processor unit (a BPN2 module which consists of a
Motorola 68020/68881 processor), or about .072 sec­
onds/node. The time required to generate a node in
the search graph decreases with smaller problems in our
application, primarily because the size of the state vector
associated with each node is a function of the problem
inputs. For example, a search graph consisting of 81
nodes requires 1. 79 seconds on a single processor, or
about .022 seconds/node.

Figure 4 shows efficiency as a function of nodes gener­
ated for various numbers of processors. Figure 5 shows
efficiency as a function of number of CPUs for various
fixed "problems" (as defined by the problem inputs).
Note that both graphs exhibit trends that are more char­
acteristic of a problem running on a pipelined architec­
ture rather than a distributed asynchronous algorithm,
the important factor apparently being the number of
nodes per processor (figure 6).

8 Transputeris a trademark ofINMOS, Inc.
9 This is a reflection of the size of the state vector for nodes

in our application, which tends to be very large. We will be
conducting experiments and reporting results on larger systems
in the near future.

120

100
..-
::!! !!..... 80

>-
() 60 c
Q)

() 40 -e- 2 Processing Elements 4 Processing Elements ...
w 8 Processing Elements

20
JZ-

-+ 15 Processing Elements

0
0 1000 2000

Nodes in Search Graph

Figure 4: EFFICIENCY AS A FUNCTION OF THE NUM­

BER OF NODES IN THE SEARCH GRAPH FOR VARIOUS

NUMBERS OF PROCESSING ELEMENTS IN THE SYS­

TEM.

120

100

-'Cf.. 80

>- 60 0
c
Q)

0 40 --w 20

0
0

~&;, ""~ 6 Nodes

+ 194 Nodes
~, + 689 Nodes

'- + 1258 Nodes
~-&;,; -a- 1832 Nodes

. 7,._..¥""VA-V~...,·>r.----•1
• v""'o/.,.....~

1 0

Number of Processing
Elements

Figure 5: EFFICIENCY AS A FUNCTION OF THE NUM­

BER OF PROCESSING ELEMENTS FOR VARIOUS PROB­

LEM SIZES.

279

120

100
..-
::!! !!..... 80

>-
()

60 c
.!!!
.!:! 40 ...
iii

20

0
0 200 400 600 800 1000

Nodes/Processing Element

Figure 6: EF'FICIFJNCY AS A FUNCTION OF THE NUM­

BER OF NODES PEil PROCESSING ELEMENT.

5 Discussion

We have presented an overview of an approach to solv­
ing sequential decision problems in a loosely coupled en­
vironment. The approach is based on a message passing
scheme, using three basic message types. We have out­
lined a proof of the correctness of the algorithm and
discussed issues related to race conditions that can po­
tentially occur in the passing of messages. We have
demonstrated initial results that indicate that the ap­
proach yields a very high degree of processor utilization
for problems of a sufficient size.

Note how efficiency asymptotically approaches 100%
as the number of nodes/processor increases. Boundary
conditions existing during the early stages of the gen­
eration of the search graph (that is, when the first few
nodes are being generated, and the message and ex­
pansion queues for all but a few processors are empty)
dominate when this ratio is small, yielding poor relative
efficiency, but become less of a factor whr>n the search
graph is very large. The initialization effect is further ex­
acerbated by the hashing scheme for distributing nodes
among the various processors, which tends to provide a
more uniform distribution of nodes to processors as the
number of nodes in the search graph becomes large. For
small problems, even small variances in the number of
nodes per processor can mean that the expansion and
message queues of a processor become empty so that
the processor becomes idle.

It has often been reported that in many distributed al­
gorithms implemented on loosely coupled architectures,
communication overhead becomes the dominant factor
as the problem size and number of processors grow large.
This effect depends on (1) the extent to which commu­
nication between processors introduces a synchronizing
or "serial" component to the process, {2) the relative
amount of processor overhead required for transport­
ing and routing messages, and (3) the extent to which
communication bottlenecks occur. The first factor is
not a significant issue in our approach, because no ex­
plicit synchronization is necessary. Furthermore, except
for the initial phase of search graph generation, each
processor maintains a "back-log" of work, so that the
amount of time a message takes to transit the network
should not have a significant impact on overall efficiency.
This explains our conjecture that overall efficiency will
not be seriously degraded in an implementation on an
actual loosely coupled system, at least as far as our ap­
plication is concerned. The effect of the second factor
can obviously be minimized by an appropriate hardware
design, which off-loads message routing responsibilities
from the processors. The last factor is dependent on
the interconnection topology of the system.

In determining the significance of the approach dis­
cussed here, it is important to also consider how it com­
pares to the best, or even commonly available, single
processor algorithms10 . We find that the message pass­
ing scheme proposed here when run on a single pro­
cessor runs approximately two thirds as fast as the best
single processor scheme that we have developed to date,
in which costs and bounds are recursively backed up the
graph. Thus, for example, the distributed algorithm runs
10 times faster on 15 processors than a "good" sequen­
tial algorithm running on a single processor. The ratio
has been observed to be more or less constant, inde­
pendent of problem size. Furthermore, we have found
that the ordering of nodes on the expansion queue (pro­
ducing depth first, breadth first, and by various criteria,
best first search) has very little effect on the run times
for the recursive version of the algorithm.

By profiling the runs, we have determined that the dif­
ference is in the extra time required to build and handle
the .messages, which in our application involves a certain
amount of effort to encode the state vector associated
with each node, allocate and deallocate message buffer
space, and so forth. Furthermore, the codes for handling
messages have been implemented relatively recently and

have not been optimized to the same extent as the codes
for the recursive version. The important factor is that
the extra processing time is (1) a constant factor, and

10 To prove t.hat a given algorithm for a complex process is
optimal is a difficult task at best, so let us suffice with a dis­
cussion of "best commonly available".

280

hence does not change the relative order of complexity
of the algorithm, and (2) is due to processing local to
ead1 node. It is not, for example, the result of a se­
rial component or a synchronization effect inherent in
the design of the approach. It would be a penalty in­
curred by any approach for distributing the work load on
a loosely coupled system by allocating nodes uniformly
among the processors, since there is no other way in
which the information about the state of an offspring
node can be conveyed to a processor responsible for that
offspring. Although several approaches have been pro­
posed which maintain subsections of search trees local
to a specific processor [12,26]. they would not extend
to processes defined on directed acyclic graphs, partic­
ularly if little is known about the structure of the graph
at the outset, because a given node may have (and in
our case, does have) predecessors from diverse sections
of the graph. Furthermore, approaches that maintain
locality have other disadvantages, including redundant
search, communication, and synchronization overhead.

The reader has no doubt noted the fact that efficien­
cies greater than 100% are obtained in some cases. This
effect has also been observed for other types of paral­
lel search algorithms [6,7,12]. The explanation that has
often been given, is that a fortuitous ordering of nodes
on the expansion queue finds an optimal solution ear­
lier in a multiprocessor environment. This would prob­
ably not be the best explanation of this anomaly in our
case. Among other things, we find that the number of
nodes generated in the search graph tends to be fairly
constant11 , independent of the number of processors in
the system. On the other hand, we have observed a
signficant decrease - up to 37% - in the number of
re-evaluate bounds messages for a fixed problem size
as the number of processors are increased, and in fact,
this decrease, factored by the amount of time required
to generate and handle a re-evaluate bounds message
explains the difference in elapsed time very well. One
explanation for the reduction in the number of these
messages is that the more parallelism that is employed
in propagating bound constraining information between
a node and a given ancestor, the faster its bounds be­
come constrained. If the ancestor node is ultimately
to be pruned, it happens sooner, on average, in the
multiprocessor irnplement;:ition anrl hence the ch11nnel
between that ancestor and any of its predecessors be­
comes closed to any further message traffic earlier in
the search graph generation process. We suggest that

further research of this phenomenon is warranted.

11 typically, within 0.3 percent

References

[1] N. Nilsson, Principles of A1·tificial Intelligence.
Palo Alto: Tioga Press, 1980.

[2] C. Derman, Finite State Markovian Decision
Processes. New York: Academic Press, 1970.

[3] J. Shapiro, Mathematical Programming: St1'uc-
tures and Algorithms. New York: Wiley-
lnterscience, 1979.

[4] T. lbaraki, "Generalization of alpha-beta and SSS*
search procedures," Art. Intell., vol. 29, pp. 73-
117, 1986.

(5) S. Aki, D. Barnard, and R. Doran, "Design, analy­
sis, and implementation of a parallel tree search al­
gorithm," IEEE Trans. on Pat. Anal. and Mach.
Intell., vol. PAMl-4, pp. 192-203, March 1982.

[6] G. Baudet, The Design and Analysis of Algo­
rithms for Asynchronous Multiprocessors. PhD
thesis, Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, April 1978.

[7] R. Finkel and J. Fishburn, "Parallelism in alpha­
bets search," Art. Intell., vol. 19, pp. 89-106,
1982.

(8] R. Finkel and J. Fishburn, "Improved speedup
bounds for parallel alpha-beta search," IEEE
Trans. on Pat. Anal. and Mach. Intell.,
vol. PAMl-5, pp. 89-92, 1983.

[9] J. Fishburn, Analysis of Speedup in Distributed
Algorithm. Ann Arbor, Michigan: UMI Research
Press, 1984.

[10] V. Kumar and l. Kanai, "Parallel branch and
bound formulations for AND/OR tree search,"
IEEE Trans. on Pat. Anal. and Mach. Intell.,
vol. PAMl-6, pp. 768-778, 1984.

[11)

[12)

[13]

T. Marsland and M. Campbell, "Parallel search of
strongly ordered game trees," Computing Surveys,
vol. 14, pp. 533-551, 1982.

R. Finkel and LI. Manber, "DIB-a distributed
implementation of backtracking," ACM Transac­
tions on Programming Lang11ages and Systems,
vol. 9, pp. 235-256, April 1987.

G. Lipovski and M. Hermenegildo, "B-log: a
branch and bound methodology for the parallel ex­
ecution of logic programs," in Proceedings of the
1985 IEEE International Conference on Paral­
lel Processing, (Penn. State Univ.), pp. 560-567,
August 1985.

281

[14) H. Berliner, "The B* tree search algorithm: a best­
first proof procedure," A rt. In tell., vol. 12, pp. 23-
40, 1979.

[15) M. Campbell and T. Marsland, "A comparison
of minimax tree search algorithms," Art. Intell.,
vol. 20, pp. 347-367, 1983.

[16) N. Darwish, "A quantitative analysis of the alpha­
bets pruning algorithms,'' Art. Intell., vol. 21,
pp. 405-433, 1983.

[17) A. Palay, "The B* tree search algorithm: new re­
sults," A1't. Intell., vol. 19, pp. 145-163, 1982.

[18] I. Roizen and J. Pearl, "A minimax algorithm better
than alpha-beta? yes and no," Art. Intell., vol. 21,
pp. 199-220, 1983.

[19] M. Diamond, J. Kimbel, and J. Newhouse, "A mul­
tiprocessor implementation for polyadic sequen­
tial dynamic programming problems,'' Tech. Rep.,
FMC Corporation Advanced Systems Center Tech­
nical Report, Minneapolis, MN, 1988.

[20] M. Diamond and 0. Carducci, "Decision processes
for large scale resource allocation problems,'' in
Proc. 8th MIT/ONR Workshop on C 3 I Sys­
tems, (Cambridge, MA), July 1984.

(21] M. Diamond, J. Newhouse, and J. Kimbel, "De­
cision processes for large scale resource allocation
problems - extensions and results," in Proce. JDL
1987 Symposium on C 2 Research, (Washington,
DC), June 1987.

[22) Proceedings of the Fall 1987 Butterfly Users
Group Meeting, (Cambridge, MA), BBN Ad­
vanced Computers, October 1987.

(23) Inside the Butterfly Plus. BBN Advanced Com­
puters, Cambridge, MA, October 1987.

(24] T. Leblanc and S. Jain, "Crowd control: coordi­
nating processes in parallel,'' in Proceedings of the
1985 IEEE International Conference on Paral­
lel Processing, (Penn. State Univ.), pp. 434-441,
August 1985.

[25) D. Parkinson, "Practical parallel processors and
their uses,'' in Parallel Processing System.,,
(D. Evans, ed.), Cambridge, MA: Cambridge Uni­
versity Press, 1982.

[26) T. Marsland and F. Popowich, "Parallel game tree
search," IEEE Trans. on Pat. Ana.l. a.nd Ma.ch.
Intell., vol. PAMl-7, no. 4, pp. 442-452, 1985.

SPACE-EFFICIENT AND FAULT-TOLERANT MESSAGE ROUTING

IN OUTERPLANAR NETWORKS

(Preliminary version)

Greg N. Frederickson 1

Department of Computer Science

Purdue University

West Lafayette, IN 4 7907

Abstract

A fault-tolerant routing scheme for outerplanar networks
is presented, which stores routing information succinctly
and routes messages along near-shortest paths. For an n­
node network containing t node and edge faults, the total
space and communication is 0(tan) and the routings gen­
erated are within a factor of ((a+ 1)/(a - 1))t ofoptimal,
where a > 1 is an odd-valued integer parameter. Thus the
routings can be tuned as desired. Efficient algorithms are
given for setting up the routing scheme.

1. Introduction

A primary function in a distributed network is the
routing of message between pairs of nodes. Often, a cost
is associated with each edge, making it desirable to route
along shortest, or near-shortest, paths. Although this can
be accomplished easily by storing a complete routing table
at each of the n nodes of the network, such' an approach
is expensive, using a total of 8(n2) items of routing in­
formation, where each item is a node name. Thus, re­
cent research has focused on reducing the amount of rout­
ing information stored, while still retaining good routings.
Compact routing schemes have been designed for numer­
ous classes of networks, ranging from simple networks such
as trees, rings, complete networks, and complete bipartite
networks [8,9,10] to more complex networks that possess
a certain embedding property (the simplest of which are
the outerplanar networks) [3], and to networks exhibiting
certain separator properties, such as the c-decomposable
networks and planar networks [4]. These schemes examine
the problem in the context of being free to assign suitable
short names to the nodes at the time the network is set
up. The idea here is to encode useful information about
the network within the names and to then use this infor­
mation to generate good routings. All the above schemes
use considerably less space than complete routing tables,
keep node names to O(log n) bits, and still route along
shortest or near-shortest paths.

The problem of compacting routing information has
implications that go beyond merely saving space in the
network. The study of this problem has led to several new
insights into the issues of naming nodes and compactly
encoding information within node names (3,4], as well as

1 Research supported in part by NSF grant CCR-
86202271 and ONR contract N 00014-86-K-0689.

2 Research supported in part by NSF grant DCR
8320124.

282

Ravi Janardan 2

Department of Computer Science

University of Minnesota

Minneapolis, MN 55455

to fast sequential algorithms for computing all-pairs short­
est paths in planar graphs [2].

Unfortunately, none of the above routing schemes can
handle node and edge faults, which can invalidate the
stored routing information and result in arbitrarily bad
routings. Although the problem can be overcome by re­
computing the routing information for the resulting net­
work from scratch, this approach can involve as much as
8(n2) communication overhead even for sparse networks
containing a single fault. It is thus desirable to design
compact routing schemes which can adapt efficiently to
faults and still route well.

In this paper we present a space- and communication­
efficient routing scheme for the class of outerplanar net­
works. An outerplanar network is a network which can be
embedded in the plane so that all nodes lie on the bound­
ary of a single face, usually the exterior face [7]. In our
approach, the network adapts to faults by distributively
computing a small amount of additional routing informa­
tion which is then used in conjunction with compact rout­
ing information for the original network to restore good
routings. For any combination of node and edge faults
that do not disconnect the network, our scheme restores
near-optimal routings using only a constant amount of ad­
ditional routing information per fault. Specifically, let t be
the number of faults and a > 1 an odd-valued integer pa­
rameter. Then our scheme uses a total of O(tan) items
of additional routing information and generates routings
which are, in worst-case, at most ((a+ 1)/(a - l))t times

longer than optimal. (Note that this bound is less than
(a +t)/(a - t), for a 2'. t.) Thus the routings can be made
as close to optimal as desired by choosing a appropriately
large. Furthermore, the additional routing information is
computed efficiently using only 0(tan) messages.

Briefly, our approach is as follows. The worst-case
occurs when all faults are interior edges, i.e., edges not on
the exterior face. (As we shall see, optimal routings can be
reinstated if all the faults are nodes and exterior edges.)
There are now essentially two candidate paths. To choose
between them we make use of an interesting monotonicity
property of distance differences in outerplanar networks.
Using this property, for each failed edge we suitably par­
tition the exterior face boundary into a segments. Infor­
mation about these segments is stored at each node and
the routing from a source to a destination is performed
based on the relative positions of the segments containing
the two nodes.

A noteworthy feature of our scheme is that if there is
just one interior edge fault among the t faults, then the
additional information can, in fact, be precomputed at the
time the network is set up. For each interior edge, informa­
tion about the a segments is precomputed to handle the
potential failure of the edge. This information is stored at
the endpoints of the edge and is broadcast through the net­
work when the edge fails. We give an efficient sequential
algorithm to precompute this information for all interior
edges in 0(an log n) time.

Throughout we model our network by an undirected
graph. (For graph-theoretic terms not defined here, see
[7].) In the next section we review the compact routing
scheme for fault-free outerplanar networks presented in [3],
which is a component of our fault-tolerant scheme. Sec­
tion 3 describes the fault-tolerant routing scheme. Due to
space constraints, most proofs are either omitted or ab­
breviated in this preliminary version.

2. Interval routing in outerplanar networks

We first summarize the interval routing method pre­
sented in [8] for trees and rings. The nodes are named
appropriately with the integers from 1 to n. For trees, the
names are depth-first numbers. For rings, the names are
assigned consecutively, going clockwise around the ring.
For any vertex v of degree d, let wi, w2, ... , Wd be the
neighbors of v indexed in clockwise order around the ex­
terior face starting from v. Each edge incident with v is
labeled by an interval, with the intervals from all edges in­
cident with v forming a partition of [1, n]-v. Wraparound
is allowed in the intervals. For instance, the interval [i,j),
i > j, contains {i, i + 1, ... , n, 1, ... ,j - 1}. Denote the
intervals by [l;,l;+1), for i = 1,2, ... ,d, where ld+l = v,
and let interval [l;, l;+i) label edge { v, w;}. This inter­
val labeling has the property that { v, w;} is the first edge
on a shortest path from v to any node whose name is in
[l;, l;+i)· The values l;, i = 1, 2, ... , d, are stored in a table
at node v, each with a pointer to associated edge { v, w;}.
When a message arrives at node v, if its destination u is
not equal to v, then the table is searched for the entry l;
such that l; ::=; u < l;+l. The message is then sent out on
edge { v, w;}. Since the values l;, i = 1, 2, ... , d + 1 form
a rotated list [6,1], the table can be searched in O(logd)
time using a modified binary search.

As the following theorem shows, the interval labeling
method also works for outerplanar networks under a suit­
able naming of the nodes [3]. The nodes are assigned inte­
ger names from 1 to n in consecutive order by proceeding
clockwise around the exterior face; if any node v is visited
more than once in this traversal, implying that v is an ar­
ticulation point of the network, then v may be named on
any one of the visits. We call such a naming of the nodes
a clockwise node naming. An outerplanar network with a
clockwise node naming is shown in Figure 1.

Theorem 1. ([3]) Let G be an n-vertex outerplanar graph
with a clockwise naming ofits vertices. For any assignment
of nonnegative costs to its edges, the end of every edge in­
cident with any vertex v can be labeled with a subinterval
of [1, n] such that the edge is the first edge on a shortest

283

path from v to any vertex in the subinterval. I

Figure 2 illustrates an interval labeling of the edges
of the network in Figure 1.

In our fault-tolerant scheme, shortest paths routing
information for the original (fault-free) outerplanar net­
work, G, is stored in interval form. Moreover, the interval
information is set up to favor an edge to a path of two or
more edges, in the case of ties. Also, we assume that the
edge costs of G satisfy the generalized triangle inequality,
i.e., each edge is a shortest path between its endpoints.

3. Compact fault-tolerant outerplanar routings

We consider node faults and edge faults separately
and later show how to handle combinations of node and
edge faults. As a running example, we will use the unit­
cost network G shown in Figure 3.

3.1 Handling node faults

Consider a single node fault. Let v be the failed node
and S the set of edges which are on the faces containing v
but not incident with v. The edges of S form a simple path
and graph G - v is the union of a nwnber of subgraphs,
each defined by an edge of S, as follows. Let {a, b} be any
edge of S such that v is in the interval (a, b). Then the
subgraph defined by {a, b} is the induced subgraph of G-v
on the nodes in the interval [b, a]. Call each such subgraph
an S-component, and the nodes a and b the gateway nodes
of the S-component. Note that the nodes in the subgraph
attached to a are in the interval [a, v) and those in the
subgraph attached to b are in the interval (v, b].

Figure 4 shows the network of Figure 3 after the fail­
ure of node 5. The edges in Sare {4,2}, {2,1}, {1,8},
and {8, 6}, shown bold. The cbrresponding S-components
have nodes in the intervals [2, 4], [1, 2], [8, 1], and [6, 8]
respectively.

When v fails, each node w in G - v determines the
following additional routing information: the name v, the
names of the nodes in each S-component H to which w
belongs, and the names of the nodes in the subgraphs at­
tached to each gateway node of H. This is done as fol­
lows. One of the endpoints of the simple path formed by
the edges of S, which is a neighbor of v, sends out over
the path a message containing the name v. Each node on
the path forwards the message out on the path, and also
broadcasts its own name and the name v within each of
the S-components to which it belongs. Thus w receives
the name v and the names a and b of the gateway nodes
of H. These names v, a, and b succinctly represent the
desired additional routing information for w. Since any
node is in at most two S-components, 0(1) items of addi­
tional routing information are stored per node, hence 0(n)
overall. The total number of messages exchanged is O(n).

As an example, node 11 in Figure 4 receives the names
1 and 8 of the gateway nodes of its S-component, and the
name 5 of the failed node. From these it deduces that its S­
component consists of the nodes in the interval [8, 1], and
that the nodes in the subgraphs attached to gateway nodes
1 and 8 are in the intervals [1, 5) and (5, 8] respectively.

The routing from a source s to a destination d is as

follows. Let u be any node participating in the routing,
inclusive of s and d. If u is d then the routing terminates.
Otherwise, if u and dare in the same S-component, then
u routes to d using interval routing. Otherwise, u uses
interval routing to route to that gateway node of its S­
component such that d is in the subgraph attached to this
gateway node.

The routing from u to d will be along a shortest
path in G - v. Suppose that u and d are in the same
S-component. Since the edge from S contained in this
component satisfies the generalized triangle inequality, the
distance between u and d in G - v equals the distance
between them in G. Furthermore, since the interval rout­
ing information favors an edge to a path of two or more
edges, the routing from u to d will be along a shortest
path confined to the component. If u and d are in dif­
ferent S-components, then any shortest (u, d)-path must
use that gateway node of u's S-component to which the
subgraph containing d is attached. The routing strategy
correctly determines this gateway node and routes to it
along a shortest path.

A similar approach works for t > 1 node faults
also. Let v1 , v2 , .•• , Vt be the failed nodes. Let S; be
the set of edges on the faces containing v; but not inci­
dent with v;, 1 $ j $ t, and let S = LJ}=1 S;. Graph
G' = G - { v1 , v2 , ••• , Vt} is the union of a number of S­
components, where an S-component can now contain more
than one edge from S, but at most one from any S;. Each
S-component H is defined by its edges of S as follows:
Suppose that H contains an edge from each of the sets
Siu Si., ... , Si,, 1 $ l $ t, where the sets are indexed
such that v;1 < v;2 < · · · < v;1• Let {a;; , b;; } be the edge
from S;; in H such that Vi; is in the interval (lli;, b;;),
1::::; j::::; l. Then, His the induced subgraph of G' on the
nodes in [b;., a;2] U [b;., ai3] U · · · U [b;,, a;iJ. The gateway
nodes of H are the nodes a;; and b;;, 1 ::::; j ::::; l. The nodes
in the subgraph-attached to any gateway node u of H are
as follows. In general, u will be an endpoint of more than
one edge from S;1 , S;2 , ••• , S;,, and so receives labels of
both types 'a' and 'b'. For each label ai; that u receives,
1 $ j $ l, a subset of the nodes in the subgraph attached
to it are contained in the interval [a;;, Vi;). Similarly, for
each label bi; that u receives, a subset of the nodes in
the subgraph attached to it are contained in the interval
(Vi; , b;;]. The set of all nodes in the subgraph attached to
u will be the union of these intervals.

As additional routing information, each node w of G'
determines the names of the failed nodes, the composition
of each S-component H containing w, and the composition
of the subgraphs attached to the various gateway nodes of
H. A recovery message, containing the name Vi; , is sent
out on the simple path defined by S;;, and each node ai;
and b;; broadcasts its own name and the name Vi; into H,
1 ::::; j ::::; l. The names Vi;, a;;, and b;; succinctly represent
the additional routing information for w. The total num­
ber of message exchanges within H will be O(t!E(H)I).
Thus there are 0(tn) message exchanges overall. Each
node maintains O(t) items of additional routing informa-

tion for each S-component of G' to which it belongs. Since
a node can belong to at most as many S-components as
its degree in G', the total number of items is O(t!E(G')I),
which is O(tn).

The routing strategy is exactly as before and the rout­
ings generated will be optimal.

Figure 5 illustrates the network of Figure 3 after the
failure of nodes 5 and 13, with the edges of S shown bold.
Let H be the S-component consisting of nodes 8, 9, 10,
and 1. H contains edges { ait , bi1 } = { 1, 8} and { ai., b;2 } =
{10, 1} from the sets S;1 and S;2 corresponding to v;1 = 5
and v;2 = 13. Thus each node of H receives the names 1
and 8, and the name of the associated failed node 5, and
also the names 10 and 1, and the name of the associated
failed node 13. From this it deduces that the nodes of H
are in (8, 10] U (1, 1]. The nodes in the subgraph attached
to 1 are in (1, 5) U [13, 1), those in the subgraph attached
to 8 in (5, 8], and those in the subgraph attached to 10 in
[10, 13).

3.2 Handling edge faults

An exterior edge fault can be viewed as the failure
of a fictitious node in the middle of the edge. Thus this
case can be handled essentially as before, with one of the
endpoints of the failed exterior edge initiating the recovery.

Interior edge faults are more difficult to handle, how­
ever. Unlike node and exterior edge faults where there is
essentially just one choice of path to route over, there are
now two candidate paths. This introduces nonoptimality
in the routings, since the correct choice of path is not al­
ways apparent. However, for the routing scheme that we
present, the quality of the routings can be improved to any
desired extent by using a correspondingly larger amount
of additional routing information.

First consider a single interior edge fault. We present
two approaches. In the first, additional routing informa­
tion is precomputed for each interior edge at network setup
time, to handle the potential failure of the edge, and is
stored at one of the endpoints of the edge. We also give
an efficient algorithm for precomputing this information.
We then describe an alternative approach where the addi­
tional information is computed distributively, as the faults
occur. We then build upon the second approach to handle
multiple interior edge faults.

284

3.2.1 Handling a single interior edge fault

Let e = { v1 , v2 } be the failed edge and F the bound­
ary of the face that results from the deletion of e from G.
Graph G - e is the union of a number of subgraphs, each
defined by an edge of S, as follows. Let {a, b} be any edge
of S, with a immediately following b clockwise around F.
Then the subgraph defined by {a, b} is the induced sub­
graph of G - e on the nodes in the interval [b, a]. Each
such subgraph is called an F -component and the nodes a
and bare called gateway nodes of the F-component.

Figure 6 shows the network of Figure 3 after interior
edge {1, 8} has failed. The edges {5, 1}, {8, 5}, {10, 8},
and {1, 10} of Fare shown bold. The corresponding F­
components are the subgraphs induced on the nodes in the
intervals [1, 5], [5,8], (8, 10], and [10, 1] respectively.

Assume that V1 initiates the recovery. This involves
propagating additional routing information to each node.
This information consists of the name v1 , the names of the
gateway nodes of the F-component containing the node,
and information about a points on the boundary of the
exterior face, each at a prescribed distance from v1 in G-e.
The latter is precomputed and stored at v1 • Thus a items
are stored for each interior edge, hence 0(an) in total.
The total number of message exchanges is 0(cm).

The information precomputed at v1 is as follows: For
any nodes x and yin G-e, let Xe and Ye be the first and last
nodes of F encountered when going clockwise from x to y
around the exterior face. If no node from F is encountered,
then take Xe arid Ye to be x and y respectively. A shortest
clockwise path from x to y consists of a shortest path in
G - e from x to x c, followed by the edges of F going
clockwise from Xe to Ye, followed by a shortest path in G-e
from Ye toy. Denote by Pc(x,y) the length of this path.
A routing along this path is called a shortest clockwise
routing from x to y. Such a routing is easy to perform,
since the shortest paths from x to Xe and Ye to y can
be realized using the interval routing information for G.
Similarly for a shortest counterclockwise path/routing from
x toy, whose length we denote by Pcc(x,y).

The following lemma, which is a special case of a more
general result proved in [2], reveals an interesting mono­
tonicity property of distance differences in outerplanar net­
works.

Lemma 1. View the boundary of the exterior face of the

embedding of G - e as a continuum of points and extend
the distance functions Pc(., ·) and Pee(., ·) to points. The
function Pc(P, v1) - Pcc(P, V1) is monotonically nondecreas­
ing for points p encountered going counterclockwise from
v1 around the exterior face. I

Let C be the total cost of the edges of F. Thus
Pc(-,v1)-Pcc(-,v1) changes monotonically from -C to
C in traversing the exterior face boundary counterclock­
wise from v1. Let a > 1 be an odd integer parame­
ter. Precompute and store at v1 the a division points
V1 = zo,z1,. . .,z,,,-1, lying on the boundary of the ex­
terior face, where the points are indexed counterclockwise
from V1. Division point z; satisfies Pc(z;, vi)- Pee(z;, V1) =
-C+(2C/a:)i, 0 Si S a:-1. It is represented as a 3-tuple
(i,u,v), where u and v are the endpoints of the exterior
edge { u, v} on which it falls. (If it coincides with a node
then u and v are both the name of this node.)

We illustrate division points with reference to Fig­
ure 6, with a = 3. Division point z0 coincides with node
V1 = 1; z1 lies on edge {9, 10}, at a distance of 5/6 from
node 10; and, z2 lies on edge {5, 6}, at a distance of 1/6
from node 6.

The routing from a source s to a destination d is as
follows. Ifs and dare both in the same F-component then
s routes using the interval routing information for G. Oth­
erwise, s uses the division points to route to d. Let s be
between Z(k-1) mod "' and Zk, and d between Z(k'-l) mod "'

and Zk', where 0 S k, k' S a - 1. In general, if a vertex co­
incides with a division point z;, then we take the vertex to

285

be between Z(i-1) mod "'and z;. If k S k' (i.e., s precedes d
counterclockwise from v1), then if k' - k;::: (a+ 1)/2, then
s performs a shortest clockwise routing to d; otherwise it
performs a shortest counterclockwise routing. If k' s k
(i.e., d precedes s), then if k - k';::: (a+ 1)/2, thens per­
forms a shortest counterclockwise routing to d; otherwise
it performs a shortest clockwise routing.

Theorem 2. Let p(s, d) be the distance in G - e be­
tween any nodes s and d, and let p(s, d) be the length
of the routing generated by the above strategy. Then
p(s, d)/ p(s, d) < (a+ 1)/(a: - 1).

Proof. Ifs and dare in the same F-component, then the
routing will be along a shortest (s, d)-path. Suppose thats
and dare in different F-components and p(s,d) > p(s,d).
We claim that p(s,d) - p(s,d) < C/a. First we note that
from the positions k and k' of s and d, we have

-C + (k -1)(2C/a:) < Pc(s,vi) - Pcc(s,vi)

s -C + k(2C/a)

-C + (k' - 1)(2C /a) < Pc(d, v1) - Pcc(d, v1)

s -C + k'(2C/a).

The proof of the claim involves considering various cases.
Suppose that k S k' (i.e., s precedes d counterclockwise
from v1), and k' - k ;::: (a:+ 1)/2. Let u be the first
node from F encountered going counterclockwise from s
to d. Note that u exists since s and d are in different

F-components. Clearly, Pcc(s, v1) = Pcc(s, u) + Pcc(u, v1),
and Pc(d, V1) = Pc(d, u) + Pc(u, V1). Substituting into the
above inequalities gives

-C + (k - 1)(2C/a:) < Pc(s, v1) - Pcc(s, u) - Pcc(u, vi)

s -C + k(2C/a)

-C + (k' -1)(2C/a:) < Pc(d,u) + Pc(u,v1)- Pcc(d,v1)

s -C + k'(2C/a).

Note that Pcc(s, d) = Pcc(s, u)+ Pcc(u, d) = Pcc(s, u)+
Pc(d,u), Pc(s,d) = Pc(s,v1) + Pc(v1,d) = Pc(s,v1) +
Pee(d, V1) and Pee(u, V1) + Pc(u, V1) = C. By the rout­
ing strategy, if k' - k;::: (a:+ 1)/2, then p(s,d) = Pc(s,d).
Thus p(s,d) = Pcc(s,d). Then

p(s,d)- p(s,d) = Pc(s,d)- Pcc(s,d)

= (Pc(s, v1) + Pcc(d, v1))­

(Pcc(s, u) + Pc(d,u))+

(C - Pee(u, v1) - Pc(u, v1))

< (-C + k(2C/a))-

(-C + (k' -1)(2C/a:)) + C

s C - ((a+ 1)/2)(2C/a:) + (2C/a:)

=C/a.

Similarly for the case k' - k < (a+ 1)/2 and for k' s k,
which establishes the claim.

Furthermore, it can be shown that whenever f>(s, d) >
p(s,d), then f>(s,d) + p(s,d) = Pc(s,d) + Pce(s,d) ~ C.
Since f>(s,d) - p(s,d) < C/a, it follows that p(s,d) >
(C - C/a)/2. Thus

f>(s, d)/ p(s, d) < (p(s, d) + C /a)/ p(s, d)

< 1 + (C/a)/((C - C/a)/2)

=(a+l)/(a-1).1

From the proof it follows that the routing may not
be shortest only when lk' - kl= (a - 1)/2 and lk' - kl=
(a+ 1)/2. We illustrate the routing strategy using Fig­
ure 6. Let s be 12 and d be 7; thus k = 1 and k' = 2.
Since s precedes d counterclockwise around the exterior
face from v1 = 1 and k' - k < (a+ 1)/2 = 2, a short­
est counterclockwise routing is performed and the message
reaches d on a shortest path in the network, via nodes
10 and 8. As another example, let s be 2 and d be 9;
thus k = 3 and k' = 2. As d precedes s counterclock­
wise from v1 and k - k' < (a+ 1)/2 = 2, a shortest
clockwise routing is performed. The message reaches 9
on a path of length 4, via nodes 4, 5, and 8. The short­
est path is via nodes 1 and 10, and has length 3. Thus
p(2, 9)/ p(2, 9) = 4/3 <(a+ 1)/(a -1) = 2.

3.2.2. Determining division points efficiently

The division points for each interior edge can be com­
puted easily in O(n) time, thus yielding an O(n2)-time al­
gorithm for finding the division points for all interior edges.

However, one can do better. We now present an algorithm
which runs in 0(an log n) time. Our algorithm decom­
poses G into two smaller graphs, recursively solves the
problem on these graphs, and then combines the two solu­
tions into one for G. The decomposition is done by iden­
tifying a pair of vertices, called separator vertices, whose
removal disconnects G into two subgraphs with vertex sets
A and B, each of size at most 2n/3. The separator vertices
can be found in 0(n) time; see [5] for example, where a
separator algorithm for the more general classes of series­
parallel and k-outerplanar graphs is given. The division
points algorithm is as follows.

Assume that G is biconnected. (Otherwise apply the
algorithm to each biconnected component.) If G is a cycle
then there are no division points to compute (as there are
no interior edges) and the algorithm terminates. Other­
wise, assign weight 1 / n to each vertex of G and find sep­
arator vertices x and y of G. Infer the induced subgraphs
G1 and G2 of G on the sets AU {x,y} and BU {x,y} re­
spectively. If x and y are not adjacent in G, then include
a path of length two between them in G1 and in G2, with
cost as follows. Let F be the face boundary in G contain­
ing both x and y. Let F1 (resp. F2) be the portion of F
contained in G1 (resp. G2). Then in G1 (resp. G2), assign
cost 11 Fi/2 11 (resp. II F2/2 II) to each edge of the path
between x and y. Both G1 and G2 will be biconnected
outerplanar graphs satisfying the generalized triangle in­
equality. Also, distances between nodes in G1 (resp. G2)
will be unchanged from G.

286

Recursively solve the problem on G1 and G2. Com­
plete the solution for G as follows. Let P be the path
joining x and y in G1 (resp. G2). If x and y are adjacent
in G, then P is e; otherwise it is the introduced path of
length two. Let p be any division point for interior edge
e' of G1 (resp. G2) that falls in the interior of P. Mapp
to a point on the portion of the exterior face boundary of
G contained in G2 (resp. G1), such that the latter point
is a division point for e' viewed as an interior edge of G.
Furthermore, \f P is e, then compute the division points
for e as well.

We first show how to map each point p originating
in G1 and falling in the interior of P to the boundary
of the exterior face of G contained in G2 (the discussion
for points originating in G2 is similar). For convenience
extend the distance functions Pc(·, ·) and Pee(·, ·) to points.
Corresponding to point p on P, there is a point p' on F2
such that Pc(P, V1) - Pcc(P, vi) in G1 equals Pe(P1 , V1) -
Pee(P', v1) in G. In particular, if p is at distance l from
one of the endpoints, say x, of P, then p' is at distance
l' = l +(II Fz I\ - II P 11)/2 from x along Fz. Thus, for
each edge of F2 , the points p on P that map to points p'
on that edge are consecutive on P. Determine the range of
points on P falling on each edge of Fz. Repeat this process
for each interior edge f of Fz, determining the ranges of
points p 1 on f falling on the various edges of F~, where
F~ is the remainder of the other face boundary to which
f belongs. From these ranges, infer the ranges of points p
on P falling on the edges of F~.

Proceeding in this fashion yields the range of points p
on P that fall on each exterior edge of G contained in G2.
If p is the ith division point for interior edge e' = { v1, vz},
and falls on an exterior edge { u, w}, then encode the 3-
tuple (i,u,w) at V1.

If P is e, then compute the division points for e as
follows. In G - e proceed around F counterclockwise from
one of the endpoints of e, say x, and locate a points on F
at intervals of II F II /a. For each point determine the edge
on the exterior face on which it falls, using the information
now available about the ranges of points on each edge of
F that fall on the various exterior edges of G. This yields
the division points for e. Encode each division point as a
3-tuple.

Theorem 3. Let G be a biconnected n-node outerplanar
graph satisfying the generalized triangle inequality. The
above algorithm correctly computes division points for the
interior edges of G. Furthermore, the running time of the
algorithm is 0(an log n), where a is the number of division
points computed for each interior edge.

Proof (sketch). Correctness can be shown by induction
on n, noting that the construction of G1 and G2 preserves
distances and that the mapping of a point falling in the in­
terior of P to the exterior face leaves the distance difference
invariant. The running time analysis is straightforward. I

3.2.3 Computing division points distributively

The ideas of Section 3.2.2 yield a distributed algo­
rithm to compute the division points for any given interior

edge using 0(an) messages. When an interior edge fails,
one of its endpoints initiates the algorithm, determines the
division points, and then propagates these to all nodes.
The communication overhead in this approach compares
favorably with the overhead in the approach where division
points are precomputed, since in the latter case, 0(an)
messages are needed simply to propagate division points
to all the nodes. Turthermore, as we will see in the next
section, with the distributed approach it is possible to ef­
ficiently handle the failure of more than one interior edge.

Assume that each each node has available the cost
of each incident edge and the cost of each face containing
the node. Let e = {vi, ui} be the interior edge that fails,
and let F be the boundary of the face resulting from the
deletion of e. First, the nodes on F distributively locate a
points v1 = Po,p1, ... ,Pa-1 at intervals of 11F11 /a on F.
Next, the points falling on each edge of Fare distributively
mapped to the portion of the exterior face of G' = G - e
contained in the corresponding F-component.

Let v1, v2, ... , Vq be the nodes of F encountered go­
ing counterclockwise around F from v1. Let e; denote edge
{v;, Vi(mod q)+i}, and let L; denote the cost of the segment
of F from v1 counterclockwise to v;, 1 s i s q. Begin­
ning with v1, each node v; in turn determines the range
of the points po,pi, ... ,Pa-1 falling on e; as follows. It
determines the largest integer j; such that (II F II /a)j; :::;
L;+ II e; II· Thus,pointspj;_ 1 +1,Pj;_,+2,. . .,pj; fall one;,
where we take jo to be -1. If j; < a - 1, then v; sends a
message to Vi+i, with j;, a, II F II, and L;+l = L;+ II e; II·
Upon receipt of this message, Vi+i proceeds to determine
the range of points falling on e;+1.

Next, the points falling in the interior of each interior
edge e; are mapped to the exterior edges of G' in the cor­
responding F-component. These are the desired division
points. We describe this process for e1, assuming that it
is an interior edge. The mapping is done in a succession
of stages. In the first stage, the points in the interior of
el are mapped to the various edges of F1, where F1 is the
remainder of the other face boundary to which e1 belongs.
The stage is initiated by v1, which determines the farthest
point on el such that the distance of this point from v1
plus (II F1 II - II ei 11)/2 is at most II Ji II, where Ji is
the edge from F1 incident with v1. This gives the range
of points from e1 falling on Ji. If all points on e1 do not
fall on Ji, then V1 sends a message over Ji to its neighbor,
which proceeds to determine the range of points from e1
falling on h, where h is the other edge of F1 incident with
it. In this manner the ranges of points on e1 falling on the
various edges of F1 are determined. In the next stage this
is repeated for each interior edge of F1. Eventually, all
points on ei get mapped to exterior edges. Similarly for
points on e2, ea, ... , eq.

Each division point is encoded in its 3-tuple form by
one of the endpoints of the exterior edge it falls on. All the
division points are then routed to v1 (for instance, along
the boundary of the exterior face of G').

The total number of messages used to do the map­
ping is 0(n), since at most one message is sent over any

287

edge. The number of messages used to route the divi­
sion points to v1 is 0(an). If the edge costs are integers
and are polynomial in n, then the length of any message
is O(log n) bits. Similarly, the total additional storage
needed to store face and edge costs is 0(n) items, where
each item is O(log n) bits long.

3.2.4 Handling multiple interior edge faults

We now consider routing efficiently in an outerplanar
network with t failed interior edges, t > 1. One problem
in trying to generalize the approach of Section 3.2.1, by
precomputing division points for each edge fault, is that
the computation for any edge does not take into account
changes in distances caused by the failure of the other
edges. Turthermore, precomputing division points for ev­
ery combination oft failed interior edges is expensive, both
spacewise and timewise. However, it is possible to generate
efficient routings if division points are computed distribu­
tively, as and when edges fail. We now present an approach
that stores a total of 0(tan) items of additional routing
information in the network and routes with a worst case
bound of ((a+l)/(a-l))t, which is less than (a+t)/(a-t),
for a ~ t > 1. The computation of the additional infor­
mation uses a total of 0(tan) messages.

Let e; = { v;, u;}, 1 S i S t, be the failed interior
edges. Let G' = G - { ei, e2, ... , et}. Let F; be the face
boundary that results when e; is deleted from G'Ue;. Then
graph G' is the union of a number of F;-components. Each
node v; initiates the distributed algorithm of Section 3.2.3
on G' and computes a division points for e;. These are
then propagated to each node in the network. Each node
also receives the name v; and the names of the gateway
nodes of the F;-component containing the node. The to­
tal number of messages used to compute and propagate
the information is 0(an) per failed edge, hence 0(tan) in
total. The total space needed to hold this information is
O(tan).

The routing from source s to destination d is as fol­
lows. If s and d are in the same F;-component for all i,
1 S i S t, then the routing to d is performed using the in­
terval routing information for G. Otherwise, without loss
of generality, let sand d be in different F;-components for
i = 1, 2, ... , l, where 1 S l S t. Let g; be the edge from F;
such thats is in the F;-component defined by g;, 1 Si S l.
Then one of the endpoints of 9; will be in the interval (s, d)
and the other in the interval (d, s). Without loss of gener­
ality assume that when going clockwise around the exterior
face from s to d, the endpoints of 91, 92, ... , 91 contained
in interval (s, d) are encountered in order. Thus the g;
successively 'separate' s from d. Using the division points
for e1, s performs either a shortest clockwise or a short­
est counterclockwise routing, as described in Section 3.2.1.
Let a; be the endpoint of h; reached first, where h; is the
edge of F; whose F;-component contains d, 1 S i S l. For
1 S i S l - 1, each a; uses the division points for e;+1 to
perform the routing to d. Once the message reaches a1,

interval routing information for G is used to route to d.

Theorem 4. Let p(s, d) be the distance in G' = G -
{ ei, ez, ... , et}, between any nodes sand d, and let p(s, d)

be the length of the routing generated by the above strat­
egy. Then p(s,d)/p(s,d) < ((a+ 1)/(a - l))f, which is
less than (a+ t)/(a - t), for a~ t > 1.

Proof (sketch). Ifs and dare in the same Fi-component
for all i, 1 $ i $ t, then they are both in the subgraph I
of G' that is the intersection of the F;-components. It can
be shown that there is a shortest (s,d)-path from Gin I.
Thus the interval routing will be along this path.

Ifs and dare in different Fi-, F2-, ... , Fi-components,
1 $ l $ t, then we show by induction on l that
p(s,d)/p(s,d) < ((a+ 1)/(a - 1))1. The basis, l = 1,
follows from Theorem 2.

For l > 1 we have p(s,d) = p(s,a1) + j3(a1,d). Now,
p(ai, d) is the length of the routing from ai to d if G
contains only the l - 1 interior edge faults e2, e3, · · ·, e1.
Thus, by the induction hypothesis, p(ai, d) < ((a+l)/(a-
1))1-1p(a1, d). Also, p(s,a1) + p(a1,d) is the length of
the routing from s to d if G contains only the fault ei.
Thus, by the induction hypothesis, p(s, ai) + p(ai, d) <
((a+ 1)/(a - l))p(s, d). Substituting these inequalities in
p(s,d) = p(s,a1) + j3(a1,d) yields p(s,d) <((a+ 1)/(a -
1))1p(s,d) $ ((a+ 1)/(a - l))tp(s,d). An induction on
t shows that ((a+ 1)/(a - l))t < (a+ t)/(a - t), for
a~t>l.I

3.2.5 Handling both node and edge faults

If all t faults are nodes and exterior edges, then ad­
ditional routing information is set up to handle these as
described previously. The routings generated will be along
shortest paths. However, suppose that t' of the t faults
are interior edges. The t - t' node and exterior edge
faults cause the resulting network G' to be the union of
S-components. Each interior edge fault will be confined to
one of the S-components. Additional routing information
is computed first for the node and exterior edge faults,
and then for the interior edge faults, as before. The total
number of items stored and the number of messages ex­
changed will both be O((t-t')n+t'an). The routing from
s to d is done exactly as it is for node and exterior edge
failures, except that the portion of the routing which is
within any S-component of G' that contains one or more
failed interior edges is done using the division points.

In worst-case, all t' interior edge faults are in a sin­
gle S-component and all, or nearly all, of the length
of the shortest (s, d)-path is within this S-component.
The routing realized within this S-component is at most
((a+ 1)/(a - 1))11 times longer than a shortest routing
within the component. Thus the length of the (s,d)­
routing is at most ((a+ 1)/(a - l))t' times longer than a
shortest (s, d)-path.

288

References

[1) G.N. Frederickson, "Implicit data structures for the
dictionary problem", Journal of the ACM, Vol. 30,
No. 1, January 1983, pp. 80-94.

[2) G.N. Frederickson, "A new approach to all pairs
shortest paths in planar graphs", Proceedings of the
19th Annual ACM Symposium on Theory of Comput­
ing, New York City, May 1987, pp. 19-28.

[3) G.N. Frederickson and R. Janardan, "Designing net­
works with compact routing tables", Algorithmica -
Special Issue on Parallel and Distributed Computing,
Vol. 3, No. 1, 1988, pp. 171-190.

[4) G.N. Frederickson and R. Janardan, "Separator­
based strategies for efficient message routing", Pro­
ceedings of the 27th Annual IEEE Symposium on
Foundations of Computer Science, Toronto, October
1986, pp. 428-437.

[5) G.N. Frederickson and R. Janardan, "Space-efficient
message routing in c-decomposable networks", sub"
mitted for journal publication. (Available as CSD­
TR-615 (revised), Purdue University, 1986.)

[6) J .I. Munro and H. Suwanda, "Implicit data structures
for fast search and update", Journal of Computer and
System Sciences, Vol. 21, No. 2, October 1980, pp.
236-250. '

[7) F. Harary, Graph theory, Addison-Wesley, Reading
MA, 1969.

[8) N. Santoro and R. Khatib, "Labelling and implicit
routing in networks", The Computer Journal, Vol. 28,
No. 1, February 1985, pp. 5-8.

[9) J. van Leeuwen and R.B. Tan, "Computer networks
with compact routing tables", in The Book of L, G.
Rozenberg and A. Salomaa (eds.), Springer-Verlag,
1986, pp. 259-273.

[10) J. van Leeuwen and R.B. Tan, "Interval routing", The
Computer Journal, Vol. 30, No. 4, August 1987, pp.
298-307.

Figure 1. A clockwise naming of the nodes of a weighted
outerplanar graph, with the boundary of the exterior face
shown bold.

Figure 3. Outerplanar network G used to illustrate fault­

tolerant routings.

Figure 5. Network resulting from G after the failure of
nodes 5 and 13.

289

Figure 2. A labeling of the edges of the outerplanar graph
of Figure 1 with intervals encoding shortest paths.

Figure 4. Network resulting from G after the failure of
node 5.

Figure 6. Network resulting from G after the failure of
interior edge {1,8}.

A DECOMPOSITION APPROACH FOR BALANCING
LARGE-SCALE ACYCLIC DATA FLOW GRAPHS

P. R. Chang and C. S. G. Lee

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Abstract
This paper presents an efficient decomposition technique which

provides a more systematic approach in solving the optimal buffer
assignment problem of an acyclic data flow graph (ADFG) with a.
large number of computational nodes. The buffer assignment prob­
lem is formulated as a.n integer linear optimization problem which
can be solved in pseudo-polynomial time. However, if the size of an
ADFG increases, then integer linear constraint equations ma.y grow
exponentially, making the optimization problem more intractable.
The decomposition approach utilizes the critical pa.th concept to
decompose a. directed ADFG into a. set of connected subgraphs, a.nd
the integer linear optimization technique ca.n be used to solve the
buffer assignment problem in ea.ch subgraph. Thus, a. large-sea.le
integer linear. optimization problem is divided into a. number of
smaller-sea.le subproblems, ea.ch of which can be easily solved in
pseudo-polynomial time. Examples a.re given to illustrate the pro­
posed decomposition technique.

I. Introduction
In designing VLSI systolic architectures for many complex

computational tasks in pattern recognition and signal processing [6],
and robotics [7],[8], the functional decomposition of the task into a.
set of computational modules ca.n be represented as a directed task
graph, a.nd the inclusion of input data. modifies the task graph to a.n
a.cyclic data. flow graph (ADFG). The nodes of a.n ADFG correspond
to the computational modules, ea.ch of which ca.n be realized by a.
linear pipelined functional unit for increasing the system throughput
[5]. The operands or data. move a.long the edges, ea.ch of which con­
nects a pair of nodes. Due to a different computatioria.l time of the
modules, data flow (both inputs and results from one module to
another) in anADFG may occur a.t different speeds in different direc­
tions. Thus, operands may arrive at multi-input modules at
different arrival times, causing an unnecessary longer pipelined time
in the ADFG. A conventional approach is to insert delay buffers
(FIFO que.ues) at various paths to buffer the inputs or the output
results from one module to another to achieve a balanced (or syn­
chronous) ADFG. The problem of balancing a directed ADFG by
inserting appropriate delay buffers along appropriate paths to
achieve maximum pipelining has been solved previously by the cut­
set theorem [5],[6], the local correctness criterion [6], and the graph­
theoretic approach [2]. Furthermore, Hwang and Xu [4] showed that
the ha.lanced ADFd can be realized in a two-level pipeline network
which is reconfigurable and provides the flexibility in various vector
processing applications. The delay matching may be handled by
programmable buffers so that proper non-compute delays can be
inserted in each data flow path. An example is the design of the
LINC chip [31 which is a.n 8-by-8 crossbar up to 32 units of pro­
grammable delays in each data flow path.

This paper presents an efficient decomposition technique which
provides a more systematic approach in solving the optimal buffer
assignment problem of an ADFG with a large number of computa­
tional nodes. Since it is of vital importance to minimize the number
of buffers used in a systolic system to minimize the design cost, the
optimal buffer assignment problem is formulated as an integer linear
optimization problem, which can be easily solved in computers in
pseudo-polynomial time [9]. However, if the number of computa­
tional nodes in an ADFG is quite large, then integer linear constraint
equations may grow exponentially, making the optimization prob­
lem more difficult than it· should be. The construction of integer
linear constraint equations in a large-scale ADFG reveals the
existence of many redundant integer linear constraint equations
which come from the path overlapping between two paths of two
different multi-input nodes. They can be easily removed by recogniz­
ing the overlapping path (or common path) traversed by different

This work was supported in pa.rt by the National Science Foundation
under Grant CDR-8500022.

290

paths. In a.n effort to reduce the difficulty of optimizing a large
number of integer linear constraint equations, an efficient and sys­
tematic decomposition technique is proposed to recognize all the
decomposable subgraphs in an ADFG and generate their associated
sets of integer linear constraint equations. The decomposition
approach utilizes the critical path concept to decompose a directed
ADFG into a set of connected subgraphs, and the integer linear
optimization technique can be used to solve the buffer assignment
problem in each subgraph. Thus, a large-scale integer linear optimi­
zation problem is divided into a number of smaller-sea.le subprob­
lems, ea.ch of which ca.n be easily solved in pseudo-polynomial time.
Examples a.re given to illustra. te the decomposition a. pproa.ch and
finally, the proposed decomposition technique is used to ha.la.nee a.n
interconnection of CORDIC (COordinate Rotation Digital Com­
puter [11 n processors to achieve maximum pi;pelining for computing
the robot inverse kinematic position solution [8].

II. Formulation For Balancing Acyclic Data Flow Graphs
In formulating the optimal buffer assignment problem, we shall

assume that the number of computing stages of a.ny computational
module of an ADFG is finite a.nd that the execution time of any stage
is a. constant, called a. ha.sic time unit or stage latency. An ADFG is
maximum pipelined if the minimum number of time units needed for
obtaining two successive outputs from the pipeline is equal to one
ha.sic time unit. We shall concentrate our interests on single-input
single-output (SISO) ADFG's and introduce some necessary
definitions for formulation.

Definition 1: A weighted ADFG GW = (V , E , W)
corresponding to a.n ADFG G = (V , E) is a. weighted directed graph
where W is a. weight function from E to a. set of non-negative real
numbers. V = (v 1 , v2 , • • • , Vn) is a. finite set of computational nodes
(or modules), a.nd E = (e 1' e2 , • • • , en) is a. finite set of edges. An
edge connecting node v; to node v; is denoted bye (i , j).
A logical way to convert a.n ADFG to a corresponding weighted
ADFG is to assign weights to ea.ch output edge of a. computational
node such that the weight assigned to ea.ch edge is equal to the
number of the computing stages of the computational node. For
example, the weight w(e (i, j)) assigned to the edge e (i, j) is equal
to the number of computing stages of node v;.

Definition 2: The cost {or weight) of a.ny k th pa.th <fik(v ,vq)
from node vp to node Vq can be defined as the sum of the weights of
a.11 edges a.long the pa.th. That is,

w(<fi.)= :B w(e(i,j)).
e(i ,;)&,(•,, •,)

Thus, the cost of a. path from node vP to node Vq is equal to the
number of computing stages needed for a.n operand to travel a.long
the corresponding pa.th from node vp to node Vq.

Definition 3: A weighted ADFG GW with a.n input node u 0 is
said to be ha.la.need if the cost for any two different paths from the
input node u0 to a.n arbitrary multi-input node uk is equal.

This definition indicates that a balanced ADFG achieves maximum
pipelining. Unfortunately, most ADFG's derived from given tasks
a.re usually unbalanced. To balance a.n ADFG, appropriate delay
buffers must be inserted a.long appropriate paths from the input
node u0 to a.ny particular multi-input node of interest. Thus, a.ny
different paths from the input node u 0 to a multi-input node will
have equal costs. The appropriate buffering graph in which delay
buffers are inserted to ha.lance a.n unbalanced ADFG ca.n be defined
as:

Definition 4: A buffering gra.Eh GB= (V, E, WB)
corresponding to a weighted ADFG GW = [V ,E, W) is a. weighted.
graph where the weight WB corresponds to the buffermg introduced
on E. TheIJ, GB is ca.lleq a buffering graph of GW. Furthermore, an
ADFG GW = (V , E , W) ca.n be composed from GW a.nd GB such
that w'(e (i, j)) = w (e (i, j)) + wb (e (i, j)), for a.11 e (i, j) EE, where

wb (e (i, j)) is the weight of the buffers from node vi to node v1. H
GW' is a balanced ADFG, then GB is a balanced buffering graph for
GW.

It can be shown that a buffering graph GB for a corresponding
GW always exists, though it may not be unique. In order to minim­
ize the cost for implementing an ADFG in a VLSI device, it is desir­
able to obtain a balanced buffering graph with a minimum number
of delay buffers. Since the cost for any two different paths from the
input node u 0 to an arbitrary multi-input node uk must be equal for
a balanced ADFG, delay buffers can be inserted to balance the cost
for all paths from. the input node u 0 to a multi-input node uk.
Assume U = {u0 ,u1 ,u2 , • • • ,u.} is a finite set of all multi-input
nodes and the input and end nodes in GW, and there are mf paths
from.the input node u 0 to·a multi-input node uk, that is, </>1lu 0 ,uk)
(•), 1:::; l:::; mk and 1:::; k:::; n. The critical path cf>1; (uk) of a multi-
input node uk in GW is the path from the input node u 0 to the node
uk, 1 S k Sn, having the "heaviest" path weight defined as:

w'(uk)~w'(</>1 •(u.))~ max L; w(e(i ,j)). (1)
I l~l~ml e(i,j)Ei>1(•1)

No other path from the input node u 0 to the node uk can have a path
weight greater th11-n the critical path weight w' (uk). Thus, the cost
of the critical path from the input node u 0 to the end node u. consti­
tutes the initial delay time of the pipeline. In order to balance an
ADFG, buffers B(e (i, j)) are introduced to insert into appropriate
paths </>1 (u.J, from the input node u 0 to a multi-input node uk,
1 S k Sn, to achieve all paths entering the node uk to have the
same cost. That is,

E w(e(i ,j))+ E IB(e(i ,j)) I (2)
e(i,f)E¢1(•1) B(e(i,j)) E¢1(<;)

=w'(uk)+ E IB(e(i ,j)) I
B(e(i,j)) E¢1;(ui)

where IB(e (i ,j)) I is the weight or the number of computing stages
in the buffer Ble (i, i)), 1:::; l S mk and 1:::; k Sn. The first term in
Eq. (2) is a constant and can be easily computed. The problem of
finding all critical paths of uk, 1 S k Sn, is known to be solvable by
applying Bellman's equation with time 1:omplexity of 0 (IN 12) [lJ,
where N is the number of computational nodes in the GW.

Since it is desirable to minimize the initial delay time of the
pipeline so that it is equal to w' (u.), no delay buffers B(e (i, f))
should be assigned to the critical pa th</> 1; (u.) of the end node u •.

Lemma 1. The critical path ¢1 • (u.) of the end node u. is
independent of the buffer stage variable~.
Taking this into consideration and rewriting Eq. (2), we have

E IB(e(i,j))I- I; IB(e(i,J))I
B(e(i ,f)) E¢1(•,M1;(u.) B(e(i .i)) E¢1;TuiJ\¢,; (u.)

=[w'(uk)- E w(e(i,i))]=b(l,k) (3)
e(i,j)E¢1(•,)

where b(l ,k) is a computed integer constant, IB(e (i ,j)) I are
undetermined buffer stages, 1 S l S mk, 1 S k Sn, and the notation
</>1(uk)\¢1•(u.) denotes set subtraction and is defined as
cf>1(uk)\</>,: (u.) = </>1 (u.)- (</>1(uk) n </>1• (u.)). Equation (3) is a set of
linear sh~ultaneous equations and c~n be expressed in a matrix­
vector form as Ax= b, where A is a matrix introduced from the
paths, x and b are unknown buffer stage vector and computed
integer constant vector, respectively. The solution xis usually not
unique, however, we can impose some restrictions on the problem to
become an integer linear optimization problem. That is, we would
like to minimize the total number of buffer stages in a balanced
buffering graph GB:

Min E IB(e(i,j))I
B(e(i,f)) EGB\¢1;(u.)

(4)

subject to the equality constraints of Eq. (3) and I B(e (i, j)) I~ O,
integer. The above integer linear programming problem can be
solved in pseudo-polynomial time [9].

In the above buffer assignment problem, the number of buffer
stages are obtained from the solution of the integer linear program­
ming problem, and the buffers are placed on the edges in the
buffering graph GB corresponding to the GW, except the critical
path </>1: (u0) of the end node u •. In order to reduce the total number

(•)We use the notation ¢1(u;.u1) to indicate an Ith path from node U; to
node Uk· If node ui is the input node u 0, then ¢1(u0 ,u;) = ¢1(u1).

291

of buffer stage variables in the optimal buffer assignment problem, an
equivalent transformation is performed on a balanced buffering
graph GB to transform it to a normalized buffering graph GB' which
is still a balanced buffering graph (since a balanced bufferine; graph
is not unique) with respect to the weighted ADFG GW [12J. With
the equivalent transformation on a balanced buffering graph GB,
the optimal buffer assignment problem can be reformulated for the
normalized balanced buffering graph GB instead of the balanced
buffering graph. This, in effect, greatly reduces the total Ii.umber of
buffer stage variables because these variables are attached to
multi-output (or multi-input) nodes.

While constructing the integer linear programming formula­
tion for the normalized balanced buffering graph for a weighted
ADFG GW, it can be shown that many redundant integer linear
constraint equations (in Eq. (3)) exist, making the optimization
problem more difficult than it should be. The redundant integer
linear constraint equations come from the path overlapping between
two paths of two different multi-input nodes. A path decomposition
technique is utilized to remove redundant integer linear constraint
equations. Let </>1(uk) denote an l th pa.th from the input node u 0 to a
multi-input node uk which passes through some other multi-input
nodes. Among these multi-input nodes, a multi-input node u' which
is nearest to the node uk is selected to decompose the path </>1(uk) into
two sub-paths, that is, ¢1(uk)=</>1(u')+</>1(u' ,u.). Thus, the
integer linear constraint equations of the path ~1 (uk) with respect to
the node uk can be written as:

E w(e(i,i))+ E IB(e(i,i)) I (5)
e(i.J) E¢1(•1) B(e(i,i)) E!\1(•1)

E w(e(i,j))+ E IB(e(i,i)I
e(i.J) E¢1(.") B(e(i,j)) E¢1(• ')

+ E w(e(i,i))+ I; IB(e(i,j)) I
e(i,j) E¢1(• ',u;) B(e(i,j)) E¢1(• ',•;)

where 1:::; l S mk. Using Eq. (2) for the pa.th </> 1(u ')to the node u ',
the result of Lemma. 1, and Eq. (3), Eq. (5) becomes

~ I B(e (i, i)) I+ L:
B(e(i ,j)) E ¢1(•', •i)V1; (u.) B(e(i ,j)) E ¢1 • (• ')\¢1; (u.)

JB(e(i,i))J- ~ JB(e(i,i))J ·(6)
B(e(i ,j)) E?1;(u1)\¢1;(u.)

= [w'(uk)-w'(u')- ~ w(e(i ,i))].
e(i,j) E¢1(u', •1)

With the above procedure for reducing redundant equations,
the integer linear constraint equations for the normalized balanced
buffering graph with respect to a weighted ADFG GW can be con­
structed according to the Procedure ILEG (Iri.teger Linear Equation
Genera.tor) listed below.

Procedure ILEG (GW ,ILGE(GB)). This procedure gen­
erates a set of integer linear constraint eguations ILGE(GFI) for a
normalized balanced buffering graph GB with respect to a given
weighted ADFG GW with labeled nodes.
11. [Determine all critical paths.J Find all the critical paths

</>1i (uk) and the cost of ea.ch critical pa.th w' (uk) with respect
to a multi-input node uk, 1 S k:::; n, by applying the Bellman's
equation [1].

12. [Assign buffer stage varia. bles.J Assign buffer stage variables to
the output edges which are attached to multi-output nodes,
except for the output edges belonging to the critical path of
the end node "•.

13. [Generate integer linear constraint equations.] For any pa.th
</>1 (uk) with respect to a multi-input node
uk , 1 S l S mk , 1 S k Sn, if </> 1(uk) does not pass through any
other multi-input nodes, then use Eq. (3) to generate integer
linear constraint equations. Otherwise, use Eq. !6) to generate
integer linear constraint equations where u E </>1 (uk) is a
multi-input node nearest to the node uk selected for pa th
decomposition. Note that the paths and their costs between
two multi-input nodes may be found with time complexity
0 (n3) by using the path-finding algorithm [1].

14. fOutput integer linear constraint equations.] Output the
mteger linear constraint equations from Eq. (3) or Eq. (6) and
return.

ENDILEG

Let us illustrate the above Procedure ILEG by an example.
Fig. l(a) shows a weighted ADFG GW. We would like to obtain an
optimal normalized balanced buffering graph GB' corresponding to
theGW.
Step 1. Nodes G, J, K, and Mare multi-input nodes. Then the crit-

ical path for
(a) NodeG: </! 1 ~ (G)=Path A-C-G ,w'(G)=25.

(b) Node J: </i1;(J) =Path A-C-G-J, w' (J) = 31.

(c) NodeK: </l 1;(K)=Path A-C-G-K,w'(K)=31.

(d) NodeM: ,P 1,;'.i(M)=Path A-C-G-J-M,w'(M)=41.

Step 2. Obtain the normalized buffering graph as shown in Fig. l(b).
Step 3. The integer linear constraint equations are generated

according to Eq. (3) or Eq. (6):
(a) Fornode G:

(i) PathA-B-E-G: IB1 l+IB4 1=(25-5-6-2)=12.
(ii) PathA-B-G: IB1 l+IB5 1=(25-5-6)=14.

(b) For node J:
(i) PathA-B-F-J: I B 1 I+ I B 3 I= (31-5-6-12) = 8.

(c) Fornode K:

(i) PathA-D-H-K: JB2 I+ I B6l-1BaI=13.
(ii) PathA-D-1-K: IB2 l+IB11-IB8 l=9.

The above integer linear constraint equations have been generated
according to Eq. (3). The following case will show the integer linear
constraint equations generated by using Eq. (6).

(d) For node M, we select u' =KE </l1(M) as the multi-input
node nearest to the node M. The path ,P1(M) can be decom­
posed into two sub-paths, that is, </J 1 (M) = </!1 (u ') + 4'1 (u ',M).
According to Eq. (6), we have I B 8 I+ J .139 J = (41-31-8) = 2.

9

Step 4. Minimize I; J B; J subject to the constraints of the
i=l

ii;tege_r linear equations ~enerated in Ste,P 3. The optimiza­
tion _gives I B 1 I= 8, I B 2 I= 9, I B:i 1 = O, I B 4 J = 4, I B 5 J = 6,
I B6 I= 4, I B 7 I= O, I B 8 I= O, I B 9 I= 2, and the total
number of buffer stages is 33.

ID. Formulation for Decomposition Approach
The previous section indicates that if the task graph is simple,

then the buffer assignment problem can be easily solved as illus­
trated in the above example. However, if the number of computa­
tional nodes in an ADFG is quite large, then integer linear constraint
equations may grow tremendously, making the optimization prob­
lem more intractable. Thus, a systematic approach in reducing the
computational difficulty in a large-scale integer linear optimization
for the buffer assignment problem must be devised. A decomposition
approach, which utilizes the critical path concept to decompose the
task graph into a set of connected subgraphs from which the integer
linear optimization technique can be used to solve the buffer assign­
ment problem in each subgraph, will be addressed in this section.

Lemma 2. If a multi-input node uk E </l1• (u.) and its critical
path is </!1; (uk), then </!1; (uk) ~ <P 1: (un). (Lemm"a 2 can be proved by
contradiction [12].)

Definition 5:__Let G.W = (ii, E, W) be an undirected graph
with N = IV I and M = IE J. A connected component 11' m of GW is
a maximal connected subgraph, which is a connected subgraph that
is not contained in any larger connected subgraphs.

Definition 6: A directed block 1i' m of a directed graph GW' is
a directed subgraph, and its corresponding undirected subgraph 11' m

(i.e. 11'm = Undirect (b) (7Tm)) is _a__co.n.n.e.cted component of the
corresponding undirected graph GW (GW = Undirect (GW ')).

The problem of .finding all the connected components of an
undirect.e.d graph GW may be solved with the time complexity of
O.lIY. + M) by using th.Ldepth-first search algorithm SEARCH
(GW, 11'm) in [1], where GW is an input undirected graph and 11' m,
1 ::0: m ::0: m," are output connected components, where m" is the
number oi.the directed blocks in the corresponding directed graph
GW' of GW. The problem of finding the directed blocks 1i' m of a
given directed graph GW' may be solved by a modified depth-first
search algorithm which is described in the Procedure DBSl (Directed
Blocks Searcher!) listed below.

(b) The notation Undirect (7T m) means taking the directed arrow of 1i' m

out.

292

Procedure DBSI (GW' , 1i' m). This iirocedure finds all the
directed blocks of a given directed graph GW .

DI. [Qhlain the undirected graph of GW '.] Let
GW = Undirect (GW '). That is, remove the directed arrow of
GW'.

D2. [Determine undirected connected components of GW .] Find
all.the undirected connected components, 11' m, 1 ::0: ~ m", of
GW by the depth-first search algorithm SEARCH (GW ,11'm).

D3. [Determine directed blocks.] Obtain all the directed blocks
1i' m, 1 ::0: m ::; m", by assigning the directed arrow back to 11' m,
1::; m ::; m", according to the input directed graph GW '.

D4. [Output the directed blocks.] Output all the directed blocks
7Tm,l::O:m::O:m".

ENDDBSI
The connected colllpllnents 11' m from the depth-first search

algorithm SEARCH (GW, 11''") and the directed blocks rem,
1::; m ::; m", from Procedure DBSl will be used in our decomposi­
tion approach in obtaining a set of connected subgraphs from which
the integer linear optimization technique can be applied to each sub­
graph to solve the buffer assignment problem. Our decomposition
approach utilizes the critical path of the end node u., i.e. </!1• (un) as
a cut set to partition an ADFG GW into several subgraphs. The
procedure of graph partition and the determination of decomposed
subgraphs (or directed blocks) is called graph decomposition [10].
The idea of the graph decomposition approach is to first take the
critical path of the given directed graph out. This creates several
edge disjoint subgraphs with some of the edges not connecting a pair
of nodes because the nodes in the critical path are removed. In order
to remedy this, nodes that are in the critical path </l 1• (un) and are
attached to two or more edges (incoming or outgoing) are called the
decomposed nodes and denoted by iik (as the kth decomposed node);
each of these decomposed nodes iik will be "split" into several
independent pseudo-nodes ii~, 1::; i ::; dk, which are labeled accord­
in,r. to the attached edges from left to right, and the last pseudo-node
iik 1 is always assigned to the kth decomposed node in the critical
path ,P1• (Un), where dk is the number of independent pseudo-nodes
for the kth decomposed node. Thus, a new directed graph GW' con­
taining split directed subgraphs of the ADFG GW can be obtained
by removing the critical path </l1• (un) and "splitting" the decom-
posed nodes. That is, cw'= (GW\<P1: (Un)) u {labeled pseudo­
nodes ii~, 1 ::0: i ::0: (dk -1), 1 S k S kDN}, where kDN is the number of
the decomposed nodes in GW. The determination of the directed
blocks rem of an ADFG GW when the critical path ¢1• (un) is taken
out is very similar to the Procedure DBSl for findi,;'g the directed
blocks rem of GW'. The directed blocks rr m and rem are always
e<j.uivalent except for the existence of the pseudo-nodes,
iik , 1::; i ::; dk. The procedure for determining the directed blocks
1i' m of an ADFG GW when the critical path </l1• (un) of the end node
Un is taken out can be described in the follo;,ing Procedure DBS2
(Directed Blocks Searcher2).

Procedure DBS2 (GW ,7Tm)· This procedure finds all the
directed blocks of GW when its critical path <P 1: (Un) is taken out.

Sl.

S2.

S3.

S4.

S5.

[Remove critical path in GW and label decomposed nodes.]
(i) Obtain all the subgraphs from the ADFG GW by remov­

ing the critical path </l 1• (un) of the end node un and split-
ting the decomposed n;des iik, 1::; k ::0: kDN·

(ii) Label the independent pseudo-nodes of the decomposed
node ii1" that Js ii~, 1 ::0: i S dk, and
iik = iik1 (f) u; (f) · · · (f) iik 1, where (f) is the direct sum of
the pseudo-nodes coming from the same decomposed node.

[Construct GW '.J Construct a new directed graph GW'
which are the split directed subgraphs with labeled pseudo-
nodes in step SL kDN (d,-l) .

GW'={GW\</i1•(un)}LJ{ LJ LJ {ii~}}.
11 k=l i=l ' , ' [Find the directed block~ of GW .] Use DBSl (GW , re ml to

lind the directed blocks rem of GW '.
[Identify and merge pseudo-nodes in each directed block.]
Determine the labeled pseudo-nodes which come from the same
decomposed node and are in the same directed block 1i' m­
These labeled pseudo-nodes will be merged into a big labeled
pseudo-node by the direct sum operator (f).
[Determine and output the directed blocks 1i'm.] Obtain 1i'm
trom rem by applying the pseudo-nodes merging procedure in
step 84 and output 7''", 1 Sm ::0: m".

ENDDBS2
Using the Procedure DBS2 (GW , ii' m), we can obtain all the

directed blocks of GW, ii' m, 1 ::; m ::; m". Furthermore, new sub­
gr_p.phs can be constructed from ii' m and defined as
ii' m =ii' m UoN <Pi• (u.), for 1::; m::; m," where the operator UoN
means performi~g the set union of ii' m and <Pi' (u.) (except the
pseudo-nodes) and the direct sum on the pseudo-"nodes coming from
the same decomposed nodes in ii' m and <Pi• (u.), simultaneously.
These new subgraphs are called pseudo-conn~cted components of the
ADFG GW and will be tised to decompose the buffer assignment
problem into several small subproblems.

. Ltl ~;be a normalized balanced buffering graph for ii'; and
ILCE (irBm) be the associated set of integer linear constraint equa­
tions which is obtained from the Procedure ILEG. Since an ADFG
GW may have a large number of nodes, determining the buffer stage
variables in GB from its large number of integer linear constraint

equations may not be desirable. Since GB= l);N irB;, we would
m=l

like to use ilii~ fact to see whether solving the buffer stage variables
in each irBm, 1::; m::; mcc, separately and independently is
equivalent to solving the buffer stage variables in GB. If this is true,
then we have divided a large-scale integer linear optimization prob­
lem into mcc smaller-scale subproblems, each of which can be easily
solved.

Theorem 1. Let GB and irB;, 1::; m::; m," be, respectively,
the normalized balance~ buffering graphs of GW and its pseudo­
connected components ii' m• 1::; m ::; mcc. The buffer stage variables
in GB can be determined from th~;_ir associated sets of integer linear
constraint equations, ILCE (irBm), 1::; m::; m," separately and
independently. Furthermore, the buffer stage variables determi~ed
from the set of integer linear constraint equations, ILCE (irBm 1),

have no relations to the blJi.ffer stage variables determined from the
set of equations, ILCE (irBm 2), where ml;" m2.

Proofs In order to prove the above theorem, we follow the
procedure for constructing the associated sets of integer linear con­
straint ~qlt-ations for GB and show how they can be replaced by
ILCE (irBm), 1::; m::; mcc. For convenience, we assume there is JI:
multi-input node uk in bf1.th G_JJ.f..or the corresponding GW) and irBm
(or the corresponding ii'm)• irBm is the mth pseudo-connected com­
ponent of GB. Assume that the associated .Paths from the input
node u 0 to the. node ui' in GB (or GW) are <Piluk), 1::; l ::;.!!:'kt' Two
cases are possible: (1) some of these paths pass through irB m only,
and (2) some of them pass through some other pseudo-connected
componen~ fl.f GB. In case (1), because the paths in GB are also the
paths in irBm, we will obtam the same resulting associated sets !1-f
integer linear equations for the paths in GB and the paths in irBm.
In case (2), the paths from the input node u0 to the node uk may pass
through some other pseudo-connected components, but they must
intersect the critical path <P1• (u.) of the end node u. at some nodes,
and finally end at the node .;k in irB;. It has been shown previously
that a multi-input node u ',which is on the critical path <P,• (u.) and
nearest to the node uk, can be selected to decompose the "path into
two subpaths, that is, <Pi(uk) = <P1(u') + <P1(u 'Juk), where <P 1(u') is
the path from the input node u 0 to the node u and passes through
some other pseudo-connected cow.11nents, and the entire traversal
of the path <P1(u ',uk) is in the irBm. Thus, the associated integer
linear equation for the path ¢1(uk) in GB can be rewritten as in Eq.
(5). Using Lemma 1 and Eq. (2), the first two terms on the right hand
side ofEq. (5) can be written as

E w(e(i,j))+ E IB(e(i,i)) I (7)
e(i,;) EM•') B(e(i,j)) E¢1(u ')

=w'(u')+ E IB(e(i,j))j.
B(e(i,j)) 0 1• (u')

Using the result of Lemma 2, the critical path to the node u ',
<P1• (u '),is the path from the input node u 0 to the node u' along the
critical path <P1•(u.), that is, <Pi•(u')=<P1•(u0 ,u'), which is
independent of the buffer stage variables. Then"Eq. (7) becomes

E w(e (i,j)) + E I B(e (i ,j)) I
e(i,i) E~1(.') B(e(i,i)) E¢1(.')

= w' (u ')=a constant. (8)

Substituting Eq. (8) into Eq. (5), we have:

E ~(e(i,j))+ E IB(e(i,j)) l=w'(u')+ (9)
e(i,j) E¢1(u;) B(e(i,j)) E¢1('!)

293

E w(e(i,j))+ E IB(e(i,i))I.
e(i,i) E¢1(•' ,•;) B(e(i,i)) E¢1(• '.•kl

Equation (9) indicates two things: First, the associa;i>ed set of
integer linear equations with respectjcq_the node uk E irBm depends
only on the buffer stage variables in irBm and are independent of the
buffer stage ~ariables_~ the other pseudo-connected components
because <P 1(u ,u.)Eir~+ Second, Eq. (9) can be generated and
replaced by a path in irBm, that is, the path travels from the input
node u0 to the node u' along the critical path <P 1 • (Un), then from

. . J. ... + node u to node uk along the path <Pi(u ,u +n irBm. So, for any
multi-input nodes uk belonging to GB and irBm, it has been shown
that the associated set of integer linear equation system for node uk
in GB can be replaced by ilie+associated set of integer linear equa­
tion system for node uk in irB mo In other words, the associated set of
integer linear equation system for GB, i.e. ILCE (GB), can be
r~~aced by the ~s.\!ciated sets of integer linear equation systems for
irBm,i.e.ILGE (irsm), 1::; m::; mcc. D

Using the results from Theorem 1 and based on the fact that

GB= LJ;N irB ;, E I B(e (i ,i)) I becomes
'"" m-1 B(e(i,i)) E GB

E E I B(e (i ,j)) I, and the integer linear optimization
m-1 B(e(i,j)) eiitl;:;
problem in Eqs. (4) and (3) can be rewritten as follows:

Min E E IB(e(i,j)) I (10)
m-l B(e(i,j)) EiB;:;

subject J:o+the associated sets of integer linear equation systems
ILCE (irBm), 1::; m::; mcc. Because the buffer stage variables in
different pseudo-connected components of GB are independent, Eq.
(10) can be decomposed into the following subproblems:

For each m = 1, 2, • • • , mcc:

Min E IB(e(i,j))I
B(e(i,;)) EiiB;:;

subject Jo+ the associated set of integer linear equation system
ILCE(irBm)·

This graph decomposition approach provides us with a tech­
nique to divide a large-scale integer linear optimization problem into
a number of mcc smaller-scale subproblems, each of which can be
easily solved in pseudo-polynomial time. Let us ;i.pply the above
decomposition approach to solve the same buffer assignment prob­
lem in section II.
Step 1. (a) Decompose the ADFG GW in Fig. l(a) into subgraphs

by removing the critical path <P 1~ (M) of the end node M.

(b) Label the pseudo-nodes of the decomposed nodes A, G, J, M,
that is, {A 1 ,A2 ,A3}, {G 1 , G2, Gs, G 4}, {J1 , J 2}, and
{M1,M2}·

(c) Construct
aw·= (GW\<P,;, (M)) LJ{A1,A2,G1,G2,G3,J1 ,M1}·
Note that pseudo-nodes A 3, G 4, J 2, and M2 are attached to
the critical path <P,~ (M). aw'' <P,· (M), and the labeled
pseudo-nodes are shown in Fig. 2. (2(a), 2(b), and 2(c)).

Step 2. This step is the same as the Procedure DBS2 (GW', ii'm)•
' I I

(a) Use Procedure DBSl (GW , ii'm) to find the ii' ml 1 < m::; 2, in
GW'. These directed blocks are shown in Figs. 2(a) and 2(b).

(b) Merge the labeled pseudo-nodes that come from the, same
decomposed node and are in the same directed block ii' m into
a big labeled pseudo-node by the direct sum operator. For
example, G 1 and G2 are the lab~led pseudo-nodes coming
from the decomposed node G in ii'1, and will be merged into
G1,2=G1ffiG2. I

(c) Obtain ii'm from ii'm, m = 1, 2, by applying the pseudo-nodes
merging procedure. ii'1 is shown in Fig. 2(d).

Step 3. Let ii'; =ii'm UDN <Pi; (M), 1::; m::; 2, which are the
pseudo-connected components of GW (Figs. 2(e) and 2(f)).

Step 4. The correEJfl.nding normalized balanced buffering graphs
GB and irBm can be easily obtained by the buffer assign­
m.fnt rules and have the same graph structure as GW and
ii'm, re~ectively. The buffer stage variables B 1\BJ ~BJ ~Bl
ia ~ 1 as shown in Fig. 2(g), and Bf, Bi, B 3 , B 4 , B5 in
irB2 as shown in Fig. 2(h) correspond to the buffer stage
variables BuB3jB4,B5 and B2,B6,B7,B8,B9 in GB as
shown in Fig. l(b , respectively.

Step 5. Generate !LOE (iB;-) and !LOE (11"Bi) as follows:

ILOE(11"B7): JBl J+JBJ l=JB1J+JBsJ=8

!Bl I+ JBJ I= IB1 I+ IB4 l=12

I Bl I+ I BJ I= I Bi I+ I Bs 1=14.

ILOE(11"Bi): IBf J+IB? J-IB] l=IB2J+JB6 J-1Bal=13

J B[I+ J B:\! I - I Bj I= I B2 I+ I B1 I - I Ba I= 9

I Bl J + I Bl I= I Ba I+ I Bg I= 2 ·

Step 6. The integer linear programming problem for GB can be
solved by two separated subproblems:

(1) Min E IB;J=Min[JB1 J+IBsl+IB4 1+1Bsl]
B;e;r/J{ -+

subject to the !LOE (1rB 1) (found in Step 5).

(2) Min E IB; l=Min[IB2l+IB6l+JB1l+IBal+IB9IJ
B;E;r/J;{ -+

subject to the !LOE (1rB2) (found in Step 5).
The optimization ofsubproblem (1) yields r B1 I= 8, I Bs 1=01
I !34 I= 4, I B5 I= 6, and the ort1mization of subproblem (2)
gives I B2 I = 9, I B 6 I= 4, I B7 = O, J Ba I = O, I B 9 I = 2. The
results and solution are the same as given in the example in
section II, but the optimization is much faster and simplier.

The above graph decomposition approach is applied to solve
the buffer assignment problem of a larger problem - balancing the
CORDIC-based pipelined architecture to achieve maximum pipelin­
in-11 for computing the joint solution of a PUMA robot manipulator
[SJ. Using Procedure DBS2 (GW ,1i'm), where GW is the directed
task graph, 16 directed blocks, 1i' m, 1 Sm S 16, in GW are obtained.
From these dir'o/ted blocks, we can obtain the 16 pseudo-connected
components, 1i'm, 1SmS16. The corresponding normalized bal­
anced buffering graph. (jB for GW and the 16 pseudo-connected
components in GB, 11"Bm, 1SmS16, can be create.jl.. The associ­
ated sets of integer linear equation systems for 11"Bm, 1$;mS16,
can be obtained from the Procedure !LEG. The optimization solu­
tion for all the integer linear optimization subproblems yields a total
of 159 buffer stages which agree with the solution given in [8].

IV. Conclusion
An efficient graph decomposition technique which provides a

systematic approach in solving the optimal buffer assignment prob­
lem of a large-scale ADFG has been presented and discussed. The
optimal buffer assignment problem is formulated as an integer linear
programming problem. The construction of integer linear constraint
equations in a large-scale ADFG rev~als the existence of many
redundant integer linear constraint equations, making the optimiza­
tion more intractable. The proposed graph decomposition approach
utilizes the critical path concept to decompose an ADFG into a set of
connected subgraphs from which the integer linear optimization
technique can be used to solve the buffer assignment problem in each
subgraph. Thus, a large-scale integer linear optimization problem is
divided into a number of smaller-scale subproblems which can be
easily solved in computers in pseudo-polynomial time. The proposed
graph decomposition technique is illustrated by two examples, and
its efficiency and advantages can be seen in the example for balanc­
ing a CORDIC pipelined architecture to achieve maximum pipelin­
ing for computing the robot inverse kinematic position solution.

[lj

[2[

[3[

[4)

[5[

[6J

[7[

[SJ

V. References

A. V. Aho, J.E. Hopcroft, and J. D. Ullman, The Design and Anaiysis of Com­
puter Algorithms, Addison-Wesley, 1974, pp.195-199.
J. B. Dennis and R. G. Gao, 11 Maximum Pipelining of Array Operations on
Static Data Flow Machine," Proc. of 1989 Int'/. Con/. on Parallel Processing,
pp. 331-334, Aug. 1983.
F. H. Hsu 1 H. T. Kung, T. Nishiza.wa, and A Sussman, "LINC: The Link and
Interconnection Chip,11 Department of Computer Science, Carnegie-Mellon
University, 1984.
K. Hwang and Z. Xu, "Multi pipeline Networking for Fast Evaluation of Vec­
tor Compound Functions," Proc. of 1986 lnt'l Con/. on Parallel Processing,
pp. 495-502, August 1986.
H. T. Kung and M. Lam, 11Wafer-Scale Integration and Two-level Pipelined
Implementation of Systolic Arrays 1'' J. of Parallel and Distributed Computing,
vol. 1, no. 1, Sept. 1984, pp. 32-63.
S. Y. Kung, H.J. Whitehouse, and T. Kailath, (editors), VLSI and Modern Sig­
nal Proceuing, Prentice-Hall, 1985.

C. S. G. Lee and P.R. Chang, "Efficient Parallel Algorithm for Inverse Dynam­
ics Computation/ 1 IEEE Trana. Syat. Man, Cybern., vol. SMC-161 no. 4, pp.
532-542, July/ August 1986.
C. S. G. Lee and P.R. Chang, "A Maximum Pipelined CORDIC Architecture
for Robot Inverse Kinematic Position Computation," IEEE J. of Robotics and
Automation, vol. RA-3, no. 5, pp. 445-458, October 1987.

294

[9) C. H. Pa.padimitrious, "On the Complexity of Integer Programming/' J. of
ACM; vol. 28, no. 4, pp. 765-768, October 11181.

[10) J. A. Starz;yk and A. Konczykowska, "Flowgraph Analysis of Large Electronic
Networks,' IEEE Trana. on Circuits and SystemB, vol. CAS-33, pp. 302-315,
March, 1986.

[11[

[12[

J. E. Voider, "The CORDIC Trigonometric Computing Technique," mE
Trans. Electronic Computers, vol. EC-8, no. 3, pp. 330-334, Sept. 1959.
P. R. Chang and C. S. G. Lee, 11A Decomposition Approach for Balancing
Large-Scale Acyclic Dah Flow Graphs," Technical Report TR-EE 87-23
School of Electrical Engineering, Purdue University, June 1987.
Also accepted for publication in IEEE Tram. on Comptde11.

(a) GW (b) GB

Figure 1. An Exampie for Buffer Assignment Problem

(a) it1

(d) lt1 (e)

(g) its,•

5

+
lt1

(cl<!>al~ (Ml

(f)

Figure 2. Graph Decomposition of the Example in Figure 1.

DILATION-2 EMBEDDINGS OF GRIDS INTO HYPERCUBES

Mee-Yee Chan
Computer Science Program

University of Texas at Dallas
Richardson, Texas 75083-0688

ABSTRACT

This paper addresses the following graph-embedding
question: given a two-dimensional grid, and the smallest
hypercube with at least as many nodes as grid points, how
can we assign grid points to hypercube nodes (with at most
one grid point per node) so as to keep grid-neighbors near
each other as possible in the hypercube. Vve give a simple
strategy which ensures that grid-neighbors are always
mapped to hypercube nodes that are within a distance of
two edges of each other.

1. INTRODUCTION

One of the key features of the hypercube is a rich
interconnection structure which permits important network
topologies, such as grids and trees, to be efficiently
simulated. A binary hypercube of dimension n or
binary n-cube can be thought of as an undirected graph
of 2n nodes labeled 0 to 2"-1 in binary; two nodes are
connected by an edge if and only if their labelings differ in
exactly one bit position. To simulate a grid or a tree on
the hypercube, nodes of the grid or tree must be mapped to
hypercube nodes.

The question of interest here is: how can we map the
nodes of any two-dimensional grid to the nodes of its
optimal hypercube (the smallest hypercube with at least
as many nodes as the grid), on a one-to-one basis, so that
dilation (the worst case distance between grid-neighbors in
the hypercube) is kept to a minimum.

A number of researchers have studied this problem
[BMS, BS, CC, G, HJ, SS], with the following results.
Over 61 % of all two-dimensional grids can be embedded
into their optimal hypercubes with a dilation of 1 (i.e. all
grid-neighbors are also neighbors in the hypercube) by
using binary-reflected Gray codes [SS]: Figure 1 shows how
a Gxll grid can be mapped into its optimal 7-cube. For
the other over 38% of all two-dimensional grids, which
have been proven to need at least dilation 2 [BS], we have
the methods proposed in [BMS], [CC], [G] and [HJ].
[BMS], [HJ] and [CC] have shown that a substantial
percentage of these grids (over 70% of the 38%) can be
embedded with dilation 2, while [G] claims that all two­
dimensional grids can be embedded with dilation 5.

The prevailing sentiment is that all two­
dimensional grids should be embeddable in their
optimal hypercubes with at most dilation 2, however,
this has yet to be shown. This paper introduces a simple

295

embedding strategy which does in fact confirm this
conjecture.

2. THE EMBEDDING STRATEGY

Notation: Let Nk denote the sequence of k-bit binary­
ref!ected Gray code, and let Nk (p) denote the (p + 1)st
element in the sequence Nk. For example,

N 1 == (0,1),
N 2 == (00,01,11,10),
N 3 == (Ooo,001,011,010,110,111,101,100)
and N 3(4) = 110.

Assume all logs are in base 2. Suppose we are given an x x
y grid G.

CASE 1. xy > 2LlogxJ+llogyJ+! or x = 2LlogxJ or y = 2LlogyJ

Then, embed G into its optimal hypercube using the
binary-reflected Gray code strategy, and hence, with
dilation 1.

CASE 2. otherwise

Assume, without loss of generality, x < l..zllogxj
- 2

(otherwise, we can rotate G by 90 degrees to assure this).
Since xy ::; 2LlogxJ+LlogyJ+1, our objective is to label each
node of the grid with a unique (Llogx J+ Llogy J+ 1)-bit
binary number, which effectively names the node in the
optimal (Llogx J+ L!ogy J+ 1)-cube to which it is mapped.
Since we have dilation 2 in mind, we allow the labels for
grid-neighbors to differ in at most 2 bit positions.

Step 1. Determine the first L logx J bits of each node's
label.

Create 2llogxJ "chains", each of which is described by a y­
vector of l's and 2's. The vector for the first chain is

(r x l r 2x l r x l r yx ·1 r(y-l)x lJ 12llogx J ' 12llogx J - , 2Llogx J ' · · · ' 12llogx J - , 2Ltogx J ·

For the ith chain, i = 2,3, ... ,zllogxJ, the vector is

The chains have the following properties:

Ea· . < r___lE_l < 2L10svJ+1 for i=l,2, ... ,2L10s•J j=l •,J - 2Llogzj -

2LiogsJ

:E a;,; = x for j =1,2, ... ,y
i=l

as well as

k

:E a;,;
j=l € n2l~:.j J r 2L:·J n

k
~a-. L.J ,,,
i=l € (l2l~:.J J. r 2L~:•J lJ

for i =1,2, ... ,2llogzj

for j=l,2, ... ,y

and since x < ~2llogzj no consecutive 2's are possible
- 2 '

within each chain vector.

The idea is that each chain vector represents a "chain": for
example, (2,1,2,1,1,2,1,1,2,1,2) represents the chain depicted
in Figure 2. Hence, for example, an 11 x 11 grid is
associated with

(2, 1,2,1,1,2,1,1,2,1,2)
(1,2,1,2,1,1,2,1,1,2,1)
(1, 1,2, 1,2,1,1,2, 1, 1,2)
(2,1,1,2,1,2,1,1,2,1,1)
(1,2,1, 1,2, 1,2,1, 1,2, 1)
(1, 1,2, 1,1,2,1,2, 1, 1,2)
(2, 1,1,2,1,1,2,1,2, 1, 1)
(1,2,1, 1,2,1,1,2, 1,2,1),

and pictorially, we have Figure 3. Aligning the nodes of
the above graph into 11 rows, or in general ·-x rows, we get
graph G1 as shown in Figure 4. The 2llogzj chains will
cover the x x y grid completely because of the properties
stated above.

Each node of the x x y grid belonging to the ith chain is
given Nllogzj(i-1) as the first LlogxJ bits of its
(Llogx J+ Llogy J+ 1)-bit label. In this way, the first Llogx J
bits of adjacent nodes in the x x y grid differ in at most
one bit position. Note that, since each chain has length
~ 2LiogyJ+l nodes, Llogy J+ 1 bits are sufficient to
distinguish the nodes of each chain.

Step 2. Determine the last Llogy J+ 1 bits of each node's
label.

Firstly, the jth node of the ith chain is marked with
(t;+j)mod2LiogyJ+l, where t 1 =-1 and t;=t;_1-ail+l.
So, for the 11 x 11 grid, we have the situation sho~n in
Figure 5. This marking, because of the nature of the G1

graph, has the following property: the marking of adjacent
nodes of the grid differ by at most 2 (in mod 2L10svJ+1).

296

Figure 6 shows all possible marking scenarios for a node T
and its grid-neighbor S. For any node T marked with t,
the node S below T is marked t-1 if T and S are in the
same chain, and t otherwise. For any node T marked with
t, the node S left of T is marked t-1 or t-2.

Note: If we use NllogyJ+l(t) as the last LlogyJ+l bits of
each node marked with t, then we effectively have an
embedding of G into a (LlogxJ+LlogyJ+l)-rube with
dilation 3, i.e. the labels for grid-neighbors differ in at
most 3 bit positions. Adjacent nodes in the grid will differ
in at most 1 position of their first L logx J bits and at most 2
positions of their last Llogy J+ 1 bits.

By changing each mark t into Lt /2J, we have a marking
with the property that marks for adjacent nodes in the
grid will differ by at most 1 (in mod 2llogy~. So, for the 11
x 11 grid, we have Figure 7. The chains have been
horizontally extended to have exactly 2Ltogyj+l nodes each.
Call such a marked graph G2•

Our next objective is to color each node of the grid either
red or black so that

(a) two nodes marked with the same number belonging to
the same chain are colored differently, and

(b) two adjacent nodes marked with different numbers
belonging to different chains are colored the same.

Condition (a) ensures that each node of the grid is indeed
mapped to a unique node in the hypercube, and condition
(b) ensures that dilation 2 is achieved for adjacent nodes of
different chains.

Whether we can do this coloring hinges on whether the
graph G3, which has as its nodes the nodes of the extended
graph G2 but has as its edges the set {(S,T)I nodes S and
T are marked the same and belong to the same chain in
G2} LJ {(S,T)I there exists a node R such that nodes S and
R are adjacent but belong to different chains and are
marked so that S's mark is one less than R's, and nodes R
and Tare marked the same and belong to the same chain},
is bipartite or not. For the 11 x 11 grid, the graph G3

would take the form shown in Figure 8. As it turns out,
the G3 graph for any grid, in general, can be shown to be
acyclic, and hence, bipartite and colorable according to our
objectives.

With such a coloring, we can do the following. A red node
marked t is given ONllogyj(t) as the last LlogyJ+l bits of
its label, while a black node marked t is is given
lNllogyj(t) as its last LlogyJ+ 1 bits. In this way, adjacent
nodes of the same chain will differ in at most 2 bits
position of their last Llogy J+ 1 bits and share the same
initial Llogx J bits, making for a dilation of 2; adjacent
nodes of different chains differ in at most 1 bit position of
their last Llogy J+ 1 bits and 1 bit position of their initial
L!ogx J bits, again making for a dilation of '.!. Hence, we
finally do indeed have a dilation 2 embedding!

ACKNOWLEDGEMENTS

I would like to express my thanks to Hal Sudborough,
Said Bettayeb, Joel Lee and Sheshu Madhavapeddy for
their interest and help in looking over the first draft of this
paper, and many inspiring discussions.

REFERENCES

[BMS] S. Bettayeb, Z. Miller and UL Sudborough,
"Embedding Grids into Hypercubes", Computer
Science Program, University of Texas at Dallas,
August 1987.

[BS] J.E. Brandenburg and D.S. Scott, "Embeddings of
Communication Trees and Grids into
Hypercubes", Intel Scientific Computers Report
#280182-001, 1985.

[CC]

[G]

[HJ]

[SS]

111

110

010

011

001

000

M.Y. Chan and F.Y.L. Chin, "On Embedding
Rectangular Grids in Hypercubes", to appear in
IEEE Trans. on Computers.

D.S. Greenburg, "Optimal Expansion Embeddings
of Meshes in Hypercubes", Technical Report
YALEU/CSD/RR-535, Dept. of Computer
Science, Yale University, August 1087.

C.T. Ho and S.L. Johnsson, "On the Embedding
of Arbitrary Meshes in Boolean Cubes with
Expansion Two Dilation Two", Proceedings 1987
International Conference on Parallel Processing
(August 1987) 188-101.

Y. Saad and M.H. Schultz, "Topological
Properties of Hypercubes", Research Report 389,
Dept. of Computer Science, Yale University, June
1985.

0100111

f
f:i -E p-

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111

'Fi!jl.4.Y'e. 2. (2) I) 2. ' I' I ' 2.) I) I I '2.. I I ,2)

297

t-1 t
~

·~

~t-1

r::
t-:a.

~-·
t-:a. dJ ©t

"F1'!3u.re. 6 . FIH pos.s.ib\e. -&C.eV\a.~io~

298

~ (i)t

"@t

Some results on graph coloring in parallel

S. Vishwanathan and M. A. Sridhar *
Department of Computer Science

University of South Carolina
Columbia, SC 29208

Abstract - The problem of constructing parallel
graph-coloring algorithms is studied. It has been shown
recently (13, 17, 21] that the problem of Brooks coloring
of graphs is in)./ C. In this paper, it is shown that the
decision version of one of the sequential algorithms for
coloring graphs, that typically uses fewer colors than the
Brooks coloring algorithm, is logspace-complete for P;
therefore it is unlikely that this approach will yield an
algorithm in)./ C. An algorithm that colors some graphs
with fewer colors than Brooks coloring is also shown.

1 Introduction

The graph coloring problem is the problem of assigning
colors to the vertices of a graph in such a way that no two
adjacent vertices receive the same color. Graph coloring
has been studied extensively by researchers in the past.
It is very easy to show that any graph G can be colored
using no more than ti.(G) + 1 colors, where ti.(G) is the
maximum degree of G. But it is also known that usually
one requires fewer colors. A classic theorem on coloring is
the theorem of Brooks [4], which shows that if G satisfies
certain conditions, we can get away with using one less
color:

Theorem 1 A simple graph G of maximum degree ti.
can be colored using at most fl. colors iff G is not an odd
cycle and G does not contain a K.d+l, i.e. a complete
subgraph on ti. + 1 vertices.

I
Other bounds on the chromatic number are known [6],
one of which we will use subsequently.

There has been considerable interest recently in con­
structing parallel algorithms for graph problems. Of
particular interest are algorithms that use polynomially
many processors and take polylog time. We call such
parallel algorithms good. Problems having good parallel
algorithms are said to be in the class)./ C [7]. It is ob­
vious that)./ C ~ P, where P is the class of languages
recognizable by a (sequential) deterministic Turing ma­
chine in polynomial time. It is not known whether the
containment is proper. It is conjectured that the hardest
problems in P are not in J./C.

Many problems exist for which there are simple se­
quential algorithms, but these algorithms seem hard to
parallelize (1, 16]. The problem of finding a maximal
independent set in a graph is one such. This problem
was solved in three very different ways [10, 18, 20]. An­
other example is the problem of coloring graphs using the
method implied by Brooks' theorem. Recently, Hajnal
and Szemeredi [13] exhibited a good parallel algorithm

*This author's research is supported in part by NSF grant No.
NCR 8706350.

299

to do this. There are also good parallel algorithms for
five coloring planar graphs [9, 15].

In this paper we look at two different coloring meth­
ods. The first is a sequential coloring scheme for general
graphs that does better than Brooks coloring in most
cases, but we show that it is very unlikely that a good
parallel algorithm exists for it. We then define a re­
stricted class of graphs and exhibit a good parallel col­
oring algorithm for them.

2 Preliminaries

Our notation and terminology follows that of Chartrand
and Lesniak [6]. A {simple) graph G = (V, E) is a set V
of vertices and a set E of edges, which are unordered
pairs of vertices. A multigraph is a graph in which mul­
tiple edges are allowed between the same pair of ver­
tices. For a graph G, we denote the degree of a vertex
v by d(11), and the degree of v in a subgraph Hof G by
dH(11). We denote the maximum degree of G by ti.(G),
the miminum degree of G by 8 (G). and the chromatic
number of G (i.e. the least number of colors needed to
color the vertices of G) by x(G).

It was shown by P. Hajnal and E. Szemeredi [13]
and independently by Howard Karloff [17] and Naor and
Karchmer (21 J that Brooks' coloring is in)./ C. But as
noted above, better colorings exist for most graphs. One
way to color certain graphs using fewer colors is by using
what we call the c-index of a graph.

Definition 1 The c-index of a graph G, denoted p(G),
is the maximum, over all subgraphs H of G, of the min­
imum degree 8(H).

It is known [23] that any graph G can be colored using at
most p(G) + 1 colors. Furthermore, this can be done in
polynomial time, using a suitable ordering of the vertices.

Definition 2 A minimum degree elimination sequence
of a graph G is an ordering 111, v2 , ••• , Vn of the vertices
of G such that, for every i, the vertex 11; is of mini­
mum degree in the subgraph G; induced by the vertices
{Vi, Vi+b ·. ·, Vn}·

Figure 1: An example minimum degree elimination se­
quence for a graph

Figure 1 illustrates a graph with four vertices, for
which the order v1, v2, vs, v4 is a minimum degree elimi­
nation sequence. Note that a graph does not necessarily
have a unique minimum degree elimination sequence; for
example, vs, v4, v1, v2 is also a minimum degree elimina­
tion sequence for the graph of Figure 1.

Theorem 2 If v1, ... , v,. is a minimum degree elimina­
tion sequence for a graph G then there exists i such that

p(G) = 8(Gi)·

Proof Let H be a subgraph of G such that 8(H) is
maximum. Given the minimum degree elimination se­
quence, choose the least i such that H ::::; G;. Clearly,
8(G;) ~ 8(H), because H is a subgraph of G;; 8:11d
S(H) ~ 8(G;), by maximality. The desired conclusion

follows.
I

Theorem 3 For every graph G, the chromatic number
x(G) ~ p(G) + 1.

Proof. Let v1, ... , v,. be a minimum degree elimina­
tion sequence for G. Color the vertices in the order
v,., Vn-1, ... , v1 in a "greedy" fashion, as follows: assign
to v,. an arbitrary color; for the other vertices, assign
to Vi a color that has not been assigned to any of its
already-colored neighbors. It is clear from the definition
of the minimum degree elimination sequence that when
v; is being colored, no more than p(G) neighbors of v;
have been colored, and so the theorem follows.

I

Next, we briefly review the notions concerning log­
space completeness.

Definition 3 Let A and B be decision problems. Prob­
lem A is said to be log-space reducible to problem B if
there exists a function f, that can be computed by a de­
terministic Turing machine in logarithmic space, such
that for every instance w of problem A, w has an affir­
mative answer whenever the instance f(w) of B has an
affirmative answer.

Definition 4 A decision problem B is log space com­
plete for P if

• B is in P, and

• for every A E P, A is log-space reducible to B.

Lemma 4 If B is log-space complete for P and B is log­
space reducible to A E P then A is log-space complete for
P.

I

Lemma 5 If B is log space complete for P and B is in
JIC then P= JIC.

I

For a more rigorous treatment of this material see [8, 14].
Other related results can be found in [5, 7].

300

3 The construction

In this section, we show that the problem of determin­
ing the order of vertices in any minimum degree elimina­
tion sequence of a graph and the problem of determin­
ing the c-index p(G) of a graph are complete in P with
respect to logspace reducibility. Our method is to trans­
form the circuit value problem restricted to fanout two
(CVP2), which is known to be log-space complete for P
[11, 12, 19, 22], to these two problems. Howard Karloff
pointed out recently that the results also follow using
JI C reductions from some results of Anderson and Mayr
[2,3].

Let us define formally the two problems of interest.

Problem II1:

Instance: Graph G,and two vertices u and v EV; and
the property that u appears before v in some mini­
mum degree elimination sequence iff it appears be­
fore v in all minimum degree elimination sequences.

Question: Does u appear before v in some minimum
degree elimination sequence ?

Problem CVP2:

Instance: A Boolean circuit represented as a sequence
B = (Ji, /2, ... ,f,, B1, ... , B,.) with the f;'s repre­
senting inputs with value false and the B;'s repre­
senting NOR gates. Each NOR gate has fanout at
most 2. The circuit has no feedback, i.e. each gate
B; is of the form -,(B;, Bk) where j,k < i. Each of
the f;s are an input to exactly one B;. The truth
value of B is defined as the output truth value of
B,..

Question: Is the value of B false ?

Theorem 6 CVP2 is complete in P with respect to logspace
reducibility [12, 22}.

I

We transform CVP2 to the minimum degree elimina­
tion sequence problem. Let B be an instance of CVP2.
We construct a graph G = (V, E) and pick out two ver­
tices u and v from V such that u follows v in a minimum
degree elimination sequence of G iff B,. is true. We con­
struct a multigraph of maximum multiplicity 4 first, and
then show how to convert this to a simple graph satisfy­
in~ the same predicates. The construction is made up of
several "components." (The term 'component' here does
not mean 'connected component'; it is used to denote a
subgraph corresponding to a gate or input.) Each input
f; has a component, each gate B; has 2 components, and
there is a garbage collecting component.

Notation. An edge (u,v) of multiplicity k is rep­
resented as (u,v)k.

Every node of the multigraph is a tuple. The first
element of the tuple determines the type of component
the node is in, the second element determines which gate
or input value the node represents, and the remaining

elements of the tuple identify particular nodes that make
up the component.

For each input/ we have a node (INP,i}. The con­
stant INP at the first position tells us that this node cor­
responds to an input in B, and the second value i tells
us the gate Bi to which it is input. The nodes in the
multigraph corresponding to the inputs / of the circuit
form the set V.np·

Next, consider a gate Bi of the circuit, with inputs
from gates B; and B1c and outputs to gates B, and Bt.
Corresponding to Bi there are 2 components (see Fig­
ure 2):

(1) The "true" component, consisting of the subgraph
Ti= (Vt;, Et;), where

Vt; {(T,i, IN}, (T,i, OUT,s}, (T,i, OUT,t}},

Et; {((T,i,IN},(T,i,OUT,s})2, ((T,i,IN},

(T, i, OUT, t})2}.

The element T in the first position indicates that
this node is in the true part, and the element i in
the second position indicates that this component
corresponds to the gate B;. The constants IN and
OUT at the third place signify that these nodes
refer to the inputs and the outputs of the gates.
We will see later on that the OUT nodes of B;
will be connected to the IN nodes of B, in some
fashion.

(2) The "false" component, consisting of the subgraph
F; = (VJ;> E1J, where

VJ; = {(F,i,IN},(F,i,G},

(F, i, OUT, s}, (F, i, OUT, t}}

E1; {((F,i,IN},(F,i,G})s,

((F,i,G}, (F,i,OUT,s}),

((F,i,G}, (F,i,OUT,t})}.

The part of the construction that depends on which
gates have what inputs and outputs is the collection of
communication edges. The true component of each gate
has edges to the false components of its inputs and out­
puts. More precisely, suppose that the gate Bi has out­
puts connected to the inputs of gates B, and Bt (there
can be at most two, since we are considering the mod­
ified circuit value problem). Then the communication
edges between the subgraphs representing B,, Bt and Bi
are:

Ee; {((T,i,OUT,s},(F,s,IN}),

((T, i, OUT,t}, (F, t, IN}),

((F,i, OUT,s}, (T, s, IN})4,
((F ,i, OUT,t}, (T, t, IN})4}.

301

(T,j, OUT,i} (F,j, OUT,i} (T, k,OUT,i}(F, k, OUT,i}

• •
r---­
ir-----

- - - - ..,

1 I (F, i, IN}
11
I I (F' G, i} I I
11 II
11 II
11 II 11

1 l(F,i,O T,s} (F,i, UT,t~ l(T,i,OUT,s}(T,1,0UT,tl 1

: ~ ___ f.al!!eJ>.¥! ___ ~ ~ ___ !r!!e_J>!!!ri ___ ~ :

L - - - - - - sqrr_!!S.P<!!J.!!.i!,!gJC!.fillo~ PL - - - - - - ...I

Figure 2: the subgraph corresponding to gate Bi

The idea is to force the nodes to get into the mini­
mum degree elimination _sequence in an order that mod­
els the flow of truth values through the Boolean circuit.
We will force the node (T,i, IN} to get into the minimum
degree elimination sequence iff the output value of gate
Bi is true. We will see that nodes with degree 3 or 4 get
picked to be put into the minimum degree elimination
sequence at each stage and we will force the ordering by
saying that when one node (say (T, i, IN}) is picked, the
other node ((F,i,IN}) must have degree 5 or more.

To ensure that a node does not go into the minimum
degree elimination sequence prematurely, we will need a
garbage collection component, which we call GC. Cor­
responding to every node n in Ti and Fi whose degree
needs adjusting there is a node n' in GC which is con­
nected by some number of edges to its image n. The
number of edges vary from 1 to 4 depending on the re­
quirement. In addition ea.ch node in GC is connected to
every other node in GC. This ensures that nodes in GC
succeed all other nodes in any minimum degree elimi­
nation sequence. To understand the use of GC notice
that for any i (T, i, OUT,j} has degree 3, but we want to
ensure that (T,i, OUT,j} gets into the minimum degree
elimination sequence only after (T,i, IN}, so we need to
increase its degree to atleast 5. This we do by connecting
it to its image in GC. This business of connecting arcs
emanating from a node to its image in GC is referred to
as garbage collection. A node in the garbage collecting
component is identified by gc in the first place.

E9; = {((T,i,OUT,s},(gc,T,i,OUT,s})s,

((T,i,OUT,t}, (gc, T,i, OUT,t})3 ,

((F,i,G}, (gc, F,i,G})2}.

There are just two more things we need consider.

1. When input to some Bi is false,then the communi­
cation links between the inputs to the circuit and
the input gates to the circuit are as follows

Ee/; = {((INP,i}, (T,i, IN})4, ((F, i, IN}, (gc, F,i, IN})2}

The nodes corresponding to inputs, i.e. nodes in
V.np, do not have a true part and hence the inputs
are garbage collected.

2. If a gate has one or zero outputs then the arcs
emanating from the out nodes are again garbage
collected.

Now that we have described the connections, let us
look at the intuitive ideas behind the constructions.

The elimination sequence for the false part should
look like (F,i,IN),(F,i,G),(F,i,OUT,s) and (F,i,OUT
, t). We note that when a node gets into the minimum
degree elimination sequence the degree of its successor
becomes 4 or less. Similarly the elimination sequence
for the true part looks as (T,i,IN),(T,i,OUT,s) and
(T,i,OUT,t).

We need (T,i,IN) to get into the minimum degree
elimination sequence before (F, i, IN) iff the output of B;
is true. We see that if this does happen then (T,i, OUT,j)
gets into the minimum degree elimination sequence be­
fore (F,i,OUT,j). We note the following two things:

1. d((F,i,IN)) becomes less than 5 iff one of (T,j,
OUT,i) and (T,k,OUT,i) get picked into the min­
imum degree elimination sequence or that atleast
one of B; and Bi. is true.

2. d((T, i, IN}) becomes less than 5 iffboth (T,j, OUT, i)
and (T,k,OUT,i) get picked into the minimum de­
gree elimination sequence or that both B; and Bi.
are false.

So we see the correspondence between the function of a
NOR gate and the interconnection pattern.

The graph is the union of all the edges and vertices
mentioned above:

G (V,E)

V Vinp u lit; U V1; U Voe

E Et; U E1; u Ee; u Eg; u Ee!; u Eac

A more formal proof of correctness of this construc­
tion is presented in (1).
We next show how to convert the multigraph into a

simple graph without altering any of the previous results.

1. (a, b h is replaced by adding 6 other nodes ci, c2,
cs, di, d2, ds and the new edges We first form a Ks
minus the edges (ci, cs) and (d1, ds) and now con­
nect a to ci and cs and b to di and ds. We note
that for any of the new nodes the degree wili be­
come less than 5 if] one of a or b is removed. And it
is seen that if one of a or b is removed the degree of
the otber can be decreased by 2 without increasing
p(G) to 5.

2. (a, b)4 is converted to multiplicity 2 by adding 2
other nodes c and d and connecting using arcs of
multiplicity 2, both a and b, to c and d and also
connecting c and d.

3. (a,b)s is converted by a similar method only that
the multiplicity of (a, c) and (b, d) is now one.

We now show that the following problem is complete in
P with respect to logspace reducibility.

Problem II2 :

302

Instance: A graph G.

Question: Is p(G) ~ 4 ?

The problem with the previous construction is that
p was determined by the GC. We see that Bn is true
if] (T, n, IN} gets into the minimum degree elimination
sequence before (F,n,IN). Infact before (F,n,IN} gets
into the minimum degree elimination sequence we come
across a subgraph with 8 = 5. We utilize this fact and
change GC. For each arc going to a node in GC from
the basic graph we will have a separate node. Call these
set of nodes Ni (the subscript will be apparent in a
moment). All nodes in Ni are connected to atleast 1
and atmost 2 other nodes in Ni in any arbitrary fashion.
Let number of nodes in Ni be l. Vac = Ni U N2 U

· · · Nfloc,11+2. We will call the subscript on N as levels.
N2 also contains l nodes as images of nodes in Ni and
are connected by arcs of multiplicity 4 to their images.
Level 2 upto level flog2ll + 2 looks like a binary tree,
with nodes at level 2 forming the leaves except that

• if a node has only one child then the multiplicity
of that arc is 3.

• all other arcs have multiplicity 2.

• every level has atmost one node having one child.

Figure 3 shows levels 1 and above of a garbage collect­
ing component when the number of nodes at level 1 is
five. Note that there are 5 levels. One other change is
required. The arcs emanating from (T, n,OUT, *) are
not garbage collected but connected to the root i.e. the
node at the topmost level in GC.

3

3

4

Figure 3: An example garbage collecting component

Theorem '1 Output of B is true if] p = 4.

Proof: If Bis true then (T, n, IN} gets into the MDES(l)
and then (T,n,OUT,*}. Now, the root in GC will have
degree 4 and hence can get into the MDES. Easy to see
that for a node at level i if its parent has been removed
then its degree is less than 5. So all of GC can be re­
moved keeping p 4, the rest of the graph follows suit. If
on the other hand B were false then once (F,n, OUT,*)
is put in the minimum degree elimination sequence the
resultant graph has 8 = 5.

I

4 An)./ C coloring algorithm

So we see that improving the bound of Brook's theorem
may not be easy to do in)./ C, However there is hope in
the case of graphs where there is disparity in the degree
of nodes in the graph. The following discussion illus­
trates our point. We consider the case when a node with
large degree is connected to a large number of nodes of
small degree.

Theorem 8 Let q(G) be the minimum number such that
a graph G does not have a Kq(G)+l and each vertex tJ

with degree ~ q(G) has at most q(G) neighbours that
have degree~ than q(G). Then G can be colored in J./C
time using at most q(G) colors.

Proof The idea is to color the nodes with degree~ q(G)
first. The other nodes can be colored without increasing
the number of colors since each of them is adjacent to at
most q(G) - 1 nodes. More formally let I= {v: d(v) ~
q(G)}. Consider the graph G1 induced by I. Since each
node in I is is adjacent to atmost q(G) nodes of degree
~ q(G) the maximum degree of a node in GI is q(G). So
GI can be colored using q(G) colors in)./ C time using
Hajnal and Szemeredi's algorithm. The rest of the graph
can now be colored using procedure extend mentioned in
Luby's paper [20). For details see [1).

5 Acknowledgements

The authors would like to thank Howard Karloff, Ernst
Mayr ·and an annonymous referee for a lot of helpful
suggestions.

6 References

[1) S. Vishwanathan, "Parallel graph algorithms
," M.S. thesis, University of South Carolina,
Columbia, 1988.

[2) R. Anderson and E. Mayr, "AP-Complete
problem and approximations to it ,'' Tech­
nical Report, Computer Science Dept. Stan­
ford University., Sept. 1984.

[3) R. Anderson and E. Mayr, "Parallelism and
Greedy Algorithms," Technical Report, Com­
puter Science Dept. Stanford University., April
1984.

[4) R. L. Brooks, "On colouring the nodes of a
network,'' Proc. Cambridge Philos. Soc. 37
(1941), pp. 194-197.

[5) A. Chandra, D. Kozen, and L. Stockmeyer,
"Alternation," Journal of the ACM28 (Jan­
uary 1981), pp. 114-133.

[6) G. Chartrand and L. Lesniak, Graphs and
digraphs, Wadsworth, Inc., 1986.

[7) S. A. Cook, "A taxonomy of problems with
fast parallel algorithms," Information and
Control 64 (1985), pp. 2-22.

303

[8) M. R. Garey and D. S. Johnson, Computers
and intractibility: a guide to the theory of
NP-completeness, W. H. Freeman and Co.,
1979.

[9) A. Goldberg, S. Plotkin, and G. Shannon,
"Parallel symmetry-breaking in sparse graphs,"
Proc. 19th annual ACM STOC. 19 (1987),
pp. 315-324.

[10) M. Goldberg and T. Spencer, "A new paral­
lel algorithm for the maximal independent
set problem," Proc. !!8th annual symp. on
FOGS 28 (1987), pp. 161-165.

[11) L. M. Goldschlager, "The monotone and pla­
nar circuit value problems are log space com­
plete for P," SIGACT News 9 (2) (1977),

[12) L. M. Goldschlager, R. A. Shaw, and J. Sta­
ples, "The maximum flow problem is log
space complete for P ," Theoretical Computer
Science 21, North-Holland (1982), pp. 105-
111.

[13) P. Hajnal and E. Szemeredi, Brooks coloring
in parallel, manuscript, 1987.

[14) J. E. Hopcroft and J. D. Ullman, Introduc­
tion to Automata Theory, Languages and
Computation, Addison- Wesley, MA, 1979.

[15) Boyar J. and Karloff H., Coloring planar
graphs in parallel, manuscript, 1986.

[16) H. Karloff, "Fast parallel algorithms for graph­
theoretic problems: matching, coloring and
partitioning," Ph.D. thesis, University of Cal­
ifornia, Berkeley, 1985.

[17) H. Karloff, An NC algorithm for Brooks'
theorem, manuscript, 1986.

[18) R. M. Karp and A. Wigderson, "A Fast Par­
allel Algorithm for the Maximal Indepen­
dent Set Problem," Proc. 16th ACM Symp.
Tkeory of Computing, 1984, pp. 266-272.

[19) R. E. Ladner, "The circuit value problem is
log space complete for P," SIGACT News 7
(1975), pp. 18-20.

[20) M. Luby, "A simple parallel algorithm for
the maximal independent set problem," Proc.
17th ACM STOC, 1985, pp. 1-10.

[21) J. Naor and M. Karchmer, A fast parallel
algorithm to color a graph with A colors,
manuscript, 1986.

[22) J. H. Reif, "Depth-first search is inherently
sequential," Information Processing Letters
20, North-Holland (1985), pp. 229-234.

[23) G. Szekeres and H. S. Wilf, "An inequal­
ity for the chromatic number of a graph,"
Journal of Combinatorial Theory 4 (1968),
pp. 1-3.

SUBGRAPH ISOMORPHISM FOR CONNECTED GRAPHS OF BOUNDED
VALENCE AND BOUNDED SEPARATOR IS IN NC

Andrzej Lingas
Department of Computer and Information Science

Linkoping University
581 83 Linkoping, Sweden

Abstract: We present a parallel algorithm for sub­
graph isomorphism restricted to a connected graph H of
bounded valence and a connected graph G of bounded va­
lence and bounded 0-1 weighted separator, i.e. a "1/3 -
2/3" separator for any assignment of 0-1 weights to vertices
of G. Our algorithm runs in time O(log3 n) using polyno­
mial number of processors, i.e. it is an NC 3 algorithm.

1. Introduction

The subgraph isomorphism problem is to determine
whether a graph can be imbedded in another graph, i.e.
whether the former is isomorphic to a subgraph of the lat­
ter. It is a fundamental graph problem with a variety of ap­
plications in engineering sciences, organic chemistry, pat­
tern recognition. For instance, if H is an n-vertex circuit
and G is an n-vertex planar graph of valence 3, n E N, then
determining whether H can be imbedded in G is equiva­
lent to the NP-complete problem of determining whether
a planar graph of valence 3 has a Hamiltonian circuit [3].
Thus, the subgraph isomorphism problem is NP-complete
even if G and H range only over connected planar graphs
of valence ~ 3. Subgraph isomorphism also remains NP­
complete when the first input graph is a forest and the
other input graph is a tree (see pp. 105 in [3]).
The only known polynomial-time algorithms for subgraph
isomorphism are those for trees [14,15], two-connected out­
erplanar graphs [8], and two-connected series-parallel
graphs [12]. Recently, it has been also shown that the
problem of subgraph isomorphism for two-connected out­
erplanar graphs is in the class NC [11] (i.e. can be solved
in poly-log time using polynomial number of processors
[2]), and that the subgraph isomorphism problems for trees
and two-connected series-parallel graphs respectively are
in the random class NC (see [4,10] and [12] respectively).
Are there other non-trivial classes of graphs for which sub­
graph isomorphism is in NC or at least can be solved in
polynomial time?
In [7], it was shown that subgraph isomorphism restricted
to connected graphs of bounded valence and bounded sep­
arator (the so called "1/3 - 2/3" separator) can be solved
sequentially in time n°Ciogn). In [9], the above result has
been strengthened by: showing that the above problem can

be solved in parallel in poly-log time using nO(logn) pro­
cessors.
In this paper, we strengthen these results from [7,9] by
presenting an NC3 algorithm for subgraph isomorphism

304

restricted to a connected graph H of bounded valence and
a connected graph G of bounded valence and bounded Q..1
weighted separator, i.e. a "1/3 - 2/3" separator for any
assignment of Q..1 weights to vertices of G. The algorithm is
based on a non-trivial double use of the weighted separator,
similar to that for subgraph homeomorphism in [11,16].
Seymour and Robertson have recently shown that any
proper sub-family of planar graphs closed under the minor
operation, as well as any family of graphs of bounded tree
width have bounded Q..1 weighted separator [16,17]. Thus,
our result applies to the case where G is any graph in the
above families restricted to connected graphs of bounded
valence. In particular G can be a connected series-parallel
graph (see [6]) of bounded valence, or more generally, a
partial k-tree. As for H, it should be a connected graph of
bounded valence.

The remainder of the paper is divided into three sec­
tions. In Section 2 we introduce basic notions, definitions,
and facts used in the succeeding sections. In Section 3 we
present the algorithm and analyze its time complexity.

2. Preliminaries

We shall use standard set and graph theoretic notation
and definitions (for instance, see [1,3]). Specifically, we
assume the following set and graph conventions:

1) Given a partial mapping 7r of Tinto U, dom(7r) denotes
the set of all elements of T on which 7r is defined. Next,
given a subset T' of T, 7r(T') denotes
{7r(e) I e E dom(7r) n T'}.
2) For a graph G, V (G) denotes its set of vertices.
3) Given a subset V' of V(G), G(V') denotes the the sub­
graph of G induced by V'.
4) Given graphs Gi, i = 1, ... , k, u:=l Gi (or, G1 u ... u Gk
equivalently) denotes the graph G where
V(G) = u:=l V(Gi) and two vertices of Gare adjacent if
and only if there is i, 1 ~ i ~ k, such that the vertices are
adjacent in Gi.

For the definitions of the classes NCk, NC, the reader is
referred to [2 J.
We shall consider the following restriction of the subgraph
isomorphism problem.

Definition 2.1: Let H, G be two graphs, and let 7r be a
partial one-to-one mapping of V(H) into V(G). The 71"­

imbedding problem for H and G is to decide whether there
exists an isomorphism between H and a subgraph of G

that is an extension of rr. Such an isomorphism is called a
rr-imbedding of H in G.

Note that the problem of subgraph isomorphism can be
expressed as the rr-imbedding problem where rr is an empty
mapping. We use dynamic programming to solve the rr­
imbedding problem for graphs H, G, where the cardinality
of the domain of 7r is bounded and H, G are of bounded
valence and bounded number of connected components,
and G is of bounded weighted separator.
For technical reasons, we define the concept of bounded
weighted separator of a graph with 0 - 1 vertex weights (
see [13]) through that of an m-separation of graph. It is
left to the reader to verify that our definition is equivalent
to a standard one.

Definition 2.2: Let m be a positive integer. Let G be a
graph and let Wi,W2, ... ,Wk be subsets of V(G). Finally,
let W be a subset of V(G) of cardinality not greater than
m. The sequence (Wi. W2 , ... , Wk, W) is an m-separation of
a graph G if the removal of W from G disconnects G into
connected components Ci, i = 1, ... ,k, where V(C;) = W;.
A graph G is said to have an m-separator if for any subset
U of V(G) there is is an m-separation (Wi, W2 , ... ,

Wk, W) of G such that none of the intersections W; n U,
i = 1, ... , k, has more than (2/3) I U I vertices.

Remark 2.1: If G has an m-separator then any subgraph
of G has also an m-separator.
Hint: By the assignment of 0 weights to the vertices of G
outside the subgraph one can extract the subgraph from
G.

The correctness of our NC divide-and-conquer algorithm
will in part follow from the following technical lemma. Its
proof, as easy but lengthy, is left to the reader.

Lemma 2.1: Let H, G be graphs with m-separator. Next,
let 7r be a partial mapping of V(H) into V(G). There
is a rr-imbedding of H in G if and only if for any m­
separation (Wi. ... , Wk, W) of G, there are an m-separation
(Vi, ... , Vi, V) of H, a partition P of {1, ... , l}, a one-to-one
mapping f of Pinto {1, ... , k }, and one-to-one partial map­
pings rrs of V(H) into V(G), SEP, such that for SEP:
1) H(LJiES Vi UV) can be rrs imbedded in
G(Wf(S) U W),
2) dom(rr) n (LJiES Vj) ~ dom(rrs), and V ~ dom(rrs),
3) rrs(V) ~ W,
4) rrs is consistent with 7r and with each of the other map­
pings rrs1, S' E P.

3. The NC algorithm

Here, we consider a new approach to the subgraph isomor­
phism problem for connected graphs of bounded valence
and bounded (weighted) separator. A naive method of
guessing the vertices of the separator in the first graph
and guessing their image in the second graph can lead to
un-polynomial number of considered subgraphs, when ap­
plied recursively [7,9]. However, we will be able to keep

305

the maximum number of vertices through which a recur­
sive subgraph is connected to the rest of the graph con­
stantly bounded using the weighted version of the separa­
tor, following the general idea of Robertson and Seymour
for subgraph homeomorphism (see [11,16]).

Our parallel procedure for rr imbedding uses as a subrou­
tine the procedure SEP(F,U,b,m) returning
m-separations of the input graph F whose components
contain no more than b elements of the input subset U
of V(F). The procedure SEP is a straight-forward gener­
alization of the procedure 2SEP from [12].

procedure SEP(F,U,b,m)
input: a graph F, a subset U of V(F), and positive integers
b, m.
output: the set of all m-separations (Wi, W2, ... ,Wk, W) of
F where for i = 1, ... ,k, I W; n U Is b.

for for all subsets W of V(F) with at most m vertices of
F do in parallel
begin

X +-TRUE;
find the connected components Di, ... , Dk of the graph
resulting from deleting W from F;
for i = 1, ... , k do in parallel
if I (V(Di) n U) I> b then X +-- F ALBE;
if X then return (Wi. W2 , ••• ,Wk, W)

end

By a straight-forward generalization of Lemma 5.1 in [12],
we have:

Lemma 3.1: For a fixed m, the procedure SEP can be
realized by an NC 2 algorithm.
Sketch: It is sufficient to observe that the number of all
subsets W of V(F) with at most m elements is is O(nm)
and that the connected components Di, ... , Dk can be con­
structed by a concurrent read concurrent write parallel
RAM with a polynomial number of processors in time
O(Iog n) [18], and hence by NC 2 algorithm by [19]. I

The main recursive procedure SI for rr-imbedding is as
follows.

procedure SI(H,T,G,U,m,rr)
Input: graphs H, G, each of valence S d, G with m­
separator, a subset T of V(H), a subset U of V(G), and a
one-to-one mapping 7r of T into U which is
a sub-isomorphism between H(T) and G(U).
Output: If there is a rr-imbedding of H in G then YES

c +--max{! U j, m}
if IT l>I U I or J V(H) l>I V(G) J then go to E;
if I V(H) Is i3o c then
begin

decide whether there is a rr-imbedding of H in G
by brute force, if so return YES;
go to E;

end
if I U I> ~0 c then

begin
Pick an m-separation (Wi, ... ,Wk, W) returned by
SEP(G,U,(2/3) I u I)
for i = 1, .. ., k do in parallel
begin

G; f- G(Wi u W);
ui f- UnW;UW;
for all (Vi, ... , Vi, V) returned by
SEP(H, T, (2/3) I U I) do in parallel
for j = 1, 2, .. ., l do in parallel
begin

H; f- H(V; u V);
T; f- T n V; u V;

end
for all subsets {T;,,. . .,T;.} of {T1 ,T2 ,. • .,Tz}
where I u;=l T;p !:SIU; I do in parallel
for all one-to-one mappings 7r1 of U;=l T;p into
U; that are consistent with 7r and define a sub­
isomorphism between G(U;=l T;P) and G(U)
do in parallel
if SI(U;=1 H;p, U;=1 T;., Gi, 7r(LJ;=1 T;p), m, 7r')
then M((j1,. . .,jr),i) f-1;
Using the table M decide by Lemma 2.1 and brute
force whether there exists a 7r-imbedding of H
into G mapping V into W, if so, return YES;

end;
end
if I U 1:5 13°c then
begin

Pick an m-separation (Wi. .. ., W1, W) of G returned
by SEP(G, V(G), {2/3) I V(G) I)
for i = 1, 2, .. ., k do
begin

G; f- G(W; U W);
U; f-UnW;UW;
for all (Vi,. . ., Vj, V) returned by
SEP(H, V, (2/3) I V(G) I) do in parallel
for j = 1, 2, .. ., l do in parallel
begin

H; f- H(V; UV);
T; f- T n V; u V;

end
for all subsets {T;, ,. . ., T;,} of {Ti. T2,. . ., T1}
where I u;=l T;p 1:51 U; I do in parallel
for all one-to-one mappings 7r1 of U;= 1 T;p into
U; that are consistent with 7r and define a sub­
isomorphism between G(U;=l T;P) and G(U)
do in parallel
if SI(LJ;=1 H;P' U;=1 T;p, Gi, 7r(LJ;=1 T;p), m, 7r1)

then M((j1,. . .,jr),i) f-1;
Using the table M decide by Lemma 2.1 and brute
force whether there exists a 7r-imbedding of H
into G mapping V into W, if so, return YES;

end;
E:end

To outline the proof of the correctness of SI we shall use
the following lemma.

306

Lemma 3.2: Procedure SI is correct.
Sketch: Suppose first that I U I< ~o c. Since G has an
m-separator, SEP(G, V(G), (2/3) I V(G) I) returns at
least one m-separation. Further, suppose that there is a 7r­
imbedding </>of H into G. Then, by Lemma 2.1, for them­
separation (W1,. • ., Wi, W) of G there is an m-separation
(Vi,. . ., Vk, V) of H returned by SEP(H, V(H), I V(H) I),
and a partition P of {1, .. ., l} with a one-to-one mapping
f of P into {1, .. ., k} such that for S E P, U;es H; can
be 7rs-imbedded in G f(S) where 'Ifs is a one-to-one map­
ping of U;es T; into U; consistent with 'Ir, and mapping V
into W. Note that the graphs H(U;es H;) and G f(S) have
m-separators by Remark 2.1. Therefore, they are valid pa­
rameters for the recursive calls of SI. Conversely, if such
an m-separation of H and a one-to-one mapping f exist
then there is a 7r-imbedding of Hin G by Lemma 2.1.
Suppose in turn that I U I> 1~ c. The purpose of SI in
this case is to reduce the original problem to imbedding
subproblems where the subset U of V(G) is split appro­
priately. Suppose that there is a 7r-imbedding </> of H into
G. Since G has an m-separator, SEP(G, U, (2/3) I U I)
returns at least one m-separation. Further, suppose that
there is a 7r-imbedding </> of H into G. Then, by Lemma
2.1, for them-separation (W1, .. ., Wk, W) of G there is an
m-separation (Vi, .. .,Vj, V) of H returned by SEP(H,T,
(2/3) I U I) and a one-to-one mapping f of a partition P
of {1,. . ., l} into {1,. . ., k} such that:
for SEP, UseP Hs can be 7rs-imbedded in G f(S) where
'Ifs is a one-to-one mapping of UseP Ts into U; consistent
with 7r and the other mappings 7rs1, S' E P. Conversely, if
at least one of the above conditions is satisfied then there
is a 7r-imbedding of H in G. I

Lemma 3.3: If H, G are connected and the maximum c
of the parameter m and the cardinality of the parameter
U is constantly bounded then the procedure SI can be
implemented by N C3 circuits.
Sketch: We may assume without loss of generality that
I V(H) 1:51 V(G) I and I V(H) I~ 1~c. The thesis of the
lemma follows from the following propositions:

i) The subsets T and U have never more than 4c elements
in any recursive call of SI.
ii) The recursion depth of SI is logarithmic.
iii) The body of SI can be implemented by N C 2 circuits
if we do not count the recursive calls and the calls of SEP.
iv) SEP can be realized by an NC 2 algorithm.

Before proving the above propositions, let us show how
they yield the thesis of the lemma. By the definition of SI,
the propositions (ii), (iii) and (iv) ensure O(log3 n) depth.
By induction on the depth of a recursive call of SI, we
easily observe that the subgraphs H', G' of H and G that
are are parameters in the call are separated from the rest
of the graph by vertices in the subsets parameters, say T',
and U'. Since T', U' are of size O(c) by (i), and H, Gare
of valence ::::; d, the number of connected components of H'
and G' is O(cd), i.e. 0(1). Combining the above fact with
(i), we conclude that the number of all possible parameters

in the direct recursive calls of SI(H,T,G,U,m,1f') is 0(1).
Hence, by (ii), the number of recursive calls of SI on all
recursion levels is polynomially bounded. This combined
with (iii) and (iv) shows that we can compute all these
calls using polynomial number of processors, keeping the
0 (log3 n) depth.
The proof of (i) is by induction on the recursive depth of a
call SI. At the zero depth, the subsets U and Tare of car­
dinality bounded by c. Assume that (i) holds for the calls
of SI at the recursive depth q. Let Q be a vertex set that
is a parameter of one of the above calls of SI. If Q has at
most 1~ c vertices than it can be expanded maximally by
m vertices (W or V respectively) before further recursive
calls. If Q has more than 'gCl c and at most 3.5c (respec­
tively, at most 4c) vertices then it is split into parts of at
most 3c (respectively, ~0 c) vertices that can be augmented
by at most m vertices before further recursive calls. This
completes the proof of (i).
Let us prove (ii). If SI did not contain the case I U I> 13°c
then it would be of depth proportional to the partition
tree of G induced by the "1/3 - 2/3" separator of G, i.e.
logarithmic in the size of G. On the other hand, it takes
at most two such calls to reduce the size of the subsets
Q from 4c to at most ~o c by the proof of (i). Hence, if
we follow a path in the tree of recursive calls of SI then
we never encounter more than two consecutive calls of SI
dealing with the case I U I> 1~c, which does not increase

the size of the graph parameters. By the above arguments,
we can conclude that SI is of logarithmic depth.
The proposition (iii) follows from the fact that the number
of all possible m-separations (Vi. ... , Vi, V), (Wi. ... , Wk,
W) is O(nm), and the number of all possible mappings 7r1

considered in the body of SI is constantly bounded by (i)
and l = 0 (1) (see the part of the proof preceding the proof
of (i)). Note also that the set intersections in the body of
SI are computed only for finite sets. Thus, the body of SI
without the invoked procedure calls can be implemented
by a concurrent read exclusive write parallel RAM with
a polynomial number of processors in logarithmic time.
Hence, it can be implemented by NC 2 circuits by [19].
Finally, the proposition (iv) follows from Lemma 3.1. I

Theorem 3.1: Let d and m be positive integer constants.
Let H and G be connected graphs of valence ~ d. Assume
that G has an m-separator. The problem of subgraph iso­
morphism for such graphs H, Gisin NC3 •

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design
and Analysis of Computer Algorithms (Addison-Wesley,
Reading, Massachusetts, 1974).
[2] S.A. Cook, The taxonomy of problems with fast parallel
algorithms, Information and Control 64(1985),2-22.
[3] M.R. Garey, D.S. Johnson, Computers and Intra­
ctability. A Guide to the Theory of NP-completeness
(Freeman, San Francisco, 1979).

307

[4] P. Gibbons, R.M. Karp, G.L. Miller and D. Soroker,
Subtree isomorphism is in random NC, manuscript,
September 1987.
[5] F. Harary, Graph Theory (Addison-Wesley, Reading,
Massachusetts, 1969).
[6] R. Hassim, A. Tamir, Efficient algorithms for optimiza­
tion and selection on series-parallel graphs, SIAM J. Alg.
Disc. Math. 7(1986), 379-389.
[7] A. Lingas, Subgraph Isomorphism for Easily Separable
Graphs of Bounded Valence, in Proc. of 11th Workshop
on Graph-theoretic Concepts in Computer Science, Castle
Schwanberg (Trauner, 1985), 217-229.
[8] A. Lingas, Subgraph Isomorphism for Biconnected Out­
erplanar Graphs in Cubic Time, Proc. 3rd STACS's, Orsay
(1986), LNCS 210, Springer.
[9] A. Lingas, On Parallel Complexity of the Subgraph
Isomorphism Problem, technical report LiTH-IDA-R-87-
10, Linkoping University.
[10] A. Lingas and M. Karpinski, Subtree isomorphism
and bipartite perfect matching are mutually NC reducible,
technical report, LITH-IDA-R-87-09, Linkoping Univer­
sity, May 1987.
[11] A. Linga.s and A. Proskurowski, Fast Parallel Algo­
rithms for the Subgraph Homeomorphism and the Sub-

graph Isomorphism Problems for Classes of Planar Graphs,
in Proc. the 7th Conference on Foundations of Software
Technology and Theoretical Computer Science, Pune, In­
dia 1987, LNCS, Springer.
[12] A. Linga.s and M. Syslo, A Polynomial Algorithm for
Subgraph Isomorphism of Two-connected Series-Parallel
Graphs, in Proc. the 15th ICALP, Tampere, Finland 1988,
LNCS, Springer.
[13] R.J. Lipton and R.E. Tarjan, Applications of a planar
separator theorem, SIAM J. Computing 9 (1980) no. 3,
513-524.
[14] D. W. Matula, Subtree isomorphism in O(n512), An­
nals of Discrete Mathematics 2 (1978) 91-406.
[15] S. W. Reyner, An analysis of a good algorithm for the
subtree problem, SIAM J. Comput. 6 (1977), 730-732.
[16] N. Robertson and P.D. Seymour,, Disjoint paths - a
survey, SIAM J. Alg. Disc. Meth., Vol. 6 (1985), No. 2,
300-305.
[17] N. Robertson and P.D. Seymour, Graph Minors 2.
Algorithmic Aspects of Tree-Width, J. Algorithms No. 7,
309-322.
[18] Y. Shiloach and U. Vishkin, An O(logn) parallel con­
nectivity algorithm, J. Algorithms 3, 1, pp. 57-67.
[19] L. Stockmeyer and U. Vishkin, Simulation of parallel
random Access Machines by Circuits, SIAM J. Compt. 13
(1984), pp. 409-422.

OPTIMAL SORTING ON REDUCED ARCHITECTURES

R. Cypher (*)

ABSTRACT: This paper studies the problem of sorting N
items on a P processor parallel machine, where N :<!: P .. The
central result of the paper is a new algorithm, called cubesort,
that sorts N = P1 + IJK items in O(k pl/k log P) time using a
P processor shuffie-cxchangc. Thus for any positive constant
k, cubcsort provides an asymptotically optimal speed-up over
sequential sorting. Cubesort also sorts N = P log P items
using a P. processor shuffie-exchange in O(Iog3 P/loglog P)
time. Both of these results arc faster than any previously
published algorithms for the given problems. Cubesort also
provides asymptotically optimal sorting algorithms for a wide
range or parallel computers, including the cube-connected cy­
cles and the hypercube. An important extension of the central
result is an algorithm that simulates a single step of a Priority­
C RCW PRAM with N processors and N words of memory
on a P processor shuffic-exchange machine in O(k pl/k log P)
time, where N = P1 + l/k.

I. h1troduction

This paper presents a new parallel algorithm for sorting N
items using P processors, where N :<!: P. This new algorithm
can be implemented efficiently on a wide range of parallel
computers, including the hypercube, the shuffie-exchange and
the cube-connected cycles. In particular, the algorithm runs
in O((N log N)/P) time on any of the above architectures,
provided N = P1 + l/k for some positive constant k. This is
the first sorting algorithm for any of the above architectures
that obtains this performance. In addition, the sorting algo­
rithm will be extended to obtain an efficient simulation of a
Priority-CRCW PRAM using a hypercube, shuffie-exchange
or cube-connected cycles. The remainder of this section reviews
models of parallel computers arid examines previous work in
the field of parallel sorting.

The models of parallel computers that will be used in this
paper arc ihe PRAM [5], the hypercube [JO], the shuffie­
cxchangc [10[and the cube-connected cycles [11). These models
operate in an SIMD mode, with all of the processors performing
the same instruction at any given time. The PRAM is a shared
memory model in which all processors can access a common
memory in unit time. The i>riority-CRCW PRAM allows
multiple processors to read from or write to a single memory
location simultaneously. In the case of simultaneous writes to
a single location, the lowest numbered processor attempting
to write to that location succeeds.

The hypercube, the shuffic-cxchange and the cube-connected
cycles consist of a set of processors, each containing a local
memory, that communicate with one another using a fixed
interconnection network. In the hypercube, the P processors

(0) Computer Science Department University of Washington, Seattle, WA 98195

J.L.C. Sanz (**)

are numbered 0 .. i>-1 and processors i and j arc connected i
the binary .representations of i and j diffor in exactly I bit
position. In the shuffie-exchangc, the P processors arc num­
bered 0 .. P-1 and processors i and j arc connected if j =
Shuffie(i, P), j = Unshuffie(i, P) or j = Exchangc(i) where
Shuffie(i, P) = 2i mod (P-1), Unshuffic(i, P) = j iff Shuffic(j,
P) = i, and Exchange(i) = i + 1 - 2(i mod 2). The cube­
connected cycles contains P processors, where P = 2K and K
= R + 2R. The processors are numbered with pairs (b, c)
where b is a (K-R) bit number and c is an R bit number.
Processor (b, c) is connected to processor (d, c) if b = d and
c = e+ 1, if b = d and c = c-1, or if c =. e and the binary
representations of b and d differ in only the c-th bit position.
The shuffie-exchangc and the cube-connected cycles arc feasible
models because each processor is connected to only a lixcd
number of other processors.

One of the earliest results in parallel sorting was obtained
by Batcher. In [3], Batcher presented the bitonic sorting algo­
rithm .. In (12), Stone showed that the bitonic sort could he
implemented on a shuffie-exchange. This yields an O(log2 N)
time sort for N = P numbers on the shuffic-cxchange.

In [41, Baudet and Stevenson show how any parallel algo­
rithm for sorting N items with P = N processors that is based
on comparisons and exchanges can be used to obtain an al­
gorithm for sorting N items with P < N processors. By
applying their technique to the bitonic sort on the shuffie­
exchange, they obtained an O((N/P) log (N/P) + (N/P) log2

P) time sorting algorithm when P ,;; N. Their algorithm pro­
vides an optimal speed-up over sequential comparison sorting
only when P = 0(2sqrt(log N>).

An algorithm for a special case of the sorting problem was
given by Gottlieb and Kruskal (6). They presented a shulilc­
exchange algorithm for the permutation problem, where the
N numbers to be sorted are in the range 1 through N .and
where each number appears exactly once. Their .algorithm
requires O(P912 + (N/P) log P) time and gives optimal speed-up
over sequential comparison sorting when P = O((N log N)2/9).

In their paper, Gottlieb and Kruskal state that they do. not
know of an optimal algorithm for the permutation problem
when P is not in O((N log N)219). The current paper thus
improves upon Gottlieb and Kruskal's result in two ways.
First, the algorithm presented in this paper solves the general
sorting problem rather than the permutation problem. Second,
the al~orithm presented here gives optimal speed-up when N
= pl 1/k for any positive constant k. ·

A breakthrough in parallel sorting was obtained by Ajtai,
Komlos and Szemcredi (2). They created a network for sorting
N items that consists of O(N log N) comparators and has
O(log N) depth. This network was used by Leighton to create
a feasible parallel machine that sorts in O(log N) time when
P = N (81.

(..)Computer Science Department IBM Almaden Research Ctr, San Jose, CA 95120

308

Unfortunately, there arc two serious difficulties with
Leighton's technique. First, the technique performs poorly
for P < 10100. In contrast, the algorithm presented in this
paper has a much smaller constant of proportionality and is
much more likely to be useful in practice. Second, Leighton's
network is not a standard network that has been shown to be
useful for solving problems other than sorting. In contrast,
the shuffic-cxchangc and the cube-connected cycles have been
proven useful in solving a wide range of problems.

Another important related result was obtained by Leighton.
Leighton has recently shown that his algorithm called
columnsort 18] can be used to obtain an efficient algorithm for
sorting N = P1 + l/k it<?r:ns on a P processor shuffle-exchange
191. I le obtains an O(k 1 pl/k log P) time algorithm, where T
= I /log4 l.5 (T is approximately 3.419). The algorithm is
based on calling columnsort in fl nested manner so that the
N items arc sorted by repeatedly sorting groups of pl/k items
each. Furthermore, there is a possibility that the value of the
exponent T can be reduced to less than I by using Leighton's
concept of closcsorting 181,19]. Finally, a similar result using
columnsort was obtained by Aggarwal [I]. More research into
the appli·cations of columnsort is clearly needed.

The paper is divided as follows. Section 2 presents an
abstract description of the new sorting algorithm and· proves
its correctness. Section 3 shows how this sorting algorithm
can be implemented efficiently on a number of parallel com­
puters and it presents an algorithm for simulating a Priority­
CRCW PRAM with a shuffic-cxchangc computer. Throughout
this paper, N will be the number of items to be sorted and P
will be the number of processors available.

2. Cubesort

This section contains a description of a new parallel sorting
algorithm that the authors call cubesorl. The description of
cubcsort given in this section is independent of the architecture
that is used to implement it. Cubcsort works by repeatedly
partitioning the N items to be sorted into small groups and
sorting these groups separately and in parallel. In particular,
let N = M IJ where M and D are integers. Each step of
cubcsort partitions the MD items into either M1)-J groups of
M items each or MD-2 groups of M2 items each, and sorts
the groups in parallel.

The MD items to be sorted can be viewed as occupying a
D-dimcnsional cube, where each side of the cube is of length
M. Each location L in the cube has an address of the form
L = (LD, LD-1, .. ., L1), where (Lo, Lf)-J, .. ., L1) is a D-digit
base-M number and Li is the projection of location L along
the i-th dimension. This numbering of the locations in the
cube corresponds to an ordering of the locations that will be
called row-major order. Cubesort will sort the items in the
cube into row-major order.

In addition to viewing the items as forming a single D­
dimcnsional cube, they can be viewed as forming a number of
cubes of.smaller dimension. A }-cube, where 0 s: j s: D, is a
set of M1 items with base-M addresses that differ only in the
j least significant digits. That is, A = (Ao, Ao-1 , A1) and
B = (BD, Bo-1, .. ., B1) arc in the same j-cube if and only if
Ai = Bi for all i, j +I s: i s: D. Each j-cube, where 0 s: j s:
D, is classified as being either even or odd. A j-cube, where 0
s: j s: D-1, is even if it contains a location L where Lj + 1

mod 2 = 0, and it is odd otherwise. The D-cube that contains
all N items is defined to be even.

309

There are D different partitions, represented as Pj where I
s: j s: D, that arc used by cubcsort. A group in partition Pj

consists of a set of items with basc-M addresses that differ
only in digits j and j-1. Note that each group in P 1 contains
M items, while each group in the remaining partitions contains
M2 items.

Finally, it is sometimes useful to view the items in a j-cuhe
as forming a 2-diincnsional array. A }-array, where 2 s: j ,;;
D, is an M2 x M1-2 array of the items in a j-cuhe, where the
items arc placed in the array in row-major order. Thus each
(j-2)-cubc forms a row in a j-array, and each (j-1)-cube forms
a band of M consecutive rows in a j-array. Also, each column
in a j-array is a group in Pj.

In order for cubcsort to work correctly, it is assumed that
D ;;;? 3 and that M ;;;? (D-l)(D-2). Cubcsort makes use o
two subroutine~, Sort_Ascending and Sort_Mixcd. The sub­
routine Sort_Asccnding(i) sorts the groups in partition Pi in
ascending row-major order. The subroutine Sort_Mixcd(i, j)
sorts the groups in partition Pj that arc in even i-cuhcs in
_ascending order, while it sort the groups in Pj that arc in odd
i-cubcs in descending order. Cubcsort is called by first setting
the global variables M and D and then calling Cubcsort(D).
The pseudo-code of cubesort is given below.

Cubesort(S)
iption of Cubesort */
integer S;
{

if s = 3 then
{

Limit_Dirty_Cubes(S);

Sort_Mixcd(S-1, S-1);

/* Abstract Dcscr

/*PHASE 1: */

/* PHASE 2: */

/* PHASE 3: */
Merge_Dirty_Cubes(S, S);

else
{

Limit_Dirty_Cubes(S);
Limit_Dirty_Cubcs(S);

Cube sort (S-1.) ;

/*PHASE 1: */

/* PHASE 2: */

/* PHASE 3: */
Merge_Dirty_Cubcs(S, S);

Limit_Dirty_Cubcs(S)
integer S;
{

if S > 2 then
Limit_Dirty_Cubcs(S-1);

Sort_Ascending(S);

Merge_Dirty_Cubcs(S, T)
integer S, T;
{

Sort_Mixed(S, T);
if T > 2 then

Mcrgc_Dirty_Cubcs(S, T-2);

The call Cubesort(S) sorts each even S-cube in ascending
row-major order and each odd S-cube in descending row-major
order. In order to prove that cubesort works correctly, it is
necessary to use the zero-one principle (7), which states that
"if a network with n input lines sorts all 2° sequences of O's
and 1 's into nondecreasing order, it will sort any arbitrary
sequence of n numbers into nondecreasing order". In keeping
with the zero-one principle, the following discussion will assume
that the input consists entirely of O's and l's.

The following definitions will be needed in the proof of
correctness. A set of items is dirty if it contains both O's and
1 's, and it is clean· otherwise. A sequence of O's and l's is
ascending if it is of the form 03 lb, where a,b ~ 0, and it is
descending ifit is of the form l 3 0b, where a,b ~ O~ A sequence
is monotonic ifit is either ascending or descendin~ A sequence
of O's and l's is bitonic if it is or the form 03 1 Oc or of the
form l3 0blc, where a,b,c ~ 0. A j-array is cross-sorted if all
or its rows are monotonic and if it has at most 1 ascending
dirty row and at most l descending dirty row. A j-array is
semi-sorted if all of its rows are bitonic and if it has at most
1 dirty row. A j-array is block-sorted in ascending (descending)

·order ifit consists of A rows containing only O's (l's), followed
by B dirty rows, followed by Crows containing only l's (O's),
where A,B,C ~ 0. A j-cubc is cross-sorted (or semi-sorted or
block-sorted) if its corresponding j-array is cross-sorted (or
semi-sorted or block-sorted).

The correctness of Cubcsort(S) is established next. In order
to save space, the proofs have been omitted.

LEM MA 1: If a j-array originally has B dirty rows, and if
the columns of the j-array are then sorted in ascending (de­
scending) order, the resulting j-array will be block-sorted in
ascending (descending) order and will contain no more than
B dirty rows.

LEMMA 2: After calling Limit_Dirty_Cubcs(i), where i ~
2, there arc at most i-1 dirty (i-1)-cubes in each i-cube, and
the dirty (i- I)-cubes arc consecutive within each i-array.

LEMMA 3: If a j-array is originally semi-sorted or cross­
sortcd, and if the columns of the j-array are then sorted in
ascending (descending) order, the resulting j-array will be semi­
sorted and it will be block-sorted in ascending (descending)
order.

Tl IEOREM 1: After calling Cubesort(3), each even 3-cube
is sorted in ascending row-major order and each odd 3-cube
is sorted in descending row-major order.

LEMMA 4: When S > 3, after Phase 1 there arc at most
2 dirty (S-1)-cubes in each S-cubc, and these dirty cubes are
adjacent to one another in the S-array.

LEM MA 5: For any values of S and T, where I s: T s: S
s;: D, if originally each T-cube is either semi-sorted or cross­
sorted, and if Merge_Dirty_Cubes(S, T) is then called, the
resulting T-cubes will all be sorted. Furthermore, the T-cubes
that arc in even S-cubes will be sorted in ascending order and
the T-cubes that are in odd S-cubes will be sorted in descending
order.

Tl IEOREM 2: Cubesort(S), where 3 s: S s: D, sorts each
even S-cubc in ascending order and each odd S-cube in de­
scending order.

310

3. Implementing Cuhesort

The cubesort algorithm given in the previous section sorts N
= MD numbers by performing O(D2) stages, where each stage
consists of sorting, in parallel, groups containing 0(M 2) items.
This section will show how cubesort can be implemented on
a variety or parallel models.

First, the implementation of cubesort on a shuflle-cxchangc
will be presented. It will be assumed that there arc N items
to be sorted and that P processors arc available, where N =
P1+1/k. The items to be sorted are stored in an N item array
A, where A; is located in processor j = lloor(i/P 1fk), for 0 ~
i s;: N-1. In order to use the algorithm from the previous
section, let D = 2k + 2, let M = J> 1f2k, and let location L =
(Lo, Lo-1 , L1) in the D-dimcnsional cube correspond to A1.

Before the groups of a partition arc sorted, the data arc
rearranged so that each group lies within a single processor.
There are 2 permutations that arc used to perform this rear­
rangement, namely the M-Shufllc and the M-lJnshuflle. The
definition of the M-Shufllc of N items is that M-Shufllc(X,
N) = MX mod (N-1). The M-lJnshufllc is the inverse. of the
M-Shuflle, so M-Unshufllc(Z, N) = X iff M-Shuflle(X, N) =
z.

The pl/k items that are local to each processor can be sorted
in 0((1/k) pl/k log P) time. Also, the M-Shuflle and M­
Unshuflle of the items to be sorted can each be accomplished
in 0((1/k) pl/k log P) time. Because the shufTic-cxchangc im­
plementation or cubesort consists of O(D2) = O(k2) applica­
tions of sorts that arc local to processors and O(k2) applications
ofthe M-Shufllc and M-Unshufllc routines, the entire algorithm
requires O(kP1/k log P) time.

The implementations of cubesort on the hypercube and the
cube-connected cycles are similar to the implementation on
the shuflle-cxchange. Because of space limitations, on!~ the
result will be stated. Cubesort can be implemented in O(k P 1 /k

log P) time on a hypercube or cube-connected cycles.
In the above discussion, it was assumed that N = P1 + l/k.

However, cubesort can also be used when the number or items
per processor grows more slowly. In particular, when N = P
log P cubesort yields an O(log3 P/loglog P) time sorting algo­
rithm for a P processor shuflle-exchange. Again, space limi­
tations prevent including that algorithm.

Finally, cubesort can be used to simulate a Priority-CRCW
PRAM with a shufTie-exchange computer. Because of space
limitations, only the result will be stated. A single operation
ofa Priority-CRCW PRAM with N processors and N memory
locations can be implemented in O(kP1/k lo~ P) time on a P
processor shuflle-exchange, where N = J>1 + /k.

Acknowledgments

The authors would like to express their gratitude to Prof'. T.
Leighton for bringing to their attention his extensions o
colurnnsort for optimal sorting, and for many useful Jiscussions.
Also, the authors feel indebted to Prof. S, llambrusch, Dr. M.
Snir, Prof. L. Snyder and Dr. E. lJpfal for their helpful com­
ments on the contents or this paper. The work of R. Cypher
was supported in part by an NSF graduate fellowship.

References and Notes

I. A. Aggarwal, Unpublished manuscript, 1986.
2. M. Ajtai, J. Komlos, E. Szemeredi, "An O(n 101< n) Sorti111<

Network", Proc. 15th Annual Symposium on Theory of Com­
puting, 1983, pp. 1-9.

3. K.E. Batcher, "Sorting Networks and their Applications",
1968 AF/PS Conference Proceedings, pp. 307-314.

4. G. Baudct, D. Stevenson, "Optimal Sorting Algorithms/or
Parallel Computers·, IEEE Transactions on Computers, vol.
c:-27, no. /, .January 1978, pp. 84-87.

5. A. Borodin, J.E. Ilopcroft, "Routing, Merging and Sorting
on Parallel Models of Computation", Proc. 14th Annual
Symposium on Theory of Computing, 1982, pp. 338-344.

6. A. Gottlieb, C.P. Kruskal, "Complexity Results for Per­
muting Data and Other Computations on Parallel Proces­
sors'', .Journal of the ACM, vol. 31, no. 2, April 1984, pp.
193-209.

7. D.E. Knuth, "The Art of Computer Programming, Vol. 3:
Sorting and Searching", Addison-Wesley, Reading, MA.
1973.

311

8. T. Leighton, "Tight Bounds on the Complexity of Parallel
Sorting", IEEE Transactions on Computers, vol. c-34, no.
4, April 1985, pp. 344-354.

9. T. Leighton, Personal communication ..
IO. D. Nassimi, S. Sahni, "Data Broadcasting in SIMD Com­

puters", IEEE Transactions on Computers, vol. c-30, no. 2.
February 1981, pp. /01-107.

11. F.P. Prcparata, J. Vuillemfo, "The Cube-Connected Cycles:
A Versatile Network for Parallel Computation", Communi­
cations of the ACM,_ vol. 24, no. 5, May 1981, pp. 300-309.

12. H.S. Stone, "Parallel Processing with the Perfect Sht.if./le'',
IEEE Transactions on Computers, vol. c-20, no. 2, February
1971, pp. 153-161.

