uopedljddy pue swyobly Iil IOA T

I3H34INOD TVYNOLLYNHILNI 8861 |

PROCEEDINGS

OF THE

1988 INTERNATIONAL CONFERENCE
ON

PARALLEL PROCESSING

August 15-19, 1988

PROCEEDINGS

OF THE

1988 INTERNATIONAL CONFERENCE
PARALLEL PROCESSING

August 15-19, 1988

Vol. lll Algorithms and Applications
David H. Bailey, Editor

Sponsored by

Department of Electrical Engineering
PENN STATE UNIVERSITY
University Park, Pennsylvania

THE PENNSYLVANIA STATE UNIVERSITY PRESS
UNIVERSITY PARK AND LONDON

The papers appearing in this book comprise the proceedings of the meeting mentioned on the cover
and title page. They reflect the authors’ opinions and are published as presented and without change in
the interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, Penn State Press, or the Institute of Electrical and Electronics Engineers,
Inc.

Library of Congress Catalog Card Number 79-640377
ISSN 0190-3918
ISBN 0-271-00654-4
IEEE Computer Society Order Number 889
|IEEE Catalog Number 88CH2625-2

Copyright © 1988 The Pennsylvania State University
All rights reserved
Printed in the United States of America

Additional copies may be obtained from:
Penn State Press
215 Wagner Building
University Park, PA 16802

PREFACE

Interest in the field of parallel processing continues to climb. This trend is evidenced by the sharp increase
in papers submitted to the International Conference on Parallel Processing during recent years:

Papers Papers
Year Submitted Accepted Percent

1980 170 65 57
1983 240 136 57
1986 400 170 43
1987 487 174 36
1988 590 173 29

Although the number of submissions continues to increase, the number of accepted papers this year and
in the past two years has remained relatively unchanged. This is due to the limitation imposed by the fixed
number of hours available for the conference. As a result, a record number of papers had to be rejected. This
year, the conference proceedings is being published in three volumes according to the subject category. The
breakdown of submissions and acceptances in the three main categories of this conference is as follows:

Papers Papers

Category Submitted Accepted Percent
Architecture 264 74 28
Software 144 43 30
Algorithms and Applications 182 56 31

Of the 173 papers that were accepted, 79 were accepted as regular papers and 94 were accepted as short papers.
Many papers that normally would have been accepted as long papers were accepted as short papers in order to
meet the maximum number of paper-sessions allotted for the conference.

Finding sufficient numbers of qualified reviewers was a particularly challenging task this year, due to the
record number of submissions. Over 1,000 professionals in the field participated in this process. This year
the process of selecting referees was simplified by the use of questionnaires, which were mailed to previous
participants in the conference. The information on the completed questionnaires were entered into databases,
which then allowed the conference chairmen to select reviewers qualified in fairly specialized fields. Even so,
numerous papers were so highly specialized that custom selection of referees was still required. It appears
that an even more detailed breakdown of specializations will be needed for these questionnaires in the future.
Greater effort will also be required in the future to find additional reviewers to adequately evaluate the increasing
numbers of submissions. ,

I wish to thank the management of the Numerical Aerodynamic Simulation Systems Division at NASA
Ames for providing me the opportunity to serve on the program committee this year. I also wish to thank
the following persons on our staff who assisted in selecting referees and in handling the correspondence: Liviu
Lustman, Martin Fouts, Julie Swisshelm, Horst Simon, Creon Levit, Gina Riley, Saundra Ramirez, and Reina
Trinwith. I wish also to thank Prof. Tse-yun Feng for his support and encouragement in this effort.

David H. Bailey
NASA Ames Research Center
Moffett Field, CA 94035

iii

Abello, J.
Abileah, R.
Adams, G. B.
Agrawal, D. P.
Agrawala, A.
Ahmad, M. O.
Alaghband, G.

Alexander, W. E.

Altmann, E.
Antony, R.
Armstrong, J.
Bailey, D. H.
Bappana, R. V.
Raru, Q. K.

LA, ¥

Bastani, F. B.
Berger, M.
Berkling, K.

Bermudez, M. E.

Bhanu, B.
Bhargava, B.
Bhasker, J.
Blelloch, G.
Bodorik, P.
Bose, P.
Bourbakis, N.
Bowyer, K. W.
Braaten, M. E.
Breitkreutz, T.
Brenner, A. E.
Breuer, M. A.
Browne, J. C.
Bryant, B.
Bryant, R. M.
Buell, D.

Bui, T. D.
Burn, R.
Buzbee, B. L.
Cappello, P..R.
Cargo, D.
Carlson, D. A.
Carty, F. G.
Cazes, A.
Cerny, E.
Chan, M. Y.
Chan, T.
Chandran, S.

LIST OF REFEREES

U. C. Santa Barbara
SRI International
Purdue Univ.

North Carolina St. Univ.
Univ. of Maryland
Concordia Univ.

Univ. of Colorado

North Carolina St. Univ.
Carnegie Mellon Univ.
U. S. Army

Convex Computer Corp.
NASA Ames Research Ctr.
Univ. of Southern Cal.
Univ. of Michigan

Univ. of Houston
Courant Inst.

Syracuse Univ.

Univ. of Florida
Honeywell Research Ctr.
Purdue Univ.
Honeywell, Inc.

MIT AI Lab.

Tech. Univ. Nova Scotia

IBM Watson Research Ctr.

George Mason Univ.
Univ. of South Florida
G. E. Res. and Dev. Ctr.
Univ. of Alberta

IDA - SRC

Univ. of Southern Cal.
Univ. of Texas

Univ. of Alabama Birm.

IBM Watson Research Ctr.

IDA - SRC

Concordia Univ.
Systems Control
NCAR

U. C. Santa Barbara
U. S. Dept. of Defense
IDA - SRC

Goodyear Aerospace Corp.
IBM Watson Research Ctr.

Univ. de Montreal
Univ. of Texas at Dallas
U. C. Los Angeles
Univ. of Maryland

iv

Chang, C. K.
Chang, D.
Chang, H.
Chang, P. R.
Chang, S.
Chellappa, R.
Chen, S.

Chennagiri, R. K.

Cherkassy, V.
Christian, F.
Chung, M. J.
Coffman, E. G.
Conroy, J. M.
Cuny, J. E.
Curoe, J. E.
Cybenko, G.
Cypher, R.
Darema, F.

De Forcrand, P.
De Young, G. E.
Dehne, F.
Dekel, E.
Despain, A. M.
Dey, P.
Diamond, M. D.
Dixit, V. V.
Downes, E. H.
Dyer, C. R.
Egecioglu, O.
El-Sharkawy, M.
Ellis, C.
Eltgroth, P.

Ercegovac, M. D.
Eshaghian, M. M.

Fahlman, S. E.
Fang, Z.
Fatoohi, R.
Felten, E. W.
Feo, J.
Ferguson, D.
Ferreira, A. G.
Fiduccia, C. M.
Fier, J.

Finkel, R.
Fornberg, B.
Foulser, D.

Univ. of Ill. Chicago

Univ. of Louisville

Univ. of Miami

Purdue Univ.

Univ. of Maryland

Univ. of Southern Cal.
Univ. of North Carolina
Univ. of Southern Cal.
Univ. of Minnesota

IBM Almaden Research Ctr.
Michigan St. Univ.

AT&T Bell Labs

IDA - SRC
Univ. of Massach
Mobil Corp.
Tufts Univ.
Univ. of Washington
IBM Hawthorne Res. Lab.
Cray Research Inc.
Winchester, MA

Carleton Univ.

Univ. of Texas, Dallas

U. C. Berkeley

Univ. of Alabama Birm.
FMC Corp.

Univ. of Southern Cal.
Reston, VA

Univ. of Wisconsin

U. C. Santa Barbara
Bucknell Univ.

Duke Univ.

Lawrence Livermore Lab.
U. C. Los Angeles

Univ. of Southern Cal.
Carnegie-Mellon Univ.
Concurrent Comp. Corp.
NASA Ames Research Ctr.
Cal. Inst. of Tech.
Lawrence Livermore Lab.
Boeing Computer Serv.
Grenoble, France

G. E. Res. and Dev. Ctr.
Ametek

Lexington, KY .
Exxon Research and Eng.
Yale Univ.

Fouts, M. J.
Franklin, M.
Friesen, D.
Fujimoto, R. M.
Gallopoulos, E.

Gao, G. R.
Gaushell, D. J.
Gear, C. W.
Ghosh, A. K.
Goel, A.

Goel, P.
Gonzalez, T. F.
Gorin, A. L.
Graf, K.

Greenbaum, A.
Greening, D. R.

Grefenstette, J. J.

Grimes, R.
Guha, S.
Gupta, A.
Hac, A.
Hachtel, G. D.
Hadlock, F. O.
Haghighi, M.
Han, J.

Han, Y.
Hanson, F. B.
Heath, M.
Hewitt, C. E.
Ho, C.

Hong, Y.
Hume, D.
Hyatt, R.
Ibarra, O. H.
Ipsen, I.
Iyengar, S. S.
JaJa, J.

Janakiram, V. K.

Janardan, R.
Janicki, R.
Jones, J.
Josephson, J. R.
Kailath, T.
Kamath, C.
Karabeg, D.
Karp, A.
Keller, R. M.
Kender, J. R.
Kim, M. H.
Kirkpatrick, S.

NASA Ames Research Ctr.
Washington Univ.

Texas A&M Univ.

Univ. of Utah

Univ. of Illinois Urbana
McGill Univ.

Westin Power Consultants
Univ. of lllinois

Univ. of Iowa

Ohio St. Univ.

Univ. of Michigan

U. C. Santa Barbara
AT&T Bell Labs

SRI International

New York Univ.
Nashua, NH

Vanderbilt Univ.

Boeing Computer Serv.
Univ. of Michigan
Carnegie-Mellon Univ.
AT&T Bell Labs

Univ. of Colordo
Tennessee Tech. Univ.
Bradley Univ.

Southern Illinois Univ.
Univ. of Kentucky
Argonne National Lab.
Oak Ridge National Lab
MIT AI Lab.

Yale Univ.

U. C. Riverside
Tennessee Tech. Univ.
Univ. of Alabama Birm.
Univ. of Minnesota
Yale Univ.

Louisiana St. Univ.
Univ. of Maryland
North Carolina St. Univ.
Univ. of Minnesota
McMaster Univ.

Air Force Inst. of Tech.
Ohio St. Univ.

Stanford Univ.

Digital Equipment Corp. -

U. C. San Diego

IBM Scientific Ctr.
Quintus Computer Sys.
Columbia Univ.
Michigan St. Univ.

IBM Watson Research Ctr.

Kocay, W.
Kodeih, M.
Koenig, E. C.
Kosaraju, S. R.
Kountanis, D.

Kowalik, J. S.

Krishnamoorthy, M. S.
Krishnamurthy, B.

Kruskal, C.
Kumar, D.
Kumar, V.
Kung, H. T.
Kung, S.
Kurtzberg, J.
Ladner, R. E.
Lai, T.
Lander, E.
Lazowska, E. D.
LeBlanc, T. J.
Lee, C. S. G.
Lee, D. L.
Lee, S.
Leiserson, C. E.
Leite, T. R.
Lesser, V.
Leu, D.
Lewis, J.

Li, H.

ILi, X.

Liao, Y.

Lin, A.

Lin, W.

Liu, W.

Livingston, M. L.
Loganantharaj, R.

Logothetis, G.
Lowrie, M. B.

Lubachevsky, B. D.

Lustman, L. R.
Lynch, N. A.
Makhoul, J.
Mandell, D.
Manhardt, P. D.
Mann, T.
Marsland, T. A.

Mattheyses, R. M.

McMillin, B. M.
Mei, G.
Mesirov, J. P.

Messerschmitt, D. G.

Univ. of Manitoba
Rensselaer Poly. Inst.
Univ. of Wisconsin

Johns Hopkins Univ.
Western Michigan Univ.
Boeing Computer Serv.
Rensselaer Poly. Inst.
Tektronix Inc.

Univ. of Maryland

St. Univ. of New York
Univ. of Texas

Carnegie Mellon Univ.
Princeton Univ.

IBM Watson Research Ctr.
Univ. of Washington

Ohio St. Univ.

Whitehead Inst.

Univ. of Washington
Univ. of Rochester
Purdue Univ.

Ohio St. Univ.

Cornell Univ.

MIT

IMSL

Univ. of Massachusetts
Univ. of Houston

Boeing Computer Serv.
IBM Watson Research Ctr.
Univ. of Alberta

Digital Equipment Corp.
Temple Univ.
Pennsylvania St. Univ.
North Carolina St. Univ.
Southern Illinois Univ.
Univ. of S. Louisianna
Univ. of Florida

Univ. of Illinois Urbana
AT&T Bell Labs

NASA Ames Research Ctr.
MIT Lab for Computer Sci.
BBN, Inc.

Los Alamos National Lab
COMCO, Inc.

DEC Systems Research Ctr.
Univ. of Alberta

G. E. Res. and Dev. Ctr.
Michigan St. Univ.

North Carolina St. Univ.
Thinking Machines Corp.
U. C. Berkeley

Miller, G. L.
Miller, R.
Miller, T. K.

Moceyunas, P. H.

Moldovan, D. I.
Molloy, M. K.
Montry, G.
Morgan, A. P.
Morris, R. A.

Morris, R. J. T.

Mudge, T.
Mueller, R. A.
Mukherjee, A.
Nakazawa, S.
Nassimi, D.

Natarajan, K. S.
Newman-Wolfe, R.

Ng, E.
Nichols, K. M.
Noga, M. T.
Norton, A.

Nuttal, L. A.

O’Hallaron, D. R.

O’Leary, D. P.
Oh, S. J.
Oliger, J.
Omiecinski, E.
Ortega, J. M.
Otto, S. W.

Ougouag, A. M.

Ozguner, F.
Pargas, R. P.
Park, S.
Patrick, M. L.
Pawagi, S.
Payne, T. H.
Peng, S.
Perry, R. J.
Peskin, R. L.
Peterson, J. L.
Pham, Q. T.
Pong, T. C.
Prabhu, G. M.
Pramanik, S.
Quinn, M. J.
Raefsky, A.

Raghavendra, C. S.
Ramachandran, V.
Ramakrishnan, I. V.
Ramamoorthy, C. V.

Univ. of Southern Cal.
SUNY Buffalo

North Carolina St. Univ.
Univ. of Colordo

Univ. of Southern Cal.
Univ. of Texas

Sandia National Labs

~ General Motors Res. Lab.

U. S. Dept. of Defense
AT&T Bell Labs

Univ. of Michigan
Colorado St. Univ.
Univ. of Cent. Florida
MARGC Analytical Res.

Univ. of Delaware

IBM Watson Research Ctr.

Univ. of Florida

Oak Ridge Natl. Labs
AT&T Bell Labs
Lockheed Palo Alto

IBM Watson Research Ctr.

Univ. of Utah

G. E. Res. and Dev. Ctr.
Univ. of Maryland
Syracuse Univ.

Stanford Univ.

Georgia Inst. of Tech.
Univ. of Virginia

Cal. Inst. of Tech.

Univ. of Illinois Urbana
Ohio St. Univ.

Clemson Univ.

North Carolina St. Univ.
Duke Univ.

SUNY Stony Brook

U. C. Riverside

Univ. of Maryland BC
Villanova Univ.

Rutgers Univ.

MCC

BNR, Canada

Univ. of Minnesota
Towa St. Univ.

Michigan St. Univ.
Univ. of New Hampshire
Palo Alto, CA

Univ. of Southern Cal.
Univ. of Illinois Urbana
SUNY Stony Brook

U. C. Berkeley

vi

Ramesh, K.
Ranka, S.

Rao, V. N.
Reddy, S. M.
Reed, D. A.
Reeves, A. P.
Reynolds, P. F.
Rivest, R. L.

Robertson, G. G.

Robinson, J.
Rodrigue, G.
Rogers, E. H.
Ruiu, L. A.
Saad, Y.
Sahni, S.
Saltz, J.

Sangiovanni-V, A.

Sanz. J.L. C

Dalidy v Lie e

Sarrafzadeh, M.
Sawafzadeh, M.

Schaper, G. A.
Schwetman, H.
Seager, M.
Sen, A.

Sen, S.
Sengupta, A.
Shaffer, P.
Shannon, G. E.
Shields, M. W.
Shokooh, A.
Shyu, W. C. H.
Simmes, S. D.
Simon, H. D.
Sinclair, B.
Singhal, M.
Somani, A. K.
Sorensen, D.
Sridhar, M. A.
Srimani, P. K.
Srinidhi, H. N.
Starzyk, J.
Stiles, G. S.
Stojmenovic, I.
Stolfo, S. J.
Stotts, D.
Stout, Q. F.
Strader, R.
Strong, R.
Stunkel, C. B.
Suk, M.

Univ. of Texas

Univ. of Minnesota
Univ. of Texas

Univ. of Iowa

Univ. of Illinois Urbana
Univ. of Illinois

The Univ. of Virginia
MIT

Thinking Machines Corp.
IBM Watson Research Ctr.
U. C. Davis

Rersselaer Poly. Inst.
Griffis AFB

Univ. of Nlinois

Univ. of Minnesota

Yale Univ.

U. C. Berkeley

IBM Almaden Research Cir.
Northwestern Univ.
Northwestern Univ.
Univ. of Central Florida
MCC

Lawrence Livermore Lab.
Arizona St. Univ.

Univ. of Alabama

Univ. of South Carolina
G. E. Res. and Dev. Ctr.
Purdue Univ.

Univ. of Kent, GB
Tennessee Tech. Univ.
Old Dominion Univ.
Science Appl. Inc.

NASA Ames Research Ctr.
Rice Univ.

Ohio St. Univ.

Univ. of Washington
Argonne National Lab
Univ. of S. Carolina
Southern Illinois Univ.
Univ. of Cent. Florida
Ohio Univ.

Utah St. Univ.

Univ. of Miami
Columbia Univ.

Univ. of Maryland

Univ. of Michigan

Texas A&M Univ.

IBM Almaden Res. Ctr.
Univ. of lllinois Urbana
Syracuse Univ.

Suzuki, I.
Swarztrauber, P.
Swisshelm, J. M.
Tang, W.

Tanik, M. M.
Tao, L.

Tham, K. Y.
Thomborson, C. D.
Tokuta, A. O.
Tomboulian, S. J.
Tong, Z.

Tsin, Y. H.
Turner, C. J.
Tymann, P. T.
Ursein, A.

Van Loan, C.
Varman, P.
Venkatesan, S.
Vernon, M. K.
Vishwanathan, S.
Visvanathan, V.
Wagar, B.

Wah, B. W.
Waid, B.

Wainer, M.
Walicki, J.
Walton, S.

Wang, C. Y.
Wang, C.
Waramahaputi, J.
White, W.
Willebeek-LeMair, M.
Winter, C. L.
Witten, M.

Whu, C.
Waunderlich, M. C.
Young-Myers, H.
Yu, K.

Zargham, M.
Zeigler, B. P.
Zeigler, G. M.
Zhang, C. N.
Zhang, H.

Zhao, F.

Zyda, M. J.

Univ. of Wisconsin
NCAR

NASA Ames Research Ctr.
Univ. of Waterloo
Southern Methodist Univ.
Univ. of Pennsylvania
Mentor Graphics Corp.
Univ. of Minn. Duluth
Univ. of South Florida
NASA Langley Res. Ctr.
Univ. of Minnesota
Univ. of Windsor
Science Appl. Inc.
SUNY Oswego

Los Angeles, CA

Cornell Univ.

Rice Univ.

Univ. of Minnesota
Univ. of Wisconsin
Univ. of South Carolina
AT&T Bell Labs

Univ. of Michigan
Purdue Univ.

Glen Ellyn, IL

Southern Illinois Univ.
Colorado St. Univ.

Cal. St. Northridge
Southern Illinois Univ.
Cal. St. Sacramento
Univ. of S. Louisiana
Ohio St. Univ.

Cornell Univ.

Science Appl. Inc.
Univ. of Louisville
Univ. of Col. Denver

U. S. Dept. of Defense
Columbia, MD

Univ. of Alabama Birm.
Southern Illinois Univ.
Univ. of Arizona
Hewlett Packard

North Carolina A&T Univ.
Temple Univ.

MIT

Naval Postgrad. School

vii

Agrawal, D. P.
Alaghband, G.
Alexander, W. E.
Allison, D. C. S.
. Altmann, E.
Armstrong, J.
Atwood, G. H.
Baheti, R. S.
Bermudez, M. E.
Blelloch, G.
Braaten, M. E.
Breitkreutz, T.
Browne, J. C.
Burdick, S.
Chan, M. Y.
Chang, P. R.
Chang, S-C.
Chang, S-C.
Chen, G-H.
Cuny, J. E.
Cypher, R.
Diamond, M. .
Doshi, K.
Fatoohi, R.
Foulser, D.
Frederickson, G. N.
Fujimoto, R. M.
Gao, G. R.

Gao, G. R.
Goel, A.
Greenberg, M.
Grosch, C. E.
Hachtel, G. D.
Han, Y.
Hanson, F. B.
Harimoto, S.
Ho,H. F.
Huang, Y. M.
Hudson, T. F.
Ibarra, O. H.
Igaraski, Y.
JaJa, J.

Jala, J.
Janakiram, V. K.
Janardan, R.
Josephson, J. R.
Jun, M. S.

69
177
124
165
198
161
120
108
151
218
243
198

251
295
290

18
112
141
308
272
202
235

42
282

34

47
181
156
141
235
133
194
117
165
112

26
173
190
194

18
69
282
156
169

AUTHOR INDEX

viii

Kim, J. H.
Kim, M. H.
Kim, S. J.
Kimbel, J.
Kumar, V.
Kumar, V.
Lander, E.
Lee, C. S. G.
Li, X.

Lin, S. H.
Lingas, A.
Little, J. J.
Logothetis, G.
Madala, S.
Marsland, T. A.
Mehrotra, R.
Mesirov, J. P.
Moceyunas, P. H.
Moona, R.
Nandy, S. K.
Newhouse, J.

Newman-Wolfe, R.

O’Hallaron, D. R.
Park, S-M.
Peng, S-T.
Peng, S-T.
Pong, T-C.
Pramanik, S.
Qu, X.
Rajagopalan, S.
Ramesh, K.
Ranka, S.
Ranka, S.
Ranka, S.

Rao, V. N.
Rao, V. N.
Roberts, J. B. G.
Sadayappan, P.
Sadayappan, P.
Sahni, S.

Sahni, S.

Sahni, S.

Sanz, J.
Sarrafzadeh, M.
Schwetman, H.
Sheu, J. P.
Simmes, S. D.

124
76

272
128
207
257
290
223
112
304
218
151
62
198
69
257
133
227
227
272
151
108
124
169
173
190
76
223
227
128
84
92
212
128
207
230
54
156
84
92
212
308
26
251
112
146

Sinclair, J. B.
Singhal, M.
Sohn, S. M.
Sridhar, M. A.
Stojmenovic, 1.
Stout, Q. F.
Stunkel, C. B.
Sugihara, K.
Suzuki, L.
Taylor, W.
Thomas, S. J.
Turner, C. J.
Varman, P.

Vishwanathan, S.

Visvanathan, V.
Ward, J. S.
Watson, L. T.
Whelan, M.
Yum, T. K.

62
186
190
299
100
104
264

14

14
257

47
146
202
299

54
230
165
181
181

ix

TABLE OF CONTENTS

8 7 £ o7 AN iii
BT A 2 L o = - iv
T3 1T o 0T 1= < viii

SESSION 1C: Computational Complexity

1. (R) A General Approach to the Mapping of Parallel Computations Upon
Multiprocessor Architecturesiiiiiiiiiiiiinn i iieiie e iieeiiieeerienineraneens 1
S. J. Kim and J. C. Browne (U. of Tezas, USA)

2. (S) Parallel Algorithms for River Routingottt 9
S-C. Chang and J. JaJa (U. of Maryland, USA)

3. (S) Nearly Optimal Clock Synchronization Under Unbounded Message
Transmission TIIMIEo.i.iiniii ittt it ittt ittt ieeaetaaanaanaenaens 14
K. Sugihara (U. of Hawaii, USA) and I. Suzuki (U. of Wisconsin, USA)

SESSION 2C: Applications I

1. (R) Parallel Algorithms for Channel Routing in the Knock-Knee Model 18
S-C. Chang and J. JaJa (U. of Maryland, USA)

2. (R) A Parallel Algorithm for Minimum Dual-Cover with Application to
(@1 0 1 T Y- o T 26
Y. M. Huang and M. Sarrafzadeh (Norwestern U., USA)

3. (R) Lookahead in Parallel Discrete Event Simulationocoiiiiii. 34
' R. M. Fujimoto (U. of Utah, USA)

SESSION 4C: Numeric Algorithms I

1. (R) A Blocked Jacobi Method for the Symmetric Eigenproblem 42
D. Foulser (Yale U., USA)

2. (R) An Optimal Parallel Jacobi-Like Solution Method for the Singular Value
DCOMIPOSIEION L.ttt ittt ettt ettt ettt e e et e e 47
G. R. Gao and S. J. Thomas (McGill U., Canada)

3. (R) Modeling and Optimal Scheduling of Parallel Sparse Gaussian Estimation 54
P. Sadayappan (Ohio State U., USA) and V. Visvanathan (AT&T Bell Labs, USA)

SESSION 5C: Non-Numeric Algorithms I

1. (R) Performance of Parallel Partitioning Algorithmscoiiiiiiiiiiiin... 62
S. Madala and J. B. Sinclair (Rice U., USA)

2. (R) A Randomized Parallel Branch and Bound Algorithmc..coot 69
V. K. Janakiram, D. P. Agrawal, and R. Mehrotra (N. Carolina St. U., USA)

3. (R) Generalized Parallel Processing Model for Database Systems 76
S. Pramantk and M. H. Kim (Michigan St. U., USA)

SESSION 6C: Image Analysis and Geometry I

1. (R) Image Template Matching on SIMD Hypercube Multicomputers 84
S. Ranka and S. Sahni (U. of Minnesota, USA)

2. (R) Image Template Matching on MIMD Hypercube Multicomputers 92
S. Ranka and S. Sahni (U. of Minnesota, USA)

3. (S) Computational Geometry on a Hypercubecoiviiiiiiiiiiiiiiiiiiininnenn.n. 100
L Stogmenovic (U. of Miami, USA)

4. (S) Constant-Time Geometry on PRAMSooiiiiiiiiiiiiiiiiiiiiii i, 104
Q. F. Stout (U. of Michigan, USA)

SESSION 7C: Applications II

1. (S) Parallel Implementation of a Kalman Filter on the Warp Computer 108
D. R. O’Hallaron and R. S. Baheti (G.E. R&D Ctr., USA)

2. (S) Solving Linear Programming on Fixed-Size Hypercubesccoocvviiieian... 112
H. F. Ho, G-H. Chen, S. H. Lin (Natl. Taiwan U., Taiwan), and J. P. Sheu (Natl.
Central U., Taiwan)

3. (S) Parallel Computation for Stochastic Dynamic Programming: Row Versus
Column Orientationooieiniiiiiiiiiitiiiitaieritititetetesensearaetsessosessansnnsns 117
F. B. Hanson (Argonne Natl. Lab, USA)

4. (S) Parallel Langrangian Interpolationccoooiiiiiiiiiiiiiiiiiiii i, 120
G. H. Atwood (U. of Alberta, Canada)

5. (S) A New Approach to the Implementation of Multidimensional Signal
Processing Algorithmsooiiiiiiiiiiiii i i e 124
W. E. Alezander, S-M. Park and J. H. Kim (N. Carolina St. U., USA)

6. (S) Parallel Depth First Search on a Ring Architectureccoviiiiiiiiiian, 128
V. Kumar, V. N. Rao and K. Ramesh (U. of Texas, USA)

SESSION 8C: Artificial Intelligence

1. (R) Parallel Algorithms for Answering the Tautology Question 133
G. D. Hachtel and P. H. Moceyunas (U. of Colorado, USA)

2. (S) Parallelism in Knowledge-Based Systems with Inheritance 141
M. Greenberg and J. E. Cuny (U. of Massachusetts, USA)

3. (S) Associative Memories on the Connection Machinecociiiiiiil, 146
S. D. Simmes and C. J. Turner (Science Appl. Intl. Corp., USA)

4. (S) Parallel Generation of LR Parserscccuiiviiiiiiiiiiiieiiiniiieiinienneeiieenneens 151
M. E. Bermudez, G. Logothetis and R. Newman-Wolfe (U. of Florida, USA)

5. (S) Concurrent Design of Composite Explanatory Hypothesescoool 156
A. Goel, P. Sadayappan and J. R. Josephson (Ohio St. U., USA)

SESSION 9C: Numeric Algorithms II

1. (S) Algorithm and Performance Notes for Block LU Factorization 161
J. Armstrong (Convez Comp. Corp., USA)

xi

2. (S) The Granularity of Parallel Homotopy Algorithms for Polynomial Systems
L3 8 D0 L1 X 10 165
D. C. S. Allison, S. Harimoto and L. T. Watson (Virginia Poly. Inst., USA)

3. (S) A New VLSI 2-D Systolic Array for Matrix Multiplication and Its Applications169
S-T. Peng and M. S. Jun (U. of Maryland B.C., USA)

4. (S) Parallel Algorithms for Multiplying Very Large Integerscoovvviiiiiinniiinnn, 173
S-T. Peng and T. F. Hudson (U. of Maryland B.C., USA)

5. (S) A Parallel Pivoting Algorithm on a Shared Memory Multiprocessor with ‘
Fill-in Control ... i i i i i it it i ittt i e e 178
G. Alaghband (U. of Colorado, USA)

6. (S) Optimal Decomposition of Matrix Multiplication on Multiprocessor
Architectures ...o..vvuiiiii ittt i i i e i e it i e e 181
M. Whelan, R. G. Guang and T. K. Yum (Philips Labs, USA)

SESSION 10C: Non-Numeric Algorithms II

1. (S) Performance Analysis of an Optimistic Concurrency Control Algorithm
in Replicated Database Systemscoiiiiiiiieeiiniiirneiiire it eiiiiaeiieaenecnsneeas 186
M. Singhal (Ohio St. U., USA)

2. (S) Hypercube Algorithms for Some String Comparison Problems 190
O. H. Ibarra, T-C. Pong and S. M. Sohn (U. of Minnesota, USA)

3. (S) Time Lower Bounds for Sorting on Multi-Dimensional Mesh-Connected
PrOCESSOT ATTAYS . iutiitiein it ittetentiatntnteseasaesesnsseessseesesssasessuesssessneesoneenens 194
Y. Han (U. of Kentucky, USA) and Y. Igaraski (Gunma U., Japan)

4. (S) Accounting for Parallel Tree Search Overheadsccccoviiiiiiiiiiiiiiiiiniinnenn, 198
E. Altmann, T. A. Marsland and T. Breitkreutz (U. of Alberta, Canada)

5. (S) Sorting with Linear Speedup on a VLSI Networkccoviiiiiiiiiiiiiiiiinannnn, 202
P. Varman and K. Doshi (Rice U., USA)

6. (S) Concurrent Insertions and Deletions in a Priority Queuecoooiiiiina., 207
V. N. Rao and V. Kumar (U. of Texas, USA)

SESSION 11C: Image Analysis and Geometry II

1. (R) Convolution on SIMD Mesh Connected Multicomputerscooenviinnnenn. 212
S. Ranka and S. Sahni (U. of Minnesota, USA)

2. (S) Parallel Solutions to Geometric Problems on the Scan Model of Computation 218
G. Blelloch and J. J. Little (MIT, USA)

3. (S) Parallel Template Matching Algorithmscooiiiiiiiiiiiiiiiiiiiiiiiiin e, 223
X. Qu and X. Li (U. of Alberta, Canada)

4. (S) Linear Quadtree Algorithms on the Hypercubecocoiiiiiiiiiiiiiiiiiiniinenn, 227
S. K. Nandy, R. Moona and S. Rajagopalan (Indian Inst. of Sci., India)

xii

5. (S) Optimising a Reconfigurable MIMD Transputer Machine for Line-of-Sight
Calculations on Large Digital Mapsc.coiiiiiiiiiiiiiiiiiiiiiiinriiineiiniieeniioennnn,
J. 8. Ward and J. B. G. Roberts (Royal Signals and Radar, UK)

SESSION 12C: Applications III

1. (R) Implementation and Analysis of a Navier-Stokes Algorithm on
Parallel Computersooiuiiiniiiiiiiiii ittt itiittineerietrnrarisneesnnsnrnenens
R. Fatoohi (NASA Ames Res. Ctr., USA) and C. E. Grosch (Old Dominion U., USA)

2. (R) Solution of Viscous Fluid Flows on a Distributed Memory Concurrent
L0713 14§+ 3 LT3
M. E. Braaten (G.E. R&D Ctr., USA)

3. (R) Parallelizing an Electron Transport Monte Carlo Simulatorcooeee
H. Schwetman and S. Burdick (MCC, USA)

SESSION 14C: Applications IV

1. (R) Protein Sequence Comparison on a Data Parallel Computercooeuet
E. Lander (Harvard U.), J. P. Mesirov, and W. Taylor (Thinking Mach. Corp., USA)

2. (R) Linear Optimization Via Message-Based Parallel Processing
C. B. Stunkel (U. of Illinois Urbana, USA)

3. (R) Results of a Multiprocessor Implementation for Sequential Decision
g 0T T T
M. Diamond, J. Newhouse and J. Kimbel (FMC Corp., USA)

SESSION 15C: Graph Theory

1. (R) Space-Efficient and Fault-Tolerant Message Routing in Outerplanar
F = 0 3
G. N. Frederickson (Purdue U., USA) and R. Janardan (U. of Minnesota, USA)

2. (S) A Decomposition Approach for Balancing Large-Scale Acyclic Data
Flow Graphs .. .ooiuiiiiii i i it it ittt i et it et
P. R. Chang and C. S. G. Lee (Purdue U., USA)

3. (S) Dilation-2 Embeddings of Grids into Hypercubesoociiiiiiiiiiiiiiniininn.,
M. Y. Chan (U. of Tezas at Dallas, USA)

4. (S) Some Results on Graph Coloring in Paralleloooiiiiiiiiiiiiiiiniiinn,
S. Vishwanathan and M. A. Sridhar (U. of S. Carolina, USA)

5. (S) Subgraph Isomorphism for Connected Graphs of Bounded Valence and
Bounded Separator is in INC ..ottt ittt ittt iai e tieteiieiienenetacaaenenns
A. Lingas (Linkoping U., Sweden)

LATE PAPER - SESSION 1C

1. (S) Optimal Sorting on Reduced Architectures..........c.coviiiiiiiiiiiiineinsnonranennes PR
R. Cypher (U. Wash., Seattle, USA) and J. L. C. Sanz (IBM Almaden Research Ctr., USA)

xiii

A GENERAL APPROACH TO MAPPING OF PARALLEL
COMPUTATIONS UPON MULTIPROCESSOR
ARCHITECTURES

S.J.Kimand J. C. Browne

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188

Abstract -- This paper defines and describes a broadly appli-
cable approach to mapping of parallel computations upon
multiprocessors, and briefly sketches the related mapping
algorithms. The approach begins with a graph representation
of a parallel computation and first generates a reduced graph
by merging nodes with high internode communication cost
through iterative use of a critical path algorithm. This graph
is then mapped to a graphical representation of a multiproces-
sor architecture by the mapping algorithms. These algo-
rithms attempt to minimize the total execution time including
both computation and communication times. The algorithms,
while they are heuristic rather than true optimal algorithms,
are shown to yield excellent results in example applications
and have modest execution costs.

1. INTRODUCTION

This paper defines and describes a broadly applicable
approach to mapping of parallel computation structures (con-
sisting of mutually dependent schedulable units of computa-
tions) upon MIMD multiprocessor architectures, and then
sketches the related heuristic mapping algorithms. It also
gives examples of the results obtained by application of the
algorithms to different types of parallel computation struc-
tures and different multiprocessor architectures. The algo-
rithms are based upon the mapping of a graphical representa-
tion of a parallel computation structure [4, 5] upon a graphi-
cal representation of a multiprocessor architecture. In fact, we
consider a series of transformations and mappings between a
%leiuiation graph and an architecture graph as illustrated in

ig. 1-1.

The algorithms are described informally herein but com-
plete formal definitions can be found in [17]. The algorithms
apply to a broad class of graphs which can be derived from

Computation Computation
Specifications Graph
Virtual

Architecture
Graph

Virtual

Architecture
Graph

Resource Physical
Specifications Architecture
Graph

Figure 1-1 General Overview of Our Approach

Transformation
and

Translation Mapping

-

programs with various types of loop structures, and to a wide
class of architectures. The algorithms attempt to minimize the
total execution time (computation time and communication
time) of the parallel computation. Reduction of execution
time is attained mainly by reduction of communication time
by merging of schedulable units of computation. The first
step of each of the algorithms is the reduction of the compu-
tation graph to a virtual architecture graph through transfor-
mations determined by iterative application of a critical path
algorithm. This virtual architecture graph is then either
transformed into another virtual architecture graph or mapped
onto an abstracted graphical representation of a multiproces-
sor architecture (called physical architecture graph). Note that
a computation graph is assumed to have one root node and
one leaf node without loss of generality.

The algorithms are heuristics with modest execution
cost. True optimal algorithms for the scheduling problem as
stated in Section 2 are known to be NP —complete. Three
applications are given: mapping of the Sieve of Eratosthenes
to an Intel iPSC/5 [15], mapping of a Gaussian (forward)
elimination to a Sequent Balance and mapping of a molecular
physics code to an emulated Intel iPSC/5 configuration with a
mixture of fast and slow processors and communication chan-
nels. The results of the applications are surprisingly good.
Near optimal tote! execution times are coupled with near
minimal resource requirements and good workload balancing.

This paper is organized as follows: After giving the
problem statement in Section 2, we briefly review previous
work in Section 3. Then, in Section 4, after discussing our
approach and the models for computation and architecture
graphs, we explain mapping algorithms based on linear clus-
ters. Section 5 gives a brief summary of performance results
and Section 6 summarizes the status of the research.

2. PROBLEM STATEMENT

A parallel computation can be represented by a direct
acyclic graph G¢ = (N¢, E¢), where Ne = {ny,nq, -+, 1}
is a set of schedulable units of computation to be executed,
and E. specifies scheduling constraints and data dependen-
cies defined on No. A multiprocessor architecture can be
represented by an undirected graph Gp = (Np, Ep), where
Np = (P Pgs ", P} is a set of processors, and Ep
specifies interconnection topology among the processors.
The basic problem is to find a mapping of G onto Gp which
minimizes schedule length (or makespan) defined as:

max Y, (comp,—+comm,-j),

12k<s ijed
where ¢ = {01,0, . . ., §5} Tepresents a set of paths from the
root node to the leaf node in G, node n f (assigned to proces-
sor pyeNp (1<y<m)) is a direct descendant of node n;
(assigned to processor p,eNp (1<x<m)) in G¢, comp; is
computation time of »;, and comm;; is communication time
from n; to n; (comm;; =0, if p, =p, or n; has no direct des-
cendants).

An optimal schedule is one which meets the criteria of
the minimum schedule length for a single parallel computa-
tion structure or the maximum total throughput for a set of

simultaneously executing parallel computation structures. It
must integrate scheduling of computations and dependency
relations to resources. An approach which integrates con-
sideration of all the interacting factors is one which maps a
computation graph defining the computation structure
(including the resource requirements for execution of each
element of the computation structure) onto an architecture
graph which defines the capability and capacity of the
resource set of the execution environment. From here on we
use the term task and schedulable units of computation,
which corresponds to a node in a computation graph, inter-
changeably.

3. PREVIOUS WORK

The problem of optimal scheduling (as defined in Sec-
tion 2) of parallel computations upon multiprocessor architec-
tures has received generous attention in the literature. Algo-
rithms which yield true optimal solutions in the absence of
resource constraints are well known to be NP —complete [12,
21]. In fact, it is proven by Kim [17] that the other interesting
scheduling problems are also NP —complete or worse in com-
putation complexity.

There have been many heuristic algorithms proposed in
the past. Previous approaches have focused mainly on the
development of specific mapping strategies for particular
multiprocessor architectures. Some attempt to take advantage
of the unique hardware characteristics such as interconnec-
tion topologies of multiprocessor architectures under con-
sideration. Since each strategy is usually an ad-hoc scheme, it
is in most cases applicable to some limited class of multipro-
cessor architectures (e.g., tightly-coupled homogeneous
architectures [2], loosely-coupled homogeneous architectures
[23], loosely-coupled heterogeneous architectures [11], or
multicomputers connected in point-to-point fashion [6]).

Various simplifying assumptions are common. For
example, Bokhari [3] studies the assignment of tasks to pro-
cessors with the restriction that the number of tasks should be
less than or equal to the number of processors. Shen and Tsai
[20] propose a graph matching approach for solving task
assignment to processors, but ignore dependency relations
among tasks. Some approaches have limited scheduling
objectives; they find the best schedule with respect to either
the total computation time [13] or interprocessor communica-

tion time [14]. Other approaches are interested in balancing.

the workload of the total multiprocessor architecture [10, 22].

In most scheduling strategies for tightly-coupled archi-
tectures, specific interconnection networks such as the
Butterfly switch, the Omega network, the SW-Banyan net-
work or a composition of them [19] are assumed. On the
other hand, most research has not taken into account schedul-
ing constraints, resource limitations, and/or the current work-
loads of processors. It is frequently assumed that each pro-
cessor is identical (i.e., all have the same processing speed,
equal number of communication channels, and identical
memory capacity). Finally, while most scheduling strategies
make heavy use of busy-waiting as a synchronization
mechanism, there is little attempt to reduce or avoid using it.

All in all, there are a myriad of multiprocessor schedul-
ing strategies which can be applied to specific multiprocessor
architectures. On the other hand, there is little research
which attempts an integrated approach to multiprocessor
scheduling which could be applicable to various multiproces-
sor architectures regardless of underlying architectural
characteristics.

4. APPROACH AND ALGORITHMS
4.1. Approach

One of the contributions of this paper is to propose algo-
rithms based on linear clustering. A linear cluster is a con-
nected subgraph of a computation graph which is in the form
of a linear list of schedulable units of computation. Linear
clustering is an effectual heuristic to compromise between
two conflicting goals of multiprocessor scheduling, minimi-
zation of interprocessor communication and maximization of
potential parallelism, and to satisfy the other goals,
throughput enhancement and workload balance, relatively
well. The underlying idea of linear clustering is that the
schedulable units of computation that are sequentially depen-
dent on each other are to be assigned to one processor, while
those that are mutually independent are to be allocated to
separate processors. We select linear clusters on the basis of
total execution time on an architecture with a processor for
each node of the graph and a distinct communication channel
per each edge of the graph. The critical restriction of linear
clustering is that it expects a computation graph to be acyclic.
To minimize this restriction, we identify cases in which
cyclic computation graphs can be transformed into acyclic
graphs in a straightforward manner [17].

A computation graph is transformed into a virtual archi-
tecture graph (VAG) by linear clustering. The VAG in fact
represents an optimal multiprocessor architecture for the
computation graph. The optimal architecture provides one
processor to every linear cluster so that mutually independent
tasks belonging to different linear clusters can be executed in
parallel as long as possible. Furthermore, direct communica-
tion channels are always available for any adjacent linear
clusters in the optimal architecture.

The VAG may be transformed into another VAG by
merging two or more linear clusters into one cluster. Two
linear clusters K| and K, are combined into one if K, may
start only after K ; finishes or may be executed only while K4
is idle. It contributes to further balancing the workload of
processors, and further reducing the amount of resources to
be utilized and interprocessor communication overhead.

After constructing a VAG which represents the optimal
multiprocessor architecture for a given computation graph,
we then find an optimal mapping of the VAG onto a physical
architecture graph (PAG) which represents the target archi-
tecture. This mapping is called a physical mapping as it is
the final mapping of a computation graph onto a real physical
multiprocessor architecture. We develop homogeneous and
heterogeneous mapping algorithms for homogeneous and
heterogeneous architectures, respectively.

These algorithms rely on not only local information but
also on limited global information. The key issue is how to
reduce the mapping complexity while sacrificing as little
optimality as possible. A dominant request tree is a maximal
spanning tree of a VAG . It provides limited global informa-
tion on the VAG such as the mapping order of the nodes and
the edges whose adjacency should be maintained. Both map-
ping algorithms utilize dominant request trees, but take quite
different approaches to mapping the trees onto PAG ’s. Most
importantly, in the case of homogeneous mappings, the trees
are directly mapped onto PAG’s. On the other hand, in the
case of heterogeneous mappings, they are mapped onto dom-
inant service trees. A dominant service tree is a maximal
spanning tree of a PAG . For heterogeneous mappings, one of
the important issues is how to identify and utilize resources
with high performance. A dominant service tree provides
such information.

4.2. Model of Computation

Browne [5] proposes a directed graph as a representation
basis of a parallel-.computation, in which the nodes represent
the bindings of operations to data and the edges represent

dependency relations between schedulable units of computa-
tion executed at the nodes. Our computation graph model is a
triple (G,, f&O™, f&o™™), whose first component
G, =(N,, E,) specifies a parallel computation. Computation
graph G, is a directed acyclic graph and defined as follows:

(i) AnodesetN.={nyny - ,mh

(il) Anedge set £, = {eq, €9, - , e}, where any given

edge e, = (n;, n;) is directed from node n; to node n;.

To be specific, graph G, defines computation steps by
the nodes and sequencing among the steps by the edges.. The
remaining components provide information necessary for
mapping the computation ”%;aph onto a target architecture.
The second component f 5% is a function which maps each
node in N, onto a positive integer which is the expected com-
putation time used by the schedulable unit of computation
corresponding to the node. The next function fZo™" maps
each edge (n;, n;) in E, onto a nonnegative mteger which is
the expected amount of internode communication from node
n; to node n;. For example, if f7”""(e,) = Nyy,, for e, =
(n,,n i), then the total length of messages sent from n; to n is
N bytes bytes.

Our computation graph is a restricted model in a couple
of ways. The critical restriction that makes the model inap-
propriate for representing some parallel computations is that
a set of edges entering and leaving a given node may not be
joined by or conditions. The other restriction is that compu-
tation graphs are required to be static; neither new nodes nor
new edges can be created during runtime. The main reason
for these restrictions is to avoid ambiguity in determining the
computation and communication requirements of the nodes
and edges in a computation graph.

The model for architecture graphs provides a representa-
tion basis for the structural description of multiprocessor
architectures. We consider three types of resources: proces-
sors, communication channels and memory. Our architecture
graph model is also a triple (G,, £, f£°™™), whose first
component G, =(N, E,) is an undirected graph defined as

follows:

(i) Anarchitecture node set N, = {an, an,, -+ ,an;};

(ii) An architecture edge set E, = {ae, ae,, -+ , ae},
where any architecture edge ae, (an;, anj) is
undirected.

In an architecture graph, an architecture node represents
a processor as well as a memory module, and an architecture
edge represents a communication channel between two pro-
cessors. The second component f$°% is a function which
maps each architecture node in N, onto a pair of positive
integers which denote the level of computing power of a pro-
cessor relative to the others in the architecture and the current
local memory size. A common global memory may be
specified by a dummy architecture node which is fully-
connected with the other architecture nodes. The next func-
tion f com™™ maps an architecture edge (an;, an ;) in E, onto a
positive integer which represents the bandwidth of communi-
cation channel from an; to an; and vice versa.

It is assumed that an architecture graph is static; the
resource configuration of a physical multiprocessor architec-
ture will not be changed dynamically during runtime. More-
over, it maintains the exact current status of the architecture.
The status includes the information on which processors are
currently active/inactive, which communication channels are
currently available and what is the current memory capacity
available in each processor.

4.3. Mapping Based on Linear Clusters
Clustering techniques have been used in a variety of

areas in computer science [1, 7]. In this section, we propose
a new mapping technique based on linear clustering and
linear cluster merging. After discussing linear clustering and
merging, we explain how to iteratively refine linear clusters
(if necessary) for the minimization of schedule length.

4.3.1. Linear Clustering

Linear clustering is a fundamental idea of our mapping
algorithms discussed in Section 4.4. A cluster of G¢ = (N,
Ec) is called a linear cluster K if it satisfies the following
conditions:

¢ K is nonempty;
* K is a connected subgraph of G;

» Both indegree and outdegree of every node in K is less
than or equal to 1.

Linear clustering is a special case of general clustering in that
a linear cluster is a degenerate tree in which each node has at
most one direct ancestor and/or one direct descendant, while
a cluster, in general, is an arbitrary graph.

The following algorithm LinearCluster illustrates how
to identify linear clusters:

LinearCluster (G, K)
/* G is a (cycle-free) computation graph. */
/* K is a set of linear clusters. */
Begin
LetK =(;
Find a longest path P from the root to a leaf node in G ;
During traversing path P backward
from the leaf to the root node,
cut all the incoming and outgoing edges
except the one belonging to P ;
For each connected subgraph S of G,
If both indegree and outdegree of each node in §
is less than or equal to 1,
Then
K=KyS
Else Do
LinearCluster (S, K”);
K=K K’
End Do;
End LinearCluster.

Apath (ny, ny,..., ny) of graph G¢ = (N¢, Ec) such that
n; € Ne and (n;, n;,1y) € E¢ is considered the longest path
1f jt maximizes the ollowmg function:

Z(ml comp, + (1_(‘)1) (0)2 commygayy + (1 0)2)) Z,, Tcomm(,‘,),)) + ml'Tcampn

Jj&€Nuyy

where Tc,,mp is the computation time "of node n, (1<k<l),
Teomm, 18 the communication time of node n; with an adja-
cent node n, (1<s</ and 1<z<l), Nf,d] denotes a set of nodes
adjacent to n, (1<z<!), and both ®; and ®, are normalization
factors.

4.3.2. Linear Cluster Merging

In this section, we investigate a means to merge two or
more linear clusters into one without affecting potential
parallelism existing in a computation graph. It may contri-
bute to further balancing the workload of processors. It may
also contribute further reducing the amount of resources to be
utilized and interprocessor communication overhead.

The level numbers may be used to identify potential
parallelism [18] in a computation graph if defined as follows:

level (T)=1ifT is a root node;
= [max(level (A) for each direct ancestor A of T)]

+ 1, otherwise.

Then, the same level number implies mutual independence.
To be more specific, if a group of tasks have the same level
number, they are mutually independent and may be simul-
taneously executable.

In order to define conditions for merging linear clusters,
let L; represent a set of level numbers assigned to tasks in
linear cluster K;. Two linear clusters K; and K;; are said to be
sequentially strong —dependent if they satisfy the following
conditions:

1) Li N L] =
2) The trailer node of linear cluster K; precedes the header
node of linear cluster K ;.

Two linear clusters K; and K; are said to be mutually
strong —dependent if they satisfy the following conditions:

2) For two tasks Ty and T, in K;, T, is a direct ancestor of
T,, where the former is one of direct ancestors of the
header node of K ; and has the largest level number
among the direct ancestors, and the latter is one of direct
descendants of the trailer node of K; and has the smallest
level number among the direct descendants.

If a pair of linear clusters satisfy any of the merging condi-

tions, they can be merged into one cluster without affecting
the execution time of the computation.

4.3.3. Iterative Refinement of Linear Cluster

In the previous sections, we discussed how to transform
a computation graph G¢ into a virtual architecture graph by
linear clustering and merging. It is expected that a linear
cluster consisting of schedulable units of computation on the
critical path of G takes the longest time to finish in the VAG
in most cases. In this case, we can make use of the VAG for
the mapping onto a physical architecture graph without any
modification. This may not be true if the computation graph
has extremely heavy communication requirements on edges
not on the initial critical path. If that is the case, we may
need to iteratively refine linear clusters in the VAG so that we
can further reduce the total length of schedule prior to map-
ping. It consists of two steps:

« Linear cluster labeling;
¢ Linear cluster refinement.

During labeling step, we label edges in a computation
graph G¢ = (N¢, E¢). The level number level, 4, of edge e;;
=(n;,n j) may be defined as follows:

level 40, (e;;) = 0comp j+(1-w)-commj+level, 4, (n)),
where level,,; (n;) is the level number of node n;, comp;
and comm; are computation time of n; and communication
time from #; to n;, respectively, and @ is a normalization fac-
tor. Note that level, ;. (n j) is defined as rr}sax (leveledge (e jk))

1 i
where D; is a set of direct descendants of node n ;. These
edge labels allow us to identify the longest path to be con-
sidered for the minimization of the total schedule length in a
VAG.

After linear cluster labeling, we can determine if there
are paths through a VAG, each of whose length is longer than
the total computation time of a linear cluster corresponding to
the critical path of the original computation graph Go. If
there exist such paths, we modify the current set of linear
clusters in order to further reduce the total schedule length
through iterative refinements of them.

(2) (b) ©

Figure 4-2 Possible Refinements of Linear Clusters

In Fig. 4-1, let us assume that a new longest path is pass-
ing through nodes n; and n;, ie., the new longest path is
Cooangong, o). Tfle basic idea of linear cluster refinement
is to locate a cui edge (nj,n;) on the longest path and to
reduce the length by merging nodes n; and n; (belonging to
separate linear clusters) into one. After the two nodes n; and
n; are merged, linear clusters shown in Fig. 4-1 can be refined
as shown in Fig. 4-2. In Fig. 4-2-a, we merge n; and n; into
one cluster, and cut the edges like (n;,n;) and (n,n;) sO that
all the clusters remain as linear clusters. In Fig. 4-2-b and
Fig. 4-2-c, however, we merge them, but leave one of the
edges uncut while we cut the other edge. This type of
refinement may force us to sacrifice some potential parallel-
ism since two or more nodes (e.g., n; and n; in Fig. 4-2-b, n;
and n,, in Fig. 4-2-¢) executable in parallel are to be assigned
to the same cluster. Nonetheless, it is worthwhile to merge
two linear clusters in this way if internode communication
overhead from n; to n; is larger than the schedule extension
caused by sequential execution of nodes (e.g., n; and n; in
Fig. 4-2-b, n; and ny, in Fig. 4-2-c).

4.4. Mapping Algorithms

The subject of this section is how to map a VAG onto a
PAG. The important goal of our proposed algorithms is to
compromise between two extreme approaches [8, 18] by
reducing the complexity of the mapping algorithms while
sacrificing their optimality as little as possible. For physical
mapping, we need to take into consideration as much global
information as possible during mapping.

4.4.1. Dominant Request Tree

The basic idea of our algorithm is to find a subgraph iso-
morphism [12] from a VAG to a PAG which minimizes the
total schedule length and satisfies given scheduling con-
straints. We can easily show that the subgraph isomorphism
problem is NP —complete , making use of the fact that the
Undirected Hamilton Circuit problem is NP —complete . This
fact forces us to rely on heuristics. We map each node of a
VAG one by one in a sequential order. The key issue is then
how to determine the mapping order which leads to the
minimization of the schedule length. For this purpose, we
propose another transformation of a VAG into a tree called
Dominant Request Tree (DRT). This transformation can be
done irdependently of the target architecture (i.e., whether it

~ is homageneous or heterogeneous).

A DRT is a maximal spanning tree of a VAG. We con-
struct the DRT starting from a node called the Most Dom-
inant Node (MDN) rather than starting from an arbitrary
node in the VAG. The MDN is that node n which maximizes
the cost function defined as:

(D'Tcomp + (l—w)'Tcomm’
where T,,,,, is the computation time of n, T,,,,, is the total
communication time of n with its adjacent node(s), and is a
normalization factor. The MDN is considered to be the most
important node in the VAG in the sense that it represents a
linear cluster which includes all tasks on the critical path in a
given computation graph. Since it is usually the case that the
MDN requires the largest weighted sum of computation and
communication times among nodes in the VAG, we would
})J;ttgr assign the MDN to the most appropriate processor in a

Starting from the MDN of a DRT, we select a node with
the highest binding power among unassigned nodes incident
upon any already assigned node until all the nodes in the
DRT are selected. The binding power of node n; with
respect to an adjacent node n; is determined by:

ml'Tcomp,- + (l"ml)'(mZ'ZJcomm;j +(1-wy) > Tcompjk)’
keA;

#i

k

where Ty, is the computation time of n;, T comm, 1s the
communication time of node n; with node nj, and A;
represents a set of nodes adjacent to n;. ®, and ®, are again
normalization factors. A DRT of a \]/AG has two types of
edges: the primary and secondary edges. The former are
edges belonging to the DRT, while the latter are edges
belonging to the VAG but not to the DRT. Note that the
order in which each cluster is included in.the DRT deter-
mines the priority list L.

4.4.2. Homogeneous Mapping

The goal of homogeneous mapping is to find a subgraph
in a PAG to which a DRT of a VAG 1s isomorphic, relying
on various heuristics like connectivity, exclusion, perturba-
tion, foster mapping, and restricted pairwise exchange. The
basic approach of the homogeneous mapping is to try to
maintain adjacency of each node in the DRT with its neigh-
bors as far as possible; whenever there is a direct primary
edge from cluster K ; to cluster K », we choose processor Pg,

which has a direct channel from P . Note that Px and K,

denote a processor onto which cluster K is to be mapped and

the direct ancestor of K, respectively.

Each node of the VAG is assigned to a processor in the
order determined during transforming the VAG into the DRT .
For each cluster K in the order of the priority list L, if there
are at least two clusters which form full-connectivity with K,
we first apply connectivity mapping. This heuristic attempts
to maintain full-connectivity among clusters during mapping.
If it is not successful to maintain the connectivity or there
exist no clusters which form full-connectivity with K, then
we try to assign K to a free processor in PAG adjacent to
Pg,.. During this mapping, we apply exclusion mapping to
exclude processors in PAG which might be crucial to other
clusters yet to be assigned.

Next, we consider the case that Py, has no more free
adjacent processors. Then, K may be mapped onto a proces-
sor which is not adjacent to Py . For this case, we provide
two heuristics: perturbation and foster mappings. In both
heuristics, we first choose a processor which has the most
appropriate number of channels among currently unassigned
processors. If there is more than one, we choose the one
which is the nearest to Py, . Those unassigned processors
should be adjacent to at least one processor to which a cluster
has already been assigned.

In perturbation mapping, we attempt to preempt a linear
cluster which has already been assigned to a processor adja-
cent to Py, and to assign K to the processor. There are two
possible cases that a linear cluster may be preempted after
being assigned to a processor. First, an adjacent processor
(say, PKMJ,) of Pg, might be assigned to cluster K,4; which is
not in fact adjacent to cluster K, in the VAG. The other
possible case is that all the clusters assigned to adjacent pro-
cessors of P are in fact neighbors of K,, but K,4; might
have less communication overhead with K, than K in the
VAG.

As long as perturbation mapping does not make any
improvement, it is not possible to maintain adjacency using a
primary edge for this particular mapping. That is, cluster K
can not communicate directly with cluster K,. In order to
lessen the effect of the indirect communication, we first
check whether there is another cluster adjacent to K through
a primary edge which has already been assigned to a proces-
sor. If there is more than one, we choose a cluster K, which
has the highest binding power (other than K;,) with K. After
assuming K, as a direct ancestor of K, we reiterate the same
mapping procedure mentioned above (i.c., finding the best
mapping from processor PK,,,)' We call such a mapping
foster mapping. The only difference is that K, is now
assumed to be the direct ancestor of K for K, in the VAG.
If there does not exist such a primary edge, utilizing the
secondary edges, we repeat the same procedure as we do for
the primary edge.

Since the previous heuristics do not guarantee an
optimal mapping, we try to further improve the result by
applying restricted pairwise exchange; we do allow random
pairwise exchange of clusters to which specific codes have
been assigned during mapping [17]. Note that we keep track
of such codes based on how the clusters have been assigned
during mapping.

4.4.3. Heterogeneous Mapping

Heterogeneous mapping is a mapping of computation
graphs onto architecture graphs which represent heterogene-
ous multiprocessors. For heterogeneous mappings, it is
important to utilize resources with high performance as far as
possible so that the total schedule length can be minimized
and the workload balance can be achieved. We first need to
distinguish resources with higher performance from those
with lower performance. A Dominant Service Tree (DST)
provides a limited amount of global information on resources
in a heterogeneous multiprocessor lest our mapping algo-
rithms become totally greedy based on local information. We
can construct a DST by utilizing a maximal spanning tree
algorithm. This may be considered as a transformation of a
PAG into another PAG. In a sense, the transformation can
be regarded as prescanning of architecture graphs prior to
physical mapping. During the scanning, we collect informa-
tion like which processors have more computing power and
which communication channels have more bandwidth than
others.

After the transformation of a PAG into a DST, the
scheduling problems for heterogeneous multiprocessor archi-
tectures turn into the tree-to-tree mapping problems. The
edges in the PAG are to be divided into two different types:
the primary and secondary edges. Analogous to a DRT, the
edges belonging to the DST are called the primary edges,
while the edges belonging to the PAG but not to the DST are
called the secondary edges. The main goal of heterogeneous
mapping is to identify a mapping which maintains adjacency
of the primary edges of the VAG with those of the PAG.
When there are no primary edges available, however, we util-

ize secondary edges of the PAG during mapping. Specific
scheduling constraints (e.g., available local memory size) are
also to be applied on the fly during the mapping.

Since it is still an NP —complete problem to find an
optimal mapping from one tree to another, the issue is how to
develop efficient heuristic mapping algorithms between a
DRT and a DST. We exploit sequential mapping order of
nodes determined during constructing a DRT, and so-called
node information [17] as a means to avoid exhaustive match-
ing between two trees.

5. APPLICATIONS .

The applications described here cover regular (Sieve of
Eratosthenes, Gaussian elimination) and irregular (molecular
physics code) computation graphs, and partitioned (Intel
iPSC) and shared memory (Sequent Balance) multiprocessor
architectures.

5.1 Mapping of Sieve of Eratosthenes to an Intel iPSC

We seek here decrease of the communication time com-
ponent of the total execution time. The computation graph
for the algorithm is shown in Fig. 5-1. The VAG for the com-
putation graph is shown in Fig. 5-2. Fig. 5-3 shows the
improvement in total execution time obtained by application
of the algorithm together with the lower bound of total execu-
tion time for this execution environment.

©

Figure 5-1 Computation Graph

Figure 5-2 Virtual Architecture Graph

2
1 Unclustered
1
1
1
1
1 Clustered
1 -
Ex'ggltl%lon ! -
1m§ . .~ Theoretical
sec 1

10000 20000 30000 40000 50000 60000 70000
Maximum
e

Figure 5-3 Comparison of Total Execution Times

5.2. Gaussian Elimination on a Sequent Balance

The principal benefit to be obtained from application of
one algorithm to scheduling for a shared memory multipro-
cessor is decrease in overhead without loss of parallelism
caused by an optimal selection of schedulable units of com-
putation. The computation graph for forward elimination is
shown in Fig. 5-4. Each node A ; in Fig. 5-4 represents the
row operation to force Ay ; to zero. The VAG is shown in
Fig. 5-5. The saving in overhead is shown in Fig. 5-6 for 9
processors across a range of array sizes after linear clustering
and merging. The gain is substantial ("15%-20%) for larger
array sizes.

Figure 5-4 Computation Graph

Figure 5-5 Virtual Architecture Graph

160 Unclustered
150

140

130

120
Theoretical

50

40

30

010 10 200 20 30 350
3 o 1% 200 2% 30 3%
ATy

Figure 5-6 Comparison of Total Execution Times using 9 Processors

5.3. Modified Molecular Dynamics Code on a '"Hetero-
geneous' Intel iPSC

The effects to be studied here are those of an irregular
computation graph on a heterogeneous architecture. The
computation graph is shown in Fig. 5-7 and the VAG in Fig.
5-8. In order to obtain the effect of a heterogeneous multipro-
cessor, we assume that 50% of processors and 20% of com-
munication channels are twice as fast as real ones by setting
computation times of nodes and communication times of
edges in the VAG to % of their actual values if they are
assigned to faster processors or channels, respectively. Fig.
5-9 compares total execution times for four cases (X,y) where
x = (homogenecous, heterogeneous) and y = (measured,
theoretical). It is not surprising that the improvement in exe-
cution time is greater for the heterogeneous architecture than
for the homogeneous architecture since the clusters with

greater resource requirements can be assigned to faster pro-
cessors and channels of the heterogeneous one as far as possi-
ble.

Figure 5-8 Virtual Architecture Graph

-
'
'
|
I
|
'
1
1
|
|
|
1
'
|
'
i
'
'
i
|
|
|

50

S |

4.0

]-J

20

R

g S

b e e e m e e e e

s
'
'
'
'
'
'
'
'
'
'
1
'
1
'
'
i

S frmmmm e mm ooy

»
9

M

& H)

Theoretical
(H) ¥)

Figure 5-9 Comparison of Total Execution Times (Unclustered vs Clustered)

6. SUMMARY

The conceptually simple and computationally tractable
heuristics based on linear clustering have been found in appli-
cation to be effective and, so far as can be judged by the lim-
ited sample of applications, robust.

Future work will include test of a large number of appli-
cations, incorporation of various scheduling constraints into
the model, and analytic definition of the class of graphs
where the heuristics yield optimal schedules.

7. ACKNOWLEDGEMENT

We are grateful to Al Mok for pointing out a drawback
in the original linear clustering algorithm. This research is
partially supported by DARPA grant N00039-86-C-0167, and
DOE grant DE-FG05-85ER-25010.

REFERENCES

[1] Banerjee, I, Kim, W., Kim, S. J,, and Garza, J. F.,
"Clustering a DAG for CAD Databases," To appear in
IEEE-SE.

[2] "Butterfly (TM) Parallel Processor Overview," Bolt
Beranek and Newman Inc.,, Cambridge, MA, June
1985.

[3] Bokhari, S. H,, "On the Mapping Problem," IEEE-TC,
Vol. C-30, No. 3, Mar. 1981, pp. 207-214. i

[4] Browne, J. C., "Formulation and Programming of
Parallel Computations: A Unified Approach," Proc. of
Int'l Conf. on Parallel Processing, Aug. 1985, pp.
624-631.

[5] Browne, J. C., "Framework for Formulation and
Analysis of Parallel Computation Structures," Parallel
Computing 3, 1986, pp. 1-9.

[6] Bryant, R. M., and Finkel, R. A., "A Stable Distributed
Scheduling Algorithm," 2nd Int’l. Conf. on Distributed
Computing Systems, 1981, pp. 314-323.

[71 Chiang, W. P., "Optimal Graph Clustering Problems
with Applications to Information System Design,"
Technical Report CRL-TR-30-84, The Univ. of Michi-
gan, June 1984.

[8] Coffman, E. G., Jr., and Graham, R. L., "Optimal
Scheduling for Two-Processor Systems," Acta Informa-
tica 1, 1972, pp. 200-213.

[91 Coffman, E. G., Jr. (Ed.), Computer and Job-Shop
Scheduling Theory, John Wiley and Son, N. Y., 1976.

[10] Eager, D. L., Lazowska, E. D., and Zahorjan, J.,
"Dynamic Load Sharing in Homogeneous Distributes
Systems," I[EEE-SE, Vol. SE-12, No. 5, May 1986, pp.
662-675.

[11] Forsdick, H., Schantz, R., and Thomas, R., "Operating

Systems for Computer Networks," IEEE Computer,
Vol. 11, Jan. 1978.

[12] Garey, M. R., and Johnson, D. S., Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. M. Freeman and Company, New
York, 1979.

[13] Gottilieb, A., Grishman, R., Kruskal, C. P., McAuliffe,
K. P., Rudolph, L., and Snir, M., "The NYU Ultracom-
puter - Designing an MIMD Shared Memory Parallel
Computer," IEEE-TC, Vol. C-32, No. 2, Feb. 1983, pp.
175-189.

[14] Haessig, K., and Jenny, C. J., "Partitioning and Allocat-
ing Computational Objects in Distributed Computing
Systems," IFIP, 1980, pp. 503-508.

[15] "iPSC User’s Guide," Intel Corporation, Apr. 1987.

[16] Karp, R. M., and Miller, R. E., "Properties of a Model
for Parallel Computations: Determinacy, Termination,
Queueing," SIAM J. Appl. Math., Vol. 14, No. 6, Nov.
1966, pp. 1390-1411.

[17] Kim, S. J., "A General Approach to Multiprocessor
Scheduling,” TR-88-4, The Univ. of Texas at Ausiin,
Feb. 1988.

[18] Pathak, G. C., "Towards Automated Design of Multi-
computer System for Real-time Applications,"” Ph. D.
Thesis, North Carolina State Univ., 1984,

[19] Pfister, G. F., "The Architecture of the IBM Research
Parallel Processor Prototype (RP3)," IBM Research
Report RC 11210, June 1985.

[20] Shen, C.-C., and Tsai, W.-H., "A Graph Matching
Approach to Optimal Task Assignment in Distributed
Computing Systems Using a Minimax Criterion,"
IEEE-TC, Vol. C-34, No. 3, Mar. 1985, pp. 197-203.

[21] Ullman, J. D., "NP-complete Scheduling Problem," J.
of Computer System Science, Vol. 10, 1975, pp. 384-
393.

[22] Wang, Y.-T., and Morris, R. J. T., "Load Sharing in
Distributed Systems," JEEE-TC, Vol. C-34, No. 3, Mar.
1985, pp. 204-217.

[23] Wittie, L. D., and van Tilborg, A. M., "MICROS, A
Distributed Operating System for MICRONET, A
Reconfigurable Network Computer," IEEE-TC, Vol.
C-29, No. 12, Dec. 1980, pp. 1133-1144.

Parallel Algorithms For River Routing'
(Extended Abstract)

Shing-Chong Chang
Department of Electrical Engineering
and
Systems Research Center
University of Maryland
College Park, MD 20742

Abstract

We develop efficient parallel algorithms for
several river routing problems. These algorithms
can be implemented on the CREW-PRAM model
in O(logn) or O(log® n) time with O(n) proces-
sors, where n is the size of the input. Our algo-
rithms have fast implementations on other par-
allel models such as the mesh or the hypercube.

1 Introduction

It is well-known that many of the optimization problems
arising in VLSI routing are NP-complete (e.g. [KL],[L],
[SB],[S]). One notable exception is the class of river rout-
ing problems associated with a hierechical layout strategy
such as Bristle-Blocks([J]). See ([CS],[D et al],[LM],[LP],
[M],[P],[SD],[T]) for more examples. In this paper, fast
parallel algorithms for several river routing problems are
presented. In particular, O(logn) or O(log? n) time al-
gorithms with O(n) processors are developed for the sep-
aration problem and for the routability problem around
a rectilinear polygon ([P]).

The above problems are considered in the CREW-
PRAM model, which is characterized by the presence
of an unlimited number of processors which can access
a shared memory unit. Concurrent read is allowed while
concurrent write is not. We are aiming for efficient paral-
lel algorithms that run in O(ﬂfl), where p is the number
of processors and T'(n) is the running time of the best
known sequential algorithm with input length n. In the
rest of the paper, we assume that the reader is familiar
with some of the basic parallel techniques such as path
doubling, parallel prefix, and the Euler tour technique.
Our algorithms can be mapped into fixed-interconnection
parallel architectures such as the array architecture or the
hypercube. For example, all the algorithms stated in this
paper can be implemented on a 1/n X 1/n mesh in time
O(y/n), where n is the input length.

!Supported in part by NSA Contract No. MDA-904-85H-0015,
NSF Grant No. DCR-86-00378 and by the Systems Research Cen-
ter Contract No. OIR-85-00108.

Joseph JaJa
Department of Electrical Engineering
Institute For Advanced Computer Studies
and
Systems Research Center
University of Maryland
College Park, MD 20742

The class of general river routing problems involves
routing between ordered sequences of terminals such that
the final layout is planar. One such problem is the wiring
of two ordered sets of terminals {bg,b1,...,b,—1} and
{to,t1,- .- tn-1} across a channel between the parallel
boundaries of two rectangles. The width of the chan-
nel is the vertical distance between the two lines forming
the channel. The separation problem is to find the mini-
mum width of the channel necessary to wire all nets such
that any two wires are separated by a unit distance. We
will restrict ourselves to the case where the wires are rec-
tilinear, i.e., there is a grid structure such that each wire
consists of a set of grid line segments. Our methods gen-
eralize for all the other known variations ([SD],[T]).

A more general version of the river routing problem
that is known to have an efficient serial algorithm is to
perform planar routing where the ports lie on the bound-
ary of a simple rectilinear polygon. In this case, we are
interested in whether the routing is possible or not and,
if it is possible, we have to provide the detailed rout-
ing. Several interesting subproblems such as finding the
contour of the union of a set of rectilinear polygons or
determining whether a set of nets can be wired within a
set “passages” are also tackled.

2 The Separation Problem

Let {N; =< b;,t; > |1 <4 < n} be an instance of the
channel separation problem. Notice that b; and ¢; will
be also used to denote the horizontal coordinates of the
terminals relative to an arbitrary origin. A net NN; is a
right net if b; < ¢;. If b; > t;, then N; is a left net.
Otherwise, it is a vertical net. We can partition the nets
into right blocks, left blocks and vertical blocks. A set
of right nets N;, Niy1,..., N, is a right block if it is a
maximal block with the property by < bgy1 < tx, for
any ¢ < k < p. We can similarly define left blocks and
vertical blocks.

The wiring problem is reduced to wiring each block
separately. We will concentrate on the wiring of right
blocks. Obvious changes can be made to deduce the cor-
responding algorithm for left blocks.

The wiring of a net can be specified by the coordi-
nates of its bend points. For example, net N; of Figure
1 has the bend points A;q, Byy. For each net N;, we have
2k bend points, Ai1, Aig, ..., Aix and By, By, . .., B, for
some k. Not all of these bend points are needed to de-
termine the overall wiring. Let’s call A;; and B;; (bend
points closest to the bottom row) the characteristic bend
points and all the others ordinary bend points. Notice
that the characteristic bend points uniquely define the
overall wiring since once we have the wiring of N;_; and
the characteristic bend points A; and By, we can de-
termine all the ordinary bend points of N; very easily.
Figure 1 shows an example of a river routing problem
and a wiring achieving the minimum separation.

ity gty ts te t7 tgty ity liplyy ly

7

bubi biabu

byboby bybs by b7 obg by byo

Figure 1: Basic river routing problem

The algorithm to find the minimum separation is based
on the following lemma.

Lemma 1 Let N; be a net in a right block and let j be
the minimum j < i such that t; 4+ (1 —j — 1) > b;. Then
the coordinatef of the characteristic bendApointf of N; are
Aq = (bi;i—j3+1) and By = (t3+i—j,i—j+1).

We now show how to compute in parallel the index
7(2) for each .
Algorithm Index
input: A set of nets < b;,t; >, 1 < i < n, forming a right
block.
output: 7(3) such that (i) is the minimum j such that
bi—t;<i—j—1,foreach1 <¢ <.
1. Compute b} = b; — ¢ and t} = ¢; — j — 1 for each 7 and

Jj-

2. Sort the tls, say t, <tp, < ... <ty

3. For each p;, determine f(p;) = min{pili < k < n}.

4. Sort the bis and the t}s such that if a b} = t, the b} is
pushed to the lower rank.

5. For each bj, let ¢, be the closest ¢}, > b;. Then

F(ps) = 39).

Now we can find the minimum separation as well as
the charactersitic bend points of all the nets by partition-
ing the nets into blocks and by using algorithm Index and
Lemma 1.

Theorem 1 The minimum separation and the charac-
teristic bend points of n input nets can be found in O(logn)

time with O(n) processor on a CREW-PRAM. If all ter-
minals lie in the range [1, N, where N = O(n), then the
running time is O(% + logn) with p processors, for all
1<p<nl=¢ (anye>0).

3 Routing In a Simple Polygon

The routing problem of nets within a simple rectilinear
polygon introduced in([P]) is a generalization of the stan-
dard river routing problem. In this case we are supposed
to connect a set of terminals a4, az,. . ., a, on the bound-
ary of a simple rectilinear polygon to another set of ter-
minals by, bs,...,b, on the boundary of the same poly-
gon such that all the wires lie within the polygon and
no two wires intersect. Routability testing is to deter-
mine whether or not a one layer routing is possible and
detailed routing is to specify the actual wiring of the n
nets, if they are routable. We will restrict ourselves to
the rectangle case. However all the algorithms can be
generalized to any rectilinear polygon.

3.1 Detailed Routing

Let N; =< a;,b; > be an arbitrary net. The terminals
a; and b; divide the boundary of a rectangle R into two
parts. The part of smaller length will be called the in-
ternal boundary of N;. The other part will be called the
external boundary. A net N;is covered by another net N;
if the terminals of N; are in the external boundary of N;
and the terminals of NN; are in the internal boundary of
Nj. A representative net is a net that is not covered by
any other net. Figure 2 shows an example of a detailed
routing problem such that Ny, Ng and Ny4 are the rep-
resentative nets. We can partition the nets into groups
such that each group consists of a representative net and
all the nets covered by it. The groups in Figure 2 are
{1, Nz, N3, Ny, N5}, {Ne, N7, Ng, No, Nyo, N11, Nyz, Nis},
and {Ny4, Nis}. One can show the following.

(0,h) a3 bgbnbdiappaynb, b k)
bla-——J | l—" i l———ﬂw
be

———L]—“
LT} ag

615
273 L

O,
Ge
b,

i

(0,0) ay 82 a3bs b, o, a5 (0

L]

Figure 2: Basic river routing around a rectangle bound-
ary

Lemma 2 Suppose a given instance of the above problem
ts routable. Then the routing can be performed by routing
each group of nets separately.

The general strategy for specifying the routing will
be the following: (i) identify the proper groups , (ii) find
the representative nets, and (iii) specify the routing of
each group. By the parallel techniques of sorting, path
doubling and prefix computation, we can create a chain of
the nets involved in each group such that a representative
net is a sink and the chains have following properties:

Lemma 3 Let N,y, N,,,..., N, be all the representative
nets and let R(N,,) be the number of nets in the internal
boundary of Ny,. Then ©5 (R(N,,)+1) = n. Moreover,
there exists a wiring strategy such that N,, has at most
2(R(N,;) + 1) bend points.

Corollary: The total number of bend points of all the
representative nets is O(n), where n is the number of
nets.

Lemma 4 Let n be the number of nets. Then all the
groups and representative nets can be identified in time
O(log n) with O(n) processors on the PRAM. With p
processors, we obtain O(% + logn), 1 < p < n'~ and
e€>0.

We now turn to the problem of routing each group
separately. Our goal here is to identify the bend points
of each representative net. Let N =< z,y >be anetina
group whose representative is N,. Let k be the number of
nets between N and N,, including both N and N,. The
bounding perimeter of rank k is the rectilinear boundary
of the region determined by IV such that the wiring of N,
cannot lie inside it, i.e., this is the boundary of the region
within the rectangle of all the points of distance < k
of the rectangle boundary determined by N. Consider
again the case of Figure 2. Let Bj; be the bounding
perimeter of rank & induced by net N;. Figure 3 shows
the contours Bss, Bss, Baa, Bag and By;. We claim
that the following lemma is true.

Lemma 5 The union of all the bounding perimeters of
all the nets within a group determines the contour of the
group and hence determines the wiring of the representa-
tive net.

To determine the union, flatten the rectangle into
a line. Suppose a terminal p gets mapped into p. A
bounding perimeter connecting p and ¢ of rank & will get
mapped into a simple rectangle with endpoints p and §
and height k. Denote the mapped bounding perimeters
by Ry, Ra,...,R;. These rectangles determine a (union)
contour R given by its extreme points. Then map these
extreme points back to the original rectangle to get the
wiring of the representative net. Few of these points

11

by

o)

agbs by 8y ag

Bss By . .
----------- ;
oo 5
* 63 b3 ag

ay

Figure 3: The union of all bounding perimeters

around the corners may not be mapped into extreme
points of the contour within the rectangle, but rather
onto the boundary. These can be determined quickly
and then eliminated. We are now ready to state the al-
gorithm.

Algorithm Contour

Input: A group of nets with their representative.
Output: The bendpoints of the corresponding contour.

1. Determine the rank of each net, i.e. the number of
nets between itself and the representative net.

2. Determine all the bounding perimeters.

3. Flatten the rectangle boundary into a line. Map the
bounding perimeters into this line . Each corresponding
perimeter can be identified by (3, g, k).

4. Sort the triplets (p, g, k) according to k. For each k,
determine the union of line segments at distance k.

5. From each line segment generated at step 4, determine
the corresponding bendpoints. The overall contour can
be specified by the bend points.

6. Map the bend points of the contour on the line back
into the rectangle. Eliminate those points within the
rectangle which are not bend points.

Lemma 6 If the number of nets in the group is n, then
algorithm contour can be implemented in time O(log n)
with O(n) processors.

Theorem 2 Detailed routing of the representative nets
of n nets within a simple rectilinear polygon can be done
in time O(log n) with O(n) processors. With p processors,
we have O(% + logn), 1 <p< nl=¢ and e > 0.

3.2 Routability Testing

The problem may be unroutable for one of the following
reasons: (1) The graph determined by the nets when

restricted to lie within the rectangle is nonplanar. (2)
The wiring of all the nets requires more area.

Lemma 7 Whether the interconnection pattern of the
given nets is planar can be determined in time O(log n)
time with O(n) processors on the PRAM model.

A single side net is a net whose terminals lie on the
same side of the rectangle. If the terminals lie on adjacent
sides then the net is called corner net. It is a cross net
if the terminals lie on opposite sides. Partition the single
side nets corresponding to each specific side into single
side blocks such that each net except one (cover net) is
covered by one or more nets in the block. Moreover each
such block is maximal. A corner block is a maximal set of
corner nets corresponding to the same corner such that
each net except one (cover net) is covered by one or more
nets within the block. Moreover no other net outside
a block is covered by the cover net. For example, in
Figure 2, N, is a single side net, N; is a corner net and
Ng is a cross net. The single side blocks are {N, N3},
{Nz}, {N11, N12} and {N14, Ni5}, whose corresponding
cover nets are No,N7,Nq; and Nig. {Ny, N5}, {No, N1o}
and {Ni3} are the corner blocks with Ny,Ny, Ny3 as the
corresponding cover nets.

To decide whether the above blocks are routable, first
determine the wiring of all the cover nets by algorithm
Contour then check whether there is any intersection be-
tween the wires of the cover nets.

Lemma 8 Whether or not the single side blocks and the
corner blocks can be wired within the rectangle can be
determined in O(logn) time with O(n) processors.

Once the block cover nets are wired, it should checked
if there is enough space to route the remaining nets. Our
approach consists of determining the wiring capacity and
the wiring density between blocks. The wiring capac-
ity between two blocks is the number of nets that can
be wired between these two blocks, while the wiring den-
sity is the number of wires that have to be wired between
these two blocks. The capacity between blocks on two or-
thogonal sides of the rectangle boundary .is computed as
follows. Given a block B consider all the convex corners
of B. Generate 45 degree “rays” from each such corner
and determine the line segment where it intersects an-
othér block contour or the original rectangle boundary.
Based on this information, one can determine the width
of the narrowest passage between B and any other block.
The details are given in the full paper.

Algorithm Intersection

Input: Contours of single side and corner blocks on two
orthogonal sides of rectangle boundary.

Output: Intersection points of rays emanating from con-
VeX corners.

12

1. Consider the case of the the lower right corner. The
other cases can be dealt with in a similar fashion. Sort
all the line segments determined by the block contours
and the right side of the rectangle R. Determine the pro-
jection of each line segment on the diagonal, say line
segment 7 is projected into line segment p(z) on the diag-
onal.
2. Sort the projections according to their order on the
diagonal and compute p'(i) = p(i) — Ui} p(i).
3. For each ray y coming out of a corner of contour
on the horizontal side of the original rectangle, find its
intersection with the diagonal. If the intersection point
lies in p'(j), then ray y intersects segment j. Determine
the intersection point of ray y and line segment j.
4. If a ray y intersects the original rectangle boundary,
then rotate to find the intersection with the next line
segment belonging to some block contour (see Figure 4
and ray yp). Now determine the point of intersection.
For example, one can check that in Figure 4 p'(CD) =
C'D' and p'(EF) = D'F'. Hencerays y4 and yp intersect
CD and EF respectively. If we rotate yg, we can find
the intersection with the next line segment GF'.

Y
L»x 1

Figure 4: Intersection between rays and block contours

Lemma 9 Algorithm Intersection finds the intersection
points of rays emanating from convex corners with the
line segments of contours on two orthogonal sides of the
bounding rectangle in time O(logn) time with O(n) pro-
cessors.

Use algorithm Intersection to compute the intersec-
tion point of each ray with a single side contour, corner
block contour or the original boundary of the rectangle.
The capacity between blocks can then be calculated eas-
ily. Then compare with the density between blocks to
determine the routability between blocks.

Lemma 10 Testing the routability of n nets between two
orthogonal sides of a rectangle can be done in O(log n)
time with O(n) processors on the CREW PRAM model.

We now address the routability problem between two
opposite sides of the bounding rectangle. The genera-

tion of horizontal, vertical and 45 degree rays from each
convex corner is not enough to determine the routability
between two opposite sides. We will use a divide-and-
conquer strategy to handle this case.

Assume without loss of generality that all cross nets
are between the top and the bottom sides. Select two
adjacent cross nets N; and N; that split the nets almost
evenly. Let N; be to the left of N;. (Figure 5) Find the
temporary wiring of NV; as close to the left as possible and
the temporary wiring of IV; as close to the right as possi-
ble. Check whether any intersection will result. Repeat
above procedure recursively for the cross nets to the left
of N; and for the cross nets to the right of N; separately.

s B
" d

] AN 1

B 2l
[ol — U/

Figure 5: Routability between two blocks in opposite
sides

Lo \L—]\

-

Theorem 3 Testing the routability of n- nets within a
simple rectilinear polygon could be done in O(log® n) time
with O(n) processors on the CREW PRAM model.

4 References

[AH] M. Atallah and S. Hambrusch, “ Solving tree
problems on a mesh-connected processor array,”
Proceedings of the 26th Symp. FOCS, 1985, pp.
222-231.

[CS] R. Cole and A. Siegel, “ River routing every which
way, but loose,” 25th FOCS, October 1984, pp. 65-
73.

[D et al] D. Dolev, K. Karplus, A. Seigel, A. Strong and
J. Ullman, “Optimal wiring between rectangles,”
Proc. 13th Annual ACM Symposuim STOC, May
1981, pp. 312-317.

[J] D. Johannsen, “Bristle blocks: a silicon compiler,”
Proc. 16th Design Automation Conference, June
1979, pp. 310-313.

[KL] M. Kramer and J. van Leeuwen, “Wire rout-
ing is NP-complete,” technical report, University

of Utrecht, the Netherlands, February 1982.

13

[L] A. LaPaugh, “Algorithms for integrated circuit
layout: an analytic approach,” Ph.D. dissertation,
MIT, Cambridge, MA, November 1980.

[LM] C.E. Leiserson and F.M. Maley, “Algorithms for
routing and testing routing of planar VLSI layout,”
17th ACM STOC, May 1985, pp. 69-78.

[LP] C. Leieserson and R. Pinter, “Optimal placement
for river routing,” SICOMP 12(3), August 1983,
pp. 447-462.

[M] A. Mirzaian, “ Channel routing in VLSI,” 16th

ACM STOC, May 1984, pp. 101-107.

\ [P] R. Pinter, “River routing: methodology and anal-

ysis,” Proceedings of the third CALTECH Confer-
ence on Very Large Scale Integration, March 1983,
pp. 141-163.

[SB] S. Sahni and A. Bhatt, “Complexity of the Design
Automation Problem,” Proceedings of the 17th De-
sign Automation Conference, June 1980, pp. 402-
411.

[SD] A. Seigel and D. Dolev, “The separation for gen-
eral single layer wiring barriers,” Proceedings of the
CMU Conference on VLSI Systems and Computa-
tions, October 1981, pp. 143-152.

[S] T. Szymanski, “Dogleg Channel routing is NP-
complete,” manuscript, Bell Laboratories, Murray

Hill, NJ, September 1981.

[T] M. Tompa, “An optimal solution to a wire routing
problem,” Proceedings of the 12th Annual Sym-
posuim on Theory of Computing, April 1980, pp.
161-176.

NEARLY OPTIMAL CLOCK SYNCHRONIZATION UNDER

UNBOUNDED MESSAGE TRANSMISSION TIME
‘ (Extended Abstract) :

Kazuo Sugihara! and Ichiro Suzuki?

1 Department of Information and Computer Sciences
University of Hawaii at Manoa
Honolulu, HI 96822

2 Department of Electrical Engineering and Computer Science
University of Wisconsin-Milwaukee
Milwaukee, WI 53201

Abstract Consider a fully connected network of n > 3
processes in which a process can send messages to a
set of other processes simultaneously. Messages sent
from a process to other processes simultaneously at time
t are guaranteed to be delivered in the time interval
[t + é,t + 8 + €] for some § and €, where € is a constant
but é can vary and no upper bound on § is known. We
show that, under this assumption, the clocks of the n

_processes cannot be synchronized any more closely than
1+ n(+_2))e, even if the clocks run at the rate of real
time. A simple algorithm that synchronizes the clocks to
within (1+2)e is presented. The (1+1)e upper bound on
the imprecision of clock synchronization, together with
the (1 — L)e lower bound found in the literature for the
case in which both § and e are known constants, implies
that whether or not there exists a given upper bound on
the message transmission time becomes less and less sig-
nificant when the number of processes increases. This is
the first known solution for clock synchronization under
unbounded message transmission time.

1 _ Introduction

The problem of synchronizing clocks in a distributed sys-
tem has been investigated under various assumptions.
For example, in [7], Lundelius and Lynch considered the
- problem in an error-free system of n processes in which
there is an uncertainty of € in the message delivery time.
That is, for some known constants § and €, a message
sent by a process at time ¢ is guaranteed to be delivered
at the destination within the time interval [t+8,t+6+¢].
They show that, under this assumption, it is impossible
to synchronize the clocks of n processes any more closely
than (1 — 1)e, even if all clocks run at the rate of real
time. They also present an algorithm that achieves this
“bound. Clock synchronization when processes and com-

14

munication links can fail has been studied extensively in
(1] (2] [3] [5] [6] [8)].

All clock synchronization algorithms reported in the
literature [1]-[8] have been obtained under the assump-
tion that an upper bound on the message transmission
time is given. Although this may be a reasonable as-
sumption in many practical situations, achieving clock
synchronization when no upper bound on the transmis-
sion time is available is interesting, not only from the
theoretical point of view.

In this paper we consider the problem of clock syn-
chronization in a fully connected, error-free network of
n > 3 processes in which a process can send messages
to any set of processes simultaneously. We assume that
if a process P sends messages to a set S of processes
simultaneously at time ¢, then

1. the messages addressed to the processes P! € S
such that P’ # P are received within the time
interval [t + 8, + & + €] for some finite § > 0 and
€ > 0, where € is a constant but é can vary and no
upper bound on § is known, and

2. if P € S, then the transmission time of the mes-
sage from P to P itself may not be related to those
of the messages addressed to the processes P’ # P.

That is, messages sent by a process to other processes
simultaneously are delivered within a time interval of
size €, but the message transmission times can be un-
bounded.

If messages sent by a process P simultaneously to
a set S of processes such that P € S are all delivered
within a time interval of size ¢, then clock synchroniza-
tion becomes a trivial problem. It is conceivable, how-
ever, that in certain systems messages sent by a process
to itself are processed locally and delivered immediately,
whereas messages sent to other processes are delivered

more or less simultaneously when the communication
channel becomes available after an unpredictable delay.!
The model we consider can be a close approximation of
such a system.

It should be easy to see, at least intuitively, that syn-
chronizing clocks without using an upper bound on the
message transmission time is more involved compared
to the case in which an upper bound is known. For ex-
ample, in the algorithm of [7], a process which receives a
message assumes that the transmission time of the mes-
sage was exactly § + €/2, the average of the lower and
upper bounds. If no upper bound is given, such a simple
approximation is not possible.

We show that, under the assumption described
above, the clocks of n processes cannot be synchronized
any more closely than (1 + m)e for any n > 3, even
if the clocks run at the rate of real time. The proof is by
the “many scenarios” techniques [1] [7] used commonly
for this purpose. Next, we present a simple algorithm
that synchronizes the clocks of n processes to within
(1+ L)e for any n > 3. The algorithm achieves optimal
clock synchronization for n = 3 and is nearly optimal
for n > 4.

An interesting observation is in order. The (1 — 1)e
lower bound on the imprecision of clock synchroniza-
tion proved in [7]-for the case in which the message
transmission time is in the range [6,6 + €| for known
constants 6§ and e—increases and approaches € when n
becomes larger. In contrast, the (1 4+ 1)e upper bound
obtained under the assumption of this paper decreases
and approaches € when n becomes larger. This implies
that whether or not there exists a given upper bound
on the message transmission time becomes less and less
significant when the number of processes increases.

2 ’I‘he Model

Let Py, P,,..., P, be n > 3 processes. We assume that

messages sent by a process to other processes simulta-
neously at real time ¢ are received in the time interval
[t + 6,¢ + 6 + €] for some finite § > 0 and € > 0, where
¢ is known but é can vary and no upper bound on § is
known. Other than this, the model we use is essentially
that of [2] [7].

Process P; has a physical clock C; which is a real-
valued function of real time. We assume that the phys-
ical clocks run at the rate of real time and they cannot
be reset by the processes; that is, Ci(t) = Ci(0) + ¢ at
every real time ¢ > 0. The processes have no access to
the real time.

1For example, in a local area network consisting of sites running
UNIXTM connected by Ethernet, messages sent from a process to
itself are routed through a local “loopback” interface whose delay
is independent of the load of the Ethernet.

15

Destination Transmission Time

Pl d+€

P, d+(1—-25)e
Pis do (1 i)
.P,‘+1 d+(1—ﬁ)€
Piy2 d+(1—25)e
Pn—l d+(1—:_::25)€

P, d

Table 1: Message transmission times from P; to other
processes in e;.

Process P; has a local variable A; (for adjustment)
which provides the difference between the logical and
physical clock times of P;. That is, the logical time L;(t)
of process P; at real time ¢ is given by L;(t) = C;(t) +
A;(t), where A;(t) is the value of A; at ¢.

Following [2], we assume that a clock synchroniza-
tion algorithm is a deterministic algorithm in which the
state transition and the action of sending messages of
process P; at real time ¢ is determined only by the value
of Ci(t) and the message history of P; at ¢t. Here, the
message history of P; at real time ¢ is the sequence con-
sisting of tuples of the form < P;,m,T,y > for ev-
ery message P; has sent or received before ¢, where
< Pj,m,T,y > represents that message m was either
sent (y = sent) or received (y = received) to or from
P; when the value of C; was T. An algorithm is said
to synchronize the logical times to within « if the algo-
rithm eventually terminates, and when it terminates at
real time ¢, |L;(t) — L;(t)] < 7 holds for any i # j.

3 Lower Bound

In this section, we show that no algorithm can synchro-
nize the logical times of n processes any more closely
than (1 + ;z15)e in our model. The proof is by the
standard “many scenarios” techniques [1] [7].

Theorem 1 No algorithm can synchronize the logical
times of n processes to within v, for any v < (1 +

n(nl-2))6'

Proof (Sketch) Fix an algorithm that synchronizes the
logical times to within v. Let e; be an execution of the
algorithm in which the transmission times of messages
from P; to other processes are as given in Table 1, where
d > (14 7%5)e is a constant. The transmission time of
a message from P; to P; itself is an arbitrary constant.
Since in e; messages sent by a process to other processes
at real time ¢ are received within the time interval [t +

d,t + d + €] of size ¢, e; is a valid execution.

Consider another execution e, which is obtained from
e1 by “shifting” [7] P; by (1+ -2;5)e. That is, e; is iden-
tical to e; except that

1. at any given real time, the physical clock reading
of P in e, is larger than that in e; by (1 + 713)e,

2. the transmission time of a message from P, to P;
(j # 1) is increased by (1 + 35)e,

3. the transmission time of a message from P; (j # 1)
to Py is decreased by (1+ -1;)e, and

4. all state transitions and actions of sending mes-
sages of P, take place earlier in e; than in e; by
(1 + 715)e in real time.

The execution e, is valid, since all messages sent by a
process to other processes are received within a time
interval of size €. Similarly, for 2 < ¢ < n, we can
obtain a valid execution e; from e;_; by shifting P;_; by
1+ H)e

Now assume that in e;, the logical times of P;, P,
..y Py are T1,Ts,...,T,, respectively, at real time iy
when the algorithm has terminated at every process.
By assumption we have

T,,ST1+7.

Since during the execution of the algorithm each process
has the same message history in e; and e; when its phys-
ical clock has the same value, the values of A; computed
by the algorithm are the same in e; and e;. Thus the
logical times of P, and P; at t; in e are 7 + (1 + n%z-)e
and T3, respectively. Then by assumption we have

1
n—2

Ti+(1+

Je<Tr+7.

Similarly, for 2 < ¢ < n, the logical times of P;_; and P;
at ty in e; are Ti_; + (1+ ;15)e and T}, respectively, and
thus by assumption we have

1
< T4 .
n_z)e_T.+7

T+ (1 +

By adding the n inequalities we obtain

; 1
52> (1+m)6

(]

4 A Simple Algorithm

There exists a simple algorithm which synchronizes the
logical times of n processes to within (1 + 1)e for any
n > 3.

The concept of “view” introduced below is essen-
tial in describing the algorithm. Suppose that P; sends
the message SNAPSHOT; to Py,...,Pi1,Piy1,..., Py

16

simultaneously, and let v; (j # ¢) be the value of the
physical clock C; at the moment SNAPSHOT; is re-
ceived by P;. Then the n-tuple

V = (v1,V2y. ..y Vic1, —, Vig1y- -+, Vn)

is called a view of P;, where ‘-’ represents “don’t care.”
Since messages sent simultaneously by a process to other
processes are received within a time interval of size €, the
following lemma is immediate.

Lemma 1 Let V = (v1,V2,...,0i—1,—, Vit1,---,Un) D€
a view of P;. There ezist some real timet and oy, ay,.. .,
Qi1,Q41,. .., 0y Such that for each j # 1, 0 < a; < ¢
and v; = Ci(t) + a;.

The algorithm can be divided into the following two
phases. It is a straightforward exercise to represent the
algorithm in any given language in such a way that its
execution will eventually terminate at every process.

Phase 1 Obtain a view
Vi=(vi1,%i2, -+ - Vijic1, = Vii41s- - -, Vi)
of P; foreach 1 <i <n.

Phase 2 Compute Ay, 4s,...,A, from W, V,,...,V, as
follows. For 1 <17 < n,

where for 1 < k,7 < n,

Dy: = 5 Ticicngki(vie — o) ifk#1i
* 0 ifk=1.

For k # 4, Dy is the average of the differences be-
tween the physical clock readings of P and P; observed
in views V; such that [# k,i. A; is the average of Dy ;
over all k, including D;; = 0.

By Lemma 1, for each view

1’1' = (Ui,ly Vi2y 0«03 Vii—1,—, Viitlyeeoy vi,n)a

there exist t; and a1, @iz, . .., Qijio1, Qi1 . -, Qi such
that 0 < a;; < eand vi; = Cj(t;) + a;; for j #4. In
the following let ¢ be any real time when the execution
of the algorithm has terminated at every process.

Lemma 2 For1<i<n,

Li(t) % 2. Ci(®)

1<k<n
1

+ Z (az,k - Otl,.').

n(n —2) 1<k<n, k#i 1<I<n, I£k,i

Proof Since Ci(t;) — Ci(t;) = Ci(t) — Ci(2), for k # i
we have

1
n—2
1
n—2

Dy

¥

> (vig — vip)

1<I<n, I£k,i

Y (Celt) + ang)
1<i<n, 1k,
—(Ci(t) +)
Gl -Gt +— ¥

N =2 Glmiphi

(oux — auy).

Thus

Li(t) = Ci(t)+ Ait)

1
= Ci(t)+= > Di;
1<k<n

= Ci(t)+ % Y. (Ct) - Ci(t)
1<k<n, k#i
! >

n(n — 2) 1<k<n, k#i 1<I<n, I#k,i
1
= — E Ck(t)
™ 1<k<n
1
bty Y%

n(n —2) 1<k<n, ki 1<I<n, Ik,

(e — auy)

(e — auz).

Theorem 2 The algorithm synchronizes the logical
times of the n processes to within (1 + L)e. That is,

ILi(t) = Li(®)] < (1 + 2)e for any i # 5.
Proof (Sketch) By Lemma 2,
Li(t) — L(t)

Y ¥

n(n —2) 1<k<n, k#i 1<I<n, I#k,i

- X >

1<k<n, k#j 1<I<n, l#k,j

(au — au)

(g = ou5)}

1
= ——(X-Y
n(n —2) (X),

where
X=) apgp+-1) Y ajt+@-2a,

1<k<n, ki, 1<i<n, I,
and
Y = E a;,k + (n - 1) Z (758 + (Tl - 2)01]',;.

1<k<n, ki 1<I<n, I,

Since 0 < oy < € for [# k, we have

0<X)Y < {n-2)+(n-1)(n—-2)+(n—-2)}e

(n+1)(n — 2)e.

17

Thus
(n+1)(n-2)
|Li(t) — L(t)| < Wf
= (1+ ;]_;‘)6
]
5 Remarks

Since the (1 + ;r55)e lower bound and the (1 + L)e
upper bound proveJ in this paper coincide with each
other if n = 3, the algorithm achieves optimal clock
synchronization for n = 3. Closing the small gap of
ﬁe between the two bounds for n > 4 remains as an
open problem.

References

[1] D. Dolev, J. Halpern and R. Strong, “On the pos-
sibility and impossibility of achieving clock synchro-
nization,” J. Computer and System Sciences 32,
1986, pp. 230— 250.

[2] J. Halpern, N. Megiddo and A. Munshi, “Optimal
precision in the presence of uncertainty,” Journal of
Complezity 1, 1985, pp. 170-196.

(3] J. Halpern, B. Simons, R. Strong and D. Dolev,
“Fault-tolerant clock synchronization,” Proc. 8rd
Annual ACM Symposium on Principles of Dis-
tributed Computing, Vancouver, Canada, 1984, pp.
89-92.

[4] L. Lamport, “Time, clocks and the ordering of events
in a distributed system,” Communications of the
ACM 21, No. 7, 1978, pp. 558-565.

[5] L. Lamport and P. M. Melliar-Smith, “Byzan-
tine clock synchronization,” Proc. 9rd Annual ACM
Symposium on Principles of Distributed Computing,
Vancouver, Canada, 1984, pp. 68-74.

[6] J. Lundelius and N. Lynch, “A new fault-tolerant
algorithm for clock synchronization,” Proc. 3rd An-
nual ACM Symposium on Principles of Distributed
Computing, Vancouver, Canada, 1984, pp. 75-88.

[7] J. Lundelius and N. Lynch, “An upper and lower
bound for clock synchronization,” Information and
Control 62, 1984, pp. 190-204.

[8] T. K. Srikanth and S. Toueg, “Optimal clock syn-
chronization,” Proc. 4th Annual ACM Symposium
on Principles of Distributed Computing, Ontario,
Canada, 1985, pp. 71-86.

Parallel Algorithms For Channel Routing
in the Knock-Knee Model

Shing-Chong Chang
Department of Electrical Engineering
and
Systems Research Center

University of Maryland
College Park, MD 20742

Abstract

We consider the channel routing problem of a
set of two-terminal nets in the knock-knee model.
The known strategy to handle this problem seems
to be inherently sequential. We develop a new
approach to route all the nets within d tracks,
where d is the density, such that the correspond-
ing layout can be realized with three layers. Both
the routing and the layer assignmeni algorithins
have linear time sequential implementations. In
addition, they both can be implemented on the
CREW-PRAM model in O(log n) time with O(=n)
processors, where n is the number of nets. With
1 < p < nl7¢ processors, € any positive constant,
the running time of the algorithmsis O(% + log 7).

1 Introduction

The recent advances in the VLSI technology allow the
fabrication of highly complex systems on single chips.
Sophisticated software tools are needed to successfully
design such systems. In particular, the routing phase is
a critical and time-consuming part of the overall design
process. Unfortunately, it turns out that most routing
problems are NP-complete and hence no efficient solu-
tions seem to be likely. There are few exceptions, how-
ever. For example, various river routing (one-layer) prob-
lems, the two-layer channel routing with no constraints,
and few routing problems in the knock-knee model are
known to have efficient solutions ([D et al],[MP],[O],[P],
[PL]). Our goal is to develop a good set of techniques to
obtain fast and efficient parallel routing algorithms.

In this paper, we consider the channel routing prob-
lem of two-terminal nets in the knock-knee model. A
routing algorithm that uses d tracks, where d is the den-
sity, is presented in ([PL]) such that the routing can be
realized with three layers. This algorithm can viewed
as a nontrivial extension of the left edge algorithm ([O])
in which the routing is done row by row, left to right

1Supported in part by NSA Contract No. MDA-904-85H-0015,

NSF Grant No. DCR-86-00378 and by the Systems Research Cen-
ter Contract No. OIR-85-00108

18

Joseph J4J4

Department of Electrical Engineering
Institute For Advanced Computer Studies
and
Systems Research Center
University of Maryland
College Park, MD 20742

according to a greedy strategy. However, this method
seems to be inherently sequential even for the case when
each column has at most one terminal. We develop a
novel strategy to obtain the optimal routing (which is
in general different from the one obtained by the [PL]
method) such that both the routing and the layer assign-
ment algorithms have linear time sequential implemen-
tations. Moreove, they are both fully parallelilzable in
the sense that they can be implemented on the CREW-
PRAM model in O(logn) time with O(n) processors,
where n is the number of nets. If all the terminals lie
in the range [1, N], where N = O(n), then these algo-
rithms will run in time O(% + logn) time with p < nl'=¢
processors, where € is any positive constant.

The rest of the paper is organized as follows. The ba-
sic definitions needed for the rest of the paper are intro-
duced in the next section, while in section 3 we develop a
novel routing strategy and establish its correctness. The
layer assignment algorithm is presented in the last sec-
tion.

2 Definitions

We assume that the reader is familiar with the basic
definitions related to channel routing (See for example
[OL,[PL]). In this paper, we restrict ourselves to two-
terminal nets N = < ¢,b >, where ¢ is the top terminal
(on the top row) and b is the bottom terminal. ¢ and b
will also represent the integer displacements of these ter-
minals relative to a fixed origin. N is a left (right) net
ift < b (t > b). Otherwise it is a vertical net. We will
also represent a net N as N = [l,r], where | < o,
I = min{t,b} and r = maz{t,b}. We refer to [and r
as the left and right terminals of N respectively. An in-
stance of the channel routing problem (CRP) is a channel
consisting of a rectangular grid and a set of nets whose
terminals lie on the grid points of the (horizontal) par-
allel boundaries. The local density d, at z is defined to
be the number of nets [l;;7:] such that I; < 2 < r;. The
density d is given by d = maz,{d;}. A routing in the
knock-knee model consists of a set of edge-disjoint paths
(made up of gridline segments) connecting the terminals
of each net. Hence a shared grid point could be one of
two types: crossing and knock-knee (Figure 1).

-
=

Figure 1: Types of shared grid points

Let Ly, Lo, . .., L; be a set of conduction layers stacked
on top of each other such that L; is on the bottom and
L, is on the top. A wiring layout is an assignment of
single layer to each routing segment such that (1) no two
segments of two distinct nets share a grid point on the
same layer, (2) a routing path may change layers at a via
and (3) no wire can use a grid point on a layer which
is between two layers with a via at that grid point. It
is known that any routing in the knock-knee model can
be realized with four layers ([BB]) and that three layers
suffice for the channel routing problem ([PL]).

Given a routing of an instance of CRP, the diagonal
diagram can be obtained by inserting a diagonal for each
knock-knee, a half-diagonal for each bend. If we remove
the half-diagonals, we obtain the core layout. It is known
that a wire layout can be realized with three layers if its
core can [PL]. A partition grid is a grid containing all the
diagonals (see [PL] for a formal definition). A set P of
edges of the partition grid is called a legal partition if the
following properties hold:

1. Every internal vertex in incident on an even number

of edges of P.

2. The set of diagonals in P is identical to that of the
diagonal diagram.

3. None of the forbidden patterns in Figure 2 appear
in P.

A legal partition of a core layout W exists if and only
if W can be wired with three conducting layers.

We use the standard CREW (Concurrent Read Ex-
clusive Write) shared memory model. All our results will
be stated in this model. However, our algorithms have
fast implementations on fixed-interconnection networks
such as the mesh or the hypercube. For example, all the
algorithms stated in this paper can be implemented on
a \/n X y/n mesh in time O(y/n), where n is the input
length.

1N Z X

Figure 2: Forbidden Patterns

19

3 Channel Routing

Given an instance of CRP of density d, our goal is to
determine a wiring of all the nets in d tracks. In addition,
the resulting layout or a slight modification of it should
be realizable in three layers.

The algorithm developed in [PL] constructs the wiring
track by track by lying each track from left to right. The
overall strategy can be viewed as a nontrivial extension of
the line packing (or left edge) algorithm, where a mech-
anism is provided to solve conflicts arising in columns.
This approach seems to be inherently sequential even
if there is at most one terminal in each column. Our
method is quite different and consists of two main steps:

1. Partition the nets into d chains satisfying certain
properties to be outlined below. In particular, the
nets in each chain define a set of nonoveralpping
intervals.

2. Assign a track number to each chain. Then wire all
the nets simultaneously.

We will outline how to perform each step next. The
algorithm below creates chains of nets which will be mod-
ified later to satisfy all the desired properties. We will
denote the successor (predecessor) of a net N by succ(N)

(pred(N)).

Algorithm Create Chains

Input: terminals [;’s and r;’s of all the nets Ny, Na, ..., N,.

Output: d chains of nets, where d is the density of the
corresponding channel routing problem.

1. Mark all terminals as active. For each left terminal /; of
a net IN;, find the nearest right terminal r; of some other
net such that r; is to the left (or in the same column) of
I;. If two such choices are possible, pick the one whose
corresponding net is of the same type as N;. Set p(l;) =
r;. If no such r; exists, then set p(l;) =nil. Similarily,
define p(r;) for each right terminal.

2. If p(I;) = r; and p(r;) = I;, then set succ(N;) = Ni,
and mark r; and [; as inactive. Create a reference point
k between r; and ;.

3. Let Ry, R;,. .., Ry, be the intervals determined by the
reference points. For each R;, create L(R;) consisting of
all the active left terminals, and R(R;) consisting of all
the active right terminals in R;.

4. Find the corresponding terminal pairs in R(R;) and
L(R:y1) and create links as before. Mark all terminals
used as inactive and merge intervals Rg;_; and Ry; for all
i. Repeat this step until there is one interval left.

As an example, consider the channel routing instance
of Figure 3. The chains produced by the above algorithm
are given in Figure 4. We also have the following.

4 912137 68 13145 12 1110 20171816212515242319 22
TI IS R I I 0 2 e 2 2 TIIT I TS E T i

PSSP PN S P S N S 404 o ENESS PP NI S P S S NP S S

123 45 67889 101112 13 141516 171819202122 2324 25

Figure 3: A channel routing problem

. Ny — N1y — Nis — Na3

Ng — N7 — Ng — Nyjo — Nig — Ngs
Nz — N5 — Niz — Nyg — Ny — Nay
N3 — Ng — N1z — Ni7 — Nyp

Ny — Ny; — Nao — N2z

oR e

Figure 4: The chains created by Algorithm Create Chains

Lemmal: The number of chains created by the-above al-
gorithm is exactly d, where d is the channel density. This
algorithm can be implemented on the CREW-PRAM in
time O(log n) with O(n) processors, where n is the num-
ber of nets.

Proof : Let Ry, Ry,..., R, be the intervals created by
the above algorithm, prior to a set of merging operations
of step 4, such that K; is the reference point between
R;_1 and R;. Let n,,, n;, be respectively the numbers of
active right and left terminals in R; and let ng, be the
number of nets with terminals on different sides of K;.

Claim: The following inequalities hold true before each
set of merging operations performed in step 4 of the above
algorithm:

Ny + Nkita < d

ny; +nk,‘ < d

Proof of Claim: Notice that initially all active right ter-
minals in R; must be to the right of the rightmost left ter-
minal [; in R;. If at the completion of step 3, n,, +nx,,, >
d, then the density of the channel at a point between the
right and left terminals of R; is > n,,+ns,,, > d, whichis
impossible. Similarily we can establish the other inequal-
ity. We now show that after each set of merging opera-
tions, the inequalities will hold. Consider the merging of
the intervals Rg;—y and Rg;. We know that n,,,_, +nk,, <
d and ny, + ng, < d. Let ¢ = min{ny,_,,nr,y_,}. We
distinguish between two cases:

1. Suppose that ny,; > n,,;_,. Then the number of left
terminals in the new merged interval Ry is given by
Ny, = Niy_y + Ny, — Npy_, — ¢ and hence ny, +ng, =
Mlyiy F My — Mgy FNkyey — € But ngy; g + 1, =
Try;_y 1k, and therefore ng, +ng, = ny, +np,,—c <

2. Suppose that nj,; < n,,,_,. Then the number of left
terminals in the merged interval Ry will be n;, =
Ny, — ¢ and thus ny, +ng, = Ny, + 1k, —c < d.

In a similar fashion, we can establish the other inequality.
This concludes the proof of the claim.

Let d’' be the number of chains created by the above
algorithm. Clearly, d' > d. At the termination of the
algorithm, the number of chains is equal to the number
of left terminals. Using the claim above, we deduce that
d' < d and hence d' = d.

We now establish the time and processor bounds. One
can check that a couple of sorting steps and few simple
operations will take care of step 1-3. Step 4 consists of
O(logn) merging operations each of which can be done
in O(1) time.

The above chains can be used to wire all the nets in
d tracks. However, the corresponding layout may not be
realizable in three layers. We modify the above chains
so that they have the following property. Let ¢ be any
column. Then either

1. ¢ is empty, or
2. ¢ contains one terminal, or

3. ¢ contains two terminals of nets N; and N;. Let
N; =<e¢b; > and Nj = < tj,c>.

o If both IV; and N; are either right or left nets,
then they both belong to the same chain and
one is the successor of the other.

e Suppose that NV; is a right net and Nj is a left
net. The other case can be dealt with similar-
ily. Let N} = succ(N;) and N} = suce(N;).
Then they either share a column or the col-
umn of N or N] which is closer to c has only
one terminal (see Figure 5(b)).

ti=c ti=c ti=c o
e G o

N b N Ny

& '\N,» s t '\”i |/Ni' t \N,- (‘ :,"'

by =c bi=c bi=c I
(a)
ti=c ti=c ti=c

b -)N-‘ K. .) b.'.)N‘ k.”", 5-‘/”‘ N Ny

bi=c e e
®)

Figure 5: Possible successors of two nets with right ter-

minals in the same column

N

The following algorithm outlines how to modify the
chains so that the above property holds.

Algorithm Modify Chains _

Input: A set of chains produced by the algorithm create
chains.

Output: A set of chains satisfying the property stated
above.

1. Mark each column with two right or two left terminals
as active.

2. For each active column ¢ with a top right terminal ¢;
and a bottom right terminal b;, do the following:

o If the left terminals of succ(V;) and suce(N;) are
in the same column ¢, then mark both ¢ and ¢ as
inactive.

o If the left terminals are in two distinct columns,
say ¢ containing the left terminal of succ(lV;) is
the left one, then mark ¢ inactive if ¢’ has only one
terminal.

o Otherwise, ¢’ contains another left terminal b}. Let
Ny = pred(N}). Then create the pair < N;, N; >.
Mark ¢ and ¢’ as inactive.

3. Group the pairs < N;, N; > into maximal groups <
Nioy Nk >, < Npa, Nx2 >, ..., < Npeoy, Niw >. Update
the successors of these nets by setting the new successor
of Ni; to be the previous successor of Ny for all 0 <
t < t—1. In addition, set the new successor of Ni; to be
the previous successor of Nyo.

4. Repeat procedure for active columns with two left
terminals.

5. Adjust chains in such a way that whenever the con-
figurations of Figure 5(a) occur, they will be replaced by
the corresponding configurations of Figure 5(b) (similar-
ily for columns with two left terminals).

As an example, consider the chains of Figure 4. Then
the above algorithm creates the new set of chains given
in Figure 6.

1. Ny = Ng — Njg — Nijg — Nyo

2. Ny — Ny — Ng — N33 — Nyg — Nys
8. N2 = Ng — Nyz — Nyg — Ny — Ny
4. N3 — N1g — Nyj5 — Ny,

5. Ng — N1z — Ny7 — Ny

Figure 6: New chains generated by Algorithm Modify
Chains

Lemma2: The above algorithm modifies the chains gen-
erated by the algorithm Create Chains such that the new
chains satisfy the desired properties. Moreover, the algo-
rithm runs in O(log n) time with O(n) processors on the

CREW-PRAM model.

Proof: To simplify the presentation we will introduce a
new graph called the link graph. There is vertex v, corre-
sponding to each column c. There is an edge between v,
and vy if and only if ¢ contains a terminal of a net whose
successor or predecessor has a terminal in ¢’. Notice that
the link graph of each of the groups created in step 3 has
the form shown in Figure 7(a). If ¢f has another link to
a, then a cannot appear between ¢y and c;. After the
modifications performed in step 3 the link graph of the

21

group will be of the form given in Figure 7(b) with 2
link loops or paths of length 2. Hence it is clear that
after step 3 no column with two right terminals could
cause any problem. Each group may have generated one
column with two left terminals which donot satisfy the
desired property. Then step 4 of the above algorithm
takes care of all these columns (Figure 5). Step 5 insures
that columns with two terminals will be of the form given
in Figure 5(b). The time and processor bounds of the al-
gorithm can be easily established.

(®)

(a)

Figure 7: Forms of groups in the proof of Lemma2

The track assignment and the wire layout will be de-
scribed next. Suppose that track £ has been assigned to
net N = < t,b >. Then the wire of N will consist of the
interval [tg, bi] on track k, a vertical line segment from
b to bg, and a vertical line segment from ¢ plus a pos-
sible detour to #;. Therefore the problem comes down
to determining how to connect a terminal on the upper
row down vertically to its track. The algorithm below
describes how to achieve this.

Algorithm Wire Nets

Input: A chain of nets as modified by the algorithm Mod-
ify Chains.
Output: A wire layout for each net.

1. For each chain, assign the leftmost terminal /; as the
primary key, and, if /; is a bottom terminal, assign 0
as the secondary key and 1 otherwise. Sort the chains
according to their keys. The track number of each chain
is its corresponding rank.

2. For each column ¢, do the following:

1. if ¢ contains one terminal of a net IV, then connect
that terminal vertically to the track of N.

2. Suppose ¢ contains two terminals of a single net.
Then connect these two terminals vertically.

3. Suppose that ¢ contains two terminals of two dis-
tinct nets N =< ¢,b > and M =<t¢,c>. If N and
M have the same track number, then wire the ter-
minals to this track using a knock-knee. Otherwise
there is detour only if the track number of N is less
than that of M. In this case, it is a left or right
detour depending on whether c is a right or left ter-
minal. The detour extends to either to the column
of successor (for a right detour)or predecessor (for
a left detour)of either N or M whichever is closer.
All the cases that can arise and the corresponding
routing are shown in Figure 8.

nj i u—ﬁ-u‘ N._J y lk__j » L N
b | » N M r N—] f—"" \‘1 —*
&) @) ®) @ ®

[:ﬁu _, L,, " JL.. § " N ~
~ I » ™~ N » M
© m ® © (a0)

Figure 8: Possible detours of nets with terminals in the
same column

Consider the example of Figure 2 again. Then the
routing obtained by the above algorithm is given in Fig-
ure 9 .

4 “ 1237 L) s 12 110 2017 18 16 21 2515 4 23 19 =2
U 1 T 11 | ‘ U] I
—HP TS ,
© g v=mr=l] 1)
(11 11 1 { 1
1 z3 48 e 780 10 1112 13 41818 171819202122 ™24 »n
s 77 Vi /\ N
® /\ N 7
< ~ N

e,

=

NNN N NN NANN
Figure 9: (a) The layout generated by Algorithm Wire
Nets, (b) its corresponding diagonal diagram and (c) its
corresponding constraint graph

Lemma3: Given an instance of the channel routing prob-
lem, the above algorithm provides a legal routing of all
the nets in the knock-knee model.

Theoreml: Given an instance of the channel routing
problem of density d, it is possible to wire all the nets in d
tracks in time O(log n) time on the CREW-PRAM model
with O(n) processors, where n is the number of nets. If
all terminals lie in the range [1, N], where N = O(n),
then the above algorithm can be implemented in O(n)
sequential time and in O(% + log n) parallel time with p
processors on the CREW-PRAM model, where p < nl~¢,
and € is any positive constant.

Proof: The first statement of the theorem follows from
the previous lemmas. If all the terminals lie in the inter-
val [1, N], N = O(n), then sorting (most expensive step)
takes O(n) sequential time. For the parallel implementa-
tion, the most expensive steps are sorting and traversing
linked lists. Using the results of ([K et al]) we obtain the
bounds stated in the theorem.

4 Layer Assignment

In this section, we show that a modified version of the
routing produced by the algorithm of the previous section
can be laid out in three layers. [PL] provides a necessary
and sufficient conditions for the realization of a wiring
in three layers. As stated in section2, the problem is es-
sentially reduced to finding a legal partition of the core

22

of the diagonal diagram. The routing layout produced
by the algorithm in [PL] has a special property, namely
every column is either empty or contains one diagonal or
a diagonal \ on the bottom and a diagonal / above it.
Their algorithm proceeds from left to right, looking at
each column and making vertical connections (and possi-
bly changing the routing) so that the resulting partition
is legal. Unfortunately, we encouter a major difficulty in
our case. Each column of our routing layout could have
two diagonals (\ and /) in an arbitrary order (because
our routing uses left and right detours). This makes it
necessary to change the wire layout much more substan-
tially than was done in [PL]. In the rest of this section,
we outline how to overcome this difficulty.

By adding dummy diagonals if necessary, we can as-
sume that each column is either empty or contains ex-
actly two diagonals. As in [PL], our partition will be
constructed by adding vertical edges only. Define a ref-
erence line as a vertical line that touches the endpoint
of some diagonal. For each reference line, the diagonals
touching this line will partition it into several line seg-
ments. Number these line segments starting from the top
most segment. Notice that there are two possible ways
of adding vertical segments (to create a legal partition):
add the odd-numbered or the even-numbered segments.
We have to choose (if possible) those segments that will
not create a forbidden pattern.

We define the constraint graph as follows. The two
possible choices of vertical segments corresponding to ref-
erence line I; are represented by two vertices vq;—1 and
vg;. Two vertices are connected by an edge if and only
if the corresponding choices create a forbidden pattern.
Notice that forbidden patterns can be created only be-
tween adjacent reference lines.

Lemmad4: The total number of the edges between the
vertices corresponding to adjacent reference lines is < 2.

Proof: Since the maximum number of diagonals between
two adjacent vertical reference lines is 2, there are at most
two “constraints” between {vai_1, vz} and {vait1, vaita},
for each 1.

Our goal is to pick for each reference line one of its
vertices such that no two such vertices are connected by
an edge. This may not be possible, in which case the
routing layout has to be modified. We introduce the pat-
terns that can create potential problems. A forbidden
column is a pair of vertices corresponding to a reference
line such that no selection of its vertices will lead to a
legal partition. The set of configurations that may give
rise to a forbidden column are shown in Figure 10.

Our goal is to modify the wiring layout if necessary
so that the resulting constraint graph has no forbidden
columns. We start by showing that any such graph will
lead to a legal partition. The following algorithm shows
how to select the proper set of vertices.

S 0 N NN LN
NN L S L NN

Figure 10: Configurations that may give rise to forbidden
columns

Algorithm Select

Input: Reference lines and the corresponding constraint
graph with no forbidden columns.

Output: A subset of the vertices which will induce a legal
partition of the wiring layout.

1. Mark all reference lines as active. For each reference
line L;, select vg; (va;—1) if vai—1 (va;) is incident on two
edges to a single adjacent column. If such a selection is
made, mark L; as inactive and assign weight 0 if vy; is
selected, otherwise assign weight 1.

2. Create a sorted list for each set of active reference
lines between two inactive reference lines.

3. For each list created in step 2, do the following. As-
sign a weight 0 to each line Ly in the list if there is an
edge between va;_3 and vqy or between vgr_2 and vog_1.
Otherwise, assign a weight of 1 to L.

4. Calculate the rank of each reference line. Then select
vy if the rank of Ly is even; otherwise select vgp_1.

Lemma): Given a partition graph with no forbidden
columns, Algorithm Select will generate a subset of the
vertices that determine a legal partition of the wiring
layout.

Proof: Let’s start by observing that the selection made
in step 4 for inactive reference lines is consistent with
that of step 1 because the graph contains no forbidden
columns. For the rest of the proof, it is enough to show
that there is a selected vertex for each reference line such
that no two selected vertices are connected by an edge.
The algorithm clearly selects exactly one vertex for each
reference line. Suppose that there is an edge between two
selected vertices, say vy and vg_. Then the weight of
Ly, must be 0 (because both have even ranks). But then
either vy is connected to wvyg_3 or vyr_; is connected to
vog—2. In the first case, vop_; would have been selected;
in the second case, vgr_3 would have been selected. Sim-
ilarily we can handle the other cases. Notice that the
selection made in step 4 for inactive reference lines is
consistent with that of step 1 because the graph contains
no forbidden columns.

In the rest of this section, we will show how to modify
the wiring in such a way that the corresponding con-
straint graph has no forbidden columns. We first in-
troduce the following classification of reference lines (cf
[PL]): Trivial (Figure 11), Overlap (Figure 12), Disjoint
(Figure 13), Inclusion (Figure 14). Each type is shown
with its possible constraint graph. The only possible for-

23

bidden columns could come from: Dy, D3, Dg, Dg, I, 14,
Ig, Is. In most of these cases, the wiring has to be modi-
fied by adding diagonals in such a way that no forbidden
column could possibly arise. The procedure involves a
detailed case study which is summarized by the follow-
ing algorithm.

T T: T .

LA N MEN

PN W N
< >

0, 0, Os [Oy O¢ Os
) N D S R I R N R N
N N N N
AlTD N U i i i
NTONT OIN v b od T IN
Figure 12: Overlap reference lines
D, D, Dy D, Ds De D, Ds
AR i I N N N
VoN o N N Y
PN ONDOND N i s Al
N x N x x % x %
Figure 13: Disjoint reference lines
A WD NN A N O W
YN SRR ZE G N
bl P Vi I N Wt A
PN A A PN i N 4N
NYONTOU M N i N
3 ; X >< x >< x ><

Figure 14: Inclusion reference lines

Algorithm Modify
Input: Wiring layout produced by Algorithm Wire Nets.

Output: A new wiring with its modified constraint graph
and a set of selected vertices.

1. Generate the diagonal diagram, delete all half diago-
nals and add necessary dummy diagonals as follows. If
there exists exactly one diagonal \, then add a dummy
diagonal / in an additional row above all the rows. If
there exists exactly one diagonal /, then add a dummy
diagonal \ in an additional row below all the rows. De-
termine the constraint graph and mark all reference lines
which may give rise to forbidden columns as active.

2. Handle type I, active reference lines as follows. Let
Lj,L;_s,...,L;j_o be a maximal chain of active I;’s. We
want to modify every other L; starting with L; in a way
that depends on the type of its left neighbor L;_;. All
the cases that can arise are shown in Figure 15 with the
corresponding modifications. In each such case, a ver-
tex of L;_y is selected (its degree is 0), edges between
reference line L;; of selected vertex and its neighbors
removed and the reference lines L;, L;_1, ;o are marked
inactive. Handle type I reference lines in a similar fash-
1011,

3. Handle type active I as shown in Figure 16. Select
vg; and remove edges between L; and its neighbors. Mark
L;y L;—1, Ly as inactive. Handle type Ig similarily.

4. Handle active type D; as shown in Figure 17. Select
vg;—1 and remove edges between [; and its neighbors.
Mark L;_1,L;, Li41 as inactive. In Figure 18 a maximal
chain of Dy’s is considered. L;, Liy1,..., L are all of type
D,. If L; or L can give rise to a forbidden column, then
modify as shown and remove all edges of L; — L. All the
odd vertices of of L; — Lj are selected. As before edges
are removed for selected columns and adjacent reference
lines are marked inactive. Repeat the same procedure for
types D3z, Dg and Ds.

x(>~< .>‘\< .>_< >.\< >\< >§<_
® @ ® © ®
< . < - <
ANSEVA AN B\ N
©) () (9)

Figure 15: Transformations on type I reference lines.

Lemma6: Algorithm Modify will change the wiring lay-
out produced by Algorithm Wire Nets in such a way that
the corresponding constraint graph contains no forbidden
columns.

Proof: Consider the original constraint graph in which
L; was of type I (hardest case). Then we have to show

24

— e
__._b‘,r_ ger
_.7.4__,_._.__
> <
< .

1
—
L

B -

— — S
< F——*

< .
> X

Figure 17: Transformations on type D; reference lines

that L;_s will create no problems. The only nontrivial
cases are the following:

1. Li_g is of type 5. In this case the algorithm selects
vertices in the columns corresponding to L;_; and
L;_4 and hence there are no edges left between L;_»
and L;_1, and between L;_3 and L;_4.

2. L;_sis of type Is. Suppose that there are no dummy
diagonals between L;_3 and L;_, or between L;_;
and L;. The only possible wiring configurations
are shown in Figure 19 with their corresponding
diagonal diagrams. If there is a dummy diagonal
between L;_, and L;, then we can have one of the
three possibilities shown in Figure 20. In each of
these cases, one of L; or L;_3 cannot generate a
forbidden column.

3. L;_3 is of type Iy, Is, D1, D3, D or Dg. One can
check that none of these cases can possibly generate
a forbidden column.

The remaining cases can be dealt with similarily.

If we go back to the example of Figure 2, then the
routing produced by the algorithm of the previous section
is given in Figure 9. The layer assignment algorithm will
change the wiring of Nig and Ny (Figure 21) and the
final layout is shown in Figure 22.

AN\ AN\

Figure 18: Maximal chain of D;’s.

Figure 19: Possible wiring configurations for case 2 of

O]

lemmab

[t}) : (&3]
Figure 20: Possible configurations with dummy diagonals
between L; and L;_1.

18 21 16 21

(a) ®)
Figure 21: Changes in the wiring of Nig and Ny

Theorem?2: Given an instance of the channel routing
problem, it is possible to determine a three-layer assign-
ment of the routing layout in time O(logn) time with
O(n) processors on the CREW-PRAM model. If all ter-
minals lie in the range [1, N], where N = O(n), then the
above algorithm can be implemented in O(n) sequential
time and in O(% + log n) parallel time wjth p processors
on the CREW-PRAM model, where p < n!~¢, and € is

any positive constant.

25

131es 1z 110 20 17 18 18 21 23 15 24 23 19 =

* 1237 .
I

L)
|
1) Y t JJ' | !l ‘ IL —]
LU
(1
@ 11 R r——} [] [I]]
(11 1 [
123 4 8 ¢ 780 10 11 12 13 14 15 16 17 18 19 20 21 22 2224 E-1
v s
o~ N s
< N N

@ \\\ N\ N\ ANV
Figure 22: (a) The final layout after the modification of

layer assignment algorithm, (b) its corresponding diago-
nal diagram and (c) its corresponding constraint graph

-5 References

[BB] Brady, M. and D. Brown, “VLSI Routing: Four
Layers Suffice,” Advances in Computing Research
2 (VLSI Theory), ed. Preparata, JAI Press, Inc.,

Greenwich, CT, pp. 245-257, 1984.

[D et al] Dolev, D., K. Karplus, A. Seigel, A. Strong
and J. Ullman, “Optimal Wiring Between Rectan-
gles,” Proc. 13th Annual ACM Symposuim STOC,
May 1981, pp. 312-317.

[K et al] Kruskal, C., Rudolph, L. and M. Snir, “The
Power of Parallel Prefix,” IEEE Transactions on
Computers, vol. C-34 (10), pp. 965-968, Oct. 1985.

[L] Lipski, W., “On the Structure of Three-Layer
Wirable Layouts,” Advances in Computing Research
2 (VLSI Theory), ed. Preperata, JAI Press, Inc.,
Greenwich, CT, pp. 231-243, 1984.

[MP] Melhorn, K. and F. Preparata, “Routing through
a rectangle,” JACM, vol. 33(1), Jan. 1986, pp.60-
85.

Ohtsuki, T., “Layout Design and Verification,”
Advances in CAD for VLSI, vol. 4, North-Holland,
1986.

(0]

[P] Pinter, R., “River Routing: Methodology and Anal-
ysis,” Proceedings of the third CalTech conference
on VLSI, March 1983, pp. 141-163.

[PL] Preparata, F. and W. Lipski, “Optimal Three-
Layer Channel Routing,” IEEE Trans. on Com-

puters, C-33, pp. 427-437, 1984.

PARALLEL ALGORITHM FOR MINIMUM DUAL-COVER
WITH APPLICATION TO CMOS LAYOUT

Y. M. Huang and M. Sarrafzadeh
Department of Electrical Engineering and Computer Science
The Technological Institude
Northwestern University
Evanston, IL 60208

Abstract — In a pair of planar graphs (G, G9), with
G4 being dual graph of G, a sequence of distinct edges is
a dual-Euler trail if it is a trail both in G and in G4. A
set of disjoint dual-Euler trails that simultaneously cover G
and G is called a dual-cover. We present an O(logn) time
and O(n) processors algorithm, in PRAM model, based on
the graph separator theory, for obtaining a minimum cardi-
nality dual-cover in a pair of series-parallel graphs (G, G4),
where n is the total number of edges. We employ the pro-
posed algorithm to obtain a minimum-area VLSI layout of
CMOS functional cells.

1 Introduction

Algorithm design is the development of better proce-
dures and data structures to reduce the time to solve a
given problem on a given computing system. Exploitation
.of a multiprocessor system requires a radical departure from
the traditional Von Neumann environment. Detection of
parallelism in sequential programs is essential to the disci-
pline.

In the parallel-random-access memory model (PRAM)
there is a group of processors, with access to a shared mem-
ory, cooperating to solve a given problem. An effective al-
gorithm in PRAM model should aim to minimize the com-
putation time and the number of processors.

Consider a planar graph G = (V, E) along with its dual
graph G? = (Vd, E4), where there is a one-to-one correspon-
dence between F and E¢, as shown in Figures la and 1b. A
trail in G is a sequence of vertices T = (Vg, Vgy1,- -+ Vpt1),
where ¢; = (v;,v;41) € E, v; # v4q, and e; # ¢; for
a < 1,7 < b To each trail T we associate a label L(7)
(€5 €aq1s---»€3). Consider atrail 7 of G and a trail 7¢ of G¥.
A pair t = (r,7¢), with 7 being a trail in G and 7¢ being a
trail in G4, is called a dual-Euler trail (DET) if L(r)=L(7%).
A set of disjoint DETs { ty,...,t, } is called a dual-cover if
L(t,)NL(t;) = 0, for ¢ # j, and U?_, L(t;) = E. An optimal
dual-cover of (G,(G?) is a minimum cardinality dual-cover,
that is, a dual-cover with minimum s.

A CMOS functional cell consists of two parts: the p-part
representing PMOS transistors, and the n-part representing
NMOS transistors. Each transistor has a polysilicon strip;
one side of the polysilicon strip being a source and the other
side being a drain. The p-part is a series-parallel inter-
connection of PMOS transistors; similarly, the n-part is a
series-parallel interconnection of NMOS transistors, and is
the dual of the p-part. Representing the p-part and n-part
interconnections by G, = (V,, E,) and G, = (V,, E,), re-
spectively the G, = G¢ and G, = GZ. In CMOS circuits, it

This work was supported in part by the National Science
Fundation under Grant MIP-8709074.

26

1
s
. d
D)) L]
’ ' '
L) J (
2

(a)
.
/

7
74\

*+

n-operator/p-operator

1+

/\

a bc] [] L)
Figure 1: (a) NMOS graph. (b) PMOS graph.
(c) Binary decomposition tree of (a)/(b).

1+

AN

is possible to implement complex logic functions supported
by complementary NMOS and PMOS transistors instead
of by conventional NAND and NOR logic elements. The
former implementation requires about half the area of the
latter implementation, has less time delay and better per-
formance.

A systematic approach to layouts of CMOS functional
cells has been proposed by Uehara and VanCleemput [UV];
we will refer to it as UV style. A UV layout can be viewed
as a set of vertical polysilicon lines corresponding to gates,
and a set of horizontal metal lines, corresponding to inter-
connections among the transistors. A source or a drain of
a transistor is connected to a source or a drain of another
transistor either by horizontal metal lines or by adjoining
their corresponding gates (their polysilicon vertical lines).
The former requires metal connections; thus, it increases
the height of the layout area. The latter does not require
any connection.

Consider a UV layout. Let a polysilicon pitch be the
minimum separation between two polysilicon lines and a
diffusion pitch be the minimum separation between two dif-
fusion regions. Two polysilicon strips with common source
or drain have a polysilicon pitch separation; otherwise they
have a polysilicon plus diffusion pitch separation. An opti-
mal UV layout is obtained when the transistors are “chained”
(i.e., placed adjacent to each other) in an “optimal” man-
ner. It has been shown [UV] that an optimal UV lay-
out corresponds to an optimal dual-cover of (G,,G,). A
heuristic algorithm for obtaining a dual-cover of (G,,G,,)
has been proposed in [UV]. Subsequently, two optimal al-
gorithms running in O(|E,|) time in the RAM model were
proposed [NBR,MH]. If (G,,G,) does not have a single
dual-cover, then the algorithm of [NBR] cannot produce
a layout [WPF].

In this paper, we will show an O(log|E,|) time and

O(|E,!) processors algorithm, in the PRAM model, for ob-
taining an optimal dual-cover of (G,,G,). As a subprob-
lem, we will show how to separate a series-parallel graph
G = (V, E) using O(1) time and O(|E|) processors — an
improvement over previous O(log?|E|) time and O(|E|1t¢)
processors result, € > 0 [GM] (algorithm of [GM] works on
arbitrary planar graphs). The proposed algorithm is based
on the divide-and-conquer principle. Aim is to recursively
partition (G, G,,) into two “equal-size” subgraphs using a
dual-graph separation theory. Then the processors collec-
tively obtain an optimal dual-cover in each subgraph and
combine them to produce an optimal dual-cover of (G,, G,,).
The technique we use in the combination step is an exten-
sion of the Algebra proposed in [MH].

This paper is organized as follows. In Section 2 prelimi-
nary definitions and results are given. The proposed parallel
algorithm, for obtaining an optimal dual-cover, is presented
in Section 3. An application of the proposed parallel algo-
rithm to optimal UV-style layout of CMOS functional cells
is described in Section 4 and experimental results are in-
cluded. Details of the proposed implementation are given
in Appendix A.

A series-parallel graph (SP graph) is constructed by re-
cursively applying “series” and “parallel” connections. It is
a subclass of planar graph. We will introduce an effective
method for finding all dual-covers of a pair of SP graphs
with a fixed topology (non-permutable topology).

N

:
s
N
@ °

Figure 2: (a) A series connection. (b) A parallel connection.

2.1 Abstract Model

A Boolean logic function is modeled as a series-parallel
graph G = (V, F) with E corresponding to the input sig-
nals and V corresponding to the AND/OR operators. In
each graph G, there are two distinguished terminal vertices
labeled as N (the northern terminal) and S (the southern
terminal).

Definition 1 : Two subgraphs G, and G, have a series
connection if they have one common vertex, and have a
parallel connection if they have two common vertices (see
Figure 2).

Recursive combinations of a SP graph are described by
a binary decomposition tree (BDT) T'. Consider a SP graph
G = (V,E) and a BDT T = (Vr,Er). Each leaf of T

27

corresponds to an edge of G and each internal vertex of
T corresponds to a combination of two subgraphs G, and
G, either in series (noted as) or in parallel (noted as
+). Let T} and T, be two BDTs corresponding to GG; and
G, respectively. The BDT T corresponding to SP graph
G = G1#G, has a vertex labeled # with T} and T, as its
left subtree and right subtree, respectively (see Figure 1),
where # is used as a generic symbol for (4,).

Consider a 2x2 terminal-matriz]]:[fd :gd correspond-
ing to (G,G?), where N and S are the two distinguished
vertices of G, and N4 and S¢ are the two distinguished ver-

tices of G¢. Let two SP graphs G; and G, have terminal-

. N.
matrices N}i g}] and [%} gzi , respectively. A SP
graph G = (G4 * G, has a terminal-matrix [Nfi 5'3] if
Ni St ,

Ny
Nd

N, | . N.
S; =N, [S;]lf5'1=52, [5'112
Ni g4 if Ny = N,. Since the dual SP graphs G4 and
G4 are connected in parallel when G, and G, are connected
in series, then Nf = N¢ and S¢ = S2. Similarly, a SP
Sy

E
2

51

N] if N, = S,

Sd
] it N# =S4,

graph G = G1+G, has a terminal-matrix [M

N
Nl Sl Nl Sl
N¢ N¢ S¢ Ng

] if N¢ = N¢. Since the dual SP graphs G? and

Sd = N, [
Ny 5
Sf 5y

G4 have a series connection when G; and G, have a parallel

connectlon then N, = N, and $; = S,.

2.2 Dual-Euler Trail

Consider a pair of graphs (G, G) and a dual-Euler trail
t with L(t) = (eq,€441,-..,€). We call the starting and
terminating vertices of a trail in G boundary vertices; simi-
larly, we call the starting and terminating vertices of a trail
in G¢ dual-boundary vertices (or, for short, d-boundary ver-
tices). Note that a DET ¢ with L(t) = (e4,€q41,- - - ,€;) and
its “reverse” ¢ with L(t") = (e, ..., €a41, €,) are equivalent.
The bounda,ry vertices v, and v, and the d-boundary ver-
tices v¢ and v ', are used as the subscript of a DET label

L() —(€atlse 3 €8) (va,0d) — (ot v y)"

Following [MH] we say (v;,v¢) is a terminal pair if v; is
a boundary vertex of a DET t, v? is a d-boundary vertex
of the same DET t, and both v; and v? are distinguished
terminal vertices of a pair of graphs (G,G?). A DET is
distinguished if it has at least one terminal pair and two
DETs are incompatible if they cannot be “joined” with each
other.

Each boundary vertex of a DET has type N, S, or I if it
is the northern, the southern, or the internal vertex of the
corresponding SP graph, respectively. A DET t has type
(7,,7#)/ (1.,72), where T, and 7, are types of the bound-
ary vertices, and, 7¢ and 7¢ are types of d-boundary ver-
tices. A boundary and d-boundary vertices pair (v;,v¢) can

]1de—Sd [

be of type (N,N), (N,S), (S,N), (S,5), or (L) (NI}, (S,D),
(I,N), and (L,S) are included in (L,I)). Therefore, a DET has
25 possible types. Eliminating equivalent DET types (for
example (N,S)/(S,S) is equivalent to (S,S)/(N,S)) and the
(N,N)/(N,N), (N,S)/(N,S), (S,N)/(S,N), and (S,5)/(8,S) are
four imposible DET types yields 11 possible types. Let Z
denote incompatible DET types. The set of DET types are:

I'={ (NN)/(5S), (N,S)/(S,N), (S,N)/(S.9),
(N,N)/(S,N), (N,N)/(N,S), (N,S)/(S,9),
(S,N)/(LD), (S,8)/(LD), (N,N)/(LD),
(N,S)/(LD, (LD/ELD, Z

Theorem 1[MH] : The triplet (I, +, *) form an Algebra.

Example : Consider Figure 1. A DET ¢; with L(¢;)=
(2:b)(1,6) - (2,6) has type (N,N)/(S,N), since its terminal-
matrix is é ? Another DET t, with L(t,) = (c,d,f,e)
(4,7) — (4,7 has type (LI)/(LI), because its terminal-matrix
fl 2
t7 10|
vertices pairs is a terminal pair.

is and neither of the boundary and d-boundary

An (LI)/(L]) trail is called an internal DET. Note that
an incompatible DET is not necessarily an internal DET,
because two distinguished DETs cannot join together with-
out compatible boundary and d-boundary vertices pairs.

Theorem 2 : There are at most four distinguished DETs
in a dual-cover.

Proof : We recall the definition of a dual-cover. All the
DETs in a dual-cover are disjoint incompatible DETs. There-
fore, any two distinguished DETs ¢ and # in a dual-cover
have types (7, 74)/(T,, T9) # (T',, T%)/(T",, T%). It causes
a compatibility for two distinguished DETs ¢ and ¢’ when
(7,,73)/(T,12) = (T, T'H/(T",, T"%), since the types T,,
74,1, and 72 of a DET are constructed according to the
same terminal-matrix. A graph can only have four dis-
tinct types of terminal pairs (N,N), (N,S), (S,N), and (S,S).
Note that the (N,I) and (S,I) are not legal types of terminal
pairs. These construct four distinct types of a maximum
cardinality incompatible distinguished DETs (N,N)/(LI),
(N,S)/(LD), (S,N)/(L,]), and (S,S)/(L]) in a dual-cover. Any
other distinguished DET in the same dual-cover is compat-
ible with two of those DETs (e.g., a DET with (N,N)/(S,N)
is compatible with the DET (N,N)/(I,I) and with the DET
(S,N)/(LI)), and this contradicts the definition of a dual-
cover. We conclude that there are at most four distin-
guished DETs in a dual-cover. O

Let a concatenation step be the process of concatenating
two dual-covers, that is, #; concatenates with ¢, if L(#;) NL(t,)
=0 and ¢, and ¢, have a common vertex in G, and G, (or
G{ and GY). In the resulting DET ¢, L(t)=L(¢,) U L(t,).

Lemma 1 : An internal DET is not able to concatenate
with any other DET.

28

the trail sterting vertex. N
N N N N
s
s § §
e © 6 d

s
G=G,*C, Gt af+CY

@

(8)

Figure 3: (a) An internal DET of (G, G¢) and a
distinguished DET of (G,,GY).
(b) Incompatible DETs.

Proof: Consider an internal DET ¢; of a pair of SP graphs
and a distinguished DET ¢; of another pair of SP graphs.
The two pairs of graphs are joined at terminal vertices.
Therefore, a DET must be distinguished and have compat-
ible terminal vertices with other DET for concatenation.
However, t; has neither distinguished vertices nor compati-
ble terminal vertices with ¢; in the combination step. There-
fore an internal DET is unable to concatenate with the
other distinguished DET. O

An example showing incompatible DETs is depicted in
Figure 3.

Let Match(t;,t;) = 1 if DET ¢; is compatible with DET
t; ; otherwise Match(t;,t;) = 0. We define a trail-match to
be the process of matching two distinguished DETs. Ac-
cording to Lemma 1 and Theorem 2, a concatenation step
can be done in at most 16 trail-matches.

Let a dual-cover type 6 represent a set of distinguished
DETs types in a dual-cover. Each series-parallel operator
constitutes a pair of semigroup Algebras. Let Ag, A,
Ay, Ag, and A, represent the five styles (consisting of 0, 1,
2, 3, 4 distinguished DETSs) of dual-cover types. That is :

Ao = { (LD/(LD) }

Ay = { (N,N)/(S,8), (N,S)/(S.N), (S,N)/(S.S), (S,8)/(L)),
(N,N)/(N,8),(N,S)/(8,8), (S,N)/(LL), (N,N)/(LI),
(N,N)/(S,N), (N,S)/ (L))

Az = { [(N,N)/(S,N), (N,S)/(8,9)], [(N,9)/(S,N), (N,N)/(S,9)],
[(N,N)/(LT), (S,8)/(LD)], [(N,N)/(LI), (N,S)/(LT)],
[(N,N)/(LT), (S,N)/(LD)], [(N,N)/(LI), (N,8)/(S,S)],
[(N,N)/(LI), (S,N)/(8,9)], [(N,N)/(L]), (S,N)/(N,S)],
[(S,8)/(LD), (S;N)/(LD), [(S,S)/(LY), (N,8)/(LL)],
[(S,8)/(LD), (N.N)/(S,N)], [(S,S)/(LI), (N.N)/(N,S)],
[(N,S)/(LD), (N,N)/(8,N)], [(N,S)/(LI), (S,N)/(LL)],
[(N,S)/(LD), (S;N)/(S,8)], [(N,S)/(LI), (N,N)/(S,S)],
[(S.N)/(LD), (N,8)/(S,8)l, [(SN)/(LL), (N.N)/(S,S)],
(S.N)/(TLD), (N.N)/(N,S)], [(N.N)/(NS), (SN)/(S,5)] }

Az = { [(N)N)/(LI): (N:S)/(I)I)r (st)/(LI)],
[(NN)/(LI), (N,S)/(L1), (S,N)/(S,S)],
[(N,N)/(L), (N,8)/(LD), (S,N)/(LD)],
[(NN)/(LD), (SN)/(LD), (S,8)/(LD)],
[(NN)/(LD), (S,N)/(L]), (N,S)/(S,S)],
[(N,S)/(LD), (S,8)/(LL), (N,N)/(S,N)],
[(N,S)/(LD), (8,8)/(LY), (S,N)/(LT)],

[(8,8)/(LD), (S,N)/(LD), (N,N)/(N,S)],
[(N,N)/(S,5), (N.S)/(LI), (S,N)/(LD)],
[(N,N)/(LD), (S,S)/(LD), (N,S)/(S,N)]}

Aq = { [(NN)/ALD), (N,S)/(LD), (S,N)/(LY), (S,8)/(LI)] }

Note that an internal-type DETs is not involved in Ay,
Ay, Az, and A,. The type (IL1)/(L]) in A, is a single-trail

dual-cover.

Theorem 3[MH] : There are exactly 42 dual-cover types
in a series-parallel combination.

Consider a set of SP graphs (G, G¢). Let a dual-cover
set D be an optimal set of dual-covers with minimum car-
dinality. D is obtained by series or parallel combinations of
two dual-cover sets D; and D, (i.e., D = Dy #D,).

Lemma 2 : No two dual-covers in a dual-cover set have
the same dual-cover type except in A,.

Proof : Each dual-cover set is an optimal set. Consider a
set of dual-cover D. As we mentioned in Lemma 1, the dual-
cover D(7) with 8(z) € A, is unable to combine with D(j),
where j # ¢. If two dual-covers D(j) and D(k) have 6(5) =
8(k) with 8(j)andé(k) € A, where i € {1,2,3,4}, they
will have the same concatenations in the next combination
step. This contradicts the definition of a dual-cover set. O

Lemma 3 : Each dual-cover has the smallest possible in-
ternal DETs.

Proof : Consider a dual-cover of a SP graph. Since it is a
set of optimal disjoint DETs, then, except the distinguished
DETs, all the internal DET's in the internal DETs set must
be the smallest possible set and disjoint with each other. O

Lemmas 2 and 3, and Theorem 3 establish the following
conclusion : Every dual-cover set obtained by a combination
step of two dual-cover sets contains at most 42 different
dual-covers.

We call the combinations of dual-covers D, (¢) and D,(j)
from two dual-cover sets D; and D, a trailhunt step, where
Di(i) € Dy, Dy(j) € Dy, 1 <4 < [Dyf, and 1 < j < [Dyl.
There are at most 42 x 42 x 16 = 28224 trail-matches for a
trailhunt. In fact, there is only one dual-cover with A, type
in a dual-cover set. Moreover, usually much fewer than 42
dual-covers are included in an optimal set of dual-covers.
Therefore, far fewer than 28224 trail-matches need to be
performed in a trailhunt.

2.3 Graph Separator Theory

Consider a BDT T = (Vi, Er). Let a cut-edge e, be an
edge separating T into two “equal-size” sub-BDTs. There
exists a cut-edge in every BDT [LT]. The edge e, partitions
T into Ty = (Vp, Eq,) and Ty = (Vq,, Er,), where Ep
Er, UEg U{e.} and §|Vz| < Vi, |, [V, | < 3V

Every vertex v; in a BDT T = (Vg, Er), where 1 <7 <
|Vz| is the root of a (possibly empty) sub-BDT T;. Consider
the cut-edge e, = (v,,vy). We call v, a cut-vertex if v, is the
parent of v,. Two sub-BDTs T and T} are obtained from T'

29

by removing the cut-edge. After the separation, the roots
of Ty and T; are v, and the root of T' (e.g., Figure 4a), or

© Root vertex
o Cut vertex v, 1
0

@ Parent vertex of &
2 - T2
¥
(s} p—

Figure 4: Two kinds of tree separation.

v, and the other child of v, {e.g., Figure 4b).

When T is separated into two “equal-size” sub-BDTs
T, and T3, the corresponding graph G is separated into
two “equal-size” SP subgraphs G, and G, with T} being
the BDT of G, and T, being the BDT of G,. Subgraphs

G; and G, have new terminal-matrices %} gii] and
N2 5 ively. Consider a SP graph G = Gy #G
Ni S , respectively. Consider a SP graph G = G #G,

%d gd] If Gy and G, have
two common vertices, then # = ‘4, and, N; = N, and
S; = S, which are not necessarily N or S of G (see Fig-
ure 5a). If G, and G, have one vertex in common, then
#=4,N,=N,5 =N,, and S, = S (see Figure 5b).
The same rules apply to G¢, G4, G4. For efficient imple-
mentation of trailhunt, the terminal-matrices of (Gy,G¢)
and (G, G%) have to be stored in order to decide the types
of DETs.

A SP graph C=(V, E¢). Let C = A W B be the union
of two SP graphs A=(Vy, E4) and B=(Vg, Eg), where V =
VA U VB and EC = EA UEB

with the terminal-matrix

Example : Consider Figure 5a with G = A W B W C,
when & denotes a composition of two graphs. When G
is separated into G; = B and G, = A W C, we observe
that the new boundary vertices of G; and GG, are the same
as the vertices being split by the separation line. There-
fore, the terminal-matrices of G, and G, derived from G

are described as follows : [13 } — [23] &
G fe
2 3

4 6 4 5
[45] . Again, consider Figuer 5b. As before, G = A
G

¥ B W C. When G is separated into G; = A and G, = B
@ C, the separation line cuts G; and G, at vertex 2 of G.
Hence, the terminal-matrices of G; and GG, are not the same

LR A R PR

4 6 4 6 4 6

N N
1 N 1
0 ;
\\ 4
° A2 Nz ¥ 58
qod) 7C
s 0
AN 0 s H
s H B
G ¢ G, G, O ¢
(8)
N
s
o (o)
> s
()oY
§ S
of G,

G o G,

= — = the sensretion line.

Figure 5: (a) A SP graph corresponding to Figure 4a.
(b) A SP graph corresponding to Figure 4b.

3 Parallel Algorithm for
Minimum Dual-Cover

Utilizing the concepts discussed in Section 2, we will de-
velop a parallel algorithm for solving subproblems of mini-
mum dual-covers. After then, we integrate the algorithms
to obtain a minimum dual-cover.

Here, we assume that a binary decomposition tree has
been constructed (the construction of a BDT will be dis-
cussed in the next Section). We aim to employ the divide-
and-conquer principle for separating the SP graphs and the
corresponding BDTs. First procedure is called TREE SEP-
ARATION which decomposes a BDT into two sub-BDTs,
thus the corresponding SP graph will be separated into two
subgraphs. The procedure TRAILHUNT combines two op-
timal dual-cover sets into one optimal dual-cover set. Each
dual-cover set shows the optimal DET's of the corresponding
SP graphs.

3.1 Tree Separation

In the procedure TREE SEPARATION, first we find a
cut-edge and then separate the given BDT T= (Vr, Er).
In the last step we delete the leaves no longer belonging to
the vertices on the path from cut-vertex up to the root. A
formal description of TREE SEPARATION is given below.

Procedure TREE SEPARATION
begin
(1) pardo for all sub-BDTs 7; at vertices v;
begin
if 3|Vrl| < |[Vg| < 3Vl
then f; := TRUE;
else f; := FALSE;
parend;
select a cut-edge e, from all v; with f; = TRUE;
separate the tree into two “equal-size” sub-BDTs by e.;
pardo for all tree vertices v; € the path (v, — the root);
delete the leaves not belonging to T};
end;

(2)
(3)
4)

30

Lemma 4 : TREE SEPARATION runs in O(1) time and
uses O(|Vr|) processors.

Proof : Consider the BDT T= (Vg, Ey). Assume the tree
path (v; — the root) and the leaves under v; have been
constructed, where 1 < i < |V|. It is trivialy seen that Step
1 can be done in constant time using |Vz| processors. Steps
2 and 3 run in constant time, as well. The last step takes
constant time, for it involves cutting off the leaves under
the sub-BDT Ty from the sub-BDT T; while ¢ € the path
(ve — the root). Thus, we conclude that TREE SEP-
ARATION runs in O(1) time and uses O(|Vr|) processors.
(]

The separation technique of [GM] can be used to sep-
arate the SP graph, too. But their algorithm, devised for
arbitrary planar graphs, runs in O(log?|Vr|) time and uses
O(|Vr|t+e) processors, € > 0. In the series-parallel graph
applications, our algorithm TREE SEPARATION is much
better than the algorithm in [GM].

Trailhunt

3.2

Consider a SP graph G = (V, E) and its BDT T=(Vr, E7)
with |Vr| = 2|E| — 1. When G is separated into |E| single-
edge subgraphs, T is decomposed into |E| single-leaf sub-
BDTs. The TRAILHUNT recursively combines two pairs
of subgraphs and generates all possible concatenations from
two optimal dual-cover sets. An optimal dual-cover cover-
ing new graph is thus obtained by applying TRAILHUNT
recursively.

Consider two subgraphs Gy and G, and their optimal
dual-cover sets D; and D,. A dual-cover D;(¢) € D; with
6,(4) € {Ay,As, A4} might be compatible with D,(k) € D,
having 8,(k) & A, while a single-DET D,(j) € D; with
81(j) € A, is incompatible with D,(k). Consequently, ex-
cept keeping the single-DET dual-covers we need to keep all
the possible dual-covers D,(¢) that satisfy Lemmas 2 and 3
in a dual cover set D,.

For an optimal dual-cover set D3 = D;#D,, we define
a function COMBINE(D;, (i), D,(j)) for obtaining a com-
bination of D;(¢) and D,(j), where 1 < ¢ < |D;| and 1 <
J < |D,|. Consider two distinguished DET's ¢, with L(¢,) =
(81,62,...,€n)(%’vld) — (Vap1 V) and t, with L(¢;) =
(€1s €5 sl vy, vty = (Vt.p1 V') A trail-match step checks
the boundary and d-boundary vertices pairs of ¢; and ¢,
V1, VE), (Vs Vi), (VY V’;i), and (V1;+1,V’fn+l). t, and
t, are concatenated into one DET ¢ if they match each
other at the boundary vertices and the d-boundary vertices,
that is, (V, V) = (VO V), (G VE) = (Voo V),
(‘/;1+17V7fi+1) = (‘/1,7 V’f)) or (‘/11+1,V:+1) = (V,:L
Otherwise, they are incompatible.

After a COMBINE step, let d be the resulting dual-
cover. In order for D3 to be an optimal set, every dual-
cover in Dy needs to satisfy Lemmas 2 and 3. If any dual-
cover Ds(k) € D5 has 8;3(k) = §(d), we choose the one with
less internal DETs and discard the other non-optimal dual-
cover. If no such dual-cover D;(k) exists then d is included
in Ds.

417 m+1)'

In TRAILHUNT, first, COMBINE(D; (z), D2(j)) sequen-

tially matches two distinguished DETs from D, and D, to
generate a new dual-cover d. Then, d is checked against
the restrictions imposed by Lemmas 2 and 3. If d satisfies
the conditions then D3 = D5 {d}; otherwise d is discared.
Therefore, the optimality of D; is ensured. Now, we give a
formal description of TRAILHUNT algorithm.

Procedure TRAILHUNT(D,, D)
begin
for i :=1 to |Dy|
for j := 1 to |Dy|

(1) begin
) d = COMBINE(D; (3), D, 4);
if §(d) = 63(k),1 < k < |Ds] and
[internal DETs of d| < |internal DETs of D3 (k)|
then begin
(2.1) Dg = Dg - {Dg(k)};
(22) Dy :=D3 U {d};
end
else if 6(d) # 63(k),Vk, and 1 < k < | D3|
(2.3) then D3 :=D; |J {d};
end
end;

Lemma 5 : TRAILHUNT runs in O(1) time and uses one
processor.

Proof : Size of a set of dual-cover, as proved in Theorem
3, is at most 42. Therefore, |D;| x |D,y| < 1762, that is,
the number of iterations. Step 1 performs at most 4 x 4 =
16 trail-matches, because in Theorem 2 it was proved that
there are at most 4 distinguished DETs in a dual-cover.
Step 2 clearly takes constant time, for |Ds| < 42. Steps 2.1
to 2.3 each takes constant time, as well. Thus total running
time is O(42 x 42 x (16 + 42)) = O(1). We conclude that
TRAILHUNT takes O(1) time and employs one processor.0}

Example : Consider Figure 6. When the BDT in Figure
6a is separated into two sub-BDTs, the SP graphs in Fig-
ures la and 1b each is split into two subgraphs as shown
in Figures 6b and 6c, respectively. Now, we take one pos-
sible dual-cover of (Gy,G%) Dy(i) = { (ba),7) —
(8h)(1,10) — (2,10) } and one possible dual-cover of (G,

Dy(j)= ¢d) (1,7) - (1,100 (& D - @ 10) } and corn-
bine them. As the SP graphs are described in DET forms,
the trail-match steps are independent of whether the com-
bination of two dual-covers is in series or is parallel. It is
obvious that the boundary and d-boundary vertices pairs

of D,(:) and D,(j) are matched : (1,7) of (a,b) and (1,7)
of (c,d), (1,10) of (g,h) and (1,10) of (c,d), (2,10) of (g,h)
and (2,10) of (e,f), and (2,7) of (b,a) and (2,7) of (e,f)
are matched. A new dual-cover can be concatenated for
example as (a,b,e,f,h,g,d,c) 7 (1,7 (see Figure 6d) or
(b,a,c,d,g.hf.e) a7 - (2,7)

The following theorem is readily established by virtue
of Lemmas 2 and 3.

(17a

Theorem 5 : Two dual-covers can be optimally combined
in O(1) time using one processor.

31

/' neoperator/peoperator

A /\/\/\A

b g hec ¢ @

(a)

Q
Qo

[£3]

® e trail sterting vertex.
= the trail,

t)
(d)

Figure 6: (a) The BDT of Figures la and 1b.
(b)(c) The separated SP subgraphs (G, G¢) and
(G3, G2) of Figure(la, 1b).
(d) One optimal dual-cover of Figures (1la, 1b).

3.3 Optimal Dual-Cover

We have derived a technique (TREE SEPARATION) for
partitioning a pair of SP graphs in parallel. After log |E|
iterations of TREE SEPARATION the graphs G = (E,V)
and G¢ = (E4,V?) are partitioned into |E| pairs of single-
edge SP subgraphs. After then, these subgraphs are com-
bined in parallel; after log |E| iterations of TRAILHUNT
the optimal dual-covers with minimum cardinality gener-
ated. In TREE SEPARATION and TRAILHUNT, the par-
allel separations and combinations are independent of the
types of operations (series or parallel) in the correspond-
ing SP graphs. The terminal vertices of SP graphs are of
concern.

The algorithm OPTIMAL DUAL-COVER separates a
BDT T = (Ngp, Er) and the respective SP graphs G =
(V, E) and G¢ = (V4, E4) each |E| sub-BDTs and |E| pairs
of subgraphs. Next, it combines the subgraphs to get the
desired optimal dual-covers of (G,G?%). A one-edge dual-
cover set is initialized as D= { (),

vh) — (vs,vd)

(e)(vN,ug) — (vs,ug,) }

Procedure OPTIMAL DUAL-COVER(T)
begin
pardo for all active processors each associating
with a sub-BDT T;
begin

(1) TREE SEPARATION;
(2) push terminal-matrix of Tj;
3) set two new terminal-matrices of sub-BDTs T;, and T},;
(4) activate an available processor to perform the T;,;
pardo for T;, and k € {1,2}
(5) if IVT-;;‘ >1
then OPTIMAL DUAL-COVER(T;,);
(6) else initialize the dual-cover set of Tj, ;

parend;

(7)
(®)
©)

pop terminal-matrix of T3;
TRAILHUNT(D;,, D;,);
release a processor;
end;
end;

Lemma 6 : OPTIMAL DUAL-COVER runs in O(log |E|)
time and uses O(|E|) processors with |E| being the number
of edges of the input SP graph.

Proof : With an input set of SP graphs G = (V, E) and
G4 = (V4, Ed), employing |E| processors, the parallel al-
gorithm OPTIMAL DUAL-COVER takes O(log |E|) it-
erations of TREE SEPARATION to get |E| single-edge
subgraphs. Additional O(log |E|) iterations of TRAIL-
HUNT are required to combine these subgraphs to obtain
the resulting dual-cover set. Step 5 is performed recursively.
Steps 1 and 8 each takes constant time as proved in Lemma
4 and lemma 5, respectively. Steps 2 and 7 require con-
stant time to access the shared memory. Step 3 utilizes the
concepts introduced in Section 2.3 and is done in constant
time. Steps 4 and 9 need constant time to acknowledge the
processors, and Step 6 clearly requires constant time for ini-
tializations. We conclude that OPTIMAL DUAL-COVER

runs in O(log |E|) time and uses O(|E|) processors. O

4 Optimal Layout Of CMOS
Functional Cells

In this Section, we will apply the algorithm OPTIMAL
DUAL-COVER proposed in Section 3 to get optimal lay-
outs of CMOS functional cells. We consider UV style [UV]
layout of CMOS functional cells. As is customary, we as-
sume the p-part and the n-part interconnections are series-
parallel graphs with fixed topologies.

4.1 Graphs Models Of CMOS Circuits

Consider a pair of SP graphs (G,G?) representing a
CMOS circuit. Let G represent the n-part of CMOS circuit,
and G* represent the p-part of CMOS circuit. For instance,
Figure 1a represents the NMOS transistors of Figure 7b and
Figure 1b represents the PMOS transistors of Figure 7b.

4.2 Graph and Tree Transformations
From Boolean Expressions

) We assume the input is a Boolean expression represent-
ing the NMOS interconnections. In order to apply the
OPTIMAL DUAL-COVER algorithm proposed in Section

= polysilicon
(X3 diftusion
W metal line
. r h g d c ab

l-l
n-m
EIII ko |l||
..... ;.ﬂllﬁ
R

©

e =® a0 o=

(v)

Figure 7: (a) A logic diagram withZ= (a % b)+((c+d) * (e+))+(g * h).

(b) The CMOS circuit. (c) The optimal layout.

32

3, the input function is transformed into a pair of series-
parallel graphs (G,,G,) with G, = Gg and G, = G¢, and
the corresponding binary decomposition tree T is to be ob-
tained. We find postfix notation most convenient for input
representation. b

From the Boolean expression, we define G, = (V,, E,)
representing the n-part, G, = (V,, E,) representing the p-
part, and T= (Vr, Er) representmg the corresponding SP
graphs (G,,,G,). The number of transistors in p-part and n-
part are |E,| = |E,| = 3(|Vz|+1). Each vertex in (G, Gp)
dictates the 1nterconnect1on of sources and drains of a sub-
set of transistors. ’

In BDT TRANSFORMATION, We define NODE[/] to
be the lth input symbol, OP[i] to be the ith operator, and
VARJj] to be the jth variable. OPi]’s two child- vertices
can be of VAR[j— 1] and VAR[j], VAR[j] and OP[i—1], or
OP[i—1] and OP[i—k — 2] while one of the child-vertices
dominates k operators Each VARJj] is a leaf of BDT. In
BDT TRANSFORMATION, first, we scan the input string
representing a Boolean function and store the symbols in
OPJi] or in VAR[j] appropriately. Then each symbol links
to its parent OP[p] with p > ¢ and p > j — 1, and points to
its two child-vertices if this symbol is an operator.

Lemma 7 : BDT TRANSFORMATION runs in O(log n)
time and uses O(n) processors with n being CMOS gates.

The algorithm GRAPH TRANSFORMATION constructs

a pair of SP graphs (G, G%) by assigning a terminal-matrix
to each BDT vertex, which is applied after the tree struc-
tures have been established. In the GRAPH TRANSFOR-
MATION, My, M} and M7 are defined as the terminal-
matrices of a BDT T, of its left sub-BDT, and of its right
sub-BDT, respectively.

Lemma 8 : GRAPH TRANSFORMATION runs in O(1)
time and uses O(n) processors with n being CMOS gates.

By virtue of Lemmas 7 and 8, we conclude :

Theorem 4 : A set of SP graphs (G,,G,) and its corre-
sponding BDT T are established in O(log |E]) time using

O(|E|) processors from an input Boolean expression, where
|E| is the CMOS gates.

Based on Theorem 4 and Lemma 6, OPTIMAL LAY-
OUT is used for obtaining the dual-cover set of SP graphs
(G, G4). The dual-covers with minimum cardinality of DETs
minimize the CMOS layout area.

Procedure GRAPH TRANSFORMATION
begin

1 2],
3 4

a b,
c d |’

f ol
c d|
a b
fdy

set the terminal-matrix of Ty,e to be Myoor := [

pardo for all Topp;) with matrix Mopp) = [

begin
if OP[i] =

a T —
then Mppy = [. f; }& My pp = [

a b r
else MIOP[i] = [¢ f]& Mopy = [
parend;
end;

Procedure OPTIMAL LAYOUT
begin

(1) BDT TRANSFORMATION;

(2) GRAPH TRANSFORMATION;

(3) OPTIMAL DUAL-COVER;

(4) output the dual-covers with minimum cardinality of DETS;
end;

Lemma 9 : OPTIMAL LAYOUT runs in O(log n) time
and uses O(n) processors with n being the CMOS gates.

Figure 7c has different gates permutation from the lay-
out in [MH], and has one metal tracks less than [MH]’s 6
tracks, which leads to a smaller area. Therefore, the opti-
mal dual-cover is not unique. In fact some are preferred to
others, and any arbitrary dual-cover may require a “large”
number of tracks [S]. From Lemma 9, the following Theo-
rem 6 is readily established.

Theorem 6 : An optimal UV style layout of a CMOS
functional cell is obtained in O(log n) time using O(n) pro-
cessors in PRAM model with n being the CMOS gates.

4.3 Experimental Results

The divide-and-conquer algorithm outlined in this paper
has been implemented in the C programming language on
VAX/UNIX BSD 4.3 and the output is displayed on SILI-
CON GRAPHICS IRIS 2400 work station. The bottleneck
running time of this simulation program is TRAILHUNT.
Therefore, we use one processor (VAX machine) to approxi-
mate the longest TRAILHUNT running time in OPTIMAL
DUAL-COVER as an time unit, then multiply it by log n
as the OPTIMAL DUAL-COVER running time shown in
Figure 8. We also use the algorithm [GLL] which runs in
O(n log n) time using one processor (RAM model) in our
simulation program to compact the layout, that is, to com-
pact the layout height.

b

s
5o

1
22
I

ol

0 gates

0w T T e T e e T e
20" e ™0 e e 0 a0 ™ a0 ™0 "o Mhee

Figure 8: The OPTIMAL LAYOUT running time using

n processors (n is the gates number).

Reference

[GLL] U.1. Gupta, D. T. Lee, and J. Y. Leung,“ An Optimal So-
lution for the Channel Assignment Problem”, IEEE Transactions
on Computers, Vol. C-28, No. 11, November 1979, pp. 807-810.

[GM] H. Gazit and G. L. Miller,“A Parallel Algorithm for Find-
ing a Separator in Planar Graphs”, Proceedings of 28th Symposi-

vss
UTPUT

bl

__,
?4
i
=3
-
[T

i
!

iy it
£ N N 2

:
I
B

|
=
(] e
]
il

Eiml

&

g 4 h

i
ioing
{ L=]T |

e

£

(a (b))
Figure 9: (a)An 11 ggites CMOS layout using 6 tracks with
input: ab*c+dxefxg+hixj++k++
(b)A CMOS layout using 7 tracks in same input.

L

i

]l 1l }J!J_J‘,Mu;!!;ﬁﬁ::}:::}:::::::‘;:::::::::::::::::::::::;:.,.x.. IHM'{”‘“

T i]ilHI!|||||1I|I!iiiiiiiﬁll Ilﬂ-ﬁmilllllll!g_ii{ﬁ}l!!"m
ll! I |||1‘

i

il it (‘\l-llll\llmlmlll-lll
I i I

11T T T T i
fl'l !!lll-IIIJHHIHIIIIII[IIII(lIIIIHHI[I—BIIIIII‘

nm‘;’}[“}iﬂi::ﬂ:ﬂ_m,H}l::ﬂﬂ:ﬂ'ﬁ}iﬂmﬂﬂi='|||||||||||‘H
| L

Figure 10: A 50 gates CMOS la.yout using 13 tracks.

il

| |l'l‘l”l”‘l'lt'i'l”ilil'i'

[MH] R. L. Maziasz and J. P. Hayes, “Layout Optimization of
CMOS Functional Cells”, 24th ACM/IEEE Design Automation
Conference, 1987, pp. 544-551.

[MR] G. L. Miller and J. H. Reif, “Parallel Tree Contraction and
Its Application”, manuscript, 1985.

[NBR] R. Nair, A. Bruss, and J. H. Reif, “Linear Time Algo-
rithms for Optimal CMOS Layout”, VLSI Algorithms and Arch-
itectures (P. Bertolazzi and F. Luccio, ed.), North-Holland, 1985,
Pp. 327-338.

[S] C. C. Su,“Optimal Gate-matrix Layout of CMOS Functional
Cells”, manuscript, Department of Electrical Engineering and
Computer Science, Northwestern University,1987.

[TNS] K. Takamizama, T. Nishizeki, and N. Saito, “Linear Time
Computability of Combinatorial Problems on Series-Parallel Gr-
aphs”, Journal of ACM, Vol. 29, No. 3, July 1982, pp. 623-641.
[U] J. D. Ullman, Computational Aspects of VL.SI, Computer
Science Press, 1984.

[UV] T. Uehara and W. M. VanCleemput, “Optimal Layout of
CMOS Functional Arrays”, IEEE Transactions on Computers,
Vol. C-30, No. 5, May 1981, pp. 305-312.

[WE] N. Weste and K. Eshraghian, Principles of CMOS VLSI D-
esign A System Perspective, Addison Wesley, 1985.

um on Fundations of Computer Science, 1987, pp. 238-248.

[LT] R. J. Lipton and R. E. Tarjan, “A Separator Theorem for
Planar Graphs”, SIAM Journal on Applied Mathematics, Vol. 36
No. 2, April 1979, pp. 177-189.

33

[WPF] S. Wimer, R. Y. Pinter, and J. A Feldman, “Optimal
Chaining of CMOS Transistors in a Functional Cell”, IEEE trans-
actions on Computer-Aided Design, Vol. CAD-6, No. 5, Septem-
ber 1987. pp. 795-801.

Mear

LOOKAHEAD IN PARALLEL DISCRETE EVENT SIMULATION

Richard M. Fujimoto'
Computer Science Department

University

of Utah

Salt Lake City, UT 84112

Abstract

Empirical performance evaluations of parallel, discrete event simulation
algorithms using deadlock avoidance and deadlock detection and recovery
techniques developed by Chandy and Misra have been performed using the
BBN ButterﬂyTM multiprocessor. Experiments using synthetic workloads
reveal that the degree to which processes can look ahead in simulated time
plays a critical role in the performance of distributed simulators using
these algorithms. These results are applied to a queueing network

simulation where as much as an order of magnitude improvement in

performance is observed if the distributed simulator is programmed to fully
exploit the lookahead available in the application. Performance
measurements of several hypercube-based communication network
simulators provide additional empirical data to support these claims.
These results demonstrate that substantial improvements in performance
are obtainable if the application can be programmed to have good
lookahead characteristics. On the other hand, other applications inherently
contain poor lookahead properties, and appear to be ill-suited for these
simulation algorithms.

1. Introduction

Discrete event simulation has long been a task with computation
requirements that challenge the fastest available computers. For example,
simulations of communication networks, parallel computer architectures,
and battlefield scenarios often require hours, days, or even weeks of CPU
time using traditional, single processor techniques. Simulator performance
may be improved using vectorizing techniques [Chan83a], processors
dedicated to specific simulation functions [Comf84a], execution of
independent trials on separate processors [Bile85a], or the execution of a
single instance of a simulation program on a parallel computer. The last
technique, referred to as distributed simulation, is the subject of this paper.

Simulation would initially appear to be a natural candidate for parallel
processing because many of the aforementioned applications contain a
high degree of parallelism. However, the exploitation of this parallelism is
elusive because the global notion of simulated time does not easily map
onto a distributed computer. This property distinguishes distributed
simulation from other forms of parallel computation.

Several schemes have been proposed to solve this problem. A survey of
the literature has been reported by Kaudel [Kaud87a). One important class
of distributed simulation algorithms is the so-called ‘‘conservative’’
mechanisms. Chandy and Misra developed a mechanism based on a
deadlock avoidance technique where null messages are used to distribute
clock information among the processes taking part in the simulation
[Chan79a, Misr86a). Another mechanism, also developed by Chandy and
Misra, is based on a deadlock detection and recovery paradigm — the
simulator runs until deadlock, the deadlock is detected, and an algorithm is
executed to break the deadlock [Chan81a, Misr86a). Other approaches to
distributed simulation have been proposed, notably the Time Warp
approach proposed by Jefferson [Jeff85a], but the work discussed here will
be confined to deadlock avoidance and deadlock detection and recovery
techniques.

In [Fuji88a] several experiments using synthetic workloads were
described that were designed to evaluate the effectiveness of distributed
simulation strategies using the deadlock avoidance and the deadlock
detection and recovery algorithms. These experiments were performed on
a distributed simulation testbed that was implemented on the BBN
Butterﬂy,TM a shared-memory multiprocessor. Here, we apply these
results to specific application problems to provide empirical data to support
these results. In particular, parallel simulations of queueing networks and
the communication subsystem of a hypercube-based multicomputer
demonstrate the relationship between lookahead in the simulation
application and performance of the parallel simulator.

"This work was supported by ONR contract number NO0014-87-K-0184 and NSF grant
number DCR-8504826.

34

2. Logical Processes, Activities, and Lookahead

Logical processes, activities, and lookahead form the basis for the
synthetic workload model that is used here. The simulation program
consists of some number of logical processes, each of which models some
portion of the system being simulated. For example, in simulating a digital
logic network, each gate (or some collection of gates) could be modeled by
a logical process. Logical processes communicate exclusively by
exchanging timestamped messages. Messages typically correspond to
events that trigger a change in system state. Each logical process must
process incoming messages in non-decreasing timestamp order to ensure
that cause-and-effect relationships are faithfully reproduced by the
simulator.

‘We informally define an activity as a sequence or thread of events that
propagates among the logical processes in the simulation. These events
model some sequence of cause-and-effect relationships in the system being
simulated. For example, in a logic simulation, individual events are logic
signal transitions and each activity corresponds to a signal propagating
through a sequence of logic gates. In a queneing network simulation, each
activity corresponds to a job traveling through the network. Activities are
usually dynamic. A new activity is created in the logic simulation
whenever an existing activity reaches a fanout point in the network. The
activity disappears when (for instance) it reaches an AND gate with a logic
zero on one of the other input lines. For our purposes, this informal
definition of activities and logical processes will suffice.

Logical processes often ‘‘look ahead’’ into the simulated time future to
schedule new events. For example, upon receiving a signal transition
event in a logical process for an inverter gate, the process can predict and
schedule a new event (a signal transition at the output of the gate) one gate
delay later in simulated time. The lookahead abilities of the process
determine how readily it will schedule new events. Processes such as the
inverter with good lookahead abilities can ‘‘see’’ sufficiently far into the
future that “‘effect’ events can be scheduled as soon as the ‘‘cause’” event
is received. On the other hand, processes with poor lookahead ability must
first wait until simulated time is advanced before they can schedule the
effect event. For example, in a queueing network simulation with
prioritized jobs, the ‘‘departure’” event for a low priority job cannot be
scheduled until it is first determined that no higher priority job will
preempt it.

Quantitatively, lookahead is defined as follows: if a process has
knowledge of all events that will occur up to simulated time T, and can
predict all new events it will generate with timestamp T+ L or less, then
the process is said to have lookahead L. In general, lookahead is a
complex function that varies with time and the type of event, and is highly
dependent on details of the simulation problem and the way it is
programmed. A process can schedule a future event so long as the
timestamp on that event is less than or equal to the process’s local clock
plus its lookahead. Such events are said to be within the ‘‘lookahead
horizon’’ of the process.

Consider a ‘‘cause’’ event with timestamp T, that leads to an
“‘effect’ event with timestamp Tg,.,. The absolute value of lookahead is
not as important as the lookahead relative 10 Ty, — T g5 » because this
will determine how far the process must advance in simulated time to
generate the new event. Therefore, we define a quantity referred to as the
lookahead ratio (LAR):

chfu-t - Tcaun
lookahead
A low (e.g., 1.0) LAR corresponds to a high degree of lookahead.

LAR =

3. The Distributed Simulation Testbed

An 18 processor BBN Butterfly multiprocessor was used for
experimentation. Each processor node contains a 16 MHz MC68020 with
MC68881 floating point coprocessor, 1 to 4 MBytes of memory, and a

Table 1. Hardware Parameters

. Execution Time
Operation (microseconds)
Local memory reference 0.60
Remote memory reference 4.0
Register-to-register instruction 0.71
16 bit Load (Local Memory). 1.3
16 bit Load (Remote Memory) 6.3
Parameterless function call 6.9
Atomic inclusive OR 20

processor node controller (PNC), a microcoded engine that processes local
and remote memory requests. The interconnection switch is configured as
an Omega network. Atomic test-and-set like memory operations are also
implemented in the PNC. Execution times of various instructions and
operations are shown in table 1. Experimental data indicate that switch
contention, and hot spot congestion in particular, is unlikely [Thom86a].

Each processor executes a single operating system process. This
process is a scheduler that time multiplexes execution of the simulation
processes mapped to the processor. This strategy avoids excessive context
switching overhead, and allows more direct control over the process
scheduling mechanism. Asynchronous message passing primitives were
constructed using direct memory accesses to the mailbox in the receiving
simulator process. Only a few simple Butterfly primitives, namely lock
and atomic-add operations, are used by the testbed after initialization is
complete.

4. The Simulation Algorithms
Two distributed simulation algorithms were implemented in the testbed:
one based on deadlock avoidance and another based on deadlock detection
and recovery. The shared memory architecture of the Butterfly was used
to improve the efficiency of these algorithms, as described below. A single
processor, event list implementation was also developed in order to
compute speedup.

4.1 Deadlock Avoidance Strategy

The deadlock avoidance scheme developed by Chandy and Misra was
implemented first. Each logical process sends a null message to each of its
neighbors whenever it blocks. The timestamp on this message represents a
lower bound of the timestamp on any message that will be sent to the
receiver in the future. It is equal to the local clock value of the process
plus the lookahead value because, by definition, the process cannot predict
the occurrence (or non-occurrence) of events further into the future.
Chandy and Misra have shown that this approach is sufficient to avoid
deadlock [Chan79a].

In the testbed, one optimization was performed to streamline the
processing of null messages. Rather than enqueueing each null message
sent to another processor, a single variable is associated with each input
link that contains the timestamp of the last null message that was received.
This avoids unnecessary enqueue and dequeue operations and leads to
more efficient memory utilization.

4.2 Deadlock Detection and Recovery Strategy

The second simulation approach is based on deadlock detection and
recovery. The simulation runs until deadlock, the deadlock is detected,
and an algorithm is initiated to break the deadlock [Chan81a]. A central
controller is used to coordinate the deadlock recovery procedure.

Deadlock in the testbed is easily detected by maintaining a global
counter indicating the number of processes that are either scheduled or
running. The system is deadlocked whenever the counter reaches zero and
there is at least one process that has not yet terminated (otherwise, the
computation has terminated). Each scheduler checks the deadlock counter~
whenever it fails to find a process to run, and initiates a computation to
break the deadlock if it finds the counter is zero.

The deadlock recovery algorithm locates the message in the system with
the smallest timestamp and arranges for it to be processed next. A
distributed “algorithm is used to perform this computation. A central
controller is used to coordinate this activity. By convention, the scheduler
executing on PE 0 acts as the controller.

An alternative deadlock recovery algorithm waé also implemented in
which messages are propagated throughout the system in order to restart as

35

many processes as possible. This algorithm is described in [Chan81a]. It
was found, however, that the additional time required to execute this
algorithm yielded a net loss in performance. The performance figures
reported here are based on the former deadlock recovery approach.

4.3 Uniprocessor Simulation Algorithm

Finally, a single processor, event list simulator was developed to allow
comparison of distributed simulation programs with sequential event list
implementations. In order to obtain a fair comparison, the uniprocessor
simulator was constructed by modifying the distributed simulator. Both
implementations maintain the same overall structure, organization,
programming style, and conventions. All code specific to parallel
computation (e.g., synchronization locks) was eliminated.

The event list was implemented as a splay tree [Slea85a]. Empirical
evidence suggests that splay trees are among the fastest methods for
implementing an event list [Jone86a]. An altenative implementation
using a singly linked linear list was also developed. It was found that this
implementation yielded performance comparable to the splay tree for small
simulations but, as expected, ran much more slowly for the larger
simulations. The splay tree implementation is used in all comparisons with
uniprocessor simulations reported here.

4.4 Performance Metrics

Three metrics are defined to evaluate the performance of the distributed
simulation programs:

o Speedup. SU(n), the speedup using n processors, is defined as the
execution time of the single processor, event list implementation using a
splay tree divided by the execution time of the distributed simulation
program when n processors are used.

o Null Message Ratio. NMR is defined as the number of null messages
processed by the simulator using deadlock avoidance divided by the
number of real (non-null) messages processed. This measures the
overhead of the deadlock avoidance approach.

e Deadlock Ratio. DR is the number of messages processed by the
distributed simulator using deadlock detection and recovery, divided by
the number of deadlocks that occur. This figure measures the efficiency
of the deadlock detection and recovery algorithm,

The single processor execution times were obtained by running the splay
tree simulator on a single node of the Butterfly. The same compiler as that
used by the distributed simulator was used. Therefore, compiler and
processor speed dependencies are factored out of the speedup figures.

The experiments were performed with no other applications running on
the Butterfly. Facilities, such as the window manager, were run on
processors different from those executing the simulation program. These
measures were taken to minimize interference with the computation.

Experimental data were, for the most part, well behaved. The 95
percent confidence intervals for the measured data were typically less than
one or two percent of the reported value. Only in a few instances were
significant variations observed from one measurement to another. These
were related to the avalanche effect described later, and do not affect the
conclusions that follow from these experiments.

5. Experiments Using Synthetic Workloads

Synthetic workloads were constructed based on the notions of logical
processes, activities, and lookahead, described earlier. Workloads
contained 16 and 64 logical processes organized in 4 by 4 and 8 by 8
toroids, respectively (a toroid is a nearest neighbor mesh with wrap-around
edge connections). Toroids were used because they do not contain
inherent bottlenecks that might color the results, and because they are rich
in cycles, and therefore represent a reasonably challenging configuration
for the simulation algorithms. It is assumed that the number of activities in
the simulation remains constant, and the lookahead of each process
remains fixed throughout the simulation and does not depend on the type
of event. Within each experiment, a fixed number of messages (the
message population) circulates in a manner similar to jobs traveling
throughout a closed queueing network. Simulation activity in each process

-was emulated using busy wait loops.

The experiments discussed next assume a message population of four
messages per process and an average computation time of 1 millisecond
(selected from a random variable with a negative exponential distribution)
to process each incoming message. A static process to processor mapping

Speedup Using Deadlock Avoidance
4 Messages per Process
S up
v gged“ s toroid:

o High lookahead (LAR = 1.1)
o Moderate lookahead =5.5)
O Low lookahead (LAR = 11.0)

3¢ Pih tookabesd (LAR = 1.1

X =1.

v Mgderale lookahead (LAR = 5.5)
* Low lookahead (LAR = 11.0)

K
0
34 b
0 v v T
0 4 8 12 16
Number of Processors

Figure 1. Speedup of synthetic workload as lookahead is varied.

was used that balanced the workload assigned to the available processors
while minimizing interprocessor communications.

Numerous experiments were conducted to examine the effects of

computation granularity, dynamic load balancing, message population,
message routing, and other factors. A detailed description of these results
is beyond the scope of the present discussion, but is described elsewhere
[Fuji87a, Fuji88a]. We will summarize some of these results and discuss
how they can be applied to a specific application.

5.1 Effect of Lookahead

The speedup curves in figure 1 show the effect of varying lookahead in
the deadlock avoidance simulator. As can be seen, lookahead plays a
critical role in determining simulator performance. Performance degrades
significantly as the lookahead ability of each process is reduced. Processes
with poor lookahead characteristics must delay generating new events,
reducing the amount of parallelism available in the simulation.

Performance of the 16 node toroid is somewhat less than the 64 node
toroid because the simulation does not contain sufficient parallelism to
keep all of the processors busy. In addition, as the number of processes
per processor is decreased, each process is afforded less time to collect
messages before it is executed by the scheduler. As a result, a process may
be scheduled more often than if there were more processes mapped to the
processor. The additional scheduling overhead and increased idle time
lead to poorer performance in the 16 node simulator, particularly as the
number of processors is increased.

5.2 Message Avalanche

Experiments using the deadlock detection and recovery strategy also
revealed an ‘‘avalanche’’ phenomenon. This behavior is depicted in figure
2 where the deadlock ratio is plotted as a function of the message
population. Performance remains poor (only a few messages processed
between deadlocks) at low and moderate message populations, but then
increases dramatically once message population reaches a certain critical
level. It was found that message avalanche was a prerequisite for
achieving good performance for this simulation strategy.

Message avalanche occurs when a message arriving at a process causes
the transmission of one or more additional messages, which in turn trigger
the transmission of still others, and so on. A multiplicative effect occurs
whereby an ‘‘avalanche’ of message traffic results from the original,
accounting for the dramatic improvement in simulator efficiency.

As shown in figure 2, the message population required to induce
avalanche was found to be dependent on the lookahead ability of the
processes. Smaller populations were required to induce avalanche if
processes were able to see far into the simulated future. This is again
becduse poor lookahead characteristics reduce the amount of parallelism in
the simulator.

36

Message Avalanche
Deadlock Detection and Recovery Strategy
DR
10000 T —— i3
10004 64 1gro«':ess toroid:
o High lookahead (LAR=1.11)

o Low lookahead (LAR=11.0)

16 process toroid:
O High lookahead (LAR=1.11)
1004 x Low lookahead (LAR=11.0)

104

1 y

0.25 1 4 16 64
Message Population (messages per process)
Figure 2. Message avalanche occurs as the message population is increased.

256

5.3 Processes with Different Lookaheads

The experiments described above used homogeneous workloads where
each process behaved in the same way as the others. Many real

:Cfnmnamt Tanlrnhand
1CICIHL IVURaivau

simuiaiions coniain a variety of logical processes wiih d
characteristics. Additional experiments were performed in which some
processes had poorer lookahead characteristics than the others.

Figures 3 and 4 show simulator overhead for the deadlock detection and
recovery, and deadlock avoidance simulators, respectively, when some
number of processes with poor lookahead characteristics are mixed with
processes with good lookahead characteristics. Experiments were
performed in whi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>