LNW80 Technical Reference Manual

TECHNICAL REFERENCE MANUAL

BY

DAVID L. KELLY

FIRST EDITION - 1982

```
All rights reserved. Reproduction or
use, without express permission is
prohibited. While every effort was taken
in the preparation of this book, the
publisher assumes no liability for
errors or omissions. Neither is any
liability assumed for damages resulting
from the use of the information
contained herein.
```

 Copyright(C) 982 , LNW RESEARCH CORP.
 PAGE
I. SYSTEM OVERVIEW 1
CENTRAL PROCESSING UNIT 1
READ ONLY MEMORY 1
RANDOM ACCESS. MEMORY 2
KEYBOARD 2
VIDEO \& VIDEO PROCESSING 2
TAPE INTERFACE 3
SERIAL INTERFACE 3
FLOPPY DISK CONTROLLER 3
II. THEORY OF OPERATIONS LNW8O BOARD 4
SYSTEM CLOCK 4
CPU ADDRESS LINES 4
CPU DATA BUS 5
WAIT*, INT*, \& TEST* 5
CPU CONTROL SIGNALS 6
ADDRESS DECODING CIRCUIT 6
LNW8O MEMORY MAP 7
READ ONLY MEMORY 7
PROGRAM RAM 8
KEYBOARD 9
VIDEO DIVIDER CHAIN 10
VIDEO RAM ADDRESSING 14
LOW RESOLUTION VIDEO RAM 15
HI RESOLUTION GRAPHICS RAM 17
VIDEO DATA LATCH 18
Character generator 19
GRAPHICS GENERATOR. 19
alpha numeric/graphic shift registers 20
INVERSE VIDEO 21
HORIZONTAL \& VERTICAL SYNC TIMING 21
COMPOSITE VIDEO MIXING CIRCUITS 22
NTSC COLOR VIDEO 23
COLOR BURST ONE-SHOT 26
U146 - MC1372 COLOR ENCODER 26
hi resolution color 27
BLACK \& WHITE THRU NTSC CHANNEL 27
CASSETTE 27
POWER 29
III. THEORY OPERATIONS EXPANSION BOARD 30
EXPANSION BUS 31
MEMORY EXPANSION 32
FLOPPY CONTROLLER \& PRINTER DECODING 32
Parallel line printer port 33
CLOCK CIRCUIT 34
FLOPPY DISK INTERFACE 35
SERIAL INTERFACE 36
baUd rate generation 38
TR1602B UART 38
E1A RS232C \& 20 mA LEVEL SHIFTS \& RECEIVERS 38
handshake latch. 38
MODEM STATUS BUFFER 39
CONFIGURATION SENSE JUMPERS 39
DECODING \& LOGIC CONTROL 39
SERIAL INTERFACE PORT ADDRESSING 40
REAL TIME CLOCK 40
IV. THEORY OPERATIONS 5/8 DOUBLER 42
SINGLE/DOUBLE DENSITY OPERATION 42
CLOCK CIRCUIT
5.25" \& 8" SELECTION/OPERATION 43
ANALOG PHASE LOCK LOOP DATA SEPERATION 44
PRECISION WRITE PRECOMPENSATION 44
WAIT LOGIC 44
V. TROUBLESHOOTING 46
POWER SUPPLY 46
VIDEO OUTPUT/ADJUSTMENTS 46
SYSTEM CLOCK 46
CPU/CPU TEST. 47
CPU/CPU TEST PROGRAM 48
SCOTCH TAPE TRICK 50
HI RESOLUTION GRAPHICS 50
HI RESOLUTION GRAPHICS TEST 51
COLOR GRAPHICS TEST \& ADJUSTMENT 52
VI. Troubleshooting the expansion interface 53
POWER SUPPLY 53
32K MEMORY EXPANSION 53
FLOPPY DISK CONTROLLER 54
RS232 SERIAL PORT 54
SERIAL CIRCUIT TERMINAL PROGRAM. 55
SERIAL PRINTER DRIVER PROGRAM 55
VII. 5/8 DOUBLER ALIGNMENT 57
VIII. DISASSEMBLY/ASSEMBLY 58
REMOVING THE LID 58
REMOVING THE KEYBOARD 58
REMOVING THE EXPANSION INTERFACE 58
REMOVING THE LNDOUBLER 5/8 59
REMOVING THE LNW8O COMPUTER BOARD 59
reassembling the computer 59
IX. ENGINEERING CHANGE NOTICES 60
X. RGB OPTION 65
rGB CIRCUIT DIAGRAM 66
XI. PARTS LIST LNW80 COMPUTER BOARD 67
XII. PARTS LIST EXPANSION INTERFACF. 78
XIII. PARTS LIST 5/8 DOUBLER 83
XIV. PARTS LIST CASE ASSEMBLY 85
XV. APPENDIX 1 - DATA SHEETS 86
XVI. APPENDIX 2 - ENGINEERING DRAWINGS 184

INTRODUCTION

```
    This book was written for those people who
have the technical knowledge to understand how a
computer operates. This requires that the reader
has a through understanding of digital logic.
Armed with a TTL DATA BOOK and this manual such a
person can understand the complex internal
operation of the LNW80 COMPUTER.
    Remember that any work you do to your LNW80
voids all warranties, implied or expressed. Also
we will not repair or correct owner modifications.
We cannot possibly support owner hardware/circuit
ideas on how to customize the LNW80.
    In the following sections refer closely to
the schematics and the system block diagram which
can be found at the end of the manual. Good luck
and have fun.
```


CENTRAL PROCESSING UNIT (CPU)

The heart of the LNW8 \emptyset is the 280 CP CPU. The $Z 8 \emptyset A$ has 16 address lines and therefore 65536 addressable memory locations. The $Z 8 \emptyset A$ receives instructions from the ROM or RAM and proceeds to execute them. Only the CPU interacts with all other sections within the computer. The CPU section includes not only the $Z 80$ A but also the data and address buffers, wait logic, and system control logic.

READ ONLY MEMORY (ROM)
The ROM contains non-erasable data that is used to provide the CPU with instructions necessary for the system"s operation. Upon power up the CPU outputs to the ROM for its first instruction after which the ROM takes over and instructs the CPU exactly how to perform the necessary funtions to get the system operating.

The RAM is where the CPU stores data. This data may consist of program information. The RAM differs from the ROM in that data may be written to as well as read from the RAM by the CPU.

KEYBOARD

The keyboard is used to input instructions from the user to the CPU.

VIDEO RAM AND PROCESSING

The video is used to inform the user what the system is doing. All data that is stored in the video ram is automatically displayed on the CRT by the video processing unit. The data within the video ram is stored in ASCII. Utilizing the Character Generator the ASCII is translated into a dot pattern that represents the desired character.

TAPE INTERFACE

The tape interface stores data on tape so that it can be recovered at a later date.

SERIAL INTERFACE

The RS232C serial interface sends and receives data in serial fashion and converts that data to parallel form to be received by the CPU. This section is used to connect to such devices as modems and serial printers.

FLOPPY DISK CONTROLLER (FDC)
The FDC stores large a mounts of data and thus increases the storage copacity of the system.

ENABLE/CONTROL SIGNALS

THEORY OF OPERATIONS LNW8Ø BOARD

SYSTEM CLOCK

The system clock is a 16 MHz oscillator utilizing Yl and Ul to form a series resonant circuit. U87, a synchronous 4-bit counter, is used to perform the divide by four for the 4 MHz and a divide by nine for the 1.77 MHz CPU operation. When the HI/LO switch is depressed, the signal FORCELO* (U29-5) is a logic "Ø" resulting with a preset of 1, \varnothing, \emptyset at 487 pins 3,4, and 5 respectively. This preset will program U87 to divide by nine resulting in a l. 77 MHz CPU clock at U2-6.

During 4 MHz operation, 487 will be preset with $0,1,1$ at pins 3,4, and 5 respectively resulting in a divide by four of the system clock. At 4 MHz , the signal NHI* (Ul5-2) will be a logic "Ø". Thus when ROMRD* (Ul5-1) is active, a WAIT* will be generated through U3l to the CPU pin 24 allowing for the relatively slow access time of the ROM.

During automatic switching (SWl=1) when the floppy address (37EC) is decoded along with a logic "ø" at IMREQ*, the one-shot at Ul2ø will be triggered forcing Ul20-4 low. This results with a logic "ø" at U29-4 resulting in a CPU speed of 1.77 MHz as when the $\mathrm{HI} / \mathrm{LO}$ switch was depressed. The clock speed will remain at this state until the one-shot expires at which time the CPU automatically and synchronously returns to 4 MHz .

CPU ADDRESS LINES

The 280A provides 16 address lines which define the 64 K of addressable memory lacations. These address lines are buffered from the Z8@A through U3 and U5. U3-1 and U5-1 should be a logic "ø" thus enabling their outputs at all times. The upper addresses are latched through U5, an LS373, to prevent the address from changing prematurely. During refresh time, the lower 7 bits contain a valid refresh address.

CPU DATA BUS
The CPU utilizes an 8-bit bidirectional data bus. The data bus is used for data exchanges with memory and $1 / 0$ devices. The data is buffered through U4 and Ul7. DBIN (Ul-10) is used for directional control. When DBIN is a logic "1" the CPU is receiving data. When DBIN is low the CPU is sending data.

WAIT*, INT*, and TEST*
The WAIT* input to the Z8ØA CPU will cause the Z80A to extend its cycle, resulting in slowing down the CPU. The LNW8ø utilizes one WAIT function when a ROM read is in process and one or two waits when accessing the video memory. These waits are required in the hi-speed mode of 4 MHz to ensure data validity when accessing the slower memory devices. There are no wait states when accessing the program memory (RAM) on the LNW8ø (requiring $2 ø ø$ ns or faster RAM's).

The wait term is generated by U3I. U3I-3, the clock, is delayed by Ul6. This clock delay results in proper data setup time to U3l. U6l-3 is WAITHLD. This will increase the wait from the usual one wait state for the Level II ROM's, to multiple wait states when reading from the video memory. Pin 33 of Jl is the bus WAIT signal. This input may be utilized by other external devices that may wish to pose a wait condition on the Z8ØA procesor.

The INT* signal is a maskable interrupt to the $\mathrm{Z} 8 \mathrm{D}_{\mathrm{A}}$ pin 16. The Level II Basic ROM utilizes interrupt mode 1. When the CPU is interrupted, a restart to location $\varnothing \varnothing 38 \mathrm{H}$ is executed.

Pin 23 of Jl is TEST* which is a busrequest signal to the 280 A CPU. The CPU responds by tri-stating its data, address and output control signals. Since the Z80A CPU is fully buffered, all the buffers (U3, U4, U5, Ul7, and Ul8) will also be tri-stated. Once these buffers are tri-stated, any device on the expansion bus may control the function of the LNW8ø board. One important consideration is that the dynamic program RAM's are refreshed by the Z 80 A processor. Therefore, any controlling device on the expansion bus must consider memory refresh.

CPU CONTROL SIGNALS

The ZRD * signal is a tri-state output, active low, ZRD* indicates that the CPU is ready to receive data from memory or an I/O device. It is input to $U 36$ pins 4 and 12. When U36-12 goes low it enables DBIN. When 2RD* and ZMREQ* go low, they enable IRD* (U36-6). RDOUT* will also be enabled if RDWRDIS (U51-8) is true. Note that RDWRDIS is used to disable the lower 16 K when the HI RESOLUTION GRAPHICS RAM are enabled.

ZWR* indicates that the CPU holds valid data to be stored in memory or an I/O device. When ZWR* and ZMREQ* both go low, IWR* (U36-3) is enabled. WROUT* (U36-1l) will also be enabled if RDWRDIS is true.

ZMREQ* indicates that the address bus holds a valid address for a read or write operation. Note that it is also used for memory refreshing.

ZIORQ* indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. It is used as the enable at U35-15. When combined with a WR*, IOUT* will be enabled (U35-9). When ZIORQ* is combined with a RD*, IIN* will be enabled (U35-11). ZIORQ* is also combined with ZMI* when an interupt is being acknowledged.

RFSH* indicates that the lower 7 bits of the address contains a refresh address for dynamic memories and the current MREQ* signal is used to do a refresh read to all dynamic memories. Note that it is used to clear U46-5 during refresh time. Resulting in the selection of the lower seven address lines and a logic "l" for the CAS* signal.

ADDRESS DECODING CIRCUIT

The address decoding circuit consists of U6 and U35. The decoding circuit uses the higher order address bits to enable the locations within the memory map which the CPU wishes to access. U6 is a 3 to 8 line decoder. It uses A15 and IMREQ* as enables and Al2, Al3, and Al4 as inputs. Refer below for a listing of the memory mapped sections of the LNW8ø along with their decoded addresses.

ADDRESS

DECIMAL	HEX	DEVICE
\emptyset	\emptyset	
12288	$300 \square$	BASIC ROM
12289	3001	
14301	37 DD	UNUSED
	$============================$	
14302	37 DE	COMMUNICATION STATUS ADDRESS
14303	37DF	COMMUNICATION DATA ADDRESS
14304	37Eø	INTERUPT BATCH ADDRESS
14305	37E1	DISK DRIVE SELECT LATCH
14308	37 E 4	CASSETTE SELECT LATCH
14312	37 E 8	PARALLEL PRINTER ADDRESS
14316	37EC	FLOPPY DISK CONTROLLER ADDRESS
14336	3800	
14591	38 FF	KEYBOARD
= = = = = = =	= =	$=======$ = = = = = = =
15360	$3 \mathrm{C} \square \square$	
16383	3FFF	LO-RES VIDEO RAM
16384	$40 \emptyset \emptyset$	
32767	7 FFF	16K PROGRAM RAM
32768	$8 \emptyset \emptyset \emptyset$	
65535	FFFF	32K RAM (EXPANSION BOARD)

ROM

The LNW8 \emptyset ROM consists of six EPROMS. ROMA is memory mapped from \emptyset to 2 K , ROMAI from 2 K to 4 K , ROMB from 4 k to 6 K , ROMB1 from 6 K to 8 K , ROMC from 8 K to $1 \emptyset \mathrm{~K}$, and ROMCl from 10 K to 12 K .

Each ROM has three enables. Pin 21 is an active high enable and pins 18 and $2 \emptyset$ are active low enables. Pin 21 is pulled high on all ROMs with 33 ohm pull-up resisters.

ROMA and ROMAI, pins $2 \emptyset$ are enabled by " $\emptyset-4 K * "$ (U6-15). " $\varnothing-4 K * "$ goes low when U6 pins 1,2,3,4, and 5 are at logic levels "ø","ø","ø","Ø, and "Ø" respectively. RAII is inverted at U5Ø-8 and enables either ROMA and ROMAI at pins 18.

ROMB and ROMBI, pins $2 \emptyset$ are enabled by "4-8K*" (U6-14). "4-8K*" goes low when U6 pins 1,2,3,4, and 5 are
at logic levels "l","Ø","Ø","Ø", and "Ø" respectively. RAll enables either ROMB or ROMBI at pins 18.

ROMC and ROMCl, pins $2 \emptyset$ are enabled by " $8-12 \mathrm{~K} *$ " (U6-13). " $8-12 \mathrm{~K} * "$ goes low when U6 pins $1,2,3,4$, and 5 are at logic levels "ø,"l","ø","ø", and "Ø" respectively. RAll enables ROMC or ROMCl at pins 18.

Addresses AØ through All are buffered through U62 and U65, LS244's. The data bus out is buffered through U63 and is enabled by "RAM/ROM*" (U52-6). "RAM/ROM*" goes low when RD* occurs with either " $\emptyset-4 \mathrm{~K} *$ ", $44-8 \mathrm{~K} *$ ", or $" 8-12 \mathrm{~K} *$ ".

PROGRAM RAM

The LNW8ø utilizes the 16 Kxl dynamic memories (4116 type) with maximum access time of 200 ns . The 14 address lines are multiplexed into the 7 address inputs. The addressing sequence is RAS* (Row Address Select), MUX (Multiplex), and then CAS* (Column Address Select). The timing diagram for a write operation of the memory control signals is displayed in the following diagram. The RAM data bus out is enabled by "RAM/ROM*" at U63 when RAM* is decoded at Ul9-6 during a read operation.

CLOCK (U2-6)

ZMREQ* (U2-19)

AøーAl5 (U3,U5)

RAS* (Ul8-14)

MUX* (U18-5)

CAS* (Ul8-12)

WR* (U18-7)

RAM REFRESH
Dynamic RAM require periodic refreshing to retain data information. If the system does not receive periodic refreshing the dynamic RAMs will begin to "forget" data.

The LNW8Ø utilizes the Z8ØA CPU to generate the refresh to the RAM's. The memory refresh address is output on the lower 7 address bits during refresh time. An instruction fetch will increment the refresh register.

The LNW8Ø uses a "RAS*" only refresh, where RAS* will be low and CAS* will be high during refresh. At refresh time MUX will be low selecting Aø-A7 as the RAM address.

KEYBOARD

The LNW8Ø keyboard is designed specifically for the LNW8ø computer providing a 62 keypad, an 11 key numeric keypad, and all the special functions that are available to you through the LNW8ø computer.

The keyboard is a scanning type keyboard based on an eight by eight matrix. Normally, all lines are floating until the KYBD* signal goes low which turns Q1 on and pulls all signals high indicating a keyboard scan operation. KYBD* is decoded through U35 when a keyboard address is placed on the address bus and RD* is active.

Note that lower case is enabled only with software driver routines such as those available in DOS+, NEWDOS8ø, and ELECTRIC PENCIL.

SPECIAL KEYBOARD FUNCTIONS

RESET (RST) :	Both RST keys must be depressed to reset the computer.
HIGH LOW:	Forced Low speed switch. When depressed the system will operate in LOW speed. Otherwise the system will operate in forced high speed.
CONTROL:	This is a special software controlled key. It is used in software such as the ELECTRIC PENCIL word processing program.
CAPS LOCK:	Disables lower case characters.
F1, F2:	User definable keys. Needs special software driver.

VIDEO DIVIDER CHAIN

The video divider chain provides the necessary logic for video processing, including video ram addressing, and vertical and horizontal timing pulses. The basis of the video divider chain is the 10.738 MHz clock at Ull9-6. This signal appears as a sine wave and is exactly 3 times the color frequency of 3.579 MHz . Ul2l executes a divide by 2. This results in 2 input frequencies to the divider chain at Ul22.

In the standard 64 character mode, 32CHAR*(Ul22-1) will be high so that the B inputs to $U l 22$ will be selected therefore the clock input at Ul38-9, CLKT, will be 10. 738 MHz . Ul38 provides the basic timing signals for video processing. Figure 2 represents a timing diagram for the outputs of Ul38 and Ul55 in the 64 character mode.

During 64 character mode, T^{*} * is selected as the control clock (CNTRCLK) for the video timing chain(Ul22-12). The circuitry of Ul38 and Ul55 effectively produces a divide by 12 such that $T 7 *$ is $10.738 \mathrm{MHz} / 12$ or 894.8 KHz . Note also that T7 is selected as CHARI (Ul22-9). CNTRCLK is the clock input to Ul6ø and Ul6l(Sl61's). Figure 3 illustrates the outputs of Ul6ø and Ul61.

T7 (Ul55-6)
894.88 KHz

CHAR2 (U161-14)
447.4 KHz

CHAR4 (Ul61-13)
223.7 KHz

CHAR8 (Ul61-12)
111.86 KHz

CHAR16 (Ul61-11) 55.93 KHz

CHAR32 (Ul60-14)
27.97 KHz

FIGURE3

Note that HORTP (Ul60-13) is not half the frequency of CHAR32 (Ul6ø-14). T6INH*(Ul55-9) prevents the completion of its period by clearing Ul6ø and Ul6l at the end of each horizontal line. The frequency of HORTP is 15.750 KHz resulting in a period of 63.49 us for each line.

Each line consists of 112 characters. Allowing one CHARl period for each 2 characters the time span for 112 characters is 62.58us. Note that we are left with Ø.9lus at the end of each horizontal line. T6INH* is used to delay the timing chain to "waste" this additional time before starting the next cycle. Ul67 is used to add the additional delay in T6INH*. It is ANDed with T6 at Ul54 thus delaying T6*(Ul54-8) from clearing Ul38.

HSTP (Ul68-11) is the ORing of CHAR16 and CHAR32, ANDed with HORTP. This is the horizontal sinc timing pulse. Its frequency is 15.750 KHz . Refer to figure 4 for the timing diagram.

U159-12 is also displayed in figure 4. It goes low after the lilith character and also has a frequency of 15.750 KHz . It serves 2 important purposes. list, it is the data input to Ul 24 which when clocked clears Ul 55 and thus enabling T6INH*. Also it is the input to U156-13 and thus increments the row count.

64 th Char Position ll2th Char Position
CHAR 16
(U161-11)

CHAR 32 (U160-14)

HORTA
(U160-13)

HST
(U168-11)
"Ul59-12"

FIGURE 4.
Each character position consists of a 6×12 matrix. Six dots and 12 horizontal rows. Ul 56 increments by one after each horizontal scan. When the row count is equal to 12, Ul68-3 will go high thus clearing Ul56 setting the row count back to zero and also clocking U153-1l and incrementing the line count by one.

Note that the screen consists of 22 lines (only 16 are displayed) and each line has 12 rows. LINE, the least signicicant bit of the line counter, changes state every 2 nd line and thus has the same period as 24 rows or 24×63.49 us or 1.524 ms . Its frequency is therefore 656.3 Hz . Using similar logic, you can find that LINE $2=328.1 \mathrm{~Hz}$, $\operatorname{LINE} 4=164.1 \mathrm{~Hz}$, and LINE 8 $=82.0 \mathrm{~Hz}$.

A similar situation exists for VERTP(Ul56-6) as did for HORTP in that Ul56 is cleared before VERTP, which represents linel6, completes its full period. When the total line count is 22 the inputs to U 169 pins 3,4 and 5 are high, thus its output pin clears the line count back to zero. In 22 lines LINE changes state 11 times so that the period of VERTP is 11 times that of LINEI or 16.76 ms . The resultant VERTP frequency is 59.66 Hz .

In the 32 character mode, Ul22-1 goes low selecting the 5.369 MHz clock for CLKT. The result is that all of the outputs of $U 138$ are exactly one half the frequency that they

were in 64 character mode. T5* is selected as CNTRCLK and CHAR1 is ground. Note that because T7* is $1 / 2$ the frequency of T5*, by selecting T5* in 32 character mode CNTRCLK does not change and therefore nor does the resulting logic of U160 and U161.

The signals that did change, $T 2$ through T5 and CHAR1, are very important to the video processor section. CHAR1 determines whether the video ram have 1024 or 512 usable addresses. T2 through T5 determine how many characters may be processed to the character generator per line.

VIDEO RAM ADDRESSING

The video rams are addressed by 2 sources. The video divider chain addresses the video ram so that data contained in memory can be processed and displayed on the screen. The CPU must address the video ram so that data can be read from or writen to specific locations. Multiplexers are used to select either the video chain or CPU address.

For the following discussion refer to figure 5, the VIDEO MEMORY MAP. Note that the low resolution video is defined only within the inner region and that A10-A13, which specify the row count are not used by the low resolution video ram. By definition A10-A13 are at a logic "1" voltage state during CPU access of the low resolution video ram.

The inner region represents the standard TRS80* video display. This region is memory mapped at locations 15360 through 16383. It has 63 characters and 16 lines, each line with 12 rows. The video addressing of this region is represented by the following:

384 X 192 INNER REGION

0	0	ROW	LINE	CHARACTER

A0-A5 specify character position $0-63$, A6-A9 specify line position 0-15, and A10-A13 specify row position 0-11. A14 and A15 will be low.

The extension region, refer to figure 5, adds an additional 16 character positions for a total of 80 . The following illustrates the addressing of this region:

A Ø-A3 specify character $\emptyset-15$ of the extension region, A4-A5 specify the most significant 2 bits of the 4 bit row field, A6-A9 specify lines $\varnothing-15$, and AlØ-All specify the least significant 2 bits of the 4 bit row field. Al2 and A13 are high. Note that the extension region is uniquely defined by a logic"1" at A12 and A13 because in the inner region this would specify a row count greater than 11.

When the CPU is not accessing the video ram, the video addresses are controlled by the video divider chain. The selects at U139, U14ø, U144, and U145 will be high selecting the B inputs.

Ul42 specifies whether we are in the inner or extension region. Prior to the 64 th character HORTP (U142-1) will be low, selecting the A inputs. At the 64 th character HORTP will go high selecting the B inputs thus selecting the extension region addresses.

CPUACC* (U121-8) is the select for U139, U140, U144, and U145. When the CPU is accessing the video ram, CPUACC* will go low selecting the A inputs. The procedure by which CPUACC* goes low and the CPU addresses are latched into the address multiplexers will be covered in a following section.

LOW RESOLUTION VIDEO RAM

The Low-Resolution Video Ram consists of two 2114 type lKx4 static ram chips. For either read or write operations the select (pin 8) must be low. They have an active low write enable, 10 address lines, and 4 data lines each. U114 uses the least 4 significant data bits and U115 the 4 most significant data bits.

When the CPU wishes to access the video ram it must execute a read or write operation while placing a viden address on the address bus. For the Low-Resolution (LORES) Video Ram this address must be from (3Cøø-3FFF)Hex. The following illustrates the sequence of events during a LORES video write.

During the execution of a LORES video write, the CPU will place a video address on the address bus. This address will be decoded at U6 and U35 resulting with a lagic "ø" at VID* (U35-7). WR* will be low. These are the inputs to U152 pins 4 and 5 respectively. When both are low the output, VIDWRT* (Ul52-6), will go low. This is the input to Ul54, a four input nand gate. Note that the four inputs represent LORES video write, LORES video read, HIRES video write, and HIRES video read. When any of the four inputs goes low the output, pin6 will go high clocking U153. DATALAT (Ul53-5) will be high and Ul53-6 will be low. CLKADRSDTA (Ul37-6) will go high latching U98, U141, and U143. Thus the CPU addresses, the CPU data, and VIDWRT* are latched. VIDWRT* is latched at U141-4. It becomes LVIDWRT*. LVIDWRT* and T2* are input at Ul5i pins 12 and 13 respectively. T2* prevents the LORES video ram to be written to before the video addresses are stabilized. At the beginning of the next video timing cycle $T l$ will clock DATALAT into Ul21 resulting in a logic "ø" at CPUACC* (Ul2l-8). CPUACC* is the select of the video address multiplexers and when it is low the CPU addresses are selected. At $T 2 *$, LVIDWRT* will be output to WRT2114* (U139-12). WRT2114* enables the data output of 498 through $U 81$ and is the write enable to the LORES rams. The write operation is completed when T6* clears U153, and the resulting low signal at DATALAT clears Ul21. CPUACC* goes high and the video address is returned to the video divider chain.

A LORES video read is very similar to the write. VID* will be decoded from the viden address. RD* will be low. These are the inputs to Ul52 pins 1 and 2 respectively. This will place a low input to Ul54 as before and the same signals will result except VIDWRT* will be high and VIDRD* will be low. At the end of the operation DATALAT will go low latching in data at U99 and U125. VIDRD* enables the autput of $U 99$ from which the CPU will read the data.

The Hi Resolution (HIRES) Graphics Ram are located at the lower 16 K of the LNW8ø address space. Note that this is also where the Roms, keyboard, LORES video ram, and miscellaneous I/O are mapped. I/O port 254 bit-D3 selects which devices are enabled. With $\mathrm{D} 3=1$, the graphics memory is enabled. Note that since the Roms are also disabled by D $3=1$, using the OUT command in basic to turn on this bit will be fatal to the computer since the computer will execute out of graphics Raminstead of Rom.

T3 (MUX)
(U112-1)

GRAS*
(U111-4)

WRT4116* (U111-3)

GRAMA 0-13 (Ul05,U112)

The HIRES Ram utilizes six, l6Kxl dynamic memories. The addressing sequence of events is GRAS* (row address select), T3(multiplex), then GCAS*(column address select) to multiplex the 14 bits of address into 7 -bit parts. The sequence of events during a write operation are as follows.

I/O Port 254 is decoded by U33 and U54. FEOUT* (U54-12) is used to clock U67. When U67 is clocked and D3 $=1$, GRRDEN* (U67-6) becomes logic "Ø". This inputs to U66-12. When the CPU places an address of the lower 16 K on the address bus, Al4 and Al5 will be low at $U 66$ pins 10 and 9 respectively. This is used to decode the lower 16 K . The output of U66-8 goes low and inputs to U66-13. This enables GLWR16K* at U66-11. GLWR16K* is inverted at U51 and becomes RDWRDIS (read write disable). RDWRDIS disables RDOUT* (U36-8) and WROUT* (U36-11) preventing a conflict on the data bus. GLWRI6K* is input to Ul52 pins 9 and 12. When accompanied with either IRD* or IWR* a read or write operation will occur at the HIRES Ram. Suppose that IWR* (Ul52-1ø) goes low. Then GRAMWRT* (Ul52-8) will enable U154-4. The video address and data control signals are the same as for the LORES write operation. WRT4116* (Ul39-4) is inverted through Ull8 to disable the LORES Ram. Figure 6 illustrates the timing diagram during a write operation.

The read operation is very similar except that
GRAMWRT* remains high and GRAMEN* goes low enabling Ul54. Refer to the write operation for complete details of the address latching and multiplexing. The data is latched into Ul 25 from pin 14 of the HRES Ram by DATALAT, and the outputs of Ul25 are enabled by GRAMEN*. The CPU reads the data from U125. Note that D6 and D7 have inputs HORTP and VERTTP. In the present usage these bits are not used.

VIDEO DATA LATCH

The first step of the video processing is the data latch. For the LORES video this occurs at Ull6 and Ull7 (LSI74's). Ull6 latches the lower 5 data bits. Ull7 latches D6 and D7, also the video control signals. DØ-D5 and D7 are latched directly at the end of the timing chain cycle by T5*. D6 passes through U81 and U82. When CAPS* (U82-4) is true D6 is disabled, and DLYD6 becomes a function of D5 and D7. The purpose of the CAPS* key is to disable lower case characters. The ASCII code for lower case is within (60-7F) Hex. D6 is a "l" for all lower case characters. When a lower case character is decoded and the CAPS* key is depressed, DLYD6 will be "Ø" thus disabling lower case. The HIRES video also uses an LSI74, Ul26, and it too is clocked by T5*.

CHARACTER GENERATOR

Each character consists of a 5×7 dot matrix. Between any two characters there is a dot that is never turned on. Vertical spacing between dots is determined by CLKT. Note that in 32 character mode CLKT is $1 / 2$ the 64 character mode CLKT frequency. This means that in 32 character mode there will be twice the vertical spacing between dots.

Uløø is the Character Generator. The ASCII word is presented to Uløø pins 1 through 7 from Ull6 and Ull7. Uløø uses the ROW count to determine which patern of five dots to print on each row. It must output 7 times to complete one character after which five rows of blanks are output and the line increments and we're ready to output the first row of dot information to the 2 nd character line.

GRAPHICS GENERATOR

U83 functions as the Graphics (LORES) Generator. The Graphics Character may use the entire character position, a $6 x l 2$ dot matrix. This matrix is divided into six rectangles as shown in figure 7. U83 is a dual 4×1 data multiplexer. It uses ROW4 and ROW8 as selects. Each 3×4 rectangle is either "on" of "off". When the ROW count is between \emptyset and 3, DLYDØ AND DLYD1 are selected. When the ROW count is between 3 and 7, DLYD2 and DLYD3 are selected. And finally for a ROW count between 8 and 11, DLYD4 and DLYD5 are selected. Each scan line, 3 dots may be written in each of two rectangles per graphic character. Each rectangle is defined by one data bit. DLYD7 defines a graphics character when true.

U1Ø1 is the alphanumeric shift register, U84 is the LORES graphic shift register, and Ul27 is the HIRES graphic shift register. All three receive parallel data and shift that data out to the video display in serial form.

All three behave in the same manner but have different restrictions that if not met will prevent data from being serialized.

The inputs to $U 1 \varnothing 2$ pins $1,2,4$, and 5 represent the restrictions to the alphanumeric shift register. If any of the inputs go low, the output will go high thus preventing the loading of data. DLYROW8* provides the blanking of ROWs 8 through 11 for alphanumeric characters. DLYBLANK* provides blanking beyond the 64 th character position and below the 16 th line. DLYD7* defines an alpha numeric
character when true. And CTRLT5 (U81-8) provides that data in not loaded during CPU access time. Note that there are only 5 inputs to Ul冋l. This is because the sixth bit is tied to gnd to blank the sixth dot between characters.

The inputs to 485 pins 1,2 , and 13 represent the restrictions to the LORES graphics shift register. If any of its inputs go low its output will go high preventing data from being loaded. There are two differences in the restrictions of the LORES graphics and the alphanumeric shift registers. The first is that for graphics characters the entire character position may be used therefore ROWs 8 through 11 are not blanked out. And DLYD7 defines a graphics character when true. The restriction regarding CTRLT5 still applies.

The inputs to 485 pins 3,4 , and 5 represent the restrictions to the HIRES graphics shift register. CTRLT5 has the same purpase as described for the alphanumeric shift register. DLYLDHDG* provides blanking after the $8 \emptyset$ th character and below the 16 th line. DLYLDINH* prevents loading during CPU access time.

INVERSE VIDEO

Inverse Video is controlled through Port 254. When Dø is set to a one and output to Port 254 , VIDEOINV (U67-1ø) becomes a logic one. VIDEOINV drives U82-1 an input of an exclusive or gate (74LS86). When VIDEOINV is a "l" the combined video output of U68-4 (VIDEO "NORed" with HRESVID) is complemented thus inverting the video content. This is full screen video. When VIDEOINV is low the combined video information passes unchanged (standard video). The output of U82-3 COMBINED VIDEO (COMBVID*) drives both the high resolution B / W video output circuitry $(U 9-6,7)$ and the NTSC color channel (in the non-color display modes) at U68-11.

HORIZONTAL AND VERTICAL SYNC TIMING
U2ø and U37 form the sync generator circuit. The horizontal and vertical sync generator circuits take the timing pulses from the divider chain, delays are applied to them, and the pulses are one-shot to fix the pulse width. This allows the vertical and horizontal positions to be adjustable and the correct pulse width is supplied to the video monitor to provide the correct horizontal and vertical synchronization.

The VERTICAL TIMING PULSE (VERTTP) from the divider chain is buffered by U2ø-8 (a CMOS exclusive or acting as a buffer only) and drives potentiometer Rl45. When Rl45 is set for some resistance U2ø-10 directly drives an RC timing delay circuit formed by R145 and C23. When VERTTP goes to a logic "1", C23 begins to charge. As it charges, the voltage at the input of U37-5 (74CD4) rises. When the voltage reaches the threshold of a logic "1" (around 4 volts since this is CMOS logic), the output of U37-6 becomes a logic \emptyset (U37 is an inverter). The logic \emptyset output of U37-6 drives the input of the next inversion stage of U37-9. The logic \varnothing is inverted and the output of U37-8 becomes a logic "1" and stays that way until VERTTP returns to a logic "ø". By changing the "R" of the R145 and C23 "RC" circuit the vertical sync pulse is varied. This allows the adjustable vertical screen position to compensate for variance in video monitors. The output of U37-8 is now given a fixed pulse width by the monostable circuitry of $\mathrm{C} 22, \mathrm{R} 49$ and the input of U37-1.

The horizontal sync circuits work in a similar manner with the HORIZONTAL SYNC TIMING PULSE (HSTP) driving U2ø-13. R144 and C24 form the RC delay, and C21 and R48 form the pulse shaping and width.

The horizontal and vertical sync pulses are mixed by two EXCLUSIVE OR gates of U20. The output of U20-3 directly drives the video mixing circuits of the Hi-resolution B / W video output. $\mathrm{U} 2 \varnothing-4$ drives the Sync input to the NTSC Prom.

U118-9,8 buffers the horizontal sync circuits to signal the Burst one-shot (U133-1) of the horzontal sync period. The Burst one-shot is described further in the section entitled "COLOR VIDEO".

COMPOSITE VIDEO MIXING CIRCUITS (HI-RES)
The following drawing illustates what the black and white video output would look like with an oscilloscope.

The "sync level" extends from \emptyset volts to . 4 volts. This . 4 volt level is commonly referred to as the "black level" or the voltage that would leave the display black. Above 1.2 volts is the white level. Between these levels are shades of gray. When a pixel is displayed on the CRT, the voltage goes above 1.2 volts for just enough time to display the dot. If most of the screen is blanked, looking at the video signal with an oscilloscope should show few very thin pulses extending to 1.2 volts with most of the time the voltage staying below . 4 volts.

The combined sync output of $\mathrm{U}^{2 \emptyset-3}$ directly drives the base of Q2. When there is sync, $U 2 \emptyset-3$ is high and Q2 is turned off. This provides no drive to Q1 and thus the viden output is \emptyset volts. During the non-sync period U20-3 is "low" and "turns on" Q2. This causes 5 volts to be driven into voltage divider R19 and R16 and the base of Q1. The COMBINED VIDEO output (COMBVID*) drives peripheral and
driver U9. When the video dot is to be displayed (COMBVID*=ø) then the output transistor in U9 is "off" thus high impedance. This means that R17 has no effect in the circuit and around 2.5 volts drives the base of emitter-follower Q1. With around .7 volts drop the output of $Q 1$ (75 ohms impedance) is 1.8 volts. When the video dot is NOT to be displayed, COMBVID* is high and R17 now appears in the circuit from the base of $Q 1$ to ground. This causes the voltage at the base of $Q 1$ to be reduced to around 1 volt thus with a .7 volt drop at Q1 (base to emitter) the output is at the "black level" or . 4 volts. C7, R22, and C8 serve to filter, reduce power dissipation in Q1, and serve as short-circuit protection. Rl2l serves to set the output impedance of the video signal.

NTSC COLOR VIDEO
NTSC stands for the television standard first, developed and implemented in the United States. Japan, Canada, and Mexico also adopted this (the first) television standard. NTSC color video uses the same timing and levels as Black and White video. It has a 60 hz vertical sync rate which corresponds to 262 scanned lines (including sync). The LNW8ø refreshes the screen at a rate of 60 hz with 262 lines. Countries which have AC power frequencies of 50 hz use PAL, SECAM, or other color systems with 312 scanned lines at a 50 hz vertical rate. These systems are not compatible with the LNW8ø set up for NTSC at $6 \varnothing \mathrm{hz}$.

Color video works much the same as black and white. The video signal also is $1.8 \mathrm{v} \mathrm{p}-\mathrm{p}$ and .4 v is the black level and 1.2 v is the white level. Horizontal and vertical sync are identical. Here are the differences:

1. COLOR ENCODING

In oxder to encode color information on the video signal there is a COLOR CARRIER. This color carrier allows the luminance information to be encoded with a PHASE relationship with the carrier thus specifying the color to be displayed.
2. COLOR BURST

The color carrier cannot be present during the displayed video period and thus is maintained by the monitor (or TV). This 3.579545 MHz signal is transmitted only for a small period of time by the computer (or TV station) to keep the color oscillator in the monitor (or TV) "locked in at the same exact frequency". This "burst" of color carrier is transmitted only for about 8 cycles and only at the very end of the horizontal sync pulse. This is commonly referred to
as the "back porch" of the horizontal sync or the COLOR BURST and is illustated below:

COLOR MODES

In the LNW8ø there are two possible color modes-low resolution and high resolution. The bandwidth of NTSC video only allows the low resolution mode to be displayed. In order to display the high resolution color, an RGB type direct drive monitor must be used and the optional RGB interface circuitry must be installed.

Port 254 data bit 2 selects whether or not color is enabled. COLOR (U67-2) and COLOR* (U67-3) do the logic switching to enable or disable color operation.

LOW RESOLUTION COLOR
In low resolution color mode, HRES will be low and HRES* will be high. This causes Ul29 to be enabled and Ul31 to be disabled via two gates of U52. U52-13 (COLOR) is high, U52-2 (HRES*) is high and U52-1 is VIDEO, thus the output of U52-12 which allows U129 to be selected to drive color information to Ul3ø (NTSC ROM) will go low along with VIDEO. This means that the low resolution text and graphics information from the MODE \emptyset display will select whether or not the color information is to be passed on the NTSC ROM or the display will be black. When Ul29 is not enabled (it is a tri-state) gate pull-up resistors R101, R10ø, and R93 pull the floating inputs of the NTSC ROM to a logic "1". A logic "1" on all three bits of the color code or a 7 is defined as the color black. This means that there are two ways that the screen can be programmed black. One by putting 7 as the color information in the color memory or by blanking the low res screen.

Color information is stored in the same memory as the high resolution graphics memory Ulø6-Ulll. The 6 bits of data, instead of being fed into a shift register (U127) to
be sent out one bit at a time (as in high resolution graphics), is latched again into Ul28. It is fed to U128 for another level of delay to syncronize the Black and White video information (being shifted out of Uløl or U84). Once latched into Ul28, the 6 bits represent two 3 bit (1 of 7 colors and black) fields. During the period that the first 3 dots (of the character position time) are being shifted out of 484 or Ul冋l, $T 3$ is a logic \varnothing. This drives the least significant 3 bits of U128 into the NTSC ROM to define the color. During the next 3 dot periods, $T 3$ is a logic 1 and the most significant 3 bits of Ul28 are driven into U130 to define the color. Remember that if VIDEO was false, Ul29 is disabled completely thus overriding the contents of U128 (displaying black).

NTSC COLOR ROM

The NTSC COLOR ROM translates a 3 bit color code $(\emptyset-7), S Y N C$ and BURST (timing) into the proper R-Y (COLORB), $B-Y$ (COLORA), and LUMINANCE (LUM) that the MCI372 requires to do the color encoding. The NTSC ROM (U130) is a high speed bipolar open collector prom. U130 combined with ladder resistors R85-92, R94, R99 and R102-105 form a high speed digital to analog converter to translate the digital color codes and sync information into the analog levels needed by the MCI372.

The following is the truth table for the NTSC ROM and the voltage levels developed for COLORA, COLORB, and LUM.

ADDRESS DATA (Hex) COLORA COLORB LUM

COLOR BURST ONE-SHOT

When HSYNC transitions from high to low (the end of the horizontal sync pulse) U133-13 strobes, using R80 and C83 for RC timing. The one-shot time is approximately 2usec. During this time, BURST is high and drives A4 of U130, the NTSC ROM. When A4 is high, the correct analog levels are supplied to U146 (MC1372) to output a burst reference signal with the correct phase and amplitude.

U146-MC1372 COLOR ENCODER

The MCl372 is a linear IC which contains both a chroma oscillator and the necessary chroma (color) encoder. U146 pins 1 and 2 along with Y 2 the 3.579545 MHz crystal, C94 and 95, and R106 form the complete color reference oscillator (chroma oscillator) circuit. C95 is the chroma frequency trimmer adjustment. Ul46-1 is the square wave output of the 3.579 MHz color frequency and drives one-shot U133-10 to provide the color to luminance dot clock synchronization signal (COLORSYNC). Ul33 with timing resistor RIø7 (and no timing capacitor) forms a $5 \emptyset-7 \emptyset$ nanosecond pulse generator. U133-5 drives open-collector inverter U162-11. Inverted and pulled up by R97, this generates COLORSYNC.

COLORA, COLORB, and LUM information from Ul3 3 determines the luminance level and the phase encoding of the video information that is output by the MCI372 on pin 12. RIø9 sets the output bias and CRI selects the composite video polarity. The output of U146-12 (COLOROUT) is amplified and level shifted by Q13, R123 and R129. Q14 is an emitter follower to provide current amplification and 75 ohm impedance matching.

The MC1372 has the chroma encoder circuit separate from the final composite video mixing circuit. The chroma encoder output (U146-1 0) is fed back into U146-8 through Rll7 and blocking capacitor Cllø. U162-12, Cll1, and R118 form the chroma killer circuit that disables any chroma content in the video signal when COLOR is disabled. It does this by shorting the chroma signal to ground (through open-collector Uさ62-12).

For more details on the operation of Ul46 refer to the data sheets on the MCl372.

Assuming that the RGB ROM is installed, wired, and usable, then high resolution color is possible. In high resolution color Ul29 is disabled and Ul31 is enabled via U52-8 when HRESVID (U52-10), COLOR (U52-11), and HRES (U52-9) are true. In the high resolution color mode the dot information is supplied by the high resolution memory (480×192) and the color information is supplied by the low resolution memory (128×16 lines). Ul32 latches the output of the text memory and drives the multiplexer Ul3l. Ul31 provides the RGB ROM with the least 3 bits of the text data (DLYø-DLY2) during the first half of the character position when T3 is "low" (first 3 dots) and then switches the output of Ul3l to the most significant 3 bits of the text data for the last 3 dot clocks (T3 is high).

BLACK AND WHITE DISPLAY THROUGH THE NTSC CHANNEL

In the low or high resolution black and white display modes, COLOR is low (U68-12). This disables both Ul3l and Ul29. Thus Ul3 \quad receives no color or luminance information from Ul3l or Ul29. Ul3ø still receives Sync information. Since U68-12 is low, video information passes directly through to U68-13 to drive the open-collector driver, U162-1. This through R95 then feeds dot information (luminance) directly into the MCl372 (Ul46) while Ul3ø supplies the correct information to luminance during sync.

CASSETTE

Programs are loaded onto tape in serial fashion. The serial data contains both clock and data information as shown below:

The time "T" is dependent upon whether the computer is in high speed or low speed. In low speed the time "T" is 2 ms . In high speed this time is 1 ms . This timing results in a transfer rate of $5 \emptyset \emptyset$ baud and $1 \varnothing \varnothing \varnothing$ baud respectively.

The cassette routines are resident in the Level II ROM's and cassette is accessed as an I/O port. When a CSAVE is entered, the address $F F$ is placed on the address bus along with OUT* (Ul8-3) going low. The result is that FFOUT* (U54-11) goes low. When this happens $D 2$ will go high and will be clocked into U8. This will turn U9 on and therefore the relay $K 1$. This shorting of pins 1 and 3 of the cassette connector through $K l$ will turn the cassette motor on. $D \emptyset$ and $D 1$ also get clocked into $U 8$ with timing that results in the above diagram.

The cassette loading operation is accomplished through $U 21$ A, B, and C. Refer to the figure below.

CASSETTE WAVEFORMS

Cassette Input

Gate of Q18

U21 pin 8

U21 pin 7

The signal from the cassette is voltage divided by R24 and R25. U21A is a two pole active high pass filter which will eliminate noise. U2lB along with Ul function as an automatic gain controlled (AGC) amplifier. The amplitude at U21B is peak detected by CR2 and Cll9 to get an average signal level. The voltage at the gate of Ql will then be higher as the signal amplitude goes higher. The higher the voltage at the gate, the higher the resistance between the source and drain which will have the effect of lowering the gain of this stage. The lower the gate voltage, the lower the drain to
source resistance and the higher the gain. The voltage level of U2lB will be controlled to a maximum of about $8 . \emptyset$ volts. U2IC is a comparator who's trip level is dependent upon the voltage at U2IC pin 5. The output at pin 7 is normally high which will go low when a data or clock signal is encountered.

U38 is a flip flop who is set and reset by U2lC pin 7 and FFOUT* respectively. The decoded signal FFIN* will then place the cassette information onto D7.

POWER SUPPLY

The LNW8 \emptyset power supply section is designed to power both the LNW8ø computer board and the LNW expansion board.

The LNW8ø transformer is 9 volts AC rated at 4 amps and 18 volts $A C$ rated at 2 amps. The unregulated $A C$ voltage of the transformer is rectified by CRI7 and filtered by the 15, øøø ufd capacitor. This capacitor must be located somewhere off the LNW8ø board. Q3, Q7, Q8, Q9, and QI \varnothing provide the regulated +5 volt supplies. All +5 volt outputs are connected through diodes to a summing point at thte anode of Ql2. If any of these voltages exceeds approximately 6.2 V then CR24 will begin to conduct. While the gate of Ql2 remains unchanged, the anode voltage will begin to rise higher than the gate. This will cause Ql2 to begin conducting which will fire SCRI causing Fl to open. This overvoltage protection prevents damage to components due to high voltage.

CRl5 rectifies the AC signal which is then filtered by Cl2l. Q4 regulates thte voltage to +12 volts. If the voltage at JP9 exceeds 13 volts, CRII will begin to conduct. While the gate of $Q 6$ remains unchanged, the anode will rise above the gate voltage. This will cause Q6 to begin conducting and result in turning SCR2 on and F2 will open.

Rl38 limits the current, Cl37 provides DC blocking and CRI9 and CRI6 provide a voltage doubler. Qll will then provide a -12 volt regulated output which supplies both the LNW8ø computer and expansion board.

The voltage at the negative lead of Cl3l is regulated by Rl33 and CRl4 and it is then filtered by Cl30. This -5 volts is used both for the LNW8 \varnothing computer and expansion board.

THEORY OF OPERATIONS

EXPANSION BOARD

The Expansion board is merely an extension of the main computer board. A number of the functions of the LNW8ø Computex are performed on the expansion board. These functions include additional memory, real time clock, floppy disk controller, parallel printer, and RS232C serial port. The expansion bus is a $4 \emptyset$ pin connector that contains all of the necessary control, data, and address lines necessary for operation.

LNW8Ø EXPANSION BUS

The $4 \emptyset$ pin bus is equivalent to the TRS8 's $4 \emptyset$ pin expansion bus. The following are the signals and their descriptions for the expansion bus:

PIN \#	SIGNAL NAME	DESCRIPTION
1	RAS*	ROW ADDRESS STROBE
2	SYSRES*	SYSTEM RESET
3	CAS*	COLUMN ADDRESS STROBE
4	AlØ	ADDRESS INPUT
5	A12	ADDRESS INPUT
6	A 13	ADDRESS INPUT
7	Al 5	ADDRESS INPUT
8	GND	GROUND
9	Alı	ADDRESS INPUT
10	A14	ADDRESS INPUT
I1	A8	ADDRESS INPUT
12	OUT*	I/O WRITE STROBE
13	WR*	WRITE STROBE
14	INTACK*	INTERUPT ACKNOWLEDGE
15	RD*	READ STROBE
16	MUX	ADDRESS MULTIPLEXER
± 7	A9	ADDRESS INPUT
18	D4	DATA BUS
19	IN*	I/O READ STROBE
20	D7	DATA BUS
21	INT*	MASKABLE INTERUPT REQUEST
22	DI	DATA BUS
23	TEST*	BUS REQUEST
24	D6	DATA BUS
25	Aø	ADDRESS INPUT
26	D3	DATA BUS
27	A1	ADDRESS INPUT
28	D5	DATA BUS
29	GND	GROUND
30	DØ	DATA BUS
31	A 4	ADDRESS INPUT
32	D2	DATA BUS
33	WAIT*	Z8ØA CPU WAIT
34	A3	ADDRESS INPUT
35	A 5	ADDRESS INPUT
36	A7	ADDRESS INPUT
37	GND	GROUND
38	A6	ADDRESS INPUT
39	GND	GROUND
40	A 2	ADDRESS INPUT

MEMORY EXPANSION

The Expansion Board contains 16 additional 4116 type RAM chips at U42－49 and U53－60．U37 and U38（LS24I＇s）are used to multiplex the address lines．U34 and U35 are used to buffer the data lines both input and output．

RAS＊is buffered to all of the RAMS while CAS＊is gated by U29 with 48KRAMEN＊and 32KRAMEN＊。 When the CPU wishes to access the upper memory it places an address from $7 F F F$ to $F F F F$ on the expansion bus．The address is decoded at U30．When A15 and Al4 are high and RAS＊is low， 48KRAMEN＊（U3Ø－7）will go low enabling CAS＊to the upper bank of memory．When AI5 is high and AI4 and RAS＊are low， 32KRAMEN＊（U30－6）will go low enabling CAS＊to the lower bank．

The data bus is buffered by U34 and U35．These buffers will pass data from the memory onto the data bus when pin 1 of U34 and U35 is low．32KRAMEN＊and 48KRAMEN＊are fed into Ull pins 2 and 1 respectively．When either goes low the output（Ull－3）will go low。 This signal is used to gate RD＊ through U29 pins 9 and 10 respectively．U29－8 is then fed into U34 and U35 and is used to enable memory data onto the data bus．U34 and U35 is tied to gnd thus enabling data from the data bus to the data input of the memory array at all times．

For further information on the operation of 41上6 type dynamic rams refer to the section on program memory in the theory of operations of the LNW8 \varnothing computer board．

FLOPPY CONTROLLER AND PRINTER DECODING

Ul9 is used to decode the various signals involved in the floppy disk and parallel printer circuits．All addresses memory mapped within the range $37 \mathrm{E} \varnothing$ to 37 EC （HEX） are decoded through Ul9．

When the CPU places an address in this range on the address bus RAS＊（U3Ø－1）will go low indicating a valid address．All of the inputs to U3l will go high resulting in a logic＂ø＂at U3I－8。 AII，AI4，and A15 will be low such that all of the inputs to $U 30$ ，pins $1,2,3,13$ ，and 14, will be low．U30－4 will go low enabling U30－12 which will also go low．U3Ø－12 is used to enable the outputs of Ul9 which effectively produces a＂double＂ $2 / 4$ line decoder．

The outputs of Ul9 are used as control signals for both the Floppy Controller and the Parallel Printer Interfaces. Explanations of these signals and the addresses that decode them may be found below:

PIN\#	FUNCTION	ADDRESS DECODE	WR *	RD*
7	INTERUPT RESET	37 EDH	1	\emptyset
6	N/C	37 E 4	1	\emptyset
5	PRINTER STATUS READ	37 E 8	1	\emptyset
4	FLOPPY READ	37 EC	1	\emptyset
9	MOTOR ON/DRIVE SELECT	37 E ¢	\emptyset	1
10	CASSETTE	37 E 4	\emptyset	1
11	PRINTER WR STROBE	37 E 8	\emptyset	1
12	FLOPPY WRITE	37 EC	\emptyset	1

PARALLEL LINE PRINTER PORT

The expansion board contains an interface to the Radio Shack/Centronic Printer. This Printer Interface consists of an eight bit output port and a four bit input port.

This I/O port is accessed by either writing or reading from address 37 E 8 Hex. This address is decoded at U30, U31, and U19.

When reading the memory address $37 E 8$, the printer status is read through U3. Only the 4 most significant data bits contain valid information. The meaning of each data bit is as follows:

Data Bit	Printer Status
$========$	$==============$
D7	Printer Busy
D6	Paper Empty
D5	Unit Select
D4	Fault

The Radio Shack's parallel printer has wire ORed internally, the printer busy status, and the paper empty signal. When using the Radio Shack/Centronic printer, only one of these two bits, D6 or D7, needs to be checked. The printer busy indication is issued by asserting a logic "l"。 When this occurs, the paper empty status will also be a logic "l". The unit select and fault status bits are not used by the Radio Shack's printer.

A write to memory location 37E8 will load the output latch U4 and U5 to the line printer's internal data buffer and also generate a signal through U7 called DATA STROBE (U7-4). DATA STROBE will be a low-going pulse of approximately 1.5us.

The Radio Shack's printer is set up to recognize the following control characters for the line feed and carriage return:

Character	$========$
$\emptyset A($ Hex $)$	$=========$
$\emptyset D$	Line Feed
	Carriage Return

When either of these control characters are received by the printer, the printer will assert a logic "l" at the printer busy status.

CLOCK CIRCUIT

The Expansion Board Main Clock is a 4 MHz oscillator, utilizing $Y \mathfrak{l}$ and $U l 8$ to form a series resonant circuit. The 4 MHz clock is input to U9-14 and U24-2.

U9 provides a divide by 2 resulting in a 2 MHz clock at U9-12, which is then input to U22-3 which again divides by 2 resulting in the 1 MHz clock input to the FLOPPY CONTROLLER (Ul4).

U24 effectively produces a divide by 13 of the 4 MHz clock resulting in a $3 \varnothing 7 \mathrm{KHz}$ clock at U24-1. . This is used to clock U25, a 4 bit binary counter. Its output produces 4 of the 8 baud rates used for the SERIAL INTERFACE. The frequencies of the outputs can be calculated by multiplying the baud frequency by 16 for the frequency in Hz .

Ul7 is clocked by $\mathrm{U} 25-12(38.4 \mathrm{KHz})$ and provides a divide by ll resulting in a 3.49 KHz clock at Ul7-1l. This is input to Ulø-14, which does a divide by two such that Ulø-12 is a 1.75 KHz clock.

The 2nd half of Ulø is clocked by U25-1] (19.2KHz) and does a divide by 8. The outputs of U1ø provide the other 4 baud rate clock signals. Baud rate clocks will be discussed in the section entitled "SERIAL INTERFACE".

UlØ-Ł! (2.4KHz) is clocked into U9-1 which set for a divide by 6 resulting in an output of $4 \emptyset \emptyset \mathrm{~Hz}$. This is then input to Ul2 which is set for a divide by ten resulting in the 40 Hz clock signal used to provide the REAL TIME CLOCK.

FLOPPY DISK INTERFACE
The function of interfacing to a floppy disk drive is performed primarily by the Western Digital's FDl771B-øl Floppy Disk Formatter/Controller chip. Note that when using double density adapters, the "doubler" performs the duties of the controller chip. The LNDOUBLER $5 / 8$ will be explained in a further section.

The FDI771, a MOS/LSI device which performs much of the housekeeping involved in reading and writing data to and from the disk has the following internal features:

1. Cyclic redundancy check and generation for error checking.
2. Internally seperates disk head outpput into data.
3. Checks for desired section, check ID field and locate it's data address mark.
4. Accounts for track number of the current read/write head position

The interface to the processor is accomplished through the eight Data Access Line (DAL) and the associated control signals.

When reading from the $D A L$, the address decoder Ul9-4 (37EC READ*) will be low enabling U8 and Ul5 to buffer data from Ul4 to the data bus. U8 and Ul5 are LS240's, OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS with inverted 3-state outputs.

When writing from the data bus to the DAL, the address decoder U19-12 (37EC WRITE*) will be low enabling U8 and Ul5 to buffer data from the data bus to the floppy controller.

The least two significant addresses, $A \emptyset$ and $A I$, are decoded by the floppy controller to interpret the selected registers of the read and write operations. These registers are decoded as follows:

A $1-$ A \emptyset	READ	WRITE
$=====$	$=========$	$=========$
\emptyset	\emptyset	STATUS REG.

The interrupt request (INTRQ) of the FDC (Ul4-39) indicates the completion or termination of any operation. INTRQ presets U22A presenting a high to Ul pins 4 and 5, which is reset by reading the FDC Status Register. Reading from 37EØH will reset the interupt signal (Ul-6) by clocking a low at the output of U22A.

The FDC requires a 1 MHz clock input to Ul4-24 which is generated from the 4 MHz main clock circuit and is explained in the clock discription of the expansion board.

Drive Selection through Data Lines D \varnothing-D3 is clocked into Ul3 by 37EØ WRITE* (Ul9-9). This also triggers the one-shot, U7A, generating the motor on signal. The drive selection is only activated when the motor on signal (U7-5) is high.

When U7-5 is low, clearing Ul3, a high is generated at Ull-8. This signal is then inverted at U2Ø-10 providing a low command and indicating that the floppy status is ready.

U14-19 is the MASTER RESET, and is driven by SYSRES* from the main computer board. When MR* goes low, the FDC is reset and HEX 03 is loaded into the command register and the system will proceed to reboot. For further details of the internal operations and the programing of the FDC refer to the data sheets.

SERIAL INTERFACE

The Block Diagram (figure 8) outlines the major sections of the Serial Interface. For the following circuit description, use the schmatics along with the Block Diagram to aid in visualizing the circuit theory.

In order to provide the receive and transmit baud clocks for the UART, the 4 MHz clock is divided down. Details of the clock divider circuitry is given in the section entitled CLOCK CIRCUIT.

The Baud Rate is programmed by jumpering
A, B, C, D, E, F, G, or H to the $R X$ and $T X$ line. (Note that on the pre-assembled LNW8ø Systems, these have been jumpered using two 8-pin dip switches.) These $R X$ and $T X$ lines are used by the UART for the RECEIVE and TRANSMIT BAUD CLOCKS.

TRI6ø2B UART
The TRl6ø2B Universal Asynchronoous Receiver/Transmitter (UART) is the heart of the serial interface. It takes parallel data from the CPU BUS and converts it to serial data and at the same time can receive serial data and convert it to parallel. It has two registers which can be read-one for the status and the other with received data. It has two registers which can be loaded--one with transmit data and the other with control information (word length, parity, stop bits). Refer to the Data Sheet of the Western Digital TR16ø2B for further details of operation.

EIA RS232C and 20 mA LEVEL SHIFTERS AND DRIVERS
The serial output of $U 4 \varnothing$ is pin25 (TRQ). It drives Ul8 for buffering to EIA Driver U6I-9 and the 20 mA driver U50-6. Serial data can be output by $U 26-10$ which drives both U5Ø-7 and U61-1ø. U50, R23, and R24 provide the $2 \emptyset \mathrm{~mA}$ interface. When $U 5 \emptyset$ conducts it allows about $2 \emptyset \mathrm{~mA}$ of current to flow ($2 \emptyset \mathrm{~mA}=\mathrm{mark}, \emptyset \mathrm{mA}=\mathrm{space}$). Received serial data is brought in to U5l-4. U5l is an EIA to TTL receiver. The 20 mA serial input is accomplished by the current to voltage conversion of R25 and R26. The TTL received data is fed to the Receive Data (RI,U4ø-2ø) of the UART and is fed to U33-12 to be read as part of the Modem Status Buffer.

HANDSHAKE LATCH
U26 is the handshake latch. Dø-D2 inputs to U26 pins 4, 5, and 12 respectively. The latch is loaded when OUT EAH (Ul6-5) goes low which is input to U26-9. The outputs of U26 are fed to U61-12,13 and U61-4,5 for level conversion to EIA standards.

MODEM STATUS BUFFER
U33 is the modem status buffer. U52, an EIA receiver, converts EIA levels to TTL. This is input to U33 and enabled to the data bus when IN E8H (Ul6-7) goes low. In addition, the Sexial Input (TTL) is fed to U33-12 to allow the CPU to directly input the serial data.

CONFIGURATION SENSE JUMPERS
Jumper wires from K, N, P, M, and J connected to E5 or E6 select whether the associated data bit is a "I" or a "ø" when U28 is enabled onto the data bus. It is enabled by IN E9H (Ul6-6) and is used by serial driver programs so that stop bits, parity, and word length can be selected by hardware configuration.

DECODING AND CONTROL LOGIC
The port address decoding (IN,OUT-E8,E9,EA,EB) is accomplished by U4I and Ul6. U4I decodes the upper 6 bits (E8) and outputs to the strobe inputs of Ul6. The lower two address bits ($A I, A \emptyset$) feed to the A and B inputs of $U 16$. UI6 is a $2 / 4$ line decoder and its outputs (active low) select which port is addressed and whether it is an IN or OUT instruction. U23 pins 1 and 2 are driven by INEAH and INEBH such that whenever the Receive Register and the Status Regiser of the UART are read, U39 drives the data onto the data bus. Below is a summary of the address decoding:

```
IN E8H - Modum Status Register
IN E9H - Configuration Jumpers
IN EAH - UART Status Register
IN EBH - UART Receive Register, Data Received Reset
OUT E8H - Master Reset
OUT E9H - Not Used
OUT EAH - Control Register Load, Handshake Latch Load
OUT EBH - Transmit Holding Register Load
```

SERIAL INTERFACE PORT ADDRESSING

Bata	Jumper Letter	Configuration Jumpers	UART Control Register Handshake Latch	UART Status Register	Modem Status Register
D7	j	Even/Odd Parit $1=$ Even $0=0$ dd	Even/Odd Parity	Data Received $1=$ True	Clear to send Pin 5 DB-25
D6	m	Word Length 1	Word Length 1	THRE $1=$ True	$\begin{aligned} & \text { DSR } \\ & \text { Pin } 6 \text { DB-25 } \end{aligned}$
D5	p	Word Length 2	Word Length 2	OverrunError $1=$ True	$\begin{aligned} & \text { CD } \\ & \text { Pin } 8 \text { DB- } 25 \end{aligned}$
D4	n	Stop Bit Slct. 1=2bits, 0=1bit	Stop Bit Slct. $1=2 \mathrm{bits}, 0=1 \mathrm{bit}$	$\begin{aligned} & \text { Framing Err. } \\ & \mathrm{l}=\text { True } \end{aligned}$	Ring Indctor. Pin 22 DB-25
D3	k	Parity Inhibit I disabled par.	Parity Inhibit 1 disabled par.	$\begin{aligned} & \text { Parity Error } \\ & 1=\text { True } \end{aligned}$	
D2			Break, 0 Disable Transmit Data		
D1			Request to Send Pin $4 \mathrm{DB}-25$		Receiver In. UART Pin 20
D0			Data Terminal Ready Pin 20 DB-25		
		IN 0 E 9 H	OUT DEAH	IN ØEAH	IN $\emptyset \mathrm{E} 8 \mathrm{H}$

REAL TIME CLOCK

The $4 \emptyset \mathrm{~Hz}$ Real Time Clock is output from Ul2-11 and used to clock U2IB. This clocks a logic "ø" to U2l-9 which presets U2IA. This places a logic "I" at U2I-5 which is input to U29-4. If U29-4 goes high then its output U29-6 will go high. U29-6 is inverted through $U 2 \emptyset$ and thus presets U22B. U22-9 goes high and is inverted through $U l$
which sends a maskable interupt request to the CPU. The CPU responds by decoding 37EØRD* at Ul9-7. 37EØRD* presets U2IB, clocks a logic "ø" into U2IA, and enables the output of U3B. If bit D7 is a logic "1", then the RTC generated the interupt request.

The programming of the Real Time Clock can be by DOS or in a User's Machine Program. Note the DOS Manual for commands.

THEORY OF OPERATIONS LNDOUBLER 5/8

The LNDOUBLER $5 / 8$ has as its heart two floppy controller IC's--the FDi771 (single density controller) and the FDI791 (single and double density controller). The reason that the FDI771 is still needed is that the commands are slightly different and the BOOT in the level II Roms would not work. The two floppy controllers are tied together so that only one of the two can be enabled at one time.

SINGLE/DOUBLE DENSITY OPERATION

Single density operation is enabled when memory location $37 E C$ is written to with data FE. Double density operation is enabled when memory location 37EC is written to with data FF.

The controlling signals for single/double density operation are DOUBLE* and DOUBLE, Ul6 pins 9 and 8 respectively. U5 and $U 6$, open collector inverters, are tied together to create an 8 -input nor gate whose common output is inverted through U7 and again through Ul2. Ul2-8 is used to clock DALø* into Ul6-l2. Double density operation is selected when DOUBLE and DOUBLE* are high and low respectively.

The signal DOUBLE is input to Ulø-3, Ull-1, and U2-2. When Ulø-3 is low, the FD1771 is enabled. Ull is used to select the STEP, DIRC, WD, and WG signals to be output to the Floppy from either the FDl771 or FDl791. When Ull-l is low the single density controller outputs will be selected. U2 enables VFOE* (U2-3). This signal is input to the WDl691 and will be explained later.

The signal DOUBLE* is input to U9-3, U9-37, and U8-15. When U9-3 is low, the FD1791 is enabled. U9-37 enables the FD1791 for double density. And U8-15 enables the WDl691 for double density.

CLOCK CIRCUIT

The LNDOUBLER $5 / 8$ uses a series resonant circuit utilizing Yı and Ul2 to provide a 4 MHz clock at Ul2-12. This is then input to Ul4-13 which performs a divide by 2 resulting in a 2 MHz clock at $\mathrm{Ul} 4-5$. Both the 4 MHz and 2 MHz
clocks are input to Ul3 pins 5 and 6 respectively. In 5.25" operation the 2 MHz clock is selected and then divided by 2 at Ul4 to become CLKI (Ul4-9). In 8 " operation the 4 MHz clock is selected and then divided by 2 . CLKI is used to clock both the FDl77l and the FDl791 pins 24, and is 1 MHz in 5.25" operation and 2 MHz in 8 " operation.
5.25" \& 8" SELECTION

On power up or reset, the LNDOUBLER $5 / 8$ switches to 5.25" or $8^{\prime \prime}$ drive operation depending on the setting of the 5/8 switch.

When the $5 / 8$ switch is in the 5 position, Ul7 will be preset upon power up or reset and the control signals FIVE (Ul7-9) and FIVE* (Ul7-8) will go high and low respectively enabling 5.25" operation. When the $5 / 8$ switch is in the 8 position Ul7 will be cleared upon power up or reset and FIVE and FIVE* will go low and high respectively enabling 8" operation.
5.25" and 8" operation may also be selected through software switching. When memory location 37 EE is written to with data bits $D 7=1$ and $D 6=1$ the LNDOUBLER will switch to 8 " operation. When memory location 37EE is written to with data bits $D 7=1$ and $D 6=\emptyset$ the LNDOUBLER will switch to $5.25 "$ operation.

5.25" \& 8" OPERATION

FIVE* is input to U4-7 through R6 and determines the pulse width of the one-shot used for RDIN* (U4-12). In 8" operation RDIN* has a pulse width of approximately 225 us. In 5.25" operation RDIN* has a pulse width of approximately 450 us.

FIVE is input to Ul3-l, an LSl58, and is used to select the various signals associated with either 5.25 " or 8" operation.

The inputs to Ul3 associated with 5.25" operation are a 2 MHz clock (U上3-6), a 2 MHz voltage controlled oscillator (Ul3-1ø), and gnd (Ul3-13).

The inputs to $U \geq 3$ associated with $8 "$ operation are a 4 MHz clock (Ul3-5), a 4 MHz voltage controlled oscillator (UŁ3-1!), and TG43MUX* (Ul3-14)

TG43 indicates that the RD/WR head is positioned between tracks 44-76 and is valid only during RD and WR commands. It is output from the FDI771 and FDl791 as STG43 and DTG43 respectively. STG43 and DTG43 are then inverted through U5, an open collector inverter, and the outputs are tied together producing TG43MUX*. In 5.25" operation TG43 is always enabled. In $8^{\prime \prime}$ mode TG43 is enabled only for tracks 44-76.

ANALOG PHASE LOCK LOOP DATA SEPARATION

Ul5, an LS629, provides the VCO, voltage controlled oscillator frequency of $4 \mathrm{MHz}(2 \mathrm{MHz}$ for 5.25 " operation) for the WDl691 (U8). In order to guarantee that it is not sensitive to power supply variations, VRI (78Lø5) provides a regulated supply to the LS629 and the adjustment controls R25 and R26. R25 is a multiturn pot to adjust the frequency range and R26 adjusts the bias voltage for the VCO. The WDI691 and the 74 LS 629 make up the ANALOG PHASE LOCK LOOP DATA SEPERATION. For further details refer to the data sheets supplied in this manual.

PRECISION WRITE PRECOMPENSATION

The WD2. 43 provides an accurate write precompensation value according to the adjustment of R24. A negative true pulse of the actual precompensation value can be observed with an ascilloscope at U8-4. Write precompensation is factory aligned to $2 ø \emptyset \mathrm{~ns}+/-25 \mathrm{~ns}$ and is enabled only for double density operation (all tracks 5.25" and tracks above 43 for 8"). For further details of the interface between the WD2l43 and the WDl69l refer to the data sheets.

WAIT LOGIC
The "wait" logic circuitry consists of Ul, U2, U6, U7, and Ul8.

The "wait" logic allows 8" disk drive operation under a slow CPU speed. This logic is used by several operating systems and is maintained for compatibility reasons.

When the memory location 37 EE is written to with data bits $D 7=1$ and $D 5=1$ then the "wait" logic is turned on. When memory location 37EE is written to with data bits D7=1 and $\mathrm{D} 5=\varnothing$ then the "wait" logic is turned off.

Although the "wait" logic need not be invoked for single density operation for 8 " drives at the 1.77 MHz CPU speed an explanation of its operation follows:

1. The "wait" logic is turned on
2. The FDC is initialized and registers set
3. The command is given to the FDC to read or write
4. The status register is read causing the "wait" logic to issue a "wait" to the CPU until:
a. the busy bit in the status register goes false
b. DRQ on the FDC goes true c. IRQ on the FDC goes true

If the condition that removed the "wait" was (a) or (b) then the "wait" logic is still "on" but the CPU wait was removed until the next time the status register of the FDC is read. If the condition that turned off the wait was (c) then the wait logic is turned off.

It is not within the scope of this manual to provide a complete and detailed procedure for troubleshooting the LNW80. But for those with technical experience in digital electronics, this section may provide some helpful hints.

POWER SUPPLY
The first step in troubleshooting is to check the supply voltages. The following voltages should be verified at the corresponding test point.

REGULATED VOLTAGE	TEST POINT
$+5 \mathrm{~V}+/-.3 \mathrm{~V}$	JPI;JP3;JP5
$+12 \mathrm{~V}+/-.5 \mathrm{~V}$	$\mathrm{JP9}$
$-12 \mathrm{~V}+/-.5 \mathrm{~V}$	$\mathrm{JP7}$
$-5 \mathrm{~V}+/-.3 \mathrm{~V}$	JPIl

Note that the -5 V supply is critical to the RAM's. If it is not present damage may occur to those parts. Therefore check the -5V supply first. If it is not present then disconnect the other supplies before troubleshooting further.

If the fuses continually blow you may disable the overvoltage protection by removing the SCR's. But before doing so disconnect the power supplies. Be ready to turn off power if any component begins smoking.

VIDEO OUTPUT/ADJUSTMENTS

After the power supplies have been verified proceed to check that there is a video output. If there is a video output but it seems unstable or out of sync, then try adjusting C¥40. If that doesn't work then check the video divider chain noting in particular the horizontal and vertical sync pulses. If there is no video, then first check for sync pulses. If all the sync pulses seem correct then check the alphanumeric and graphic shift registers. Keep in mind that the CPU may be instructing the VIDEO to clear the screen.

SYSTEM CLOCK

Check that the Z 8 ØA has a clock at $\mathrm{U} 2-6$. If not then follow the circuitry back to find out why. It should be either 4 MHz (high speed) or l. 77 MHz (low speed).

CPU/CPU TEST

There is a method by which you may test the RAM, BASIC ROM, VIDEO RAM, and KEYBOARD. This procedure requires two computers. One must be a known good l6K level 2 TRS8ø or 16K LNW8Ø.

A special cable must be created in which Al5 is inverted from the good board to the bad board to enable the good board to take over control. By doing so the bad board will be perceived by the good to occupy the upper 32 K of memory space.

SPECIAL CABLE

Materials:
40 pin cable, $2 N 39 \emptyset 6$ transister, $47 \emptyset$ ohm resiser
Procedure:
Break lines 7 and 8 on the cable. Line 7 corresponds to pin 8 on the connector and line 8 corresponds to pin 7 on the connector. Pin 8 is ground and pin 7 is Al5. Connect pin 8 from the good board to the emitter of the transistor. Connect pin 7 from the good board through a 470 ohm resistor to the base of the transistor. And connect the collector to pin 7 of the bad board. Connect the two computers together and ohm out the connections to verify proper connection.

ENABLING THE BUS

If the bad board was preassembled by LNW RESEARCH then no further modifications must be made except pulling U2-25 to ground and reducing noise on the MUX line by placing a parallel combination of a 180 ohm resister and a 330 pf capacitor from Ul8-5 to ground.

If the bad board was purchased as a bare board and built as a kit then the following modifications must also be made: lift the pins of U36-3 and U46-5; jumper U36-12 to Ul8-7, Ul8-9 to U18-14, and U18-5 to Ul8-15.

CPU TO CPU TEST PROGRAM

```
    5 CLS:PRINT"CPU TO CPU TEST":PRINT:PRINT:PRINT
    10 INPUT"TEST ROM,RAM,VID,KEY";ZX$
    2\emptyset IF ZX$="ROM" THEN 1|\emptyset ELSE IF ZX$="RAM" THEN 2\emptyset\emptyset
    ELSE IF ZX$="VID" THEN 3ø\emptyset ELSE IF ZX$="KEY" THEN 4\emptyset\emptyset
    30 GOTOI|
10\emptyset INPUT"SELECT ROM NUMBER(A,Al,B,Cl,ALL,LOOP)";ZX$
105 C=-32767
110 IF ZX$="A" THEN 120 ELSE IF ZX$="Al" THEN l21 ELSE
    IF ZX$="B" THEN l22 ELSE IF ZX$="Bl" THEN 123 ELSE
    IF ZX$="C" THEN l24 ELSE IF ZX$="Cl" THEN l25 ELSE
    IF ZX$="ALL" THEN 126 ELSE IF ZX$="LOOP" THEN 127
    ELSE 10
12\emptyset Y=ø:GOTO15\emptyset
121 Y=2ø48:GOTOL50
122 Y=4196:GOTO150
123 Y=6144:GOTO15\emptyset
124 Y=8192:GOTO150
125 Y=10240:GOTO150
126 FOR X=-32767 TO -2ø480:IF PEEK(X)=PEEK(Y) THEN 130
    ELSE 140
127 INPUT"LOCATION DESIRED(DECIMAL Ø-12287)";Z:LET
    z=z-32768
128 ?PEEK(Z):GOTOl28
13\emptyset ?Y:Y=Y+1:NEXTX:PRINT"TEST COMPLETE":GOTO1ø
14\emptyset PRINT"TEST FAILED":PRINT"LOC. EXPECTED ACTUAL":
    PRIN'T Y,PEEK (Y),PEEK (X):Y=Y+1:STOP:NEXTX
150 A=Y+C:B=A+2ø47:FOR X=A TO B:IF PEEK (X)=PEEK (Y) THEN 130
    ELSE 140
151 ?Y:Y=Y+1:NEXTX:?"TEST COMPLETE":GOTO1\varnothing
2ø\emptyset Y=17\emptyset:FOR X=-16384 TO -1:POKE X,170:IF PEEK(X)=17\emptyset THEN
    NEXT X ELSE 220
210 Y=85:FOR X=-16384 TO -1:POKE X,85:IF PEEK (X)=85 THEN
    NEXT X ELSE 220
215 ?"TEST COMPLETE":GOTOIø
220 ?"TEST FAILED":?"LOC. EXPECTED ACTUAL":
    ? X+32768,Y,PEEK (X):STOP:NEXTX
3ø\emptyset Y=\emptyset:FOR X=-174ø8 TO -16385:?X+32767:POKEX,Y:Y=Y+1:
    IFY=192 THEN Y=ø
302 NEXTX
31\varnothing Y=\emptyset:FOR X=-174ø8 TO -16385:?X+32767:Z(3)=\emptyset:GOSUB6ø\emptyset:
    IF Z(1)=Y THEN 320 ELSE 35\emptyset
32\emptyset Y=Y+l:IF Y=192 THEN Y=\emptyset
322 NEXTX:?"TEST COMPLETE":GOTOI|
350 ?"VIDEO RAM FAILED TEST":?"LOC. EXPECTED ACTUAL":
    3X+32768,Y,PEEK(X):Y=Y+1:IF Y=192 THEN Y=\emptyset
351 NEXT X:?"TEST COMPLETE":GOTOI|
4ø\emptyset ?PEEK(-18177):GOTO4ø\emptyset
600 Z(3)=Z (3)+1:Z(1)=PEEK (X):Z (2)=PEEK (X):IF Z (1)=Z (2)
    THEN RETURN ELSE IF Z(3)=25 THEN RETURN ELSE 60\emptyset
```


CPU/CPU TEST PROGRAM

The previously listed program will enable you to test the program RAM, ROM, LORES VIDEO RAM, and KEYBOARD on the "bad" board. Remember that the bad board will be perceived by the good board from locations 32768 to 65535. Remember also that writing to or reading from the upper 32 K requires that you use negative numbers. The following is a simple formula for translating the actual location to the location to be poked to peeked:

POKE OR PEEK ADDDRESS = ACTUAL ADDRESS - 32768
The simplest procedure for loading this program is to type it in and save to cassette. This will prevent you from having to retype it if the system crashes. Connect the two computers together, power up the good board and load level 2 basic. Then load the program from cassette and then turn on the power on the bad board. The program will not load if the power to the bad board is already on.

The program will display a simple menu. Respond with ROM and the program will ask you whether you wish to test ROM A1, A, B1, B, C1, C, or all. You may also loop on any one location. The way the ROM test works is that it peeks the same location on both the good and the bad board and compares. Note that if you are using a TRS80 as your "good" board then some of the ROM locations will disagree. You may continue by typing "CONT".

The RAM part of the CPU test pokes data $=170$ to all 16 K of the program RAM and peeks those locations to verify. Then data is set equal to 85 and the process repeats itself. These values are selected because they represent two patterns of alternating "ones" and "zeros" in binary. The entire RAM test takes about 5 minutes. Upon completion the program will respond with "TEST COMPLETE".

The video part of the CPU test first writes to every location. You may observe this by connecting the CRT to the bad board. Afterwards it reads back to verify that the correct information was stored. An occasional error may occur due to noise. A good signal to loop on while accessing the video memory is "CPUACC*" (U139-1).

The KEYBOARD part of the CPU test will loop continuously peeking a keyboard address. For this part of the test you must connect a kybd to the "bad" board. With no keys depressed zero's should be displayed on the CRT. When a key is depressed the value displayed should
correspond to a "I" at the data bit which corresponds to that particular key. Refer to the kybd schematic. To escape the KYBD test you must depress the break key on the "good" board.

If there is a failure you may loop at the location of the failure and trigger on the appropiate enabling signal to verify that the data and address are correct. Two sample programs are:

$$
1 A=\operatorname{PEEK}(-32768): \text { GOTO1 }
$$

1 POKE -16384, $0: G O T O 1$
The lst program will loop on a read of the lst location of ROM. The 2nd will loop on a write to the lst location of RAM with data equal to zero. In the lst case you should trigger on ROMRD* (U66-6). In the 2 nd case, trigger on CAS* (U96-15).

If you have verified that the ROM, RAM, VID RAM, and KYBD sections are good then you may assume that the problem is in the CPU section. All you can do is check to see that all the control lines, address lines, and data lines are functioning. If the CPU is "hanging up", ie. getting locked on a RD*, you may "trick" it by lifting the RD* and MREQ* lines on the Z 8 ØA.

"SCOTCH TAPE TRICK"

Sometimes the CPU/CPU test will not work because connecting to the "bad" board causes the good board to hang-up. An example of this would be if añy of the critical bus lines were shorted. You may be able to determine which line or lines are causing the problem by covering the 40 pin connector with scotch tape and removing it pin by pin. If removing the scotch tape from a pin causes the good board to hang-up then you may assume that something is either shorted to that line, driving that line, or possibly loading that line down.

HI RESOLUTION GRAPHICS

The HRES GRAPHICS can be tested by running the HRES GRAPHICS TEST on the following page. If the program fails you must troubleshoot the associated circuitry. There is no easy way to loop on the HRES GRAPHICS RAM to see if the address and data are correct. You may allow the test program to continue without stopping by deleting line 220 . While the program is running you can check the signals with an oscilloscope to see that they are active. If the program

```
is writing to two or more lines at a time you may assume you
have an addressing problem. If no data is being written
check the write line. If after running, the CRT does not
display an eighty character screen check HRES (55-5). If
the test does not fail but the information on the screen
seems incorrect check the shift register at Ul27.
```


COLOR GRAPHICS TEST AND ADJUSTMENTS

1.Run "COLOR BAR TEST PROGRAM" and wait for it to complete. 2. Measure the voltage at pin 6 of Ul46. Record this value, it should be between 1.25 and 1.75 volts. 3. While measuring the voltage at pin 5 of Ul46 adjust R99 so
that the voltage is the same as the recorded value. 4. While measuring the voltage at pin 7 of Ul46 adjust R98 so
that the voltage is the same as the recorded value.
5.Adjust R94 for best picture. Note that this effects the luminance level and be observed at pin 9 of Ul46. The observed level should be between .75 and 1.1 volts.

```
I\emptyset REM COLOR BAR TEST PROGRAM
2\emptyset REM CASSETTE VERSION
30 REM THIS TEST SHOULD GENERATE THE FOLLOWING COLORS:
35 REM WHITE GREEN YELLOW RED MAGENTA BLUE BLUE-GREEN BLACK
36 CLS:PRINTCHR$ (23)
4ø PRINT "LNW RESEARCH COLOR BAR TEST"
45 REM DELAY BEFORE STARTING TEST
50 FOR Z=\emptyset TO 1\emptyset\emptyset\emptyset
60 NEXT Z
70 OUT 254,4
72 FOR X=15360 TO 16383
74 POKE X,255
7 6 ~ N E X T ~ X ~
80 FOR X=32512 TO 32533
9\emptyset READ D
IØ\emptyset POKE X,D
110 NEXT X
120 POKE 16526,ø:POKE 16527,127
125 FOR X=\emptyset TO 12288
130 FOR Y=\emptyset TO 7
135 FOR Z=ø TO 7
150 POKE 32522,Y*9
180 A=USR(X)
190 LET X=X+1
2ø0 NEXT Z
210 NEXT Y
220 LET X=X-1
230 NEXT X
240 END
27ø DATA 205,127,10,219,254,246,8,211,254,54,0,0,110,38,0
280 DATA 230,247,211,254,195,154,10
```

If connecting the expansion interface to the main computer board causes the system to lock up refer to the "SCOTCH TAPE TRICK" in the previous section.

POWER SUPPLY
As stated previously, the first step in trouble-shooting is to verify the power supply. So proceed to verify the following voltages at the following reference points:

REGULATED VOLTAGE	TEST POINT
$+5 \mathrm{~V}+/-.3 \mathrm{~V}$	JP2, JP4
$+12 \mathrm{~V}+/-.5 \mathrm{~V}$	JP12
$-12 \mathrm{~V}+/-.5 \mathrm{~V}$	JP10
$-5 \mathrm{~V}+/-.3 \mathrm{~V}$	JP8

Note that the -5V supply is critical to the RAMs. If it is not present damage may occur to those parts.

32K MEMORY EXPANSION

The same procedure as used in the CPU/CPU TEST may be used to trouble-shoot the additional 32 K of program memory. A sample program to test the memory is:
$10 \mathrm{Y}=170$
20 FOR X=-32767 TO -1
30 POKE X,Y
$40 \mathrm{~A}=\mathrm{PEEK}(\mathrm{X})$
50 IF $A=Y$ THEN NEXT X ELSE 60
$51 \mathrm{Y}=85: \mathrm{Z}=\mathrm{Z}+1$:IF $\mathrm{Z}=2$ THEN 55 ELSE 20
55 PRINT"TEST COMPLETE":STOP
60 PRINT"LOCATION", X+65536;"ACTUAL", A;"EXPECTED", Y
70 STOP
80 NEXTX
Before running this program "set" the memory size to 32767. This will prevent the program from being stored in the upper 32 K of memory. If there is a failure you may PEEK or POKE at that location using a simple loop statement. By triggering on CAS* you may verify that the correct address and data are present. Remember that the following relationship exists between the actual location and that poked or peeked:

ACTUAL ADDRESS $=$ POKE OR PEEK ADDRESS + 65536

If the FDC is not working, check that the 1 MHz clock input to Ul4-24 is present. Check that when reset MR* (U14-19) goes low. If the motor on the drive does not go on, or if it stays on continuously then the problem may be related to Ul9 or U7. Note that if the motor stays on continuously the problem is likely to be a reversed floppy cable. By looping on POKE and PEEK statements and checking with an oscilloscope you may verify that the decoder at U19 is operating correctly. Follow the interupt logic from U14-39 to U1-6. Verify that Ul3 is selecting drive \emptyset and that Ul4-23 goes high indicating that the status register is ready. Check the gates of U1, U2, and U6 to see that they're inverting their inputs. Remember that these are 7438's (open collector) and that the outputs must be pulled up by the disk drive.

RS 232 HANDSHAKING
To test the handshaking short the following points together on J2:

J2-4 to J2-5 to J2-6
and J2-8 to $\mathrm{J} 2-2 \emptyset$ to $\mathrm{J} 2-22$
Load the following program:

```
    1\varnothing FOR Y=\emptyset TO Y=3:OUT234,Y:A=INP(232)
    2\emptyset PRINT "Y=";Y,"A=";A:NEXTY
    3\emptyset PRINT"FOR Y=ø, A SHOULD BE ø\emptyset\emptyset\emptysetXXXX BINARY"
    4\emptyset PRINT"FOR Y=1, A SHOULD BE lløøXXXX BINARY"
    5\emptyset PRINT"FOR Y=2, A SHOULD BE \emptyset\emptysetIIXXXX BINARY"
    60 PRINT"FOR Y=3, A SHOULD BE llllXXXX BINARY"
    This program latches data through U26 and back again
through U33. OUT234 clocks the data out through U26 and
INP(232) clocks it back through U33. Refer to the
```

schematics.

RS232 SEND/RECEIVE

To test or troubleshoot the send/receive functions of the RS 232 port load the SERIAL CRT TERMINAL PROGRAM and short El to E3. If the serial port is functioning properly then as letters are typed on the keyboard they are routed out through E3 and then back again through El and placed on the CRT. If this is not occuring then check U40-25 to see if data is being passed out through the UART. If so then


```
proceed to follow the logic until you're back to U40-20
where the data is received by the UART. If no data is being
sent or if the data is not correct then return to LEVEL II
BASIC and using IN and OUT commands enable the decoder at
Ul6. Verify with an oscilloscope that the decoder is
functioning and that the signals are present at their
destination points. Problems may also occur at U23 and U39,
especially in relation to incorrect data.
```

RS 232 BAUD RATES
On the LNW8ø, BAUD RATES may only be controlled through hardware switches. On the factory assembled models this is accomplished through the use of dip switches. If there is any problems in the baud rates first check that no more than one switch is on at a time. In troubleshooting the RS 232 check the baud rates with a frequency counter or oscilloscope. Refer to the THEORY OF OPERATIONS for the expected frequencies.

DO NOT ATTEMPT ALIGNMENT ON AN LNDOUBLER $5 / 8$ WHICH IS UNDER WARRANTY AND APPEARS NOT TO FUNCTION AFTER IT WAS FIRST INSTALLED. ATTEMPTING TO DO SO WILL VOID YOUR 180 DAY LIMITED WARRANTY

Alignment should not be necessary for the life of the LNDOUBLER 5/8 unless the controls have been tampered with or ONE of the following parts has been replaced: VRl, IC15, IC3, IC8, R25, R26, R18, R13, R1, R24, C10.

The LNDOUBLER $5 / 8$ may be returned to the factory for alignment if required. Contact the Service Department for the cost of alignment. For those with the equipment and knowhow to do the alignment, the following procedure should only be done in the event that returning the LNDOUBLER $5 / 8$ is a problem AND the LNDOUBLER $5 / 8$ NEEDS ALIGNMENT!

Equipment Required:
Digital Voltmeter 1% accuracy >1 megohm input impedance Frequency Counter . 1% accuracy $>1 \mathrm{Kohm}$ input $>5 \mathrm{MHz}$ Oscilloscope $>15 \mathrm{MHz}$ bandwidth, triggered

DO NOT ATTEMPT ALIGNMENT IF YOU DO NOT HAVE ALL THE EQUIPMENT LISTED ABOVE!!!

1. Preset the controls and switch settings:
a. R26- fully counterclockwise
b. R24- fully clockwise
c. SWl- "5" position
d. R25- does not matter
2. Install the LNDOUBLER $5 / 8$ into the expanion interface and apply power to the interface.
3. Adjust R26 for 1.40 volts at IC8 pin 13
4. Adjust R25 for a frequency measurement of $4 . \emptyset \emptyset \mathrm{MHz}$ at ICI5 pin 7
5. Boot a disk and set up to format a DOUBLE DENSITY DISK. While it is writing to the disk, measure with the oscilloscope a negative true pulse at IC8 pin 4. Adjust R24 for a pulse width of $2 \emptyset \emptyset n s$. This value corresponds to the amount of write precompensation.

The most important part of disassembling the computer is to be able to put it back together again. This computer has many cables and power connectors and it is vital that they be put back together in the same way as they are taken apart. Great care should be taken. Reversed cables or connectors may cause either unreliable operation, no operation, or even serious damage to electrical and electronic components.

Therefore I strongly advise that some systematic method be used to ensure that the cables and connectors be put back together in the same way as they are taken apart. One method would be to mark both the connector and the circuit board with a permanent marking pen.

REMOVING THE LID
There are 5 screws holding the lid to the chassis, 3 on the back panel and 2 in the front beneath the keyboard. When removing the lid be careful as the LED is connected to the keyboard with wires approximately 8 " in length. The LED can be removed from the lid by prying the donut shaped backing off the LED. Then simply push the LED down and remove it.

REMOVING THE KEYBOARD

The KEYBOARD is connected by a 40 pin cable and held in place by 4 screws into the supporting brackets. To remove the 40 pin cable take a firm grip on the plastic part and pull straight back taking care not to bend the pins on the keyboard.

REMOVING THE EXPANSION INTERFACE
The expansion interface is connected by a 40 pin cable and a power connector to the main computer board, and the cables for the RS232 to the chassis. You may remove the EI without disconnecting the RS 232 cables, though not completely. There are 4 screws connecting the EI to the supporting rods. Note that only 3 of these screws have lock washers. The forth does not so as to prevent shorting to nearby signals.

REMOVING THE LNDOUBLER 5/8

If you turn the expansion board over you will see a small board plugged into it and tied with plastic tie wraps. This board is the LNDOUBLER 5/8. To remove the doubler you must cut the plastic tie wrap. Then simply pull the doubler straight back being careful not to bend the gold pins beneath.

REMOVING THE LNW8ø COMPUTER BOARD
To remove the main computer board you must lst remove the expansion interface. Then unscrew the 4 cylindrical rods used to support the EI. Note that beneath 3 of these rods there are small nylon spacers. Remove these also. Before you can remove the computer board you must cut the tie wraps holding the large orange capacitor to the case, disconnect the power connector from the transformer, cut the tie wraps on the video connectors, disconnect the video cables, and unsolder or cut the wires connecting to the auto switch on the back panel.

REASSEMBLING THE COMPUTER
If you marked the connectors and paid attention when you disassembled the computer you should have little difficulty in reassembling it. Merely proceed with the above directions in reverse.

ECN's- ENGINEERING CHANGE NOTICES

The following ECN's are not necessary for a functional operating computer. If you have a computer that simply does not operate-ie. garbage appears on the screenthen these changes will not help. These changes have been made to improve operation in various areas. Factory assembled units have had all or most of these changes installed.

These ECN's refer to making jumpers and etch cuts. When making jumpers, use 30 gauge wire (unless otherwise specified) and verify that you are connecting the correct points. When making etch cuts, use a sharp pointed razor knife and be very careful to cut only the etch specified.

It is advisable to make the appropiate changes in the schematics as you install these ECN's. Use a colored ink or pencil so that you can clearly see the ECN changes.

Note: Expansion Board ECN's begin with ECN $2 \emptyset \emptyset \emptyset$.

ECN 1øøø. These changes enable BUS REQUEST for the LNW8ø.
a. etch cuts

1. U46-5 (solder side)
2. U152-10 (component side)
3. U36-12 (component side, above pin 12)
b. jumpers
x. U18-5 to U97-1
4. Ul8-7 to U89-3
5. U6-4 to U6-5
6. U36-3 to U152-10

ECN 1001. Purpose: To eliminate jitter in the display.
a. change the following parts:

PART	FROM:	TO:
. Ul38	$74 \mathrm{LS174}$	74S174
2 L U122	74 LSl 57	745157
3. Ul39	74 LS 157	74S157
4.U16も	74S161	74LS161

 b. install the following capacitors:
 1. 330 pf ceramic from U37-6 to U37-7
 2. 47 pf ceramic from Ul38-9 to Ul38-8
 ECN 1002. Purpose: To eliminate screen "hash" from display
when reading or writing out of text/graphics RAM
or HIRES Graphics RAM.
a. etch cuts
1. Ul68-6 just above feedthrough below the number
"l" of the "Ul68" (component side).
2. Ul53-5 (solder side)
b. jumpers
1. U153-6 to U170-11
2. U170-8 to U170-9
3. Ul7ø-12 to Ul7ø-1
4. Ul7a-13 to Ul21-12
ECN 1øø3. Purpose: To reduce "ringing" on the MUX and CAS*
lines.
a. install parts
1. Add a 330 ohm resister from U88-1 to GND.
2. Add $1 \varnothing \emptyset \mathrm{pf}$ cap at Rl4ø (RAM side) to GND.
ECN 1004. Purpose: To delay GRAS* approximately 20 ns
allowing DRAD日-DRADS to stabilize prior to
GRAS* going active.
a. Install 150 pf ceramic cap from R83 (right side)
to GND.
ECN 10ø5. Purpose: Ensures that the video wait gets to
the $28 \emptyset$.
a. change Rl43 from 4.7 K to $47 \emptyset$ ohms
b. remove Cl38
c. jumper
1. U6I-3 to Ul6-9
2. U16-8 to U29-9

ECN 1006. Purpose: $T o$ create a wait state for Disk I/O to increase reliability at high speed.
a. add jumper from feedthrough closet to R67 to feedthrough at R3ø.

b. cut etch to U73-1 (component side) cut etch to U74-6 (solder side)
c. jumper U73-1 to U60-7
jumper U74-6 to U74-5

ECN 1007. Purpose: To eliminate double clocking at Ul56-13 resulting in double vertical display
a. add $22 \emptyset \mathrm{pf}$ ceramic capacitor from Ul59-12 to U159-14

ECN 1008. Purpose: To eliminate the possibility of heat damage to board due to heat resulting from CRI7.
a. remove the Bridge at CRI7 from board
b. mount Bridge on case using case chassis as heat sink
c. connect the 9VAC outputs from the transformer directly to the $A C$ inputs of the Bridge
d. connect the "+" output of the bridge to pin 1 of the female molex connector that fits on J5 (use 19 gauge wire)
f. connect the "-" output of the bridge to pin 4 of the female molex connector that fits on $J 5$ (use 19 gauge wire)
g. connect pin 1 of the male molex connector on $J 5$ to the feedthrough marked "+" within the silkscreened area marked for CRl7 (use 19 gauge wire)

```
ECN 1009. Purpose: to avoid ripple on the -12V supply
        due to heat damage to C131 and C125.
    a. remove C131 and C125.
    b. install a 220 ufd +- 20% 25VDC with the "-"
        leg to the "IN" of Q11 and the "+" leg to
        gnd.
ECN 1010. Purpose: To improve video stability and to remove
        potentiometers at R98, R99, and R129, thereby
        eliminating some of the video adjustments in
        the NTSC color video output.
    a. Change the following components:
    1. R129 from a 10K pot to 4.7K ohms
    2. R98 from a 1K pot to 750 ohms
    3. R99 from a 1K pot to 750 ohms
    4. R124 from 220 to 10 ohms
    5. R94 from a 1K pot to a 2.2K pot
    6. R109 from 2K to 1.2K ohms
    7. C113 from 220pf to 47pf MICA
    8. U119 from 74S04 to 74LS19
    9. C84 from 100 pf to a 10.738MHz CRYSTAL
    NOTE: 10-14 ARE OPTIONAL
    10. U122 from 74S157 to 74LS157
    11. U121 from 74S74 to 74LS74
    12. U124 from 74S74 to 74LS74
    13. U160 from 74S161 to 74LS161
    14. U161 from 74S161 to 74LS161
b. remove the following parts completely
    1. C140, L2, R62, R63, and R67
c. install the following
    1. 15pf ceramic capacitor from bottom side of
        R62 to top side of R63
    2. 20K ohms 1/4W 5% from U103-8 to C140 (left side)
    3. 6.8 ufd tant. elect. parallel with R110, with
        the "+" side facing C95.
d. cut the etch to U119-12 (solder side).
e. jumper from U1-5 to U103-9.
```

ECN 2000. Purpose: Reduce noise on RAS*, CAS*, RD*, and MUX and thereby increase memory reliability.
a. Regenerate MUX from RAS*

1. Verify the removal of all termination resisters on J3, also R68, R69, and C14
2. cut etch near U10 (solder side) such that MUX is open circuited from U36-13 to J3-16

ETCH CUT

3. install the following jumpers:
from U36-14 to U20-3 from U36-13 to U20-4
b. Cut etch between the following pnints:

1. R34 and R46 (near J3)
2. R35 and R47 (near J3)
c. Install the following components:
3. 100 pf ceramic cap from U36-6 to U36-10
4. 100 pf ceramic cap from U36-15 to U36-10
5. 330 pf ceramic cap from U36-8 to U36-10
6. 75 ohm resistor from R34 to R46
7. 75 ohm resistor from R35 to R47
d. Use J3 when connecting from the main computer to the expansion board

The following components and jumpers must be installed to obtain the RGB video output.
A. INSTALL THE FOLLOWING COMPONENTS

```
RGB VIDEO CONNECTOR- 6 pin din jack
``` Ul31-74LS257
U132-74LS174
U158- RGB ROM
Cl46-680 pf ceramic cap(from Ul29-1 to Ul29-8)
B. INSTALL THE FOLLOWING JUMPERS
1. USE 24 GAUGE STRANDED WIRE TO CONNECT TO RGB 6 PIN DIN JACK

U162-9 TO RGB-1* VERTICAL SYNC
U158-1 TO RGB-2 BLUE
U158-6 TO RGB-3 GREEN
U158-4 TO RGB-4 RED
U162-5 TO RGB-5* HORIZONTAL SYNC
Ul58-8 TO RGB-6 GROUND
2. USE \(3 \emptyset\) GAUGE NON-STRANDED WIRE

U20-5 TO Ul62-3
Ull8-8 TO Ul62-5
Ul62-4 TO Ul62-9
U68-12 TO U158-14
U68-11 TO U158-13
U130-12 TO U158-12
U130-11 TO U158-11
U130-10 TO U158-10
U158-15 TO U158-8
C. INSTALL THE FOLLOWING RESISTORS

IK ohms from Ul62-4 to Ul62-14
lk ohms from Ul62-6 to Ul62-14
1 k ohms from Ul62-8 to U162-14
* Note that factory built LNW8ø's are set up for both positive horizontal and vertical syncs. Negative sync pulses may be obtained by moving the following jumpers:

RGB-1 from Ul62-9 to Ul62-8
RGB-5 from Ul62-5 to Ul62-6

Because Ul62 has open collector gates, a combined negative sync may be obtained by setting up for negative syncs and then connecting the sync outputs together.

Because the RGB ROM also has open collector gates it may be necessary to install 330 ohm pull-up resistors on it's outputs, pins 1, 4, and 6. Note that this is only necessary with monitors that do not internally pull up the RED, GREEN, and BLUE lines. This is not necessary with the AMDEC COLOR II RGB MONITOR.

RGB CIRCUIT LOGIC DIAGRAM

\section*{PARTS LIST}

LNW80 COMPUTER BOARD
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline & PRINTED CIRCUIT BOARD & 97002 \\
\hline \multicolumn{3}{|c|}{*****INTEGRATED CIRCUITS*****} \\
\hline U1 & 74S04 & 10003 \\
\hline U2 & 280A & 10042 \\
\hline U3 & 74LS244 & 10061 \\
\hline U4 & 74LS241 & 10031 \\
\hline U5 & 74LS373 & 10032 \\
\hline U6 & 74LS 138 & 10020 \\
\hline U7 & not used & \\
\hline U8 & 74LS175 & 10028 \\
\hline U9 & 75452 & 10036 \\
\hline U10 & not used & \\
\hline U11 & not used & \\
\hline U12 & not used & \\
\hline U13 & not used & \\
\hline U14 & not used & \\
\hline U15 & 74 LS 32 & 10012 \\
\hline U16 & 74 LS 05 & 10006 \\
\hline U17 & 74LS241 & 10031 \\
\hline U18 & 74 LS 244 & 10061 \\
\hline U19 & 74LS11 & 10009 \\
\hline U20 & 74 C 86 & 10015 \\
\hline U21 & TL084 & 10041 \\
\hline U22 & not used & \\
\hline U23 & not used & \\
\hline U24 & not used & \\
\hline U25 & not used & \\
\hline U26 & not used & \\
\hline U27 & not used & \\
\hline U28 & 74 LS 08 & 10007 \\
\hline U29 & 74 LS 08 & 10007 \\
\hline U30 & 74 LS 05 & 10006 \\
\hline U31 & 74574 & 10014 \\
\hline U32 & 74LS241 & 10031 \\
\hline U33 & 74 LS 30 & 10011 \\
\hline U34 & 74LS240 & 10030 \\
\hline U35 & 74LS 139 & 10021 \\
\hline U36 & 74LS32 & 10012 \\
\hline U37 & 74 CO & 10002 \\
\hline U38 & 74LS132 & 10019 \\
\hline U39 & not used & \\
\hline U40 & not used & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline U4 1 & not used & \\
\hline U42 & not used & \\
\hline U43 & not used & \\
\hline U44 & not used & \\
\hline U45 & not used & \\
\hline U46 & 74S74 & 10014 \\
\hline U47 & 74S74 & 10014 \\
\hline U48 & 74LS04 & 10004 \\
\hline U49 & not used & \\
\hline U50 & 74LS04 & 10004 \\
\hline U51 & 74 LSO & 10000 \\
\hline U52 & 74LS10 & 10008 \\
\hline U53 & 74LS244 & 10061 \\
\hline U54 & 74LS139 & 10021 \\
\hline U55 & 74LS08 & 10007 \\
\hline U56 & not used & \\
\hline U57 & not used & \\
\hline U58 & not used & \\
\hline U59 & not used & \\
\hline U60 & 74LS00 & 10000 \\
\hline U61 & 74 LSO 2 & 10001 \\
\hline U62 & 74 LS 244 & 10061 \\
\hline U63 & 74LS244 & 10061 \\
\hline U64 & not used & \\
\hline U65 & 74LS244 & 10061 \\
\hline U66 & 74 LS 32 & 10012 \\
\hline U67 & 74 LS 175 & 10028 \\
\hline U68 & 74 LS 02 & 10001 \\
\hline U69 & not used & \\
\hline U70 & not used & \\
\hline U71 & not used & \\
\hline U72 & not used & \\
\hline U73 & 74LS138 & 10020 \\
\hline U74 & 74 LS 30 & 10011 \\
\hline U75 & ROM A1 & 10040 \\
\hline U76 & ROM B1 & 10040 \\
\hline U77 & ROM C1 & 10040 \\
\hline U78 & ROM A & 10040 \\
\hline U79 & ROM B & 10040 \\
\hline U80 & ROM C & 10040 \\
\hline U81 & 74LS08 & 10007 \\
\hline U82 & 74LS86 & 10016 \\
\hline U83 & 74LS153 & 10022 \\
\hline U84 & 74166 & 10026 \\
\hline U85 & \(74 \mathrm{LS10}\) & 10008 \\
\hline U86 & SPARE & \\
\hline U87 & 74S161 & 10025 \\
\hline U88 & 74LS 157 & 10023 \\
\hline U89 & 4116 (200ns) & 10039 \\
\hline U90 & 4116 (200ns) & 10039 \\
\hline U91 & 4116 (200ns) & 10039 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline U92 & 4116 (200ns) & 10039 \\
\hline U93 & 4116 (200ns) & 10039 \\
\hline U94 & 4116 (200ns) & 10039 \\
\hline \(\cup 95\) & 4116 (200ns) & 10039 \\
\hline U96 & 4116 (200ns) & 10039 \\
\hline U97 & 74 LS 157 & 10023 \\
\hline 498 & 74LS374 & 10033 \\
\hline U99 & 74 LS 373 & 10032 \\
\hline U100 & 2716 CHAR GEN & 10065 \\
\hline U101 & 74166 & 10026 \\
\hline U102 & 74LS20 & 10010 \\
\hline U103 & 74S175 & 10029 \\
\hline U104 & 74574 & 10014 \\
\hline U105 & 74LS 157 & 10023 \\
\hline U106 & 4116 (200ns) & 10039 \\
\hline U107 & 4116 (200ns) & 10039 \\
\hline U108 & 4116 (200ns) & 10039 \\
\hline U109 & 4116 (200ns) & 10039 \\
\hline U110 & 4116 (200ns) & 10039 \\
\hline U111 & 4116 (200ns) & 10039 \\
\hline U112 & 74 LS 157 & 10023 \\
\hline U113 & SPARE & \\
\hline U114 & 2114 (450ns) & 10063 \\
\hline U115 & 2114 (450ns) & 10063 \\
\hline U116 & 74LS174 & 10027 \\
\hline U117 & 74 LS 174 & 10027 \\
\hline U118 & 74LS04 & 10004 \\
\hline U119 & 74 S 04 & 10003 \\
\hline U120 & 74LS123 & 10018 \\
\hline U121 & 74S74 & 10014 \\
\hline U122 & 74S157 & 10044 \\
\hline U123 & not used & \\
\hline U124 & 74574 & 10014 \\
\hline U125 & 74 LS 373 & 10032 \\
\hline U126 & 74LS174 & 10027 \\
\hline U127 & 74166 & 10026 \\
\hline U128 & 74LS174 & 10027 \\
\hline U129 & 74LS257 & 10045 \\
\hline U130 & NTSC COLOR ROM & 10046 \\
\hline U131 & not used & \\
\hline U132 & not used & \\
\hline U133 & 74123 & 10017 \\
\hline U134 & not used & \\
\hline U135 & not used & \\
\hline U136 & not used & \\
\hline U137 & 74LS04 & 10004 \\
\hline U138 & 74S174 & 10043 \\
\hline U139 & 74S157 & 10044 \\
\hline U140 & 74 LS 157 & 10023 \\
\hline U141 & 74LS374 & 10033 \\
\hline U142 & 74 LS 157 & 10023 \\
\hline U143 & 74LS374 & 10033 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline - \(\bar{S} Y \bar{M} \bar{M} \bar{B} O \bar{L}\) & & \(\bar{P} \bar{A} \bar{R} \bar{T}-\bar{N} \bar{U} \bar{M} \bar{B} \bar{E}\) \\
\hline U144 & 74LS157 & 10023 \\
\hline U145 & 74LS157 & 10023 \\
\hline U146 & MC1372 & 10037 \\
\hline U147 & not used & \\
\hline U148 & not used & \\
\hline U149 & not used & \\
\hline U150 & not used & \\
\hline U151 & 74LS32 & 10012 \\
\hline U152 & 74LS32 & 10012 \\
\hline U152 & 74LS32 & 10012 \\
\hline U153 & 74LS74 & 10013 \\
\hline U154 & 74LS20 & 10010 \\
\hline U155 & 74574 & 10014 \\
\hline U156 & 74LS393 & 10035 \\
\hline U157 & SPARE & \\
\hline U158 & RGB ROM (optional) & 10049 \\
\hline U159 & 74LS 10 & 10008 \\
\hline U160 & 74LS161 & 10024 \\
\hline U161 & 74S161 & 10025 \\
\hline U162 & 7405 & 10005 \\
\hline U163 & not used & \\
\hline U164 & not used & \\
\hline U165 & not used & \\
\hline U166 & not used & \\
\hline U167 & 74LS161 & 10024 \\
\hline U168 & 74LS08 & 10007 \\
\hline U169 & 74LS11 & 10009 \\
\hline U170 & 74 LS 02 & 10001 \\
\hline U171 & 74LS32 & 10012 \\
\hline U172 & SPARE & \\
\hline \multicolumn{3}{|r|}{ISTORS (1/4 watt, \(5 \%\) unless otherwise indicated)} \\
\hline R1 & 150 ohm & 20007 \\
\hline R2 & 680 & 20030 \\
\hline R3 & 4.7 K & 20036 \\
\hline R4 & 680 & 20030 \\
\hline R5 & 4.7 K & 20036 \\
\hline R6 & 4.7 K & 20036 \\
\hline R7 & 220 & 20010 \\
\hline R8 & 220 & 20010 \\
\hline R9 & 4.7 K & 20036 \\
\hline R10 & 1 K & 20016 \\
\hline R11 & 1 K & 20016 \\
\hline R12 & 10K & 20021 \\
\hline R13 & 1 K & 20016 \\
\hline R14 & 4.7 K & 20036 \\
\hline R15 & 1 K & 20016 \\
\hline R16 & 330 & 20012 \\
\hline R17 & 120 & 20006 \\
\hline R18 & 1.8 K & 20033 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline R19 & 270 & 20027 \\
\hline R20 & 10K & 20021 \\
\hline R21 & 75 & 20004 \\
\hline R22 & 47 & 20003 \\
\hline R23 & 100 & 20005 \\
\hline R24 & 1 K & 20016 \\
\hline R25 & 180 & 20009 \\
\hline R26 & not used & \\
\hline R27 & 20 K & 20022 \\
\hline R28 & 3.6 K & 20019 \\
\hline R29 & 1 K & 20016 \\
\hline R30 & 4.7 K & 20036 \\
\hline R31 & 10 & 20025 \\
\hline R32 & 10K & 20021 \\
\hline R33 & 1.2 K & 10017 \\
\hline R34 & 7.5 K & 20020 \\
\hline R35 & 7.5 K & 20020 \\
\hline R36 & 1 K & 20016 \\
\hline R37 & 220K & 20024 \\
\hline R38 & 20 K & 20022 \\
\hline R39 & 20 K & 20022 \\
\hline R40 & 1.8 K & 20033 \\
\hline R41 & 4.7 K & 20036 \\
\hline R42 & 3K & 20035 \\
\hline R43 & 10 & 20025 \\
\hline R44 & 20K & 20022 \\
\hline R45 & 4.7 K & 20036 \\
\hline R46 & 10K & 20021 \\
\hline R47 & 4.7 K & 20036 \\
\hline R48 & 10K & 20021 \\
\hline R49 & 10K & 20021 \\
\hline R50 & 33 & 20026 \\
\hline R51 & 33 & 20026 \\
\hline R52 & 4.7 K & 20036 \\
\hline R53 & 10 K & 20021 \\
\hline R54 & 10K & 20021 \\
\hline R55 & 33 & 20026 \\
\hline R56 & 33 & 20026 \\
\hline R57 & 1 K & 20016 \\
\hline R58 & 33 & 20026 \\
\hline R59 & 33 & 20026 \\
\hline R60 & 33 & 20026 \\
\hline R61 & 33 & 20026 \\
\hline R62 & 150 & 20007 \\
\hline R63 & 470 & 20014 \\
\hline R64 & 200K & 20023 \\
\hline R65 & 33 & 20026 \\
\hline R66 & 33 & 20026 \\
\hline R67 & 470 & 20014 \\
\hline R68 & 4.7 K & 20036 \\
\hline R69 & 100 & 20005 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline R70 & 33 & 20026 \\
\hline R71 & 33 & 20026 \\
\hline R72 & 33 & 20026 \\
\hline R73 & 33 & 20026 \\
\hline R74 & 33 & 20026 \\
\hline R75 & 1 K & 20016 \\
\hline R76 & 33 & 20026 \\
\hline R77 & 33 & 20026 \\
\hline R78 & 1 K & 20016 \\
\hline R79 & 1 K & 20016 \\
\hline R80 & 56 K & 20038 \\
\hline R81 & 1 K & 20016 \\
\hline R82 & 1 K & 20016 \\
\hline R83 & 33 & 20026 \\
\hline R84 & 1 K & 20016 \\
\hline R85 & 910 & 20032 \\
\hline R86 & 470 & 20014 \\
\hline R87 & 270 & 20027 \\
\hline R88 & 910 & 20032 \\
\hline R89 & 270 & 20027 \\
\hline R90 & 910 & 20032 \\
\hline R91 & 390 & 20029 \\
\hline R92 & 1.2 K & 20017 \\
\hline R93 & 470 & 20014 \\
\hline R94 & 1 K POT & 21000 \\
\hline R95 & 470 & 20014 \\
\hline R96 & 1 K & 20016 \\
\hline R97 & 220 & 20010 \\
\hline R98 & 1 K POT & 21000 \\
\hline R99 & 1 K POT & 21000 \\
\hline R100 & 470 & 20014 \\
\hline R101 & 470 & 20014 \\
\hline R102 & 470 & 20014 \\
\hline R103 & 470 & 20014 \\
\hline R104 & 470 & 20014 \\
\hline R105 & 1.5 K & 20018 \\
\hline R106 & 5.6 K & 20037 \\
\hline R107 & 4.7 K & 20036 \\
\hline R108 & 360 & 20028 \\
\hline R109 & 2K & 20034 \\
\hline R110 & 47 & 20003 \\
\hline R111 & 470 & 20014 \\
\hline R112 & 75 & 20004 \\
\hline R113 & not used & \\
\hline R114 & not used & \\
\hline R115 & 1.5K & 20018 \\
\hline R116 & 3.6 K & 20019 \\
\hline R117 & 750 & 20031 \\
\hline R118 & 330 & 20012 \\
\hline R119 & not used & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline R120 & not used & \\
\hline R121 & not used & \\
\hline R122 & not used & \\
\hline R123 & 1 K & 20016 \\
\hline R124 & 220 & 20010 \\
\hline R125 & not used & \\
\hline R126 & not used & \\
\hline R127 & not used & \\
\hline R128 & not used & \\
\hline R129 & 10 K POT & 21001 \\
\hline R130 & 1 K & 20016 \\
\hline R131 & 100 & 20005 \\
\hline R132 & 1 K & 20016 \\
\hline R133 & 430 & 20013 \\
\hline R134 & 3.3 ohm 1 watt & 20002 \\
\hline R135 & \[
1 \mathrm{~K}
\] & 20016 \\
\hline R136 & 33 & 20026 \\
\hline R137 & 1 K & 20016 \\
\hline R138 & 1 ohm 1 watt & 20001 \\
\hline R139 & 150 ohm 1 watt & 20008 \\
\hline R140 & 100 & 20005 \\
\hline R141 & 1 K & 20016 \\
\hline R142 & 1 K & 20016 \\
\hline R143 & 4.7 K & 20036 \\
\hline R144 & 50 K POT & 21003 \\
\hline R145 & 100 K POT & 21004 \\
\hline \multicolumn{3}{|l|}{****CAPACTORS (CERAMIC 25V+- 20\% UNLESS OTHERWISE NOTED****} \\
\hline C1 & 47 pf & 30000 \\
\hline C2 & . 1 ufd & 30010 \\
\hline C3 & . 1 ufd & 30010 \\
\hline C4 & . 1 ufd & 30010 \\
\hline C5 & . 1 ufd & 30010 \\
\hline C6 & . 1 ufd & 30010 \\
\hline C7 & . 1 ufd & 30010 \\
\hline C8 & 10ufd ELECT. 15VDC, AXIAL MOUNT & 32002 \\
\hline c9 & . 01 ufd & 30009 \\
\hline C10 & . 01 ufd & 30009 \\
\hline C11 & . 1 ufd & 30010 \\
\hline C12 & . 1 ufd & 30010 \\
\hline C13 & . 1 ufd & 30010 \\
\hline C14 & . 1 ufd & 30010 \\
\hline C15 & . 1 ufd & 30010 \\
\hline C16 & . 1 ufd & 30010 \\
\hline C17 & . 1 ufd & 30010 \\
\hline C18 & . 1ufd & 30010 \\
\hline C19 & . 1 ufd & 30010 \\
\hline C20 & . 1 ufd & 30010 \\
\hline C21 & . 001 ufd POLY FILM & 30100 \\
\hline C22 & . 022 ufd MYLAR 25V & 30101 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline C23 & . 047 ufd MYLAR & 30103 \\
\hline C24 & . 001 ufd POLY FILM & 30100 \\
\hline C25 & . 1 ufd & 30010 \\
\hline C26 & . 1 ufd & 30010 \\
\hline C27 & . 1 ufd & 30010 \\
\hline C28 & . 1 ufd & 30010 \\
\hline C29 & . 1 ufd & 30010 \\
\hline C30 & . 1 ufd & 30010 \\
\hline C31 & . 1 ufd & 30010 \\
\hline C32 & . 1 ufd & 30010 \\
\hline C33 & . 1 ufd & 30010 \\
\hline C34 & 6.8ufd TANTALUM ELECT 15V & 32001 \\
\hline C35 & . 1 ufd & 30010 \\
\hline C36 & . 1 ufd & 30010 \\
\hline C37 & . 1 ufd & 30010 \\
\hline C38 & . 1 ufd & 30010 \\
\hline C39 & . 1 ufd & 30010 \\
\hline C40 & . 1 ufd & 30010 \\
\hline C41 & 6.8 ufd TANTALUM ELECT 15V & 32001 \\
\hline C42 & . 1 ufd & 30010 \\
\hline C43 & . 1 ufd & 30010 \\
\hline C44 & . 1 ufd & 30010 \\
\hline C45 & . 1 ufd & 30010 \\
\hline C46 & . 1 ufd & 30010 \\
\hline C47 & 6.8ufd T.E. 15V & 32001 \\
\hline C48 & . 1 ufd & 30010 \\
\hline C49 & . 1 ufd & 30010 \\
\hline C50 & . 1 ufd & 30010 \\
\hline C51 & . 1 ufd & 30010 \\
\hline C52 & . 1 ufd & 30010 \\
\hline C53 & . 1 ufd & 30010 \\
\hline C54 & . 1 ufd & 30010 \\
\hline C55 & .1ufd & 30010 \\
\hline C56 & 6.8 ufd T.E. 15V & 32001 \\
\hline C57 & .1ufd & 30010 \\
\hline C58 & . 1 ufd & 30010 \\
\hline C59 & .1ufd & 30010 \\
\hline C60 & 6.8ufd T.E. 15V & 32001 \\
\hline C61 & .1ufd & 30010 \\
\hline C62 & . 1 ufd & 30010 \\
\hline C63 & . 1 ufd & 30010 \\
\hline C64 & . 1 ufd & 30010 \\
\hline C65 & 6.8ufd T.E.15V & 32001 \\
\hline C66 & . 1 ufd & 30010 \\
\hline C67 & 33ufd ELECT AXIAL MOUNT 15V & 32006 \\
\hline C68 & 330 pf (\({ }^{\text {a }}\) & 30007 \\
\hline C69 & .1ufd & 30010 \\
\hline C70 & 6.8 fd T.E. 15V & 32001 \\
\hline C71 & .1ufd & 30010 \\
\hline C72 & . 1 ufd & 30010 \\
\hline C72 & . 1 ufd & 30010 \\
\hline C73 & . 1 ufd & 30010 \\
\hline C74 & . 1 ufd & 30010 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline C75 & . 1 ufd & 30010 \\
\hline C76 & 6.8ufd T.E. 15V & 32001 \\
\hline C77 & . 1 ufd & 30010 \\
\hline C78 & . 1 ufd & 30010 \\
\hline C79 & . 1 ufd & 30010 \\
\hline C80 & . 1 ufd & 30010 \\
\hline C81 & . 1 ufd & 30010 \\
\hline C82 & . 1 ufd & 30010 \\
\hline C83 & 150 pf & 30005 \\
\hline C84 & 100 pf MICA +-5\% & 30004 \\
\hline C85 & . 1 ufd & 30010 \\
\hline C86 & . 1 ufd & 30010 \\
\hline C87 & . 1 ufd & 30010 \\
\hline C88 & . 1 ufd & 30010 \\
\hline C89 & . 1 ufd & 30010 \\
\hline C90 & . 1 ufd & 30010 \\
\hline C91 & . 1 ufd & 30010 \\
\hline C92 & . 1 ufd & 30010 \\
\hline C93 & not used & \\
\hline C94 & 50 pf MICA +-5\% 25V & 30002 \\
\hline C95 & 9-35 pf VARIABLE CAP & 33000 \\
\hline C96 & . 1 ufd & 30010 \\
\hline C97 & . 1 ufd & 30010 \\
\hline C98 & . 1 ufd & 30010 \\
\hline C99 & . 1 ufd & 30010 \\
\hline C100 & . 1 ufd & 30010 \\
\hline C101 & . 1 ufd & 30010 \\
\hline C102 & not used & \\
\hline C103 & not used & \\
\hline C104 & . 1 ufd & 30010 \\
\hline C105 & not used & \\
\hline C106 & not used & \\
\hline C107 & not used & \\
\hline C108 & . 1 ufd & 30010 \\
\hline C109 & . 1 ufd & 30010 \\
\hline C110 & . 1 ufd & 30010 \\
\hline C111 & . 1 ufd & 30010 \\
\hline C112 & not used & \\
\hline C113 & 220 pf & 30006 \\
\hline C114 & . 1 ufd & 30010 \\
\hline C115 & not used & \\
\hline C116 & . 1 ufd & 30010 \\
\hline C117 & not used & \\
\hline C118 & 6.8ufd T.E. 15V & 32001 \\
\hline C119 & 4.7 ufd ELECT 15V & 32000 \\
\hline C120 & 10ufd ELECT 15V & 32003 \\
\hline C121 & 2200 fd 25V ELECT AXIAL & 32009 \\
\hline C122 & 6.8ufd T.E. 15V & 32001 \\
\hline C123 & 6.8 ufd T.E. 15V & 32001 \\
\hline C124 & . 1 ufd & 30010 \\
\hline C125 & 22ufd TANTALUM ELECT 20V & 32005 \\
\hline C126 & . 1 ufd & 30010 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline C127 & 6.8ufd T.E. 15V & 32001 \\
\hline C128 & 6.8ufd T.E. 15V & 32001 \\
\hline C129 & 6.8ufd T.E. 15V & 32001 \\
\hline C130. & . 1 ufd & 30010 \\
\hline C131 & 100ufd ELECT 16V & 32007 \\
\hline C132 & 6.8 ufd T.E. 15V & 32001 \\
\hline C133 & 6.8ufd T.E. 15V & 32001 \\
\hline C134 & 6.8 ufd T.E. 15V & 32001 \\
\hline C135 & .1ufd & 30010 \\
\hline C136 & 22ufd ELECT 15V & 32004 \\
\hline C137 & 100ufd ELECT 25V & 32008 \\
\hline C138 & 150 pf & 30008 \\
\hline C139 & 470 pf & 30008 \\
\hline C140 & 9-35pf VAR CAP & 33000 \\
\hline C141 & 15000ufd ELECT 15V & 32030 \\
\hline C142 & not used & \\
\hline \multicolumn{3}{|c|}{*****MISCELLANEOUS SEMICONDUCTORS*****} \\
\hline Q1 & 2N3904 & 11000 \\
\hline Q2 & 2N3906 & 11001 \\
\hline Q3 & 7805 5V REGUL & 11005 \\
\hline Q4 & 7812 12V REGUL & 11006 \\
\hline Q5 & not used & \\
\hline Q6 & MPU131 & 11002 \\
\hline Q7 & 7805 5V REGUL & 11005 \\
\hline Q8 & 7805 5V REGUL & 11005 \\
\hline Q9 & 7805 5V REGUL & 11005 \\
\hline Q10 & 7805 5V REGUL & 11005 \\
\hline Q11 & 79L12-12V . 1 A REG & 11007 \\
\hline Q12 & MPU131 & 11002 \\
\hline Q13 & 2N3906 & 11001 \\
\hline Q14 & 2N3904 & 11000 \\
\hline Q15 & not used & \\
\hline Q16 & not used & \\
\hline Q17 & not used & \\
\hline Q18 & J175 (NATIONAL) FET & 11004 \\
\hline SCR1 & \begin{tabular}{l}
4 A 50VRMS SCR \\
(R/S NO 276-1067)
\end{tabular} & 11100 \\
\hline SCR2 & 4A 50VRMS SCR & 11100 \\
\hline CR1 & 1 N 4001 1A 50PIV & 11101 \\
\hline CR2 & 1N914 SILICON SIG 75PIV & 11102 \\
\hline CR3 & not used & \\
\hline CR4 & 1 N914 & 11102 \\
\hline CR5 & 1N914 & 11102 \\
\hline CR6 & 1 N914 & 11102 \\
\hline CR7 & 1N914 & 11102 \\
\hline CR8 & 1 N 914 & 11102 \\
\hline CR9 & 1N914 & 11102 \\
\hline CR10 & 1 N 914 & 11102 \\
\hline CR11 & 14V ZENER 1N5244 & 11106 \\
\hline CR12 & 1 N4001 & 11101 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline CR13 & 1 N 4001 & 11101 \\
\hline CR14 & 5.1V ZENER 1N5231 & 11103 \\
\hline CR15 & BRIDGE 50V 2A & 11108 \\
\hline CR16 & 1N4001 & 11101 \\
\hline CR17 & BRIDGE 50V 4A & 11107 \\
\hline CR18 & not used & \\
\hline CR19 & 1N4001 & 11101 \\
\hline CR20 & 1N4001 & 11101 \\
\hline CR21 & 1N4001 & 11101 \\
\hline CR22 & 1N4001 & 11101 \\
\hline CR23 & 1N4001 & 11101 \\
\hline CR24 & \(6.2 V ~ Z E N E R ~ 1 N 5234 ~\) & 11104 \\
\hline \multicolumn{3}{|c|}{*****IC SOCKETS*****} \\
\hline & 14 PIN LOW PROFILE & 40001 \\
\hline & 16 PIN LOW PROFILE & 40002 \\
\hline & 18 PIN LOW PROFILE & 40003 \\
\hline & 20 PIN LOW PROFILE & 40004 \\
\hline & 24 PIN LOW PROFILE & 40005 \\
\hline & 40 PIN LOW PROFILE & 40006 \\
\hline & 40 PIN MACHINE & 40500 \\
\hline \multicolumn{3}{|c|}{*****MISCELLANEOUS*****} \\
\hline L2 & . 56 uH INDUCTOR & 37000 \\
\hline CASSETTE JACK & 5 COND DIN RT ANGLE PC & 42000 \\
\hline J6 & 2 COND MOLEX HDR & 43000 \\
\hline J2 & 6 COND MOLEX HDR & 43001 \\
\hline J5 & 6 COND HDR . 156 R/A AMP & 43003 \\
\hline \begin{tabular}{l}
HI-RES \\
B/W VIDEO
\end{tabular} & 2 COND MOLEX HDR & 43000 \\
\hline J 4 & 2 X 20 MALE HDR . 1 AP & 43700 \\
\hline SW1 & SWITCH SPST 5A 220V CHA & 45010 \\
\hline K1 & 5VDC RELAY & 45500 \\
\hline F1 & 4 A FAST BLO 32V & 47001 \\
\hline \multirow[t]{3}{*}{F2} & 2A FAST BLO 32V & 47002 \\
\hline & HEATSINK T0220 5306B-13 & 69000 \\
\hline & HEATSINK T0220 5307B-14 & 69001 \\
\hline Y1 & 16.0 MHz CRYSTAL & 35001 \\
\hline \multirow[t]{2}{*}{Y2} & 3.579 MHz CRYSTAL & 35002 \\
\hline & 10.738 MHz CRYSTAL & 35003 \\
\hline
\end{tabular}
SYMBOLDESCRIPTIONPART NUMBERPRINTED CIRCUIT BOARD97012
****RESISTORS (1/4 watt, \(5 \%\) unless otherwise indicated)

R1
R2
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33 R34 R35 R36
R37
R38
R39 R40
R41
not used
10K 20021
10K 20021
1 K 20016
200K 20023
15020007
150 20007
150 20007
15020007
4.7 K 20036
4.7 K 20036

20K 20022
not used
not used
not used
not used
150 20007
680 20030
68020030
1 K 20016
1 K 20016
not used
not used
not used
not used
not used
not used
not used not used
not used
not used
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline R42 & not used & \\
\hline R43 & not used & \\
\hline R44 & not used & \\
\hline R45 & not used & \\
\hline R46 & not used & \\
\hline R47 & not used & \\
\hline R48 & not used & \\
\hline R49 & not used & \\
\hline R50 & not used & \\
\hline R51 & not used & \\
\hline R52 & not used & \\
\hline R53 & not used & \\
\hline R54 & not used & \\
\hline R55 & not used & \\
\hline R56 & not used & \\
\hline R57 & not used & \\
\hline R58 & 100 & 20005 \\
\hline R59 & 100 & 20005 \\
\hline R60 & 100 & 20005 \\
\hline R61 & 100 & 20005 \\
\hline R62 & 100 & 20005 \\
\hline R63 & 100 & 20005 \\
\hline R64 & 100 & 20005 \\
\hline R65 & 100 & 20005 \\
\hline R66 & 33 & 20026 \\
\hline R67 & not used & \\
\hline R68 & not used & \\
\hline R69 & not used & \\
\hline & RS (all caps are 25VDC rwise indicated)****** & unless \\
\hline C1 & not used & \\
\hline C2 & not used & \\
\hline C3 & not used & \\
\hline C4 & not used & \\
\hline C5 & not used & \\
\hline C6 & not used & \\
\hline C7 & not used & \\
\hline C8 & not used & \\
\hline C9 & not used & \\
\hline C10 & not used & \\
\hline C11 & not used & \\
\hline C12 & 33 ufd ELECT AXIAL 6VDC & 32006 \\
\hline C13 & 220 PF CERAMIC & 30006 \\
\hline C14 & not used & \\
\hline C15 & 47 PF CERAMIC & 30000 \\
\hline C16 & . 1 ufd CERAMIC & 30010 \\
\hline C17 & . 1 ufd CERAMIC & 30010 \\
\hline C18 & . 1 ufd CERAMIC & 30010 \\
\hline C19 & . 1 ufd CERAMIC & 30010 \\
\hline C20 & -1 ufd CERAMIC & 30010 \\
\hline C21 & . 1 ufd CERAMIC & 30010 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline C22 & . 1 ufd CERAMIC & 30010 \\
\hline C23 & . 1 ufd CERAMIC & 30010 \\
\hline C24 & . 1 ufd CERAMIC & 30010 \\
\hline C25 & . 1 ufd CERAMIC & 30010 \\
\hline C26 & . 1 ufd CERAMIC & 30010 \\
\hline C27 & . 1 ufd CERAMIC & 30010 \\
\hline C28 & . 1 ufd CERAMIC & 30010 \\
\hline C29 & . 1 ufd CERAMIC & 30010 \\
\hline C30 & . 1 ufd CERAMIC & 30010 \\
\hline C31 & . 1 ufd CERAMIC & 30010 \\
\hline C32 & . 1 ufd CERAMIC & 30010 \\
\hline C33 & . 1 ufd CERAMIC & 30010 \\
\hline C34 & 6.8 ufd TANTALUM & 32001 \\
\hline C35 & 6.8 ufd TANTALUM & 32001 \\
\hline C36 & . 1 ufd CERAMIC & 30010 \\
\hline C37 & 6.8 ufd TANTALUM & 32001 \\
\hline C38 & . 1 ufd CERAMIC & 30010 \\
\hline C39 & 6.8 ufd TANTALUM & 32001 \\
\hline C40 & . 1 ufd CERAMIC & 30010 \\
\hline C41 & 6.8 ufd TANTALUM & 32001 \\
\hline C42 & . 1 ufd CERAMIC & 30010 \\
\hline C43 & . 1 ufd CERAMIC & 30010 \\
\hline C44 & . 1 ufd CERAMIC & 30010 \\
\hline C45 & . 1 ufd CERAMIC & 30010 \\
\hline C46 & . 1 ufd CERAMIC & 30010 \\
\hline C47 & - 1 ufd CERAMIC & 30010 \\
\hline C48 & . 1 ufd CERAMIC & 30010 \\
\hline C49 & . 1 ufd CERAMIC & 30010 \\
\hline C50 & . 1 ufd CERAMIC & 30010 \\
\hline C51 & . 1 ufd CERAMIC & 30010 \\
\hline C52 & . 1 ufd CERAMIC & 30010 \\
\hline C53 & 6.8 ufd TANTALUM & 32001 \\
\hline C54 & . 1 ufd CERAMIC & 30010 \\
\hline C55 & 6.8 ufd TANTALUM & 32001 \\
\hline C56 & . 1 ufd CERAMIC & 30010 \\
\hline C57 & 6.8 ufd tantalum & 32001 \\
\hline C58 & . 1 ufd CERAMIC & 30010 \\
\hline C59 & 6.8 ufd TANTALUM & 32001 \\
\hline C60 & not used & \\
\hline C61 & . 1 ufd CERAMIC & 30010 \\
\hline C62 & - 1 ufd CERAMIC & 30010 \\
\hline C63 & - 1 ufd CERAMIC & 30010 \\
\hline C64 & not used & \\
\hline C65 & 6.8 ufd TANTALUM & 32001 \\
\hline C66 & not used & \\
\hline C67 & not used & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART \\
\hline & \multicolumn{2}{|l|}{*****INTEGRATED CIRCUITS*****} \\
\hline U1 & 7438 & 10064 \\
\hline U2 & 7438 & 10064 \\
\hline U3 & 74 LS 367 & 10054 \\
\hline U4 & 74 LS 175 & 10028 \\
\hline U5 & 74 LS 175 & 10028 \\
\hline U6 & 7438 & 10064 \\
\hline U7 & 74 LS 123 & 10018 \\
\hline U8 & 74 LS 240 & 10030 \\
\hline U9 & 7492 & 10051 \\
\hline U10 & 7493 & 10052 \\
\hline U11 & 74LS08 & 10007 \\
\hline U12 & 7490 & 10050 \\
\hline U13 & 74 LS 175 & 10028 \\
\hline U14 & FD1771B-01 & 10059 \\
\hline U15 & 74 LS 240 & 10030 \\
\hline U16 & 74LS155 & 10053 \\
\hline U17 & 7493 & 10052 \\
\hline U18 & 74504 & 10003 \\
\hline U19 & 74 LS 155 & 10053 \\
\hline U20 & 74 LS 14 & 10047 \\
\hline U21 & 74 LS 74 & 10013 \\
\hline U22 & 74LS74 & 10013 \\
\hline U23 & 74LS08 & 10007 \\
\hline U24 & 74163 & 10066 \\
\hline U25 & 74163 & 10066 \\
\hline U26 & 74 LS 175 & 10028 \\
\hline U27 & not used & \\
\hline U28 & \(74 \mathrm{LS367}\) & 10054 \\
\hline U29 & 74 S 32 & 10048 \\
\hline U30 & 74 LS 139 & 10021 \\
\hline U31 & 74 LS 30 & 10011 \\
\hline U32 & 74LS 14 & 10047 \\
\hline U33 & 74 LS 367 & 10054 \\
\hline U34 & 74 LS 244 & 10061 \\
\hline U35 & 74 LS 244 & 10061 \\
\hline U36 & 74LS244 & 10061 \\
\hline U37 & 74 LS 241 & 10031 \\
\hline U38 & 74LS241 & 10031 \\
\hline U39 & 74 LS 244 & 10061 \\
\hline U40 & TR1602-B & 10062 \\
\hline U41 & 74LS30 & 10011 \\
\hline U42 & 4116200 ns & 10039 \\
\hline U43 & 4116200 ns & 10039 \\
\hline U44 & 4116200 ns & 10039 \\
\hline U45 & 4116200 ns & 10039 \\
\hline U46 & 4116200 ns & 10039 \\
\hline U47 & 4116200 ns & 10039 \\
\hline U48 & 4116200 ns & 10039 \\
\hline U49 & 4116200 ns & 10039 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline U50 & not used & \\
\hline U51 & 1489 EIA RECEIVER & 10056 \\
\hline U52 & 1489 EIA RECEIVER & 10056 \\
\hline U53 & 4116 200ns & 10039 \\
\hline U54 & 4116200 ns & 10039 \\
\hline U55 & 4116200 ns & 10039 \\
\hline U56 & 4116200 ns & 10039 \\
\hline U57 & 4116200 ns & 10039 \\
\hline U58 & 4116200 ns & 10039 \\
\hline U59 & 4116200 ns & 10039 \\
\hline U60 & 4116200 ns & 10039 \\
\hline U6 1 & 1488 EIA DRIVER & 10055 \\
\hline U62 & not used & \\
\hline U63 & not used & \\
\hline U64 & not used & \\
\hline U65 & not used & \\
\hline U66 & not used & \\
\hline \multicolumn{3}{|c|}{*****MISCELLANEOUS \({ }^{*} * * *\)} \\
\hline Y1 & 4.000 MHZ CRYSTAL & 35000 \\
\hline U40 & 40 PIN DIP IC SOCKET & 40006 \\
\hline U14 & 40 PIN MACHINE SOCKET & 40500 \\
\hline & DIP SWITCH 6 POS & 45100 \\
\hline & DIP SWITCH 8 POS & 45101 \\
\hline & CABLE 16C 12" HDR-WIRE & 85100 \\
\hline & PCB RS232 CONFIG FOR SE & 97042 \\
\hline & CONNECTOR 25 PIN D TYPE & 42500 \\
\hline & SOCKETS FOR RS232 CONN & 43255 \\
\hline & WIRE 24 AWG STRANDED & 86500 \\
\hline & 6 COND MOLEX CONNECTOR & 43501 \\
\hline & MOLEX PINS & 43250 \\
\hline & 18 GA. PVC WIRE & 85002 \\
\hline
\end{tabular}

\section*{LNDOUBLER 5/8}
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline & PRINTED CIRCUIT BOARD & 97067 \\
\hline \multicolumn{3}{|c|}{****RESISTORS (1/4 Watt, 5\%)****} \\
\hline R1 & 2 K & 20034 \\
\hline R2 & 4.7 K & 20036 \\
\hline R3 & not used & \\
\hline R4 & 4.7 K & 20036 \\
\hline R5 & 1.0 K & 20016 \\
\hline R6 & 10K & 20021 \\
\hline R7 & 4.7 K & 20036 \\
\hline R8 & not used & \\
\hline R9 & 680 & 20030 \\
\hline R10 & 150 & 20007 \\
\hline R11 & 1.0 K & 20016 \\
\hline R12 & 1.0K & 20016 \\
\hline R13 & 47 K & 20040 \\
\hline R14 & 4.7 K & 20036 \\
\hline R15 & 4.7 K & 20036 \\
\hline R16 & 4.7 K & 20036 \\
\hline R17 & not used & \\
\hline R18 & 47 K & 20040 \\
\hline R19 & 47 & 20003 \\
\hline R20 & 10K & 20021 \\
\hline R21 & 4.7 K & 20036 \\
\hline R22 & not used & \\
\hline R23 & 10K & 20021 \\
\hline R24 & 10 K MINI PC MINI POT & 21001 \\
\hline R25 & 50 K MULTITURN POT & 21006 \\
\hline R26 & 100K MINI PC POT & 21005 \\
\hline \multicolumn{3}{|c|}{******CAPACITORS******} \\
\hline C1 & . 1 ufd ceramic & 30010 \\
\hline C2 & . 1 ufd ceramic & 30010 \\
\hline C3 & 6.8 ufd TANT ELECT 15V & 32001 \\
\hline C4 & . 1 ufd ceramic & 30010 \\
\hline C5 & . 1 ufd ceramic & 30010 \\
\hline C6 & not used & \\
\hline C7 & \(47 \mathrm{pf} \mathrm{MICA} \mathrm{+-} \mathrm{5} \mathrm{\%}\) & 30001 \\
\hline C8 & 6.8 TANT ELECT 15 V & 32001 \\
\hline C9 & 47 pf ceramic & 30000 \\
\hline C10 & \(47 \mathrm{pf} \mathrm{MICA} \mathrm{+-} \mathrm{5} \mathrm{\%}\) & 30001 \\
\hline C11 & . 1 ufd ceramic & 30010 \\
\hline C12 & . 47 ufd MYLAR & 31999 \\
\hline C13 & not used & \\
\hline C14 & . 1 ufd ceramic & 30010 \\
\hline C15 & . 1 ufd ceramic & 30010 \\
\hline "R8" & 47 pf ceramic & 30000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{*****INTEGRATED CIRCUITS*****} \\
\hline U1 & 74LS27 & 10057 \\
\hline U2 & 74 LS 08 & 10007 \\
\hline U3 & WD2143 & 10068 \\
\hline U4 & 74 LS 123 & 10018 \\
\hline U5 & 74 LS 05 & 10006 \\
\hline U6 & 74 LS 05 & 10006 \\
\hline U7 & 74 LSO 0 & 10000 \\
\hline U8 & WD1691 & 10067 \\
\hline U9 & MB8876 (FUJ-1791 COM) & 10060 \\
\hline U10 & 40 PIN SOCKET & 40006 \\
\hline U11 & 74 LS 157 & 10023 \\
\hline U12 & 74 LS 04 & 10004 \\
\hline U13 & 74 LS 158 & 10034 \\
\hline U14 & 74LS74 & 10013 \\
\hline U15 & \(74 \mathrm{LS6} 29\) & 10069 \\
\hline U16 & \(74 \mathrm{LS7} 4\) & 10013 \\
\hline U17 & 74LS74 & 10013 \\
\hline U18 & 74LS08 & 10007 \\
\hline \multicolumn{3}{|c|}{*****MISCELLANEOUS*****} \\
\hline Y1 & 4.0 MHZ CRYSTAL & 35000 \\
\hline & 20 PIN SOCKET STRIP(2) & 41000 \\
\hline SW1 & SPDT SW R/A PC MNT & 45000 \\
\hline
\end{tabular}

CASE ASSEMBLY
\begin{tabular}{|c|c|c|}
\hline SYMBOL & DESCRIPTION & PART NUMBER \\
\hline & KEYBOARD & 45002 \\
\hline & LED RED & 12000 \\
\hline & TRANSFORMER LNW80 & 55000 \\
\hline & SHIELDED CABLE & 85000 \\
\hline & KEYBOARD CABLE & 85001 \\
\hline & LNW80 CASE TOP PANEL & 60002 \\
\hline & LED BEZEL & 12050 \\
\hline & KYBD BRACKET LEFT & 65013 \\
\hline & KYBD BRACKET RIGHT & 65012 \\
\hline & FAN 3" ROTRON SPRITE & 80000 \\
\hline & LNW80 CASE BOTTOM PANEL & 60000 \\
\hline & LNW80 CASE REAR PANEL & 60005 \\
\hline & PHONO PLUG CHASSIS MNT & 42300 \\
\hline & FUSE HOLDER CHASSIS MNT & 44000 \\
\hline & SWITCH SPST 5A 220V & 45010 \\
\hline & 1/2A SLOBLO FUSE 220V & 47006 \\
\hline & STRAIN RELIEF FOR LCORD & 48700 \\
\hline & CORD PWR LINE 120V & 82000 \\
\hline & RUBBER BUMPER & 78000 \\
\hline & TERMINAL STRIP 5 POS GND & 43900 \\
\hline & LNW80 CASE SUPPORT BRK & 65010 \\
\hline & 6 COND MOLEX CONNECTOR & 43501 \\
\hline & 2 COND MOLEX CONNECTOR & 43500 \\
\hline & MOLEX PINS (9) & 43250 \\
\hline & COAX WIRE RG174/U & 86550 \\
\hline & 24 GAUGE WIRE STRANDED & 86500 \\
\hline & 20 GAUGE WIRE STRANDED & 86510 \\
\hline & WIRE TIES 3.5" & 48710 \\
\hline & SHRINK TUBING 1/4" & 49000 \\
\hline & SHRINK TUBING 3/8" & 49001 \\
\hline & 4-40 NUT & 71000 \\
\hline & 4-40 INTERNAL TOOTH WASHER & 73000 \\
\hline & 4-40 \(3 / 4\) MACHINE SCREW & 70000 \\
\hline & 4-40x1/4 MACHINE SCREW & 70001 \\
\hline & 4-40×1/2 NYL SPACER & 72202 \\
\hline & \(4-40 \times 1 / 4\) RND PH SPCR & 72000 \\
\hline & \(4-40 \times 1.5\) RND SPACER & 72200 \\
\hline & 4-40 1/8 NYLON SPACER & 72100 \\
\hline & \#6-32 NUT & 71001 \\
\hline & \#16-32 X 1/4 SHT MTL SCREW & 70004 \\
\hline & \#6 INTERNAL TOOTH WASH & 73001 \\
\hline & \#16 FLAT WASHER & 73005 \\
\hline & 6-32 X 3/8 MASH SCREW & 70003 \\
\hline & 6-32 X 3/8 NYLON SCREW & 70005 \\
\hline & 6-32 NYL NUT & 71002 \\
\hline
\end{tabular}

\section*{APPENDIX 1 DATA SHEETS}

> THE FOLLOWING DATA SHEETS ARE REPRINTED WITH THE PERMISSION OF WESTERN DIGITAL, ZILOG, MOTOROLA, AND TEXAS INSTRUMENTS, AND MAY NOT BE REPRODUCED IN ANY FORM WITHOUT THEIR EXPRESSED WRITTEN PERMISSIONS.DATA SHEET INDEXPAGE
1. MCM2114 - 2K STATIC RANDOM ACCESS MEMORY 87
2. TR1602 - ASYNCHRONOUS RECEIVER/TRANSMITTER 90
3. FD1771 - FLOPPY DISK CONTROLLER 103
4. FD179X-02 - FAMILY FLOPPY DISK CONTROLLER 109
5. WD1691 - FLOPPY SUPPORT LOGIC 124
6. FD179X - APPLICATION NOTES 127
7. WD2143-01 - FOUR PHASE CLOCK GENERATOR 133
8. 74 LS 629 - VOLTAGE CONTROLLED OSCILLATOR 134
9. MCM4116 - 16 K DYNAMIC RANDOM ACCESS MEMORY 137
10. MPU131 - PROGRAMABLE UNIJUNCTION TRANSISTER 144
11. MC1488 - QUAD MDTL LINE DRIVER 146
12. MC1489 - QUAD MDTL LINE RECEIVER 148
13. J175 - P-CHANNEL JFET TRANSISTER 150
14. MC1372 - COLOR TV MODULATOR CIRCUIT 151
15. MCM2716 - 2K ERASABLE PROM 159
16. Z80A - CENTRAL PROCESSING UNIT 163
17. TL080 - JFET-INPUT OPERATIONAL AMPLIFIERS 172
18. SERIES 14 AND 18 PROGRAMMABLE READ-ONLY MEMORIES 178

\section*{(A) \\ MOTOROLA}

\section*{MCM2114 MCM21L14}

\section*{4096-BIT STATIC RANDOM ACCESS MEMORY}

The MCM2114 is a 4096 bit random access memory fabricated with high density, high reliability \(N\)-channel silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL and DTL, and requires no clocks or refreshing because of fully static operation. Data access is particu larly simple, since address setup times are not required. The data out has the same polarity as the input data.

The MCM2114 is designed for memory applications where simple interfacing is the design objective. The MCM2114 is assembled in 18 -pin dual in-line packages with the industry standard pin-out. A separate chip select \(\langle\bar{S}\rangle\) lead allows easy selection of an individual package when the three-state outputs are OR-tied.

The MCM2114 series has a maximum power dissipation of 525 mW . Low power versions (i.e.. MCM21L14 series) are available with a maximum power dissipation of less than 370 mW .
- 1024 Words by 4-8it Organization
- Industry Standard 18-Pin Coríiguration
- Single +5 Volt Supply
- No Clock or Timing Strobe Required
- Fully Static: Cycle Time = Access Time
- Fully TTL/DTL Compatible
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Low Power Versioni Available - 370 mW (Max)

MAXIMUM ACCESS TIME/MINIMUM CYCLE TIME
\begin{tabular}{|ll|ll|}
\hline \begin{tabular}{ll}
MCM2114-20 \\
MCM21L14-20
\end{tabular} & 200 ns & \begin{tabular}{l}
MCM2114.30 \\
MCM21L14-30
\end{tabular} & 300 ns \\
\hline \begin{tabular}{l}
MCM2114-25
\end{tabular} & 250 ns & \begin{tabular}{l}
MCM2114-45 \\
MCM21L14-25
\end{tabular} & MCM21L14-45
\end{tabular}\(\quad 450 \mathrm{~ns}\).

\section*{MOS}
(N.CHANNEL. SILICON-GATEI

4096-BIT STATIC RANDOM ACCESS MEMORY

\section*{MCM2114, MCM21L14}

ABSOLUTE MAXIMUM RATINGS (See Note 1)
\begin{tabular}{|c|c|c|}
\hline Rating & Value & Unit \\
\hline Temperature Under Bias & -10 to +80 & \({ }^{\circ} \mathrm{C}\) \\
\hline Voltage on Any Pin With Respect to V \({ }_{\text {SS }}\) & -0.5 to +7.0 & Voc \\
\hline DC Output Current & 5.0 & mA \\
\hline Power Dissipation & 1.0 & Watt \\
\hline Operating Temperature Range & 0 to +70 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields: however, it is advised that or electric fields; however, it is advised that normal precautions be taken to avord applica-
tion of any voltage higher than maximum rated voltages to this high-impedance circuit

Note: 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could offect device reliability.

DC OPERATING CONDITIONS AND CHARACTERISTICS (\(T_{A}=0\) to \(70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 5 \%\) unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Psrameter} & \multirow[b]{2}{*}{Symbol} & \multicolumn{3}{|c|}{MCM2114} & \multicolumn{3}{|c|}{MCM21LI4} & \multirow[b]{2}{*}{Unit} \\
\hline & & Min & Nom & Max & Min & Nom & Max & \\
\hline \begin{tabular}{l}
Input Load Current \\
(All Input Pins, \(\mathrm{V}_{\text {in }}=0\) to 5.5 V)
\end{tabular} & 'LI & - & - & 10 & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline 1/O Leakage Current
\[
\left(\bar{S}=2.4 \mathrm{~V}, \mathrm{~V}_{1 / \mathrm{O}}=0.4 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}\right)
\] & \({ }^{\prime} \mathrm{LO}^{\prime}\) & - & - & 10 & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Power Supply Current
\[
\left(V_{\text {in }}=5.5,1_{1 / O}=0 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}\right)
\] & 'cci & - & 80 & 95 & - & - & 65 & mA \\
\hline Power Supply Current
\[
\left(V_{\text {in }}=5.5 \mathrm{~V}, 1_{1 / \mathrm{O}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right)
\] & \({ }^{\prime} \mathrm{CC} 2\) & - & - & 100 & - & - & 70 & mA \\
\hline Input Low Voltage & \(V_{\text {IL }}\) & -0.5 & - & 0.8 & -0.5 & - & 08 & V \\
\hline Input High Voitage & \(\mathrm{V}_{\text {IH }}\) & 2.0 & - & 6.0 & 2.0 & - & 6.0 & V \\
\hline Output Low Current
\[
V_{O L}=0.4 \mathrm{~V}
\] & \({ }^{\text {IOL }}\) & 2.1 & 6.0 & - & 2.1 & 6.0 & - & mA \\
\hline Output High Current
\[
\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}
\] & \({ }^{1} \mathrm{OH}\) & - & -1.4 & -1.0 & - & -1.4 & -1.0 & \(m A\) \\
\hline Output Short Circuit Current & \({ }^{1} \mathrm{os}^{(2)}\) & - & - & 40 & - & - & 40 & mA \\
\hline
\end{tabular}

Note: 2. Duration not to exceed 30 seconds.

\section*{CAPACITANCE}

If = \(1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\), periodically sampled rather than \(\mathbf{1 0 0 \%}\) tested.)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristic } & Symbol & Max & Unit \\
\hline Input Capecitence \(\left(\mathrm{V}_{\text {in }}=\mathrm{OV}\right)\) & \(\mathrm{C}_{\text {in }}\) & 5.0 & pF \\
\hline Input/Output Capacitance \(\left(\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}\right)\) & \(\mathrm{C}_{1 / 0}\) & 5.0 & pF \\
\hline
\end{tabular}

\section*{AC OPERATING CONDITIONS AND CHARACTERISTIC} (Full operating voltage and temperature unless otherwise noted.)

Input Pulse Levels.
Inout Rise and Fall Times 10 ns

Input and Output Timing Levels 1.5 Volts Output Load. 1 TTL Gate and \(C_{L}=100\) pF

\section*{AC OPERATING CONDITIONS AND CHARACTERISTICS Read (Note 3), Write (Note 4) Cycies}

RECOMMENDED AC OPERATING CONDITIONS \(1 T_{A}=0\) to \(70^{\circ} \mathrm{C}, ~ V C C=5.0 \mathrm{~V} \pm 5 \%_{1}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Svmbol} & \multicolumn{2}{|l|}{\begin{tabular}{|l|}
\hline MCM2114 20 \\
MCM21L14.20
\end{tabular}} & \multicolumn{2}{|l|}{MCM2114.25
MCM21L14.25} & \multicolumn{2}{|l|}{MCM2114.30
MCM21L14.30} & \multicolumn{2}{|l|}{MCM2114-45
MCM21L14-45} & \multirow[b]{2}{*}{Units} \\
\hline & & Min & Max & Min & Max & Min & Max & Min & Max & \\
\hline Read Cycle Time & \({ }^{\text {I R }}\) ' & 200 & - & 250 & - & 300 & - & 450 & - & ns \\
\hline Access Time & \({ }^{1} \mathrm{~A}\) & - & 200 & - & 250 & - & 300 & - & 450 & ns \\
\hline Chip Selection to Outpu: Valio & \({ }^{\text {'S }}\) O & - & 70 & - & 85 & - & 100 & - & 120 & ns \\
\hline Chip Selection to Output Active & \({ }^{\text {t }} \mathrm{S} \times\) & 20 & - & 20 & - & 20 & - & 20 & - & ns \\
\hline Outpu: 3 Siate From Deselection & 'OTD & - & 60 & - & 70 & - & 80 & - & 100 & ns \\
\hline Outpu: Hold Fiom. Add!ess Change & \({ }^{\text {I O }}\) OHA & 50 & - & 50 & - & 50 & - & 50 & - & ns \\
\hline Write Cycle Time & \({ }^{\text {i }}\) WC & 200 & - & 250 & - & 300 & - & 450 & - & ns \\
\hline Write Time & \({ }^{\text {W }}\) W & 120 & - & 135 & - & 150 & - & 200 & - & ns \\
\hline Write Reiease Time & \({ }^{\text {twr }}\) & 0 & - & 0 & - & 0 & - & 0 & - & ns \\
\hline Outpu: 3-State From Write & totw & - & 60 & - & 70 & - & 80 & - & 100 & ns \\
\hline Data to Write Time Ovelap & \({ }^{\text {t }}\) DW & 120 & - & 135 & - & 150 & - & 200 & - & ns \\
\hline Data Hold From Wite Time & \% OH & 0 & - & 0 & - & 0 & - & 0 & - & ns \\
\hline
\end{tabular}

Notes: 3 A Read occurs duing the overiap of a lon \(\bar{S}\) and \(a\) high \(\bar{W}\)
4. A Write occurs during the overiap of a tou \(\overline{\mathrm{S}}\) and a low \(\bar{W}\).

Notes: 5. \(\bar{W}\) is high for a Read evcle.

6. If the \(\bar{S}\) low transition occurs simultarieously with the \(\bar{W}\) tow transition, the output buffers remain in a high impedance rate
\begin{tabular}{|c|c|c|}
\hline & WAVEFORN & \\
\hline \multirow[t]{2}{*}{Wivetorm Symbol} & input & Output \\
\hline & must be VAIID & \[
\text { will } b e
\]
valio \\
\hline Li & CHANGE FROM MTOL & whll change FROM HTOL \\
\hline A7/i & \begin{tabular}{l}
Change \\
FAOM TOM
\end{tabular} & will change fROM TOH \\
\hline \multirow[b]{2}{*}{Exxyx} & oont care & changing \\
\hline & \begin{tabular}{l}
ant Change \\
PERMITTED
\end{tabular} & STATE UNXNOWN \\
\hline
\end{tabular}

\section*{LAESTEAN DDIGIAL \\ coba a a a ton}

\section*{MOS/LSI TR1602A \& TR1602B}

\section*{(1)}

FEATURES
- SILICON GATE TECHNOLOGY - LOW THRESHOLD CIRCUITRY
Directly TTL and DTL Compatible - External Resistors Eliminated
- D. C. STABLE (STATIC) CIRCUITRY
- FULL DUPLEX OR HALF DUPLEX OPERATION Transmits And Receives Serial Data Simuitaneously Or Alternately
- AUTOMATIC INTERNAL SYNCHRONIZATION OF DATA AND CLOCX
- AUTOMATIC START BIT GENERATION
- BUFFERED RECEIVER AND TRANSIMITTER REGISTERS
- FULLY programmable -

EXTERNALLY SELECTABLE
Word Length
Baud Rate
Even/Odd Parity (Recsiver/Verification -
Transmitter/Generation)
Party Inhibit - Verification/Generation
One. One and One-Half, or Two Stop Bit Generation
- AUTOMATIC DATA RECEIVED/TRANSMITTED STATUS GENERATION
Transmission Complete
Parity Error
Buffer Register Transfer Complete Framing Error
Recsived Data Available
Overrun Error
- three-state outputs

Recaiver Ragistei Outputs
Status Flags
- available in ceramic or hermetic plastic CAVITY PACKAGES

\section*{APPLICATIONS}
- PERIPHERALS
- CARD AND TAPE READERS
- TERMINALS
- printers
- mini computers
- DATA SETS
- FACSIMILE
- CONTROLLERS TRANSMISSION
- MODEMS
- KEYBOARD ENCODERS
- CONCENTRATORS
- REMOTE DATA ACQUISITION SYSTEMS
- ASYNCHRONOUS DATA MULTIPLEXERS
- ASYNCHRONOUS DATA CASSETTES

TR1602A ceramic package outline

TR16023 HERMETIC PLASTIC CAVITY PACKAGE OUTLINE

\section*{GENERAL DESCRIPTION}

The TR1602A \& the TR1602B are ASYNCHRONOUS RECEIVER/TRANSMITTER sub-systems using silicon gate process tectinology. The use of this low threshold process provides direct compatibility with all forms of current sinking logic. Interfacing restraints, such as external resistors, drivers and level shifting circuitry, are eliminated. All output lines have been designed to drive TTL directly.
The ASYNCHRONOUS RECEIVER/TRANSMITTER is a general purpose, programmable MOS/LSI device for interfacing an asynchronous serial data channel of a peripheral or terminal with parallel data of a computer or terminal. The transmitter section converts parallel data into a serial word which contains the data along with start, parity, and stop bits. The receiver section converts a serial word with start, data, parity, and stop bits, into parallel data, and it verifies proper code transmission by checking parity and receipt of a valid stop bit. Both the receiver and tha transmitter are double buffered. The array is compatible with bipolar logic. The array may be programmed as follows: The word length can be either \(5,6,7\), or 8 bits; parity generation and checking may be inhibited, the parity may be even or odd; and the number of stop bits may be either one or two, with one and one half when transmitting a 5 bit code. Note: See TR1402A Data Sheet for operation with 5 level code- 2 stop bits.

note: IT tmistate outiot

INPUT STRUCTURE
MOS DEVICE "A" ACTS AS AN INTERNAL PULL.UP RESISTOR TO \(V_{S S}=V_{\text {CC }}\) WHICH BIASES OFF THE CASCODE DEVICE OF THE TTL OUTPUT IN THE HIGH-LEVEL OUTPUT STATE. IN THE LOW-LEVEL OUTPUT state the trl output de. VICE SINKS THE CURRENT SUPPLIED BY DEVICE "A".

\section*{OUTPUT STRUCTURE}

DEVICES " \(B\) " \& "C" COMPRISE A PUSH-PULL OUTPUT BUFFER. IN THE LOW-LEVEL STATE. OUTPUT TRANSISTOR " \(C\) " IS "ON" AND CASCODE DEVICE "B" IS OFF. IN THE HIGH. LEVEL STATE, THE OPPOSITE IS TRUE. IN THE DISCON NECTED STATE, BOTH "B" AND "C" ARE TURNED OFF CAUSING THE OUTPUT NODE TO FLOAT.

\section*{PIN DEFINITIONS}

PIN
NUMBER
NAME
SYMBOL

\section*{FUNCTION}
\begin{tabular}{|c|c|c|c|}
\hline 1 & VSS Power Supply & \(V_{S S}\) & +5 voits suodir \\
\hline 2 & \(V_{\text {GG }}\) Power Supply & \(\mathbf{V}_{\mathbf{G G}}\) & -12 volts suopiv \\
\hline 3 & VDO Power Supply & \(V_{\text {DO }}\) & Ground \\
\hline 4 & Receiver Register Disconnect & RRD & A high level ingur voitage, \(V_{1 H}\), apolied to this line disconnects the RECEIVER HOLDING REGISTER outputs from the RR \(\mathbf{g}_{8} \cdot\) RR \(_{1}\) data outduts (pins 5.12). \\
\hline 5-12 & Receiver Holding Register Date & \[
\begin{aligned}
& \mathbf{R R}_{8}- \\
& \mathbf{R R}_{1}
\end{aligned}
\] & The paralle contents of the RECEIVER HOLDING REGISTER sopear on these lines if a lowdevet inour voltage, \(V_{1 L}\), is applied to RRO. Foi eharacter formars of fower than eight bits received enaracters are rightyustified with RR \(\mathbf{q}_{\text {(}}\) (Din 12) as the least significant bit and the truncared bits are forem to a low levet ourpue voltage, \(\mathrm{V}_{\mathrm{OL}}\). \\
\hline 13 & Parity Error & PE & A high level outpur voltage, \(V_{O H}\), on this line indicates that the recsived parity does not compare ro that programmed by the EVEN PARITY ENABLE control line (pin 39). This output is updated each time a character is transferred to the RECEIVER HOLDING REGISTER. PE lines from a numoer of arravs can be bussed together since an outbur disconnect eapability is provided or Status Flag Disconnect line (pin 16). \\
\hline 14 & Framing Error & FE & A high-level outpuz voltage. \(\mathrm{V}_{\mathrm{OH}}\), on this line indicares that the received character has no valid stop bit, iw., ithe bit following the parity bit (if programened) is not a high levet voltage. This output is uodated each time a character is transferred ro the Receiver Holding Register. FE lines from a number of arrays can be bussed together since an output disconnect csoability is provided by the Status flag Disconnect line (pin 16). \\
\hline 15 & Overrun Error & OE & A high-level outpur voltage, \(V\) OH. On this line indicates that the Data REctived Flag (Din 19) was not reser before the next character was transterred to the REceiver Holding Register. OE lines from a number of arrays can be bussed together since an outpur disconnect capability is provided jy ine Starus flas Disconnect line (pin 16). \\
\hline 16 & \begin{tabular}{l}
Status Fiags \\
Disconnect
\end{tabular} & SFD & A highteved indur voltage. \(V_{1 H}\), apolied to this pin disconnects the PE, FE, OE, DR and THRE allowing them to be buss connected. \\
\hline 17 & Receiver Register Cock & RRC & The recsiver ciock frequency is sixteen (16) times the desired receiver shife rate. \\
\hline 18 & Data Received Reset & DRR & A low-level indur voltage. \(V_{1 L}\). apolied to this line resets the \(O R\) line. \\
\hline 19 & Data Recrived & DR & A hightevel output voltage, \(\mathrm{VOH}_{\mathrm{OH}}\), indicates that an entire character has been received and transforred to the RECEIVER HOLDING REGISTER. \\
\hline 20 & Recsiver Input & R1 & Seriak inpuzdata received on this line enters the RECEIVER REGISTER at a point determined by the eharacter length, parity, and the number of stod bits. A high leval indut voltage, \(V_{1 M}\). must be present when date is not being received. \\
\hline 21 & Master Reset & MR & This line is strobed to a high-ieval input voltage, \(V_{1 H}\). \({ }^{\text {eo clear the logic. It resets }}\) the Transmitter and Receiver Registers, the Receiver Holding Register, FE, OE, PE. DRR and sets TRO, THRE, and TRE to a high-level outpur voltage, VoH. \\
\hline 22 & Transmitter Holding Register Empty & THRE & A high-level output Voltage, \(\mathrm{V}_{\mathrm{OH}}\), on this line indicates the TRANSMITTER HOLDING REGISTER has transferred its contents to the TRANSMITTER REGISTER and mav be loaded with a now character. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline NUMBER & NAME & SYMBOL & FUNCTION \\
\hline \multirow[t]{4}{*}{23} & Transmitter & THRL & A lowtevel input voltage. \(V_{1 L}\). applied to this line enters a character into the \\
\hline & Holding Register & & TRANSMITTER HOLOING AEGISTER. A transition from a low-tevel indut \\
\hline & Lood & & voltage. \(V_{1 L}\). to a high-ievet indur voltege, \(V_{1 H}\), transfers the character into the TRANSMITTER REGISTER if it is not in the process of transmitting a character. \\
\hline & & & If a character is being tranamitred, the transfer is delayed until its transmission is completed. Upon completion, the new character is automatically transferred simul- \\
\hline \multirow[t]{3}{*}{24} & Transmitter & tre & A hightevet outpur voltage, \(V_{\text {OH }}\), on this line indicates that the TRANSMITTER \\
\hline & Register & & REGISTER has comolered serial transmission of a full character including STOP \\
\hline & Empty & & bital. It remains at this lovel until the start of transmission of the next character. \\
\hline \multirow[t]{3}{*}{25} & Transmitter & TRO & The conients of the TRANSMITTER REGISTER (START bir, DATA bits, PARITY \\
\hline & Register & & bit, and STOP bitsl are serially shifted out on this line. Whan no deta is being trans- \\
\hline & Output & & mirted, this line will remain at a high-ievel output voleage. \(\mathrm{V}_{\mathrm{OH}}\). Start of transmission is defined as the transition of the START bit from a high-level oubur volrage, \(\mathrm{V}_{\mathrm{OH}}\), to a low-lovel outpur voleage, \(\mathrm{V}_{\mathrm{OL}}\). \\
\hline \multirow[t]{3}{*}{26-33} & Transmitter & \(T R_{1}-\) & The charscter to. be transmitted is losded into the TRANSMITTER HOLDING \\
\hline & Register & \(T R_{8}\) & REGISTER on these lines with the THRL Strobe. If a charecter of less than 8 bits \\
\hline & Data Inputs & & has been selected (by WLS \(\boldsymbol{1}_{1}\) and \(W_{L S} S_{2}\), the character is right justitied to the least significampit, RR1, and the excess bits are disregarded. A inightevel indut voltage, \(\mathrm{V}_{1 H}\), will cause a highteved output voltage. \(\mathrm{V}_{\mathrm{OH}}\), to be transmitred. \\
\hline 34 & Control Register Load & CRL & A high-level induz voltage, \(V_{1 H}\). on this line losds the CONTROL REGISTER with the control bits (WLS \(\mathbf{1}_{1}, \mathrm{WLS}_{2}, E P E, \mathrm{P}_{1}, \mathrm{SBS}\)). This line mav be strobed or hard wired to a highteved input voltage, \(V_{1 H}\). \\
\hline 35 & \begin{tabular}{l}
Parity \\
Inhibit
\end{tabular} & P1 & A high-leve input voltage, \(\mathbf{V}_{1 H}\), on this ijne inhibits the parity generation and verification circuits and will clamp the PE outout (pin 13) to \(\mathrm{V}_{\mathrm{OL}}\). If parity is inhibited the STOP bit(s) will immediarely follow the last data bit on trangmission. \\
\hline 36 & \begin{tabular}{l}
Stop Bit(s) \\
Select
\end{tabular} & SES & This line solects the number of STOP bits to be transmitted atter the PARITY bit. A high-iover inpur voltage, \(V_{1 H}\), on this line setects two STOP bits. and a low teved input voltage, \(V_{1 L}\), selects a single STOP bit. Setection of two STOP bits when programming a five (5) bit word generates 1.5 STOP bits. \\
\hline \multirow[t]{6}{*}{37-38} & Word Length & \(\mathrm{WLS}_{2}-\) & These two lines select the character length (exclusive of parity) as follows: \\
\hline & Select & \(\mathrm{WLS}_{1}\) & \(\mathrm{WLS}_{2} \quad \mathrm{WLS}_{9} \quad\) Word Length \\
\hline & & & \(V_{1 L} V_{1 L}\) S bits \\
\hline & & & \(V_{1 L} V_{\text {IH }} 6\) bits \\
\hline & & & \(V_{\text {IH }} \quad V_{\text {IL }} \quad 7\) bits \\
\hline & & & \(V_{1 H} V_{1 H}\) 8 biss \\
\hline 39 & Even Parity Enabic & EPE & This line determines whecher aven or odd PARITY is to be generated by the transmitrer and enecked by the receiver. A hightevel indur voltage, \(V_{1 H}\), selects even PARITY and a low teved input voltage, \(V_{1 L}\), selects odd PARITY. \\
\hline 40 & \begin{tabular}{l}
Transmitter \\
Register Clock
\end{tabular} & TRC & The tranmitter ctock frequency is sixieen (16) times the desired transmitter shite rete. \\
\hline
\end{tabular}

\section*{INTRODUCTION}

The transfer of digital data over relatively long distances is generally accomplished by sending the data in serial form thru a single communications channel using one of two general transmission techniques; asynchronous or synchronous. Synchronqus data transmission requires that a clock signal be transmitted with the data in order to mark the location of the data bits for receiver. A specified clock transition (either rising or falling) marks the start of each data bit interval as shown in Figure 1. In addition, special synchronization data patterns are added to the start of the transmission in order for the receiver to locate the first bit of the message. With synchronous transmission, each data bit must follow contiguously after the sync word, since one data bit is assumed for every clock period.

With asynchronous transmission, a clock signal is not transmitted with the data and the characters need not be contiguous. In order for the receiver to properly recover the message, the bits are grouped into data characters (generally from 5 to 8 bits in
length) and synchronizing start and stop elements are added to each character as shown in Figure 2.

The start element is a single logic zero (space) data bit that is added to the front of each character. The stop element is a logic one (mark) that is added to the end of each character. The stop element is maintained until the next data character is ready to be transmitted. (Asynchronous transmission is often referred to as start-stop transmission for obvious reasons). Although there is no upper limit to the length of the stop element, there is a lower limit that depends on the system characteristics. Typical lower limits are 1.0, 1.42 or 2.0 data bit intervals, although most modern systems use 1.0 or 2.0. The negative going transition of the start element defines the location of the data bits in one character. A clock source at the receiver is reset by this transition and is used to locate the center of each data bit.

The rate at which asynchronous data is transmitted is usually measured in baud, where a baud is defined to be the reciprocal of the shortest signal element (usually one data bit interval). It is interesting to note

Figure 1. Synchronous Data

Figure 2. Asynchronous Data
that the variable stop length is what makes the baud rate differ from the bit rate. For synchronous transmission, each element is one bit in length so that the baud rate equals the bit rate. The same is true for asychronous transmission if the stop element is always one bit in duration (this is referred to as isochronous transmission). However, when the stop code is longer than one bit, as shown in Figure 3, the baud rate differs from the bit rate.

Each character in Figure 3 is 11 data bit intervals in length, and if 15 characters are transmitted per second, then the shortest signal element (one data bit interval) is \(66.6 \mathrm{~ms} / 11=6.06 \mathrm{~ms}\); giving a rate of \(1 / 6.06 \mathrm{~ms}=165\) baud. However, since only 10 bits of information (8 data bits, one start bit and 1 stop bit) are transmitted every 66.6 msec , the bit rate is \(150 \mathrm{bit} / \mathrm{sec}\). (Even though the stop element lasts for two data intervals, it still is only one bit of information)

There are several reasons for using asychronous transmission. The major reason is that since a clock signal need not be tranismitted with the data, transmission equipment iequirements are greatly simplified. (Note, however, that an independent clock source is still required at both the transmitter and receiver). Another advantage of asynchronous transmission is that characters need not be contiguous in time, but are transmitted as they become available. This is a very valuable feature when transmitting data from manual entry devices such as a keyboard. The major disadvantage of asynchronous transmission is that it requires a very large portion of the communication channel bandwidth for the synchronizing start and stop elements (a much smaller portion of the bandwidth is required for the sync words used in synchronous transmission).

Asynchronous transmission over a simple twisted wire pair can be accomplished at moderately high baud rates (10K baud or higher depending on the length of the wire, type of line drivers, etc.) while it is generally limited to approximately 2 K baud over the telephone network. When operating over the telephone network, a modem is required to conver the data pulses to tones that can be transmitted through the network.

One of the major limiting factors in the speed of asynchronous transmission is the distortion of the signal elements. Distortion is defined as the time displacement between the actual signal level transition and the nominal transition \((\Delta T)\), divided by the nominal data bit interval (See Figure 4).

The nominal data bit interval is equal to the reciprocal of the nominal transmission baud rate and all data transitions should ideally occur at an integer number of intervals from the start bit negative going transition. Actual data transitions may not occur at these nominal points in time as shown in the lower waveform of Figure 4. The distortion of any bit transition is equal to \(\triangle t \times\) NOMINAL BAUD RATE.

This distortion is generally caused by frequency jitter and frequency offset in the clock source used to generate the actual waveform as well as transmission channel, noise, etc. Thus, the amount of distortion that can be expected on any asynchronous signal depends on the device used to generate the signal and the characteristics of the communication channel over which it was sent. Electronic signal generators can be held to less than \(1 \%\) distortion while electromechanical devices (such as a teletype) typically generate up to \(20 \%\) distortion. The transmission channel may typically add an additional \(5 \%\) to \(15 \%\) distortion.

Figure 3.

Figure 4A

Figure 48

The distortion previously described referred only to a single character as all measurements were referenced to the start element transition of that character. However, there may also be distortion between characters when operating at the maximum possible baud rate (i.e., stop elements are of minimum length). This type of distortion is usually measured by the minimum character interval as shown in Figure 48.

The minimum character interval distortion is generally specified as the percentage of a nominal data bit interval that any character interval may be shortened from its nominal length. Since many of the same parameters that cause distortion of the data bits are aiso responsible for the character length distortion, the two distortions are often equal. However, some systems may exhibit character interval distortions of up to \(50 \%\) of a data bit interval. This parameter is important when operating at the maximum baud rate since the receiver must be prepared to detect the
next start bit transition after the minimum character interval.

Asynchronous receivers operate by locating the nominal center of the data bits as measured from the start bit negative going transition. However, due to receiver inaccuracies, the exact center may not be properly located. In electromechanical devices such as teletypes, the inaccuracy may be due to mechanical tolerances or variations in the power line frequency. With electronic receivers, the inaccuracies are due to frequency offset, jitter and resolution of the clock source used to find the bit centers. (The bit centers are located by counting clock pulses). For example, even if the receiver clock had no jitter or offset, and it was 16 times the baud rate, then the center of the bit could only be located within \(1 / 16\) of a bit interval (or \(6.25 \%\)) due to clock resolution. However, by properly phasing the clock, this tolerance can be adjusted so that the sample will always be within \(\pm 3.125 \%\) of the bit center. Thus,
signals with up to \(46.875 \%\) distortion could be received. This number (the allowable receiver input distortionl is often referred to as the receiver distortion margin.Electromechanical receivers have distortion margins of 25 to \(30 \%\). The receiver must also be prepared to accept a new character after the minimum character interval. Most receivers are specified to operate with a minimum character interval distortion of \(50 \%\).

\section*{TR1602 Operation**}

The WDC TR1602 is designed to transmit and receive asynchronous data as shown in Figure 5. Both the transmitter and the receiver are in one MOS CHIP, packaged in a 40 lead ceramic DIP. The array is capable of full duplex isimultaneous transmission and reception) or half duplex operation:

The transmitter basically assembles parallel data characters into a serial asynchronous data system. Control lines are included so that the characters may be \(5,6,7\) or 8 bits in length, have an even or odd parity bit, and have either one or two* stop bits. Furthermore, the baud rate can be set anywhere between DC and 20 K baud by providing a transmit clock at 16 times the desired baud rate.
-1-1/2 with 5 bit code
* All references to the TR1602 operation also apply to the TR 1863 operation.

The receiver disassembles the asynchronous characters into a parallel data character by searching for the start bit of every character, finding the center of every data bit, and outputing the characters in a parallel format with the start, parity and stop bits removed. Three error flags are also provided to indicate if the parity was in error, a valid stop bit was not decoded or the last character was not unloaded by the external device before the next character was received (and therefore the last character was lost). The receiver clock is set at 16 times the transmitter baud rate.

Both the transmitter and receiver have double character buffering so that at least one complete character interval is always available for exchange of the characters with the external devices. This double buffering is especially important if the external device is a computer, since this provides a much longer permissible interrupt latency time (the time required for the computer to respond to the interrupt).

The status of the transmitter buffer and the receiver buifier (empty or full) is also provided as an output.

Another feature of the TR1602 is that the control information can be strobed into the transmitter and receiver and stored internally. This allows a common bus from a computer to easily maintain the controls for a large number of transmitter/receivers.

Figure 5

The TR1602 data and error flag outputs are designed for direct compatibility with bus organized systems. This feature is achieved by providing completely TTL compatible Three-state outputs (no external components are required). Three-state outputs may be set to a logic one or logic zero when enabled, or set to an open circuit (very high impedanca) when disabled. A separate control line is provided to enable the data outputs and another one to enable the error flags so that the data outputs can be tied to a separate bus from the flag outputs.

The TR1602 inputs are also directly compatible with TTL logic elements without any external components.

\section*{TR1602 Description}

Figure 6 is a block diagram of the transmitter portion of the TR1602. Data can be loaded into the Transmitter Holding Register whenever the Transmitter Holding Register Empty (THRE) line is at a logic one, indicating that the Transmitter Holding Register is empty. The data is loaded in by strobing the Trans: mitter Holding Register Load (THRL) line to a logic zero. The data is automatically transferred to the Transmitter Register as soon as the Transmitter Register becomes empty. The desired start, stop and parity bits are then added to. the data and serial transmission is started. The number of stop bits and the type of parity bit is under control of the Control Register. The state of the control lines is loaded into the Control Register when the Control Register Load (CRL) line is strobed to a logic one. The 5 control lines allow 24 different character formats as shown in Table 1. These 24 formats cover almost all of the transmission schemes presently in use.

A Master Reset (MR) input is provided which sets the transmitter to the idle state whenever this line is strobed to a logic one. In addition, a Status Flag Disconnect (SFD) line is provided. When this signal is at a logic one, the THRE output is disabled and goes to a high impedance. This allows the THRE outputs of a number of arrays to be tied to the same data bus.

Figure 7 illustrates the relative timing of the transmitter signals. After power turn-on, the master reset should be strobed to set the circuits to the idle state. The external device can then set the transmitter register data inputs to the desired value and after the data injuts are stable, the load pulse is apolied. The data is then automatically transferred to the Transmitter Register where the start, stop and parity lif required) bits are added and transmission is started. This process is then repeated for each subsequent character as they become available. The only timing requirement for the external device is that the data

TABLE 1
CONTROL DEFINITION

inputs be stable during the load puise land 20 nsec after).

The TR1602 Transmitter output will have less than \(1 \%\) Distortion at baud rates of up to 20 K baud (assuming the Transmitter Register Clock is perfect) and is, therefore, compatible with virtually all other asynchronous receivers.

Figure 8 is a block diagram of the Receiver portion of the TR1602. Serial asynchronous data is provided to the Receiver Input (RI). A start bit detect circuit continually searches for a logic one to logic zero transition while in the idle state. When this transition is located, a counter is reset and allowed to count until the center of the start bit is located. If the input is still a logic zero at the center, the signal is assumed to be a valid start bit and the counter continues to count to find the center of all subsequent

Figure 6. Transmitter Block Diagram

Figure 7. Transmitter Timing Diagram
data and stop bits. (Verification of the start bit prevents the receiver from assembling an erroneous data character when a logic zero noise spike is presented to the Receiver Input). The Receiver is under control of the Control Register described in the previous paragraph. This register controls the number of data bits, number of stop bits, and the type of parity as described in Table 1. The word length gating circuit adjusts the length of the Receiver Register to match the length of the data characters. A parity check circuit checks for even or odd parity if parity was added by the Transmitter. If parity does not check a Parity Error signal will be set to a logic one and this signal will be held until the next character is transferred to the Holding Register. A circuit is also provided that checks the first stop bit of each character. If the stop bit is not a logic one, the Framing Error line will be set to a logic one and held until the next
character is transferred to the Holding Register. This feature permits easy detection of a break character (null character with no stop element). As each received character is transferred to the Holding Register, the Data Received (DR) line is set to a logic one indicating that the external device may sample the data output. When the external device samples the output, it should strobe the Data Received Resel (DRR) line to a logic zero to reset the DR line. If the DR line is not reset before a new character is transferred to the Holding Register (i.e., a character is lost) the Overrun Error line will be set to a logic one and held until the next character is loaded into the Holding Register. The timing for all of the Receiver functions is obtained from the external Receiver Register Clock which should be set at 16 times the baud rate of the transmitter.
3128 RED HILL AVENUE. \(80 \times 2180\)
NEWPORT BEACH. CALIFORNNA 92603
17141557.3550 TWX 910.595 .1139

Figure 8. Recolver Block Diagram

Figure 9 illustrates the relative timing of the Receiver signais. A Master Reset strobe places the unit in the idle mode and the Receiver then begins searching for the first start bit. After a complete character has been decoded, the data output and error flags are set to the proper level and the Data Received (DR) line is set to a logic one. Although it is not apparent in Figure 9, the data outputs are set to the proper level one half clock period before the DR and error flags, which are set in the center of the first stop bit. The Data Received Reset pulse resets the DR line to a logic zero. Data can be strobed out at any time before the next character has been disassembled.

The TR1602 Receiver uses a 16 X clock for timing purposes. Furthermore, the center of the start bit is defined as clock count \(7-1 / 2\). Therefore, if the receiver clock is a symmetrical square wave as shown in Figure 10, the center of the bits will always be located within \(\pm 3.125 \%\) lassuming a perfect input clock) thus giving a receiver margin of \(46.875 \%\).

In Figure 10, the start bit could have started as much as one complete clock period before it was detected, as indicated by the shaded area of the negative going transition. Therefore, the exact center is aiso unknown by the shaded area around the sample point. This turns out to be \(\pm 1 / 32= \pm 3.125 \%\).

If the receiver clock is not perfect, then the receiver distortion margin must be further reduced. For example, if the clock had \(1.0 \%\) jitter, \(0.1 \%\) offset and the positive clock pulse was only \(40 \%\) of the clock cycte; then, for a 10 element character, the clock would add:

(The frequency offset was multiplied by the number of elements per character since the offset is cumulative on each element).

Figure 9. Receiver Timing Diagram

\section*{FLOPPY DISK CONTROLLER APPLICATION NOTE}

\section*{Introduction}

The FD 1771 is a MOS/LSI device that performs the function of interfacing a processor to a flexible (Flopoy) diskette drive. This singie chip replaces neariy \(80 \%\) of the required disk drive interface electronics. (See figure 1-1). It provides the data accessing controis and the bidirectional transter of information between the processor's memory and the magnetically stored data on the diskerte. The diskerte data is stored in a data entry format compatible with the IBM 3740 specification lother formats may be used providing more data storage). In this format all information is recorded on tracks (radial paths) in sectors (arc sections) defined by a programmed header as shown below:

The FD 1771 handles single density frequency modulated (FM) data. Each data cell is defined by clock pulses. A ouise ;ecorded between clock puises identifies the presence of a logic 1 bit: the absence of inis pulse is interpreted as a logic 0 bit. The Address Marks for Index, ID, and Data are identified by a particular pattern not repeated in the remainder of the 10 fieid or Data field. This is accomplished by reading patterns that are recorded with missing clock bits (logic \(O\)) as shown below:
\begin{tabular}{|c|c|c|}
\hline Index Address Mark & Dara 11111100 Clock 11010111 & \[
\begin{aligned}
& =F C \\
& =07
\end{aligned}
\] \\
\hline 10 Address Mark & Data 111111190 Clock 11000111 & \[
\begin{aligned}
& =F E \\
& =C T
\end{aligned}
\] \\
\hline Data Address Mark & \begin{tabular}{l}
Oara 11111011 \\
Clock 1.1000111
\end{tabular} & \[
\begin{aligned}
& -68 \\
& -67
\end{aligned}
\] \\
\hline Delered & Data 11111000 & -F8 \\
\hline
\end{tabular}

These patterns are used as synctronization codes by the FD1771 when reading data and are recorded by the formatting command, Write Track, when the FD 1771 is presented with data F7 through FE.

\section*{SECTION I FD1771 DESCRIPTICN}
1.1 FD1771 - Flexible Drive Interface (Refer to Figure 1.1 FD1771 Block Diagram)
The FO1771 generates all controls to position the read/ write head over the desired rack. The FD1771 has the cacability of sending successive three phase pulses over the lines PH 1 , PH 2 , and PH 3 for 3 phase stepping motors or oy sending a level over the PH 2 iine and pulses over the PH 1 :ines to deter. mine direction and stepping rate for step-direction motors. The particular motor interface is chosen by hardwiring the external pin, 3PM.

ALL REFERENCE TO FD1771 DENOTES FD1771-01 VERSION

FD1771 SYSTEM BLOCK DIAGRAM
FIG 1

\[
\begin{aligned}
& \text { A Suffix }=\text { Ceramic } \\
& \text { B Suffix }=\text { Plastic }
\end{aligned}
\]

FDIT71 PIN CONNECTIONS
FIG 2

FIGURE 1.1

The head is loaded against the recording media (diskette) by the HLD (Head Load) signal from the FDi771. A read or write operation does not oceur until a logic high signal is sampled at the HLT (Head Load Timing) input. This input is sampled after a 10 msec internai delay. This inout may be wired high if 10 msec time is sufficient or a one shot may be used to extend this time. If the head is already engaged from a previous operation the reserting of bit 2 in the Read or Write Command (see Processor Interface) will disable the HLT functions and the 10 ms delay.

When reading the serial data from the disk the FD1771 will look for the desired sector to be read, check its ID fieid and locate its data address mark. All subsequent serial data is assembied in parallei form and presented to the processor interface. The serial data read from the Fiopoy Oriver may be input as composite data, both clock and data present at the FDDATA input, or as separated data in which the data is input to the FDDATA pin and the clock is inpur to the FD Clock pin.

When writing, information is presented as composite of serial clock and data pulses of 500 nsec periods. With data present at the WD output the WG (Write Gate) signal is activated to allow current to flow in the Read/Write head.

The remaining interface between the FD 1771 and the Floppy Drive concerns status information. The \(\mathbb{F}\) (index Puise) and TROO (Track 00) signais are outputs of the drive to indicate when the index mark is encountered (once per revolution of the disk) or when the Read/Write head is located over Track 00 respecrively.

The WPRT (Write Protect). \(\overline{\text { DINT (Disk Initialization). }}\) and Ready signats reflect the drive condition. The Write Protect signal, when a logic low, prevents the FD 1771 from exeeuting a Write Command. The Disk Initialization inout, when a logic low, prevents a Write Track Command and essentially disables the rewriting of a format over a previousiy formatted diskette. The Ready signal indicates Floppy Orive readiness and a logic tow on this input prevents any Read or Write command from being exeouted.

Other status interface signals are \(\overline{W F}\) (Write Fault) from the Drive which signifies a write operation fault such as failure to detect write current when WG is turned on terminating the Current Write command; and the TG\$3 signal to the arive indicating the track to be written on is located between Track 44 and Track 76. This latter signal is used by the drive to lower the write current on inner tracks and compensate for the higner density recording of these tracks.

\subsection*{1.2 FD1771 - Processor Intarface (Sea figure 1-1)}

All commands, status and data are transierred over the 3 state bidirectional \(\overline{\overline{D A L}}\) (Data Access) lines. These 8 lines present an open circuit to the common processor peripheral bus until activated by the \(\overline{\mathrm{CS}}\) (Chip Select) signal. An active \(\overline{\mathrm{CS}}\) combined with \(\overline{R E}\) (Read Enable) sets the DAL into the trans. mitter mode while the \(\overline{C S}\) combined with an active WE (Write Enabie) sets the \(\overline{D A L}\) in the receiver mode. The information in the FD1771 resides in 5 accessible 8 bit registers. These registers are: (1) The bidirectional Data Regisier which acts as a parallel buffer for read or write ooerations, and receives the desired track number to be accessed in seek operation. (2) the Command register which receives and stores commands from
= processor. (3) The sector register which recaives the de,ifed sec:or number to be accessed, (4) The track regisier which eontains the present Track position, (5) The Status Register containing information about the present oceration.

The accessing of the registers is accomolished by a combination of active levels on the \(\overline{C S}, \overline{R E}\), or \(\overline{W E}\), and the register address lines \(A 1\) and \(A O\). The Command Register can oniy recsive information and the Status Register can only transmit information.

Two signals are availabie to aid in program response to the FD1771. The INTRO (Interrupt Request) is activated by the controller whenever an operation is completed successiully or terminated by a fault. The ORQ (Data Request) signal is availabie as an indication of the chips readiness to transfer a byte of data during read or write operations.

A 2 MH ? clock is required by the chio as a referencs for all timed signals"such as motor controls and data transfers. The \(\overline{M R}\) (Mastar Reser) clears the command register and initiates a Restore (seek urack 00) Command when the \(\overline{M R}\) line is reirned to an inactive state.

\subsection*{1.3 FD1771 insrructions}

The FDi771 can be considered a soecialized microorocessor with its own instruction repertoire. These are listed in the Tables below.

The Restore. Seek, and the three Step commands position the Read/Write head over the desired track. The Restore positions it over Track 00. the Seek poisitions it over the rack specified in the Oata Register, and the Step Commands position the head over an adjacent track to its present position.

The Step in moves the head inward :oward the center of the disk while the Step Out moves it outward from the cantar. The Step Command moves the head one step in the same direction as the previous command.

The Read and Write commands are the normally exeeuted commands when transferring information. The Read command initiates a search for a track and sector code in the 10 field equal to that in the track and sector registers. When found, the data is formatted from serial io parallel and presented to the Dara Register along with the serting of the ORO signal. By serting of bit 4 in the Read (or Write) command all data records from the desired sector until the last sector on the track are sequentially assembled. The serting of bit 3 allows other combinations of byte count ger sector than the standard IBM format.

The Write Command operates similar to the Read Command in muitiple sector and variable sector length. All received words in the Data register are transierred to the shift register at which time the ORQ line is set. Four separate Data address marks are selectabie through bits 1 and 0 which are written on the disketre prior to writing the sector data.

The Read Address command provides ine next encountered 10 field (6 bytes) on the diskerte to the processor. This can be used to identify the track over which the head resides and can be used if one were to multiplex between wo or more drives and wish to return to the first drive. This could also be accomplished by storing the track register in memory and returning it when reactivating the first drive.

The Write Track command is basically used for formarting. Once the index position is located the FD1771 will request data and transfer it to the disk including ail 10 fields, gaps, and Oata fields. Soecial address marks and the CRC characters are written by detecting ceartain data patterns. The Read track command allows the reading of the entire recorded pattern on a track including gaps. (Refer to Data Sheet for formatting derails)

The final command is the Force interrupt which can be loaded into the Command register at any time. This will terminate any present operation and can also generate an inter. rupt under four selectable conditions.

\subsection*{1.4 Status Register (See Table 1, page 16)}

This register contains status information associated with each of the command instructions. Bit 7 always reflects the Ready condition of the Drive while bit 0 (Busy) always defines the status of the FD1779 concerning present operations.

COMMAND SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{8}{|c|}{BITS} \\
\hline TYPE & COMMAND & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 1 & Restore & 0 & 0 & 0 & 0 & h & V & r1 & ro \\
\hline 1 & Seek & 0 & 0 & 0 & 1 & h & \(v\) & 「1 & ro \\
\hline 1 & Step & 0 & 0 & 1 & \(u\) & h & \(v\) & r1 & ro \\
\hline 1 & Step In & 0 & 1 & 0 & \(u\) & h & V & r1 & ro \\
\hline 1 & Step Out & 0 & 1 & 1 & 4 & \(h\) & \(\checkmark\) & r1 & ro \\
\hline 11 & Read Command & 1 & 0 & 0 & m & b & \(E\) & 0 & 0 \\
\hline 11 & Write Command & 1 & 0 & 1 & m & \(b\) & \(\varepsilon\) & a 1 & a \\
\hline 111 & Read Address & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 111 & Read Track & 1 & 1 & 1 & 0 & 0 & 1 & 0 & \(\overline{5}\) \\
\hline 111 & Write Track & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline IV & Force Inter. rupt & 1 & 1 & 0 & 1 & 13 & 12 & 11 & 10 \\
\hline
\end{tabular}

COMMAND FLAG SUMMARY
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{TYPE I} \\
\hline \multicolumn{2}{|l|}{\(h=\) Head Load flag (Bit 3)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{h}=1\), Load head at beginning} \\
\hline \multicolumn{2}{|l|}{\(V=\) Verify flag (Bit 2)} \\
\hline \multicolumn{2}{|l|}{\(V=1\), Verify on last track} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{r}_{1} \mathrm{r} 0=\) Stepping motor rate (Bits 1.0\()\)} \\
\hline r 1 ro \(=00\). & 6 ms between steps \\
\hline riro=01, & 6 ms between steps \\
\hline r1ros=10, & 10 ms between steps \\
\hline riros 11. & 20 ms between steps \\
\hline \multicolumn{2}{|l|}{\(u=\) Update flag (Bit 4)} \\
\hline \[
\begin{aligned}
& u=1 \text {, UDd } \\
& u=0 \text {, No }
\end{aligned}
\] & e Track register odate \\
\hline
\end{tabular}

In general bit 1 reflects the state of the external \(D R Q\) signal while bit 2 indicates lost data due to overrun or underrun conditions. The Type 1 or head positioning instructions use bit 1 and 2 as a reflection of the \(\overline{\mathbb{P}}\) and TROO inputs respectively.

Bit 3 normaily indicates the encounterance of a CRC error in the 10 or Data fields except for Read Track and Write Track commands in which the CRC is not checked. Bit 4 indicates that the desired track or sector was not correctly located. Bit 6 reflects the \(\overline{W P}\) input on Seek and Write Commands and combines with bit 5 to identify the encountered data address mark on the Read command. Bit 5 aiso indicates the head engaged status on Seek commands and Write fault or Write commands.

\section*{TYPE II}
```

m= Multiple Record flag (Bit 4)
m=0. Single Record
m=1, Multiple Records
b = Block length flag (Bit 3)
b=1,!8M format (128 to 1024 bytes)
b=0, Non-18M format (16 to 4096 bytes)
a1a0 = Data Address Mark (Bits 1.0)
apa0=00, FB (Data Mark)
a1a0=01, FA (Data Mark)
aja0=10. F9 (Data Mark)
alao=11, F8 (Data Mark)

```
```

TYPE III
s = Synchronize flag (Bit O)
\overline{s}=0, Synchronize to AM
\overline { s } = 1 , Do not synchronize to AM
TYPE IV
ii = Interrupt Condition flags (Bits 3.0)
10=1, Not Ready to Ready Transition
11=1, Ready to Not Ready Transition
12=1, Index Pulse
13=1, Immediate Interrupt
E=Enabie HLD and 10 msec Delay
E=1. Enable HLD, HLT and 10 msec Delay
E=0. Head is assumed Engaged and there
is no 10 msec Delay

```
\begin{tabular}{|c|c|c|c|}
\hline PIN NO & PIN NAME & SYMBOL & FUNCTION \\
\hline \multicolumn{4}{|l|}{Computer Interface:} \\
\hline \(7 \cdot 14\) & DATA ACCESS LINES & \(\overline{\text { DALQ.OAL7 }}\) & - Eight bit inverted Bidiregtional bus used for transfer of Jata, control, and status. This bus is a receiver enabled by \(\overline{W E}\) or a transmitter enabled by \(\overline{R E}\). \\
\hline 3 & \(\overline{\text { CHIP SEIECT }}\) & CS & - A logic low on this indut selects the chio and enables computer communication with the device. \\
\hline 5.6 & REGISTER SELECT LINES & AO, A1 & - These inouts select the register to receive/transfer data on the DAL lines under RE and WE control: \\
\hline 4 & READ ENABLE & \(\overline{R E}\) & - A logic low on this indut controls the placement of data from a selected register on the DAL when \(\overline{C S}\) is low. \\
\hline 2 & WRITE ENABLE & \(\overline{W E}\) & - A logic low on this inout gates data on the DAL into the selected register when \(\overline{\mathrm{CS}}\) is low. \\
\hline 38 & DATA REQUEST & DRQ & - This open drain output indicates that the DR contains assembled data in Read operations, or the DR is empty in Write oderations. This signal is reset when serviced by the computer through reading or loading the DR in Read or Write operation, resoectively. Use 10 K pull-up resistor to +5 . \\
\hline 39 & INTERRUPT REQUEST & INTRQ & -This open drain output is set at the completion or termination of any operation and is reset when a new command is loaded into the command register. Use 10K pull-up resistor to +5 . \\
\hline 24 & CLOCK & CLK & - This input requires a free-running 2 MHz - \(1 \%\) square wave clocx for internal timing reference. \\
\hline \multicolumn{4}{|l|}{Fioppy Disk|nterfaca:} \\
\hline 25 & EXTERNAL DATA SEPERATION & XTDS & - A logic low on this indut selects external data separation. A logic hign or open selects the internal data separator. \\
\hline 26 & \begin{tabular}{l}
FLOPPY DISK CLOCK \\
(External Separation)
\end{tabular} & FDCLOCK. & - This inout receives the externally seoparated clock when XTDS \(=0\). If \(\overline{X T D S}=1\), this input snould be tied to a logic hign. \\
\hline 27 & FLOPPY DISK DATA & FDDATA & - This input receives the raw read disk data if XTDS \(=\) 1 , or the externally separated data if XTDS \(=0\). \\
\hline 31 & WRITE DATA & wo & - This output contains both clock and data bits of 500 ns duration. \\
\hline 28 & head load & HLD & - The HLD output controls the loading of the ReacWrite head against the media the HLT input is sam- \\
\hline 23 & HEAD LOAD TIMING & HLT & pled after 10 ms . When a logic high is sampled on the HLT input the head is assumed to be engaged. \\
\hline 15 & Phase 1/Step & PHIISTEP & -If the 3FM input is a logic low the three phase motor control is selected and \(\mathrm{PH} 1, \mathrm{PH} 2\), and PH 3 outputs \\
\hline 16 & Phase \(2 /\) Direction & PH2IDIRC & form a one active low signal out of three. PH 1 is active low after MR. If the 3PM inout is a logic high the \\
\hline 17 & Phase 3 & \(\overline{\mathrm{PH} 3}\) & step and direction motor control is selecied. The step \\
\hline 18 & 3 Phase Motor Select & 3PM & output contains a 4usec high signal for each step and the direction output is active high when stepping: active low when stepping out. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(b{ }^{\text {a }}=\) & Fid It & & Fioic \\
\hline PIN NO.: & PIN NAME; & SYMBOL; & FUNCTION \\
\hline 29 & Track Greater Than 43 & TG43 & - This output informs the drive that the Read.Write head is positioned between track 44-76. This output valid only during Read and Write Commands. \\
\hline 30 & WRITE GATE & WG & - This output is made valid when writing is to be performed on the diskette. \\
\hline 32 & Ready & READY & -This input indicates disk readiness and is sampled for a logic high before Read or Write commanas are performed. If Ready is low the Fead or Write operation is not performed and an interrupt is generated. A Seek operation is performed regardiess of the state of Ready. The Ready input appears in inverted format as Status Register bit 7. \\
\hline 33 & WRITE FAULT & \(\overline{W F}\) & -This indout detects writing faults indications from the drive. When WG \(=1\) and \(\bar{W} F\) goes low the current Write command is terminated and the Write Fault status bit is set. The \(\overline{W F}\) inout should be made inactive (high) when WG becomes inactive. \\
\hline 34 & TRACK 00 & TROO & - This input informs the FD1771 that the Read-Write head is positioned over Track 00 when a logic low. \\
\hline 35 & INDEXPULSE & \(\bar{P}\) & - Input, when low for a minimum of 10 usec, informs the FD1771 when an index mark is encountered on the diskette. \\
\hline 36 & WRITEPROTECT & \(\overline{\text { WPRT }}\) & -This input is samoled whenever a Write Command is received. A logic low terminated the command and sets the Write Protect Status bit. \\
\hline 37 & DISK INTIALIZATION & \(\overline{\text { DINT }}\) & - The input is sampled whenever a Write Track command is received. If DINT \(=0\), the operation is terminated and the Write Protect Status bit is set. \\
\hline 22 & \(\overline{\text { TEST }}\) & \(\overline{\text { TEST }}\) & -This input is used for testing purposes only and should be tied to +5 V or left open by the user. \\
\hline
\end{tabular}

This is a preliminary specification with tentative device parameters and may be subject to change after final product characterization is completed.

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any catent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change said circuitry at any time without notice.
western Ø bigital
3128 RED HILL AVENUE P.O. BOX 2180
NEWPORT BEACH, CALIFORNIA 92663
TELEPHONE: (714) 557-3550
TWX: 910.595-1139

\section*{FD 179X-02 Floppy Disk Formatter/Controller Family}

\section*{FEATURES}
- TWO VFO CONTROL SIGNALS
- SOFT SECTOR FORMAT COMPATIBILITY
- AUTOMATIC TRACK SEEK WITH VERIFICATION
- ACCOMMODATES SINGLE AND DOUBLE DENSITY FORMATS
IBM 3740 Single Density (FM)
IBM System 34 Double Density (MFM)
- READ MODE

Single/Multiple Sector Read with Automatic Search or Entire Track Read
Selectable 128 Byte or Variable length Sector
- WRITE MODE

Single/Multiple Sector Write with Automatic Sector Search
Entire Track Write for Diskette Formatting
- SYSTEM COMPATIBILITY

Double Buffering of Data 8 Bit Bi-Directional Bus for Data, Control and Status
DMA or Programmed Data Transfers
All Inputs and Outputs are TTL Compatible
On-Chip Track and Sector Registers/Comprehensive Status information
- PROGRAMMABLE CONTROLS

Selectable Track to Track Stepping Time Side Select Compare
- WRITE PRECOMPENSATION
- WINDOW EXTENSION
- INCORPORATES ENCODING/DECODING AND ADDRESS MARK CIRCUITRY
- FD1792/4 IS SINGLE DENSITY ONLY
- FD1795/7 HAS A SIDE SELECT OUTPUT

179X-02 FAMILY CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ FEATURES } & 1791 & 1793 & 1795 & 1797 \\
\hline Single Density (FM) & X & X & X & X \\
\hline Double Density (MFM) & X & X & X & X \\
\hline True Data Bus & & X & & X \\
\hline Inverted Data Bus & X & & X & \\
\hline Write Precomp & X & X & X & X \\
\hline Side Selection Output & & & X & X \\
\hline
\end{tabular}

\section*{APPLICATIONS}

FLOPPY DISK DRIVE INTERFACE
SINGLE OR MULTIPLE DRIVE CONTROLLER/ FORMATTER
NEW MINI-FLOPPY CONTROLLER

PIN CONNECTIONS

FD179X SYSTEM BLOCK DIAGRAM

\section*{GENERAL DESCRIPTION}

The FD179X are MOS LSI devices which perform the functions of a Floppy Disk Formatter/Controller in a single chip implementation. The FD179X, which can be considered the end result of both the FD1771 and FD1781 designs, is IBM 3740 compatible in single density mode (FM) and System 34 compatible in Double Density Mode (MFM). The FD179X contains all the features of its predecessor the FD1771, plus the added features necessary to read/write and format a double density diskette. These include address mark detection, FM and MFM encode and decode logic, window extension, and write precompensation. In order to maintain compatibility, the FD1771, FD1781, and FD179X designs were made as close as possible with the computer interface, instruction set, and I/O registers being identical. Also, head load

\section*{PIN OUTS}
\begin{tabular}{|c|c|c|c|}
\hline PIN NUMBER & PIN NAME & SYMBOL & FUNCTION \\
\hline 1 & NO CONNECTION & NC & Pin 1 is internally connected to a back bias generator and must be left open by the user. \\
\hline 19 & MASTER RESET & \(\overline{M R}\) & A logic low on this input resets the device and loads HEX 03 into the command register. The Not Ready (Status Bit 7) is reset during \(\overline{M R}\) ACTIVE. When \(\overline{M R}\) is brought to a logic high a RESTORE Command is executed, regardless of the state of the Ready signal from the drive. Also, HEX 01 is loaded into sector register. \\
\hline 20 & POWER SUPPLIES & Vss & Ground \\
\hline 21 & & Vcc & \(-5 \mathrm{~V} \pm 5 \%\) \\
\hline 40 & & Vod & \(+12 V \pm 5 \%\) \\
\hline \multicolumn{4}{|l|}{COMPUTER INTERFACE:} \\
\hline 2 & WRITE ENABLE & \(\overline{W E}\) & A logic low on this input gates data on the DAL into the selected register when \(\overline{\mathrm{CS}}\) is low. \\
\hline 3 & \(\overline{\text { CHIP SELECT }}\) & \(\overline{C S}\) & A logic low on this input selects the chip and enables computer communication with the device. \\
\hline 4 & \(\overline{\text { READ ENABLE }}\) & \(\overline{R E}\) & A logic low on this input controls the placement of data from a selected register on the DAL when \(\overline{C S}\) is low. \\
\hline 5,6 & REGISTER SELECT LINES & A0, A1 & These inputs select the register to receive/ transfer data on the DAL lines under \(\overline{R E}\) and \(\overline{W E}\) control: \\
\hline & & & \begin{tabular}{llll}
0 & 0 & Status Reg & Command Reg \\
0 & 1 & Track Reg & TrackReg \\
1 & 0 & Sector Reg & Sector Reg \\
1 & 1 & Data Reg & Data Reg
\end{tabular} \\
\hline 7-14 & \(\overline{\text { DATA ACCESS LINES }}\) & \(\overline{\text { DALO-DAL7 }}\) & Eight bit inverted Bidirectional bus used for transfer of data, control, and status. This bus is receiver enabled by \(\overline{W E}\) or transmitter enabled by \(\overline{R E}\). \\
\hline 24 & CLOCK & CLK & This input requires a free-running square wave clock for internal timing reference, 2 MHz for \(8^{\prime \prime}\) drives, 1 MHz for mini-drives. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline PIN NUMBER & PIN NAME & SYMBOL & FUNCTION \\
\hline 38 & DATA REQUEST & DRQ & This open drain output indicates that the DR contains assembled data in Read operations, or the DR is empty in Write operations. This signal is reset when serviced by the computer through reading or loading the DR in Read or Write operations, respectively. Use 10 K pull-up resistor to +5 . \\
\hline 39
FLOPPY DIS & INTERRUPT
REQUEST
K INTERFACE: & INTRQ & This open drain output is set at the completion of any command and is reset when the STATUS register is read or the command register is written to. Use 10 K pull-up resistor to +5 . \\
\hline 15 & STEP & STEP & The step output contains a pulse for each step. \\
\hline 16 & DIRECTION & DIRC & Direction Output is active high when stepping in, active low when stepping out. \\
\hline 17 & EARLY & EARLY & Indicates that the WRITE DATA pulse occurring while Early is active (high) should be shitted early for write precompensation. \\
\hline 18 & LATE & Late & Indicates that the write data pulse occurring while Late is active (high) should be shifted late for write precompensation. \\
\hline 22 & \(\overline{\text { TEST }}\) & \(\overline{\text { TEST }}\) & This input is used for testing purposes only and should be tied to +5 V or left open by the user unless interfacing to voice coil actuated motors. \\
\hline 23 & HEAD LOAD TIMING & HLT & When a logic high is found on the HLT input the head is assumed to be engaged. \\
\hline 25 & READ GATE (1791/3) & RG & A high level on this output indicates to the data separator circuitry that a field of zeros (or ones) has been encountered, and is used for synchronization. \\
\hline 25 & SIDE SELECT OUTPUT \((1795,1797)\) & sso & The logic level of the Side Select Output is directly controlled by the ' \(S\) ' flag in Typer II or III commands. When \(S=1, S S O\) is set to a logic 1 . When \(S=0\), SSO is set to a logic 0 . The Side Select Output is only updated at the beginning of a Type II or III command. It is forced to a logic 0 upon a MASTER RESET condition. \\
\hline 26 & READ CLOCK & RCLK & A nominal square-wave clock signal derived from the data stream must be provided to this input. Phasing (i.e. RCLK transitions) relative to RAW READ is important but polarity (RCLK high or low) is not. \\
\hline 27 & \(\overline{\text { RAW READ }}\) & \(\overline{\text { RAW READ }}\) & The data input signal directly from the drive. This input shall be a negative pulse for each recorded flux transition. \\
\hline 28 & HEAD LOAD & HLD & The HLD output controls the loading of the Read-Write head against the media. \\
\hline 29 & TRACK GREATER THAN 43 & TG43 & This output informs the drive that the Read/Write head is positioned between tracks 44-76. This output is valid only during Read and Write Commands. \\
\hline 30 & WRITE GATE & WG & This output is made valid before writing is to be performed on the diskette. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline PIN NUMBER & PIN NAME & SYMBOL & FUNCTION \\
\hline 31 & WRITE DATA & wo & A 250 ns (MFM) or 500 ns (FM) pulse per flux transition. WD contains the unique Address marks as well as data and clock in both FM and MFM formats. \\
\hline 32 & READY & READY & This input indicates disk readiness and is sampled for a logic high before Read or Write commands are performed. If Ready is low the Read or Write operation is not performed and an interrupt is generated. Type I operations are performed regardless of the state of Ready. The Ready input appears in inverted format as Status Register bit 7. \\
\hline 33 & \[
\frac{\overline{\text { WRITE FAULT }}}{\text { VFO ENABLE }}
\] & \(\overline{W F} / \overline{\text { VFOE }}\) & This is a bi-directional signal used to signify writing faults at the drive, and to enable the external PLO data separator. When \(W G=1\), \(\operatorname{Pin} 33\) functions as a \(W F\) input. if \(W F=0\), any write command will immediately be terminated. When \(W G=0\), Pin 33 functions as a VFOE output. VFOE will go low during a read operation after the head has loaded and settled (HLT = 1). On the 1795/7, it will remain low until the last bit of the second CRC byte in the ID field. VFOE will then go high until 8 bytes (MFM) or 4 bytes (FM) before the Address Mark. It will then go active until the last bit of the second CRC byte of the Data Field. On the \(1791 / 3\), VFOE will remain low until the end of the Data Field. \\
\hline 34 & TRACK 00 & TROO & This input informs the FD179X that the Read/Write head is positioned over Track 00. \\
\hline 35 & INDEX PULSE & \(\overline{\mathbb{P}}\) & This input informs the FD179X when the index hole is encountered on the diskette. \\
\hline 36 & \(\overline{\text { WRITE PROTECT }}\) & \(\overline{\text { WPRT }}\) & This input is sampled whenever a Write Command is received. A logic low terminates the command and sets the Write Protect Status bit. \\
\hline 37 & \(\overline{\text { DOUBLE DENSITY }}\) & \(\overline{\text { DEEN }}\) & This pin selects either single or double density Jperation. When \(\overline{D D E N}=0\), double density is selected. When \(\overline{D D E N}=1\), single density is selected. This line must be left open on the 1792/4 \\
\hline
\end{tabular}

\section*{ORGANIZATION}

The Floppy Disk Formatter block diagram is illustrated on page 5. The primary sections include the parallel processor interface and the Floppy Disk interface.
Data Shift Register-This 8 -bit register assembles serial data from the Read Data input (RAW READ) during Read operations and transfers serial data to the Write Data output during Write operations.
Data Register-This 8 -bit register is used as a holding register during Disk Read and Write operations. In Disk Read operations the assembled data byte is transferred in parallel to the Data Register from the Data Shift Register. In Disk Write operations information is transferred in parallel from the Data Register to the Data Shift Register.

When executing the Seek command the Data Register holds the address of the desired Track position. This register is loaded from the DAL and gated onto the DAL under processor control.
Track Register-This 8-bit register holds the track number of the current Read/Write head position. It is incremented by one every time the head is stepped in (towards track 76) and decremented by one when the head is stepped out (towards track 00). The contents of the register are compared with the recorded track number in the ID field during disk Read, Write, and Verify operations. The Track Register can be loaded from or transferred to the DAL. This Register should not be loaded when the device is busy.

FD179X BLOCK DIAGRAM

Sector Register (SR)-This 8-bit register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk Read or Write operations. The Sector Register contents can be loaded from or transferred to the DAL. This register should not be loaded when the device is busy.
Command Register (CR)-This 8 -bit register holds the command presently being executed. This register should not be loaded when the device is busy unless the new command is a force interrupt. The command register can be loaded from the DAL, but not read onto the DAL.
Status Register (STR)-This 8 -bit register holds device Status information. The meaning of the Status bits is a function of the type of command previously executed. This register can be read onto the DAL, but not loaded from the DAL.
CRC Logic-This logic is used to check or to generate the 16-bit Cyclic Redundancy Check (CRC). The polynomial is: \(G(x)=x^{16}+x^{12}+x^{5}+1\).

The CRC includes all information starting with the address mark and up to the CRC characters. The CRC register is preset to ones prior to data being shifted through the circuit.

Arithmetic/Logic Unit (ALU)-The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.

Timing and Control-All computer and Floppy Disk Interface controls are generated through this logic. The internal device timing is generated from an external crystal clock.
The FD1791/3 has two different modes of operation according to the state of \(\overline{\mathrm{DDEN}}\). When \(\overline{\mathrm{DDEN}}=0\) double density (MFM) is assumed. When DDEN \(=1\), single density (FM) is assumed.

AM Detector-The address mark detector detects ID, data and index address marks during read and write operations.

\section*{PROCESSOR INTERFACE}

The interface to the processor is accomplished through the eight Data Access Lines (\(\overline{\mathrm{DAL}}\)) and associated control signals. The DAL are used to transfer Data, Status, and Control words out of, or into the FD179X. The \(\overline{D A L}\) are three state buffers that are enabled as output drivers when Chip Select (CS) and Read Enable (\(\overline{\mathrm{RE}}\)) are active (low logic state) or act as input receivers when \(\overline{\mathrm{CS}}\) and Write Enable (WE) are active.
When transfer of data with the Floppy Disk Controller is required by the host processor, the device address is decoded and \(\overline{\mathrm{CS}}\) is made low. The address bits A1 and \(A O\), combined with the signals \(\overline{R E}\) during a Read operation or \(\overline{W E}\) during a Write operation are interpreted as selecting the following registers:
\begin{tabular}{clll}
A1-A0 & & READ \((\overline{R E})\) & \multicolumn{1}{c}{ WRITE \((\overline{W E})\)} \\
\hline 0 & 0 & Status Register & Command Register \\
0 & 1 & Track Register & Track Register \\
1 & 0 & Sector Register & Sector Register \\
1 & 1 & Data Register & Data Register
\end{tabular}

During Direct Memory Access (DMA) types of data transfers between the Data Register of the FD179X and the processor, the Data Request (DRQ) output is used in Data Transfer control. This signal also appears as status bit 1 during Read and Write operations.
On Disk Read operations the Data Request is activated (set high) when an assembled serial input byte is transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters are lost, by having new data transferred into the register prior to processor readout, the Lost Data bit is set in the Status Register. The Read operation continues until the end of sector is reached.
On Disk Write operations the data Request is activated when the Data Register transfers its contents to the Data Shift Register, and requires a new data byte. It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data bit is set in the Status Register.
At the completion of every command an INTRQ is generated. INTRQ is reset by either reading the status register or by loading the command register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met.

\section*{FLOPPY DISK INTERFACE}

The 179X has two modes of operation according to the state of DDEN (Pin 37). When DDEN = 1, single density is selected. In either case, the CLK input (Pin 24) is at 2 MHz . However, when interfacing with the mini-floppy, the CLK input is set at 1 MHz for both single density and double density. When the clock is at 2 MHz , the stepping rates of \(3,6,10\), and 15 ms are obtainable. When CLK equals 1 MHz these times are doubled.

\section*{HEAD POSITIONING}

Five commands cause positioning of the Read-Write head (see Command Section). The period of each positioning step is specified by the \(r\) field in bits 1 and 0 of the command word. After the last directional step an additional 15 milliseconds of head settling time takes place if the Verify flag is set in Type 1 commands. Note that this time doubles to 30 ms for a 1 MHz clock. If \(\overline{T E S T}=0\), there is zero settling time. There is also a 15 ms head settling time if the \(E\) flag is set in any Type II or III command.

The rates (shown in Table 1) can be applied to a Step-Direction Motor through the device interface.

Step-A \(2 \mu \mathrm{~s}\) (MFM) or \(4 \mu \mathrm{~s}\) (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the direction output.

Direction (DIRC)-The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid \(12 \mu \mathrm{~s}\) before the first stepping pulse is generated.

When a Seek, Step or Restore command is executed an optional verification of Read-Write head position can be performed by setting bit \(2(V=1)\) in the command word to a logic. 1 . The verification operation begins at the end of the 15 millisecond settling time after the head is loaded against the media. The track number from the first encountered ID Field is compared against the contents of the Track Register. If the track numbers compare and the ID Field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRQ is generated with no errors. The FD179X must find an ID field with correct track number and correct CRC within 5 revolutions of the media; otherwise the seek error is set and an INTRQ is generated.

Table 1. STEPPING RATES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CLK & 2 MHz & 2 MHz & 1 MHz & 1 MHz & 2 MHz & 1 MHz \\
\hline \(\overline{\text { DDEN }}\) & 0 & 1 & 0 & 1 & \(\times\) & \(x\) \\
\hline R1 R0 & \(\overline{\text { TEST }}=1\) & \(\overline{\text { TEST }}=0\) & \(\overline{\text { TEST }}=0\) \\
\hline 00 & 3 ms & 3 ms & 6 ms & 6 ms & 184Ms & \(368 \mu \mathrm{~s}\) \\
\hline 01 & 6 ms & 6 ms & 12 ms & 12 ms & & \(380 \mu \mathrm{~s}\) \\
\hline 10 & 10 ms & 10 ms & 20 ms & 20 ms & 1984s & \(396 \mu \mathrm{~s}\) \\
\hline 11 & 15 ms & 15 ms & 30 ms & 30 ms & 208us & \(416 \mu \mathrm{~s}\) \\
\hline
\end{tabular}

The Head Load (HLD) output controls the movement of the read/write head against the media. HLD is activated at the beginning of a Type I command if the \(h\) flag is set \((h=1)\), at the end of the Type I command if the verify flag \((V=1)\), or upon receipt of any Type II or III command. Once HLD is active it remains active until either a Type I command is received with (\(\mathrm{h}=0\) and \(\mathrm{V}=0\)); or if the FD179X is in an idle state (non-busy) and 15 index pulses have occurred.

Head Load Timing (HLT) is an input to the FD179X which is used for the head engage time. When HLT \(=1\), the FD179X assumes the head is compietely engaged. The head engage time is typically 30 to 100 ms depending on drive. The low to high transition on HLD is typically used to fire a one shot. The output of the one shot is then used for HLT and supplied as an input to the FD179X.

head load timing
When both HLD and HLT are true, the FD179X will then read from or write to the media. The "and" of HLD and HLT appears as a status bit in Type 1 status.
In summary for the Type I commands: if \(h=0\) and \(V=0, H L D\) is reset. If \(h=1\) and \(V=0\). HLD is set at the beginning of the command and HLT is not sampled nor is there an internal 15 ms delay. If \(h=0\) and \(V=1\), HLD is set near the end of the command, an internal 15 ms occurs, and the FD179X waits for HLT to be true. If \(h=1\) and \(V=1\), HLD is set at the beginining of the command. Near the end of the command, after all the steps have been issued, an internal 15 ms delay occurs and the FD179X then waits for HLT to occur.

For Type II and III commands with E flag off, HLD is made active and HLT is sampled until true. With E flag on, HLD is made active, an internal 15 ms delay occurs and then HLT is sampled until true.

\section*{DISK READ OPERATIONS}

Sector lengths of 128, 256, 512 or 1024 are obtainable in either FM or MFM formats. For FM, DDEN should be placed to logical "1." For MFM formats, DDEN should be placed to a logical "0." Sector lengths are determined at format time by a special byte in the "ID" field. If this Sector length byte in the ID field is zero, then the sector length is 128 bytes. If 01 then 256 bytes. If 02, then 512 bytes. If 03, then the sector length is 1024 bytes. The number of sectors per track as far as the FD179X is concerned can be from 1 to 255 sectors. The number of tracks as far as the FD179X is concerned is from 0 to 255 tracks. For tBM 3740 compatibility, sector lengths are 128 bytes with 26 sectors per track. For System 34 compatibility (MFM), sector lengths are 256 bytes/sector with 26 sectors/track; or lengths of 1024 bytes/sector with 8 sectors/track. (See Sector Length Table.)

For read operations, the FD179X requires \(\overline{R A W}\) \(\overline{R E A D}\) Data (Pin 27) signal which is a 250 ns pulse per flux transition and a Read clock (RCLK) signal to indicate flux transition spacings. The RCLK (Pin 26) signal is provided by some drives but if not it may be
derived externally by Phase lock loops, one shots, or counter techniques. In addition, a Read Gate Signal is provided as an output (Pin 25) which can be used to inform phase lock loops when to acquire synchronization. When reading from the media in FM. RG is made true when 2 bytes of zeroes are detected. The FD179X must find an address mark within the next 10 bytes; otherwise RG is reset and the search for 2 bytes of zeroes begins all over again. If an address mark is found within 10 bytes, RG remains true as long as the FD179X is deriving any useful information from the data stream. Similarly for MFM, RG is made active when 4 bytes of " 00 " or "FF" are detected. The FD179X must find an address mark within the next 16 bytes, otherwise RG is reset and search resumes.
During read operations (WG \(=0\)), the VFOE (Pin 33) is provided for phase lock loop synchronization. VFOE will go active when:
a) Both HLT and HLD are True
b) Settling Time, if programmed, has expired
c) The 179 X is inspecting data off the disk

If \(\overline{W F} / \overline{\mathrm{VFOE}}\) is not used, leave open or tie to a 10 K resistor to +5 .

\section*{DISK WRITE OPERATION}

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a precaution to erroneous writing the first data byte must be loaded into the Data Register in response to a Data Request from the FD179X before the Write Gate signal can be activated.
Writing is inhibited when the Write Protect input is a logic low, in which case any Write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set. The Write Fault input, when activated, signifies a writing fault condition detected in disk drive electronics such as failure to detect write current flow when the Write Gate is activated. On detection of this fault the FD179X terminates the current command, and sets the Write Fault bit (bit 5) in the Status Word. The Write Fault input should be made inactive when the Write Gate output becomes inactive.
For write operations, the FD179X provides Write Gate (Pin 30) and Write Data (Pin 31) outputs. Write data consists of a series of 500 ns pulses in FM (\(\overline{\mathrm{DDEN}}=1\)) and 250 ns pulses in MFM (\(\overline{\mathrm{DDEN}}=0\)). Write Data provides the unique address marks in both formats.
Also during write, two additional signals are provided for write precompensation. These are EARLY (Pin 17) and LATE (Pin 18). EARLY is active true when the WD pulse appearing on (\(\operatorname{Pin} 30\)) is to be written early. LATE is active true when the WD pulse is to be written LATE. If both EARLY and LATE are low when the WD pulse is present, the WD pulse is to be written at nominal. Since write precompensation values vary from disk manufacturer to disk manufacturer, the actual value is determined by several one shots or delay lines which are located external to the FD179X. The write precompensation signals EARLY and LATE are valid for the duration of WD in both FM and MFM formats.

Whenever a Read or Write command (Type II or III) is received the FD179X samples the Ready input. If this input is logic low the command is not executed and an interrupt is generated. All Type I commands are performed regardless of the state of the Ready input. Also, whenever a Type II or III command is received, the TG43 signal output is updated.

\section*{COMMAND DESCRIPTION}

The FD179X will accept eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit 0). The one exception is the Force interrrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free. For ease of discussion, commands are divided into four types. Commands and types are summarized in Table 2.

Table 2. COMMAND SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TYPE COMMAND}} & \multicolumn{8}{|c|}{BITS} \\
\hline & & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline 1 & Restore & 0 & 0 & 0 & 0 & h & \(V\) & \(\mathrm{r}_{1}\) & \\
\hline 1 & Seek & & 0 & 0 & 1 & h & V & \(r_{1}\) & \(r_{0}\) \\
\hline 1 & Step & & 0 & 1 & u & h & V & \(\mathrm{r}_{1}\) & \(\mathrm{r}_{0}\) \\
\hline 1 & Step In & & 1 & 0 & u & h & V & \(\mathrm{r}_{1}\) & \(r_{0}\) \\
\hline 1 & Step Out & & 1 & 1 & u & h & V & \(\mathrm{r}_{1}\) & \\
\hline 11 & Read Sector & & 0 & 0 & m & \(\mathrm{F}_{2}\) & E & \(F_{1}\) & \\
\hline 11 & Write Sector & & 0 & 1 & m & \(\mathrm{F}_{2}\) & EF & \(F_{1}\) & \(a_{0}\) \\
\hline III & Read Address & & 1 & 0 & 0 & 0 & E & 0 & 0 \\
\hline III & Read Track & & 1 & 1 & 0 & 0 & E & 0 & \\
\hline III & Write Track & & 1 & 1 & 1 & 0 & E & 0 & \\
\hline IV & Force interrrupt & 1 & 1 & 0 & 1 & 13 & \(\mathrm{I}_{2}\) & 1 & \\
\hline
\end{tabular}

Note: Bits shown in TRUE form.

Table 3. FLAG SUMMARY
\begin{tabular}{|c|}
\hline TYPEICOMMANDS \\
\hline \(\underline{h}=\) Head Load Flag (Bit 3) \\
\hline \begin{tabular}{l}
\(h=1\), Load head at beginning \\
\(h=0\), Unload head at beginning
\end{tabular} \\
\hline \(V=\) Verify flag (Bit 2) \\
\hline \(V=1\). Verify on destination track \(V=0\), No verify \\
\hline \(r_{1} r_{1}=\) Stepping motor rate (Bits 1-0) \\
\hline Refer to Table 1 for rate summary
\[
u=\text { Update flag (Bit 4) }
\] \\
\hline \begin{tabular}{l}
\(u=1\). Update Track register \\
\(u=0\). No update
\end{tabular} \\
\hline
\end{tabular}

Table 4. FLAG SUMMARY
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{TYPE II \& III COMMANDS} \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
& m=M u \\
& \hline m=0 \\
& m=1 \\
& a_{n}=D a 1 \\
& \hline a_{n}=0 \\
& a_{1}=1 \\
& E=1
\end{aligned}
\] \\
E \\
(\(F_{2}\))
\[
\begin{aligned}
& S=S i d \\
& S=0, \\
& S=1,
\end{aligned}
\] \\
(\(F_{1}\))
\[
\begin{aligned}
& C=S i \\
& C=0 . \\
& C=1,
\end{aligned}
\] \\
(\(F_{1}\)) \(\frac{S=S i}{(B}\) \\
\(S=0\) \\
\(S=1\) \\
\(\left(F_{2}\right) \underline{b}=S\)
\end{tabular} & & \begin{tabular}{l}
flag \\
ord cord \\
Mark \\
Mark) \\
Dat \\
(2MHz \\
delay \\
delay \\
(170 \\
Side \\
Side \\
Flag \\
selec \\
select \\
g \\
nly) \\
to 0 \\
to 1 \\
lag \\
nly)
\end{tabular} & \begin{tabular}{l}
4) \\
0) \\
ark) \\
3 only \\
91/3 \\
mpar \\
mpare
\end{tabular} & \\
\hline & \multicolumn{4}{|c|}{Sector Length Field} \\
\hline \[
\begin{aligned}
& b=0 \\
& b=1
\end{aligned}
\] & 256
128 & 512
256 & 1024
512 & 128
1024 \\
\hline
\end{tabular}

Table 5. FLAG SUMMARY

> \begin{tabular}{l} TYPE IV COMMAND \\ \hline Ii \(=\) Interrupt Condition flags (Bits \(3-0\)) \\ \hline \(10=1\). Not-Ready to Ready Transition \\ \(11=1\), Ready to Not-Ready Transition \\ \(12=1\). Index Pulse \\ \(13=1\), Immediate Interrupt \\ \(13-10=0\). Terminate with no Interrupt \end{tabular}

\section*{TYPE I COMMANDS}

The Type I Commands include the Restore, Seek. Step, Step-In, and Step-Out commands. Each of the Type I Commands contains a rate field (ror), which determines the stepping motor rate as defined in Table 1.

The Type I Commands contain a head load flag (h) which determines if the head is to be loaded at the beginning of the command. If \(h=1\), the head is loaded at the beginning of the command (HLD output is made active). If \(h=0, H L D\) is deactivated. Once the head is loaded, the head will remain engaged until the FD179X receives a command that specifically disengages the head. If the FD179X is idle (busy \(=0\)) for 15 revolutions of the disk, the head will be automatically disengaged (HLD made inactive).

The Type I Commands also contain a verification (V) flag which determines if a verification operation is to take place on the destination track. If \(V=1\), a verification is performed, if \(V=0\), no verification is performed.

During verification, the head is loaded and after an internal 15 ms delay, the HLT input is sampled. When HLT is active (logic true), the first encountered ID field is read off the disk. The track address of the

TYPE I COMMAND FLOW

ID field is then compared to the Track Register; if there is a match and a valid ID CRC, the verification is complete, an interrupt is generated and the Busy status bit is reset. If there is not a match but there is valid ID CRC an interrupt is generated, and Seek Error Status bit (Status bit 4) is set and the Busy status bit is reset. If there is a match but not a valid CRC, the CRC error status bit is set (Status bit 3), and the next encountered ID field is read from the disk for the verification operation. If an ID field with a valid CRC cannot be found after four revolutions of the disk, the FD179X terminates the operation and sends an interrupt, (INTRQ).

The Step, Step-In, and Step-Out commands contain an Update flag \((U)\). When \(U=1\), the track register is updated by one for each step. When \(U=0\), the track register is not updated.
On the 1795/7 devices, the SSO output is not affected during Type 1 commands, and an internal side compare does not take place when the (V) Verify Flag is on.

TYPE I COMMAND FLOW

\section*{RESTORE (SEEK TRACK 0)}

Upon receipt of this command the Track 00 (TROO) input is sampled. If TROO is active low indicating the Read-Write head is positioned over track 0 , the Track Register is loaded with zeroes and an interrupt is generated. If TROO is not active low, stepping pulses (pins 15 to 16) at a rate specified by the riro field are issued until the TROO input is activated. At this time the Track Register is loaded with zeroes and an interrupt is generated. If the TROO input does not go active low after 255 stepping pulses, the FD179X terminates operation, interrupts, and sets the Seek error status bit. A verification operation takes place if the \(V\) flag is set. The \(h\) bit allows the head to be loaded at the start of command. Note that the Restore command is executed when \(\overline{M R}\) goes from an active to an inactive state.

\section*{SEEK}

This command assumes that the Track Register contains the track number of the current position of the Read-Write head and the Data Register contains the desired track number. The FD179X will update the Track register and issue stepping pulses in the appropriate direction until the contents of the Track register are equal to the contents of the Data Register (the desired track location). A verification operation takes place if the \(V\) flag is on. The \(h\) bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

\section*{STEP}

Upon receipt of this command, the FD179X issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by the riro field, a verification takes place if the V flag is on. If the u flag is on, the Track Register is updated. The \(h\) bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

\section*{STEP-IN}

Upon receipt of this command, the FD179X issues one stepping pulse in the direction towards track 76. If the \(u\) flag is on, the Track Register is incremented by one. After a delay determined by the ririo field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

\section*{STEP-OUT}

Upon receipt of this command, the FD179X issues one stepping pulse in the direction towards track 0 . If the \(u\) flag is on, the Track Register is decremented by one. After a delay determined by the riro field, a verification takes place if the \(V\) flag is on. The \(h\) bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

\section*{TYPE II COMMANDS}

The Type II Commands are the Read Sector and Write Sector commands. Prior to loading the Type II Command into the Command Register, the computer must load the Sector Register with the desired sector number. Upon receipt of the Type II command, the busy status Bit is set. If the \(E\) flag \(=1\) (this is the normal case) HLD is made active and HLT is sampled after a 15 msec delay. If the E flag is 0 , the head is loaded and HLT sampled with no 15 msec delay. The ID field and Data Field format are shown on page 13 .

When an ID field is located on the disk, the FD179X compares the Track Number on the ID field with the Track Register. If there is not a match, the next en-
countered ID field is read and a comparison is again made. If there was a match, the Sector Number of the ID field is compared with the Sector Register. If there is not a Sector match, the next encountered ID field is read off the disk and comparisons again made. If the ID field CRC is correct, the data field is then located and will be either written into, or read from depending upon the command. The FD179X must find an ID field with a Track number, Sector number, side number, and CRC within four revolutions of the disk; otherwise, the Record not found status bit is set (Status bit 3) and the command is terminated with an interrupt.

TYPE II COMMAND
\begin{tabular}{|cc|}
\hline \multicolumn{2}{|c|}{ Sector Length Table } \\
\hline \multicolumn{2}{|c|}{ Sector Length } \\
Field (hex) & Number of Bytes \\
\hline in Sector (decimal) \\
\hline 00 & 128 \\
01 & 256 \\
02 & 512 \\
03 & 1024 \\
\hline
\end{tabular}

Each of the Type II Commands contains an (m) flag which determines if multiple records (sectors) are to be read or written, depending upon the command. If \(\mathrm{m}=0\), a single sector is read or written and an interrupt is generated at the completion of the command. If \(m=1\), multiple records are read or written with the sector register internally updated so that an address verification can occur on the next record. The FD179X will continue to read or write multiple records and update the sector register until the sector regis-

TYPE II COMMAND
ter exceeds the number of sectors on the track or until the Force Interrupt command is loaded into the Command Register, which terminates the command and generates an interrupt.
If the Sector Register exceeds the number of sectors on the track, the Record-Not-Found status bit will be set.
The Type II commands also contain side select compare flags. When \(C=0\), no side comparison is made. When C = 1 , the LSB of the side number is read off the ID Field of the disk and compared with the contents of the \((S)\) flag. If the \(S\) flag compares with the side number recorded in the ID field, the 179X continues with the ID search. If a comparison is not made within 5 index pulses, the interrupt line is made active and the Record-Not-Found status bit is set.
The \(1795 / 7\) READ SECTOR and WRITE SECTOR commands include a ' \(b\) ' flag. The ' \(b\) ' flag, in conjunction with the sector length byte of the ID Field, allows different byte lengths to be implemented in each sector. For IBM compatability, the ' \(b\) ' flag should be set to a one. The

TYPE II COMMAND
's' flag allows direct control over the SSO Line (Pin 2c) and is set or reset at the beginning of the command, dependent upon the value of this flag.

\section*{READ SECTOR}

Upon receipt of the Read Sector command, the head is loaded, the Busy status bit set, and when an ID field is encountered that has the correct track number, correct sector number, correct side number. and correct CRC, the data field is presented to the computer. The Data Address Mark of the data field must be found within 30 bytes in single density and 43 bytes in double density of the last ID field CRC byte; if not, the Record Not Found status bit is set and the operation is terminated.
When the first character or byte of the data field has been shifted through the DSR, it is transferred to the DR, and DRQ is generated. When the next byte is accumulated in the DSR, it is transferred to the DR and another DRQ is generated. If the Computer has not read the previous contents of the DR before a new character is transferred that character is lost and

TYPE II COMMAND
the Lost Data Status bit is set. This sequence continues until the complete data field has been inputted to the computer. If there is a CRC error at the end of the data field, the CRC error status bit is set, and the command is terminated (even if it is a multiple record command).

At the end of the Read operation, the type of Data Address Mark encountered in the data field is recorded in the Status Register (Bit 5) as shown below:
\begin{tabular}{cl}
\begin{tabular}{c}
STATUS \\
BIT 5
\end{tabular} & \\
\hline 1 & Deleted Data Mark \\
0 & Data Mark
\end{tabular}

\section*{WRITE SECTOR}

Upon receipt of the Write Sector command, the head is loaded (HLD active) and the Busy status bit is set. When an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, a DRQ is generated. The FD179X counts off 11 bytes in single density and 22 bytes in double density from the CRC field and the Write Gate (WG) output is made active if the DRQ is serviced (i.e., the DR has been loaded by the computer). If DRQ has not been serviced, the command is terminated and the Lost Data status bit is set. If the DRQ has been serviced, the WG is made active and six bytes of zeros in single density and 12 bytes in double density are then written on the disk. At this time the Data Address Mark is then written on the disk as determined by the ao field of the command as shown below:
\begin{tabular}{cc}
a & Data Address Mark \((\) Bit 0\()\) \\
\hline 1 & Deleted Data Mark \\
0 & Data Mark
\end{tabular}

The FD179X then writes the data field and generates DRQ's to the computer. If the DRQ is not serviced in time for continuous writing the Lost Data Status Bit is set and a byte of zeros is written on the disk. The command is not terminated. After the last data byte has been written on the disk, the two-byte CRC is computed internally and written on the disk followed by one byte of logic ones in FM or in MFM. The WG output is then deactivated.

\section*{TYPE III COMMANDS}

\section*{READ ADDRESS}

Upon receipt of the Read Address command, the head is loaded and the Busy Status Bit is set. The
next encountered ID field is then read in from the disk, and the six data bytes of the ID field are assembled and transferred to the DR, and a DRQ is generated for each byte. The six bytes of the ID field are shown below:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
TRACK \\
ADDR
\end{tabular} & \begin{tabular}{c}
SIDE \\
NUMBER
\end{tabular} & \begin{tabular}{c}
SECTOR \\
ADDRESS
\end{tabular} & \begin{tabular}{c}
SECTOR \\
LENGTH
\end{tabular} & \begin{tabular}{c}
CRC \\
1
\end{tabular} & \begin{tabular}{c}
CRC \\
2
\end{tabular} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}

Although the CRC characters are transferred to the computer, the FD179X checks for validity and the CRC error status bit is set if there is a CRC error. The Track Address of the ID field is written into the sector register. At the end of the operation an interrupt is generated and the Busy Status is reset.

\section*{READ TRACK}

Upon receipt of the Read Track command, the head is loaded and the Busy Status bit is set. Reading starts with the leading edge of the first encountered nidex pulse and continues until the next index pulse. As each byte is assembled it is transferred to the Data Register and the Data Request is generated for each byte. No CRC checking is performed. Gaps are included in the input data stream. The accumulation of bytes is synchronized to each Address Mark encountered. Upon completion of the command, the interrupt is activated. RG is not activated during the Read Track Command. An internal side compare is not performed during a Read Track.

\section*{WRITE TRACK}

Upon receipt of the Write Track command, the head is loaded and the Busy Status bit is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index puise, at which time the interrupt is activated. The Data Re quest is activated immediately upon receiving the command, but writing will not start until after the first byte has been loaded into the Data Register. If the DR has not been loaded by the time the index pulse is encountered the operation is terminated making the device Not Busy, the Lost Data Status Bit is set, and the Interrupt is activated. If a byte is not present in the DR when needed, a byte of zeros is substituted. Address Marks and CRC characters are written on the disk by detecting certain data byte patterns in the outgoing data stream as shown in the table below. The CRC generator is initialized when any data byte from F8 to FE is about to be transferred from the DR to the DSR in FM or by receipt of F5 in MFM.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
GAP \\
III
\end{tabular} & \[
\begin{aligned}
& 10 \\
& A M
\end{aligned}
\] & TRACK NUMBER & SIDE NUMBER & SECTOR NUMBER & \begin{tabular}{l}
SECTOR \\
LENGTH
\end{tabular} & \[
\begin{gathered}
\text { CRC } \\
1
\end{gathered}
\] & \[
\begin{gathered}
\text { CRC } \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { GAP } \\
11
\end{gathered}
\] & DATA AM & DATA FIELD & \[
\begin{gathered}
\text { CRC } \\
1
\end{gathered}
\] & \[
\begin{gathered}
\text { CRC } \\
2
\end{gathered}
\] \\
\hline \multicolumn{10}{|c|}{ID FIELD} & \multicolumn{3}{|l|}{DATA FIELD} \\
\hline
\end{tabular}

In MFM only, IDAM and DATA AM are preceded by three bytes of A1 with clock transition between bits 4 and 5 missing.

\section*{TYPE IV COMMAND}

\section*{FORCE INTERRUPT}

This command can be loaded into the command register at any time. If there is a current command under execution (Busy Status Bit set), the command will be terminated and an interrupt will be generated when the condition specified in the lo through \(l_{3}\) field is detected. The interrupt conditions are shown below:
```

$l_{0}=$ Not-Ready-To-Ready Transition
$I_{1}=$ Ready-To-Not-Ready Transition
$I_{2}=$ Every Index Pulse
$l_{3}=$ Immediate Interrupt (requires reset, see
Note)

```

NOTE: If \(l_{0}-l_{3}=0\), there is no interrupt generated but the current command is terminated and busy is reset. This is the only command that will enable the immediate interrupt to clear on a subsequent Load Command Register or Read Status Register.

\section*{STATUS DESCRIPTION}

Upon receipt of any command, except the Force Interrupt command, the Busy Status bit is set and the rest of the status bits are updated or cleared for the new command. If the Force Interrupt Command is received when there is a current command under execution, the Busy status bit is reset, and the rest of the status bits are unchanged. If the Force Interrupt command is received when there is not a current command under execution, the Busy Status bit is reset and the rest of the status bits are updated or cleared. In this case, Status reflects the Type I commands.

The format of the Status Register is shown below:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ (BITS) } \\
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline S 7 & S 6 & S 5 & S 4 & S 3 & S 2 & S 1 & S 0 \\
\hline
\end{tabular}

Status varies according to the type of command executed as shown in Table 6.

Table 6. STATUS REGISTER SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline BIT & ALL TYPE I COMMANDS & \[
\begin{gathered}
\text { READ } \\
\text { ADDRESS }
\end{gathered}
\] & \[
\begin{aligned}
& \text { READ } \\
& \text { SECTOR }
\end{aligned}
\] & READ TRACK & WRITE SECTOR & WRITE TRACK \\
\hline S7 & NOT READY \\
\hline S6 & WRITE PROTECT & 0 & 0 & 0 & WRITE PROTECT & WRITE PROTECT \\
\hline S5 & HEAD LOADED & 0 & RECORD TYPE & 0 & WRITE FAULT & WRITE FAULT \\
\hline S4 & SEEK ERROR & RNF & RNF & 0 & RNF & 0 \\
\hline S3 & CRC ERROR & CRC ERROR & CRC ERROR & 0 & CRC ERROR & 0 \\
\hline S2 & TRACK 0 & lost data \\
\hline S1 & INDEX & DRQ & DRQ & DRQ & DRQ & DRQ \\
\hline So & BUSY & BUSY & BUSY & BUSY & BUSY & BUSY \\
\hline
\end{tabular}

\section*{STATUS FOR TYPE I COMMANDS}
\begin{tabular}{|l|l|}
\hline BIT NAME & MEANING \\
\hline S7 NOT READY & \begin{tabular}{l}
This bit when set indicates the drive is not ready. When reset it indicates that the drive \\
is ready. This bit is an inverted copy of the Ready input and logically 'ored' with MR.
\end{tabular} \\
\hline S6 PROTECTED & \begin{tabular}{l}
When set, indicates Write Protect is activated. This bit is an inverted copy of WRPT \\
input.
\end{tabular} \\
\hline S5 HEAD LOADED & \begin{tabular}{l}
When set, it indicates the head is loaded and engaged. This bit is a logical "and" of \\
HLD and HLT signals.
\end{tabular} \\
\hline S4 SEEK ERROR & When set, the desired track was not verified. This bit is reset to 0 when updated. \\
\hline S3 CRC ERROR & CRC encountered in ID field. \\
\hline S2 TRACK 00 & \begin{tabular}{l}
When set, indicates Read/Write head is positioned to Track 0. This bit is an inverted \\
copy of the TROC input.
\end{tabular} \\
\hline S1 INDEX & \begin{tabular}{l}
When set, indicates index mark detected from drive. This bit is an inverted copy of the \\
\hline IP input.
\end{tabular} \\
\hline SO BUSY & \begin{tabular}{l}
When set command is in progress. When reset no command is in progress. \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{STATUS FOR TYPE II AND III COMMANDS}
\begin{tabular}{|l|l|}
\hline BIT NAME & MEANING \\
\hline S7 NOT READY & \begin{tabular}{l}
This bit when set indicates the drive is not ready. When reset, it indicates that the drive \\
is ready. This bit is an inverted copy of the Ready input and ored' with MR. The Type II \\
and III Commands will not execute unless the drive is ready.
\end{tabular} \\
\hline S6 WRITE PROTECT & \begin{tabular}{l}
On Read Record: Not Used. On Read Track: Not Used. On any Write: It indicates a \\
Write Protect. This bit is reset when updated.
\end{tabular} \\
\hline \begin{tabular}{l}
S5 RECORD TYPE \\
WRITE FAULT
\end{tabular} & \begin{tabular}{l}
On Read Record: It indicates the record-type code from data field address mark. \\
1 = Deleted Data Mark. \(0=\) Data Mark. On any Write: It indicates a Write Fault. This bit \\
is reset when updated.
\end{tabular} \\
\hline \begin{tabular}{l}
S4 RECORD NOT \\
FOUND (RNF)
\end{tabular} & \begin{tabular}{l}
When set, it indicates that the desired track, sector, or side were not found. This bit is \\
reset when updated.
\end{tabular} \\
\hline S3 CRC' ERROR & \begin{tabular}{l}
lf S4 is set, an error is found in one or more ID fields; otherwise it indicates error in \\
data field. This bit is reset when updated.
\end{tabular} \\
\hline S2 LOST DATA & \begin{tabular}{l}
When set, it indicates the computer did not respond to DRQ in one byte time. This bit is \\
reset to zero when updated.
\end{tabular} \\
\hline S1 DATA REQUEST & \begin{tabular}{l}
This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read \\
Operation or the DR is empty on a Write operation. This bit is reset to zero when up- \\
dated.
\end{tabular} \\
\hline SO BUSY & When set, command is under execution. When reset, no command is under execution. \\
\hline
\end{tabular}

\section*{WD1691 FLOPPY SUPPORT LOGIC (F.S.L.)}

\section*{FEATURES}
- Direct interface to the FD179X
- Eliminates external FDC Logic
- Data Separation/RCLK GENERATION
- Write Precompensation Signals
- VFOENF Demultiplexing
- Programmable Density
- \(8^{\prime \prime}\) or \(5.25^{\prime \prime}\) Drive Compatible
- All inputs and outputs TTL Compatible
- Single \(+5 V\) Supply

GENERAL DESCRIPTION
The WD1691 F.S.L. has been designed to minimize the external logic required to interface the 179X Family of Floppy Disk Controllers to a drive. With the use of an external VCO. the WD 1691 will generate the RCLK signal for the WD179X, while providing an adiustment pulse (PUMP) to control the VCO frequency. VFOENWF de-multiplexing is also accomplished and Write Precompensation signals have been included to interface directly with the WD2143 Clock Generator.

The WD1691 is implemented in N-MOS silicon gate technology and is available in a plastic or ceramic 20 pin dual-in-line package.

\begin{tabular}{|c|c|c|c|}
\hline PIN & NAME & SYMBOL & FUNCTION \\
\hline 1 & WRITE DATA INPUT & WDIN & Ties directly to the FD179X WD pin. \\
\hline 2. 3, 4,19 & \[
\begin{aligned}
& \text { PHASE } \\
& \text { 2. 3.1.4 }
\end{aligned}
\] & \(\bar{\infty} \overline{03} \overline{01} \overline{04}\) & 4 Phase inputs to generate a desired Write Precompensation delay. These signals tie directly to the WD2143 Clock Generator. \\
\hline 5 & STROBE & STB & Strobe output from the 1691. Strobe will latch at a high level on the leading edge of WDIN and reset to a low level on the leading edge of 04 . \\
\hline 6 & WRITE DATA OUTPUT & WDOUT & Serial, pre-compensated Write data stream to be sent to the disk drive's WD line. \\
\hline 7 & WRITE GATE & WG & Ties directly to the FD179X WG pin. \\
\hline 8 & VFO ENABLE WRITE FAULT & \(\overline{\text { VFOE }} \overline{\text { WF }}\) & Ties directly to the FD179X VFOE/WF pin. \\
\hline 9 & TRACK 43 & TG43 & Ties directly to the FD179X TG43 pin, If Write Precompensation is required on TRACKS 44-76. \\
\hline 10 & \(V_{\text {ss }}\) & \(V_{s s}\) & Ground \\
\hline 11 & READ DATA & \(\overline{R D D}\) & Composite ciock and data stream input from the drive. \\
\hline 12 & READ CLOCK & RCLK & RCLK signal generated by the WD1691, to be tied to the FD179X RCLK pin. \\
\hline 13 & PUMP UP & PU & Tri-state output that will be forced high when the WD1691 requires an increase in VCO frequency. \\
\hline 14 & PUMP DOWN & \(\overline{P D}\) & Tri-state output that will be forced low when the WD1691 required a decrease in VCO frequency. \\
\hline 15 & Double Density Enable & \(\overline{\text { DDEN }}\) & Double Density Select input. When Inactive (High), the VCO frequency is internally divided by two. \\
\hline 16 & Voltage Controlled Oscillator & vco & A nominal 4.0 MHz (\(8^{\prime \prime}\) drive) or 2.0 MHz (\(5.25^{\prime \prime}\) drive) master clock input. \\
\hline 17, 18 & EARLY LATE & EARLY LATE & EARLY and LATE signals from the FD179X, used to determine Write Precompensation. \\
\hline 20 & \(\mathrm{V}_{\text {cc }}\) & \(\mathrm{V}_{\text {cc }}\) & \(+5 \mathrm{~V} \pm 10 \%\) power supply \\
\hline
\end{tabular}

\section*{DEVICE DESCRIPTION}

The WD1691 is divided into two sections:
1) Data Recovery Circuit
2) Write precompensation Circuit

The Data Separator or Recovery Circuit has four inputs: \(\overline{\mathrm{DDEN}}, \mathrm{VCO}, \mathrm{RDD}\), and VFOE WF; and three outputs: PU, \(\overline{P D}\) and RCLK. The VFOE/WF input is used in conjunction with the Write Gate signal to enable the Data recovery circuit. When Write Gate is high, a write operation is taking place, and the data recovery circuits are disabled, regardless of the state on any other inputs.

When VFOE/WF and WRITE GATE are low, the data recovery circuit is enabled. When the \(\overline{R D D}\) iine goes Active Low, the PU or PD signals will become active. If the RDD line has made its transition in the beginning of the RCLK window, PU will go from a \(\mathrm{HI}-\mathrm{Z}\) state to a Logic I, requesting an increase in VCO frequency. If the RDD line has made its transition at the end of the RCLK window, PU will remain in a \(\mathrm{HI}-\mathrm{Z}\) state while PD will go to a logic zero, requesting a decrease in VCO frequency. When the leading edge of RDD occurs in the center of the RCLK window, both PU and \(\overline{P D}\) will remain tri-stated, indicating that no adjustment of the VCO frequency is needed. The RCLK signal is a divide-by16 (\(\overline{\mathrm{DDEN}}=1\)) or a divide-by-8 \((\mathrm{DDEN}=0)\) of the VCO frequency.
\begin{tabular}{|c|c|c|c|}
\hline WG & VFOENF & RDD & PU+PD \\
\hline & & & \\
1 & \(X\) & \(X\) & \(\mathrm{HI}-\mathrm{Z}\) \\
0 & 1 & X & \(\mathrm{HI}-\mathrm{Z}\) \\
0 & 0 & 1 & \(\mathrm{HI}-\mathrm{Z}\) \\
0 & 0 & 0 & Enable \\
& & & \\
\hline
\end{tabular}

The Write Precompensation circuit has been designed to be used with the WD2143-01 clock generator. When the WD1691 is operated in a "single density only" mode, write precompensation as well as the WD2143-01 is not needed. In this case, \(\overline{01}, \overline{\$ 2}, \overline{03}, \overline{04}\), and STB should be tied together, \(\overline{\text { DDEN }}\) left open, and TG43 tied to ground.

In the double-density mode (\(\overline{\mathrm{DDEN}}=0\)), the signals Early and Late are used to select a phase input (\(\overline{\phi 1}-\phi 4\)) on the leading edge of WDIN. The STB line is latched high when this occurs, causing the WD2143-01 to start its pulse generation. \(\overline{02}\) is used as the write data pulse on nominal (Early = Late \(=\emptyset\)), \(\$ 2\) is used for early, and \(\$ 3\) is used for late. The leading edge of \(\overline{\phi 4}\) resets the STB line in anticipation of the next write data pulse. When TG43=0 or DDEN \(=1\), Precompensation is disabled and any transitions on the WDIN line will appear on the WDout line. If write precompensation is desired on all tracks, leave TG43 open (an internal pull-up will force a Logic I) while \(\overline{\mathrm{DDEN}}=0\).

The signals, DDEN, TG43, and RDD have internal pullup resistors and may be left open if a logic I is desired on any of these lines.

The minimum Voh level on PU is specified at 2.4 V , sourcing 200ua. During PUMP UP time, this output will "drift" from a tri-state to .4 V minimum. By tying PU and PD together, a PUMP signal is created that will be forced low for a decrease in VCO frequency and forced high for an increase in VCO frequency. To speed up rise times and stabilize the output voltage, a resistor divider can be used to set the tristate level to approximately 1.4 V . This yields a worst case swing of \(\pm 1 \mathrm{~V}\); acceptable for most VCO chips with a linear voltage-to-frequencv characteristic.

Both PU and \(\overline{P D}\) signals are affected by the width of the RAW READ (RDD) pulse. The wider the RAW READ pulse, the longer the PU or \(\overline{P D}\) signal (depending upon the phase relationship to RCLK) will remain active. If the RAW READ pulse exceeds 250 ns . \((\mathrm{VCO}=4 \mathrm{MHz}\), DDEN \(=0\)) or 500 ns . (VCO \(=4 \mathrm{MHz}, \overline{D D E N}=1\)), then both \(\mathrm{a} P \mathrm{P}\) and \(P D\) will occur in the same window. This is undesirable and reduces the accuracy of the external integrator or low-pass filter to convert the PUMP signals into a slow moving D.C. correction voltage.

Eventually, the PUMP signals will have corrected the VCO input to exactly the same frequency multiple as the RAW READ signal. The leading edge of the RAW READ pulse will then occur in the exact center of the RCLK window, and ideal condition for the FD179X internal recovery circuits.

\section*{INTRODUCTION}

Over the past several years, the Floppy Disk Drive has become the most popular on-line storage device for mini and microcomputer systems. Its fast access time, reliability and low cost-per-bit ratio enables the Floppy Disk Drive to be the solution in mass storage for microprocessor systems. The drive interface to the Host system is standardized, allowing the OEM to substitute one drive for another with minimum hardware/ software modifications.

Since Floppy Disk Data is stored and retrieved as a self-clocking serial data stream, some means of separating the clock from the data and assembling this data in parallel form must be accomplished. Data is stored on individual Tracks of the media, requiring control of a stepper motor to move the Read/Write head to a predetermined Track. Byte sychronization must also be accomplished to insure that the parallel data is properly assembled. After all the design considerations are met, the final controller can consist of 40 or more TTL packages.

To alleviate the burden of Floppy Disk Controlier design, Western Digital has developed a Family of LSI Floppy Disk controller devices. Through its own set of macro commands, the FD179X Controller Family will perform all the functions necessary to read and write data to the drive. Both the \(8^{\prime \prime}\) standard and \(51 / 4^{\prime \prime}\) minifloppy are supported with single or double density recording techniques. The FD179X is compatible with the IBM 3740 (FM) data format, or the System 34 (MFM) standards. Provisions for non-standard formats and variable sector lengths have been included to provide more storage capability per track. Requiring standard \(+5,+12\) power supplies the FD179X is available in a standard 40 pin dual-in-line package.

The FD179X Family consists of 6 devices. The differences between these devices is summarized in Figure 1: The 1792 and 1794 are "single density only" devices, with the Double Density Enable pin (DDEN) left open by the user. Both True and inverted Data bus devices are available. Since the 179X can only drive one TTL Load, a true data bus system may use the 1791 with external inverting buffers to arrive at a true bus scheme. The 1795 and 1797 are identical to the 1791 and 1793, except a side select output has been added that is controlled through thecommand Register.

\section*{SYSTEM DESIGN}

The first consideration in Floppy Disk Design is to determine which type of drive to use. The choice ranges from single-density single sided mini-floppy to the \(8^{\prime \prime}\) double-density double-sided drive. Figure 2 illustrates the various drive and data capacities associated with each type. Although the \(8^{\prime \prime}\) double-density drive offers twice as much storage, a more complex data separator and the addition of Write Precompensation circuits are mandatory for reliable data transfers. Whether to go with \(8^{\prime \prime}\) double-density or not is dependent upon PC board space and the additional circuitry needed to accurately recover data with extreme bit shifts. The byte transfer time defines the nominal time required to transfer one byte of data from the drive. If the CPU used cannot service a byte in this time, then a DMA scheme will probably be required. The 179X also needs a few microseconds for overhead, which is subtracted from the transfer time. Figure 3 shows the actual service times that the CPU must provide on a byte-by-byte basis. If these times are not met, bytes of data will be lost during a read or write operation. For each byte transferred, the 179X generates a DRQ (Data Request) signal on Pin 38. A bit is provided in the status register which is also set upon receipt of a byte from the Disk. The user has the option of reading the status register through program control or using the DRQ Line with DMA or interrupt schemes. When the data register is read, both the status register DRQ bit and the DRQ Line are automatically reset. The next full byte will again set the DRQ and the process continues until the sector(s) are read. The Write operation works exactly the same way, except a WRITE to the Data Register causes a reset of both DRQ's.

\section*{RECORDING FORMATS}

The FD179X accepts data from the disk in a Fre-quency-Modulated (FM) or Modified-Frequency-Modulated (MFM) Format. Shown in Figures 4A and 4B are both these Formats when writing a Hexidecimal byte of 'D2'. In the FM mode, the 8 bits of data are broken up into "bit cells." Each bit cell begins with a clock pulse and the center of the bit cell defines the data. If the data bit \(=0\), no pulse is written; if the data \(=1\), a pulse is written in the center of the cell. For the \(8 \prime\) drive, each clock is written 4 microseconds apart.

FIGURE 1. DEVICE CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline DEVICE & SNGL DENSITY & DBLE DENSITY & INVERTED BUS & TRUE bus & DOUBLE-SIDED \\
\hline 1791
1792 & \(x\)
\(\times\)
x & \(x\) & x & & \\
\hline 1793 & X & X & & \(x\) & \\
\hline 1794 & X & X & x & \(x\) & \\
\hline 1797 & X & X & \(x\) & \(x\) & X \\
\hline
\end{tabular}

FIGURE 2. STORAGE CAPACITIES
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SIZE} & \multirow[b]{2}{*}{DENSITY} & \multirow[b]{2}{*}{SIDES} & \multicolumn{2}{|l|}{UNFORMATTED CAPACITY (NOMINAL)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { BYTE } \\
& \text { TRANSFER } \\
& \text { TIME }
\end{aligned}
\]} & \multicolumn{2}{|l|}{FORMATTED CAPACITY} \\
\hline & & & PER TRACK & PER DISK & & PER TRACK & PER DISK \\
\hline 51/4" & SINGLE & 1 & 3125 & 109,375* & 64 \({ }^{\text {s }}\) & 2304** & 80,640 \\
\hline 51/4" & DOUBLE & 1 & 6250 & 218,750 & \(32 \mu \mathrm{~s}\) & 4608*** & 161,280 \\
\hline \(51 / 4^{\prime \prime}\) & SINGLE & 2 & 3125 & 218,750 & \(64 \mu \mathrm{~s}\) & 2304 & 161,280 \\
\hline \(51 / 4^{\prime \prime}\) & DOUBLE & 2 & 6250 & 437,500 & \(32 \mu \mathrm{~s}\) & 4608 & 322,560 \\
\hline \(8{ }^{\prime \prime}\) & SINGLE & 1 & 5208 & 401,016 & \(32 \mu \mathrm{~s}\) & 3328 & 256,256 \\
\hline \(8{ }^{\prime \prime}\) & DOUBLE & 1 & 10,416 & 802,032 & \(16 \mu \mathrm{~s}\) & 6656 & 512,512 \\
\hline \(8{ }^{\prime \prime}\) & SINGLE & 2 & 5208 & 802,032 & \(32 \mu \mathrm{~s}\) & 3328 & 512,512 \\
\hline \(8{ }^{\prime \prime}\) & DOUBLE & 2 & 10,416 & 1,604,064 & \(16 \mu \mathrm{~s}\) & 6656 & 1,025,024 \\
\hline
\end{tabular}

\footnotetext{
*Based on 35 Tracks/Side
*Based on 18 Sectors/Track (128 byte/sec)
**Based on 18 Sectors/Track (256 bytes/sec)
}
in the MFM mode, clocks are decoded into the data stream. The byte is again broken up into bit cells, with the data bit written in the center of the bit cell if data \(=1\). Clocks are only written if both surrounding data bits are zero. Figure \(4 B\) shows that this occurs only once between Bit cell 4 and 5. Using this encoding scheme, pulses can occur 2, 3 or 4 microseconds apart. The bit cell time is now 2 microseconds; twice as much data can be recorded without increasing the Frequency rate due to this encoding scheme.

The 179X was designed to be compatible with the IBM 3740 (FM) and System 34 (MFM) Formats. Although most users do not have a need for data exchange with IBM mainframes, taking advantage of these well studied formats will insure a high degree of system performance. The 179X will allow a change in gap fieids and sector lengths to increase usable storage capacity, but variations away from these standards is not recommended. Both IBM standards are soft-sector format. Because of the wide variation in address marks, the 179X can only support soft-sectored media. Hard sectored diskettes have continued to lose popularity, mainly due to the unavailability of a standard and the limitation of sector lengths imposed by the physical sector holes in the diskette.

\section*{PROCESSOR INTERFACE}

The Interface of the 179X to the CPU consists of an 8-bit Bi-directional bus, read/write controls and optional interrupt lines. By selecting the device via the CHIP SELECT Line, each of the five internal registers can be accessed.

Shown below are the registers and their addresses:
\begin{tabular}{|c|c|c|c|c|}
\hline PIN 3 CS & PIN 6 \(A_{1}\) & \[
\begin{gathered}
\text { PIN } 5 \\
A_{0} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{PIN} 4 \\
& \overline{R E}=\varnothing
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{PIN} 2 \\
& W E=\sigma
\end{aligned}
\] \\
\hline 0 & 0 & 0 & STATUS REG & COMMAND REG \\
\hline 0 & 0 & 1 & TRACK REG & TRACK REG \\
\hline 0 & 1 & 0 & SECTOR REG & SECTOR REG \\
\hline 0 & 1 & 1 & DATA REG & DATA REG \\
\hline 1 & X & X & H1-Z & H1-Z \\
\hline
\end{tabular}

Each time a command is issued to the 179X, the Busy bit is set and the INTRQ (Interrupt Request) Line is reset. The user has the option of checking the busy bit or use the INTRQ Line to denote command completion. The Busy bit will be reset whenever the 179 X is idle and awaiting a new command. The INTRQ Line, once set, can only be reset by a READ of the status register or issuing a new command. The MR (Master Reset) Line does not affect INTRQ.

The \(A_{0}, A_{1}\), Lines used for register selections can be configured at the CPU in a variety of ways. These lines may actually tie to CPU address lines, in which case the 179X will be memory-mapped and addressed like RAM. They may also be used under Program Control by tying to a port device such as the 8255, 6820, etc. As a diagnostic tool when checking out the CPU interface, the Track and Sector registers should \(\mathrm{r} \in=\) :pond like "RAM" when the 179X is idle (Busy = INTRQ = 0).
Because of internal synchronization cycles, certain time delays must be introduced when operating under Programmed VO. The worst case delays are:
\begin{tabular}{|c|c|c|}
\hline OPERATION & \[
\begin{aligned}
& \text { NEXT } \\
& \text { OPERATION }
\end{aligned}
\] & DELAY REQ'D \\
\hline WRITE TO COMMAND REG & READ STATUS REGISTER & \[
\begin{aligned}
& M F M=14 \mu s^{*} \\
& F M=28 \mu \mathrm{~S}
\end{aligned}
\] \\
\hline WRITE TO ANY REGISTER & READ FROM A DIFFERENT REG & NO DELAY \\
\hline
\end{tabular}
"NOTE: Times Double when CLK \(=1 \mathrm{MHz}(51 / 4\) " drive)

Other CPU interface lines are CLK, \(\overline{M R}\) and \(\overline{D D E N}\). The CLK line should be 2 MHz (\(8^{n}\) drive) or \(1 \mathrm{MHz}\left(51 / 4^{\prime \prime}\right.\) drive) with a \(50 \%\) duty cycle. Accuracy should be \(\pm 1 \%\) (crystal source) since all internal timing, including stepping rates, are based upon this clock.
The \(\overline{M R}\) or Master Reset Line should be strobed a minimum of 50 microseconds upon each power-on condition. This line clears and initializes all internal registers and issues a restore command (Hex '03') on the rising edge. A quicker stepping rate can be written to the command register after a \(\overline{M R}\), in which case the remaining steps will occur at the faster programmed rate. The 179 X will issue a maximum of 255 stepping pulses in an attempt to expect the TROO line to go active low. This line should be connected to the drive's TROO sensor.
The \(\overline{\text { DDEN }}\) line causes selection of either single density (\(\overline{\mathrm{DDEN}}=1\)) or double density operation. \(\overline{\mathrm{DDEN}}\) should not be switched during a read or write operation.

\section*{FLOPPY DISK INTERFACE}

The Floppy Disk Interface can be divided into three sections: Motor Control, Write Signals and Read Signals. All of these lines are capable of driving one TTL load and not compatible for direct connection to the drive. Most drives require an open-collector TTL interface with high current drive capability. This must be done on all outputs from the 179X. Inputs to the 179X may be buffered or tied to the Drives outputs, providing the appropriate resistor termination networks are used. Undershoot should not exceed -0.3 volts, while integrity of \(V_{I H}\) and \(V_{O H}\) levels should be kept within spec.

\section*{MOTOR CONTROL}

Motor Control is accomplished by the STEP and DIRC Lines. The STEP Line issues stepping pulses with a period defined by the rate field in all Type I commands. The DIRC Line defines the direction of steps (DIRC = 1 STEP IN/DIRC \(=0\) STEP OUT).
Other Control Lines include the \(\overline{\mathbb{P}}\) or Index Pulse. This Line is tied to the drives' Index L.E.D. sensor and makes an active transition for each revolution of the diskette. The TROO Line is another L.E.D. sensor that informs the 179X that the stepper motor is at its furthest position, over Track 00. The READY Line can be used for a number of functions, such as sensing "door open", Drive motor on, etc. Most drives provide a programmable READY Signal selected by option jumpers on the drive. The 179X will look at the ready signal prior to executing READ/WRITE commands. READY is not inspected during any Type I commands. All Type I commands will execute regardless of the Logic Level on this Line.

\section*{WRITE SIGNALS}

Writing of data is accomplished by the use of the WD, WG, WF, TG43, EARLY and LATE Lines. The WG or Write Gate Line is used to enable write current at the drive's R/W head. It is made active prior to writing data on the disk. The WF or WRITE FAULT Line is used to inform the 179X of a failure in drive electronics. This signal is multiplexed with the VFOE Line and must be logically separated if required.

The TG43 or "TRACK GREATER than 43 " Line is used to decrease the Write current on the inner tracks, where bit densities are the highest. If not required on the drive, TG43 may be left open.

\section*{WRITE PRECOMPENSATION}

The 179X provides three signals for double density Write-Precompensation use. These signals are WRITE DATA, EARLY and LATE. When using single density drives (eighter \(8^{\prime \prime}\) or \(51 / 4^{\prime \prime}\)), Write Precompensation is not necessary and the WRITE DATA line is generally TTL Buffered and sent directly to the drive. In this mode, EARLY and LATE are left open.
For double density use, Write Precompensation is a function of the drive. Some manufacturers recommend Precompensating the \(51 / 4^{\prime \prime}\) drive, while others do not. With the \(8^{\prime \prime}\) drive, Precompensation may be specified from TRACK 43 on, or in most cases, all TRACKS. If the recommended Precompensation is not specified,
check with the manufacturer for the proper configuration required.
The amount of Precompensation time also varies. A typical value will usually be specified from 100-300ns. Regardless of the parameters used, Write Precompensation must be done external to the 179X. When DDEN is tied low, EARLY or LATE will be activated at least 125 ns. before and after the Write Data pulse. An Algorithm internal the 179X decides whether to raise EARLY or LATE, depending upon the previous bit pattern sent. As an example, suppose the recommended Precomp value has been specified at 150 ns. The following action should be taken:
\begin{tabular}{ccl}
\hline EARLY & LATE & \multicolumn{1}{c}{ ACTION TAKEN } \\
\hline 0 & 0 & delay WD by 150ns (nominal) \\
0 & 1 & delay WD by 300ns (2X value) \\
1 & 0 & do not delay WD \\
\hline
\end{tabular}

\section*{DATA SEPARATION}

The 179X has two inputs (RAW READ \& RCLK) and one output (VFOE) for use by an external data separator. The RAW READ input must present clock and data pulses to the 179X, while the RCLK input provides a "window" or strobe signal to clock each RAW READ pulse into the device. An ideal Data Separator would have the leading edge of the RAW READ pulse occur in the exact center of the RCLK strobe.
Motor Speed Variation, Bit shifts and read amplifier recovery circuits all cause the RAW READ pulses to drift away from their nominal positions. As this occurs, the RAW READ pulses will shift left or right with respect to RCLK. Eventually, a pulse will make its transition outside of its RCLK window, causing either a CRC error or a Record-not-Found error at the 179X. A Phase-Lock-Loop circuit is one method of achieving synchronization between the RCLK and RAW READ signais. As RAW READ pulses are fed to the PLL, minor adjustments of the free-running RCLK frequency can be made. If pulses are occurring too far apart, the RCLK frequency is decreased to keep synchronization. If pulses begin to occur closer together, RCLK is increased until this new higher frequency is achieved. In normal read operations, RCLK will be constantly adjusted in an attempt to match the incoming RAW READ frequency.
Another method of Data Separation is the CounterSeparator technique. The RCLK signal is again freerunning at a nominal rate, until a RAW READ pulse occurs. The Separator then denotes the position of the pulse with respect to RCLK (by the counter value), and counts down to increase or decrease the current RCLK window. The next RCLK window will occur at a nominal rate and will continue to run at this frequency until another RAW READ pulse adjusts RCLK, but only the present window is adjusted.
Both PPL and Counter/Separator are acceptable methods of Data Separation. The PPL has the highest reliability because of its "tracking" capability and is recommended for \(8^{\prime \prime}\) double density designs.

FIGURE 12. 179X DATA SEPARATOR
(PROVIDED COURTESY OF ANDROMEDA SYSTEMS. PANORAMA CITY. CA 91402)

FIGURE 14. 8" \(^{\prime \prime}\) SINGLE/DOUBLE DENSITY SYSTEM

\section*{WD2143-01 Four Phase Clock Generator}

\section*{FEATURES}
- true and inverted outputs
- single e volt supply
- TTl compatable
- on Chip oscillator
- xtal or til clock inputs
- 3 MHz OPERATION
- TTl Clock output
- pROGRAMMABLE PULSE WIDTHS
- PROGRAMMABLE PHASE WIDTHS
- NO EXTERNAL CAFACITOR
- NON-OVERLAPPING OUTPUTS

GENERAL DESCRIPTION
The WD2143-01 Four-Phase Clock Generator is a MOS/LSI device capable of generating four nonoverlapping clocks. The output pulse widths a!e controlled by tying an external resistor to the proper control inputs. All pulse widths may be set to the same width by tying the QFibline through an externai resistor. Each pulse width can aiso be individually programmed by tying a resistor through the appropriate Ø1PW - 4 PW control inputs In adition, the OSC OUT line provides a TTL square wave output at a divide-by-four of the crystal frequency.

PIN CONNECTIONS

- Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Output Circuitry
- Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline DEVICE TYPE & \[
\begin{array}{|c|}
\hline \text { SIMILAR } \\
\text { TO } \\
\hline
\end{array}
\] & NUMBER
VCO's & \[
\begin{aligned}
& \text { COMP'L } \\
& \text { ZOUT }
\end{aligned}
\] & ENABLE & RANGE input & Rext \\
\hline LSE24 & LS324 & single & yes & yes & ves & no \\
\hline LSE25 & 'LS325 & duai & yes & no & no & no \\
\hline LS626 & LS326 & dual & ves & ves & no & no \\
\hline 'LS627 & LSS327 & dual & no & no & no & no \\
\hline 'LS628 & LS324 & single & yes & yes & ves & yes \\
\hline LSE29 & LS: 24 & dual & no & yes & yes & no \\
\hline
\end{tabular}
description
These voltage-controlled oscillators (VCO's) are improved versions of the origina! VCO family SN54LSi24, SN54LS324 thru SN54LS327 SN74LS124, and SN74LS324 thru SN74LS327 These new devices feature improved voltage-to frequency inearity, range and compensation. With the exception of the 'LS624 and 'LS628, all of these devices feature two independent VCO's in a single monolithic chip. The 'LS624. 'LS625, 'LSE26 and 'LSEZZ have complementary \(Z\) outputs. The cutput fredusncy for each VCO is established by a singie external component (\(\epsilon\) ither a capacitor or a crystal), in combination with voltage-sensitive inputs used for frequency control anc iequency range Each device has a voltage-sensitive input for frequency control; however, the 'LS624, 'LS628, and 'LSE29 devices also trave one for frequency range. (See Figures 1 thru 6).

The 'LS628 features two Fexternal pins that can \(^{\text {chen }}\) offer more precise temperature compensation than its 'LS624 counterpart.

SNS4LS ... JOR W PACKAGE SNT4LS'...JOR NPACKAGE 'LSE24 (TOP VIEW)

'LSE25 (TOP VIEW)

Cupyrign: () 1980 Ey Texas insturrents incorporated
TEXAS Instruments
POST OFFICE BOX \(2250: 2\) - DALLAS TEXAS 75265

\section*{TYPES SN54LS624 THRU SN54LS629, SN74LS624 THBE SN74LS629 YOLTAGE-CONTROLLED OSCILLATORS}

\begin{abstract}
Figure 3 and Figure \(b\) con:ain the necessary information to choose the proper copacitor value to obtan the desired
\end{abstract} operating frequency

The devices can aiso be operated 5 : \(n\) a crystal by connecting a fundamental series resonant crvstal across the Cext pins. (Fundamental frequency \(\leqslant 20 \mathrm{MHz}\)) The frequency control should be connected to 5 volts and, where applicable the range :iontrol inouid ako be connected io 5 volts.

A single 5 voit iupolv ran de used: nowever, one set of supply voltage and ground pins (VCC and Gnd! is provided for the enable, synchronzator gating, and output sections, and a aparate set \(\Theta \vee C C\) and \(\mathcal{E}\) Gnd : is provided for the oscillator and associated freguencv control circuts so that effective solation can be accomolished in the systern. For operation of frequencies greater than 10 MHz it is recommended that two independent supplies be used. Disabling Hther VCO of the LS625 and 'LS627 can be achieved by removing the appropriate OVCC. An enable input is provided on the LS624 'LS626. LS628 and 'LS629 When the enable input is low the output is enabled: when the gnable inout is high, the nternal oschllator is disablect, \(Y\) is high, and \(Z\) is low. Caution! Crosstalk may occur in the dual devices (LS625, LS626, 'LSE: ? and 'LS629) when both VCO's are operated simultaneously.

The puise-svnchronization gating section ensures that the first output pulse is neither clipped nor extended. The duty cycle of the square wave output is fixed at approximately 50 percent.

The SN54LS624 thru SN54LS629 are cha witerized for operation over the full military temperature range of \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), the SN74LS624 thru SN74LSe29 are characterized for operation from \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\).
schematics of inputs and outputs
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
EQUIVALENT OF EACH ENABLE INPUT \\
('LS624, 'LS626,'LS628, AND 'LS629)
\end{tabular} & EQUIVALENT OF EACH FREQUENCY CONTROLOR 'LS624,'LS628, AND 'LS629) RANGE INPUT & TYPICAL OF ALL OUTPUTS \\
\hline
\end{tabular}
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

\section*{Texas Instruments}
incorporated
MST OFFICE \(30 \times 2250: 2\) - DALLAS TEXAS 75265

\section*{functional block diagram (positive logic)}

logic symbols'

Texas Instruments
IVCORPORATED
PGS OFFOEBCX2250\% - DALLAS PEXAS 722E

\section*{16,384-BIT DYNAMIC RANDOM ACCESS MEMORY}

The MCM4116 is a 16,384 bit, high-speed dynamic Random Access Memory designed for high performance, low-cost applications in mainframe and buffer memories and peripheral storage. Organized as 16,384 one.bit words and fabricated using Motorola's highly reliable \(N\)-channe! double-polysilicon technology, this device optimizes speed, power, and density tradeoffs.

By multiplexing row and column address inputs, the MCM4116 requires only seven address lines and permits packaging in Motorola's standard 16 -pin dual in-line packages. This packaging technique allows high system density and is compatible with widely available automated test and insertion equipment. Complete address decoding is done on chip with address latches incorporated.

All inputs are TTL compatible, and the output is 3 -state TTL compatible. The data output of the MCM4116 is controlled by the column address strobe and remains valid from access time until the column address strobe returns to the high state. This output scheme allows higher degrees of system design flexibility such as common input/output operation and :wo dimensional memory selection by decoding both row address and column address strobes

The MCM4116 incorporates a one-transistor cell design and dynamic storage techniques, with each of the 128 row addresses requiring a refresh cricle every 2 milliseconds.
- Flexible Timing with Read-Modify-Write, RAS Only Refresh, and Page-Mode Capability
- Industry Standard 16-Pin Package
- \(16,384 \times 1\) Organization
- \(\pm 10 \%\) Tolerance on All Power Supplies
- All Inputs are Fully TTL Compatible
- Three-State Fully TTL-Compatible Output
- Common I/O Capability When Using "Early Write" Mode
- On.Chip Latches for Addresses and Data In
- Low Power Dissipation - 462 mW Active, 20 mW Standby (Max)
- Fast Access Time Options: 150 ns - MCM4116L.15, C-15

200 ns - MCM4116L-20, C-20
250 ns - MCM4116L.25, C-25 300 ns - MCM4116L-30, C-30
- Easy Upgrade from 16-Pin 4K RAMs
- Pin Compatible with 2117, \(2116,6616, \mu\) PD416, and 4116

ABSOLUTE MAXIMUM RATINGS ISee Note 11
\begin{tabular}{|c|c|c|c|}
\hline Rating & Symbol & Value & Unit \\
\hline Voltage on Any Pin Relative to \(V_{\text {BB }}\) & \(V_{\text {in }}, V_{\text {out }}\) & -0.5 to +20 & Vde \\
\hline Operating Temperature Range & \(\mathrm{T}_{\text {A }}\) & \(020+70\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temper ature Range & \(T_{s t g}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation & \(\mathrm{P}_{\mathrm{D}}\) & 1.0 & w \\
\hline Dara Out Current & tout & 50 & ma \\
\hline
\end{tabular}

NOTE 1 Permenent device demage may occur if ABSOLUTE MAXIMUM RAT. INGS are excasded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Expozure to higher then recommended voltages for extended periods of time could effect device reliebility.

\section*{MOS}
(N-CHANNEL)
16,384-BIT DYNAMIC RANDOM ACCESS MEMORY

This device contains circuitry to protect the inputs against damage due to high static woltages or electric fields; however, it is advised that norma! precautions be taken to avoid apolicatron of any voltage higher then maximum rated voltages to this high impedance circuit.

\section*{MCM4116}

DC OPERATING CONDITIONS AND CHARACTERISTICS (Full operating voltage and temperature range uniess otherwise noted.) RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Symboi & Min & Typ & Max & Unit & Notes \\
\hline \multirow[t]{4}{*}{Supply Voltage} & \(V_{\text {DD }}\) & 10.8 & 12.0 & 13.2 & Vac & 1 \\
\hline & \(v_{\text {CC }}\) & 4.5 & 5.0 & 5.5 & Vac & 1.2 \\
\hline & \(\mathrm{V}_{\text {SS }}\) & 0 & 0 & 0 & Vac & 1 \\
\hline & \(V_{B B}\) & -4.5 & -5.0 & -5.5 & Voc & 1 \\
\hline Logic 1 Voltage, \(\overline{\text { RAS }}\), \(\overline{\text { CAS }}\), WRITE & \(V_{\text {IHC }}\) & 2.7 & - & 7.0 & Voc & 1 \\
\hline Logic I Voltage, all inputs except RAS, CAS, WRITE & \(V_{1 H}\) & 2.4 & - & 7.0 & Vac & 1 \\
\hline Logic O Voltage, all inputs & \(V_{1 L}\) & -1.0 & - & 0.8 & Vac & 1 \\
\hline
\end{tabular}

DC CHARACTERISTICS \(V_{D D}=12 \mathrm{~V} \cdot 10 \%, \mathrm{~V}_{\mathrm{CC}}-50 \mathrm{~V} \cdot 10 \%, \mathrm{~V}_{\mathrm{BB}}=-50 \mathrm{~V} \cdot 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}-0+10^{\circ} 70^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Max & Units & Notes \\
\hline Average VDD Power Supoiy Current & '0D1 & - & 35 & mA . & 4 \\
\hline \(V_{C C}\) Power Supply Curremt & \({ }^{1} \mathrm{CC}\) & - & - & mA & 5 \\
\hline Average \(\mathrm{V}_{\mathrm{BB}}\) Power Supply Current & \({ }^{\prime} \mathrm{BB} 1.3\) & - & 200 & \(\mu \mathrm{A}\) & \\
\hline Standby \(\mathrm{V}_{\text {BB }}\) Power Supply Current & \({ }^{1} \mathrm{BB} 2\) & - & 100 & \(\mu \mathrm{A}\) & \\
\hline Standby VDD Power Supply Current & 1002 & - & 1.5 & \(m A\) & 6 \\
\hline Average VDD Power Supply Curient during "RAS only" cycies & '003 & - & 27 & \(m A\) & 4 \\
\hline Input Leakage Curremi lany input) & il(L) & - & 10 & \(\mu \mathrm{A}\) & \\
\hline Output Leakage Current & OLL) & - & 10 & \(\mu \mathrm{A}\) & 6.7 \\
\hline Output Logic 1 Voltage @ 'out = -5 mA & VOH & 24 & - & Voc & 2 \\
\hline Output Logic 0 Voltage @ \({ }_{\text {Out }}=42 \mathrm{~mA}\) & VOL & - & 04 & vac & \\
\hline
\end{tabular}

\section*{NOTES}

1 All voltages reterenced to \(V_{S S} V_{B B}\) must be applied before and removed after other suppiv voltages
2. Output voitage wilt swing from \(V_{S S}\) to \(V_{C C}\) under open circuit conations. For purposes of maintaining data in pawer down mode \(V_{C C}\) may be reduced to \(V_{S S}\) without attecting refresh operations \(\mathrm{VOH}^{(m i n)}\) specification is not guaranteed in this mode
Several cycles are required atter power up betore p:oder device oderation is achieved. Any. 8 cycles which perform retresh are anequate
Current is proportional to cycle rate: maximum current is measured at the fastest cycle rate
CC depends upon output loading The VCC supdy is connected to the output butter oniv
Output is disabled (open circuil) and \(\overline{\operatorname{RAS}}\) and \(\overline{\text { CAS }}\) are both at a logic 1
\(0 \vee \leqslant V_{\text {out }} \leqslant+55 \mathrm{~V}\)
8. Capacitance measured with a Boonton Meter or effective cafacitance catculated from me equation \(C=\frac{1 \nu_{1}}{\Delta V}\)

\section*{AC OPERATING CONDITIONS AND CHARACTERISTICS (See Notes 3, 9, 14) (Read, Write, and Read-Modify-Write Cycles)}

\section*{RECOMMENDED AC OPERATING CONDITIONS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Paramater} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|l|}{MCMA116.15} & \multicolumn{2}{|l|}{MCMA116-20} & \multicolumn{2}{|l|}{MCMA 116.25} & \multicolumn{2}{|l|}{MCMA11630} & \multirow[b]{2}{*}{Units} & \multirow[b]{2}{*}{Notes} \\
\hline & & Min & Max & Min & Max & Min & Max & Min & Max & & \\
\hline Random Reac or W:ite Crcle Time & \(t_{\text {R }}\) & 375 & - & 375 & - & 410 & - & 480 & - & ns & \\
\hline Read Write Cycle Time & \({ }^{\text {t }}\) RWC & 375 & - & 375 & - & 515 & - & 660 & - & ns & \\
\hline Access Time trom Row Address Strobe & trac & - & 150 & - & 200 & - & 250 & - & 300 & ns & 10, 12 \\
\hline Access Time from Column Address Strobe & \({ }^{\text {c }}\) CAC & - & 90 & - & 135 & - & 165 & - & 200 & ns & 11, 12 \\
\hline Output Buffe: and Turn-off Delay & 'OFF & 0 & 40 & 0 & 50 & 0 & 60 & 0 & 60 & ns & \\
\hline Row Address Slrobe Precharge Time & \({ }_{\text {t } R \text { P }}\) & 100 & - & 120 & - & 150 & - & 180 & - & ns & \\
\hline Row Address Strobe Pulse Width & tras & 150 & 10,000 & 200 & 10.000 & 250 & 10,000 & 300 & 10.000 & ns & \\
\hline Column Address Strobe Pulse Width & \({ }^{2} \mathrm{CAS}\) & 90 & 10,000 & 135 & 10,000 & 165 & 10.000 & 200 & 10,000 & ns & \\
\hline Row to Column Strobe Lead Time & IRCD & 20 & 60 & 25 & 65 & 35 & 85 & 60 & 100 & ns & 13 \\
\hline Row Address Setup Time & \({ }^{\text {t }}\) ASR & 0 & - & 0 & - & 0 & - & 0 & - & ns & \\
\hline Row Address Hold Time & IRAH & 20 & - & 25 & - & 35 & - & 60 & - & ns & \\
\hline Column Address Setup Time & \({ }^{\text {t }}\) ASC & -10 & - & -10 & - & -10 & - & -10 & - & ns & \\
\hline Column Adoress Hold Time & \({ }^{1} \mathrm{CAH}\) & 45 & - & 55 & - & 75 & - & 100 & - & ns & \\
\hline Column Addess Hold Time Feferenced to \(\overline{R A S}\) & 'AR & 105 & - & 120 & - & 160 & - & 200 & - & ns & \\
\hline Transition Time (Rise and Fall) & \({ }^{\text {t }}\) & 3.0 & 35 & 3.0 & 50 & 3.0 & 50 & 3.0 & 50 & ns & 14 \\
\hline Read Command Selup Time & : RCS & 0 & -- & 0 & - & 0 & - & 0 & - & ns & \\
\hline Read Command Hold Time & \({ }^{\text {t }} \mathrm{RCH}\) & 0 & - & 0 & - & 0 & - & 0 & - & ns & \\
\hline Write Command Hold Time & \({ }^{\text {I WCH }}\) & 45 & - & 55 & - & 75 & - & 100 & - & ns & \\
\hline Write Command Hold Time Reterenced to \(\overline{\mathrm{RAS}}\) & 'WCR & 105 & - & 120 & - & 160 & - & 200 & - & ns & \\
\hline Write Commana Pulse Width & \({ }^{\text {twp }}\) & 45 & \(-\) & 55 & - & 75 & - & 100 & - & ns & \\
\hline Write Command to Row Stiobe Lead Time & \({ }^{\text {t }}\) WWL & 60 & -- & 80 & - & 100 & - & 180 & - & ns & \\
\hline Write Command to Column Strobe Lead Time & \({ }^{\text {t }} \mathrm{CWL}\) & 60 & - & 80 & - & 100 & - & 180 & - & is & \\
\hline Data in Setup Time & \({ }^{\text {d }}\) S & 0 & - & 0 & - & 0 & - & 0 & - & ns & 15 \\
\hline Data in Hold Time & \({ }^{1} \mathrm{DH}\) & 45 & - & 55 & - & 75 & - & 100 & - & ns & 15 \\
\hline Data in Hold Time Referenced to \(\overline{\text { RAS }}\) & \({ }^{1}\) DHR & 105 & - & 120 & - & 160 & - & 200 & - & ns & \\
\hline Column to Row Strobe Precharge Time & \({ }^{1}\) CRP & -20 & - & -20 & - & -20 & - & -20 & - & ns & \\
\hline RAS Hoid Time & & 100 & - & 135 & \(-\) & 165 & - & 200 & - & ns & \\
\hline Retrest Perbod & :RFSH & - & 2.0 & - & 2.0 & - & 2.0 & - & 20 & ms & \\
\hline WRITE Command Selup Time & \({ }^{\text {t WCS }}\) & -20 & - & -20 & - & -20 & - & -20 & - & ns & \\
\hline \(\overline{\text { CAS to WRITE Delay }}\) & \({ }^{1}\) CWD & 70 & - & 95 & - & 125 & - & 180 & - & ns & 16 \\
\hline RAS to WRITE Delay & IRWD & 120 & - & 160 & - & 210 & - & 280 & - & ns & 16 \\
\hline \(\overline{\text { CAS }}\) Precharge Time (Page mode cycle only) & \({ }^{\text {t }} \mathrm{CP}\) & 60 & - & 80 & - & 100 & - & 100 & - & ns & \\
\hline Page Mode Cycle Time & \({ }^{\text {PPC }}\) & 170 & - & 225 & - & 275 & - & 325 & - & ns. & \\
\hline \(\overline{\text { CAS }}\) Hold Time & \({ }^{\text {t }} \mathrm{CSH}\) & 150 & - & 200 & - & 250 & - & 300 & - & ns & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Parameter & Symbol & Typ & Max & Units & Notes \\
\hline & (0-A5). & & 4.0 & 5.0 & pF & 9 \\
\hline TES (continued) & apacitance \(\overline{\text { RAS }}\). \(\overline{\mathrm{CAS}}\). \(\overline{\text { WRIT }}\) & & 8.0 & 10 & PF & 9 \\
\hline 9. \(A C\) measurements assume \(\mathrm{t}^{T}=5.0 \mathrm{~ns}\). & Output Capacitance (\(\mathrm{Dout}^{\text {) }}\) & co & 5.0 & 7.0 & pF & 7.9 \\
\hline \multicolumn{7}{|l|}{10. Assumes that \(i_{R C D}{ }^{+i}<T_{R C D}\) (max)} \\
\hline \multicolumn{7}{|l|}{11. Assumes that \(t R C D+i T \geqslant t R C D\) (max)} \\
\hline \multicolumn{7}{|l|}{12. Measured with a load circuit equivalent to 2 TTL loads and 100 pF .} \\
\hline \multicolumn{7}{|l|}{Operation within the t RCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only. it i RCD is greater than the specified t RCD (max) limit, then access time is controlied exclusively by tcAC.} \\
\hline \multicolumn{7}{|l|}{14. \(V_{1 H C}(\min)\) or \(V_{1 H}(\min)\) and \(V_{I L}(\max)\) are reference levels for measuring timing of input signals. Also, transistion tumes are measured between \(V_{\text {IHC }}\) or \(V_{\text {IH }}\) and \(V_{\text {IL }}\).} \\
\hline \multicolumn{7}{|l|}{15. These parameters are referenced to \(\overline{C A S}\) leading edge in random write cycles and to \(\overline{W A I T E}\) leading edge in delayed write or read-modifywrite cycles.} \\
\hline \multicolumn{7}{|l|}{16. tWCS, 'CWD and t RWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: If tWCS \(\geqslant\) tWCS \((\mathrm{min})\), the cycle is an early write cycie and the data out pin will remain open circuit (high impedance) throughout the entire cycle: If \(\mathrm{I}_{\mathrm{CWD}}>^{\text {t }}\) CWD \((\mathrm{min})\) and \(\mathrm{t}_{\text {RWD }} \geqslant \mathrm{t}_{\text {RWD }}(\mathrm{min})\), the cycle is a readwrite cycie and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.} \\
\hline
\end{tabular}

\section*{head crcle timing}

write cycle timing

\section*{MCM4116}

READ.WRITE/READ MODIFY WRITE CYCLE

RAS ONLY REFRESH TIMING
Note: \(\overline{C A S}=V_{\text {IHC }} \overline{\text { WRITE }}=\) Don't Care

Dout \(\quad \mathrm{OH}\) -
vol.

\section*{PAGE MODE READ CYCLE}

PAGE MODE WRITE CYCLE

MCM4116

\section*{MPU131 (slucon) \\ thru \\ MPUI33}

\section*{SILICON PROGRAMMABLE UNIJUNCTION TRANSISTORS}
designed to enable the engineer to "program" unijunction characteristics such as \(R_{\mathrm{BB}}, \eta\). IV, and Ip by merely selecting two resistor values. Application includes thyristor-trigger, oscillator, pulse and timing circuits. The MPU131, MPU132 and MPU133 may also be used in special thyristor applications due to the availability of an anode gate. Supplied in an inexpensive TO 92 plastic package for high-volume requirements, this package is readily adaptable for use in automatic insertion equipment
- Programmable - RBB, \(\eta, I_{V}\) and \(I_{P}\).
- Low On-State Voltage - 1.5 VoltsMaximum@ if \(=50 \mathrm{~mA}\)
- Low Gate to Anode Leakage Current - 5.0 nA Maximum
- High Peak Output Voltage - 11 Volts Typical
- Low Offset Voltage - 0.35 Volt Typical (\(R_{G}=10 \mathrm{k}\) ohms)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MAXIMUM RATINGS} \\
\hline Rating & Symbol & Value & Unit \\
\hline Power Dissipation Derate Above \(25^{\circ} \mathrm{C}\) & \[
\begin{gathered}
P_{F} \\
1 / \theta_{j A} \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 375 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{mW} \\
\mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
\hline
\end{gathered}
\] \\
\hline DC Forward Anode Current Derate Above \(25^{\circ} \mathrm{C}\) & 'T & \[
\begin{aligned}
& 200 \\
& 2.67
\end{aligned}
\] & \[
\mathrm{mA}_{\mathrm{mA} /{ }^{\circ} \mathrm{C}}
\] \\
\hline DC Gate Current & 1 G & \(\pm 20\) & mA \\
\hline Repetitive Peak Forward Current \(100 \mu \mathrm{~s}\) Pulse Width, 1.0\% Duty Cycle \(20 \mu \mathrm{~s}\) Pulse Width, \(1.0 \%\) Duty Cycle & 'tRM & \[
\begin{aligned}
& 1.0 \\
& 2.0 \\
& \hline
\end{aligned}
\] & Amp Amp \\
\hline Non-Repetitive Peak Forward Current \(10 \mu \mathrm{~s}\) Puise Width & \({ }^{\text {ITSM }}\) & 5.0 & Amp \\
\hline Gate to Cathode Forward Voltage & \(V_{\text {GKF }}\) & 40 & Voit \\
\hline Gate to Cathode Reverse Voltage & \(V_{G K R}\) & 5.0 & Volt \\
\hline Gate to Anode Reverse Voltage & \(V_{\text {GAR }}\) & 40 & Volt \\
\hline Anode to Cathode Voltage & \(V_{\text {AK }}\) & \(\pm 40\) & Volt \\
\hline Operating Junction Temperature Range & \(T_{J}\) & -50 to +100 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & \(\mathrm{T}_{\text {stg }}\) & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{MPU131, MPU132, MPU133 (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Characteristic} & Figurs & Symbol & Min & Typ & Max & Unit \\
\hline \[
\begin{aligned}
\text { Peak Current } \\
\left(\mathrm{V}_{\mathrm{S}}=10 \mathrm{Vdc}, R_{\mathrm{G}}=1.0 \mathrm{M} \Omega 2\right) \\
\left(\mathrm{V}_{\mathrm{S}}=10 \mathrm{Vdc}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \mathrm{ohms}\right)
\end{aligned}
\] & MPU131
MPU132
MPU133
MPU131
MPU132
MPU133 & 2,9-14 & Ip & \[
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
\] & \[
\begin{gathered}
1.25 \\
0.19 \\
0.08 \\
4.0 \\
1.20 \\
0.70
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
0.30 \\
0.15 \\
5.0 \\
2.0 \\
1.0
\end{gathered}
\] & \(\mu \mathrm{A}\) \\
\hline Offset Voltage
\[
\begin{aligned}
& \left(\mathrm{V}_{\mathrm{S}}=10 \mathrm{Vdc}, \mathrm{R}_{\mathrm{G}}=1.0 \mathrm{MS}\right) \\
& \left(\mathrm{V}_{\mathrm{S}}=10 \mathrm{Vdc}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{kohms}\right)(\mathrm{All} \text { Types) }
\end{aligned}
\] & \begin{tabular}{l}
MPU131 \\
MPU132 \\
MPU133
\end{tabular} & 1 & \(V_{T}\) & \[
\begin{aligned}
& 0.2 \\
& 0.2 \\
& 0.2 \\
& 0.2
\end{aligned}
\] & \[
\begin{aligned}
& 0.70 \\
& 0.50 \\
& 0.40 \\
& 0.35
\end{aligned}
\] & \[
\begin{aligned}
& 1.6 \\
& 0.6 \\
& 0.6 \\
& 0.6
\end{aligned}
\] & Volts \\
\hline Valley Current
\[
\begin{aligned}
& \left(V_{S}=10 \mathrm{Vdc}, R_{G}=1.0 \mathrm{MS} 2\right) \\
& \left(V_{S}=10 \mathrm{Vdc}, R_{G}=10 \mathrm{k} \mathrm{ohms}\right)
\end{aligned}
\] & \begin{tabular}{l}
MPU131, 132 \\
MPU133 \\
MPU131 \\
MPU132, 133
\end{tabular} & 1.4.5, & IV & \[
\begin{aligned}
& - \\
& \overline{70} \\
& 50
\end{aligned}
\] & \[
\begin{gathered}
18 \\
18 \\
270 \\
270
\end{gathered}
\] & \[
\begin{aligned}
& 50 \\
& 25 \\
& - \\
& -
\end{aligned}
\] & \(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \text { Gate to A node Leakage Current } \\
& \left(V_{S}=40 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C},\right. \text { Cathode Open) } \\
& \left(\mathrm{V}_{S}=40 \mathrm{Vdc}, T_{A}=75^{\circ} \mathrm{C}\right. \text {. Cathode Open) }
\end{aligned}
\] & & - & \({ }^{\text {IGAO }}\) & - & \[
\begin{aligned}
& 1.0 \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& 5.0 \\
& 75
\end{aligned}
\] & nAdc \\
\hline Gate to Cathode Leakage Current (\(V_{S}=40 \mathrm{Vdc}\), Anode to Cathode Shorted) & & - & IGKS & - & 5.0 & 50 & nAdc \\
\hline Forward Voltage (\(I_{F}=50 \mathrm{~mA}\) Peak) & & 1.6 & \(V_{F}\) & - & 0.8 & 1.5 & Velts \\
\hline Peak Output Voltage
\[
\left(\mathrm{V}_{\mathrm{B}}=20 \mathrm{Vdc}, \mathrm{C}_{\mathrm{C}}=0.2 \mu \mathrm{~F}!\right.
\] & & 3.7 & \(\mathrm{V}_{0}\) & 6.0 & 11 & - & Volts \\
\hline Pulse Voltage Rise Time
\[
\left(V_{B}=20 \mathrm{Vdc}, C_{C}=0.2 \mu \mathrm{~F}\right)
\] & & 3 & \(t_{r}\) & - & 40 & 80 & ns \\
\hline
\end{tabular}

FIGURE 1 - ELECTRICAL CHARACTERIZATION

IA - PROGRAMMABLE UNIJUNCTION WITH "PROGRAM" RESISTORS

b-EQUIVALENT TEST CIRCUIT FOR FIGURE IA USED FOR ELECTRICAL CHARACTERISTICS TESTING (ALSO SEEFIGURE 2)

FIGURE 2 - PEAK CURRENT (IP) TEST CIRCUIT

FIGURE 3 - \(V_{0}\) AND Tr TEST CIRCUIT

\section*{(A) MOTOROLA}

\section*{MC1488}

\section*{QUAD LINE DRIVER}

The MC1488 is a monolithic quad line driver designed to interface data terminal equipment with data communications equipment in conformance with the specifications of EIA Standard No. RS. 232C Features:
- Current Limited Output \(\pm 10 \mathrm{~mA}\) typ
- Power-Off Source Impedance 300 Ohms min
- Simple Slew Rate Control with External Capacitor
- Flexible Operating Supply Range
- Compatible with All Motorola MDTL and MTTL Logic Families

The Electronic Industries Association (E|A) has released the RS232C specification detailing the requirements for the interface between data processing equipment and data communications equipment. This standard specifies not only the number and type equipment. This standard specifies not only the number and type of interface leads, but also the voltage levels to be used. The
MC1488 quad driver and its companion circuit, the MC 1489 MC1488 quad driver and its companion circuit, the MC 1489
quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS 232C defined levels. The RS232C requirements as applied to drivers are discussed herein.

The required driver voltages are defined as between 5 and 15 volts in magnitude and are positive for a logic " 0 " and negative for a logic "1". These voltages are so defined when the drivers are terminated with a 3000 to 7000 -ohm resistor. The MC 1488 meets this voltage requirement by converting a DTL/TTL logic level into RS 232C levels with one stage of inversion.

The RS232C specification further requires that during transl tions, the driver output slew rate must not exceed 30 volts per microsecond. The inherent slew rate of the MC 1488 is much too

FIGURE 12 - SLEW RATE versus CAPACITANCE
FOR I SC \(=10 \mathrm{~mA}\)

C. CAPACITANCE (DE)
fast for this requirement. The current limited output of the device can be used to control this slew rate by connecting a capacitor to each driver output. The required capacitor can be easily determined by using the relationship \(C=I O S \times \Delta T / \Delta V\) from which Figure 12 is derived. Accordingly, a \(330-\mathrm{pF}\) capacitor on each output will guarantee a worst case slew rate of 30 volts per microsecond.

The interface driver is also required to withstand an accidental short to any other conductor in an interconnecting cable. The worst possible signal on any conductor would be another driver using a plus or minus 15 -volt, \(500-\mathrm{mA}\) source. The MC 1488 is designed to indefinitely withstand such a short to all four outputs in a package as long as the power-supply voltages are greater than 9.0 volts (ie., \(\vee_{C C} \geqslant 9.0 \mathrm{~V}: \mathrm{V}_{\mathrm{EE}} \leqslant-9.0 \mathrm{~V}\). In some power-supply designs, a loss of system power causes a low impedance on the power-supply outputs. When this occurs, a low impedance to ground would exist at the power inputs to the MC 1488 effectively shorting the 300 -ohm output resistors to ground. If all four outputs were then shorted to plus or minus 15 volts, the power dissipation in these resistors

FIGURE 13 - POWER -SUPPLY PROTECTION TO MEET POWER OFF FAULT CONDITIONS

wound be excessive. Therefore, if the system is designed to permit low impedances to ground at the power-supplies of the drivers, a diode should be placed in each power-supply lead to prevent overheating in this fault condition. These two diodes, as shown in Figure 13, could be used to decouple all the driver packages in a system. (These same diodes will allow the MC1488 to withstand momentary shorts to the \(\pm 25\)-volt limits specified in the earlier momentary shorts to the \(\pm 25\)-volt limits specified in the earlier
Standard RS 232B.) The addition of the diodes also permits the MC1488 to withstand faults with power-supplies of less than the 9.0 volts stated above.

The maximum short-circuit current allowable under fault conditions is more than guaranteed by the previously mentioned 10 mA output current limiting.

\section*{Other Applications}

The MC 1488 is an extremely versatile line driver with a myriad of possible applications. Several features of the drivers enhance this versatility.
1. Output Current Limiting - this enables the circuit designer to define the output voltage levels independent of power-supplies and can be accomplished by diode clamping of the output pins. Figure 14 shows the MC 1488 used as a DTL to MOS translator where the high-level voltage output is clamped one diode above ground. The resistor divider shown is used to reduce the output voltage below the 300 mV above ground MOS input level limit.
2. Power-Supply Range - as can be seen from the schematic drawing of the drivers, the positive and negative driving elements of the device are essentially independent and do not require matching power-supplies. In fact, the positive supply can vary from a minimum seven volts (required for driving the negative pulldown section) to the maximum specified 15 volts. The negative supply can vary from approximately -2.5 volts to the minimum specified -15 volts. The MC 1488 will drive the output to within 2 volts of the positive or negative supplies as long as the current output limits are not exceeded. The combination of the current-limiting and supply-voltage features allow a wide combination of possible outputs within the same quad package. Thus if only a portion of the four drivers are used for driving RS232C lines, the remainder could be used for DTL to MOS or even DTL to DTL translation. Figure 15 shows one such combination.

\section*{MC1489L, MC1489AL}

\section*{APPLICATIONS INFORMATION}

\section*{General Information}

The Electronic Industries Association (E IA) has released the RS-232C specification detasing the requirements for the interface between data processing equipment and data communications equipment This standard specifies not only the number and type of interface teads, but also the voltage levels to be used. The MC1488 quad leads, but also the voltage levels to be used. The MCliser and its companion circuit, the MC1489 quad receiver, provide a complete interface system between DTL or TTL logic levels and the RS-232C defmed levels. The RS-232C requirements as appiled to receivers are discussed herein

The required input impedance is defined as between 3000 ohms and 7000 ohms for input voltages between 3.0 and 25 volts in magnitude and any voltage on the receiver input in an open circui condition must be less than 2.0 voits in magnitude The MC 1489 circuits meet these requirements with a maximum open circuit volt age of one \(V_{B E}\) (Ref. Sect. 2.4)

The receiver shail detect a voitage between -3.5 and -25 volts as a logic " 1 " and inputs between +3.0 and +25 volts as a logic " 0 (Ref. Sect 2.3). On some interchange leads, an open circuit or power "OFF" condition (300 ohms or more to ground) shall be decoded as an "OFF" condition or togic "1" (Ref. Sect. 2.5). For this reason, the input hysteresis thresholds of the MC 1489 circuit are all above ground Thus an open or grounded input will cause the same output as a negative or logic \({ }^{\prime} 1{ }^{\prime}\) input.

\section*{Device Characteristic}

The MC1489 interface receivers have interna! feedback from the second stage to the input stage providing input hysteresis for notse

FIGURE 12 - TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

w InPuT PULSE WIDTH (ns)
rejection. The MC1489 input has typical turn-on voltage of 1.25 volts and turn-off of 1.0 volt for a ivpical hysteresis of 250 mV . The MC1489A has typical turn on of 1.95 volts and turn off of 0.8 volt for typically 1.15 volts of hysteresis.

Each receiver section has an external response control node in addition to the input and output pins, thereby allowing the design. er to vary the input threshold voltage levels. A resistor can be connected betweer this node and an externat power-supply. Figures 6, 8 and 9 illustrate the input threshoid voltage shift possible through this technique.

This response node can atso be used tiv the filtering of high. frequency. high-erergy noise pulses Figures 12 and 13 show ypical noise-puise rejection for external capacitors of various sizes.

These two operations on the response node can be combined or used individually for many combinations of interfacing appli. cations The MC1489 circuits are particulariv useful for interfacing beiween MOS c:rcuits and MOTL/MTTL logic systems. In this application. the input threshoid voltages are adjusted iwith the appropriate supply and resistor values) to fall in the center of the MOS voltage logic levels. (See Figure 14)

The response node may also be used as the receiver inpit as ong as the designer realizes that he may not drive this node with a low impedance source to a voltage greater than one diode above ground or less than one diode below ground. This feature is demonstrated in Figure 15 where two receivers are slaved to the same line that must still meet the RS-232C impedance requirement

FIGURE 13 - TURN-ON THRESHOLD versus CAPACITANCE FROM RESPONSE CONTROL PIN TO GND

\section*{p-channel JFETs designed for}

Analog Switches
Choppers
Commutators
Gate-Drain or Gate-Source Voltage (Note 1) 30 V
Gate Current . 50 mA Total Device Dissipation at \(25^{\circ} \mathrm{C}\) Ambient
(Derate \(3.27 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)). 55 to 360 mW
perating Temperature Range. \(35^{\circ} \mathrm{C}\) Storage Temperature Range. 55 to \(150^{\circ} \mathrm{C}\) Lead Temperature Range
(1/16" from case for 10 seconds) \(300^{\circ} \mathrm{C}\)
ELECTRICAL CHARACTERISTICS \(\left(25^{\circ} \mathrm{C}\right.\) uniess otherwise noted)

\section*{Performance Curves PS See Section 5}
BENEFITS
- Low Cost
- Simplifies Series-Shunt Switching when when Combined with J113, its N-ChanChannel Complement
- Low Insertion Loss
\(\mathrm{R}_{\mathrm{DS}(\text { on) }}<85 \Omega\) (J174)
- No Offset or Error Voltages Generated by Closed Switch Purely Resistive
High Isolation Resistance from Driver
- Short Sample and Hold Aperture Time
\(\mathrm{C}_{\text {sg(off) }}<5.5 \mathrm{pF}\)
\(C_{\text {dg(off) }}<5.5 \mathrm{pF}\)
- Fast Switching
\(\mathrm{t}_{\mathrm{d}}(\mathrm{on})+\mathrm{t}_{\mathrm{r}}=7 \mathrm{~ns}\) Typical
T0.92
See Section 7

Botrom Vien

\section*{MC1372}

\section*{COLOR TV VIDEO MODULATOR}
. an integrated circuit used to generate an RF TV signal from baseband color-difference and luminance signals.

The MC1372 contains a chroma subcarrier oscillator, lead and lag network, a quasi-quadrature suppressed carrier DSB chroma modulator, an RF oscillator and modulator, and a TTL compatible clock driver with adjustable duty cycle.

The MC1372 is a companion part to the MC6847 Video Display Generator, providing and accepting the correct dc interconnection levels. This device may also be used as a general-purpose modulator with a variety of video signal generating devices such as video games, test equipment, video tape recorders, etc.
- Single 5.0 Vdc Supply Operation for NMOS and TTL Compatibility
- Minimal External Components
- Compatible with MC6847 Video Displav Generator
- Sound Carrier Addition Capability
- Modulaies Channel 3 or 4 Carrier with Encoded Video Signal
- Low Power Dissipation
- Linear Chroma Modulators for High Versatility
- Composite Video Signal Generation Capability
- Ground-Referenced Video Prevents Overmodulation

\section*{COLOR TV VIDEO MODULATOR CIRCUIT}

SILICON MONOLITHIC INTEGRATED CIRCUIT

\begin{tabular}{|c|c|c|}
\hline Rating & Value & Unit \\
\hline Supply Voltage & 8.0 & V dc \\
\hline Operating Ambient Temperature Range & \(010+70\) & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature Range & -65 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Junction Temperature & 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Power Dissipation, Package Derate above \(25^{\circ} \mathrm{C}\) & \[
\begin{gathered}
1.25 \\
13
\end{gathered}
\] & Watts \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

RECOMMENDED OPERATING CONDITIONS
\begin{tabular}{|l|c|c|}
\hline Supply Voltage & 5.0 & Vac \\
\hline Luma Input Voltage - Sync Tip \\
Peak White & 1.0 & Vdc \\
\hline Color Reference Voltage & 0.35 & \\
\hline Color A. B Input Voltage Range & 1.5 & Vdc \\
\hline
\end{tabular}

ELECTRICAL CHARACTERISTICS \(\left(V_{C C}=+5\right.\) Vdc. \(T_{A}=25^{\circ} \mathrm{C}\). Test Circuit 1 unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Min & Typ & Max & Unit \\
\hline Operating Supply Voltage & 4.75 & 5.0 & 5.25 & Volts \\
\hline Suppiy Current & - & 25 & - & mA \\
\hline
\end{tabular}

CHROMA OSCILLATOR/CLOCK DRIVER (Measured at Pin 1 unless otherwise noted
\begin{tabular}{|c|c|c|c|c|c|}
\hline Outpur Voltage & \[
\begin{aligned}
& \text { (} \mathrm{VOL}_{\mathrm{OL}} \\
& \left.\mathbf{N O H}_{\mathrm{OH}}\right) \\
& \hline
\end{aligned}
\] & \[
2.4
\] & - & \[
0.4
\] & Vdc \\
\hline Rise Time (V1 \(=0.4\) to 2.4 Vdc) & & - & - & 50 & ns \\
\hline Fall Time (V1 \(=2.4\) to 0.4 Vac) & & - & - & 50 & ns \\
\hline Duty Cycle Adjustment Range (V3 \(=5.0 \mathrm{Vdc})\) (Measured at V1 \(=1.4 \mathrm{~V}\)) & & 70 & - & 30 & \% \\
\hline inherent Duty Cycie (No connection to Pin 3) & & - & 50 & - & \% \\
\hline
\end{tabular}

CHROMA MODULATOR (V5 \(=\) V6 \(=V 7=1.5\) Vdc unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|}
\hline Input Common Mode Voltage Range (Pins 5, 6, 7) & 0.8 & - & 2.3 & Voc \\
\hline Oscillatc: Feedthrough (Measured at Pin 8) & - & 15 & 31 & \(m V(p-p)\) \\
\hline Modulation Angle [\(\theta 8(\mathrm{~V} 7=2.0 \mathrm{Vac}\)) \(-\theta 8(\mathrm{~V} 5=2.0 \mathrm{Vdc})]\) & 85 & 100 & 115 & degrees \\
\hline Conversion Gain [V8/(V7 - V6); V8/(V5 - V6)] & - & 0.6 & - & \(V(p-p) / V d c\) \\
\hline Input Current (Pins 5, 6, 7) & - & - & -20 & \(\mu \mathrm{A}\) \\
\hline input Resistance (Pins 5, 6, 7) & 100 & - & - & \(k \Omega\) \\
\hline Inpu! Capacitance (Pins 5, 6, 7) & - & - & 5.0 & pF \\
\hline Chroma Modulator Linearity
\[
(\mathrm{V} 5=1.0 \text { to } 2.0 \mathrm{~V} ; \mathrm{V} 7=1.0 \text { to } 2.0 \mathrm{~V})
\] & - & 4.0 & - & \% \\
\hline
\end{tabular}

\section*{RF MODULATOR}
\begin{tabular}{|c|c|c|c|c|}
\hline Luma Input Dynamic Range (Pin 9, Test Circuit 2) & 0 & - & 1.5 & Voits \\
\hline RF Output Voltage (\(f=67.25 \mathrm{MHz}, \mathrm{V} 9=1.0 \mathrm{~V}\)) & - & 15 & - & mvims \\
\hline Luma Conversion Gain (\(\Delta\) V12/aV9; V9 \(=0.1\) to 1.0 Vac) Test Circuit 2 & - & 0.8 & - & v/v \\
\hline Chroma Conversion Gain \((\Delta \mathrm{V} 12 / \Delta \mathrm{V} 10 ; \mathrm{V} 10=1.5 \mathrm{Vp}-\mathrm{p} ; \mathrm{V} 9=1.0 \mathrm{Vdc})\) Test Circuit 2 & - & 0.95 & - & v/v \\
\hline Chroma Linearity (\(\mathrm{Pin} 12 . \mathrm{V10}=1.5 \mathrm{Vp}\)-p) Test Circuir 2 & - & 1.0 & - & \% \\
\hline Luma Linearity (Pin 12, V9 \(=0\) to 1.5 Vac) Test Circuit 2 & - & 2.0 & - & \% \\
\hline Input Current (Pin 9) & - & - & -20 & \(\mu \mathrm{A}\) \\
\hline Input Resistance (Pin 10) & - & 800 & - & \(\Omega\) \\
\hline Input Resistance (Pin 9) & 100 & - & - & \(\mathrm{k} \Omega\) \\
\hline Input Capacitance (Pins 9, 10) & - & - & 5.0 & pF \\
\hline Residual 920 kHz (Measured at Pin 12) See Note 1 & - & 50 & - & dB \\
\hline Output Current (Pin 12, V9 = 0 V) Test Circuit 2 & - & 1.0 & - & mA \\
\hline \multicolumn{5}{|l|}{TEMPERATURE CHARACTERISTICS (VCC \(=5 \mathrm{Vac}, \mathrm{T}_{A}=0\) to \(70^{\circ} \mathrm{C}\). IC only)} \\
\hline Chroma Oscillator Deviation (f \({ }_{0}=3.579545 \mathrm{MHz}\)) & - & \(\geq 50\) & - & Hz \\
\hline RF Oscillator Deviation (\(\mathrm{f}_{0}=67.25 \mathrm{MHz}\)) & - & \(\pm 250\) & - & kHz \\
\hline Clock Drive Duty Cycle Stability & \(\pm 5.0\) & - & - & \% \\
\hline
\end{tabular}

NOTE 1. \(\mathrm{V} 9=1.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{C}}=300 \mathrm{mV}(\mathrm{p}-\mathrm{p}) \uparrow \mathbf{~} \mathbf{3} .58 \mathrm{MHz}\).
\(V_{S}=250 \mathrm{mV}(\rho-p)\) e 4.5 MHz , Source Impedance \(=75 \Omega\).

MC1372

\section*{OPERATIONAL DESCRIPTION}

\section*{Pin 1 - Clock Output}

Provides a rectangular pulse output waveform with frequency equal to the chrominance subcarrier oscillator. This output is capable of driving one LS-TTL load.

\section*{Pin 2 - Oscillator Input}

Color subcarrier oscillator feedback input. Signal from the clock output is externally phase shifted and ac coupled to this pin.

\section*{Pin 3 - Duty Cycle Adjust}

A dc voltage applied to this pin adjusts the duty cycle of the clock output signal. If the pin is left unconnected, the duty cycle is approximately \(50 \%\).

\section*{Pin 4 - Ground}

\section*{Pin 5 - Color B Input}

Dc coupled input to Chroma Modulator B, whose phase leads modulator A by approximately \(100^{\circ}\). The modulator output amplitude and polarity correspond to the voltage difference between this pin and the Color Reference Voltage at Pin 6.

\section*{Pin 6 - Color Reference Input}

The dc voltage applied to this pin establishes the reference voltage to which Color \(A\) and Color \(B\) inputs are compared.

\section*{Pin 7 - Color A Input}

Dc coupled input to Chroma Modulator A, whose phase lags modulator B by approximately \(100^{\circ}\). The modulator output amplitude and polarity correspond to the voltage difference between this pin and the Color Reference Voltage at Pin 6.

\section*{Pin 8 - Chroma Modulator Output}

Low impedance (emitter follower) output which provides the vectorial sum of chroma modulators \(A\) and \(B\).
Pin 9 - Luminance Input
Input to RF modulator. This pin accepts a dc coupled luminance and sync signal. The amplitude of the RF signal output increases with positive voltage applied to the pin, and ground potential results in zero output (i.e., 100\% modulation). A signal with positive-going sync should be used.

Pin 10 - Chrominance Input
Input to the RF modulator. This pin accepts ac coupled chrominance provided by the Chroma Modulator Output (pin 8). The signal is reduced by an internal resistor divider before being applied to the RF modulator. The resistor divider consists of a 300 ohm series resistor and a 500 ohm shunt resistor. Additional gain reduction may be obtained by the addition of external series resistance to pin 10.

\section*{Pin 11 - VCC}

Positive supply voltage
Pin 12 - RF Modulator Output
Common collector of output modulator stage. Output impedance and stage gain may be selected by choice of resistor connected between this pin and dc supply.

\section*{Pins 13 and 14 - RF Tank}

A tuned circuit connected between these pins determines the RF oscillator frequency. The tuned circuit must provide a low dc resistance shunt. Applying a dc offset voltage between these pins results in baseband composite video at the RF Modulator Output.

\section*{MC1372 CIRCUIT DESCRIPTION}

The chrominance oscillator and clock driver consist of emitter follower 04 and inverting amplifier 05 . Signal presented at clock driver output pin 1 is coupled to oscillator input pin 2 through ar; external RC and crystal network, which provides \(180^{\circ}\) phase shift at the resonant frequency. The duty cycle of the output waveform is determined by the de component at pin 1 internally coupled through R12 to the base of Q4. As pin 1 dc voltage increases, a smaller portion of the sinusoidal feedback signal at pin 2 exceeds the 04 base voltage of two times \(V_{B E}\) required for conduction. As the dc level is reduced, device \(\mathrm{Q4}\) and thus Q 5 is turned on for a longer percentage of the cycle. Transistors \(00, \mathrm{Q}_{1}\), Q2 and diode D1 provide the biasing network which determines the dc operating level of the oscillator. The transistor Q 2 and resistors R5, R6, and R7 form a voltage reference of four times \(V_{B E}\) at the collector of \(Q 2\). The dc voltage at pin 1 is determined by the values of R4, R8, and R12 and the applied duty cycle adjust voltage at pin 3 . Since these resistors are nominally equal, the voltage at pin 1 will always approximate the dc voltage at pin 3.

The oscillator signal at pin 1 is internally coupled to active filter Q44. This filter reduces the frequency content above 4 MHz . The output of the filter at the emitter of Q44 is ac coupled through C3 to the input of the lead/lag network. R32 and C 1 provide approximately \(50^{\circ}\) of phase lag, while C2 and R29 provide approximately \(50^{\circ}\) of phase lead. These two quasi-quadrature waveforms are used to switch chroma modulators \(B\) and \(A\), respectively. The transistors \(\mathbf{Q 2 2}\) through \(\mathbf{Q 2 5}\) and \(\mathbf{0 3 2 - Q 3 3}\) form a doubly balanced modulator. The input signal applied at pin 5 is compared to the color dc reference voltage applied at pin 6 in differential amplifier \(\mathbf{Q 3 2 - 0 3 3 . ~ T h e ~}\) source current provided by transistor 034 is partitioned in transistors Q32 and Q33 according to the differential input signal. The bases of transistors Q23 and Q24 are connected to the dc reference voltage at the emitter of Q30. The bases of transistors \(\mathbf{Q 2 2}\) and \(\mathbf{Q 2 5}\) are connected
to the phase delayed oscindtor signal at the emitter of buffer transistor 021. The differential signal currents provided by O32 and Q33 are switched in transistors Q22 through Q25 and the resultant signal voltage is developed across R49. This signal has the phase and frequency of the oscillator signal at the emitter of Q21. The amplitude is proportional to the differential input signal applied between pins 5 and 6. Transistors 026 through O29 and Q38-Q39 form chroma modulator B. This modulator develops a signal voltage which is proportional to the differential voltage applied between pins 7 and 6. The phase and frequency of the output is equal to the phase advanced chroma oscillator at the emitter of buffer transistor Q20. Both chroma modulators \(A\) and \(B\) share the same output resistor, R49, so the output signal presented at the emitter of Q42 (pin 8) is the algebraic sum of modulators \(\mathbf{A}\) and \(\mathbf{B}\).

The RF oscillator consists of differential amplifier Q18 and Q19 cross-coupled through emitter followers Q16 and 017. The oscillator will operate at the parallel resonant frequency of the network connected between pins 13 and 14. The oscillator output is used to switch the doubly balanced RF modulator, Q9 through 015. Transistors Q7 and Q9 provide level shifting and a high input impedance to the luminance input pin 9. The bases of transistors Q9 and Q10 are both biased through resistors R17 and R18, respectively, to the same dc reference voltage at Q 6 emitter. The base voltage at Q 10 may only be offset in a negative direction by luminance signat current source 08 . This design insures that overmodulation due to the fuminance signal will never occur. The chrominance signal developed at pin 8 is externally ac coupled to pin 10 where it is reduced by resistor dividers R20 and R17, and added to the luminance signal in O9. The resultant differential composite video currents are switched at the appropriate RF frequency in Q12 through Q15. The output signa! current is presented at pin 12.

Transistors Q36, O41 and resistors R44, R47 provide a highly stable voltage reference for biasing current sources Q43, Q34, Q35, and Q11.

\section*{MC1372 APPLICATION INFORMATION}

\section*{Chrominance Oscillator}

The oscillator is used as a clock signal for driving associated external circuitry, in addition to providing a switching signal for the chroma modulators. The IC uses an external crystal in a Colpitts configuration, as shown in Figure 5. Resistor R1 provides current limiting to reduce the signal swing. Capacitor C2 is adjusted for the exact frequency desired (3.579545 MHz).

In some applications, the duty cycle of the clock signal at pin 1 must be modified to overcome gate delays in
associated equipment. The duty cycle may be adjusted by varying the dc voltage applied to pin 3 . This adjustment may be made with the use of a potentiometer (10 k \(\Omega\)) between supply and ground. With no connection to pin 3 , the duty cycle is approximately \(50 \%\).

\section*{Chroma Modulator}

The chrominance oscillator is internatly phase shifted and applied to chroma modulators A and B. No external lead/lag networks are necessary. The phase relationship between the modulators is approximately \(100^{\circ}\), which was chosen to provide the best rendition of colors using equal amplitude color-difference signals. The voltage applied to pin 5, 6, or 7 must always be within the Input Common Mode Voltage Range. Since the amplitude of chrominance output is proportional to the voltage difference between pins 5 and 6 or 7 and 6 , it is desirable to select the Color Reference Voltage applied to pin 6 to be midway between \(V 5_{\text {max }}\) and \(V 5_{\text {min }}\) (which should be \(V 7_{\text {max }}\) and \(V 7_{\text {min }}\). The Chroma B Modulator will be defined as a (B.Y) modulator if a burst flag signal is applied to the Color B Input (pin 5) at the appropriate time. This voltage should be negative with respect to the Color Reference Voltage, and typically has an amplitude equal to \(1 / 2\left[\mathrm{~V} 6-\mathrm{V}_{5} \min \right]\). Since the phase of burst is always defined as \(-(B \cdot Y)\), the Chroma \(A\) Modulator approximates an (\(R-Y\)) modulator; however, the phase is offset by \(10^{\circ}\) from the nominal \(90^{\circ}\), to provide the \(100^{\circ}\) phase shift as discussed previously.

\section*{RF Modulator and Oscillator}

The coil and capacitor connected between pins 13 and 14 should be selected to have a parallel resonance at the carrier frequency of the desired TV channel. The values of 56 pF and \(0.1 \mu \mathrm{H}\) shown in Figure 5 were chosen for a Channel 4 carrier frequency of 67.25 MHz . For Channel 3 operation, the resonant frequency should be \(61.25 \mathrm{MHz}(\mathrm{C}=75 \mathrm{pF} . \mathrm{L}=0.1 \mu \mathrm{H})\). Resistors R4 and R5 are chosen to provide an adequate amplitude of switching voltage, whereas \(R 6\) is used to lower the maximum dc level of switching voltage below \(V_{\mathrm{CC}}\), thus preventing saturation within the IC.

Composite Luminance and Sync should be dc coupled to Luminance input, pin 9. This signal must be within the Luma Input Dynamic Range to insure linearity. Since an increase in dc voltage applied to pin 9 results in an increase in RF output, the input signal should have positive-going sync to generate an NTSC compatible signal. As long as the input signal is positive, overmodulation is prevented by the integrated circuit.

Chrominance information should be ac coupled to Chrominance Input, pin 10. This pin is internally connected to a resistor divider consisting of a series 300 ohms and a shunt 500 ohms resistor. The input impedance is thus \(\mathbf{8 0 0}\) ohms, and a coupling capacitor should be appropriately chosen.
figure 5 - typical application circuit

The Luminance to Chrominance ratio (L:C) may be modified with the addition of an external resistor in series with pin 10 (as shown in Figure 5). The unmodified L:C (\(A_{0}\)) is determined by the ratio of the respective Conversion Gain for equal amplitude signals (typicaliy, \(0.883=\) \(-1.6 \mathrm{~dB})\). The modified L:C will be governed by the equation \(A_{0}\left(1+R_{\text {ext }} / 800\right)\) for equal amplitude input signals.

The internal chrominance modulators are not internally connected to the RF modulator; therefore, the user has the option of connecting an externally generated chrominance signal to the RF modulator. In addition, the RF modulator is wideband, and a 4.5 MHz FM audio signal may be added to the chrominance input at pin 10. This may be accomplished by selecting an appropriate series input resistor to provide the correct Luminance:Sound ratio.

The modulated RF signal is presented as a current at RF Modulator Output, pin 12. Since this pin represents a current source, any load impedance may be selected for matching purposes and gain selection, as long as the vol-
tage at pin 12 is high enough to prevent the output devices from reaching saturation (approximately 4.5 V with components in Figure 5). The peak current out of pin 12 is typically 2 mA . Hence, a load resistance of up to \(\mathbf{2 5 0}\) ohms may be safely used with a 5 V supply.

\section*{Composite Video Signal Generation}

The RF modualtor may be easily used as a composite video generator by replacing the RF oscillator tank circuit with a diode as shown in Figure 3. This results in the output modulator being biased so the summation of luminance and chrominance appears unswitched at pin 12. The polarity of the output waveform is controlled by the direction of the diode. Inverted video: Anode to pin 14, cathode to pin 13. Non-inverted video: Anode to pin 13, cathode to pin 14. Note that the supply resistor must always be connected to the anode of the diode.

The amplitude of signal may be increased by increasing the load resistor on pin 12 and returning it to a higher supply voltage. Any voltage up to the Absolute Maximum Rating may be used.

\section*{Applications with MC6847 Video Display Generator}

The MC1372 may be easily interfaced to the MC6847 as shown in Figure 5. The dc levels generated and required by the VDG are compatible with the MC1372, so that pins 1,5,6,7, and 9 may be directly coupled to the appropriate MC6847 pins. Both integrated circuits as well as any associated NMOS MPU may be driven from a common 5 Vdc supply.

\section*{Recommended Chroma-Luma Signals}

A chroma modulation angle of \(100^{\circ}\) was chosen to facilitate a desirable selection of colors with a minimum number of input signal levels. The following table demonstrates applicable signal levels for a variety of colors.

RECOMMENDED CHROMA-LUMA SIGNALS
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c}
Pin\#9 \\
Luminance \\
(nput \\
(Vdc)
\end{tabular} & \begin{tabular}{c}
Pin \#7 \\
Color A \\
(Vdc)
\end{tabular} & \begin{tabular}{c}
Pin \\
Color Ref. \\
(Vdc)
\end{tabular} & \begin{tabular}{c}
Pin \#5 \\
Color B \\
(Vdc)
\end{tabular} \\
\hline Sync & 1.0 & 1.5 & 1.5 & 1.5 \\
\hline Blanking & 0.75 & 1.5 & 1.5 & 1.5 \\
\hline Burst & 0.75 & 1.5 & 1.5 & 1.25 \\
\hline Black & 0.70 & 1.5 & 1.5 & 1.5 \\
\hline Green & 0.50 & 1.0 & 1.5 & 1.0 \\
\hline Yellow & 0.38 & 1.5 & 1.5 & 1.0 \\
\hline Blue & 0.62 & 1.5 & 1.5 & 2.0 \\
\hline Red & 0.62 & 2.0 & 1.5 & 1.5 \\
\hline Cyan & 0.50 & 1.0 & 1.5 & 1.5 \\
\hline Magenta & 0.50 & 2.0 & 1.5 & 2.0 \\
\hline Orange & 0.50 & 2.0 & 1.5 & 1.0 \\
\hline Buff & 0.38 & 1.5 & 1.5 & 1.5 \\
\hline
\end{tabular}

\section*{(M) \\ MOTOROLA}

\section*{Advance Information}

\section*{\(2048 \times 8\)-BIT UV ERASABLE PROM}

The MCM2716/27A16 is a 16,384 -bit Erasable and Electrically Reprogrammable PROM designed for system debug usage and similar applications requiring nonvolatile memory that could be reprogrammed periodically. The transparent lid on the package allows the memory content to be erased with ultraviolet light

For ease of use, the device operates from a single power supply and has a static power-downi mode. Pin-for-pin mask programmable ROMS are available for large volume production runs of systems initially using the MCM2716/27A16
- Single \(\pm 10 \% 5 \vee\) Power Supply
- Automatic Power-down Mode (Standby)
- Organized as 2048 Bytes of 8 Bits
- Low Power Dissipation
- TTL Compatible During Read and Program
- Maximum Access Time \(=450\) ns MCM2716

350 ns MCM27A16
- Pin Equivalent to Intel's 2716
- Pin Compatible to MCM68A316E Mask Programmable ROMs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Mode} & \multicolumn{6}{|c|}{PIN NUMBER} \\
\hline & \[
\begin{gathered}
9-11 \\
13-17 \\
\text { Do }
\end{gathered}
\] & \[
\begin{gathered}
12 \\
V_{S S}
\end{gathered}
\] & \[
\begin{gathered}
18 \\
\bar{E} / \text { Progr }
\end{gathered}
\] & \[
\begin{gathered}
20 \\
\mathbf{G}
\end{gathered}
\] & \[
\begin{aligned}
& 21 \\
& V_{\text {Pp }}
\end{aligned}
\] & \[
\begin{array}{r}
24 \\
v_{C C} \\
\hline
\end{array}
\] \\
\hline Read & Data out & \(v_{S S}\) & \(V_{\text {IL }}\) & \(V_{1 L}\) & \(v_{C C}\) & \(\mathrm{V}_{\mathrm{CC}}\) \\
\hline Output Disable & Hiz & \(\mathrm{V}_{\text {SS }}\) & Don't Care & \(V_{1 H}\) & \(V_{C C}\) & \(V_{\mathrm{cc}}\) \\
\hline Standby & Hiz & \(V_{S S}\) & \(V_{1 H}\) & Don't Care & \(v_{\text {cc }}\) & \(\mathrm{v}_{\mathrm{CC}}\) \\
\hline Program & Dats in & \(v_{S S}\) & Pulsed
\[
V_{I L} \text { to } V_{I H}
\] & \(\mathrm{V}_{\text {IH }}\) & \(V_{\text {IHP }}\) & VCC \\
\hline Program Verity & Data out & \(v_{\text {SS }}\) & \(V_{\text {IL }}\) & \(v_{11}\) & VIHP & \(\mathrm{v}_{\mathrm{Cc}}\) \\
\hline Program Inhibit & Hi Z & \(v_{S S}\) & \(V_{\text {IL }}\) & \(V_{1 H}\) & VIHP & \(\mathrm{v}_{\mathrm{CC}}\) \\
\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS (1)
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Rating } & Value & Unit \\
\hline Temperature Under Bias & -10 to +80 & \({ }^{\circ} \mathrm{C}\) \\
\hline Storage Temperature & -65 to +125 & \({ }^{\circ} \mathrm{C}\) \\
\hline All Input or Output Voltages with Respect to \(V_{\text {SS }}\) during Read & +6 to -0.3 & Vdc \\
\hline\(V_{\text {PP }}\) Supply Voltage with Respect to \(V_{\text {SS }}\) & +28 to -0.3 & Vdc \\
\hline
\end{tabular}

NOTE 1: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

\section*{MOS}
(N-CHANNEL, SILICON-GATE)
\(2048 \times 8\)-BIT UV ERASABLE PROM

- Now industry standerd nomenclature

\section*{MCM2716, MCM27A16}

DC OPERATING CONDITIONS AND CHARACTERISTICS
(Full operating voltage and temperature range unless otherwise noted)
RECOMMENDED DC READ OPERATING CONDITIONS \(\left(T_{A}=0^{\circ}\right.\) to \(+70^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Symbol & Min & Nom & Max & Unit \\
\hline Supply Voltage* & \[
\begin{array}{r}
\text { MCM2716 } \\
\text { MCM27A16 }
\end{array}
\] & \begin{tabular}{l}
VCC \\
\(V_{\text {PP }}\)
\end{tabular} & \[
\begin{gathered}
4.75 \\
4.5 \\
v_{C C}-0.6 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 5.0 \\
& 5.0 \\
& 5.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5.25 \\
5.5 \\
v_{c c} ; 0.6 \\
\hline
\end{array}
\] & Vdc \\
\hline Input High Voltage & & \(V_{\text {IH }}\) & 2.0 & - & \(V_{C C}+1.0\) & Vode \\
\hline Input Low Voltage & & \(V_{\text {IL }}\) & -0.1 & - & 0.8 & Vdc \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Characteristic & Condition & Symbol & Min & Typ & Max & Unit \\
\hline Address, \(\overline{\mathbf{G}}\) and \(\overline{\mathrm{E}} /\) Progr Input Sink Current & \(\mathrm{V}_{\text {in }}=5.25 \mathrm{~V}\) & I in & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Output Leakage Current & \(V_{\text {out }}=5.25 \mathrm{~V}, \overline{\mathrm{G}}=5.0 \mathrm{~V}\) & 110 & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(V_{C C}\) Supply Current \({ }^{\text {* }}\) (Standby) & \(\bar{E} /\) Progr \(=V_{\text {IH }}, \overline{\mathrm{G}}=\mathrm{V}_{\text {IL }}\) & 1 cci & - & 10 & 25 & \(m A\) \\
\hline \(V_{\text {CC }}\) Supply Current* (Active) & \(\overline{\mathrm{G}}=\overline{\mathrm{E}} /\) Progr \(=V_{1 L}\) & \({ }^{1} \mathrm{CC} 2\) & - & 57 & 100 & \(m A\) \\
\hline Vpp Supply Current* & \(V_{P P}=5.85 \mathrm{~V}\) & IPP1 & - & - & 5.0 & mA \\
\hline Output Low Voltage & \({ }^{1} \mathrm{OL}=2.1 \mathrm{~mA}\) & \(\mathrm{VOL}^{\text {O }}\) & - & - & 0.45 & \(v\) \\
\hline Outpui High Voltage & \({ }^{1} \mathrm{OH}=-400 \mu \mathrm{~A}\) & \(\mathrm{V}_{\mathrm{OH}}\) & 2.4 & - & - & \(V\) \\
\hline
\end{tabular}
\({ }^{*} V_{\text {CC }}\) must be applied simultaneously or prior to VPp. \(V_{\text {CC }}\) must also be switched off simultaneously with or after Vpp. With Vpp connected directly to \(V_{C C}\) during the read operation, the supply current would be the sum of Ippi and ICC. The additional 0.6 V tolerance on Vpp makes it possible to use a driver circuit for switching the \(V_{P P}\) supply pin from \(V_{C C}\) in Read mode to \(+\mathbf{2 5} \mathbf{V}\) for programming. Typical values are for \(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\) and nominal supply voltages.

\section*{CAPACITANCE}
(f \(=1.0 \mathrm{MHz}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}\), periodically sampled rather than \(100 \%\) tested.)
\begin{tabular}{|c|c|c|c|c|}
\hline Charactaristic & Symbol & TYP & Mex & Unit \\
\hline Input Capecitance \(\left(V_{\text {in }}=0 \mathrm{~V}\right)\) & \(\mathrm{C}_{\text {in }}\) & 4.0 & 6.0 & pF \\
\hline Output Capacitance \(\left(\mathrm{V}_{\text {out }}=0 \mathrm{~V}\right)\) & \(\mathrm{C}_{\text {out }}\) & 8.0 & 12 & pF \\
\hline
\end{tabular}

Cepacitance measured with a Boonton Meter or effective capacitance calculated from the
equation: \(C=\frac{1 \Delta_{t}}{\Delta V}\)

\footnotetext{
This device contains circuitry to protect the inputs egainst damage due to high static volteges or electric fields; however, it is advised that normal precautions be taken to avoid applica. tion of any voltege higher than meximum rated voltages to this high-impedence circuit.
}

AC OPERATING CONDITIONS AND CHARACTERISTICS (\(T_{A}=0\) to \(+70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 10 \%\) unless otherwise noted.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{AC OPERATING CONDITIONS AND CHARACTERISTICS \(\left(T_{A}=0\right.\) to \(+70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 10 \%\) unless otherwise noted.)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Input Puise Levels. 0.8 Volt to 2.2 Volts Input Rise and Fall Times . 20 ns}} & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Input and Output Timing Levels Output Loed.}} & \multirow[t]{2}{*}{. . 2.0 Volts See Figure 1} \\
\hline & & & & & & & \\
\hline \multirow[b]{2}{*}{Charscteristic} & \multirow[b]{2}{*}{Condition} & \multirow[b]{2}{*}{Symbol} & \multicolumn{2}{|r|}{MCMA27A16} & \multicolumn{2}{|c|}{MCM2716} & \multirow[b]{2}{*}{Units} \\
\hline & & & Min & Max & Min & Max & \\
\hline Address Valid to Output Valid & \(\overline{E / P r o g r * G}=V_{11}\) & tavov & - & 350 & - & 450 & ns \\
\hline E/Proge to Output Valid & (Note 2) & telov & - & 350 & - & 450 & \\
\hline Output Enable to Output Valid & \(\bar{E} /\) Progr \(=V_{11}\) & \({ }^{\text {GLOVV}}\) & - & 120 & - & 120 & \\
\hline E/Progr to Hi 2 Output & & IEHOZ & 0 & 100 & 0 & 100 & \\
\hline Output Disable to Hi Z Output & \(E /\) Progr \(=V_{11}\) & \({ }^{\text {G GHOZ }}\) & 0 & 100 & 0 & 100 & \\
\hline Data Hold from Address & \(\bar{E} /\) Progr \(=G=V_{1 L}\) & taxOX & 0 & - & 0 & - & \\
\hline
\end{tabular}
figure 1 - act test load

STANDBY MODE
(Output Enable \(=V_{1 L}\))

DC PROGRAMMING CONDITIONS AND CHARACTERISTICS
\(\left(T_{A}=0\right.\) to \(\left.+70^{\circ} \mathrm{C}, V_{C C}=5.0 \mathrm{~V} \pm 10 \%\right)\)
RECOMMENDED PROGRAMMING OPERATING CONDITIONS
\begin{tabular}{|l|c|c|c|c|c|}
\hline Parameter & Symbol & Min & Nom & Max & Unit \\
\hline Supply Voltage & \(V_{C C}\) & 4.75 & 5.0 & 5.25 & \(V_{d c}\) \\
& \(V_{\text {PP }}\) & 24 & 25 & 26 & \(V_{d c}\) \\
\hline Input High Voltage for Data & \(V_{1 H}\) & 2.2 & - & \(V_{C C}+1\) & \(V d c\) \\
\hline Input Low Voltage for Data & \(V_{I L}\) & -0.1 & - & 0.8 & \(V_{d c}\) \\
\hline
\end{tabular}
\({ }^{*} V_{C C}\) must be applied simulataneously or prior to \(V_{P P} V_{C C}\) must also be switched off simultaneously with or aftet \(V_{p p}\). The device must not be inserted into or removed from a board with \(V\) pp at +25 V . Vpp must not exceed the +26 V maximum specifications.

PROGRAMMING OPERATION DC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Charocteristic & Condition & Symbol & Min & Typ & Max & Unit \\
\hline Address, \(\overline{\mathrm{G}}\) and \(\overline{\mathrm{E}} /\) Progr Input Sink Current & \(V_{\text {in }}=5.25 \mathrm{~V} / 0.45\) & 'LI & - & - & 10 & \(\mu \mathrm{Adc}\) \\
\hline \(\checkmark\) pp Supply Current & \(\bar{E} /\) Progr \(=V_{1}\) & Ipp1 & - & - & 5.0 & mAdc \\
\hline Vpp Programming Pulse Supply Current & \(\bar{E} /\) Progr \(=V_{1 H}\) & IPP2 & - & - & 30 & mAdc \\
\hline \(V_{\text {CC }}\) Supply Current & & \({ }^{1} \mathrm{CC}\) & - & - & 100 & mAdc \\
\hline
\end{tabular}

\section*{AC PROGRAMMING OPERATING CONDITIONS AND CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|}
\hline Characteristic & Symbol & Min & Max & Unit \\
\hline Address Setup Time & \({ }^{\text {t }}\) AVEH & 2.0 & - & \(\mu \mathrm{s}\) \\
\hline Output Enable High to Program Pulse & \({ }^{\text {T GHEH }}\) & 2.0 & - & \(\mu \mathrm{s}\) \\
\hline Data Setup Time & \({ }^{\text {I }}\) DVEH & 2.0 & - & \% \\
\hline Address Hold Time & \({ }^{\text {t ELAX }}\) & 2.0 & - & us \\
\hline Output Enable Hold Time & \({ }^{\text {t ELGL }}\) & 2.0 & - & \(\mu s\) \\
\hline Datá Hold Time & \({ }^{\text {t }}\) ELQZ & 2.0 & - & \(\mu s\) \\
\hline Output Disable to Hi Z Output & \({ }^{\text {tGHaZ }}\) & 0 & 120 & ns \\
\hline Output Enable to Valid Data (E/Progr \(=\mathrm{V}_{\text {IL }}\). & tGLQV & - & 120 & ns \\
\hline Program Pulse Width & teHEL & 45 & 55 & ms \\
\hline Program Pulse Rise Time & tPR & 5 & - & ns \\
\hline Program Pulse Fall Time & tPF & 5 & - & ns \\
\hline
\end{tabular}

PROGRAMMING OPERATION TIMING DIAGRAM

\title{
Product Specification \\ MARCH 1978
}

The Zilog Z 80 product line is a complete set of microcomputer components. development systems and support software. The Z 80 microcomputer component set includes all of the circuits necessary to build high-performance microcomputer systems with virtually no other logic and a minimum number of low cost standard memory elements.

The Z 80 and Z 80 A CPU's are third generation single chip microprocessors with unrivaled computational power. This increased computational power results in higher system through-put and more efficient memory utilization when compared to second generation microprocessors. In addition, the Z80 and Z80A CPU's are very easy to implement into a system because of their single voltage requirement plus all output signals are fully decoded and timed to control standard memory or peripheral circuits. The circuit is implemented using an N -channel, ion implanted, silicon gate MOS process.

Figure 1 is a block diagram of the CPU, Figure 2 details the internal register configuration which contains 208 bits of Read/Write memory that are accessible to the programmer. The registers include two sets of six general purpose registers that may be used individually as 8 -bit registers or as 16 -bit register pairs. There are also two sets of accumulator and flag registers. The programmer has access to either set of main or alternate registers through a group of exchange instructions. This alternate set allows foreground/ background mode of operation or may be reserved for very fast Interrupt response. Each CPU also contains a 16 -bit stack pointer which permits simple implementation of
multiple level interrupts, unlimited subroutine nesting and simplification of many types of data handling.

The two 16-bit index registers allow tabular data manipulation and easy implementation of relocatable code. The Refresh register provides for automatic, totally transparent refresh of external dynamic memories. The I register is used in a powerful interrupt response mode to form the upper 8 bits of a pointer to a interrupt service address table, while the interrupting device supplies the lower 8 bits of the pointer. An indirect call is then made to this service address.

\section*{FEATURES}
- Single chip, N-channel Silicon Gate CPU.
- 158 instructions-includes all 78 of the 8080 A instructions with total software compatibility. New instructions include 4 -, 8 - and 16 -bit operations with more useful addressing modes such as indexed, bit and relative.
- 17 internal registers.
- Three modes of fast interrupt response plus a nonmaskable interrupt.
- Directly interfaces standard speed static or dynamic memories with virtually no external logic.
- \(1.0 \mu \mathrm{~s}\) instruction execution speed.
- Single 5 VDC supply and single-phase 5 volt Clock.
- Out-performs any other single chip microcomputer in 4 -, 8-, or 16 -bit applications.
- All pins TTL Compatible
- Built-in dynamic RAM refresh circuitry.

\section*{Z80, Z80A CPU PIN CONFIGURATION}
\(\mathrm{A}_{0}-\mathrm{A}_{15}\)
(Address Bus)

\footnotetext{
WR
(Memory
Write)
}
\begin{tabular}{ll}
\(\mathrm{D}_{0}-\mathrm{D}_{7}\) & Tri-state input/output, active high. \\
(Data Bus) & \(\mathrm{D}_{0}-\mathrm{D}_{7}\) constitute an 8 -bit bidirectional \\
& data bus. The data bus is used for data
\end{tabular}

Tri-state output, active high. \(\mathrm{A}_{0}-\mathrm{A}_{15}\) constitute a 16 -bit address bus. The address bus provides the address for memory (up to 64 K bytes) data exchanges and for \(I / O\) device data exchanges.

Tri-state input/output, active high. \(\mathrm{D}_{0}-\mathrm{D}_{7}\) constitute an 8 -bit bidirectional data bus. The data bus is used for data exchanges with memory and I/O devices.

Output, active low. \(\overline{\mathrm{M}}_{1}\) indicates that the current machine cycle is the OP code fetch cycle of an instruction execution.

Tri-state output, active low. The memory request signal indicates that the address bus holds a valid address for a memory read or memory write operation.

Tri-state output, active low. The \(\overline{\text { IORQ }}\) signal indicates that the lower half of the address bus holds a valid I/O address for a I/O read or wite operation. An IORQ is being acknowledged to indicate that interrupt response vector can be placed on the data bus.
BUSAK
(Bus
Acknowledge)

Tri-state output, active low. \(\overline{W R}\) indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device.

Output, active low. \(\overline{\text { RFSH }}\) indicates that the lower 7 bits of the address bus contain a refresh address for dynamic memories and the current MREQ signal should be used to do a refresh read to all dynamic memories.
\(\overline{\text { HALT }}\)
(Halt state)

Output, active low. \(\overline{\text { HALT }}\) indicates that the CPU has executed a HALT software instruction and is awaiting either a nonmaskable or a maskable interrupt (with the mask enabled) before operation can resume. While hal ted, the CPU executes NOP's to maintain memory refresh activity.

Input, active low. \(\overline{\text { WAIT }}\) indicates to the Z-80 CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter wait states for as long as this signal is active.

Input, active low. The Interrupt Request signal is generated by I/O devices. A request will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop (IFF) is enabled.

Input, active low. The non-maskable nterrupt request line has a higher priority than INT and is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. \(\overline{\text { NMI }}\) automatically forces the Z-80 CPU to restart to location 0066 H .

Input, active low. \(\overline{\text { RESET }}\) initializes the CPU as follows: reset interrupt enable flip-flop, clear PC and registers I and R and set interrupt to 8080A mode. During reset time, the address and data bus go to a high impedance state and all control output signals go to the inactive state.

Input, active low. The bus request signal has a higher priority than \(\overline{\text { NMI }}\) and is always rec ognized at the end of the current machine cycle and is used to request the CPU address bus, data bus and tri-state output control signals to go to a high impedance state so that other devices can control these busses.

Output, active low. Bus acknowledge is used to indicate to the requesting device that the CPU address bus, data bus and tri-state control bus signals have been set to their high impedance state and the external device can now control these signal

\section*{INSTRUCTION OP CODE FETCH}

The program counter content (PC) is placed on the address bus immediately at the start of the cycle. One half clock time later MREQ goes active. The falling edge of MREQ can be used directly as a chip enable to dynamic memories. \(\overline{\mathrm{RD}}\) when active indicates that the memory data should be enabled onto the CPU data bus. The CPU samples data with the rising edge of the clock state \(\mathrm{T}_{3}\). Clock states \(\mathrm{T}_{3}\) and \(\mathrm{T}_{4}\) of a fetch cycle are used to refresh dynamic memories while the CPU is internally decoding and executing the instruction. The refresh control signal \(\overline{\mathrm{RFSH}}\) indicates that a refresh read of all dynamic memories should be accomplished.

\section*{MEMORY READ OR WRITE CYCLES}

Illustrated here is the timing of memory read or write cycles other than an OP code fetch (\(\mathrm{M}_{1}\) cycle). The \(\overline{\mathrm{MREQ}}\) and \(\overline{\mathrm{RD}}\) signals are used exactly as in the fetch cycle. In the case of a memory write cycle, the \(\overline{\mathrm{MREQ}}\) also becomes active when the address bus is stable so that it can be used directly as a chip enable for dynamic memories. The \(\overline{\mathrm{WR}}\) line is active when data on the data bus is stable so that it can be used directly as a \(R / W\) pulse to virtually any type of semiconductor memory.

\section*{INPUT OR OUTPUT CYCLES}

Illustrated here is the timing for an I/O read or I/O write operation. Notice that during I/O operations a single wait state is automatically inserted (\(\mathrm{Tw}^{*}\)). The reason for this is that during I/O operations this extra state allows sufficient time for an I/O port to decode its address and activate the \(\overline{\text { WAIT }}\) line if a wait is required.

\section*{INTERRUPT REQUEST/ACKNOWLEDGE CYCLE}

The interrupt signal is sampled by the CPU with the rising edge of the last clock at the end of any instruction. When an interrupt is accepted, a special \(M_{1}\) cycle is generated. During this \(M_{1}\) cycle, the \(\overline{\overline{O R Q}}\) signal becomes active (instead of MREQ) to indicate that the interrupting device can place an 8 -bit vector on the data bus. Two wait states (\(\mathrm{T} \mathrm{w}^{*}\)) are automatically added to this cycle so that a ripple priority interrupt scheme, such as the one used in the Z80 peripheral controllers, can be easily implemented.

The following is a summary of the Z80, Z80A instruction set showing the assembly language mnemonic and the symbolic operation performed by the instruction. A more detailed listing appears in the Z80-CPU technical manual, and assembly language programming manual. The instructions are divided into the following categories:
\begin{tabular}{ll}
8-bit loads & Miscellaneous Group \\
16-bit loads & Rotates and Shifts \\
Exchanges & Bit Set, Reset and Test \\
Memory Block Moves & Input and Output \\
Memory Block Searches & Jumps \\
8-bit arithmetic and logic & Calls \\
16-bit arithmetic & Restarts \\
General purpose Accumulator & Returns \\
\(\quad\) \& Flag Operations &
\end{tabular}

In the table the following terminology is used.
\begin{tabular}{rl}
b & \(\equiv\) a bit number in any 8 -bit register or memory \\
cc & \(\equiv\) location \\
flag condition code \\
Z & \(\equiv\) non zero \\
\(\mathrm{NC} \equiv\) zero \\
\(\mathrm{C} \equiv\) non carry \\
\(\mathrm{PO} \equiv\) carry \\
\(\mathrm{PE} \equiv\) Parity odd or no over flow \\
P & \(\equiv\) Posity even or over flow \\
M & \(\equiv\) Negative (minus)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Mnemonic & Symbolic Operation & Comments \\
\hline LD r, s & \(\mathrm{r} \leftarrow \mathrm{s}\) & \[
\begin{aligned}
& s \equiv r, n,(H L) \\
& (I X+e) \cdot(I Y+e)
\end{aligned}
\] \\
\hline LD d, r & \(\mathrm{d} \leftarrow \mathrm{r}\) & \[
\begin{aligned}
& d \equiv(\mathrm{HL}), \mathrm{r} \\
& (\mathrm{iX}+\mathrm{e}),(\mathrm{IY}+\mathrm{e})
\end{aligned}
\] \\
\hline LD d, n & \(\mathrm{d} \leftarrow \mathrm{n}\) & \[
\begin{aligned}
& d \equiv(H L), \\
& (I X+e),(I Y+e)
\end{aligned}
\] \\
\hline LD A, s & \(\mathrm{A} \leftarrow \mathrm{s}\) & \[
\begin{aligned}
& s \equiv(B C) .(D E) . \\
& (n n), I, R
\end{aligned}
\] \\
\hline LD d, A & \(\mathrm{d} \leftarrow \mathrm{A}\) & \[
\begin{aligned}
& d \equiv(B C),(D E) . \\
& (n n) . I . R
\end{aligned}
\] \\
\hline LD dd, nn & \[
\mathrm{dd} \leftarrow \mathrm{nn}
\] & \[
\begin{aligned}
& \mathrm{dd} \equiv \mathrm{BC}, \mathrm{DE} \\
& \mathrm{HL} . \mathrm{SP} . \mathrm{IX} . \mathrm{IY}
\end{aligned}
\] \\
\hline LD dd. (nn) & \[
\mathrm{dd} \leftarrow(\mathrm{nn})
\] & \[
\begin{aligned}
& \mathrm{dd} \equiv \mathrm{BC} \cdot \mathrm{DE} \\
& \mathrm{HL} . \mathrm{SP} . \mathrm{IX} . \mathrm{IY}
\end{aligned}
\] \\
\hline LD (nn). ss & \((\mathrm{nn}) \leftarrow \mathrm{ss}\) & \[
\begin{aligned}
& \mathrm{ss} \equiv \mathrm{BC}, \mathrm{DE} \\
& \mathrm{HL} . \mathrm{SP} . \mathrm{IX}, \mathrm{IY}
\end{aligned}
\] \\
\hline LD SP.ss & \(\mathrm{SP} \leftarrow \mathrm{ss}\) & \(s s=H L . I X \cdot I Y\) \\
\hline PUSH ss & \[
(S P-1) \leftarrow \mathrm{ss}_{\mathrm{H}}:(\mathrm{SP}-2) \leftarrow \mathrm{ss}_{\mathrm{L}}
\] & \[
\begin{aligned}
& s s=B C, D E . \\
& \text { HL, AF, IX, IY }
\end{aligned}
\] \\
\hline POP dd & \(\mathrm{dd}_{\mathrm{L}} \leftarrow(\mathrm{SP}): \mathrm{dd}_{\mathrm{H}} \leftarrow(\mathrm{SP}+1)\) & \[
\begin{aligned}
& \mathrm{dd}=\mathrm{BC} \cdot \mathrm{DE} . \\
& \mathrm{HL} \cdot \mathrm{AF} \cdot \mathrm{IX} \cdot \mathrm{IY}
\end{aligned}
\] \\
\hline EX DE. HL & \(\mathrm{DE} \rightarrow \mathrm{HL}\) & \\
\hline EX AF, AF' & \(\mathrm{AF} \leftrightarrow \mathrm{AF}^{\prime}\) & \\
\hline EXX & \[
\left(\begin{array}{c}
\mathrm{BC} \\
\mathrm{DE} \\
\mathrm{HL}
\end{array}\right) \leftrightarrow\left(\begin{array}{c}
\mathrm{BC}^{\prime} \\
\mathrm{DE}^{\prime} \\
\mathrm{HL}
\end{array}\right)
\] & \\
\hline EX (SP), ss & & \(s \mathrm{~s} \equiv \mathrm{HL}, \mathrm{IX} . \mathrm{IY}\) \\
\hline
\end{tabular}
d \(\equiv\) any 8 -bit destination register or memory location
dd \(\equiv\) any 16 -bit destination register or memory location
e \(\quad \equiv 8\)-bit signed 2's complement displacement used in relative jumps and indexed addressing
\(\mathrm{L} \equiv 8\) special call locations in page zero. In decimal notation these are \(0,8,16,24,32,40,48\) and 56
\(\mathrm{n} \quad \equiv\) any 8 -bit binary number
\(\mathrm{nn} \equiv\) any 16 -bit binary number
\(\mathrm{r} \equiv\) any 8 -bit general purpose register (A, B, C, D, E, H, or L)
s \(\equiv\) any 8 -bit source register or memory location
sb \(\equiv\) a bit in a specific 8 -bit register or memory location
ss \(\equiv\) any 16 -bit source register or memory location subscript "L" \(\equiv\) the low order 8 bits of a 16 -bit register subscript "H" \(\equiv\) the high order 8 bits of a 16 -bit register
() \(\equiv\) the contents within the () are to be used as a pointer to a memory location or I/O port number
8 -bit registers are A, B, C, D, E, H, L, I and R 16-bit register pairs are \(\mathrm{AF}, \mathrm{BC}, \mathrm{DE}\) and HL 16-bit registers are SP, PC, IX and IY

Addressing Modes implemented include combinations of the following: Immediate . Indexed Immediate extended Register Modified Page Zero Implied Relative Register Indirect Extended Bit
\begin{tabular}{|c|c|c|c|}
\hline & Mnemonic & Symbolic Operation & Comments \\
\hline \(\square\) & \begin{tabular}{l}
LDI \\
LDIR \\
LDD \\
LDDR
\end{tabular} & \[
\begin{aligned}
& (\mathrm{DE}) \leftarrow(\mathrm{HL}), \mathrm{DE} \leftarrow \mathrm{DE}+1 \\
& \mathrm{HL} \leftarrow \mathrm{HL}+1, \mathrm{BC} \leftarrow \mathrm{BC}-1 \\
& (\mathrm{DE}) \leftarrow(\mathrm{HL}), \mathrm{DE} \leftarrow \mathrm{DE}+1 \\
& \mathrm{HL} \leftarrow \mathrm{HL}+1, \mathrm{BC} \leftarrow \mathrm{BC}-1 \\
& \text { Repeat until } \mathrm{BC}=0 \\
& (\mathrm{DE}) \leftarrow(\mathrm{HL}), \mathrm{DE} \leftarrow \mathrm{DE}-1 \\
& \mathrm{HL} \leftarrow \mathrm{HL}-1, \mathrm{BC} \leftarrow \mathrm{BC}-1 \\
& (\mathrm{DE}) \leftarrow(\mathrm{HL}), \mathrm{DE} \leftarrow \mathrm{DE}-1 \\
& \mathrm{HL} \leftarrow \mathrm{HL}-1, \mathrm{BC} \leftarrow \mathrm{BC}-1 \\
& \text { Repeat until } \mathrm{BC}=0
\end{aligned}
\] & \\
\hline & \begin{tabular}{l}
CPI \\
CPIR \\
CPD \\
CPDR
\end{tabular} & \[
\begin{aligned}
& A-(H L) \cdot H L \leftarrow H L+1 \\
& B C \leftarrow B C-1 \\
& A-(H L) \cdot H L \leftarrow H L+1 \\
& B C-B C-1 \cdot R \text { epeat } \\
& \text { until } B C=0 \text { or } A=(H L) \\
& A-(H L) \cdot H L \leftarrow H L-1 \\
& B C-B C-1 \\
& A-(H L) \cdot H L-H L-1 \\
& B C-B C-1 \cdot R e p e a t \\
& \text { until } B C=0 \text { or } A=(H L)
\end{aligned}
\] & A-(HL) sets the flags only. A is not affected \\
\hline & \begin{tabular}{l}
ADD s \\
ADC s \\
SUB s \\
SBC s \\
AND s \\
OR s \\
XOR s
\end{tabular} & \[
\begin{aligned}
& A \leftarrow A+s \\
& A \leftarrow A+s+C Y \\
& A \leftarrow A-s \\
& A \leftarrow A-s-C Y \\
& A \leftarrow A \wedge S \\
& A \leftarrow A \vee S \\
& A \leftarrow A \oplus S
\end{aligned}
\] & CY is the carry flag
\[
\begin{aligned}
& s \equiv r, n,(H L) \\
& (I X+e) .(I Y+e)
\end{aligned}
\] \\
\hline
\end{tabular}

\(T_{A}=0^{\circ} \mathrm{C}\) 10 \(70^{\circ} \mathrm{C} . V_{C \mathrm{C}}=+5 \mathrm{~V} \pm 5 \%\), Unless Otherwise Noted.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Signal & Symbol & Parameter & Min & Max & Unit & Test Condition \\
\hline \multirow{4}{*}{中} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 'c (w) } \\
& t_{w} \text { (wh: } \\
& t_{4} \text { t }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Chick Pethend \\
Clinch Pulle Width. Clach Itigh Clock Puble Width. Cluck Low (lock Rise and Fall Time
\end{tabular}} & 4 & 11.1 & usec & \\
\hline & & & 130 & \(|\mathrm{E}|\) & nsec & \\
\hline & & & \(1 \times 0\) & 2000 & nsec & \\
\hline & & & & S & nsec & \\
\hline \multirow{5}{*}{\({ }^{4} 0-15\)} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{\begin{tabular}{l}
Address Output Delay \\
Delay to Flost \\
Address Stable Pfur to MRFO (Memory Cyde) \\
Address Stable Priur tu \(\overline{O R Q}\). \(\overline{R D}\), \(\overline{W R}\) is 0 Crate) \\
Address Stable timm RD, \(\overline{W R}, \overline{\text { IORQ or MREQ }}\) \\
Address Stable From \(\overline{R D}\),f \(\overline{W R}\) Dumin Fiou!
\end{tabular}} & & \(1+5\) & nsec & \\
\hline & & & & 110 & nses & \\
\hline & & & 111 & & nsec & \(C_{L}=50 \mathrm{pF}\) \\
\hline & & & 131 & & nsec & \\
\hline & & & 14 & & neec & \\
\hline \multirow{6}{*}{\(\mathrm{D}_{0-7}\)} & \multirow[t]{6}{*}{\begin{tabular}{l}
\({ }^{\text {'DID }}\) \\
'F(D) \\
\({ }^{\prime} S \Phi(D)\) \\
\({ }^{1}\) S \(\bar{\Phi}(D)\) \\
'dcm \\
'dal \\
redt
\end{tabular}} & \multirow[t]{6}{*}{\begin{tabular}{l}
Data Outpui Delay \\
Delay to Floas Dunng Write Civle \\
Data Setup Time to Rising tidge of Clork During wi Cycle \\
Data Selup Time to Falling t dge of Clock Dunng M2 to M5 \\
Data Stable Prior to \(\overline{W R}\) (Memory Cycle) \\
Data Stable Pror to \(\overline{W R}\) (1:O cricle) \\
Data Stable From \(\overline{W R}\)
\end{tabular}} & & 230 & nses & \multirow{6}{*}{\(C_{L}=50 \mathrm{pF}\)} \\
\hline & & & & 8 & nsee & \\
\hline & & & 50 & & nisei & \\
\hline & & & 150 & & nsel & \\
\hline & & & \(\frac{151}{161}\) & & \(\frac{\text { nisec }}{\text { nsec }}\) & \\
\hline & & & 171 & & & \\
\hline & 'H & Any Hold Time for Selup Time & 0 & & nsec & \\
\hline \multirow{4}{*}{\(\overline{\text { MREQ }}\)} & \multirow[t]{4}{*}{\begin{tabular}{l}
\({ }^{\prime} \mathrm{DL} \Phi(\mathrm{MR})\) \\
\({ }^{\prime}\) DH \({ }^{\prime}\) (MR) \\
\({ }^{\text {' }} \mathrm{DH} \bar{\Phi}(M R)\) \\
\({ }^{\prime} \mathrm{w}\) (\(\overline{\mathrm{MRL}}\)) \\
\({ }^{\prime} \mathrm{w}\) (\(\overline{\mathrm{MRH}}\))
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
\(\widehat{M R E Q}\) Delay From Falling Euge of Clock. MREQ Luw \(\overline{M R E Q}\) Delay From Rising Edge of Cluck. MREQ High \(\overline{M R E Q}\) Delay From Falling Edge uf Ctock. \(\overline{M R E} ;\) High Pulse Width. MREQ Luw \\
Pulse Width. MREQ High
\end{tabular}} & & 100 & Hsec & \\
\hline & & & & 100 & usee & \\
\hline & & & 181 & & nsee & L \\
\hline & & & 141 & & nsee & \\
\hline \multirow{3}{*}{\(\overline{\text { ORQ }}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
\({ }^{\prime}\) DL \(\Phi\) (IR) \\
'DL \(\overline{\text { (}}\) (IR) \\
\({ }^{\text {t }} \mathrm{DH} \Phi(\mathrm{IR})\) \\
\({ }^{1} \mathrm{DH} \bar{\Phi}(I R)\)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
IORQ Delay From Rising Edge of Clock. \(\overline{O R Q}\) Low \(\overline{I O R Q}\) Delay From Falling Edge of Clock. \(\overline{\text { IORQ }}\) Low \\
 \(\overline{\text { IORQ Delay From Falling Edge of Clock, } \overline{\text { ORQ }} \text { High }}\)
\end{tabular}} & & 90 & nsec & \\
\hline & & & & 110 & nseec & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) \\
\hline & & & & 110 & nsec & \\
\hline \multirow{3}{*}{रु} & \multirow[t]{3}{*}{\begin{tabular}{l}
\({ }^{\prime}\) DL \(\Phi\) (RD) \\
\({ }^{\prime} \mathrm{DL}^{\prime} \bar{\Phi}(\) RD) \\
' \(D H \Phi(R D)\) \\
\({ }^{\text {t }} \mathrm{DH} \bar{\Phi}(\mathrm{RD})\)
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
\(\overline{\overline{R D}}\) Delay From Rising Edge of Clock, \(\overline{R D}\) Low \\
\(\overline{\text { RD }}\) Delay From Rising Edge of Clock. RD High \\
\(\overline{\mathrm{RD}}\) Delay From Falling Edge of Clock. \(\overline{\mathrm{RD}}\) High
\end{tabular}} & & 100 & nsec & \\
\hline & & & & \(\frac{130}{100}\) & nsei & \(C_{L}=50 \mathrm{pF}\) \\
\hline & & & & 110 & nsec & \\
\hline \multirow{3}{*}{\(\overline{W R}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
\({ }^{\text {'DL }} \Phi(\) WR) \\
\({ }^{\prime} D L \bar{\Phi}(\) WR \()\) \\
\({ }^{\text {' } D H ~} \bar{\Phi}\) (WR) \\
\({ }^{\mathrm{t}} \mathrm{w}\) (\(\overline{\mathrm{WR}} \mathrm{L}\))
\end{tabular}} & \multirow[t]{3}{*}{\(\overline{W R}\) Delay From Rising Edge of Clock. \(\overline{W R}\) Low \(\overline{W R}\) Delay From Falling Edge of Clock. \(\overline{W R}\) Low \(\overline{W R}\) Delay From Falling Edge of Cluck, \(\overline{W R}\) High Pulse Width. WR Low} & & 80 & nsec & \\
\hline & & & & 90 & nsec & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) \\
\hline & & & 1101 & , & nsec & \\
\hline \multirow[t]{2}{*}{MI} & \multirow[t]{2}{*}{\[
{ }^{t} \mathrm{DL}(\mathrm{M} 1)
\]
(DH (MI)} & \multirow[t]{2}{*}{M1 Delay From Rising Edge of Clock, \(\overline{\text { M1 }}\) Luw \(\overline{M 1}\) Delay From Rising Edge of Clock, Mil High} & & 130 & nsec & \\
\hline & & & & 130 & nsec & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pr}\) \\
\hline \multirow[t]{2}{*}{\(\overline{\mathrm{RFSH}}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
'DL(RF) \\
\({ }^{\text {t }} \mathrm{DH}(\mathrm{RF})\)
\end{tabular}} & \multirow[t]{2}{*}{\(\overline{\text { RFSH }}\) Delay Fiom Rising Edge of Cluck. \(\overline{\text { RFSH }}\) Luw \(\overline{\text { RFSH }}\) Delay Ftom Rising Edge of Clock, \(\overline{\text { RFSH }}\) High} & & 180 & nsec & \multirow[t]{2}{*}{\(C_{L}=50 \mathrm{pF}\)} \\
\hline & & & & 150 & nsec & \\
\hline WAIT & \({ }_{\text {'s }}(\mathrm{WT}\)) & WAIT Setup Time to Falling Edge of Cloik & 70 & & nsec & \\
\hline HALT & \({ }^{\text {D }}\) (HT) & HALT Delay Time From Falling Edge of Clocik & & 300 & nsec & \(C_{L}=50 \mathrm{pF}\) \\
\hline \(\overline{\text { NT }}\) & \(\mathrm{t}_{5}\) (IT) & \(\overline{\mathrm{NT}}\) Setup Time to Rising Edge of Clock & 80 & & nsec & \\
\hline तM1 & \({ }_{\text {t }}(\overline{\mathrm{NM}} \mathrm{L}\)) & Pulse Width. NMI Low & 80 & & nsec & \\
\hline BUSRQ & 's (BQ) & BUSRQ Setup Time to Rising Edge of Clock & 80 & & nsec & \\
\hline \multirow[t]{2}{*}{\(\overline{\text { BUSAK }}\)} & \multirow[t]{2}{*}{\[
{ }^{\mathrm{D}} \mathrm{DL}(\mathrm{BA})
\]
\[
\text { 'DH }(B A)
\]} & \multirow[t]{2}{*}{BUSAK Delay From Rising fige of Clock. \(\overline{\text { BUSAK }}\) Low BUSAK Delay From Falling Edge of Clock, BUSAK High} & & 120 & nsec & \\
\hline & & & & 110 & nsec & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) \\
\hline \multirow[t]{3}{*}{\(\overline{\text { RFSET }}\)} & 's(RS) & \(\overline{\text { RFSET }}\) Setup Time to Rising Edge of Clock & 90 & & nsec & \\
\hline & \({ }^{1} \mathrm{~F}(\mathrm{Cl})\) & Delay to Float (MREQ. \(\overline{\text { ORQO}}\). \(\overline{\text { RD }}\) and \(\overline{\mathrm{WR}}\)) & & 100 & nsec & \\
\hline & 'mr & \(\overline{\mathrm{MI}}\) Stable Prior io \(\overline{O R D}\) Ilnterrupt Ack. 1 & 1111 & & nsec & \\
\hline
\end{tabular}
\(112 \mid t_{6}=I_{w_{1}(\$ H)}+t_{w(\Phi L)}+t_{r}+t_{f}\)

111 \(\mathrm{Iscm}=\mathrm{t}_{\mathrm{wr}}(\mathrm{PH})^{+}+\mathrm{t}_{\mathrm{f}}-75\)
(2) \(\operatorname{sac}^{=}=t_{c}^{-x 0}\)

\(|5| t_{\mathrm{dcm}}=\mathrm{t}_{\mathrm{c}}-210\)
(0) \(\mathrm{t}_{\mathrm{dci}}=\mathrm{t}_{\mathrm{w}(\Phi \mathrm{L})}+\mathrm{t}_{\mathrm{r}}-210\)
\(17 \mathrm{t}_{\mathrm{cdf}}=\mathrm{t}_{\mathrm{w}(\Phi \mathrm{L})}+\mathrm{t}_{\mathrm{r}}-80\)

[9] \({ }^{1}\) w(MRH \()={ }^{1}\) w(PH) \(+1-30\)
\(110 \mid t_{w(\overline{W R} L)}=t_{c}-40\)
\(|11|_{m r}=2 t_{i}+I_{W(D H)}+t_{f}-x 0\)

NOTES
4. Data should be enabled ontio the (PT data hus when \(\overline{\mathrm{RD}}\) is active. Dunng intertupt acknowledge data thould be enabled when \(\overline{\mathrm{KI}}\) and \(\overline{\mathrm{ORQ}}\) are boith active.
B. All control ugnals are internally syachronized. w they may be totally asynchronous with respect to the chock.
C. The RESET agnal must be sctive for a mmanum if 3 dock cyctes.
D. Output Delay vs. Loaded (apacilance
\(T A=70^{\circ} \mathrm{C} \quad V\) ec \(=+5 \mathrm{~V}+5 \cdot ;\)
Add 10 nsec delay for each 50 pf increase in load up to a maximum of 200 pf for the data bus \(\& 100\) pf for address \& control lines

Load circuit for Output
1. Althougit vatic hy design. festing guarantees \(\left(\mathrm{W}(\mathrm{DH})^{\text {of }} 200 \mu \mathrm{sec}\right.\) maxımum

\section*{A.C. Timing Diagram}

Timing measurements are made at the following voltages, unless otherwise specified:

\section*{Absolute Maximum Ratings}

Temperature Under Bias Storage Temperature Voltage On Any Pin with Respect to Ground Power Dissipation

Specified operatang range \(-65^{\circ} \mathrm{C} 10+150^{\circ} \mathrm{C}\) -0.3 V to +7 V 1.5 W
*Commen
Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device This is a stress rating only and functional operation of the dence at these or any othe! condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods mat affect device reliability

\section*{Z80-CPU D.C. Characteristics}
\(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} 1070^{\circ} \mathrm{C}, V_{\therefore}=5 \mathrm{~V} \pm 5^{\prime \prime}\) unless otherwise specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Min. & Typ. & Max & Unit & Test Condition \\
\hline VILC & Clock Input Low Voltage & -0.3 & & 0.45 & V & \\
\hline \({ }^{\text {I }} \mathrm{HC}\) & Clock Input High Voltage & \(V_{\mathrm{cc}}-6\) & & \(\mathrm{V}_{\mathrm{cc}}{ }^{+} 3\) & V & \\
\hline \(V_{\text {IL }}\) & Input Low Voltage & -0.3 & & 0.8 & V & \\
\hline \(V_{1 H}\) & Inpur High Voltage & \(\bigcirc 0\) & & \(\cdots\) & V & \\
\hline \({ }^{\prime} \mathrm{OL}\) & Output Lon Voltage & & & 0.4 & \(V\) & \(\mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}\) \\
\hline \({ }^{\prime} \mathrm{OH}\) & Output High Voitage & 2.4 & & & \(V\) & \(\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}\) \\
\hline \({ }^{1} \mathrm{CC}\) & Power Supply Currem & & & 150 & mA & \\
\hline \({ }^{\text {L }}\) I & Input leakage Current & & & 10 & \(\mu \mathrm{A}\) & \(V_{\text {IN }}=0\) to \(V_{0}\) \\
\hline \({ }^{1} \mathrm{LOH}\) & TriState Outpur Leahage Current in Float & & & 10 & \(\mu \mathrm{A}\) & \(V_{\mathrm{OUT}}=2.40 \mathrm{~V}_{\mathrm{G}}\) \\
\hline \(\mathrm{I}_{1 \mathrm{OL}}\) & Tri-State Output Leakage Current in Fioat & & & -10 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{OUT}}=04 \mathrm{~V}\) \\
\hline \({ }^{\text {LD }}\) & Data Bus Leakage Current in Input Mode & & & \(\pm 10\) & \(\mu \mathrm{A}\) & \(0 \leqslant V_{I N} \leqslant V_{c i}\) \\
\hline
\end{tabular}

\section*{Z80A-CPU D.C. Characteristics}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Min & Typ & Max & Unit & Test Condition \\
\hline 1110 & (Gun lupat Lun Voltag & -0 : & & 045 & \(V\) & \\
\hline \(\cdots \mathrm{Hf}\) & Chich loput High Voltage & \(\mathrm{V}_{\mathrm{cc}}-.6\) & & \(\mathrm{V}_{\mathrm{cc}}+3\) & \(V\) & \\
\hline \(1_{11}\) & Inpur linn lohage & -0) : & & \(0 \times\) & \(V\) & \\
\hline \(V_{1 H}\) & huput Heht & \(\therefore 0\) & & \(\iota^{\prime}\) & \(V\) & \\
\hline \({ }^{\prime}\) () & Output lin Voltage & & & 1.4 & \(\checkmark\) & \(\mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA}\) \\
\hline \({ }^{\prime} \mathrm{OH}\) & Oupur High Village & \(\therefore 4\) & & & 1 & \\
\hline \({ }^{1} \mathrm{C}\) & Pıuc: Supply Cumen & & 90 & 200 & mA & - \\
\hline 111 & & & & 10 & \(\mu \mathrm{A}\) & \\
\hline 110 H & ThState Ouput I eshage (unemi mflod & & & 10 & \(\mu \mathrm{A}\) & \(\mathrm{VOMT}^{\text {O }}\) - \(+1 \mathrm{~V}_{\sim}\) \\
\hline 1101 & & & & -10 & \(\mu\) & \({ }^{1} \mathrm{OLT}{ }^{=04}\) \\
\hline '11) & Data Bul Leshage (urrent in Input Made. & & & \(\pm 10\) & \(\mu \mathrm{A}\) & \(0 \leqslant 4\) ハ* \\
\hline
\end{tabular}

Note For Zx\()\left(\mathrm{C}^{\mathrm{P}}\right.\) all AC and DC charactenstoc remam the same tor the miliary grade parts except If.
\[
1_{\mathrm{cc}}=2(\mathrm{cN}) \mathrm{mA}
\]

\section*{Capacitance}
\(\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\).
unmeasured pins returned to ground
\begin{tabular}{|l|l|l|l|}
\hline Symbol & Parameter & Max & Unit \\
\hline\(C_{\Phi}\) & Cloch Capantance & 35 & pF \\
\hline CIN \(^{\text {COLT }}\) & Input Capactiance & 5 & pF \\
\hline Output Capactance & 10 & pF \\
\hline
\end{tabular}

\section*{Z80-CPU \\ Ordering Information}

C - Ceramic
P - Plastic
S - Standard \(5 \mathrm{~V}=5 \% 0^{\circ}\) to \(70^{\circ} \mathrm{C}\)
F - Extended \(5 \mathrm{~V} \pm 5 \%-40^{\circ}\) to \(85^{\circ} \mathrm{C}\)
M - Military \(5 \mathrm{~V}+10 \%-55^{\circ}\) to \(125^{\circ} \mathrm{C}\)

\section*{Capacitance}
\(T_{A}=25^{\circ} \mathrm{C} . f=1 \mathrm{MHz}\).
unmeasured pins returned toground
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Parameter & M3, & Unit \\
\hline \({ }^{1} 4\) & Chich (apduath & 35 & pt \\
\hline '儿 & Inpos (apatumbe & - & Fl \\
\hline (010 & Oupit (apatame & 111 & pH \\
\hline
\end{tabular}

\section*{Z80A-CPU Ordering Information}

\footnotetext{
C - Ceramic
P. Plastic

S - Standard \(5 \mathrm{~V} \pm 5 \pi 0^{\circ} 1070^{\circ} \mathrm{C}\)
}
\(\mathrm{T}_{\mathrm{A}}=\mathrm{O}^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, ~ \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%\) Unless Otherwise Noted
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Signal & Symbol & Parameter & Min & Max & Unit & Test Condition \\
\hline \multirow{4}{*}{\(\pm\)} & \multirow[t]{4}{*}{\[
\begin{aligned}
& t_{c} \\
& i_{w}(\Phi H) \\
& t_{u}(\Phi L) \\
& t_{1}, 1
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Clock Penod \\
Clock Pulse Width. Clock High Clock Pulse Widthi. Clock Low Clock Rise and Fall Time
\end{tabular}} & . 25 & 1121 & \(\mu \mathrm{se}\) & \\
\hline & & & 110 & [1] & nsec & \\
\hline & & & 110 & 2000 & nsec & \\
\hline & & & & 3 & nse & \\
\hline \multirow{6}{*}{\({ }^{\text {A }}\) (0,15} & \multirow[t]{6}{*}{} & \multirow[t]{6}{*}{\begin{tabular}{l}
Address Output Delay \\
Delay to Float \\
Address Stable Pror to \(\overline{M R F Q}\) (Memory Cyele) \\
Address Stable Prom to \(\overline{\mathrm{ORQ}}, \overline{\mathrm{RD}}\) or \(\overline{\mathrm{KR}}\) IIO (ycle) \\
Address Stable from \(\overline{\mathrm{RD}} . \overline{\mathrm{WR}} . \overline{\mathrm{ORQ}}\) or \(\overline{\mathrm{MREO}}\) \\
Address Stable From \(\overline{R D}\) or \(\overline{W R}\) During Floai
\end{tabular}} & & 110 & nse, & \\
\hline & & & & 90 & nse & \\
\hline & & & 111 & & nse: & \(C_{L}=50 \mathrm{pF}\) \\
\hline & & & 121 & & nse, & \({ }^{\text {L }}\) = 50 pr \\
\hline & & & 131 & & nsei & \\
\hline & & & 14) & & nsee & \\
\hline \multirow{7}{*}{\(\mathrm{D}_{0-7}\)} & \multirow[t]{7}{*}{\begin{tabular}{l}
\({ }^{1} \mathrm{D}\) (D) \\
\({ }^{1} \mathrm{~F}\) (D) \\
\({ }^{\mathrm{t}} \mathrm{S} \Phi(\mathrm{D})\) \\
\({ }^{1} \mathrm{~S} \Phi(\mathrm{D})\) \\
\({ }^{1} \mathrm{dcm}\) \\
\({ }^{\prime} \mathrm{dc}\)) \\
\({ }^{1} \mathrm{c} d \mathrm{t}\)
\end{tabular}} & \multirow[t]{7}{*}{\begin{tabular}{l}
Data Output Delay \\
Delay to Float During Winte Cycle \\
Data Setup Time to Rising Edge of Clock During M 1 Cy ole \\
Data Setup Time to Falling 1 dge of Cloch During M? to MS \\
Data Stable Prur to \(\overline{W R}\) (Memory Cycle) \\
Data Stable Puor to \(\overline{W R}\) (I'O (ycie) \\
Data Stable From \(\overline{W R}\)
\end{tabular}} & & 150 & nse- & \\
\hline & & & & 90 & nse: & \\
\hline & & & 35 & & nse & \\
\hline & & & 50 & & nse: & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{rt}\) \\
\hline & & & 15] & & nse, & \\
\hline & & & 161 & & nse & \\
\hline & & & 171 & & & \\
\hline & \({ }^{t} \mathrm{H}\) & Any Hold Time for Setup Time & & 0 & nsec & \\
\hline \multirow{5}{*}{\(\overline{\text { MREQ }}\)} & \multirow[t]{5}{*}{\begin{tabular}{l}
\({ }^{1} D L \bar{\Phi}(M R)\) \\
\({ }^{1} \mathrm{DH} \Phi(M R)\) \\
\({ }^{1} \mathrm{DH} \Phi(\mathrm{MR})\) \\
\({ }^{1} w(\overline{M R L})\) \\
\({ }^{\mathrm{t}} \mathrm{w}(\overline{\mathrm{MRH}})\)
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
\(\overline{M R E Q}\) Deiay From Falling Edge of Clock, \(\overline{\text { MREQ }}\) Low \(\overline{M R E Q}\) Delay From Rising Edge of Clock, \(\overline{\text { MREQ }}\) High \(\overline{M R E Q}\) Delay From Falling Edge of Clock, MREQ High Pulse Width, \(\overline{M R E Q}\) Low \\
Pulse Width, MREQ High
\end{tabular}} & & 85 & nsec & \\
\hline & & & & 85 & nsec & \\
\hline & & & & 85 & nsei & \(C_{L}=50 \mathrm{pF}\) \\
\hline & & & 181 & & nse: & \\
\hline & & & \(19]\) & & nsec & \\
\hline \multirow{4}{*}{\(\overline{O R Q}\)} & \multirow[t]{4}{*}{\begin{tabular}{l}
\({ }^{t}\) DL \(\Phi\) (IR) \\
\({ }^{\prime} D L \bar{\Phi}(I R)\) \\
\({ }^{1} \mathrm{DH} \Phi\) (IR) \\
\({ }^{1} \mathrm{DH} \bar{\Phi}\) (IR)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
\(\widehat{\overline{O R Q}}\) Delay From Rising Edge of Clock. \(\overline{\text { IORQ }}\) Low \\
 \(\overline{\mathrm{ORQ}}\) Delay From. Rusing Edge of Clock, \(\overline{\mathrm{ORQ}}\) Hugh \\

\end{tabular}} & & 75 & nsec & \\
\hline & & & & 85 & nsec & \(C_{L}=50 \mathrm{pF}\) \\
\hline & & & & 85 & nsec & \({ }^{2}\) L \({ }^{\text {a }}\) \\
\hline & & & & 85 & nsec & \\
\hline \multirow{4}{*}{\(\overline{\mathrm{RD}}\)} & \multirow[t]{4}{*}{\begin{tabular}{l}
\({ }^{1} \mathrm{DL} \Phi(\mathrm{RD})\) \\
\({ }^{\mathrm{t}} \mathrm{DL} \bar{\Phi}(\mathrm{RD})\) \\
\({ }^{1} \mathrm{DH} \boldsymbol{D}^{\prime}(\mathrm{RD})\) \\
\({ }^{1} \mathrm{DH} \bar{\Phi}(\mathrm{RD})\)
\end{tabular}} & \multirow[t]{4}{*}{\(\overline{\mathrm{RD}}\) Delay From Rusing Edge of Clock, \(\overline{\mathrm{RD}}\) Low \(\overline{R D}\) Delay From Falling Edge of Clock, \(\overline{R D}\) Low \(\overline{\mathrm{RD}}\) Delay From Rasing Edge of Clock, \(\overline{\mathrm{RD}}\) High \(\overline{R D}\) Delay From Falling Edge of Clock, \(\overline{R D}\) High} & & 85 & nsec & \\
\hline & & & & 95 & nsec & \\
\hline & & & & 85 & nsec & \({ }^{2} \mathrm{~L}=50 \mathrm{pF}\) \\
\hline & & & & 85 & nsec & \\
\hline \multirow{4}{*}{\(\overline{W R}\)} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\(\overline{W R}\) Delay From Rising Edge of Clock, \(\overline{\text { WR }}\) Low \(\overline{W R}\) Delay From Falling Edge of Clock, \(\overline{W R}\) Low \(\overline{W R}\) Delay From Falling Edge of Clock. \(\overline{W R}\) High Pulse Width, \(\overline{\text { WR }}\) Low} & & 65 & nsec & \\
\hline & & & & 80 & nsec & \(C_{L}=50 \mathrm{pF}\) \\
\hline & & & & 80 & nsec & \({ }^{\text {c }}\) L \({ }^{\text {sopF }}\) \\
\hline & & & [10] & & nsec & \\
\hline \multirow[t]{2}{*}{\(\overline{\mathrm{MI}}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& { }^{\mathrm{t}} \mathrm{DL}(\mathrm{M} 1) \\
& { }^{\mathrm{t}} \mathrm{DH}(\mathrm{M} 1)
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\overline{M 1}\) Delay From Rising Edge of Clock, \(\overline{M 1}\) Low \(\overline{M 1}\) Delay From Rising Edge of Clock. \(\overline{M 1}\) High} & & 100 & nsec & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) \\
\hline & & & & 100 & nsec & L 50 p \\
\hline \multirow[t]{2}{*}{\(\overline{\mathrm{RFSH}}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\({ }^{1} \mathrm{DL}(\mathrm{RF})\) \\
\({ }^{\text {t }} \mathrm{DH}\) (RF)
\end{tabular}} & \multirow[t]{2}{*}{\(\overline{\text { RFSH }}\) Delay From Rising Edge of Clock, \(\overline{\text { RFSH }}\) Low \(\overline{\text { RFSH }}\) Delay From Rising Edge of Clock. \(\overline{\text { RFSH }}\) High} & & 130 & nsec & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\) \\
\hline & & & & 120 & nsec & \({ }^{\text {L }}\) - \(=50 \mathrm{pF}\) \\
\hline \(\overline{\text { WAIT }}\) & \(\mathrm{t}_{5}\) (WT) & \(\overline{\text { WAIT }}\) Setup Time to Falling Edge of Clock & 70 & & nsec & \\
\hline \(\overline{\text { HALT }}\) & \({ }^{1} \mathrm{D}(\mathrm{HT})\) & \(\overline{\mathrm{HA}} \overline{L T}\) Delay Time From Falling Edge of Clock & & 300 & nsec & \(C_{L}=50 \mathrm{pF}\) \\
\hline \(\overline{\text { INT }}\) & \({ }^{\text {ts }}\) (IT) & INT Setup Time to Rising Edge of Clock & 80 & & nsec & \\
\hline \(\overline{\mathrm{NMI}}\) & \({ }^{\text {t }}\) (\((\overline{N M} L)\) & Pulse Width, \(\overline{\text { NM1 }}\) Low. & 80 & & nsec & \\
\hline \(\overline{\text { BUSRQ }}\) & \({ }^{\text {t }}\) (BQ\()\) & \(\widehat{\text { BUSRQ Setup Time to Rusing Edge of Clock }}\) & 50. & & nsec & \\
\hline \multirow[t]{2}{*}{BUSAK} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{t} D \mathrm{DL}(\mathrm{BA}) \\
& { }^{\mathrm{t}} \mathrm{DH}(\mathrm{BA})
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\overline{B U S A K}\) Delay From Rising Edge of Clock. \(\overline{\text { BUSAK }}\) Low \(\overline{\text { BUSAK }}\) Delay From Falling Edge of Clock, \(\overline{B U S A K}\) High} & & 100 & nsec & \(C_{L}=50 \mathrm{pF}\) \\
\hline & & & & 100 & nsec & \({ }^{\prime} \mathrm{L}\) - \({ }^{\text {cop }}\) \\
\hline \multirow[t]{3}{*}{\(\overline{\text { RESET }}\)} & \({ }^{\text {s }}\) (RS) & & 60 & & nsec & \\
\hline & \({ }^{1} \mathrm{~F}(\mathrm{C})\) & Delay to Float (\(\overline{\mathrm{MREQ}}, \overline{\mathrm{IORQ}}, \overline{\mathrm{RD}}\) and \(\overline{\mathrm{WR}}\)) & & 80 & nsec & \\
\hline & \({ }^{1} \mathrm{mr}\) & MI Stable Prior to IORQ (Interrupt Ack.) & (11) & & nsec & \\
\hline
\end{tabular}
\([12] t_{c}=t_{w(\Phi H)}+t_{w(\Phi L)}+t_{r}+t_{f}\)
(11) \(\mathrm{tacm}=\mathrm{t}_{\mathrm{m}}^{\mathrm{m}} \mathbf{(\mathrm { H })}+\mathrm{t}_{\mathrm{f}}-65\)
[2] \(\mathrm{a}_{\mathrm{acc}}=\mathrm{t}_{\mathrm{c}}-70\)
[3] \(\mathrm{t}_{\mathrm{ca}}=\mathrm{t}_{\mathrm{w}(\mathrm{SL})}+\mathrm{t}_{\mathrm{r}}-50\)
(4) \({ }^{\text {caf }}={ }^{\prime}(\mathbf{W}(\Phi))^{+t_{r}}-45\)
(5) \(t_{\mathrm{dcm}}=\mathrm{t}_{\mathrm{c}}-170\)
[6] \(\mathrm{t}_{\mathrm{dci}}=\mathrm{t}_{\mathrm{w}(\Phi \mathrm{L})}+\mathrm{t}_{\mathrm{r}}-170\)
[7] \(t_{c d f}=t_{w(\Phi L)}+t_{r}-70\)
[8] \(\left.\quad{ }^{t_{w}(\overline{M R} L}\right)={ }^{t_{C}}-30\)
[9] \({ }^{t_{w}(\overline{M R} H)}{ } t_{w(\Phi H)}+t_{f}-20\)
[10] \(t_{w(}(\overline{W R} L)=t_{c}-30\)

\section*{NOTES:}
A. Data should be enabled onto the CPU data bus when \(\overline{\mathrm{RD}}\) is active. During interrupt acknowledge data should be enabled when \(\overline{M_{1}}\) and \(\overline{\text { IORQ }}\) are both active.
B. All control signals are internally synchronized, so they may be totally asynchronous with respect to the clock
C. The \(\overline{\text { RESET }}\) signal must be active for a minımum of 3 clock cycles
D. Output Delay vs. Loaded Capacitance
\(\mathrm{TA}=70^{\circ} \mathrm{C} \quad \mathrm{Vcc}=+5 \mathrm{~V} \pm 5 \%\)
Add 10 nsec delay for each 50 pf increase in load up to maximum of 200 pf for data bus and 100 pf for address \& control lines

Load circuit for Output
E. Although static by design, testing guarantees \({ }^{\mathrm{t}} \mathbf{w (\Phi H)}\) of \(200 \mu \mathrm{sec}\) maximum

\section*{LINEAR \\ INTEGRATED CIRCUITS}
- Low Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation (Except TL080, TL080A)
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/ \(\mu \mathrm{s}\) Typ
description
The TL081 JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL081 Family.

Device types with an " \(\mathrm{M}^{\prime}\) " suffix are characterized for operation over the full military temperature range of \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\), those with an " 1 " suffix are characterized for operation from \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\), and those with a " C " suffix are charasterized for operation from \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\).

\section*{TYPES TLO80 THRU TL085, TL080A THRU TLO84A, TLO81B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS}

\section*{schematic (each amplifier)}

absolute maximum ratings sver operating free-air temperature range (unless ctherwise noted)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & - & TLO8_M & TL08_I & \[
\begin{aligned}
& \hline \text { TLO8_C } \\
& \text { TLO8_AC } \\
& \text { TLO8_BC } \\
& \hline
\end{aligned}
\] & UNIT \\
\hline \multicolumn{2}{|l|}{Supply voltage, V \(\mathrm{CC}+(\) see Note 1)} & 18 & 18 & 18 & v \\
\hline \multicolumn{2}{|l|}{Supply voltage, VCC- (see Note 1)} & -18 & -18 & -18 & V \\
\hline \multicolumn{2}{|l|}{Differential input voltage (see Note 2)} & \(\pm 30\) & \(\pm 30\) & \(\pm 30\) & v \\
\hline \multicolumn{2}{|l|}{Input voltage (see Notes 1 and 3)} & \(\pm 15\) & \(\pm 15\) & \(\pm 15\) & v \\
\hline \multicolumn{2}{|l|}{Duration of output short circuit (see Note 4)} & Unlimited & Unlimited & Unlimited & \\
\hline \multicolumn{2}{|l|}{Continuous total dissipation at (or below) \(25^{\circ} \mathrm{C}\) free-air temperature (See Note 5)} & 680 & 680 & 680 & mW \\
\hline \multicolumn{2}{|l|}{Operating free-air temperature range} & -55 to 125 & -25 to 85 & 0 to 70 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Storage temperature range} & -65 to 150 & -65 to 150 & -65 to 150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Lead temperature \(1 / 16\) inch (1.6 mm) from case for 60 seconds & J, JG, or W package & 300 & 300 & 300 & \({ }^{\circ} \mathrm{C}\) \\
\hline Lead iemperature \(1 / 16\) inch (\(1,6 \mathrm{~mm}\)) from case for 10 seconds & \(N\) or P package & & 260 & 260 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between \(V_{C C}+\) and \(V_{C C}-\).
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
4. The output may be shorted to ground or to either supply. Temperature andor supply voltages must be limited to ensure that the dissipation rating is not exceeded.
5. For operation above \(25^{\circ} \mathrm{C}\) free-air temperature, refer to Dissipation Derating Table. In the J and JG packages, TLO8_M chlps are alloy-mounted; TLO8_I, TLO8_C, TLO8_AC, and TLO8_BC chips are glass-mounted.
\begin{tabular}{|cccc|}
\hline DISSIPATION DERATING TABLE \\
\hline PACKAGE & POWER & DERATING & ABOVE \\
\hline & RATING & FACTOR & TA \\
\hline J (Alloy-Mounted Chip) & 680 mW & \(11.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(88^{\circ} \mathrm{C}\) \\
J (Glass-Mounted Chip) & 680 mW & \(8.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(67^{\circ} \mathrm{C}\) \\
JG (Alloy-Mounted Chip) & 680 mW & \(8.4 \mathrm{~mW} / \mathrm{C}^{\circ}\) & \(69^{\circ} \mathrm{C}\) \\
JG (Glass-Mounted Chip) & 680 mW & \(6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(47^{\circ} \mathrm{C}\) \\
N & 680 mW & \(9.2 \mathrm{~mW} / / \mathrm{C}\) & \(76^{\circ} \mathrm{C}\) \\
P & 680 mW & \(8.0 \mathrm{~mW} / \mathrm{C}^{\circ} \mathrm{C}\) & \(65^{\circ} \mathrm{C}\) \\
W & 680 mW & \(8.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) & \(65^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Also see Dissipation Derating Curves, Section 2.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES} \\
\hline & TL080 & TL081 & TL082 & TL083 & TLO84 & TL085 \\
\hline TLO8_M & JG & JG & JG & \(J\) & J, w & - \\
\hline TL08_1 & JG, P & JG, P & JG. P & J, N & J, N & - \\
\hline TL08_C & JG, P & JG, P & JG, P & J, N & J. N & \(N\) \\
\hline TLO8_AC & JG, P & JG, P & JG, P & J, N & J, N & * \\
\hline TLO8_BC & - & JG, P & JG, P & - & J, N & - \\
\hline
\end{tabular}
-These combinations are not defined by this data sheet.

\title{
Texas Instruments \\ INCORPORATED
}

POST OFFICE BOX 225012 - DALLAS. TEXAS 75265

\section*{TYPES TL080 THRU TLO85, TL080A THRU TL084A, TL081B, TL082B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS}
electrical characteristics, VCC \(\pm= \pm 15 \mathrm{~V}\)

\(\dagger\) All characteristics are specified under open-loop conditions unless otherwise noted. Full range for \(T_{A}\) is \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) for \(\mathrm{TLO8}, \mathrm{M}\); \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) for TLO8_1; and \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) for TLO8_C.TLO8_AC, and TLO8_BC
\(\ddagger\) Types TL085I and TL085M are not defined by this date sheet.
§ Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temparature sensitive as shown in Figure 18. Pulse rechniques must be used that will maintain the junction temperature as close to the ambient temparatura as is possible.

\section*{Texas Instruments \\ INCORPORATED \\ POST OFFICE BOX 225012 - DALLAS. TEXAS 75265}

\section*{TYPES TL080 THRU TLO85, TLO80A THRU TLO84A, \\ TL081B, TLO82B, TL084B \\ JFET-INPUT OPERATIONAL AMPLIFIERS}
operating characteristics, \(\mathrm{VCC}_{ \pm}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{TL08_M} & \multicolumn{3}{|c|}{ALL OTHERS} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline SR Slew rate at unity gain & \[
\begin{aligned}
& V_{1}=10 \mathrm{~V} . \\
& C_{L}=100 \mathrm{pF} .
\end{aligned}
\] & \begin{tabular}{l}
\[
R_{L}=2 \mathrm{k} \Omega \text {, }
\] \\
See Figure 1
\end{tabular} & 8 & 13 & & & 13 & & V/us \\
\hline \(\mathrm{t}_{\mathrm{r}} \quad\) Rise time & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{1}=20 \mathrm{mV}, \\
& C_{L}=100 \mathrm{pF} .
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
R_{L}=2 \mathrm{k} \Omega,
\] \\
See Figure 1
\end{tabular}} & \multicolumn{3}{|c|}{0.1} & \multicolumn{3}{|c|}{0.1} & \(\mu \mathrm{s}\) \\
\hline Overshoot factor & & & \multicolumn{3}{|c|}{10\%} & \multicolumn{3}{|c|}{10\%} & \\
\hline \(\mathrm{v}_{\mathrm{n}}\) Equivalent inpur noise voltage & \(\mathrm{R}_{\mathrm{S}}=100 \Omega\), & \(f=1 \mathrm{kHz}\) & \multicolumn{3}{|c|}{25} & \multicolumn{3}{|c|}{25} & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline
\end{tabular}

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-UNITY-GAIN AMPLIFIER
FIGURE 2-GAIN-OF-10 INVERTING AMPLIFIER

INPUT OFFSET VOLTAGE NULL CIRCUITS

figure 3

FIGURE 4

FEED-FORWARD COMPENSATION
figure 5

\title{
Texas Instruments \\ INCORPORATED
}

POST OFFICE BOX 225012 - DALLAS. TEXAS 75265

\section*{TYPES TL080 THRU TL085, TLO80A THRU TL084A, TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS}

TYPICAL APPLICATION DATA

\section*{\(0.5-\mathrm{Hz}\) SQUARE-WAVE OSCILLATOR}

FIGURE 24-0.5-Hz SQUARE WAVE OSCILLATOR
FIGURE 25-HIGH-Q NOTCH FILTER

Note A: These resistor values may be adjusted for a symmetrical output.
FIGURE \(27 \mathbf{- 1 0 0} \mathbf{k H z}\) QUADRATURE OSCILLATOR

\section*{Texas Instruments \\ INCORPORATED \\ POST OFFICE BOX 225012 - DALLAS, TEXAS 75265}

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A,
TLOE1B, TL082B, TL084B
JFET-IMPUT OPERATIONAL AMPLIFIERS

Texas Instruments
POST OFFICE BOX 225012 - DALLAAS. TEXAS 35265
- Titanium-Tungsten (Ti-W) Fuse Link For Reliable Low-Voltage Full Family Compatible Programming
- Full Decoding And Fast Chip Select Simplify System Design
- P-N-P Inputs For Reduced Loading On System Buffers/Drivers
- Applications Include:

Microprogramming/Firmware Loaders Code Converters/Character Generators Translators/Emulators
Address Mapping/Look-Up Tables
\begin{tabular}{|c|c|c|c|c|c|}
\hline NEW TYPE NUMBER & OLD TYPE NUMBER & \multirow[t]{2}{*}{BIT SIZE (ORGANIZATION)} & \multirow[t]{2}{*}{OUTPUT CONFIGURATION \({ }^{\dagger}\)} & \multicolumn{2}{|l|}{TYPICAL PERFORMANCE} \\
\hline \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & & & ADDRESS ACCESS TIME & POWER DISSIPATION \\
\hline TBP18SA030 (J, N) \({ }^{\text {a }}\) & SN74S188 (J, N) & \multirow[t]{2}{*}{\[
\begin{gathered}
256 \text { Bits } \\
(32 \mathrm{~W} \times 8 \mathrm{~B})
\end{gathered}
\]} & \(Q\) & \multirow[b]{2}{*}{25 ns} & \multirow[b]{2}{*}{400 mW} \\
\hline TBP18S030 (J, N) \({ }^{\text {a }}\) & SN74S288 (J, N) & & \(\nabla\) & & \\
\hline TBP14S10 (J, N) \({ }^{\text {A }}\) & SN74S287 (J, N) & \multirow[t]{2}{*}{\[
\begin{gathered}
1024 \text { Bits } \\
(256 W \times 4 B)
\end{gathered}
\]} & \(\nabla\) & \multirow[b]{2}{*}{42 ns} & \multirow[b]{2}{*}{500 mW} \\
\hline TBP14SA \(10(\mathrm{~J}, \mathrm{~N})^{4}\) & SN74S387 (J, N) & & \(\underline{0}\) & & \\
\hline TBP18SA22 (J, N) \({ }^{\text {a }}\) & SN74S470 (J, N) & \multirow[t]{2}{*}{\[
\begin{gathered}
2048 \text { Bits } \\
(256 \mathrm{~W} \times 8 \mathrm{~B})
\end{gathered}
\]} & \(\underline{0}\) & \multirow[t]{2}{*}{50 ns} & \multirow[t]{2}{*}{550 mW} \\
\hline TBP18S22 \((\mathrm{J}, \mathrm{N})^{4}\) & SN74S471 (J, N) & & \(\nabla\) & & \\
\hline TBP18S42 (J,N)* & SN74S472 (J, N) & \multirow[t]{2}{*}{\[
\begin{gathered}
4096 \text { Bits } \\
(512 \mathrm{~W} \times 8 \mathrm{~B}) \\
\hline
\end{gathered}
\]} & \(\nabla\) & \multirow[b]{2}{*}{55 ns} & \multirow[b]{2}{*}{600 mW} \\
\hline TBP18SA42 (J, N) \({ }^{\text {4 }}\) & SN74S473 (J, N) & & \(\bigcirc\) & & \\
\hline TBP18S46 (J, N) \({ }^{\text {a }}\) & SN74S474 (J,N) & \multirow[t]{2}{*}{\[
\begin{gathered}
4096 \text { Bits } \\
(512 \mathrm{~W} \times 8 \mathrm{~B}) \\
\hline
\end{gathered}
\]} & \(\nabla\) & \multirow[t]{2}{*}{55 ns} & \multirow[t]{2}{*}{600 mW} \\
\hline TBP18SA46 (J,N)* & SNT4S475 (J, N) & & Q & & \\
\hline
\end{tabular}

A For full temperature parts \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) use suffix MJ. For devices with MIL-STD 883E processing (\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)) see page \(2-3\). \({ }^{+} \underline{Q}=\) open collector, \(\nabla=\) three state.

Pin assignments for all of these memories are the same for the Jand \(N\) packages. See Product Guide, Section 7 , for chip carrier pin assignments. description

These monolithic TTL programmable read-only memories (PROMs) feature titanium-tungsten (Ti-W) fuse links with each link designed to program in 100 microseconds. The Schottky-clamped versions of these PROMs offer considerable flexibility for upgrading existing designs or improving new designs as they feature full Schottky clamping for improved performance, low-current MOS-compatible p-n-p inputs, choice of bus-driving three-state or open-collector outputs, and improved chip-select access times.

The high-complexity 2048 - and 4096 -bit PROMs can be used to significantly improve system density for fixed memories as all are offered in the 20-pin dual-in-line package having pin-row spacings of 0.300 inch \((7,62 \mathrm{~mm})\).

\section*{SERIES 14 AND 18}

PROGRAMMABLE READ-ONLY MEMORIES

\section*{Texas Instruments \\ INCORPORATED}

POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

\section*{SERIES 14 AND 18 \\ PROGRAMMABLE READ-ONLY MEMORIES}
description (continued)
Data can be electronically programmed, as desired, at any bit location in accordance with the programming procedure specified. All PROMs, except the TBP14S10 and TBP14SA10 are supplied with a low-logic-level output condition stored at each bit location. The programming procedure open-circuits Ti-W metal links, which reverses the stored logic level at selected locations. The procedure is irreversible; once altered, the output for that bit location is permanently program med. Outputs that have never been altered may later be programmed to supply the opposite output level. Operation of the unit within the recommended operating conditions will not alter the memory content.
A low level at the chip-select input(s) enables each PROM. The opposite level at any chip-select input causes the outputs to be off.
The three-state output offers the convenience of an open-collector output with the speed of a totem-pole output; it can be bus-connected to other similar outputs yet it retains the fast rise time characteristic of the TTL totem-pole output. The open-collector output offers the capability of direct interface with a data line having a passive pull-up.
schematics of inputs and outputs

TYPICAL OF ALL
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage (see Note 1 \(7 V\)
Input voltage 5.5 V
Off-state output voltage 5.5 V
Operating free-air temperature range: Full-temperature-range circuits \(-55^{\circ}\) © to \(125^{\circ} \mathrm{C}\)
\(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)Commercial-temperature-range circuits
Storage temperature range \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
recommended conditions for programming the TBP18S', TBP18SA', TBP14S', and TBP 14SA PROMs
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & MIN & NOM & MAX & UNIT \\
\hline \multirow[t]{2}{*}{Supply voltage. VCc (see Note 1)} & Steady state & 475 & 5 & 5.25 & \multirow{2}{*}{\(V\)} \\
\hline & Program puise & 9 & 9.25 & 9.5 & \\
\hline \multirow[t]{2}{*}{Input voltage} & High level. \(\mathrm{V}_{1 / \mathrm{H}}\) & 2.4 & & 5 & \multirow[t]{2}{*}{\(v\)} \\
\hline & Low level, VIL & \multicolumn{2}{|l|}{0} & 0.5 & \\
\hline \multicolumn{2}{|l|}{Termination of afl outputs except the one to be programmed} & \multicolumn{3}{|l|}{See toad circuit (Figure 1)} & \\
\hline \multicolumn{2}{|l|}{Voltage applied to output to be programmed, VOfpr) (see Note 21} & 0 & 0.25 & 0.3 & V \\
\hline \multicolumn{2}{|l|}{Duration of VCC programming putse \(X\) (see Figure 2 and Note 3)} & 15 & 25 & 100 & Ms \\
\hline \multicolumn{2}{|l|}{Programming duty cycle for \(Y\) pulse} & & 25 & 35 & \% \\
\hline \multicolumn{2}{|l|}{Free-air temperature} & 20 & 25 & 30 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
* Absolute maxirnum ratings.

NOTES: 1. Vottage values are with respect to network ground terminal. The supply voltage rating does not apply during programming
2. The TBP18S030, TBP18SA030, TBP18SA22. TBP18S22. TBP18S42. TBP18SA42. TBP18S46 and TBP18SA46 are supplied with all bit locations containing a tow logic level, and programming a bit changes the output of the bit to high logic level. The TBP 14 S 10 . TBP14SA 10 are supplied with all bit outputs at a high logic tevel, and programming a bit changes it to a tow logic level.
3. Programming is guaranteed if the pulse applied as \(98 \mu \mathrm{~s}\) in duration.

\section*{Texas Instruments \\ INCORPORATED}

POST OFFICE BOX 225012 - DALLAS TEXAS 75265

\section*{SERIES 14 AND 18}

\section*{PROGRAMMABLE READ-ONLY MEMORIES}
step-by-step programming procedure for the TBP18SA030, TBP18S030, TBP14S10, TBP14SA10, TBP18SA22, TBP18S22, TBP18SA42, TBP18S42, TBP18S46, TBP18SA46
1. Apply steady-state supply voltage \(\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}\right)\) and address the word to be programmed.
2. Verify that the bit location needs to be programmed. If not, proceed to the next bit.
3. If the bit requires programming, disable the outputs by applying a high-logic-level voltage to the chip-select input(s).
4. Only one bit location is programmed at a time. Connect each output not being programmed to 5 V through \(3.9 \mathrm{k} \Omega\) and apply the voltage specified in the table to the output to be programmed. Maximum current into the programmer output is 150 mA .
5. Step VCC to 9.25 nominal. Maximum supply cursent required during programming is 750 mA .
6. Apply a low-logic-level voltage to the chip-select input(s). This should occur between \(\mathbf{1} \mu \mathrm{s}\) and \(\mathbf{1} \mathrm{ms}\) after VCC has reached its 9.25 level. See programming sequence of Figure 2.
7. After the \(X\) pulse time is reached, a high logic level is applied to the chip-select inputs to disable the outputs.
8. Within the range of \(1 \mu \mathrm{~s}\) to 1 ms after the chip-select input(s) reach a high lagic level. \(V_{C C}\) should be stepped down to 5 V at which level verification can be accomplished.
9. The chip-select input(s) may be taken to a low logic level (to permit program verification) \(1 \mu \mathrm{~s}\) or more after VCC reaches its steady-state value of 5 V .
10. At a \(Y\) pulse duty cycle of \(35 \%\) or less, repeat steps 1 through 8 for each output where it is desired to program a bit.
11. Verify accurate programming of every word after all words have been programmed using VCC values of 4.5 and 5.5 valts.

NOTE: Only one programming actempt per bit is recommended.

LOAD CIRCUIT FOR EACH OUTPUT WOT BEING PROGRAMMED OR FOR PROGRAM VERIFICATION

FIGURE 1 - LOAD CIRCUIT

FIGURE 2 - VOLTAGE WAVEFORMS FOR PROGRAMANING

\section*{Texas Instruments \\ INCORPORATED \\ POST OFFICE BOX 225012 - DALEAS. TEXAS 75265}

SERIES 14 AND 18
PROGRAMMABLE READ-ONLY MEMORIES WITH 3-STATE OUTPUTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & & \multicolumn{3}{|l|}{TBP14S10, TBP18S22} & \multicolumn{3}{|c|}{TBP185030} & \multicolumn{3}{|l|}{TBP18S42, TBP18S46} & \multirow[b]{2}{*}{UNIT} \\
\hline & & MIN & NOM & MAX & MIN & NOM & MAX & MIN & NOM & MAX & \\
\hline \multirow[b]{2}{*}{Supply voltage, VCC} & MJ & 4.5 & 5 & 5.5 & 4.5 & 5 & 5.5 & 4.5 & 5 & 5.5 & \multirow{2}{*}{V} \\
\hline & J. N & 4.75 & 5 & 5.25 & 4.75 & 5 & 5.25 & 4.75 & 5 & 5.25 & \\
\hline \multirow[t]{2}{*}{High-level output current, 1 OH} & MJ & & & -2 & & & -2 & & & -2 & \multirow[t]{2}{*}{mA} \\
\hline & J, N & & & -6.5 & & & -6.5 & & & -6.5 & \\
\hline \multicolumn{2}{|l|}{Low-level output current, IOL} & & & 16 & & & 20 & & & 12 & mA \\
\hline \multirow[b]{2}{*}{Operating free-air temperature, \(\mathrm{T}_{\mathbf{A}}\)} & MJ & -55 & & 125 & -55 & & 125 & -55 & & 125 & \multirow[t]{2}{*}{\({ }^{\circ} \mathrm{C}\)} \\
\hline & J. N & 0 & & 70 & 0 & & 70 & 0 & & 70 & \\
\hline
\end{tabular}
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{PARAMETER}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TEST CONDITIONS \({ }^{\dagger}\)}} & \multicolumn{3}{|c|}{FULL TEMP (MJ)} & \multicolumn{3}{|r|}{COMM. TEMP (J, N)} & \multirow[t]{2}{*}{UNIT} \\
\hline & & & & MIN & TYP \({ }^{\dagger}\) & MAX & MIN & TYP \({ }^{\text { }}\) & MAX & \\
\hline \(\mathrm{V}_{\text {IH }}\) & High-level input voltage & & & 2 & & & 2 & & & V \\
\hline \(V_{\text {IL }}\) & Low-level input voltage & & & & & 0.8 & & & 0.8 & V \\
\hline \(V_{\text {IK }}\) & Input clamp voltage & \(\mathrm{V}_{\text {CC }}=\mathrm{MIN}\), & \(\mathrm{I}_{1}=-18 \mathrm{~mA}\) & & & -1.2 & & & -1.2 & V \\
\hline \(\mathrm{VOH}^{\text {OH}}\) & High-level output voltage & \[
\begin{aligned}
& V_{C C}=M I N \\
& V_{I L}=0.8 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& V_{I H}=2 V \\
& I_{O H}=M A X
\end{aligned}
\] & 2.4 & 3.4 & & 2.4 & 3.2 & & V \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Low-level output voltage & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\
& \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& V_{I H}=2 V, \\
& I_{O L}=M A X
\end{aligned}
\] & & & 0.5 & & & 0.5 & V \\
\hline IOZH & Off-state output current, high-level voltage applied & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX} \\
& \mathrm{~V}_{\mathrm{O}}=2.4 \mathrm{~V}
\end{aligned}
\] & \[
V_{1 H}=2 \mathrm{~V},
\] & & & 50 & & & 50 & \(\mu \mathrm{A}\) \\
\hline IOZL & Off-state output current, low-level voltage applied & \[
\begin{aligned}
& V_{C C}=M A X \\
& V_{O}=0.5 V
\end{aligned}
\] & \[
V_{I H}=2 \mathrm{~V}
\] & & & -50 & & & -50 & \(\mu \mathrm{A}\) \\
\hline 11 & Input current at maximum input voltage & \(V_{C C}=M A X\), & \(\mathrm{V}_{1}=5.5 \mathrm{~V}\) & & & 1 & & & 1 & mA \\
\hline I/ H & High-level input current & \(V_{C C}=M A X\). & \(\mathrm{V}_{1}=2.7 \mathrm{~V}\) & & & 25 & & & 25 & \(\mu \mathrm{A}\) \\
\hline IIL & Low-level input current & \(V_{C C}=M A X\), & \(V_{1}=0.5 \mathrm{~V}\) & & & -250 & & & -250 & \(\mu \mathrm{A}\) \\
\hline Ios & Short-circuit output current \({ }^{\text {\% }}\) & \multicolumn{2}{|l|}{\(V_{C C}=\) MAX} & -30 & & -100 & -30 & & -100 & mA \\
\hline \multirow{4}{*}{ICC} & \multirow{4}{*}{Supply current} & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
V_{C C}=M A X,
\] \\
Chip select(s) at 0 V , \\
Outputs open, \\
See Note 4
\end{tabular}} & TBP14S10 & & 100 & 135 & & 100 & 135 & \multirow{4}{*}{mA} \\
\hline & & & TBP18S030 & & 80 & 110 & & 80 & 110 & \\
\hline & & & TBP18S22 & & 110 & 155 & & 110 & 155 & \\
\hline & & & TBP18S42, TBP18S46 & & 120 & 155 & & 120 & 155 & \\
\hline
\end{tabular}
switching characteristics over recommended ranges of \(T_{A}\) and \(V_{C C}\) (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
t_{a}(A)(n s)
\] \\
Access time from address
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
\mathrm{t}_{\mathrm{a}}(\mathrm{~S})(\mathrm{ns})
\] \\
Access time from chip select (enable time)
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
tpxz (ns) \\
Disable time from high or low level
\end{tabular}} & \multirow[t]{2}{*}{UNIT} \\
\hline & & MIN & TYP \({ }^{\ddagger}\) & MAX & MIN & TYP \({ }^{\ddagger}\) & MAX & MIN & TYP \({ }^{\ddagger}\) & MAX & \\
\hline TBP14S10MJ & \multirow{8}{*}{\begin{tabular}{l}
\(C_{L}=30 \mathrm{pF}\) for \\
\(t_{a}(A)\) and \(t_{a}(S)_{i}\) \\
5 pF for \(\mathrm{t} P \mathrm{XZ}\), \\
See Page 1.12
\end{tabular}} & & 42 & 75 & & 15 & 40 & & 12 & 40 & ns \\
\hline TBP14S10 & & & 42 & 65 & & 15 & 35 & & 12 & 35 & ns \\
\hline TBP18S030MJ & & & 25 & 50 & & 12 & 30 & & 8 & 30 & ns \\
\hline TBP18S030 & & & 25 & 40 & & 12 & 25 & & 8 & 20 & ns \\
\hline TBP18S22MJ & & & 50 & 80 & & 20 & 40 & & 15 & 35 & ns \\
\hline TBP18S22 & & & 50 & 70 & & 20 & 35 & & 15 & 30 & ns \\
\hline TBP18S42MJ, TBP 18S46MJ & & & 55 & 85 & & 20 & 45 & & 15 & 40 & ns \\
\hline TBP18S42, TBP18S46 & & & 55 & 75 & & 20 & 40 & & 15 & 35 & ns \\
\hline
\end{tabular}

NOTE: MJ designates full-temperature-range circuits (formerly 54 Family), J and \(N\) designate commercial-temperature-range circuits (formeriy 74 Family)
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\(\neq A l l\) typical values are at \(V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}\).
§ot more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
NOTE 4: The typical values of ICC are with all outputs low.

Texas Instruments
INCORPORATED
POST OFFICE BOX 225012 - DALLAS, TEXAS 75265

\section*{SERIES 14 AND 18 \\ PROGRAMMABLE READ-ONLY MEMORIES WITH OPEN-COLLECTOR OUTPUTS}
recommended operating conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{PARAMETER}} & \multicolumn{3}{|l|}{TBP14SA10, TBP18SA22} & \multicolumn{3}{|c|}{TBP18SA030} & \multicolumn{3}{|l|}{TBP18SA42, TBP18SA46} & \multirow[b]{2}{*}{UNIT} \\
\hline & & MIN & NOM & MAX & MIN & NOM & MAX & MIN & NOM & MAX & \\
\hline \multirow[b]{2}{*}{Supply voltage, \(\mathrm{V}_{\text {CC }}\)} & MJ & 4.5 & 5 & 5.5 & 4.5 & 5 & 5.5 & 4.5 & 5 & 5.5 & \multirow[b]{2}{*}{V} \\
\hline & J, N & 4.75 & 5 & 5.25 & 4.75 & 5 & 5.25 & 4.75 & 5 & 5.25 & \\
\hline \multicolumn{2}{|l|}{High-level output voltage, \(\mathrm{V}_{\mathrm{OH}}\)} & & & 5.5 & & & 5.5 & & & 5.5 & \(V\) \\
\hline \multicolumn{2}{|l|}{Low-level output current, 1 OL} & & & 16 & & & 20 & & & 16 & mA \\
\hline \multirow[b]{2}{*}{Operating free-air temperature, \(T_{A}\)} & MJ & -55 & & 125 & -55 & & 125 & -55 & & 125 & \multirow[t]{2}{*}{\({ }^{3} \mathrm{C}\)} \\
\hline & J, N & 0 & & 70 & 0 & & 70 & 0 & & 70 & \\
\hline
\end{tabular}
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & \multicolumn{2}{|c|}{TEST CONDITIONS \({ }^{\dagger}\)} & MIN & TYP \({ }^{\ddagger}\) & MAX & UNIT \\
\hline \(V_{\text {IH }}\) & High-level input voltage & & & 2 & & & V \\
\hline \(V_{\text {IL }}\) & Low-level input voltage & & & & & 0.8 & V \\
\hline \(V_{\text {IK }}\) & Input clamp voltage & \(\mathrm{V}_{\text {CC }}=\mathrm{MIN}\), & \(1_{1}=-18 \mathrm{~mA}\) & & & -1.2 & V \\
\hline \multirow[b]{2}{*}{IOH} & \multirow[b]{2}{*}{High-level output current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{C C}=\mathrm{MIN}, \\
& V_{I H}=2 \mathrm{~V} . \\
& V_{I L}=0.8 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{VOH}_{\mathrm{OH}}=2.4 \mathrm{~V}\) & & & 50 & \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \\
\hline & & & \(\mathrm{VOH}=5.5 \mathrm{~V}\) & & & 100 & \\
\hline VOL & Low-level output voltage & \[
\begin{aligned}
& V_{C C}=\mathrm{MIN}, \\
& V_{I L}=0.8 \mathrm{~V},
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V} \\
& \mathrm{IOL}^{\prime}=\mathrm{MAX}
\end{aligned}
\] & & & 0.5 & V \\
\hline 11 & Input current at maximum input voltage & \(V_{C C}=M A X\), & \(V_{1}=5.5 \mathrm{~V}\) & & & 1 & mA \\
\hline \({ }_{1 / \mathrm{H}}\) & High-level input current & \(V_{C C}=M A X\). & \multirow[t]{2}{*}{\(\mathrm{V}_{1}=2.7 \mathrm{~V}\)
\(\mathrm{~V}_{1}=0.5 \mathrm{~V}\)} & & & 25 & \(\mu \mathrm{A}\) \\
\hline \(1 / \mathrm{L}\) & Low-level input current & \(\mathrm{V}_{\text {CC }}=\) MAX, & & & & -250 & \(\mu \mathrm{A}\) \\
\hline \multirow{4}{*}{ICC} & \multirow{4}{*}{Supply current} & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
V_{C C}=M A X,
\] \\
Chip select(s) at 0 V , \\
Outputs open, \\
See Note 4
\end{tabular}} & TBP18SA030 & & 80 & 110 & \multirow{4}{*}{mA} \\
\hline & & & TBP14SA10 & & 100 & 135 & \\
\hline & & & TBP18SA22 & & 110 & 155 & \\
\hline & & & TBP18SA42, TBP18SA46 & & 120 & 155 & \\
\hline
\end{tabular}
switching characteristics over recommended ranges of \(T_{A}\) and VCC (unless otherwise noted)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TYPE} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|r|}{\begin{tabular}{l}
\(t_{s}(A)\) \\
Access time from address
\end{tabular}} & \multicolumn{3}{|r|}{\begin{tabular}{l}
\({ }^{\boldsymbol{t}} \mathbf{a}(\mathbf{S})\) \\
Access time from chip select (ensble time)
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
tPLH \\
Propagation delay time, low-to-high-fevel output f̂rom chip select (disable time)
\end{tabular}} & \multirow[t]{2}{*}{UNIT} \\
\hline & & MIN & TYP \({ }^{\text {+ }}\) & MAX & MIN & TYP \({ }^{\text {\# }}\) & MAX & MIN & TYP \({ }^{\text {\# }}\) & MAX & \\
\hline TBP 18SA030MJ & \multirow{8}{*}{\[
\begin{aligned}
& C_{L}=30 \mathrm{pF}, \\
& R_{L 1}=300 \Omega, \\
& R_{L 2}=600 \Omega, \\
& S_{\text {ee Page }} 1-12
\end{aligned}
\]} & & 25 & 50 & & 12 & 30 & & 12 & 30 & ns \\
\hline TBP185A030 & & & 25 & 40 & & 12 & 25 & & 12 & 25 & ns \\
\hline TBP14SA10MJ & & & 42 & 75 & & 15 & 40 & & 15 & 40 & ns \\
\hline TBP14SA10 & & & 42 & 65 & & 15 & 35 & & 15 & 35 & ns \\
\hline TBP18SA22MJ & & & 50 & 80 & & 20 & 40 & & 15 & 35 & ns \\
\hline TBPSA22 & & & 50 & 70 & & 20 & 35 & & 15 & 30 & ns \\
\hline TBP18SA42MJ, TBP18SA46MJ & & & 55 & 85 & & 20 & 45 & & 15 & 40 & ns \\
\hline TBP18SA42, TBP18SA46 & & & 55 & 75 & & 20 & 40 & & 15 & 35 & ns \\
\hline
\end{tabular}

NOTE: MJ designates full-temperature-range circuits (formerly 54 Family). J and \(N\) designate commercial-temperature-range circuits (formerly 74 Family).
\({ }^{\dagger}\) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\# All typical values are at \(V_{C C}=5 \mathrm{~V}, \top_{A}=25^{\circ} \mathrm{C}\)
NOTE 4: The typical values of \({ }^{\prime} \mathrm{CC}\) are with all output low.

TEXAS'INSTRUMENTS
INCORPORATED
POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

\section*{APPENDIX 2 ENGINEERING DRAWINGS}
1. BLOCK DIAGRAM
2. LNW80 PRINTED CIRCUIT BOARD SCHEMATIC PAGE 1 OF 4
3. LNW80 PRINTED GIRCUIT BOARD SCHEMATIC PAGE 2 OF 4
4. LNW80 PRINTED CIRCUIT BOARD SCHEMATIC PAGE 3 OF 4
5. LNW80 PRINTED CIRCUIT BOARD SCHEMATIC PAGE 4 OF 4
6. KEYBOARD SCHEMATIC
7. EXPANSION BOARD SCHEMATIC PAGE 1 OF 2
8. EXPANSION BOARD SCHEMATIC PAGE 2 OF 2
9. LNDOUBLER 5/8 SCHEMATICS
10. TOP ASSEMBLY LNW80
11. LNW80 PRINTED CIRCUIT BOARD COMPONENT SIDE
12. LNW80 PRINTED GIRCUIT BOARD SOLDER SIDE
13. LNW80 PRINTED CIRCUIT BOARD ASSEMBLY DRAWING
14. LNW80 PRINTED GIRCUIT BOARD ASSEMBLY DRANING
15. SYSTEM EXPANSION PRINTED CIRCUIT BOARD COMPONENT SIDE
16. SYSTEM EXPANSION PRINTED CIRCUIT BOARD SOLDER SIDE
17. EXPANSION FINAL ASSEMBLY DRAWING
18. LNDOUBLER \(5 / 8\) PRINTED CIRCUIT BOARD

Manual Title: LNW80 technical reference manual
1

Street Address: \(\qquad\)
City/State/Zip Code:
Please list any discrepancy found in this manual by page, paragraph, figure, or table number in the following space. If there are any other suggestions that you wish to make, feel free to include them. Thank you.

Location in Manual
Comment/Suggestion

\(\qquad\)
\(\qquad\)

\(\qquad\)
 \(\qquad\)

FOLD ON TWO LINES (LOCATED ON REVERSE SIDE) STAPLE AND MAIL

\footnotetext{
LNW RESEARCH CORP. 2620 WALNUT AVE. STE A TUSTIN, CA. 92680
}
```

