
M I C R 0 M A T I O N

D U A L D I S K

I N S T A L L A T I 0 N

A N D u s E R I s

VER:0.04

1

D R I V E

G U I D E

~-tANUAL

PLEASE NOTE THE FOLLOWING SPECIAL PRECAUTIONS WHEN USING DISKETTF.S

There are a few special precautions you must observe when handling diskettes and
files to avoid destruction of data and programs through· misuse or mishandling:

1. Whenever you remove a diskette from a drive and replace it with another diskette,
REBOOT the CP/M system BEFORE PERFORMING ANY SUBSEQUENT OPERATIONS.
A "warm start" is sufficient (control-C) to cause CP /M to recognize that the diskettes
have changed. A reboot is not necessary, however, if the replaced diskette is "read-only"
and data or programs will not be written to the diskette.

2. Do not turn the mainframe or disk drive power off with a diskette in the drive.
Many controllers (such as the MDS 800 controller) will engage the head and turn on
the write electronics momef!tarily, thus destroying. a track of data.

3. Always store diskettes in their protective jackets when not in the diskette drive.·
Otherwise, dust will gather on the recording surface causing drive head wear and
reduced media life.

4. Store the diskettes in normal work areas where temperatures are not extreme
(within the 50-125 degrees F), and do not allow them to get near magnetic influenc~s
(such as large power supply transformers) or allow them to be exposed to direct sunlight
for any extended period of time.

5. Provide adequate archives for your programs and data. Regular and organized
backup techniques are essential for protection against media, hardware, software, or
operator failures in any computing environment.

TABLE OF CONTENTS

1.0 Parts List

2.0 Minimum Hardware Configuration

3.0 How To Connect The Hardware

4.0 Bringing Up the System
4.1 Connecting the Console
4.2 System Console Communications
4.3 Teletype
4.4 RS232 Device
4.5 Baud Rate Sel~ction
4.6 DIP pin layout

5.0 Bringing Up CP/M
5.1 Bringing Up the System Without A Front Panel
5.2 How To Insert A Diskette

6.0 Backing Up the System
6. 1 Altering the So ft ware I/O Port Speed
6.2 Serial I/O Port Speed Constants

1.0 Relocating Your System
7.1 Operating System Components
1.2 Regeneration Procedure
7.3 Sample I/O Routines
7.4 Common Load Offsets

8.0 Theory of Operation
8.1 How CP/M Is Initiated
8.2 Schematics

9.0 Source Code
9. 1 CBIOS
9.2 Bootstrap
9.3 Superboot
9--. 4 So ft ware Serial. I/O Port

2

..

QUANTITY

1
1
1
1
1
1
1
1
1
6
1

SECTION 1.0

P A R T S

3

L I S T

ITEM

Dual Disk D!"'ive
S-100 Bus Cont!"'olle!"' Ca!"'d
40 Conducto!"' Connecto!"' Cable
Softwa!"'e Diskette
16 Pin DIP Heade!"
Documentation Manual
Wa!'ranty Ca!'d
CP/M Regist!"'ation Card
C P/M Licensing Agreement
CP/M Documentation Manuals
BASIC-£ Reference Manual

SECTION 2.0

MINIMUM HARDWARE CONFIGURATION

The MICROMATION Dual Disk Drive system runs on an S-100 bus,
8080 or Z-80 microcomputer with a minimum of 16K of RAM. To
run BASIC-E at least 20K is needed. The memory must be·
contiguously addressed from locations O through 3FFF.
Additional memory must avoid certain locations due to the
memory on the controller board The reserved locations are
four pages of memory, F800 th?"ough FBFF.

A console communications device is also needed. A video
terminal (CRT) such as the ADM-3 or Hazeltine 1500 or a
hardcopy type such as the Decwriter II, teletype or the
Hyterm II is adequate. The terminal must be able to
communicate over a standard serial interface using RS232
conventions or a Teletype terminal (TTY) that uses a 20ma
current 1 oo p •

Computers that do not have front panel switches or some other
means of transferring control to a specified location (other
than zero) will .. need a board that transfers control on a
reset or power~on.

SECTION 3. 0

HOW TO CONNECT THE HARDWARE

Be sure that all components of the compute?" system are
unplugged before connecting the MIC ROMATION dual disk drive.

Place the controller card in an empty S-100 bus slot
component ·side forward.· The card must be firmly seated in
the connector to make good electrical contact. The
connector end of the 40 conductor cable extending from the
MICROMATION disk drive unit should then be connected to the
top row of pins on the controller board. A small number "1"
is- etched-near- the- 1 eftmost- pin on- the·· boa?"'d ,;·-·The side of--the- -
cable with the single red wire must align with this. In most
computers the cable will extend toward the rear of the box.

Any board that executes a jump instruction on a reset or
power-on, such as the· MICROMATION JUMP-START (tm) board,
should be disabled until the disk system has been tested (If
you do not have front panel ·switches, · you WILL need a
JUMP-START board or equivalent to get s~a~ted. · See Section
5.1). The JUMP-START board will be a helpful addition to the
system when it is up and running.

SECTION 4.0

BRINGING UP THE SYSTEM

Supplied with the MICROMATION disk system is a copy of CP/M,
a microcomputer Operating System (OS). It provides a named
file structure on diskettes and I/O routines for the system's
peripheral d~vices. It includes :system tools such as an
ass~mble?", text editor .and dynamic debugger.

CP/M comes with six separate manuals describing its abilities
and use. It is important that these manuals be read and
studied.

This manual is a guide to the CP/~ documentation and it
provides a conveniept summary for generating CP/M systems.
It will not_ act as_ a substitute. for a thorough reading of the
CP/M documentation. The contents of this manual and the
CP/M manuals should be read completely before attempting any
action.

SECTION 4. 1

SYSTEM CONSOLE COMMUNICATION

CP/M uses a two-way communications device called the System
Console. Through it the user requests services from the
operating system and the OS informs the user of its status.
The console device is usually a Cathode Ray Tube (CRT) or a
Teletype (TTY). In addition to the console device itself, two
things are necessary. First is a serial I/O port that
supports either the TTY1nte?" face or· the RS232- te!"m in al - and
the software routines to interface between this port and the
CP/M operating system. Both are supplied with the
MICROMATION system. The I/6 port is implemente~ in an
on-board PROM. The inte!"face drivers a!"e ready to run in the
distributed version of the CP/M BIOS (See CP/M SYSTEM

5

ALTERATION GUIDE, page 12, for a discussion.of the drivers).

The serial I/O port provides instant communication with the
system. It is possible to sta!"t·running right away.· It also
allows the use of the CP/M facilities to customize CP/M
avoiding the laborious task of hand assembling and toggling
in of I/O ?"outines. It also avoids the undesirable p!"actice ..
of "hot patching" programs.

The p!"imary pu!"pose of the on-boa?"d sofware I/O port is to
get the system running with a minimum of time and effort. It
is not designed as a permanent replacement fo!" hardware I/O
support. Many hardware I/O boards provide more than one port
and a wider range of communication disciplines than the
~n-board software port.

SECTION 4.2

CONNECTING THE CONSOLE

The MICROMATION cont?"olle!" board/has a 16 pin DIP socket in
the upper right corner for ,~connecting the system console
device. The console device MUST have either an RS232 or 20ma
cu!"rent loop interface. A 16 pin DIP Heade!" (plug) is
provided with the MlCROMATION system. It should already be
inserted in the DIP socket. Remove it before soldering to
it! The connecting wires f!"om the te!"minal must be solde!"ed
to the top of the pins on the plug. The pin configuration
is shown in Figu!"e 4.6. If the te!"minal is a TTY O!" other
cu!'rent loop device connect only the pins shown in Figu!'e ·
4.4. If it is an RS232 compatible device connect only the
pins shown in Figu!'e 4.3. Some RS232 devices !"equi!"e that
lines other than the three shown here be pulled high O!"
grounded. Check the specific manufactu!"er' s documentation
before hooking up any additional lines.

Data is sent th!'ough the po!"t se!"ially with no parity. The!'e
is one sta!"t bit and two stop bits on each data byte.
Assure that the terminal is set for this type of
com mun ic at ion. \

Once the soldering is finished, plug the DIP header into
socket on the controiler boa!"d. The notches on
components must be aligned.

6

the
both

..

DIP
PIN

15
2
1

DIP
PIN

6
5
3
4

FIGURE. 4.3

RS232 CONNECTION SUMMARY

NAME

GROUND
SIG. OUT
SIG. IN

FIGURE 4.4

EIA.

AB
BB
BA

TELETYPE CONNECTION SUMMARY

<
NAME POLARITY

our
our +
IN +
IN

SECTION 4.5

BAUD RATE SELECTION

RS232

7
3
2

The ser~al data transmission speed -0f t software I/O po:~
is regulated by a two byte constan held in memory in the
CP/M CBIOS. It is set initially for , the
speed of TTYs. Most CRTs can be set for this speed. If the
terminal will operate at higher speeds it is possible to
alter the speed constant. This should be changed only after
the system is in an operational state. Once the system is up

'
7

..

the speed can be altered with the facilities of CP/M. A
description of how to change the baud rate constant is given
in Sec ti on 6. 1.

SECTION 4.6

DIP PIN LAYOUT

--
I I
I 16 15 14 13 12 11 10 9 I
I I
I RS-232 I
\ GND I

\ I
I' I
I I

I I
I RS-232 RS-232 TTY TTY TTY TTY I
I IN OUT IN+ 'IN

--- -ouT+ OUT- I
I 1 2 3 4 5 6 7 8 I
I I __________________ < _____________________________________

SECTION 5.0

CP/M INITIATION PROCEDURE

When all of the hardware components are properly installed
CP/M can be initiated and run. It is strongly suggested to
make at least one backup copy of the system diskette
immediately after determining that the system is functional
and before ANY other processing. A program is included with
the system for this purpose. The procedure for using it is
described in Section 6.0. The following steps describe the
exact procedure for starting CP/M.

8

'

A. All components must be interconnecteef. The
40 conductor cable should run from the disk
controller to the disk drives. The console
must be connected to the 16 pin DIP header.

B. All components must be plugged
ground ed , 11 5 v a c c i r cu it • Be s u r e
console device is plugged in.

into a
that the

C. Turn on the power to the computer and the
disk drives. Depress the "RESET" switch on
the computer's front panel. The "STOP" switch,
if the computer has one, should be depressed
before the· "RESET" to prevent the computer
from executing random instructions before the
bootstrap operation. Allowing th~ computer to
process "garbage" instructions can cause it to
write garbage on the diskette! Do not turn on
the power while the diskette is in the drive
as power transients can destroy data also.

D. Insert the system diskette in drive "A".
Make sure the diskette is facing in the proper
direction (See Figure 5. 2). CP/M will ALWAYS

"bootstrap from drive "A".
,.,

E. Examine memory location F800. This is the
beginning of the program "SUPERBOOT" in PROM.
Verify that the first byte of this routine is

·a 31H. The system will now be ready to execute
the procedure to bootstrap the operating
system into main memory.

F. Start processor execution with the "RUN"
switch and the "SUPERBOOT" routine will bring
in the bootstrap program from track zero,
sector one of drive "A". The· bootstrap
program will then !'"ead in ·the !"'emainder of the
OS from tracks zero and one.

The system bootstrap will take app!"'oximately th!"'ee seconds.
When the ope!"'ation is finished, the CP/M Console Command
Processor (CCP) will type the system prompt message to the
console. It looks like this:

A>

9

The prompt message is printed whenever CP/M is idling and
awaiting a command from the console operator.

If some combination of one or two other characters appear on
the screen it may indicate a communications problem. Check
the console device to assure that it is set for the proper ,
baud rate and framing pattern. If there is no response from
the terminal, check the manufact_urer' s. documentation. Some
RS232 terminals require a 11 Cl ear To Send" or other signal to
be pulled high before they will respond to any external
communications. Some devices can automatically transmit a
line-feed following a carraige-return. If this option is
present, it must be disabled .•

Briefly test the CP/M functions at this point. Type the
command "DIR" followed by a carraige-return and the operating
system should respond by ·printing the diskette file
directory. See the CP/M FACILITIES manual for a more
detailed description of the CCP functions.

Te&t the resident command "TYPE" by typing:

TYPE BOOT.ASM

The source file for the bootstrap program "BOOT" should be
printed. to the system console (long typeouts can be aborted'
by hitting any key on the console keyboard.}.

The next test shourd be of a CP/M system transient program.
Use the "STAT" transient for this. Type:

STAT

The response should be:

BYTES AVAILABLE: nnnK

To test the W?"'ite function of the system type:

SAVE 1 X. COM

This will build a small file on diskette by the "X. COM". The
"DIR" command should show that the file has been added to the
directory.

At this point the system is· functioning correctly. Before
attempting any programming tasks at least one system backup
disk should be c?"'eated.

10

SECTION 5. 1

BRINGI~G UP THE SYSTEM WITHOUT A FRONT PANEL

A power-on/reset jump start board is necessary to bring up
the MICROMATION system if the computer does not have a front
panel. Not having a front panel reduces the debugging
facilities available but . the initiation procedure is
simplified.

Set the jump add!"ess on the board for F800, the address of
Supe!"'boot. Follow the procedures described in section 5.0
except for step 'E' which will be automatically performed by
the jump sta!"t board.

SECTION 5. 2

HOW TO INSERT A DISKETTE

For Memorex systems, insert the diskette in drive A,

the lower drive, with the label facing up. Push the

diskette firmly until it engages in the drive, and

close the door of the drive.

11

SECTION 6.0

BACKING UP THE SYSTEM

The program MMCOPY copies the entire contents of a diskette
from drive A onto a diskette on drive B. Place a blank
diskette in drive B. Be sure that the write protect notch is
absent or has a tab over it. This will enable the write
mechanism of the MICROMATION drive. Type the following in
response to the system prompt:

MM COPY

To make more than one backup diskette, type:

MMCOPY R

This causes the MMCOPY program to repeat the copying
operation. When the copy program requests a return, make sure
the diskettes are inserted and type return. When the
diskettes have been copied, respond with a control-c to the
"TYPE RETURN" message (See the MMCOPY documentation for a
complete discussion ...-of this program).

One backup copy of the system should be stored in a
protected location and kept only in the event that all other
diskettes are erased. Remember, if the last system diskette
is accidently erased it will cost $25.00 to replace it. BACK
IT UP!

SECTION 6.1

ALTERING THE SOFr~ARE I/O PORT SPEED

If the system console device will run at a higher speed than
the preset 110 baud rate, the speed constant held in reserved
memory locations FA71 and FA72 can be altered. For baud rates
of 110 or faster only the low order byte is significant.- The
high order byte is always set to zero. The single low order
byte can be set to any new speed with the Dynamic Debugging
Tool, DDT. After initiating DDT, use the 'set' facility to
insert the proper speed constant in the low order location.
The front panel can also be used. The speed constants are
shown in Table 6.2.

12

Immediately after setting the constant, communications to and
from the·console will become garbled until the baud rate on
the console device is changed ••

Altering. the speed cqnstant with DDT is te~porary. It will
only last until the next "COLD" bootstrap operation. A cold
boot will bring in a fresh copy of the CBIOS from diskette.
It will contain the old speed constant for 110 and the
system will instantly revert. A permanent change to the I/O
port speed can be done when relocating CP/M.

SECTION 6. 2

SERIAL I/O PORT SPEED CONSTANTS

BAUD RATE

11 0 150 300 600 1200 2400
DECIMAL 171 125 62 31 15 7

<
HEX AB 7D SE 1F OF 07

·-· --- --·- ----· - -- - ·---

SECTION 7.0

RELOCATING YOUR SYSTEM

When the CP/M disk system is up and running it is possible to
generate a system that will utilize all available RAH. To
run BASIC-E or CBASIC a system running in at least 20K of
memory is needed.

While adjusting the size of the operating system the CBIOS
console I/O routines can be replaced. The new I/O routines
can communicate through the normal I/O ports and hardware I/O
support board(s). A driver routine to allow CP/M to output to
a printer can be installed.

13

i

The procedures for generating, relocating and customizing the
operating system are thoroughly described in the CP/M
documentation manual:

CP/M SYSTEM ALTERATION GUIDE

The following section is a step-by-step summary of how to
relocate and customize the system. This manual is not as
detailed as the SYSTEM ALTERATION GUIDE. It is not a
substitute but an aid and summary for the CP/M manual. The
process of generating a new system is not complex but it can
be a confusing procedure the first few times it is attempted.
It is suggested that both this and the CP/M manuals be
studied before building a custom system.

SECTION 7.1

OPERATING SYSTEM COMPONENTS

CP/M is composed of resident and t;ansient prog:ams. The
transient programs need no modifications because they adjust
themselves to the size of the current operating system. The
resident components of the operating system must be modified
for different sizes:· They a!"e:

CONSOLE COMMAND PROCESSOR
BASIC DISK OPERATIN~ SYSTEM
BASIC INPUT OUTPUT SYSTEM
BOOTSTRAP PROGRAM

A detailed discussion of the organization of resident CP/M
components is in the manual:

CP/M INTERFACE GUIDE

When I/O drive!"s a!"e added to the Basic Input Output System
(BIOS) a Customized BIOS or CBIOS is created. This CBIOS
must be assembled for the desired system size and combined
with the other portions of the OS including the bootstrap
program. A standard system program, MOVCPM, will regenerate a
new version of the operating system of any desired size
without the customized portions and the bootstrap.

14

I

SECTION 7. 2

REGENERATION PROCEDURE

Create the operating system (CCP and BOOS) for the size
desired. The CBIOS and Bootstrap programs are distributed
in source form. They need to be modified and reassembled
separately. The three components are then gathered in the
transient program area· with DDT and saved on diskette as a
COM type file.

Use the MOVCPM program to create a new copy of the operating
system of the desired size. Save it as an ordinary COM file
by typing:

SAVE 32 CPMnnK.COM

Where 'nn' is the size of the new system. Use the PIP
program to make a copy of the BIOS source that is distributed
with the system. Call it 'CBIOSnnK.ASM'. Copy the bootstrap
'ASM' file with PIP also. Name it 'BOOTnnK.ASM'.

Make the followipg modifications to the source files of the
CBIOS and Bootstrap. Use the CP/M Text Editor (ED).

The manual:

ED: A CONTEXT EDITOR FOR THE CP/M DISK SYSTEM

gives a thorough description of the use of this program.

Enter the Editor with the name of the CBIOS source copy.
Alter the 'MSIZE' variable at the start of the p!"og:am so
that it indicates the p!"oper size of the system. Put in
comments describing any changes made in the CBIOS. Put the
date of the change at the beginning of the code. Inse:t the
I/O d!"ivers for peripheral.access after the names:

CONIN:
CONOUT:
CONST:

A detailed description of the purpose of each routine can
found on page 15 of the SYSTEM ALTERATION GUIDE.

be

Be sure the I/O routines do not force the size of the CBIOS
out of the alloted space.

For a list device, enter the driver routine after the name:

15

LIST:

Routines for a paper tape reader ·or punch can be added after
the names:

READER: ..
PUNCH:

Unused routines
instruction. If
need programming,
cold boot portion

should be terminated with a 'RET'
the hardware I/O board has UART chips that
those procedures should be installed in the
of the CBIOS marked with the comment:

;PLACE UART INITIALIZATION RTNS HERE

Sample I/O routines are shown in Section 7.3.

When all modifications have been made to the CBIOS, exit from
the editor and assemble the new CBIOS. Detailed instructions
on the CP/M Assembler are in the manual:

CP/M ASSEMBLER (ASM)

In addition to the CBIOS the bootstrap program must be
reassembled for the new memory size. Using the editor,
change the 'MSIZE' variable at the start of the bootstrap
program. Exit the editor and reassemble the bootstrap.

CP/M can now be crea'ted out of its components: the relocated
operating system (CCP, BOOS), the customized CBIOS, and the
bootstrap. Uniting all of these parts is done with DDT.
Start the DDT program and read in the new CP/M by typing:

DDT CPMnnK. COM

DDT will !"'espond with its logon message followed. by the next
available address and the contents of the program counter:

DDT VERS 1.3
NEXT. PC
2100 0100

Now insert the name of the CBIOS file by typing:

ICBIOSnnK.HEX

This prepa!"'es DDT to read the CBIOS file. 'DDT normally reads
programs into- the memory locations for which they __ have been __
assembled. The operating system must be built in the TPA
rather than the location where the OS will reside when it is
running. They can be pl aced in the proper location by
reading the files in with an "offset". The offset for the
CBIOS is calculated f!"'om the. size of the new system. The
offset and calculating it is fully explained on pages 6-7 of .

16

the SYSTEM ALTERATION GUIDE.

The lowest page of memory is !"eserved for system
communications and usable memory begins at location 100H·.
The SYSGEN . program will occupy the 800H bytes ranging f?'"om
100H to 8FFH. The new operating system must be placed
sta?"ting at location 900H where the SYSGEN program expects
to find it.

Section 7.4 shows a chart of common offsets. For example,
use the offset of A080 for a 32K system. To read the CBIOS
with the 32K offset, type:

RA080

This causes the CBIOS to be properly inserted in relation
to the BOOS forming the correct operating system
configuration.

Insert the bootstrap program next. The bootstrap's location
does not change from system to system, it is always loaded
with the same offset and will always occupy the first sector
on diskette. It must occupy the lowest portion of memory
beyond 900H. The bootstrap is "org'ed" at location zero and
must be loaded by DDT at an address 900H bytes away from its
normal load address. This is done by specifying a 900H byte
offset on the DDT "R" (READ} command:

IBOOTnnK.HEX
"' R900

The new customized CP/M is now properly organized in memo!"y.
Type a control-c to return to the monitor and type:

SA VE 3 2 C PM n n K. COM

This places a copy of the customized system onto the diskette
under the name specified. The system must be "sysgen'ed" onto
the first two tracks of a diskette fo!" bootst!"apping. The
first two tracks are what the bootstrap program reads.

The program 'SYSGEN' is used for accessing the operating
system tracks. SYSGEN performs two vital tasks. It reads a
copy of the operating system off of tracks zero a·nd one and
places it into memory starting at location 900H in the
Transient P!"ogram~Area, and two, it will take any copy of the
operating system that is already at location 900H and place
it on the fi!"st two tracks of the specified diskette.

Use DDT to get the copy of the new system into the TPA~ theh
use the second function of SYSGEN to place it on any
diskette. The sequence is as follows:

17

'

DDT CPMnnK. COM

When DDT finishes loading the new OS and types· the prompt
character, enter a control-c to return to the monitor. Place·
the desired diskette in drive B and call SYSGEN to place the
operating system on it. When SYS GEN types: '

GET SYSTEM (Y/N)?

Type a 'N'; the system is already present. SYSGEN will then
request:

PUT SYSTEM (Y/N)?

Respond with a 'Y' and the SYSGEN program will place the new
OS onto the first two t!'"acks of the diskette in drive B f!'"om
the image of the operating system in memory.

When the SYSGEN is finished, the diskette in drive Bis ready
fo!'" rebooting. Remove the diskette from drive-A and replace
it with the one in B. Remember, in order to read in the
ENTIRE new copy of CP/M, execute a. cold-start (RESET)
procedure. The contr-ol-c operation only pe!'"'forms a warm boot
and will not read in the CBIOS.

SECTION 7.3

SAMPLE CBIOS I/O ROUTINES

CONST:
IN 0 ;GET PORT STATUS
ANI 1H ;IS A CHAR THERE?.
JNZ WASTHERE ;YES, SO JUMP
XRA A ; NO, SO CLEAR FLAGS AND ACCUM
RET ;ALL DONE. EXIT

WASTHERE:
MVI A, OFFH ;INDICATE THAT SOMETHING
RET . WAS THERE THEN EXIT , . ,

CON IN:
IN 0 ; GET PORT STATUS
AN! 1H ;IS A CHAR THERE?
JZ CON IN ;IF NOTH ING -THERE, - TRY AGAIN-
IN 1 ;GET THE INC OM ING DA TA BYTE
AN! 07FH ;CLEAR THE PARITY BIT
REI ;ALL DONE • EXIT . ,

CONOUT:
IN 0 ;GET PORT STATUS

18 .

ANI 2H ;IS OUTPUT BUFFER CLEAR?
JZ CON OUT ; NO, SO TRY AGAIN
MOV A,C ;PUT OUTGOING DATA IN A CC UM
our 1 ;WRITE IT OUT
RET ;ALL DONE. EXIT .

' LIST: ' IN 2 ;GET PORT STATUS
ANI 2H ;IS OUTPUT 3UFFER CLEAR?
JZ LIST ; NO, SO TRY AGAIN
MOV A,C ;PUT OUTGOING DATA IN ACCUM
our 3 ;WRITE IT our
RET ;ALL DONE. EXIT

' PUNCH:
READER:

RET ; PUNCH AND READER ARE NOT USED.

SECTION 7.4

-.!' COMMON OFFSETS

SIZE OFFSET
IN K VALUE

16 E080
24 COBO
32 A080
40 8080
48 6080
56 4080
64 2080

19

SECTION 8.0

THEORY.OF OPERATION

The MICROMAl'ION disks are controlled by an S-100 bus
compatible controller. The controller is managed by software
in two pages (512 bytes) of on-board PROM. Data transfer!"ed
is buffered in one page (256 bytes) of on-board RAM. An
additional address page is reserved for use by the controller
for communications. The memory is add!"essed as follows:

PROM
RAM
I/O LOCATIONS

f 800
FAOO
FBOO

F9FF
FAFF
FBFF

The MICROMATION controller transfers information to and from
diskette wheneve!" one of two reserved memory locations is
accessed. When the 'MARKPORT' byte is read the controller

.. reads a sectormark from the diskette. When the same byte is
written to the sectormark is written to diskette. A second
'pseudoport' is called 'DATAPORT'. When it is accessed it
causes tr an sf er of a single byte of data. The psuedoport can
be considered as an output port to diskette. For example, if
the instruction:

LDAX DATA PORT
-I(

is executed, the transfer of data
the diskette rather than from
Co n v er s e 1 y , i f th i s i s ex e cute d :

STAX DATAPORT

is to the accumulator from
the memory b yt e its e 1 f •

The byte in the accumulator is written to the current disk
location. Each sector of data is arrayed,on diskette in the
following format:

20

...

..

FIELD BYTES

INTER-RECORD GAP
ADDRESS MARK 1
TRACK 1
ZERO 1
SECTOR 1
ZERO 1
ID FIELD CRC 2
ONES 1 1
ZEROS 6
DA TA MARK 1
DATA FIELD 128
DATA FIELD CRC 2
ZERO 1

The status of the disk controller can be read into the
accumulator in the same manner as data is transferred. By
reading the 'statusport' location, eight bits of information
are pl aced in the accumulator.

D7
READY

D6
SEEK
DONE

05
HEAD

LOADED

D4 D3 D2
INDEX SECTOR WRITE

PROTECT

D1 DO
SERIAL TRACK

INPUT ZERO

The controller is given instructions by writing to the
'CONTROLPORT' memory location. The eight control bits are:

D7
UNIT

SELECT

D6
<
D5 D4 03 D2 01

SELECT SELECT RESTORE DIR
A B

SECTION 8.1

HOW CP/M IS INITIATED

DO
STEP
HEAD

A small p!"ogram, called '·SUPERBOOT' is burned into PROM at
the reserved memory location F800. This program has the
single function of reading in a single sector of data from
track 0 sector 1 of drive A. It places the 128 bytes of data
at location zero in main memory. Execution is then
transferred to location zero. The 128 byte prog!"am that
SUPERBOOT loads is the cold bootst!"ap loader for CP/M.
SUPERBOOT is the same for any MICROMATION-version- of ·CP/M.
When initiating CP/M for the first time, either a manual
operation or a powe!"-on/reset triggered circuit must jump to
location F800 where the SUPERBOOT program !"esides.

21
•

..

A-

M M c 0 p y

This program is a generalized full-disk copy
that is designed to run-in a CP/M -environment.
will copy the entire contents of a diskette on

a disk~tte on drive B. ·

pro9'ram
MMCOPY

drive A

to

The program is invoked by-typinq the transient name
with two optional parameters. For example:

A-MMCOPY RS

If the optional 'R' parameter is specified the
program will repeat execution indefinitely or until a
control-c (warm boot) is entered -from the console in
response to -~he mount message. The mount messaqe is
issued before every copy and is of the form:

SOURCE ON A, DESTINATION ON B, THEN RETURN

It gives the~operator a chance to change either
or both of the diskettes. After the diskette has
copied or when a control-c is detected MMCOPY
issue a reboot message givinq the operator
opportunity to mount a system diskette in drive A.

one
been
will

the

If the optional 'S' parameter is ente~ed anywhere on
the command-line 1 the copy program wi 11 stop-- copying
when it encounters a full track of 'ES's. When a
diskette is initialized it is padded ·- with the
hexadecimal byte configuration of 'ES's. The 1 S 1

parameter will thus allow a diskette with only a few
tracks used to be·copied-in ~ignificantly less time than
if the entire 77 tracks of unused data area were
copied.

All data copied is automatically veri~ied on disk
reads and writes.. If an error-is-detected the-entire
track (26 sectors) will be-recopied and a- message- will
be printed indicating the hex address .of the track and
sector.in error. ___ If the .. ·error --persists,· MMCOPY· will
retry. the track for 10 times. After 10 unsuccessful
ret~ies a 'PERMANENT' me~sage will be- printed and the
program.will continue, ignoring the bad data.

1

'

(

MEMTEST USER DOCUMENTATION 1

M E M T E. S T

MEMTEST is a program designed to give your RAM memory an extensive read'
and write test. It will record all errors found while running on the
system console. It is designed to test only RAM memory and will not
test disk I/O or disk DMA. Other programs are available to test those
_functions.

The program begins by requesting three addresses from the user that must
be entered in hexadecimal form. ·Leading zeros are required. It will
request a starting address, a test length and a test increment. The pro
gram will begin at the starting address and perform three tests (called
phases) in a single block of memory that is the size specified by 'incre
ment'. At the end of these three tests the starting address is increased
to the next increment and the phases are repeated. This continues until
enough increments have been tested to equal the test length. For ex
ample, if you specify a starting address of 4000 (remember, this is in
hex), a'test length of 4000 and an increment of 1000, the program will
start at 4000 (16K) and test through 4FFF outputing error statistics at
the end. It will then repeat the procedure starting at 5000 and test
ing through 5FFF. This repeats a total of four times or until it has
tested 4000 (16K) bytes.

In order to thoroughly test a memory board, we recommend two tests.
The first time through.._the increment should be equal to the amount of
memory addressed by one bank of RAM chips (this is 4K on most 16K boards) •
The second test should be run with an increment equal to the total
board memory size. Thus on a 16K system with the test board strapped
for 4000H through 7FFFH the test specifications would be:

BEG. TEST LOCATION:
TOTAL TEST LENGTH:
TEST INCREMENT:

TEST ONE

4000
4000
1000

TEST TWO

4000
4000
4000

Note that this is a very thorough test. Test one will take close to
six hours to run to completion and Test two will take around 24 hours
to execute! I
The actual test consists of three phases. For Phase One the test area
is written with a bit pattern and then examined to see if the pattern
is still there. The program repeats this test 256 times checking all
possible bit patterns.

MEMTEST USER DOCUMENTATION 2

In Phase Two the test area is initially filled with zeros. A byte con
taining a' single '1' bit is then written to the first location of the
test area. The entire increment is checked to see if it is still zeros.,
The program repeats this test routine through all eight single bit pat- .
terns. It will then write the test byte in the second location in the
test increment and repeat the above loop. - It will thus 'walk' the eight
bit patterns through every byte in the test area.

The Phase Three test procedure is identical to Phase Two except that
both the testing field and the walking bit~pattern are complemented.
All of memory is filled with FF's and. the bit patterns that are walked
are the eight patterns containing a single '0' bit.

Upon completion of the three phases on each test increment, the pro
gram prints a table that consists of a row of eight four-digit hex num
bers that are a count of the total number of errors found during the
three phases. The left most number corresponds to the most significant
bit (7) .. of the chip and right most to the least significant bit (0) of
the chip.

One row is printed for each 0400H bytes tested. If a board containing
1K chips was tested, each row corresponds to one block of chips and each
number in the row to a specific chip. However, if the board contained
4K chips then the first four rows correspond to one block of chips and
the total errors attributable to a given chip would be the sum of the
four mmbers in the indi'Vidual column (of four rows) belonging to that-
bank. ·

MEMTEST was originally designed as a stand-alone memory test program
but has now been upgraded to run in a CP/M environment. Therefore, care
must be taken not to give the memory test program addresses that will
cause it to overlay itself or the BOOS (operating system) with any of
the test patterns. The minimum beginning test location is 1000H (4K)
and the total test length should never extend into the CP/M BOOS.

The most convenient method of operation is to strap your memory so that
the board to be tested has addresses that are contained completely with
in the TPA (Transient Program Area). A second method is to strap the
board to be tested with addresses com pl etel y ABOVE the operating system.
For ex ample, if the system contained two 1 6K RAM boards a 16K version of
CP/M could be used and the board to be tested should be strapped for
4000H (16K) through 7FFFH (32K-1).

If neither of the above options are possible on your.system it may be
possible to run the test on one 4K block at a time and then restrap the
board ~o all blocks can be tested.

MEMTEST USER DOCUMENTATION 3

The MEMTEST program will ask during the setup procedure wh"ether you want
detail error information by printing:

RECORD EACH ERROR ON CONSOLE? (Y OR N)

If you respond with a 'Y' , each time a byte is found to be in error a 1 ine
will be printed at the system console in the form:

A= aa aa GB= gg bb W= ww ww

Where aa aa is the address in memory in hexadecimal form of the bad byte.
Where gg is what pa_ttern the program expected to find.
Where bb is what the program found.
Where ww w~ is the address currently containing the walking byte.

During setup, the MEMTEST program will ask:

REPEAT TEST? (Y OR N)
..

If the response is 'Y' the entire test procedure will repeat indefinitely.

'

Al3

Al2
All

AlO

A9

AB
SINTA

SINP

SOUT

PDBIN

..

Al
AO

1/0 ENBL

WR

PDBIN
t>:...''fr:/

DO?

D06

·. DOS

D04

D03

D02

DOl

DOO

WRITE B

12 ROM ENBL

11
RAM ENBL .

10
l/O ENBL

9

14
cs2

B

74Lsl55 (4C) AB

B lYO l READ DATA
l3 A l Y1 G READ MARK M

E
M
0
R
y

READ STATUS

LOAD HEAD

WRITE DISK 13
O WRITE MARK ROM ENBL

l WRITE Fr4LT A8 14

2 WRITE SERIAL
M A

11 DATA 7 E D
12 DATA 6 M D

0 R
R E

13 o3 . DATA 5 y s
s

o4 9 DATA 4

oS 11 DATA 3 ROM ENBL
06 13 DATA 2

A7
A6
AS

BlLS97 (9c)
A4

A3

~-- .
Pl. ~J'J2 A2

~ 74Ls04 B l1.

WR . P7 . ~!.m B

Al

AO
1374LS08

Vee

1-•:

3
5 4

74Ls04

MMI 6306 C 6c>
AB

A7 9
AG olJ DATA 7

AS
A4 03 lO DATA 6
A3 2
A2 O ll DATA 5

Al l
AO 0 DATA 4

cs

DATA 7

DATA o
DATA 5

DATA 4

DATA 3

DATA 2

DATA 1

DATA 0

M A
E D
M D
0 R
R E
y s

s

WRITE B
RAM ENBL

4

8

13

15

2112 (6B)

DI 7
DI 6

DI 5

DI 4

DI 3

DI 2

DI 1

DI 0

AB MMI 6306 Cle) 2112. C7s> A7
A7 DATA3 AG o4
A5
A4 o3 DATA 2
A3

ll DATA 1 A2 o2
Al 12 DATA 0 AO ol

cs

~
~
~

~
A

~
D

M D
0 R

~ R E
y s

~
s

~
~-

A6 12
~ A A51/04 DATA 3 D
M D 15

A41/03 ll DATA 2 0 R
R E A3
y s

A21/02 lO DATA 1 s 3 Al 4
A0I/Ol 9

14 DATA 0
WRITE B R/fl

P.AM ENBL l3 cs

(ALL PULLUP RESISTORS 470)

UNIVERSAL FLOPPY DISK

DATA BUFFERS~ MEMORY~ AND
SELECTION LOGIC

c G. MORROW PAGE 1 OF 4

OUT OF PHA 74LS74
A CLK

Vee 4 Vee

C CLK 12 D Q g A' CLK 2 D 5 Q S A CLK

SYS CLK
1 12B 3 -- 12B 6 --

CK Q A I CLK CK Q A CLK
R R

1

3-WRITE GATE
3

HEAD
4 Dl Vee

ONE
6

D2
TWO D3 c

11 ~ D THREE 4 Q4 FOUR
FOUR OUT OF D5 QS EN P

14 PHASE 10 Vee 9 D6 7A EN T

C CLK 2
QA

A' .. CLK CK 74Lsl74 CK QB
CL g_

l LD QC
RESET CL

l

4 MHZ

D
DISK CLK

4 5 ~, v ij v c 10
Vee 11 11 9

c Q ENB 2 D s 6 15 Q" 9A
vco 12

3,8K RANGE 3 9A 5 D Q
2 CK Q R

R

CK Q
R

74LS161

D CLK
E CLK
F CLK

Vee

5

DATA
4 Vee

2 R 5
B CLK -· D Q C CLK

B CLK 3 c~38Q 6 C CLK
R

1

RESET

12 s
9 D Q READ DATA

11 2c
CK 74Ls74

-= R
B CLK 13 lee
~ DD _ DOUBLE DENSITY

EOW
CNTL 13 l 1

lK 6 8A 7 2 ENA QA
'----------0--a- SYS CLK

-= 74Lsl24 3

P SYNC ~ P SYNC---
74Ls04 4 Vee

Vee 0 2

CK
R Q

r-----~1

EOW
..

1-READ DAT~ 6 READ ATTN
74Ls74 ll 2B

1-READ MARR~ .
74LS00 -

EOW 4

74Ls74. -::-

1-WRITE DISK 8 3
1-WRITE MARK----....--

74LS00

s 5
D Q

2B _ fi
Q

CK R

c '.1 v c
13~~

WRITE SYNC ----J

WRITE SYNC
Vee

Vee 2 Vee 13
2 R 5 l" ... L R

3

Q D
74Ls74 11 8

CK Q s

Vee 10

12
3B 15 oS

74Lst0 14 .. 16 o6
1- /0 ENBL ENB

15'---'
8098 (3A)

UNIVERSAL FLOPPY DISK
CONTROLLER

READ DATA AND 1/0 STALL
LOGIC

PRDY

© G. MORROW PAGE 2 OF 4

2-READ DATA
74Ls299

1-DATA 7 4 1-DATA 6 G 3
1-DATA 5 15 G2 F

5 -;:

1-DATA 4 14 E
1-DATA 3 D

6
1-DATA 2 llc c

13
1-DATA 1 7 B
1-DATA 0 A
2- A CLK

12
CK
- QH
Gl CL 17

19 2-DD

2-EOC
74Lsl0

POC pg

1-WRITE Ff'll T

READY 11 ol 1-DATA 7

o2 5 1-DATA 4
INDEX 7 o3 1-DATA 3

SECTOR 06 13 1- DATA 2

WRITE ol 15 1- DATA 1
PRETEST

08 1-DATA 0
_a
o4 ., 1-DATA 5

TRACK 0 o5 11 1-DATA 6

4A 81LS
15

SA
1-READ STATUS SB

2-WRITE SYNC

74Ls08

10
74Lsl65

WRITE DATA

1-DATA 2 ~ 6

1-DATA 0
1-DATA 1

74LS02 l
2-DD 1-WRITE MARK2 3 10 2-EOC

Vee 2 s
D

11 le
CK Q

11 13

74LS00

Dl
4 D2
6 D3 SA

11 D4
13 D5
14 D6

74Lsl74

WRITE DATA
WRITE CLK

74Ls00

2

74Ls74

R
1 Vee

74Ls74

74Ls02
2-DISK CLK

2-A' CLK
2-C CLK

2 11
4 12
6

13
Vee 1 14

1 N A
8098 (3A)

10 14
12 15

14 16
2·

a:=------111
4

WRITE GATE 12 . 6

15
EN B 1 .
EN A

-;: 8098

9B
7

Q

'

!NH

1

WRITE CLK

DRIVE
SELECT
DRIVE A
DRIVE B
ENA

RESTORE
(ABOVE 43)

DIRECTION
STEP

WRITE DATA

WRITE ENBL
HEAD LOAD

POC BP9-P-------------

A 74Lsl61 13
B 12 D R Q

9
C 4B HEAD

f#ii(<j(@iJftSTji(~M• 0
-;:

lOA CRY 15 11 8
74Ls74

EN P CK s Q HEAD UNIVERSAL FLOPPY DISK
LD CONTROLLER
EN T 10

INDEX CK CL
STATUS AND DISK WRITE LOGIC

LOAD HEAD © G. MORROW PAGE 3 OF 4

1-DATA D

3
1-WRITE SERIAL e

Vee

RS232 IN

4
SET

Q

Q

l

4.7 K

47K

6

Vee

Vee
3.3K

2N3904

rn914

TTY IN +

TTY IN -

+8v
39MF

-=

-12v

LN340 OR 7805

IN OUT r----
GND

39MF
GND (BPlOQ) p51>----......-------

+16 v

-16v

1N759
1N4742

1N759 .

.01MF

.01MF

-=

Vee

+12v

·-12v

RS 232 OUT

RS232 GND

TTY OUT +

~ TTYouT-

SERIAL INPUT

27K

«l!11~i®ll't5ri1t@~~t
UNIVERSAL FLOPPY DISK

CUNJHULLER
SERIAL INTERFACE &

POWER SUPPLIES

©G. MORROW I PAGE 4 OF 4

aaTYPE MEMOREX.PRN

F800

FAOO •

OOFE =
0040 ""
0 00 2 -
OOFD =
0080 -
0004 :a

'0 20 -0010 ""
0008 =
0023 =
OOOA ""
0006 =

FA70 -
0000 -
F800 31 70FA
F803 OEOO
F805 CD8AF8
F808 CD22F8
FBOB C200F8
F80E OE01
"81 0 CD56F9
F813 010000
F816 CD64F9
F819 CDC1F8
F81C C200F8
F81F C30000

J

ORG

1
SCRATCH:

UPDATED 1/2/78 TO TO RUN IN PROM AT FBOO

,
;COMBINED ROUTINES TO BE INCLUDED ·IN DISK ~ONTPO
J

OF800H

EQU OF800-H+200H

DRIVERS FOR MEMOREX DRIVE

MASK EQUATES
ADDRESSMARlC EQU OFEH
SEEKDONEMASK EQU 40H
INMASK EQU 02H
OUTMASlC EQU OFDH
READYMASlC EQU SOR

< HOMEMASK EQU 04H
HEADMASK . EQU 20H
AM ASK EQU 10H
BMASK EQU OBH

1
HEAD SETTLE EQU 35D
STEP SETTLE EQU 100
STEPDELAY EQU 6D
;

1 ,
1
;

BOOTSTRAP:
;THIS ROUTINE READS TRACK 0 1 SECTOR 1 INTO MEMORY
;AT LOCATION ZERO AND THEN JUMPS TO ZERO
1
STACK EQU SCRATCH+70H
COLDBOOT EQU 0 .
I

1
LXI SP,STAClC 1 SET STAClC -.POINTER- 'l'O BUFFER
MVI c,o 7SELECT DRIVE A
CALL SELDSK
CALL HOME
JNZ BOOTSTRAP ;LOOP IF DRIVE NOT READY
MVI CI 1
CALL SETS EC 7SET SECTOR ONE
LXI B 1 COLDBOOT 7SET OMA ADDRESS
CALL SETDMA 7AT ZERO
CALL DISKREAD
JNZ BOOTSTRAP ;LOOP IF ERROR
JMP COLDBOOT ;JUMP TO BOOT
1

• F822- CD81F8
F825 DO
F826 2177FA

F829 CD6AF8
P82C 1A
F82D 1F
F82E DA29F8

P'831 CD61F8
P834 1A
F835 1F
F836 D231F8

F839 2176FA
P83C 36FE

F83E 2C
P83P 3600
F841 C2~EF8
F844 C9

F845 AF
F846 B1
F847 FB
F848 3E4C
F84A 91
F84B 08
F84C CD81F8
F84F DO

F850 2177FA
F853 7E
F854 B9
FBSS CA7BF8
F858 CDSEF8
P85B C350F8

FBSE DA6AF8

P'861 3A70FA
F864 35
F865 E6FD
F867 C370F8

F86A 3A70FA
F86D 34
F86E F602

P'870 , 2
F871 3C
P'872 12
F873 30
P'874 12
F875 0606
F877 CDA3F8
F87A C9

HOME:

ATHOME:

GOHOME:

INITIALIZE:

FILLLOOP:

1
SETTRK:

STEPLOOP:

,
STEPHEAD:

STEPOUT:

STEPIN:

DOSTEP:

CALL
RNC
LXI

DISKREADY ;IS DEVICE READY?
7IF CARRY SET, THEN DIS~

H,TRACK 7POINT H-L TO TRACKBUFFER

' CALL STEPIN ;STEP AWAY FROM HOME
LDAX D 1 READ STATUS
RAR ;CHECK TRACK ZERO BIT
JC ATHOME 7CONTINUE STEPPING IN TILL NOT ~

CALL
LDAX
RAR
JNC

LXI
MVI

INR
MVI
JNZ
RET

XRA
ORA
RM
MVI
SUB
RC
CALL
RNC

LXI
MOV
CMP
JZ
CALL
JMP

JC

LOA
DCR
ANI
JMP

LOA
INR
ORI

STAX
INR
STAX
OCR
STAX
MVI
CALL
RET

STEPOUT ;GO TOWARDS HOME
D ;CHECK STATUS

;CHECK TRACK ZERO BIT
GOHOME 1LOOP UNTIL AT HOME

H,ADDRPTR
M,ADDRESSMARK

L
M,O
FILLLOOP

A
c

A,76D
c

;BUMP ADORESS BnFFF.R P~t

;FILL BUFFER WITH ZERO

;GET A ZERO
;IS TRACK-0?
;IF YES, RETURN
;COMPARE TO LAST TRACK

;CHECK IF TRACK GREATER
DISKREADY 7CHECK RF.ADY

;RETURNIF NOT

H,TRACK
A,M
c
DONES TEP
STEP HEAD
STEP LOOP

STEP IN

CONTROLBYTE
M
OUTMASK
DO STEP

CONTROLBYTE
M
INMASK

;POINT TO PRESENT TRACK
1GET PRESENT TRACK
1COMPARE TO DESIRED TRA
;ON CORRECT TRACK
;CARRY SET TO INDICATE
;GO AROnND AGAIN

;GO INWARDS IF CARRY SF

1CHECK DRIVE SELECT <
1DECREMENT TRACK BOFFEF
7SET D1 FOR DIRECTION
JEXECUTE STEP

1INCREMENT TRACK REI.IS~

;SET IN CODE

D ;OUT PUT DIRECTION
A
D
A
D
B,
DELAY

; SET STEPA BIT
;OUTPUT STEP
1CLEAR STEP BIT
1CLEAR STEP BIT ON POR'

STEPDELAY :SET UP DELAY
;DELAY FOR STEP TIME

;

F87B 060A
F87D CDA3F8
F880 C9

F881 CDB1F8

F884 AF
F885 1A
F886 07
F887 08
F888 3C
F889 C9

F88A CDB1F8
F88D AF~

FB8E 81
F88F CA97F8

F892 3EOB
F894 C399F8

F897 3E10

F899 3270FA
F89C 3202FB
F89F AF
FBAO C3BAF8

F8A3 2E1F

FSAS 3AOOFB

F8A8 20
F8A9 C2ASF8
FBAC 05-
P'BAD C2A3F8
F8BO C9

F8B1 11 02FB
F8B4 1 A
F8BS E620
F8B7 13
FSBS 1 A
F8B9 1 B

FBBA 0623
FBBC CCA3F8
FBBP' AP'
FBCO C9

DONESTEP:

, ,
r ,
DISKREADY:

1 CAUTION

,
J
SELDSK:

MVI
CALL
RET

B,STEPSETTLE
DELAY

CALL HEAD LOAD

1SET UP READ SETTLEING

IT IS ASSUMED THAT HEADLOAD SETS D,E ~o DISKFTINC~Ir
XRA A ;CLEAR THE ZERO FLAG
LDAX D JGET FUNC~ION BYTR FRr
RLC rREADY BIT SHIFTED INTO CAR~Y
RC
INR
RET

CALL
XRA
ADD
JZ

A

HEAD LOAD
A
c
SELECTA

1CARRY ,ZERO SET
rCLEAR ZF.RO FLAG
1DRIVE. NOT RF.ADY

rGET ZEROS
rZER0•1 IF DRIVE A, ~!

DO A SEL:ecTB
MVI
JMP

A,BMASK
DO SELECT

1GET SELECT MASK FOR J

SELECTA:

DOSELECT.J

J

r
DELAY:

DELAYLP:

J

' HEADLOAD:

CALLDELAY:

t ,

MVI

STA
STA
XRA
JMP

MVI

LOA

OCR
JNZ
OCR
JNZ
RET

LXI
LDAX
ANI
INX
LDAX
DCX

MVI
CZ
XRA
RET

A,AMASK

CONTROL BYTE
DISKFUNCTION
A
CALLDELAY

L,31

DATAPORT·

L
DELAYLP
B
DELAY

1GET SELECT MASK FOR

;SET UP DRIVE STATUS
1SEND TO CONTROLLFR
;SET ZERO FLAC::
7CALL DELAY FOR HF.AOL

1# OF MILLISF.CS OF.LAY

;THIS INSTRUC~IO~ CA~
tA 32 MICOR-SECOND DF
;IP THE HF.AD IS LOADF

D,DISKFUNCTION
D ;READ DISK STATUS
HEADMASK ;CHECK FOR HEAD LOADJ
D ;POINT TO HEADLOAD
D 7STROBE HEADLOAD COUNTER
D ;SET D,E TO DISKFUNCTION, Fo·

B,HEADSE.TTLE
DELAY 1 LET
A JSET

1FOR

rSET UP HEADSETTLIN~
READ SETTLE
ZERO FLAG
RF.TURN

FA6F =
FA70 =
FA71 ..
FA73 •
FA74 =
FA76 =
FA7D a

P'AFD •
007D •
FA79 •
P'A77 •
P'BOO =
FB01 -
PB02 •
FB03 -FB03 -PAFE =
84BF •

'

F8C1 OEOO
P8C3 CDFEF8
F8C6 co
FSC7 20
F8C8 EB
F8C9 217DFA
FSCC CD70F9
F8CF 78
FSDO B1
P'8D1 co

F802 0680
P'8D4 117DFA
F807 2A74FA

FSDA 1 3
FSDB 1A
F8DC 77
PSDD 23
F8DE 05
F8DF C2DAF8
F8E2 C9

F8E3 2A74FA
F8E6 EB
F8E7 217EFA

F8EA 1A
FSEB 77
F8EC 13
F8ED 2C
FSEE C2EAF8
F8F'1 11 FDP'A
FBF4 2E7D

;

J
J MAP OF SCRATCH AREA
BOOTS TACK EQU SCRATCH+oFH
CONTROLBYTE EQU SCRATCH+70H
SPEED EQU SCRATCH+71H
RETRYCOUNT EQU SCRATCH+73H
DMAADDR EQU SCRATCH+74H
ADD RP TR EQU SCRATCH+76H
DATAPTR EQU SCRATCH+7DH
LASTDATA EQU. SCRATCH+OFDH
DATABYTE EQU 7DH
SECTOR EQUA SCRATCH+79H
TRAC JC EQU SCRATCH+77H
DA TAP ORT EQU SCRATCH+100H
MARKPORT EQU SCRATCH+101H
DISJCFUNCTION EQU SCRATCH+102H
LOADPORT EQU SCRATCH+103H
SERIALOtJTPORT EQU SCRATCH+103H
CRCBUFFER EQU SCRATCH+OFEH
RESIDUE EQU 84BFH

J
J ·,

J

DISKREAD:
MVI C,O 7SET READ FLAG

JEXECUTE READ CALL ENTRY
RNZ

'"'::' OCR
XCHG
LXI
CALL
MOV
ORA
RNZ

DATAXFER:
MVI
LXI
LHLD

XFERLOOP:
INX
LDAX
MOV
INX
OCR
JNZ
RET

' J
DISKWRITE:

LRLD
XCHGA
LXI

LOADLOOP:
LDAX
MOV
INX
:INR
JNZ
LXI
MVI

; RETURN IF ERROR
L ;POINT TO CRC

1MOVE LAST BYTE ADDRESS TO DE
H,DATAPTR ;POINT TO ADDR OP DATA MAR~
CREECH 7COMPUTE CRC
A,B JMOVE HIGH RESIDUE TO ACC
C 7COMPARE TO C

1CRC ERROR IF B,C NOT ZERO

B,128 1SET BYTE COUNTER
D,DATAPTR 7POINT TO DATA MAR~
DMAADDR 7POINT H,L TO DESTINATION

D 1POINT TO NEXT BYTE IN BUFFER
D 7GET BYTE FROM BUFFER
M,A 7STORE BYTE IN MAIN MEMORY
H 7PONINT TO NEXT BYTE IN MEMORY
B 7RIT BYTE COUNTER
XFERLOOP 7GO AROUND FOR MORE

7ZERO SET TO INDICATE NO ERROR

DMAADDR 7POINT TO DATA IN MAIN MEMORY
7MOVE ADDRESS TO DE

H,DATAPTR+1 7POINT TO DATA BUFFFR

D 7GET BYTE FROM MENORY
M,A JMOVE INTO BUFFER
D JNEXT BYTE IN MEMORY
L JNEXT BUFFER BYTE
LOADLOOP 1END OF BUFFER?
D,LASTDATA ;POINT TO LAST DAT BYTE
L,DATABYTE ;LOAD LOW ORDER ADORER OF C

F8F6 CD70F9
F8F9 71
FSFA 23
F8FB 70
FSFC OE07

FBFE CD81FB
P'901 co
F902 F3
F903 CDOFF9
F906 FB
F907 CB
F908 3E04
P'90A BB
F90B CAFEF8
F90E C9

F90F'2176FA
F912 1 101 FB
F915 0606

F917 1A
F918 BE
F919 C217F9
F91C 1B

F91D 23
F91E 1A
F91F BE
F920 co
P'9 2 1 05
F922- C21DF9
F925 060A

F927 1A
F928-05
F929 C227F9
F92C 79
F92D B7
F92E CA46F9
F931 AF

F932 , 2
F933 OD
F934 C232F9
F937 , 3
F9 31J -2 3 -
F939 7E
F93A 1 2
F93B 1B
F93C 23

F93D 7E
F93E 12

.F93F 2C
F940 C23DF9
P'943 AF
P'944 12
F945 C9

ENTRY:

CALL
MOV
INX
MOV
MVI,F
,//
J ,.

CREECH
M,C
H
M,B
c,1

CALL DISKREADY
RNZ
DI
CALL READWRITE
EI
RZ ;RETURN
MVI A,4
CMP B
JZ ENTRY
RET
1 .

;

7COMPUTE CRC
;STORE CRC IN CRC BUFFER
;NEXT BYTE
;STORE LAST CRC BYTE
;SET UP WRITE FLAG

;CHECK FOR HEAD LOADED
7DISK NOT READY
;DISABLE INTERRUPTS TO PROTECT RE~

;EXECUTE READ OR WRITE
;ENABLE INTERRUPTS FOLLOWING READ;
IF NO ERROR
;WRONG SECTOR HEADER READ?
;B CONTAINS POINTER WHERE .ERROR O<
;RETRY IF WRONG SECTOR
1RETURN WI~H NO ZERO TO INDICATE J

READWRITE:"
LXI
LXI
MVI

ADDRMARKLOOP:
LDAX
CMP
JNZ
DCX ..

ADDRESSHEADER:
INX
LDAX

. CMP
RNZ
DCR
. JNZ
MVI

GAPLOOP:
LDAX
DCR
JNZ
MOV
ORA
JZ
XRA

ZEROWRITE:
STAX
DCR
JNZ
INX
INX
MOV
STAX
DCX
INX

WRITEDATALOOP:
MOV
STAX·
INR
JNZ
XRA
STAX
RET

H, ADDRPTR ;POINT TO ADDR MRK
D, MARKPORT 1 POINT TO PORT F 1

B,6 ;SET BYTE COUNTER

D ;READ MARK
M ;ADDRESS MARK?
ADDRMARKLOOP 1IF NOT TRY AGAIN
D 1POINT TO DAT~ PORT

H ;LOOK AT NEXT BYTF IN HEADER
D 1READ NEXT BYTE FROM DISK
M 1RIGHT DATA READ?

;RETURN IF ERROR
B ;HIT BYTE COUNTER

ADDRESSHEADER 1TRY AGAIN IF NOT DONE
B,10 1SET BYTE COUNTER FOR CRAP IN GAP

D 1READ BYTE OF GAP
B ;HIT BYTE COUNTER
GAPLOOP JRETURN IF NOT LAST GAP BYTE
A,C ;CHECK READ/WRITE FLAG
A ;FLAG = 0 ?
READSECTOR ;GET OUT FOR READ
A ;SET UP TO WRITE ZEROS I'

D
c
ZEROWRITE

7WRITE A ZERO DATA BYTE
;LAST BYTE

; GO AROUND FOR M•

D ;POINT TO MARKPORT
H -~ ;POINT TO DATA MARK
A,M 1GET DATA MARK
D 1WRITE DATA MARK
D ;POINT TO DATAPOINT
H ;POINT TO DATA

A,M
D
L
WRITEDATALOOP
A
D

;GET DATA BYTE
1WRITE DATA TO DISK
;POINT TO NEXT BYTE
7LOOP IF NOT LAST BYTE
;CLEAR ACC,SET ZERO
;WRITE ZERO
1FINISHED

,
READSECTOR:

F946 1A LDAX D ;READ PASTA.CRAP I~ GAP
F947 1A LDAX D ;DITTO
F948 1A LDAX D
F949 1 3 INX D 1POINT TO MARKPORT
F94A 23 INX H 1POINT TO DATA MARK
F94B 1A LDAX D ;READ DATA MARK
F94C BE CMP M 1COMPARE
F94D co RNZ ;RETURN WITH ERROR IF NOT
F94E 1B DCX D ;POINT TO DATAPORT

READDATALOOP:
F94F 2C INR L 7POINT TO NEXT BYTE IN BTTFFER
F950 ca RZ 1GET OUT IF LAST BYTE
F951 1A LDAX D ; READ DATA BYTE .
F952-77 MOV M,A ;STORE BYTE IN MEMORY
F953 C34FF9 JMP READDATALOOP ;GO AROUND FOR MORE1

1

1

1

1

I
SETSEC:

F956 2179FA LXI H1 SECTOR 1POINT TO SECTOR BUFFEF
F959 71 MOV M,C ;STORE REGISTER NUMBER FROM C ~

F95A CD6AF9 CALL SETADDRCRC 1COMPUTE CRC OF HEADER
F95D 71 MOV M,C 1STORE FIRST CRC BYTE
F95E 23 INX - H 1POINT TO NEXT BUFFER BYTE
F95F 70

<('
MOV M,B ;STORE SECOND CRC BYTE

F960 23 INX H ;POINT TO NEXT BYTE
F961 36FB MVI M 1 OFBH ;STORE DATA MARK
F963 C9 RET 7DONE

J
;
;

SETDMA: .
F964 60 MOV H,B 1MOVE B,C PAIR TO H,L
F965 69 MOV L,C
F966 2274FA SHLD DMAADDR 7STORE ADDRESS IN BUFFER
F969 C9 RET

1

1

,
SETADDRCRC:

F96A 2176FA LXI H1 ADDRPTR JSTARTING ADDRESS IN H
F96D 117AFA LXI D,SECTOR+1 ;ENDING ADDRESS IN D,E

CREECH: ;ROUTINE TO COMPUTE CRC
F970 01FFFF LXI B,-1
F973 DS PUSH D
P'974 7E MOV A1 M
F975 A9 XRA c
P'976 57 MOV o;A
F977 OF RRC
F97B OF RRC
F979 OF RRC
F97A OF RRC
F97B E60P ANI OFH
F97D AA XRA D
F97E SF MOV E,A
F97P' OP RRC
F9BO OP RRC
F9B1 OF RRC
F9B2 57 MOV D,A

'
F983 E61F ANI lFH
F985 AB XRA B
F9B6 4F MOV C,A
F9B7 7A MOV A 1 D
F9B8 E6EO ANI OEOH
F98A AB XRA E
F9BB 47 MOV B,A
F98C 7A MOV -A,D
F9BD OF .,, RRC
F9BE E6FO ANI OFOH
F990 A9 XRA -c
F991 4F MOV C,A
F992 23 INX H

F993 01 POP D
F994 7A MOV A,D
F995 BC CMP H
F996 DB RC
F997 C273F9 JNZ CREECH+3
F99A 7B MOV A,E
F99B BO CMP L
F99C DB RC
F99D C373F9 JMP CREECH+1

1
_1__

F9A0 0601
F9A2 2A71FA

F9A5 ES
F9A6 1EFF
F9AB 3A02FB
F9AB 1F
F9AC 1F
F9AD DAABF9
F9BO CDEAF9
F9B3 E1
F9B4 3A02FB
F9B7 1 F
F9B8 1 F
F9B9 DAASF9
F9BC 16FF

F9BE ES
F9BF 29
F9CO 2B
F9C1 3A02FB

F9C4 1F
F9CS SF
F9C6 CDEAF9
F9C9 E1
F9CA DABEF9
P9CD 7A
P9CE E67F
F9DO C9

F9D1 79
F9D2 87
F9D3 47
F9D4 SF
F9DS 3EOB
F9D7 4F
F9DB 17
F9D9 57

F9DA 2A71FA
F9DD 2A71FA
F9EO 29
F9E 1 2B
F9E2 CDEAF9
F9E5 OD
F9E6 C2DAF9
F9E9 C9

1

J
SOFTWARE UART ROUTINES

1
SERIALIN:

SWAIT:

SLOOK:

GTBIT:

t
t

·sERIALOUT:

OLOOP:

MVI B,1 ;SET TO SUPRESS OUTPUT IN OF"
LHLD SPEED ;GET SPEED CONSTANT

PUSH H 1SAVE ON STACK
MVI E,OFFH ;INITILIZE 1/2 THE S
LDA DISKFUNCTION ;LOOK FOR SF.

RAR 1ROTATE INTO CARRY
RAR
JC SLOOK 1IS SERIAL INPUT BIT
CALL SERIALDELAY ;WAIT HALF A
POP H ;RESET SPEED CONSTANT
LOA DISKPUNCTION tVERIFY THAT
RAR ;IS STILL PRFSENT
RAR
JC SWAIT
MVI D,OFFH tINITIALIZE OTHER HA

PUSH H tUPDATE THE STACK
DAO H 7CALCULATE THE SPF.F.O
DCX H 7CONSTANT FOR A YULL
LOA DISKFUNCTION ; GET THEt. IN

RAR
MOV
CALL
POP H
JC
MOV
ANI
RET

MOV
ADD
MOV
MOV
MVI
MOV
RAL
MOV

LHLD
LHLD
DAD -
DCX
CALL
OCR
JNZ
RET

tROTATE TO BIT ZERO
E,A 1UPDATE THE SHIFT RF
SERIALDELAY ;DELAY ONF. A
1GET THE SPEED CONSTANT
GTBIT 7HAS THE START BI~ S
A,D ;MOVE BYTE TO ACC
7FH ;CLEAR HIGH BIT

A,C
A
B,A
E,A
A, 11
C,A

D 1 A

;MOVE CHARACTER TO A<
;ADD A START BIT
;MAKE BIT 0 OF B A Zl
7SHIFTED DATA TO E
;THIS IS THE BIT cour
;COUNT TO REG C
;LOAD D WITH THE RES~

1BITS AND HIGH ORDER

SPEED 1GET THE SPEED CON~Tl
SPEED ;PADDING
H ;ADJUST FOR OUTPUT
H 1!.00P
SERIALDELAY ;OUTPUT DATA
C ;DECREMENT RIT COUNT
OLOOP

' ,
SERIALDELAY:

F9EA 7B !10V A,E
F9EB BO ORA B
F9EC OP' RRC 7TO THE SERIAL PORT

' F9ED OF RRC ..
F9EE OP RRC rAT PROPER BIT
F9EP 3203FB STA SERIALOUTPORT
F9F2 20 DCR L rDECREMENT SPEED
F9F3 00 NOP rPADDING
F9F4 C2EAF9 JNZ SERIALDELAY 7LOOP UNTIL T
F9F7 7A MOV A,D 1ROTATE
F9F8 1F RAR 10NE
F9F9 7B MOV A,E 1BIT
F9P'A 1P RAR 7POSITION
F9FB SP MOV E,A 7TO THE
F9PC 7A MOV A,D 1RIGHT
F9FD 1P RAR rWITH END AROUND
F9FE 57 MOV D1 A rBIT PRESERVED
F9FF C9 RET

Ar

TYPE

A-TYPE MEMCBIOS

B-TYPE MEMCBIOS.PRN

0010 -

JEOO •

3EOO

FAOO •

FA10 •
FA6F •
FA70 •
FA73 ,.
FA74 •
FA76 •
FA77 =
P'A79 •

FBOO =
F:B01 ,.
FB02 •
FB03 •
FB03 ,.

F822 ~
F88A •
F845 •
F956 •
F964 •

F8E3 •
F8C1 •
F802 •

FA71 •
F9D1 •
F9AO •

J

J

1

1

1

J

J

CBIOS FOR MICROMATIO~ 16K VE~SIO~ OF CP/M VERSION 1.1

COPYRIGHT (C) ,97?• MICROMATION AND DIGITAL RFSF.APCF

FEB 17,1978
DRIVERS FOR ME~OREX D~IVE

J
MSIZE

LOCAT:ION
;

;

J
J

J
SCRATCH
1

ORG

MAP OF

PRES OSK
BOOTS TACK
CONTROL BYTE
RETRY COUNT
DMAADDR
ADDRPTR
TRAC'JC
SECTOR
1

EOTJ

EQU

LOCATION

16 ;SI~E OF OPF.~ATIN~ SYSTEM IN V

J(CU~RF~~LY 16K). THI~ NTIM~F~

;CHAN~FD FO~ LA~~~~ ~Y~TF.~~.

MSIZE*1024-512 ,o~G LOCA~In~ FO~ ~RF I

;BASF. OF B:IOS I~ 16K ~YSTF.~

SCRATCH AREA

EOU OFAOOH J BASF. ADDR OF RAM ~C~.A'

EQU SCRATCH+10H
EQU SCRATCH+6FH
EQU SCRATCH+70H
EQU SCRATCH+73H
EQU SCRATCH+74H
EQU SCRATCH+·76H
EOU SCRATCH+77H
EQU SCRATCH+79H

1 PSEUDO PORTS IN ROM
J
DATA PORT
MARKPORT
DIS'JCFUNCTION
LOADPORT
SERIALOUTPORT
1
J

J
HOME EQU
SELDSK E()U
SETTRK EQU
SETSEC .EQO_
SETDMA EQU
J

1
DISKWRITE
DISKREAD
DATAXFER
J

J
SPEED.
SER IA LOUT
SERIAL:IN ,

EQU
EQU
EQU
EOn
E()U

OF822H
OF88AR
OF845R

SCRATCH+100H
SCRATCH+101H
SCRATCH+102H
SCRATCH+101R
SCRATCH+101H

OF956R 1SET SEC~OR NTI~BF~
OF964H

EQU OF8E3R
EQU OFBC1H
EQU OP8D2H

EQU SCRATCH.f.71H
EQU OF9D1H
EQU OF9AOH

0000 -
2900 -
3106 -
2880 -
1500 -
002A •

3E00 C32D3E
3E03 C3553E
3E06 C3023F
3E09 C31B3F
3EOC C32F3F
3EOF C3333F
3E12 C3333P'
3E15 C3333P'
3E18 C322F8
3E1B C3343E
3E1E C345FB
3E21 C356F9
3E24 C364F9
3E27 C3343F
3E2A C3503P'

3E2D AF
3E2E 3210FA
3E31 C3DA3E

3E34 2100FA
3E37 3A10FA
3E3A FE10
3E3C D24B3E
3E3F 6P'
3E40 2C
3E41 3A77FA
3E44 77
3E45 69
3E46 2C
3E47 7E
3E48 3277FA

3E4B 79
3E4C 3210FA
3E4F C38AF8

3E52 C9
3E53 00
3E54 00

3E55 318000
3E58 3A10FA
3ESB 32D93E

3ESE OEOO
3!:60 CD8AF8
3E63 CD22f'.8

,
CB ASE EQU
CPMB EQU
BOOS EQU
CCPM EQU
CPML EQU
NSECTS EQU ,

JMP
EBOOT: J!i!P

JMP
J!1P
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

f
COLDBOOT:

f , ..-

XRA
STA
JMP

IOSELDSX:
LXI
LDA
CPI
JNC
MOV
INR
LDA
MOV
MOV
INR
MOV
STA

GOSELDSKs
MOV
STA

., JMP

' ' ERRORV: RET

,
NOP
NOP

WBOOT: LXI
LDA
STA

STARTBOOT:
MVI
CALL
CALL

(MSIZE-16)*1024 7BIAS FOR SYSTEMS GREATER THA~
CBASE+2900H
CBAS"E+3106H
CPMB-128
$-CPMB
2AH 7CHANGE FOR LAR~~~ MF~O~Y

COLDBOOT
WBOOT
CONST
CON IN
CON OUT
LIST
PUNCH
READER
HOME
IOSELDSX
SETTRK
SET SEC
SETDMA
READ.
WRITE

A
PRESDSK
BOOT

;HOME
:SELDSJC

7SETTRX
;SF.TSEC
;SF.TOMA
rDISKREAD
7DISKWRITF.

7INITIALIZE PRESENT DISK

H,SCRATCH 1POINT TO BOTTOM OF SCRATCH
PRESDSX 7GET P~F.SENT DRIVE t
10H ;CHECK FOR VALID f
GOSELDSK 1GET OUT IF INVALID
L,A 1POINT TO TRACK OF PRESF.~T D~I
L ;INCREMENT TO NEXT BYTE
TRACX ;GET PRESENT T~ACX
M,A
L,C

1STORE IN BOFFER
rPOINT TO SELECTED DRIVE RnFFP
1NEXT BYTE L

A,M.
TRACK

:GET TRACK OF SELECTF.D DRIVE
:UPDATE CONTROLLER

A,C
P'RESDSK
SELDSK

.. ·_,__ -

SP,80H
PRESDSK

.CURRDRIVE

c,o
SELDSX
HOME

;LOAD SELECTED DRIVE
70PDATE DISK BUFFER
7GO TO CONTROLLER

;NOT CURRENTLY USED
1RESERVED FOR FUTURE ERROR
I REPORTING.

7GET PRESENTLY SELECTED DRIVE
JSTORF. IN BUFFER

JSELECT DRIVE A TO REBOOT

3E66 018028
3E69 CD64F9

3E6C 110000

3E6F 7B
3E70 FE1A
3E72 CAAD3E

3E7S 21BF3E
3E78 19
3E79 7E
3E7A 13
3E7B OS
3E7C CS
3E7D 4F
3E7E PS
3E7F CDS6F9
3E82 F1
3E83 ~1

3E84 ES
3E8S 118000

3E8R 30
3E89 CA903E
3E8C 19
3E8D C3883E

3E90 2274FA
3E93 3A77FA
3E96 B7
3E97 CAA23E
3E9A 3A79FA
3E9D 0612
3E9F F2A83E

3EA2 CD343F
3EAS C25E3E

3EA8 C1
3EA9 D1
3EAA C36F3E

3EAD 3A77FA
3EBO B7
3EB1 C2DA3E
3EB.4 OE01
3EB6 CD45F8
3EB9. 01803S.
3EBC C36C3E

J

J

RDTRX:

RDSEC:

J

MOL:

READ DISKETTE FOR TWO TRACKS, STAR~IN~ A~ ROOT LOADF~

LXI B,CCP~ JO~E SEC~O~ BOO~

CALI; SETDMA
1READ THE FIRST/NE~T TRACK

LXI D,O 1SECTO~ NnMRF.~ - nnoo
1READ THE FIRST/NEXT SECTOR '

MOV A,E JE IS SF.CTOR NU~BF.R
CPI 26 1

JZ NXTTRK :0 ••• 25 COONTS SECTO~S
GET SKEWED SECTOR NU~BER

LXI H,TRAN
DAD D
MOV A,M
INX D
PUSH
PUSH
MOV
PUSH
CALL
POP
POP
PUSH
LXI

DCR
J?.
DAD
JMP

D

B
C,A
PSW
SETS EC
PSW
H
H
D, 128

A
MTJL1
D
MUL

JHL IS ADDRESS OF SKFWF.D SF.C~r

71 ••• 2f; IN REG A
;TO NEXT SECTOR
;SAVE SECTOR .NU~BER
1SAVE OMA ADDRESS
;READY FOR SECTOR SET
1SAVE SKEWED SECTOR NUMBER

1COUNT TO OMA POSITION
1COPY OF OMA BASE ADDRESS
;BACK TO STACK
;SECTOR SI7.E

1REGA*128

1+12R

MUL1: ~ ;HL IS OMA ADDRESS FOR THIS SECTOR

RELP:

SKIPREAD:

NXTTRK:

1

1

'

SHLD
LOA
ORA
JZ
LOA
SUI
JP

CALL
JNZ

POP
POP
JMP

LOA
ORA
JNZ
MVI
CALL
Lxr~~

JMP

OMAADOR ;STORE I~ OI~ECTLY
TRACK
A
RELP 1IF T~ACK o, ~PF~ co~~IMnF.
SECTOR rIF T~ACK 1 AND SECTOR - 18
18· 1THF.N SKIP THE RFAD
SKIPREAO

READ 1REAO THE DATA
STARTBOOT ;STAY HERE WHILF. F.RR01

B
D
RDS EC

TRACK
A
BOOT
c, 1
SETTRK

1RECALL RASE D~A ADDRFSS
;RECALL SECTOR NU~BER
1FOR ANOTHER SECTOR

,0,1?

1STOP AT TRACK 1
7SEEK 1 IF NOT

B, CCPM+·2~ * 128 - - ; M(;)VE TO NF.XT-TRACK--P<
RDTRK 1TO RF.AD THE ENTIRE TRACK

3EBF 01
3ECO 05
3EC1 09
3EC2 OD
3EC3 11
3EC4 15
3EC5 19
3EC6 03
3EC7 07
3EC8 OB
3EC9 OF
3ECA 13
3ECB 17
3ECC 02
3ECD 06
3ECE OA
3ECF OE
3EOO 12
3ED1 16
3E02 1 A
3ED3 04
3ED4 -08
3ED5 OC
3ED6 10
3ED7 14
3ED8 18

3ED9 00

3EDA 210700
3EDD 2271FA

3EEO 3EC3
3EE2 320000
3EE5 ·21033E
3EE8 220100
3EEB 320500
3EEE 210631
3EF1 220600
3EF4 018000
3EF7 CD64F9
3EFA FB
3EFB 3AD93E
3EFE 4F
3EP'F C30029

3F02 060A

3F04 3A02FB
3F07 1F
3F08 1 l"
3F09 D2123F
3FOC OS
3FOD C20431"
3F10 Al"

TRAN: , ;TRANSLATION TABLE FOR SKEW FA~~OR

,
CURRDRIVE ,
BOOT: -< ,

DB
DB
DB
DB
DB
DB
DB
OB
DB
DB
DB
DB
DB
DB
DB·
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

01H
05H
09R
OOH
11 H
15H
19H
03H
07H
OBH
OFH
13H
17H
02H
06H
OAR
OEH
12H
16H
1AH
04H
08H
OCH
10H
14H
18H

0

J SET THE SOFTWARE UART SPEED
1 IF THE CBIOS IS MODIFIED FOR A~ I/O BOARD TF.F.
J CODE TO PROGRAM THE UART SHOULD BE
J PUT HERE AND THE INSTRUCTION TO SET TRF. SOFTWAP.F.
J UART SPEED REMOVED.

,
J

LXI H,0007H
SHLD : SPEED

MVI
STA
LXI
SHLD
STA
LXI
SHLD
LXI
CALL
~I. "

A 1 0C3H
0
H,EBOOT
1
5
H,BDOS
6
B 1 80H
SE TD MA

LDA CURRDRIVE 7ACTIVF DISK
MOV C,A
JMP CPMB

JSOFTWARE UART CONSOLE ROUTINES
CONST:

CONST1:
MVI

LDA
RAR
RAR
JNC
OCR
JNZ
XRA

B, 10

DISKFUNCTION

CONSTFD
B
CONST1
A

;EACH LOOP = 35 ~IC~O~FCO~n~

7LOOK FOR BIT

7FOUND BI'!'

JLOOP FOR SPECIFIF.D TIME
1ZERO A - NO CHARACTER FOUND

CONSTFD:
3F12 CDAOF9 CALL SERIALIN ;GET BYTE
3F15 322E3F STA OLDBYTE ;SAVE BYTF.
3F18 3EFF MVI A,OFFH
3F1A C9 RET

CONIN:
3F1B 3A2E3F LOA OLD BYTE ;WAS A BYTE THERE
3F1E FEOO CPI 0 '
3F20 CA2A3F JZ CONIN1 ;NO
3F23 FS PUSH PSW ;SAVE A
3F24 AF XRA A
3F25 322E3F STA OLD BYTE ;ZE'llO OLDBYTE
3F28 F1 POP PSW
3F29 C9 RET

CONIN1:
3F2A CDAOF9 CALL SERIALIN
3F2D C9 RET
3F2E 00 OLDBYTE DB 0

CONOUT:
3F2F CDD1F9 CALL SERIALOUT
3F32 C9 RET

LIST:
PUNCH:

3F33 C9 READER: RET

ERROR CHECKING READ AND WRITE RTNS FOR
MICROMATION CBI OS

1 -- AUGUST 24, 1977 ,
0014 = RETRYLIMIT EQU 20 ;NUMBER OF RETRIES

READ:
3F34 CDA83F CALL READYNOW
3F37 AF XRA A ;GET A 7.F.RO

3F38 3273FA STA RETRYCOUNT
RETRYREAD:

3F3B CDC1F8 CALL DISKREAD 1C.l\LL PRO~ RTM
3F3E 3EOO M.VI A,O ;ZE'RO ACCTJM, LFA'7F F"

3F40 ca RZ ;IF NO F'RROR 'T'RFM 'l:lF'

3F41 CD523E CALL ERROR1.7
3F44 CD7A3F CALL ERRORCHF.CK
3F47 C23B3F JNZ RETRY READ 1IF E'Q.ROR RF'l"llY
3F4A CDD2F8 CALL DATAXFER : TR.l\NS'PF'Q.S DJ<. 'T'F

j 3F4D 3EOF MVI A,OFH ;ER'QOR CODE
3F4F C9 RET ;EITHER RET'.RY SUCCJ"~

1 ,
WRITE:

3FSO CDA83F CALL READYNOW
3F53 3A02FB LDA DISKFUNCTION 1READ STATTJS
3.F56 E604 ANI 04H ;CHECK WRITE p P.OTFC 'T'

3F58 CA643F JZ NOTPROTECT
3FSB 11033F LXI D,WP,,,SG ;SET UP ADDP. OF MSI';
3FSE CDBB3F CALL PRINTMSG
3F61 C30000 JMP 0 1WARM BOOT

NOTPROTECT:
3F64 AF XRA A 1GET A ZERO

· 3F65 3273FA STA RETRY COUNT
RETRYWRITE:

3F68 CDE3F8 CALL DISKWRITE 1CALL PRO"t R '!'"l
3F6B 3EOO MVI A,O 1ZERO ACCUM, LEA'TE F
3F60 cs RZ ;IF NO ERROP THFM ll 'F.

3F6E CD523E
3F71 CD7A3F
3F74 C2683F
3F77 3EOF
3F79 C9

3F7A 3A73FA
3F70 3C
3F7E 3273FA
3F81 FE1S
3F83 CB

.3F84 3E77
3P'86 BO
3F87 CO

3F88 3A73FA
3F8B D60A
3F8D F8
·3 F 8 E 3 A 7 7 FA
3F91 4F
3F92 3A79FA
3F9S 47
3F96 CS
3F97 CD22F8
3F9A C1
3F9B CS
3F9C CD45F8
3F9F C1
3FAO 48
3FA1 CD56F9
3FA4 3EFF
3FA6 30
3FA7 C9

3FA8 3A02FB
3FAB 07
3FAC 08
3FAO 11C93F
3FB0 CDBB3F

3FB3 3A02FB
3FB6 07
3FB7 08
3FB8 C3B33F

3FBB 1A
3FBC FE24
3FBE CB
3FBF OS
3FCO 4F
3FC1 C02F3F
3FC4 01
3FCS 13
3FC6 C3BB3F

CALL
CALL
JNZ
MVI
RET

J
ERRORCHECK:

1

LOA
INR
STA
CPI
RZ
MVI
CMP
RNZ

TRACKERROR
LOA
SUI
RM
LOA
MOV
LOA
MOV
PUSH
CALL
POP
PUSH
CALL
POP
MOV
CALL
MVI
DCR
RET

1
REAOYNOW:

READYLOOPz

,
PRINTMSG:

,
NOTRDYMSG:

LOA
RLC
RC
LXI
CALL

LDAX
CPI
RZ
PUSH
MOV
CALL
POP
INX
JMP

ER RO RV
ERRORCHECK
RE't'RYW'RI'!'E
A,OFH

RETRY COUNT
A
RETRYCOTJNT
RETRYLI"IIT+1

A,77H
L

RETRY COUNT
1 0

TRACK
C,A
SECTOR
B,A
B
HOME
B
B
SETTRK
B
C,B
SETSF.C
A, OFFH
A

1 IF E~.ROR, RF'l'~Y

1RETTIRR F.~RO~ cnn'F'
• 1 MORF. 'l'HA~ RFTP.VLIV

' 1GFT NTJMBFR O'F' RF.~P~

1ADD ONE

1HAVF. WF. R~'l'RIF.n E~r

;IF YES, RF.'l'nRN W7FT
1IS EP.ROR A TRACK 'F'T

1L HOLDS LOCATION or-
7 IF NOT AT 77 THEN l

7GF.T TRACK IN C

7GET ~ECTOR IN B
;SAVF. TRACK AND SF.C~

1PROM RTN TO HO"IF. HT
;RES't'ORF TRACK A~D ~

;SAVE TAACK ARD SFCr
1PRO"' R~N TO FIND Tl
1GF.T TRACK ~ND SFCT<
7GE'l' SFC'l'OR I~ RF.G c
1PROl11 R'l'~ TO FI~D S~

1 'l'TlP?-T OF'F' THF

1 ZF.RO FLA~ FOR '

DISKFUNCTION 7CHF.CK STATTIS
1CHECR-P,ADY LINE
:CARRY SET,DRIVE RF.ADY

D 1 NOTRDYMSG JPOINT TO MS~ BCTFFE
PRINTMSG

DISKFUNCTION

READYLOOP 7LOOP TILL READY ~

0 1GET FI~ST CHARACTER
'$' 1END DELI~ITER?

1RET IF DONE
D
C,A
CON OUT
D
0
PRINTMSG 7LOOP U~'l'IL DO~F.

p

3FC9 4E4FS42052, DB 'NOT READY$'
1

WPMSG:
3FD3 575249544S DB 'WRITE PROTECTED$'

MOVCPM DOCUM::'.'iTA.TIO~

~~ th~ CBIOS fa h d f - "' no~ c. ange , the ollowing procedu!"e ma:u- be used
~:o t f ., _ genera e new s,,:-stems or any·siZ<?. memory.

f~i'>~

you to
ccmrnand

the file CPM.CO-t hus .'tx:en includl'd with this di!3kett~, \..hich en~nlcs
q-.:?ncrate a CP/M system for any 'llf'.'lnory size, up to 64K. bytes. the

cm <er> .

("-;here <er> denotes the carriaqe-ri:tt:rn key} lozds the CFH.COM pc~ram and
qives· it control. This ;::xr:x1:ni:l thc:n examirn?s t:-.C? current m:-:rory confiqu..,tion,
and µoduces a ne'.-: C?.11·1 syscem which is relocatPd to tb~ to~ nf ~ tf1e merr.ory
(;;ctuallv. tht? hichflst contiqoous MM area i~ usrol. The n~wly constructed
CP/M syst~"!l t.hen qets control, an9 the systeqi starts with the normal siqn-on

The canmand

CPM * *
constructs a new version of the CP/H system, but·leaves it in memory, ready
fa: a sys.gen operation. The rressac;e

RU'\DY FOR "SYSGEN .. CR
"SAVE 32 CPt·~x .cow·

... s tX inted at the console ur:on conoletion, \\here xx is the memory size in
kilobytes. The operator can then type

SYS GEN · to start the system oenercition
with the resp::mse

GET·SYSTEM (Y/N) ?n user must . _resµJr.d with "'n ..
and the messaqe

PU!' SYSTEM {Y/N)?y user must resrond with y

tE....~N.'\TION ON 8, THEN 'IYPE RElUFN

Place the new diskette on drive B, ar.d typ; a return t .. nen re2dy (note that if
you ansv.-er with an .. a" rather than a .. Y.. to the p:-cmpt .atcve, SYSGEN will
place the CP/H S/Stem on drive A instead of drive 8). SyS<?"en will then tyre

. . FUN:TION CDMPLETE, REBCOI'lNG

'Ihe user can then go "through the reboot frOcess wit..~ the old or new diskette.

The operator could also have· typ;d .

SAVE 32 CPMxx.Ca-1

at the conoletion cf C~1.CCM, "-hich wculd olace the CP/r-: · merrory i~e on
Hsk. In this ~case, the relocated memory i.mc.""ge can be •patched .. to include
cu~tCUI I/O drivers, as c~s=:-ibed in t!:e CP/H Alteration C'-uice.

1

Note that the memory size can be qiven' explicitly to the CFM.CCM ixoaram : ·1· :en it is started in ·order to override the internal rr<:'Chanis:ms i,..hich
• · ~termine the annunt of memory on the system. In this case,. the operator must·
!. YPl . . . '. . .

cm xx

lnarP. xx is the ~mory size in d~clmal kilobytes. The first form produces a
CP/M system ·which qperates in xx kilobytes, and starts the newly created

.ystem when the relocation is · cOt'tplete.. The second form creates the new
ifvstem, but leaves it in memory for a sysqen or save operation.
. .

For example, the invocation

CPM 48 * ..
l;tarts CPM.C0."1, and creates a 48K system in memory.
.'!essaqe .

REt\DY fOR nSYSGEN .. OR
. •SAVE 32.CPM48.C0·1 .. ~

tJFon COtl'Pletion, the

i"s typed. The operator can then µ;arform the sysqen or·. save o;:waration as

l escribed above. Note that the newly ere a ted system is serial i Z€d with the ,.
\ :rber attached to your oriqinal diskette, and are subject to the conditions
of the Software Licensinq Aqreement included in this i:ackaqe.·

2

