
COHERENT™
A Multi-User, Multi-Tasking Operating System
for the IBM-PC/AT and Compatible 286 or
386 Based Computers.

llJ Mark Williams
Company

A Multi-User, Multi-Tasking Operating System
for the IBM-PC/AT and Compatible 286 or
386 Based Computers.

• Mark Williams
Company

Copyright© 1982, 1992 by Mark Williams Company.

All rights reserved.

This publication conveys information that ls the property of Mark Williams Company. It shall not be
copied, reproduced or duplicated in whole or in part without the express written permission of Mark
Williams Company. Mark Williams Company makes no warranty of any kind with respect to thls material
and disclaims any Implied warranties of merchantability or fitness for any particular purpose.

COHERENT ls a trademark of Mark Williams Company. UNIX is a trademark of AT&T. MS-DOS ls a
copyright of Microsoft Corporation. All other products are trademarks or registered trademarks of the
respective holders.

Revision 7 Printing 5 4 3 2 1

Published by Mark Williams Company, 60 Revere Drive, Northbrook, Illinois 60062.

E-mail:

BIX:
CompuServ:

uunet!mwc!support (Technical Support)
support@mwc.com
uunet!mwc!sales (General Information)
sales@mwc.com
joinmwc
76256,427

This manual was written under the COHERENT operating system, using the MlcroEMACS and ed text
editors. Text formatting was performed by the COHERENT edition of the troff text formatter, using its
Postscript output function. Typesetting of this manual, from the table of contents through the index, was
performed by one script written in the COHERENT Korn shell. Camera-ready copy was printed on a
Hewlett-Packard LaserJet UP printer using the Pacific Page Postscript cartridge.

Printed in the U.S.A.

Preface
COHERENT is the work of a large number of exceptionally talented people. The development of a
multi-user, multi-tasking operating system is a daunting task. Creating COHERENT took an
enormous effort by all involved. The system and manual are dedicated to those who dedicated
themselves to COHERENT.

These people include the following:

Jay Alter Riyaz Asaria Norman Bartek
Bob Beals James Behr Chris Berrios
Luddyne Blue Barry Bowen Denise Buirge
Fred Butzen Henry Cejtin David Conroy
Allan Cornish Roger Critchlow Richard Critchlow
Ella Dashevsky Stephen Davis MimiDiaz
Tom Duff Mark Epstein Michael Farley
Charles Fiterman Charles Forsyth Kim Fruin
Johann George Daniel Glasser Michael Griffin
Walter Grogan Robert Hemedinger Scott Hermes
Randall Howard Owen Jacobsen Mary Karabatsos
Nancy Kenston J.T. Kittridge William Lederer
Irene Lee Dave Levine Jeanne Lewis
Karen McBride Scott Moody Esther Munoz
Tim Murphy Asia Negron Gerson Negron
Steve Ness Ciaran O'Donnell Douglas Peterson
Frank Pfeiffer Norma Reyes Vladimir Smelyansky
Hal Snyder Michael Spertus Julie Stewart
Robert Swartz Angus Telfer Trevor Thompson
Diane Tracey Rico Tudor Bill Witt
La Monte Yarroll Jim Yonan

Table of Contents
1. Introduction.

Hardware Requirements .
How To Use This Manual

The Lexicon
User Registration and Reaction Report
Technical Support

2. Using the COHERENT System .
How Do I Begin?

Loggingin
Special Terminal Keys . .
Try Some COHERENT Commands .
Giving Commands to COHERENT .
help. man: Help with Commands ..
Shutting Down COHERENT and Rebooting.
Logging Out

Working With Files and Directories
File Names
Introduction to Directories .
Path Names
ls, le: Listing Your Directory.
cat: Print Contents of a File .
more: List Files on the Screen
mkdir: Create a Directory ...
cd: Change Directory.
pwd: Print Working Directory.
mv. cp: Move and Copy Files .
rm, rmdir: Remove Files and Directories
du, df: How Much Space? .
ln: Link Files.
File Permissions
chmod: Change File Permissions.
Creating and Mounting a File System .
fdformat: Format a Diskette.
mkfs: Create a File System
mount: Mount a File System
Using a Newly Mounted File System.
umount: Unmount a File System.
fsck: Check a File System .
Devices. Files. and Drivers
Character-Special Files . .
tty Processing
A Tour Through the File System .
General File System Layout .
/bin.
/dev.
/drv.
/etc.

1
1
1
2
2
2
3
3
3
4
5
6
7
7
9
9

10
10
11
12
14
14
14
15
15
16
18
19
19
20
21
22
22
23
23
24
24
25
25
26
26
26
27
27
27
27
28

ii The COHERENT System

/lib .
/usr.
/u ..
Files: Conclusion .

Introduction to COHERENT Commands
The Shell
Redirecting Input and Output . . .
Pipes
Superuser
Manipulating Text Under COHERENT.
MicroEMACS: Text Screen Editor ..
pr. prps. lpr: Print Files ...
nroff. troff: Text Formatters .
Miscellaneous Commands . .
who: Who Is On the System.
write: Electronic Dialogue . .
mail: Send an Electronic Letter.
msgs: Cumulative Message Board .
grep: Find Patterns in Text Files
date: Print the Date
passwd: Change Your Password
stty: Change Terminal Behavior
Scheduling Commands For Regular Execution
Managing Processes
ps: List Active Processes ...
kill: Signal Processes

Programming Under COHERENT.
Basic Steps in COHERENT Programming.
Create the Program Source . .
cc: Compile the Program. . . .
m4: Macro Processing
make: Build Larger Programs .
db: Debug the Program

Administering the COHERENT System
Adding a New User .
System Security.
Passwords ...
File Protection . .
Encryption
Dumping and Saving Files.
Back-ups Using ustar
Back-ups Using cpio .
Restoring Information
System Accounting . .
ac: Login Accounting.
sa: Processing Accounting.

Conclusion.
3. Introduction to the awk Language .

Usingawk
Program Structure
Records and Fields
Command Line Arguments

Printing with awk

CONTENTS

28
28
28
29
29
29
29
30
30
31
31
33
33
35
35
35
36
38
38
39
39
40
41
42
42
43
44
44
44
45
46
46
46
47
47
48
48
48
49
49
49
50
51
52
52
53
56
57
57
57
58
60
61

Printing Individual Fields
Changing the Output Field and Record Separators .
Printing Predefined Variables .
Redirecting Output .
Formatting Output

Piping Output
awk Pattern Scanning

Special Patterns: BEGIN and END.
Patterns
Arithmetic Relational Expressions .
Boolean Combinations of Expressions.
Pattern Ranges

Specifying awk Actions.
Functions

Assignment of Variables .
Field Variables.
String Concatenation.
Arrays

Control Statements ..
if (condition) else
while (condition).
for
break ..
continue
next .. .
exit .. .

For More Information.
4. be Desk Calculator Language

Entry and Exit.
Example of Simple Use.

Simple Statements
Numbers with Fractions .. .

The Scale of Numbers .
Addition and Subtraction .
Scale During Multiplication .
Setting the Scale of Results .
Scale for Divisions
Scale From Exponentiation .
What Is the Current Scale? .

The if Statement.
Using the if Statement .. .
Comparisons.
Grouped Statements
Many Statements Per Line.

The while Statement
Abbreviations in the while Statement .

The for Statement.
Three Parts of the for Statement
Similarities Between the for and while Statements

Functions in be
Example of Function Use
Functions Using Other Functions
Functions That Call Themselves .

The COHERENT System iii

61
61
62
62
63
63
64
64
64
66
66
67
67
67
68
69
70
70
71
71
71
71
72
72
72
72
73
75
75
75
76
79
79
80
80
80
81
81
81
82
82
82
83
83
84
85
85
86
87
87
87
88
89

CONTENTS

~ TheCOHERENTSy~em

The auto Statement
Programs in a File

Using a Program From a File
Using Libraries
The be Library.

Summary
5. The C Language

Compiling C Programs under COHERENT
Try the Compiler
Phases of Compilation
Renaming Executable Files .. .
Floating-Point Numbers
Compiling Multiple Source Files
Linking Without Compiling . . .
Compiling Without Linking .. .
Assembly-Language Files
Changing the Size of the Stack .
Where To Go From Here

C for Beginners
Programming Languages and C.
Assembly and High-Level Languages
So, What Is C?
Structured Programming ...
Writing a C Program

A Sample C Programming Session .
Designing a Program
The main() Function
Open a File and Show Text
Accepting File Names. . . .
Error Checking
Print a Portion of a File . .
Checking for the End of File.
Polling the Keyboard
For More Information

Bibliography.
6. Introduction to ed, Interactive Line Editor.

Why You Need an Editor ..
Learning To Use the Editor

General Topics
ed, Files, and Text
Creating a File.
Changing an Existing File .
Working on Lines . .
Error Messages . . .

Basic Editing Techniques
Creating a New File .
Changing a File . . .
Printing Lines
Abbreviating Line Numbers .
How Many Lines? . . .
Removing Lines
Abandoning Changes.
Substituting Text Within a Line

CONTENTS

89
90
90
90
92
92
93
93
93
94
95
95
96
96
96
97
97
97
97
98
98
98
99

100
100
101
102
102
104
106
108
110
111
113
113
117
117
117
117
118
119
119
120
120
120
120
122
123
124
124
125
126
126

Undoing Substitutions.
Global Substitutions ..
Special Characters . . .
Ranges of Substitution.

Intermediate Editing
Relative Line Numbering.
Changing Lines
Moving Blocks of Text . .
Copying Blocks of Text. .
String Searches
Remembered Search Arguments .
Uses of Special Characters
Global Commands
Joining Lines
Splitting Lines
Marking Lines
Searching in Reverse Direction .

Expert Editing
File Processing Commands . . .
Patterns
Matching Many With One Character.
Beginning and Ending of Lines . . .
Replacing Matched Part
Replacing Parts of Matched String .
Listing Funny Lines
Keeping Track of Current Line .
When Current Line Is Changed.
More About Global Commands.
Issuing COHERENT Commands Within ed .

For More Information.
7. Introduction to lex, the Lexical Analyzer .

How To Use lex
Translating Strings
Remove Blanks From Input .
Trimming Blanks .

lex Specification Form .
Simple Form
Rules in lex
Statements in lex .
Groups of Statements
Using the Same Action.

Patterns
Simple Patterns
Classes of Characters .
Repetition
Choices and Grouping .
Matching Non-Graphic Characters.

More Patterns
Line Context
Context Matching. . .
Macro Abbreviations .
Context: Start Rules
Separate Contexts ..

The COHERENT System v

128
129
129
130
130
130
132
132
134
134
136
136
137
137
138
139
141
141
141
143
144
144
145
145
147
148
148
150
151
151
153
153
153
154
154
154
155
155
156
157
158
158
159
159
161
163
163
164
164
164
165
166
167

CONTENTS

vi The COHERENT System

More About Writing Actions
ECHO
Processing Overlapping Strings.
yylex
Header Section . . .
Additional Routines.

Using lex With yacc. . . .
Summary

8. Introduction to the m4 Macro Processor .
Definitions and Syntax.
Defining Macros. . .
Input Control
Output Control
String Manipulation . .
Numeric Manipulation .

COHERENT System Interface.
Errors

For More Information.
9. The make Programming Discipline.

How Does make Work?.
Trymake

Essential make
The makefile
Building a Simple makefile
Comments and Macros.
Setting the Time

Building a Large Program
Command Line Options . .
Other Command Line Features .

Advanced make
Default Rules
Source File Path.
Double-Colon Target Lines
Alternative Uses.
Special Targets . . .
Errors
Exit Status

Where To Go From Here .
10. Introduction to MicroEMACS

What is MicroEMACS?
Keystrokes: <ctrl>, <esc> .. .
Becoming Acquainted With MicroEMACS .

Beginning a Document
Moving the Cursor

Moving the Cursor Forward . .
Moving the Cursor Backwards
From Line to Line
Repetitive Motion
Moving Up and Down by a Screenful of Text .
Moving to Beginning or End of Text .
Saving Text and Quitting

Killing and Deleting. . . .
Deleting Vs. Killing

CONTENTS

169
169
169
170
171
172
172
173
175
175
176
178
179
179
180
182
183
184
185
185
186
187
187
188
188
189
189
190
191
192
192
193
193
194
195
196
196
196
197
197
197
197
199
200
200
200
200
201
201
201
202
202
202

Erasing Text to the Right . . .
Erasing Text to the Left
Erasing Lines of Text
Yanking Back (Restoring) Text
Quitting

Block Killing and Moving Text . . .
Moving One Line of Text
Multiple Copying of Killed Text .
Kill and Move a Block of Text . .

Capitalization and Other Tools
Capitalization and Lowercasing.
Transpose Characters
Screen Redraw
Return Indent
Word Wrap

Search and Reverse Search .
Search Forward . . .
Reverse Search . . .
Cancel a Command.
Search and Replace.

Saving Text and Exiting .
Write Text to a New File
Save Text and Exit

Advanced Editing
Arguments

Arguments: Default Values
Selecting Values
Deleting With Arguments: An Exception

Buffers and Files
Definitions
File and Buffer Commands ...
Write and Rename Commands .
Replace Text in a Buffer
Visiting Another Buffer
Move Text From One Buffer to Another .
Checking Buffer Status
Renaming a Buffer
Delete a Buffer

Windows
Creating Windows and Moving Between Them .
Enlarging and Shrinking Windows.
Displaying Text Within a Window
One Buffer
Multiple Buffers
Moving and Copying Text Among Buffers .
Checking Buffer Status . . .
Saving Text From Windows .

Keyboard Macros
Creating a Keyboard Macro .
Execute a Macro Repeatedly
Replacing a Macro
Renaming a Macro
Renaming Macros: A Few Caveats.

The COHERENT System vii

203
203
204
204
204
204
204
205
205
206
206
207
207
207
208
209
209
210
211
211
212
212
213
213
214
214
214
214
215
215
215
215
216
216
217
217
218
218
218
219
220
221
221
222
222
222
222
223
223
224
224
224
225

CONTENTS

viii The COHERENT System

Setting the Initialization Macro .
Flexible Key Bindings

Changing a Keybinding
Rebinding Metakeys
Save and Restore Keybindings .

Sending Commands to COHERENT .
Compiling and Debugging Through MicroEMACS .
The MicroEMACS Help Facility . .

Where To Go From Here
11. nroff, The Text-Formatting Language .

What is nroff?
nroff Input and Output
Printing nroff Output. .
nroff Limitations
The ms Macro Package.
Using this Tutorial ..

The -ms Macro Package ...
Text and Commands . .
Command Names .
Paragraphs.
Section Headings
Title Page
Headers and Footers .
Fonts
Special Characters .
Footnotes
Displays and Keeps .
Other Commands . .

Introducing nroffs Primitives .
Page Format
Breaks
Fill and Adjust Modes
Defining Paragraphs .
Centering .. .
Tabs
Page Breaks .

Macros and Traps.
What Is a Macro? .
Introducing Traps.
Headers and Footers .
Macro Arguments . . .
Double vs. Single Backslashes .

Designing and Installing Macros .
Strings

Strings Within Strings
Number Registers

Incrementing and Decrementing .
Units of Measurement . .

Conditional Input
Environments and Diversions.
Buffers

Headers and Footers .
More About Fonts. . .

CONTENTS

225
225
226
226
227
228
228
229
230
231
231
232
232
233
233
234
234
235
236
236
241
243
244
245
246
247
247
248
249
249
250
250
252
253
254
254
255
255
256
257
259
260
261
264
265
266
268
271
273
277
280
281
282

Diversions
A Footnote Macro .

Command Line Options
For Further Information .

12. Introduction to the sed Stream Editor.
Getting to Know sed . . .

Getting Started . . .
Simple Commands .
Substituting ..
Selecting Lines . .
p: Print Lines ...
Line Location . . .
Add Lines of Text .
Delete Lines
Change Lines . . .
Include Lines From a File
Quit Processing
Next Line

Advanced sed Commands .
WorkArea
Add to Work Area .
Print First Line . .
Save Work Area ..
Transform Characters
Command Control ..
{ }: Command Grouping
!: All But
= : Print Line Number
Skipping Commands .
t: Test Command ...

For More Information. . . .
13. Introducing sh, the Bourne Shell .

Simple Commands
Special Characters
Running Commands in the Background
Scripts
. profile: Login Shell Script .
Substitutions
File Name Substitution ..
Parameter Substitution ..
Shell Variable Substitution .
Command Substitution
Special Shell Variables
dot . : Read Commands . . .
Values Returned by Commands
test: Condition Testing.
Executing Commands Conditionally.
Control Flow.
for: Execute a Loop
if: Execute Conditionally.
while: Execute a Loop ..
until: Another Looping Construct
case: Serial Conditional Execution.

The COHERENT System ix

283
286
287
289
291
291
291
292
293
294
296
298
299
300
301
302
303
303
305
305
305
307
308
311
312
312
312
313
313
314
315
317
317
317
318
319
320
320
320
322
324
327
327
328
328
329
329
330
330
331
333
333
333

CONTENTS

x The COHERENT System

Summary
14. UUCP, Remote Communications Utility .

Contents of This Manual.
An Overview of UUCP ...

The Programs
Directories and Files . . .

Attaching a Modem to Your Computer
Installing UUCP

Setting Up Your Local Site ..
Describing a Remote Site . .
Day and Time of Connection
The Chat Script
Granting Permissions
Setting a Polling Time

Sending files via UUCP.
UUCP Administration . .·
Where to Go From Here

15. Introduction to yacc . .
Examples

Phrases and Parentheses
Simple Expression Processing

Background
LR Parsing
Input Specification .
Parser Operation .

Form of yacc Programs.
Rules
Definition;; .
UserCode .

Rules
General Form of Rules .
Suggested Style

Actions
Basic Action Statements.
Action Values . . .
Structured Values

Handling Ambiguities .
How yacc Reacts .
Additional Control
Precedence .

Error Handling . .
Summary

Helpful Hints
Example
Where to Go From Here

16. The Lexicon
example.
... .
.. .
#define
#elif ..
#else .
#endif.

CONTENTS

. Give an example of Mark Williams Lexicon format.

. String-ize operator

. Token-pasting operator

. Define an identifier as a macro .

. Include code conditionally. . . .

. Include code conditionally. . . .

. End conditional inclusion of code

334
335
335
336
336
337
338
340
340
342
342
344
345
347
348
349
350
351
351
351
353
355
355
355
356
356
357
357
357
357
358
358
359
359
360
362
363
364
365
365
367
368
368
369
375
377
379
380
381
382
383
384
384

#if. ..
#ifdef .
#ifndef
#include
#line ...
#undef .

DATE
-FILE -
-LINE-
-STDC
- -

TIME - -
exit() .

abort().
abs() •••
ac
access().
access.h
acct()
acct.h.
accton.
acos().
action.h.
address.
ahal54x
alarm() .
alarm2()
alias ...
aliases
alignment
alloc.h.
ar ...
ar.h ..
arena.
argc.
argv.
array
as ..
ASCII
ascii.h.
asctime().
asin() ..
ASKCC.
assert().
assert.h.
at .. .
at .. .
atan().
atan2()
ATclock.
atof()
atoi() ..
atol() ..
atrun .

The COHERENT System xi

. Include code conditionally. . . .

. Include code conditionally. . . .

. Include code conditionally. . . .

. Read another file and include it

. Reset line number

. Undefine a macro ..

. Date of translation .

. Source file name . .

. Current line within a source file

. Mark a conforming translator.

. Time source file is translated .

. Terminate a program

. End program immediately. . .

. Return the absolute value of an integer .

. Summarize login accounting information.

. Check if a file can be accessed in a given mode

. Check accessibility

. Enable/disable process accounting .

. Format for process-accounting file . .

. Enable/ disable process accounting .

. Calculate inverse cosine

. Describe parsing action and goto tables .

. Adaptec AHA- l 54x device driver .

. Set a timer . .

. Set an alarm.

. Set an alias

. File of users' aliases

. Define the allocator.

. The librarian/archiver.

. Format for archive files.

. Argument passed to main() .

. Argument passed to main() .

. i80X86 assembler.

. Define non-printable ASCII characters

. Convert time structure to ASCII string

. Calculate inverse sine

. Force prompting for CC names .

. Check assertion at run time ...

. Define assert()

. Drivers for hard-disk partitions.

. Execute commands at given time.

. Calculate inverse tangent

. Calculate inverse tangent

. Read or set the AT realtime clock.

. Convert ASCII strings to floating point

. Convert ASCII strings to integers. . . .

. Convert ASCII strings to long integers.

. Execute commands at a preset time . .

384
384
385
385
386
386
386
387
387
387
388
388
389
389
390
391
392
392
393
394
394
395
395
396
398
398
399
399
401
401
401
402
403
403
404
404
405
424
426
426
427
428
428
428
429
430
431
432
432
432
433
433
434

CONTENTS

xii The COHERENT System

auto.
awk.
bad .
bad scan
banner .
basename
be ..
bind .. .
bit
bit-fields
bitmap.
block ..
boot ...
boot.fha.
booting.
boottime
brc ...
break.
break.
brk() ..
bsearch().
buf.h .
buffer.
build .
builtin
byte ..
byte ordering.
c
cabs() ..
cal. ...
calendar
calling conventions .
calloc() ...
candaddr().
candev().
canino() ..
canint() ..
canlong().
canon.h ..
canshort()
cansize() .
cantime().
canvaddr()
case.
case.
cast.
cat ..
caveat utilitor .
cc .
ccO
eel
cc2
cc3

CONTENTS

. Note an automatic variable

. Pattern-scanning language

. Maintain list of bad blocks

. Build bad block list.

. Print large letters

. Strip path information from a file name.

. Interactive calculator with arbitrary precision .

. Bind key sequence to editing command .

. Boot block for hard-disk partition/nine-sector diskette

. Boot block for floppy disk

. How booting works

. File that holds time system was last booted . . .

. Perform maintenance chores, single-user mode .

. Exit from shell construct

. Exit from loop or switch statement.

. Change size of data area.

. Search an array .

. Buffer header

. Install COHERENT onto a hard disk.

. Execute a command as a built-in command .

. Machine-dependent ordering of bytes .

. Print multi-column output

. Complex absolute value function.

. Print a calendar .

. Reminder service

. Allocate dynamic memory .

. Convert a daddr t to canonical format.

. Convert a dev t to canonical format .

. Convert an ino t to canonical format

. Convert an int to canonical format.

. Convert a long to canonical format ..

. Portable layout of binary data.

. Convert a short to canonical format .

. Convert an fsize t to canonical format.

. Convert a time t to canonical format .

. Convert a vaddr t to canonical format.

. Execute commands conditionally according to pattern .

. Introduce entry in switch statement.

. Concatenate/printfiles

. Compiler controller .

434
435
437
437
438
438
439
441
442
442
443
443
443
445
445
447
447
447
448
448
448
450
450
451
451
451
452
453
453
454
454
455
459
460
460
460
461
461
461
463
463
463
464
464
464
465
465
466
466
470
470
470
471

cd ..
cell().
cgrep
char.
chars.h.
chase.
chdir() ..
check ..
checklist .
chgrp ..
chmod .
chmod().
chown ..
chown().
chroot().
ckermit.
C keywords ..
C language.
clear
clearerr() .
close().
clri.
cmp
COHERENT
col ..
com.
coml
com2
com3
com4
comm.
commands.
compress.
con.h ..
console.
const ..
const.h.
continue
continue
conv.
core ..
cos() ..
cosh() .
cp ..
cpdir
cpio.
cpp .
Cpreprocessor
creat().
cron ..
crypt .
crypt().
ct ...

The COHERENT System xiii

. Change directory

. Set numeric ceiling

. Pattern search for C source programs .

. Data type

. Character definitions

. Highly amusing video game .

. Change working directory . .

. Check file system

. File systems to check when booting COHERENT

. Change the group owner of a file .

. Change the modes of a file ...

. Change file-protection modes ..

. Change the owner of files

. Change ownership of a file . . .

. Change process's root directory.

. Interactive inter-system communication and file transfer

471
471
472
473
474
474
475
475
475
476
476
477
478
479
479
479
485
485
487
487
487
487
488
488
490
491
493
494
494
495
495
495
501
502
502
506
506
506
507
507
507
508
508
509
510
511
513
514
516
516
518
519
519

. Clear the screen. . . .

. Present stream status

. Close a file

. Clear i-node

. Compare bytes of two files.

. Principles of the COHERENT System

. Remove reverse and half-line motions .

. Device drivers for asynchronous serial lines

. Device driver for asynchronous serial line COM 1

. Device driver for asynchronous serial line COM2

. Device driver for asynchronous serial line COM3

. Device driver for asynchronous serial line COM4

. Print common lines.

. Compress a file

. Configure device drivers .

. Console device driver. . .

. Qualify an identifier as not modifiable.

. Declare machine-dependent constants

. Terminate current iteration of shell construct .

. Force next iteration of a loop

. Numeric base converter

. Core dump file format

. Calculate cosine.

. Calculate hyperbolic cosine .

. Copy a file

. Copy directory hierarchy.

. Archiving/backup utility.

. C preprocessor

. Create/truncate a file

. Execute commands periodically

. Encrypt/ decrypt text

. Encryption using rotor algorithm.

. Controlling terminal driver

CONTENTS

xiv The COHERENT System

ctags ..
ctime() .
ctype ..
ctype.h .
curses ..
curses.h
cut
CWD ..
daemon.
data formats .
data types
date.
db .. .
de .. .
dcheck
dd ...
default
definitions .
deftty.h .. .
deroff
detab
device drivers
df ...
diff ..
diff3 ..
dir.h ..
directory .
dirent.h.
dirs ..
disable
diV() ..
do ...
domain.
dos ..
double .
drvld ..
drvld.all.
du
dump ..
dumpdate
dumpdir .
dumptape.h .
dup() ..
dup2() ..
ebcdic.h
echo .. .
ed
EDITOR.
egrep .
else ..
elvis ..
enable.
end ..

CONTENTS

. Generate tags and refs files for vi editor. .

. Convert system time to an ASCII string . .

. Header file for data tests

. Library of screen-handling functions . . .

. Define functions and macros in curses library .

. Select portions of each line of its input

. Current working directory. .

. Print/set the date and time .

. Assembler-level symbolic debugger

. Desk calculator

. Check directory consistency. . . .

. File conversion

. Default label in switch statement

. Define default tty settings

. Remove text formatting control information

. Replace tab characters with spaces

. Measure free space on disk

. Summarize differences between two files .

. Summarize differences among three files .

. Directory format

. Define dirent.

. Print the contents of the directory stack

. Disable a port

. Perform integer division

. Introduce a loop.

. Set your system's mail domain

. Transfer files to /from an MS-DOS file system

. Data type

. Load a loadable driver into memory .

. Load loadable drivers at boot time .

. Summarize disk usage

. File-system backup utility.

. Print dump dates

. Print the directory of a dump

. Define data structures used on dump tapes .

. Duplicate a file descriptor

. Duplicate a file descriptor

. Define constants for non-printable EBCDIC characters

. Repeat/expand an argument .

. Interactive line editor.

. Name editor to use by default.

. Extended pattern search. . . .

. Introduce a conditional statement .

. Clone of Berkeley-standard screen editor .

. Enable a port

519
520
521
522
523
531
531
532
533
533
533
534
535
539
540
541
542
542
543
543
544
544
545
546
547
548
548
548
549
549
549
550
550
551
553
553
554
554
555
556
556
557
557
557
559
559
560
564
564
565
566
573
574

endgrent() .
endpwent() .
enum ..
ENV
environ .. .
environmental variables .
envp ..
EOF ..
epson.
errno .
errno.h.
etext.
eval.
ex ..
exec.
execl().
execle()
execlp().
executable file .
execution.
execv() ..
execve().
execvp().
exit .
exit() ..
exp() ..
export.
expr ..
extern.
fabs() .
factor .
false ..
fblk.h .
fc ...
FCEDIT.
fclose()
fcntl() .
fcntl.h.
fd ...
fd.h ..
fdformat
fdioctl.h.
fdisk ...
fdisk.h .
fdopen().
feof() ..
ferror()
fflush()
fgetc() .
fgets().
fgetw().
field .
file ...

The COHERENT System xv

. Close group file

. Close password file

. Declare a type and identifiers .

. File read to set environment.

. Process environment

. Argument passed to main()

. Indicate end of a file

. Print files on Epson printer .

. External integer for return of error status

. Error numbers used by errno() .

. Evaluate arguments

. Berkeley-style line editor. .

. Execute command directly

. Execute a load module .

. Execute a load module.

. Execute a load module.

. Execute a load module .

. Execute a load module .

. Execute a load module .

. Exit from a noninteractive shell

. Terminate a program gracefully.

. Compute exponent

. Add a shell variable to the environment.

. Compute a command line expression .

. Declare storage class ...

. Compute absolute value .

. Factor a number

. Unconditional failure ...

. Define the disk-free block .

. Edit and re-execute one or more previous commands

. Editor used by fc command

. Close a stream

. Control open files

. Manifest constants for file-handling functions .

. Floppy disk driver.

. Declare file-descriptor structure

. Format a floppy disk

. Control floppy-disk I I 0

. Hard-disk partitioning utility ..

. Fixed-disk constants and structures.

. Open a stream for standard I/0

. Discover stream status

. Discover stream status

. Flush output stream's buffer .

. Read character from stream.

. Read line from stream . .

. Read integer from stream

574
575
575
576
576
576
577
578
578
579
579
582
582
583
583
584
584
584
585
585
586
586
587
588
588
588
589
590
591
593
593
593
593
593
594
594
594
595
595
596
596
597
597
599
599
600
600
602
603
604
605
605
606

CONTENTS

xvi The COHERENT System

file
FILE
file descriptor
file formats .
file no()
filsys.h .
filter .. .
find .. .
fixstack.
float ...
floor() ..
floppy disks
fnkey .
fopen()
for ..
for ...
fork() .
fortune .
fperr.h .
fprintf() .
fputc().
fputs().
fputw()
fread().
free() ..
freopen()
frexp().
from ..
fscanf()
fsck ..
fseek().
fstat() .
ftell() ..
ftime().
function
fwrite()
fwtable .
gcd() ...
general functions .
getc() ..
getchar()
getegid().
getenv().
geteuid()
getgid() .
getgrent().
getgrgid().
getgrnam().
getlogin() .
getopt() .
getopts .
getpass()
getpgrp()

CONTENTS

. Guess a file's type.

. Descriptor for a file stream

. Get file descriptor

. Structures and constants for super block.

. Search for files satisfying a pattern

. Change stack allocation .

. Data type

. Set a numeric floor

. Set/print function keys for the console .

. Open a stream for standard 1/0 ...

. Execute commands for tokens in list

. Control a loop

. Create a new process.

. Print randomly selected, hopefully humorous, text

. Constants used with floating-point exception codes.

. Print formatted output into file stream

. Write character into file stream.

. Write string into file stream

. Write an integer into a stream

. Read data from file stream.

. Return dynamic memory to free memory pool

. Open file stream for standard 1/0

. Separate fraction and exponent.

. Generate list of numbers, for use in loop .

. Format input from a file stream

. Check and repair file systems interactively .

. Seek on file stream

. Find file attributes

. Return current position of file pointer

. Get the current time from the operating system .

. Write into file stream

. Build font-width table

. Set variable to greatest common divisor.

. Read character from file stream ...

. Read character from standard input.

. Get effective group identifier

. Read environmental variable

. Get effective user identifier

. Get real group identifier ...

. Get group file information ..

. Get group file information, by group name .

. Get group file information, by group id

. Get login name

. Get option letter from argv . .

. Parse command-line options .

. Get password with prompting.

. Get process group number . .

606
606
607
607
608
609
609
609
611
611
614
614
617
618
619
620
620
621
621
621
622
623
623
623
624
624
625
626
626
627
629
630
632
632
632
633
633
635
635
636
637
638
638
639
639
639
640
640
641
641
643
644
644

getpid() ..
getpw() ..
getpwent()
getpwnam().
getpwuid()
gets() ..
getty ...
getuid() .
getw() .
getwd() .
GMT ...
gm time()
goto ..
grep ..
group.
grp.h .
gtty() .
hard disk.
hash ...
hdioctl.h .
head
header files.
help ..
HOME.
hp.
hpd ..
hpr ..
hpskip
hs ...
hypot()
i-node.
icheck.
if. .
if. ...
IFS ..
index()
init ..
initialization .
ino.h ..
inode.h.
install ..
int
interrupt .
io.h .
ioctl() .. .
ipc.h
isalnum().
isalpha()
isascii() .
isatty() .
iscntrl() .
isdigit() .
islower().

The COHERENT System xvii

. Get process identifier.

. Search password file

. Get password file information.

. Get password file information. by name.

. Get password file information, by id .

. Read string from standard input .

. Terminal initialization ...

. Get real user identifier

. Read word from file stream

. Get current working directory name .

. Convert system time to calendar structure .

. Unconditionally jump within a function.

. Pattern search.

. Group file format

. Declare group structure .

. Device-dependent control

. Add a command to the shell's hash table .

. Control hard-disk 1/0

. Print the beginning of a file

. Print concise description of command.

. User's home directory

. Prepare files for Hewlett-Packard LaserJet printer.

. Hewlett-Packard LaserJet printer spooler daemon.

. Send file to Hewlett-Packard LaserJet printer spooler.

. Abort/restart current listing on Hewlett-Packard LaserJet.

. Device driver for polled serial ports . .

. Compute hypotenuse of right triangle .

. COHERENT system file identifier ..

. i-node consistency check

. Execute a command conditionally .

. Introduce a conditional statement .

. Characters recognized as white space.

. Find a character in a string

. System initialization

. Constants and structures for disk i-nodes

. Constants and structures for memory-resident i-nodes

. Install a software update onto COHERENT.

. Data type

. Constants and structures used by 1/0

. Device-dependent control

. Definitions for process communications

. Check if a character is a number or letter

. Check if a character is a letter

. Check if a character is an ASCII character .

. Check if a device is a terminal

. Check if a character is a control character .

. Check if a character is a numeral

. Check if a character is a lower-case letter. .

645
645
645
647
647
648
649
650
650
651
651
651
652
653
654
655
655
656
659
659
659
659
661
662
662
663
663
664
664
666
667
667
668
668
668
669
669
670
673
673
673
675
675
675
675
676
676
676
677
677
677
677
678

CONTENTS

xviii The COHERENT System

ispos() ..
isprint().
ispunct()
isspace()
isupper()
itom() .
jO() ...
jl() ..
jn() ...
jobs ..
join ..
kermit.
keyboard tables .
kill ..
kill()
ksh
KSH VERSION
L-devices.
l.out.h.
L.sys .. .
l3tol() .. .
LASTERROR.
le .. .
Id .. .
Id exp().
ldiv() ..
let .. .
lex .. .
Lexicon.
libraries.
limits.h.
lines ...
link() ..
linker-defined symbols .
In
localtime()
log() ..
IoglO()
login ..
logmsg
long ..
longjmp().
look.
Ip
lpd
lpioctl.h.
lpr ...
lpskip.
ls ...
lseek().
ltol3() .
lvalue.
m4 ...

CONTENTS

. Return if variable is positive or negative. . . .

. Check if a character is printable

. Check if a character is a punctuation mark .

. Check if a character prints white space

. Check if a character is an upper-case letter .

. Create a multiple-precision integer ..

. Compute Bessel function . .

. Compute Bessel function . .

. Compute Bessel function . .

. Print information about jobs

. Join two data bases

. Inter-system communication and file transfer .

. How to write a keyboard table

. Signal a process

. Kill a system process

. The Korn shell.

. List current version of Korn shell.

. Describe devices used by UUCP .

. Object file format

. Format for UUCP site descriptions . .

. Convert file system block number to long integer .

. Program that last generated an error

. List/ categorize files in a directory

. Link relocatable object files . . .

. Combine fraction and exponent

. Perform long integer division

. Evaluate an expression . . .

. Lexical analyzer generator . .

. Define numerical limits . . .

. Highly amusing board game.

. Create a link

. Create a link to a file

. Convert system time to calendar structure . .

. Compute natural logarithm

. Compute common logarithm . . .

. Log in or change user name. . . .

. Hold COHERENT Login Message .

. Data type

. Return from a non-local goto .. .

. Find matching lines in a sorted file

. Line printer driver

. Line printer spooler daemon

. Definitions for line-printer I I 0 control

. Send to line printer spooler

. Terminate/restart current line printer listing

. List directory's contents

. Set read /write position.

. Convert long integer to file system block number .

. Macro processor.

678
678
678
679
679
679
680
681
681
681
682
683
686
690
691
691
709
710
710
711
714
715
715
716
718
718
719
719
721
723
724
725
725
726
726
727
728
729
729
730
730
730
731
731
732
733
733
733
734
735
736
736
738

machine.h
macro.
madd()
mail ..
mail ..
main().
major number .
make ..
malloc().
malloc.h
man .. .
man .. .
manifest constant.
math.h
mathematics library
mboot ..
mcmp().
mcopy().
mdata.h
mdiv().
me
mem .. .
memccpy().
memchr().
memcmp().
memcpy() ..
memmove().
memok() ..
memory allocation
memset().
mesg.
min() .. .
minit() .. .
minor number.
mintfr().
misc ...
mitom().
mkdir ..
mkfnames
mkfs ...
mknod ..
mknod() ..
mktemp().
mneg() ..
mnttab.h.
modem ..
modemcap.
modem control
modeminit.
modf() ..
modulus
mon.h.
more ..

The COHERENT System xix

. Machine-dependent definitions .

. Add multiple-precision integers.
Electronic mail system
Computer mail
Introduce program·s main function
Device numbering

. Program building discipline

. Allocate dynamic memory
Definitions for memory-allocation functions
Manual macro package
Print Lexicon entries

Declare mathematics functions .

Master boot block for hard disk
Compare multiple-precision integers
Copy a multiple-precision integer ..
Define machine-specific magic numbers
Divide multiple-precision integers

. MicroEMACS screen editor

. Physical memory file

. Copy a region of memory up to a set character

. Search a region of memory for a character .

. Compare two regions

. Copy one region of memory into another ..

. Copy region of memory into area it overlaps

. Test if the arena is corrupted .

Fill an area with a character
Permit/deny messages from other users
Read multiple-precision integer from stdin .
Condition global or auto multiple-precision integer .
Device numbering
Free a multiple-precision integer
Library of miscellaneous functions. . . .

. Reinitialize a multiple-precision integer.
Create a directory

. Generate data base of user names .

. Make a new file system.

. Make a special file or named pipe

. Create a special file.

. Generate a temporary file name .

. Negate multiple-precision integer.

. Structure for mount table ...

. Modem-description language .

. Initialize a modem

. Separate integral part and fraction.

. Read profile output files

. Display text one page at a time .

740
740
740
741
742
744
745
745
748
750
750
751
752
752
752
753
754
754
754
754
755
762
762
763
764
765
765
766
766
767
767
768
768
768
768
769
769
769
770
770
773
774
774
774
775
775
779
781
782
782
783
783
783

CONTENTS

xx The COHERENT System

motd File that holds message of the day .
mount(). . . Mount a file system
mount.all. . Mount file systems at boot time
mount. . . Mount a file system
mount.h . Define the mount table
mout(). . . Write multiple-precision integer to stdout
mprec.h. . Multiple-precision arithmetic .
ms. Manuscript macro package .
MS-DOS . That other operating system .
msg . . . Message device driver
msg Send a brief message to other users .
msg.h . . . Definitions for message facility .
msgctl() . . Message control operations
msgget(). . Get message queue
msgrcv() . Receive a message
msgs . . . Read messages intended for all COHERENT users
msgsnd() . . Send a message .
msig.h . Machine-dependent signals
msqrt() . Compute square root of multiple-precision integer
msub() . Subtract multiple-precision integers
mtab.h . Currently mounted file systems
mtioctl.h . Magnetic-tape I I 0 control
mtoi() . . . Convert multiple-precision integer to integer.
mtos(). . . Convert multiple-precision integer to string
mtype() . . Return symbolic machine type
mtype.h. . List processor code numbers
mult() . . . Multiply multiple-precision integers .
multiple-precision mathematics
mv. Rename files or directories . . .
mvfree(). . . . Free multiple-precision integer .
n.out.h Define n.out file structure
named pipe
ncheck . . Print file names corresponding to i-node
newgrp . . Change to a new group
newusr . . Add new user to COHERENT system
nkb . . . Device driver for console keyboard .
nlist() . . . Symbol table lookup
nm. Print a program's symbol table .. .
notmem() . . Check if memory is allocated
nptx. . Generate permutations of users' full names
nroff. . Text-formattinglanguage
NUL.
NULL
null . . The 'bit bucket'
nybble
object format.
od Print an octal dump of a file.
open() . . . Open a file
operator
PAGER . . Specify Output Filter
param.h . Define machine-specific parameters .
passwd . . Set/ change login password .
passwd . . Password file format

CONTENTS

786
786
787
787
788
788
788
788
790
795
796
796
797
798
799
800
801
803
803
803
804
804
804
805
805
805
805
806
809
809
811
811
811
812
812
813
816
816
818
819
820
827
827
827
827
828
828
828
829
832
832
832
832

paste .
patch.
path().
PATH.
path.h.
paths.
pattern.
pause() .
pax ...
pclose().
Permissions .
perror().
phone .. .
pipe
pipe() .. .
pnmatch()
pointer .
poll.h ..
popd ...
popen() .
port ...
portability
pow()
pow()
pr ..
prep.
print.
printer
printf()
proc.h.
process.
prof ...
profile.
prps.
ps ...
PSI ..
PS2 ..
ptrace().
pun ...
pushd ..
putc() ..
putchar().
puts().
putw().
pwd ..
pwd.h.
qfind .
qsort().
quot ..
ram ..
rand().
random access. .
ranlib

The COHERENT System xxi

. Merge lines of files

. Modify portions of an executable . . .

. Path name for a file.

. Directories that hold executable files

. Define/declare constants and functions used with path .

. Routing data base for mail .

. Wait for signal

. Portable archive interchange

. Close a pipe

. Format of UUCP permissions file .

. System call error messages

. Print numbers and addresses from phone directory.

. Open a pipe .

. Match string pattern

. Define structures I constants used with polling devices .

. Pop an item from the directory stack

. Open a pipe

. Raise multiple-precision integer to power.

. Compute a power of a number

. Paginate and print files

. Produce a word list

. Echo text onto the standard output .

. Print formatted text

. Define structures/constants used with processes.

. Print execution profile of a C program.

. Set user's environment at login.

. Prepare files for Postscript-compatible printer .

. Print process status

. User's default prompt

. Prompt when user continues command onto additional lines .

. Trace process execution

. Push an item onto the directory stack.

. Write character into stream

. Write a character onto the standard output .

. Write string onto standard output

. Write word into stream.

. Print the name of the current directory .

. Declare password structure

. Quickly find all files with a given name . .
. . Sort arrays in memory
. . Summarize file-system usage

. Driver for manipulating RAM

. Generate pseudo-random numbers

. Create index for object library

833
834
836
837
837
837
838
838
839
839
840
842
842
842
843
845
845
848
849
849
849
849
850
850
851
851
852
853
855
857
858
858
858
859
861
862
862
863
864
864
864
865
866
866
866
867
868
868
869
870
871
872
872

CONTENTS

xxii The COHERENT System

re ...
read ..
read().
read only
read only
read-only memory.
realloc().
reboot ..
ref. ...
register.
register variable .
rename.
restor ..
return ..
rev
rewind().
rindex().
rm ...
rmdir ..
root ...
rpow() ..
RS-232.
rvalue.
sa ...
sbrk().
scanf().
scat ..
sched.h.
SCSI. ..
sdiv() ..
SECONDS
security.
sed
seg.h ..
sem ...
sem.h ..
semctl().
semget().
semop().
set
setbuf().
setgid() .
setgrent().
setjmp() ..
setjmp.h .
setpgrp() .
setpwent()
settz() ..
setuid().
sgtty ..
sgtty.h
sh ...
SHELL

CONTENTS

. Perform standard maintenance chores

. Assign values to shell variables. . . .

. Read from a file

. Mark a shell variable as read only . .

. Storage class

. Reallocate dynamic memory. . .

. Reboot the COHERENT system.

. Display a C function header.

. Storage class

. How to rename a file .

. Restore file system . .

. Return a value and control to calling function .

. Print text backwards

. Reset file pointer

. Find a character in a string .

. Remove files

. Remove directories

. Raise multiple-precision integer to power.

. COM port wiring

. Print a summary of process accounting. .

. Increase a program's data space

. Accept and format input

. Print text files one screenful at a time . . .

. Define constants used with scheduling ..

. SCSI device drivers

. Divide multiple-precision integers

. Number of seconds since current shell started.

. Stream editor

. Definitions used with segmentation .

. Semaphore device driver.

. Definitions used by semaphore facility

. Control semaphore operations

. Get a set of semaphores

. Perform semaphore operations

. Set shell option flags and positional parameters.

. Set alternative stream buffers.

. Set group id and user id

. Rewind group file

. Perform non-local goto

. Define setjmp() and longjmp() .

. Set group id and user id.

. Rewind password file

. Set local time zone

. Set user id

. General terminal interface. .

. Definitions used to control terminal 1/0

. The Bourne shell

. Name the default shell

873
873
873
874
874
874
874
875
875
876
876
876
877
879
879
880
880
881
882
882
882
882
884
885
886
886
888
890
890
890
891
891
892
894
895
895
896
897
898
900
902
902
903
903
904
904
904
905
905
905
910
911
921

shellsort().
shift ..
shm ...
shm.h ..
shmctl().
shmget()
short ..
shutdown
signal() .
signal.h.
signame
sin() .
sinh() .
size ..
sizeof .
sleep .
sleep().
sload().
smult()
sort .
spell ..
split ..
spow().
sprintf().
sqrt() ..
srand() .
srcpath.
SS •.••

sscanf().
stack ..
standard error.
standard input
standard output.
stat() .
stat.h ..
static ..
stdarg.h.
stddef.h.
stderr.
stdio .
STDIO.
stdio.h
stdlib.h.
stdout ..
sticky bit.
stime() ..
storage class .
strcat() .
strchr() .
strcmp().
strcoll().
strcpy().
strcspn()

The COHERENT System xxiii

. Sort arrays in memory

. Shift positional parameters . .

. Shared memory device driver .

. Definitions used with shared memory .

. Control shared-memory operations

. Get shared-memory segment

. Data type

. Shut down the COHERENT system

. Specify disposition of a signal.

. Declare signals

. Array of names of signals

. Calculate sine

. Calculate hyperbolic sine

. Print size of an object file

. Return size of a data element .

. Stop executing for a specified time.

. Suspend execution for interval ...

. Load device driver.

. Multiply multiple-precision integers .

. Sort lines of text

. Find spelling errors.

. Split a text file into smaller files ...

. Raise multiple-precision integer to power.

. Format output.

. Compute square root

. Seed random number generator

. Find source files

. Future Domain/Seagate SCSI device driver

. Format a string .

. Find file attributes

. Definitions and declarations used to obtain file status .

. Declare storage class

. Header for variable numbers of arguments .
Header for standard definitions.

. Declarations and definitions for 1/0.

. Declare/define general functions.

. Set the time

. Concatenate strings

. Find a character in a string .

. Compare two strings

. Compare two strings. using locale-specific information.

. Copy one string into another

. Return length a string excludes characters in another .

921
921
922
923
923
924
926
926
926
927
928
928
928
928
929
929
930
930
931
931
932
933
934
934
934
935
935
936
937
938
938
939
939
939
941
941
942
942
942
943
943
944
944
945
945
945
945
946
946
946
947
947
948

CONTENTS

xxiv The COHERENT System

stream . 948
stream.h . Definitions for message facility 948
strerror() . Translate an error number into a string. 948
string.h. . Declarations for string library. 949
string functions . 949
strings . . Print all character strings from a file. . . 951
strip. Strip debug, relocation, and symbol tables from executable file 952
strlen() . . . Measure the length of a string . 952
strncat() . . Append one string onto another 952
strncmp(). . Compare two strings . 953
strncpy() . Copy one string into another 953
strpbrk() . Find first occurrence of a character from another string . 955
strrchr(). . Search for rightmost occurrence of a character in a string. 955
strspn() . . Return length a string includes characters in another . 955
strstr() . Find one string within another 956
strtod() . Convert string to floating-point number. 956
strtok() . Break a string into tokens. 957
strtol(). . Convert string to long integer. 959
strtoul(). . Convert string to unsigned long integer. 960
struct . . . Data type. 962
structure 963
structure assignment. 963
strxfrm() . Transform a string 963
stty(). . Set terminal modes . 964
stty Set/print terminal modes . 965
su Substitute user id. become superuser. 967
suload(). . Unload device driver . . 967
sum. . . . Print checksum of a file 967
superuser 968
swab(). . Swap a pair of bytes . . 968
switch. . Test a variable against a table 968
sync. . . Flush system buffers 969
sync() . . Flush system buffers 970
system(). . Pass a command to the shell for execution . 970
system calls 970
system maintenance 972
tail. . . . Print the end of a file . 973
tan(). . . Calculate tangent . . . 973
tanh() . . Calculate hyperbolic cosine . 973
tape . . . Magnetic tape devices . . 974
tar. . . . V7 tape archive manager . . 975
technical information. 977
tee. Branch pipe output. 977
tempnam() . . Generate a unique name for a temporary file. 978
TERM . . . Name the default terminal type. 978
termcap. . . . Terminal-description language 978
terminal . 985
terminal-independent operations. 987
termio.h . Definitions used with terminal input and output 991
test Evaluate conditional expression 991
tgetent(). . Read termcap entry. 993
tgetflagO . Get termcap Boolean entry . . 993
tgetnum(). . Get termcap numeric feature . 993

CONTENTS

tgetstr().
tgoto().
tick().
time ..
time ..
time.h.
time() .
timeb.h.
timef.h .
timeout.h.
times()
times ...
times.h ..
TIMEZONE.
tmpnam().
to lower()
touch ...
toupper().
tputs().
tr ..
trap.
troff.
true.
tsort.
tty ..
tty.h.
ttyname().
ttys ...
ttyslot() ..
ttystat. ..
type checking
typedef
type promotion
types.h .
typeset .
typo ...
umask
umask().
umount.
umount().
unalias ..
uncompress .
ungetc().
union ..
uniq ...
unique().
units ..
unlink().
unmkfs.
unsigned.
until ...
update
uproc.h.

The COHERENT System xxv

. Get termcap string entry.

. Read/interpret termcap cursor-addressing string.

. Get time

. Time the execution of a command .

. Give time-description structure ...

. Get current time

. Declare timeb structure

. Definitions for user-level timed functions.

. Define the timer queue

. Obtain process execution times

. Print total user and system times

. Definitions used with times() system call .

. Time zone information

. Generate a unique name for a temporary file.

. Convert characters to lower case .

. Update modification time of a file

. Convert characters to upper case

. Read/decode leading padding information

. Translate characters

. Execute command on receipt of signal

. Extended text-formatting language.

. Unconditional success

. Topological sort

. Print the user's terminal name . . .

. Define flags used with tty processing

. Identify a terminal

. Describe terminal ports

. Return a terminal's line number .

. Get terminal status . . .

. Define a new data type .

. Declare system-specific data types .

. Set/list variables and their attributes .

. Detect possible typographical and spelling errors .

. Set the file-creation mask .

. Set file-creation mask

. Unmount file system ..

. Unmount a file system.

. Remove an alias

. Uncompress a compressed file

. Return character to input stream

. Multiply declare a variable

. Remove I count repeated lines in a sorted file .

. Return a unique long integer . . .

. Convert measurements

. Remove a file

. Construct a prototype file system

. Data type

. Execute commands repeatedly . .

. Update file systems periodically

. Definitions used with user processes

994
994
994
995
995
996
996
996
996
996
997
997
998
998
999

1000
1001
1001
1001
1001
1002
1003
1008
1008
1009
1009
1009
1009
1011
1012
1012
1012
1013
1013
1013
1013
1015
1015
1016
1016
1016
1017
1017
1017
1018
1018
1019
1020
1020
1021
1021
1021
1022

CONTENTS

xxvi The COHERENT System

USER.
ustar .
utime()
utmp.h.
utsname.h.
uucheck
uucico
UUCP ..
uucp ..
uucpname.
uudecode.
uuencode.
uuinstall .
uulog ...
uumvlog .
uuname .
uurmlock.
uutouch
uux
uuxqt .. .
v7sgtty.h.
va_arg() ..
va_end() ..
va start().
variable arguments .
vi ..
view.
virec.
void .
volatile
wait.
wait()
wall.
we ..
whence.
whereis.
which.
while
while .
who ..
wildcards.

. Name user's identifier

. Process tape archives

. Change file access and modification times

. Login accounting information.

. Define utsname structure

. Sanity check the UUCP system

. Transmit data to or from a remote site

. Unattended communication with remote systems.

. Ready files for transmission to other systems . .

. Set the system's UUCP name

. Decode a binary file sent from a remote system .

. Encode a binary file for transmission
: Install UUCP
. Examine UUCP operations
. Archive UUCP log files
. List UUCP names of known systems.
. Remove UUCP lock files
. Touch a file to trigger uucico poll. ..
. Execute a command on a remote system .
. Execute commands requested by a remote system
. UNIX Version 7-style terminal 1/0
. Return pointer to next argument in argument list.
. Tidy up after traversal of argument list .
. Point to beginning of argument list .

. Clone of Berkeley-style screen editor.

. Screen-oriented viewing utility

. Recover the modified version of a file after a crash

. Data type

. Qualify an identifier as frequently changing

. Await completion of background process ..

. Await completion of a child process

. Send a message to all logged-in users

. Count words, lines, and characters in text files

. List a command's type

. Locate source, binary, and manual files.

. Locate executable files

. Execute commands repeatedly .

. Introduce a loop. . . .

. Print who is logged in

write. . . Converse with another user.
write() . . Write to a file
xgcd() . . Extended greatest-common-divisor function .
yacc . . Parser generator.
yes. . . . Print infinitely many responses
zcat . . . Concatenate a compressed file
zerop(). . Indicate if multi-precision integer is zero .

17. Appendix: Error Messages.
COHERENT System Error Messages.
Compiler Error Messages

Assembler Error Messages.
cpp Error Messages.

CONTENTS

1022
1022
1023
1024
1024
1024
1025
1026
1031
1032
1032
1032
1033
1034
1034
1034
1035
1035
1036
1038
1039
1039
1039
1040
1040
1041
1042
1042
1043
1043
1044
1044
1045
1045
1045
1046
1047
1047
1047
1048
1048
1049
1049
1051
1052
1053
1054
1054
1055
1055
1056
1057
1057

ccO Error Messages . . .
cc 1 Error Messages . . .
cc2 Error Messages . . .
Linker Error Messages .

fsck Error Messages
Initialization
Phase 1: Check Blocks and Sizes ..
Phase lb: Rescan for more Duplicates.
Phase 2: Check Path Names
Phase 3: Check Connectivity .. .
Phase 4: Check Reference Counts
Phase 5: Check Free List. .
Phase 6: Salvage Free List.
Cleanup
General Messages.

make Error Messages ..
nroff Error Messages .

Index

The COHERENT System xxvii

1060
1069
1070
1070
1071
1071
1072
1072
1072
1073
1074
1074
1075
1075
1075
1076
1077
1081

CONTENTS

Section 1:

Introduction

COHERENT is a professional operating system designed for use on the PC-AT and
compatibles. It has many of the same features and functionality of the UNIX operating
system, but is the creation of Mark Williams Company. COHERENT gives your computer
multi-tasking, multi-user capabilities without the tremendous overhead, both in hardware
and money, required by current editions of UNIX. COHERENT is what UNIX once was: an
efficient system of selected tools and well-designed utilities, that brings out the best in
111odest computer systems.

The COHERENT system consists of the following:

A fully multi-tasking. multi-user kernel.

Choice of Bourne or Korn shells.

The Mark Williams C compiler, a linker, an assembler. a preprocessor, and other tools.

A suite of commands. including editors, languages, tools. and utilities.

Drivers for peripheral devices, including terminals, ASCII printers, and the Hewlett­
Packard LaserJet printer.

Libraries, including the standard C library and the mathematics library.

Sample programs, including full source code for the MicroEMACS editor.

Hardware Requirements
COHERENT runs on an IBM PC-AT or any totally compatible computer that has at least 640
kilobytes of RAM and at least one high-density floppy disk drive and a hard disk.

Before you begin to install COHERENT, be sure to check the release notes that accompany
this manual for a list of tested hardware and known incompatibilities.

How To Use This Manual
This manual is in two parts. The first part consists of a set of tutorials that introduce
COHERENT and its utilities.

If you are new to COHERENT, you should first read the following tutorial, Using the
COHERENT System. This gives you an overview of COHERENT. and will get you up and
running. It also includes information for advanced users on how to administer a
COHERENT system properly.

The following tutorials introduce many of the COHERENT tools and utilities. including the
editors MicroEMACS, ed. and sed; the C language; the language tools awk. lex. and yacc;
be, the multi-precision calculator; make, the COHERENT programming discipline; and
many others.

1

2 Introduction

The Lexicon
The second half of this manual is take up by the Lexicon. The Lexicon consists of
approximately 1,000 articles that summarize all library routines, system calls, and
commands available under the COHERENT system. It also includes numerous articles that
define terminology and give technical information.

The articles are arranged in alphabetical order, to make it easy for you to find information
on any topic. The articles are also linked via their cross-references into a tree structure,
with the "root" of the tree being the article titled Lexicon. You can trace from any one
article in the Lexicon to any other article simply by following the cross-references up and
down the Lexicon's tree. The Index also references all topics discussed in the Lexicon or the
tutorials, should you wish to look something up quickly.

If you are unfamiliar with a technical term used in this manual, look it up in the Lexicon.
Chances are, you will find a full explanation. If you are not sure how to use the Lexicon,
look up the entry for Lexicon within the Lexicon. This will help you get started. If you have
struggled with multi-volume manuals for other operating systems, we think you will quickly
come to appreciate the Lexicon.

User Registration and Reaction Report
Before you continue, fill out the User Registration Card that came with your copy of
COHERENT. When you return this card, you become eligible for direct telephone support
from the Mark Williams Company technical staff, and you will automatically receive
information about all new releases and updates.

If you have comments or reactions to the COHERENT software or documentation, please fill
out and mail the User Reaction Report included at the end of the manual. We especially
wish to know if you found errors in this manual. Mark Williams Company needs your
comments to continue to improve COHERENT.

Technical Support
Mark Williams Company provides free technical support to all registered users of
COHERENT. If you are experiencing difficulties with COHERENT, outside the area of
programming errors, feel free to contact the Mark Williams Technical Support Staff. You
can telephone during business hours (Central time), send electronic mail, or write. This
support is available only if you have returned your User Registration Card for COHERENT.

If you telephone Mark Williams Company, please have at hand your manual for
COHERENT, as well as your serial number and version number. Please collect as much
information as you can concerning your difficulty before you call. If you write, be sure to
include the product serial number (from the sticker on the floppy disks) and your return
address.

TUTORIAL

Section 2:

Using the COHERENT System

This tutorial introduces the COHERENT system. It introduces such basic concepts as
command and.file system, and walks you through simple exercises to help you gain some
familiarity with the dimensions of COHERENT. If you are new to COHERENT, you should
read through this tutorial first. Not every section in here will be immediately useful to every
user; for example, a beginner will probably not need to study the section on system
administration, at least at first. But sooner or later. you will need to work with all of the
material in this tutorial.

If you are unfamiliar with what an operating system is. or if you are unsure how
COHERENT differs from other operating systems (such as MS-DOS). turn to the Lexicon
article for COHERENT. There, you will find a brief description of what an operating system
is and what makes COHERENT special.

Before you can begin to use this tutorial, you must install COHERENT on your computer. If
you have not yet done so, turn to the Release Notes that came with this manual and follow
the directions in them.

How Do I Begin?
For everyone, there's that first time. You have installed COHERENT on your computer,
you've checked the file system, mounted all of your file systems. and have gone into multi­
user mode. Now you are sitting in front of your computer and all you see on your screen is
the enigmatic phrase:

Coherent login:

"What." you ask yourself. "do I do now?" Well, the rest of this section will tell you how to get
started with COHERENT.

Logging in
To begin. you must log In. Unlike MS-DOS. COHERENT is a multi-user system: many
people can use the same computer. accessing it either via terminals that you plug into the
computer's serial ports. or via modem. Each user owns his personal set of files, his special
way of setting up his environment. his own mailbox. and other things which are special to
him alone. Because many people can use COHERENT. before you begin to work with
COHERENT you must tell it who you are. This process of identifying yourself to
COHERENT is called logging in. That mysterious prompt

Coherent login:

is COHERENT's way of asking you who you are.

To log in, type your personal login identifier. You set this identifier when you first installed
COHERENT on your computer. Most people set their login identifier to their initials or their
first names, usually in all lower case letters. Once you type your login identifier. press the
<Return> key (sometimes labelled as <Enter>). If you did not set up a login for yourself
during installation, log in as the superuser root and add one for yourself. For information
on how to log in as the superuser, see below. For information on how to add a new user,

3

4 Using COHERENT

see the section on Adding a New User, below, or see the Lexicon article for the command
newusr.

While you were installing COHERENT on your system, you were given the option of setting a
password for your login identifier. This is done to stop other users from logging in as
yourself - or to keep outside "crackers" from dialing into your system and vandalizing it. If
you did set a password, after you enter your login identifier COHERENT will prompt you for
it with the following prompt:

Password:

Type your password. Note that COHERENT does not display the password on the screen as
you type it; this is to prevent bystanders from seeing your password over your shoulder as
you enter it. After you type your password, again type <Return>.

If you entered your login identifier and passwords correctly. COHERENT will display the
command prompt:

$

This is COHERENT's way of saying, "Give me a command, I'm ready to go!" If you made a
mistake while logging in, either with the identifier or the password, COHERENT will reply,

Sorry!

and display its

Coherent login:

prompt again. Try again. until you do manage to log in. If you have received the '$',
congratulations! COHERENT is now ready to work with you.

Special Terminal Keys
The next sections will introduce you to a few elementary COHERENT commands. Before we
continue, however, you must first become familiar with a few special keys on your
computer's keyboard, and with the special meanings they have to the COHERENT system.

One special key on the keyboard will be used frequently in your work: the <Return> key.
As noted above, this key is sometimes labelled <Enter>.

You must conclude every command you type into COHERENT by pressing the <Return>
key. This tells COHERENT that you have finished typing, and that you now want it to
execute your command. COHERENT will not execute your command until you press this
key.

Another special key is the control key. This key is usually labelled Ctrl or cntl or cont.
Most terminals place it to the left of the keyboard. This key is used to send certain special
characters.

The ctrl key is like another kind of shift key: to use it, hold it down while you press another
key. For example, to send the computer a <ctrl-D> character, hold down the ctrl key, strike
the D key, then release both keys.

Because control characters have no corresponding printable characters, in this tutorial they
will be represented in the form:

<ctrl-D>

for the character ctrl-D.

TUTORIAL

Using COHERENT 5

While you are typing information into the COHERENT system, you can correct the
information before it is processed. Two keys will help you do this. The first is the <kill>
character, which erases the line entirely and allows you to begin again. This is usually
<Ctrl-U>.

The other key is the <erase> character. normally <ctrl-H> or <backspace>. This moves the
cursor one character to the left, to erase the most recently typed character. <ctrl-H> also
serves as the backspace key.

One more special key is the <interrupt> key. This key aborts a command before it normally
finishes. By default, <ctrl-C> is the abort key on your keyboard.

Try Some COHERENT Commands
Now that you've logged in to your COHERENT system. try a few simple COHERENT
commands to get a feel for COHERENT. Type the following examples just as they are
shown, and observe what COHERENT does in response to each. Be sure to end each line
with a <Return> .

The first example uses the command cat, to let you type a small chunk of text and save it in
a file.

cat >fileOl
This is a sample COHERENT file.
<ctrl-D>

Remember, don't type <ctrl-D> literally - rather. hold down the ctrl key and press 'D' at
the same time.

In the above script. the characters cat tell COHERENT to invoke its concatenation program.
The characters >fileOI tells COHERENT to write what you type into a file that you name
fileO I. The line

This is a sample COHERENT file.

is the text that COHERENT writes into fileOI. Finally, <ctrl-D> signals COHERENT that
you have finished typing.

Now type:

cat fileOl

This command again invokes the concatenation program cat. but this time tell it to print on
your screen the contents of fileOI. which you just created. In reply to your command,
COHERENT should print on your screen:

This is a sample COHERENT file.

which is the text you entered in the previous exercise.

Finally, type the command:

le

This command lists all of the files that you have in the current directory. In reply to your
command, COHERENT should print on your screen:

Files:
fileOl

which is the file you just created. (You may see other files as well.)

TUTORIAL

6 Using COHERENT

Congratulations! You have just made COHERENTwork for you.

To review: The first command, cat, created a file and filled it with some text: the second cat
typed the file out on your terminal; and the command le printed the name of each of your
files. The following sections of this tutorial describe each of these commands in more depth.
Each command also has its own entry in the Lexicon, which appears in the second half of
this manual; look there for a full description of each command, what it does, and how you
can use it.

Giving Commands to COHERENT
Once you have logged into COHERENT, all of its resources are yours to command.
COHERENT's commands give you control over these resources.

Every COHERENT command has the same structure: the command name, which tells
COHERENT the command you want it to execute; and the arguments, which detail what you
want the command to do, how you want it to do it. and to what you want it done.

Some commands consist only of the command name. and do not take arguments. For
example, the command

le

which was introduced in the previous section, has le as the first part and prints the names
of all files in the current directory, in columns. If you have no files. le prints nothing.

The second part of the command consists of the arguments given to the command. (These
are also known by the term parameters.) Arguments are separated from each other by
spaces or tab characters.

The arguments of the command are further divided into options and names. Names usually
name files; options modify the action of the command. An option is usually prefixed by a
hyphen'-'.

An example of a name argument is shown in this example of a cat command:

cat fileOl

This command types the contents offileOl on your terminal. The name argument is tlleOl.

For an example of options, consider the command ls. ls lists your file names one name per
line. Thus. typing

ls

produces a list of the form:

fileOl

However. ls can tell you more about a file than just its name. To see additional information
about each file, type:

ls -1

The '-I' option to ls prints a "long" output. of the following form:

-rw-r--r-- 1 you 17 Sat Aug 15 17:20 fileOl

This listing shows the size of the file, the date it was created or last modified, and its degree
of protection. The letters to the left of the listing give the permissions for the file; these
describe who is allowed to do what to the file. These are described in detail in the Lexicon

TUTORIAL

Using COHERENT 7

articles for the commands ls and chmod. The other entries on that line respectively name
the owner of the file (in this case, you); the size of the file in bytes; the date and time the file
was last modified; and finally, the file's name.

As an example of combining an option parameter with a name parameter, consider the
command:

ls -1 fileOl

This invokes the command ls, tells it to print a long listing. and tells it to list only the file
meol.
As you will see in the following sections, almost all COHERENT commands have this syntax.

help, man: Help with Commands
The COHERENT system has two commands that give information about other commands:
the help command, which prints a brief summary of how to use a command; and the man
command, which prints the full Lexicon entry for that command on your screen.

To find out about the help command, type

help

by itself, or type:

help help

The latter command tells help to print the help entry for the help command itself.

To get information on the le command, type:

help le

To obtain detailed information on a command, use the man command. (man is short for
"manual".)As noted above, the man prints on your screen a duplicate of that command's

entry in the Lexicon. To learn more about the man command itself, type:

man man

If your screen fills with information, man will wait for you to type <Return> to continue.
This is to prevent you from missing information should it scroll too fast. man also waits for
you to type <Return> after it prints the last line of the description.

Our survey of elementary commands will conclude by describing two important tasks: how
to reboot the computer, and how to log out.

Shutting Down COHERENT and Rebooting
Under many operating systems, such as MS-DOS, rebooting is as simple as pressing a
couple of keys or cycling power on the computer. The COHERENT system, however, is a
multi-user, multi-tasking operating system that is more sophisticated than MS-DOS or
similar operating systems. COHERENT maintains an elaborate system of internal buffers
that are designed to reduce the frequency with which a program has to read data from, or
write data to, the hard disk. If you were just to turn the computer off and turn it on again,
all of the data in those buffers would be lost. At the very least, each user would lose
whatever data he was working with at the time; at worst, the COHERENT file system could
be damaged and files lost.

TUTORIAL

8 Using COHERENT

For this reason, it is extremely important that you shut down COHERENT properly. You
must follow these procedures if you want to shut off the computer, or if you wish to reboot
MS-DOS.

To shut down COHERENT, do the following:

Log in as the superuser root by typing the following command:

su root

COHERENT will ask you for the superuser's password; type the password that you
assigned to the superuser when you installed COHERENT on your computer. The
Lexicon article on superuser describes what the superuser is; as will later sections of
this tutorial.

Once you have logged in as the superuser, type the following command:

/etc/shutdown

As its name implies, this command shuts down the COHERENT system. The
command will ask you if you really. truly wish to shut down COHERENT; reply 'y', for
0 yes".

COHERENT will indicate that it has returned to single-user mode by printing the
prompt'#'. When this prompt appears, type the command:

sync

This command flushes all buffers and writes their contents to the hard disk. When
you first type this command, you should hear or see the disk in action. Now, type it
again. You probably will not hear any activity from the disk: that is because the
buffers have been flushed and nothing remains to be written to the disk.

Now, you can turn the computer off. If you wish to reboot COHERENT. instead of
turning the computer off type the command:

/etc/reboot

This will reboot COHERENT automatically. Or, you can type <ctrl><alt>. or
press the reset button on your computer (should it have one).

After you have rebooted your computer, just sit back and wait until you receive the
Coherent login: prompt on your screen.

If you wish to reboot MS-DOS, type the command:

/etc/reboot

Instead of sitting back. however, watch the computer: wait until you see the computer
attempting to read from the floppy-disk drive. At that moment, press the number key
that corresponds to the hard-disk sector on which you stored MS-DOS, from O to 7.
For example, if MS-DOS is kept on partition 2, then press 2 when the computer is
attempting to read the floppy-disk drive. Be sure to press the number key that is on
the main bank of keys, - not the key on the numeric keypad.

That's all there is to it. Shutting down is relatively simple and straightforward; but if you do
not take the time to shut COHERENT down properly, you will find that you have destroyed
some or all of your data.

TUTORIAL

Using COHERENT 9

Logging Out
As noted above, logging in tells COHERENT who you are and that you wish to work with
COHERENT for a while. When you have finished working with COHERENT, you must tell
COHERENT that you are done for now. This process is called logging out.

There are three ways to log out. Each involves typing a special command to the COHERENT
prompt. The first way is to type <ctrl-D> at the COHERENT prompt. The second is to type
the command:

login

which logs you out and prepares for another login.

The third way is to type the command:

exit

Each of these commands has the same effect: the COHERENT system flushes all buffers
that you "own" and prints the prompt

Coherent login:

on your screen. At this point, you cannot issue any commands to COHERENT; but you (or
someone else) can log into COHERENT from this terminal.

Please note that logging out is not the same as shutting down COHERENT. When you shut
down COHERENT, you are shutting down the entire system. When you log out, however,
you are simply ceasing to work with COHERENT. After you log out, COHERENT continues
to work on its own: organizing files, exchanging information with other computers via
modem, executing programs for users who have logged in via modem or other terminals,
and in general making itself useful. If you shut off the computer after you log out, you will
damage the file system, just the same as if you shut it off while you were logged in.

The following sections in this tutorial will go into COHERENT's commands in much more
detail. All. however, will build on the elementary actions presented here: logging into
COHERENT; issuing commands; receiving responses from COHERENT; and logging out.

Working With Files and Directories
The file and the directory are the cornerstones of the COHERENT system. Practically
everything you do on the system will involve files: changing files. invoking files. transmitting
or receiving files, filling files up or emptying files out. And directories let you organize
masses of files into a rational hierarchy.

This section discusses manipulating files and directories under the COHERENT system. It
covers the following:

Whatfile and directory mean to COHERENT

Introduces the commands for manipulating files, directories and their contents

Discusses more advanced topics, such as creating and mounting new file systems

Tours the COHERENT file system

This section of the tutorial covers much ground in a relatively brief space. Readers who are
new to personal computers should concentrate on the earlier sub-sections, which cover
elementary topics; whereas more experienced readers may wish to concentrate on the later
sub-sections, which cover the more technical material.

TUTORIAL

10 Using COHERENT

File Names
Aflle is a mass of electronic impulses that is given a name and stored on a disk. Files are
given names to make them easy for you to retrieve. COHERENT has rules about how files
can be named. to ensure that each file's name is unique.

The following are examples of legal file names:

.profile
FileOl
cmd.sh
fileOl
test.c

File names are generally made up of upper-case and lower-case letters and numbers.
COHERENT, unlike MS-DOS, distinguishes capital letters from lower-case letters: therefore.
to COHERENT the file names FileOI and fileOI are different.

Any character can be used to name a file, including a control character. We recommend,
however, that you names files using only upper- or lower-case alphabetic characters,
numerals. and the punctuation marks '.'or' __ ·.

The file name must not be more than 14 characters long. If you specify a longer name,
characters beyond the 14th will be lopped off and thrown away. For example, COHERENT
regards the file names

this_is_very_long_file_name_l

and

this_is_very_long_file_name_2

as being identical.

Introduction to Directories
A directory is a group of files that have been given a name. Directories let you organize files
systematically. This may not seem important now, but as you work with COHERENT you
will find that you accumulate hundreds. or even thousands. of files; without system of
directories to organize files, you would quickly lose track of what each file held, and find it
nearly impossible to find any given file within your system.

Because files are stored within directories, the complete name of a file actually consists of
its name plus the name of the directory in which it is stored. This lets COHERENT
distinguish files that have the same name but are stored in different directories.
COHERENT uses the slash character '/' to distinguish a directory name from a file name;
for example, to view the contents of file junk in directory text_files, you would use the
command:

cat text_f iles/junk

This system of naming will be described in full in the next sub-section; for the moment, just
bear in mind that for COHERENT to find a file, you must tell COHERENT not only the name
of the file, but the name of the directory in which it is kept.

When you work with COHERENT. you are always "in" a directory. The directory you
happen to be "in" at any given moment is called the current directory. The current directory
is the one whose files you are working with at this moment. When you type the name of a

TUTORIAL

Using COHERENT 11

file and do not mention what directory it is stored in, COHERENT assumes that the file is
kept in the current directory. COHERENT includes commands that let you shift from one
directory to another.

When you log into COHERENT, COHERENT places you "in" a directory that you "own".
This directory is called your home directory. You control all of the files in your home
directory; it is your "base of operations" for working within COHERENT.

Path Names
As you may have deduced by now. a directory can contain both files and other directories.
The directories within a directory may themselves contain both files and directories; which
then may contain other files and directories; and so on.

This design of directories branching into other directories. which in turn branch into still
other directories, is called tree structured. As the tree-metaphor implies, the COHERENT
system of directories has a root directory, that is, a directory that is not contain in any other
directory but from which all other directories descend. directly or indirectly. The name of
the root directory is simply:

I

One subdirectory of the root directory is called usr. This subdirectory contains the home
directories of all users. Other common paths for home directories are /u and /usr/acct. To
list the names of all user directories, type the command:

le /usr

If your login name is henry, then the command

le /usr/henry

lists the names of the files in your home directory. Please note that in the argument
/usr/henry, the first slash names the root directory; all subsequent slashes serve simply to
separate one directory name from the next.

The name /usr /henry is called a path name. The term "path name" means the full name of
a given file or directory - including all the directories that lead from the root directory to it.

Path names may be full or partial. All full path names begin with I for root, and continue
with further subdirectory names. Path names that do not begin with a slash are partial;
COHERENT automatically prefixes them with the path name of the current directory to
make them complete before it uses them.

The elements of path names are separated by slashes, so if there were a file in
newdirectory named newfile. you would refer to it as

newdireetory/newfile

The absence of a beginning slash indicates that the path name begins in the current
directory. Thus, if your home directory name is henry, then another way to name the path
to newfile is to type:

/usr/henry/newdireetory/newfile

The following diagram gives a rough description of the structure of the COHERENT file
system:

TUTORIAL

12 Using COHERENT

I

bin usr

henry other

Please note that unlike a real tree, the root of a tree structure has its root at the top rather
than at the bottom. Here, the root directory'/' is at the top of the structure. It contains the
directories bin and usr (among many others). Directory usr contains directories henry and
other (again, among many others. These directories can contain many other directories and
subdirectories.

In summary, a path name lists all the subdirectories leading from the root directory to the
file in question. In the above example, newtne is a file in subdirectory newdirectory, which
in turn is a file in the home directory henry, which is further a file in the directory usr. The
directory usr is a file in the master or root directory for the system.

You don't need to specify all of this, fortunately, whenever you want to specify a file in a
subdirectory. COHERENT assumes that partially specified path names are within the
current directory. Therefore, you can specify a subdirectory by specifying the name of the
directory first, followed by the rest of the path name.

COHERENT also allows two special abbreViations for directories. The abbreviation ' . .'
always represents the current directory's parent directory. In the case of the directory
/usr/henry, directory usr is the parent of directory henry. In other words, ' . .' stands for
the directory in which the current directory resides. Every directory in the system except
the root directory has a parent. For the root directory,' . .' refers to itself.

Another directory abbreViation is'.', which means the current directory.

The following sub-sections describe the commands that COHERENT includes for
manipulating files and directories. As you work with COHERENT, you will use these
commands continually, so it would be worth your while to spend a little time learning them.

Is, le: Listing Your Directory
This sub-section introduces two of the more commonly used commands: ls and le. Both ls
and le list the files in a directory.

To see how these commands work, presume that your directory has the files created in
previous sections and that you did not remove directory newdirectory. To list the files in
your directory, simply use the command with no parameters:

ls

This produces a list of files, such as:

another
backup
docl
doc2
fileOl
file02
newdirectory
stuff

The command le also lists file names, but it prints the files and directories separately, in

TUTORIAL

columns across the screen. For example. typing

le

gives something of the form:

Directories:
backup newdirectory

Files:
another docl doc2 fileOl file02
stuff

Using COHERENT 13

If you want to list files in a directory other than your own, name that directory as an
argument to the command. For example, /bin is a directory in the COHERENT system that
contains commands. Type

le /bin

and le will print the contents of /bin.

Both ls and le can take options. An option is indicated by a hyphen '-'. The option must
appear before any other argument. For example, to list only the files in the directory for
user carol, leaving out any directories, use the f option with le:

le -f /usr/carol

Or, if you type the command

le -f

the COHERENT system prints all of the files in the current directory. The following gives
the commonly used options to the command le:

-d List directories only, omitting files
-f List files only. omitting directories
-1 List files in single column format

ls produces a list of file names, one per line, and optionally much more information. To
produce all the information, use the -1 option (note that this is an "el", not a numeral l):

ls -1

The following gives a sample of the long list that this option produces. Headings have been
added to show the meaning of each column:

Size, Modification
Mode # Owner Bytes Date Time Name

-rw-r--r-- 1 you 17 Wed Aug 19 17:51 fileOl
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-rw-r--r-- 1 you 17 Wed Aug 19 17:53 docl

The meaning of each column will be explained later. For now, note that the last column
gives the name of each file, and the fourth column from the left gives the size of each file, in
bytes.

TUTORIAL

14 Using COHERENT

cat: Print Contents of a File
The command cat opens and prints the contents of a text file - that is, a file of source
code, a document, or a message file. For example. to list the contents of file fileOl, type:

cat fileOl

This command types the ftle's contents on the terminal (sometimes also called the standard
output).

Another use for cat - the use from which it gets its name - is to concatenate several files
on the standard output. For example, the command

cat one two three

prints the files one, two, and three, one after the other. on the screen.

You can use cat to concatenate several files into one file by redirecting the standard output
into a file. The special character'>' tells COHERENT to redirect the standard output into a
file. For example, the command

cat one two three >four

concatenates files one two three into file four. four need not exist prior to this command;
if it does, its previous contents are replaced with the data redirected into it.

Redirection is a very useful feature of COHERENT that will be used through the rest of this
tutorial. The '>' operator also gives an example of the set of operators that can be used with
COHERENT commands. These operators. which increase the power of each COHERENT
command, will be described in detail later in this tutorial.

more: List Files on the Screen
If the file you list with cat is more than 24 lines long. the beginning lines of the file scroll off
the screen too quickly for you to read them. To ensure that you see all of the lines in the
file. use the command more.

more prints a file in 24-line chunks. After it has listed a chunk of text, it pauses and waits
for you to press <space>. If you call more with an option of -s.

more -s file
!

it will skip all blank lines that are in the text file.

mkdir: Create a Directory
The command mkdir creates a new directory. For example, to create a new directory named
newdirectory, type the following command:

mkdir newdirectory

If you follow this command with le, it lists your regular ftles, but it also lists newdirectory
separately as a directory:

TUTORIAL

Directories1
newdirectory

Files:
fileOl file02

Using COHERENT 15

To refer to any files in newdirectory, use its name in specifying the path name.

Now. create a file in the new directory:

cat >newdirectory/newfile
lines to be
contained in newf ile
<ctrl-D>

This command copies lines to the file described by the partial path name
newdirectory I newfile.

cd: Change Directory
The command cd changes the current working directory. For example, the command

cd newdirectory

moves you into directory newdirectory that you created in the previous sub-section. Now,
if you type the command le, to show the contents of the current directory, it will show the
following:

Files:
newfile

To return to the previous directory, use the command:

cd ..

As noted earlier. the abbreviation
directory.

always indicates the current directory's parent

pwd: Print Working Directory
The command pwd prints the name of the current. or working, directory. For example. if
your login name is henry. then if you type

pwd

you will see:

/usr/henry

Now. use the cd command to switch to directory newdirectory, as follows:

cd newdirectory

When you type

pwd

you will see:

/usr/henry/newdirectory

Finally, use the cd command to return to the previous directory. as follows:

cd •.

When you type

TUTORIAL

16 Using COHERENT

pwd

you now see:

/usr/henry

If you are ever unsure what directory you are in, use the pwd command.

mv, cp: Move and Copy Files
The command mv moves files. You can move a file from one name to another within the
current directory (in effect rename the file), or you can move a file from one directory to
another. The mv command takes two parameters: the first names the file to be moved; the
second names either the new name that you are giving to the file, or the directory into
which you are moving the file.

For example, to move file fileOI into directory newdirectory, type:

rnv fileOl newdireetory

To see where fileOI is now, type the following command:

le newdireetory

The result is:

Files:
newfile

To move newtlle back into the current directory, use the command:

rnv newdireetory/newfile .

Remember, the abbreviation·: always stands for the current directory.

As noted above, the mv command can also be used to rename files within the current
directory. For example, to change the name of newfile to oldfile. use the following
command:

rnv newfile oldfile

If the current directory already has a file named oldfile, it will be thrown away and replaced
with the file that used to be named newfile.

The command cp copies a file. This command has two parameters: the first names the file
to be copied. and the second names the file or directory into which it is to be copied. For
example, to copy oldfile in the current directory back into newfile, use the following
command:

ep oldf ile newf ile

If newtlle already exists, it will be replaced by a copy of oldfile.

If you wished to copy newtlle into directory newdirectory, use the command:

ep newfile newdireetory

Now, when you type the command

le newdireetory

you will see:

TUTORIAL

Files:
newfile

Using COHERENT 17

As you can see, newtlle has been copied into newdirectory. If newdirectory had already
contained a file called newtlle, that file would have been replaced with the newer newtlle
being copied into newdirectory.

The following example summarizes what's been presented so far about files and directories.
For purposes of the example, assume that your login name is henry. and that you have in
your home directory files docl and doc2 that you wish to back up for safekeeping.

Before you can back up these files, you must first create them. First, use the command cat
to create file tlleOI, as follows:

cat >docl
a few
lines of
text
<ctrl-D>

Likewise, create file doc2:

cat >doc2
second file
with some text
<ctrl-D>

(Don't forget that <ctrl-D> means to hold the control key down and simultaneously type D.)

The command le will now show you the files and directories in your current directory:

Directories:
newdirectory

Files:
docl doc2 newfile oldfile

The next step is to create the directory to hold the back-up copies. To help remind yourself
what the directory is for. name it backup.

mkdir backup

Now, le shows you:

Directories:
backup newdirectory

Files:
docl doc2 newfile oldfile

The next step is to use cp to copy your files into backup:

cp docl backup
cp doc2 backup

After you issue these commands. le still says:

TUTORIAL

18 Using COHERENT

Directories:
backup

Files:
docl

newdirectory

doc2 newfile oldf ile

However, if you list the contents of subdirectory backup

le backup

you will see:

Files:
docl doc2

The files have been successfully copied into the back-up directory.

For a full description of these commands and the options available with each, see their
respective entries in the Lexicon.

rm, rmdir: Remove Files and Directories
The command rm removes a file. For example. if you wish to remove file doc2 in directory
backup, type the following command:

rm backup/doc2

After typing this command, use the command le to show the contents of directory backup.
as follows:

le backup

You should see:

Files:
docl

As you can see, file doc2 has been removed.

You can remove several files at once, simply by listing them on the rm command's
command line. For example:

rm fileOl file02

removes files fileO I and file02.

Note that once you remove a file with rm, it is gone forever. The COHERENT system does
not warn you if you rm several files at once; it will assume that you know what you're doing
and carry out your command silently. For this reason, be careful when you use the rm
command, or you may receive a rude surprise.

You cannot use the command rm to remove a directory. COHERENT does this to help
prevent you from wiping out an entire file system with one simple rm command. To remove
a directory, use the command rmdir. For example. to remove the directory newdirectory,
type:

rmdir newdirectory

Note that before you can delete a directory, that directory must not have any files or
directories in it. If you try to remove a directory that has files or directories in it,
COHERENT will print an error message on your screen and refuse to remove the directory.

TUTORIAL

Using COHERENT 19

For a full description of these commands and the options available with each, see their
respective entries in the Lexicon.

du, df: How Much Space?
Files occupy space on your hard disk. (A corollary to Parkinson's law states that files
expand to fill the disk allotted to them.) It is somewhat disconcerting to attempt to save a
large file, only to find that you have run out of disk space. To help you manage your hard
disk, COHERENT includes the commands du and df.

The disk-usage command du tells you how much disk space the files in the current
directory occupy. If the directory has sub-directories, these are listed separately. du prints
disk usage in blocks; each block is 512 bytes (half a kilobyte).

The disk-free command df tells you how many blocks are left free on your disk. By default
it prints information only about the file system you are now in.

If you find that you are running low on disk space, you must free up some space. You can
do that by removing files you no longer need; by compressing files that you do not use often;
or by backing files up to floppy disk and then removing them. We have already described
how to remove files. Look in the Lexicon entry for the command compress for information
on how to compress and uncompress files. Following sections in this tutorial will describe
how to copy files to floppy disk.

For more information on these commands, see their respective entries in the Lexicon.

In: Link Files
COHERENT has a feature that allows a file to have more than one name. When you create
a file, you give it a name; COHERENT links the name you give the file with its internal
system of managing files. (For more information on how COHERENT identifles files, see the
Lexicon entry for i-node.) COHERENT allows you to give a file more than one name; another
way of expressing this is to say that you can give a file multiple links ..

To create a new link to an existing file, use the command In. This command takes two
arguments: the first names the file to which you wish to give a new link, and the second
gives the name that you wish to link to that file. If the name you are linking to a file is
already being used by a file, that name is unlinked from its current file and linked to the file
named in the In command line.

For example to link the file docl to the name another, use the following command:

ln docl another

The "new" file has the same data in it as the "old" file; in fact, the names docl and another
are synonyms for the same file.

The next point is somewhat subtle. When you use the command rm to remove a file, what
you are actually doing is breaking the link between that file and its name. The file is not
actually removed from disk until all links are broken between it and all of its names. In the
above example, if you use the command

rm another

to remove the file another, the file docl remains in existence, and the data to which the
names another and docl remains on the disk. If you then use the command

TUTORIAL

20 Using COHERENT

rm docl

to remove docl, then you will have broken all links between that file and the COHERENT
system, and COHERENT will remove it from the disk.

Links are useful if you wish a file to be used in two different contexts but have the same
data. For example, if you file docl in two different manuscripts, you can create links to the
file in two different directories, one for each manuscript. Thus, any changes you make to
the file under either its names will appear automatically in both manuscripts. Note that if
you copy over one link to a file, all links still point to the same file. However. if you use
either a command of the form

ln -f f ileOl f ile02

or a command of the form

mv fileOl file02

only the link which is overwritten points to the new file; other links continue to point to the
old file.

As always, see the Lexicon for a full description of the In command.

File Permissions
As you recall, the command ls -1 prints a mass of information about each file. The following
repeats the information that appeared when you typed ls -1:

Size, Modification
Mode # Owner Bytes Date Time Name

-rw-r--r-- 1 you 17 Wed Aug 19 17:51 fileOl
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-rw-r--r-- 1 you 17 Wed Aug 19 17:53 docl

Column 3 names the owner; in this example, you represents your login name, whatever you
have set it to. Column 4 gives the size of the file, in bytes. Columns 5 through 7 give the
day of the week and the date on which the file was last modified. Column 8 gives the time
the file was last modified or. if the file was last modified more than a year ago, the year it
was last modified. Column 9 gives the name of the file.

Column 1 gives the mode of the file. The mode summarizes the permissions attached to this
file.

Before going further, the concept of file permissions should be reviewed. COHERENT is a
multi-user operating system, which means that more than one person can log into the
system, walk through its file system, execute commands, and manipulate files. Every user
has files that she "owns" - that is, that she has created and that she wishes to protect
against being altered or removed by others. After all, it would be disconcerting if you were
to log into your system, only to find that some of your key files had been trashed by another
user, without your knowledge or permission.

The COHERENT system protects files by its system of file permissions. Permissions have
two aspects: the type of permission, and the scope of permission. There are three types of
permission:

TUTORIAL

Using COHERENT 21

read permission
Permission to read a file.

write permission
Permission to write into a file.

execute permission
Permission to execute a file, assuming that file contains executable code instead of
text.

Likewise, there are also three types of scope:

user The permissions extended to the owner of the file.

group The permissions extended to the group of users to which the owner belongs. For
more information on what group is, see the Lexicon entry for group.

other The permissions extended to all other users.

The mode column describes all permissions attached to a file. It also gives other
information about a file, such as whether the file is a directory. Taking the entry for file
fileOl as an example, we see:

1 2 3 4 #Owner
-rw-r--r-- 1 you

Size Date Time
17 Sat Aug 15 17:20

File name
fileOl

As you can see, the mode field is divided into four subfields, in this example labelled 'l'
through '4'.

Subfield l indicates whether this file is a directory. If the file were a directory, this would
contain a d; otherwise, it contains a hyphen.

Subfields 2 through 4 describe the type of permission extended to, respectively. the owner,
the owner's group. and other users. Each subfield consists of three characters. The first
character indicates whether the file is readable; if it is. then the character is an 'r';
otherwise, it's a hyphen. The second character indicates whether the file is writable; if it is,
then the character is a 'w'; otherwise, it's a hyphen. The third character indicates whether
the file is executable; if it is, then the character is an 'x'; otherwise, it's a hyphen.

In the above example, file fileOl grants read and write permission to its owner, read
permission to the other members of the owner's group, and read permission to all other
users.

The COHERENT system has a set of default permissions that it applies to every file when it's
created. To change this default set of permissions, use the command umask. For
information about this command, see its entry in the Lexicon. To change the permissions of
an existing file. use the command chmod. as described in the following sub-section.

chmod: Change File Permissions
To change the mode of a file. use the change-mode command chmod. For example, to
protect file docl in directory backup from being overwritten. use the command:

chmod -w backup/docl

where the -w means "remove write permission" and is followed by the file name.
Henceforth. if you try to write into this file. the COHERENT system will refuse to do so and
will print an error message on your screen.

TUTORIAL

22 Using COHERENT

To allow other users to read the backup file doc2, type:

chmod o+r backup/doc2

where the letter o signifies "other users", and the +r tells chmod to grant read permission.

To see the new set of permissions, type the command:

ls -1 backup

As you can see. the mode string has changed from what it was above.

Directory access permissions are similar to file access permissions in that they can easily be
changed via command chmod. However. the permission bits have different meanings for
directories. Permitting reads on a directory allows the user to see the contents of the
directory via commands such as le or ls; permitting execution on a directory allows access
to the files in the directory; and permitting writes on a directory allows the user to create or
delete files in the directory, regardless of the permissions on the actual file. The latter
causes the most difficulty for new users since they mistakenly associate file deletion
permissions with the actual file rather than with the directory containing the file.

Creating and Mounting a File System
Earlier, we described how the COHERENT system consists of a tree of directories; and how
that tree branches from the root directory'/'. This is a useful description, and true as far as
it goes; but the full situation is a little more complex.

The tree of COHERENT directories in fact consists of any number ofjile systems, each of
which exists on its own physical device. A physical device may be a partition on your hard
disk, a floppy disk, or even a chunk of RAM.

The COHERENT system contains a suite of commands that let you create a new file system
on a physical device, and graft (or mount) that new file system onto the COHERENT
directory tree. The following few sub-sections will walk you through the steps of creating a
new file system on a floppy disk and mounting it onto your existing COHERENT directory
tree. These descriptions may be a bit too advanced for beginners; but most users will file
them to be interesting and helpful.

fdformat: Format a Diskette
The first step in creating our new file system is to format a floppy disk. The command
fdformat formats a diskette. When a diskette is formatted, COHERENT writes information
on each track that makes it possible for the diskette to hold a file system.

fdformat uses the following syntax:

/etc/fdformat device

where device is the name of the device to be formatted. To format a high-density, 5.25-inch
diskette. use the command:

/etc/fdformat /dev/fhaO

To format a high-density, 3.5-inch diskette, type:

/etc/fdformat /dev/fvaO

To format a low-density, 5.25-inch diskette, type:

TUTORIAL

Using COHERENT 23

/etc/fdformat /dev/f9a0

For this example. we'll assume that you have a high-density. 5.25-inch floppy disk. Insert
into drive 0 (that is, drive A) of your computer. and type the command:

/etc/fdformat -v /dev/fhaO

The -v option to fdfonnat tells it to verify that the disk is sound. This option means that
the command will take longer to execute. but in the long run it's worth it as it will ensure
that you do not waste time to trying to copy data onto a flawed disk.

When this command has finished executing. leave the floppy disk in drive 0.

See the Lexicon entry for fdfonnat for more information on this command and its options.

mkfs: Create a File System
The command mkfs creates a file system on a physical device. This command has the
following syntax:

/etc/mkfs speclalproto

special names the physical device on which the file system is to be built. proto is either a
number or a file name. If it is a number. mkfs builds a file system of that size in blocks.

For our example. type the command:

/etc/mkfs /dev/fhaO 2400

This command will write a file system onto device /dev/fhaO. which in this case represents
the floppy disk in drive 0 that we just formatted. The number 2400 represents the number
of blocks that fits onto such a disk. Please note that the above example is for a 5.25-inch.
high-density floppy disk. For directions on how to create a file system on a floppy disk of
different size or density. see the Lexicon article on floppy disks.

If proto is not a number, mkfs assumes that it is a prototype file. The command badscan
scans a physical device for bad blocks and writes such a prototype file for you. Prototype
files are beyond the scope of this example; but for information on them see the Lexicon
entry for badscan or the Lexicon entry for floppy disks. The latter article summarizes all
the ways in which floppy disks are used by the COHERENT system.

mount: Mount a File System
Now that you have formatted your floppy disk and built a file system on it. you can mount
the newly created file system. Mounting grafts this device's file system onto the COHERENT
system's directory tree. Thereafter, you can write files onto that device, read them, remove
them. or do anything else that you wish with that device and its contents.

mount has the following syntax:

/etc/mount device directory

device names the physical device whose file system is to be mounted. directory names the
base directory for that file system. The base directory is the directory by which the file
system is accessed. For example. directory /usr is the base directory for the file system that
holds all users' home directories. We'll describe base directories a little further in a few
paragraphs.

TUTORIAL

24 Using COHERENT

For purposes of our example, type the following command:

/etc/mount /dev/fhaO /fO

This mounts the file system on the disk in drive 0 onto base directory /fO.

The base directory by convention is a directory in the root directory'/'. You do not have to
do this, however. For example, if your user name was henry and you wished to mount the
file system on the floppy disk in your home directory, you could type:

/etc/mount /dev/fhaO /usr/henry/backup

This will mount the file system on the floppy disk onto directory /etc/henry and name its
base directory as backup. Note that if directory backup already existed in directory
/usr/henry, its contents will be inaccessible until you unmount the file system on the
floppy disk. Unmounting is discussed in the following sub-section.

For more information on mounting a file system, see (surprise!) the Lexicon article mount.

Using a Newly Mounted File System
Now that you have created and mounted a file system, you can use it like any other
directory. To see how this works, type the following command:

cat >/fO/testf ile
Here's some text we're writing onto the
newly mounted file system on a floppy disk.
<ctrl-D>

Here's you can use the cat command to write some text into file testfile which lives on the
floppy disk you just mounted. To see that this text has been written there, type:

cat /f O/textfile

You should see the floppy-disk drive whirl briefly, and the following appear on your screen:

Here's some text we're writing onto the
newly mounted file system on a floppy disk.

You can now use this file system like any other, even though it lives on a floppy disk rather
than your hard disk. As you can see, this is an easy way to extend the size of your
COHERENT system's file system.

umount: Unmount a File System
Finally, when you have finished working with a file system, you must use the command
umount to un-mount it. This command prunes the file system on a given physical device
from the COHERENT system's directory tree. You will use this command frequently as you
use floppy disks.

umount takes one argument: the name of the physical device being unmounted. In our
example, the command

/etc/umount /dev/fhaO

unmounts the file system on the high-density. 5.25-inch floppy disk insert into drive 0 (that
is, drive Al on your computer.

TUTORIAL

Using COHERENT 25

Under unsophisticated operating systems like MS-DOS, you can insert or remove floppy
disks without giving the matter a second though. The COHERENT system, however, uses a
complex set of buffers to speed the reading and writing of information to the floppy disk; for
this reason. if you simply yank a floppy disk out of its drive, all of the information in the
COHERENT system's buffers will be lost. Worse, if you yank out a floppy disk and insert
COHERENT-formatted floppy disk, the COHERENT system will write the data in its buffers
onto that new floppy disk - and probably destroy its file system in the process.
Unmounting a file system tells the COHERENT system to flush all information in its buffers
and write it onto the disk.

To emphasize this point, please read the following carefully:

if you mount a .floppy disk, you must use the umount command to unmount it before you
remove the dlskfrom its drive. if you do not, data will be destroyed.

This concludes the discussion of how to mount create a file system, mount it, and use it.
See the Lexicon article floppy disks for further information on how to do this task.

The following two sub-sections discuss how to check a file system, to ensure its integrity.

fsck: Check a File System
The command fsck checks a file system, to ensure its integrity. For example:

fsck /dev/root

where /dev/root is a disk device, checks the file system located on device /dev/root.

If possible, you should umount the file system before you check it. You cannot umount the
root file system. If you can't unmount it, be sure that no other users are on the system (i.e.,
that you are in single-user mode), then reboot the system immediately without performing a
sync. If other users are creating or expanding files while the file systems are being checked,
fsck will report false errors.

If fsck finds any discrepancies, it writes appropriate messages on the terminal. An absence
of messages indicates that there are no problems with the file system. The appendix to this
manual gives all of fsck's error messages. and suggests how you should respond to each.

COHERENT's boot routines run fsck automatically, and will rerun it if necessary to fix
problems with the file system. For more information on fsck, see its entry in the Lexicon.

Devices, Files, and Drivers
The next few sub-sections introduce the topic of special files and devices. You brushed this
topic in the earlier section that described how to format and mount a file system on a floppy
disk; the following few sections go into it more systematically. Beginners will probably find
that much of this sub-section is mystifying, but experienced users and ambitious beginners
probably will find much of value here.

To begin, the COHERENT system is designed to provide device-independent l/0. Devices
and files are handled in a consistent way. Each I/0 device is represented as a special file in
directory /dev. For example, if your system has a line printer device named Ip. you can list
a file, named prog for example, on the printer by saying:

cat prog >/dev/lp

Another example is to copy the file prog with the cp command to your terminal:

TUTORIAL

26 Using COHERENT

cp prog /dev/tty

There are two types of special files represented in /dev, and when you list /dev with le it
will separate them.

The first type is a block special file. This type includes disks and magnetic tape. These
devices are read and written in blocks of 512 bytes, and can be randomly accessed. (As a
practical note, note that magnetic tape can be read in a random fashion only by positioning
backwards and forwards one record at a time; disks can be read or written in a totally
random fashion.)

The 1/0 to and from block devices is buffered to improve overall system performance. When
a program writes a block of data, the data are held in a buffer to be written at a later time.
If the same block is read twice in a row, the data for it is still available in memory and do
not have to be fetched from the physical device.

A special program named /etc/update forces all buffered data to the physical device
periodically by calling the command sync, to protect against losing data in the case of an
accident, such as a power failure. If you must bring the system down, you must force the
latest data to be written by typing the command sync.

Character-Special Files
The second kind of special file is called a character-special file. Included in this class are
devices that are not block special; terminals, printers, and so on. Disks and tapes can also
be treated as character special files. For every block special file for a disk, such as

/dev/atOc

there is usually a character-special file:

/dev/ratOc

Character-special files are sometimes called raw files, hence the prefix r in ratOc. A raw file
has no buffering or other intermediate processing performed on its information. This
difference is an efficient benefit to commands such as dump and fsck, which do their own
buffering.

tty Processing
One special set of devices has other processing - the tty or terminal files. A terminal­
special file with this special processing is called a cooked device. The processing includes
handling the kill, erase, interrupt. quit, stop, start, and end-of-file characters.
Processing can be disabled with the command stty so the program deals with the raw
device. However, using a raw tty device generally has negative effects on performance of the
COHERENT system.

A Tour Through the File System
Our introduction to COHERENTs system of files and directories concludes with a tour of
the COHERENT file system. Much of this material has been described earlier.

TUTORIAL

Using COHERENT 27

General File System Layout
The base of the file system is the root directory, whose name is simply:

I

Most of the files in the root are directories. To list the files in the root directory, type:

le I

/bin
Most of the commonly used commands are programs contained in /bin, such as the
command le used in the above example. Foreign commands. such as MicroEMACS and
kermit, are placed in directory /usr/bin.

The shell does not automatically look in /bin for commands, but consults the variable
PATH to determine where commands are to be found. A typical value for PATH is:

/bin:/usr/bin:.

This tells the shell to look for commands in three places (in this order): /bin, /usr/bin. and
finally •. the current directory. The shell does not consult PATH if the command contains
one or more I characters. indicating a complete or partial path specification.

/dev
Devices in the COHERENT system are accessed through files in the directory /dev. If there
is a line printer available on the system named Ip, you can print characters from a file
named testdata by typing the command:

cat testdata >/dev/lp

All devices on the system are represented in the /dev directory. Note that it is not
recommended you access devices directly, but use the COHERENT system's utilities that
spool files to them. This will prevent two users attempting to write material to a device
simultaneously, and so garbling the output. For example, to access the line-printer device,
use the spooler lpr. See the Lexicon's entries on lpr and device drivers.

/drv
A unique feature of the COHERENT system is the concept of loadable device drivers. This
feature lets COHERENT system programmers write their own device drivers without
modifying the rest of the system. Drivers can be unloaded, modified, and reloaded without
halting and rebooting the system. Loadable drivers are kept in directory /drv. To load a
driver, type:

/etc/drvld /drv/driver

where driver is the driver to load. See the Lexicon's entry on drvld for more information.

TUTORIAL

28 Using COHERENT

/etc
Several commands that you will use in your role as system administrator are kept in
directory I etc. These are described in detail elsewhere in this guide. They include
commands for system accounting. booting the system, mounting the system, create file
systems, and control system time.

Also in /etc are several data files used in system administration. These include
/etc/passwd, the file containing user names, ids, and passwords; news files; and file
/etc/ttys, which describes the properties of each user terminal attached to the system.

/lib
The COHERENT system provides many useful functions for performing input and output
(1/0) and mathematics, for use in your C programs. These and other libraries, along with
the phases of the C compiler itself, are kept in directory /lib. This directory includes files
containing standard system calls, standard 1/0, and mathematical routines such as sin,
cos, and log.

/usr
The directory /usr contains user directories, along with a few system directories.

/usr/adm contains additional information of interest to the system administrator.

/usr/bln contains commands that were not entirely created by Mark Williams Company.

/usr/games contains computer games. /usr/games/llb/fortunes holds a set of bon mots;
the game fortune selects one at random and prints it on your screen. A call to this game
can be placed in a user's .prome, so he will see a new fortune each time that he logs on. To
add fortunes of your own, just edit the file /usr/games/lib/fortunes.

The directory /usr/lnclude contains header files for C programs, such as stdlo.h. Other
header files define formats of files and other important data structures in the system.

/usr/lib contains the macro files ms and man used the nroff text processor; the unit
conversion tables for the command units; and the file /usr/lib/crontab used to hold
commands for cron. This directory also holds the C libraries.

/usr/man contains manual sections referenced by the commands man and help
commands.

/usr/msgs stores messages displayed by the command msgs.

/usr/pub contains public files, such as telephone numbers and a copy of the ASCII table.

/usr/spool contains information for line-printer spooling. and mail that has not yet been
delivered.

/u
In some systems, users' directories are placed on a separate device to save space. Because
a separate device has a separate file system, the directory on that device is called /u.

TUTORIAL

Using COHERENT 29

Files: Conclusion
This concludes this tutorial's discussion of files and directories. The rest of this tutorial
introduces COHERENT's suite of commands, and discusses topics of special interest to
persons who are administering COHERENT systems.

Introduction to COHERENT Commands
This section introduces COHERENT's commands. The COHERENT system comes with more
than 200 commands, which perform a variety of work, from formatting text, to editing files,
to performing low-level administration of the system. The commands that manipulate files
and directories were introduced in the previous section; there are, however, many other
varieties of commands, many of which will be introduced here. To begin, we'll introduce the
COHERENT system's master command, the shell.

The Shell
When you type commands into the COHERENT system, it appears that you are
communicating directly with the computer. This is not exactly true, however. When you
type into the COHERENT system, you are actually working with a special COHERENT
program, the shell. This program reads, interprets, and executes every command that you
type into the system. The shell can also interpret, expand, and otherwise flesh out what
you type; this is done to help spare you unnecessary typing, and to permit you to assemble
powerful commands with only a few keystrokes.

Please note, in passing, that the COHERENT system comes with two shells: the Korn shell
ksh and the Bourne shell sh. These shells have somewhat different features. The
descriptions in this section assume that you are using sh. which is COHERENT's default
shell.

The shell is so powerful that mastering it is a major accomplishment; however, you can take
advantage of much of what the shell offers by learning a few simple commands and
procedures.

This section introduces some commands commonly used by COHERENT users. For more
information on these or other commands see help and man. Also, consult the Lexicon.

Please note the following special punctuation characters:

*?lJI;{}
() $ = I ' I " < > << >>

These characters have special meaning to the shell, and typing them can cause the shell to
behave quite differently from what you may expect. Do not use these characters until you
have read the following section, which discusses their use, or until they are presented in
examples.

Redirecting Input and Output
Most COHERENT commands write their output to the standard output device, which is
normally your terminal's screen. For example, who prints on your terminal the name of
each user currently logged into your COHERENT system:

who

By using the special character >, you can redirect the output of who into a file. The

TUTORIAL

30 Using COHERENT

command

who >whofile

writes this information into whofile. The operator > tells COHERENT to redirect the
standard output. Later, you can list the information on your terminal using cat:

cat whof ile

Once the information is in a file, you can process it in other ways. For example

sort whofile

sorts the contents of whofile and prints the results on your screen. In this way, you can
display the users' names on your terminal in alphabetical order.

You can also redirect the standard Input to accept input from a file rather than from your
terminal. To redirect the standard input, use the special character < before the name of the
file that you want read as the standard input. For example, the command mail sends
electronic mail to another user; normally, it "mails" what you type on the standard input.
but you can use'<' to tell it to mail the contents of a file instead.

mail fred <whof ile

mails the contents of whofile to user fred.

Pipes
The pipe is an important feature of the COHERENT system. Pipes allow you to hook several
programs together by redirecting the output of one into the input of the next. A pipe is
represented by the character'/' in the command line.

Most COHERENT programs are written to act as.filters. A filter is a program that reads its
input one line at a time or one character at a time, performs some transformation upon
what it has read, and then writes the transformed data to the standard output device. You
can easily perform complex transformations on data by hooking a number of simple filters
together with pipes. Consider, for example, the command:

who / sort

Here, the command who generates a list of persons who are logged into the system. The
output of who is then piped to the program sort, which sorts the list of users into
alphabetical order and prints them on the standard error device.

The power and flexibility of the COHERENT operating system owes much to the pipe.

Superuser
A special user in the COHERENT system, called the superuser, has privileges greater than
those of other users. The superuser can read all files (except encrypted files) and execute all
programs. You must be logged in as the superuser during certain phases of your work as
system administrator.

There are two ways to access the COHERENT system as the superuser. The first is to login
under the user name root. When the system prompts

Coherent login:

reply:

TUTORIAL

Using COHERENT 31

root

This automatically makes you superuser. To remind you that you are superuser. the
COHERENT system prompts you with root: instead of the usual $.

The second way to acquire the privileges of superuser is to issue the command

SU

when you are logged in as a user other than root. You must have privileges to access root
to do this, and you must know the password for root. When you type

<ctrl-D>

in this mode, COHERENT returns you to your previous identity.

To be the superuser for only one command, use the form of the command

su root command

command is the command to be executed as superuser. For example. to edit the message of
the day file /etc/motd if you are not the superuser. type

su root me /etc/motd

When you finish using MicroEMACS, your original user id will be unchanged.

To limit access to privileged resources, the COHERENT system requires users to enter
passwords before being granted that privilege. Users may be required to enter passwords
before logging in.

If the root user has a password, you will be prompted for it. If you do not enter it correctly,
the system will tell you

Sorry

and not allow you to become the superuser.

It is normal practice to protect access to superuser status by setting the password. If you
are the only user of your COHERENT system, or if you deeply trust all other users, you do
not have to do so. However, because the superuser can perform any sort of mayhem on
your system, it is advisable to set the password. especially if outsiders can dial into your
system via modem.

Manipulating Text Under COHERENT
The COHERENT system includes a number of commands and utilities with which you can
process text. The phrase process text means to edit it and prepare it for printing.

MicroEMACS: Text Screen Editor
COHERENT includes a full-featured screen editor. called MicroEMACS. MicroEMACS allows
you to divide the screen into sections, called windows. and display and edit a different file
in each one. It has a full search-and-replace function, allows you to define keyboard
macros, and has a large set of commands for killing and moving text.

Also, MicroEMACS has a full help function for C programming. Should you need
information about any macro or library function that is included with COHERENT. all you
need to do is move the text cursor over that word and press a special combination of keys;
MicroEMACS will then open a window and display information about that macro or

TUTORIAL

32 Using COHERENT

function.

For a list of the MicroEMACS commands. see the Lexicon entry for me. the MicroEMACS
command. A following section of this manual gives a full tutorial on Micro EMACS. In the
meantime, however, you can begin to use Micro EMACS by learning a half-dozen or so
commands.

To invoke MicroEMACS, type the command

me hello.c

at the COHERENT prompt. This invokes MicroEMACS to edit a file called hello.c. Now,
type the following text, as it is shown here. If you make a mistake, simply backspace over it
and type it correctly; the backspace key will wrap around lines:

main()
{

}
printf("hello, world\n");

When you have finished, save the file by typing <ctrl-X><ctrl-S> (that is, hold down the
control key and type 'X', then hold down the control key and type 'S'). MicroEMACS will tell
you how many lines of text it just saved. Exit from the editor by typing <ctrl-X><Ctrl-C>.

Now, re-invoke MicroEMACS by typing

me hello.c

The text of the file you just typed is now displayed on the screen. Try changing the word
hello to Hello, as follows: First. type <ctrl-N>. That n10ves you to the next line. (The
command <ctrl-P> would move you to the previous line, if there were one.) Now. type the
command <ctrl-F>. As you can see, the cursor movedjorward one space. Continue to type
<ctrl-F> until the cursor is located over the letter 'h' in hello. If you overshoot the
character, move the cursor backwards by typing <ctrl-B>.

When the cursor is correctly positioned, delete the 'h' by typing the delete command <ctrl­
D>; then type a capital 'H' to take its place.

With these few commands, you can load files into memory, edit them, create new files, save
them to disk, and exit. This just gives you a sample of what MicroEMACS can do, but it is
enough so that you can begin to do real work.

Now. again save the file by typing <ctrl-X><ctrl-S>. and exit from MicroEMACS by typing
<ctrl-X><ctrl-C>.

Just as a reminder, the following table gives the MicroEMACS commands presented above:

<ctrl-N> Move cursor to the next line
<Ctrl-P>

<ctrl-F>
<Ctrl-B>

<ctrl-D>

<ctrl-X><Ctrl-S>
<ctrl-X><ctrl-C>
<Ctrl-Z>

Move cursor to the previous line

Move cursor forward one character
Move cursor backward one character

Delete a character

Save the edited file
Exit from MicroEMACS
Save a file and exit

Note that on some terminals. the arrow keys will not work. Note, too, that some remote

TUTORIAL

Using COHERENT 33

terminals may have trouble using <ctrl-S>. if they use XON /XOFF to control flow. In this
case, use <Ctrl-Z> instead.

For more information, see the tutorial for MicroEMACS included with in this manual.

pr, prps, lpr: Print Files
The command lpr prints files for you, making sure that your request does not conflict with
other uses of the printer. To print a file. type the command

lpr jile

substituting the name of the file to be printed for "file". Normally. the system prints a
banner page before it prints a job; if you wish to suppress the banner page, use the -B
option:

lpr -B file

If no file is given, the standard input is printed. Thus, lpr can be used in pipes; this allows
you to print immediately matter that you type on your keyboard.

lpr will take your file and try to print it on any printer you have plugged into your
computer's parallel port. If you do not have a printed plugged in, or if it is not turned on,
lpr will hold onto your files until the printer becomes ready; it will wait days, if necessary,
until the printer becomes available.

lpr is also intelligent enough to handle requests from several different users: if more than
one user wants to print a file, lpr will print them one at a time. In this way, the COHERENT
system lets several users share one printer.

lpr does nothing to the file other than print it. This means that no page headings are
printed, nor does it break it the file up neatly into page-sized chunks. Another command,
pr. does this for you. It paginates the standard input, giving a header with date, file name,
page number, and line numbers. The paginated output appears on the standard output.

To print a paginated file on the line printer, type:

pr jile I lpr -b banner

Note the use of the pipe 'I ', which passes the output of pr as input to lpr.

nroff, troff: Text Formatters
The commands nroff and troff format text for display or printing. They are, in fact, text­
formatting languages: you type commands into your text file, and nroff or troff interprets
the commands to format the text in the manner that you want.

nroff and troff differ in the style of formatting that they perform. nroff formats text into
monospaced font, like that on an ordinary typewriter, Its output is suitable for display on
the screen. troff formats text into proportionally spaced fonts, like those seen on this page.
Its output is suitable for printing on a laser printer or other sophisticated typesetting device.
The commands for nroff and troff closely resemble each other. The following descriptions
will assume that you are using nroff. but they apply to troff as well.

nroff's programming language is quite complex and sophisticated. This manual includes a
tutorial that introduces nroff's language. You can, however, use nroff to perform simple
formatting tasks by using the ms macro package. The following describes some of the more
commonly used nroff commands.

TUTORIAL

34 Using COHERENT

To see how nrotl'works. type the following script:

cat >script.r
.ds CF "Print on Bottom of Each Page"
Here is some text.
Here is some more text •
• PP
The above command set a new paragraph.
Yet more text •
• SH
Here is a Section Heading
.PP
More text.
\fBThis is printed in bold face.\fR
This printed in Roman.
\fIThis is printed in italics or underlined.\fR
.PP
Here's some more text.
Here's yet more text.
And more text yet.
<ctrl-D>

Now, format and display the text with the following command:

nroff -ms script.r I more

You will see the text formatted for your screen. The string Print on Bottom of Each Page
appears at the bottom of the display. The following describes the nrotl' commands with
which this formatting was performed.

nroff's commands are introduced in either of two ways: by a period'.' in the first column of
a line; or by a backslash '\' occurring anywhere in a line. The following reviews this script
in detail.

.ds CF This defines the text to appear on the bottom of each page. If the text is more than
one word long, it must be enclosed within quotation marks .

. PP Begin a new paragraph. nrotl' skips one line and indents the following line by five
spaces (one-half inch) .

• SH Print a section heading. nrotl' skips one line and prints in boldface the line of text
that follows this command.

\m Print the following text in boldface.

\fR Print the following text in Roman.

\tl Print the following text in italics.

With these few commands. you can perform simple formatting of your text.

To print the formatted text on an dot-matrix line printer, use the command lpr: to print it
on a Hewlett-Packard LaserJet printer, use the command hpr. For example, to print
script.r on a line printer, use the command:

nroff -ms script.r I lpr

To print script.r on a laser printer. use the command:

TUTORIAL

Using COHERENT 35

nroff -ms script.r I hpr -B

The -B option to hpr tells it to not print a banner page.

This discussion is sufficient to get you started, but it just scratches the surface of what you
can do with nrotl' and trotl'. See their respective entries in the Lexicon for details of what
these commands can do. See the tutorial for nrotl' that appears later in this manual for a
thorough introduction to the formatting language used by these commands.

Miscellaneous Commands
COHERENT includes numerous commands that perform miscellaneous tasks. These
include some of the most useful, and entertaining. commands in the COHERENT system.

who: Who Is On the System
To find who is logged into the system, use the COHERENT command who. This command
lists who is logged into the COHERENT system, one name per line. You will see your own
user name there as well.

If you sit down at a terminal that is not in use. but at which someone has already logged in.
the following command tells you who is logged in:

who am i

COHERENT replies with the name of the user logged in at that terminal.

write: Electronic Dialogue
The command write lets you carry on a "conversation" with another user. The conversation
continues until you or the other user type <ctrl-D> on his terminal.

For example, user fred can begin a conversation with user anne by typing:

write anne

On anne's terminal, the message

Message from fred ...

will appear. To establish the other half of the communication, anne should then say

write fred

and a similar notification appears on fred's terminal.

At this point, both users simply type lines on their terminal and write sends the message to
the other user. To avoid typing at the same time, each user should end a "speech" by
typing a line that has the single letter

0

to signify "over", or "go ahead". When the other user sends you this, you know it is your
turn to "talk", and vice versa.

When your communication is finished, you should type

00

<ctrl-D>

TUTORIAL

36 Using COHERENT

Here, oo means "over and out", and the <ctrl-D> terminates the write command. Note that
o and oo are polite conventions, and are not necessary to using write.

mail: Send an Electronic Letter
You can send electronic mail to another user on your COHERENT system by using the
command mail. This command works whether or not that person is logged into the system
at the time you type your message. The message is stored in an electronic "mailbox", and
the user will notified that a message is waiting for him the next time he logs into your
system. '

Before you can use mail on your system, you must run the program uuinstall. This
program will ask you some questions about how you have configured your COHERENT
system, and will write files of information that mail and the communications protocol UUCP
need to deliver your mail. For detailed directions on how to run uuinstall, see the section
Installing UUCP in the UUCP tutorial that appears later in this manual.

Among other things, this program will ask you to name your "site" and your "domain".
Without going into too much detail at this point, the site is nom de plume by which your
machine is known to other COHERENT or UNIX systems. Site names generally are not
computer-ese; conan, terminator. lepanto, chelm, and smiles are all examples of site
names. If you don't intend to communicate with other systems, use your first name as the
site name. The domain is the name by which a group of related machines are together
known. If you and a number of other local COHERENT systems wish to be known together,
you can establish a domain and register it with the network. Domain names, too, should be
descriptive. If you don't intend to use a domain, set the domain name to UUCP.

To mail a message to user anne. just type:

mail anne

mail immediately prompts you for a title for your message:

Subject1

You can type the message's subject, which will be used to title the message. or you can just
press <Return>.

Once you have titled your message, type the body of the message. You can conclude your
message in any of three ways: you can type <ctrl-D>, type a period'.' at the beginning of a
line, or a question mark '?' at the beginning of a line. The first two methods end the
message immediately; the last method, however, invokes an editor, and lets you edit the
message further before sending it on to the intended recipient. Environmental variable
EDITOR. if defined, selects the editor to be used.

For example, to send your message to user anne, you might do the following. First, invoke
mail:

mail anne

Next, give your message a title:

Subject: I'll be working late

Finally. type the body of the message:

TUTORIAL

Using COHERENT 37

I'll be working late. I hope to get home before Catherine
and George go to bed. Please remind Ivan and Marian to do
their homework. Marian should remember to practice her
violin.
<ctrl-D>

If you wish, you can first type your message into a file and then mail it. For example:

cat >hb.msg
All come to the birthday party at four
next to the pump room.
<ctrl-D>

To mail the message to user jill. type:

mail jill <hb.msg

You can send a mail message to several users at one time by listing each user's name on the
command line. For example, the command

mail jill jack ted barb <hb.party

mails the contents of file hb.party to Jill. jack, ted, and barb. To illustrate the use of the
mail command, send yourself a mail message. Type the following; substitute your user
name for "you" in the mailcommand:

mail you
Subject: test the COHERENT mail system
This is a note to
myself to test
mail.

If someone has sent you mail, the COHERENT system will tell you:

You have mail.

when you log in.

To receive mail, type the mail command with no parameters:

mail

If you have no mail, COHERENT will tell you:

No mail.

If you do have mail, the system will print each message on your terminal. along with the
user name of the sender, and the date and time that the message was mailed.

After each message, the mail program types a question mark ? and waits for your reply.
You can type any of the following commands in reply to the prompt:

d Delete the message.

<Return>
Proceed to the next message.

TUTORIAL

38 Using COHERENT

sjlle Save, or copy. the message intojlle.

q Quit - exit from mail and return to the shell.

You will know that you are finished with all of your messages when mail sends you a ?
without typing anything before it.

mail can also send messages to other COHERENT or UNIX systems via the UUCP utility.
See the accompanying tutorial on UUCP to see how you can set up mail to do this.

msgs: Cumulative Message Board
The message of the day is deleted when a new message is inserted. If a user does not log in
for several days, the message of the day may no longer be there. For items that you want
everyone to see, such as hours of operation or new operating procedures, you should use
msgs instead of motd.

msgs helps users get all important messages, even if they don't log in every day. The
system remembers which users have seen each message. After a user logs in, invoking
msgs will show the number, date. and author of each message written since the user last
logged in. Therefore it is easy for the user to stay up to date with the system-wide
messages.

To add a message to the file, simply mail the message to msgs. To title the message, write it
as the first line in the message, after the "Subject:" prompt from mail.

The home directory for msgs will grow over time. as more and more messages accumulate.
Also, if a new user is enrolled on your COHERENT system, he may have to wade through
several hundred messages when he first logs in. Therefore, you should purge the home
directory for msgs every now and again; you may wish to throw away the announcements of
office parties three Christmases ago, and save important information on diskette.

msgs keeps track of what messages each user has read by recording the number of the last
message read in the file $HOME/ .msgsrc. When each user logs on, his version of .msgsrc
is inspected to determine the last message seen. If messages were added after that, msgs
prints the ones the user wants to see, and then updates .msgsrc.

grep: Find Patterns in Text Files
The command grep lets you find lines that contain a pattern within one or more files.
Patterns are sometimes called regular expressions.

To illustrate grep, create file docl by typing:

cat >docl
a few lines
of text.
<ctrl-D>

Then the command

grep text docl

prints the second line of file doc I:

of text.

The first parameter to grep is the pattern for which you are looking; the rest of the
arguments are the names of files to be examined. text is the pattern and doc I is the file.

TUTORIAL

Using COHERENT 39

To find if a particular user is on the system, pipe who into grep:

who I grep you

(Substitute the user name in question for you.) Try it with your user name. The pattern is
you. but no file name is specified. grep reads input from the standard input. which in this
example is connected to the output of the who command.

You can specify several files to be searched; simply put the additional file names after the
first:

grep pattern docl doc2

Or, you can search all files in the current directory for the pattern with

grep pattern *

The asterisk will be interpreted to mean all files, and grep will look for pattern in each.

The search pattern can be a pattern. Patterns are fully discussed in the tutorial for ed.

You can also locate lines that do not contain given patterns by using the grep option -v.

grep -v bugs progl prog2

This command finds and prints all lines in files progl and prog2 that do not contain the
pattern bugs.

date: Print the Date
The COHERENT system keeps track of the time and date. To find the date and time, use
the command:

date

COHERENT responds with the day of the week, the month day and year, and the time of
day.

Internally. the COHERENT system records the date and time as the number of seconds
since January 1. 1970, 00:00:00 Greenwich Mean Time (GMT). This means that files
created in one time zone and referenced in another time zone will bear the correct time. The
time and date printed out is converted from the internal form to the local time.

passwd: Change Your Password
You should change your password from time to time, to ensure that no unauthorized
person can gain access to your files (or to the system as a whole).

It is easy to change passwords on the COHERENT system: just type the command passwd.
passwd first asks you for your current password (if you have one), and then asks you to
enter your new password twice. Entering the new password twice helps ensure that the
system gets the password as you want it. If you do not type it the same way both times,
COHERENT will say:

Password not changed.

You must then begin again with the command passwd.

TUTORIAL

40 Using COHERENT

Be sure the password is something that you can remember. It is recommended that the
password be at least six characters long. Do not write it down, but memorize it. You can
use a four-letter password. but if you do, you should mix upper-case and lower-case letters
to make it more difficult for outsiders to guess.

stty: Change Terminal Behavior
Because a wide variety of terminals can be used with the COHERENT system, you must
pass some information to the COHERENT system so it can handle your terminal correctly.

The command stty describes the information COHERENT currently has for you; you can
then use stty with arguments to change how COHERENT handles your terminal.

For example, COHERENT normally echoes each character you type, as you type it.
However, if your terminal also echoes what you type, you will see double characters. To
prevent this, issue the command:

stty -echo

The program login uses this feature when you type your password, to help keep it secret
from anyone who is kibbitzing at your desk.

To set the echo feature again. type:

stty echo

When you first log in, the system presumes that your terminal does not directly handle the
tab character, so when COHERENT sends a tab to your terminal it simulates it with spaces.
If your terminal does handle tabs, issue the command:

stty tabs

The COHERENT system will no longer substitute spaces for tabs. To go back to
substitution,

stty -tabs

The <erase> character lets you delete the previously typed character. The <kill> character
lets you delete the line that you have been typing but have not yet finished. By default,
COHERENT sets these to, respectively. <ctrl-H> and <ctrl-U>. To change them to,
respectively. <ctrl-E> and <ctrl-K>. use the stty command as follows:

stty erase AE kill AK

The carat •A• tells stty that you want to specify a control character.

To reset erase and kill to the default values at login, the command

stty ek

suffices. This is equivalent to:

stty erase AH kill AU

To see what your current terminal parameter settings are, type

stty

with no arguments.

TUTORIAL

Using COHERENT 41

Scheduling Commands For Regular Execution
The command cron is a valuable tool for using your COHERENT system. With it, you can
schedule commands to be executed, even in your absence.

To specify a command to be executed at some later time, simply enter one line of
information in the file /usr/lib/crontab. You must be logged in as root to modify this file.

For example, assume that you want to greet user norm, if he is logged into the system on
Monday morning. You can do this by sending him a message at 8:13 on Monday. Use
MicroEMACS to add the following lines to the file /usr/Ub/crontab:

13 8 * * 1 msg norm%You are sure in early!

The numbers and • at the beginning specify the time:

13 8 * * 1

The 13 means "13 minutes past the hour". (cron numbers the minutes zero through 59.)
The 8 means "8 AM". (cron numbers the hours of the day zero through 23, with zero
indicating 12 AM.) The positions containing• normally specify the day and month. The two
•characters mean "any day" and "any month". Finally. the 1 means "day 1 of the week,"
which is Monday. (cron numbers the days of the week zero through six, with zero
indicating Sunday.) The breakdown of this command is shown as follows:

minute
hour
day of month
month
day of week

13
8
•-all days
• - all months
I-Monday

Because each entry in crontab must be on one line, the symbol % represents the beginning
of the input string. If the information is too long for one line, enter a backslash character
before the <Return> at the end of the line. The backslash tells cron to ignore the <return>.

With this information in the file, cron executes the command

msg norm
Am Monday!

at 8: 13 every Monday morning.

cron expects time to be in the 24-hour clock, so 1 PM is represented as 13 hours. If you
need to print a literal percent sign'%', precede it with a backslash:

\%

The times for cron commands can be even more complex than the numbers and • shown
above.

You can express a range for any of the five parts of a time by separating two numbers with a
hyphen. For example, to send user marianne a humorous message on week days, use the
command:

59 11 * * 1-5 /usr/games/fortune I msg marianne

To list a choice of times, separate single numbers or ranges with commas but no spaces. To
send notification about a meeting on Monday, Wednesday, and Friday at 3 PM. use:

TUTORIAL

42 Using COHERENT

0 15 * * 1,3,5

The time specification

0 15 * * 1,3,5

echo Meeting at 3:30 •.. I mail fred anne joe

represents the time 1500 (3 PM) on every Monday, Wednesday, and Friday.

mail and msg are just some examples of commands that can be used with cron; many
others can be used. For example, cron is commonly used to execute UUCP commands late
at night, when telephone rates are low. See the Lexicon article on cron for more
information about this command. If you wish to schedule commands to be run but not on
a regular basis. use command at. See its Lexicon article for further details.

Managing Processes
A process is a command that is undergoing execution. Because COHERENT is a multi­
tasking operating system, numerous processes can be undergoing execution at the same
time. The following commands let you monitor and, within limits, affect the operation of the
processes your COHERENT system is executing.

ps: List Active Processes
Each process in the system is assigned a number called the process id, or PID. Each user
logged into the system has one or more processes. Except in special circumstances. the
first process that he has is the shell. or command-line interpreter. The commands he types
are run by the shell.

The shell normally waits for a command to terminate before it begins to process the next
command. However, if you use the '&'operator, the shell creates simultaneous processes:
that is, while it executes one command it will let you type another. Thus, you can execute
two or more commands simultaneously.

You can examine the processes associated with your login, or all processes in the system.
with the command ps. Type:

ps

The result will resemble:

TTY PID
console 3937 -sh
console 4010 ps

The first column

TTY
console
console

names the terminal you are running on, in this case the console. This identifier is taken
from the file /etc/ttys. with the prefix tty removed from name. The tty identifier is also
printed by the command who. The second column

TUTORIAL

PID
3937
4010

Using COHERENT 43

lists the corresponding process identifier (PID). The third column names each command
and gives its parameters. if any:

-sh
ps

-sh represents the shell process. and ps represents the ps command itself.

To see all the processes. type:

ps -a

The result will resemble:

TTY PID
3a: 41 -sh
39: 42 -sh
32: 47 - 3
31: 48 - 3
341 193 -sh
36: 634 -sh
3e: 1738 -sh
20: 2568 -sh
3e: 2581 SU

3c: 6317 -sh
3c: 6322 SU

3f: 7333 - p
35: 7789 - p
3c: 8058
3d: 9053 - p
33: 9076 - p
30: 9814 -sh
30: 9829 ps -a

This display will, of course, differ quite a bit from system to system and from minute to
minute.

For a full description of all options to ps. see its entry in the Lexicon.

kill: Signal Processes
Occasions will arise when the system administrator must log other users out of the system.
For example. you may need to bring the system down quickly; or perhaps a user forgot to
log out before leaving the terminal and did not see your broadcast message requesting that
all users log out.

The command kill, when used by the superuser, terminates processes. To log out a user
whose shell has process number 300, use the command:

kill -9 300

You must be logged in as root or use the command su to kill a process that belongs to
another user. Each user can kill all processes that he owns. including his own shell
process (which automatically logs him out).

kill has other uses as well - see the Lexicon's entry for kill for more information.

TUTORIAL

44 Using COHERENT

Programming Under COHERENT
The COHERENT system proVides a number of languages in which you can write programs.

The shells included with COHERENT- sh, the Bourne shell, and ksh, the Korn shell - not
only process commands, but are powerful programming languages in their own right. For
details on how to program in these languages, see their respective entries in the Lexicon;
and see the tutorial Introducing sh, the Bourne Shell, which follows in this manual.

COHERENT includes a full-featured assembler, with which you can assembly your
assembly-language programs. Assembly language is sometimes required for operations that
require you to work very closely with the operating system or hardware. For more
information on the COHERENT assembler, see the Lexicon entry for as.

Most programming that cannot be executed efficiently by a shell language is done in C, the
language in which the COHERENT system was written. The COHERENT system comes with
a full-featured C compiler, with which you can compile the program you write in that
language. If you are new to C, the tutorial The C Language, which follows in this manual,
will introduce you to it. The following sub-sections briefly describe the tools available under
COHERENT with which you can write, compile, and debug your C programs.

Basic Steps in COHERENT Programming
The steps that are necessary to generate a program are:

1. Create the program source file
2. Compile the source program, correcting any errors
3. Test and debug the program
4. Run the program

If you have compilation errors in step 2, or program errors in step 3 or 4, return to step 1.

Use ed or MicroEMACS to build and change the source program, the cc command to
compile the source program and produce an object program. and db to help debug the
program. Although the C compiler proVides a macro facility, other languages do not.
Therefore, if the source program uses macros, you can use m4 to expand the macros.

This section covers each of these steps and proVides some example programs.

Create the Program Source
The first step is to use MicroEMACS, vi, ed, or some other editor to create the program's
source file. Details on the use of ed and MicroEMACS are covered in their respective
tutorials, which follow in this manual. Each editor's commands are summarized in its
Lexicon article.

For the first program, try a simple program that prints a short message on your terminal.
For the sake of simplicity, we'll enter text using cat instead of invoking an editor. To build
the program, type the following:

TUTORIAL

Using COHERENT 45

cat > small.c
main ()
{

printf ("The COHERENT operating system\n");
}
<ctrl-D>

The first line invokes the concatenation program cat to enter the program's source code.
The <ctrl-D> signals that you have finished entering text.

The program itself begins with the special word main which defines a function and must
appear in every C program. The parentheses. here with nothing between them, enclose any
arguments that are passed to the function. They are required even if there are no
arguments. The body of the program appears between the braces { and }.

The function printf is part of the standard library of C programs. It prints formatted
information on the terminal. In this case it will produce the string enclosed between
quotation marks. The special character string

\n

means "newline". Two lines of output to the terminal can be produced by

"line 1\nline 2\n"

as an argument to printf. This appears in the output as:

line 1
line 2

For a fuller introduction to the C language, see the tutorial on the The C Language, which
follows in this manual.

cc: Compile the Program
The command cc compiles C programs. It executes all the parts of the C compiler and the
associated linker ld. The linker combines pieces of programs and includes necessary
elements from the library. such as printf. The linker is occasionally called from the
command line, but only for more complex problems than you are trying here. To compile
our test program, type the command

cc small.c

If the compiler detects any errors, it prints a message on the terminal, along with the line
number that contains the error. You can use this line number to find the error with your
editor and fix it. You can now use the program by simply typing:

small

The tutorial on The C Language describes cc in greater detail; also see its entry in the
Lexicon for a full summary of its many capabilities.

TUTORIAL

46 Using COHERENT

m4: Macro Processing
To extend the capabilities of all languages, the COHERENT system provides a macro
processor, called m4.

Program source for all languages consists of character strings. Macro processors perform
string replacement. whereby a string in the input file may be replaced by another string.
m4 provides parameter substitution. as well as testing values of currently available strings
and conditional processing. m4 is unique in that you can rearrange large sections of the
input text by using the macros. For more information on m4. see the tutorial Introduction
to the m4 Macro Processor. which follows in this manual.

make: Build Larger Programs
All the examples of programs thus far have been self-contained. As programs grow larger. it
is usual to divide the source program into smaller files. This simplifies editing. speeds
compilation, increases modularity, and lets several different programs share common
functions.

Thus. in developing the larger program, you may have several source files in your directory.
possibly an header file or two, and the object files that result from compilation. From these
are built the executable file that runs when you type its name.

To change or fix the program, you must edit the source programs or header files in question
withed, recompile the required source. and relink all the modules. But, with a change that
affects several modules, it can be tricky to remember exactly which modules need
recompilation, and it can be time-consuming to recompile all modules.

COHERENT provides a command called make. which solves this problem. make examines
the time a file was last modified, and the time of modification of files that it depends upon,
and performs the necessary compilation or other processing. (COHERENT file system
directories contain the time that each file was created or modified.)

The tutorial The make Programming Discipline, which follows in this manual, fully
introduces this powerful and useful program.

db: Debug the Program
The first and most critical step to debugging programs is to not put bugs in them! The
methods of structured analysis, design, and programming. or the method of stepwise
refinement can substantially reduce the number of errors in a program.

One can also place printf statements at strategic points throughout the program to display
logic flow and key data values. These display statements should be designed so that they
can be turned off for normal operation without removing them from the program.

On occasion, however, you may find that it is necessary to debug at the machine level. If
you must, COHERENT's db will make it possible to do so.

db provides tools that make the machine program instructions visible in the most natural
notation. That is, instructions are displayed in a fashion that resembles assembly
language, numbers can be displayed in hexadecimal, octal, or decimal as needed, and
strings of characters displayed in familiar graphic form. db can also patch a program to be
run again, as well as to control the execution of a program with breakpoints and one step at
a time.

TUTORIAL

Using COHERENT 47

Briefly, to use db on a program like our sample small above, use the command:

db small

Now you can inspect and display instructions and data in the system, control execution,
and even change the instructions in the program if you are bold enough.

To examine a data segment location in the program, simply type the address of the location.
db knows about symbols in the program, so if you want to examine the location
corresponding to main, type:

main

db types out the value in hexadecimal or octal (depending upon which is appropriate for
your machine).

You can expand the display command to print many locations at one time, and choose the
format of printout. To print five locations interpreted as instructions, type

main,5?i

where the format character i follows the question mark indicating format, and 5 is the count
of locations to be printed. To exit db, type

:q

For a complete list of the format that db recognizes, and other details about db, see its entry
in the Lexicon.

Administering the COHERENT System
The COHERENT system can be used by many people at the same time. One person must
coordinate its use, like a key operator does for an office copier. This person is called the
system administrator, and he sees to it that the COHERENT system runs smoothly every
day. The administrator can also customize the COHERENT system to the needs of an
individual installation.

Although you may be the only person to use your COHERENT system, many of the ideas
discussed here are important for making your system work at its best. Please spend a few
minutes reading this manual to familiarize yourself with the elementary concepts of
COHERENT system maintenance.

Adding a New User
Each user allowed to use your COHERENT system must have a user name and a user Id:
the user may also have a password. The user name is usually the user's initials or a
nickname. The user id is an integer number used to identify the user internally to the
system. As system administrator, you will assign both of these for each user. This section
tells you how.

To log in to the system. a user must have an entry in the password file /etc/passwd. The
password file contains each user's name, id, and password if any. As system administrator,
you will maintain this file.

Likewise, each group of users is assigned a group name, as well as a group id. Groups are
not necessary to use the COHERENT system, but some installations prefer to set up groups
by project or department.

TUTORIAL

48 Using COHERENT

It is simple to add a new user to the system. The command newusr takes care of all the
details. and makes an entry in the password file. You must be logged in as root. For
example, to create an entry for a user named Henry, log in as root, and then issue the
command:

/etc/newusr henry "Henry Smith" /usr

This creates an entry in etc/password for henry, creates his home directory in the /usr file
system, creates all appropriate files for him (such as his .profile and his mailbox), and sets
all permissions correctly.

System Security
One of the most important tasks in running your COHERENT system is maintaining its
security. Basically, security means two things: keeping outsiders from logging into your
system. and keeping your system's users from doing untoward things. This section
describes some steps you can take to ensure that your system is secure.

Passwords
Passwords provide the first level of COHERENT system security.

For systems with passwords, each user with a password must type his password as part of
the login process. Ifhe enters the password incorrectly. he cannot log in.

Your system's administrator can assign a password when she creates a user's log-in
account, as described above. If you do not assign a password, anyone will be able to log in
as that user.

In any system with passwords, it is especially important to assign a password to the root,
or superuser. If the superuser does not require a password. any user can log in as root and
automatically have access to the powerful tools that control the operation of the system.

Any user with a password can restrict access to his files. Once you assign him his
password, he can change it with the command passwd. However, because of higher
privileges, root can always access everyone's files.

The passwords are kept in file /etc/passwd, with the rest of the user login information.
Passwords are encrypted, so reading /etc/passwd will not reveal passwords.

File Protection
The second level of COHERENT system security is jlle protection. A user can set each of
three categories of protection for each of his files. A standard protection, or access
permission, is gtven to each file when it is created.

The three categories of permissions are for the user himself, for other users in his group.
and for all other users. To see the levels of protection of your files, type the command

ls -1

For more details on the meaning of each column in this printout, see the Lexicon entry for
the change-mode command chmod.

TUTORIAL

Using COHERENT 49

Encryption
The command crypt provides a third level of system security. It lets a user encode and
decode information in a file. The superuser has access to every file in the system; so to
protect sensitive information even from his prying eyes, a user can disguise it with
encryption. Sensitive system information, such as passwords, are also encrypted for
security purposes; and the mail command lets users send encrypted mail to each other.
For details about encryption. see the entry on crypt in the Lexicon.

Dumping and Saving Files
This section discusses how you can copy files to floppy disk. You should do this regularly.
both to free up disk space and to back up valued files to protect them against catastrophe.

There are two general strategies for dumping files.

One strategy uses the commands ustar or tar to create archives of files on a floppy disk.
This strategy is fine for systems that are used by a handful of users. and that are not used
for "real-world" jobs, such as running a business.

The other strategy uses the command cpio to implement a system of regular dumps. This
strategy is preferred for systems that daily amass data of importance for a real-world job,
such as running a business or managing a research project.

You should always have a system of back-ups for your system. Which strategy you use
depends on how you are using your system. The following sub-sections describe how to
implement each strategy of back-ups.

Please note that the following descriptions assume that you are using a 5.25-inch. high­
density floppy disks set in drive O (drive A).

Back-ups Using ustar
This sub-section describes how to back-up files using the COHERENT command ustar.

The first step is to prepare floppy disks to receive files. Insert a 5.25-inch floppy disk into
drive 0, and then type the following command:

/etc/fdformat -v /dev/fhaO

The command fdformat formats the diskette. verifying that no media defects exist. You
must perform this task of formatting a floppy disk only before you use it the first time.

The next step is to create an archive of the files you wish to back up. Use the portable
archive command ustar to collect a mass of files into an archive on the floppy disks. For
example, to archive all files in directory source, use the following command:

ustar cvf /dev/rfhaO source

The options cvf tell ustar to create an archive. run in verbose mode, and write the archive
onto the device or into the file named in the next argument. /dev/rthaO names the floppy
device onto which you wish to write the archive. Finally. source is the directory whose files
you wish to back up.

To perform a listing of the contents of the newly created archive. enter

ustar tvf /dev/rfhaO

The options tvf tell ustar to list the contents of the archive. run in verbose mode, and read

TUTORIAL

50 Using COHERENT

the archive from the device or file named in the next argument.

To extract several files from the archive. enter a command of the form

ustar xvf /dev/rfhaO source/myfile 'source/*.c'

The options xvf tell ustar to extract or unarchive the specified files. run in verbose mode.
and read the archive from the device or file named in the next argument. Note that the
second file argument contains a "wildcard" character and thus must be quoted to prevent
expansion by the shell.

For more information on how to use ustar, see its entry in the Lexicon.

Back-ups Using cpio
The following sub-sections describe how to perform back-ups using the COHERENT
command cpio. cpio is a public domain program written by Mark H. Colburn for the
USENIX association, which is included with the COHERENT system. This program
performs mass dumps and restores of files using a universally recognized file format. In
general, cpio is easier to use than dump and restor, and its output can be portable among
other COHERENT and UNIX systems.

In this example. dumps are performed monthly. weekly, and daily. You should prepare at
least three sets of floppy disks for the monthly saves, giving you three months of full
backup. You will use the diskettes in rotation, with the oldest always used next.

Once a week, you should dump information in the system that is new or has been changed
since the end of the previous week. You will need five sets of diskettes, since some months
have five weekends in them.

Finally, every day you should save information that has changed that day. For these
dumps, you will need five sets of diskettes: one for each working day. You may need extras
in case of weekend work.

Label each set of disks carefully as monthly, weekly, or dally. Label the daily diskettes
Monday through Friday, the weekly diskettes Week 1 through Week 5, and the monthly
diskettes Month 1 through Month 3. When you do the dump, write the date on the label.

The following gives a step-by-step description of how to use cpio to back up files.

l. Log into the system as root. You must have superuser privileges to perform a dump.

2. If you have not yet done so, use the command fdformat to format a set of diskettes, as
shown above. With high-density, 5.25-inch diskettes, a rule of thumb is to prepare
one diskette for each megabyte of data to be dumped.

3. Tell other users to log off the system by typing:

/etc/wall
Please log off.
Time for file dump.
<ctrl-D>

If you are the only user on your system, skip this and the following step.

4. Be sure that all users are logged off the system by typing the command:

who

This command names all users who are still on the system.

TUTORIAL

Using COHERENT 51

If they have not logged off in a few minutes, send another message. Repeat the process
until who shows no users except yourself.

5. When all other users have logged off. execute /etc/shutdown as described near the
beginning of this tutorial.

6. If this is the last workday of the month, perform a monthly dump. to back up the entire
system. Insert the first volume of the correct monthly dump floppy disk into the floppy
drive. after adding today's date to the label. and type the commands:

cd I
find . -type f -print I cpio -oc >/dev/rfhaO

This will dump all files to the raw, 2400-block, floppy-disk device /dev/rfhaO. cpio

As more floppies are needed. cpio will ask you to insert them. After you insert the
floppy disk. you will have to type the device name. e.g .. /dev/rfhaO. at cpio's prompt.
Be sure to label each floppy disk with its volume number.

7. If this is the last work day of the week. but not the last workday of the month, perform
a weekly dump. Prepare the correct weekly dump diskettes, add today's date to the
label. insert the first diskette. and type the command:

cd I
find . -type f -newer epic.weekly -print
touch epic.weekly

cpio -oc >/dev/rfhaO

This will dump all files that are younger than file cpio.weekly.

8. If this is neither the last workday of the month nor the last workday of the week, you
will perform a daily dump. Prepare the daily dump diskette with today's day of the
week, add today's date to the label. insert the first diskette into the drive, and type the
command:

cd I
find . -type f -newer cpio.daily -print I cpio -oc >/dev/rfhaO
touch epic.daily

This will dump files that are younger than file cpio.daily.

9. Type sync to ensure that all buffers are flushed.

10. When you are finished dumping data. reboot the system by typing the command:

/etc/reboot

For more information on how to use cpio and find, see their respective entries in the
Lexicon.

Restoring Information
If you find that a file has been inadvertently destroyed, you can restore the information to
disk from backup floppy disk.

To restore a file from a compressed tar archive, use the following commands. First, select
the appropriate back-up disk. insert it into its drive, and mount it with the following
command:

TUTORIAL

52 Using COHERENT

/etc/mount /dev/fhaO /fO

Next. use the commands zcat and tar to extract the file you want. For example. if your
archive is called backup.tar.Zand the file wish to restore is called myfile. use the following
command to extract it from its archive:

zcat /fO/backup.tar.z I tar xf - myfile

The zcat command reads the compressed archive without requiring that you uncompress it.
The tar command reads the standard input (as indicated by the hyphen '-')and extracts
myfile from what it reads.

Once you have extracted your file or files. you can unmount the floppy disk in the usual
way and put it away.

To restore information from back-ups created with cpio, the process is a little more
complicated. To begin. you must first determine the date and time that the file was last
known to have been modified. From this date, determine on which set of disks the file was
last correctly dumped. Find the set of floppy disks labeled with that date, and mount the
first one in the set. For example, if you wish to restore the file myfile, use the command:

cpio -icdv myfile < /dev/rfhaO

This assumes that the disks high-density, 5.25-inch floppies that are in drive 0 (drive A).
See the Lexicon article floppy disk for a table that shows which COHERENT device is
associated with which size and density of disk, and which disk drive. You may have to
insert more than one disk from the set of backups until you find the one that holds the file
you want.

System Accounting
The COHERENT system provides two types of computer time accounting to help you track
the use of the system. Three commands control the accounting and provide reports at
various levels of detail.

Note that system accounting adds overhead to your system, because your system has to do
more work to record everything it does, and because the accounting files can quickly grow
to unmanageable sizes. System accounting is useful for COHERENT systems that are being
used by multiple users who must account for (i.e .. pay for) their use of the system, or in
other circumstances where it is important to note each user's activity. For most systems
that support a handful of users. system accounting simply isn't worth the bother.

If, however, you decide that you need system accounting, read on.

ac: Login Accounting
Whenever a user logs into the COHERENT system, it records the user's name, the terminal
number, and the date and time of the login. It also records when he logs out.

You can use this information to compute the time each user, or all users, were logged into
the system. The command ac prints the total of all login times recorded in the accounting
file. An example of the result is

Total: 835 7: 00

You can ask for a summary of total login times for each day by typing:

ac -d

TUTORIAL

Using COHERENT 53

An example result would be:

Friday November 13:
Total: 53:08

Saturday November 14:
Total: 75: 36

Sunday November 15:
Total: 73:15

Finally, you can summarize the times for individual users with the command:

ac -p jack ted fred

This will show the total login times for these users:

Also,

fred
jack
ted
Total:

ac -pd

1100:42
910:41
641:58
2653:21

gives the time for each user, for each day that he logged in.

Login accounting is not automatically operational. The login information is collected only if
the file /usr/adm/wtmp exists.

To start login accounting if it is not working, type the command

>/usr/adm/wtmp

while logged in as root. This creates the file /usr/adm/wtmp if it does not exist (and
destroys existing information if it does) and thereby enables login accounting.

To turn off login accounting while it is running, you can type:

rm /usr/adm/wtmp

After you activate login accounting, you should purge /usr/adm/wtmp periodically as it
grows continuously, and on an active system will eventually consume much disk space. To
purge the current information but leave accounting turned on, type:

>/usr/adm/wtmp

sa: Processing Accounting
While login accounting tells you how much time a user spends logged into the system, it
does not tell you the individual commands used. Process accounting does so. Under
COHERENT, each execution of each command constitutes a separate process.
(COHERENT's ability to maintain a list of processes and swap each in and out of memory
until all are executed, is what gives COHERENT its multi-tasking capability.) Process
accounting records system time, user time, and real time for each command executed by
each user on the system. The command sa reports this information for you, using a format
that you set.

TUTORIAL

54 Using COHERENT

sa has several options, to generate different reports. When used with no options, sa lists
the number of times each call is made, the total CPU time, and the total real time used by
the command, ordered by decreasing CPU time. This is a summary by command; the
following gives an example:

#CALL CPU REAL
sh 61 1 832
ld 5 1 7
ar 5 0 1
ran lib 3 0 1
p 16 0 11
dld 2 0 1
le 19 0 1
cc 4 0 8
at run 43 0 1
find 1 0 0
ed 1 0 2
cat 4 0 1
rm 3 0 0
j 1 0 0
spin 2 0 1
grep 2 0 0
msg 4 0 0
ps 1 0 0
pr 2 0 0
watch 4 0 0
who 2 0 0
stty 3 0 0
ch own 1 0 0
sort 1 0 0
mv 2 0 0
pwd 1 0 0
nm 1 0 0
df 1 0 0
ls 1 0 0
echo 3 0 0
acct on 1 0 0

The listing will depend on what commands are used in your system, and the characteristics
of your hardware. To summarize by user, use the -m option:

sa -m

The option -1 separates CPU time expended by users from that expended by the system.
This command

sa -1

produces:

#CALL USER SYS REAL
sh 61 0 1832
ld 5 0 07
ar 5 0 01
ran lib 3 0 01
p 16 0 011
dld 2 0 01

TUTORIAL

Using COHERENT 55

le 19 0 01
cc 4 0 08
at run 43 0 01
find 1 0 00
ed 1 0 02
cat 4 0 01
rm 3 0 00
j 1 0 00
spin 2 0 01
grep 2 0 00
msg 4 0 00
ps 1 0 00
pr 2 0 00
watch 4 0 00
who 2 0 00
stty 3 0 00
ch own 1 0 00
sort 1 0 00
mv 2 0 00
pwd 1 0 00
nm 1 0 00
df 1 0 00
ls 1 0 00
echo 3 0 00
acct on 1 0 00

To list the user name and the command name, use sa with the option -u. No times or
counts are given. The command:

sa -u

produces output of the form:

tj p
tj le
tj find
tj pr
bin le
tj spin
tj sh
bin cc
bin cat
bin ld
bin dld
farl who
farl sh

This report has been truncated and edited to save space. In practice, it is longer. The -u
option overrides other options.

Process accounting is on only if you tum it on. To turn on process accounting, type the
command:

/etc/accton /usr/adm/acct

while logged in as root. The file /usr/adln/acct holds the raw accounting information.

TUTORIAL

56 Using COHERENT

To turn off process accounting, use the same command with no file name:

/etc/accton

If accounting is not on when you type this command, you will get an error message. No information
is gathered when accounting is turned off.

When process accounting is in use, the file /usr/adm/usracct grows with each user
command issued. You should regularly condense or remove the information, to keep the file
from devouring all free space on your disk. To condense the information, invoke sa with the
-s option. You must turn off accounting while condensing information.

The information summarized by user will appear in /usr/adm/usracct, and information
saved by command is placed in /usr/adm/savacct. These summarized files are used in
future requests to sa. After condensing, you can tum accounting back on.

Additional options give flexibility to the report. See the entry for sa in the Lexicon for
additional details on these options.

Conclusion
The following sections of this manual give tutorials to teach you how to use many of
COHERENT's tools and commands. The Lexicon contains brief synopses of all commands,
library routines, system calls, and macros available under the COHERENT system. It also
includes many technical references and definitions, to help you with terminology
throughout this manual.

TUTORIAL

Section 3:

lntroductlo:n to the awk Language

awk is a general-purpose pattern scanning language available with the COHERENT
operating system. awk performs pattern matching, string manipulation, record processing.
and report generation.

The syntax for awk is simple. It uses only one kind of statement, consisting of one or both
of two elements: a pattern and an action. Patterns select the data to be processed, and
actions specify the function to be performed on the selected data.

This tutorial explains how to write awk programs to process input. It will teach you how to
use the awk interpreter and how to create an awk program. It describes the basic function
of printing and the specification of input and output field and record separators. It explains
the pattern scanning capabilities of awk. Finally, it describes the actions awk performs in
addition to printing, such as assigning variables, defining arrays, and controlling the flow of
data.

Using awk
awk reads input from the standard input (entered from your terminal or from a file you
specify), processes each input line according to a specified awk program, and writes output
to the standard output. This section explains the structure of an awk program and the
syntax of awk command lines.

Program Structure
The basic element of an awk program is a statement in the form:

pattern {action}

A program may contain as many sets of patterns and actions as you need to accomplish
your purposes.

awk checks each line of input with the patterns specified for a match, one pattern at a time.
Each time the line matches a pattern, awk performs the corresponding action. After awk
has compared the line with each pattern in the program, awk tests the next input line
against the patterns.

An awk program may specify an action without a pattern. When awk processes an action
which has no pattern, each input line matches. Therefore, awk performs the action on every
line of the input.

An awk program may also specify a pattern without an action. In this case, when an input
line matches the pattern, awk prints the line to the standard output.

One of the special patterns that awk recognizes is the word FILENAME. This pattern causes
awk to print the name of the file that it is reading. Other special patterns are discussed
below.

57

58 The awk Language

Records and Fields
awk divides its input into separate records, and subdivides each record into fields. Records
are separated by a character called the input record separator (RS), and fields are separated
by the input field separator (FS).

The default input record separator is the newline character, so awk normally regards each
input line as a separate record. Because the default input field separator is either the space
or the tab character, white space normally separates fields.

In addition to input record and field separators, awk provides output record and field
separators (ORS and OFS), which it prints between output records and fields. The default
output record separator is the newline character; awk normally prints each output record
as a separate line. The default output field separator is the space character.

To process input with a record separator other than the newline character, use the special
BEGIN pattern (fully described below) with an action that assigns the desired record
separator to the variable RS. For example,

BEGIN {RS=":"}

changes the record separator to a colon. You may specify any one character as the record
separator. Specifying the null string (RS="") makes two consecutive newlines the record
separator. If you include more than one character within quotation marks, awk ignores all
characters after the first one.

To change the output record separator, assign the desired character to the variable ORS.
The output record separator may be a single character or a string. For example, the
following program assigns the string ***record end•** to ORS:

BEGIN {ORS = "***record end***"}

The variable NR gives you the number of the current record. In the following program, awk
prints this number at the beginning of each record to make editing easier:

{print NR, $0}

Here is a program that prints the total number of records in the input file.

END {print NR}

awk can also use the record number in relational expressions. To select a particular record
for printing (for example, line 6), use the following program:

NR == 6 {print $0}

which tells awk to print the whole record when the number of the record is equivalent to 6.

Each record is subdivided into fields. Within the record, you may refer to each field
separately by the name $n, where n is the field number. For example, the fourth field is
called $4. The entire current record is called $0.

Like records, fields have a default separator. For fields, the default separator is white space
for both input and output fields (usually spaces or tabs; newlines can separate fields when
RS is null).

You may change the field separator (variable FS) in two ways. The first way is to specify the
change within the awk program, as follows:

TUTORIAL

The awk Language 59

BEGIN {FS = ":"}

The sample statement changes the field separator to a colon. When you specify several
characters within quotation marks, each character becomes a field separator, and all
separators have equal precedence. For example, you can specify commas, colons, and
periods to separate fields. ln the following program, awk looks for any of these separators,
and breaks the record into fields at each occurrence of each character:

BEGIN {FS = ",:."}
The second method of changing the field separator is to use a command-line argument. The
command line method enables you to declare the field separator at the time you invoke
awk. To show how changing the input field separator affects the output, consider the
following record from the file "now'":

Now is the time for all good men

and the awk statement:

{print $1,$2}

When the input field separator is the default. the result of the awk program is:

Now is

When using the same statement but setting FS = "i". awk prints the following:

Now s the t

As the input field separator, 'i' is not printed; however, in its place a blank separates the two
output fields. The first field consists of uppercase 'N', lowercase 'o' and 'w', and a space.
The second field consists of the 's', a space, the word "the", and the 't' of time.

When you use an input field separator other than the default, the printed output can look
confusing, as in the example above. However, you can change the output field separator by
assigning a character or string to the variable OFS.

To indicate where fields are divided when the output is printed, you can assign a character
such as • to OFS as follows:

BEGIN {OFS = "*"}

{FS = "i" ; print $1, $2}

This program prints the following:

Now *s the t

Notice that a semicolon(;) separates two statements on the same line.

The variable NF contains the number of fields in the current record. In the following
program, awk prints the number of fields at the beginning of each output record, telling you
the number of elements in the record:

{print NF,$0}

awk can also use the variable NF in relational expressions. For example, to print all records
with ten or more fields, you could use this program:

NF >= 10 {print $0}

TUTORIAL

60 The awk Language

Command Line Arguments
As with any COHERENT program or command, you invoke awk by typing the lowercase
letters awk. To process files with awk. you must include some additional elements on the
command line, called arguments.

The complete form for the awk command line is:

awk [-yl [-Fe] [:f progflle] [progl [fllel I [flle2] ...

Each argument is described below.

The -y option enables you to name patterns in lowercase characters, which awk then
matches to both uppercase and lowercase characters in the input file. This option is similar
to its counterpart in the regular expression pattern-matching utility, egrep.

The following programs show how the -y option works on the file named the, which
contains the following two lines:

The time is right.
Now is the time.

Command

awk -y '/the/' the

awk '/the/' the

Output

The time is right.
Now is the time.

Now is the time.

The option -Fe is the command-line version of

FS = "c"

which is an assignment like the one described earlier. This option changes the input field
separator from the default (white space) to the character c. You may include any characters
you want awk to use as field separators after the -F flag.

The -f progflle option enables you to use a file progflle containing awk commands as an awk
program. The option flag (-f) must precede the name of the file to be used as a program.

If you do not use the -f progfile option, you must use the prog option. This option specifies
the awk program on the command line. When writing a command-line awk program. use a
apostrophe before the first statement (pattern, action, or both); then enter the subsequent
lines of the program. After the last statement of the program. type another apostrophe
mark followed by the file or files to be processed. Note that COHERENT prompts you to
enter more information by displaying the '>' at the beginning of each line until you enter the
closing apostrophe and newline character.

The following program is an awk command-line program. It prints a heading before awk
reads the input file test, and then prints the entire file with each line preceded by its line
number.

$ awk 'BEGIN {print "sample output file"}
> {print NR, $0}' test

Thejilel jile2 ... option enables you to process existing files. When you want to process
more than one file, separate the file names with white space. If you do not specify a file
name in the command line, awk takes input from the standard input.

TUTORIAL

The awk Language 61

The following program prints the files testl and test2. Each line is preceded by its record
number.

$ awk '{print NR, $0}' testl test2

Printing with awk
Printing is an awk action. In fact. it is the action most often used. because it is the simplest
to use. The following short awk program prints its entire input:

{print}

When you specify awk actions, you may include several actions within one set of braces;
however, each action must be separated from the others by semicolons(;) or newlines.

Printing Individual Fields
With awk, you can print output fields in a different order from the input fields.

You can print fields in any order you desire. For example, you can print the second and
third fields in reverse order:

{print $3,$2}

When this program processes the input file now containing the sample record used above,
the printed result is:

the is

Because the field names are separated by a comma, awk inserts an output field separator
between the fields when printing them.

If you do not separate field names by commas in the print statement, awk concatenates the
fields when printing them. For example, the following program prints the second and third
fields:

{print $2 $3}

The result is:

is the

Changing the Output Field and Record Separators
You may change the output field separator by assigning your desired separator to the
variable OFS. To use the same field separator with the entire input, make the assignment
before the first print statement. For example. to make the colon your output field separator,
use a statement like this:

{OFS=":"; print $2,$3,$4}

You will receive this output:

is:the:tirne

To change the separator for the first line only, use the statement:

NR ==l{ OFS=":";print $2,$3,$4}

TUTORIAL

62 The awk Language

To change the output record separator from the default newline. assign required separator
to the variable ORS in the same manner.

Printing Predefined Variables
As discussed earlier, you can print either or both of the NF (number of fields) or NR
(number of records) predefined variables. To print a predefined variable. simply name it in
the print statement. For example, to include the NF variable before the other output in the
previous example. edit the program to read as follows:

{OFS =":";print NF,$2,$3,$4}

The output resulting from this statement is:

4:is:the:time

You can specify the NR variable in the same way. When you add the name of the variable to
the desired place in the list of fields to be printed, awk prints the record number in that
place in the output.

Redirecting Output
In addition to printing to the standard output. you also may redirect output to a file or files
of your choosing. This ability to direct output to any file enables you to extract information
from a given file and construct new documents.

Suppose you have a file named accounts with accounting information stored in it. The first
column of the file contains payroll information. the second column shows income for the
year, and the third column reports accounts payable information. You are to make an
income report for the year containing text and tables.

To extract the income information from the accounts file and put it into a separate file
named income. you can use the following awk program:

{print $2 > "income"}

With this program, awk creates the file income if it does not already exist, and enters the
second column of the accounts file as the contents of the new file. If a file named income
already exists, awk replaces the current contents of the file with the second column of the
accounts file.

If you need the first two columns for two separate reports, you can redirect both columns to
separate files using one statement.

{print $2 >"income"; print $1 >"payroll"}

You can specify a maximum of ten files for output.

If text for your report is already contained in the file report, you can append the second
column of the accounts file to the end of your report using this awk program:

{print $2 >> "report"}

Appending enables you to complete your report without retyping a column of numbers that
exists in another file.

TUTORIAL

The awk Language 63

Formatting Output
When you use awk to process a column of text or numbers as in the example above, you
may want to specify a consistent format for the output. The statement for formatting a
column of numbers follows this pattern:

{printf "format", expression}

whereformat is prescribed by the format control characters and separators defined below.
expression specifies the fields for awk to print.

The following table shows the names and meanings of the most frequently used awk format
control characters. To be recognized as format control characters by awk, these characters
must be preceded by the percent sign % and a number in the form of nor n.m.

Format-Control Characters Meaning

%nd
%n.mf
%n.ms

Decimal number
Floating-point number
String

When you call the printf function through awk to format the output, you must specify the
output separators you want to use.

Output-Separator Character

\n
\t
\f
\r
\II

Meaning

Newline
Tab
Form feed
Carriage return
Quotation mark

For example, if you wish to print a column of numbers with up to nine places to the left of
the decimal and two to the right (for a total of 12 places, including the decimal), and you
want a new entry for each line, use a format like this:

{printf "%12.2f\n", $2}

Piping Output
You can pipe the output of your awk program to another process. The pipe connects the
standard output of awk to the standard input of another process, program. or utility.

For example, you can pipe output to the mail utility with the following program, which
mails the output to name:

{print I "mail name"}

The pipe operator is the vertical bar character between the print and mail commands in this
statement.

TUTORIAL

64 The awk Language

awk Pattern Scanning
The previous section described printing in terms of fields. Fields are generally the best way
to select single elements from columnar input files. In addition to names of fields, awk can
scan records for the following:

•Two special patterns: BEGIN and END
• Regular expressions
• Arithmetic relational expressions
• Boolean combinations of expressions
• Pattern ranges

Special Patterns: BEGIN and END
BEGIN is a special pattern that matches the beginning of the input, before awk processes
any of the input. As mentioned above, BEGIN is the best place to set the field and record
separators if you want the same separators for the entire input. BEGIN is also a good place
to perform the action of assigning values to variables when the values are known.

Actions that require awk to compare input with the variable NR may not produce the results
you expect from a BEGIN pattern, because all BEGIN processing is finished before NR=l.
Also, awk does not permit field references in BEGIN or END statements.

END is a special pattern which matches the end of awk input. The END pattern enables you
to request an action to occur when all processing is finished. A common use of END is
printing the value of variables. For example:

END {print NR}

tells awk to print the value of NR after processing is finished, giving the total number of
records processed. When you reach the END pattern, you may not return for further
processing.

You may make awk into a calculator by using END with no action. At the end of the input,
you may enter any arithmetic equation or awk function and have the result automatically
printed on the standard output. When you are finished using awk as a calculator, type
<ctrl-D>.

Patterns
You can enclose strings of characters in slashes'/' for awk to match, as ed (the COHERENT
text editor) and egrep (the COHERENT text pattern matching command) do. For example,
take this pattern:

/ted/

When a statement contains this expression, awk prints every record with the string ted,
whether ted occurs as a word or as part of a word. For example:

interested
busted
tedious

In addition to specific strings, you can scan for classes and types of characters. To do so,
enclose the characters within brackets, and place the bracketed characters between the
slashes. For example, to specify a range of lowercase letters, enclose the range of letters

TUTORIAL

The awk Language 65

within brackets:

/[a-z]/

You can specify ranges of uppercase letters or numerals the same way.

In addition, you can use the following special characters for further flexibility:

I I
()

I
+
?
•

Class of characters
Grouping subexpressions
Alternatives among expressions
One or more occurrences of the expression
Zero or more occurrences of the expression
Zero, one, or more occurrences of the expression
Any non-newline character

When adding a special character to a pattern, enclose the special character as well as the
rest of the pattern within slashes.

To search for a string that contains one of the special characters, you must precede the
character with a backslash. For example, if you are looking for the string "today?", use the
following pattern:

/today\?/

When you need to find an expression in a particular field, not just anywhere in the record,
you can use one of these operators:

Contains the data in question
!~ Does not contain the data in question

For example, if you need to find the characters jam in the fourth field of the input, you can
use the following statement:

$4-/[Jj]arn/

This statement prints all lines where the fourth field contains Jam or jam. The statement
also prints lines where the fourth field contains words like James, jammed, and pajamas.
To prevent the awk program from selecting lines with characters other than separators on
either side of the required expression, use the following special characters:

Beginning of the record or field
$ End of the record or field

With these characters, you can be still more specific about which field or record you want
printed. For example, to allow James to be printed, but not pajamas, use the following
statement:

$4-/"[Jj]am/

To allow only Jam or jam, use this statement:

$4-/"[Jj]am$/

TUTORIAL

66 The awk Language

Arithmetic Relational Expressions
An awk pattern may consist of relational expressions using the following operators:

< Less than
<= Less than or equal to
= Equivalent
I= Not equal
>= Greater than or equal to
> Greater than

With these operators. you can select fields according to their relation to one another. For
example, if you want to print the first field only when it does not equal the second field, use
this statement:

$1 != $2 {print $1}

You also can establish relationships among records. If you want to print no more than the
first ten records, use the following statement:

NR <= 10

Because this example specifies no action, the statement prints all the records whose record
number is ten or less.

Relational tests default to string comparison if either operand is nonnumeric. Thus, if one
operand is numeric and the other is a string. awk makes a string comparison. The
following example shows how awk compares one field to part of the alphabet:

$1 <= "C"

This statement selects all lines beginning with an ASCII value less than or equal to that of
the letter ·c· (octal 103).

When you compare fields that have numeric values to one another. awk performs a numeric
comparison. Consider the comparison in this example:

$2 < $1 + 100 {print $2}

This statement causes field 2 to be printed only when the value of field 2 does not exceed
the value of field 1 by 100. If field 2 is alphabetic, it always matches in this comparison
because strings evaluate to 0 in numeric comparisons.

Boolean Combinations of Expressions
awk tests logical combinations of expresssions in its pattern-scanning process. Use the
following operators for combining expressions:

11 Boolean OR
&& Boolean AND

Boolean NOT

The following example tests for records that begin field 1 with a character that is less than
u. greater than or equal to t, and begin field 1 with a string other than the.

$1 < "u" && $1 >= "t" && $1 != "the"

The effect of this pattern is to select records that have a t as the first character in field 1 but

TUTORIAL

The awk Language 67

do not begin field 1 with the letters the.

Pattern Ranges
awk may cause an action to be performed on all records between two specified patterns. For
example, to print all records between the patterns April 10 and April 19 inclusive, enclose
the strings in slashes and separate them with a comma; then indicate the print action, as
follows:

/April 10/,/April 19/ {print}

You also may specify a range of record numbers using a statement such as this:

NR == s, NR == 17 {print}

This statement specifies that records 5 through 1 7 of the input are to be printed.

Specifying awk Actions
This section describes awk actions other than printing actions. In addition to printing, awk
is capable of:

• Performing functions
• Assigning variables
• Using fields as variables
• Concatenating strings
• Defining arrays
• Using control statements

Functions
awk includes functions that enable you to perform specific calculations with input
information. You may assign these functions to any variable and use them in patterns. The
following list shows the functions and their definitions; an argument can be any expression.

length Return the length of the current record.

length(argument)
Return the length of argument.

sqrt(argument)
Return the square root of argument.

ex:p(argument)
Return e to the power of argument.

log(argument)
Return the natural logarithm of argument.

int(argument)
Return the integer part of argument.

abs(argument)
Return the absolute value of argument.

substr(str,beg,len)
Return the substring of str that is len characters long beginning at position beg.
When substr occurs in a statement, awk scans str for the position beg within the

TUTORIAL

68 The awk Language

string. When awk finds beg. it prints a substring len characters long starting at
beg. If len is not included in the argument, the substring includes everything from
beg to the end of the record.

index(sl ,s2)
Return the position of s2 within sl. or zero if s2 does not occur in sl.

sprintf!f,el ,e2)
Return strings e 1 and e2 in the printf formatf

split(str,array Js)
Divide str into fields associated with array (an array is a collection of fields listed
under a single name) that are separated byfs or the default field separator.

The sprintf function lets you format expressions e 1 and e2 according to format specification
f. The following example demonstrates the operation of the sprintf function.

> awk 'x = sprintf("%7.2s",$1)
> {print $1}
> END {print x}'

When you run this sample program. awk accepts input data from the keyboard of the
terminal. The first line of the program begins the awk program and sets variable x so that it
contains five blank spaces and the first two characters of the first input field. The second
line causes awk to print the first field as it was received. The third line ends the program by
printing x. the formatted version of the first input field.

If you enter the word chicago as the first input field for this program, awk prints:

chicago
ch

The split function divides fields into subfields, breaking str into elements of array separated
by fs. or white space whenfs is not specified. In the following example. awk splits the first
field of the record into subfields. If the record has a single colon in the first field, awk splits
the field into two subfields. These subfields become the first and second fields of the array
named time:

{split ($1,time,":")}

At this point, you may manipulate the information stored in the array time or simply print
the subfields.

Assignment of Variables
In addition to the intrinsic variables. such as NR (which contains the number of the current
input record) and FILENAME (which contains the name of the current file), you may assign
other variables as described below.

Variables in awk may be string or numeric variables, depending on the context. By default,
variables are set to the null string (numeric value zero) on start-up of the awk program. To
set the variable x to the numeric value one, you can use the following assignment
statement:

x = 1

To set x to the string ted, use the following statement:

x = "ted"

TUTORIAL

The awk Language 69

When the context demands it, awk converts strings to numbers or numbers to strings. For
example, the statement

x = 11311

assigns to x the string 3. When an expression contains an arithmetic operator such as the
'-', awk interprets the expression as numeric. (Alphabetic strings evaluate to zero.)
Therefore,

x= 11 3 11 - 11 l 11

assigns the value two to variable x.

When the operator is included within the quotation marks, awk treats the operator as a
character in the string. ln the following example

x = "3 -1 11

assigns the string

"3 - l 11

to variable x.

You also can perform numeric calculations on fields. For example, you can calculate the
sum of the fourth field in the following manner:

{sum += $4}
END {print sum}

The following table includes all the available operators for awk:

+ Addition
Subtraction

• Multiplication
I Division
% Modulus
++ Increment

Decrement
+= Add and assign value
-= Subtract and assign value
•= Multiply and assign value
I= Divide and assign value
%= Divide modulo and assign value

You may use any of these operators in awk expressions.

Field Variables
In awk, fields may receive assignments, be used in arithmetic, and be manipulated in string
operations. The following awk statement shows some of the available uses of fields as
variables.

{print $i, $(i+l), $(i+n)}

awk permits you to use numeric expressions to refer to fields. Here, print fields i, i+ 1, and
i+n.

TUTORIAL

70 The awk Language

String Concatenation
As mentioned earlier, you can concatenate strings by omitting comma separators from
printing actions. For example. the following print statement concatenates the first two
fields by inserting a new connecting string:

{print $1 " telephones " $2}

If$1 contains "Tom" and $2 contains "John", this statement prints:

Tom telephones John

Arrays
Under awk, an array is a collection of values that is labeled with the name of the array.
Each element has at least one named index. The array is implicitly declared because awk
creates the array when you name it. Also, you can name the individual indices with any
legal string or numeric value.

Because the indices for any array may have any value, the ordering of array elements is
arbitrary. However, when you use numeric index names exclusively, awk follows an
ascending numeric sequence.

You should specify the array element using an identifier followed by the array index, an
arbitrary expression enclosed in brackets ([]). For example, consider an array called
surname. This example uses array indices named tom, van. and gor<lon. The following
action assigns a value to each of these indices:

BEGIN {surname ["tom"] = "jones"
surname ["van"] = "johnson"
surname ["gordon"] ="smith"}

You can print the contents of the array by naming the array in a print statement. awk also
enables you to print the name of the index by associating another variable with the index,
using a special form of the for statement. This form of for is:

for (index in array)

To retrieve the index names of the array surname, you may use the following statement:

END {for (person in surname)
print person, surname[person]}

This statement yields the following output:

tom jones
van johnson
gordon smith

In addition to being a generic term for the indices in the array surname. awk creates an
array of names called person, to which you can make further associations as needed.

To store the number of occurrences of a pattern. you may use the associative array
capabilities of awk. For example, if you want to determine the number of occurrences of
mark and test, and print the number next to its respective word, you can use the following
program:

TUTORIAL

/[Mm]ark/
/[Tt]est/
END

{n["mark"]++}
{n["test"]++}
{for (word in n)

print word, n[word]}

The awk Language 71

With each occurrence of Mark or mark, awk increments the variable n[mark]. (awk
automatically initializes n[mark] and n[test] to zero at the start of execution.) After awk
processes the last line of the input, the program prints each word and the number of
occurrences of that word as stored in n[word].

Control Statements
awk has seven defined control statements. The following section explains the statements
and gives examples of their use.

if (condition) else
If the condition within the parentheses is true, the statement following the if is executed. If
there is a clear alternative, the else precedes the action to be performed when the condition
is false. The else is optional. If awk does not perform the action of the if statement and
there is no else statement, awk continues with the next statement. For example:

{
if (NR % 2 == 1)

print "odd-numbered record"
else

print "even-numbered record"
}

while (condition)
While condition remains true, the statement following while is executed. For example:

{

}

for

i = 1
while (i <=NF){

print $i
i++

}

The for statement lets you execute actions a specified number of times. This statement may
contain an initialization portion, a Boolean test, and an incremental counter. The
initialization portion sets the initial value of the count variable, which awk changes each
time it performs the action. The Boolean test defines the conditions under which awk
should continue the action. The incremental counter specifies how awk is to alter the count
variable each time it performs the action. For example:

TUTORIAL

72 The awk Language

break

{
for (i = 1; i <= NF; i++)

print $i
}

The break statement immediately interrupts a while or for execution. For example:

{
for (i in numbers){

}

if (numbers [i] == "stop")
break
print i, numbers [i]

}

continue
The continue statement immediately begins the next iteration of the while or for statement.
For example:

next

$1- /Smith/ {

}

for (i = 2; i <=NF; i++){
if ($i < 100)

continue
sum += $1

}

The next statement causes processing to skip to the next record for comparison with all the
patterns, beginning with the first, and in order. For example:

exit

NR % 2 == l{

}

print "odd-numbered record"
next

{ print "even-numbered record"
}

The exit statement forces the awk program to skip any remaining input and to execute the
actions at the END patterns. For example:

TUTORIAL

sum >= 1000 {exit}
{sum += $4}

END {print NR, sum}

For More Information

The awk Language 73

The Lexicon's article on awk gives a quick reference of its features and options.

TUTORIAL

74 The awk Language

TUTORIAL

Section 4:

be Desk Calculator Language

This tutorial introduces be, the calculator language for COHERENT. If you have not used
be before, this tutorial will introduce you to its features and functions. If you are familiar
with be, you can use it as a reference.

be is a language that can calculate to high precision. It automatically adjusts the number
of digits in a number to represent it correctly. It is like having a powerful calculator at your
fingertips.

Entry and Exit
The be calculator for COHERENT is easy to use. Whenever you wish to invoke be, all you
do is type its name (be), followed by a stroke of the carriage return key. When you are
finished using the calculator and wish to exit, just type the word 'quit' or <etrl-D>. be exits
and return control to COHERENT.

Example of Simple Use
be performs calculations on formulas that you type into it. The formulas are laid out as you
would naturally write them. For example, to invoke be, have it add 2+2. and then exit,
type:

be
2 + 2

be replies:

4

Then, leave be by typing:

quit

be is an arbitrary precision calculator: the number of digits carried by be depends upon the
requirements of the calculation, and is automatically expanded by be. Thus, be will never
overflow. The number of digits it carries is limited only by the amount of available
computer memory. For example, try this calculation:

2A500

The carat "" character signifies a superscript; thus, we are asking be to raise 2 to the 500th
power. After a moment, be will reply:

327339060789614187001318969682759915221664\
204604306478948329136809613379640467455488\
327009232590415715088668412756007100921725\
6545885393053328527589376

You have probably already noticed one nice thing about this calculator: you don't have to
include a print statement as part of your command, because be automatically prints the
results onto your terminal screen. When be sees any expression, like "2+2" or "3777'', it

75

76 be Desk Calculator

prints the result.

be provides the common arithmetic operators for add, subtract, multiply, and divide, as
illustrated by the following commands:

7 + 5
7 - 5

7 * 5
7 I s

be also provides the remainder operator'%'. To get a sense of how it works, type:

7 % 5
5 % 7

Here, be prints the remainder of the first number divided by the second; in the case of the
first example, the be prints 2, and in the second prints 5. As you saw above, be also
includes the exponentiation operator •A•.

With be, you can also enter numbers with fractional parts. Type the following to illustrate:

9.999 * 9.999

be replies:

99.980

You can save temporary calculations or repeated constants in variables. The following
example shows you first how to define variables, and second how to use them:

a = 1.1
b = 2.2
a
b
a * b

Variable names can be longer than one letter.

The basic calculations in the above examples show only part of what be can do. The
following section describes simple statements - the assignment of variables and
abbreviations - that allow you to perform complex calculations easily.

Simple Statements
Although you can use be as a simple calculator for manipulating numbers. you can take
advantage of its greater power by using variables. Variables, as noted above, store parts of
calculations or constants that you will use repeatedly in calculations. Variable names are
simply "words" that you make up. Here are some examples of possible variable names:

a
b
totaltaxesdue
ratio

To use variables, simply give them a value, use them in a calculation in place of a number,
or print them out.

TUTORIAL

be Desk Calculator 77

To see how a variable can save you repetitive typing, and protect you from possible errors,
invoke be and type the following:

x 9.999
x

x * x
x x * x
x

The following gives the example with be's replies In Italics:

x = 9.999
x
9.999
x * x
99.980
x = x * x
x
99.980

be did not reply to the assignment statements x=9.999 and x=x*x. However, it did print
the value of x when requested, and the results of arithmetic using x.

Calculations executed with hand-held calculators. with programming languages like C, or
with be often use the following formula:

x = x + 1

To decrease the likelihood of error, be offers you a shorthand expression for this common
phrase:

x += 1

What it means is, "add one to x". Type the following example into be to see how this
expression works:

x = 1

x * x
x += 1

x * x
x += 1

Likewise, be provides an abbreviation for:

x = x - 2

The form should now be familiar:

x -= 2

The number to the right of the -= or += operator can be replaced with a variable or even
another calculation. When you type:

i = 4
x = 48

x -= i
x

be in each case replies:

TUTORIAL

78 be Desk Calculator

44

Alternatively. if you type:

i = 4
x = 48
x -= i * i
x

then be replies:

32

Similar abbreviations are provided for multiplication, division, remainder, and
exponentiation. Here is a summary of this class of operation.

a += 2 /* replace a with a plus 2

b += a /* replace b with b plus a
b -= a /* replace b with b minus a
c *= b /* replace c with c multiplied by b
c /= a /* replace c with c divided by a
c %= b /* replace c with remainder of c divided by b
d A 3 /* replace d with d raised to the 3rd power

be also has an operator that increases a variable by one: '++·. When you type:

a = 1
++a

then be replies:

2

*/
*I
*/
*/
*/
*/
*/

To use this operator in an expression, combine it with a variable anywhere that a variable
would normally be used. For example, entering

b 1
a = 3
b ++a
a
b

yields:

4
4

The '++' operator can also be put after a name. The resulting value in the expression is the
value of the name before it is incremented. However, after the expression is evaluated, the
name will have an incremented value. The following example shows the use of'++· both
before and after a name:

TUTORIAL

be Desk Calculator 79

a = 1
b = 1
a++
++b
a
b

be replies:

1
2
2
2

Operators are used in this manner:

a = 1
b = 2
c = a++ + ++b

Similar to '++' is • •• •. It behaves the same way, except that rather than adding one, it
subtracts one.

Numbers with Fractions
Most of the examples presented earlier use whole numbers (integers). However, be can use
numbers with fractional parts. This section discusses the use of fractional numbers in be
and their precision under different operations.

The Scale of Numbers
The number of digits to the left of the decimal point carried by be depends upon the
requirements of the calculation. If you calculate a large number, as in:

2"'500

the result will contain as many digits as needed to express the product.

The number of digits to the right of a decimal point is called the scale of the number. Scale
depends upon the operation that produces the number of digits, and a variable called scale
that will be described shortly.

To illustrate simple uses of numbers with fractions, invoke be and then type:

a = .01
b = 0,99
a+b

be replies:

1.00

TUTORIAL

80 be Desk Calculator

Addition and Subtraction
be will dynamically adjust the number of digits in the calculation. It deals similarly with
fractional numbers. To the following example

a 0.01
b 0.001
a + b

be reply:

.011

In addition and subtraction, the scale of the result is the larger of the scales of the two
numbers involved. Results are not truncated in addition or subtraction operations.

Scale During Multiplication
Other arithmetic operations act differently with numbers that contain fractions. In the
multiplication of two numbers. the scale of the product will at least equal the larger of the
scales of the two numbers. For example, the input:

1.1 * 1.11

results in:

1.22

Setting the Scale of Results
To increase the number of fractional digits for higher accuracy, be provides the built-in
variable scale. The following example illustrates the scale variable:

scale = 3
1.1 * 1.11

The result from this example is:

1.221

Note, however, the scale of the product of a multiplication procedure never exceeds the sum
of the scales of the two numbers being multiplied. For example,

scale = 10
1.1 * 1.11

yields the result:

1.221

If the variable scale is less than the sum of the scales of the numbers being multiplied,
then the product will have a scale equal to that of the variable scale. For example,

scale = 4
1.11 * 2.222

yields:

TUTORIAL

be Desk Calculator 81

2.4664

The scales of the operands are 2 and 3. The larger scale is 3, so the result of a
multiplication will have a scale of at least 3, no matter what scale is set to. Also, the sum
of the scales is 5, so the result will never have more than 5 digits to the right of the decimal
point. In this example, scale has been set to a number between 3 and 5, namely 4.
Therefore, the result has a scale of 4.

Scale for Divisions
For division and remainder, the scale of the result is determined only by the value of the
variable scale. For example,

yields:

scale = 13
14 I 13
14 % 13

1.0769230769230
.0000000000010

For non-whole numbers, as well as for integers, the definition of remainder is chosen so
that the relationship

dividend = (divisor * quotient) + remainder

is true.

Scale From Exponentiation
be sets the scale of a result of exponentiation as if repeated multiplications had been
performed. Thus, for

5.992 ,.. 5

the scale is chosen as if you typed:

n = 5.992
n * n * n * n * n

That is, the default is the scale of the largest (or, in this case, the only) number being
multiplied; and scale cannot exceed the sum of the scales of the numbers being multiplied.
Thus, the scale of the product in this example has a default setting of 3, and can be reset
up to 15.

What Is the Current Scale?
The variable scale is just like other variables: you can assign values to it, as above.
Because it is like regular variables, you can also use it in operations. as in this example:

scale += 1

You can also print its value:

scale

The value of the scale variable is zero until you explicitly change it.

TUTORIAL

82 be Desk Calculator

The if Statement
The statements shown so far have been either assignment statements, giving a new value
to a variable; or an expression, which prints the resulting value. Several other kinds of
statements are available. These give you power to write programs that make decisions and
perform iterative computations.

Using the if Statement
To see the if statement in action, type the following example into be:

x = 3
if (x < 5) x
if (x > 5) -x

The reply is:

3

If the input is:

x = 6
if (x < 5) x
if (x > 5) -x
<return>

be replies:

-6

The part of the if statement in parentheses, such as (x > 5), determines whether be
executes the statement that follows it, such as -x. If the expression is false, the following
statement is not executed. If the expression is true, the following statement is executed.

Comparisons
The decision expression in an if statement is enclosed in parentheses. The decision can be
based upon a comparison of two operands, or numbers. The kinds of comparisons that can
be done are:

!=
<=
<
>=
>

First operand equal to second
First operand not equal to second
First operand less than or equal to second
First operand less than second
First operand greater than or equal to second
First operand greater than second

The if statement can include the sorts of the simple statements already shown. You can
also include an if statement, as well as the while, do, and for statements, which will be
discussed below. The following example illustrates the use of an if statement within an if
statement:

TUTORIAL

a = 2
b = 6
if (a >= 2) if (b > a) a + b
<return>

be replies, simply:

8

be Desk Calculator 83

Because both of the if conditions were true, be proceeded to add a and b.

Grouped Statements
You can place more than one statement after the expression part of the if statement by
using grouping braces '{' and '}'. This can be useful if you want to perform several
calculations based on the result of an if statement comparison. The following example
prints the value of a and b if the value of b is less than the value of a:

a = 1
b = .99
if (a > b) {

a

}

be replies:

1

.99

b

Any statement may be enclosed within the group braces, as the following example shows:

a = 1
b = .99
if (a > b) {

a
b
if ((a+ b) >= 2) a+ b

}

Many Statements Per Line
To this point, all of our examples typed each statement on its own line. This includes the
group braces '{' and '}', the latter of which must appear on a line by itself. You can,
however, place several statements on one line if you separate them with semicolons. If you
do this, remember that the semicolon rather than the carriage return separates the
statements. For example, if you type:

a = l;b = 2;c = 3
a;b;c

be replies:

TUTORIAL

84 be Desk Calculator

1
2
3

You can use this in combination with the group braces:

a = l;b = 2;c = 3
if ((a +b) >= c) {

a; b; c; a + b; }

The reply from be is:

1
2

3
3

This example can be compressed even further by putting all of the if statement on one line:

a = l;b = 2;c = 3
if ((a + b) >= c) { a; b; c; a + b; }

You do not need to follow the '}'with a semicolon.

The while Statement
The while statement repeats calculations. This is useful in successive approximation
calculations. The following example of the while loop prints the numbers one through ten:

i = 1
while (i <= 10) {

i
i = i + 1

}

be replies:

1
2
3
4

5
6
7
8

9
10

The statement

i = i + 1

adds l to the variable i. The expression

(i <= 10)

compares i with 10. While i is less than or equal to 10, the while loop executes. When i is

TUTORIAL

be Desk Calculator 85

increased to greater than 10. the loop stops executing.

be checks the comparison expression for the while loop before the loop is entered for the
first time. If the comparison fails. the loop is not executed at all; otherwise the processing
repeats as long as the comparison is true. For example, the following statements do not
print anything:

i = 0
while (i > 1) i
quit

Abbreviations in the while Statement
If we recall the assignment statements from the previous section. we can shorten the while
counting-to-ten example to:

i = 1
while (i <= 10) {

i
i += 1

}

The result remains the same - a list of numbers from one to ten.

Another abbreviation of the example uses the '++·operator. The variable i is incremented.
then tested in the while expression. which simplifies the entire example to:

i = 0
while (++i <= 10) i

Before the while is executed, i is set to zero. Then. the while expression increments the
value of i before it is used or compared, Thus. the first value compared. then printed, is one.

Finally, the example calculation can be shortened to one line. If a variable in be is used
before it is initialized, it will have the value of zero. For example:

zip

prints:

0

Using this in our counting-to-ten example yields:

while (++i <= 10) i

The for Statement
for is a statement that controls the execution of other be statements. You should use for to
write a formula to control the number of times a value is computed.

The previous section demonstrated how to print the numbers one to ten using a while
statement. The following does the same task with a for statement:

for (i=l; i <= 10; ++i) i

TUTORIAL

86 be Desk Calculator

Three Parts of the for Statement
The for statement is more complex than the while statement; its controlling expressions
have three parts.

The first part, shown here in italics

for (l=l; i <= 10; ++i) i

sets up the initial condition. The second part

for (i=l; 1<=10; ++i) i

tests whether more iterations should be performed. be performs this test before it executes
the statements that are subordinate to the for statement. If the test fails, no more
iterations are performed.

The third part

for (i=l; i <= 10; ++I) i

is performed at the end of each iteration. In practically every instance, this part of the for
statement modifies the value of the variable that the second part tests.

Taken together, these statements (1) set i to zero; (2) check whether i is less than or equal
to ten; (3) if i proves to be so, prints i, and then increases it by one.

The following example of the for statement adds the squares of the numbers one through
ten, prints each square, and then prints the sum of the squares at the end.

sum = 0
for (n=l; n <= 10; ++n) {

sq = n * n
sq
sum += sq

}
sum

The result is:

TUTORIAL

1
4
9
16
25
36
49
64
81
100
385

be Desk Calculator 87

Similarities Between the for and while Statements
To illustrate the similarity between the for statement and the simpler while statement, the
following rewrites the above example, substituting the while for the for:

sum = 0
n = 1
while (n <= 10) {

sq = n * n
sq
sum += sq
++n

sum

You should notice one difference when you enter this example. In the while version of the
example, the

++n

prints out the new value of n, whereas in the for example, the value is not printed.

Functions in be
be allows you to name routines that you use repeatedly. You can then call them by name
without having to retype them; obviously. this can be a great time-saver. These named
routines are calledfuncttons. This section shows you how to define and use functions for
your be calculations.

Example of Function Use
The following example defines a function that calculates the area of a circle from its radius.

scale = 5
pi= 3.14159
define area (radius) {

}

r2 = radius * radius
return (pi* r2);

area (l.00);
area (2.00);
area (56);

The results will be:

3.14159
12.56636
9852.02624

The define keyword tells be that you are defining a function. The name of the function
follows. Then. in parentheses, come the parameters of the function. In this example. the
only parameter, or argument, of the function is radius. Most functions have arguments, but
they are not mandatory.

TUTORIAL

88 be Desk Calculator

The return statement defines the value of the function. In the area example, the
expression:

area (1.00)

references the function area. be then performs the calculation described by your definition
of the function area. The number

1.00

is substituted wherever the parameter radius is shown.

The statement

r2 = radius * radius

is then executed, yielding this result:

1. 00

Then, the statement

return (pi * r2)

calculates the area and returns its value. The statement

area (1.00)

then has the value calculated in the return statement.

Functions Using Other Functions
Functions in be perform calculations using the same expressions as the rest of the be
program. This includes the use of functions. The area program can be written using
another function, sq. to calculate the square of a number:

scale = 5
pi= 3.14159
define sq (number) {

return (number * number)
}

define area (radius) {
return (sq (radius) * pi)
}

area (1. 00);
area (2.00);
area (56);

Again, the results will be identical:

3.14159
12.56636
9852.02624

TUTORIAL

be Desk Calculator 89

Functions That Call Themselves
Not only can functions call other functions and perform regular calculations; a function can
use itself in calculations. An example of this is the Fibonacci calculation:

define fib (f) {

}

if (f==O) return (0)
if (f==l) return (1)
if (f > 1) return (fib (f-1) +fib (f-2))

fib (5)
fib (20)

Fibonacci numbers are defined in the following way: Fibonacci number zero is zero;
similarly. Fibonacci number one is one. Any other Fibonacci number is defined as the sum
of the two previous Fibonacci numbers. Fibonacci numbers are defined only for non­
negative integers.

The defined function fib follows this definition by returning zero if the number requested is
zero and one if the argument is one. If the number is neither of these, then the function
calls itself to calculate the previous two numbers of the series and adds them together.

The auto Statement
Many functions that call other functions. including themselves. may require variables that
are not changeable by the rest of the program. This is signalled to be by the auto
statement:

auto varl, var2

This declares varl and var2 as local to the function that contains them.

To illustrate the use of auto, the following be program calculates the factorial of a number:

define factorial (number) {
auto value, i

}

value = 1
for (i = 1; i <= number; ++i) value *= i
return (value)

value = 3
factorial (value)
i = 99
factorial (20)
value
i

The result is:

6
2432902008176640000
3
99

The first number. 6, results from:

TUTORIAL

90 be Desk Calculator

factorial (value)

The second number is from:

factorial (20)

The last two numbers are from value and i. and are included to demonstrate that the
variables in the function factorial appearing in this statement:

auto value, i

are separate from the variables of the same name in the rest of the program.

If the function calls itself, as the fib example does above, any variable names noted in the
auto statement are handled separately for each call of the function.

Programs in a File
Because its programs can be quite complex. be lets you keep them in files. This lets you
build a library of be programs and functions that can be called up easily.

Using a Program From a File
To illustrate the use of programs stored in a file, type the following example into file fib.be
COHERENT using the editor of your choice. The program defines the function fib:

define fib (f) {

}

if (f==O) return (0)
if (f==l) return (1)
if (f > 1) return (fib (f-1) +fib (f-2))

To use a be program that has been stored in a file. enter the file name on the be command
line. like this:

be fib.be

The function definition will be read in by be and ready for your use. To use the function.
simply type the function name with parameters.

So, if you type:

be fib.be
fib (6)
quit

be will reply:

8

Using Libraries
You can enter several useful programs in their own files and call them into be at the same
time. The following example creates another function that calculates the sum of the
squares of integers up to a given number. Enter it into COHERENT. and name it sumsq.be:

TUTORIAL

be Desk Calculator 91

define sumsq (number) {
auto i, sum

}

sum = O
for (i = number; i > O; --i) sum += i A 2
return (sum)

Now. you can use the swnsq function to print the sum of the squares for each number from
one to ten:

be sumsq.be
for (i = 1; i <= 10; ++i) sumsq (i)
quit

The result is:

1
5
14
30
55
91
140
204
285
385
quit

You can use the two functions stored in a file to print the difference between the sum of the
squares of numbers. and the Fibonacci number:

be fib.be sumsq.be
for (i = 1; i <= 10; ++i) sumsq (i) - fib (i)
quit

The result of this questionable computation is:

0
4
12
27
50
83
127
183
251
330

TUTORIAL

92 be Desk Calculator

The be Library
COHERENT provides an extended library to go with be. It includes the following functions:

atan(z) arctangent of z
eos(z) cosine of z
exp(z) exponential function of z
j(n,z) nth order Bessel function of z
ln(z) natural logarithm of z
pi the value of pi to I 00 digits
sin(z) sine of z

The library is stored in file /usr/lib/lib.b. To use the library. invoke the be command with
the -1 option.

To show how the library can be used in your work the following example computes the sine
of an angle of one-third radian with scale set to 20:

be -1
scale = 20
sin (1/3)
quit

The result is:

.32719469679615224418

Summary
The Lexicon entry for be summarizes its commands, features, and libraries. It will also you
refer you to related commands and functions.

TUTORIAL

Section 5:

The C Language

C is a computer language invented by Dennis Ritchie and Ken Thompson at AT&T Bell
Laboratories in the early 1970s. In the approximately 20 years since its creation, C has
become one of the most popular compter languages in the world. C is powerful, flexible; it
is highly portable, and has been implemented on practically every computer, and under
practically every operating system, in the world.

C is the "native language" of the COHERENT system. COHERENT is written in C, and it
includes a powerful C compiler among its suite of language tools for your use. You do not
need to know C to use COHERENT to great advantage; however, if you plan to program
under COHERENT, you would be well advised to become at least passably acquainted with
it.

This tutorial is an introduction to the COHERENT C compiler and to the C language itself.
The first part of this section describes how to compile programs under COHERENT. The
second part is a brief tutorial in the C language itself.

Compiling C Programs under COHERENT
A C compiler is a program that transforms files of C source code into machine code.
Compilation is a complex process that involves several steps; however, COHERENT
simplifies it with the command cc, which controls all the actions of the compiler.

Try the Compiler
Before we launch into a lengthy explanation of what cc is and what it does, you can get a
feel for it by trying it with a simple example. To begin. type the following to create a simple
C program:

cat >hello.c
main() {

printf("Hello, world\n");
}
<ctrl-D>

This creates a simple C program called hello.c. Now, compile your program by typing the
following command:

cc -V hello.c

If you typed the program correctly, cc will print something like the following on your screen:

93

94 The C Language

/lib/eeO D23400000100 hello.e /tmp/ee15029b
/lib/eel D23000000100 /tmp/ee15029b /tmp/ee15029a
/lib/ee2 D23000000100 /tmp/ee15029a hello.o /tmp/ee15029b
rm /tmp/ee15029a
rm /tmp/ee15029b
/bin/ld -X /lib/ertsO.o hello.o /lib/libe,a
rm hello.o

What each of these messages means will be described below. If you receive an error
message, try re-typing the program, and then re-compile it. When compilation is
successfully completed, you will now have an executable program called hello. To invoke it,
type:

hello

It should print the following on your screen:

Hello, world

As you can see, cc makes it easy to transform a file of C code into an executable program.

Phases of Compilation
As you noticed, cc printed a number of messages on your screen as it compiled hello.c.
The reason you saw the messages was that compilation was performed with the -V option to
cc: this tells cc to print a verbose output that describes each of its actions. cc prints
numerous messages because the COHERENT C compiler is not just one program, but a
number of different programs that work together. Each program performs a phase of
compilation. The following summarizes each phase:

cpp The C preprocessor. This processes any of the '#' directives. such as #include or
#ifdef, and expands macros.

ccO The parser. This phase parses programs. It translates the program into a parse-tree
format, which is independent of both the language of the source code and the
microprocessor for which code will be generated.

eel The code generator. This phase reads the parse tree generated by ccO and translates
it into machine code. The code generation is table driven, with entries for each
operator and addressing mode.

cc2 The optimizer/object generator. This phase optimizes the generated code and writes
the object module.

cc3 COHERENT also includes a fifth phase, called cc3, which can be run after the object
generator, cc2. cc3 generates a file of assembly language instead of a relocatable
object module. cc3 allows you to examine the code generated by the compiler. You
did not see this phase when you compiled hello.c because this phase is optional and
you did not request it. If you want COHERENT to generate assembly language. use
the -S option on the cc command line.

Unless you specify the -S option, cc creates an object module that is named after the source
file being compiled. This module has the suffix .o. An object module is not executable; it
contains only the code generated by compiling a C source file. plus information needed to
link the module with other program modules and with the library functions.

TUTORIAL

The C Language 95

As the final step in its execution, cc calls the linker Id to produce an executable program.

As you can see, cc also removes the temporary files it creates to pass information from one
compiler phase to another. If your program is built out of only one file of C source code, it
also deletes the object module that it creates after that module is linked to create an
executable program.

Renaming Executable Files
When cc compiles a source file. by default it names the executable program after thejlrst
source file named on the cc command line. If you wish, you can give the executable file a
different name. Use the -o (output) option, followed by the desired name.

Floating-Point Numbers
Often, you will need to use floating-point numbers in your programs. If you are unsure
what a floating-point number is, see the Lexicon entry for tloat.

The routines that print floating-point numbers are large, and most C programs do not need
to print floating-point numbers; therefore, the code to perform floating-point arithmetic is
not included in a program by default. You must ask cc to include these routines with your
program by using the -f option to cc.

To see how this works, let's modify hello.c to use floating-point numbers. Edit hello.c by
typing the following commands:

ed hello.c
2
c

printf("Hello, world %f\n", 123.4);

w
q

Now, compile the program with the same command line as before:

cc -V hello.c

When compilation has finished, type hello. You'll see the following output:

You must compile with the -f flag
to include printf() floating point.

Hello, world

COHERENT is telling you that you are using a floating-point number but that you did not
compile the program to include code to process floating-point numbers. Now, recompile the
program using the -f option to cc:

cc -V -f hello.c

When compilation has finished, type hello. If you typed the program correctly, you will see
the following:

Hello, world 123.400000

As you can see. hello is now displaying the floating-point number 123.4 for you. For
detailed information on prlntf, see its entry in the Lexicon; print! is also discussed in the

TUTORIAL

96 The C Language

tutorial section below.

Compiling Multiple Source Files
Many programs are built from more than one file of C source code. For example, the
program factor, which is provided with COHERENT, is built from the C source files factor.c
and atod.c. To produce the executable program factor, both source files must be compiled;
the linker Id then joins them to form an executable file.

To compile a program that uses more than one source file, type all of the source files onto
the cc command line. For example, to compile factor you would type the following:

cc -o factor -f factor.c atod.c -lm

This command compiles both C source files to create the program factor.

In the above example, cc produces the non-executable object modules factor.o and atod.o,
and then links them to produce the executable file factor.

The argument -Im tells cc to include routines from the mathematics library when the object
modules are linked. This option must come qfter the names of all of the source files, or the
program will not be linked correctly.

Linking Without Compiling
When you are writing a program that consists of several source files, you will need to
compile the program, test it, and then change one or more of the source files. Rather than
recompile all of the source files, you can save time by recompiling only the modified files
and relinking the program.

For example, if you modify the factor program by changing the source file factor .c, you can
recompile factor.c and relink the entire program with the following command:

cc -o factor -f factor.c atod.o -lm

This cc command refers to the C source file factor.c and the object module atod.o. cc
recognizes that atod.o is an object module and simply passes it to the linker Id without re­
compiling it. You will find this particularly useful when your programs consist of many
source files and you need to compile only a few of them.

To simplify compiling, especially if you are developing systems that use many source
modules, you should consider using the make utility that is included with COHERENT. For
more information on make, see its entry in the Lexicon, or see the tutorial for make that
appears later in this manual.

Compiling Without Linking
At times, you will need to compile a source file but not link the resulting object module to
the other object modules. You will do this, for example, to compile a module that you wish
to insert into a library. Use cc's option -c to tell cc not to link the compiled program. This
option is often used to create relocatable object modules that can be archived into a library
for later use.

For example, if you wanted just to compile factor.c without linking it, you would type:

cc -c factor.c

To link the resulting object module with the object module atod.o and with the appropriate
libraries, type the following command:

TUTORIAL

The C Language 97

cc -o factor -f factor.o atod.o -lm

Assembly-Language Files
C makes most assembly language programming unnecessary. However. you may wish to
write small parts of your programs in assembly language for greater speed or to access
processor features that C cannot use directly. COHERENT includes an assembler. named
as, which is described in detail in the Lexicon.

To compile a program that consists of the C source file example.c and the assembly­
language source file example.s, simply use the cc command as usual:

cc -o example examplel.c example2.s

cc recognizes that the suffix .s indicates an assembly-language source file. and assembles it
with as; then it links both object modules to produce an executable file.

Changing the Size of the Stack
The stack is the segment of memory that holds function arguments, local variables. and
function return addresses. COHERENT by default sets the size of the stack to two kilobytes
(2,048 bytes). This is enough stack space for most programs; however, some programs.
such as the example program on page 26 of the first edition of The C Programming
Language. require more than two kilobytes of stack. A program that uses more than its
allotted amount of stack will cause a stack oveiflow. which will cause your program to
crash.

The size of the stack cannot be altered while a program is running. Should your program
need more than two kilobytes of stack. use the COHERENT command fixstack. For more
information. see the entry for fixstack in the Lexicon.

Where To Go From Here
This discussion of the cc command is by no means complete, but it includes enough
information for you to begin to compile your programs. The Lexicon's entry for cc gives all
of the command-line options available with cc. The Lexicon also has entries for cpp. the
compiler phases. and for the linker ld, and describes them at greater length. All error
messages generated by cc and by the assembler as appear in the appendix to this manual.

The next section in this tutorial introduces the C programming language.

C for Beginners
This section briefly introduces the C programming language. It is in two parts. The first
part describes what a programming language is, and gives the history of the C programming
language. This section also introduces some concepts basic to C, such as structured
programming. pointer. and operator. The second part walks through a C programming
session. It emphasizes how a C programmer deals with a real problem, and demonstrates
some aspects of the language.

This chapter is not designed to teach you the entire C language. It introduces you to C, so
you can read the rest of this manual with some understanding. We urge you to look up
individual topics of C progran1ming in the Lexicon, and especially to study the example
programs given there.

TUTORIAL

98 The C Language

Programming Languages and C
Before beginning with C, it is worthwhile to review how a microprocessor and a computer
language work.

A microprocessor is the part of your computer that actually computes. Built into it is a
group of instructions. Each instruction tells the microprocessor to perform a task; for
example. one instruction adds two numbers together. another stores the result of an
arithmetic operation in memory. and a third copies data from one point in memory to
another.

Together. a microprocessor's instructions form its Instruction set. The instruction set is. in
effect, the microprocessor's "native language".

A microprocessor also contains areas of very fast storage, called registers. The registers are
essential to arithmetic and data handling within the microprocessor. How many registers a
microprocessor has. and how they are designed. help to determine how much memory the
microprocessor can read and write, or address. and how the microprocessor handles data.

A computer language. as the name implies. lets a human being use the microprocessor's
instruction set. The lowest level language is called "assembly language". In assembly
language, the programmer calls instructions directly from the microcomputer's instruction
set, and manipulates the registers within the microprocessor. To write programs in
assembly language, a programmer must know both the microprocessor's instruction set and
the configuration of its registers.

Assembly and High-Level Languages
With assembly language, the programmer can tailor the program specifically to the
microprocessor. However, because each microprocessor has a unique instruction set and
configuration of registers, a program written in one microprocessor's assembly language
cannot be run on another microprocessor. For example, no program written in the
assembly language for the Motorola 68000 microprocessor can be run on the IBM PC or any
PC-compatible computer. The program must be entirely rewritten in the assembly language
for the Intel i8086 microprocessor, which is difficult and time consuming.

A high-level language helps programmers to avoid these problems. The programmer does
not need to know the microprocessor in detail; instead of specific microprocessor
instructions, he writes a set of logical constructions. These constructions are then handed
to another program, which translates them into the instructions and registers calls used by
a specific microprocessor. In theory, a program written in a high-level language can be run
on any microprocessor for which someone has written a translation program.

A high-level language allows the programmer to concentrate on the task being executed.
rather than on the details of registers and instructions. This means that programs can be
written more quickly than in assembly language, and can be maintained more easily.

So, What Is C?
As noted earlier. C was invented at AT&T Bell Laboratories by Dennis Ritchie and Ken
Thompson. They created C specifically to re-write the UNIX operating system from PDP- I I
assembly language. Ritchie designed C to have the power. speed. and flexibility of assembly
language. but the portability of high-level languages.

TUTORIAL

The C Language 99

In 1978, Ritchie and Brian W. Kernighan published The C Programming Language, which
describes and defines the C language. The C Programming Language is the "bible" of C, a
standard work to which all programmers can refer when writing their programs.

Because C is modeled after assembly language, it has been called a "medium-level"
language. The programmer doesn't have to worry about specific registers or specific
instructions, but he can use all of the power of the computer almost as directly as he can
with assembly language.

Because C was written by experienced programmers for experienced programmers, it makes
little effort to protect a programmer from himself. A programmer can easily write a C
program that is legal and compiles correctly but crashes the program. Also, C's
punctuation marks, or "operators", closely resemble each other. Thus, a mistake in typing
can create a legal program that compiles correctly but behaves very differently from what
you expect.

Structured Programming
C is a structured language. This means that a C program is assembled from a number of
sub-programs, or junctions, each of which performs a discrete task. If this concept is
difficult to grasp, consider the following example.

Suppose you want to turn a file of text into upper-case letters and print it on the screen.
This job seems simple. but a program to do it must perform five tasks:

l. Read the name of the file to open.

2. Open the file so it can be read, in much the same way that you must open a book
before you can read it.

3. Read the text from the file.

4. Turn what is read into upper-case letters.

5. Print the transformed text onto the screen.

A good program will also perform the following tasks:

1. Check that the file requested actually exists.

2. Check that the file requested is actually a text file rather than a file of binary
information; the latter makes very little sense when printed on the screen.

3. Close the program neatly when the work is finished.

4. Stop processing and print an error message if a problem occurs.

A structured language like Callows you to write a separate function for each of these tasks.

A structured programming language offers two major advantages over a non-structured
language. First. it is easier to debug a function than an entire program because the
function can be unplugged from the program as a whole. made to work correctly, and then
plugged back in again. Second, once a function works, it can be used again and again in
different programs. This allows you to create a library of reliable functions that you can
pull off the shelf whenever you need them.

The functions within a program communicate by passing values to each other. The value
being passed can be an integer. a character, or - most commonly - an address within
memory where a function can find data to manipulate. This passing of addresses. or
pointers, is the most efficient way to manipulate data because by receiving one number. a
function can find its way to a large amount of data. This speeds up a program's execution.

TUTORIAL

100 The C Language

C adds some extra tools to help you construct programs. To begin, C allows you to store
functions in compiled form. These precompiled functions are added only when the program
is finally loaded into memory; this spares you the trouble of having to recompile the same
code again and again. Second, C adds a preprocessor that expands definitions, or macros,
and pulls in special material stored in header files. This allows you to store often-used
definitions in one file and use them just by adding one line to your program.

Writing a C Program
As noted above, a C program consists of a bundle of sub-programs, or functions, which link
together to perform the task you want done. Every C program must have one function that
is called main. This is the main function; when the computer reads this, it knows that it
must begin to execute the program. All other functions are subordinate to main. When the
main function is finished, the program is over.

To see how these elements work, review the program hello.c, which you worked with earlier
in this tutorial:

main()
{

}
printf("Hello, world\n");

As you can see, this program begins with the word main. The program begins to work at
this point. The parentheses after main enclose all of the arguments to main - or would. if
this program's main took any. An argument is an item of information that a function uses
in its work.

The braces'{' and'}' enclose all the material that is subsidiary to main.

The word "printf' calls a function called printf. This function performs formatted printing.
The line of characters (or "string") Hello, world is the argument to printf: this argument is
what printf is to print.

The characters '\n' stand for a newline character. This character "tosses the carriage··. or
moves the cursor to a new line and returns it to the leftmost column on your screen. Using
this character ensures that when printing is finished, the cursor is not left fixed in the
middle of the screen. Finally, the semicolon ';' at the end of the command indicates that the
function call is finished.

One point to remember is that printf is not part of the C language. Rather, it is ajunction
that was written by Mark Williams Company, then compiled and stored in a library for your
use. This means that you do not have to re-invent a formatted printing function to perform
this simple task: all you have to do is call the one that Mark Williams has written for you.

Although most C programs are more complicated than this example, every C program has
the same elements: a function called main, which marks where exection begins and ends;
braces that fence off blocks of code; functions that are called from libraries; and data passed
to functions in the form of arguments.

A Sample C Programming Session
This section walks you through a C programming session. It shows how you can go about
planning and writing a program in C.

TUTORIAL

The C Language 101

C allows you to be precise in your programming, which should make you a stronger
programmer. Be careful. however, because C does exactly what you tell it to do. nothing
more and nothing less. If you make a mistake. you can produce a legal C program that
does very unexpected things.

Designing a Program
Most programmers prefer to work on a program that does something fun or useful.
Therefore, we will write something useful: a version of the COHERENT utility scat, that we'll
call display. It will do the following:

1. Open a text file on disk.

2. Display its contents in 23-Jine chunks (one full screen).

3. After displaying a chunk, wait to see if the user wants to see another chunk. If the
user presses the <return> key alone. display another chunk: if the user types any
other key before pressing the <return> key, exit.

4. Exit automatically when the end of file is reached.

As you can see, the first step in writing a program is to write down what the program is to
do, in as much detail as you can manage, and preferably in complete sentences.

Now, invoke ed or Micro EMACS and get ready to type in the program:

ed display.c

or:

me display.c

We suggest that you use the MicroEMACS editor, because this tutorial will make numerous
changes to the program as it progresses and it will be easier to see these changes in context
if you use a screen editor rather than a line editor. The rest of this tutorial assumes that
you are using MicroEMACS. If you are not familiar with MicroEMACS, it is briefly described
in Using the COHERENT System. A tutorial for MicroEMACS also appears in this manual.
or you may wish to see the entry for me in the Lexicon.

In the above commands, the suffix .c on the file name indicates that this is a file of C code.
If you do not use this suffix, the cc command will not recognize that this is a file of C code
and will refuse to compile it.

Begin by inserting a description of the program into the top of the file in the form of a
comment. When a C compiler sees the symbol ·I*', it throws away everything it reads until it
sees the symbol '* /'. This Jets you insert text into your program to explain what the
program does.

Type the following:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

Save what you have typed by pressing <Ctrl-X> and then <ctrl-S>. Now, anyone, including
you, who looks at this program will know exactly what it is meant to do.

TUTORIAL

102 The C Language

The mainO Function
As described earlier, the C language permits structured programming. This means that you
can break your program into a group of discrete functions, each of which performs one task.
Each function can be perfected by itself. and then used again and again when you need to
execute its task. C requires, however, that you signal which function is the main function,
the one that controls the operation of the other functions. Thus, each C program must have
a function called main().

Now, add main() to your program. Type the code that is shaded, below:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

The parentheses"()" show that main is a function. If main were to take any arguments,
they would be named between the parentheses. The braces "{}" delimit all code that is
subordinate to main; this will be explained in more detail below.

Note that the shortest legal C program is main(){}. This program doesn't do anything when
you run it, but it will compile correctly and generate an executable file.

Now, try compiling the program. Save your text by typing <ctrl-X><ctrl-S>, and then exit
from the editor by typing <ctrl-X><ctrl-C>. Compile the program by typing:

cc display.c

When compilation is finished, type display. The shell will pause briefly, then return the
prompt to your screen. As you can see, you now have a legal. compilable C program, but
one that does nothing.

Open a File and Show Text
The next step is to install routines that open a file and print its contents. For the moment,
the program will read only a file called tester, and not break it into 23-line portions.

Type the shaded lines into your program, as follows:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

main()

TUTORIAL

The C Language 103

. aft~iacl ~and »'dxspl:ay·; i,:t:q~:<0 :: .. :,\.:.\~
•.·.~ ·. 11!~~ii~:~~·~~~Jf ~~1~l

}

Note first how comments are inserted into the text, to guide the reader.

Now, note the lines

char string[l28];
FILE *fileptr;

These declare two data structures. That is. they tell COHERENT to set aside a specific
amount of memory for them.

The first declaration, char string[l28];, declares an array of 128 chars. A char is a data
entity that is exactly one byte long; this is enough space to store exactly one alphanumeric
character in memory, hence its name. An array is a set of data elements that are recorded
together in memory. In this instance, the declaration sets aside 128 chars-worth of
memory. This declaration reserves space in memory to hold the data that your program
reads.

The second declaration, FILE •fileptr, declares a pointer to a FILE structure. The asterisk
shows that the data element points to something, rather than being the thing itself. When a
variable is declared to be a pointer. the C compiler sets aside enough space in memory to
hold an address. When your program reads that address, it then knows where the actual
data are residing, and looks for them there. C uses pointers extensively. because it is much
more efficient to pass the address of data than to pass the data themselves. You may find
the concept of pointers to be a little difficult to grasp; however, as you gain experience with
C, you will find that they become easy to use.

The FILE structure is the data entity that holds all the information your program needs to
read information from or write information to a file on the disk. For a detailed discussion of
the FILE structure, see its entry in the Lexicon. For now. all you need to remember is that
this declaration sets aside a place to hold a pointer to such a structure. and the structure
itself holds all of the information your program needs to manipulate a file on disk. In effect,
the variable fileptr is used within your program as a synonym for the file itself.

Now, the line

fileptr = fopen("tester", "r");

opens the file to be read. The function Copen opens the file, fills the FILE structure, and
fills the variable ftleptr with the address of where that structure resides in memory.

fopen takes two arguments. The first is the name of the file to be opened, within quotation
marks. The second argument indicates the mode in which to open the file; r indicates that
the file will be read rather than written into.

TUTORIAL

104 The C Language

The lines

for(;;)
{

begin a loop. A loop is a section of code that is executed repeatedly until a condition that
you set is fulfilled. For example, you may define a loop that executes until the value of a
particular variable becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these braces
mean that the following lines, up to the next right brace Glare part of this loop. You can set
conditions that control how a for loop operates: in its present form, it will loop forever. This
will be explained in more detail shortly.

Two library functions are executed within the loop. The first.

fgets(string, 128, fileptr);

reads a line from the file named in the tlleptr variable. and writes it into the character array
called string. The middle argument ensures that no more than 128 characters will be read
at a time. The second line within this loop,

printf("is", string);

prints the line. prlntfis a powerful and subtle function: in its present form, it prints on the
screen the string contained in the variable string.

Finally, the line at the top of the program:

#include <stdio.h>

tells C preprocessor cpp to read the header file called stdio.h. The term "STDIO" stands for
"standard input and output": stdio.h declares and defines a number of routines that will be
used to read data from a file and write them onto the screen.

When you have finished typing in this code. again compile the program as you did earlier. If
an error occurs. check what you have typed and make sure that it exactly matches the code
shown on the previous page. If you find any errors, fix them and then recompile. If errors
persist, check it in the table of error messages that appear at the end of this tutorial.

When compilation is finished, execute display as you did earlier. You will see the text from
display.c scroll across the screen. When the text is finished, however, the COHERENT
prompt does not return: you have not yet inserted code that tells the program to recognize
that the file is finished. Type <ctrl-C> to break the program and return to COHERENT

Accepting File Names
Of course, you will want display to be able to display the contents of any file, not just files
named display.c. The next step is to add code that Jets you pass arguments to the program
through its command line. This task requires that you give the main() function two
arguments. By tradition, these are always called argc and argv. How they work will be
described in a moment.

The enhanced program appears as follows. You should change or insert the lines that are
shaded:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.

TUTORIAL

* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
n8~11,~~~'.tS~~'it~TI,'$1ift~~f.WAf~$7'.1~11Wf:''.'•':~:~··:<

}
}

First, a small change has been added: the line

#define MAXCHAR 128

The C Language 105

defines the manifest constant MAXCHAR to be equivalent to 128. This is done because the
"magic number" 128 is used throughout the program. If you decide to change the number
of characters that this program can handle at once, all you would have to do is to change
this one line to alter the entire program. This cuts down on mistakes in altering and
updating the program. If you look lower in the program, you will see that the declaration

char string[l28]

has been changed to read

char string[MAXCHARJ

The two forms are equivalent; the only difference is that the latter is easier to use. It is a
good idea to use manifest constants wherever possible, to streamline changes to your
program.

Now, look at the line that declares main(). You will see that main() now has two arguments:
argc and argv.

The first is an int, or integer, as shown by its declaration - int argc;. argc gives the
number of entries typed on a command line. For example, when you typed

display filename

the value of argc was set to two: one for the command name itself. and one for the file-name
argument. argc and its value are set by the compiler. You do not have to do anything to
ensure that this value is set correctly.

TUTORIAL

106 The C Language

argv, on the other hand, is an array of pointers to the command line's arguments. In this
instance, argv[l] points to name of the file that you want display to read. This, too, is set
by COHERENT, and works automatically.

If you look below at the line that declares fopen(), you will see that tester has been replaced
with argv[I]; this means that you want fopen() to open the file named in the first argument
to the display command.

Now, try running the program by typing

display display.c

display will open display.c and print its contents on the screen. You still need to type
<ctrl-C> when printing is finished; the code to recognize the end of the file will be inserted
later.

Also, be sure that you give the command only one file name as an argument, no more and
no less. Code that checks against errors has not yet been inserted, and handing it the
wrong number of arguments could cause problems for you.

Error Checking
Obviously, the program runs at this stage, but is still fragile, and could cause problems.
The next step is to stabilize the program by writing code to check for errors. To do so. a
programmer must first write code to capture error conditions, and then write a routine to
react appropriately to an error.

Our edited program now appears as follows:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/*define arguments to main() */
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

/* Open file */

TUTORIAL

/* Read material and display it */
for (;;) {

}
}

fgets(string, MAXCHAR, fileptr);
printf("%s", string);

The additions to the program are introduced by comments.

The first addition

if (argc I= 2)
error("Usage: display filename");

The C Language 107

checks to see if the correct number of arguments was passed on the command line; that is
to say. it checks to make sure that you named a file when you typed the display command.

As noted above, argc is the number of arguments on the command line, or rather, the
number of arguments plus one, because the command name itself is always considered to
be an argument. The statement if(argc != 2) checks this. The if statement is built into C.
If the condition defined between its parentheses is true, then do something, but if it is not
true, do nothing at all. The operator!= means "does not equal". Therefore. our statement
means that if argc is not equal to two (in other words, if there are not two and only two
arguments to the display command - the command name itself plus a file name), execute
the function error. error is defined below.

Our fopen function also has some error checking added (which will be described in a
moment):

if ((fileptr = fopen(argv[l], "r")) ==NULL)
error("Cannot open file");

fopen returns a value called "NULL" if, for any reason, it cannot open the file you requested.
Thus, our new if statement says that if fopen cannot open the file named on the command
line (that is, argv[l]), it should invoke the error function.

C always executes nested functions from the "inside out". That means that the innermost
function (that is, the function that is enclosed most deeply within the pairs of parentheses)
is executed first. Its result, or what it returns, is then passed to next outermost function as
an argument; that function is then executed and what it returns is, in turn, passed to the
function that encloses it, and so on. In this instance, the innermost function is

fileptr = fopen(argv[l], "r")

fopen is executed and what it returns is written into fileptr. What fopen returned is then
passed to the next outer operation; in this case, it is compared with NULL, as follows:

(fileptr = fopen(argv[l], "r")) ==NULL)

What that operation returns is then passed to the outermost function, in this case the if
statement, which evaluates what it is passed, and acts accordingly. If fileptr is NULL (that

TUTORIAL

108 The C Language

is, if fopen couldn't open the file), the ff statement will be true and the error function
called. If, however, the file was opened, flleptr will not equal NULL and the program will
proceed.

As this example shows, Callows a programmer to nest functions quite deeply. Although
nested functions are sometimes difficult to untangle when you read them, they make
programming much more convenient.

Finally. at the bottom of the file is a new function, called error:

error(message)
char *message;
{

}

printf("%s", message);
exit(l);

This function stands outside of main, as you can tell because it appears outside of main's
closing brace. This function is called only when your program needs it. If there are no
errors, the program progresses only until the closing brace in main and the error function
is never called.

error takes one argument, the message that is to be printed on the screen. This message is
defined by the routine that calls error. enor uses the function printf to print the message.
then calls the exit function; this, as its name implies, causes the program to stop. The
argument 1 is a special signal that tells COHERENT that something went wrong with your
program.

When the error checking code is inserted, recompile the program without an argument.
Previously, this would cause the program to crash; now, all it does is print the message

Usage1 display filename

and terminate the program.

Print a Portion of a File
So far, our utility just opens a file and streams its contents over the screen. Now, you must
insert code to print a 23-line portion of the file. At present, it will only print the first 23
lines, and then exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this
one will cycle only 23 times, and then stop. Our updated program appears as follows:

I*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*I

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];

TUTORIAL

{
char string[MAXCHAR];
FILE

/* Check if right number of arguments was passed */
if (argc ! = 2)

error("Usage: display filename");

I* Open file */
if ((fileptr = fopen(argv[l], "r"))

error("Cannot open file");

I

printf("%s", string);

}
}

I* Process error messages */
error(message)
char *message;
{

}

printf("%s", message);
exit(l);

NULL)

The C Language 109

The new for loop is nested inside the loop governed by for(;;). The program also declares a
new variable, ctr, at the beginning of the program. ctr keeps track of how many times the
loop has executed. Now, look at the line:

for (ctr = O; ctr < 23; ctr++)

It has three sub-statements, which are separated by semicolons. The first sub-statement
sets ctr to zero: the second says that execution is to continue as long as ctr is less than 23;
and the third says that ctr is to be increased by one every time the loop executes (this is
indicated by the ++ appended to ctr). With each iteration of this loop, fgets reads a line
from the file named on the display command line, and printf prints it on the screen.

Also, an exit call has been set after this new loop. This ensures that the program will exit
automatically after the loop has finished executing. This is a temporary measure, to make
sure that you no longer have to type <ctrl-C> to return to the shell.

When you have updated the program, recompile it in the usual way. When you run it,
display will show the first 23 lines of the file. and then the shell's prompt will return.

The program is now approaching its final form.

TUTORIAL

110 The C Language

Checking for the End of File
The next-to-last step in preparing the program is teaching it to recognize the end of a file
when it sees it. This does not appear to be needed now because the program exits
automatically after 23 lines or fewer. but it will be quite necessary when the program begins
to display more than one 23-line portion of text.

The function fgets checks to see if it has arrived at the end of a file, and returns a special
value if it has. fgets normally returns the address of the string into which it writes its
output: however. if it runs into the end of a file (or if any other error occurs), it returns the
special value NULL. By reading the value of what fgets returns, display can detect if the
end of the file has been encountered, and stop reading. To do so. the fgets statement must
be set within an if statement. The if statement will capture what fgets returns, and
continue execution as long as the value of the number returned is not NULL.

The updated program now appears as follows:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHARJ;
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if (argc I= 2)

error("Usages display filename");

/* Open file */

TUTORIAL

if ((fileptr = fopen(argv[l), "r"))
error("Cannot open file");

for (;;) {
for (ctr O; ctr < 23; ctr++) {

exit (O);
}

NULL)

}

/* Process error messages */
error(message)
char *message;
{

}

printf("%s", message);
exit(!);

The C Language 111

First, note that the comment that describes the program's output has been changed to
reflect our changes to the program. It is important for a programmer to ensure that the
comments and the code are in step with each other.

Our new if statement

if (fgets(string, MAXCHAR, fileptr) !=NULL)

checks what fgets returns: if it does not return NULL, the end of the file has not been
reached. the if statement is true and the program prints out the next line. (The operator !=
indicates "not equal".) If it returns NULL, however, the end of file has been reached, the if
statement is false so the else statement is executed. which causes display to exit.

Note, too, that a new control statement is introduced: else. This, like if, is built into the C
language. An else statement is always paired with an if statement; together, they mean
that if the condition for which if is testing is true, the program should do one thing;
otherwise. it should do something else. In this case, the program says that if the end of file
has not been reached. another line should be read from the file and printed on the screen;
however, if it has been reached, then the program should exit. As you can imagine, if/else
pairs are common in C programming; they are logical and useful.

One more task must be done on our program; then it is finished.

Polling the Keyboard
For the program to be complete. it has to ask you if you want to see another 23-line portion
of text. The program should write another portion if you press the <return> key alone; if
you type any other key before you press <return>, then it should exit.

To do so, we will print a query on the screen, then read what the user has typed and
interpret it. When these changes are inserted, the program is complete:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

TUTORIAL

112 The C Language

char string[MAXCHARJ;
FILE *fileptr;
int ctr;

/* Check if right number of arguments was passed */
if (argc ! = 2)

error("Usage: display filename");

/* Open file */
if ((fileptr = fopen(argv[l], "r"))

error("Cannot open file");

/* Output 23 lines, while checking for EOF */
for (; ;) {

for (ctr = O; ctr < 23; ctr++) {

NULL)

if (fgets(string, MAXCHAR, fileptr) != NULL)
printf("%s", string);

else
exit (0);

}

}
}

/* Process error messages */
error(message)
char *message;
{

}

printf("%s", message);
exit(l);

These new lines introduce a few new twists. The lines

printf("Continue? ");
fflush(stdout);

print the prompt Continue? on the screen. Note that no '\n' appears after the the prompt;
this ensures that the cursor does not jump to the next line, but stays next to the prompt.
Because no '\n' appears after the line. however. you have to force it to appears on the
screen; this is accomplished with the statement:

fflush(stdout);

mush flushes matter to an output device. stdout points to a file stream, just like the
stream that you opened with the call to fopen, earlier in the program. stdout is opened in
the header file stdio.h. which was read at the beginning of the program; it always points to
the user's screen.

TUTORIAL

The C Language 113

The next line reads the user's keyboard:

fgets(string, MAXCHAR, stdin);

This version of fgets reads matter into our array string; however, instead of reading the file
pointed to by meptr. it reads what is pointed to by stdin. stdin is a stream that is also
defined in stdio.h; it always points to the user's keyboard.

Finally, the statement

if (string[O] l= '\n')

checks what the user typed by reading the first (that is, the zero-th) character written in the
array string by the preceding call to fgets. (Note that with C, counting always begins with
zero rather than one.) If the user just types <retum>. then string[O] will hold '\n'; and the
if statement will not be true, the program jumps to the preceding for statement, and more
text is written to the screen. However, if the user types anything before typing <return>,
the if statement will succeed and the program will exit. This may seem a little convoluted,
but it actually is a straightforward and efficient way to receive information from the user.

After you have inserted these changes, again compile the program.

When compilation is finished, try typing

display display.c

The first 23 lines of the source code to the program now appear on your screen. Hit
<return>; the next 23 lines appear. Now, type any other key, and then press <return>: the
program exits.

You now have a simple but helpful display utility.

For More Information
This section has given you a brief, concentrated introduction to writing a C program. If you
are new to programming, much of what happened must seemed strange, but we hope it
helped you to appreciate the logic of how C works.

Numerous books are on the market to teach beginners how to program in C; the following
section gives a small bibliography of books on C. Also, look at the sample C programs in
the Lexicon. These demonstrate how to use many of the functions available to you with
COHERENT.

Bibliography
The following books may be helpful in developing your skills with C. This list also contains
all books that are referenced in this manual. It is by no means exhaustive; however, it
should prove helpful to both beginners and experienced programmers.

American National Standards Institute: Draft Programming Language C (October 1986
Draft). Washington, D.C.: X3 Secretariat, Computer and Business Equipment
Manufacturers Association, 1986.

AT&T Bell Laboratories: The C Programmer's Handbook. Englewood Cliffs, N.J.: Prentice­
Hall, Inc .. 1985.

Bentley. J.: Programming Pearls. Reading, Mass.: Addison-Wesley Publishing Company,
1986. Not, strictly speaking, about C - but belongs on every programmer's bookshelf.

TUTORIAL

114 The C Language

Brooks, F.P .. Jr.: The Mythical Man-Month: Essays on Software Engineering. Reading, Mass.:
Addison-Wesley Publishing Company. Inc .. 1975. Not about programming, but should be
read by every programmer.

Chirlin, P.M.: Introduction to C. Beaverton, Or.: Matrix Publishers, Inc .. 1984.

Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co., Inc., 1986.

Feuer, A.R.: The C Puzzle Book. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Gehani, G.: Advanced C: Food for the Educated Palate. Rockville, Md.: Computer Science
Press, 1985.

Hancock, L.: Krieger, M.: The C Primer. New York: McGraw-Hill Book Publishers, Inc.,
1982.

Harbison, S.; Steele, G.: C: A Reference Manual. Englewood Cliffs, NJ: Prentice-Hall. Inc ..
1984.

Haviland, K.F., Salama, B.: UNIX System Programming. Reading, Mass.: Addison-Wesley
Publishing Company, Inc., 1987.

Hogan, T.: The C Programmer's Handbook. Bowie, Md.: Brady Publishing, 1984.

Kelley, A.; Pohl, I.: C by Dissection: The Essentials of C Programming. Menlo Park, Ca.: The
Benjamin/Cummings Publishing Company, Inc., 1987.

Kernighan. B.W.; Ritchie, D.M.: The C Programming Language. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1978.

Kernighan, B.W.; Plauger, P.J.: The Elements qf Programming Style, ed. 2. New York:
McGraw-Hill Book Co., 1978.

Kochan, S.G.: Programming In C. Hasbrouck Heights, N.J.: Hayden Book Co., Inc., 1983.

Knuth, D.E.: The Art of Computer Programming, vol. 1: Basic Algorithms. Reading, Ma.:
Addison-WesleyPublishingCo., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 2: SeminumericalAlgorithms. Reading,
Ma.: Addison-WesleyPublishingco., 1969.

Knuth, D.E.: The Art of Computer Programming. vol. 3: Sorting and Searching. Reading,
Ma.: Addison-Wesley Publishing Co., 1969.

Lapin, J.E.: Portable C and UNIX System Programming. Englewood Cliffs, N.J.: Prentice-Hall,
Inc .. 1987.

Mark Williams Company: ANSI C: A Lexical Guide. Englewood Cliffs, NJ: Prentice-Hall,
1988.

Plum, T.: C Programming Guidelines. Cardiff. N.J.: Plum Hall, Inc .. 1984.

Plum, T.; Brodie, J.: Efficient C. Cardiff, NJ: Plum Hall, Inc., 1985.

Purdum, J.: C Programming Guide. Indianapolis: Que Corp., 1983.

Purdum, J.; Leslie, T.C.; Stegemoller, A.L.: C Programmer's Library. Indianapolis: Que
Corp., 1984.

Rochkind, M.J.: Advanced UNIX Programming. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1985.

TUTORIAL

The C Language 115

Traister, R.J.: Going from BASIC to C. Englewood Cliffs, N.J.: Prentice-Hall. Inc., 1984.

Traister, R.J.: Mastering C Pointers. New York: Academic Press, Inc., 1990.

Traister, R.J.: Programming In C for the Microprocessor User. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1984.

Vile, R.C., Jr.: Programming In C with Let's C. Glenview, IL: Scott, Foresman and
Company. 1988.

Waite, M.; Prata, S.; Martin, D.: C Primer Plus. Indianapolis: Howard W. Sams, Inc., 1984.

Weber Systems, Inc.: C Language User's Handbook. New York: Ballantine Books, 1984.

Zahn, C.T.: C Notes. New York: Yourdan Press, 1979.

TUTORIAL

116 The C Language

TUTORIAL

Section 6:

Introduction to ed, Interactive Line Editor

This tutorial introduces the interactive editor ed. It is intended both for readers who want a
tutorial introduction toed, and those who want to use specific sections as a reference.

Related tutorials include include those for sed, the stream editor, and for me, the
MicroEMACS screen editor. This tutorial assumes that you already understand the basics
of using the COHERENT system, such as what a file is, what it means to edit text, and how
to issue commands to the operating system. If you not yet know your way around the
COHERENT system, we suggest that you first study the Using the COHERENT System,
which appears in the front of this manual. It covers the basics of using COHERENT and
introduces many useful programs.

Why You Need an Editor
A significant feature of computers is the capacity to store, retrieve, and operate upon
information. A computer can store many different kinds of information: programs,
computer commands and instructions, data for programs, financial information, electronic
mail, or natural-language text (e.g .. French, English) destined for a manuscript or book.

ed is a program with which you can enter and edit text on your computer. You can use ed
to create or change computer programs, natural-language manuscripts, files of commands,
or any other file that consists of text that you can read.

ed is designed to be easy to use, and requires little training to get started. The fundamental
commands are simple, but have enough flexibility to perform complex tasks.

Learning To Use the Editor
Practice on your part will help you learn quickly. The following sections contain examples
that illustrate each topic discussed. We strongly recommend that you type each example
presented as you encounter it in the text. Even if you understand the concept presented,
performing the example reinforces the lesson, and you will learn more quickly how to use
ed.

In addition to reading the text and doing the examples as you encounter them in the text,
try your own variations on the commands, and branch out on your own. Try things that
you suspect might work, but are not shown as examples.

General Topics
This section presents the backround information you will need to understand how ed
works.

To help illustrate the discussion to follow, log into your COHERENT system and type the
following commands:

117

118 ed Interactive Line Editor

ed
a
this is a sample
ed session

w test
q

This example calls ed. then uses the a command to add lines to the text kept in memory.
The period signals the end of the additions. The w command writes the lines of text to file
test, and the command q tells ed to return to COHERENT. You will notice that after you
type the w command, ed will respond with

28

which is the number of characters in the file.

Thus, to enter ed, simply type

ed

and to exit, type

q

You can also exit by typing <ctrl-D>: that is, hold down the control key on your keyboard,
and at the same time strike the D key.

Notice that you are issuing two different kinds of commands in the above example. The
commanded is an COHERENT command, whereas the rest are commands to the editor.
After ed is given the q command, it exits, and following commands are processed by
COHERENT.

ed, Files, and Text
ed works with one file at a time. With ed. you can create a file, add to a file, or change a file
previously created.

As you use ed to create or change files; you will type both text and controlling commands
into the editor. Text is, of course, the matter that you are creating or changing.
Commands, on the other hand, tell ed what you want it to do. As you will see shortly, there
is a simple way to tell ed whether what you are typing is text or commands.

ed has about two dozen commands. Almost every one is only one letter long. Although
they may seem terse, they are easy to learn. You will appreciate the brevity of the
commands once you begin to use ed regularly.

You must end each command to ed by striking the <return> key. This key is present on all
terminals. However, the labeling of the key may vary. It may be called newline, linefeed,
enter, or eol, and is larger than any key on the keyboard except for the space bar. This key
will be called the <return> key in the remainder of this document.

TUTORIAL

ed Interactive Line Editor 119

Creating a File
The example shown above created a file. Here is another example of file creation here,
creating a file called twoline:

ed
a
Two line Example,
thank you.

w twoline
q

The letter a tells ed to add lines to the file. You are creating a new file with this example;
and when ed creates a new file, it is initially empty. Thew command writes the lines you
have added to file twollne. The command q tells the editor that you are finished,
whereupon it returns to COHERENT. You can use the COHERENT command cat to list the
contents of the new file:

cat twoline

the reply will be:

Two line Example,
thank you.

Each command used here will be described in detail in later sections.

Changing an Existing File
Suppose that a manuscript file of yours needs a few spelling corrections. ed will help you
make them. To begin, simply name the file to correct when you issue the COHERENT
command:

ed filename

where filename stands for the name of the file that you wish to edit. For example, the
following adds a line to the file twoline, which we just created:

ed twoline
$a
This is the third line of the file.

w
q

Listing the file with cat gives:

Two line Example,
thank you.
This is the third line of the file.

The command $a tells ed to add one or more lines at the end of the file.

Correcting the spelling of a misspelled word is easy with ed. You can rearrange groups of
words in a manuscript, and you can move or copy larger portions of text, such as a
paragraph, from one spot to another.

TUTORIAL

120 ed Interactive Line Editor

Working on Lines
ed uses the line as the basic unit of information; for this reason, it is called a line-oriented
editor. A line is defined as a group of characters followed by an end-of-line character, which
is invisible. When you type out a file on your terminal, each line in the file will be shown on
your terminal as one line. The commands for ed are based upon lines. When you add
material to a file, you will be adding lines. If you remove or change items. you will do so to
groups of lines.

ed knows each line by its number. A line's number, in turn. indicates its position within
the file: the first line is number 1. the second line is number 2. and so on.

ed remembers the line you worked on most recently. This can help shorten the commands
you type, as well as reduce the need for you to remember line numbers. The line most
recently worked on is called the current line. ed commands use a shorthand symbol for the
current line: the period·:.

Another shorthand symbol used in ed commands is$, which represents the number of the
last line in the file.

Many of the ed commands operate on more than one line at a time. Groups of lines are
denoted by a range of line numbers, which appears as a prefix to the command.

Error Messages
If you type a command to ed incorrectly. ed respond with:

?

This indicates that it has detect an error. Many times, this error will be evident to you
when you review the command that you just typed.

If you do not see what the error is, you can get a more lengthy description by typing to ed:

?

It will reply with an error message.

Basic Editing Techniques
This section discusses in more detail the elementary techniques and commands that you
need to use ed. With the material presented in this section, you will be able to do most
basic editing tasks.

Again, it is recommended that you type each example. This will help you understand each
example, as well as remember the technique it demonstrates.

Creating a New File
To begin, let us presume that you need to create an entirely new file named first. Perhaps
you only want one line in the file, and it is to read

This is my first example

These are the steps that you will need to go through to create this file.

TUTORIAL

ed Interactive Line Editor 121

The first step is to invoke theed program. To do this, simply type

ed

Remember that you must end each line of commands or text line by pressing the <return>
key, because ed will not act upon it until you do. Thus, you invoke the editor by typing ed
and a <return>. Notice that these two characters must be lower case.

ed is now ready for commands. The first command that you will use is the append
command a. This tells ed to add lines to the text in memory, which will later be written to
the file. The number of lines that ed can hold in memory depends upon the amount of
memory in your computer. For editing very large files, you should use sed, the COHERENT
stream editor, which is described in in its own tutorial.

ed will continue to add lines until you type a line that contains only a period. While it is
adding lines, ed does not recognize commands.

After you issue the a command, you can type the lines to be included, concluding with a
line that consists only of a period. This special line signals ed that you want to stop
appending lines. The information that you have typed so far is:

ed
a
This is my first example

Next, you must tell ed to write the edited text into a file. Do so by issuing the write
command w, plus the name of the file that is to hold the edited text. For example, if you
wish to store this example in a file named first, issue the command:

w first

ed will write the file and tell you how many characters were written, in this case 25.

Finally, to quit the editor issue the quit command:

q

The commands you type after this will be interpreted and acted upon by COHERENT.

Now, review the example in its entirety. First you invoked ed by typing ed at the
COHERENT prompt. Then you issued the add command a to add lines to the file. added
lines with the a command, and finished the adding by typing a line that consists only of a
period. You then wrote the editing text into a file by issuing the write command w, and
finally you exited from ed by issuing the quit command q. The complete example is:

ed
a
This is my first example

w first
q

ed replied to the w command by printing the number of characters it wrote into the file.
After you typed q, COHERENT prompted you for a command again.

TUTORIAL

122 ed Interactive Line Editor

Changing a File
Suppose that you wish to change the file that you have just created: you want to add two
more lines to the file so that the original line will be sandwiched between the new lines.
You want the file to contain:

Example two, added last
This is my first example
Example two, added first

You will do this with ed using two new commands.

Again, you start by telling COHERENT to run ed. This time. however. you must type the
name of the file that you are changing after the characters ed:

ed first

ed will remember this file name for later use with thew command.

ed reads the file in preparation for editing. and tells you the number of characters that it
read in, again 25.

After reading the file, ed automatically sets the current line to the last line read in.

Now, add the third line shown in the second example by entering:

a
Example two, added first

This resembles the first example. In that case, however, the file had no information,
whereas now it does. How did ed know where to add the lines?

The a command adds lines after the current line. When ed reads a file, it initially sets the
current line to the last line read in; therefore, the a command added the new line after the
last line.

The current line is used implicitly or explicitly by most commands, so it is helpful to know
where it is. In general. the current line is left at the last line ed has processed. If you lose
track of the current line, you can asked to tell you where it is. as you will see shortly.

To add the very first line to the second example, you will use yet another command. the
insert command 1. This command is identical to the a command, except that it inserts lines
before the current line rather than after it.

Another word about the current line. After an a command finishes, the current line is the
last line added. Thus, after the addition of "Example two, added first" above, the current
line is now the last line in the file. So, if you were to do the 1 command immediately, you
would be adding lines just before the last line, which is not what you want to do.

Nearly every ed command is flexible enough to allow you to specify the line upon which the
command is to operate. Now you can complete the second example:

1i
Example two, added last

The numeral 1 before the 1 tells ed to insert lines before the first line in the file. The line­
number prefix is used frequently, and applies to nearly every command.

TUTORIAL

ed Interactive Line Editor 123

Now, to finish the second example and save it into the same file, type:

w
q

Note that the file name was left off the w command. ed remembers the name of the file that
you began with, and uses that name if none is used with the w command. Therefore, the
edited text is written back into file first. Note, too, that the previous contents of the file
first are lost when you write the new file first. Alternatively. you can type:

w second

This leaves the contents of first unchanged and creates a new file called second.

In case you forget, ed can tell you the name of the file with which you began. Simply type
the command:

f

If you had used f any time while working on this second example, ed would have replied:

first

Remember to use the q command to leave ed and return to COHERENT.

Printing Lines
As you use ed to edit a file, you will find it most useful to print sections of the file on your
terminal. This helps you see what you have done (and sometimes what you have not done),
and helps you pinpoint where you wish to make changes.

The print command p prints the current line unless you specify a line number.

Continuing with the example begun above, when you type the commands

ed first
p

ed replies by printing

Example two, added first

which is the last line in the file named first from the previous example.

Again, like the commands i and a, if you want ed to print a line other than the current one,
just prefix the p command with a line number. Thus, if you want to print the second line in
the file, type:

2p

ed will reply with:

This is my first example

If you wish to print more than one line of a file, you can tell ed to print a range of line
numbers: type the numbers of the first and last lines you wish to see, separated by a
comma. For example, to print all three lines in the second example, type:

1,3p

ed responds by printing all lines. This same principle applies to other commands. The
print command can also appear after other commands such as s or d, which are discussed

TUTORIAL

124 ed Interactive Line Editor

later in this section.

Abbreviating Line Numbers
ed recognizes some shorthand descriptions for certain line numbers. The number of the
last line can be represented by the dollar sign$. Thus, the command

1,$p

prints every line in the file. The advantage of this shorthand is that the command as typed
works for any file, regardless of its size. This construct of I ,$pis used often enough that it
has an abbreviation of its own:

*p

The number of the current line can also be abbreviated by using the period or dot in the
place of a line number. To print all lines from the beginning of the file through the current
line, type:

1, .p

To print all lines from the current line through the end of the file. type:

•I $p

The special symbol & prints one screenful of text. Simply type:

&

This is equivalent to:

.,.+22p

If there are fewer than 23 lines between the current line and the end of the file, it is
equivalent to

.,$p

All forms of the p command change the current line to the last line printed. The command

•I $p

after printing changes the current line to the last line of the file.

How Many Lines?
You can easily see the current line with p. Type:

p

This tells ed to print the current line. On your terminal, try the command:

.p

You will see that it does the same thing asp.

To discover how large your file is, just type:

ed will reply by typing the number of lines in the file.

TUTORIAL

ed Interactive Line Editor 125

To find the number of the current line, use the dot equals command:

.=
ed responds with the number of the current line.

Removing Lines
Editing means removing lines of text, as well as adding them. To illustrate how ed lets you
remove lines of text, create another example file with ed:

ed
a
This is the first line.
The second line is good.
However, line three is bad.
line four wishes to go away.
line 5 similarly wants to be forgotten,
as does line 6.
the next to last line stays.
as does the last line in the file.

w example3
q

This creates a file named example3.

Now, you can practice removing lines that you no longer want. Begin editing the file by
typing:

ed example3

Now, print the contents of the file by typing:

l,$p

Our first task is to delete lines 3 through 6. First, delete line 3, then print the entire file
again.

3d
1,$p

and ed will respond with

This is the first line.
The second line is good.
line four wishes to go away.
line 5 similarly wants to be forgotten,
as does line 6.
the next to last line stays.
as does the last line in the file.

Notice that the original file's third line is no longer there. Line 3 is now what used to be line
4. Remember that the line numbers always begin with 1 for the first line of the file and
progress consecutively even after the file has been changed. Thus, deleting a line will
change the line number of each line from the deleted line to the the last line in the file.

TUTORIAL

126 ed Interactive Line Editor

You still need to remove three more lines. You can do this with one command:

3,Sd

Again, type "'P to print the contents of the file:

This is the first line.
The second line is good.
the next to last line stays.
as does the last line in the file.

Finally, write the updated file and quit:

w
q

This illustrates how to delete lines. both singly and in a group.

Abandoning Changes
Sometimes, you may made a mistake; rather than damage your file with badly edited text,
you may wish to abandon what you have done and begin all over again. You can do so by
using the q command in a different fashion than is shown above.

If you tell ed to q before you tell it to write the file with w. you abandon any changes made
since beginning editing. However, to prevent you from accidentally selecting this option, ed
checks to see if you have made any changes to the file: and if you have, it responds with a
question mark '?'. To tell ed that you know what you are doing and really do wish to
abandon the edited file, reply with a second q. ed will then quit and return you to
COHERENT.

You can avoid the question mark prompt by typing the upper-case Q rather than lower-case
q: ed will exit without regard to unsaved changes. You can also exit from ed by typing the
end-of-file key <ctrl-D>.

Substituting Text Within a Line
If you type a line incorrectly, or later wish to rearrange some words or symbols within it,
you know enough about ed now to do so. You only need to delete the line with the delete
command d and re-type the line with the insert command i. To see how this is done,
prepare the file example4, as follows:

ed
a
Software technology today has
adbanced to the point that large
software projects unherd of in
earlier times are undertaken and

w example4
q

This example has two misspelled words. We will correct each of them using different ed
features.

TUTORIAL

ed Interactive Line Editor 127

The first method will be the direct way that you probably can anticipate. Give the following
commands to the editor exactly as shown:

ed example4
2d
i
advanced to the point that large

These commands use the delete command d to delete the second line. and then uses the
insert command i to insert the correct new line in its place.

Use the command

*p

to verify that the file now contains:

Software technology today has
advanced to the point that large
software projects unherd of in
earlier times are undertaken and

You can also use a second method to change the spelling of a word. This is the substitute
commands. This command is very powerful. and probably is used more frequently than any
other ed. command.

The substitute commands is more complex than commands we have discussed so far, in
that it has more elements, as follows: First is a line number or optional range of line
numbers. Then comes the letters, to invoke the substitute command itself. Third comes
two patterns or strings. which are set off from the rest of the command and from each other
with the slash character. For example:

1,$s/patternl/pattern2/

Here, patternl represents the string that you want ed to replace, and pattern2 is the string
that ed is to substitute in place of patternl. Note that three slashes separate the two
patterns from the s. from each other. and from the end of the line. These slashes must
always be present.

With this command, you can correct the second spelling error in the example4:

3s/herd/heard/
p

ed replies:

software projects unheard of in

Note that these two command lines can be condensed to one:

3s/herd/heard/p

The meaning of these commands is: on the third line of the file, change herd to heard and,
when finished, print the entire line. Without the p command, ed will change the line as you
direct, but will not show you the new line. It is a good idea to print lines that you
substitute in this manner until you gain in confidence with ed. Some ed experts always
print the lines after substitution.

TUTORIAL

128 ed Interactive Line Editor

After these two changes, the file will look like this:

Software technology today has
advanced to the point that large
software projects unheard of in
earlier times are undertaken and

Although the above example substitutes one word for another. note that the s command can
replace any conseutive group of characters with any other: it may be one word, several
words (including the space characters that separate them), or a fragment of a word.

Because ed looks for patterns rather words. you should keep in mind that it may find the
wrong pattern. For example. assume that the current line in a file is

let not rain fall on a parade

and instead you want to say:

let not rain fall on the parade

You command ed to:

s/a/the/p

and are shocked to discover that the result is:

let not rthein fall on a parade

A better command to give ed would have been a substitute command that substituted the
letter a preceded and followed by a space:

s/ a I the /p

Another correct way to do this task is to indicate within the substitution command which of
several possible matches within the line is to be substituted. In our example, it is actually
the third a that we are trying to match, so we could have used the special form of the
command

s3/a/the/p

to get ed to select the one we wanted.

Undoing Substitutions
If you did change a to the inappropriately. you can retract the substitution by issuing the
undo command

u

before you move on to another current line.

To illustrate this, enter this example:

ed
a
let not rain fall on a parade

w undo
q

Now. perform the substitution with

TUTORIAL

ed undo
s/a/the/p

which will result in:

let not rthein fall on a parade

To retract the substitution, simply type:

u

p

This undoes the substitution and prints the result.

ed Interactive Line Editor 129

Note that the undo command undoes the substitution only on the current line. Remember
that if your substitution command operated over a range of lines, when it finishes the
current line is the last one upon which the substitution was made. Thus, if you made an
inappropriate substitution over a range of lines, the undo command will fix only the last
line.

Global Substitutions
As you saw with the above examples, the s command substitutes only the first occurrence of
the requested pattern on a given line.

A different form of the substitute command finds every occurrence of the indicated string on
a line. Simply add the letter g for global after the third slash in the substitute command.
and ed finds and changes every one:

s/patternl/pattern2/g

So, if the current line contains a phrase:

a rose is a rose is a rose

and we tell ed to substitute

s/a/the/g

the line is changed to:

the rose is the rose is the rose

Again, be careful that your command does not inadvertently match all or part of a word that
you wish to keep untouched.

Special Characters
In its first two parts. the substitute command uses some special punctuation characters.
They will be discussed below in detail. However, you should be aware of these characters
and avoid them until you progress to the advanced section, for unless used properly, they
will give you undesired results. The characters are:

["$*.\&

They are used in ed and other COHERENT programs to form complex patterns.

TUTORIAL

130 ed Interactive Line Editor

Ranges of Substitution
Perhaps you need to change several lines that have the same misspelling or need the same
editorial change. s can do that for you also. Simply prefix the command s with the line­
number range as you would do with p. Borrowing the "rose" example again, if the saying
were typed:

a rose is
a rose is
a rose

then you could do the same change as before, but across the entire file by typing

1,$s/a/the/

Note that the g after the s command has been omitted here, because you know that the
string that you want to change appears only once on each line.

If some of the lines do not have the the string you want to change, ed will not complain that
the string is missing. However, if none of the lines in the range has the requested string. ed
will print a ? .

Intermediate Editing
This section introduces the more advanced command features of ed. Although you have
already learned enough about ed to become productive, this section covers additional
features that will increase your editing power considerably.

This section discusses the following topics: relative line numbering. moving blocks of text,
finding strings. using special characters in substitution and search commands, processing
global commands, and marking lines.

Relative Line Numbering
As discussed in the previous section, most commands allow you to use line numbers to
control their range of operation. Before the command you can enter a single line number;
for example:

lp

This, of course, prints the first line of the file. You may also specify a range of line
numbers, by entering two numbers separated by a comma. For example, if the file contains
at least ten lines. the command

1,lOp

prints the first ten lines of the file.

The period (dot) always represents the number of the current line. For example, to print the
file from the first line through the current line. just type:

1, .p

A command used without a line number always acts on the current line only. For example,
typing

p

is equivalent to typing:

TUTORIAL

ed Interactive Line Editor 131

.p

There is yet another level of shorthand to line numbering the plus and minus characters.
These characters indicate offsets from the current line. For example, the command

.+3p

prints the third line after the current line. Likewise, the command

.-lp

prints the line that precedes the current line. Note that using a line offset changes the
current line to the one addressed. Thus, after the above command is executed, the current
line will be the one that preceded the original current line.

You can abbreviate this notation still further by leaving out the dot. The commands

+p
-p

do the following: First, ed advances to the next line and prints it; then it backs up to the
previous line (which was the original current line) and printing it.

You can place several of these commands on one line to move the current line multiple
lines. To back up three lines and then print. type:

---p

Note that in the absence of any other command, ed defaults to the p command. Thus

is equivalent to

---p

and

5

is identical to:

5p

The print command has one more abbreviation. If ed is expecting a command from you and
you type nothing except <return>, ed interprets this as a command to advance the current
line to the next line and print it. This action is equivalent to

+

or

.+1

<return> is the shortest command in ed.

All of the abbreviations for line numbers can be used by other commands that expect a
range of line numbers. For example, if you want to delete five lines centered about the
current line, you could type:

.-2,.+2d

TUTORIAL

132 ed Interactive Line Editor

and you would get your wish.

Note that ed does not allow you to specify a line number that is beyond the range of the file;
this is regardless of whether you are typing a line number or any form of abbreviated line
numbering. For example. suppose the current line is the last line in the file and you type:

+

This tells ed to "advance one line then print"; however. this is impossible because you are at
the last line of the file, so there is no next line to print. When you request an impossible
line number. ed replies by printing a question mark. Note, however, that the current line is
always be valid so long as the file has at least one line in it. Thus, unless the file is empty.
the command

will never gtve an error message.

Changing Lines
Earlier, an example of spelling correction was solved two ways. The first way was the
clumsy way of deleting a line and retyping the entire line. This strategy means much work
to change a single letter. so the substitute command was introduced instead.

On occasion, however. it is handy to be able to change lines en masse as was done by
deleting then inserting. ed provides this power with the change command c. In general
terms.

m,nc
new lines
to be inserted

removes lines m through n. and insert new lines up to the period in place of them.

Moving Blocks of Text
When handling text, you will often need to shift a block of text from one position to another.
In a manuscript. for example, you may need to rearrange the order of paragraphs to
increase clarity . In a program, you may need to rearrange the order in which procedures
appear.

To allow you to do this easily, ed provides a move command m that moves a block of text
from one point in the file to another.

mis different from the other commands that we have discussed so far. in that line numbers
follow as well as precede the m command itself. The line number that follows the command
gives the line after which the text is to be moved. So, the general form of the move
command is

b,emd

which means "move lines b through e to after line d".

To see how this works. first build the following file:

TUTORIAL

ed Interactive Line Editor 133

ed
a

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.

w examples
q

The file example5 contains two paragraphs, each three lines long. We will now move the
first paragraph to after the second paragraph.

You can do this in either of two ways: you can move the first paragraph to after the second
paragraph. or you can move the second paragraph to before the first paragraph. Either
gives the same result, but the commands are somewhat different. To shift the first
paragraph to after the second paragraph, type:

ed examples
1,3m$
*p
Q

Remember that$ always represents the last line in the file. The result is:

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

To move the second paragraph to before the first. type:

4,6m0

Note that the destination is 0, which means that the text is to be moved to immediately after
line 0. Because there is no line number 0, the move command interprets this to mean the
beginning of the file.

Of course, in our small example, line number abbreviations and knowledge of the current
line may be used in a number of different ways to perform exactly the same action. For
example,

1, 3m.

says to move lines 1 through 3 of the file to the line after the current line. When you invoke
ed. it always sets the line number to the last line in the file. Thus, this form of the
command has the same effect as the previous forms.

If the destination of a move command is not specified, ed assumes the current line.
Therefore, the command

1,3m

TUTORIAL

134 ed Interactive Line Editor

also repositions the first paragraph correctly.

The move command changes the line numbers in the file, although the number of lines in
the file remains the same. The different forms of the move command will, however. yield
different settings for the current line.

After a move command, the current line becomes the number of the last line moved. Thus,
if you moved the first paragraph to after the second paragraph, the current line will be reset
to the last line in the file the original line 3. However, if you moved the second paragraph
to before the first paragraph, the current line would be reset to line 3 which was originally
the last line in the file.

Copying Blocks of Text
The transfer command t resembles the move command, except that it copies text rather
than moving it. When you move text, it is erased from its original position. When you copy
text, however, the text then appears both in its original position and in the position to
which you copied it. ed uses the term transfer rather than copy because the command c is
already used by change command.

The form of the transfer command is as follows:

b,etd

This means to transfer (copy) the group of lines that begins with b and that ends with e
(inclusive) to after line d.

After copying the text, ed sets the current line to the last line copied.

String Searches
The methods of line location that have been discussed to this point all involve line numbers.
They specified an absolute line number, a relative line number, or a shorthand symbol such
as. or$.

Often, however, line numbers are not useful, because there is no easy way to tell what
number a line has, how many lines ago a block of text began, and so on.

ed's solution to this problem is to locate a line by asking ed to search for a pattern of text.
ed begins searching on the line that follows the current line, and looks for a line that
matches the specified pattern. If it finds a line that contains the requested pattern, ed
resets the current line to that line.

If ed encounters the end of the file before finds a match, ed jumps to the first line in the file,
and continues its search from there. If it finds no match by the time it returns to the line
where the search began, ed gives up and issues an error message the question mark ? .
Remember, if you type a question mark in response to an error message. ed will tell you in
more detail what the error is.

What does it mean to "match" a pattern? The simplest meaning is that two patterns are the
same the strings have exactly the same characters in exactly the same order. To see how
this works, type the following to create file example6:

TUTORIAL

ed Interactive Line Editor 135

ed
a

This is an example that we will
use for string searching. There
is much natural language here as well
as some genuine arbitrary strings.
890, ;+ foxtrot
qwertyuiop ##

w example6
q

Now, to locate and print any line contains the pattern fox, type:

ed example6
/fox/p

In response, ed prints the line:

890,;+ foxtrot

Also, you can use string expressions to print a range of lines. For example:

ed example6
/This/,/much/p

This prints:

This is an example that we will
use for string searching. There
is much natural language here as well

That is, it printed all lines from the first line that contains the pattern This through the first
line that contains the pattern much.

Pattern searches can also be combined with relative line numbers. If you have a Pascal
program file with several procedures in it, but you find that you need to rearrange the
procedures, you can combine the power of the move command with the string searches.

PROCEDURE A;

PROCEDURE B;

PROCEDURE C;

Assume that the section of text that begins with PROCEDURE A should follow the line that
contains PROCEDURE B. The following command moves the text properly:

/PROCEDURE A/,/PROCEDURE B/-lm/PROCEDURE C/-1

This commands ed (I) to locate the chunk of text that begins with a line containing the
pattern PROCEDURE A and ends with the line just before the first line that contains the
pattern PROCEDURE B. and then (2) move that text to just before the first line that
contains the pattern PROCEDURE C. As you can see, you can pack a lot of information
into one ed command.

TUTORIAL

136 ed Interactive Line Editor

Let's look at this command in more detail, to see exactly how it works. First, remember that
the move command m is defined as

b,emd

where b indicates the first line of the text to be moved, e indicates the last line of the text to
be moved, and d indicates the line that the moved text is to follow. Thus, b corresponds to
the number of the line that contains PROCEDURE A and is the first line of the procedure in
question. e, however, corresponds to the line before the PROCEDURE B begins, by virtue of
the -1. Here is an example of mixing pattern searches with relative line numbers, as
mentioned above. Thus, you have found the beginning and ending lines of procedure A.

The final string search locates the first line of subroutine C. The move command normally
moves text to after the given line; and because we wish to move the text to bejore the line
that contains PROCEDURE C, we must include the -1 to move the text up one line.

Remembered Search Arguments
As discussed earlier, line numbers may be abbreviated in many ways. They may be entered
as •. or +, or -, and certain combinations of these. With some commands, pressing
<return> tells ed to use the current line number.

ed encourages you abbreviate the search string. If you enter no string between the slashes
in a search or substitution. then ed uses the last-used search string. A common use is in
the global substitution command (which will be discussed in detail later in this section):

g/please remove this string/s// /p

This does not quite remove it, but replaces it with a blank. The last-used string can be
specified by a string search, a substitute command, or a reverse string search (also
discussed later in this section). Also, the remembered search argument may also be used in
any one of these. You can use the remembered search feature to "walk" through the file.
finding the next occurrence of a remembered search pattern.

Uses of Special Characters
As powerful as the line locator seems, some features are even even more powerful. These
will be discussed in the Expert Editing section, below. However, these more powerful
capabilities depend upon certain punctuation marks used in a special way. As you use the
line locator (as well as the substitute command), be aware of these following characters:

["$*.\&

They have special significance to ed when they appear in a string search or a substitution
pattern.

If you need to use one of these characters without invoking its special meaning, precede it
with a backslash'\·. This tells ed not to interpret the character in a special way.

For example, to find a backslash character. type the search command:

/\\/

If any of these characters is to be used in another context, for example, within lines that
you are adding with the a command, it should rwt be preceded with the backslash. Only
use the backslash to hide the meaning when it appears within the string search command,
or within the first part of the substitution command.

TUTORIAL

ed Interactive Line Editor 137

Global Commands
The global commands g and v let you repeat commands on all lines within a specified range.
For example, to print all lines that contain the word example, type:

g/example/p

The global command can be prefix almost any command. For example, the following
command deletes all lines that contain three consecutive plus signs:

g/+++/d

Likewise, the command

g/foxtrot/.-2, .+2p

prints the five lines that surrounds any line that contains the word foxtrot.

A common use of the global command is to perform global substitution. The command

g/PROCEDURE/s/PROCEDURE/PROC/gp

performs the substitution on each line that contains the string PROCEDURE and prints the
resulting line.

This may appear similar to the command

l,$s/PROCEDURE/PROC/gp

but is different in that the global command prints each of the changed lines, whereas the
substitute command prints only the last line changed. Also. the method of operation of
these two commands is different.

A related command v performs much the same task, but executes the commands only for
lines that do not contain the specified string. Thus. to print all the lines that do not have
the letter w. use:

v/w/p

For more sophisticated uses of the g and v commands and how they work, see the section
on Expert Editing.

Joining Lines
What do you do if you inadvertently hit <return> as you are adding lines and need to
combine the two lines?

ed
a
Look out, I seem to have hit ret
urn in the
middle of a word and don't know
what to do!
w rid
q

Rather that retyping the entire line, you can use the join commandj:

TUTORIAL

138 ed Interactive Line Editor

ed rid
1,2j
1,$p

This will gives:

Look out, I seem to have hit return in the
middle of a word and don't know
what to do!

If no line number is specified. j joins the current line and the following line. If a single line
number is specified. join operates on that and the following line.

Several lines can be joined by using the form of the command:

a,bj

This joins lines a through b into one line. Likewise, the command

1,$j

joins all the lines in the file into one line. Then, the command .p or p prints the entire file.

Note that the command

3j

does the same job as the command

3,4j

The join command generates its own second line number if none is specified, so that the
command

nj

is equivalent to

n,n+lj

where n is a line number. This command is the only one that interprets a missing line
number this way.

Splitting Lines
You can split one line into two with the substitute command s. To illustrate, suppose you
typed in the following commands:

ed
a
This line wants to be two, with this second.

w split
q

To perform the split, type:

TUTORIAL

ed Interactive Line Editor 139

ed split
s/two, /two,\
/p
*p
wq

The line split is caused by the backslash that precedes the <return>. This tells ed that the
<return> does not terminate the command, but that it is part of the substitution. The
contents of file split are now:

This line wants to be two,
with this second.

Marking Lines
As you edit a manuscript or program, it is sometimes handy to be able to leave a
"bookmark" in the text for later reference. ed provides this feature with the mark command
k. To mark the next line that has the word find, use

/find/ka

where the letter a is the mark. To print the line that has been so marked, use:

'ap

You can place these references anywhere that a line number is expected.

The mark must be one lower-case letter. Also, each mark is associated with one line.
Marking a line with the k command does not change the current line.

Marks can be especially handy in you move paragraphs with the m command. They give
you a chance to review the sections that you will be moving before you do the move.

For example, suppose that you have a manuscript with a paragraph that must be moved to
a different part of the document. Create the following example:

ed
a

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

text
text
text

Next paragraph begins here.

This is the spot that we want the paragraph
to precede.

w example?
q

Now, place three marks to help with the move:

TUTORIAL

140 ed Interactive Line Editor

ed example?
/first line, /ka
/Next paragraph/kb
/is the spot/kc

This marks the first line to be moved with a, the line after the last to be moved with b, and
the the paragraph's destination with c. But you can see that the move command moves
lines to the line after the third number specified, so let's change the third mark:

'c-lkc

Now we can use c in the move command without arithmetic. Now, print the paragraph to
be moved to be sure that the marks are correct.

'a, 'bp

ed replies with

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

Next paragraph begins here.

You can see that we would move one line too many if we used the marks as they are. So,
change b also.

'b-lkb

Now, do the move:

'a, 'bm'c
1,$p

The file now contains:

text
text
text

Next paragraph begins here.

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

This is the spot that we want the paragraph
to precede.

Marking sections of text can increase the ease with which you solve your complex ed
problems.

TUTORIAL

ed Interactive Line Editor 141

Searching in Reverse Direction
All scanning, processing. and searching has been shown going from the beginning of the file
toward the end. Sometimes it is useful to find some word that occurs before the current
line.

You can get ed to do string searching in the reverse direction by specifying the search with
question marks ? rather than slashes /. To find the previous occurrence of the word last,
use:

?last?

This form of searching can be useful in finding the beginning and end of a repeat/unW
statement. For example, if the current line is in the middle of a Pascal repeat/unW group,
you can print the group with the command:

?repeat?,/until/p

The reverse search is like the forward search in every way except the direction of search.
The search begins one line before the current or specified line, and proceeds toward the
beginning of the file. If the string is not found by the time that the search reaches the
beginning of the file, the search resumes at the end of the file, and progresses towards the
starting point of the search. If the string is not found when the search reaches the original
starting point. the question-mark error message is issued signifying no match.

Also, the command

??

uses the remembered search argument.

Expert Editing
This section describes the most advanced ed commands.

File Processing Commands
Earlier. we discussed the commands

ed

and:

ed filename

ed also has file-handling commands that go beyond those already discussed.

If you decide that you were editing the wrong file, or have finished the current file with aw,
you can begin to edit an entirely new file with the command:

e newfile

This forgets all the changes that you have made, if any. up to this point since the last w
command and begins all over again with newflle.

The e command:

e new

has the same effect as

TUTORIAL

142 ed Interactive Line Editor

ed new

issued within COHERENT. but is handier because you do not need to exit ed and then
reenter to edit a new file. Note that the ed command e, like the q command, issues an error
message if another file is being edited and you have not stored it since your last change was
made. If you immediately repeat the command, ed proceeds even if there are unsaved
changes. The command

E new

commands ed to edit the new file, whether or not there are unsaved changes.

The r command also reads a new file, but adds it to the file being edited instead of using it
to replace the current file. This can be handy for copying one file into another one. For
example, if you have a manuscript prefix stored in the file prefix to include the prefix at the
beginning of the file you are editing. type:

Or prefix

r inserts the file being read after the line number specified; in this case, line 0 means at the
beginning of the file. If used without a line number, r appends the newly read lines to the
end of the file.

The w command writes the entire file if no line number is specified; however. you can line
numbers. For example

1,3w new

writes the first three lines to file new. If the file name is omitted, the lines are written to the
remembered file name.

The w command is unique in that it never changes the current line. This is true regardless
of what line numbers are specified in the range for the command, or how those line
numbers were developed.

The W command resembles the w command. except that it appends lines to the end of the
file, whereas w creates a new file and erases any previous contents.

The f command prints the remembered file name that was set in

ed filename

or

e filename

or

w filename

commands. You can also use f to reset the remembered name. by typing:

f newname

This form of the command tells you what the new remembered file name is, even though
you just typed it in.

Note that the command

w filename

changes the remembered name only if there is currently no remembered name, as does the

TUTORIAL

ed Interactive Line Editor 143

rcommand.

Patterns
Earlier, you were cautioned that certain punctuation characters have special effect in
search and substitute commands. These characters are:

They are used to form powerful substitute and locator commands. An orderly combination
of these special characters is called a pattern, sometimes called a regular expression. You
can use a pattern to find or match a variety of strings with one search argument.

The simplest patterns use alphabetic characters and numeric digits, which match
themselves. For example,

/ab/

finds and prints the next line containing the string ab.

The next simplest character to use in a pattern is the period or dot. It matches any
character except the newline character that separates lines. Two periods in succession
match any two consecutive characters, and so on. For example, if you have a file that
contains algebraic statements of the form

a+b
c+e
a-b
a/b
d*e

and wanted to find and print any line involving a and b (in that order), then use the search
statement:

/a.b/

The • in this example matches+. -. and I.

Then, you ask, how do I find a string that contains a period? For example, if you want to
find all the sentences that ended with "lost." (that is, the word lost followed by a period),
you might first try:

/lost.Ip

This, however. also matches the string "lost" (the word lost followed by a space), which is
not what you want.

This is where the special character backslash comes in handy. A backslash tells ed to treat
the next character as a regular character, even if it usually is a special character. Thus, to
find "lost.", you need only type:

/lost\./p

This will not incorrectly find "lost ". If you want to find backslashes in your file, simply say:

/\\Ip

TUTORIAL

144 ed Interactive Line Editor

Matching Many With One Character
The asterisk • matches an indefinite number of characters. For example. to remove extra
spaces between words in a document. type

g/##*/s//#/p

(The character # has been substituted here for the space character to make the example
more readable.) This replaces each series of spaces by one space.

Note that there are two spaces before the • in the search string. This is necessary because
the • matches any length of string, including zero. Therefore, searching for a space followed
by any number of spaces finds strings that are at least one space long.

The • matches the longest possible string of the previous character. This requires careful
attention on your part, because the string matched by " might be longer than your required
string. or even zero in length. Either way could give you unexpected results.

If you have a line

a+b-c

in your file and want to change it to

a+c

type the command:

s/a.*c/a+c/p

However, if the line read instead

a+b-c*d+c

and you applied the command, the result would be

a+c

since the • • matches the longest string between any a and any c.

Beginning and Ending of Lines
The characters " and$ match, respectively, the beginning and ending of a line. Thus. you
can find and print all lines that end with a bang:

g/bang$/p

or those that begin with a whimper:

g/"whirnper/p

These two characters can also help you find lines of specific length. If you need to see all
lines exactly five characters long. the command

g/" ••••• $/p

does the trick. To find and delete all blank lines, type:

g/" *$/d

Note that this time the• matches a string of zero spaces. However, this is correct, because
a blank line includes lines that have nothing in them, as well as lines that contain only

TUTORIAL

ed Interactive Line Editor 145

spaces.

Replacing Matched Part
In many cases of substituting. you find yourself extending a word. or adding information to
the end of a phrase. This can lead to extensive retyping of characters. The special &
character can help out.

This character is special only when used in the right part. or pattern2 of the substitute
command. It means "the string that matched the left part". For example, to add ing to the
word help in the current line, use:

s/help/&ing/

The ampersand may appear more than once in the right side.

This can be more interesting if the left part has a non-trivial pattern. For every word in a
line that is preceded by two or more spaces, double the number of spaces before it:

s/###*/&&/gp

(Again, spaces have been replaced with# for clarity.)

Replacing Parts of Matched String
A more sophisticated feature. which is similar to the ampersand. helps you to rearrange
parts of a line. To see how this works. create a file by typing:

ed
a
first part=second part

w eql
q

Two special bracket symbols. \ (and \) can be used to delineate patterns in the left part of a
substitution expression. Then, you can use the special symbols \ 1. \2, etc., to insert the
delimited parts. The symbol \(marks the beginnning of the pattern, and \) marks the end.
For example, to delete everything in the line except the characters to the left of the=. type

ed eql
s/A\(.*\)=,*/\1/p
wq

In the substitute command, the " matches the beginning of the line, ... matches "first part",
and =·'" matches the rest of the line. The symbol \ 1 signifies the matched characters
between the first \((the only one in this example) and \). The p then prints the result,
which will be:

first part

With this example, you can interchange parts of a line:

TUTORIAL

146 ed Interactive Line Editor

ed
a
first part=second part

w eql2
q

To interchange the two parts, type

ed eql2
s/\(.*\)=\(.*\)/\2=\1/
p
wq

The result is

second part=first part

The first portion of the substitution expression,

\(.*\)=\(.*\)

can be thought of as being in three parts. The first part

\ (. *\)

matches all characters up to but not including the =. which are

first part

The second part

matches the = in the line, and finally the third part

\ (. *\)

matches all characters following the "=", or

second part

The remainder of the substitution expression

\2=\1

which is the replacement part. rebuilds the line in interchanged order. The symbol \2
replaces the matched string enclosed in the second pair of\(\) delimiters, and the symbol
\ 1 inserts the matched string enclosed in the first pair of\(\).

The right side of the substitution inserts the second matched expression (from \2). then
inserts the = sign again, followed finally with the first part of the line from \ 1.

This may appear involved, but can be immensely valuable in situations that require
rearrangement of a large number of lines.

The next special characters for patterns that we will consider are the bracket characters [
and]. These are used to define the character class. Inside the brackets, put a group of
characters; ed will match any of them if it appears. For example, to print a line that
contains any odd digit. say:

TUTORIAL

ed Interactive Line Editor 147

g/(13579)/p

For even more power and flexibility, you can combine character classes with the asterisk.
For example, the following command finds and prints all lines that contain a negative
number followed by a period:

g/-(0123456789]*\./p

This matches lines containing the following example strings:

-1.
-666.
-3.7.77

You can also match all lower-case letters by listing them in brackets, but the following
abbreviation simplifies this:

g/[a-z]/p

This can also be used for the negative number example above:

g/-(0-9)*\./p

Most special characters lose their original meaning within the brackets, but one of the
special characters, caret ", gets a new meaning. In this context, it matches all characters
except those listed in the brackets. For example. the following pattern matches a string that
begins with K and continues with any character except a number:

/K["0-9]/

This matches:

but not:

KQ
KK
KK9

K7
kKO

Other special characters may be part of a character class, and but lose their special
meaning when used in that context. Remember, however, that if you want to match the
right bracket, it must appear first in the list. So, to find all occurrences of special
characters in the file. type:

g/[J"\.*[&J/p

Listing Funny Lines
The p command prints lines with graphic characters in them. It also prints lines with non­
graphic (or control) characters. but these do not appear on the screen. For example,
printing a line that contains the BEL character <ctrl-G> will ring your terminal's bell, but
you will not see where the BEL character occurs within the line.

The 1 command behaves like the p command, except that it also decodes and prints control
characters. For example, if you use the 1 command to print a line that containing the word
bell followed by a BEL character. you would see:

TUTORIAL

148 ed Interactive Line Editor

bell \007

Note that "007'' is the ASCII value for <ctrl-G>. (ASCII is the system of encoding characters
within your computer; see ASCII in the Lexicon for the full ASCII table.) The I command
displays the backspace character <Ctrl-H> as a hyphen - overstruck with a <. which
appears simply as < on your screen. It displays a tab character as a - overstruck with a>.
which appears as a >. If the line being listed with I is too long to be displayed on one line
on your screen. l separates it into two lines. with the backslash character placed at the end
of the first line to indicate the split.

All other features of the p command apply to the l command.

Keeping Track of Current Line
The most commonly used abbreviation in ed is the dot, or period, which stands for the
current line. Many commands can change the value of the dot, and it is useful to you to be
able to anticipate this change when using the abbreviation.

Different classes of commands affect the value of the dot in different ways; in general.
however, the simple explanation is usually correct: the current line is the last line processed
by the last command to be executed.

Consider. for example, how the substitution commands changes the current line:

1,$s/flow/change/
p

In this example. the current line will be the last line modified by the substitutions: and that
will be the line that the p command prints.

The w command is an exception to this rule. It does not change the current line. regardless
of any line range selection or how these ranges are developed.

The r command changes the current line to the last of the lines read.

The d command sets the current line to the line after the last line deleted unless the last
line in the file was deleted, in which case the new last line becomes the current line.

The line insertion commands i. c, and a all leave the current line as the last line added. If
no lines are added, however. their behaviors differ: i and c effectively back up the last line
by one. whereas a leaves it the same.

When Current Line Is Changed
When the current line changes is also important. Normally. the current line does not
change until the command is completed.

To illustrate. create a file semi by typing:

TUTORIAL

ed Interactive Line Editor 149

ed
a
begin
second
first
in between
second
last

w semi
q

Now, edit the file and type all lines from first to second:

ed semi
/first/,/second/p
Q

This will cause an error! The reason is that the search command begins with current line
set to $, so "first" is found on line 3. But the search for "second" also begins with the
current line set at$, and finds "second" on line 2. Thus, the command translates to

3,2p

which is clearly invalid.

To do what was intended, use the semicolon; instead of the comma to separate the two
searches. This forces ed to change the current line to be changed after the search for first
rather than after the entire command. Thus, the commands

ed semi
/first/;/second/p
Q

are correct and will do what is intended. The result will be:

first
in between
second

The search for first still begins with the current line set at$. However, after it finds first, ed
resets the current line is set to 3, and begins the search for second there, and succeeds on
line 5.

Finally. to be sure of where the current line is, you can use the p command to show you the
line; or you can have ed tell you the number of the current line by typing:

To give you a perspective on where you are with respect to the end of the file, type

&=

and ed will tell you the number of the last line in the file.

You can put any line number expression before = and it will type the result. For example

TUTORIAL

150 ed Interactive Line Editor

/next/=

types the number of the next line to contain "next" (if there is one). The command = never
changes the line number.

More About Global Commands
All the global commands discussed thus far have been followed by only one command
substitute, print, and delete. You can, however. put several commands after a global
command, and execute each of those commands for each line that matches.

To change all occurrences of the word cacophonous to the word noisy and print the three
lines that follow. issue the command:

g/cacophonous/s//noisy/\
.+l,.+3p

Here, the additional commands are separated by the backslash before the <return>.
Several commands can be added, and all but the last need the backslash at the end.

This will work for the line-adding commands, as well. To insert a spelling warning before
each line that contains the word occurrance, issue the command:

g/occurrance/i\
((the following line needs spelling check))\

Note that the last line of the i group can be entered without a backslash, in which case the
line containing only the period must be omitted. This has the same effect as:

g/occurrance/i\
((the following line needs spelling check))

You should not depend upon the setting of the current line in any multiline global
command. There are two reasons for this. First, if one of the commands is a substitute and
the string is not found in the matched line, the current line will not be changed.

Second, the global command operates in two phases. The first part scans the file for lines
that match the string argument. ed marks these lines internally in a manner similar to the
k command. The second phase then executes the commands on each of the marked lines.
Therefore, you cannot count on a string search following the g to set the current line
number.

Again, the v command behaves in the same way, except that it selects lines that do not
match the pattern.

Caution is advised when using remembered search arguments, for a similar reason. A
search argument is remembered only if the search has been executed. Thus, in a command
of the form

g/backup/s//reverse/\
s/backin /backing/

the first remembered search may use backup on some occasion. and "backin" on others.
The reason for this is that the second phase of the g command begins with a remembered
search argument of backup. After the second line of the multiline command executes, the
remembered search argument is be "backin ". This remains throughout the remainder of
the second g phase.

TUTORIAL

ed Interactive Line Editor 151

Thus. it is recommended that you avoid remembered search arguments when using
multiline global commands.

Issuing COHERENT Commands Within ed
While you are using ed, you can issue COHERENT commands by prefixing them with the !
command.

This can be useful if, for example. you need to discover a file name while in the middle of an
edit. and you want to find it without leaving ed. Thus, to list your directory while in ed.
type:

Ile

ed sends the command to COHERENT and echoes a ! character when the command is
finished.

There is no limitation on the type of command that you may issue with this feature. It is
even plausible that you want to start another ed.

For More Information
The Lexicon article on ed summarizes its commands and options. The COHERENT system
also includes two other useful editors: sed, the stream editor; and MicroEMACS, the screen
editor. Each is introduced with its own tutorial and is summarized in the Lexicon.

TUTORIAL

152 ed Interactive Line Editor

TUTORIAL

Section 7:

Introduction to lex, the Lexical Analyzer

Many computer applications involve reading text strings. This is especially true for man­
machine communication.

For some forms of textual input, a programmer can design a program by hand to process it.
However, it is much easier to implement such programs when you use a software tool that
will automatically construct a program to process the data. The COHERENT command lex
is such a tool.

lex accepts expressions that describe the text input, and generates a program to process it.
In computer-ese, lex is a "lexical scanner program generator".

This document tells you how to use lex. It presents many simple examples to illustrate how
to use its features and how to use the generated program with other tools provided with
COHERENT, notably the parser generator yacc.

Readers of this document are presumed to be familiar with the C programming language
and the use of the COHERENT system. Related documents include Using the COHERENT
System and the tutorial to yacc, the COHERENT parser generator.

How To Use lex
lex generate lexical scanners for compilers, to do statistical analysis of text, and to generate
filters for many diverse tasks. This section gives examples of how to use lex. Later sections
discuss the concepts used in these examples in detail.

Translating Strings
The first example tells lex to match an input string and replace it with a different string;
strings not recognized by the program are output unchanged. Enter the following program
into the file rmv.lex.

%%
removeable printf ("executable");

This creates the lex specification. Use the following command line to Pass this specification
through lex:

lex rmv.lex

This produces a C program named lex.yy.c, which you can compile by typing:

cc lex.yy.c -11 -o rmv

The executable program rmv is now ready to use. To illustrate its use. type:

rmv
Is this file removeable?
<ctrl-D>

rmv replies:

153

154 lex Lexical Analyzer

Is this file executable?

Note that the generated program reads from standard input and writes to standard output.

Remove Blanks From Input
The next example deletes all blanks and tabs from the input. Type the following lex
program into file nosp.lex:

%%
[\t]+

Generate and compile the program with the following commands:

lex nosp.lex
cc lex.yy.c -11 -o nosp

To invoke the program, type nosp. Now, test it by typing the following:

This may be hard to read after processing.
<ctrl-D>

nosp outputs:

Thismaybehardtoreadafterprocessing.

Trimming Blanks
The previous example can be rewritten to remove strings of blanks or tabs and replace them
with one space. Type the following into file onesp.lex:

%%
[\t]+ printf (" ");

Generate and compile this with the following commands:

lex onesp.lex
cc lex.yy.c -11 -o onesp

Invoke your new program with the command onesp. Now, type the following text to test the
program:

This should be easier to read.
<ctrl-D>

The words in this input are separated by two spaces. onesp prints the following:

This should be easier to read.

lex Specification Form
This section discusses the form of the lex specification.

TUTORIAL

lex Lexical Analyzer 155

Simple Form
The examples shown above use the simplest form of a lex program. Consider the text of the
example nnv.lex:

%%
removeable

The symbol

%%

printf ("removable");

divides sections of the lex specification. Not all specifications need to be present, but at
least one %% must appear in a lex program.

This symbol separates lex definitions from rules. With nothing before the%%, there are no
definitions. Rules follow the %%. No definitions are needed in the simplest of lex
specifications.

Rules in lex
The format of a lex rule is simple. Every rule has two parts. Refer to the program nnv:

removeable printf ("removable");

The first part begins at the beginning of the line and ends with a space or tab. In the
example rule, the first part is

removeable

This part is called the pattern.

The second part follows the space or tab, and is called the action. The action in this
example is:

printf ("removable");

When the pattern specified by the rule is found in the input, the corresponding action is
performed. Thus, this rule detects every appearance of removeable and outputs the correct
spelling.

A lex program tries each rule's pattern in turn, and performs the associated action if and
only if the pattern matches. Actions often modify the input that matched the pattern; they
may also do nothing for certain patterns. To illustrate this, type the following specification
into file erase.lex:

%%
erase

Then compile the generated program with the following commands:

lex erase.lex
cc lex.yy.c -11 -o erase

This program copies all its input to its output. except for any appearance of the string
erase. Invoke the program by typing erase, and then test it by typing:

TUTORIAL

156 lex Lexical Analyzer

Have you erased the blackboard?
<ctrl-D>

erase then prints:

Have you d the blackboard?

If the input contains patterns that do not match any of the patterns in the suite of rules you
typed into lex, they are simply output unchanged. Usually. you will want to write a rule to
cover every case.

Statements in lex
As noted earlier, lex is a program generator. It reads the specifications that you prepare for
it, and writes a C program that is used with the lex library. Many of the actions in the rules
you specify, such as

printf ("removable");

are themselves C statements. These statements are included in the resulting program,
along with other statements that lex provides so the program can run.

You can include other statements, should the program need them, by placing them in
appropriate places. The following program, called count.lex, shows how this is done. It
counts the number of tokens, or strings of non-blank characters. Type the following into
the file count.lex

int count;
%%

[" \t\n]+
[\t\n]+
%%
yywrap ()
{

count++;

printf ("Number of tokens:%d\n", count);
return (1);

}

Statements other than rule actions appear in two places in the program. The first such
statement is in the definition section, which precedes the rule section delimiter %%:

int count;

This C statement declares the variable count to be an integer variable. Notice that it is
preceded by a tab; a tab or a space indicates to lex that an input line is not a rule.

The second kind of non-rule statement follows the second %%, which marks the end of the
rules section. lex regards anything that follows the second delimiter as being source
statements.

The above example includes a function named yywrap. lex programs always call this
function at the end of processing. The above program fills this function with code that
prints the number of tokens in the text.

Compile the program by typing the following commands:

TUTORIAL

lex Lexical Analyzer 157

lex count.lex
cc lex.yy.c -11 -o count

Run the program by typing:

count <count.lex

This counts the tokens in the count.lex file itself. count will print the following:

Number of tokens:21

If you do not include a routine named yywrap, lex will use a standard one.

Groups of Statements
In previous examples, the C statement in the action part of the rule is a single statement.
In many lex applications, however, you will need to use more than one statement per rule.

To do so, enclose the statements in the braces { }. The following example illustrates
grouping. This lex specification generates a program to add numbers found in the input
and print the total whenever it reads asterisk'*'. Type the following program into nsum.lex:

int number, sum;
%%
[0-9]+ {

sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

II* Ii {

printf ("%s", yytext);
printf ("%d", sum);
sum = O;
}

To run the generated nsum program, enter a sample data file by typing

cat >numbers
one two three
1 2 3 4 * 1 2 3 5 *
*
done
<ctrl-D>

This builds a sample data file. Run the program by typing:

nsum <numbers

nsum will print:

one two three
1 2 3 4 *10 1 2 3 5 *11
*O
done

The statements that follow the definitions

TUTORIAL

158 lex Lexical Analyzer

[0-9]+

and

*
are enclosed in braces, because each action triggers several statements. Consider the first
of these:

[0-9]+ {
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

The pattern looks for strings of digits. sscanr converts each such string into a number and
saves it in the variable number. Now, consider the second rule:

..... {

printf ("%s", yytext);
printf ("%d", sum);
sum = O;
}

This specifies that upon detection of• in the input, the program is to print the sum of the
numbers and then reset the counter to zero. In both of these rules, the statement

printf ("%s", yytext);

prints the number or • so that the output shows the input as well as the total. lex defines
the variable yytext. It always contains the string that matches the rule.

If the input is neither a number or an asterisk, no rule specifically matches it. Therefore,
the program echoes it unchanged to the standard output.

Using the Same Action
To make it easier for you to write actions, lex allows you abbreviate rules; that is, you have
to write only once any action that is performed by several rules. To abbreviate rules
represented symbolically by

pl actionl
p2 actionl

use the vertical bar operator:

pl
p2 actionl

The vertical bar means "use the action from the rule that follows."

Patterns
The first part of each rule in the lex rules section is a pattern may that match parts of the
input. This section describes how to construct these patterns, sometimes called regular
expressions. If you are familiar with ed and how its patterns work, this will be familiar to
you.

TUTORIAL

lex Lexical Analyzer 159

Simple Patterns
The simplest kind of pattern is a string of characters that matches itself. A previous section
presented an illustration of this:

%%

removeable printf ("executable");

This regular expression matches all occurrences of removeable that appear in the input text.

Certain characters have special meaning to lex patterns. To match a special character
literally. you must quote it. For example. • has special meaning. To match the asterisk
literally (that is to match any '*'s that appear in the input), surround it with quotation
marks:

II* U

Another way to quote characters is to precede it with the backslash character'\'.

*

The following characters each have special meaning and must be quoted to be matched as
text characters:

"\()<>{}%*+?[]-A/$. I
However, within ", the \ still has its meaning. so to match the string \• use the regular
expression:

"*"

Also, to match a quote character. use:

\"

Classes of Characters
The power of patterns comes from special characters that match more than one character.
The following examines each special character in detail.

The period or dot matches any character except newline. The following regular expression
matches any pair of characters that begins with J:

J.

The following example prints in square brackets any sequence of five characters that ends
with a blank. Type the following into the file five.lex:

%%

printf ("[%s]", yytext);

Compile the program with the following commands:

lex five.lex
cc lex.yy.c -11 -o five

Invoke it by typing five, and test it with the following text:

TUTORIAL

160 lex Lexical Analyzer

how well does this work?
no match
<ctrl-D>

The result is

how[well]does[this]work?
no match

The second line of the input does not have any matches. Because the dot pattern character
does not match the end-of-line character, all five characters that precede the blank must be
on the same line.

Another way to match many characters, but selectively, is with the character class
operation. Enclose in square brackets the set of characters to be matched. Any of the
characters listed there will match one character of the input. For example.

[0123456789)

matches any decimal digit in the input. Characters may be in any order within the
brackets. Thus

[0246813579]

is equivalent to the example above.

To simplify specifying for character classes, you can specify ranges of characters. The
beginning and end of the range is separated by a hyphen. To match all decimal digits as
above, use:

[0-9)

To match all alphabetic characters, type:

[a-zA-ZJ

The special character ", when used after the opening bracket '[', tells lex to match any
character except those enclosed. The following example finds all two-digit numbers not
followed by a period or alphabetic character and prints them surrounded by { and }. Type
the following into file twodig.Iex:

%%
[0-9](0-9]["\.a-zA-Z] printf ("{%s}", yytext);

Process and compile the program by typing the following commands:

lex twodig.lex
cc lex.yy.c -11 -o twodig

Invoke the program by typing twodig, and test it by entering the following text:

12. 12 12a 1 12 b
<ctrl-D>

twodig prints the following in reply:

12. {12 }12a 1 {12 }b

TUTORIAL

lex Lexical Analyzer 161

Repetition
In the patterns shown so far, each character matches only one character at a time.
However, many interesting input patterns involve repetition of characters.

To match one or more instances of a character, follow it with the pattern operator +.
Consider the summation example in nsum.lex, shown earlier, which recognized strings of
input numbers and added them to a total:

[0-9]+{

The pattern

[0-9]+

sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

matches a string of one or more digits.

The operator• will match zero or more characters of a specified type. The following example
deletes all characters between square brackets. Type it into file star.lex:

%%
\ [. *\] printf (" []");

Type the following commands to generate and compile the program:

lex star.lex
cc lex.yy.c -11 -o star

Invoke the program by typing star, and test it by typing the following text:

[This should disappear]
[what happens with two] of them [on a line?]
<ctrl-D>

A backslash precedes each bracket, because the bracket has a special meaning in regular
expressions. The output from this example is:

[l
[l

In looking at the example's input. you might have expected the output to be:

[l
[] of them []

lex does not produce the latter output because it generates recognizers that find the longest
match if several matches are possible. Therefore, star matched the first [, then all
characters up to and including the second]. When you write a pattern that matches many
characters, you should bear this possibility in mind.

To change the program to match the first], rewrite it as follows:

%%
\[[A\]]*\] printf (" [] ") ;

TUTORIAL

162 lex Lexical Analyzer

The regular expression now matches a string of all characters except a), when that string is
enclosed in square brackets.

The '?' character signals that the previous character or regular expression is optional. In
other words, '?'signals zero or one instance of a character or regular expression.

To see how this would be used in a program, consider a text processor that regards a word
as being a strings of alphabetic characters that may or may not be followed by a period.
The following example does this, and encloses the recognized words in parentheses. Enter
it into file word.lex:

%%
(a-zA-Z]+\.? printf ("(%s)", yytext);

Generate and compile the program with the following commands:

lex word.lex
cc lex.yy.c -11 -o word

Invoke the program by typing word, and test it the program with the following text:

These are words.
Question mark not included?
<ctrl-D>

The result is

(These) (are) (words.)
(Question) (mark) (not) (included)?

The question mark, like the " and + operators, can also follow another specification of a
pattern. If you wanted to able to end a sentence with a character other than a period, the
following code will do the job for you:

[a-zA-Z]+[.?!,]?

The characters

• ? l,

are optional.

The '+' and '*' operators may match many characters. If you wish to match a specific
number of characters or patterns, follow the patterns with the repetition within braces {and
}. For example

[0-9]{3}

matches a string of exactly three digits.

You can also specify a range of counts. To match from seven to nine occurrences of lower­
case alphabetic characters, use:

[a-z] {7, 9}

TUTORIAL

lex Lexical Analyzer 163

Choices and Grouping
To indicate alternate choices of characters or regular expressions, separate them in the
regular expression with a vertical bar operator I · For example, if you wish to match either
three decimal digits or the character a, use:

[0-9]{3} la
Parentheses help to group the parts of the pattern that are separated by the vertical bar:

(abc) I (def)

This pattern will match either the string abc or the string def.

Matching Non-Graphic Characters
Non-special, graphic characters in patterns match themselves. Most non-graphic
characters, such as space, tab, and control characters. cannot be matched directly. lex
provides special sequences to match control characters. The following example removes
tabs and blanks from the beginning and end of input lines. Type it into file deblank.lex:

%%

[\t]+\n
\n[\t]+

printf ("\n");
printf ("\n");

Generate and compile the program with the following commands:

lex deblank.lex
cc lex.yy.c -11 -o deblank

Invoke the program by typing deblank, and test it by typing the following input:

begins with no space or tab
begins with tab

begins with three spaces
<ctrl-D>

The result will be

begins with no space or tab
begins with tab
begins with three spaces

The special regular expression \t represents tab, and \n represents newline.

To match the backspace character, use \b. Form feed is matched by \f. To match an
arbitrary character with a known octal value, use three octal digits after the backslash: for
example,

\007

TUTORIAL

164 lex Lexical Analyzer

More Patterns
This section discusses more advanced capabilities of patterns.

Line Context
Like ed, lex patterns can include characters that represent the beginning and end of line.
To match a line that contains exactly five alphabetic characters, type:

"[a-zA-Z]{5}$

The character" matches the beginning of the line, and$ matches the end of the line.

Context Matching
A slash (virgule) '/' shows that a following context is necessary to match a string. For
example, the following program matches the string match only if it is immediately followed
by the string Ing. Type it into file match.lex:

%%
match/ing printf ("{%s}", yytext);

To compile the program, type the following commands:

lex match.lex
cc lex.yy.c -11 -o match

To invoke the program, type match; and test it by typing the following input:

Will this match?
This is a matching test.
<ctrl-D>

The result will be

Will this match?
This is a {match}ing test.

Notice that the string before the slash is matched. The program does not match the part
that follows the slash, even though the string must be there for the first part to be matched.
Thus, the regular expression that follows the slash may also be matched on its own. To see
how this works, type the following into the file match2.lex:

%%
match/ing
ing

printf ("{%s}", yytext);
printf ("ed");

To compile the program, type the following commands:

lex match2.lex
cc lex.yy.c -11 -o match2

To invoke the program, type match2; then test it by typing the following input:

TUTORIAL

lex Lexical Analyzer 165

Will this match?
This is a matching test.
You must now sing for your supper.
<ctrl-D>

The result will be

Will this match?
This is a {match}ed test.
You must now sed for your supper.

The context-string that follows the I may be a regular expression. The following example
matches the whole-number portion of a decimal fraction. Type it into the file wholept.lex:

%%
"-"?[0-9]+/"."[0-9]+ printf ("(%s)", yytext);

To compile the program, type the following commands:

lex wholept.lex
cc lex.yy.c -11 -o wholept

Invoke the program by typing wholept; then type the following to test it:

123 12345 1234.567
<ctrl-D>

The result will be:

123 12345 (1234).567

As you can see, the part of the regular expression

"-"?

matches an optional leading minus sign. Then

(0-9]+

matches a string of at least one decimal digit. Then, the following context must match the
regular expression

"."[0-9)+

which matches the fractional part of the number. When it finds a number that matches, it
prints the number's whole part enclosed in parentheses.

Macro Abbreviations
lex also provides a macro facility that can substantially simplify the writing of complex
regular expressions.

A macro is a named body of text. A macro processor simply replaces the name of the macro
with the text of the macro.

To illustrate. type following example into file float.lex. It recognizes integer and floating
point constants according to the C format:

TUTORIAL

166 lex Lexical Analyzer

d (0-9]+
e [Ee][+-]?[0-9]+
%%

{d}\.
{d}\.{d}
\.{d}
{d}\.{e}
\, {d}{e}
{d}\.{d}{e}
{d}{e} printf ("F:(%s]", yytext);

lex replaces the macro name e with the code that matches a string of digits at least one
digit long. It replaces the macro name d with code that matches the number's exponent.
These two are invoked in the manner of

{d}

within a pattern. To compile the program, type the following commands:

lex float.lex
cc lex.yy.c -11 -o float

Invoke the program by typing float, and then test it by typing the following text:

1 1. 1.2 1.e4 le4
.le4 e4 .1 • o 1.2e3
<ctrl-D>

The result will be:

1 F:[l.] F:[l.2] F:[l.e4] F:[le4]
F:[.le4] e4 F:[.1] . 0 F:[l.2e3]

Context: Start Rules
Many tasks in lexical processing require the program to be aware of a token's context. lex
lets you make processing conditional upon previously processed input. This is done by
using start conditions.

Start conditions are named in the definitions section as follows:

%S name! name2

where namel and name2 are names of start conditions. These start conditions are then
used by prefixing a pattern with the start condition's name enclosed in angle brackets. For
example:

<name!>

For example, you can use one start condition to control the scanning of comments in a
Pascal-like language. The start condition is set by the lex statement BEGIN when the
beginning bracket of the comment is found. The comment is scanned for strings that begin
with$ to signal compiler operation. To see how this works, type the following into the file
comment.lex:

TUTORIAL

lex Lexical Analyzer 167

%5 CMNT
%%
<CMNT>\$ [ler) printf ("Option is %s. \n", yytext);
<CMNT> ["\})
<CMNT>\} BEGIN O;
\{ BEGIN CMNT;

To compile, use the following commands:

lex col!llllent.lex
cc lex.yy.c -11 -o col!llllent

Now, invoke the program by typing comment; and test it by typing the following input:

{This is a col!llllent}
{This col!llllent has options $1 $e $r}
program
information
<ctrl-D>

The result will be:

Option is $1.
Option is $e.
Option is $r.

program
information

The context start condition is named following BEGIN in the action part of the rule. To
return to the normal condition, use 0 as the context name.

Separate Contexts
If you wish to perform context-dependent processing that is more complex than that shown
in the example above, you will find it convenient to use separate contexts.

The names of the contexts are defined in the definitions sections, after the definitions of any
start conditions: For example:

%C name name •••

The lex function yyswitch switches to a new context.

The body of the context's rules is preceded in the rules section by:

%C name

To see how this works, type the following into file pre.lex. It is part of a program that
recognizes the preprocessor statements in a C program:

TUTORIAL

168 lex Lexical Analyzer

%C PRE
%%
A# yyswitch (PRE);
[A#\n]+ printf ("[%s]", yytext);
%C PRE

include.+ I
define.+ {

.+

printf("{%s}", yytext);
yyswitch(O);
}
{
printf ("{??%s}", yytext);
yyswitch (O);
}

A# in column 1 signals the beginning of a preprocessor statement. Upon recognizing this
condition, this program uses yyswitch to activate the context PRE.

Within this separate context, individual rules recognize different preprocessor statements;
this example includes only two. Each of the rules prints the preprocessor line enclosed in
braces { }. In addition, the rules switch back to the original (and unnamed) context by the
statement

yyswitch (O);

To compile and test this program, use the following commands:

lex pre.lex
cc lex.yy.c -11 -o pre
pre <lex.yy.c

This example uses the function yyswitch to return to the original context at the end of each
rule in the secondary context. Some applications require a return to the context that was
previously in force. To assist in this, yyswitch returns the value of the previous context.

To modify the example to switch to the previous context, add a statement to the definitions
section to declare a variable to hold the previous context:

int prev;

Then, when switching. save the current context:

prev = yyswitch (NEW);

To switch back, use:

yyswi tch (prev) ;

To summarize, you can specify a match at the beginning and end of input lines. You may
need a following context for a match. Macros provide a means of abbreviating elements of
patterns. lex can qualify some patterns based on a start context, or process entirely
separate contexts.

TUTORIAL

lex Lexical Analyzer 169

More About Writing Actions
This section discusses predefined lex actions and how to use them. It also presents other
lex routines that are useful in writing actions.

ECHO
Many lex actions simply output the matched pattern:

[0-9]+ printf ("%s", yytext);

This form has been used in the examples because many examples also output additional
material, such as enclosing braces, to illustrate the matched token.

lex provides a simpler way to echo the exact token matched:

[0-9]+ ECHO;

The following example echoes all strings of digits twice, and everything else once. Type it
into file double.lex:

%%
[0-9]+
[A0-9]+

{ECHO; ECHO;}
ECHO;

To compile the program, use the commands:

lex double.lex
cc lex.yy.c -11 -o double

To invoke the program, type double; and to test it. type the following text:

abcdef 123 1234
<ctrl-D>

double will reply:

abcdef 123123 12341234

Processing Overlapping Strings
The lex processing illustrated to this point has been restricted to programs whose rules
recognize distinct strings. That is, once any character of a string is matched by a regular
expression, it cannot be matched by another.

Some applications require that strings be matched by more than one rule; such multiply­
matched strings are called overlapping strings. The lex action word REJECT provides this
capability. When REJECT appears in a rule, other rules can also match the string.
Remember, however. that lex programs give precedence to the longest string that matches a
regular expression.

The following example determines the number of letter pairs, or digrams, in its input. The
input is presumed to be lower-case letters. Enter the following into digram.lex:

TUTORIAL

170 lex Lexical Analyzer

int digram [128] [128];
%%
[a-z] [a-z] {

\n

digram [yytext [OJ] [yytext [l]J++;
REJECT;
}

%%
yywrap ()
{

}

int il, i2;
for (il = 'a'; il <= 'z'; il++)

for (i2 ='a'; i2 <= 'z'; i2++)
if (digram [il] [i2] != 0)

printf ("%d\t%c%c\n",
digram [il J [i2 J , il, i2) ;

To compile the program, type the commands:

lex digram.lex
cc lex.yy.c -11 -o digram

To invoke the program, type digram: and test it with the following text:

this is a test of digrams.
<ctrl-D>

The result will be:

1 am
1 di
1 es
1 gr
1 hi
1 ig
2 is
1 ms
1 of
1 ra
1 st
1 te
1 th

yylex
lex places the actions you provide for the rules in your lex program into a C routine named
yylex.

TUTORIAL

lex Lexical Analyzer 171

If you add variable declarations in the definitions section before the first %%, yylex can
access them, as in the example digram.lex, shown above. You can also declare variables
that are local to yylex, if you place the declarations after the rules section delimiter and
before the first rule. A tab or space must precede the declaration.

The following program is a different version of digram.lex, called digram2.lex; it uses such
a declaration.

int digram [128] [128];

int to, tl;
[a-z][a-z] {

to = yytext [OJ;
tl = yytext [l];
digram [tO] [tl]++;
REJECT;
}

%%
yywrap ()
{

}

int il, i2;
for (il = 'a'; il <= 'z'; il++)

for (i2 ='a'; i2 <= 'z'; i2++)
if (digram [il] [i2] I= 0)

printf ("%d\t%c%c\n",
digram [il] [i2], il, i2);

Header Section
You can insert additional code at the beginning of the generated program by including such
code in the definitions section. An earlier example, count.lex, demonstrated how to do this:

int count;
%%
[" \t\n]+
[\t\n]+
%%
yywrap ()
{

count++;

printf ("Number of tokens: %d \n ", count);
return (l);

}

A tab or space character must precede the code you include.

If you wish to insert include or any other C preprocessor statement at the beginning of the
program, however, a different technique must be used. This stems from the fact that the
preprocessor statements must begin at the beginning of the line, and the blank or tab
precludes this.

TUTORIAL

172 lex Lexical Analyzer

The alternative method to add code to the beginning is as follows:

%{
••• code •••
%}

where the % symbols are at the beginning of the line.

Additional Routines
If your version of yywrap or any of the rules that you write need other routines. you can
include code for them after a second %%. (This was where yywrap was shown in
digram.lex.) If you wish to provide your own version of input or output. you must define it
there.

Using lex With yacc
Although lex can handle many applications by itself, it is often used with the parser­
generator yacc. For example. programming-language compilers often have parts generated
by both lex and yacc.

Like lex, yacc is a program generator. Its programs can recognize input that is structured
according to a grammar fed to the yacc program generator. In most instances. yacc­
generated programs require tokens as input, instead of individual characters. In the context
of a programming language, a token is a variable name or a special character (such as an
operator). lex is often used with yacc because lex is especially well suited for partitioning
text input into tokens.

A yacc-generated program expects a token number as input from the routine yylex. yacc
assigns a unique number. or constant definition. to each unique type of token, and expects
yylex to return these numbers as input.

For your lex program to access these predefined constant definitions for token types. you
must include the generated lex source in the yacc specification.

The following examples process very simple input. to illustrate how to assemble lex- and
yacc-generated programs. To begin, type the following into the me yacclex.yy:

%token beginning midtok ending
%start simplistic
%%
simplistic : beginning middle ending

middle 1

middle 1

%%

{printf ("recognized"); };
midtok;
middle midtok;

When yacc processes this program. it produces the me y.tab.h that contains the token­
name definitions. The following lex source reads y.tab.h to learn of the constant definitions
that yacc generated; type it into me yacclex.lex:

TUTORIAL

lex Lexical Analyzer 173

%{
#include "y.tab.h"
%}
%%
"(" return (beginning);
") " return (ending) ;
[a-zA-Z] return (rnidtok);

The symbolic definition of the token names are beginning. ending and midtok.

To compile the programs. type the following commands:

yacc yacclex.yy
lex yacclex.lex
cc y.tab.c lex.yy.c -ly -11 -o yacclex

Type yacclex to invoke the new program; and test by typing the following:

(abcdef)

The result will be:

recognized

Summary
lex is a utility that generates lexical analyzers according to a set of specifications that you
write. Lexical analysis means to read a mass of text. recognize strings within that mass,
and react appropriately when each type of string is discovered. With lex, you can write
programs to perform complex analysis of text simply by describing what analysis you want
to perform. without worrying about the messy details of how that analysis is actually
performed; thus, lex is a fine example of what is nowadays called a "fourth-generation
language".

lex is especially well suited to work with the parser-generator yacc. By using them together,
you can efficiently build command processors and even entire computer languages.

TUTORIAL

17 4 lex Lexical Analyzer

TUTORIAL

Section 8:

Introduction to the m4 Macro Processor

m4 is a macro processor for the COHERENT system. It is a powerful and flexible text
processing tool. You can tell it, with a great degree of generality, to search for macro names
and replace them with other strings. Macros can also take arguments.

m4 is useful as a front end for the COHERENT assembler as, which has no built-in macro
facility. It is also useful for higher-level languages like C, as well as for other applications
that require replacement of text.

m4 also has powerful facilities for manipulating files, making decisions conditionally,
selecting substrings, and performing arithmetic, so it is useful for processing forms.

The command

m4 [file ...]

invokes m4. m4 reads each file in the order given on the command line; if no file is given,
m4 reads from the standard input. The file ·-·also indicates the standard input; this allows
you to perform interactive input while m4 is processing files. m4 reports any file that it
cannot open, and eliminates it from the input stream.

m4 writes its output to the standard output stream. As with other COHERENT commands,
the optional output redirection specification '>ouljlle' on the command line redirects the
output into ouljlle.

Definitions and Syntax
m4 reads text one line at a time from its input stream. When it reads a line of text, it scans
the line for a macro that you have defined. A legal macro name is a string of alphanumeric
characters (letters, digits, underscore'_'), the first of which is not a digit. m4 recognizes the
macro name only if it is surrounded by nonalphanumeric characters (i.e., spaces or newline
characters) on both sides.

When m4 finds a macro, it removes it from the input stream and replaces it with its
definition. It then writes the resulting modified text (called replacement text), onto the input
stream. m4 then reads another line from the input stream, and continues processing.

Text that is contained within single quotation marks is quoted (i.e., is contained between a
grave mark ' on the left and an apostrophe ' on the right). All other text is unquoted. m4
searches only unquoted text for macros.

A macro call can be either a macro or a macro immediately followed by a set of arguments:

macroname(argl, ..• , argn)

A set of arguments must start with a left parenthesis that follows the macro immediately
(i.e., no space can come between the macro and the left parenthesis). The entire argument
set must be enclosed by balanced, unquoted parentheses: parentheses may appear within
the text of an argument. but they must always come in balanced pairs. A single left or right
parenthesis may be passed by quoting it, e.g.'(' or')'.

175

176 m4 Macro Processor

Arguments are separated commas that are both not inside single quotes or inside an inner
set of unquoted parentheses. m4 strips from each argument all leading unquoted spaces,
tabs, and newlines. It processes the text of each argument in the same manner that it
processes ordinary text; that is, it removes, evaluates, and replaces any recognized macro
calls before it stores the argument text for possible use within the replacement text. If you
wish to pass a macro name or an entire macro call as an argument, it must be quoted. m4
stores the values of the first nine arguments for possible use in the replacement text. It
processes arguments after the ninth, but throws away the results.

m4 does not search quoted text for macros. Instead, it removes the quotation marks and
copies the text to the standard output unchanged. Quotes can be nested; that is, quoted
text can contain other blocks of quoted text. m4 removes only the outermost level of
quotation marks each time it reads a piece of quoted text. This aids in delaying macro
expansion in text until the second (or later) time the text is read by m4.

m4 includes numerous predefined macros, which perform various functions. The
remainder of this document describes the predefined macros in detail. The final section is a
summary, which contains an alphabetized list and brief description of each predefined
macro.

Defining Macros
The macro

define('name', 'definition')

defines a macro name and its replacement text definition. m4 replaces every subsequent
unquoted occurrence of name with definition, as described above. For example. the m4
input

define('her', 'COHERENT')
To know, know, know her
Is to love, love, love her

produces the output

To know, know, know COHERENT
Is to love, love, love COHERENT ...

name should usually be quoted. If it is not quoted and it is being redefined, m4 sees its old
definition as the first argument to define, which will not have the intended effect. Similarly,
definition should be quoted if the macro names that occur in it should not be replaced.

Any legal macro name may be the first argument of a define. If you redefine a predefined
macro, its original function is lost and cannot be recovered.

As noted above, m4 recognizes a macro name only if it is surrounded by non-alphanumeric
characters. For example.

define('her', 'COHERENT')
Coherent software is reliable software.

produces the output

Coherent software is reliable software.

m4 does not recognize the characters her in the word Coherent as a macro name.

TUTORIAL

m4 Macro Processor 177

The value of the define macro is the null or empty string (the string which contains no
characters). In other words. m4 puts nothing (the null string) back on its input stream
when it processes a define call.

Like predefined macros, user-defined macros may take arguments. m4 replaces the string
$n in the macro definition with the value of the nth argument, where n is a digit (1 to 9). It
replaces $0 with the macro name. If the argument set contains fewer than n arguments,
m4 replaces $n with the null string. m4 uses functional notation to specify argument sets.
Unlike a normal function. however, an m4 macro does not require a fixed number of
arguments. The same macro may be called with or without an argument set, or with
argument sets containing different numbers of arguments.

The following macro concatenates its arguments:

Then

define('cat', $1$2$3$4$5$6$7$8$9)

cat(one, 'two', "three", 'four, four '
five(also,),,seven)

becomes

onetwo'three'four, four five(also,)seven

A more complex definition is:

define('connna', ''$0 (which looks like ',')'')

This turns each subsequent unquoted occurrence of

conuna

into

conuna (which looks like',')

Two sets of quotation marks around the replacement text are necessary. When m4 reads
this call to macro define, the resultant argument text is:

conuna

for the name and

'$0 (which looks like ',')'

for the definition. When m4 sees the text

conuna that is not quoted

it evaluates and replaces the now-defined macro name comma to produce the text

'conuna (which looks like',')' that is not quoted

on the Input stream. Because comma appears inside a set of quotation marks, m4 does not
treat it as a macro name. For the same reason, the string ',' also passes through
unmodified. The final output is:

conuna (which looks like ',') that is not quoted

When the predefined macro dumpdef is used without arguments, it returns the names and
definitions of all defined macros. For each macro, it returns its quoted name, a tab
character, and then its quoted definition; no definition is given for a predefined macro.

TUTORIAL

178 m4 Macro Processor

When used with arguments.

dumpdef(name)

returns the quoted definition of each macro name that is appears as an argument.

The predefined macro

undefine ('name')

removes a macro definition. As noted for define above, the argument must be quoted to
have the desired effect. undefine ignores arguments which are not defined macro names.
The value of the undefine call is the null string. If a predefined macro is undefined, its
original function cannot be recovered.

Input Control
The predefined macro changequote changes the quote characters. For example:

changequote({, })

makes the quote characters the left and right braces. It also removes the effect of the
previously defined quotation characters. Missing arguments default to' for open quotation
and ' for close quotation. Thus, changequote without arguments restores the original quote
characters ' and '. If the arguments are identical, the nesting ability of quotation marks is
temporarily lost. Instead, the first instance of the new quote character turns on quoting
and the next instance turns off quoting. The value of the changequote call is the null
string.

The predefined macro dnl (delete to newline) "eats" all characters from the input stream up
to and including the next newline and returns the null string. It is particularly useful in a
string of define macro calls. Although m4 replaces each define by the null string, newlines
often separate macro definitions, and m4 copies the newlines to the output stream
unchanged. Two ways of using dnl are:

define(this, that)dnl
define(something, else)dnl

dnl(define(this, that), define(something, else))

The first examples use dnl without arguments. The final example uses dnl with an
argument set, which m4 processes (performing each define) and subsequently ignores. The
following section describes an alternative (and generally preferable) method of eliminating
extraneous newlines in a sequence of define calls.

m4 includes two decision-making macros. The predefined macros with the form above, this
call of ifdef compares argl and arg2, and returns arg3 if they are equal. Otherwise, it
compares arg4 and arg5. It returns arg6 if they are equal. arg7 otherwise. If more than
seven arguments are present and arg4 and arg5 are not equal, ifelse compares arg7 and
arg8. It returns arg9 if they are equal and the null string otherwise.

In addition to each file specified in the command line, any other accessible file may be
included in the input stream with the predefined macro

include(file)

m4 replaces this macro call on the input stream with the entire contents of the specified
file. Ifjlle cannot be accessed, include causes a fatal error; m4 prints an error message and
exits. The alternative predefined macro

TUTORIAL

m4 Macro Processor 179

sinclude(file)

functions exactly like include, except that it does not print an error message and stop
processing if file is inaccessible.

Output Control
m4 maintains ten output streams, numbered zero through nine. Stream 0 is the standard
output, where m4 normally directs its output. Streams 1 through 9 are temporary files.
The predefined macro

divert(n)

diverts output away from stream 0, appending it instead to stream n. Any n outside the
range 0 to 9 causes output to be thrown away until the next divert call. divert without any
arguments or with a nonnumeric argument is equivalent to divert(O). The value of a divert
call is the null string.

The preceding section described the use of dnl to eliminate extraneous newlines on the
output stream when processing a sequence of define calls. A more readable method of
eliminating the newlines is to precede the definitions with divert(-1) and follow them with
divert. m4 then diverts the extraneous newlines to the nonexistent stream -1.

The predefined macro

undivert(streams)

fetches text diverted to one or more temporary streams. It appends the text from the
specified streams in the given order to the current output stream. m4 does not allow
diverted text to be undiverted back to the same stream. undivert with no arguments
undiverts all diversions in numerical order. The value of undivert is the null string;
undiverted text is not scanned for macro calls, but is simply moved from one place to
another. m4 automatically undiverts all diversions in numerical order to the standard
output (stream 0) at the end of processing.

The predefined macro divnum returns the current diversion number.

The predefined macro

errprint(message)

sends the given message to the standard error stream. The value of errprint is the null
string.

String Manipulation
The predefined macro

substr(string, start, count)

returns a substring of a string of characters. The first argument string can be anything.
The second argument start is a number giving the starting position of the desired substring
in string. Position 0 is the leftmost character of string. position 1 is the next character to the
right, and so on. If start is negative, the orientation switches to the right. Position -1 is the
rightmost character of string. position -2 is the character to its left, and so on. The third
argument count specifies the length and direction of the substring. Zero returns the null
string. A positive count returns a substring consisting of the character addressed by start
and count- I characters to the right of it. A negative number does the same thing. but to the
left. If count is omitted, it is assumed to be of the same sign as start and large enough to

TUTORIAL

180 m4 Macro Processor

extend to the end of string in that direction. If start is omitted, it is assumed to be 0 if count
is positive or omitted, or -1 if count is negative. For example:

define('alpha', 'abcdefghijklmnopqrstuvwxyz')
substr(alpha, ,)

returns

abcdefghijklmnopqrstuvwxyz

Here both start and count are omitted and are therefore assumed to be 0 and 26,
respectively.

substr(alpha, O, 6)
substr(alpha, , 6)

both return

abcdef

Similarly,

substr(alpha, , -6)
substr(alpha, 21,)

both return

Finally.

uvwxyz

substr(alpha, -6,)
substr(alpha, O, 21)

both return

abcdefghijklmnopqrstu

The predefined macro

translit(string, characters, replacements)

transliterates single characters within a string. It returns string with every occurrence of a
character specified in characters replaced with the corresponding character from
replacements. If there is no corresponding character, translit simply deletes the character.
For example:

translit(alpha, aeiouy, *+-=/)

returns

*bcd+fgh-jklmn=pqrst/vwxz

Numeric Manipulation
m4 can simulate variables typical of most programming languages by using define as the
assignment operator. Whenever the defined macro name appears unquoted, m4
immediately replaces it by its numeric value.

TUTORIAL

m4 Macro Processor 181

The predefined macros Iner and deer return their argument incremented or decremented by
1. Thus,

returns

define('x', 1234)
incr(x)

1235

Iner and deer assume an argument which is omitted or not a valid number to be 0.

More generally, the predefined macro

eval(expresslon)

evaluates an integer-value arithmetic expression and returns the resulting value. The
operators available, in order of decreasing precedence, are:

()

+ -
"**
•I%
+ -
> < >= <= == !=
!
&&&

II I

Parentheses for grouping
Unary plus, negation
Exponentiation
Multiplication, division, modulus
Addition, subtraction
Comparisons
Logical negation
Logical and
Logical or

The comparisons and logical operators return either 0 (false) or 1 (true). eval performs all
arithmetic in long integers. eval reports an error if its argument is not a well-formed
expression.

The predefined macro

len(strlng)

returns a numeric value corresponding to the length of string.

The predefined macro

index(string. pattern)

returns a numeric value corresponding to the first position where pattern appears in string.
If it does not appear, index returns -1. Both pattern and string may be arbitrary strings of
any length.

The following example defines a macro repeat that repeats its first argument the number of
times specified by its second argument.

define('repeat',
'ifelse(eval($2<=0), 1,, 'repeat ($1,decr ($2)) '$1) ')

The definition is recursive; that is, repeat calls itself within its own definition. The entire
definition is quoted to defer the evaluation of ifelse from when m4 encounters the definition
to when it encounters a repeat macro call. Similarly. the recursive repeat call is quoted to
defer its evaluation within the ifelse. eval checks if the first argument is less than or equal
to O; if so, it returns 1 (true) and ifelse returns the null string. Otherwise. deer decrements
the count, so each successive recursive call has a smaller second argument, and each call
appends a copy of the first argument to the previous result. For example:

TUTORIAL

182 m4 Macro Processor

repeat('Hol ',3)

produces

Ho! Ho! Hol

COHERENT System Interface
The predefined macro

maketemp(string)

creates a unique file name for a temporary file. string is a six-character string that is
normally initialized to XXXXXX; mktemp replaces all of the Xs with a pattern of six
numerals that form a unique file name in the directory where temporary files are being
written. It is the same as the C library routine mktemp. It returns the null string if its
argument is less than six characters long.

The predefined macro

syscmd(command)

performs the given COHERENT command and returns the null string. It is the same as the
C library routine system.

A common use of syscmd is to create a file which m4 subsequently reads with an include.
For example, to get the output from the COHERENT date command:

define('tempfile', maketemp(/tmp/m4XXXXXX))
define('get_date',

'syscmd(date >tempfile)''include(tempfile)')

In subsequent input, m4 replaces each occurrence of get_date with the system date
information. The definition of tempme is unquoted, so m4 executes the maketemp call
only once (when it processes the define). and it creates only one temporary file. On the
other hand, the definition of getdate is quoted, so m4 executes syscmd and include to get
the current time and date each time it processes a getdate call. The temporary file should
be removed with

syscmd(rm tempfile)

at the end of the m4 program.

The following example is more complex. It defines a macro save which appends a macro
definition to a file.

define('save','syscmd('cat>>$2 <<\#
define('$1','dumpdef('$1')')

I) I)

The arguments to define are the name

save

and the definition

TUTORIAL

syscmd('cat >>$2 <<\#
define ('$1', 'dumpdef ('$1') ')

')

A typical call of this macro is:

save('sample','defs.m4')

m4 Macro Processor 183

which saves the macro definition of sample in a COHERENT file defs.m4 containing macro
definitions. When m4 processes this call. the argument of syscmd becomes

cat >>defs.m4 <<\#
define ('sample',

followed by the definition of sample returned by dumpdef, followed by

)

Then syscmd executes the COHERENT cat command to append the here document
delimited by # to the macro definition file defs.m4. The leading # delimiter of the here
document is quoted with \ to prevent interpretation by the COHERENT shell. Because save
uses the character # to delimit the here document, it does not work correctly for macro
definitions containing#. For example,

save('save','defs.m4')

does not work as expected.

Errors
m4 reports all errors to the standard error stream. An error produces a line of the form

m4: line: message

where line is a decimal line number and message describes the error. For example. the
error message

m4: 7: illegal macro name: ab*c

indicates an attempt to define a macro with the illegal macro name ab*c in line 7 of the
input stream.

The following error messages may occur:

cannot open file
eval: invalid expression
eval: missing or unknown operator
eval: missing value
illegal macro name: name
out of space
/tmp open error
unexpected EOF

The file or name will be the file name or macro name which caused the error, or {NULL} if
the required argument is omitted.

TUTORIAL

184 m4 Macro Processor

m4 does not recognize (and therefore does not report) the most common of m4 errors,
namely invoking recursive macro definitions that never terminate. A simple example is the
definition

define('recursive', 'recursive')

When m4 subsequently encounters a call of recursive in its input stream. it replaces it on
the input stream with its definition. Because the definition is another call to recursive, m4
replaces it in turn with its definition; the process never terminates. More complicated
examples may involve many macro definitions and may be difficult to discover. If m4 enters
an endless loop, you can terminate it from the keyboard by typing the interrupt character
(normally <ctrl-C>) or the kill character (normally <ctrl- \ >). If m4 enters an endless loop
while being run in the background, you can terminate it with the kill command.

For More Information
The Lexicon entry for m4 gives a summary of its functions and options.

TUTORIAL

Section 9:

The make Programming Dlsclpllne

make is a utility that relieves you of the drudgery of building a complex C program.

How Does make Work?
To understand how make works, it is first necessary to understand how a C program is
built: how COHERENT takes you from the C source code that you write to the executable
program that you can run on your computer.

The file of C source code that you write is called a source module. When COHERENT
compiles a source module, it uses the C code in the source module, plus the code in the
header files that the code calls to produce an object module. This object module is not
executable by itself. To create an executable file, the object module generated from your
source module must be handed to a linker, which links the code in the object module with
the appropriate library routines that the object module calls, and adds the appropriate C
runtime startup routine.

For example, consider the following C program, called hello.c:

main ()
{

printf("Hello, world\n");
}

When COHERENT compiles the file that contains C code shown above, it generates an
object module called hello.o. This object module is not executable because it does not
contain the code to execute the function printf; that code is contained in a library. To
create an executable program, you must hand hello.o to the linker ld. which copies the
code for printf from a library and into your program. adds the appropriate C runtime
startup routine, and writes the executable file called hello. This third file. hello, is what
you can execute on your computer.

The term dependency describes the relationship of executable file to object module to source
module. The executable program depends on the object module, the library, and the C
runtime startup. The object module, in turn, depends on the source module and its header
files (if any).

A program like hello has a simple set of dependencies: the executable file is built from one
object module, which in turn is compiled from one source module. If you changed the
source module hello.c, creating an updated version of hello would be easy: you would
simply compile hello.c to create hello.o, which you would link with the library and the
runtime startup to create hello. COHERENT. in fact. does this for you automatically: all
you need to do is type

cc hello.c

and COHERENT takes care of everything.

185

186 make Programming Discipline

On the other hand, the dependencies of a large program can be very complex. For example,
the executable file for the MicroEMACS screen editor is built from several dozen object
modules, each of which is compiled from a source module plus one or more header files.
Updating a program as large as MicroEMACS, even when you change only one source
module, can be quite difficult. To rebuild its executable file by hand, you must remember
the names of all of the source modules used, compile them, and link them into the
executable file. Needless to say, it is very inefficient to recompile several dozen object
modules to create an executable when you have changed only one of them.

make automatically rebuilds large programs for you. You prepare a file, called a makefile,
that describes your program's chain of dependencies. make then reads your makefile,
checks to see which source modules have been updated, recompiles only the ones that have
been changed, and then relinks all of the object modules to create a new executable file.
make both saves you time, because it recompiles only the source modules that have
changed, and spares you the drudgery of rebuilding your large program by hand.

Try make
The following exan1ple shows how easy it is to use make.

To see how make works, try compiling a program called factor. It is built from the following
files:

atod.c
factor.c
makefile

All three are included with your copy of COHERENT.

Use the cd command to shift into directory /usr/src/sample.

Now, type make. make will begin by reading makefile, which describes all of factor's
dependencies. It will then use the makefile description to create factor. The following will
appear on your screen:

cc -c factor.c
cc -c atod.c
cc -f -o factor factor.o atod.o -lm

Each of these messages describes an action that make has performed. The first shows that
make is compiling factor.c, the second shows that it is compiling atod.c. and the third
shows that it is linking the compiled object modules atod.o and factor.a to create the
executable file factor.

When make has finished, the COHERENT prompt will return. To see how your newly
compiled program works, type

factor 100

factor will calculate the prime factors of its argument 100, and print them on the screen.

To see what happens if you try to re-make your file, type make again. make will run quietly
for a moment, and then exit. make checked the dates and times of the object modules and
their corresponding source modules and saw that the object modules had a time later than
that of the source modules. Because no source module changed, there was no need to
recompile an object module or relink the executable file, so make quietly exited.

TUTORIAL

make Programming Discipline 187

To see what happens when one of the source modules changes, try the following. Use the
MicroEMACS screen editor to open the file factor.c for editing. Insert the following line into
the comments at the top. immediately following the /•:

* This comment is for test purposes only.

Now exit. Type make once again. This time. you will see the following on your screen:

cc -0 -c factor.c
cc -o -f -o factor factor.o atod.o -lm

Because you altered the source module factor.c, its time was later than that of its
corresponding object module. factor.o. When make compared the times of factor.c and
factor.o, it noted that factor.c had been altered. It then recompiled factor.c and relinked
factor.o and atod.o to re-create the executable file factor. make did not touch the source
module atod.c because atod.c had not been changed since the last time it was compiled.

As you can see. make greatly simplifies the construction of a C program that uses more
than one source module.

Essential make
Although make is a powerful program, its basic features are easy to master. This section
will show you how to construct elementary make scripts.

The makefile
When you invoke make, it searches the directories named in the environmental variable
PATH for a file called makefile. As noted earlier, the makefile is a text file that describes a
C program·s dependencies. It also describes the type of program you wish to build. and the
commands for building it.

A makefile has three basic parts.

First. the makefile describes the executable file's dependencies. That is. it lists the object
modules needed to create the executable file. The name of the executable file is always
followed by a colon ':' and then by the names of files from which the target file is generated.

For example, if the program feud is built from the object modules hatfield.o and mccoy.o,
you would type:

feud: hatfield.o mccoy.o

If the files hatfield.o and mccoy.o do not exist. make knows to create them from the
source modules hatfield.c and mccoy.c.

Second. the makefile holds one or more command lines. The command line gives the
command to compile the program in question. The only difference between a makefile
command line and an ordinary cc command is that a makefile command line must begin
with a space or a tab character.

For example, the makefile to generate the program feud must contain the following
command line:

cc -o feud hatfield.o mccoy.o

For a detailed description of the cc command and its options. refer to the entry for cc in the
Lexicon.

TUTORIAL

188 make Programming Discipline

Third. the makefile lists all of the header files that your program uses. These are given so
that make can check if they were modified since your program was last compiled. For
example. if the program hatfield.c used the header file shotgun.hand mccoy.c used the
header files rifle.h and pistol.h. the makefile to generate feud would include the following
lines:

hatfield.o: shotgun.h
mccoy,o: rifle.h pistol.h

Thus. the entire makefile to generate the program feud is as follows:

feud: hatfield.o mccoy.o
cc -o feud hatfield.o mccoy.o

hatfield.o: shotgun.h
mccoy.o: rifle.h pistol.h

A makefile may also contain macro definitions and comments. These are described below.

Building a Simple makefile
The program factor is built from two source modules. factor.c and atod.c. No header files
are used. The makefile contains the following two lines:

factor: factor.o atod.o
cc -f -o factor factor.o atod.o -lm

The first line describes the dependency for the executable file factor by naming the two
object modules needed to build it. The second line gives the command needed to build
factor. The option -Im at the end of the command line tells cc that this program needs the
mathematics library libm when the program is linked. No header file dependencies are
described because these programs use no special header files. (Header files are described
by the #include preprocessor instruction.)

Comments and Macros
You can embed comments within a makefile. A comment is a line of text that is ignored;
this lets you "document" the file, so that whoever reads it will now know what it is for.
make ignores all lines that begin with a pound sign '#'. For example. you may wish to
include the following information in your makefile for factor:

#This makefile generates the program "factor".
"factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
"libm", but it requires no special header files.
"-f" lets you use printf for floating-point numbers.

factor: factor.o atod.o
cc -f -o factor factor.o atod.o -lm

Anyone who reads this file will know immediately what it is for by looking at the comments.

make also lets you define macros within your makefile. A macro is a symbol that
represents a string of text. Usually. a macro is defined at the beginning of the makefile
using a macro definition statement. This statement uses the following syntax:

SYMBOL = string of text

TUTORIAL

make Programming Discipline 189

Thereafter, when you use the symbol in your makefile, it must begin with a dollar sign'$'
and be enclosed within parentheses.

Macros eliminate the chore of retyping long strings of file names. For example, with the
makefile for the program factor, you may wish to use a macro to substitute for the names
of the object modules out of which it is built. This is done as follows:

#This makefile generates the program "factor",
"factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
"libm", but it requires no special header files.
"-f" lets you use printf for floating-point numbers.

OBJ = factor.o atod.o
factors $(OBJ)

cc -o factor $(OBJ) -lm

The macro OBJ is used in this makefile. If you use a macro that has not been defined,
make substitutes an empty string for it. The use of a macro makes sense when generating
large files out of a dozen or more source modules. You avoid retyping the source module
names, and potential errors are avoided.

Note that you can define macros in the makefile, in the environment, or as a command-line
argument. A macro defined as a command-line argument always overrides a definition of
the same macro in the environment or in the makerue. Normally, a definition in a makefile
overrides a definition of the same macro name in the environment: however, the -e option to
make forces definitions in the environment to override those in the makeme.

Setting the Time
As noted above, make checks to see which source modules have been modified before it
regenerates your C program. This is done to avoid wasteful recompiling of source modules
that have not been updated.

make determines that a source module has been altered by comparing its date against that
of the target program. For example, if the object module factor.o was generated on March
16, 1987, 10:52:47 A.M., and the source module factor.c was modified on March 20, 1987,
at 11:19:06 A.M., make will know that factor.c needs to be recompiled because it is
younger than factor.o.

Building a Large Program
As shown earlier, make can ease the task of generating a large program. The following is
the makefile used to generate the screen editor MicroEMACS:

TUTORIAL

190 make Programming Discipline

makefile for "MicroEMACS"

CFLAGS = -0
LFLAGS = /usr/lib/libterm.a
OBJ=ansi.o basic.o buffer.o display.o file.o \

fileio.o line.o main.o random.o region.o \
search.o spawn.o termio.o vt52.o window.o \
word.o tcap.o

me: $(OBJ)
cc -o me $(OBJ) $(LFLAGS)

$(OBJ) I ed.h

The first line is commentary that describes the file.

The next five lines define macros that are used on the target and command line. The first
macros will be discussed in the following section. The second macro substitutes for the
name of a special library that is needed to create this program. The third macro, which is
three lines long, stands for the names of the source modules that produce MicroEMACS. A
backslash'\' must be used to tell make that the definition is carried over onto the next line.

The next line names the target file (me) and the files used to construct it, here represented
by the macro OBJ.

Next comes the command line, which gives the compilation to be performed. This line must
begin with a space or a tab.

The last line lists the header file ed.h, which is required by all of the files used to generate
MicroEMACS.

Command Line Options
Although make is controlled by your makefile, you can also control make by using
command line options. These allow you to alter make's activity without having to edit your
makefile.

Options must follow the command name on the command line and begin with a hyphen,'-',
using the following format. The square brackets merely indicate that you can select any of
these options; do not type the brackets when you use the make command:

make [-deinpqrst] [-f filename J

Each option is described below.

-d (debug) make describes all of its decisions. You can use this to debug your
makefile.

-e "Environment" option: force definitions in the environment to override those in the
makefile. For example, if the makefile defines

TUTORIAL

foo=makefoo

and the environment defines

foo=envfoo

then $(foo) expands to makefoo if you use the command make but expands to
envfoo if you use the command make -e.

make Programming Discipline 191

-f_fllename
(file) option tells make that its commands are in a file other than makefile. For
example, the command

make -f smith

tells make to use the file smith rather than makefile. If you do not use this option,
make searches the directories named in the environmental variable PATH. and then
the current directory for a file entitled makefile or Makefile to execute.

-i (ignore errors) make ignores error returns from commands and continues processing.
Normally. make exits if a command returns an error status.

-n (no execution) make tests dependencies and modification times but does not execute
commands. This option is especially helpful when constructing or debugging a
makefile.

-p (print) make prints all macro definitions and target descriptions.

-q Return a zero exit status if the targets are up to date. Do not execute any
commands.

-r (rules) make does not use the default macros and commands from
/usr/llb/makemacros and /usr/llb/makeactions. These files will be described
below.

-s (silent) make does not print each command line as it is executed.

-t (touch) make changes the modification time of each executable file and object module
to the current time. This suppresses recreation of the executable file, and
recompilation of the object modules. Although this option is used typically after a
purely cosmetic change to a source module or after adding a definition to a header
file, it must be used with great caution.

Other Command Line Features
In addition to the options listed above, you may include other information on your
command line.

First, you can define macros on the command line. A macro definition must follow any
command line options. Arguments, including spaces, must be surrounded by quotation
marks, as spaces are significant to the shell. For example, the command line

make -n -f smith "OPT=-DTEST"

tells make to run in the no execution mode, reading the file smith instead of makefile, and
defining the macro OPT to mean -DTEST.

The ability to define macros on the command line means that you can create a makefile
using macros that are not yet defined; this greatly increases make's flexibility and makes it
even more helpful in creating and debugging large programs. In the above example, you can
define a command line as follows:

cc $(OPT) example.c

When you define the macro OPT on the command line, then the program is compiled using
the -DTEST option, which defines the preprocessor variable TEST.

As noted above, a macro defined on the command line always overrides an identically
named macro defined either in the environment or in the makefile.

TUTORIAL

192 make Programming Discipline

Another command-line feature is the ability to change the name of the targetflle on the
command line. Normally, the target file is the executable file that you wish to create,
although. as will be seen, it does not have to be. As will be discussed below, a makefile can
name more than one target file. make normally assumes that the target is the first target
file named in makefile. However, the command line may name one or more target files at
the end of the line, after any options and any macro definitions.

To see how this works, recall the program factor described above. factor is generated out
of the source modules factor.c and atod.c. The command

make atod.o

with the makefile outlined above would produce the following cc command line:

cc -c atod.c

if the object module atod.o does not exist or is outdated. Here, make compiles atod.c to
create the target specified in the make command line, that is, atod.o, but it does not create
factor. This feature allows you to apply your makefile to only a portion of your program.

The use of special, or alternative, target files is discussed below.

Advanced make
This section describes some of make's advanced features. For most of your work, you will
not need these features; however, if you create an extremely complex program, you will find
them most helpful.

Default Rules
The operation of make is governed by a set of default rules. These rules were designed to
simplify the compilation of a typical program; however, unusual tasks may require that you
bypass or alter the default rules.

To begin, make uses information from the files /usr/lib/makemacros and
/usr/lib/makeactions to define default macros and compilation commands. make uses
the commands in makemacros and makeactions whenever the makefile specifies no
explicit regeneration commands. The command line option -r tells make not to use the
macros and actions defined in makemacros and makeactions.

As shown in earlier examples, make knows by default to generate the object module atod.o
from the source module atod.c with the command

cc -c atod.c

The macro .SUFFIXES defines the suffixes make knows about by default. Its definition in
makemacrosincludes both the .o and .c suffixes.

make's files makemacros and makeactions use pre-defined macros to increase their scope
and flexibility. These are as follows:

$< This stands for the name of the file or files that cause the action of a default rule.
For example, if you altered the file atod.c and then invoked make to rebuild the
executable file factor, $< would then stand for atod.c.

$• This stands for the name of the target of a default rule with its suffix removed. If it
had been used in the above example, $• would have stood for atod.

$< and $*work only with default rules; these macros will not work in a makefile.

TUTORIAL

make Programming Discipline 193

$'? This stands for the names of the files that cause the action and that are younger than
the target file.

$@ This stands for the target name.

You can use the macros $'? and $@ in a makefile. For example, the following rule updates
the archive llbx.a with the objects defined by macro $(OBJ) that are out of date:

libx.a: $(OBJ)

ar rv libx.a $?

makemacros also contains default commands that describe how to build additional kinds
of files:

AS and ASFLAGS call the assembler to assemble .o files out of source modules written
in assembly language rather than C.

YACC and YFLAGS call yacc to build .o or .c files from .y files.

LEX and LFLAGS call lex to build .o or .c files from .l files.

You can change the default rules of make by changing them in makeactions and changing
the definition of any of the macros as given in makemacros.

Source File Path
If a file is not specified with an absolute path name beginning with • /', make first looks for
the file in the current directory. If the file is not found in the current directory, make
searches for it in the list of directories specified by the macro $(SRCPATH). This allows you
to compile a program in an object directory separate from the source path.

For example

export SRCPATH=/usr/src/local/me
make

or alternatively

make SRCPATH=/usr/src/local/me

builds objects in the current directory as specified by the makefile from sources kept in
directory /usr/src/local/me. To test changes to a program built from several source files,
copy only the files you wish to change to the current directory; make will use the local
sources and find the other other sources on the $(SRCPATH).

Note that $(SRCPATH) can be a single directory. as in the above example, or a list of
directories. In the latter case, each entry in the list must be separated by a colon ':', as
described in the Lexicon entry for the function path().

Double-Colon Target Lines
An alternative form of target line simplifies the task of maintaining archives. This form uses
the double colon "::" instead of a single colon ':' to separate the name of the target from
those of the files on which it depends.

A target name can appear on only one single-colon target line, whereas it can appear on
several double-colon target lines. The advantage of using the double-colon target lines is
that make will remake the target by executing the commands (or its default commands) for
the.first such target line for which the target is older than a file on which it depends.

TUTORIAL

194 make Programming Discipline

For example, for the program factor described earlier, assume that two versions of the
source modules factor.c and atod.c exist: factora.c plus atoda.c, and factorb.c plus
atodb.c The makeme would appear as follows:

OBJ! factora.o atoda.o
OBJ2 = factorb.o atodb.o

factor11 $(OBJ!)
cc -c $(OBJ!) -lm

factor11 $(0BJ2)
cc -c $(0BJ2) -lm

This makeme tells make to do the following: (1) Check if either factora.o or atoda.o is
younger than factor. (2) If either one is, regenerate factor using this version of these files.
(3) If neither factora.o nor atoda.o is younger than factor. then check to see if either
factorb.o or atodb.o is younger than factor. (4) If either of them is, then regenerate factor
using the youngest version of these files.

This technique allows you to maintain multiple versions of source files in the same directory
and selectively recompile the most recently updated version without having to edit your
makeme or otherwise trick the system.

You cannot target a file in both a single-colon and a double-colon target line.

Alternative Uses
make is a program that helps you construct complex things from a number of simpler
things.

make usually is used to build complex C programs: the executable file is made from object
modules, which are made from source modules and header files. However, make can be
used to create any type of file that is constructed from one or more source modules. For
example, an accountant can use make to generate monthly reports from daily inventories:
all the accountant has to do is prepare a makefile that describes the dependencies (that is,
the name of the monthly report they wish to create and the names of the daily inventories
from which it is created), and the command required to generate the monthly report.
Thereafter, to recreate the report, all the accountant has to do to generate a monthly report
is type make.

In another example, the makefile can trigger program maintenance commands. For
example, the target name backup might define commands to copy source modules to
another directory; typing make backup saves a copy of the source modules. Similar uses
include removing temporary files, building archives, executing test suites, and printing
listings. A makefile is a convenient place to keep all the commands used to maintain a
program.

The following example shows a makefile that defines two special target files, printall and
printnew, to be used with the source files for the program factor.

TUTORIAL

make Programming Discipline 195

#This makefile generates the program "factor".
"factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
libm, but it requires no special header files.

OBJ factor.o atod.o
SRC factor.c atod.c

factor: $(OBJ)
cc -o factor $(OBJ) -lm

program to print all the updated source modules
#used to generate the program "factor"

printall:
pr $ (SRC) I lpr
>print new

printnew: $(SRC)
pr $? I lpr
>print new

In this instance, typing the command

make printall

forces make to generate the target prlntall rather than the target factor, which is the
default as it appears first in the makefile. The pr and lpr commands are then used to print
a listing of all files defined by SRC. The macro OBJ cannot be used with these commands
because it would trigger the printing of the object files, which would not be of much use. It
also creates an empty file pmew. This new file serves only to record the time the listing is
printed. This tactic is performed in order to record the time that the listing was last
generated so that make will know what files have been updated when you next use
prlntnew.

Typing the command

make printnew

forces make to generate the target printnew rather than the default target factor.
prlntnew prints only the files named in the macro SRC that have changed since any files
were last printed.

Special Targets
A few target names have special meanings to make. The name of each special target begins
with'.' and contains upper-case letters.

The target name .DEFAULT defines the default commands make uses if it cannot find any
other way to build a target. The special target .IGNORE in a makefile has the same effect
as the -i command line option. Similarly, .SILENT has the same effect as the -s command
line option.

TUTORIAL

196 make Programming Discipline

Errors
make prints "command exited with status n" and exits if an executed command returns an
error status. However, it ignores the error status and continues processing if the makefile
command line begins with a hyphen·-· or if the make command line specifies the -i option.

make reports an error status and exits if the user interrupts it. It prints "can't openjlle" if
it cannot find the specificationjlle. It prints "Targetjlle is not defined" or "Don't know
how to make target" if it cannot find an appropriatejlle or commands to generate target.
Other possible errors include syntax errors in the specification file, macro definition errors.
and running out of space. The error messages make prints are generally self-explanatory;
however. a table of error messages and brief descriptions of them are given in a later section
of this manual.

Exit Status
make normally returns a status of zero if it succeeds, and of one if an error occurs. With
the -q option (described above), make returns zero if all files are up to date and two if they
are not up to date.

Where To Go From Here
The Lexicon article on make summarizes make's options and features. The source code
included with the COHERENT system, such as that for the MicroEMACS screen editor,
includes makefiles. Studying them will show you how make has been used to control the
building of large. real-world applications.

TUTORIAL

Section 10:

Introduction to MicroEMACS

This section introduces MicroEMACS. the interactive screen editor for COHERENT.

What is MicroEMACS?
MicroEMACS is an interactive screen editor. An editor lets you type text into your
computer, name it, store it. and recall it later for editing. Interactive means that
MicroEMACS accepts an editing command, executes it, displays the results for you
immediately. then waits for your next command. Screen means that you can use nearly the
entire screen of your terminal as a writing surface: you can move your cursor up, down, and
around your screen to create or change text. much as you move your pen up. down, and
around a piece of paper.

These features, plus the others that will be described in the course of this tutorial, make
MicroEMACS powerful yet easy to use. You can use MicroEMACS to create or change
computer programs or any type of text file.

This version of MicroEMACS was developed by Mark Williams Company from the public­
domain program written by David G. Conroy. This tutorial is based on the descriptions in
his essay MtcroEMACS: Reasonable Display Editing in Little Computers. MicroEMACS is
derived from the mainframe display editor EMACS, created by Richard Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the Lexicon.

Keystrokes: <ctrl>, <esc>
The Micro EMACS commands use control characters and meta characters. Control
characters use the control key, which is marked Control or ctrl on your keyboard. Meta
characters use the escape key. which is marked Esc.

Control works like the shift key: you hold it down while you strike the other key. This
tutorial represent it with a hyphen; for example, pressing the control key and the letter 'X'
key simultaneously will be shown as follows:

<ctrl-X>

The esc key, on the other hand, works like an ordinary character. You strike it first, then
strike the letter character you want. This tutorial does not represent the Escape codes with
a hyphen; for example, it represents escape X as:

<esc>X

Becoming Acquainted with MicroEMACS
Now you are ready for a few simple exercises that will help you get a feel for how
MicroEMACS works.

To begin. type the following command to COHERENT:

197

198 MicroEMACS Screen Editor

me sample

Within a few seconds, your screen will have been cleared of writing. the cursor will be
positioned in the upper left-hand corner of the screen, and a command line will appear at
the bottom of your screen.

Now type the following text. If you make a mistake, just backspace over it and retype the
text. Press the carriage return or enter key after each line:

main()
{

}
printf("Hello, worldl\n");

Notice how the text appeared on the screen character by character as you typed it. much as
it would appear on a piece of paper if you were using a typewriter.

Now. type <ctrl-X><ctrl-S>: that is, type <ctrl-X>. and then type <ctrl-S>. It does not
matter whether you type capital or lower-case letters. Notice that this message has
appeared at the bottom of your screen:

[Wrote 4 lines]

This command has permanently stored. or saved, what you typed into a file named sample.

Type the next few commands, which demonstrate some of the tasks that MicroEMACS can
perform for you. These commands will be explained in full in the sections that follow: for
now, try them to get a feel for how MicroEMACS works.

Type <e&C><. Be sure that you type a less-than symbol '<'. Notice that the cursor has
returned to the upper left-hand comer of the screen. fype <esc>F. The cursor has jumped
forward by one word, and is now on the left parenthesis.

Type <ctrl-N>. Notice that the cursor has jumped to the next line, and is now just to the
right of the left brace 'f.

Type <ctrl-A>. The cursor has jumped to the beginning of the second line of your text.

Type <ctrl-N> again. Now the cursor is at the beginning of the third line of the program, the
printf statement.

Now, type <ctrl-K>. The third line of text has disappeared. leaving an empty space. fype
<ctrl-K> again. The empty space where the third line of text had been has now
disappeared.

Type <esc>>. Be sure to type a greater-than symbol '>'. The cursor has jumped to the
space just below the last line of text. Now type <ctrl-Y>. The text that you erased a
moment ago has reappeared, but in a new position on he screen.

By now. you should be feeling more at ease with typing MicroEMACS's control and escape
codes. The following sections will explain what these commands mean. For now, exit from
MicroEMACS by typing <Ctrl-X><ctrl-C>, and when the message

Quit [y/n]?

appears type y and then <return>. This will return you to COHERENT.

TUTORIAL

MicroEMACS Screen Editor 199

Beginning a Document
This section practices on the file examplel.c. This file is stored in the directory
/usr/src/example. Before beginning. copy it into the current directory with this command:

cp /usr/src/sample/examplel.c •

Now, type the following command to invoke MicroEMACS:

me examplel.c

In a moment. the following text will appear on your screen:

/*
* This is a simple C program that computes the results
* of three different rates of inflation over the
* span of ten years. Use this text file to learn
* how to use MicroEMACS commands
* to make creating and editing text files quick,
* efficient and easy.
*/

#include <stdio.h>
main()
{

int i; /* count ten years */
float wl, w2, w3; /* three inflated quantities */

}

char *msg = " %2d\t%f %f %f\n";/* printf string */
i = O;
wl 1. o;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i<= 10; i++) {

wl *= 1. 07; /* apply inflation *I
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, wl, w2, w3);

}

When you invoke MicroEMACS. it copies that file into memory. Your cursor also moved to
the upper left-hand corner of the screen. At the bottom of the screen appears the status
line. as follows:

-- Coherent MicroEMACS -- examplel.c -- File: examplel.c --

The word to the left. MicroEMACS. is the name of the editor. The word in the center,
examplel.c, is the name of the buffer that you are using. (We will describe later just what
a buffer is and how you use it.) The name to the right is the name of the text file that you
are editing.

TUTORIAL

200 MicroEMACS Screen Editor

Moving the Cursor
Now that you have read a text file into memory, you are ready to edit it. The first step is to
learn to move the cursor.

Try these commands for yourself as we described them. That way, you will quickly acquire
a feel for handling MicroEMACS's commands.

Moving the Cursor Forward
This first set of commands moves the cursor forward:

<Ctrl-F>
<esc>F
<ctrl-E>

Move forward one space
Move forward one word
Move to end of line

To see how these commands work. do the following: Type the forward command <ctrl-F>.
As before, it does not matter whether the letter 'F' is upper case or lower case. The cursor
has moved one space to the right. and now is over the character ••• in the first line.

Type <esc>F. The cursor has moved one word to the right. and is now over the space after
the word this. MicroEMACS considers only alphanumeric characters when it moves from
word to word. Therefore. the cursor moved from under the• to the space after the word
this, rather than to the space after the •. Now type the end of line command <Ctrl-E>. The
cursor has jumped to the end of the line and is now just to the right of the e of the word
three.

Moving the Cursor Backwards
The following summarizes the commands for moving the cursor backwards:

<ctrl-B>
<esc>B
<Ctrl-A>

Move back one space
Move back one word
Move to beginning of line

To see how these work, first type the backward command <ctrl-B>. As you can see, the
cursor has moved one space to the left, and now is over the letter e of the word three. Type
<esc>B. The cursor has moved one word to the left and now is over the t in three. Type
<esc>B again, and the cursor will be positioned on the o in of.

Type the beginning of line command <ctrl-A>. The cursor jumps to the beginnning of the
line, and once again is resting over the · /' character in the first line.

From Line to Line

<ctrl-P>
<ctrl-N>

Move to previous line
Move to next line

These two commands move the cursor up and down the screen. Type the next line
command <ctrl-N>. The cursor jumps to the space before the••• in the next line. Type the
end of line command <ctrl-E>, and the cursor moves to the end of the second line to the
right of the period.

Continue to type <ctrl-N> until the cursor reaches the bottom of the screen. As you
reached the first line in your text, the cursor jumped from its position at the right of the
period on the second line to just right of the brace on the last line of the file. When you

TUTORIAL

MicroEMACS Screen Editor 201

move your cursor up or down the screen, Micro EMACS tries to keep it at the same position
within each line. If the line to which you are moving the cursor is not long enough to have
a character at that position, MicroEMACS moves the cursor to the end of the line.

Now, practice moving the cursor back up the screen. Type the previous line command
<ctrl-P>. When the cursor jumped to the previous line, it retained its position at the end of
the line. MicroEMACS remembers the cursor's position on the line, and returns the cursor
there when it jumps to a line long enough to have a character in that position.

Continue pressing <ctrl-P>. The cursor will move up the screen until it reaches the top of
your text.

Repetitive Motion
Some computers repeat a command automatically if you hold down the control key and the
character key. Try holding down <ctrl-N> for a moment. and see if it repeats automatically.
If it does, that will speed moving your cursor around the screen, because you will not have
to type the same command repeatedly.

Moving Up and Down by a Screenful of Text
The next two cursor movement commands allow you to roll forward or backwards by one
screenful of text.

<Ctrl-V>
<esc>V

Move forward one screen
Move back one screen

If you are editing a file with MicroEMACS that is too big to be displayed on your screen all
at once, MicroEMACS displays the file in screen-sized portions (on most terminals, 22 lines
at a time). The view commands <ctrl-V> and <esc>V allow you to roll up or down one
screenful of text at a time.

Type <ctrl-V>. Your screen now contains only the last three lines of the file. This is
because you have rolled forward by the equivalent of one screenful of text, or 22 lines.

Now, type <esc>V. Notice that your text rolls back onto the screen, and your cursor is
positioned in the upper left-hand corner of the screen, over the character'/' in the first line.

Moving to Beginning or End of Text
These last two cursor movement commands allow you to jump immediately to the beginning
or end of your text.

<eSC><
<eSC>>

Move to beginning of text
Move to end of text

The end of text command <esc>> moves the cursor to the end of your text. Type <eSC>>.
Be sure to type a greater-than symbol '>'; this symbol may have been placed anywhere on
your keyboard, although on IBM-style keyboards it appears above the period. Your cursor
has jumped to the end of your text.

The beginning of text command <esc>< will move the cursor back to the beginning of your
text. Type <esc><. Be sure to type a less-than symbol '<'; on IBM-style keyboards it
appears above the comma. The cursor has jumped back to the upper left-hand corner of
your screen.

TUTORIAL

202 MicroEMACS Screen Editor

These commands move you immediately to the beginning or the end of your text, regardless
of whether the text is one page or 20 pages long.

Saving Text and Quitting
If you do not wish to continue working at this time, you should save your text, and then
quit.

It is good practice to save your text file every so often while you are working on it. If an
accident occurs, such as a power failure, you will not lose all of your work. You can save
your text with the save command <ctrl-X><ctrl-S>. Type <ctrl-X><ctrl-S> that is, first
type <Ctrl-X>. then type <ctrl-S>. If you had modified this file, the following message would
appear:

[Wrote 23 lines]

The text file would have been saved to your computer's disk. (MicroEMACS sends you
messages from time to time. The messages enclosed in square brackets '[' ')' are for your
information, and do not necessarily mean that something is wrong.) To exit from
MicroEMACS, type the quit command <ctrl-X><ctrl-C>. This will return you to
COHERENT.

Killing and Deleting
Now that you know how to move the cursor, you are ready to edit your text.

To return to MicroEMACS, type the command:

me examplel.c

Within a moment, example I .c will be restored to your screen.

By now, you probably have noticed that MicroEMACS is always ready to insert material into
your text. Unless you use the <ctrl> or <esc> keys, MicroEMACS assumes that whatever
you type is text and inserts it onto your screen where your cursor is positioned.

The simplest way to erase text is simply to position the cursor to the right of the text you
want to erase and backspace over it. MicroEMACS, however, also has a set of commands
that allow you to erase text easily. These commands, kill and delete, behave differently; the
distinction is important, and will be explained in a moment.

Deleting Vs. Killing
When MicroEMACS deletes text, it is erased completely and disappears forever. However,
when MicroEMACS kills text, the text is copied into a temporary storage area in memory.
This storage area is overwritten when you move the cursor and then kill additional text.
Until then, however, the killed text is saved. This aspect of killing allows you to restore text
that you killed accidentally, and it also allows you to move or copy portions of text from one
position to another.

MicroEMACS is designed so that when it erases text, it does so beginning at the left edge of
the cursor. This left edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from the character
immediately to its left. As you enter the various kill and delete commands, this vertical bar
moves to the right or the left with the cursor, and erases the characters it touches.

TUTORIAL

MicroEMACS Screen Editor 203

Erasing Text to the Right
The first two commands to be presented erase text to the right.

<ctrl-D>
<esc>D

Delete one character to the right
Kill one word to the right

<ctrl-D> deletes one character to the right of the current position. <esc>D deletes one word
to the right of the current position.

To try these commands, type the delete command <ctrl-D>. MicroEMACS erases the
character 'I' in the first line, and shifted the rest of the line one space to the left.

Now, type <esc>D. MicroEMACS erases the'"' character and the word This, and shifts the
line six spaces to the left. The cursor is positioned at the space before the word is. Type
<esc>D again. The word is vanishes along with the space that preceded it, and the line
shifts four spaces to the left.

Remember that <ctrl-D> deletes text, but <esc>D kills text.

Erasing Text to the Left
You can erase text to the left with the following commands:

<backspace>
<ctrl-H>

<esc>
<esc><backspace>
<eSC><Ctrl-H>

Delete one character to the left
Delete one character to the left
Delete one character to the left

Kill one word to the left
Kill one word to the left
Kill one word to the left

To see how to erase text to the left, first type the end of line command <ctrl-E>; this will
move the cursor to the right of the word three on the first line of text. Now, type .
The second e of the word three has vanished.

Type <eSC>. The rest of the word three has disappeared, and the cursor has moved to
the second space following the word of.

Move the cursor four spaces to the left, so that it is over the letter o of the word of. Type
<esc>. The word results has vanished, along with the space that was immediately to
the right of it. As before, these commands erased text beginning immediately to the left of
the cursor. The <esc> command can be used to erase words throughout your text.

If you wish to erase a word to the left but preserve both spaces that are around it, position
the cursor at the space immediately to the right of the word and type <esc>. If you
wish to erase a word to the left plus the space that immediately follows it, position the
cursor under the first letter of the next word and then type <esc>.

Typing deletes text, but typing <eSC> kills text.

TUTORIAL

204 MicroEMACS Screen Editor

Erasing Lines of Text
Finally, the following command erases a line of text:

<ctrl-K> Kill from cursor to end of line

This command kills a line of text, from the line beginning from immediately to the left of the
cursor to the end of the line.

To see how this works, move the cursor to the beginning of line 2. Now, strike <ctrl-K>. All
of line 2 has vanished and been replaced with an empty space. Strike <ctrl-K> again. The
empty space has vanished, and the cursor is now positioned at the beginning of what used
to be line 3, in the space before• Use.

Yanking Back (Restoring) Text
The following command allows you restore material that you have killed:

<ctrl-Y> Yank back (restore) killed text

Remember that when you kill text, MicroEMACS temporarily stores it elsewhere. You can
return this material to the screen by using the yank back command <ctrl-Y>. Type <ctrl­
Y>. All of line 2 has returned; the cursor, however, remains at the beginning of line 3.

Quitting
When you are finished, do not save the text. If you do so, the undamaged copy of the text
that you made earlier will be replaced with the present mangled copy. Rather. use the quit
command <ctrl-X><ctrl-C>. Type <ctrl-X><ctrl-C>. On the bottom of your screen,
MicroEMACS responds:

Quit [y/n]?

Reply by typing y and a carriage return. If you type n, MicroEMACS will return you to
where you were in the text. MicroEMACS will now return you to COHERENT.

Block Killing and Moving Text
As noted above, text that is killed is stored temporarily within memory. You can yank killed
text back onto your screen, and not necessarily in the spot where it was originally killed.
This feature allows you to move text from one position to another.

Moving One Line of Text
You can kill and move one line of text with the following commands:

<ctrl-K>
<Ctrl-Y>

Kill text to end of line
Yank back text

To test these commands, invoke MicroEMACS for the file examplel.c by typing the
following command:

me examplel.c

When MicroEMACS appears, the cursor will be positioned in the upper left-hand corner of
the screen.

TUTORIAL

MicroEMACS Screen Editor 205

To move the first line of text. begin by typing the ktll command <ctrl-K> twice. Now. press
<esc>> to move the cursor to the bottom of text. Finally. yank back the line by typing <ctrl­
Y>. The line that reads

/* This is a simple C program that computes the results

is now at the bottom of your text.

Your cursor has moved to the point on your screen that is after the line you yanked back.

Multiple Copying of Killed Text
When text is yanked back onto your screen. it is not deleted from memory. Rather, it is
simply copied back onto the screen. This means that killed text can be reinserted into the
text more than once. To see how this is done, return to the top of the text by typing <eSC><.
Then type <ctrl-Y>. The line you just killed now appears as both the first and last line of
the file.

The killed text will not be erased from its temporary storage until you move the cursor and
then kill additional text. If you kill several lines or portions of lines in a row, all of the killed
text will be stored in the buffer; if you are not careful. you may yank back a jumble of
accumulated text.

Kill and Move a Block of Text
If you wish to kill and move more than one line of text at a time, use the following
commands:

<Ctrl-@>
<esc>.
<ctrl-W>
<Ctrl-Y>

Set mark
Set mark
Kill block of text
Yank back text

If you wish to kill a block of text. you can either type the kill command <ctrl-K> repeatedly
to kill the block one line at a time. or you can use the block kill command <ctrl-W>. To use
this command. you must first set a mark on the screen. an invisible character that acts as a
signal to the computer. The mark can be set with either <esc>. or <ctrl-@>.

Once the mark is set, you must move your cursor to the other end of the block of text you
wish to kill. and then strike <ctrl-W>. The block of text will be erased. and will be ready to
be yanked back elsewhere.

Try this out on examplel.c. Type <esc>< to move the cursor to the upper left-hand corner
of the screen. Then type the set mark command <ctrl-@>. (By the way. be sure to type'@',
not '2'.) MicroEMACS will respond with the message

[Mark set]

at the bottom of your screen. Now, move the cursor down six lines. and type <ctrl-W>.
Note how the block of text you marked out has disappeared.

Move the cursor to the bottom of your text. Type <ctrl-Y>. The killed block of text has now
been reinserted.

When you yank back text. be sure to position the cursor at the exact point where you want
the text to be yanked back. This will ensure that the text will be yanked back in the proper
place. To try this out. move your cursor up six lines. Be careful that the cursor is at the
beginning of the line. Now. type <ctrl-Y> again. The text reappeared above where the
cursor was positioned. and the cursor has not moved from its position at the beginning of

TUTORIAL

206 MicroEMACS Screen Editor

the line which is not what would have happened had you positioned it in the middle or at
the end of a line.

Although the text you are working with has only 23 lines. you can move much larger
portions of text using only these three commands. Remember, too, that you can use this
technique to duplicate large portions of text at several positions to save yourself
considerable time in typing and reduce the number of possible typographical errors.

Capitalization and Other Tools
The next commands perform a number of tasks to help with your editing. Before you begin
this section, destroy the old text on your screen with the quit command <ctrl-X><ctrl-C>,
and read into MicroEMACS a fresh copy of the program, as you did earlier.

Capitalization and Lowercasing
The following MicroEMACS commands automatically capitalize a word (that is, make the
first letter of a word upper case), or make an entire word upper case or lower case.

<eSC>C
<esc>L
<eSC>U

Capitalize a word
Lowercase an entire word
Uppercase an entire word

To try these commands, do the following: First, move the cursor to the letter d of the word
different on line 2. Type the capitalize command <esc>C. The word is now capitalized, and
the cursor is now positioned at the space after the word. Move the cursor forward so that it
is over the letter t in rates. Press <esc>C again. The word changes to raTes. When you
press <esc>C, MicroEMACS capitalizes the.first letter the cursor meets.

MicroEMACS can also change a word to all upper case or all lower case. (There is very little
need for a command that will change only the first character of an upper-case word to lower
case, so it is not included.)

Type <esc>B to move the cursor so that it is again to the left of the word Ditrerent. It does
not matter if the cursor is directly over the D or at the space to its left; as you will see, this
means that you can capitalize or lowercase a number of words in a row without having to
move the cursor.

Type the uppercase command <esc>U. The word is now spelled DIFFERENT. and the
cursor has jumped to the space after the word.

Again, move the cursor to the left of the word DIFFERENT. Type the lowercase command
<esc>L. The word has changed back to different. Now, move the cursor to the space at the
beginning of line 3 by typing <ctrl-N> then <ctrl-A>. Type <esc>L once again. The
character"•' is not affected by the command, but the letter U is now lower case. <esc>L not
only shifts a word that is all upper case to lower case: it can also un-capitalize a word.

The uppercase and lowercase commands stop at the first punctuation mark they meet qfter
the first letter they find. This means that, for example, to change the case of a word with an
apostrophe in it you must type the appropriate command twice.

TUTORIAL

MicroEMACS Screen Editor 207

Transpose Characters
MicroEMACS allows you to reverse the position of two characters, or transpose them, with
the transpose command <ctrl-T>.

Type <ctrl-T>. MicroEMACS transposes the character that is under the cursor with the
character immediately to its left. In this example,

* use this

in line 3 now appears:

* us ethis

The space and the letter e have been transposed. Type <ctrl-T> again. The characters have
returned to their original order.

Screen Redraw

<ctrl-L> Redraw screen

Occasionally. while you are working on a text another COHERENT user will write or mail
you a message. COHERENT will write the message directly on your screen, which
scrambles your screen. A message sent from another user or a message from the
COHERENT system is not recorded into your text; however, you may wish to erase the
message and continue editing. The redraw screen command <ctrl-L> will redraw your
screen to the way it was before it was scrambled.

Type <ctrl-L>. Notice how the screen flickers and the text is rewritten. Had your screen
been spoiled by extraneous material, that material would have been erased and the original
text rewritten.

The <ctrl-L> command also has another use: it can move the line on which the cursor is
positioned to the center of the screen. If you have a file that contains more than one
screenful of text and you wish to have that particular line in the center of the screen,
position the cursor on that line and type <ctrl-U><ctrl-L>. Immediately, MicroEMACS
redraws the screen, and places the line you selected in the center of the screen.

Return Indent

<ctrl-J> Return and indent

You may often be faced with a situation in which, for the sake of programming style, you
need to indent many lines of text: before every line you must tab the correct number of
times before typing the text. These block indents can be a time-consuming typing chore.
The MicroEMACS <ctrl-J> command makes this task easier. <ctrl-J> moves the cursor to
the next line on the screen and automatically positions the cursor at the previous line's level
of indentation.

To see how this works, first move the cursor to the line that reads

w3 *= 1.10:

Press <ctrl-E>. to move the cursor to the end of the line. Now, type <ctrl-J>.

TUTORIAL

208 MicroEMACS Screen Editor

As you can see, a new line opens up and the cursor is indented the same amount as the
previous line. Type

/* Here is an example of auto-indentation */

This line of text begins directly under the previous line.

Word Wrap

<Ctrl-X>F Set word wrap

Although you have not yet had much opportunity to use it, MicroEMACS will automatically
wrap text that you are typing. Word-wrapping is controlled with the word wrap command
<ctrl-X>F. To see how the word wrap command works. first exit from MicroEMACS by
typing <ctrl-X><ctrl-C>; then reinvoke MicroEMACS by typing

me cucumber

When MicroEMACS re-appears. type the following text; however, do not type any carriage
returns:

A cucumber should be
well sliced, and dressed
with pepper and vinegar,
and then thrown out, as
good for nothing.

When you reached the edge of your screen. a dollar sign was printed and you were allowed
to continue typing. MicroEMACS accepted the characters you typed, but it placed them at a
location beyond the right edge of your screen.

Now, move to the beginning of the next line and type <ctrl-U>. MicroEMACS will reply with
the message:

Arg1 4

Type 30. The line at the bottom of your screen now appears as follows:

Arg: 30

(The use of the argument command <ctrl-U> will be explained in a few minutes.) Now type
the word-wrap command <ctrl-X>F. MicroEMACS will now say at the bottom of your
screen:

[Wrap at column 30]

This sequence of commands has set the word-wrap function. and told it to wrap to the next
line all words that extend beyond the 30th column on your screen.

The word wrap feature automatically moves your cursor to the beginning of the next line
once you type past a preset border on your screen. When you first enter MicroEMACS, that
limit is automatically set at the first column, which in effect means that word wrap has
been turned off.

When you type prose for a report or a letter of some sort, you probably will want to set the
border at the 65th column, so that the printed text will fit neatly onto a sheet of paper. If
you are using MicroEMACS to type in a program, however, you probably will want to leave
word wrap off, so you do not accidentally introduce carriage returns into your code.

TUTORIAL

MicroEMACS Screen Editor 209

To test word wrapping, type the above text again, without using the carriage return key.
When you finish, it should appear as follows:

A cucumber should be well
sliced, and dressed with
pepper and vinegar, and then
thrown out, as good for nothing.

MicroEMACS automatically moved your cursor to the next line when you typed a space
character after the 30th column on your screen.

If you wish to fix the border at some special point on your screen but do not wish to go
through the tedium of figuring out how many columns from the left it is, simply position the
cursor where you want the border to be, type <ctrl-X>F, and then type a carriage return.
When <ctrl-X>F is typed without being preceded by a <ctrl-U> command, it sets the word­
wrap border at the point your cursor happens to be positioned. When you do this,
MicroEMACS will then print a message at the bottom of your terminal that tells you where
the word-wrap border is now set.

To re-word wrap the text between the cursor and the mark, type <Ctrl-X>H.

If you wish to turn off the word wrap feature again, simply set the word wrap border to one.

Search and Reverse Search
When you edit a large text, you may wish to change particular words or phrases. To do
this, you can roll through the text and read each line to find them; or you can have
MicroEMACS find them for you. Before you continue, close the present file by typing <ctrl­
X> <ctrl-C>; then reinvoke the editor to edit the file examplel.c, as you did before. The
following sections perform some exercises with this file.

Search Forward

<ctrl-S>
<esc>S

Search forward incrementally
Search forward with prompt

As you can see from the display, MicroEMACS has two ways to search forward:
incrementally, and with a prompt.

An Incremental search is one in which the search is performed as you type the characters.
To see how this works. first type the beginning of text command <esC>< to move the cursor
to the upper left-hand corner of your screen. Now, type the Incremental search command
<ctrl-8>. MicroEMACS will respond by prompting with the message

i-search forward:

at the bottom of the screen.

We will now search for the pointer •msg. Type the letters •msg one at a time, starting with
•. The cursor has jumped to the first place that a• was found: at the second character of
the first line. The cursor moves forward in the text file and the message at the bottom of the
screen changes to reflect what you have typed.

Now type m. The cursor has jumped ahead to the letter s in •msg. Type s. The cursor has
jumped ahead to the letter gin •msg. Finally, type g. The cursor is over the space after the
token •msg. Finally, type <esc> to end the string. MicroEMACS replies with the message

TUTORIAL

21 O MicroEMACS Screen Editor

[Done]

which indicates that the search is finished.

If you attempt an incremental search for a word that is not in the file. Micro EMACS will find
as many of the letters as it can, and then give you an error message. For example, if you
tried to search incrementally for the word •msgs, MicroEMACS would move the cursor to
the phrase *msg; when you typed 's', it would tell you

failing i-search forward: *msgs

With the prompt search, however, you type in the word all at once. To see how this works,
type <esc><, to return to the top of the file. Now, type the prompt search command <esc>S.
MicroEMACS responds by prompting with the message

Search [*msgs]:

at the bottom of the screen. The word *msgs is shown because that was the last word for
which you searched, and so it is kept in the search buffer.

Type in the words editing text, then press the carriage return. Notice that the cursor has
jumped to the period after the word text in the next to last line of your text. MicroEMACS
searched for the words editing text, found them, and moved the cursor to them.

If the word you were searching for was not in your text, or at least was not in the portion
that lies between your cursor and the end of the text, MicroEMACS would not have moved
the cursor, and would have displayed the message

Not found

at the bottom of your screen.

Reverse Search

<Ctrl-R>
<esc>R

Search backwards incrementally
Search backwards with prompt

The search commands, useful as they are, can only search forward through your text. To
search backwards, use the reverse search commands <ctrl-R> and <esc>R. These work
exactly the same as their forward-searching counterparts, except that they search toward
the beginning of the file rather than toward the end.

For example, type <esc>R. MicroEMACS replies with the message

Reverse search [editing text]:

at the bottom of your screen. The words in square brackets are the words you entered
earlier for the search command; MicroEMACS remembered them. If you wanted to search
for editing text again, you would just press the carriage return. For now, however, type the
word program and press the carriage return.

Notice that the cursor has jumped so that it is under the letter p of the word program in
line 1. When you search forward, the cursor moves to the space after the word for which
you are searching. whereas when you reverse search the cursor moves to the first letter of
the word for which you are searching.

TUTORIAL

MicroEMACS Screen Editor 211

Cancel a Command

<ctrl-G> Cancel a search command

As you have noticed, the commands to move the cursor or to delete or kill text all execute
immediately. Although this speeds your editing. it also means that if you type a command
by mistake, it executes before you can stop it.

The search and reverse search commands, however, wait for you to respond to their
prompts before they execute. If you type <esc>S or <esc>R by accident, MicroEMACS will
interrupt your editing and wait for you to initate a search that you do not want to perform.
You can evade this problem, however, with the cancel command <ctrl-G>. This command
tells MicroEMACS to ignore the previous command.

To see how this command works, type <esc>R. When the prompt appears at the bottom of
your screen, type <ctrl-G>. Three things happen: your terminal beeps. the characters "G
appear at the bottom of your screen, and the cursor returns to where it was before you first
typed <esc>R. The <esc>R command has been cancelled, and you are free to continue
editing.

If you cancel an incremental search command, <ctrl-S> or <esc-S>, the cursor returns to
where it was before you began the search. For example, type <esC>< to return to the top of
the file. Now type <ctrl-S> to begin an incremental search, and type m. When the cursor
moves to them in simple, type <ctrl-G>. The bell rings, and your cursor returns to the top
of the file, where you began the search.

Search and Replace

<esc>% Search and replace

MicroEMACS also gives you a powerful function that allows you to search for a string and
replace it with a keystroke. You can do this by executing the search and replace command
<esc>%.

To see how this works, move to the top of the text file by typing <esc><; then type <esc>%.
You will see the following message at the bottom of your screen:

Old string:

As an exercise, type msg. MicroEMACS will then ask:

New string:

Type message, and press the carriage return. As you can see, the cursor jumps to the first
occurrence of the string msg, and prints the following message at the bottom of your screen:

Query replace: [msg] -> [message]

MicroEMACS is asking if it should proceed with the replacement. Type a carriage return:
this displays the options that are available to you at the bottom of your screen:

<SP>[,] replace, [.] rep-end, [n] dont, [!] repl rest <C-G> quit

The options are as follows:

Typing a space or a comma executes the replacement, and moves the cursor to the next
occurrence of the old string: in this case, it replaces msg with message, and moves the
cursor to the next occurrence of msg.

TUTORIAL

212 MicroEMACS Screen Editor

Typing a period '.' replaces this one occurrence of the old string and ends the search and
replace procedure. In this example. typing a period replaces this one occurrence of msg
with message and ends the procedure.

Typing the letter 'n' tells MicroEMACS rwt to replace this instance of the old string. but
move to the next occurrence of the old string. In this case. typing 'n' does rwt replace msg
with message, and the cursor jumps to the next place where msg occurs.

Typing an exclamation point '!' tells MicroEMACS to replace all instances of the old string
with the new string automatically, without checking with you any further. In this example,
typing '!' replaces all instances of msg with message without further queries from
MicroEMACS.

Finally, typing <ctrl-G> aborts the search and replace procedure.

Saving Text and Exiting
This set of basic editing commands allows you to save your text and exit from the
MicroEMACS program. They are as follows:

<ctrl-X><Ctrl-S>
<Ctrl-X><Ctrl-W>

<Ctrl-Z>
<Ctrl-X><Ctrl-C>

Save text
Write text to a new file

Save text and exit
Exit without saving text

You have used two of these commands already: the save command <ctrl-X><ctrl-S> and
the quit command <ctrl-X><ctrl-C>. which respectively allow you to save text.or to exit from
MicroEMACS without saving text. (Commands that begin with <Ctrl-X> are called exteru:J.ed
commands; they are used frequently in the commands described later in this tutorial.)

Write Text to a New File

<Ctrl-X> <Ctrl-W> Write text to a new file

If you wish, you can copy the text you are currently editing to a text file other than the one
from which you originally read the text. Do this with the write command <ctrl-X><ctrl-W>.

To test this command, type <ctrl-X><ctrl-W>. MicroEMACS displays the following message
on the bottom of your screen:

Write file:

MicroEMACS is asking for the name of the file into which you wish to write the text. Type
sample. MicroEMACS replies:

[Wrote 23 lines]

The 23 lines of your text have been copied to a new file called sample. The status line at
the bottom of your screen has changed to read as follows:

-- MicroEMACS -- examplel.c -- File: sample --------------

The significance of the change in file name will be discussed in the second half of this
tutorial.

TUTORIAL

MicroEMACS Screen Editor 213

Before you copy text into a new file, be sure that you have not selected a file name that is
already being used. If you do, MicroEMACS will erase whatever is stored under that file
name, and the text created with MicroEMACS will be stored in its place.

Save Text and Exit
Finally. the store command <ctrl-Z> will save your text and move you out of the
MicroEMACS editor. To see how this works, watch the bottom line of your terminal
carefully and type <ctrl-Z>. MicroEMACS has saved your text. and now you can issue
commands directly to COHERENT.

Advanced Editing
The second half of this tutorial introduces the advanced features of Micro EMACS.

The techniques described here will help you execute complex editing tasks with minimal
trouble. You will be able to edit more than one text at a time, display more than one file on
your screen at a time, enter a long or complicated phrase repeatedly with only one
keystroke, and give commands to COHERENT without having to exit from MicroEMACS.

Before beginning. however, you must prepare a new text file. Type the following command
to COHERENT:

me example2.c

In a moment, example2.c will appear on your screen, as follows:

/* Use this program to get better acquainted
* with the MicroEMACS interactive screen editor.
* You can use this text to learn some of the
* more advanced editing features of MicroEMACS.
*/

#include <stdio,h>
main()
{

FILE *fp;
int ch;
int filename[20];

printf("Enter file name:");
gets (filename);

if ((fp =fopen (filename," r")) !=NULL) {
while ((ch= fgetc(fp)) != EOF)

fputc(ch, stdout);
} else

printf("Cannot open %s.\n", filename);
fclose (fp) ;

}

TUTORIAL

214 MicroEMACS Screen Editor

Arguments
Most of the commands already described in this tutorial can be used with arguments. An
argument is a subcommand that tells MicroEMACS to execute a command a given number
of times. With MicroEMACS, arguments are introduced by typing <ctrl-U>.

Arguments: Default Values
By itself. <ctrl-U> sets the argument at four. To illustrate this, first type the next line
command <ctrl-N>. By itself, this command moves the cursor down one line, from being
over the 'I' at the beginning of line 1, to being over the space at the beginning of line 2.

Now, type <ctrl-U>. MicroEMACS replies with the message:

Arg: 4

Now type <ctrl-N>. The cursor jumps down four lines, from the beginning of line 2 to the
letter m of the word main at the beginning of line 6.

Type <ctrl-U>. The line at the bottom of the screen again shows that the value of the
argument is four. Type <ctrl-U> again. Now the line at the bottom of the screen reads:

Arg: 16

Type <ctrl-U> once more. The line at the bottom of the screen now reads:

Arg: 64

Each time you type <ctrl-U>. the value of the argument is multiplied by four. Type the
forward command <Ctrl-F>. The cursor has jumped ahead 64 characters, and is now over
the i of the word file in the prinif statement in line 11 .

Selecting Values
Naturally, an argument does not have to be a power of four. You can set the argument to
whatever number you wish, simply by typing <ctrl-U> and then typing the number you
want.

For example, type <Ctrl-U>. and then type 3. The line at the bottom of the screen now
reads:

Arg: 3

Type the delete command <esc>D. MicroEMACS has deleted three words to the right.

You can use arguments to increase the power of any cursor movement command, or any kill
or delete command. The sole exception is <ctrl-W>, the block kill command.

Deleting With Arguments: An Exception
Killing and deleting were described in the first part of this tutorial. They were said to differ
in that text that was killed was stored in a special area of the computer and could be
yanked back, whereas text that was deleted was erased outright. However, there is one
exception to this rule: any text that is deleted using an argument can also be yanked back.

To see how this works, first type the begin text command <esc>< to move the cursor to the
upper left-hand corner of the screen. Then, type <Ctrl-U> 5 <ctrl-D>. The word Use has
disappeared. Move the cursor to the right until it is between the words better and

TUTORIAL

MicroEMACS Screen Editor 215

acquainted, then type <ctrl-Y>. The word Use has been moved within the line (although
the spaces around it have not been moved). This function is very handy, and should greatly
speed your editing.

Remember, too, that unless you move the cursor between one set of deletions and another,
the computer's storage area will not be erased, and you may yank back a jumble of text.

Buffers and Files
Before beginning this section, replace the edited copy of the text on your screen with a fresh
copy. Type the quit command <ctrl-X><ctrl-C> to exit from MicroEMACS without saving
the text: then return to MicroEMACS to edit the file example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen. It should appear as follows: As
noted in the first half of this tutorial, the name on the left of the command line is that of
the program. The name in the middle is the name of the buffer with which you are now
working, and the name to the right is the name of the.file from which you read the text.

Definitions
A flle is a mass of text that has been given a name and has been permanently stored on
your disk. A buffer is a portion of the computer's memory that has been set aside for you to
use, which may be given a name, and into which you can put text temporarily. You can
place text into the buffer either by typing it at your keyboard or by copying it from a file.

Unlike a file, a buffer is not permanent: if your computer were to stop working (because you
turned the power off, for example), a file would not be affected, but a buffer would be erased.

You must name your files because you work with many different files, and you must have
some way to tell them apart. Likewise, MicroEMACS allows you to name your buffers,
because MicroEMACS allows you to work with more than one buffer at a time.

File and Buffer Commands
MicroEMACS gives you a number of commands for handling files and buffers. These
include the following:

<ctrl-X><ctrl-W>
<Ctrl-X><ctrl-F>

<ctrl-X><ctrl-R>
<ctrl-X><ctrl-V>

<ctrl-X>K
<ctrl-X><ctrl-B>

Write and Rename Commands

Write text to file
Renamefile

Replace buffer with named file
Switch buffer or create a new buffer

Delete a buffer
Display the status of each buffer

The write command <ctrl-X><ctrl-W> was introduced earlier when the commands for
saving text and exiting were discussed. To review, <ctrl-X><ctrl-W> changes the name of
the file into which the text is saved, and then copies the text into that file.

Type <Ctrl-X><ctrl-W>. MicroEMACS responds by printing

Write file:

on the last line of your screen.

TUTORIAL

216 MicroEMACS Screen Editor

Type junkfile, then <return>. Two things happen: First, MicroEMACS writes the message

[Wrote 21 lines]

at the bottom of your screen. Second, the name of the file shown on the status line changes
from example2.c to junkflle. MicroEMACS is reminding you that your text is now being
saved into the file junkfile.

The file rename command <ctrl-X><ctrl-F> allows you rename the file to which you are
saving text, without automatically writing the text to it. Type <ctrl-X><ctrl-F>.
MicroEMACS will reply with the prompt:

Names

Type example2.c and <return>. MicroEMACS does nDt send you a message that lines were
written to the file: however. the name of the file shown on the status line has changed from
junkflle back to example2.c.

Replace Text in a Buffer
The replace command <Ctrl-X><ctrl-R> allows you to replace the text in your buffer with
the text from another file.

Suppose, for example, that you had edited example2.c and saved it, and now wished to edit
examplel.c. You could exit from MicroEMACS, then re-invoke MicroEMACS for the file
example2.c. but this is cumbersome. A more efficient way is to simply replace the
example2.c in your buffer with example! .c.

Type <ctrl-X><ctrl-R>. MicroEMACS replies with the prompt:

Read file:

Type examplel.c. Notice that example2.c has rolled away and been replaced with
examplel.c. Now, check the status line. Notice that although the name of the buffer is still
example2.c, the name of the file has changed to examplel.c. You can now edit
examplel.c: when you save the edited text. MicroEMACS will copy it back into the file
example I .c unless, of course, you again choose to rename the file.

Visiting Another Buffer
The last command of this set, the visit command <C4"1-X><ctrl-V>. allows you to create
more than one buffer at a time, to jump from one buffer to another. and move text between
buffers. This powerful command has numerous features.

Before beginning. however, straighten up your buffer by replacing examplel.c with
example2.c. Type the replace command <ctrl-X><ctrl-R>: when MicroEMACS replies by
asking

Read files

at the bottom of your screen. type example2.c.

You should now have the file example2.c read into the buffer named example2.c.

Now. type the visit command <ctrl-X><ctrl-V>. MicroEMACS replies with the prompt

Visit file:

at the bottom of the screen. Now type examplel.c. Several things happen. example2.c
rolls off the screen and is replaced with examplel.c: the status line changes to show that

TUTORIAL

MicroEMACS Screen Editor 217

both the buffer name and the file name are now examplel.c; and the message

[Read 23 lines]

appears at the bottom of the screen.

This does not mean that your previous buffer has been erased, as it would have been had
you used the replace command <ctrl-X><ctrl-R>. MicroEMACS is still keeping example2.c
"alive" in a buffer and it is available for editing; however. it is not being shown on your
screen at the present moment.

Type <ctrl-X><ctrl-V> again. and when the prompt appears. type example2.c. examplel.c
scrolls off your screen and is replaced by example2.c, and the message

[Old buffer]

appears at the bottom of your screen. You have just jumped from one buffer to another.

Move Text From One Buffer to Another
The visit command <ctrl-X><ctrl-V> not only allows you to jump from one buffer to
another: it allows you to move text from one buffer to another as well. The following
example shows how you can do this.

First. kill the first line of example2.c by typing the kill command <ctrl-K> twice. This
removes both the line of text and the space that it occupied. If you did not remove the
space as well the line itself. no new line would be created for the text when you yank it
back. Next. type <ctrl-X><ctrl-V>. When the prompt

Visit file:

appears at the bottom of your screen. type examplel.c. When examplel.c has rolled onto
your screen, type the yank back command <ctrl-Y>. The line you killed in example2.c has
now been moved into examplel.c.

Checking Buffer Status
The number of buffers you can use at any one time is limited only by the size of your
computer. You should create only as many buffers as you need to use immediately; this
will help the computer run efficiently.

To help you keep track of your buffers, MicroEMACS has the buffer status command <ctrl­
X><ctrl-B>. Type <ctrl-X><ctrl-B>. The status line moves up to the middle of the screen.
and the bottom half of your screen is replaced with the following display:

c

*
*

Size Lines

655
403

24
20

Buff er

examplel.c
example2.c

File

examplel.c
example2.c

This display is called the buffer status window. The use of windows will be discussed more
fully in the following section.

The letter C over the leftmost column stands for Changed. An asterisk indicates that that
buffer has been changed since it was last saved. whereas a space means that the buffer has
not been changed. Size indicates the buffer's size. in number of characters; Buffer lists the
buffer name. and File lists the file name.

TUTORIAL

218 MicroEMACS Screen Editor

Now, kill the second line of examplel.c by typing the kill command <ctrl-K>. Then type
<ctrl-X><ctrl-B> once again. The size of the buffer examplel.c shrinks from 657
characters to 595 to reflect the decrease in the size of the buffer.

To make this display disappear, type the one window command <ctrl-X>l. This command
will be discussed in full in the next section.

Renaming a Buffer
One more point must be covered with the visit command. COHERENT does not allow you to
have more than one file with the same name. For the same reason, MicroEMACS does not
allow you to have more than one bl!ffer with the same name.

Ordinarily, when you visit a file that is not already in a buffer, MicroEMACS creates a new
buffer and gives it the same name as the file you are visiting. However, if for some reason
you already have a buffer with the same name as the file you wish to visit, MicroEMACS
stops and asks you to give a new. different name to the buffer it is creating.

For example, suppose that you wanted to visit a new file named sample, but you already
had a buffer named sample. MicroEMACS would stop and give you this prompt at the
bottom of the screen:

Buffer name1

You would type in a name for this new buffer. This name could not duplicate the name of
any existing buffer. MicroEMACS would then read the file sample into the newly named
buffer.

Delete a Buffer
If you wish to delete a buffer, simply type the delete bl!ffer command <ctrl-X>K. This
command allows you to delete only a buffer that is hidden, not one that is being displayed.

Type <ctrl-X>K. MicroEMACS will give you the prompt:

Kill buffer:

Type example2.c. Because you have changed the buffer, MicroEMACS asks:

Discard changes [y/n]?

Type y. Now. type the bl!ffer status command <ctrl-X><ctrl-B>. The buffer status window
no longer shows the buffer example2.c. Although the prompt refers to killing a buffer, the
buffer is in fact deleted and cannot be yanked back.

Windows
Before beginning this section, it will be necessary to create a new text file. Exit from
MicroEMACS by typing the quit command <ctrl-X><ctrl-C>; then reinvoke MicroEMACS for
the text file example I .c as you did earlier.

Now, copy example2.c into a buffer by typing the visit command <ctrl-X><ctrl-V>. When
the message

Visit file:

appears at the bottom of your screen, type example2.c. MicroEMACS reads example2.c
into a buffer. and shows the message

TUTORIAL

MicroEMACS Screen Editor 219

[Read 21 lines]

at the bottom of your screen.

Finally. copy a new text. called example3.c, into a buffer. (You can find it in the same place
where the files examplel.c and example2.c are kept.) Type <ctrl-X><ctrl-V> again. When
MicroEMACS asks which file to visit, type example3.c. The message

[Read 123 lines]

appears at the bottom of your screen.

The first screenful of text appears as follows:

/*
* Factor prints out the prime factorization of numbers.
* If there are any arguments, then it factors these. If
* there are no arguments, then it reads stdin until
* either EOF or the number zero or a non-numeric
* non-white-space character. Since factor does all of
* its calculations in double format, the largest number
* which can be handled is quite large.
*/

#include <stdio.h>
#include <matn.h>
#include <ctype.h>

#define NUL '\0'
#define ERROR OxlO /* largest input base */
#define MAXNUM 200 /* max number of chars in number */

main(argc, argv)
int argc;
register char *argv[];

-- MicroEMACS -- example3.c -- File: example3.c --------------

At this point. example3.c is on your screen, and examplel.c and example2.c are hidden.

You could edit first one text and then another, while remembering just how things stood
with the texts that were hidden; but it would be much easier if you could display all three
texts on your screen simultaneously. MicroEMACS allows you to do just that by using
windows.

Creating Windows and Moving Between Them
A window is a portion of your screen that can be manipulated independent of the rest of the
screen. The following commands let you create windows and move between them:

<ctrl-X>2
<ctrl-X>l

<Ctrl-X>N
<ctrl-X>P

Create a window
Delete extra windows

Move to next window
Move to previous window

TUTORIAL

220 MicroEMACS Screen Editor

The best way to grasp how a window works is to create one and work with it. To begin, type
the create a window command <ctrl-X>2.

Your screen is now divided into two parts, an upper and a lower. The same text is in each
part, and the command lines give example3.c for the buffer and file names. Also, note that
you still have only one cursor. which is in the upper left-hand corner of the screen.

The next step is to move from one window to another. Type the next window command
<ctrl-X>N. Your cursor has now jumped to the upper left-hand corner of the lower window.

Type the previous window command <ctrl-X>P. Your cursor has returned to the upper left­
hand corner of the top window.

Now. type <ctrl-X>2 again. The window on the top of your screen is now divided into two
windows, for a total of three on your screen. Type <ctrl-X>2 again. The window at the top
of your screen has again divided into two windows, for a total of four.

It is possible to have as many as I I windows on your screen at one time, although each
window will show only the control line and one or two lines of text. Neither <ctrl-X>2 nor
<ctrl-X>l can be used with arguments.

Now, type the one window command <ctrl-X>l. All of the extra windows have been
eliminated, or closed.

Enlarging and Shrinking Windows
When MicroEMACS creates a window, it divides into half the window in which the cursor is
positioned. You do not have to leave the windows at the size MicroEMACS creates them,
however. If you wish, you may adjust the relative size of each window on your screen, using
the enlarge window and shrink window commands:

<ctrl-X>Z
<ctrl-X><Ctrl-Z>

Enlarge window
Shrink window

To see how these work. first type <ctrl-X>2 twice. Your screen is now divided into three
windows: two in the top half of your screen, and the third in the bottom half.

Now. type the enlarge window command <Ctrl-X>Z. The window at the top of your screen is
now one line bigger: it has borrowed a line from the window below it. Type <ctrl-X>Z again.
Once again. the top window has borrowed a line from the middle window.

Now, type the next window command <Ctrl-X>N to move your cursor into the middle
window. Again, type the enlarge window command <ctrl-X>Z. The middle window has
borrowed a line from the bottom window, and is now one line larger.

The enlarge window command <ctrl-X>Z allows you to enlarge the window your cursor is in
by borrowing lines from another window, provided that you do not shrink that other window
out of existence. Every window must have at least two lines in it: one command line and
one line of text.

The shrink window command <ctrl-X><ctrl-Z> allows you to decrease the size of a window.
Type <ctrl-X><ctrl-Z>. The present window is now one line smaller, and the lower window
is one line larger because the line borrowed earlier has been returned.

The enlarge window and shrink window commands can also be used with arguments
introduced with <ctrl-U>. However, remember that MicroEMACS will not accept an
argument that would shrink another window out of existence.

TUTORIAL

MicroEMACS Screen Editor 221

Displaying Text Within a Window
Displaying text within the limited area of a window can present special problems. The view
commands <ctrl-V> and <esc>V roll window-sized portions of text up or down, but you may
become disoriented when a window shows only four or five lines of text at a time. Therefore.
three special commands are available for displaying text within a window:

<Ctrl-X><Ctrl-N> Scroll down
<Ctrl-X><ctrl-P> Scroll up

<CSC>! Move within window

Two commands allow you to move your text by one line at a time, or scroll it: the scroll up
command <ctrl-X><ctrl-N>, and the scroll down command <ctrl-X><ctrl-P>.

Type <ctrl-X><ctrl-N>. The line at the top of your window has vanished, a new line has
appeared at the bottom of your window, and the cursor is now at the beginning of what had
been the second line of your window.

Now type <ctrl-X><Ctrl-P>. The line at the top that had vanished earlier has now returned,
the cursor is at the beginning of it, and the line at the bottom of the window has vanished.
These commands allow you to move forward in your text slowly so that you do not become
disoriented.

Both of these commands can be used with arguments introduced by <ctrl-U>.

The third special movement command is the move within window command <esc>!. This
command moves the line your cursor is on to the top of the window.

To try this out, move the cursor down three lines by typing <Ctrl-U>3<ctrl-N>; now type
<esc>!. (Be sure to type an exclamation point '!', not a numeral one 'l', or nothing will
happen.) The line to which you had moved the cursor is now the first line in the window,
and three new lines have scrolled up from the bottom of the window. You will find this
command to be very useful as you become more experienced at using windows.

All three special movement commands can also be used when your screen has no extra
windows, although you will not need them as much.

One Buffer
Now that you have been introduced to the commands for manipulating windows, you can
begin to use windows to speed your editing.

To begin with, scroll up the window you are in until you reach the top line of your text. You
can do this either by typing the scroll up command <ctrl-X><ctrl-P> several times, or by
typing <esc><.

Kill the first line of text with the kill command <ctrl-K>. The first line of text has vanished
from all three windows. Now, type <Ctrl-Y> to yank back the text you just killed. The line
has reappeared in all three windows.

The main advantage to displaying one buffer with more than one window is that each
window can display a different portion of the text. This can be quite helpful if you are
editing or moving a large text.

To demonstrate this, do the following: First, move to the end of the text in your present
window by typing the end of text command <esc». then typing the previous line command
<ctrl-P> four times. Now, kill the last four lines.

TUTORIAL

222 MicroEMACS Screen Editor

You could move the killed lines to the beginning of your text by typing the beginning of text
command <esc><; however, it is more convenient simply to type the next window command
<Ctrl-X>N. which moves you to the beginning of the text as displayed in the next Window.
MicroEMACS remembers a different cursor position for each window.

Now yank back the four killed lines by typing <ctrl-Y>. You can simultaneously observe
that the lines have been removed from the end of your text and that they have been restored
at the beginning.

Multiple Buffers
Windows are especially helpful when they display more than one text. Remember that at
present you are working with three buffers, named example! .c, example2.c, and
example3.c. although your screen is displaying only the text example3.c. To display a
different text in a window, use the switch bl!ffer command <ctrl-X>B.

Type <ctrl-X>B. When MicroEMACS asks

Use buffer:

at the bottom of the screen, type examplel.c. The text in your present window is replaced
with examplel.c. The command line in that window changes, too, to reflect the fact that
the buffer and the file names are now example I.e.

Moving and Copying Text Among Buffers
It is now very easy to copy text among buffers. To see how this is done. first kill the first
line of examplel.c by typing the <ctrl-K> command twice. Yank back the line immediately
by typing <Ctrl-Y>. Remember. the line you killed has not been erased from its special
storage area. and may be yanked back any number of times.

Now. move to the previous window by typing <ctrl-X>P, then yank back the killed line by
typing <Ctrl-Y>. This technique can also be used with the block kill command <ctrl-W> to
move large amounts of text from one buffer to another.

Checking Buffer Status
The buffer status command <ctrl-X><ctrl-B> can be used when you are already displaying
more than one Window on your screen.

When you want to remove the buffer status window. use either the one window command
<Ctrl-X>l, or move your cursor into the buffer status window using the next window
command <ctrl-X>N and replace it with another buffer by typing the switch buffer
command <ctrl-X>B.

Saving Text From Windows
The final step is to save the text from your windows and buffers. Close the lower two
windows with the one window command <ctrl-X>l. Remember, when you close a window.
the text that it displayed is still kept in a buffer that is hidden from your screen. For now,
do not save any of these altered texts.

When you use the save command <ctrl-X><ctrl-S>. only the text in the window in which
the cursor is positioned is written to its file. If only one window is displayed on the screen,
the save command will save only its text.

TUTORIAL

MicroEMACS Screen Editor 223

If you made changes to the text in another buffer, such as moving portions of it to another
buffer, MicroEMACS would ask

Quit [y/n]:

If you answer 'n', Micro EMACS will save the contents of the buffer you are currently
displaying by writing them to your disk, but it will ignore the contents of other buffers, and
your cursor will be returned to its previous position in the text. If you answer 'y',
Micro EMACS again will save the contents of the current buffer and ignore the other buffers,
but you will exit from MicroEMACS and return to Exit from MicroEMACS by typing the quit
command <ctrl-X><ctrl-C>.

Keyboard Macros
A keyboard macro is a set of MicroEMACS commands that are stored in memory and given
a name. After you create a keyboard macro, you can execute it again and again just by
typing its name. If you are revising a big file, you will find that keyboard macros are one of
the most useful features in MicroEMACS, and one that you will use often.

The following table summarizes MicroEMACS's keyboard-macro commands:

<ctrl-X>(
<ctrl-X>)
<ctrl-X>E

<ctrl-X>M
<ctrl-X>I

Creating a Keyboard Macro

Open a keyboard macro
Close a keyboard macro
Execute a keyboard macro

Rename a keyboard macro
Bind current macro as initialization macro

To begin to create a macro, type the begin macro command <ctrl-X>(. Be sure to type an
open parenthesis '(', not a numeral '9'. MicroEMACS will reply with the message

[Start macro]

Type the following phrase:

MAXNUM

Then type the end macro command <ctrl-X>). Be sure you type a close parenthesis')', not a
numeral 'O'. MicroEMACS will reply with the message

[End macro]

Move your cursor down two lines and execute the macro by typing the execute macro
command <ctrl-X>E. The phrase you typed into the macro has been inserted into your
text.

If you give these commands in the wrong order, Micro EMACS warns you that you are
making a mistake. For example, if you open a keyboard macro by typing <ctrl-X>(, and
then attempt to open another keyboard macro by again typing <ctrl-X>(, MicroEMACS will
say:

Not now

Should you accidentally open a keyboard macro, or enter the wrong commands into it, you
can cancel the entire macro simply by typing <ctrl-G>.

TUTORIAL

224 MicroEMACS Screen Editor

Execute a Macro Repeatedly
As with most MicroEMACS commands, you can use a keyboard macro with an argument to
execute it repeatedly. For example, if you have defined a keyboard macro. then typing

<Ctrl-U><ctrl-X>E

executes that macro four times. (Remember, four is the default value for <ctrl-U>.)

As described above, <ctrl-U> normally is used with a positive number. to indicate how often
MicroEMACS should execute a given command or macro. With keyboard macros. however.
you can use a special value for <ctrl-U>: - l. This tells MicroEMACS to repeatedly execute a
keyboard macro until it fails.

For example, consider that you define the following keyboard macro:

<ctrl-S> foo <ctrl-K>

This macro searches for the string "foo", then kills the rest of line that that string is on.
Now, when you type the command

<ctrl-U> -1 <ctrl-X>E

executes this macro until MicroEMACS can no longer find the string "foo"; it then quits.

Obviously, you should define your macro carefully before you execute it with this -1 option
to <Ctrl-U>; otherwise, you can commit tremendous mayhem on your file with one
keystroke.

Replacing a Macro
To replace this macro with another, go through the same process. Type <ctrl-X>(. Then
type the buffer status command <ctrl-X><ctrl-B>. and type <ctrl-X>). Remove the buffer
status window by typing the one window command <ctrl-X>l.

Now execute your keyboard macro by typing the execute macro command <ctrl-X>E. The
bt!l'fer status command has executed once more.

Renaming a Macro
Many times during a long editing session. you will find that you use one keyboard macro.
then use a second keyboard macro, then find that you need the first macro again. In
previous releases of MicroEMACS. the only way to do this work was to type the first macro.
replace it with the second macro, then retype the first macro when you need it again. The
present edition of MicroEMACS, however, lets you define any number of keyboard macros.
and save them by giving each one a unique "name" that is. its own unique keyboard
binding.

To rename a keyboard macro that you have already created. use the rename macro
command <ctrl-X>M. To see how this works, do the following: (1) Type <Ctl-X>(to open the
keyboard macro. (2) Now, type <esc>s xyz <ctrl-U> <ctrl-D> to fill the macro With
something. (3) Finally. type <ctrl-X>) to close the macro.

Now. type <ctrl-X>M. to rename the macro. MicroEMACS will reply with the prompt:

enter keybinding for macro

Type <esc>L. This tells MicroEMACS to take the keyboard macro you created and link it to
the keystrokes <esc>L.

TUTORIAL

MicroEMACS Screen Editor 225

Now, whenever you type <esc>L. MicroEMACS will execute <esc>s xyz <ctrl-U> <ctrl-D>.
You can now define another keyboard macro without wiping out the one you have renamed.
There is no theoretical limit to the number of keyboard macros you can create, although
there are practical limits imposed by the amount of memory available to MicroEMACS.

Renaming Macros: A Few Caveats
Please note that if you name a keyboard macro with a keystroke that is already defined,
MicroEMACS will no longer be able to access that keystroke's functionality.

For example, if instead of naming your new macro <esc>L you named it <ctrl-A>, then
every time you typed <ctrl-A> MicroEMACS would execute <esc>S xyz <ctrl-U> <ctrl-D>
and you would no longer be able to jump to the beginning of a line (which <ctrl-A> normally
does).

The only exceptions are <ctrl-X>, <esc>, and the <ctrl-X>R command (described below),
which MicroEMACS will not let you reassign. Obviously, you should be very careful when
you assign a name to a keyboard macro, or you could easily clobber much of the editor's
functionality.

Note, too, that MicroEMACS lets you define reflexive keybindings, but these never work. For
example, if you named the above example macro <ctrl-D> instead of <esc>L, then every
time you typed <ctrl-D> MicroEMACS would try to execute a macro that included <ctrl-D>
in it. Obviously, this can tie MicroEMACS into knots in no time. Again, please be very
careful when you assign names to keyboard macros.

The commands <ctrl-X>S and <ctrl-X>L let you save all named keyboard macros into a file,
and restore them during a later editing session. These commands are described in the next
section.

Setting the Initialization Macro
MicroEMACS allows one macro to be specified which will be executed every time
MicroEMACS is invoked. This "initialization macro" can be set using the key sequence
<ctrl-X>I and causes MicroEMACS to "bind" the currently defined macro to the
initialization macro.

Flexible Key Bindings
As you have noticed by now, MicroEMACS works through standard key bindings: that is,
one keystroke or combination of keystrokes tells MicroEMACS to perform a particular task.
For example, typing <ctrl-A> tells MicroEMACS to move the cursor to the beginning of the
line; typing <ctrl-E> tells MicroEMACS to move the cursor to the end of the line; and so on.

MicroEMACS allows you to change its key bindings, so you can bind a given keystroke or
combination of keystrokes to a task other than the default one documented in this tutorial.
In this way, you can reconfigure MicroEMACS so that it resembles another editor with
which you are more familiar.

To perform this magic, MicroEMACS uses two tables for keybindings: a default table that is
loaded at compile time and never changes, and a dynamic table that you can modify with
Micro EMACS 's keybinding commands.

The following table summarizes MicroEMACS's commands for flexible keybindings:

TUTORIAL

226 MicroEMACS Screen Editor

<ctrl-X>R
<ctrl-X>X

<ctrl-X>S
<ctrl-X>L

Replace one binding with another
Rebind prefix keys

Save flexible bindings and macros into file
Load flexible bindings and macros from file

Changing a Keybinding
The replace binding command <ctrl-X>R replaces one binding with another. For example, if
you wished to replace the beginning of line command <ctrl-A> with <esc>Z. you would do
the following:

1. Type <ctrl-X>R to invoke the rebinding command.

2. When you see the prompt

Enter old keybinding

type the keybinding you wish to change in this case, <ctrl-A>.

3 When you then see the prompt

Enter new keybinding

type the keybinding to which you wish to change it in this case, <esc>Z.

Note that you cannot rebind the command <Ctrl-X>R itself: otherwise, you would paint
yourself into a corner. Also, note that if you rebind a command to itself (that is, if you type
the same keybinding in response to both prompts), then that keybinding is bound to the old
meaning of the keybindings. should there be any.

Rebinding Metakeys
MicroEMACS's keybindings depend on several pre-defined metakeys. A metakey is a
keystroke that introduces a further set of commands. MicroEMACS's default keybindings
use two metakeys: <ctrl-X> and <esc>. Other editors use other keystrokes as metakeys. If
you wish to rebind a metakey, use the rebind metakey command <ctrl-X>X. This command
prompts you to bind up to three metakeys. and the argument key <Ctrl-U>.

For example. suppose that you wish to change the metakey <ctrl-X> to <ctrl-Q>. To begin.
type the command <ctrl-X>X. You will see the prompt

Enter pref ix character 1 or space

"Prefix character l" is <ctrl-X> in the default bindings. Type <ctrl-Q>. You will then see
the prompt:

Enter pref ix character 2 or space

"Prefix character 2" is <esc> in the default bindings. Since you do not want to change it,
type <space>. You will then see the prompt:

Enter pref ix character 3 or space

There is no "prefix character 3" in the default bindings, but you can set a third one for your
keybindings if you wish. Since (for the sake of this example) you do not wish to set one,
type <Space>. Finally, you will see the prompt:

TUTORIAL

MicroEMACS Screen Editor 227

Enter repeat code or space

The "repeat code" executes a command repeatedly; in this tutorial. it is often called the
"argument key" or "argument command". Since (in this example) you do not wish to change
it, type <space>.

Now that you have reset the <ctrl-X> metakey, you must now type <ctrl-Q> every time in
place of <ctrl-X> throughout all of the MicroEMACS commands. For example, if you wished
to change the metakey back from <ctrl-Q> to <ctrl-X>. you would have to type <ctrl-Q>X to
invoke the rebind metakey command.

Note that because <ctrl-Q> already is bound in the MicroEMACS keybindings. when you
rebind it the command to which it was bound is no longer available to you. However. if you
un-rebind the key, then it automatically is rebound to its old command. In the above
example, <ctrl-Q> is bound to the insert literal character command, which lets you insert
control characters into your file. When you rebound the <ctrl-X> metakey to <ctrl-Q>. then
the Insert literal character command was no longer available to you. However, when you re­
rebound the <ctrl-Q> metakey to <ctrl-X>. then <ctrl-Q> was automatically rebound to the
insert literal character command.

Save and Restore Keybindings
MicroEMACS lets you save your rebound keybindings into a file. and reload them during
another editing session. To save your keybindings into a file, type the save keybindings
command <Ctrl-X>S. Try it. You will see the prompt:

Store bindings file:

Type the name of a file. MicroEMACS then writes its keybindings into that file. Note that
this command also saves all named keyboard macros that you have created.

To restore a set of keybindings, use the restore keybindings command <ctrl-X>L. Try it.
You will see the prompt:

Load bindings file:

Type the name of the find in which you saved the system's keybindings and all named
keyboard macros. MicroEMACS will then load them into memory for you.

These commands let you prepare several sets of customized keybindings and macros. You
can customize keybindings to suit your preference, or create custom sets of macros to suit
any number of specialized editing tasks.

By default, MicroEMACS checks for the existence of file $HOME/ .emacs.re and executes it
if found. The -f option Jets you specify an alternate file of keybindings macros from the me
command line. After loading the file. MicroEMACS then executes the initialization macro, if
one exists. For example, if you wish to use the set of keybindings saved in file keybind to
edit file textfile, then you would type the following:

me -f keybind textfile

As you can see, MicroEMACS's system of keyboard macros and flexible key bindings help
make it an extremely flexible and powerful editor.

TUTORIAL

228 MicroEMACS Screen Editor

Sending Commands to COHERENT
The only remaining commands you need to learn are the program Interrupt commands
<ctrl-X>! and <ctrl-C>. These commands allow you to interrupt your editing, give a
command directly to COHERENT, and then resume editing without affecting your text in
anyway.

The command <ctrl-X>! allows you to send one command line (one command, or several
commands plus separators) to the operating system. To see how this command works, type
<ctrl>!. The prompt ! has appeared at the bottom of your screen. Type le. Observe that
the directory's table of contents scrolls across your screen, followed by the message [end).
To return to your editing, simply type a carriage return. The Interrupt command <Ctrl-C>
suspends editing indefinitely, and allows you to send an unlimited number of commands to
the operating system. To see how this works, type <ctrl-C>. After a moment, the
COHERENT system's prompt will appear at the bottom of your screen. Type time. The
COHERENT system replies by printing the time and date. To resume editing, then simply
type <Ctrl-D>.

If you wish, you can suspend MicroEMACS's operation, tell the COHERENT system to
invoke another copy of the MicroEMACS program, edit a file, then return to your previous
editing. To see how this is done, type <ctrl-C>. When the prompt appears at the bottom of
your screen, type

me examplel,c

It doesn't matter that you are already editing examplel.c. MicroEMACS will simply copy
the example I .c file into a new buffer and let you work as if the other Micro EMACS program
you just interrupted never existed.

Exit from this second MicroEMACS program by typing the quit command <ctrl-X><ctrl-C>.
Then type <ctrl-D>. Your original MicroEMACS program has now been resumed. However,
none of the changes you made in the secondaryMicroEMACS program will be seen here.

It is not a good idea to use multiple MicroEMACS programs to edit the same program: it is
too easy to become confused as to which edits were made to which version.

The only time this is advisable is if you wish to test to see how a certain edit would affect
your text: you can create a new MicroEMACS program, test the command, and then destroy
the altered buffer and return to your original editing program without having to worry that
you might make errors that are difficult to correct.

Now type <ctrl-X><ctrl-C> to exit.

Compiling and Debugging Through MicroEMACS
MicroEMACS can be used with the compilation command cc to give you a reliable system
for debugging new programs.

Often, when you're writing a new program, you face the situation in which you try to
compile, but the compiler produces error messages and aborts the compilation. You must
then invoke your editor, change the program, close the editor, and try the compilation over
again. This cycle of compilation editing recompilation can be quite bothersome.

To remove some of the drudgery from compiling. the cc command has the automatic, or
MicroEMACS option, -A. When you compile with this option, the MicroEMACS screen editor
will be invoked automatically if any errors occur. The error or errors generated during
compilation will be displayed in one window, and your text in the other, with the cursor set

TUTORIAL

MicroEMACS Screen Editor 229

at the number of the line that the compiler indicated had the error.

Try the following example. Use MicroEMACS to enter the following program. which you
should call error.c:

main() {
printf("Hello, world!\n")

}

The semicolon was left off of the printf statement, which is an error. Now, try compiling
error.c with the following cc command:

cc -A error.c

You should see no messages from the compiler because they are all being diverted into a
buffer to be used by MicroEMACS. Then MicroEMACS will appear automatically. In one
window you should see the message:

3: missing ';'

and in the other you should see your source code for error.c. with the cursor set on line 3.

If you had more than one error, typing <ctrl-X» would move you to the next line with an
error in it; typing <ctrl-X>< would return you to the previous error. With some errors. such
as those for missing braces or semicolons, the compiler cannot always tell exactly which
line the error occurred on, but it will almost always point to a line that is near the source of
the error.

Now, correct the error by typing a semicolon at the end of line 2. Close the file by typing
<ctrl-Z>. cc will be invoked again automatically.

cc will continue to compile your program either until the program compiles without error,
or until you exit from MicroEMACS by typing <ctrl-U> followed by <ctrl-X><ctrl-C>.

The MicroEMACS Help Facility
MicroEMACS has a built-in help function. With it, you can ask for information either for a
word that you type in, or for a word over which the cursor is positioned. The MicroEMACS
help file contains the bindings for all library functions and macros included with
COHERENT.

For example, consider that you are preparing a C program and want more information
about the function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the
prompt

Topic:

Type fopen. MicroEMACS will search its help file. find its entry for fopen, then open a
window and print the following:

fopen - Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and yank it into your program
to ensure that you prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check
the call to fopen. Simply move the cursor until it is positioned over one of the letters in
fopen, then type <esc>?. MicroEMACS will open its help window, and show the same

TUTORIAL

230 MicroEMACS Screen Editor

information it did above.

To erase the help window, type <esc>l.

Where To Go From Here
For a complete summary of MicroEMACS's commands, see the entry for me in the Lexicon.
The COHERENT system includes three other editors: the stream editor sed, the popular
screen editor vi, and the interactive line editor ed. Each can help you accomplish editing
tasks that may not be well suited for MicroEMACS. For more information on these editors,
see their tutorials or check their entries in the Lexicon.

TUTORIAL

Section 11:

nroff, The Text-Formatting Language

nroff is the COHERENT system's text-formatting language. You provide both the text you
want formatted and commands to control the formatting; the commands are embedded
within the lines of text. nroff will then process the text, following the commands that you
embedded in the text. and print the formatted text on the standard output.

This tutorial describes how to work with nroff. It assumes you are familiar with the basic
features of the COHERENT system. In particular, you should know what a command is,
what a.file is, and how to create and edit a file. If you are not familiar with these concepts,
read Using the COHERENT System before you read this tutorial. Relevant Lexicon articles
include the one for nroff, which summarizes the material in this tutorial, and those for the
related program troff. printer (which summarizes printer-related information), hpr. epson.
and lpr.

What is nroff?
nroff is the text processor for the COHERENT system. A text processor is a utility that
accepts commands and text, and uses the commands to format the text on a page. The
commands may call for simple formatting. such as indenting each new paragraph five
spaces, to complex formatting of columns and entire pages.

A file that contains text mixed with nroff commands is called a script. For example, the
following nroff script

• nr Z 0 5
.nf
I tire of love,
.ti \n+Z
I sometimes tire of rhyme;
.ti \n-Z
But money makes me happy
.ti \n+Z
All the time!
.fi

produces the following printed text:

I tire of love,
I sometimes tire of rhyme;

But money makes me happy
All the time!

An nroff script allows you to change your output very easily. For example. change the
minus sign ·-· in line 7 of the nroff to a plus sign '+'. and the formatted text suddenly
becomes:

231

232 nroff Text-Formatting Language

I tire of love,
I sometimes tire of rhyme;

But money makes me happy
All the time!

As you can see, nroff is a powerful and versatile formatter.

In truth. however, nroff is both a text formatter and a text formatting language. With nroff.
you can write your own text-formatting commands to handle automatically the unique
requirements of whatever formatting you need.

nroff Input and Output
Input is what you give to nroff. Output is what nroff returns to you. If you simply type

nroff

then nroff accepts input from your keyboard, and prints its output on your screen. For
example, if you want nroff to process the contents of a file named script.r. type the
command line

nroff script.r

nroff then takes the file script.r, processes it, and in a few moments it displays the
formatted text on your screen. Note that the suffix .r is used by convention to indicate that
a file contains an unprocessed nroff script.

You can save nroff's output by redirecting it into another file. For example, you can redirect
nroff's processed output of the file script.r into the file named target by using the following
command:

nroff script.r > target

Printing nroff Output
The COHERENT system's implementation of nroff currently can be used with any variety of
printer. COHERENT. however. fully supports three varieties of printer: Epson-compatible
dot-matrix printers, printers that use the Hewlett-Packard Page Control Language (PCL)
(including the Hewlett-Packard LaserJet and DeskJet families of printers), and any printer
that has implemented the Postscript page-control language. The following descriptions
assume that you have plugged your printer into a parallel port on your computer, and have
installed COHERENT correctly so that it can access your printer.

To print nroff output on an Epson-compatible printer, use the commands epson and lpr.
For example, to print the nroff output that you have directed into file text.out, use the
following command:

epson text.out I lpr

Or. you can pipe the output of nroff directly into epson, as follows:

nroff -ms text.r I epson I lpr

In the above example, text.r is your input, and -ms invokes the ms package of macros.

To print on a printer that uses PCL, use the commands hp and hpr. For example. to print
the file text.out on a PCL printer, use the command:

TUTORIAL

nroff Text-Formatting Language 233

hp text.out I hpr -B

The option -B to hpr suppresses the printing of a banner page. If you wish, you can pipe
the output of nroff directly into hp. as follows:

nroff -ms text.r I hp I hpr -B

To access a printer that uses Postscript. use the command hpr. but do not use the
command hp. Also, you use must the -p switch to nroff', which tells it to generate
Postscript output. For example, the following command processes file text.r into Postscript
output. and passes that output to a Postscript printer:

nroff -p -ms text.r I hpr -B

All of the above commands are described in their respective entries in the Lexicon. The
Lexicon article printer summarizes information about using printers with the COHERENT
system.

nroff Limitations
Because nroff is a text-formatting language rather than a text-formatter per se, it makes no
assumptions about how you want to lay out your page. It does not automatically leave
margins at the top and bottom of pages; it does not automatically number pages; it does not
automatically format paragraphs. You must use or create a set of formatting commands,
called macros, to generate these features. This tutorial will teach you how to write macros
that can solve nearly every conceivable formatting problem. As you have seen. too, your
copy of the COHERENT system comes with a set of predefined macros. the -ms macro
package.

The ms Macro Package
A macro package called -ms is included with your copy of nroff. It provides macros to
format paragraphs, produce headers and footers (the areas at the top and bottom of pages,
respectively). and perform most other page-formatting tasks. -ms is easy to use. The
command

nroff -ms

tells nroff' to accept input from your keyboard, process it using the -ms macro package. and
print the output on your screen. The command

nroff -ms script.r

tells nroff to process script.r with the -ms package and print the output on your terminal;
while the command

nroff -ms script.r >target

redirects the output of nroff into the file target; and

nroff -ms script.r I lpr

prints the output on the line printer.

Working with the -ms macro package is a good way to gain confidence in working with nroff
commands. Soon you will learn the correct way to encode nroff commands in your scripts.

TUTORIAL

234 nroff Text-Formatting Language

Using this Tutorial
The only way to learn about nrotI is to use it. You should type all the examples in this
tutorial into your computer and observe how they work. You should also alter the example
and examine how your changes affect what nrotI produces. Don't hesitate to experiment!
You can learn more from analyzing why something unexpected happens than you can from
simply copying an example that works as you were told it would.

The first section describes how to use nrotI with the -ms macro package. The second
section describes how to perform sophisticated formatting. For most users, this chapter
contains all the information they need to know.

The rest of the tutorial describes how nrotI actually works with the input text to produce its
output. This will teach you how to write your own nrotI macros for your special word
processing needs.

The -ms Macro Package
As explained above, nrotI is the text formatter for the COHERENT system. You give nrotI a
script - that is, text interspersed with commands that control its processing; nrotI, in turn,
formats your text in the manner dictated by your commands.

nroff's most outstanding feature is its flexibility: you can control line length, page offset,
page length, paragraph format, beginning- and end-of-page format, and every other aspect
of formatting a document.

nrotI has built into it a set of basic commands, called primitives, that are used to control
formatting. A basic formatting function might require several primitives. For example,
formatting a new paragraph requires one primitive to force the printing of the fragment of a
line left at the end of the previous paragraph; another primitive to skip a blank line; and a
third primitive to indent the first line of the new paragraph. If you were to type directly into
your script all the primitives required to control every feature of your document, formatting
would be a very difficult task, and mistakes would be common.

Fortunately, another feature of nrotI makes it easier for you to prepare input: nrotI allows
you to bundle together a group of primitives and give the bundle its own name. Such a
bundle is called a macro. Whenever you want all the commands in that bundle to be
executed, you simply insert the name of the macro into the text. For example, you might
group the primitives needed to format a paragraph, and call that bundle PP. Then, instead
of retyping the primitives, all you need to do is insert the command .PP before the start of a
paragraph.

-ms is a package of macros that are ready for you to use. When you include the option -ms
on the nrotI command line, nrotI automatically uses the the macros that have been defined
in the -ms package. These macros will take care of setting line length and page length,
numbering pages, formatting paragraphs, and all other formatting tasks. You do not need
to know how nroft's primitives are used in the macros; you only need to know the names of
the macros and what they do, so that you can insert them correctly into your text.

Using the -.ms package is a good way to become accustomed to preparing input for nrotI, so
that the features of the primitives will not seem so alien when you eventually choose to
work with them. When you become familiar with nrotI, you may wish to your own macro
packages. to handle the unique requirements of different types of documents. For now,
however, you will find that the -ms package will get you up and running with nrotI.

TUTORIAL

nroff Text-Formatting Language 235

Text and Commands
nroff input includes both text and commands. The commands control the processing of the
text. nroff distinguishes between text and commands by looking at the first character of
each input line. If that character is a period or an apostrophe, the line is a command;
otherwise, it is text.

Earlier in this tutorial. you used the -ms package to format a text file that had already been
prepared for you. To become more accustomed to using nroff, try entering the following
text into a file that can be formatted later. Use a text editor (either ed or MicroEMACS) to
create a file named script2.r that contains the following text. It is important for this
exercise that you break up the lines as they are shown here:

London. Michaelmas Term lately over,
and the Lord Chancellor sitting in
Lincoln's Inn Hall. Implacable November weather.
As much mud in the streets, as if the waters
had but newly retired from the face of the
earth, and it would not be wonderful to meet
a Megalosaurus, forty feet long or so, waddling
like an elephantine lizard up Holborn Hill.

Note that this file contains no commands; every line is a text line. Process the file with the
command:

nroff script.r I more

The output is piped to more so that it will not all rush past your screen. nroff will process
the text, and in a moment you will see the following:

London. Michaelmas Term lately over, and the Lord Chancellor
sitting in Lincoln's Inn Hall. Implacable November weather. As
much mud in the streets, as if the waters had but newly retired
from the face of the earth, and it would not be wonderful to meet a
Megalosaurus, forty feet long or so, waddling like an elephantine
lizard up Holborn Hill.

When you see this example, the spacing will be different: the spacing for the examples in
this tutorial is adjusted to conform to the rest of the tutorial text. Notice that nroff
automatically adjusts the spacing between words to justify the right margin. even though
the input text has a ragged right margin. Each output line contains 65 characters, and
each output page contains 66 lines.

Now try processing script.r again, this time with the -ms macro package. Type

nrof\ -ms script.r I more

As you can see, nroff again adjusted the spacing to keep a strict right margin. Each line
was indented with ten leading spaces, followed by 65 characters of text. The pages output
by both the nroff command and the nroff -ms command both contain 66 lines, but the
page built with the -ms package left blank lines at the top of the page and printed the page
number in a blank space at the bottom of the page. When nroff constructs its output, it
assumes that your printer prints ten characters per inch (Pica, or IO-pitch spacing) and six
lines per inch. Given these assumptions, each page of output from nroff -ms fits onto an
8.5 by 11 inch page. with an inch of blank space at the top, at the bottom, and on each
side.

TUTORIAL

236 nroff Text-Formatting Language

As this example shows, nrotl' adjusts the spacing between words to keep a strict right
margin. When you type in the text, don't worry about the right margin. You must,
however, keep a strict left margin, because when nrotl' encounters a line of text that begins
with blank spaces, it breaks the line it was working on and begins a new, indented line.

Also, do not hyphenate words; if you do, nrotl' treats each part as a separate "word" (the
first ending with the hyphen character), rather than keeping them joined, as you want.

nrotl' normally interprets as a command every line that begins with a period or an
apostrophe. However, to include an initial apostrophe or period as a literal part of your
document, you must place the characters\& before the period or apostrophe.

The remainder of this will show you how to use commands in input text to change the
appearance of the output. You can control many aspects of the printed document simply by
including the appropriate commands within your text.

Command Names
The name of every nrotl' primitive consists of two lower-case letters. Some commands can
also include additional information, or arguments. For example, .sp is the command to
leave vertical space between output lines. The command line

.sp

leaves one space, whereas

.sp 2

leaves two spaces. The information that follows the command name on the command line is
an argument. Each macro defined in the -ms macro package is named with one or two
upper-case letters. For example, .PP is the name of the macro that begins a new paragraph.

Paragraphs
Every time you want to begin a new paragraph, enter the paragraph command .PP: that is,
place the command line .PP in the text. To test this macro, enter the following text under
the name script3.r:

.PP
It is a truth universally acknowledged,
that a single man in possession of a good fortune,
must be in want of a wife •
. PP
However little known the feelings or views of such
a man may be on first entering a neighbourhood, the
truth is so well fixed in the minds of the surrounding
families, that he is considered as the rightful
property of some one or the other of their daughters.

When you process this text with the command

nroff -ms script3.r I more

the result resembles the following:

TUTORIAL

It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.

nroff Text-Formatting Language 237

However little known the feelings or views of such a man may
be on first entering a neighbourhood, the truth is so well fixed
in the minds of the surrounding families, that he is considered as
the rightful property of some one or the other of their daughters.

As the output shows, the .PP command inserts a blank line before beginning a new
paragraph, and indents the first line of the new paragraph by half an inch.

The -ms package also provides another paragraph format: the .IP command. This macro
creates an Indented paragraph. The .PP macro indents only the first line of each paragraph;
however, .IP indents every line except the first. For example,

.IP
This is an indented paragraph.
All the lines are indented by
the same amount •
• PP
This is a normal paragraph.
nroff indents the first line
but does not indent the following lines.

gives the output

This is an indented paragraph. All the lines are indented
by the same amount.

This is a normal paragraph. nroff indents the first line
but does not indent the following lines.

Several options are available for the basic .IP macro. You can add two arguments to it.
nroff interprets the first argument after the .IP as a tag to the paragraph, and it interprets
the second argument as the amount of indentation you want. For example,

• IP A. 8
This is the first line of text.
nroff indents the following lines by the same
amount as the first.
The indent is eight spaces.
The paragraph includes a tag in the indent.

produces

A. This is the first line of text. nroff indents the
following lines by the same amount as the first. The
indent is eight spaces. The paragraph includes a tag in
the indent.

You must make sure the indent leaves enough spaces for the tag. If the tag contains blank
spaces, enclose it within quotation marks. To see how this works, enter the following script
under the title script4.r:

TUTORIAL

238 nroff Text-Formatting Language

.IP "King Lear:" 16
Is man no more than this?
Consider him well.
Thou owest the worm no silk,
the beast no hide,
the sheep no wool,
the cat no perfume •••
Unaccommodated man is no more
but such a poor, bare, forked
animal as thou art.

When processed with the command

you see:

nroff -ms script4.r >script4.p

King Lear: Is man no more than this? Consider him well. Thou
owest the worm no silk, the beast no hide, the sheep
no wool; the cat no perfume ••• Unaccommodated man
is no more but such a poor, bare, forked animal as
thou art.

As this example shows, this form of the .IP macro can be used to format the script for a
play.

If you do not want a tag, but merely wish to set the indentation to something other than the
default setting of five spaces, then use a pair of quotation marks with nothing between them
for the first field:

.IP II II 8

If you forget the quotation marks. you will not get what you expect: nrotl' will interpret '8' as
a tag and use the normal indentation of five spaces.

Once you set the amount of indentation, the new indentation stays in effect until you
change it again. For example, if you format a paragraph with

.IP 1111 8

and follow it with another paragraph that begins with .IP, nrotl' will also indent the second
paragraph by eight spaces. The indentation will remain in effect until you explicitly change
it - for example, by peginning a paragraph with

.IP 1111 6

which resets the indent to six spaces.

Normally, nrotl' measures the paragraph indentation from the left margin. Another
variation of IP allows you to measure the indentation of a new indented paragraph from the
left-hand edge of a previous indented paragraph, thus producing relative indentation. To do
this, enclose the new paragraph between the macros RS and RE (for relative indent start
and relative indent end). Copy the following script into the file script5.r:

TUTORIAL

nroff Text-Formatting Language 239

.IP
And' it came to pass in an eveningtide,
that David arose from off his bed •••
and from the roof he saw a woman washing
herself; and the woman was very beautiful
to look upon. And David sent and enquired
after the woman. And one said,
.RS
.IP
Is not this Bathsheba, the daughter of Eliam,
the wife of Uriah the Hittite?
.RE
.IP
And David sent messengers and took her; and
she came in unto him, and he ..•
and she returned unto her house.

When processed through nroff with the command

nroff -ms script5.r >script5.p

the output resembles the following:

And it came to pass in an eveningtide, that David arose from off
his bed • . • and from the roof he saw a woman washing herself; and
the woman was very beautiful to look upon. And David sent and
enquired after the woman. And one said,

Is not this Bathsheba, the daughter of Eliam, the wife of
Uriah the Hittite?

And David sent messengers and took her; and she came in unto him,
and he ••. and she returned unto her house.

You can include any number of indented paragraphs between .RS and .RE. Also. you can
specify tags and different indents just as for ordinary indented paragraphs. You can even
nest .RS and .RE pairs inside each other to produce multiple relative indents. Just
remember that an .RS must always be balanced by an .RE. Type the following into the file
scrlpt6.r to see how nroff handles nested flashbacks:

TUTORIAL

240 nroff Text-Formatting Language

.IP
In England during World War II, a captain tells the
story of his Free French bomber squadron .
• RS
.IP
In the early days of the war, a French ship picks up
five men adrift in a small boat. One tells of their
life on Devil's Island .
. RS
.IP
A convict tells others of his past •
• RS
.IP
Publication of anti-Nazi material leads to arrest on
false charges •
. RE
.IP
The convicts escape to help France in the war •
. RE
.IP
When France surrenders, the crew overpowers pro-Vichy
officers and heads for England instead of Marseilles •
. RE
.IP
The captain concludes his story as the bombers return
from a mission.

When you process this file with the -ms package. the output file script6.p should resemble
the following:

In England during World War II, a captain tells the story of his
Free French bomber squadron.

In the early days of the war, a French ship picks up five
men adrift in a small boat. One tells of their life on
Devil's Island.

A convict tells others of his past.

Publication of anti-Nazi material leads to
arrest on false charges.

The convicts escape to help France in the war.

When France surrenders, the crew overpowers pro-Vichy
officers and heads for England instead of Marseilles.

The captain concludes his story as the bo'!lbers return from a
mission.

As you can see, each .RE command peels away the current layer of indentation and moves
you into the previous one. To return to an even earlier level. you must input the
appropriate number of .RE commands before you begin a paragraph.

TUTORIAL

nroff Text-Formatting Language 241

A third type of paragraph is the quoted paragraph. It produces a paragraph that is indented
on both on the right side and on the left side, in order to set off a quotation from the
surrounding text. To produce such a paragraph. precede it with the .QS macro and follow it
with the .QE macro. To break the quotation into different sections. insert a blank line in
the text before each line that you want to begin a new section. For example, type the
following example as scrlpt7.r:

Form of Tender of Rescue from Strange Young Gentleman
to Strange Young Lady at a Fire •
• QS
Although through the fiat of a cruel fate, I have been
debarred the gracious privilege of your acquaintance,
permit me, Miss [here insert name, if known], the
inestimable honor of offering you the aid of a true
and loyal arm against the fiery doom which now
o'ershadows you with its crimson wing. [This form
to be memorized, and practiced in private.]
.QE
Should she accept, the young gentleman should offer
his arm - bowing, and observing "Permit me" -
and so escort her to the fire escape and deposit
her in it.

After processing with the -ms package. the output file scrlpt7.p should resemble the
following:

Form of Tender of Rescue from Strange Young Gentleman to Strange
Young Lady at a Fire.

Although through the fiat of a cruel fate, I have been
debarred the gracious privilege of your acquaintance,
permit me, Miss [here insert name, if known], the
inestimable honor of offering you the aid of a true and
loyal arm against the fiery doom which now o'ershadows you
with its crimson wing. [This form to be memorized, and
practiced in private.]

Should she accept, the young gentleman should offer his arm -
bowing, and observing "Permit me" - and so escort her to the fire
escape and deposit her in it.

Section Headings
The section heading macro .SH prints a heading or title. For example:

.SH
Section Headings

The heading may be more than one line long; consequently, you should follow a section
heading with a .PP or an .IP macro. nroff leaves a blank line before the heading and prints
the heading flush with the left margin in boldface type. as described below in the section on
Fonts.

The numbered heading macro .NH produces consecutively numbered section headings. For
example:

TUTORIAL

242 nroff Text-Formatting Language

.NH
Guess What's Coming to Dinner?
.NH
Guess Why I Won't be There?

produces

1. Guess What's Coming to Dinner?

2. Guess Why I Won't Be There?

You can number subsection headings by entering a number from two to five to the .NH
macro. The number indicates the level of section headings; for example . . NH 2 numbers
subsection headings . • NH 3 numbers sub-subsection headings. For example:

.NH
Guess What's Coming to Dinner?
.NH 2
Guess What it Looks Like?
,NH 3
Teeth Like That Might Frighten the Children!
.NH 2
What Does it Eat?
.NH
Guess Why I Won't be There?

produces:

1. Guess What's Coming to Dinner?

1.1 Guess What it Looks Like?

1.1.1 Teeth Like That Might Frighten the Children!

1.2 What Does it Eat?

2. Guess Why I Won't be There?

The number on the .NH command line is not the number that appears before the heading;
instead. it controls how many "parts" appear in the number. For example . • NH 3 produces
a three-part number, such as 2.5.3, whereas .NH 4 produces a four-part number, such as
7.4.5.2.

You can reset the entire numbering scheme by using the command NH O; for example .

. NH 0
Through The Mandelbrot Set With Rod and Gun

produces

1. Through The Mandelbrot Set With Rod and Gun

with numbering starting at one.

TUTORIAL

nroff Text-Formatting Language 243

Title Page
If you want your output to begin with a title page. begin the input with the following .

. TL
Title of Document (may be more than one line)
.AU
Name(s) of Author(s) (may be more than one line)
.AI
Institution(s) of Author(s)
.AB
Abstract (line length 5.5 inches)
.AE

The .TL macro indicates the title, the .AU macro indicates the author, the .AI macro
indicates the author's institution, and the .AB macro precedes the abstract. The .AE macro,
for abstract end, marks the end of the abstract. If you do not want some of these headings
to appear, simply omit the relevant macros. Begin the body of the document immediately
after the .AE macro. The body must begin with a formatting command, such as .PP or .SH.

Note that the end abstract macro .AE also prints today's date automatically. To do so, nroff
reads the date as encoded in the COHERENT system. Before you use these macros, be sure
that you have set the correct date in the COHERENT system.

To see how these macros work. type the following script into file script8.r:

.TL
Tickling in the Therapy of
von Muenchausen's Syndrome
.AU
P. R. Sanserif
.AI
The Department of Parapsychology
The University of Southern North Dakota
at Hoople
.AB
Study of 150 subjects (75 men and 76 women)
indicated that hard tickling may prove beneficial
to patients with von Muenchausen's syndrome.
Applications for a seven-figure grant have been
made to continue research in this area .
• AE
.PP
Due to complications in our experiment, this paper
has now been withdrawn.

After processing with the -ms macro package, you will see that in the outputfile script8.p,
nroff placed the text on the same page as the title information. You may or may not want
this to happen. If you do not, one solution is to insert two additional commands between
the .AE macro and the body of your text:

TUTORIAL

244 nroff Text-Formatting Language

.PP

.bp

Headers and Footers
The header macro controls the format of the top of each page. It automatically skips one
inch at the top of the page. Thefooter macro controls the format of the bottom of each page.
It stops printing text one inch above the bottom of the page, and prints the page number.

It is easy to print either a page header or a page footer. Both the page header and the page
footer are three-part titles: nroff prints the first part on the left side of the page, the second
part in the middle, and the third part on the right side of the page. The parts of the header
title are named:

LT: left, top
CT: center, top
RT: right, top

and the parts of the footer title are named:

LF: left, footer
CF: center, footer
RF: right. footer

These parts are called strings. A later section of this tutorial describes strings in detail.
Normally, these strings are undefined, except for CF, which prints the current page number:
therefore. the header macro normally prints nothing. and the footer macro prints only the
page number in the center of the block of space at the bottom of each page. However, you
can set any portion of the header or footer to print what you like. To set the left portion of
the header, for example, type the following:

.ds LT "Walnuts in History"

Note that you do not type a period before the LT. After you define LT in this fashion, nroff
will print

Walnuts in History

at the top of each page on the left-hand side. If you want the date to appear on the right­
hand side of the header, type:

.ds RT "*(Ds"

The string Ds is automatically initialized to today's date, as set on your COHERENT system.
A later section of this tutorial will present strings in detail. For now, all you need to know is
that whenever you want nroff to insert today's date into your script automatically, just type
the entry \ *(Ds. This entry does not have to be at the beginning of a line to work.

Use the same procedure to define the strings in the footer title. If you want something other
than the page number to appear in the position allocated to CF, use the .els primitive to
redefine CF. If you want nothing to appear there, type

.ds CF ""

Wherever you want the current page number to appear in the header or footer, use the
symbol '%'. For example, if you want the page number to appear in the upper right-hand
corner of each page, type

TUTORIAL

nroff Text-Formatting Language 245

.ds RT "Page %"

Be sure to type in all of the macros to define headers and footers before you begin to type in
your text. Otherwise, your headers and footers will not appear on the first page of the
formatted output.

To see how this works, try editing the file scriptl.r. At the top. insert the macro

. ds RT "* (Ds"

and reprocess the file using the -ms macro package. Each output page should have today's
date written in the upper right-hand corner.

Fonts
nroff normally prints ordinary, or "Roman", characters. In addition. nroff can print
boldface and italic characters. Each of the three styles of type - Roman, boldface, and
italic - is called afont. in keeping with typesetting terminology.

nroff prints each boldface and italic character by generating a special three-character
output sequence. It prints the boldface character c, for example, by printing a 'c', then the
backspace character <ctrl-H>. and then another 'c'. This sequence emaphasizes 'c' by
forcing your printer to print it twice. nroff represents an italic character c with the
underscore character'_'. followed by the backspace character <ctrl-H>, followed by 'c'.

Because of these special representations. the appearance of nroff boldface and italic fonts
depends on the device on which you see the output. On your terminal. the <ctrl-H>
backspaces the cursor, and the third character of each sequence replaces the first;
therefore. boldface and italic characters appear the same as Roman characters. On a
printer, the appearance depends on the characteristics of the printer. The COHERENT
system provides afilter or a printer driver to print boldface and italic character sequences
appropriately on certain devices.

The -ms macro package includes three commands for easy printing in specific fonts: the
boldface command .B. the Italic command .I, and the Roman command .R. To print a single
word in boldface. do the following:

The last word is printed in
.B boldface.

Likewise for italics:

The last word is printed in
.I italics.

These example printed a word in a different font. You can print several words in a different
font by enclosing the words within quotation marks on the command line:

This sentence ends with
.B "three bold words".

You can also switch fonts by using one of the font commands with nothing after it on the
command line. For example .

or

• B
This entire sentence is printed in boldface .
• R

TUTORIAL

246 nroff Text-Formatting Language

.I
This entire sentence is printed in italics •
• R

In these examples, the Roman font command .R is needed to return to the normal font after
completing the boldface or italic text.

On rare occasions, you might want different parts of one word to be in different fonts. You
cannot use the -ms macros to produce mixed-font words directly. A later section of this
tutorial gives additional information about nrotl' fonts. As explained there. the input

This manual describes \fBnroff\fR's powerful features.

produces the output:

This manual describes nrotl''s powerful features.

The word nroff is boldface but the following apostrophe and 's' are Roman.

Special Characters
A few characters have special meaning to nrotl'. You should be aware of these characters if
you want nrotl' to process your text properly.

As mentioned earlier, the period and the apostrophe introduce nrotl' command lines. Each
is a special character if it is the first rwn-space character on an input line. If you wish to
use a period or an apostrophe at the start of an input line simply as part of your text, you
must precede it with a backslash and ampersand "\&". For example, the input

The footnote command
.DS
\&.FT
.DE
generates footnotes for you automatically.

produces the output

The footnote command

.FT

generates footnotes for you automatically.

Neither the period nor the apostrophe is a special character unless it is the first non-space
character on a line.

The most important special character for nrotl' is the backslash '\ '. It changes the meaning
of the following character or characters. If you simply want a backslash to appear as part of
your text, you must follow it with the letter 'e'; that is. use "\e" in your input to have'\'
appear in your output. Later sections of this tutorial describe other special uses for
backslash.

TUTORIAL

nroff Text-Formatting Language 247

Footnotes
You can place footnotes between the footnote start command .FS and the footnote end
command .FE, as in the following example:

.FS
*MicroKVETCH Electronic Nag is a
copyrighted trademark of Caveat Emptor
Software, Inc •
• FE

You should insert each footnote into your text where the reference to it occurs; nroff will
see to it that the footnote appears at the bottom of the correct page. Footnotes should be
inserted as follows:

The notion that we have been visited
by visitors from outer space may seem
outlandish(l)
.FS
1. Raucus J, O'Hooligan R: "Viruses
from Venus?" \fIJ Earth Med Assoc\fR,
1985;36:412-414 •
• FE
but reason compels us to exclude no •.•

The journal article cited in the footnote will appear at the bottom of the page, with the
journal name in italics.

Displays and Keeps
A display is a portion of text, such as a graph or a table, that should appear in the output
exactly as it is typed in the input. nroff normally alters the spacings between elements in
your text. which. of course. would destroy the appearance of a display. Therefore, nroff has
macros to tell it that a portion of text is a display, and so not to alter spacings between
elements or split it between two pages. These macros are the display start macro .DS and
the display end macro .DE. You should your display between these macros, as follows:

.os
The text of the display goes here,
exactly
as
you
want
it
to appear in the output •
• DE

The .DS macro comes in three varieties. The display start centered macro .DSC centers
every line of your display. Because nroff centers each line individually. both right and left
margins are ragged. The display start block-centered macro .DS B takes the entire display
at once and centers it. You can think of this as simply shifting the display to the right by
an appropriate amount. The display start indented macro .DS I indents the entire display
by half an inch.

TUTORIAL

248 nroff Text-Formatting Language

If your display is longer than one page, do not use .DS or any of its variants. Instead. begin
the display with one of the following.

The centered display macro .CD centers each line of the display. The block-centered display
macro .BD considers the entire display as a block and centers it. The left display macro .LD
performs no indenting or centering. but simply begins each line at the left margin. Finally,
the Indented display macro .ID indents each line by half an inch. If you begin the display
with one of these macros, do not end it with .DE; rather, just type .PP or .SH or whatever
other macro is needed at that point.

To see how displays work. type the following into the file script9.r and process it with the -
ms macro package:

.PP

.DS C
Tyger! Tyger! burning bright
In the forests of the night,
What immortal hand or eye
Could frame thy fearful syrrunetry?
Burma Shave
.DE

When the output file script9.p is read, the results will appear as follows:

Tyger! Tyger! burning bright
In the forests of the night,

What irrunortal hand or eye
Could frame thy fearful syrrunetry?

Burma Shave

You must remember one important fact when you use display macros: the normal length of
output lines is 6.5 inches, but if the display contains lines longer than this nroff simply
prints them as they are. If a line is too long to fit onto the page, what occurs afterwards
depends upon the output device. If you are displaying the output on the screen, the text
will be displayed as far as possible to the right, then the remainder will be wrapped around
onto the next line, without indentation. On most printers, however, the chunk of text that
extends past the right margin will simply be lopped off and thrown away. In any event, the
effect is usually quite unsightly. The only restriction on what you can safely put in a
display, then, is that lines should be no longer than 6.5 inches. If you are using an
indented display, lines should be no longer than six inches.

A keep is a display macro: you put text between the keep start macro .KS and the keep end
macro .KE when you want it all kept on the same page. If you put a block of text between
these macros that proves to be longer than one page. nroff moves the excess text onto a
new page.

The major difference between the keep and the display is that normal processing occurs in
the keep: nroff adjusts spacings between words, hyphenates words, justifies lines, and
performs all other formatting tasks, just as it normally does.

Other Commands
Several of nroff's primitives can be used with the -ms macro package. The primitive

.sp N

skips N lines on the output page; for example, .sp 4 skips four lines.

TUTORIAL

nroff Text-Formatting Language 249

The begin page primitive .bp tells nroff to begin a new page, no matter where it is on the
current page.

The remaining sections of this tutorial provide more information about these other nroff
primitives.

Introducing nroff's Primitives
The rest of this tutorial describe nroff's basic commands - the commands that are "built
into'" nroff', and from which macros are assembled. These basic commands, or primitives,
form nroff's text formatting language. Once you have mastered the primitives, you will be
able to write macros to control automatically even the most difficult text formatting tasks.

The rest of this tutorial includes a number of exercises. You should type them into your
system and execute them as described in the tutorial; this will greatly increase the rate at
which you master nroff. None of the following examples should be processed with the -ms
macro package; the purpose of this portion of the tutorial is to teach you how to create you
own text processing routines, rather than how to use ones that have already been written.

Page Format
When deciding how to process text, you must first decide how to position the text on the
printed page. You must control line length. left and right margins, page offset (i.e .. how far
from the left edge of the page each line begins), and page length. Controlling these
functions is quite easy with the appropriate nroff commands.

The line length primitive .ll controls the line length; and the page offset command .po
controls the page offset. If you are writing an nroff script, you should include these
commands before the beginning of your text, so that nroff can put them into effect
immediately. The following example uses a line length of three inches and a page offset of
two inches. Type this into your system under the name exl.r. Note, by the way, that the
text to the right of the characters '\ '" is a comment. and there is no need for you to type it
into your system:

.11 3i \" set line length

.po 2i \" set page offset
Along outside of the front fence ran the country
road, dusty in the summertime, and a good place for
snakes -- they liked to lie in it and sun themselves;
when they were rattlesnakes or puff adders, we killed
them; when they were black snakes, or racers, or belonged
to the fabled "hoop" breed, we fled, without shame; when
they were "house snakes", or "garters", we carried them
home and put them in Aunt Patsy's work basket for a
surprise; for she was prejudiced against snakes, and
always when she took the basket in her lap and they
began to climb out of it it disordered her mind.

Process this script by typing the command

nroff exl.r >exl.p

From this point on, you should not use the -ms macro package with your nroff examples.
When you display the output stored in the file exl.p, you will see that the length of each
line is three inches, and each line begins two inches from the left-hand margin.

TUTORIAL

250 nroff Text-Formatting Language

As you noticed, line length and page offset were set in Inches. nroff output can be
controlled using a number of different units of measurements, including inches, number of
characters, or lines, or machine units. A following section discusses nroff units of
measurement in detail.

As noted above, this example contains two comments. nroff ignores any text that appears
on a line after"\"". You should use comments, for the benefit of anyone who must read
your nroff script (including yourselO. The above example used the comments

\" set line length
\" set page offset

to help you understand the .ll and .po commands. Judicious comments can make a
complex script much easier to understand.

Breaks
Before you look at the break primitive .br, it is helpful to examine how nroff constructs a
finished line of output. Suppose, for example, that you tell nroff that you want each output
line to be five inches long. nroff takes your input one word at a time, and attempts to
squeeze that word into the space that has not yet been taken up in the line. When nroff
finally picks up a word that is to large to fit into the amount of space left in the line, it
either puts the word aside entirely, or hyphenates the word and places the hyphenated
portion into the line. nroff then inserts extra blank spaces between the words to justify the
line. The break primitive .br, however, tells nroff to print whatever words have already been
put into the line, even if they do not form a complete line, and without performing right
justification.

The idea of a break might seem strange at first, but you are familiar with a simple example:
the end of a paragraph. You do not want the start of a new paragraph to be on the same
line as the end of the previous paragraph: you want to print the end of the previous
paragraph whether or not it fills a complete line; and you want to begin the new paragraph
on a new line. As you will learn later. some nroff commands cause breaks automatically;
you should be aware of this when you use them.

Fill and Adjust Modes
Two terms describe how nroff processes your input to create its output: filling, and
adjusting or justifying. Unless you order it not to, nroff operates in the fill and adjust
modes. The no:flll primitive .nf tells nroff to stop using fill mode. The fill primitive .ft tells
it to resume using the fill mode. In a similar way, the adjust primitive .ad tells nroff to use
adjust mode, whereas the no adjust primitive .na tells it to use no-adjust mode.

As mentioned above, nroff by default is in both fill mode and adjust mode, so you do not
need to begin your script with .ft and .ad if you want nroff to fill and adjust your text.
However, if you turn off filling and adjusting by using the .nf and .na commands, you must
use the .ft and .ad commands to tum filling and adjusting back on.

When you use .nf to turn off fill mode, nroff no longer tries to fill lines to a fixed line length.
It prints each line of input text exactly as received. However, a sufficiently long line of text
run off the right-hand edge of the page if nroff were to print it as entered. If the input line
cannot fit on one line, nroff prints as much as it can fit on one line, then breaks the line
and prints the rest on the next line with no page offset.

In adjust mode, nroff inserts extra spaces between words to justify lines of text, as
described above. When nroff is in no-fill mode, it is automatically in no-adjust mode: with
no fixed line length, there is no need to insert extra spaces. Moral: you can fill without

TUTORIAL

nroff Text-Formatting Language 251

adjusting. but you cannot adjust without filling.

If you request filling but not adjusting, nroff fills the output line as described earlier, but
does not insert extra spaces between words; that is, it does not try to keep an even right
margin. Every output line either is shorter than the line length you specified, or exactly as
long.

The .ad primitive includes several options. If you use the command .ad without an
argument, nroff keeps strict left and hght margins. The primitive .ad 1 justifies the left
margin only; .ad r justifies the right margin only; and .ad b justifies both margins (this, of
course, is the default). Finally, .ad c centers output lines while keeping their lengths less
than or equal to the line length. as set with the .ll command.

Remember that nroff ignores adjustment requests if you are in no-fill mode. If nroff is in
fill mode and you request any variety of adjustment, it adjusts accordingly until you issue
either a no-fill or a no-adjust command. If you give a no-fill command, only a fill command
restores adjustment; any plea for a different kind of adjustment is ignored while nroff is in
no-fill mode.

To see how this works, type the following script under the name ex2.r, and process it as
above:

.11 3.75i

.sp \" space
When we were alone, I introduced the subject
of death, and endeavored to maintain that the fear
of it might be got over. I told (Johnson) that
David Hume said to me, he was no more uneasy to
think that he should not be after this life, than
that he had not been before he began to exist .
. sp
.na \"no adjust
JOHNSON: "Sir, if he really thinks so,
his perceptions are disturbed;
he is mad: if he does not think so, he
lies .•.. When he dies, he at
least gives up all he has."
.sp
.ad r \"right-adjust
BOSWELL: "Foote, sir, told me that
he was not afraid to die."
.sp
.nf \"no-fill
JOHNSON: "It is not true, sir.
Hold a pistol to Foote's
breast or to Hume's breast,
and threaten to kill them,
and you'll see how they behave."
.sp
.fi \"fill
BOSWELL: "But may we not fortify our minds for
the approach of death?"
.sp
JOHNSON: "No, sir, let it alone. It matters not
how a man
dies, but how he lives. The act of dying is not of

TUTORIAL

252 nroff Text-Formatting Language

importance, it lasts so short a time ••.. A man
knows it must be so, and submits.
It will do him no good to whine."

When you process this input with nrotl', your output should look like this:

When we were alone, I introduced the subject of death, and
endeavored to maintain that the fear of it might be got over. I
told (Johnson] that David Hume said to me, he was no more uneasy to
think that he should not be after this life, than that he had not
been before he began to exist.

JOHNSON: "Sir, if he really thinks so, his perceptions are
disturbed; he is mad: if he does not think so, he lies .•.• When he
dies, he at least gives up all he has."

BOSWELL 1 "Foote, sir, told me that he was not afraid to die."

JOHNSON: "It is not true, sir.
Hold a pistol to Foote's
breast or to Hume's breast,
and threaten to kill them,
and you'll see how they behave."

BOSWELL: "But may we not fortify our minds for the approach of
death?"

JOHNSON: "No, sir, let it alone. It matters not how a man dies,
but how he lives. The act of dying is not of importance, it lasts

so short a time .•.• Aman knows it must be so, and submits. It
will do him no good to whine."

After the .na primitive. nroff fills but does not adjust the second paragraph. After .ad r. it
fills and right adjusts the third paragraph. After .nf. it neither fills nor adjusts the fourth
paragraphs. Finally. after .tl, it fills the fifth and sixth paragraphs and uses the .ad r adjust
option that was in effect previously.

Under certain extreme conditions, nrotl' cannot adjust a line even though it is in adjust
mode. If. for example. you specified a line length of one inch, a seven-letter or eight-letter
word would then take up most of a line. When such a word was then followed by a word
that could not fit into the line after it. nrotl' would begin a new line with the second word
rather than violate the right margin by inserting the into the line. When a line has only one
word in it. nrotl' obviously cannot adjust the line by inserting extra spaces between words;
therefore, the right margin is left uneven, as though nrotl'were in no-adjust mode.

Defining Paragraphs
What happens if you copy text from several pages of a book into a file without adding any
formatting commands. and then process the file with nrotr? There is no page offset, because
nrotl"s default page-offset setting is zero: and the processed lines are set to the default
length of 6 .5 inches (65 Pica characters).

More interesting things happen with paragraphs. Suppose you skip a line between
paragraphs and begin each paragraph by indenting five spaces. The blank line in the input
text causes a break, and forces nrotl' to print a blank line. The last line of each paragraph
is unadjusted, and a blank line appears before the next paragraph. Initial blank spaces in a
line of input also cause a break. In this example, the breaks caused by initial blank spaces
at the beginning of each paragraph do nothing. because the preceding blank line forces out
the last line of the preceding paragraph. nrotl' always considers initial blank spaces in a

TUTORIAL

nroff Text-Formatting Language 253

line to be significant, and preserves them in the output.

To see how blank lines and initial spaces affect nroff's output. copy the following example
and run it through nroff:

Here is a little text so you can see
whether nroff will ignore the initial
indentation

in this very very long sentence.
Here is a little bit more text.

And here is something to mimic
the beginning of a new paragraph.

The output should look like this:

Here is a little text so you can see whether nroff will ignore
the initial indentation

in this very very long sentence. Here is a little bit more
text.

And here is something to mimic the beginning of a new
paragraph.

Instead of leaving a blank line in the text. you could use the space primitive .sp 1, which
causes a break and inserts one blank line into the output. In a similar way . . sp 5 causes a
break and inserts five blank lines in the output. Edit the example and replace the blank
line with the command line:

.sp 1

You will see that it has the san1e effect. You can also use the form .sp; nroff assumes you
want one space if you omit the argument.

Most nroff input consists of many paragraphs that contain text, and you probably want
each paragraph to have the same format in the output. Rather than formatting each
paragraph explicitly, as in this example, you can use the macro facility of nroff to define a
sequence of commands to format a paragraph. Macros are described in detail later in this
tutorial.

Centering
The center primitive .ce centers one or more lines of text. For example, you can center a
two-line heading as follows:

.ce 2
Heading Printed
In Center of Page

If you use the .ce command with no argument, nroff assumes a default argument of one,
and centers only the next line of input. The command ce 0 cancels any earlier centering
command that is in operation.

TUTORIAL

254 nroff Text-Formatting Language

Tabs
If your nrotl' input includes tables. you may find it convenient to use tabs to separate items
in a line of the table. nrotl' recognizes the <tab> character and expands it into spaces. If
you use tabs to format a table, remember to use no-fill mode; otherwise. nrotl' tries to fill
and adjust your output lines.

By default. nrotl' sets a tab stops after every eight characters. You can use the tab primitive
.ta to change the positions of the tab stops. For example .

• ta 10 20 30 40 50 60

sets tab stops ten characters apart rather than eight. . ta can also be used to fix tab stops
in inches rather than after a number of characters; for example .

• ta o.si 2.oi

sets tab stops after 0.8 inches and 2.0 inches on the output line. This is quite helpful when
you are designing a table.

You can use the tab character command .tc to change the character nroff prints between
its current position and the next tab stop. Enter the following text to see how this primitive
works:

.ta 9 19 29 39

.tc *

.nf
<tab>l<tab>2<tab>3<tab>4

The output file. ex3.p. should appear as follows:

*********1*********2*********3*********4

Page Breaks
The begin page primitive .bp causes a break and forces nroff to the next output page. By
default, nrotl' assumes a page length of 11 inches (66 lines). You can change the page
length with the page length command .pl. For example .

• pl 2i

specifies a two-inch page length.

At this point. the question arises about how nrotl' top and bottom page margins. number
pages. and other and other aspects of page layout. The answer is that nrotl' merely keeps
track of the current output page number and the current line number on the current
output page: designing top and bottom margins. page headers and footers. and other
aspects of page layout is up to you.

Can nrotl' execute a set of commands whenever it reaches a certain position on the page?
This would solve the problem of producing top and bottom margins. and you would not
have to guess where to insert the commands in your script. In fact, you can tell nrotl' to do
this. by using traps. The next section of this tutorial describes macros and traps and how to
use them to format a page.

TUTORIAL

nroff Text-Formatting Language 255

Macros and Traps
This section presents nroff macros: how to write them, how to tell nroff to execute them at
a give point on every output page, and how to install a macro file under the COHERENT
system

As with previous sections, this one uses a number of exercises. Working the exercises will
help you master nroff quickly. When you format the exercise scripts, do not use the -ms
option. Also, it is not necessary for you to copy the comments into your system; they are
here to help you understand what each nroff command does, but they have no effect on
how the script executes.

What Is a Macro?
To become familiar with the idea of a macro, consider the problem of formatting a
paragraph. Whenever you come to a new paragraph. you want nroff to skip a line and
indent the first line five spaces. Because nroff preserves blank lines and initial
indentations. you could force nroff to break your text into paragraphs simply by inserting a
blank line and spaces directly into your text. The same effect, however, can be achieved by
inserting following set of nroff commands

.br

.sp

.ti 5

\" break
\" skip a line
\" indent next line 5 spaces

between the end of each paragraph and the start of the next paragraph. You should
recognize the first two commands: .br causes a break. so that nroff prints the last line of
the previous paragraph even though it might not be a complete line; .sp skips a line before
the next paragraph begins. The third command is the temporary indent command .ti,
which tells nroff to indent the next line; the number indicates how many spaces to indent.
The following exercise, ex4.r, demonstrates how this works:

.11 3i

.po 3i

.ti 5

\" line length
\" page offset
\" indent next line

Adam was human--this explains it all. He did
not want the apple for the apple's sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent .
. br \ 1

' break
.sp \" skip a line
.ti 5 \" indent next line
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education .
. br
.sp
.ti 5
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

After you have processed this file, the output file ex4.p should resemble the following:

TUTORIAL

256 nroff Text-Formatting Language

Adam was human--this explains it all. He did not want the
apple for the apple's sake, he wanted it because it was forbidden.
The mistake was in not forbidding the serpent; then he would have
eaten the serpent.

Training is everything. The peach was once a bitter almond;
cauliflower is nothing but cabbage with a college education.

Habit is habit, and not to be flung out of the window by any
man, but coaxed downstairs a step at a time.

Now, in a small file it would be easy to type all of the nroff primitives directly into your
input text; however, what if your file is very long, with hundreds of paragraphs? Every time
you wanted to begin a paragraph, you would have to include that set of commands within
the text. You would save considerable agony if you could bundle these commands together
under a common name; then you could simply put that name into your text whenever you
wanted nroff to perform these commands. rather than typing the commands themselves
over and over again.

As you probably have guessed by now, you can do just that; the set of commands is called a
macro. The following shows the selections from Pudd'nhead Wilson's calendar set with a
macro called .PP that takes care of formatting each paragraph. The following exercise,
ex5.r, shows how to bundle together the nroff primitives for formatting paragraphs into the
.PP macro:

.de PP

.br

.sp

.ti 5

\" define the PP macro
\" break the line
\" insert a blank line
\" indent next line 5 spaces
\" two periods ends the macro definition

• PP \" execute PP macro
Adam was human--this explains it all. He did
not want the apple for the apple's sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent •
• PP
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education •
• PP
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

As you can see, using a macro can save you a considerable amount of work when you
prepare your script.

Introducing Traps
Now, consider the problem of formatting the beginning and ending of each page of output.
You could define what are traditionally called header andjooter macros, which contain the
commands you want performed at the top and bottom of each page. However, how can you
tell nroff when to execute these macros? You cannot possibly know where to call these
macros in the input text, because you cannot know where any given text line will appear in
the output until you have processed it through nroff. This problem is solved by using

TUTORIAL

nroff Text-Formatting Language 257

traps.

nroff keeps track of its vertical position on each output page. You can set a trap that tells
nroff to execute a macro at a particular vertical position on every page. When a line of
output reaches or extends past the position that is specified in your trap, nroff then
executes the commands named in the trap command before processing any more input text.

You can set a trap by using the when command .wh. For example, if you want nroff to call
your header macro .HD at the very top of each page. the command

.wh 0 HD \" set header trap

sets a trap for the macro .HD at vertical position 0 (the very top of the page) of every output
page. The macro .HD will then be executed every time nroff begins a new page. To have
your footer macro .FO execute one inch from the bottom of each page, use the command

.wh -li FO \" set footer trap

The negative number tells nroff to measure distance from the bottom of the page rather
than from the top; the i is an abbreviation for inches. (nroff recognizes various units of
measurement; this will be described in more detail later.)

Headers and Footers
Suppose you want to design the output page by defining the header and footer macros. A
simple header macro merely skips an inch of space at the top of each page; a simple footer
macro forces printing to stop an inch from the bottom of each page and prints the page
number. nroff does not print page numbers automatically. but it does automatically keep
track of which output page it is on. It stores the page number internally in a number
register that you can access with the symbol '%'. (A later section gives more information
about number registers and how to use them.)

The following gives a simple footer macro that prints the page number:

.de FO \" define footer macro FO
'sp 4v \" skip four vertical lines (no break)
.tl - % - \" print hyphen, page number, hyphen
'bp \" jump to new page

\" end macro definition

There are several points of interest raised by this macro.

First, notice that some commands are preceded with an apostrophe rather than with a
period. The use of the apostrophe instead of the period tells nroff to suppress the break
these commands normally cause. You might run into problems if you define your header
macro as follows:

.de HD

.sp li
\" header macro
\" skip an inch (break)

You want this to leave a blank space of one inch at the top of each page; however, the .sp
command causes a break, so that if a word were left over from the last line on the preceding
page, nroff would print it at the very top of the next page. The effect would be quite
unsightly. However. if you use 'sp instead of.spin the macro, nroff suppresses the break
and does not print the partial word until after it performs the macro commands. The same
is true for the footer macro: you do not want anything unplanned to be printed in the blank
space at the bottom of the page. You should always be conscious of these considerations

TUTORIAL

258 nroff Text-Formatting Language

when you use commands that cause breaks.

Another new item in the above example is the title command .ti, which prints a three-part
title. A three-part title contains a left part (aligned to the left margin of the page), a center
part (centered), and a right part (aligned to the right margin). The command name .ti is
followed by four apostrophes: nroff prints the characters between the first two apostrophes
as the left part of the title line, those between the second and third apostrophes as the
center part, and those between the third and fourth apostrophes as the right part of the
three-part title. If you do not want nroff to print anything in one of these positions, simply
put nothing between the appropriate pair of quotes. In the above example. the .ti primitive
tells nroff to print nothing in the left and right portions of the footer title line, but to print
the page number in the center. If you want an apostrophe to appear as a part of the title,
precede it with the backslash character'\'.

nroff considers the length of the title line to be independent of the length of normal output
lines; therefore, you must set it with the length of title primitive .It unless you want nroff to
use the default title length of 6 .5 inches. For example, to set the length of the title to five
inches, use the command

.lt Si

In light of all you now know, you should give Pudd'nhead Wilson's calendar the treatment it
deserves:

TUTORIAL

nroff Text-Formatting Language 259

.11 3i \" set line length to 3 inches

.po 2i \" set page offset to 3 inches

.pl 9i \" set page length to 9 inches

.wh 0 HD \" set the header trap

.wh -li FO \" set the footer trap

.de HD \" define header macro HD
'sp 1i \" skip 1 inches of space

\" end macro definition
.de FO \" define footer macro
'sp 2 \" skip 2 lines
.tl ',_ % _,' \" define footer title
'bp \" begin new page

\" end macro definition
.de pp \" define paragraph macro
.sp 1 \" skip 1 line of space
.ti 5 \" indent the first line 5 characters

\" end macro definition
.PP
Adam was human--this explains it all. He did
not want the apple for the apple's sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent .
• PP
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education .
. PP
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

As a point of technique. always set header and footer traps early in your input script;
otherwise. nroff may not print the header on the first page.

Macro Arguments
You can affect how macros function by passing them modifiers. called arguments. An
argument may be a bit of text that is arranged in a special way by the macro. or it may be a
number or other parameter that dictates exactly what the macro does.

As an example of how a macro can handle arguments. consider a macro to format the list of
ingredients for a recipe. You want the ingredients to be printed as follows:

3 cups of pumpkin
1 cup of milk
1 cup of sugar
1 tsp of ground ginger
1 tbl of cinnamon

TUTORIAL

260 nroff Text-Formatting Language

Each of these lines has the same format: the amount of ingredient, the unit of
measurement. the word "of', and the name of the ingredient. You can create a macro (call it
.RE. for recipe) that encodes the format of these lines and contains three "slots": one slot for
the amount, one for the unit of measurement. and one for the name of the ingredient. Each
time you use the macro, you indicate what you want to go into each slot, and nroff
substitutes it for you. The macro .RE can be constructed as follows:

• de RE \" define macro RE
\\$1 \\$2 of \\$3\" set RE's arguments

\" end definition
Here is some text .
. nf \" don't fill the recipe
.RE 3 cups pumpkin
.RE 1 cup milk
.RE 1 cup sugar
.RE 1 tsp "ground ginger"
.RE 1 tbl cinnamon
.fi \" resume filling
Here is some more text •
• bp \" begin a new page, to force printing

When you call a macro that takes arguments, the arguments must appear on the same line
as the macro command itself. A macro may have up to nine arguments; they are denoted
by \$1. through \$9, respectively: the first field after the macro name is called \$1. the
second \$2, and so on.

If you want to use as an argument a string of characters that includes blank spaces, you
must enclose the string within quotation marks, as with the words "ground ginger", in the
example above. If you forget to include the quotation marks, nroff regards each word in the
string as a separate argument, and treats them accordingly.

Note that macros that are called by traps cannot accept arguments.

Double vs. Single Backslashes
If you carefully examine the definition of RE. you will see that it identifies each argument
with two backslashes:

\\$1 \\$2 of \\$3

Whenever you identify an argument within a macro, always preface it with two backslashes,
rather than one. The reason is that nroff in effect processes a macro twice: when it first
reads it. and later when you call it within your text. Prefacing an argument with one
backslash tells nroff that you want to expand that argument when the macro is first read;
prefacing it with two backslashes tells nroff that you want to expand it when the macro is
called in your text. In nearly every circumstance. you want to expand the arguments in
your text, so you should use two backslashes. As you will see. this rule also applies to the
use of strings and number registers within macros.

To see how this works, consider again the .RE macro:

TUTORIAL

.de RE
\\$1 \\$2 of \\$3

Here is some text •
• nf
.RE 3 cups pumpkin
.RE 1 cup milk
.RE 1 cup sugar
.RE 1 tsp "ground ginger"
.RE 1 tbl cinnamon
.fi
Here is some more text •
• bp

nroff Text-Formatting Language 261

Using two backslashes, as above, allows you to redefine what $1, $2, and $3 mean many
times throughout your text, to generate the following output:

Here is some text.
3 cups of pumpkin
1 cup of milk
1 cup of sugar
1 tsp of ground ginger
1 tbl of cinnamon
Here is some more text.

If you used only one backslash, however, your output would appear as follows:

Here is some text.
of
of
of
of
of

Here is some more text.

nroff could not expand the argument calls (\$1 etc.), because you had not yet defined
them: therefore, it threw them away; and because all of the argument calls had been thrown
away, nroff then threw all the arguments away. All that was left was word of.

Designing and Installing Macros
Now that you have been shown how to write a macro. the next step is to design some
macros and install them, so you can call them over and over again.

The first step in designing a macro is to analyze the problem that you want to solve.
Suppose that in this instance you want to print a list of names. Each name will consist of a
first name, a last name, and the department with which he is associated. and the list will be
printed in columns; for example:

Firstname Last name Department

Moreover, you want to be able to switch the order in which the columns appear without
having to retype your list; for example:

TUTORIAL

262 nroff Text-Formatting Language

Lastname Firstname Department

or

Department Lastname Firstname

In effect, then, you want three macros: one for each of the three orders of columns shown
above.

When you have finished designing your macros, they should look something the following.
Type the following into the file tmac.lst; note that the symbol <tab> represents a tab
character, and should not be entered literally:

.\" List macros. $1 represents first name,
• \" $2 last name, $3 department
.de LA
.nf
.tal.5i2.75i
\\$1<tab>\\$2:<tab>\\$3
.Rt

.de LB

.nf

.ta 1.Si 2.75i
\\$2,<tab>\\$1:<tab>\\$3
.Rt

.de LC

.nf

.ta 1.Si 2.75i
\\$3:<tab>\\$2,<tab>\\$1
.Rt

The first lines are comments, so that anyone who looks at these macros will know what they
do. The first command line, introduced with the .de command, names each macro. These
names were selected after checking the file tmac.s, which is where the -ms macro package
is kept, to confirm that they are not used elsewhere. Naturally, using the same macro name
in two different places can lead to a great deal of trouble.

The next command, .nf. turns off the nroff's normal right justification, which otherwise
would smear a table. The .ta command sets the tab characters at certain points on the
page, measured from the left margin.

The next line gives the order in which the arguments appear. The arguments are separated
by tab characters, and punctuation is inserted. The last command, .Rt. calls a macro in
the file tmac.s; this macro resets nrotl' to its normal fill mode and returns the tab settings
to normal. Note that these macros can be used only when you also use the -ms macro
package.

After you have typed the macros into tmac.lst, carefully read over what you type to ensure
that no there are no errors; if you find any, be sure to correct them. The final step is to
move tmac.lst into the directory /usr/lib, which is where tmac.s is also kept.

TUTORIAL

nroff Text-Formatting Language 263

To test your new macros, type the following text into the file ex6.r:

The following lists give the personnel who are involved in
this project:
.sp
.LA Ivan Sanderson Engineering
.LA Marian Maddux Design
.LA George Sutcliffe Electrical
.LA Catherine Williams "Metal Shop"
.LA Fred Wilson Carpentry
.LA Anne Bilecki "Machine Shop"
.sp
.LB Ivan Sanderson Engineering
.LB Marian Maddux Design
.LB George Sutcliffe Electrical
.LB Catherine Williams "Metal Shop"
.LB Fred Wilson Carpentry
.LB Anne Bilecki "Machine Shop"
.sp
.LC Ivan Sanderson Engineering
.LC Marian Maddux Design
.LC George Sutcliffe Electrical
.LC Catherine Williams "Metal Shop"
.LC Fred Wilson Carpentry
.LC Anne Bilecki "Machine Shop"
.sp
We expect that they will receive your full cooperation.

The same set of names is used three times; the only difference is the macro call employed.

Now, process this file with the following command:

nroff -ms -mlst ex6.r >ex6.p

As you can see, when you installed tmac.llst into /usr/lib, you could invoke it in the same
way that you invoke tmac.s with -ms.

When you look at the output file ex6.p, you should see something that resembles the
following:

The following lists give the personnel who are involved in this
project:

Ivan Sanderson: Engineering
Marian Maddux: Design
George Sutcliffe: Electrical
Catherine Williams: Metal Shop
Fred Wilson: Carpentry
Anne Bilecki: Machine Shop

Sanderson, Ivan: Engineering
Maddux, Marian: Design
Sutcliffe, George: Electrical
Williams, Catherine: Metal Shop
Wilson, Fred: Carpentry
Bilecki, Anne: Machine Shop

TUTORIAL

264 nroff Text-Formatting Language

Engineering:
Design:
Electrical:
Metal Shop:
Carpentry:
Machine Shop:

Sanderson,
Maddux,
Sutcliffe,
Williams,
Wilson,
Bilecki,

Ivan
Marian
George
Catherine
Fred
Anne

We expect that they will receive your full cooperation.

As you grow proficient in writing nroff macros. you will probably find it most efficient to
keep special macros in their own files; this will save time by ensuring that nroff does not
have to process macros that are never called.

Strings
Suppose you are writing a script for nroff and. to relieve the tedium. decide to punctuate
the text occasionally with a rousing cry of "FOOD FIGHT!!". If you plan to interject this
phrase more than a few times in your script, you can take advantage of another labor­
saving device, called a string. You can use a string name as an abbreviation for a long string
of characters you use frequently. Like a macro. a string is a name that nroff associates
with a definition that you supply. Wherever you put the name in your text. nroff prints the
definition. Although macros refer to sets of commands that you define, strings refer to
strings of characters that you define.

You define a string with the define string primitive .ds:

.ds FF "FOOD FIGHT!!"

The first field after the .ds gives the name of the sting, in this case FF. Like a macro name,
a string name may be either one or two characters. The second field after the .ds gives the
definition of the string. in this case

"FOOD FIGHT! ! "

As in this example, you must enclose the definition within quotation marks if it contains
spaces.

Be careful whenever you define a macro or a string. If you already have a macro or a string
named X and you define a new macro or string named X, nroff forgets the previous
meaning of X.

Once you have defined a string, you can refer to it anywhere in your text. The string itself
appears in the output text wherever a reference to it appears in the input text. You refer to
the string FF in the following fashion:

*(FF

Use the left parenthesis '(' only when the name of the string is two characters long. If the
string name is only a ~ingle character, such as S, refer to it as follows:

*S

As an example. type the following script into ex7.r, and process it through nroff; do not use
the -ms macro package:

TUTORIAL

nroff Text-Formatting Language 265

.ds FF "FOOD FIGHT!!"

.ds W "WHOOPEE!!"

.ce
From Aristotle's "Poetics"
.br
.sp
A tragedy is the imitation of an action *(FF
that is serious and also, *W as having magnitude,
complete in itself, with incidents *(FF
arousing pity and fear, wherewith to accomplish *W
*(FF its purgation of such emotions *(FF *(FF •
• bp

nroff adjusts the spacings between words in a string but does not hyphenate any word that
is within a string. If you use a very short line length. such as two inches. and define a
string that includes a three-inch long word. that word would not be hyphenated but would
extend past the right-hand margin.

You cannot include a newline character in a string. However, you can spread the definition
of a string out over more than one line with the aid of concealed newlines (preceded by the
backslash character '\'). nroff ignores each concealed newline. For example. add the
following string to the previous example:

.ds PR "GO TEAM \
GO!!!"

As you can see, nroff ignores concealed newlines anywhere in its input.

Strings Within Strings
You can define a string that has embedded within it a reference to another string.
Whenever you refer to the bigger string in your text, nroff substitutes the definition of the
smaller string for any reference to the smaller string. When you embed strings. though. you
should use two backslashes to refer to the embedded string. for the same reason that you
should use two backslashes to refer to an argument within a macro:

.ds S "This string *x has embedded *y strings"

To help understand this better, type following three scripts into your computer and format
them with nroff. The first script contains proper references to embedded strings (using
double backslashes); it works as expected:

.ds S "strings *X, strings *Y, strings *Z"

.ds X "here"

.ds Y "there"

.ds Z "everywhere"
*S

The next script contains embedded references that use only single backslashes. Because
the embedded strings are defined after the larger string, they are not available when nroff
defines the larger string. and so the references are ignored:

TUTORIAL

266 nroff Text-Formatting Language

.ds S "strings *X, strings *Y, strings *Z"

.ds X 11 here 11

.ds Y "there"

.ds Z "everywhere"
*S

The third script again contains embedded references using single backslashes. This time,
the embedded strings are defined before the larger string. and so are available when the
larger string is defined:

.ds X "here"

.ds Y "there"

.ds Z "everywhere"

.ds s "strings *X, strings *Y, strings *Z"
*S

To avoid unnecessary worry, you should always play it safe and use double backslashes to
refer to embedded strings.

Number Registers
You learned in previous sections that nroff keeps track of the output page number while it
prints its output. You made use of this fact when you created a footer macro that printed
page numbers. nroff also keeps track of other housekeeping information, such as the
current line length, page offset, page length. and vertical position of the last output line. It
keeps this information in storage locations called number registers.

You can use the name of a number register to refer to the number that is stored in it. When
you place a reference to a number register in your text, nroff substitutes for the name
whatever number is currently in the register.

Number register names are one or two characters long. just like macro and string names.
You can have a number register with the same name as a string or a macro without
confusing nroff. even though you cannot give a macro and a string the same name.
However, you might become confused; nroff scripts usually are easier to understand if you
keep all macro names. string names. and register names distinct.

Another difference between number registers, macros. and strings is that nroff itself does
not define any macros or strings (although the -ms macro package does). but it does
automatically define and update quite a few number registers. You can use these
predefined number registers in much the same way that you use registers you define
yourself, except that you cannot change their values.

To define a number register, you must specify the register name and the initial value for the
register. The number register primitive .nr looks like this:

.nr X 5

Here X is the name of the register and 5 is the initial value to store in it. To refer to number
register X in your text, use \nX; if the name is two characters long (for example, XY). use
\n(XY. This is exactly like the way you refer to a string. except that you use the letter 'n'
instead of an asterisk '*'. When nroff sees a reference to number register X, it automatically
substitutes the value stored in X. As you will see shortly, nroff can do arithmetic, and
learning to use number registers is an important part of learning to take advantage of
nroff's arithmetic abilities.

TUTORIAL

nroff Text-Formatting Language 267

A reference to a number register can occur anywhere a number would normally occur. For
example, if you set register X to 5, as above, you can set the line length to five inches as
follows:

.11 \nXi

This command is essentially the same as

.11 Si

if the current value of register X is 5.

A familiar problem arises when you refer to a number register inside a macro or a string
definition. If you use just one backslash, nroff substitutes the value in the register for the
reference when it first processes the macro or string. If you have not yet defined the
number register in your script. nroff inserts 0 into the macro or string. Normally, you
should use a a double backslash, such as \ \nX or \ \n(XY, when referring to a number
register within a macro or string. Using the double backslash is particularly important if
you change the value of the register throughout your script, and want the current value to
appear in the macro or string each time you call it.

Try typing the following examples into your computer, and processing them with nroff. See
if you can describe why nroff prints what it does in each case. The first example defines a
string with a register reference preceded by a single backslash .

• ds S "Here is a number \nX"
.nr X 55
*S
\nX

You should see the following output:

Here is number O
55

nroff printed what it did because number register X had not yet been defined when it was
called in string S; nroff therefore erased the reference to X and substituted zero for it.
Number register X was then set to 55, which was printed when the register was specifically
called later in the script.

The second example is similar. but now the number register is set before the string is called:

.nr Y 56

.ds T "Here is a number \nY"
*T
\nY

Now the output is

Here is a number 56
56

The third example uses a double backslash for the register reference.

TUTORIAL

268 nroff Text-Formatting Language

.ds u "Here is a number \\nZ"

.nr z 57
*U
.nr z 58
*U

This script produces the following:

Here is a number 57
Here is a number 58

The final example uses a single backslash again .

• nr W 59
.ds V "Here is a number \nW"
*V
.nr W 60

*V

The following is produced:

Here is a number 59
Here is a number 59

The last example illustrates the danger of using a single backslash to refer to a number
register within a string definition. You defined the number register W before you defined
the string V, so the value for W was available when nrotT read the definition of V. nroff
substituted the value when it reads the definition; the reference to the number register W is
no longer there. You then change the value ofW, but as you see in the next call ofV, the
change does not affect the number that appears in V. In contrast to this, notice in the third
example that the double backslash in the definition of U allows the reference to number
register Z to remain within the definition of string U. Whenever you change the value of Z
and then call U, nroff substitutes the new value of Z for the reference to Z within U.

You can also use the .nr primitive to increase or decrease the value in a number register.
For example, suppose you initially store the value five in X:

.nr X 5

Incrementing and Decrementing
You can change the value ofX to 9 by adding 4, as follows:

.nr X +4

You can then change the value of X to 7 by subtracting 2:

.nr X -2

A plus or minus sign before a number on the .nr command line tells nroff to add or
subtract the given amount to or from the value in the register. Because a negative number
is always preceded by a minus sign whereas a positive number usually is not preceded by a
plus sign. you can use .nr to set a register to a positive value in a way that cannot be
imitated for negative values. For example, suppose you again start out with number
register X set to a value of 5:

TUTORIAL

nroff Text-Formatting Language 269

.nr X 5

If you immediately follow this with

.nr X 7

then nro:tl' replaces the value of 5 with 7. The second .nr does not increase the value of X
by 7 to produce 12; rather, it wipes out the previous value of 5 and replaces it by the value
7. The command line to increase X by 7 is

.nr X +7

If you again start with a value of 5 in X and want to change the value to -4, you cannot use
the following command line:

.nr X -4

nroff interprets this as a command to decrease the current value of X by 4. which is not
what you intended. This command places the value 1 in X, since 5-4= 1. If X initially has a
value of 5 and you want to change the value to -4. you could use the command

.nr X -9

You can also increase or decrease the value of a number register without using .nr. If
number register X currently has the value 10, the reference \n+X increases the value in X
by 1 to 11 and substitutes the new value for the reference. The value in X becomes 11;
nroff replaces the next reference \nX by 11, whereas another reference \n+X increments
the value in X to 12 and replaces the reference by 12. Similarly, if number register XY
currently has the value 15. the reference \n+(XY increases the value in XY to 16 and
replaces the reference by 16.

You can also decrease a register's value. The reference \n-X decreases the current value in
X by 1 and substitutes the new value for the reference. Likewise, the reference \n-(XY
decreases the current value in XY by 1 and substitutes the new value for the reference.

You can change the size of the increment or decrement by means of another option to the
nr command. If you define X with

.nr X 1 5

then nro:tl' sets the value of X to 1 and sets the increment value for X to 5. The next
reference \n+X increments the value in X from 1 to 6 (the'+' now causes nro:tl' to add 5 to
the current value of X rather than adding 1) and substitutes 6 for the reference. In the
same manner. \n-X subtracts 5 from the current value of X and substitutes the new value
for the reference. This is convenient if you plan to repeatedly increment or decrement X by
the same fixed amount. If you wish to change the size of the increment. simply redefine X
with another .nr that specifies the new initial and increment values. If you define a number
register but do not specify an increment value, nro:tl' assumes the increment value to be I.

The following example of a macro illustrates a typical use of a number register and
incrementing.

TUTORIAL

270 nroff Text-Formatting Language

.nr W 1

.ds X "Here's Wrestler No. \\nW,"

.de B

.br
*X \\$1!!!
.nr b \\n+W

.B "Alex 'Killer' Bovine"

.B "William 'Crusher' Risible"

.B "Vlad 'the Impaler' Acephalous"

.bp

\" set W to 1, inc by 1
\" define string X
\" define macro B

\" define arg to macro B
\" increment W
\" end definition
\" call B with arguments

\" force printing of page

to produce the following output:

Here's Wrestler No. 1, Alex 'Killer' Bovine!!!
Here's Wrestler No. 2, William 'Crusher' Risible!!!
Here's Wrestler No. 3, Vlad 'the Impaler' Acephalous!!!

A reference to a number register may appear any place a number can normally appear. For
example:

.nr X \nY \nZ

sets register X to the value of register Y and sets the increment for X to the value of register
z.
As mentioned before. nroff performs arithmetic. It understands and evaluates properly
formed arithmetic expressions involving numbers, references to number registers. the
arithmetic operators'+', '-', '*', '/', '%',and parentheses. The first four operators represent
addition, subtraction, multiplication, and division. The '%' is the modulus or remainder
operator: the value of 7%3 is 1. which is the remainder when 7 is divided by 3.

One word of caution: nroff evaluates expressions from left to right without any preference
for performing some operations before others. For example .

. nr X 5+4*3/9

stores 3 in X. nroff does not perform the multiplication and division before the addition, as
you might expect.

Another important fact is that number registers hold only integers. If you write

.nr X 3.6

nroff truncates the value 3.6 and stores 3 in X. Also, an assignment such as

.nr X 3.9*3.9

stores 9 in X; nroff truncates each factor before it performs the multiplication. The
assignment

.nr X 0.4*8

stores 0 in X rather than 3: truncation occurs before nroff performs the multiplication
rather than after.

TUTORIAL

nroff Text-Formatting Language 271

A final word of caution: when you use numbers with commands other than .nr, the results
may not be what you expect. nroff understands several different units of measurement and
converts between units automatically. The next section explains units and conversion in
detail.

Units of Measurement
As mentioned above, nrotr maintains many number registers during processing. For
example, it stores the current page length in the register .1 (Note that the period '.' is
actually part of the name of this register.) If you set the line length to five inches with the
command

.11 5i

nrotr stores the length in register .I automatically; however. if you print the value in register
.1 by entering \n(.l. you find the value is 600. What does this mean?

Many nrotr commands require that you specify lengths or measurements as arguments.
You are already familiar with many of these commands: for example, .ll, .po, .pl, and .It.
nrotr accepts various units of measurement, but for purposes of calculation, it converts
each into a basic unit called a machine unit. which is abbreviated u. A machine unit is
1I120 of an inch long. Because one inch is 120 machine units, the length of a five-inch
line is 5 times 120, or 600 machine units.

The conversion table for units of measurement is as follows:

inch:
vertical line space:
centimeter:
em:
en:
pica:
point:

Ii= 120u
lv = 20u
le= 47u
lm = 12u
In= 6u
IP= 20u
lp = lu

Most of these are traditional typesetting terms.

As noted briefly earlier, nroft"s output actually consists of a sequence of characters. It is
useful, though. to think of the output as being "printed" at ten characters per inch (Pica or
10-pitch spacing) and six lines per inch. Many output devices use this spacing. With these
assumptions, 51 is equivalent to five inches of printed output.

Every nrotr command has a default unit of measurement. For example, the default unit for
.ll is m. whereas the default unit for .sp is v. If you type

.11 5

nroff interprets it not as five inches or five centimeters, but as 5m, which it converts to 5
times 12, or 60 machine units (60u).

nroff always assumes a unit specification as part of each number and automatically
converts each number and its unit specification into machine units. If you append an
explicit unit specification to the number, nrotr uses it; if you do not, nrotr uses the default
unit for the command.

For example, suppose you write the following commands:

.nr X 2i

.11 \nX

TUTORIAL

272 nroff Text-Formatting Language

What line length results? The first command stores the number 2 times 120, or 240, in
register X. The second command is therefore equivalent to typing

.11 240

However, the default unit for .ll is m. Because lm equals 12u. nroff sets the line length to
12 times 240, or 2,880 machine units. If you wanted a line length of two inches to result
from the above commands, you will be unpleasantly surprised, because 2i equals only
240u. Instead, you should write:

.nr X 2i

.11 \nXu

By including the u in the .ll primitive, you do not accidentally multiply your results by 12,
as happened earlier.

You should think of the unit specification as a part of a number. Because nroff accepts so
many different units of measurement, a number without a unit specification is ambiguous.
What does '5' mean? Five inches? Centimeters? Ems? nroff must know what unit of
measurement you are using. If you think of the unit specification as a part of the number,
you will have less trouble with potentially mystifying situations like the following. As
mentioned, number registers store only integers and nroff truncates each number in an
arithmetic expression to an integer before evaluating the expression. Therefore, the
following stores 0 in register X:

.nr X 0.4*9

But now try the following:

.nr X 0.4i
\nX

This does not store 0 in X like the previous command; it stores 0.4 times 120, or 48 in X.
The 0.4 is not truncated to 0 here! Truncation occurs after conversion to machine units, so
nroff truncates 0.4u in the first example. But the number in the second example is given in
inches i instead of machine units u. nroff converts it to u before truncating to get an
integer.

As another example, the following stores 1 in X:

.nr X O.Oli

nroff converts 0.01 inches to 0.01 times 120, or l.2u, and then truncates 1.2 to l.

The following command illustrates that nroff understands each number in an arithmetic
expression to have an attached unit specification. whether you supply one or not .

• 11 2*8

Recall that nroff stores the current line length in the register .I; if you type

\n(.1

you will receive the number 2.304. nroff interprets the 2 as 2m and the 8 as Sm. because
the default unit for .ll is m. Then it converts each to machine units and multiplies to give
the result: (2*12)*(8*12), or 2.304.

Consider one final example that illustrates the unusual consequences of seemingly innocent
assignments. Suppose you set the page offset as follows:

TUTORIAL

nroff Text-Formatting Language 273

.po 8/3

nroff stores the current page offset in register .o. To see what number it stores there, type

\n (.o

You see that the page offset is 2. Because the default unit for .po is m, the calculation is
(8*12)/(3*12)=8/3, which nroff truncates to 2. Two machine units is equivalent to only
1 /60 of an inch. This is not a physically reasonable value for most typewriter-like devices,
so a page offset of 0 characters results. On the other hand,

.po 8/3u

produces a page offset of approximately 1I4 of an inch.

Conditional Input
Now that you have been introduced to number registers, you can use them in conjunction
with powerful conditional commands to create more elaborate nroff scripts.

To see how conditional statements help you construct an nroff script, consider again the
problem of creating header and footer macros. Earlier, you constructed macros that
skipped space at the top of the page and printed the page number at the bottom of each
page.

Suppose, however, that you are formatting a paper that has a title. You want to print the
page number for page 1 at the bottom of the page, and to print the rest of the page numbers
at the top of the page. Both the header and the footer need some kind of conditional
mechanism to perform differently on the first page than on subsequent pages. On page 1.
the header should skip to where the title will be printed; on other pages, the header should
print the page number. On page l, the footer should print the page number; on other
pages, the footer should leave a block of blank space at the bottom of the page.

To execute commands conditionally. use the if/else commands .le and .el, which are
demonstrated in the following example. Note that the formation ' ', which is used with the
.tl command, represents two apostrophes, not a quotation mark.

TUTORIAL

274 nroff Text-Formatting Language

.de HD \" define header

.ie \\n%=1 .A

.el .B \" else do B

.de A \" define macro A

.sp I 1.0i \" space down to 1 inches from top of page

.de B \" define macro B
'sp 2v \" skip 2 spaces
.tl - % - \" print page no.
'sp I 1.0i \" skip to 1 inch from top of page

.de FO \" define footer

.ie \\n%=1 .c \" if page no. is 1 then do C

.el .D \" else do D

.de c \" define macro c
'sp l-4v \" move to 4 in. above bottom of page
.tl ',_ % - \" print page no.
'bp \" begin new page

,de D \" define macro D
'bp \" begin new page

As you can see, the .ie and .el commands always occur in pairs. .ie consists of three parts:
the command name .ie, then a condition that nroff tests. followed by a command nroff
performs if the condition is true. If the condition on the .ie command line is not true, nroff
performs the command on the .el line instead.

In the example, each conditional invokes a macro on the command line. Actually, the
conditional can specify Input text rather than the command after the condition. If you want
to execute several commands or include several text lines conditionally. enclose the lines
with the special sequences'\{' and '\}'.

Note, too, that one other new element was introduced in the construction of these macros.
Some of the .sp commands have a vertical bar immediately in front of the measurement: for
example,

.sp 11.0i

Normally, when nroff sees a command like .sp l.Oi, it moves down one inch on the output
page. The movement is relative to where nroff happens to be on the output page when it
received the request. The vertical bar tells nroff that the following measurement is an
absolute measurement, measuring either from the top of the page (if positive) or from the
bottom of the page (if negative). Therefore,

.sp 11.0i

tells nroff to move to one inch from the top of the page;

.sp I (-4v)

tells it to move to four vertical spaces from the bottom of the page.

TUTORIAL

nroff Text-Formatting Language 275

The .if primitive is formed exactly like .ie. Unlike .ie, which must always be used with .el,
the .if command may be used by itself. If the condition on the .if line is true, nrotl"
performs the command that follows the condition; if the condition is false, it ignores the
command altogether.

This chapter ends with two substantial examples that incorporate most of what you have
studied so far. To illustrate the use of conditionals, the first example begins each even
paragraph of output with the phrase Even Paragraph: and begins each odd paragraph with
the phrase Odd Paragraph:. Type this into the file ex8.r. and process it through nrotl"
without using the -ms macro package, and as before, there is no need to copy the
comments:

.wh 0 HD \" set header trap

.wh -2i FO \" set footer trap

.nr EO 1 \" set EO register to 1

.po 2i \" page offset 2 inches

.pl 6i \" page length 6 inches

.lt 4i \" title length 4 inches

.11 4i \" line length 4 inches

.de HD \" define header
'sp I (li-1vi \" space down to 1 inch minus 1 line
.tl I '*(WS'' \" set WS macro in title
'sp J 1.Si \" space down to 1.5 inches

.de FO \" define footer
'sp I (3i+3vJ \" space down to 3 inches plus 3 lines
.tl I 1 _ % _,' \" set page number in footer
'bp \" begin new page

.ds ws "From the Devil\'s Dictionary"
\" define string ws

.de pp \" define paragraph macro

.ie \\n(EO=O .EP \" if EO = 0 (even) then do EP

.el .OP \" else do OP

.de EP \" define EP (even paragraph)

.br

.nr EO 1 \" set register EO to 1

.sp lv \" skip 1 line

.11 4i \" set line length to 4 inches

.lt 4i \" set title length to 4 inches
*E \" insert string E

.ds E "Even Paragraph:"
\" define string E

.de OP \" define macro OP (odd paragraph)

.br

.nr EO 0 \" set register EO to 0

.sp lv

.11 3i \" set line length to 3 inches

.lt 3i \" set title length to 3 inches
*O \" insert string 0

.ds O "Odd Paragraph:"
\" define string O

TUTORIAL

276 nroff Text-Formatting Language

.PP
Debt, n. An ingenious substitute for the whip
and chain of the slave-driver .
• PP
Bore, n. One who talks when you wish him to listen •
• PP
Brandy, n. A cordial composed of one part
thunder-and lightning, one part remorse, two parts
bloody murder, one part death-hell-and-the-grave,
and four parts clarified Satan .
• PP
Responsibility, n. A detachable burden easily
shifted onto the shoulders of God, Fate, Fortune,
Luck, or one's neighbor.

This example uses an "even/odd" register called EO to determine whether you are beginning
an even or an odd paragraph. To distinguish between even and odd paragraphs, it uses a
line length of four inches for even paragraphs and one of of three inches for odd paragraphs.
It changes the title length with each paragraph, so nroff centers the page number with
respect to whichever kind of paragraph happens to occur at the bottom of a page.

The final example illustrates a loop constructed with the if/else commands. The first
paragraph is six inches long with no page offset; each succeeding paragraph is one inch
shorter with a page offset one inch longer. The line length of the sixth paragraph is one
inch; the next paragraph renews the cycle with a six-inch line length. Type this into file
ex9.r. and process it as you did the above example:

TUTORIAL

.nr PO 0 1

.de PP
\" set register PO to 0, increment by 1
\" define paragraph macro

.ie \\n(P0=6

.el .B
.A \" if register P0=6 then do A

\" else do B

.de A

.br

.nr PO O

.nr LL 6-\\n(PO

.11 \\n(LLi

.po \\n(POi

.nr PO \\n+(PO

.sp

.de B

.br

.nr LL 6-\\n(PO

.11 \\n(LLi

.po \\n(POi

.nr PO \\n+(PO

.sp

,PP

\" define macro A

\" set register PO to O
\" set register LL to 6 minus PO
\" set line length to LL inches
\" set page offset to PO inches
\" increment register PO
\" skip a space

\" define macro B

\" set LL to 6 minus PO
\" set line length to LL inches
\" set page offset to PO inches
\" increment register PO
\" skip a space

Future, n. That period of time in which our affairs prosper,
our friends are true, and our happiness is assured •
• PP
Gallows, n. A stage for the performance of miracle plays, in
which the leading actor is translated into heaven .
• PP

nroff Text-Formatting Language 277

Geneaology, n. An account of one's descent from an ancestor
who did not particularly care to trace his own .
. PP
Guillotine, n. A machine which makes a Frenchman shrug
his shoulders with good reason •
. PP
History, n. An account most false, of events
most unimportant, which are brought about by
rulers mostly knaves, and soldiers mostly fools •
. PP
Idiot, n. A member of a large and powerful tribe
whose influence in human affairs has always been
dominant and controlling •
• PP
Kiss, n. A word invented by the poets as a rhyme
for "bliss".

You should try this example to see verify that "loop" works as advertised.

Environments and Diversions
Another aspect of nroff's power is the ability to shift from one environment to another.

The nroff environment is the overall manner in which nroff processes your input text. The
environment's definition includes such aspects as line length. fill and adjust modes. and
indentation.

nroff allows you to define three independent environments. called O. 1. and 2. In each, you
can set as you wish such parameters as line length, filling. adjustment, and indentation.
You can call a different environment with the .ev command; the parameters you define for
the new environment control text processing until you change them within the present
environment or shift to another environment.

Not all nroff parameters change when you switch to a new environment. For example.
different environments do not have independent page offsets; the .po command affects all
environments. Parameters that may be set to different values in different environments are
environmental parameters; parameters that cannot be switched according to environment.
like page offset, are global parameters. Macro and string definitions are global.

When you first call nroff, you are by default in environment 0. In all the examples used in
this tutorial thus far. everything happened in environment 0. The following example
illustrates how to switch back and forth between environments. Type in the following
exlO.r and process it to see the output as you go along.

TUTORIAL

278 nroff Text-Formatting Language

.po Ii \" set global page offset to 1 inch

.11 4i \" set line length in ev o to 4 inches

.de pp \" define paragraph macro

.sp

.ti O.Si \" indent first line 1/2 inch

.PP
The heart of the righteous studieth to answer,
but the mouth of the wicked poureth out evil things .
• br
.ev 1
.11 3i
.ls 2
.PP

\" switch to environment 1
\" set line length to 3 inches
\" line spacing now double space

A froward man soweth strife, and a whisperer
separateth chief friends •
• br
.ev \" return to previous ev (0)

.PP
It is naught, it is naught, sayeth the buyer;
but when he is gone his way, then he boasteth .
• br
.ev 1
.PP

\" switch to ev 1

Wealth maketh many friends; but the poor is separated
from his neighbors •
• br
.ev \" return to ev O

The first .ll command sets a line length of four inches in environment 0. After defining the
paragraph macro .PP and an initial paragraph in environment 0, you switched to
environment I with the command

.ev 1

You now enter a new environment. If you do not explicitly set environmental parameters,
such as line length, nroff automatically uses default values for them. nroff assigns the
same default values in environments 1 and 2 as it does in environment 0.

The line length in environment 1 is set to three inches with the output text double-spaced.
The line space primitive

.ls 2

leaves one blank line between each output line. Thus, paragraphs processed in
environment 0 have four-inch single-spaced lines, whereas paragraphs processed in
environment I have three-inch double-spaced lines.

The example used the command line

.ev

without an argument to leave environment 1. This leaves environment 1 and restores (or
"pops") the previous environment - in this case. environment O. The next time you enter

TUTORIAL

nroff Text-Formatting Language 279

environment 1, you will not need to set the line length to three inches again: the value stays
in effect in environment 1 until you specifically change it. The same is true of all
environmental parameters.

To understand how nroff switches between environments, imagine that you have a set of
plates, each marked with either a 0, al, or a 2. You have as many plates of each type as
you wish. You stack the plates on a table; the top plate represents your current
environment. You begin with a 'O' plate on the table, to represent the initial environment
when you enter nroff.

Switching to environment 1 with the command .ev 1 corresponds to placing a 'l' plate on
top of the 'O' plate. You can again change the stack of two plates either by placing a new
plate on top of the stack, or by removing the top plate from the stack: the former
corresponds to calling a new environment, whereas the latter corresponds to restoring the
previous environment with the command line .ev.

Because you can have as many plates of each type as you wish, you can call environment l,
then call environment 2. then restore environment l, then call environment 0, and so on.
The command .ev N, where N is O. 1, or 2, places (or "pushes") a plate onto the stack; the
command .ev removes (or "pops") the top plate from the stack.

To illustrate this, add the following text to the end of the previous example. Use a piece of
paper and pencil to keep track of how the .ev commands add or remove environments.
Because the line lengths are different in each environment. it should be easy to tell in which
environment nroff has processed each paragraph:

TUTORIAL

280 nroff Text-Formatting Language

Buffers

.ev 2

.11 Si
\" introduce environment 2
\" set line length

• in li \" set indentation
.PP \" paragraph in ev 2
A poor man that oppresseth the poor is like
a sweeping rain which leaveth no food .
• br
.ev 0
.PP

\" push ev 0

As a roaring lion, and a ranging bear; so is
a wicked ruler over the poor people .
. br
.ev 1
.PP

\" push ev 1

Wrath is cruel, and anger is outrageous;
but who is able to stand before envy?
.br
.ev 2
.PP

\" push ev 2

A good name is rather to be chosen than
great riches; and loving favour rather than
silver and gold •
. br
.ev O
.PP

\" push ev O

Pride goeth before destruction, and an haughty
spirit before a fall .
• br
.ev
.ev
.PP

\" return to ev 2
\" return to ev 1

He that answereth a matter before he heareth it,
it is folly and shame unto him .
• br
.ev
.ev
.PP

\" return to ev O
\" return to ev 2

A merry heart doeth good like a medicine, but a
broken spirit drieth the bones •
• br

Earlier. it was shown that nroff uses a buffer to assemble words from its input into output
lines. Actually. each environment has its own buffer. Switching to a new environment does
not cause a break. Suppose you are currently in environment 1 with an unfinished line in
the buffer. When you give the command .ev 2. the unfinished line remains undisturbed in
the environment 1 buffer until you return to environment 1. Text you process in the
meantime in environment 2 or in environment 0 has no effect on the partial line in the

TUTORIAL

nroff Text-Formatting Language 281

environment 1 buffer, because nroff assembles text processed in other environments in
different buffers.

In the following example, you process some text in environment O and then switch to
environment 2. Any partial line collected in environment O when you switch to environment
2 waits patiently in the buffer until you return to environment 0 and issue the break
command to flush the buffer. You then return to environment 2 and flush any partially
filled line left when you restored environment 0. Enter the following into the file exl 1.r and
process it through nroff:

.11 3i \" set line length in ev 0

.po 2i \" set page offset in ev 0
This is environment o •
• ev 2 \" introduce ev 2
This is environment 2
.br \" flush ev 2 buffer
.ev \" return to ev 0
.br \" flush ev 0 buffer

As you can see, the order of the two sentences is reversed from the way you entered them.
If you were to delete the .br commands after the texts in exlO.r. the output would be very
badly affected.

Headers and Footers
A common use of environment switching is for the creation of header and footer macros. As
the following example demonstrates, the length of title set by the .It command is an
environmental parameter. The following constructs header and footer macros that print
strings of asterisks in the margins above and below the text; type it into your computer as
ex12.r:

TUTORIAL

282 nroff Text-Formatting Language

.wh 0 HD \" set header trap

.wh 12.5i FO \" set footer trap

.de HD \" define header macro

.ev 1 \" define ev 1

.lt 5i \" set title length to 5 inches
'sp 3v \" move down three spaces
.tl '****' '****' \" define header title
'sp 2v \" skip two more spaces
.ev \" pop environment

.de FO \" define footer macro
'sp 2
.ev 1 \" push ev 1
.tl '****'%'****'\" define footer title
.ev \" pop environment
'bp \" begin new page

.11 4i \" set line length in ev 0

.pl 3i \" set page length

.in 1i \" set indentation

.po 2i \" set page offset

.de pp \" define paragraph macro

.sp 1

.ti 0.5i \" indent 1st line 1/2 inch

.PP
When in the course of human events .••

The following section explains why header and footer macros often use a different
environment.

More About Fonts
As earlier described in some detail, nrotr output includes representations for boldface and
italic characters. in addition to the normal Roman characters. The visual appearance of
boldface and italic characters depends on the device you use to print your nrotr output.

If you want a word or a phrase to appear in boldface. enclose the word or phrase between
\fB and \ffi:

The last word of this sentence appears in \fBboldface\fR.

The sequence \fB tells nrotr to print in boldface, whereas the sequence \m tells nrotr to
return to the Roman font. Italics are used in a similar manner:

An entire phrase \fiappears in italics\fR.

To print more than a few words in a different font. you should use the font command .ft:

TUTORIAL

nroff Text-Formatting Language 283

.ft I
Here is text you want to
appear in italics •
• ft R

The initial .ft I switches the print to italic font, and the concluding .ft R returns it to Roman
font. As you might have suspected, the command .ft B switches to boldface.

You have two additional options when you use the .ft primitive. The command .ft P returns
to the previous font. You can use .ft P within a macro or a string to return to the previous
output font, even though you do not know which font was previously in effect. You can also
use the sequence \fP to return to the previous font. The .ft primitive without an argument
tells nroff to return to the Roman font.

In scripts that frequently change fonts, you should switch to a new environment for header
and footer macros, in order to protect their font settings.

Diversions
The diversion is a powerful feature that allows you to suspend outputting lines until nroff
has collected all of a block of text. For example, suppose you use nroff to format a chapter
of a book. The chapter includes footnotes at various places in the text; you want nroff to
collect these footnotes and print at the end of the chapter. To do this, nroff must store the
processed footnote text somewhere until the end of the chapter. when you want it printed.
Where do you store the text until the time comes for it to appear? To handle situations like
this, nroff provides a diversion mechanism: you can divert text into temporary storage
within a macro.

Diversion normally involves passing to a new environment to process the footnote without
causing a break in the main environment. When the text of the diversion ends, nroff
returns to the main environment, again without causing a break, and continues processing
just as if the text of the note had never been in the input.

However, before you attempt to write a footnote macro, type the following text into the file
ex13.r, and process it with nroff. This example illustrates the basic features of diversion.
The example exchanges two paragraphs of text, so that nroff prints the second before the
first.

.di x \" divert the following to macro X

.sp
A soft answer turneth away wrath:
but grievous words stir up anger •
• br \" send last line of paragraph to X
.di \" end diversion
.sp
He that is slow to anger is better than the
mightyi and he that ruleth his spirit than he
that taketh a city •
• br
.sp
.x \" print the paragraph diverted to X

The new command here is the divert primitive .di. The command .di X tells nroff to divert
the text that follows into macro X: the matching .di with no argument marks the end of the
diversion.

TUTORIAL

284 nroff Text-Formatting Language

The break is necessary before the end of the diversion because nroff diverts processed text
into the macro. Without the break. nroff would not divert any partially filled line in its
buffer to X: the last few words of diverted text might not form a complete line in the buffer,
so nroff might not divert them. However. if you break the input before you end the
diversion, nroff will also divert those last few words.

As you saw earlier. the .br command must be used to flush that environment's buffer before
switching environments.

The next exan1ple, ex14.r. illustrates a similar point.

.br
test word
.di x

\" clear buffer
\" put 'testword' into buffer
\" divert to X

Piracy, n. Commerce without its folly-swaddles,
just as God made it .
• br \" divert last line
.di
.x

\" end diversion
\" print text in X

Here nroff diverts testword into X along with the text between .di X and .di. Why did this
happen? The command .di X does not cause a break. Because you did not pass to a new
environment in this example before you diverted. nroff formed the diversion text in the
same buffer in which it stored testword. You did not break the input. so nroff appended
the diverted text to testword.

To make sure nroff diverts only text between .di X and .di into X. do one of the following: If
you want to process the diverted text within the current environment. empty the buffer by
inserting the .br command before you start the diversion. If you switch to a new
environment before starting the diversion. flush the buffer for the new environment before
you begin to process diverted text.

Diverting processed text into a macro that already holds material will erase whatever had
already been stored there. In some cases. such as the footnote example. you need to
append information into the same macro. The divert and append variation .da of the
diversion construction allows you to do so. The following example. ex15.r. demonstrates
this command:

TUTORIAL

nroff Text-Formatting Language 285

.11 3i

.po 2i

.de pp

.br

.sp 1

.ti 0.5i

.di x

.PP

\" set line length
\" set page offset
\" define paragraph macro

\" indent first line 1/2 inch

\" divert the following into X

Litigation, n. A machine which you go into as a pig
and come out of as a sausage •
• br
.di
.x
.br
.da X
.PP

\" end diversion
\" print what is in X

\" divert and append material into X

Inventor, n. A person who makes an ingenious arrangement
of wheels, levers and springs, and believes it
civilization •
• br
.di \" end diversion
.x \" print what is now in X

In this example, you first diverted a single paragraph into the macro X. nroff stored in X
the processed paragraph: in other words, the command line .PP is not stored in X: its output
is. When you invoke X with the command line .X, nroff takes the processed text in X as
input. To nroff, there is no difference between processed text and unprocessed text as
input: it processes the contents of X in the current environment, just like any other text.
Therefore, nroff processes diverted text twice: first when it stores the text within the macro,
and again when you invoke the macro.

The fact that nroff processes diverted text twice can cause problems if you are not careful.
Fortunately, nothing strange happens in the example above. You store a processed
paragraph with lines three inches long in X. When you invoke X. the line length is three
inches. Because each line in X is already exactly three inches long. nothing happens to it
when reprocessed; the layout of the output paragraph is unchanged.

But now, consider what happens in the following example, exl6.r:

TUTORIAL

286 nroff Text-Formatting Language

.11 3i \" set line length

.po 2i \" set page offset

.de pp \" define PP macro

.sp 1

.ti 0.5i \" indent first line 1/2 inch

.di x \" divert following into x

.ev 2 \" push environment 2

.11 4i \" set line length to 4 inches

.PP
Justice, n. A commodity which in a more or less
adulterated condition, the State sells to the
citizen as a reward for his allegiance, taxes
and personal service .
• br
.ev
.di
.x

\" pop environment (return to ev 0)
\" end diversion

A pargraph processed in environment 0 in this example has three-inch lines; you want your
diverted paragraph to have four-inch lines. However, when you print the diverted
paragraph with the command line .X, what happened? nroff did not print four-inch lines.
The four-line text lines set in environment 2 were reprocessed into three-inch lines when
the diversion macro is called in environment 0.

There are two ways to prevent such disasters. First, if you wish to invoke X in the main
environment, use no-fill mode:

.nf

.x

.fi

\" begin no-fill mode

\" return to fill mode

In no-fill mode, nroff outputs lines of input exactly as it receives them, so it keeps four-inch
lines four inches long and does not change the format of the diverted text. The second
strategy is to return to environment 2 and then invoke X; again, the format of the diverted
paragraph does not change, because the line length in environment 2 is four inches.

.ev 2

.x
,ev

A Footnote Macro

\" push environment 2

\" restore original environment

The footnote macro that follows does not print notes at the bottom of each page; rather, it
prints everything at the end of the chapter. In the processed text, number register Fn is
used to keep track of the footnote number; the footnote number will be printed in square
brackets where the footnote originally appeared in the text.

Type this macro into the file exl 7.r. If you wish to use it in your text processing, transfer it
to the directory /usr/lib under the name tmac.fn. Then, whenever you wish to use this
macro, be sure to include the option

-mfn

TUTORIAL

nroff Text-Formatting Language 287

when you invoke nroff:

.de FN \" define macro FN
[\\n+(Fn] \" print footnote no. in main text
.ev 1 \" push environment 1
.da z \" divert and append following into z
.sp
\\n(Fn. \\$2, \\fI\\$1\\fR,

\\$3, \\$4. \" format & print footnote in Z
.br \" flush diversion buffer
.di \" end diversion
.ev \" pop environment (return to ev 0)

Note that requests to change fonts are preceded by double backslashes, because they are
within a macro. The change to the italic font prints the first macro argument, which should
be the title of the work, in italics. Number register Fn contains the number of the last
footnote; you should initialize it with the command

.nr Fn 0 1

As shown above, each footnote entry in your text should have four arguments. In your
input text, each footnote will look like this:

.FN "Personal narrative of a pilgrimage to\
El-Medinah and Mecca" "Richard F. Burton"\
London 1856.

When you print the diversion .z at the end of the chapter, each footnote will be laid out as
follows:

8. Richard F. Burton,
Personal narrative of a pilgrimage to
El_Medinah and Mecca,
London, 1856.

Command Line Options
In the previous sections, you learned how to control nroff by including commands in the
input along with the text. You can also supply information in another way: on the
command line you type to call nroff. Unlike the commands discussed above, this
information is not part of the script you input into nroff.

You already know about some simple nroff command lines. For example, the command

nroff

forces nroff to accept input from the keyboard (sometimes called the standard input) and
print output on the terminal (the standard output). Type <ctrl-D> (that is, hold down the
ctrl key and type D) to exit from nroff if it is reading input from your terminal.

The command line

nroff scriptl.r

forces nroff to take accept input from the file scriptl .r instead of from your terminal, while
the command

TUTORIAL

288 nroff Text-Formatting Language

nroff -ms script.r

processes scrlptl.r with the -ms macro package. You can also redirect nroff output to
another file target:

nroff -ms scriptl.r >target

The general form of the nroff command line is:

nroff [option ... J l file ... J

This means that the command line consists of the nroff command, followed by zero or more
options, followed by zero or more files. nroff processes each namedfile and prints the result
on the standard output (the terminal. unless redirected). If no file argument is given, as in
the first example above, nroff reads from the standard input.

Each option on the command line must begin with a hyphen·-· to distinguish it from afile
specification. Using nroff with the -ms macro package is one example of entering an
option. In general, the -m option takes the form

-mname

which means the option consists of the characters -m immediately followed by a name. This
tells nroff to process the macro package found in the COHERENT file

/usr /lib/tmac.name

For example, the ms macro package discussed in chapter 2 is in the file /usr/lib/tmac.s,
whereashe man macro package used for the man command and to process manual pages is
in the file /usr/lib/tmac.an.

Any macro packages that you customize for your own use should be stored in the directory
/usr/lib under such a name if you wish to use them with the -mname option.

The -1 option tells nroff to read input from the standard input after processing each given
file. This allows you to supply additional input interactively from your terminal.

The -x option tells nroff not to move to the bottom of the last output page when done. This
is especially useful if you want to see the output on the screen of a CRT terminal.

The -nN option sets the page number of the first output page to the number N, rather than
starting at page 1. This is useful for processing large documents with input text in several
files which nroff processes separately.

The -rXN option sets the value of number register X to N. This option lets you initialize
number registers when you invoke nroff.

The COHERENT system provides many useful features which can be helpful while you are
using nroff. In particular, you can use a number of special characters. The stop-output and
start-output characters, usually <Ctrl-S> and <ctrl-Q>, stop and restart output on your
terminal. The Interrupt character, usually <ctrl-C>, interrupts program execution; you can
use it to stop an nroff command if you typed the command line incorrectly. The kill
character, usually <ctrl-\>, also terminates program execution. Some COHERENT systems
use different characters than those mentioned above: consult Using the COHERENT System
for details.

TUTORIAL

nroff Text-Formatting Language 289

For Further Information
The Lexicon entry for nroff summarizes its primitives. dedicated number registers. escape
sequences. and command-line options. The related program troff also performs text
formatting. except that it produces proportionally spaced output that can be printed on
printers that support the Hewlett-Packard Page Control Language (including the LaserJet
and DeskJet families of printers) or on printers that support the Postscript page-control
language. See the Lexicon entry for trofffor details on how to use this program.

The Lexicon also has entries for two macros packages that are included with the
COHERENT system: man. which produces manual pages similar to those that appear in the
Lexicon; and ms. which performs formatting somewhat similar to that seen in this tutorial.
You will find that these two packages already perform practically all of the formatting tasks
that you will commonly need to do.

The error messages generated by nroff are given in the appendix at the rear of this manual.

TUTORIAL

290 nroff Text-Formatting Language

TUTORIAL

Section 12:

Introduction to the sed Stream Editor

This is a tutorial for the COHERENT editor sed. It describes in elementary terms what sed
does.

This guide is meant for two types of reader: the one who wants a tutorial introduction to
sed, and the one who wants to use specific sections as references.

Related tutorials include Using the COHERENT System, which presents the basics of using
COHERENT and introduces many useful programs. and the tutorials for the interactive line
editor ed and for the screen editor MicroEMACS.

In a nutshell, sed edits files non-interactively; that is. sed applies your set of commands to
every line of the file being edited. Although sed is not as easy to control as ed or
MicroEMACS. both of which are interactive, it can edit a large file very quickly. You can
use sed to change computer programs. natural language manuscripts. command files.
electronic mail messages, or any other type of text file.

Getting to Know sed
sed is a text editor. It reads a text file one line at a time. and applies your set of editing
commands to each line as it is read. Because it does not ask you for instructions after it
executes each command, sed is a non-interactive text editor.

The advantages of sed are that it can readily apply the same editing commands to many
files; it can edit a large file quickly: and it can readily be used with pipes. A pipe takes the
product of one program and feeds it into another program for further processing. If you are
unsure of how a pipe works. refer to sh Shell Command Language Tutorial.

sed resembles closely ed. sed and ed use almost all of the same commands. and locate
lines in much the same way. However, there are important differences between ed and sed.
ed is interactive: when you give ed a command from the keyboard, it executes that
command immediately and then waits for you to enter the next command. sed, on the
other hand, accepts your editing commands all at once, either from the keyboard or, more
often, from a file you prepare; then, as it reads your text file one line at a time. it applies
every command to every line of text. Therefore, addressing (that is, telling the program
what commands should be applied to which lines) is much more important with sed than
with ed.

Keep in mind, too, that sed does not change your original text file; rather, sed copies it,
changes it, and sends the edited file either to the standard output or to another file that you
name in the command line.

Getting Started
Here are a few exercises to introduce you to sed. Type them into your COHERENT system
to get a feel for how sed works.

As explained above, sed applies a set of editing commands to your text file. To edit a file
with sed, you must prepare three elements: (1) the text file that you wish to edit; (2) a
command file (or script) that contains the sed commands you want to apply to the text file;

291

292 sed Stream Editor

and (3) a command line that tells the COHERENT system what you want done and with
which files.

To begin. then, type the following text into your computer using the cat command.
(Remember that <ctrl-D> is typed by holding down the ctrl key and simultaneously typing
D.)

cat >exercisel
No man will be a sailor who has contrivance enough
to get himself into a gaol; for being in a ship is
being in a gaol, with the chance of being drowned.
<ctrl-D>

Now. type in the following sed script. This script will substitute jail for gaol:

cat >scriptl
s/gaol/jail/g
<ctrl-D>

The last step is to prepare the command line. The command line consists of the sed
command, the options that tell sed where its instructions will be coming from (either from a
file or directly from the command line), the name of the file to be edited, and where the
edited file should be send. The general for of the command line is as follows:

sed [-n] [-e commands] [-f scrlptname] texifile [>file]

The -n option will be explained below, in the section on Output. The -e option tells sed that
commands follow immediately. The -f option tells sed that the commands are contained in
the file scrtptname. texifile is the name of the text file to be edited. The greater-than symbol
'>'followed by a file name redirects the edited version of the text file into file; if this option is
not used, the edited copy of the text file will be sent to the standard output.

In this example, a command script has been prepared, so the -f option will be used. Also.
the edited text should appear on the terminal screen, so the '>' will not be used. Type the
command line as follows:

sed -f scriptl exercisel

The following text will appear on your screen:

No man will be a sailor who has contrivance enough
to get himself into a jail; for being in a ship is
being in a jail, with the chance of being drowned.

You can use sed not only to substitute one word for another. but to add lines to files, delete
lines, and perform more involved editing. No matter how complex your sed editing
becomes, though, sed will always use the basic format just described.

The next few sections describe sed's basic commands.

Simple Commands
Type in the exercises exactly as shown and examine the results. Use the cat command to
enter the command file as well as the input file. The edited text will appear on your
terminal. Usually when you edit, you will want to redirect the edited text to a new file;
however, for the exercises presented here, let the edited text appear on your terminal so you
can examine the results immediately.

TUTORIAL

sed Stream Editor 293

Substituting
The substitution command is used very often when editing. sed's substitution commands
resembles the same command in ed. Its form is as follows:

s/terml /term2/

This tells sed to substitute term2 for terml. To correct a misspelled word, for example, use
this command form:

s/mispel/misspell/

As written. this command changes only the first occurrence of mispel in each line of your
text file. To change every occurrence of mispel in each line, add g (the global option) at the
end of the command:

s/mispel/misspell/g

If you want to change only the third occurrence of mispel on every line, put a 3 after the s:

s3/mispel/misspell/

When no digit follows the s and no g follows the command. only the first occurrence of the
term in each line (should there be one) will be changed.

To practice the substitution. type the following file into your system (please include the
misspellings):

cat >exercise2
From the Devils Dictionary:
Hemp, n. A plant from whose fiberous bark is made
an article of neckware which is frequently put on
after public speaking in the open air and prevents
the wearer from tking cold.
<ctrl-D>

Now. prepare the following sed script to correct the misspellings:

cat >script2
s/Devils/Devil's/
s/f iberous/f ibrous/
s/tking/taking/
<ctrl-D>

Invoke sed with the following command:

sed -f script2 exercise2

The following will appear on your screen:

From the Devil's Dictionary:
Hemp, n. A plant from whose fiberous bark is made
an article of neckwear which is frequently put on
after public speaking in the open air and prevents
the wearer from taking cold.

To see how the g command and the number option work, prepare the following text file:

TUTORIAL

294 sed Stream Editor

cat >exercise3
sd sd sd sd
sd
sd

sd
sd

<ctrl-D>

sd
sd

sd
sd

The following sed script changes the third sd in each line to sed:

cat >script3
s3/sd/sed/
<ctrl-D>

Invoke sed with the following command line:

sed -f script3 exercise3

The following will appear on your screen:

sd
sd
sd

sd
sd
sd

sed
sed
sed

sd
sd
sd

To change every sd to sed, use the g option. Prepare the following sed script:

cat >script3a
s/sd/sed/g
<ctrl-D>

The following will appear on your screen:

sed
sed
sed

sed
sed
sed

sed
sed
sed

sed
sed
sed

The g command will be most useful for editing prose, when you have no way to tell how
many times a given error will appear on a line. The numeric option will be most useful for
editing tables and lists.

Selecting Lines
Each of the substitution commands given above will be applied to every input line. Unlike
ed. there is no error message if no line of text contains terml .

In certain instances, however, you may wish to apply a particular command only to specific
lines. Lines can be specified (or addressed) by preceding the command with the identifying
line number. The following exercise demonstrates line selection. First, prepare the
following text file:

cat >exercise4
When a man is tired of London,
he is tired of life; for there
is in London all that life can afford.
<ctrl-D>

To change the word tired to fatigued on line 2 only. prepare the following sed script:

TUTORIAL

sed Stream Editor 295

cat >script4
2s/tired/fatigued/
<ctrl-D>

Begin the editing of your text file by typing the following command line:

sed -f script4 exercise4

The following will appear on your screen:

When a man is tired of London,
he is fatigued of life; for there
is in London all that life can afford.

Remember that to specify a line number. you must place the number before the command;
but to specify the numeric option (that is, position within the line). you must place the
number after the command.

You can define a range of lines to be edited. One way to do this is to list the first and last
line numbers, separated by commas, of the block of text in question. For example, the
following script will change is to was only in the first two lines of the text file you just
prepared:

cat >script4a
1,2s/is/was/
<ctrl-D>

Entering the command line

sed -f script4a exercise4

will bring the following text to your screen:

When a man was tired of London,
he was tired of life, for there
is in London all that life can afford.

Note that the word is in line 3 was unaffected by the substitution command, because it lay
outside the range of lines specified by the command.

You can also select lines by patterns. Patterns are strings (any collection of letters and
numbers, such as a word) that can be combined with commands. A fuller description of
patterns can be found in the tutorial for ed. Later on, when we show you other commands,
you will see that line selection by pattern rather than by line number is quite useful.

You can use the end-of-file symbol'$' for line selection. When you use this symbol. you do
not have to know the exact number of lines in your text file. For example, if you want to
apply a substitution command from line 1 O through the end of your text file, the command
form is:

10,$s/terml /term2/

TUTORIAL

296 sed Stream Editor

p: Print Lines
When sed edits a text file, the edited text is by default sent to the standard output, which
usually is your terminal's screen. (As noted above, the edited text can be optionally
redirected to another file by using the shell's'>' operator.) Normally. sed prints every line in
the text file. whether the line is changed or not.

The next exercise will demonstrate these defaults. First, type in the following text file:

cat >exercises
Bill g7 rllS
Nora g8 rllS
Steve g7 r120
Ella g8 r120
Dave g7 rllS
Robert g8 r120
<ctrl-D>

Next, create a script that contains no commands, by typing:

cat >scripts
<ctrl-D>

Now, execute this empty script:

sed -f scripts exercises

Note that sed simply copied your text file to the screen, without changing it in any way.

This default, however, can be inconvenient if you want to print only a selected portion of a
file. Fortunately, with a couple of commands you can control sed's printing.

The command line option -n changes sed's printing behavior. When you invoke -n, the text
file no longer is printed automatically. sed prints only the lines specified by the p
command. The p command makes sed print whatever line (or lines) to which it is applied.
Use -n on the command line to stop sed from printing every line automatically; then use the
p command in the script to target the lines you want to print. The following exercise will
help you grasp this point. First. type in the following sed script:

cat >scriptSa
/g7/p
<ctrl-D>

Enter the command line:

sed -n -f scriptSa exercises

and the following text will appear on your terminal:

Bill g7 rllS
Steve g7 r120
Dave g7 rllS

sed prints only the records of the students in grade 7 (g7).

It is important to note the order, or syntax, of the -n and -f command line options. The
correct order is to enter -n, then -f. (-nf or -fn are also acceptable.) If you type -f and then -
n, however, all you will get is an error message.

TUTORIAL

sed Stream Editor 297

When you use the p option with a sed command, sed will print every line of text in which
that command makes a substitution. This can be useful, but if you are not careful it can
also create some problems. sed normally prints every line in your text file, whether or not it
is changed by your script. unless you specify the -n option in your command line.
Therefore, if you do not use the -n option in your command line and you do use the p option
with yours commands. every line that sed edits will be printed more than once.

The following script illustrates this point:

cat >scriptSb
s/g7/g8/gp
s/r11S/r120/gp
<ctrl-D>

Now, execute it with the following command:

sed -f scriptSb exercises

The result will look like this:

Bill gB rllS
Bill gB r120
Bill gB r120
Nora gB r120
Nora gB r120
Steve gB r120
Steve gB r120
Ella gB r120
Dave gB rllS
Dave gB rl20
Dave gB r120
Robert gB r120

Bill and Dave were printed three times: the first time because the p option was specified
after editing the grade number. the second time because the p option was specified after
editing the room number. and the third time because the -n option was not used on the
command line. Steve and Nora were printed twice: the first time because their lines were
edited once each, and the second time because the -n option was not used on the command
line. Ella and Robert appeared once because their lines were not edited at all and the -n
option was not specified in the command line.

To get around this problem, use the -n option and use p only once, on the last substitution:

cat >scriptSc
s/g7/g8/g
s/r11S/r120/gp
<ctrl-D>

When you enter the following command line

sed -n -f scriptSc exercises

the new result will be:

TUTORIAL

298 sed Stream Editor

Bill
Nora
Dave

gB
gB
gB

r120
r120
r120

Thew command acts like the p command, except that matched lines are written to the file
whose name follows the w. The following script shows the correct form:

cat >script5d
s/g8/g9/w grade.9
s/gu/gB/w grade.a
<ctrl-D>

When you execute script5d with this command:

sed -f script5d exercises

the normal product will be seen produced at your terminal, and the edited lines will be
written to files grade.8 and grade.9. File grade.8 will contain:

Bill
Steve
Dave

gB
gB
gB

rll5
r120
r115

Note the order in which the two s commands were given. If their order were reversed, every
text line with g7 in it would have g7 changed to g8 by the first s command, then have this
newly created g8 changed to g9 by the second s command. Thus, all the students would be
shown to be in g9. and every text line would be printed into the file grade.9.

Line Location
When you edit a file with sed, it is hard to keep track of line numbers. As noted earlier, you
can locate specific lines with sed by using patterns as line locators. To see how this works,
type the following text file into your system:

cat >exercise6
From the Book of Proverbs:
As a door turneth upon his hinges, so the
slothful man turneth upon his bed.
A soft answer turneth away wrath: but grievous
words stir up anger.
<ctrl-D>

Now, prepare the following sed script:

cat >script6
/door/,/bed/s/turneth/turns/
<ctrl-D>

Execute it by entering the following command line:

sed -f script6 exercise6

The text will appear on your terminal this way:

TUTORIAL

sed Stream Editor 299

From the Book of Proverbs:
As a door turns upon his hinges, so the
slothful man turns upon his bed.
A soft answer turneth away wrath: but grievous
words stir up anger.

Note that the word turns was substituted for the word turneth only in the first proverb, not
the second. The reason is that the s command in this instance was preceded by the
patterns door and bed. These told sed to begin making the substitution on the first line in
which the word door appears, and to stop making the substitution with the first line in
which the word bed appears. In the text file. the fourth line also contained the word
turneth, but because it lay outside the range of line specified by the line locators, no
substitution was made.

When sed locates the last line of a block of text that you have defined, it will immediately
look for the next occurrence of the first line locator. If it finds that first line locator, it will
then resume making the substitution to your file until it again finds the second line locator
or comes to the end of the file, whichever occurs first. In this example, when sed found the
word bed, it began to look again for the word door; and if it had found the word door, it
would have resumed substituting turns for turneth.

Remember that, as explained earlier, line numbers can also be used as line locators. For
example, the sed script

2,3s/turneth/turns/

would have produced the same changes as did the script with the pattern line locators
prepared earlier.

Add Lines of Text
sed can add lines to your text file. To see how sed does this, first prepare the following text
file:

cat >exercise?
From the Devil's Dictionary:
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.
<ctrl-D>

Now. type in the following script:

cat >script?
3a\
Economy, n. Purchasing the barrel of whiskey you do not \
need for the price of the cow you cannot afford.
<ctrl-D>

When you implement the script:

sed -f script? exercise?

you will see this result:

TUTORIAL

300 sed Stream Editor

From the Devil's Dictionary:
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.
Economy, n. Purchasing the barrel of whiskey you do not
need for the price of the cow you cannot afford.

The append command a added text after the third line of the file. You defined where the
text went. Notice the backslash '\' at the end of the line with the a command. This
indicates that the next line is part of the command. When you append several lines of text,
each line but the last one to be added must end with a '\' as in our example.

Note that no other editing command, such as s, can affect any line added with a. These
lines go directly to your screen, or to a file, should you be sending the edited text there, and
are invisible to all other sed commands.

The insert command i works like the a command, except that it adds its lines before the
addressed line, rather than after. The following script shows how the i command works:

cat >script7a
2i\
Peace, n. In international affairs, a period of cheating\
between two periods of fighting.
<ctrl-D>

Invoking it with this command:

sed -f script7a exercise?

produces this:

From the Devil's Dictionary:
Peace, n. In international affairs, a period of cheating
between two periods of fighting.
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.

As with the a command, no substitutions or other changes are performed on lines added
with i.

Note, too, that you can bracket a text line by using the a and i commands at the same time.
Adding a line with either a or i does not change line numbers of the text file you are editing
(although it does, of course, change the line numbers of the file sed writes).

Delete Lines
The d command deletes lines that you do not want in the edited text. The original file stays
unchanged. of course.

Lines that match the address (be it a line number, range, or pattern) of a d command do not
appear in the output. Exercise 8 illustrates the d command:

TUTORIAL

sed Stream Editor 301

cat >exercises
The sun was shining on the sea,
Shining with all his might.
He did his very best to make
The billows smooth and bright
And this was odd, because it was
The middle of the night.
<ctrl-D>

Now, you have to define the lines to be deleted by matching them with a unique pattern or a
line number. To delete lines 3 through 6, prepare this script:

cat >scripts
/best/,/night/d
<ctrl-D>

The command:

sed -f scripts exercises

generates this result:

The sun was shining on the sea,
Shining with all his might.

Note that when a line is deleted, no other commands are applied to it. Usually, if a sed
script holds a number of commands, every one of those commands is applied to every line
read from your text file; however, sed is logical enough to read the next text line
immediately, should a d command delete the current line before the series of commands
has finished.

Change Lines
The c command combines the i and d options. Text is inserted before the addressed lines.
which are then deleted. To see how this command works, prepare the following text file:

cat >exercise9
Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.
<ctrl-D>

Now, type in the following script:

cat >script9
1,2c\
Twas brilliant, and the shining cove\
Did glare and glimmer in the wave;
<ctrl-D>

When you execute your script with the following command line:

sed -f script9 exercise9

the result is:

TUTORIAL

302 sed Stream Editor

Twas brilliant, and the shining cove
Did glare and glinuner in the wave;
All mimsy were the borogoves,
And the mome raths outgrabe.

Like the i and a commands, the c command requires all added lines but the last to end with
'\'.

Include Lines From a File
When you edit a file. you may wish to include, or read in, a second file as part of it. This is
done with r command. To see how this works, type the following file into your computer.
and call it include:

cat >include
Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

<ctrl-D>

Now, prepare the file to be edited:

cat >exerciselO
To write a poem doesn't take much time;
Just string some words to rhythm and a rhyme.
What poets do to language is a crime,
Words and syntax twisted for a rhyme.
<ctrl-D>

When you write your script. you must tell sed where to read in include. The form of the
command should be familiar by now:

cat >scriptlO
/rhyme/r include
<ctrl-D>

The result is:

To write a poem doesn't take much time;
Just string some words to rhythm and a rhyme.

Then there comes the of ten-used ref rain
Whose repetitious writing dulls the brain.

What poets do to language is a crime,
Words and syntax twisting for a rhyme.

Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

Note that the r command inserted include after the addressed line. You can address lines
by number, of course, as well as by pattern.

TUTORIAL

sed Stream Editor 303

Quit Processing
The q command makes sed stop processing the text file. You will use this command most
often to limit the application your sed script to a portion of your text file. For example, if
you were editing a large file and you knew that your commands would be irrelevant to the
last half of the file, you could insert an appropriately addressed q and save some computer
time. You can also use this command to print portions of a file.

To see how this is done, prepare the following text file:

cat >exercisell
An hourglass has a very wide top,
a very narrow
middle
and a bottom
that is also extremely wide.
<ctrl-D>

The following script will print the top of the text file. Note how the script uses middle to
address the line where the file is to be split.

cat >scriptll
/middle/q
<ctrl-D>

The command:

sed -f scriptll exercisell

produces:

An hourglass has a very wide top,
a very narrow
middle

To print out only the lines after the pattern middle, simply delete the first half of the file
with the d command. as follows:

cat >scriptlla
l,/middle/d
<ctrl-D>

The result is the output:

and a bottom
that is also extremely wide.

Next Line
The n command advances to the next line of the text file. The n command is useful for
instances when you have two or more interrelated lines, and you want to ensure th a
particular set of patterns is matched over the entire set of lines. To see how n works,
prepare the following text file:

TUTORIAL

304 sed Stream Editor

cat >exercise12
Alpha
One
Beta
Two
Ganuna
Three
Delta
Four
Epsilon
Five
<ctrl-D>

To print a list of letters alone, type the following script:

cat >script12
n
d
<ctrl-D>

and execute it with the following command line:

sed -f scriptl2 exercise12

The result will be the following:

Alpha
Beta
Ga nun a
Delta
Epsilon

Remember that n does rwt stop processing, go to the next text line, and begin processing all
over again. Rather, it simply reads the next input line and continues processing from where
it left off. For example, if your sed file consisted of three commands, the second of which
was the n command, sed would apply the first command to the first line it read, then jump
to the second line and apply the last commands. Then, it would read the third line and
begin the pattern over again. To see how this works, prepare the following text file:

cat >exercisel3
Alpha
Alpha
Alpha
Alpha
<ctrl-D>

Now type in this script:

cat >scriptl3
s/Alpha/Apple/
/Apple/n
s/Alpha/Banana/
<ctrl-D>

When you execute the script with this command line:

TUTORIAL

sed -f script13 script13

the following will appear on your terminal:

Apple
Banana
Apple
Banana

sed Stream Editor 305

Note that the first substitution command changed the first Alpha to Apple; the n command
moved sed to the next line; and the second s command changed that Alpha to Banana.

Advanced sed Commands
The following sections discuss sed's advanced features. They also discuss the method of
operation.

Work Area
As described earlier, sed reads your text file one line at a time, and applies all of your
editing commands to that line. After the editing commands have been applied, the edited
line is either sent to the standard output, written to a file you have named, or thrown away,
depending on what you have told sed to do.

When sed reads a line from your text file, it copies that line into a work area, where it
actually executes your editing commands. sed notes the number of the line in the work
area, then executes each editing command in turn, first checking to see if the patterns or
line numbers specified in each command actually apply to that line. After each command is
checked in turn and performed if indicated, sed prints the edited line (if it is supposed to
be), and reads the next text line.

Add to Work Area
The exercises so far have used only one line in the work area. The N command, however.
tells sed to read a second line into the work area. The following exercise illustrates the use
of the work area and the N command.

cat >exercise14
This exercise has a brok
en word.
<ctrl-D>

Now, prepare the following sed script:

cat >script14
/brok$/N
s/brok\nen/broken/
s/has/had/
<ctrl-D>

and execute it with the following command line:

sed -f script14 exercise14

which produces the following text:

TUTORIAL

306 sed Stream Editor

This exercise had a broken sentence.

You will find it helpful to review this exercise in some detail. The first command in the
script

/brok$/N

tells sed to search for the pattern brok at the end of the line of text. (The dollar sign °$' in
this instance indicates the end of the line; remember that when the '$' is used with a line
number. it indicates the end of the.file.) The N command tells sed to keep this line in the
working space. and copy the next line into the working space as well.

When sed executes this command on the present text file. the work area will look like this:

This example has a brok<newline>en word.

Note that the two lines now appear to sed as though they formed one long line. The word
<newline> represents the end of line character that tells your terminal or printer to jump to
a new line when the text file is printed out. This character is invisible, but it is there. and it
can be changed or deleted. You can describe this character to sed by using the characters
\n. The first substitution in this script

s/brok\nen/broken/

replaces brok<newline>en with broken. Because the newline character is deleted from the
text. what used to be printed out as two lines on your screen will now be printed out as one.

Note the difference, too. between then and N commands. Then command will replace the
text line in the work area with the next line from your text file. The N command. however.
appends the next line from your text file to the end of the text already in the working area.
The next exercise demonstrates this difference. First. create the following text file:

cat >exercise15
Apple
Apple
Apple
Apple
<ctrl-D>

Now. prepare the following two scripts:

cat >script15
/Apple/n
s/Apple/Banana/g
<ctrl-D>

cat >script15a
/Apple/N
s/Apple/Banana/g
<ctrl-D>

When scriptl 5 is executed with the following command line:

sed -f scriptl5 exercise15

this will appear on your screen:

TUTORIAL

Apple
Banana
Apple
Banana

sed Stream Editor 307

The n command told sed to print out the line already in the work area before reading in the
next line from the text file. This meant that sed substituted Banana for Apple only on the
second line of each pair.

Note what happens. however, when you run scriptl5a, using this command line:

sed -f script15a exercise15

This text appears:

Banana
Banana
Banana
Banana

Because both lines of each pair were kept in the work area, the substitution command
changed both of them.

Print First Line
The P command prints material from the work area. Unlike the p command. which prints
everything in the work area, P prints only the first line in the work area. To see how this
works, prepare the following text file:

cat >exercise16
Student: George
Teacher: Mr. Starzynski
Student: Marian
Teacher:
Student:
Teacher:
<ctrl-D>

Miss Peterson
Ivan
Mr. Starzynski

Now, prepare the following scripts:

cat >script16
/Student/N
/Mr. Starzynski/p
<ctrl-D>

cat >script16a
/Student/N
/Miss Peterson/P
<ctrl-D>

When the first of these scripts is executed with the following command line (note the use of
the -n option):

sed -n -f script16 exercise16

the result is

TUTORIAL

308 sed Stream Editor

Student: George
Teacher: Mr. Starzynski
Student: Ivan
Teacher: Mr. Starzynski

whereas scriptl6a, when executed as follows:

sed -n -f script16a exercise16

produces

Student: George
Student: Ivan

Note that the N command lines pull both the name of the student and the name of the
teacher into sed's work area: then the P command allows you to print only the names of the
students whose teacher is Mr. Starzynski. Obviously, P is a powerful tool that will allow
you to select material from tables, lists, and other repetitive files.

Save Work Area
sed can create a second work area in addition to the primary work area in which sed
performs its editing. sed does not execute any editing commands on the material stored in
this secondary work area: rather, this work area can be used to store material that you
want to edit or insert later.

The commands h and H copy material from the primary work area into the secondary work
area. h and H differ in that h displaces any material in the secondary work area with the
line being copied there, whereas H appends the line being copied onto the material already
in the work area. Note, too, that both h and H merely copy the primary work area into the
secondary work area - after these commands have been executed, the material in the
primary work area remains intact, and can be edited further, printed out, or deleted,
whichever you prefer.

The commands g and G copy material back from the secondary work area into the primary
work area. Again, these commands differ in that g displaces whatever is in the primary
work area with the material from the secondary work area, whereas G appends the material
from the secondary work area onto the material already in the primary work area.

The following exercises will demonstrate how these commands are used. First, create the
following text file:

cat >exercise17
fruit: apple
berry: gooseberry
fruit: orange
berry: raspberry
fruit: pear
berry: blueberry
<ctrl-D>

The first script uses the hand g commands:

TUTORIAL

sed Stream Editor 309

cat >script17
/fruit/h
/fruit/d
/berry/g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17 exercise17

you receive the following text on your screen:

fruits apple
fruits orange
fruits pear

Review the last script in detail. The first command, /fruit/h, copied the line beginning with
"fruit" into the secondary work area, displacing whatever happened to be there. The
command /fruit/d then deleted the line from the primary work area; if this were not done,
it would then have been printed out. The third command, /berry/g then recopied the
material from the secondary work area into the primary work area, displacing whatever was
already in the primary work area. The result of all this shuffiing and displacing was that
the three lines that begin with fruit were printed out.

The next script demonstrates the H command:

cat >scriptl7a
/fruit/ff
/fruit/d
/berry/g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17a exercise 17

you see:

fruit: apple
fruits apple
fruits orange
fruits apple
fruits orange
fruits pear

Because the H command appends material into the secondary work area, rather than
replacing it ash does, all three lines that began with fruit were cumulatively stored in the
secondary work area. Because the g command was used for every line that began with
berry, the contents of the secondary work area (that is, the fruit lines) were written over
each of the three lines that began with berry.

The next script demonstrates the use of the G command:

TUTORIAL

310 sed Stream Editor

cat >scriptl7b
/fruit/H
/fruit/d
/berry/G
s/berry://g
s/fruit://g
<ctrl-D>

When you execute this script with the following command line:

sed -f scriptl7b exercisel7

you will see:

gooseberry
apple

raspberry
apple
orange

blueberry
apple
orange
pear

The H command copies the lines that begin with fruit into the secondary work area. The G
command then re-copies them from the secondary work area into the primary work area,
and appends them to the material already in the primary work area - that is, to a line that
begins with berry.

The two substitution commands then strip off the fruit and berry prefixes; obviously. these
substitutions do not affect the operation of the H and G commands, but they do create a
tidier result.

By the way, be sure you distinguish the g command from the g option used with the s
command. If you do not, what sed finally prints out for you may appear very strange.

The final command that uses the secondary work area is x. which exchanges the two work
areas. The following script shows how this is used:

cat >scriptl7c
/fruit/H
/fruit/d
/blueberry/x
s/berry://g
s/fruit://g
<ctrl-D>

When you execute this script with the following command line:

sed -f scriptl7c exercisel7

you see:

TUTORIAL

sed Stream Editor 311

gooseberry
raspberry

apple
orange
pear

The text lines that began with fruit were moved into the secondary working area. The x
command was executed when the line that contained the word blueberry was reached, and
the two working areas exchanged their contents. The fruit lines were then printed out.
while the blueberry line was simply left in the secondary working at the end of the program.
and disappeared when the program concluded.

Note that x simply swaps the two working areas - there is no .. X" command that appends
the work areas onto each other.

Transform Characters
The y command is a special form of the s command. With the y command. you can replace
a number of characters easily, without having to write a series of s commands.

The form of the command is:

y/123/abc/

In the above example, 1 will be replaced with a, 2 with b, and 3 with c throughout the
document (no g option is needed). For y to work properly there must be a one-to-one
relationship between the characters being replaced and the characters replacing them.
Also, y cannot make exchanges that involve more than one character - it cannot, for
example, replace apple with banana.

One useful task for the y command is to change all upper-case letters in a file to lower case.
Prepare the following text file to see how this is done:

cat >exercisel8
NOW IS THE TIME FOR ALL GOOD MEN TO COME
TO THE AID OF THE PARTY.
<ctrl-D>

And prepare the following script, which will change these capitals:

cat >script18
y/ABCDEFGHI/abcdefghi/
y/JKLMNOPQR/jlkmnopqr/
y/STUVWXYZ/stuvwxyz/
<ctrl-D>

The alphabet is entered here in three chunks, to prevent the command from being too long
to type easily. Execute this script with the following command line:

sed -f script18 exercise18

The result is:

now is the time for all good men to come
to the aid of the party.

TUTORIAL

312 sed Stream Editor

Command Control
sed gives you advanced control over the execution of commands. The next subsections
describe how these command controls help you write compact, powerful scripts.

{ }: Command Grouping
In several of the exercises presented so far, more than one command specified the same line
locator. By using braces '{'and'}', you can bundle commands, which makes writing your
scripts easier and lessens the chance of making a typographical error.

To see how this is done, type the following script:

cat >exercise19
When my love swears that she is made of truth,
I do believe her, though I know she lies,
That she might think me some untutored youth,
Unlearned in the world's false subtleties.
<ctrl-D>

Now, prepare the following script:

cat >script19
/truth/{N
p

}
/lies/d
<ctrl-D>

When you execute this script with the following command line:

sed -f scriptl9 exercise19

the result on your terminal is:

When my love swears that she is made of truth,
That she might think me some untutored youth,
Unlearned in the world's false subtleties.

Note the syntax of this command. Each subsequent command must go on a line of its own,
as must the right brace '}'. If this syntax is not observed, you will receive an error message.

!: All But
The ! flag inverts a line selector: that is to say. the command will be performed on every line
but the one named in the line selector. The following script will show how this works:

cat >scriptl9a
21d
<ctrl-D>

which, when run with the following command line:

sed -f script19a exercise19

produces

TUTORIAL

sed Stream Editor 313

I do believe her, though I know she lies,

This script deleted every line except line 2. The ! flag may also be used with a range of lines,
as indicated by line numbers or line patterns; in either case, you must place the! flag after
the line selectors and immediately before the command. Obviously. the ! flag is very
powerful, and can be used to sift out a few desired lines from a large file.

= : Print Line Number
You may wish to print only the line number of lines that contain a selected pattern. This is
done with the = command. For example, you may wish to know the number of each line in
the exercise that contains the word she. The following script:

cat >scriptl9b
/she/=
<ctrl-D>

when executed with the following command line (note the -n option):

sed -n -f script19b exercise19

produces this result:

1
2
3

These numbers can be stored in a file and used in further editing, or included with the text
of the fully edited file to provide a series of line markers.

Skipping Commands
sed normally processes editing commands in order, beginning with the first command and
proceeding sequentially to the last. This behavior can be modified by the branching
commands: b. t, and :.

These commands must be used with the colon (:) command, which defines a label point in
the list of commands.

The branch command b allows you to skip unconditionally some editing commands in your
script. The following exercise demonstrates how this can be used:

cat >exercise20
They went to sea in a sieve, they did;
In a sieve they went to sea;
In spite of all their friends could say,
On a winter's morn, on a stormy day,
In a sieve they went to sea.
<ctrl-D>

The following script uses the b command to avoid making certain changes to the first line of
the poem:

TUTORIAL

314 sed Stream Editor

cat >script20
s/sea/drink/g
/They/bend
s/sieve/ship/g
1end

When you execute this script with the following command line:

sed -f script20 exercise20

you will see:

They went to drink in a sieve, they did;
In a ship they went to drink;
In spite of all their friends could say,
On a winter's morn, on a stormy day,
In a ship they went to drink.

Note that the word sea is changed to drink throughout the file; however, when sed noted
that the word They appeared in line l, the b command forced it to seek the : command that
was labeled with the word end, and to continue editing only qfter it found the labelled :
command. In so doing. sed skipped the command to substitute ship for sieve, which is
why that substitution was not made in line 1.

Note the syntax of the b command: the label follows it without a break. The text of the label
is unimportant, just so long as it matches that used in the b command: however, the use of
a label allows you to place several b or (as will be seen) t commands in the same script
without mixing them up.

t: Test Command
The test command, t, also allows you to change the order in which editing commands are
executed. Unlike the b command, which simply examines a line for a given pattern, the t
command tests to see if a particular substitution has been performed.

The following script demonstrates the use of the t command:

cat >script20a
s/They/they/g
tend
s/sieve/ship/
:end
s/sea/drink/g
<ctrl-D>

which, when executed with the following command line:

sed -f script20a exercise20

produces:

TUTORIAL

they went to drink in a sieve, they did;
In a ship they went to drink;
In spite of all their friends could say,
On a winter's morn, on a stormy day,
In a ship they went to drink.

sed Stream Editor 315

Note that the t command checked to see that they was substituted for They before
branching to the ':'command labeled with the word end.

Also note the syntax of the t command: Like the b command, the label immediately follows
the command and is not separated by a space; unlike the b command, however, the t
command appears on the line below the substitution command for which it is testing.

For More Information
The Lexicon entry for sed summarizes its command-line options and commands. The
COHERENT line editor ed resembles sed, except that it works interactively instead of in a
stream. For information on ed, see its tutorial or its entry in the Lexicon.

TUTORIAL

316 sed Stream Editor

TUTORIAL

Section 13:

Introducing sh, the Bourne Shell

sh is the command that invokes the Bourne shell, which is the COHERENT system's default
command interpreter. The Bourne shell interpets commands, expands file names in various
sophisticated ways, permits conditional execution of commands. and much more. The
Bourne shell is, in effect. both a programming language and an interpreter.

At least one writer has noted that the shell is the original "fourth-generation language" -
that is, a powerful programming language that is straightforward enough to be programmed
by non-programmers. You will find that taking a little time to master the rudiments of the
shell programming language will pay enormous benefits in making best use of your
COHERENT system.

Simple Commands
The shell command language is built around simple commands. For example, the following
command lists all files in the current directory:

le

You can combine several simple commands on one line by separating them with
semicolons:

who;du;mail

The shell executes the commands in sequence as if they had been typed:

who
du
mail

In both of these examples, du does not begin execution until who is finished, and mail does
not begin until du is done.

Special Characters
The shell treats the following characters specially: if you want to use them without their
special meaning. you must precede them with the backslash character \. or enclose them
within quotation marks:

* ? c 1 I ; { > < l
$ = I ' ' " < > << >>

The function of these characters will be explained later in this section. To use one of these
characters in a command, for example '?', type:

echo \?

In addition, the shell treats the following words in a special way when they appear as the
first word of a command:

317

318 The Bourne Shell

case do done elif else esac
fi if in then until while

Running Commands in the Background
The shell can execute commands simultaneously as well as sequentially. This means that
while the shell is executing one command, it lets you type and execute another command.
Under the shell. the number of commands you can execute at the same time is limited
mainly by the amount of memory and disk space on your system.

If a command is followed by the special character '&', the shell begins to execute it
immediately, and prompts you to enter another command. For example, if you need to sort
a large file but want to continue with other commands while the sort is executing, you can
type:

sort >bigfile.sorted bigfile.unsorted &
ed prog

This allows you to edit file prog while your computer quietly executes the sort in the
background.

When you run a command with &, the shell types the process id of the command started in
background. When the COHERENT system runs a command. it assigns that command a
process id, which is a number that uniquely identifies that command to COHERENT.
Normally. there is no need to be concerned about these numbers. However. when you run
commands in the background, the shell tells you the id of the background process so you
can keep track of its execution.

The command

ps

lists the processes you are currently running. If you have no background jobs, the response
is:

TTY PIO
30: 362 -sh
30: 399 ps

The first column shows the number that COHERENT has assigned to your terminal. This is
the same terminal number printed out by who. The second column shows the process id;
the third column shows the program or command executing. The characters -sh in the
third column· means the login shell. There are two processes because the shell is running
the ps command as a separate process.

Once you have started a background command, ps shows you the process entry. which has
the process id that the shell typed out for you.

If you need the results from a background job, you can wait for it to finish by issuing the
command:

wait

The shell will then accept no further commands until all your background jobs are finished.
If there are no background jobs, there will be no delay.

TUTORIAL

The Bourne Shell 319

Scripts
Many of the commands that you use in COHERENT are programs, such as ed. Others, like
the man command, are scripts, or files that merely contain calls to other commands. You
can write scripts on your own, simply by using a text editor to type into a file the commands
you wish to execute. If you frequently use a set of commands, you can save yourself from
having to type them over and over by simply typing them once into a script.

For example, suppose that you wish to check periodically the amount of disk space that you
have used, the amount of disk space still available, and see who is using the system. You
can write a script to do all of this automatically. Create the script good.am by typing the
following commands:

ed
a
du
df
who sort
mail

w good.am
q

From now on, to execute the above-listed commands, you need only type:

sh good.am

where sh is a command that means: read commands from a file, in this case good.am. If
you can issue a command from your terminal. you can also execute it from within a script.

You can make a command file directly executable by using the command chmod. For
example, the command

chmod +x good.am

lets you execute the script good.am by typing

good.am

and leaving off the sh. Once you have done the chmod command, you can still issue the
commands by typing:

sh good.am

as well as use ed or Micro EMACS to change the contents of the script.

Notice that the commands called by a script may themselves be scripts. This is illustrated
by the following script, second.sh:

ed
a
sh good.am
le

w second.sh
q

TUTORIAL

320 The Bourne Shell

Thus, typing:

sh second.sh

calls the script good.am. and also calls the command le .

. profile: Login Shell Script
When you log into the system and before you are issued your first prompt, COHERENT
checks your home directory for a file named .profile; if it is present. the shell executes the
commands it contains.

This enables you to have COHERENT execute commands as soon as you log in. Check if
your installation provides one for you by doing an le (be sure that your current directory is
the home directory). If the file is there, print it by saying:

cat .profile

Some of the commands may be of the form:

PATH=':/bin:/usr/bin'

This sort of command will be discussed below.

Substitutions
Scripts of the form shown above are processed by the COHERENT shell without change.
However, the COHERENT shell increases the power of commands by performing three kinds
of substitutions within commands before it executes them.

First. it replaces special characters in commands with file names from the current or other
directories. This allows you to issue a single command that processes several files.

Second, you can give a script arguments, much like arguments that are passed to a Pascal.
Algol. or C procedure. This lets you target the action of the script to a specific file name
specified when you call it.

Third, the output of one command can be "piped" into another command to serve as its
input.

We will use the command echo to illustrate these kinds of substitution. Remember that
substitutions take place for all commands in the same way that they do for echo.

File Name Substitution
File names are often used as command parameters. That is, you will often tell a command
to do something to one or more files. By using special shell characters, you can substitute
file names in commands. These special characters describe file name patterns for the shell
to look for in the directory. When the shell finds the file names. it replaces the pattern with
them.

The asterisk* matches any number of any characters in file names. Thus,

echo *

echoes all the file names in the current directory. whereas

echo f*

gives all file names that begin with the letter f, and

TUTORIAL

echo a*z

lists all names that begin with a and end with z.

To illustrate more clearly, create two files by typing

cat >zzl
<ctrl-D>
cat >zz2
<ctrl-D>

Then the echo command

echo zz*

produces the output:

zzl zz2

The Bourne Shell 321

Thus, by using a single •, you can substitute several file names into a command. In other
words, the command

echo zz*

is equivalent to

echo zzl zz2

If no file names fit the pattern. the special characters are not changed, but left in the
command exactly as you typed them. To illustrate, type the command

rm zz*
echo zz*

The first command will remove all files whose names begin with zz, and is therefore
equivalent to:

rm zzl zz2

The echo command that follows, however, echoes

ZZ*

because no files begin with zz; they were just removed.

Enclosing command words within apostrophes prevents the shell from matching file names
with the enclosed characters. In the unlikely event that you have a file whose name is

zz*

that you want to remove, use the command

rm 'zz*'

The• is enclosed within apostrophes, and therefore is not changed by the shell.

Another special character? match any one letter. To see how this works, create empty files
met, file2. and me33 by typing:

TUTORIAL

322 The Bourne Shell

>filel
>file2
>file33

The command

echo file?

replies

filel file2

because? does not match 33.

You can use brackets [and) to indicate a choice of single characters in a pattern:

echo file[l2]

This command replies:

filel file2

To match a range of characters, separate the beginning and end of the range with a hyphen.
The command

echo [a-m)*

prints any file name beginning with a lower-case letter from the first half of the alphabet.
and is exactly equivalent to:

echo [abcdefghijklm]*

When such patterns find several file names, they are inserted in alphabetical order.

Because the character I is important in path names, the shell does not match it with* or?
in patterns. The slash must be matched explicitly; that is, it is matched only by a I itself.
Therefore, to find all the files in the /usr directories with the name notes, type:

echo /usr/*/notes

The asterisk matches all the subdirectories of /usr that contain a file named notes.

In addition, a leading period in a file name must be matched explicitly. If you have a file in
your current directory with the name .profile, the command

echo *file

does not match it.

These patterns can appear anywhere within a command or a command file.

Parameter Substitution
Each shell script can have up to nine positional parameters. This lets you write scripts that
can be used for many circumstances. Recall that command parameters follow the
command itself and are separated by tabs or spaces. An example of a command reference
with two parameters is:

show first second

where first and second are the parameters.

TUTORIAL

The Bourne Shell 323

To substitute the positional parameters in the script, use the character $ followed by the
decimal number of the parameter. For example, build the script show by typing:

ed
a
cat $1
cat $2
diff $1 $2

w show
q
chmod +x show

$1 and $2 refer to the first and second parameters, respectively. Create two sample files:

cat >first
line 1
line two
line 3
<ctrl-D>
cat >second
line 1
line 2
line 3
<ctrl-D>

Then. issue the show command

show first second

which has the same effect as typing:

cat first
cat second
diff first second

If you issue the show command with fewer than the required number of parameters. the
shell substitutes an empty string in its place. For example, using the command with only
one parameter

show first

is equivalent to

cat first
cat
diff first

where the null string has been substituted for $2.

The example above shows the parameter references separated from each other by a space.
In some uses, you may wish to prefix a substituted parameter to a name or a number.
When more than one digit follows a$, the shell picks up the first digit as the number of the
parameter. To illustrate, build a shell file pos:

TUTORIAL

324 The Bourne Shell

ed
a
echo $167

w pos
q
chmod +x pos

Then call the script with

pos five

and the result will be:

five67

Shell Variable Substitution
In addition to positional parameters, the shell provides variables. You can assign values to
variables, test them, and substitute them in commands.

The variable name can be built from letters, numbers, and the underscore character; for
example:

high_tension
a
directory
167

Note that keywords must not be single digits, because the shell then treats them as
positional parameters. Be aware that the shell treats upper-case and lower-case letters
differently in variable names.

An assignment statement gives a value to a shell variable:

a=welcome

You can inspect their value with theecho command:

echo $a

The shell substitutes the value of the variable a in the echo command, which then appears
as

echo welcome

COHERENT responds to this command by printing:

welcome

Don't forget the $ when referring to the value.

Notice that the shell looks for special characters in any command that it sees - this
includes the space character. To avoid problems. enclose the value to be assigned in
apostrophes:

phrase='several words long'

There are several uses for variables. One is to hold a long string that you expect to type

TUTORIAL

The Bourne Shell 325

repeatedly as part of a command. If you are editing files in a subdirectory like

/usr/wisdom/source/widget

you can abbreviate if you set a variable pw to:

pw='/usr/wisdom/source/widget'

Then simply using $pw in a command

echo $pw

substitutes the long path name.

Another use of shell variables is as keyword parameters to commands. These then can be
used the same way as positional parameters. To see how this works, create another script
resembling show:

ed
a
cat $one
cat $two
diff $one $two

w show2
q
chmod +x show2

To use show2, issue:

one=f irst two=second show2

This is equivalent in effect to:

cat first
cat second
diff first second

Unlike positional parameters. keyword parameters may be several characters in length. If
you want some text to follow immediately a keyword parameter. enclose the keyword
parameter in braces. To illustrate this, build a command file called brace, as follows:

ed
a
echo 'with brace:' ${a}bc
echo 'without brace:' $abc

w brace
q
chmod +x brace

Call the command file with a set:

a=567 brace

The result is:

TUTORIAL

326 The Bourne Shell

with bracer 567bc
without bracer

When used in this way, the keyword parameters must be assigned before the command and
on the same line as the command. In this case, the assignment of keyword parameters does
not affect the variable after the command is executed. For example, if you type:

one=ordinal
one=f irst two=second show2
echo 'value of one is ' $one

echo produces:

value of one is ordinal

Variables set other than on the line of a command are not normally accessible to a script.
To illustrate, build a parameter display script:

ed
a
echo 1 $1 2 $2 pl $pl p2 $p2

w pars
q
chmod +x pars

This will be used to show the behavior of parameters. The parameters to echo without a$
help to read the output. To pass positional parameters, type:

pars ay bee

The output ts:

1 ay 2 bee pl p2

To pass keyword parameters, type:

pl=start p2=begin pars

The result is:

1 2 pl start p2 begin

To illustrate that the setting of pl and p2 did not "stick", type:

echo $pl $p2 'to show'

echo replies:

to show

This indicates that pl and p2 are not set.

Illustrating that variables set separately from a command are not seen by the command,
type:

pl=outsidel p2=outside2
pars

This replies:

TUTORIAL

The Bourne Shell 327

1 2 pl p2

By using the export command, however, such variables can be made available to
commands. The commands

export pl p2
pl='see me' p2=hello
pars

produce:

1 2 pl see me p2 hello

This indicates that after the export of pl and p2, they are available to other commands.
Once a variable has appeared in an export command, its value can be changed without a
need to export it again.

Command Substitution
By enclosing a command between • characters, you can feed its output onto the command
line of another command. For example

echo 'ls'

echoes the output of the ls command.

Special Shell Variables
When you log into the COHERENT system, it sets the shell variable HOME to your home or
default directory path. If your user name is henry, then the command

echo $HOME

on most systems prints:

/usr/henry

The change directory command cd sets the working directory to the path found in HOME if
no argument is given.

The shell normally prompts you with $ for commands, and with > if more information is
needed. These two prompts are taken by the shell from the variables PSI and PS2. You
can change these if you want different prompts. for example

PSl="Fred's Software Palace: "
PS2='!'

To have these take effect each time you log in, put the assignment statements in your
.profile file.

The shell variable PATH lists the path names of directories that contain commands. To
show the contents of PATH. type:

echo $PATH

It typically will show:

:/bin:/usr/bin

This means that the shell looks for a command first in the current directory, then in /bin,

TUTORIAL

328 The Bourne Shell

and. if not found there. then in /usr/bin. The path names are separated by':'. This means
that an empty string precedes the first ':', the current directory. Another common setting
for PATH is:

1 •• 1/bin1/usr/bin

This means that the shell seeks commands first in the current directory, then in '..' (the
parent directory of the current directory), then in /bin, and finally in /usr/bin.

dot . : Read Commands
Similar to the command sh is the • command. The command

. cfil

causes the shell to read and execute commands from ctll.

This differs from the sh command in several respects. First. there's no way to pass
parameters to ctll with the '.' command. Second, the sh command executes another shell to
read the commands, whereas '.'simply reads the commands directly. Finally. all the string
variables and parameters are accessible by ctll.

The command file good.am created earlier can be executed with:

• good.am

This has the same effect. Similarly. the ·: can be itself be used within a command file:

ed
a
• good.am
le

w third.sh
q

Then. the command

. third.sh

has the same result as the command:

sh third.sh

Values Returned by Commands
Most COHERENT commands return a value that indicates success or failure. For example.
if grep cannot find your file, it issues a diagnostic message and returns a value that tells the
shell that something went wrong. You can examine this value by typing the command:

echo $?

This tells you the value returned by the last command executed. Zero indicates success
(true), whereas a non-zero value indicates failure (false). Note that this convention is the
opposite of that in the C language (a fact that has led to confusion on occasion).

You can use the value returned by a command to affect decisions about executing other
commands.

TUTORIAL

The Bourne Shell 329

test: Condition Testing
For most commands. the return value is a side-effect of their operation. However. the test
command's only task is to return a value. This command can test many conditions. and
return a value to indicate whether the requested condition is true or false.

To determine if a file exists. the command

test -f fileOl

returns true (zero) if meOl exists and is not a directory. To check if a file is a directory,
use:

test -d fileOl

test can also test strings. This is useful when you are using parameter substitution. To
illustrate, build the following command:

ed
a
test $1 =
echo 'test
test $1 !=

echo 'test

w test.ed
q

$2
1 & 2
$2
1 & 2

chmod +x test.ed

for equal:' $?

for not equal:' $?

Because the'=' is a parameter, be sure to surround it with space characters.

This command file tests its two parameters for equality. Try the commands:

test.ed one two
test.ed one one

The test command has many other options; see the Lexicon entry for test for details.

Executing Commands Conditionally
Type the following commands to create two files:

cat >f ilel
line one
line two
line three
<ctrl-D>
cat >f ile2
line one
two is different
line three
<ctrl-D>

Now, compare the files and print the return value:

TUTORIAL

330 The Bourne Shell

cmp -s filel file2
echo $?

The command cmp compares two files byte-by-byte; the -s option tells cmp merely to
indicate whether the files were the same. This prints I (false) because the files are not the
same.

To process a second command based on the result returned by the first, type:

cmp -s filel file2 I I cat file2

The characters I I signify that the following command cat should be executed if the cmp
command returns a non-zero value, which it will for this example.

The two characters && execute the command that follows them only if the preceding
command returns true (zero).

To see how this works, create a third file with the command:

cp filel file3

Type the command:

cmp -s filel file3 && rm file3

This command removes file3 if cmp indicates that filel and file3 are identical. Because
cmp is preceded by the copy command cp, the files filel and file3 are identical, and so
file3 is removed.

Control Flow
Because the shell is a programming language as well as a program, it provides constructs
for conditional execution and loops. These are for, if, while, until, and case. Also, a
subshell can be executed within'(' and')'.

for: Execute a Loop
The for construct processes a set of commands once for each element in a list of items.

To illustrate for, type the following commands to COHERENT:

for i in a b c
do echo $i
done

The items a, b, and c form the list of value that the variable i assumes. The shell executes
echo with i assuming each value in turn. The result of these commands is:

a
b

c

Notice that after you type the line containing for, COHERENT prompts with a different
character > (on most COHERENT systems). The shell does this to remind you that you
must type more information. After you type the line containing done, the prompt again
becomes$.

TUTORIAL

The Bourne Shell 331

The for command is usually used within a script. Also, you can leave off the list of value to
the index variable; when you do this, the shell by default uses the arguments typed on the
script's command line as the values for the index variable. To illustrate, type:

The

ed
a
for i
do echo $i
echo '---'
done

w script.for
q
chmod +x script.for

for i

statement is equivalent to:

for i in $*

where $• means "all positional parameters". Notice that two commands are repeated for
each value of i. Now, call script.for with the following command line:

script.for 1 2 3 4 test

The result is:

1

2

3

4

test

if: Execute Conditionally
if tests the result of a command and conditionally executes other commands based upon
that result. It can be used instead of && and 11 • as shown above. Instead of:

cmp -s filel f ile2 && cat f ile2

you can use:

if cmp -s filel file2
then cat file2
fi

This means that the shell executes

TUTORIAL

332 The Bourne Shell

cat file2

if cmp returns zero (true).

To get the same result as given by the previously illustrated command:

cmp -s filel f ile3 I I rm f ile3

with the ff statement, also use else:

if cmp -s filel file3
then
else rm file3
fi

The commands between else and fl are executed if the result of the command following the
ff is false or non-zero. Note that there is no command following then.

The elif statement lets you test several conditions with one ff statement and act on the one
that is true. In general terms,

if commandl
then actionl
elif command2
then action2
el if command3
then action3
else action4
fi

The items labeled command and action are both commands or lists of commands.

First, the shell executes command I. If the result is true. it performs action!. If the result
from command! is not true, the shell then executes command2. If its result is true, then
it performs actfon2. This process continues so long as none of the commands return a true
result. If none of the command results are true. the action following the else is executed.

To illustrate, create a shell script that list on your terminal only one of the three file-name
arguments. Use the command

test -f name

which returns true if name is an existing non-directory file.

TUTORIAL

The Bourne Shell 333

ed
a
if test -f $1
then cat $1
el if test -f
then cat $2
el if test -f
then cat $3

$2

$3

else echo 'None
fi

w cat.1
q
chmod +x cat.1

while: Execute a Loop

are files'

Another looping or repetitive shell statement is the while statement. The commands

while commandl
do command2
done

first performs commandl. If its result is true, command2 is executed, and commandl is
again executed. This process continues until commandl returns false (non-zero).

until: Another Looping Construct
The construct until resembles while. For example, the commands:

until commandl
do command2
done

execute command2 until commandl returns true (zero).

case: Serial Conditional Execution
The case statement resembles the if statement in that it offers a multiple choice. To
illustrate, type the following script, which lets you choose one of several ways to list the
contents of a directory:

TUTORIAL

334 The Bourne Shell

ed
a
case

esac

w dir
q

$1
1)
2)
3)

*)

in
ls -1;;
ls;;
le;;
echo unknown parameter $1;;

chmod +x dir

The words case and esac bracket the entire case statement. The effect of the command

dir 2

is equivalent to:

ls

Each choice within the case statement is indicated by a string followed by):

2)

indicates what is to be executed if argument $1 has the value 2.

The strings that select the choices may be patterns. The choice '*)' signifies that a match
can be made on any string. Notice that this resembles the use of"' to substitute any file
name. An expression of the form

[1-9])

in a case statement matches any digit from 1 through 9. A list of alternatives can be
presented by separating the choices with a vertical bar:

ajbjc) command

Each command or command list in the case choice must be terminated by a double
semicolon ;;.

Summary
The shell is a command programming language that handles simple commands as well as
complex commands that can iterate as well as make decisions. Three kinds of substitution
are provided to increase the power of your commands.

For more information about the shell. see the tutorial for the shell that follows in this
manual. For more information about a given command, see its entry in the Lexicon.

Note, too, that the COHERENT system also includes the Korn shell ksh. This is a superset
of the Bourne shell described here, and has many features that you may find useful. For
information about this shell, see the Lexicon entry for ksh.

TUTORIAL

Section 14:

UUCP, Remote Communications Utility

UUCP is a set of programs that together let you communicate in an unattended manner
with remote COHERENT and UNIX sites. The term UUCP is an abbreviation for "UNIX to
UNIX copy"; as its name implies. UUCP was developed under the UNIX operating system.
Mark Williams Company has recreated UUCP for COHERENT.

UUCP allows your COHERENT system to talk over telephone lines to other computers that
also run COHERENT or UNIX. It can transmit files and mail to other systems and receive
material from them, without needing you to guide it by hand every step of the way.
Moreover, you can instruct UUCP to telephone other computers at the same time each day;
this permits regular, orderly exchange of mail. news. and files among computers. and allows
you to take advantage of lower telephone rates during off-peak periods. In a similar fashion,
UUCP allows other systems to log into your system, to exchange mail or other information,
and otherwise perform useful tasks.

Numerous UUCP systems have linked together to create an informal network called the
Usenet. Many megabytes of source code, news. and technical information are available
across the Usenet. Anyone who is connected to the Usenet can exchange mail with anyone
else who is also connected to the Usenet. All that is required to hook into the Usenet is to
obtain a UUCP connection to anyone else who is connected to the Usenet.

You can use UUCP only if you have telephone access to another computer that runs UUCP,
and if your system and the remote system with which you wish to communicate have been
described to each other. UUCP is standard with COHERENT and UNIX, and can be
purchased for MS-DOS. If you wish to copy files from another system, you must arrange
with the system administrator of that system before you can begin to use UUCP. Likewise.
if you want someone else to dial into your system to upload or download files. you must first
describe that system to your copy of UUCP.

UUCP, however. is a system that supports thousands of interlinked computers that
exchange millions of bytes of data daily; as you can imagine. a subject of this scope is
difficult to encompass in a document as brief as this. If you wish to explore the heights and
depths of UUCP, we urge you to acquire the following books:

O'Reilly. T.; Todino, G.: Managing UUCP and Usenet. Sebastopol, Calif, O'Reilly &
Associates Inc., 1987.

Seyer MD: RS-232 Made Easy: Connecting Computers, Printers, Terminals, and
Modems. Englewood Cliffs. NJ. Prentice-Hall lnc .. 1984.

!o/ciili:: A Directory of Electronic Mail Addressing and Networks. Sebastapol. Calif. O'Reilly
& Associates Inc., 1989.

Contents of This Manual
This tutorial describes UUCP and tells you how to set up and run your UUCP system. It
briefly describes how to attach a modem to your computer and how to describe it to the
COHERENT system, and it describes how to dial out to other systems to exchange files.
Future editions of this manual will contain information on how to allow other systems to
dial into your system, so it can act as the hub of a network.

335

336 UUCP Remote Communication

An Overview of UUCP
UUCP is a set of programs that exchange files with other computers that run UUCP. You
can set aside files or mail messages to be transferred to another computer; UUCP regularly
checks to see if material has been set aside to be transferred, dials the remote system, and
exchanges the files without requiring your assistance.

This appears to be a simple function, but it can be extremely useful to you. Suppose, for
example, that you run a real-estate office that ts a member of an organization with regional
and national offices. You can tell UUCP to call your regional office each night. to send a file
of your new listings and to accept a file of new listings in your district that had come from
other local offices. Likewise. your association's regional office can telephone the national
office each night to receive new listings in your region, which can then be passed on
automatically to the appropriate neighborhood offices. All of this information can be
transferred at night. when telephone rates are lowest, and without needing you to be at the
console. When you come to work the next morning. you will have the latest listings
instantly available on your terminal.

In brief. what UUCP offers is the ability to join a network of computers, in which every user
of every computer can exchange information with every user on every other computer.
automatically. What computer networks can do is limited only by your need to exchange
information with other computer users. and by your imagination.

The Programs
UUCP consists of the following programs:

uucp

uuclco

uudecode

uuencode

uulnstall

uulog

uwnvlog

uuname

uutouch

TUTORIAL

The UUCP user interface. uucp copies files from one computer to another.
Be sure not to confuse the uucp command with the UUCP system, despite
their similar names.

Call remote systems: log in to the remote system, and transfer files.

Translate files encoded by uuencode back into object code.

Translate binary files into printable ASCII characters for transmission to
another system.

This program displays a template on your screen, and helps you describe a
system to UUCP relatively painlessly.

Read the UUCP logs. which reds the processes that UUCP has initiated
recently.

Copy the current UUCP log files into backup files. named after the day on
which they were generated. Throw away all log files older a requested
number of days. UUCP logs everything that it does; and since it does a lot,
its log files can grow very large very quickly. uumvlog helps to ensure that
you have enough information on your system to see where UUCP has gone
wrong. yetthe UUCP log files do not grow large enough to overwhelm your
system.

List the systems that your computer can reach.

Create a file that triggers a call to a named remote system.

UUCP Remote Communication 337

uux Execute a command on a remote system.

uuxqt Execute files with the prefix "X." in the directory
I usr I spool/ uucp I sttename.

Three other programs, while not part of UUCP per se, are used by it:

ttystat Check the status of your asynchronous ports. If UUCP is not receiving files
from other systems or not sending files to other systems. it may be because
the appropriate ports have not been enabled.

mail Send "electronic mail" to another person, either on your system or on
another system via UUCP.

uux Execute commands on remote systems.

Directories and Files
UUCP uses the following files and directories.

/bin/uulog
The uulog command.

I etc/ domain
This file lists the UUCP domain. It is read by mail.

I etc/modemcap
This file holds descriptions of modems that are understood by the COHERENT
system.

I etc/uucpname
Holds the name of your system. as it is known to other UUCP sites.

/usr/bin/uucp
The uucp command. Copy a file to another system that runs UUCP.

I usr /bin/ uuname
The uuname command.

I usr /bin/uudecode
The uudecode command.

/usr/bin/uuencode
The uuencode command.

/usr/lib/uucp
Contains UUCP commands and system data files.

I usr /lib I uucp IL-devices
Describe the outgoing lines. Note whether they are directly wired or modems; give
the protocol needed to manipulate them.

/usr/lib/uucp/L.sys
Gives login data for remote sites. It gives the way to call remote sites and the sites
that only call you.

/usr /lib /uucp /Permissions
For each site, list the programs that that site has permission to execute on your
system.

TUTORIAL

338 UUCP Remote Communication

I usr I lib I uucp I ttystat
The ttystat command.

I usr /lib /uucp/uucico
The uucico command.

/usr /lib/uucp/uumvlog
The uumvlog command.

/usr/lib/uucp/uutouch
The uutouch command.

/usr/lib/uucp/uuxqt
The uuxqt command.

/usr/spool/logs/uucp
Log of UUCP activity.

/usr/spool/uucp/ .Log
Directory containing UUCP logfiles, as follows:

/usr /spool/uucp/ .Log/uucico/ site name
/usr I spool/uucp/ .Log/uux/ site name
/usr /spool/uucp/ .Log/uucp/ sltename
/usr /spool/uucp/ .Log/uuxqt/ sltename

/usr/spool/uucp/sltename/C.•
Files that instruct the local system either to send or to receive files.

/usr/spool/uucp/sltename/D.•
Work files for outgoing and incoming files.

/usr/spool/uucp/LCK.•
The "lock" files UUCP uses to coordinate its resources. When a UUCP program
attempts to access a remote site, it writes a "lock" file for that site. This is to prevent
UUCP from accidentally attempting to access the same site more than once
simultaneously. When the program that wrote the lock file exits successfully. it erases
its lock files. and so makes that site accessible to other UUCP programs.

/usr/spool/uucp/ .Sequence
This directory contains the sequence number of the last file handled by UUCP.

/usr/spool/uucp/TM:"'
These are temporary files generated by uucico while receiving files from remote sites.

/usr/spool/uucp/sltename/X.•
Executed files. These files will be executed by the command uuxqt, and are generated
by a remote system.

I usr I spool/uucppublic
Public directory accessible by all remote UUCP systems.

Attaching a Modem to Your Computer
It is straightforward to attach a modem to your computer.

First, read the documentation that comes with your modem. and look for the following: (1)
the baud rate at which the modem operates, and (2) the command protocol that your
modem uses.

TUTORIAL

UUCP Remote Communication 339

Second, check the plug on the back of your modem. The modem will connect to your
computer via a nine-pin or 25-pin D plug, also known as an RS-232 interface. Such a plug
can be either male or female: the male plug has nine or 25 small pins projecting from it,
whereas the female does not.

Third, obtain a cable to connect one of the serial ports on your computer to the modem.
The serial ports on an IBM AT or AT compatible are almost always male; if your modem has
a female plug, you will need a male-to-female cable, whereas if your modem's plug is male
(which is very rare), you will need a female-to-female plug. Be sure to purchase a standard
modem cable for an IBM AT; practically all computer dealers carry them. The cable you
purchase should support "full modem control"; if it doesn't say on the package, be sure to
ask your dealer before you buy it. If you are handy with a soldering iron you may be able to
solder up such a cable for yourself, but unless you know precisely what you are doing it
probably is not worth the trouble. File /usr/pub/rs232 contains pinouts for both nine­
and 25-pin connectors. When you plug in your cable, be sure to note whether you plugged
it into port coml, com2, com3 or com4.

Fourth, reconfigure the serial port to suit your modem. This involves the following steps:

1. Log in as the superuser root.

2. Edit the file /etc/ttys. This file normally has several lines in it. one that describes the
console and one for each serial port. Each line has four fields: a one-character field
that indicates whether a login prompt should be displayed (used only for devices from
which people will be logging into your system); a one-character field that describes
whether the device is local or remote (a local would be a modem from which you
wished to dial out. a remote device would be a modem from which someone could dial
in); a one-character field that describes the speed (or baud rate) at which the device
operates; and a field of indefinite length that names the device being described. If you
have plugged into serial port coml a 1200-baud modem that will allow remote logins,
edit the line for coml to read as follows:

lricomlr

If you have plugged into serial port com2 a 2400-baud modem from which you are
only going to dial out, edit the line for com2 to read as follows:

01Lcom21

Note that the second and last character are a lower-case el, not a one. For more
information, see the Lexicon entries for com, getty and ttys.

3. When you have finished editing I etc/ttys, type the following command:

kill quit 1

This will force COHERENT to read /etc/ttys and set up its ports in the manner that
you have configured them.

Finally, test if you have connected your modem. Turn on your modem; then log in as the
superuser root and type the following command:

echo "FOO" >/dev/port

where port is the "local" version of the port. depending on which serial port you have
plugged your modem. If the systems are connected, the lights on your modem should blink
briefly. For a more sophisticated test, try to communicate with your modem by using the
command kermit. If you are not familiar with kermit, see its entry in the Lexicon for
details.

TUTORIAL

340 UUCP Remote Communication

If you continue to have problems making connections with your modem. see the volume RS-
232 Made Easy. referenced above. It describes in lavish detail how to connect all manner of
devices via the RS-232 interface.

Installing UUCP
Installing UUCP on your system means giving UUCP information about both your system
and about the remote systems with which it will be making contact.

Before you can use UUCP to log into a remote system, you must find a remote system that
will let you log in via UUCP. If you ask around among your friends or check local bulletin
boards, you should have no trouble finding a UUCP system that will let you log in.

When you find a system that will let you log in, you must tell the administrator of that
system what your system is called. If you have not yet selected a name for your system, do
so now. The name must be eight characters or fewer. and must be unique - or unique, at
least. to the system into which you will log in.

The administrator of the remote system. in turn, will give you the following information: (1)
the name of his system; (2) the telephone number of his system and the speed of his
modem; (3) your login name (this is apart from your system name); and (4) your password.
He may also tell you when he would prefer for you to log into his system. This information
should always be kept confidential. just as you would keep confidential the combination to
a friend's locker.

Once you have exchanged information with the adminstrator of the remote system, you
must describe that remote system to your local UUCP system. This is an involved process
that has many pitfalls; however, COHERENT includes a program to make this task easier
for you: uuinstall. This program displays a template on the screen; you fill in the blanks.
and it does the rest.

To begin, log in as the superuser root, and type uuinstall. In a moment, the screen will
clear and the following menu will appear:

H - Help for screens
s - Sitename
L - Lsys
D - Devices
p - Permissions

You should type ff first. uuinstall will show you the keystrokes it expects to move from one
field to another. These keystrokes are the same as used by the Micro EMACS screen editor;
if you're not familiar with MicroEMACS, the keystrokes are easy enough to learn.

Setting Up Your Local Site
If you are describing a system to UUCP for the first time. type S for site name. This will ask
you for two bits of information: the name you have given your site, and your local domain.
Type in the site name in the space indicated. The "domain" is used to organize groups of
users on your system: the Mark Williams edition of UUCP does not yet use domains. but the
mail program expects domain information to be included for use with mail headers.
Therefore, enter something into the domain slot; you may wish to use your site name
followed by .UUCP (e.g .. mwc.UUCP). or something similar. When you have finished
entering information. type <ctrl-Z> to exit this screen and return to the main menu.

TUTORIAL

UUCP Remote Communication 341

If you are working with UUCP for the first time, type D for devices. This will let you describe
to UUCP the type of modem it will working with. You will see the following template:

Type:
Line:
Remote:
Baudrate:
brand:

Type N to go to the next entry. Keep pressing N until you see the entry for the
communications port you wish to use. If you wish to add a device not already listed, type A
to "add" an entry.

The first entry, Type: can have one of two entries: DIR or ACU. The former indicates devices
that are directly wired into the computer, such as terminals; the latter is for remote devices
like modems. Type ACU, then <ctrl-N> to move to the next field.

In the next field, Line:, enter the serial port into which you've plugged your modem: comll,
com21, etc. Then type <ctrl-N>.

The next field. Remote:, gives the name of the port into which a remote device is connected.
Enter the port into which you plugged your modem, followed by the letter 'r'. For example,
if your modem is plugged into port com2, enter com2r. Type <ctrl-N> to move to the next
field.

The next field, Baudrate:, is the speed at which your modem operates, e.g., 2400 or 9600.
Enter it, then type <ctrl-N>.

Finally, enter the type of modem that you are using. The COHERENT system's file
/etc/modemcap contains descriptions for a number of popular modems, to spare you the
trouble of typing control sequences for your modem. The following table gives the code
name for each of the modems described in /etc/modemcap. plus a description of it:

ha yes
tbfast
xtb2400
avatex
promodem
mkl2
dc300

Hayes Smartmodem 1200
Trailblazer, 9600 baud
Trailblazer, 2400 baud
Hayes clone, 2400 baud
Prometheus Promodem 1200
Signalman Mark XII
Radio Shack Direct-Connect 300

Enter the code name for the appropriate modem. One hint: if you have a Hayes or Hayes­
compatible modem that runs at 2400 baud, enter avatex instead of hayes - their modem
descriptions are virtually identical except for the baud rate.

Please note that the dialing commands in modemcap assume that you have a Touch-Tone
telephone. If you have a pulse telephone, you must modify your modem's entry in
modemcap. First, consult the documentation for your modem and find the correct
command for dialing a pulse telephone; on Hayes and Hayes-compatible modems, it is DP.
Then open the file /etc/modemcap and locate the description of your modem; then change
the characters that follow the string ds= to the command you just looked up. For example,
to edit the avatex entry in modemcap so it will dial a pulse telephone, change the string
ds:DTto ds:DP.

If you have described your modem correctly, there should be no need for you to do it again.
Type <ctrl-Z> to save your changes and return you to the main menu.

TUTORIAL

342 UUCP Remote Communication

Describing a Remote Site
Next, type L for L.sys. L.sys ts a file that hold a description of every system to which you
will make connection. You will see the following template:

System
Line
baud rate
phone number

Day to Call Time From
Any

Expect
Send
Expect
Send
Expect
Send

ogin -

ssword:

Type M. to modify this entry.

Time To

In the first entry, System, type the name of the system with which you will be connecting.
For example, if the system for International Widget is named intwidget, type that followed
by <ctrl-N>. If a system ts described more than once in the file L.sys, UUCP will use the
first description.

The next field, Line, names the line to which you have connected your modem, either ACU
or a port from the aforementioned "devices" screen, followed by <ctrl-N>. This may seem
redundant with the description in the device file; however, it's not, because it's possible to
connect to a remote system via more than one route or device.

In the next field baud rate, enter your modem's baud rate; then <ctrl-N>.

In the next field, phone number, enter the remote system's telephone number. If the
remote system has an area code other than yours. be sure to include the 'I' before the
telephone number; also, do not include the hyphens in the telephone number, or it will not
flt into the space allotted for it. Then type <ctrl-N>.

Day and Time of Connection
The next of fields let you set the days of the week and times at which you wish to dial the
remote system. Day to Call recognizes the following values:

TUTORIAL

Wk
Su
Mo
Tu
We
Th
Fr
Sa
Never
Any

UUCP Remote Communication 343

Every weekday, i.e., Monday through Friday
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Don't call remote system
Call at any time

Time From and Time To set a ''window" during which UUCP will attempt to contact the
remote system. Both are set using a 2400-hour clock; for example, with the following
setting

We 2100 2300

UUCP will try to contact this remote system between 9:00 PM and 11 :00 PM. Likewise, with
the following setting

We 2300 0200

UUCP will try to contact this remote system between 11 :00 PM and 2 :00 AM the following
morning. If on the first try UUCP fails to make connection with the remote system (the line
is busy, say), it will try again periodically until either it connects with the remote system or
the time period for that system and day has ended. (The following section will tell you how
to set when UUCP checks for newly queued files.) When the next "legal" time comes around,
UUCP will then try again.

If you do not set the time for a given day, then UUCP will attempt to contact the remote
system as soon as it discovers that a file for that system has been queued. The advantage of
setting times is that you can force UUCP to work in the evening and on weekends, when
telephone rates are cheaper, and you can spread UUCP's work around so it never overloads
the system at any given point. After all. if you need your modem yourself during the day,
you don't want to wait for UUCP to finish a call before you use it.

As you can see, the template for days and times has seven rows. This lets you established
different times for each day of the week; for weekdays and weekends; for weekdays alone; or
weekends alone. Note that you do not have to dial a remote site every day! Depending on
the importance of the site, weekdays or weekends alone may be sufficient. Consider the
following set of entries:

Day to Call
Wk
Sat
Sun

Time From
2300
2300
1300

Time To
0200
0200
1500

This scheme dials the remote site between 11 PM and 2 AM Monday through Saturday. and
between 1 PM and 3 PM on Sunday. This takes advantage of the fact that on Sundays,
lower telephone rates are in the afternoon rather than the evening; and it also takes
advantage of the fact that like most sensible people. you have better things to do on a
Sunday afternoon besides work on your computer.

Note that the default setting. Any with no times, forces UUCP to transmit files as soon as
the are queued. If you wish to change this, do so; in any case, you can move from field to
field and from line to line by typing <ctrl-N>.

TUTORIAL

344 UUCP Remote Communication

If you are interacting with a number of remote sites, be sure to stagger the times during
which UUCP attempts to contact them. The more systems UUCP has to contact during a
given time period, the fewer attempts it will be able to make to contact any of them.

The Chat Script
The last six fields on this template

Expect
Send
Expect
Send
Expect
Send

ogin:

sswords

In the UUCP world, this is called the "chat script". Basically, it walks your UUCP system
through the prompts and responses by which you actually log into the remote system.

To understand the structure of the chat script, consider the process by which a user logs
into the system for Universal Widget. When he makes the connection, the phrase

Welcome to the Wonderful World of Widgets!

appears on the screen. What he really wants to see, however, is the prompt

Logins

so he hits the carriage return key to demonstrate his impatience to the system. The remote
system then displays the Login: prompt, and the user replies by typing his user ID, say
"frank". Finally, the system displays the prompt

Password:

and he replies by typing his password, say "bahHumBug''. All then proceeds accordingly.

The chat script is designed to imitate this sequence of events. The first Expect/Send pair
should hold the prompt that you need to log in and how you respond if you don't get it. In
most cases, you should set the Expect field to 'ogin:" and leave the Send field as the pair of
quotation marks, which sends a carriage return.

If we were to automate the "International Widget" example above, the first Expect/Send
pair of our chat script should read as follows:

Expects
Send:

ogins

Note the following: First, not all systems use the word Login: to prompt for logins. Be sure
to check with the administrator of the remote system to make sure. Second, you do not
have to enter the entire prompt, only what comes at the end of it: for example, for the
prompt Login:, the fragment n: is sufficient. Third, you should set these fields even if the
remote system displays the login prompt immediately; the prompt may be garbled through
line noise, and setting the first Expect/Send pair will help UUCP to cope with this.

The second Expect/Send pair should hold your response when you do receive the prompt
you expect. The Expect half of this pair usually (but not always) holds the same prompt as
the Expect slot of the previous Expect/Send pair. The Send half, however, should hold
your login ID, as established by the administrator of the remote system. In our Widget
example, the second Expect/Send should read:

TUTORIAL

UUCP Remote Communication 345

Expect:
Send:

ogin:
frank

The third Expect/Send pair should hold the prompt for the password, and the password
itself. In our example, the third Expect/Send pair should read as follows:

Expect:
Send:

ssword:
bahHumBug

When you have finished writing the chat script, your description of the remote system is
complete. Type <ctrl-Z> to indicate that you have finished editing, and then type X to exit
from this screen and return to the main menu. Then type P to enter the last template
needed for installation: the one that sets permissions on your system.

The following table gives the control codes supported by COHERENT UUCP 3.0.0 and 3.1.0
in a chat script:

Notation

\b
\c

\d
\n
\r
\s
\t

Meaning

Expect a null string
Send backspace
If send string ends with \c,
suppress newline after send string
Delay one second while sending
Send a newline
Send a carriage return
Send a space
Send a tab

The usual form of a chat script is a sequence of pairs

expect send

in which the action is to wait for the "expect" string, and on receiving it, to send the "send"
string followed by a newline.

Optionally, an entry may take the form

expect-subsend-subexpect send

where subsend is a possibly empty string, enclosed in hyphens, to be sent if the "expect"
string is not received. For example,

ogin:--ogin: nuucp

waits for ogin:; if this string is not received, a newline is sent and the system waits for ogin:
again. If ogin: is received either time, nuucp is sent followed by a newline.

Granting Permissions
The last task in describing a remote site is setting its permissions. Unless you grant the
remote system permissions, it can execute nothing on your system, not even the mail
program to send you a letter. When you grant permissions, you name the remote system in
question, name the programs it can execute on your system, name the directories into
which it can write files, and the directories from which it can copy files. If permissions were
not set rigidly. then every UUCP connection would be potentially a breach of system
security.

TUTORIAL

346 UUCP Remote Communication

uuinstall's "permissions" appears as follows:

Remote site name
Provide an entry
Provide an entry

MACHINE

for that site calling in <yin>
for calling that site <yin>

LOG NAME
Commands which can be executed at this computer by this remote site:

Read directory list

Exceptions to read directory list

Write directory list

Exceptions to write directory list

Can the remote site request file transfers from this computer <yin>
Can this computer initiate file transfers to the remote site <yin>

The first slot in the template asks you to name the remote site. Enter the name of the site
as you entered it in the L.sys template. Note that uuinstall will automatically translate that
into entries in the MACHINE and LOGNAME slots, below " by default, the MACHINE slot is
set to the remote site's name, and the LOGNAME is the site name with the letter 'u'
appended to the beginning.

The second slot in the template asks if you want to provide an entry in
/usr/llb/uucp/Pennissions for that site to call you. Enter 'y' only if that site will be
dialing into your system; otherwise, enter 'n'.

The third slot asks if you want to provide an entry in Permissions for calling the remote
site. If your system will be dialing into that system, enter 'y'.

The next slot asks you to name the commands that the remote site can execute on your
computer. Enter nnail:mews; the former lets the remote system send electronic mail on
your system, and mews lets it transfer news files to you. Add other commands if you like,
but remember that the shorter the list is, the less the chance an intruder will be able to
mischief on your system.

In the next slot, enter the directories from which the remote system can copy files. Enter
I usr I spool/uucp/uucppublic: I tmp, plus whatever directories are appropriate.

The next slot requests exceptions to the read list. When you enter a directory on the read
list, that directory plus all of its children become available for reading. If you wish to place
"off limits" a subdirectory of any directory named in the previous slot, enter it here.

The next slot asks you to name the directories into which the remote system can write files.
Enter /usr/spool/uucp/uucppublic:/tmp.plus any others that you wish.

Next, enter the list of exceptions to the write list.

The next slot asks if the remote system can ask your system to transfer files to it. If you
wish to grant this permission, enter "y". which is the usual order of things.

Finally,. uuinstall asks if your computer can ask the remote system to transfer files to you.
If you can do so, enter 'y'.

TUTORIAL

UUCP Remote Communication 347

This concludes the process of describing a remote system to PUCP. Type <ctrl-Z> to end
data entry and return to the main menu; then enter 'X' to exit. Type 'y' when asked if you
wish to save your changes into the system's files. And that's all there is to it.

Every time you wish to make contact with a new system, you must use uuinstall as
described above.

This description may need several revisions, as you attempt to make contact with the
remote system. Writing these descriptions is something of a black art. Be patient and
persistant: once contact is made, the connection should work without further maintenance
being needed for months to come.

Setting a Polling Time
The next step in setting up your UUCP system is to edit the file /usr/llb/crontab. This file
contains a description of programs that are to be executed periodically. The program cron
reads this file once every minute, checks its contents against the system time, and executes
the appropriate programs. By inserting descriptions of the UUCP commands into
/usr/llb/crontab, you will ensure that UUCP will execute regularly to poll the remote sites
you have described to it. If you do not insert entries into /usr/llb/crontab, UUCP will
connect with a remote system only if it has a file to upload to it.

The format of /usr/llb/crontab is described in detail in the Lexicon entry for cron.
Basically. a crontab entry has six fields:

1. The minute in the hour when a command is to be executed (0 through 59).

2. The hour of the day when the command is to be executed (0 through 23)

3. The day of the month (1through31).

4. The month of the year (1 through 12).

5. The day of the week (0 through 6, with 0 indicating Sunday).

6. The command to be executed.

Fields are delimited by space characters. Note that a command can be executed more than
once in any given period; just separate the multiple entries with commas. For example, if
you wish to print the date and time on your terminal every 15 minutes around the clock,
insert the following entry into /usr/llb/crontab:

0,15,30,45 * * * * date >/dev/console

An asterisk in a field indicates that every value of the field is to be used.

The command uutouch forces UUCP to schedule a poll to a remote site, regardless of
whether any files are waiting to be uploaded to that system. To poll the site called george
on a regular basis, insert the following lines into /usr/llb/crontab:

30 * * * * /usr/lib/uucp/uucico -sgeorge
0 22 * * * /usr/lib/uucp/uutouch george

The first line invokes the program uucico every hour on the half hour around the clock.
uucico checks to see if there is a file to be sent to site george. and dispatches it if need be.

The second line invokes the program uutouch every night at 10 PM. uutouch will
schedule a poll to site george to see if it has a file to send to you. The next time that uucico
is invoked, it will then call site george.

TUTORIAL

348 UUCP Remote Communication

Finally, the command uumvlog should be invoked daily by cron. uumvlog copies all of
UUCP's log files into backup files that are named by the date they were saved. This
command takes one argument. the number of days' worth of backup files to save. For
example. the command

uumvlog 2

saves two days' worth of backup files; when a backup file becomes more than two days old,
uumvlog throws it away. UUCP is designed to log everything that it does; and since it does
a great many things. the log files can grow very large, very quickly. On a small system
especially, you should be ruthless in purgtng your UUCP log files. or you may find them
overwhelming the available disk space on your system. For most users. two days' worth of
log files is sufficient.

The following entry in file /usr/lib/crontab will purge your backup files at the stroke of
midnight every day:

0 0 * * * su uucp sh /usr/lib/uucp/uumvlog 2

Sending files via UUCP
Suppose, for example that site santa has been described to your UUCP system, and
everyone has permission to read from your current directory. Suppose, too, that you have
permission to write into directory /usr/spool/reports/parents. To send the files good.kids
and bad.kids to santa, type the following command:

uucp good.kids bad.kids santa!/usr/spool/reports/parents

The uucp command compels UUCP to copy one or more files from your site to a remote site.
UUCP queues both files automatically and sends them at the next scheduled time.

Note, too, the use of the '!" in the above command. The '!' separates a site name from
another site name, from a directory name, or from a user ID. In the above example, the '!'
indicates that directory /usr/spool/reports/parents can be found at site santa. One
feature of a UUCP network is that any member can send files to any other member. That
does not mean that every member must have full permissions with every other member;
rather, for the sake of efficiency it is possible to route files through one or more intermediate
computers, to allow batch transmissions of files. For example, to send the file visibility to
user blitzen via machines santa and reindeer, use the following command:

uucp visibility santalreindeer!blitzen!/usr/spool/weather/usa

In this example, the string santa!reindeer!blitzen!/usr/spool/weather indicates that
directory /usr/spool/weather can be contacted at site blitzen, which in turn can be
contacted via site reindeer, which in turn can be contacted via site santa. This scenario
assumes that site reindeer has permission to write into directory /usr/spool/weather on
site blitzen, and that site santa has permission to upload files to site reindeer. (And, of
course, that you have permission to upload files to site santa.) If any of these are not true,
the transaction will fail.

With UUCP networks growing to international dimensions, such path names can become
quite complex. The command mail has an alias function that allows you to define a user's
UUCP path name under a simpler name that serves as that user's alias. mail reads the file
/usr/lib/mail/aliases for every user listed on its command line. If it finds a match, then it
substitutes the description in aliases for the user name. If the entry in aliases consists of
two or more fields separated by exclamation points. mail then invokes the uucp command
to copy the mail message to the named site. For example, if you regularly send mail to user

TUTORIAL

UUCP Remote Communication 349

Joe at site widget, then insert the following entry into /usr/lib/mail/aliases:

joe: widgetljoe

Make sure, first, that you have described site widget to UUCP or this will not work.
Second, make sure that your local system does not have a user named Joe; if it does, his
mail thereafter will be shipped to the other Joe at the remote site.

UUCP Administration
Once you have written and debugged the descriptions of your devices, systems, and
permissions, administering UUCP consists mainly of reviewing the Jog files periodically to
ensure that all connections are being made, and all programs executed correctly. The
command uulogwill assist you in this. When you type the command

uulog widget

uulog will open all of the Jog files associated with site widget, and display them for you.
Given that the log files for given site are kept in four different directories, this can be a great
convenience.

Logfiles are organized as follows:

/usr /spool/uucp/ .Log/uucico/ sttename
I usr I spool/ uucp I .Log/uucp I site name
I usr I spool I uucp I .Log/uux/ site name
/usr /spool/uucp/ .Log/uuxqt/ sltename

As you can see, one logfile for each site is kept in a directory named after a given UUCP
command. UUCP records every transaction; so by reading these files, you can see whether
your UUCP commands are succeeding.

If you are having trouble with your UUCP connections, send files through UUCP and
observe how they fail. You may need to use uuinstall a few times to tweak your description
of the remote site. If all else fails, contact Mark Williams Company.

If all is going well, you should run /usr/lib/uucp/uumvlog every day. This keeps the Jog
files from getting out of hand. The previous section on setting the polling time describes
how to do this.

The main task of the UUCP administrator is to monitor the UUCP log files to see that
hardware is functioning correctly, and that files are transferred correctly. For example,
failure to connect with a remote site after several attempts may mean that the remote site is
having problems with its modem, or that it is scheduling outgoing calls for when you were
scheduled to call in. Likewise, failure to receive scheduled calls from several sites may
indicate equipment failure on your end. You must also monitor the alias file, to see to it
that mail is routed to the correct recipient.

Finally, the UUCP administrator must monitor the use of disk space on the system. Old
mail and messages. multiple copies of files. and files automatically input by various
subscription and network services can eat up disk space rapidly; extraneous material must
be pruned ruthlessly.

TUTORIAL

350 UUCP Remote Communication

Where to Go From Here
For further information, check the Lexicon entry for each UUCP command, as well as the
UUCP overview article.

TUTORIAL

Section 15:

Introduction to yacc

The first high-level programming language compiler took a very Jong time to write. Since
then, much has been learned about how to design languages and how to translate programs
written in high-level languages into machine instructions. With what is known today, the
writing of a compiler takes a fraction of the time it used to require.

Much of this improvement is due to the use of more powerful software development
methods. In addition, we know about the mathematical properties of computer
programming languages. Software tools that apply this mathematical knowledge have
played a large part in this improvement.

The COHERENT system provides two tools to simplify the generation of compilers. These
tools are the lex:ical analyzer generator lex and the parser generator yacc. The following
introduces yacc, and gives a basic course in its use.

Although initially intended for the development of compilers. lex and yacc have proven their
utility in other, simpler. tasks. Examples of very simple languages are included in this
tutorial.

yacc accepts a free-form description of a programming language and its associated parsing.
and generates a C program that. when compiled, will parse a program written in the
described language. It uses a left-to-right. bottom-up technique, to detect errors in the
input as soon as theoretically possible. yacc generates parsers that handle certain
grammatical ambiguities properly.

This manual presumes that you are familiar with computer-language parsing and formal
methods of description of languages. Because yacc generates its programs in C and uses
many of C's syntactic conventions, you should have a working knowledge of C. Related
documents include Using the COHERENT System and Introduction to lex.

Examples
The following presents a few small examples that you can experiment with to get a feel of
how to use yacc. Feel free to experiment with the examples to investigate new ideas.

Phrases and Parentheses
The first example describes a language we call slang, or simple language. slang consists of
sentences. A sentence, in turn. consists of strings of letters or groups of letters enclosed in
parentheses. terminated by a period. A group of letters can also include other groups of
letters.

The simplest "sentence" in slang is:

a.

The following demonstrates a sentence that consists only of a group:

(ab).

As described above, a group can have another group inside it:

351

352 yacc, Yet Another Compiler-Compiler

ab (cd (ef)) .

The following gives the yacc grammar for slang. Type it into the file slang.y. Note that the
lexical-analyzer routine yylex is included in the yacc input file. Note also that, as in C.
comments are strings placed between the characters /* and •I.

TUTORIAL

/* Tokens (terminals) are all caps */
%token LPAREN RPAREN OTHER PERIOD
%%
run sent /* Input can be a single */

run sent /* sentence or several */

sent phrase PERIOD
{printf ("sentence\n");}

group LPAREN phrase RPAREN
{printf ("group\n");}

phrase 1 /* empty */
others
group
others group

others 1 OTHER /* letters and other chars */
others OTHER

%%

#include <stdio.h>
#include <ctype.h>
/* Called by the parser to get a token */
yylex ()
{

}

int c;
c = O;

return (PERIOD) ;
'(') return (LPAREN);
')') return (RPAREN);
EOF) return (EOF);

while (c == 0) {
c = getchar();
if (c == '. ')
else if (c
else if (c
else if (c
else if (! isalpha(c)) c = O;

}
return (OTHER);

yacc, Yet Another Compiler-Compiler 353

To generate and compile the parser described by this input, issue the commands

yacc slang.y
cc y.tab.c -ly -o slang

Now, invoke your new parser by typing

slang

and test it by typing the following input:

a
a.
abc(def).
aaa(bbb(ccc)).
(a).

slang will reply as follows:

sentence
group
sentence
group
group
sentence
group
sentence

As you can see, slang recognized groups and sentences within the input you typed, and
reacted by printing an appropriate message on the screen.

Simple Expression Processing
The next example creates a small language that includes two types of statements. The first
type of statement resembles a procedure call, and the second is an expression. Procedure
names are in upper-case letters, whereas the variables in expressions are in lower-case
letters. Both procedures and expressions are terminated by a semicolon.

The following code generates a parser that identifies either the procedure being called or the
arithmetic expression being calculated. The lexical input routine is independently
generated by lex.

Enter the following program into the file calc.y:

%token VARIABLE PROCEDURE
%%
prog

stmnt

stmnt
prog stmnt

stat
stat '\n'
error '\n'

TUTORIAL

354 yacc, Yet Another Compiler-Compiler

stat

expr

PROCEDURE ' ; '
{printf ("PROCEDURE is %c\n", $1);}

expr ';'
{printf ("Expression\n");}

expr '-' expr
{printf
("Subtract %c from %c giving E\n",
$3, $1);
$$ = 'E';
}

VARIABLE
{$$ = $1;}

Enter the lexical-analyzer part of the program into the file calc.lex:

%{
#include "y.tab.h"
%}
%%
[A-Z] {

yylval = yytext (0 l;
return PROCEDURE;
}

(a-z] {
yylval = yytext [O];
return VARIABLE;
}

\n return ('\n');
return (yytext [O]);

Now. generate the programs and compile them by typing:

yacc calc.y
lex calc.lex
cc y.tab.c lex.yy.c -ly -11 -o calc

The following messages will appear on your console:

1 S/R conflict
y.tab.c:
lex.yy.c:

To invoke the newly generated program, type:

calc

To test it, type the following:

TUTORIAL

A;B;
C;
a-b-c;
a-b-c-d-e;
<ctrl-D>

calc will reply as follows:

PROCEDURE is A
PROCEDURE is B
PROCEDURE is C
Subtract c from

yacc, Yet Another Compiler-Compiler 355

b giving E
Subtract E from a giving E
Expression
Subtract e from d giving E
Subtract E from c giving E
Subtract E from b giving E
Subtract E from a giving E
Expression

Background
Now that you have tried yacc, the following gives some background to it, and how the
parsers that it generates operate.

LR Parsing
yacc generates a "bottom up" parser. More specifically, yacc generates parsers that read
LALR(1) languages.

LR parsers scan the input in a left-to-right fashion. Unfortunately, LR parsers for
interesting languages are unpractically large. LALR(k) parsers, which are derived from LR
parsers, use a "look ahead" technique, in which the next k elements of the input stream are
used to help determine reductions. LALR(l) parsers are small enough to be practical. are
easy to generate, and are fast.

Input Specification
To generate a language with yacc, you must specify its grammar in Backus-Naur Form
(BNF). (For a good introduction to BNF, see the section on parsing in Applied C.) The
languages recognized by yacc-generated parsers are rich and compare favorably with
modern programming languages. The time required to generate the parser from the input
grammar is very small- less than the time required to compile the generated parsers.

In addition to generating the parser to recognize the input language, yacc lets you include
compiler actions within the grammar rules that are executed as the constructs are
recognized. This greatly simplifies the entire task of writing your compiler. When used in
combination with lex, yacc can make the process of writing a recognizer for a simple
language the task of an afternoon.

TUTORIAL

356 yacc, Yet Another Compiler-Compiler

Parser Operation
yacc generates a compilable C program that consists of a routine named yyparse, and the
information about the grammar encoded into tables. Routines in the yacc library are also
used.

The basic data structure used by the parser is a stack, or push down list. At any time
during the parse. the stack contains information describing the state of the parse. The state
of the parse is related to parts of grammar rules already recognized in the input to the
parser.

At each step of the parse. the parser can take one of four actions.

The first action is to shift. Information about the input symbol or nonterminal is pushed
onto the stack, along with the state of the parser.

The second type of action is to reduce. This occurs when a grammar rule is completely
recognized. Items describing the component parts of the rule are removed from the stack,
and the new state is pushed onto the stack. Thus. the stack is reduced, and the symbols
corresponding to the grammar rule are reduced to the left part of the rule.

Third, the parser can execute an error action. If the current input symbol is incorrect for
the state of the stack. it is not proper for the parser either to shift or reduce. As a
minimum. this state will result in an error message being issued, usually

Syntax error

yacc provides capabilities for using this error state to recover gracefully from errors in the
input.

Finally, the parser can accept the input. This means that the start symbol. such as
program, has been properly recognized and that the entire input has been accepted.

Later sections discuss how you can have the parser describe its parsing actions step-by­
step.

Form of yacc Programs
A yacc program can have up to three sections. Each section is marked by the symbol %%.
The first section contains declarations. The second section contains the rules of the
grammar. User-written routines that are to be part of the generated program can be
included in the third section. The outline of yacc specifications is as follows:

definitions
%%
rules
%%
user code

If there are no definitions or user code, the input can be abbreviated to

%%
rules

TUTORIAL

Rules

yacc, Yet Another Compiler-Compiler 357

Rules
Your language's grammar rules must be entered in a variant of BNF. The two following
rules illustrate how to define an expression:

exp
exp

VARIABLE;
exp '-' exp;

Action statements that are enclosed in braces {} specify the semantics of the language. and
are embedded within the rules. More information about how rules are built is given below.

Definitions
The first section in a yacc specification is the definitions section. This section includes
information about the elements used in the yacc specification. Additional items are user­
defined C statements, such as include statements, that are referenced by other statements
in the generated program.

Each token, such as VARIABLE in example program calc, must be predefined in a token
statement in the definitions section:

%token VARIABLE

Tokens are also called terminals. Only nonterminals appear as the left part of a rule, and
terminals can appear only on the right side of a rule. This helps yacc distinguish terminals
from nonterminals. Other types of statements that assist in ambiguity resolution appear
here, and will be discussed in later sections.

Each grammar that yacc generates a parser for must have a start symbol. Once the start
symbol has been recognized by the parser, its input is recognized and accepted. For a
programming-language grammar, this nonterminal represents the entire program.

The start symbol should be declared in the definitions section as:

%start program

If no start symbol is declared, it is taken to be the left side of the first rule in the rules
section.

User Code
Action statements may require other routines, such as common code-generating routines,
or symbol table building routines. Such user code can be included in the generated parser
after the rules section and a%% delimiter.

The following sections discuss definitions and rules in detail.

Rules describe how programming-language constructs are put together. Any given language
can be described by many configurations of rules. This frees you to write the rules for
clarity and readability.

A rule consists of a left part and a right part. The left part is said to produce the right part;
or, the right part is said to reduce to the left part. A rule can also include the action the
parser is to perform once it (the rule) is reduced.

TUTORIAL

358 yacc, Yet Another Compiler-Compiler

General Form of Rules
Blanks and tabs are ignored within rules (except in the action parts). Comments can be
enclosed between /* and * /. The left part of the rule is followed by a colon. Then come the
elements of the right part. followed by a semicolon.

Rules that have the same left part can be grouped together with the left part omitted and a
vertical bar signifying "or'". For example, the grammar

exp
exp

can be written as:

exp

VARIABLE;
exp '-' exp;

VARIABLE
exp '-' exp;

Note that these are equivalent to the BNF:

<exp> : :=
<exp> : :=

VARIABLE
<exp> - <exp>

A rule can also contain C statements that are the compiler actions themselves. These
actions are enclosed in braces { and } and are executed by the generated parser when the
grammar rule has been recognized. More will be said about actions in the following section.

Suggested Style
Rules can be written completely free form for yacc. For example, the rules for the above
rule can be written:

exp:VARIABLElexp'-'exp;

However. this form is much less readable.

Two styles of yacc grammar are in common use. The first of these is used throughout this
manual.

First, start the left part at the beginning of the line; follow it with a tab; then a colon. The
right part should be on the same line, also preceded by a tab.

Second, group all rules with the same left part together. and use the vertical bar aligned
under the colon for all but the first rule in the group.

Third. place action items on a separate line following the associated rule, preceded by three
tabs.

Finally, precede the terminating semicolon with a single tab, to align it with the colon and
vertical bar.

The outline of this style is:

left

TUTORIAL

rightl right2
{actionl}

right3 right4
{action2}

yacc, Yet Another Compiler-Compiler 359

This style is compact and works well for languages whose rules and actions together are
simple.

For somewhat more extensive languages. or for additional flexibility in adding statements to
the action part. use the following modification of the style.

left rightl right2 {
actionl

right3 right4 {
action2

For specifications that have larger rules or more complex actions. another style is
recommended.

As in the first style. group rules with the same left part. and use the vertical bar. Place the
left part. with its terminating colon. on a line by itself. Then indent the right parts of the
rule one or more tabs as necessary to make the rule and actions readable. Finally. the
vertical bar and the semicolon should be at the beginning of the line.

The outline for this style is as follows:

left:
rightl right2 {

actionl

right3 right4 {
action2
}

Since the input to yacc can be entirely free form. there is no restriction on how to write
your rules. However. if you use a consistent style throughout, it will make your job easier.

Actions
In addition to generating a parser to recognize a specific language. yacc also lets you
include parsing action statements. With this feature, you can include C-language action
statements that will be performed when specified constructs are recognized.

Basic Action Statements
The example language slang, described above, the action statements simply print
information on the terminal as productions are recognized:

sent

group

phrase PERIOD
{printf ("sentence\n");}

LPAREN phrase RPAREN
{printf ("group\n");}

TUTORIAL

360 yacc, Yet Another Compiler-Compiler

Even if your actions will be more complex, using printf statements in this way can help
verify your grammar early in the development process.

Action Values
If the specification is for the grammar of a programming language, the actions will normally
interface to routines that access symbol tables or generate code.

yacc lets rules assume a value to help keep track of intermediate results within rules.
These values can contain symbol-table information, code-generation information, or other
semantic information.

To set a value for a rule, simply use a statement of the form

$$ = <value>;

within an action statement. The symbol $$ is the value of the production. This value can
be used by other rules that use this rule as a non-terminal part.

The example program calc, given above, illustrates the use of the value of productions:

expr expr '-' expr {
printf

("Subtract %c from %c giving E\n",
$3, $1);

$$ 'E';
}

VARIABLE
{$$ = $1;}

The first rule's action statement sets the value of the production expr to 'E':

$$ = 'E';

The value of a rule is significant in that it can be used in productions including that rule as
a nonterminal part.

An example is given in the first rule above. The printf statement refers to the items $1 and
$3. yacc interprets these symbols to mean the value of elements one and three of the right
side, respectively; that is to say, $1 refers to the value of the first expr in the right side of
the first rule, and $3 refers to the second expr, as illustrated below:

ex pr expr
$1

calc does not reference $2.

,_,

$2
expr

$3

The value for the tokens is provided by the lexical analyzer. The second rule for expr uses
this to get the value of the token VARIABLE. The value represented by $1 is provided by
the lexical analyzer in the statement

yylval = yytext [OJ;

To give another example, here is a simple calculator language, called digit, which performs
arithemtic on one-digit numbers and prints the results. Type the following grammar into
the file digit.y:

TUTORIAL

yacc, Yet Another Compiler-Compiler 361

%token DIGIT
%%
session calcn

session calcn

calcn expr '\n' /* print results */
{printf ("%d\n", $1);}

ex pr term '+' term
{$$ = $1 + $3;}

term '-' term
{$$ = $1 - $3;}

term DIGIT
{$$ $1;}

%%
#include <stdio.h>
yylex ()
{

}

int c;
c = O;

while (c == 0) { /* ignore control chars and space */
c = getchar();

}

if (c <= 0) return (c) /* could be EOF */;
if (c == '\n') return (c); /*set c to ignore*/

if ((c <= '9') && (c >= '0')) {
yylval = c - '0';
return (DIGIT);

}
if (c <= ' ') c = 0;

return (c);

This creates the yacc specification file. To turn it into a program, type

yacc digit.y
cc y.tab.c -ly -o digit

To invoke the compiled progra, type:

digit

And to test it. type the following:

TUTORIAL

362 yacc, Yet Another Compiler-Compiler

1+2
2+2
8+9

digit will reply:

3
4
17

This program is essentially an interpreter - results are calculated as numbers are typed in.
When you type in

1+1

the parser recognizes the construct

term '+' term

and executes the statement that adds two numbers together. The two numbers each in
turn came from the construct

term DIGIT

and the value of the digit came from yylex. When the statement calcn is recognized, the
value is printed as the result. Thus, the calculations are performed at the time that the
constructs are recognized. If a compiler were being generated, the actions would likely build
some form of intermediate code, or expression tree, as in:

expr term '+' term
{$$=tree (plus, $1, $3);}

Structured Values
All the examples thus far have shown action values as simple int types. This is not
sufficient for a large interpreter or compiler, because at different points in the language a
value can represent a constant values, a pointer to code generation trees, or symbol table
information.

To solve this problem, yacc allows you to define the values of$$ and $n as a union of
several types. This is done in the definitions section with the union statement. For
example, to declare action values as an integer. tree pointer, or a symbol-table pointer, you
would use the following code:

%union {

}

int cval;
struct tree t tree;
struct sytp_t sytp;

This says that action values can be a constant value cval, a code tree pointer tree, or a
symbol-table pointer sytp.

To ensure that the correct types are used in assignments and calculations in actions in the
generated C program, each token whose value will be used is declared with the appropriate
type:

TUTORIAL

yacc, Yet Another Compiler-Compiler 363

%token <tree> A B
%token <cval> CONST

In addition, the rules themselves can have a type declaration. as they also can pass action
values. Their type is declared in the %type statement:

%type <sytp> variable

This declares the nonterminal variable to reference the sytp field of the value union.

The values referenced in the action statements do not need to be qualified (unless they are
referencing a field of one of the union elements). yacc generates the necessary qualification
for the references. based upon the type information provided in the type and token
statements.

Keep in mind that productions that do not have explicit actions will default to an action of

$$ = $1

which might cause a type clash when compiling the generated parser. This is more likely to
arise during debugging. when you have defined the types but have not put in the actions.

Handling Ambiguities
The ideal grammar for a language is readable and unambiguous. If the grammar is
readable, its users will find it easy to use. If the language is unambiguous, the parser
generator will parse the programs correctly. However, many common programming
language constructs are ambiguous. Consider the following definition of an if statement:

statement

if statement

if statement
others
IF cond THEN statement
IF cond THEN statement ELSE statement

Consider a program that contains a statement

if a > b then if c < d then a = d else b = c;

The parser does not know by the grammar specification which if_statement the else
belongs with. At the point of the else, the parser could correctly recognize it as part of the
first if or the second if. The indentations illustrate the interpretation of the ambiguity
associating the else with the first if.

if a > b then

else

if c < d then
a = d;

b = c;

Associating it with the second if:

if a > b then
if c < d then

a = d;
else

b c;

TUTORIAL

364 yacc, Yet Another Compiler-Compiler

One solution to this ambiguity is to modify the language and rewrite the grammar. Some
programming languages (including the COHERENT shell) have a closing element to the if
statement, such as fl. The grammar for this approach is:

statement if statement
others

if_statement IF cond THEN statement FI
IF cond THEN statement ELSE statement FI

Another ambiguity arises from a grammar for common binary arithmetic expressions. The
following sample specifies binary subtraction:

exp TERM
exp '-' exp

For the program fragment

a - b - c

the parser can correctly interpret the expression as

(a - b) - c

or as

a - (b - c)

While for the if example, the language can be reasonably modified to remove the ambiguity,
it is unreasonable in the case of expressions. The grammar can be rewritten for exp but it
is less convenient.

How yacc Reacts
Because some ambiguities, such as the ones detailed above, are common, yacc
automatically handles some of them.

The ambiguity exemplified by the if then else grammar is called a shift-reduce conflict. The
parser generator can either choose to shift, meaning to add more elements to the parse
stack, or to reduce, meaning to generate the smaller production. In the terms of if, the shift
would match the else with the first then. Alternatively. the reduce choice will match the
else with the latest (rightmost) unmatched then.

Unless otherwise specified, yacc resolves shift-reduce conflicts in favor of the shift. This
means that the if ambiguity will be resolved in favor of matching the else with the rightmost
unmatched then. Likewise, the expression

a - b - c

will be interpreted as

a - (b - c)

TUTORIAL

yacc, Yet Another Compiler-Compiler 365

Additional Control
yacc provides tools to help resolve some of these ambiguities. When yacc detects shift­
reduce conflicts, it consults the precedence and associativity of the rule and the input
symbol to make a decision.

For the case of binary operators, you can define the associativity of each of the operators by
use of the defining words left and right. These appear in the definition section with token.
Any symbol appearing in left or right.

The usual interpretation of

a - b - c

is

(a - b) - c

which is called left associative. However, the shift/reduce conflict inherent in

exp '-' exp

is resolved in favor of the reduce, or in a right-associative manner:

a - (b - c)

To signal yacc that you want the left-associative interpretation, enter the grammer as:

%left '+' '-'
%token TERM
%%
expr TERM

expr
ex pr

,_,

'+'
expr
ex pr

Some operators, such as assignment, require right associativity. The statement

a 1= b + c

is to be interpreted as

a := (b + c)

The %right keyword tells yacc that the following terminal is to right associate.

Precedence
Most arithmetic operators are left associative. For example, with the grammar

TUTORIAL

366 yacc, Yet Another Compiler-Compiler

%right =
%left I_ I '+' I* I , /'
%%
expr ex pr , _, expr

ex pr I*' expr
expr '+' expr
expr I/' expr
ex pr '=' expr

The expression

a = b + c * d - e

based on associativity alone will be evaluated

a=(((b+c)*d)-e)

which is not according to custom. We normally think of "' as having higher precedence than
+ or -. meaning that it is evaluated before other operators with the same associativity. The
evaluation preferred is

a = (b + (c * d) - e)

To generate a parser with this evaluation, use several lines of left. one line for each level of
precedence. Each line containing %left describes tokens of the same precedence. The
precedence increases with each line. Thus. to get the common notion of arithmetic
precedence, use a grammar of

%right =
%left '-'
%left '*'
%%
ex pr

'+'
, I,

ex pr
ex pr
ex pr
ex pr
ex pr

,_ I expr
, *, expr
'+' ex pr
, /' expr
'=' ex pr

This method of %left and %right gives tokens a precedence and an associativity. This can
eliminate ambiguities where these operators are involved. But what about the precedence of
rules or nonterminals?

To specify the precedence of rules, the %prec keyword at the end of the rule sets the
precedence of the rule to the token following the keyword. To add unary minus to the
grammar above, and to give it the precedence of multiply, use %prec "' at the end of the
unary rule.

TUTORIAL

yacc, Yet Another Compiler-Compiler 367

%right =
%left ,_, '+' '*' '/'
%%
ex pr ex pr ,_, expr

ex pr '*' expr
ex pr '+' expr
ex pr '/' expr
ex pr '=' expr
,_, expr %prec *

If associativity is not specified, yacc will report the number of shift/reduce conflicts. When
associativity is specified with %left, %right or %nonassoc, this is considered to reduce the
number of conflicts, and thus the number of conflicts reported will not include the count of
these.

Error Handling
Parsers generated by yacc are designed to parse correct programs. If an input program
contains errors, the LALR(1) parser will detect the error as soon as is theoretically possible.
The error is identified, and the programmer can correct the error and recompile.

However, in most programming environments, it is unacceptable to stop compiling after the
detection of a single error. yacc parsers attempt to go on so that the programmer may find
as many errors as possible.

When an error is detected, the parser looks for a special token in the input grammar named
error. If none is found, the parser simply exits after issuing the message

Syntax error

If the special token error is present in the input grammar error recovery is modified. Upon
detection of an error, the parser removes items from the stack until error is a legal input
token and processes any action associated with this rule. error is the lookahead token at
this point.

Processing is resumed with the token causing the error as the lookahead token. However,
the parser attempts to resynchronize by reading and processing three more tokens before
resuming normal processing. If any of these three are in error, they are deleted and no
error message is given. Three tokens must be read without error before the parser leaves
the error state.

A good place to put the error token is at a statement level. For example, the calc.y example
in chapter 2 defines a statement as

stmnt stat
stat '\n'
error '\n'

Thus, any error on a line will cause the rest of the line to be ignored.

There is still a chance for trouble, however. If the next line contains an error in the first two
tokens, they will be deleted with no error message and parsing will resume somewhere in
the middle of the line. To give a truly fresh start at the beginning of the line, the function
yyerrok will cause the parser to resume normal processing immediately. Thus, an

TUTORIAL

368 yacc, Yet Another Compiler-Compiler

improved grammar is

stmnt stat
stat '\n'
error '\n'

{yyerrok;}

will cause normal processing to begin with the start of the next line.

Error recovery is a complex issue. This section covers only what the parser can do in
recovering from syntax errors. Semantic error recovery. such as retracting emitted code, or
correcting symbol table entries, is even more complex. and is not discussed here.

yacc reserves a special token error to aid in resynchronizing the parse. After an error is
detected. the stack is readjusted. and processing cautiously resumes while three error-free
tokens are processed. yyerrok will cause normal processing to resume immediately. The
token causing the error is retained as the lookahead token unless YYCLEARIN is executed.

Summary
yacc is an efficient and easy-to-use program to help automate the input phase of programs
that benefit by strict checking of complex input. Such programs include compilers and
interactive command language processors.

yacc generates an LALR(1) parser, that implements the grammar specifying the structure of
the input. A simple lexical analyser routine can be hand-constructed to fit in among the
rules, or you can use the COHERENT command lex to generate a lexical analyzer that will
fit with the parser.

As the structured input is analyzed and verified. you assign meaning to the input by writing
semantic actions as part of the gramatical rules describing the structure of the input.

yacc parsers are capable of handling certain ambiguities. such as that inherent in typical if
then else constructs. This simplifies the construction of many common grammars.

yacc provides a few simple tools to aid in error recovery. However, the area of error recovery
is complex and must be approached with caution.

Helpful Hints
Until you have mastered yacc, the best way to build your program is to do it a piece at a
time. For example, if you are writing a Pascal compiler, you might start with the grammar

%token PROG BEG END OTHER
program PROG tokens BEG END ' '

tokens OTHER
tokens OTHER

and with a simple lexical analyzer of:

TUTORIAL

yacc, Yet Another Compiler-Compiler 369

PROGRAM
BEGIN
END

return (PROG) ;
return (BEG) ;
return (END);
return (yytext (OJ);

With the generated program, you can easily test the grammar by feeding it simple programs.
Then add items to both the lexical analyzer and yacc grammar. With this approach, you
can see the parser working. and if it behaves differently than you expect, you can more
easily pinpoint the cause.

If you have difficulty understanding what actions your parser is taking. yacc will produce
for you a complete description of the generated parser. To use this, you should be familiar
with the way LALR(1) parsers work. To get this verbose output. specify the -v option on the
command line. The result will appear in the file y.output.

In addition, you can have the parser give you a token-by-token description of its actions
while it does them, by specifying the debug option -d. This also generates the file y.output,
which is helpful in reading the debug output. The debug code is generated when the -d
option is used, but is not activated unless the YYDEBUG identifier is defined. Include some
code in the definitions section to activate it:

%{
define YYDEBUG

%}

Your parser can turn on and off the debugging at execution time by setting the variable
yydebug: one for on, zero for off.

A frequent cause of grammar conflicts is the empty statement. You should use it with
caution. yacc generates empty statements when you specify actions in the middle of a rule
rather than at the end; for example:

def DEFINE {defstart();}
identifier {defid ($2);}

yacc generates an additional rule:

$def

def

/* empty */
{defstart();}

DEFINE $def identifier {defid ($2);}

The resulting empty statement can cause parser conflicts if there are similar rules and the
empty statement is not sufficient to distinguish between them.

Example
This tutorial closes with a larger example that incorporates most of the features of yacc
discussed here. You can type it as shown, and modify it to improve its operation.

This example, called nav, calculates the great circle path and bearing from one point on the
globe to another. Each pair of points is input on one line. The coordinates of the origin and
destination are preceeded, respectively. by the keywords FROM and TO. and can appear in
either order. Longitude and latitude are followed, respectively, by the letters E or W, and N
and S. Lower-case may also be used for these letters.

TUTORIAL

370 yacc, Yet Another Compiler-Compiler

The numeric part of the coordinates may be entered in degrees, minutes, and optional
seconds, or in fractional degrees. You can use the symbols ". o, or d to specify degrees
because the raised circle customarily used for degrees is not available on most terminals.
An apostrophe' follows minutes. and a quotation mark" follows seconds.

As an example of using nav. calculate the great circle distance and initial heading from
Charlestown, Indiana, to Charlestown, Australia:

from 38d27'n 85d40'w to 151d42'e 32d58's;

The result will be:

From lat 38.450 long 85,667 To lat -32.967 long -151.700
Distance 8030.623, Init course is 258.417

Here, the coordinates are echoed in decimal degrees. To exit the program, type <ctrl-D>.

To begin, type the following yacc specification file into the nav.y:

TUTORIAL

%{
#include "11. h"
#define YYTNAMES

double fromlat, fromlon, tolat, tolon;
extern calcpath();

%}

%union {
double dgs;
long dgsi;
struct 11 wh;
}

%token NEWLINE FROM TO CIRCLE QUOTE DQUOTE SEP SEMI COMMA
%token NSYM SSYM WSYM ESYM
%token <dgs> FNUM
%token <dgsi> NUM
%type <dgs> degrees long lat deg
%type <wh> where from to
%%

prob

single

single
prob single

sing {
calcpath();
}

error NEWLINE {
yyerrok; YYCLEARIN;
printf ("Enter line again.\n");
}

sing

from

to

where

lat

yacc, Yet Another Compiler-Compiler 371

from SEP to SEMI NEWLINE
fromlat = $1.lat;
fromlon = $1.lon;
tolat $3.lat;
talon $3.lon;
}

to SEP from SEMI NEWLINE
tolat = $1.lat;
talon = $1. lon;
fromlat $3.lat;
fromlon = $3.lon;
}

to SEMI NEWLINE {
tolat $1.lat;
talon = $1. lon;
}

FROM SEP where {
$$ = $3;
}

TO SEP where {
$$ = $3;
}

lat SEP long {
$$.lat $1;
$$.lon = $3;
}

long SEP lat {
$$.lon $1;
$$.lat $3;
}

degrees NSYM {
$$ = $1;
}

degrees SSYM {
$$ = - $1;
}

TUTORIAL

372 yacc, Yet Another Compiler-Compiler

long degrees WSYM {
$$ = $1;
}

degrees ESYM {
$$ = - $1;
}

degrees FNUM /* e. g. 128.3 */ {
$$ = $1;

%%

}
NUM CIRCLE NUM QUOTE /* deg min */ {

$$=$1 + $3/60.0;
}

NUM CIRCLE NUM QUOTE NUM DQUOTE
/* and seconds */ {
$$=$1 + $3/60.0 + $5/3600.0;
}

NUM CIRCLE NUM QUOTE FNUM DQUOTE {
$$=$1 + $3/60.0 + $5/3600.0;
}

#include <stdio.h>
yyerror (s)

char *s;
{

}

struct yytname *p;
fprintf (stderr, "%s ", s);

for (P = yytnames; p -> tn_name != NULL; ++p)
if (p->tn_val == yychar) {

fprintf (stderr, "at %s", p->tn_name);
break;

}
fprintf (stderr, "\n");

Both the lexical analyzer and the parser need the following header file ll.h:

struct 11 {
double lat;
double !on;

} ;

TUTORIAL

yacc, Yet Another Compiler-Compiler 373

To turn yacc file nav.y into a program, type

yacc -hdr nav.tab.h -d -v nav.y
mv y.tab.c nav.y.c

The grammar is straightforward. The types used in the actions require a union, because
integer degrees, floating-point degrees, and pairs of floating point degrees are used as action
values. The lexical analyzer recognizes integer and floating-point numbers, and passes the
value through yylval. The rule for degrees combines different degree representations to one
double-precision number.

The N, S, E. and W symbols convert a location to a signed representation: Sand E result in
negative degrees, N and W as positive.

The rule for where converts the single-numbered latitude and longitude into a double
number of <Wh> type. Note that it can process the coordinates in either order.

The rule single handles the destination and origin in either order. It takes the pairs of
coordinates from from and to and stores them in the global variables that the calculation
routine uses. The error token will halt error recovery at the end of the line, so that in case
of error the user can reenter the correct line. If many great circles are being computed from
the same origin, you need to enter only the destination after the first time.

Once a set of coordinates has been recognized, the function calcpath calculates the great
circle.

The error routine yyerror accepts an error message from the parser, and examines the table
of tokens to find the name of the token where the error is detected. If it is found, it is
printed. To get these token names in the program, the symbol YYTNAMES must be
defined.

The following code gives the lexical analyzer. Type it into the file nav .1:

%{
#include "11.h"
#include "nav.tab.h"
%}

%%

[nN]
(SS]
(eE]
(WW]

int integer;
double real;

return
return
return
return

ol "A" Id return
\" return
\' return
\n return
from return
FROM return
to return
TO return

(NSYM);
(SSYM);
(ESYM);
(WSYM);
(CIRCLE);
(DQUOTE);
(QUOTE);
(NEWLINE);
(FROM);
(FROM);
(TO);
(TO);

TUTORIAL

374 yacc, Yet Another Compiler-Compiler

[0-9]+ {
sscanf (yytext, "%d", &integer);
yylval.dgsi = (long) integer;
return (NUM);
}

[0-9]+"."([0-9]+)? {

\t l

sscanf (yytext, "%f", &real);
yylval.dgs = (double) real;
return (FNUM);
}
return (COMMA);
return (SEMI) ;
return (SEP) ;
{
printf ("Illegal character [%s]\n", yytext);
return (yytext [OJ);
}

The lexical analyzer partitions the input into the tokens expected by the parser. For the
symbols in the grammar, it returns the token type. It also recognizes integer and floating­
point numbers, and converts them to integers.

Note that the ll.h file is required even though there is no explicit reference to its contents.
This is needed because the %union in nav.y generates the header file nav.tab.h. referring
to the ll structure.

Turn lex file nav.l into program by typing:

lex nav.l
mv lex.yy.c nav.l.c

Finally, you should type the following code into file navcalc.c. It is C code that calculates
the great circle route:

TUTORIAL

#include <stdio.h>
#include <math.h>
/*
* Given latitude and longitude of start and finish,
* calculate the great circle path.
*/

extern double fromlon, fromlat, tolon, tolat;

calcpath ()
{

double rad = PI I 180.0;
double initcourse, arg, dist, d60;
double rfromlat, rfromlon, rtolat, rtolon;

yacc, Yet Another Compiler-Compiler 375

}

printf ("From lat %.3f long %.3f ",
fromlat, fromlon);

printf ("To lat %.3f long %.3f\n",
tolat, tolon);

rf romlat
rfromlon
rtolat

fromlat * rad;
fromlon * rad;

tolat * rad;
rtolon = tolon * rad;

d60 = aces (

) ;

sin (rfromlat) * sin (rtolat) +
cos (rfromlat) * cos (rtolat) *

cos (rfromlon - rtolon)

dist 60 * d60 I rad;

arg (sin (rtolat) - cos (d60) *sin (rfromlat))
I
(sin (d60) *cos (rfromlat));

initcourse = aces (arg) I rad;
if (sin (rfromlon - rtolon) < 0)

initcourse = 360 - initcourse;

printf ("Distance %.3f, Init course is %,3f\n\n",
dist, initcourse);

And now compile all three programs together.

cc nav.y.c nav.l.c navcalc.c -ly -lm -11 -f -o nav

The standard formula is used to calculate great circle path and bearing. Note that there are
several limitations that are not checked for here; For example. diametrically opposite points
on the globe have no unique great circle path between them. ln addition, neither of the
points should be at either of the poles. These checks can be added if you wish to use nav
program as a general rather than a tutorial tool.

Where to Go From Here
The Lexicon article for yacc summarizes its conunand syntax and features. The tutorial for
lex, the COHERENT lexical analyzer, describes how to combine lex with yacc to build
applications simply.

TUTORIAL

376 yacc, Yet Another Compiler-Compiler

TUTORIAL

Section 16:

The Lexicon

The rest of this manual consists of the Lexicon. The Lexicon consists of several hundred
articles, each of which describes a function or command, defines a term, or otherwise gives
you useful information. The articles are organized in alphabetical order.

Internally, the Lexicon has a tree structure. The "root" entry is the one for Lexicon. It, in
turn, refers to a series of Overview entries. Each Overview entry introduces a group of
entries. Each entry cross-references other entries. These cross-references point up the
documentation tree, to an overview article and, ultimately, to the entry for Lexicon itself;
down the tree to subordinate entries; and across to entries on related subjects. For
example, the entry for getchar cross-references STDIO, which is its Overview article, plus
putchar and getc, which are related entries of interest to the user. The Lexicon is designed
so that you can trace from any one entry to any other, simply by following the chain of
cross-references up and down the documentation tree.

For more information on how to use the Lexicon and how it is organized, see the entry in
the Lexicon on Lexicon.

377

378

TUTORIAL

Example

example - Example
Give an example of Mark Williams Lexicon format
#include <example.h>
char •example(foo, bar) intjoo; long bar;

example 379

This is an example of the Mark Williams Lexicon format of software documentation. At this
point, each entry has a brief narration that discusses the topic in detail.

The lines in boldface describe how to use the function being described. The first line,
#include <example.h>. indicates that this function requires the imaginary header file
example.h. The second line gives the syntax of the function. char •example means that
the imaginary function example returns a pointer to a char. Joo and bar are example's
arguments:foo must be declared to be an int, and bar must be declared to be a long.

Example
The following program gives an example of an example.

main()
{

printf ("Many entries include examples\n");
}

See Also
Lexicon, all other related topics and functions

Notes
If a Lexicon entry uses a technical term that you do not understand, look it up in the
Lexicon. In this way, you will gain a secure understanding of how to use COHERENT.

LEXICON

380 #

- Preprocessing Operator
String-ize operator

to ""

The preprocessing operator # can be used within the replacement list of a function-like
macro. It and its operand are replaced by a string literal, which names the sequence of
preprocessing tokens that replaces the operand throughout the macro.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show ((long) (abs (-5)) , "abs (-5) ") ;

Here, the preprocessor replaced #x with a string literal that gives the sequence of token
that replaces x.

The following rules apply to interpreting the # operator:

1. If a sequence of white-space characters occurs within the preprocessing tokens that
replace the argument, it is replaced with one space character.

2. All white-space characters that occur before the first preprocessing token and after the
last preprocessing token are deleted.

3. The original spelling of the preprocessing tokens is preserved. This means that you
must take care to preserve certain characters: a backslash'\' should be inserted before
every quotation mark '"' that marks a string literal, and before every backslash that
introduces a character constant.

Example
The following uses the operator# to display the result of several mathematics routines.

#include <errno.h>
#include <math.h>
#include <stdio.h>

void show(value, name)
double value, char *name;
{

}

if (errno)
perror (name) ;

else
printf("%10g %s\n", value, name);

errno = O;

#define display(x) show((double)(x), #x)

LEXICON

main ()
{

}

extern char *gets();
double x;
char string[64];

for (;;) {

}

printf ("Enter a number: ");
fflush(stdout);
if(gets(string) == NULL)

break;

x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

See Also
##, #define, C preprocessor

- Preprocessing Operator
Token-pasting operator

381

The preprocessing operator ## can be used in both object-like and function-like macros.
When used immediately before or immediately after an element in the macro's replacement
list, ## joins the corresponding preprocessor token with its neighbor. This is sometimes
called "token pasting''.

As an example of token pasting. consider the macro:

#define printvar(number) printf("%s\n", variable## number)

When the preprocessor reads the following line

printvar(5);

it substitutes the following code for it:

printf("%s\n", variable5);

The preprocessor throws away all white space both before and after the## operator. This
gives you an easy way to print any one of a set of strings.

must not be used as the first or last entry in a replacement list. All instances of the ##
operator are resolved before further macro replacement is performed.

For more information on object-like and function-like macros, see #define.

See Also
#,#define, C preprocessor

LEXICON

382 #define

Notes
Token pasting has been performed by separating the tokens to be pasted with an empty
comment. but this is no longer necessary.

The order of evaluation of multiple ## operators is unspecified.

#define - Preprocessing Directive
Define an identifier as a macro

The preprocessing directive #define tells the C preprocessor to regard identifier as a macro.

#define can define two kinds of macros: object-like, andfunction-like.

An object-like macro has the syntax

#define identifier replacement-list

This type of macro is also called a manifest constant. The preprocessor searches for identifier
throughout the text of the translation unit. and replaces it with the elements of
replacement-list, which is then rescanned for further macro substitutions.

For example. consider the directive:

#define BUFFERSIZE 75

When the preprocessor reads the line

malloc(BUFFERSIZE);

it replaces it with:

malloc (75);

A given identifier is replaced only once by a given replacement-list. This is to prevent such
code as

or

#define FOO FOO

#define FOO BAR
#define BAR FOO

from generating an infinite loop.

A function-like macro is more complex. It has the syntax:

#define identifier lparen identifier-listopt) replacement-list

The preprocessor looks for identifier. which is a macro that resembles a function in that it is
followed by a pair of parentheses that may enclose an identifier-list. It replaces identifier
with the contents of replacement-list. up to the first lparen '('within replacement-list.

The preprocessor then examines identifier-list for further macros. which it expands. The
modified identifier-list is then replaced with the rest of replacement-list. Pairs of parentheses
that are nested between the lparen that begins replacement-list and the ')' that ends it are
copied into identifier-list as literal characters. The identifiers within identifier-list are
preserved after it has been modified by replacement-list. The only exceptions are identifiers
that are prefixed by the preprocessing operators # or##: these are handled appropriately.

For example, the consider the macro:

LEXICON

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show((long) (abs (-5)) , "abs (-5) ") ;

#elif 383

When an argument to a function-like macro contains no preprocessing tokens, or when an
argument to a function-like macro contains a preprocessing token that is identical to a
preprocessing directive, the behavior is undefined.

Example
For an example of using a function-like macro in a program, see#.

See Also
#, ##, #undef, C preprocessor

Notes
A macro expansion always occupies exactly one line, no matter how many lines are spanned
by the definition or the actual parameters. If you have defined macros that span more than
one line, you must either redefine them to occupy one line, or somehow embed the newline
character within the macro itself; otherwise, the macro will not expand correctly.

A macro definition can extend over more than one line, provided that a backslash '\'
appears before the newline character that breaks the lines. The size of a #define directive is
therefore limited by the maximum size of a logical source line, which can be up to at least
509 characters long.

Some implementations allowed a user to re-define a macro with a new #define directive.
The Standard, however, allows only a "benign" redefinition; that is, the body of the new
definition must exactly match the old definition, including parameter names and white
space.

#elif - Preprocessing Directive
Include code conditionally

The preprocessing directive #ellf conditionally includes code within a program. It can be
used after any of the instructions #ff, #ffdef, or #ffndef.

If the conditional expression of the preceding #ff, #ifdef, or #ffndef directive is false (i.e.,
evalutates to zero) and if the current condition is true (i.e., evaluates to a value other than
zero), then group is included within the program, up to the next #ellf, #else, or #endff
directive. An #if, #ifdef, or #ifndef directive may be followed by any number of #ellf
directives.

The constant-expression must be an integral expression, and it cannot include a sizeof
operator, a cast, or an enumeration constant. All macro substitutions are performed upon
the constant-expression before it is evaluated. All integer constants are treated as long
objects, and are then evaluated. If constant-expression includes character constants, all
escape sequences are converted into characters before evaluation.

See Also
#else, #endff, #if, #ifdef, #ffndef, C preprocessor

LEXICON

384 #else - #ifdef

#else - Preprocessing Directive
Include code conditionally

The preprocessing directive #else conditionally includes code within a program. It is
preceded by one of the directives #if, #ifdef, or #ifndef, and may also be preceded by any
number of #elif directives. If the conditional expressions of all preceding directives evaluate
to false (i.e., to zero). then the code introduced by #else is included within the program, up
to the #endif directive.

A #if, #ifdef, or #ifndef directive can be followed by only one #else directive.

See Also
#elif, #endif, #if, #ifdef, #ifndef, C preprocessor

#endif - Preprocessing Directive
End conditional inclusion of code

The preprocessing directive #endif must follow any #if. #ifdef, or #ifndef directive. It may
also be preceded by any number of #elif directives and an #else directive. It marks the end
of a sequence of source-file statements that are included conditionally by the preprocessor.

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #if, #ifdef, #ifndef, C preprocessor

#if - Preprocessing Directive
Include code conditionally

The preprocessing directive #if tells the preprocessor that if constant-expression is true (i.e.,
that it evalutes to a value other than zero), then include the following lines of code within
the program until it reads the next #elif. #else, or #endif directive.

The constant-expression must be an integral expression. and it cannot include a sizeof
operator, a cast, or an enumeration constant. All macro substitutions are performed upon
the constant-expression before it is evaluated. All integer constants are treated as long
objects, and are then evaluated. If constant-expression includes character constants, all
escape sequences are converted into characters before evaluation.

See Also
#elif, #else, #endif, #ifdef, #ifndef, C preprocessor

#ifdef - Preprocessing Directive
Include code conditionally

The preprocessing directive #ifdef checks whether identifier has been defined as a macro
name. If Identifier has been defined as a macro, then the preprocessor includes group
within the program, up to the next #elif, #else, or #endif directive. If Identifier has not
been defined, however, then group is skipped.

An #ifdef directive can be followed by any number of #elif directives, by one #else directive,
and must be followed by an #endif directive.

LEXICON

#ifndef - #include 385

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor

#ifndef - Preprocessing Directive
Include code conditionally

The preprocessing directive #ifndef checks whether identifier has been defined as a macro
name. If identifier has not been defined as a macro, then the preprocessor includes group
within the program, up to the next #elif, #else. or #endif directive. If identifier has been
defined, however, then group is skipped.

An #ifndef directive can be followed by any number of #elif directives, by one #else
directive, and by one #ellf directive.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor, defined

#include - Preprocessing Directive
Read another file and include it
#include efile >
#include 'Jile"

The preprocessing directive #include tells the preprocessor to replace the directive with the
contents ofjile.

The directive can take one of two forms: either the name of the file is enclosed within angle
brackets (<header.h>J. or it is enclosed within quotation marks ("header.h"). Angle
brackets tell cpp to look for file .h in the directories named with the -I options to the cc
command line, and then in the standard directory. Quotation marks tell cpp to look for
jile.h in the source file's directory. then in directories named with the -I options, and then
in the standard directory.

Most often, the file being included is a header, which is a file that contains function
prototypes, macro definitions, and other useful material; as its name implies, it most often
appears at the head of a program. The header name must be a string of characters,
possibly followed by a period '.' and a single letter, usually (but not always) 'h'. A header
name may have up to 12 characters to the left of the period, and names may be case
sensitive.

#include directives may be nested up to at least eight deep. That is to say. a file included
by an #include directive may use an #include directive to include a third file; that third file
may also use a #include directive to include a fourth file; and so on, up to at least eight
files.

Note, too, that a subordinate header file is sought relative to the original source file. rather
than relative to the header that calls it directly. For example, suppose that a file example.c
resides in directory /v /fred/src. If example.c contains the directive #include <headerl.h>.
The operating system will look for headerl.h in the standard directory, /usr/include. If
headerl.h includes the directive #include < •• /header2.h> then COHERENT looks for
header2.h not in directory /usr, but in directory /v/fred.

A #include directive may also take the form #include string, where string is a macro that
expands into either of the two forms described above.

LEXICON

386 #line - DATE

See Also
header mes, c preprocessor

#line - Preprocessing Directive
Reset line number
#line number newline
#line number filename newline
#line macros newline

#line is a preprocessing directive that resets the line number within a file. The ANSI
Standard defines the line number as being the number of newline characters read, plus
one.

#line can take any of three forms. The first, #line number, resets the current line number
in the source file to number. The second, #line number filename, resets the line number to
number and changes the name of the file to filename. The third, #line macros, contains
macros that have been defined by earlier preprocessing directives. When the macros have
been expanded by the preprocessor. the #line instruction will then resemble one of the first
two forms and be interpreted appropriately.

See Also
C preprocessor

Notes
Most often, #line is used to ensure that error messages point to the correct line in the
program's source code. A program generator may use this directive to associate errors in
generated C code with the original sources. For example, the program generator yacc uses
#line instructions to link the C code it generates with the yacc code written by the
programmer.

#undef - Preprocessing Directive
Undefine a macro
#undef Identifier

The preprocessing directive #undef tells the C preprocessor to disregard identifier as a
macro. It undoes the effect of the #define directive.

See Also
#define, C preprocessor

DATE - Macro - -Date of translation

DATE is a preprocessor constant that is defined by the C preprocessor. It represents
the date that the source file was translated. It is a string literal of the form

"Mmm dd yyyy"

where Mmm is the same three-letter abbreviation for the month as is used by asctime; dd
is the day of the month. with the first d being a space if translation occurs on the first
through the ninth day of the month; and yyyy is the current year.

The value of _DATE_ remains constant throughout the processing of the a module of
source code. It may not be the subject of a #define or #undef preprocessing directive.

LEXICON

FILE

Example
The following prints the preprocessor constants set by COHERENT:

main ()
{

}

printf ("Date: %s\n", _DATE_);
printf("Time: %s\n", _TIME_);
printf ("File: %s\n", _FILE_);
printf("Line No.: %d\n", _LINE_);
printf("ANSI C? %s\n", _STDC_? "Yes"

See Also

"No");

FILE, _LINE_, _STDC_, _TIME_, C preprocessor

FILE - Macro - -Source file name

STDC 387

FILE is a preprocessor constant that is defined by the C preprocessor. It represents, as
a string constant. the name of the current source file being translated.

FILE may not be the subject of a #define or #undef preprocessing directive, but it may
be altered with the #line preprocessing directive.

Example
For an example of how to use _FILE_ in a program. see _DATE_.

See Also
DATE, _LINE_, _STDC_, _TIME_, C preprocessor

LINE - Macro - -Current line within a source file

LINE is a preprocessor constant that is defined by the C preprocessor. It represents the
current line within the source file. The ANSI Standard defines the current line as being the
number of newline characters read, plus one.

LINE may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of how to use _LINE_ in a program, see _DATE_.

See Also
DATE, _FILE_, _STDC_, _TIME_, C preprocessor

STDC - Macro - -
Mark a conforming translator

STDC is a preprocessor constant that is defined by the C preprocessor. If it is defined
to be equal to one. then it indicates that the translator conforms to the ANSI Standard.

The value of _STDC_ remains constant throughout the entire program, no matter how
many source files it comprises. It may not be the subject of a #define or #undef
preprocessing directive.

LEXICON

388 _TIME_ - _exlt0

Example
For an example of using _STDC_ in a program, see _DATE_.

See Also
DATE, _FILE_, _LINE_, _TIME_, C preprocessor

TIME -Macro
Time source file is translated

TIME is a preprocessor constant that is defined by the C preprocessor. It represents
the time that a source file is translated. It is a string literal of the form:

"hh:mm:ss"

This is the same format used by the function asctime.

The value of this preprocessor constant remains constant throughout the processing of the
translation unit. It may not be the subject of a #define or #undef preprocessing directive.

Example
For an example of how to use _TIME_ in a program, see _DATE_.

See Also
DATE, _FILE_, _LINE_, _STDC_, C preprocessor

_exHO - General Function (libc)
Terminate a program
void _exit(status) int status;

_exit terminates a program directly. It returns status to the calling program, and exits.
Unlike the library function exit, _exit does not perform extra termination cleanup, such as
flushing buffered files and closing open files.

_exit should be used only in situations where you do rwt want buffers flushed or files
closed. For example, you may wish to call _exit if your program detects an irreparable error
condition and you want to "bail out" to keep your data files from being corrupted.

_exit should also be used with programs that do not use STDIO. Unlike exit, _exit does
not use STDIO. This will help you create programs that are extremely small when compiled.

See Also
close(), exit(), general functions, wait()

Notes
If a program leaves main() by an error condition, contents of register AX becomes the exit
code. Usually, these register contents are random. If you want to test a program's return
code, you must exit or return from main().

LEXICON

abortO - absO 389

abortO - General Function (libc)
End program immediately
void abort()

A

abort terminates a process with a core dump. creating a file called core, and prints a
message on the screen. It is normally invoked in situations that "should not happen". For
example, malloc invokes abort if it discovers a corrupt storage arena.

Where possible, abort executes a machine instruction that causes the processor to trap. If
the signal associated with the trap is caught or ignored, the dump will not be produced.

See Also
_exit(), core, exit(), general functions

absO - General Function (libc)
Return the absolute value of an integer
int abs(n) int n;

abs returns the absolute value of integer n. The absolute value of a number is its distance
from zero. This is n if n>=O, and -n otherwise.

Example
This example prompts for a number, and returns its absolute value.

#include <ctype.h>
#include <stdio.h>

main()
{

extern char *gets();
extern int atoi();
char string[64];
int counter;
int input;

printf ("Enter an integer: ") ;
fflush(stdout);
gets(string);

for (counter=O; counter< strlen(string); counter++) {
input= string[counter];

if (!isascii(input)) {
fprintf(stderr,

}

"%sis not ASCII\n", string);
exit(l);

LEXICON

390 ac

if (!isdigit(input))

}

if (input I= '-' I I counter I= 0) {
fprintf(stderr,

}

"%sis not a number\n", string);
exit(l);

input atoi(string);

}

printf("abs(%d) is %d\n", input, abs(input));
exit(O);

See Also
tabs(), floor(), general functions, Int

Notes
On two's complement machines, the abs of the most negative integer is itself.

ac -Command
Summarize login accounting information
ac [-dp I I -w wflle][username ... I

One of the accounting mechanisms available on the COHERENT system is login accounting,
which keeps track of the time each user spends logged into the system. Login accounting is
enabled by creating the file /usr/adm/wtmp. Thereafter, the routines date, login, and init
write raw accounting data to /usr/adm/wtmp to record the time, the name of the terminal,
and the name of the user for each date change, login, logout, or system reboot.

The command ac summarizes the raw accounting data. By default, ac prints the total
connect time found in /usr/adm/wtmp. Any username restricts the summary to each
specified user.

The following options are available:

-d Itemize the output into daily (midnight to midnight) periods.

-p Print individual totals.

-w Use wflle rather than /usr/adm/wtmp as the raw data file.

Files
/usr/adm/wtmp

See Also
commands, date, lnit, login, sa, utmp.h

Notes
The file /usr/adm/wtmp can become very large; therefore, it should be truncated
periodically. Special care should be taken if login accounting is enabled on a COHERENT
system with a small disk.

LEXICON

accessO - System Call
Check if a file can be accessed in a given mode
#Include <access.h>
Int access(fllename, mode) char ":filename; Int mode;

accesso 391

access checks whether a file or directory can be accessed in the mode you wish. filename is
the full path name of the file or directory you wish to check. mode is the mode in which you
wish to access.filename. as follows:

AHEAD Read a file
AEXISTS Check if a file exists
ALIST List the contents of a directory

AWRITE
ADEL

AEXEC
ASRCH

AAPPND
ACREAT

Write into a file
Delete files from a directory

Execute a file
Search a directory

Append to a file
Create a file in a directory

The header file access.h defines these values, which may be logically combined to produce
the mode argument.

If mode is AEXISTS, access tests only whether filename exists, and whether you have
permission to search all directories that lead to it.

access returns zero if.filename can be accessed in the requested mode, and a nonzero value
if it cannot. Note that the return value is the opposite of the intuitive value, i.e .. zero means
success rather than failure.

access uses the real user id and real group id (rather than the effective user id and effective
group id), so set user id programs can use it.

Example
The following example checks if a file can be accessed in a particular manner.

#include <access.h>
#include <stdio.h>

main(argc, argv)
int argc1 char *argv[]1
{

int mode1
extern int access()1

if (argc I= 3) {

}

fprintf(stderr, "Usage: access filename mode\n")1
exit(l)1

LEXICON

392 access.h - acctO

switch (*argv[2]) {
case 'x':

mode = AEXEC;
break;

case 'w' 1

mode = AWRITE;
break;

case 'r':
mode = AREAD;
break;

default:
fprintf(stderr,

}

"modes: x = execute, w write, r
exit(l);
break;

if (access(argv[l], mode)) {

read\n");

printf("file %snot found in mode %d\n", argv[l), mode);
exit(O);

} else
printf("file %s accessible in mode %d\n",

argv[1 J, mode);
exit(O);

}

See Also
access.h, path(), system calls

Notes
When the superuser root executes access, it always returns readable/writable/executable
for any file that exists. regardless of permissions.

access.h - Header File
Check accessibility
#include <access.h>

The header file access.h declares the function access and a set of associated manifest
constants. You can use these to check the accessibility of a given file.

See Also
access, header files

acctO - System Call
Enable/disable process accounting
acct(flle)
char "'.file;

Process accounting records who initiates each system process and how long each process
takes to execute. These data can be analyzed, to administer the system most efficiently.

LEXICON

acct.h 393

The system call acct enables or disables process accounting. If file is not NULL, then
accounting is turned on; if.file is NULL, however, then process accounting is turned off.

It is usual, but not necessary, that.file be /usr/adm/acct. file must exist. When enabled,
the system appends a raw accounting data record in the format described by acct.h to file
as each process terminates.

acct is restricted to the superuser.

See Also
ac, acct.h, accton, exit(), sa, system calls, times()

Diagnostics
Successful calls return zero. acct returns - l for errors, such as nonexistent file or
invocation by a user other than the superuser.

Notes
The system writes accounting records for a process only when the process exits. Processes
that never terminate and processes running at the time of a system crash do not produce
accounting information.

acct.h - Header File
Format for process-accounting file
#include <acct.h>

Process accounting is a feature of the COHERENT system that allows it record what
processes each user executes and how long each process takes. These data can be used to
track how much each user uses the system.

The function acct turns process accounting off or on. When process accounting has been
turned on, the COHERENT system writes raw process-accounting information into an
accounting file as each process terminates. Each entry in the accounting file, normally
/usr/adm/acct, has the following form, as defined in the header file acct.h:

struct acct {
char ac_comm[lO];
comp_ t ac_utime;
comp_ t ac_stime;
comp_ t ac_etime;
time - t ac_btime;
short ac_uid;
short ac_gid;
short ac _mem;
comp_ t ac _io;
dev t ac_tty;
char ac_flag;

} ;

/* Bits from ac_flag */
#define AFORK 01
#define ASU 02

/* has done fork, but not exec */
/* has used superuser privileges */

Every time a process performs an exec call, the contents of ac_comm are replaced with the
first ten characters of the file name. The fields ac_utime and ac_stime represent the CPU
time used in the user program and in the system, respectively. ac_etime represents the
elapsed time since the process started running, whereas ac_btime is the time the process

LEXICON

394 accton - acoso

started. The effective user id and effective group id are ac_uid and ac_gid. ac_mem gives
the average memory usage of the process. ac_io gives the number of blocks of input­
output. ac_tty gives the controlling typewriter device major and minor numbers.

For some of the above times. the acct structure uses the special representation comp_t,
defined in the header file types.h. It is a floating point representation with three bits of
base-8 exponent and 13 bits of fraction. so it fits in a short integer.

See Also
acct(), accton, header files, sa

accton - Command
Enable/disable process accounting
/etc/accton [file l

One of the accounting mechanisms available on the COHERENT system is process
accounting. also called shell accounting. Process accounting records each process, who
initiates it, and how long it takes to execute.

By issuing the command accton with aflle argument, you enable process accounting. The
system then writes raw accounting data into file, which normally should be
/usr/adm/acct. The command sa summarizes the resulting raw statistics. If issued with
no argument, accton disables process accounting.

accton is normally invoked by the initialization command file /etc/re.

Files
I usr I adm/ acct - Raw accounting data

See Also
ac, acct, acct.h, commands, init, sa

Notes
As the file /usr/adm/acct can become very large. special care should be taken if process
accounting is enabled on a COHERENT system with a small disk file system.

acosO - Mathematics Function (libm)
Calculate inverse cosine
#include <math.h>
double acos(arg) double arg;

acos calculates the inverse cosine. arg should be in the range of -1.0, 1.0. It returns the
result. which is in the range of from zero to radians.

Example
This example demonstrates the mathematics functions acos, asin, atan, atan2, cabs. cos,
hypot, sin, and tan.

#include <math.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;

LEXICON

{

}

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = O;

main()
{

}

extern char *gets();
double x;
char string[64];

for (; ;) {

}

printf ("Enter number: ");
if(gets(string) == NULL)

break;

x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

display(asin(sin(x)));
display(atan(tan(x)));
display(atan2(sin(x),cos(x)));
display(hypot(sin(x),cos(x)));
display(cabs(sin(x),cos(x)));

See Also
errno, errno.h, mathematics library, perror()

action.h - Header File
Describe parsing action and goto tables
#include <action.h>

action.h - address 395

action.h is a header that defines structures and manifest constants used in parsing and
goto tables.

See Also
header files

address - Definition
An address is the location where an item of data is stored in memory.

On the i8086, a physical address is a 20-bit number. The i8086 builds an address by left­
shifting a 16-bit segment address by four bits, and then adding it to a 16-bit offset address.
The segment address points to a particular chunk of memory. The i8086 uses four segment

LEXICON

396 aha154x

registers, each of which governs a different portion of a program, as follows:

CS Address of code segment
DS Address of data segment
ES Address of "extra" segment
SS Address of stack segment

SMALL-model programs use only the offset address; hence, their pointers are only 16 bits
long, equivalent to an int. LARGE-model programs use both segment and offset addresses.
Their addresses are 20 bits long. which must be stored in a 32-bit pointer, equivalent to a
long. COHERENT currently supports SMALL model.

On the M68000, an address is simply a 24-bit integer that is stored as a 32-bit integer. The
upper eight bits are ignored; this is not true with the more advanced microprocessors in
this family, such as the M68020. The M68000 uses no segmentation: memory is organized
as a "flat address space". with no restrictions set on the size of code or data.

On machines with memory-mapped I/O, such as the 68000, some addresses may be used
to control or communicate with peripheral devices.

Example
The following printes the address and contents of a given byte of memory.

#include <stdio.h>

main()
{

}

char byte= 'a';
printf("Address == %x\tContents

&byte, byte) ;

See Also
data formats, definitions, pointer

Notes

\"%c\"\n",

COHERENT is in i8086 SMALL model; thus, its addresses are 16 bits long.

aha154x - Device Driver
Adaptec AHA- l 54x device driver

The device driver ahal54x lets you use SCSI interface devices attached to an Adaptec AHA­
l 54x series host adapter. This driver has major number 13. It can be accessed either as a
block-special device or as a character-special device. The minor number specifies the device
and partition number for disk-type devices, letting you use up to eight SCSI-IDs. with up to
four logical unit numbers (LUNs) per SCSI-ID and up to four partitions per LUN.

The first open call on a SCSI disk device allocates memory for the partition table and reads
it into memory.

Controller Configuration
Prior to installing the Adaptec host adapter in your system. you must configure the 1/0
base address. interrupt vector, and DMA channel as follows:

LEXICON

I/O base address:
OMA channel:
Interrupt vector:

Ox330
5
IRQl 1

aha154x 397

In addition, if you are using any synchronous SCSI peripherals, disable the synchronous
transfer option on the Adaptec host adapter.

After verifying that your controller works with COHERENT, you may select an alternate I/0
base address or an alternate interrupt vector. Device-driver variables SDBASE_ and
SDIRQ_ correspond to the I/O base address and interrupt vector, respectively. See LeXicon
article hs for an example of how to configure a device driver.

When processing BIOS 1/0 requests prior to booting COHERENT. the Adaptec host adapter
uses translation mode drive parameters: number of heads, cylinders, and sectors per track.
Most current versions of the AHA- l 54x use values of 64 heads and 32 sectors per track,
and calculate the number of cylinders based upon drive capacity. Note that these numbers
are called "translation-mode" parameters because they have nothing to do with the
geometry of the physical drive. Some early versions of the AHA-154x, and some versions
distributed by Tandy, use 16 heads and 32 sectors per track. Device driver variable
SD_HDS_ is initialized to 64 as shipped; it should be patched to a value of 16 for adapters
whose BIOS code uses 16-head translation mode. The translation-mode parameters used
by the BIOS code present on your host adapter can be obtained using the dpb utility found
on the boot diskette of versions 3.2.0 and later of COHERENT. Note that the BIOS code is
executed by COHERENT only during initial bootstrap. After that, drive parameters are of no
consequence since SCSI I/0 requests are based upon logical block number, rather than on
cylinder /head I sector addressing.

The installation procedure for COHERENT versions 3.2.0 and later patches all necessary
variables for the accompanying version of the ahal54x driver by executing the command:

/etc/rnkdev scsi

Minor Device Numbers
The minor device number is decoded as follows:

Bit number:
Meaning:

7 6 5 4 3 2 1 0
S I I I L L P P

where S indicates the "special" bit, III indicates a three-bit field containing the SCSI-ID in
the range of zero through seven, LL indicates a two-bit field containing a LUN in the range
of zero through three, and PP indicates a two-bit field that contains either a partition
number for disk-type devices or a set of special modes for devices other than disks.

The "special" bit and the partition number interact as follows:

Description S Bit pp Device Type
partition a 0 00 /dev/sd?a disk
partition b 0 01 /dev/sd?b disk
partition c 0 10 /dev/sd?c disk
partition d 0 11 /dev/sd?d disk
partition table 1 00 /dev/sd?x disk
no rewind 1 01 /dev/sd?n tape
RESERVED 1 10
rewind on close 1 11 /dev/sd? tape

LEXICON

398 alarmO - alarm20

Loading the Driver
The ahal54x loadable device driver must be loaded on a system that does not have a SCSI
hard disk as the root device. To do so. use the command /etc/drvld. as follows:

/etc/drvld. -r /drv/ahal54x

Files
I dev I sd* - block-special devices
I dev I rsd* - character-special devices

See Also
device drivers, drvld, scsi

Notes
This release of the ahal54x device driver only supports disk-type devices. A future version
of the driver will add support for tape-type and other devices.

alarmO - System Call
Set a timer
alann(n)
unsignedn;

alann sets a timer associated with the requesting process to go off in n seconds. After n
seconds. the system sends the signal SIGALARM to the process. An argument of zero turns
off the alarm timer.

By default. the receipt of the SIGALARM signal terminates the process. However. it may be
caught or ignored by using signal. Because of scheduling variation and the one second
granularity. the action of alarm is predictable only to within one second.

alann is useful for such things as timeouts. For example. the login process on a dial-in
port might hang up the line after a sufficient time has elapsed with no user response.

alann returns the previous alarm value, which represents the time remaining from the
previous call. Time remaining is superseded by the new alarm value.

See Also
alann2(), signal(), sleep(), system calls

alarm20 - System Call
Set an alarm
long
alann2(n)
long n;

alann2 sends signal SIGALARM to the requesting process after n clock ticks. The number
of clock ticks per second set by the manifest constant HZ found in header file const.h. At
present. this is set to 100 ticks per second.

alann2 returns the number of ticks remaining before the previous request would have
triggered an alarm, or zero if no alarm was previously set.

By default. the receipt of the SIGALARM terminates the process. However, it may be caught
or ignored by using signal().

LEXICON

See Also
alarm(), signal(), sleep(), system calls

alias - Command
Set an alias
alias [name[=value ... JJ

alias - aliases 399

The command alias is used by the Korn shell ksh to set or display an alias.

When called without an argument. alias lists all aliases that have been set so far. When
called with a name argument alone. it lists alias of name, assuming one has been set.

When called with one or more arguments of the form name=value, it established name as an
alias for the command value. For example, the command

alias FOO="echo bar"

establishes the string FOO as an alias for the command echo bar. Thereafter, when you
type FOO on the shell's command line, it will execute the command echo bar and so echo
the string bar on your terminal.

The Korn shell sets a number of aliases by default. See the Lexicon entry for ksh for a list
of these aliases and their settings.

See Also
commands, ksh, unalias

aliases - Technical Information
File of users' aliases
I usr /lib I mail/ aliases
$HOME/ .aliases
$HOME/ .forward

aliases is a file that holds aliases by which users on your system and other systems are
known. An "alias". in effect, gives another name by which you can address a mail message
to a user on either your or another system. It can serve as a mnemomic, a "mailing list••. or
to spare you the trouble of typing a complicated UUCP path name.

The format of each alias is

alias name: target

where alias_ name gives the alias to which you mail your message, and target is the place
where small actually directs the message. target can be a login identifier on your local
system; a mail address of a user on another system, or a cluster of users on your system,
on remote systems, or both.

small ignores differences in case when it compares a name with an alias. Lines that start
with a white-space character continue from the previous line. small ignores strings within
parentheses, as well as any text that appears after a pound sign '#'.

Prior to delivering local mail, small checks file $HOME/ .forward for forwarding
instructions. This feature can be used to forward inbound mail for a user to another
machine or even a group of machines.

Examples
The following gives an example form of aliases:

LEXICON

400 aliases

this whole line is a comment

"mail programmers" sends mail to local users joe, jack, and bill
programmers1 joe jack bill

same as above
programmers:

same as above
programmers

same as above
programmers

joe jack
bill

joe jack
bill

Joe Smith
Jack Thomas

joe
jack
bill # Bill Williams

and yet another way; note use of parentheses to comment text
programmers joe (Joe Smith) jack (Jack Thomas)

bill (Bill Williams)

send a message to someone on another system
joe1 bostonlwidgetljs

send a message to users on both your
programmers: boston!widgetljs

chicagolgadgetljt
bill

and another system
Joe Smith
Jack Thomas
Bill Williams

all members of "programmers" group work at site "widget"
programmerslwidget joe jack bill

Mailing lists are easily handled by two forms of file inclusion. The first form is the same as
is supported by sendmail:

fredlist :include:/usr/lib/mail/fredlist

smail adds each entry in /usr/lib/mail/fredlist to the alias for fredlist.

The second form allows /usr/lib/mail/aliases to include other aliases files:

:include:/usr/lib/mail/morealiases

This adds the contents of /usr/lib/mail/morealiases to those of /usr/lib/mail/aliases as
a regular alias me.

All aliases are recursive, so you must be careful when defining them. For example, the
entries

bills
joe1

joe
bill

causes an infinite loop. smail attempts to prevent infinite loops, and to guess what you
intended to do. The following example illustrates how an alias can be used to deliver mall
to a remote user as well as to a local user having the same name as the alias being
expanded. small expands the alias

LEXICON

mylogin1

to

mypclmylogin mylogin

alignment - ar 401

mypclmylogin mylogin

even though the second occurrence of mylogin matches the alias name.

Both forms of file inclusion are recursive, too. and may lead to infinite loops if handled
carelessly.

See Also
mail, technical information

alignment - Definition
Alignment refers to the fact that some microprocessors require the address of a data entity
to be aligned to a numeric boundary in memory so that address modulo number equals
zero. For example. the M68000 and the PDP-11 require that an integer be aligned along an
even address, i.e., address%2==0.

Generally speaking. alignment is a problem only if you write programs in assembly
language. For C programs. COHERENT ensures that data types are aligned properly under
foreseeable conditions. You should, however, beware of copying structures and of casting a
pointer to char to a pointer to a struct, for these could trigger alignment problems.

Processors react differently to an alignment problem. On the VAX or the i8086, it causes a
program to run more slowly. whereas on the M68000 it causes a bus error.

See Also
data types, definitions

alloc.h - Header File
Define the allocator
#include <sys/alloc.h>

alloc.h defines manifest constants and structures that are used internally with memory
allocation.

See Also
header mes

ar-Command
The librarian I archiver
ar option [mod.!fter](positlon] archive [member ... J

The librarian ar edits and examines libraries. It combines several files into a file called an
archive or library. Archives reduce the size of directories and allow many files to be handled
as a single unit. The principal use of archives is for libraries of object files. The linker Id
understands the archive format. and can search libraries of object files to resolve undefined
references in a program.

The mandatory option argument consists of one of the following command keys:

d Delete each given member from archive. The ranllb header is updated if present.

m Move each given member within archive. If no mod.!fter is given, move each member to
the end. The ranlib header is modified if present.

LEXICON

402 ar.h

p Print each member. This is useful only with archives of text files.

q Quick append: append each member to the end of archive unconditionally. The ranlib
header is not updated.

r Replace each member of archive. If archive does not exist. create it. The optional
modifier specifies how to perform the replacement, as described below. The ranlib
header is modified if present.

t Print a table of contents that lists each member specified. If none is given, list all in
archive. The modifier v tells ar to give you additional information.

x Extract each given member and place it into the current directory. If none is specified,
extract all members. archive is not changed.

The modifier may be one of the following. The modifiers a, b, i. and u may be used only with
them and r options.

a If member does not exist in archive, insert it after the member named by the given
position.

b If member does not exist in archive, insert it before the member named by the given
position.

c Suppress the message normally printed when ar creates an archive.

i If member does not exist in archive, insert it before the member named by the given
position. This is the same as the b modifier, described above.

k Preserve the modify time of a file. This modifier is useful only with the r, q. and x
options.

s Modify an archive's ranlib header, or create it if it does not exist. This is used only
with the r, m, and d options.

u Update archive only if member is newer than the version in the archive.

v Generate verbose messages.

All archives are written into a specialized file format. Each archive starts with a "magic
number" called ARMAG. which identifies the file as an archive. The members of the archive
follow the magic number: each is preceded by an ar_hdr structure. For information on this
structure, see ar.h. The structure is followed the data of the file, which occupy the number
of bytes specified by the variable ar_size.

See Also
ar.h, commands, Id, nm, ranlib

Notes
It is recommended that each object-file library you create with ar have a name that begins
with the string lib. This will allow you to call that library with the -1 option to the cc
command.

ar.h - Header File
Format for archive files
#include <ar.h>

An archive is a file that has been built from a number of files. Archives are maintained by
the ar command. Usually. an archive is a library of object files used by the linker Id.

The header ar.h describes the format of an archive. All archives start with a magic number

LEXICON

arena - argc 403

ARMAG. which identifies the file as an archive. The members of the archive follow the
magic number, each preceded by the structure ar_hdr:

#define DIRSIZ 14 /* from <dir.h> */
#define ARMAG 0177535 /* magic number */

struct ar hdr {
char ar_name[DIRSIZ); /* member name */
time t ar_date; /* time inserted */
short ar_gid; /* group owner */
short ar_uid; /* user owner */
short ar_mode; /* file mode */
size t ar _size; /* file size */ -

} ;

The structure at the head of each member is immediately followed by ar_size bytes. which
are the data of the file.

To enhance the performance of Id, the command ranlib provides a random library facility.
ranlib produces archives that contain a special entry named _ _ .SYMDEF at the beginning.

All integer members of the structure (everything but ar_name) are in canonical form to ease
portability. See canon.h for more information.

See Also
ar, canon.h, header files, Id, ranlib

arena - Definition
An arena is the area of memory that is available for a program to allocate dynamically at
run time. It is divided into allocated and unallocated blocks. The unallocated blocks
together form the "free memory pool".

Portions of the arena can be allocated using the functions malloc, calloc. or realloc;
returned to the free memory pool With free: or checked to see if they are allocated or not
with notmem. To check whether the arena has been corrupted or not, use the function
memok.

See Also
calloc(), definitions, free(), malloc(), memok(), notmem(), realloc()

argc - C Language
Argument passed to main()
int argc;

argc is an abbreviation for "argument count". It is the traditional name for the first
argument to a C program's main routine. By convention, it holds the number of arguments
that are passed to main in the argument vector argv. Because argv[O] is always the name of
the command, the value of argc is always one greater than the number of command-line
arguments that the user enters.

Example
For an example of how to use argc, see the entry for argv.

LEXICON

404 argv - array

See Also
argv, C language, envp, main()

argv - C Language
Argument passed to main()
char •argv[];

argv is an abbreviation for "argument vector". It is the traditional name for a pointer to an
array of string pointers passed to a C program·s main function; by convention, it is the
second argument passed to main. By convention, argv[O] always points to the name of the
command itself.

Example
This example demonstrates both argc and argv(J, to recreate the command echo.

main(argc, argv)
int argc; char *argv[];
{

}

int i;

for (i = l; i < argc;) {
printf("%s", argv[i]);
if (++i < argc)

putchar(' ');
}

putchar('\n');
exit(O);

See Also
argc, C language, envp, main()

array - Definition
An array is a concatenation of data elements, all of which are of the same type. All the
elements of an array are stored consecutively in memory. and each element within the array
can be addressed by the array name plus a subscript.

For example, the array int foo[3) has three elements, each of which is an int. The three
ints are stored consecutively in memory, and each can be addressed by the array name foo
plus a subscript that indicates its place within the array, as follows: foo[O], foo[l), and
foo[2). Note that the numbering of elements within an array always begins with 'O'.

Arrays, like other data elements, may be automatic (auto), static. or external (extern).

Arrays can be multi-dimensional; that is to say. each element in an array can itself be an
array. To declare a multi-dimensional array, use more than one set of square brackets. For
example, the multi-dimensional array foo[3][10) is a two-dimensional array that has three
elements, each of which is an array of ten elements. The second sub-script is always
necessary in a multi-dimensional array. whereas the first is not. For example. the form
foo[][lO) is acceptable, whereas foo[lOJ[J is not. The first form is an indefinite number of
ten-element arrays, which is correct C, whereas the second form is ten copies of an
indefinite number of elements, which is illegal.

You can initialize automatic arrays and structures, provided that you know the size of the
array, or of any array contained within a structure. An automatic array is initialized in the

LEXICON

as 405

same manner as aggregate, but initialization is performed on entry to the routine at run
time, instead of at compile time.

Flexible Arrays
A flexible array is one whose length is not declared explicitly. Each has exactly one empty
'()' array-bound declaration. If the array is multidimensional. the flexible dimension of the
array must be thejlrst array bound in the declaration; for example:

int examplel[][20]; /*RIGHT*/
int example2 [2 O] [] ; /* WRONG *I

The C language allows you to declare an indefinite number of array elements of a set length.
but not a set number of array elements of an indefinite length.

Flexible arrays occur in only a few contexts; for example, as parameters:

char *argv[];
char p [] [8] ;

as extern declarations:

extern int end[];

or as a member of a structure - usually. though not necessarily. the last:

struct nlist {

};

Example

struct nlist *next;
char name [] ;

The following program initializes an automatic array, and prints its contents.

main()
{

}

int foo[3] = { 1, 2, 3 };

printf("Here's foo's contents: %d %d %d\n",
foo[O], foo[l], foo[2]);

See Also
definitions, initialization, struct
The C Programming Language, pages 25, 83, 210

as -Command
i80X86 assembler
as [-glx) [-Qfile]file ...

as is the Mark Williams assembler. It is a multipass assembler that turns files of assembly
language into relocatable object modules similar to those produced by the compiler. as is
designed for writing small assembly-language subroutines. Because it is not intended to be
used for full-scale assembly-language programming. it lacks many of the more elaborate
facilities of full-fledged assemblers. For example, there are no facilities for conditional
compilation or user-defined macros. However, it does optimize span-dependent instructions
(for example, branches).

LEXICON

406 as

Features
as includes the following features:

It automatically compiles jump instructions into either regular (three-byte) jumps or
short (two-byte) jumps, whichever is required. There is no explicit short jump
instruction.

The assembler supports temporary labels, which conserves symbol table space and
relieves you of having to invent many unique labels.

Program modules are relocatable. They can be linked with each other and with C
program modules produced by the COHERENT compiler. All assembled modules must
be linked before they can be executed.

The assembler does not support file inclusion, but multiple source files can be
concatenated and assembled by including their names in the command line to run the
assembler.

The assembler generates SMALL model objects in the COHERENT I.out object format.

Usage
Normally. the assembler is invoked via the cc command, which will automatically assemble
and link any file of source code that has the suffix .s. If you wish, however, you can invoke
the assembler as a separate program, by using the following command line:

as [-glx] [-o file Jjlle ...

The named files are concatenated and the resulting object code is written to the file specified
by the -o option, or to file I.out if no -o option is given.

The option -g causes all symbols that are undefined at the end of the first pass to be given
the type undefined external, as though they had been declared with a .giobI directive.

The option -I tells the assembler to generate a listing. It writes the listing to the standard
output. normally the terminal; it may be easily redirected to a file or printer using the >
operator.

The option -x strips from the symbol table of the object module all non-global symbols that
begin with the character 'L'. This speeds up the loading of files by removing compiler­
generated labels from the symbol table.

Register Names
The following lists the identifiers that represent the i8086 machine registers, which are
predefined:

AX

BX
ex
DX

SP
BP
SI
DI

AL

BL
CL
DL

Lexical Conventions

AH
BH
CH
DH

cs
DS
ES
SS

Assembler tokens consist of identifiers (also known as "symbols" or "names"), constants,
and operators.

An identifier is a sequence of alphanumeric characters (including the period · .' and the
underscore'_'). The first character must not be numeric. Only the first 16 characters of the
name are significant; the assembler throws away the remainder. Upper case and lower case
are different. The machine instructions, assembly directives, and built-in symbols that are
used frequently are in lower case.

LEXICON

as 407

Numeric constants are defined by the assembler by using the same syntax as the C
compiler: a sequence of digits that begins with a zero 'O' is an octal constant; a sequence of
digits with a leading 'Ox' is a hexadecimal constant ('A' through 'F' have the decimal values
10 through 15); and any strings of digits that do not begin with 'O' are interpreted as
decimal constants.

A character constant consists of an apostrophe followed by an ASCII character. The
constant's value is the ASCII code for the character, right-justified in the machine word.
For example, an instruction to move the letter 'A' to the register al could be expressed in
either of two equivalent ways:

mov al,$0x41
mov al,$ 'A

The dollar sign indicates an immediate operand.

A blank space can be represented either Ox20 (its ASCII value in hexadecimal), or as an
apostrophe followed by a space ('). which on paper looks like just an apostrophe alone.

The following gives the multi-character escape sequences that can be used in a character
constant to represent special characters:

\b Backspace (0010)
\f Formfeed (0014)
\n Newline (0012)
\r Carriage return (0015)
\t Tab (0011)
\v Vertical tab (0013)
\nnn Octal value (Onnn)

A blank space can be represented either as Ox20 (its ASCII value in hexadecimal). or as an
apostrophe followed by a space('), which on the page would look like just an apostrophe.

Blanks and Tabs
Blanks and tab characters may be used freely between tokens, but not within identifiers. A
blank or a tabulation character is required to separate adjacent tokens not otherwise
separated, e.g .. between an instruction opcode and its first operand.

Comments
Comments are introduced by a slash (' /'} and continue until the end of the line. All
characters in comments are ignored by the assembler.

Program Sections
The assembler permits you to divide programs into sections. each corresponding (roughly)
to a functional area of the address space. Each program section has its own location
counter during assembly. There are eight program sections, subdivided into three groups
containing code, data and tables:

LEXICON

408 as

code:

data:

tables:

shri
bssi
prvi
prvd
shrd
bssd
strn
symt

Shared instruction
Uninitialized instruction
Private instruction
Private data
Shared data
Uninitialized data
Strings
Symbol table

All Mark Williams assemblers use the same set of sections. This increases the portability of
programs between operating systems. Not all the sections are distinct under COHERENT,
however; the meanings of the sections under (including hints as to how the C compiler uses
them) are as follows:

shri (shared instruction) is the same as prvi (private instruction); the adjective shared refers
to the sharing of physical memory between two or more concurrent processes. prvi is used
for all code generated by the C compiler.

Similarly, there is no distinction between shrd and prvd. The compiler uses the latter for all
external and static data that are explicitly initialized in a C program.

Uninitialized sections are actually initialized to zeros. The reason is that the C compiler
uses the bssd (uninitialized data) section for external or static data that are not explicitly
initialized: the C language guarantees that these data are in fact initialized to zeros. The
bssi (uninitialized instruction) section is not used by the compiler.

The strn (strings) section is actually a special part of the data section. used by the C
compiler to store string constants. It is synonymous with prvd under COHERENT.

The symt (symbol table) section contains the symbol table used by the linker. Both the C
compiler and the assembler generate symbol tables that go in this section.

In most cases, you need not worry about what all these program sections are, and can
simply write code under the keyword .prvi or .shrl. and write data under the keyword .prvd
or .shrd. You are advised not to place items in the symt section, as this section is used for
internal communication among the C compiler. the assembler, and the linker.

At the end of assembly. the sections of a program are concatenated so that in the assembly
listing the program looks like a monolithic block of code and data. All code sections are
combined into the i8086 code segment, and all data sections into the i8086 data segment.
The symbol table is not linked when the program is executed. and so is not assigned to any
i8086 segment.

The Current Location
The special symbol '.' (period) is a counter that represents the current location. The current
location can be changed by an assignment; for example:

. =.+START

The assignment must not cause the value to decrease, and it must not change the program
section, i.e., the right-hand operand must be defined in the same section as the current
section.

Expressions
An expression is a sequence of symbols representing a value and a program section.
Expressions are made up of identifiers, constants. operators. and brackets. All binary
operators have equal precedence and are executed in a strict left-to-right order (unless

LEXICON

as 409

altered by brackets).

Notice that square brackets, '[' and ')', group expression elements, because parentheses are
used for indexed register addressing.

Types
Every expression has a type determined by its operands. The simplest operands are
symbols. The types of symbols are as follows:

Undefined

Absolute

Register

Relocatable

A symbol is defined if it is a constant or a label, or when assigned a defined
value; otherwise, it is undefined. A symbol may become undefined if it is
assigned the value of an undefined expression. It is an error to assemble
an undefined expression in pass 2. Pass 1 allows assembly of undefined
expressions, but phase errors may be produced if undefined expressions
are used in certain contexts, such as in a .blkw or .blkb.

An absolute symbol is one defined ultimately from a constant or from the
difference of two relocatable values.

These are the machine registers.

All other user symbols are relocatable symbols in some program section.
Each program section is a different relocatable type.

Each keyword in the assembler has a secret type that identifies it internally; however, all of
these secret types are converted to absolute in expressions. Thus, any keyword may be
used in an expression to obtain the basic value of the keyword. This is useful when
employing the keywords that define machine instructions. The basic value of a machine
operation is usually the opcode with any operand-specific bits set to zero.

Notice that the type of an expression does not include such attributes as length (word or
byte), so the assembler will not remember whether you defined a particular variable to be a
word or a byte. Addresses and constants have different types. but the assembler does not
treat a constant as an immediate value unless it is preceded by a dollar sign '$'. If you use
a constant where an address is expected. as will treat the constant like an address (and vice
versa). It is up to you to distinguish between variables and addresses or immediate values.

Operators
The following figure shows various characters interpreted as operators in expressions.

+

•

Addition
Subtraction
Multiplication
Unary negation
Unary complement
Type transfer
Segment construction

You can group expressions by means of square brackets ('[' and Tl: parentheses are
reserved for use in address mode descriptions.

Type Propagation
When operands are combined in expressions, the resulting type is a function of both the
operator and the types of the operands. The operators '•', ·-', and unary ·-· can only
manipulate absolute operands and always yield an absolute result.

The operator·+· signifies the addition of two absolute operands to yield an absolute result,
and the addition of an absolute to a relocatable operand to yield a result with the same type

LEXICON

410 as

as the relocatable operand.

The binary operator·-· allows two operands of the same type. including relocatable, to be
subtracted to yield an absolute result. It also allows an absolute to be subtracted from a
relocatable, to yield a result with the same type as the relocatable operand.

The binary operator " yields a result with the value of its left operand and the type of its
right operand. It may be used to create expressions (usually intended to be used in an
assignment statement) with any desired type.

Statements
A program consists of a sequence of statements separated by newlines or by semicolons.
There are four kinds of statements: null statements. assignment statements, keyword
statements. and machine instructions.

Labels
You can precede any statement by any number of labels. There are two kinds of labels:
name labels and temporary labels.

A name label consists of an identifier followed by a colon (:). The program section and value
of the label are set to that of the current location counter. It is an error for the value of a
label to change during an assembly. This most often happens when an undefined symbol is
used to control a location counter adjustment.

A temporary label consists of a digit (0 to 9) followed by a colon (:). Such a label defines
temporary symbols of the form xf and xb, where x is the digit of the label. References of
the form xf refer to the first temporary label x: forward from the reference; those of the form
xb refer to the first temporary label x: backward from the reference. Such labels conserve
symbol table space in the assembler.

Null Statements
A null statement is an empty line, or a line containing only labels or a comment. Null
statements can occur anywhere. They are ignored by the assembler, except that any labels
are given the current value of the location counter.

Assignment Statements
An assignment statement consists of an identifier followed by an equal sign '=' and an
expression. The value and program section of the identifier are set to that of the expression.
Any symbol defined by an assignment statement may be redefined, either by another
assignment statement or by a label. An assignment statement is equivalent to the equ
keyword statement found in many assemblers.

Assembler Directives
Assembler directives give instructions to the assembler. Each directive keyword begins with
a period, and in general they are followed by operands.

The following directives change the current program section to the named section:

.bssd

.bssi

.prvd

.prvi

.shrd

.shri

.strn

.symt

LEXICON

as 411

The current location counter is set to the highest previous value of the location counter for
the selected section.

The following describes the directives in detail.

.ascii string
The first non-white space character, typically a quotation mark, after the keyword is
taken as a delimiter. as assembles successive characters from the string into
successive bytes until it encounters the next instance of this delimiter. To include
a quotation mark in a string. use some other character for the delimiter.

It is an error for a newline to be encountered before reaching the final delimiter.
You can use a multi-character constant in the string to represent newlines and
other special characters .

. blkb expression
Assemble a block of bytes that are filled with zeroes. The block is expression bytes
long .

• blkwexpression
Assemble a block of words that are filled with zeroes. The block is expression words
long .

. byte expression[, expression]
The expressions in the list are truncated to byte size and assembled into successive
bytes. Expressions in the list are separated by commas .

. even Force alignment by inserting a null byte of data. if necessary. to set the location
counter to the next even location .

. odd Force alignment by inserting a null byte of data. if necessary. to set the location
counter to the next odd location .

. globl Identifier [, identifier I
The identifiers in the comma-separated list are marked as global. If they are
defined in the current assembly. they may be referenced by other object modules; if
they are undefined, they must be resolved by the linker before execution .

. page Force the printed listing of your assembly-language program to skip to the top of a
new page by inserting a form-feed character into the file. The title is printed at the
top of the page .

. title string
Print string at the top of every page in the listing. This directive also causes the
listing to skip to a new page .

. word expression[, expression]
Truncate expressions to word length and assemble the resulting data into
successive words. Expressions in the list are separated by commas.

Address Descriptors
The following syntax is used for general source and destination address descriptors. The
symbol 'r' refers to a register and the symbol 'e' to an expression. Please refer to the
following figure.

LEXICON

412 as

Syntax Addressing Mode Example

r Register mov ax, ex
e Direct address mov ax,0800
(r) Indexing. no displacement mov ax, (bx)
e(r) Indexing with displacement mov ax, 2(bx)
(r,r) Double indexing. no displacement mov ax, (bx, si)
e(r,r) Double indexing with displacement mov ax, 2(bx, si)
$e Immediate mov ax, $0800

Note that the dollar sign is always used to indicate an immediate value, even if the
expression is a constant.

A direct address is interpreted as either a direct address or a PC-relative displacement,
depending on the requirements of the instruction.

If an address descriptor indicates an indexing mode and the base expression is of type
absolute, the assembler uses the shortest displacement length (zero, one, or two bytes) that
can hold the expression's value. Relocatable base expressions, whose values cannot be
completely determined until the program is loaded, are always assigned two-byte
dis placements.

Any address descriptor may be modified by a segment escape prefix. A segment escape
prefix consists of a segment register name followed by a colon ':'. The escape causes the
assembler to produce a segment override prefix that uses the specified segment register as
an operand. The assembler does not produce segment override prefixes unless explicitly
required by an instruction.

8086 Instructions
The following machine instructions are defined. The examples illustrate the general syntax
of the operands. Combinations that are syntactically valid may be forbidden for semantic
reasons.

The examples use the following references:

a General address
al AL register
ax AX register
cl CL register
d Direct address
dx DX register
e Expression
$e Immediate expression
m Memory address (not an immediate)
p Port address

as treats as ordinary one-byte machine operations some operations that the Intel assembler
ASM86 handles with special syntax; these include the lock and repeat prefixes. as makes
no attempt to prevent the generation of incorrect sequences of these prefix bytes.

Although every machine operation has a type and value associated with it, in most cases
the value was chosen to help as format the machine instructions.

For more information on these instructions. see the Intel ASM86 Assembly Language
Reference Manual.

aaa ASCII adjust AL after addition

LEXICON

as 413

aad ASCII adjust AX before division
aam ASCII adjust AX after multiply
aas ASCII adjust AL after subtraction
a deb r, a Add with carry. byte
ade r, a Add with carry. word
adeb a, r Add with carry. byte
ade a, r Add with carry. word
adeb a, $e Add with carry. byte
ade a,$e Add with carry. word
addb r, a Add, byte
add r, a Add. word
addb a, r Add, byte
add a, r Add, word
addb a,$e Add, byte
add a,$e Add, word
an db r, a Logical and. byte
and r, a Logical and, word
an db a, r Logical and, byte
and a, r Logical and. word
an db a, $e Logical and. byte
and a, $e Logical and, word
call d Near call. PC-relative
ebw Convert byte into word
ele Clear carry flag
eld Clear direction flag
ell Clear interrupt flag
eme Complement carry flag
empb r, a Compare two operands. byte
cmp r, a Compare two operands. word
empb a, r Compare two operands. byte
cmp a, r Compare two operands. word
empb a,$e Compare two operands. byte
emp a,$e Compare two operands, word
emps Compare string operands, bytes
empsb Compare string operands. bytes
empsw Compare string operands. words
ewd Convert word to double
daa Decimal adjust AL after addition
das Decimal adjust AL after subtraction
deeb a Decrement by one, byte
dee a Decrement by one. word
di vb m Unsigned divide, byte
div m Unsigned divide. word
ese a EscapeOxD8
hit Halt
ieall a Near call. absolute offset at EA word
idivb m Signed divide. byte
idiv m Signed divide, word
ijmp a Jump short. absolute offset at EA word
imulb m Signed multiply. byte
imul m Signed multiply. word
inb al,p Input. byte
in ax,p Input. word
inb al, dx Input. byte

LEXICON

414 as

in ax, d.x Input, word
inch a Increment by one, byte
inc a Increment by one, word
int e Call to interrupt
into Call to interrupt, overflow
fret Interrupt return
ja d Jump short if greater
jae d Jump short if greater or equal
jb d Jump short if less
jbe d Jump short if less or equal
jc d Jump short if carry
jcxz d Jump short if ex equals zero
je d Jump short if equal to
jg d Jump short if greater
jge d Jump short if greater or equal
jl d Jump short if less
jle d Jump short if less or equal
jmp d Jump short, PC-relative word offset
jmpb d Jump short, PC-relative byte offset
jmpl d Jump long
jna d Jump short if not above
jnae d Jump short if not above or equal
jnb d Jump short if not below
jnbe d Jump short if not below or equal
jnc d Jump short if not carry
jne d Jump short if not equal
jng d Jump short if not greater
jnge d Jump short if not greater or equal
jnl d Jump short if not less
jnle d Jump short if not less or equal
jno d Jump short if not overflow
jnp d Jump short if not parity
jns d Jump short if not sign
jnz d Jump short if not zero
Jo d Jump short if overflow
Jp d Jump short if parity
jpe d Jump short if parity even
jpo d Jump short if parity odd
js d Jump short if sign
jz d Jump short if zero
lahf Load flags into AH register
Ids r, a Load double pointer into DS
lea r, a Load effective address offset
les r, a Load double pointer into ES
lock Assert BUS LOCK signal
lodsb Load byte into AL
lods Load byte into AL
lodsw Load byte into AL
loop d Loop; decrement ex. jump short

if ex less than zero
loope d Loop; decrement ex. jump short

if CZ not zero and equal
loopne d Loop; decrement ex. jump short

if CX not zero and not equal

LEXICON

as 415

loopnz d Loop: decrement ex. jump short
if CZ not zero and ZF equals zero

loopz d Loop: decrement ex. jump short
if CX not zero and zero

mo vb r, a Move, byte
mov r, a Move, word
movb a, r Move, byte
mov a, r Move, word
movb a, $e Move, byte
mov a, $e Move, word
mo vb a,s Move, byte
mov a,s Move, word
movb S, a Move. byte
mov s, a Move. word
movsb Move string byte-by-byte
mo vs Move string word-by-word
movsw Move string word-by-word
mulb m Multiply, byte
mul m Multiply. word
negb a Two's complement negation. byte
neg a Two's complement negation, word
nop No operation
notb a One's complement negation, byte
not a One's complement negation, word
orb r, a Logical inclusive OR, byte
or r, a Logical inclusive OR. word
orb a, r Logical inclusive OR, byte
or a, r Logical inclusive OR. word
orb a, $e Logical inclusive OR. byte
or a, $e Logical inclusive OR, word
outb p. al Output to port, byte
out p.ax Output to port, word
outb dx, al Output to port, byte
out dx,ax Output to port, word
pop m Pop a word from the stack
pop s Pop a word from the stack
po pf Pop from stack into flags register
push m Push a word onto the stack
push s Push a word onto the stack
pus hf Push flags register onto the stack
re lb a,$1 Rotate left $ 1 times, byte
re lb a, cl Rotate left CL times. byte
rel a, $1 Rotate left $1 times. word
rel a, cl Rotate left CL times, word
rerb a, $1 Rotate right $1 times. byte
rerb a, cl Rotate right CL times, byte
rer a,$1 Rotate right $1 times, word
rer a, cl Rotate right CL times. word
rep Repeat following string operation
repe Find nonmatching bytes
repne Repeat, not equal
repnz Repeat. not equal
repz Repeat, equal
ret Return from procedure

LEXICON

416 as

rolb a, $1 Rotate left, byte
rolb a, cl Rotate left, byte
rol a,$1 Rotate left, word
rol a, cl Rotate left, word
rorb a, $1 Rotate right. byte
rorb a, cl Rotate right, byte
ror a, $1 Rotate right, word
ror a, cl Rotate right, word
sahf Store AH into flags
salb a,$1 Shift left, byte
salb a, cl Shift left, byte
sal a,$1 Shift left, word
sal a, cl Shift left, word
sarb a,$1 Shift right, byte
sarb a, cl Shift right, byte
sar a,$1 Shift right, word
sar a, cl Shift right, word
sbbb r, a Integer subtract with borrow, byte
sbb r, a Integer subtract with borrow, word
sbbb a, r Integer subtract with borrow, byte
sbb a, r Integer subtract with borrow, word
sbbb a,$e Integer subtract with borrow, byte
sbb a, $e Integer subtract with borrow. word
scasb Compare string data, byte
seas Compare string data, word
shlb a,$1 Shift left, byte
shlb a, cl Shift left, byte
shl a,$1 Shift left. word
shl a, cl Shift left, word
shrb a, $1 Shift right, byte
shrb a, cl Shift right, byte
shr a,$1 Shift right, word
shr a, cl Shift right, word
stc Set carry flag
std Set direction flag
sti Set interrupt enable flag
stosb Store string data, byte
stos Store string data. byte or word
stosw Store string data. word
subb r, a Integer subtraction, byte
sub r, a Integer subtraction. word
subb a, r Integer subtraction, byte
sub a, r Integer subtraction, word
subb a,$e Integer subtraction, byte
sub a,$e Integer subtraction, word
testb r, a Logical compare, byte
test r, a Logical compare, word
testb a, r Logical compare, byte
test a, r Logical compare, word
testb a,$e Logical compare, byte
test a, $e Logical compare, word
wait Wait until BUSY pin is inactive
xcall d,d Far call, immediate four-byte address
xchgb r, a Exchange memory, byte

LEXICON

as 417

xchg r, a Exchange memory, word
xi call Far call. address at EA double word
xijmp Jump far, address at memory double word
xjmp d,d Jump far, immediate four-byte address
xlat Table look-up translation
xorb r, a Logical exclusive OR. byte
xor r, a Logical exclusive OR, word
xorb a, r Logical exclusive OR. byte
xor a, r Logical exclusive OR. word
xorb a,$e Logical exclusive OR. byte
xor a, $e Logical exclusive OR. word
xret Return, intersegment

80286 Instructions
The following instructions implement 80286-specific actions. Programs that use them
cannot be run on 8086-based machines.

pus ha Push all general registers
po pa Pop all general registers

insb Input byte from port DX to ES:(Dl)
ins Input word from port DX to ES:(Dl)
outsb Output byte from port DX from ES:(Dl)
outs Output word from port DX from ES:(Dl)

enter $e,$e Make stack frame for procedure
leave Tear down stack frame for procedure

bound r, e Check array index against bounds

sldt a Store Local Descriptor Table Register
str a Store Task Register
lldt a Load Local Descriptor Table Register
ltr a Load Task Register
verr a Verify a segment for reading
verw a Verify a segment for writing

sgdt m Store Global Descriptor Table register
sidt m Store Interrupt Descriptor Table register
lgdt m Load Global Descriptor Table register
lldt m Load Interrupt Descriptor Table register
smsw a Store Machine Status Word
lmsw a Load Machine Status Word

lar r,a Load access rights byte
Isl r,a Load segment limit

cits Clear Task Switched Flag
arpl Adjust RPL field of Selector

push $e Push sign extended byte
Also the $1 forms become $eon rol. rolb, ror. rorb, sal, salb, shrb, shr. and shrb. This is
because 8086 task of shifting and rotating by an immediate value could only take an
immediate value of 1; however, on the 80286 the immediate value may be up to 31.

LEXICON

418 as

i8087 Op Codes
The assembler can also generate object files for use with the i8087 mathematics co­
processor. The following listing presents the assembly language op codes for this feature.
stO indicates floating point register 0 and stl indicates any floating point register but O; dis
the same as in the above listing.

d Direct address
stO Floating point register 0
stl Any floating point register except 0

The following lists the i8087 instructions:

LEXICON

fabs
fadd
fadd
ft'add
fdadd
faddp
faddp
ibid
tbstp
fchs
fclex
fnclex
fcom
ff com
fdcom
fcomp
fcomp
ffcomp
fdcomp
fcompp
fdecstp
fdisi
fndisi
fdiv
fdiv
ff div
fddiv
fdivp
fdivp
fdivr
fdivr
ffdivr
fddivr
fdivrp
fdivrp
feni
fneni
ffree
fiadd
tladd
ficom
tlcom
ficomp

stO, stl
stl, stO
d
d

st, stO
d
d

d
d

stl
d
d

stO, stl
stl, stO
d
d

stl
stO, stl
stl, sto
d
d

stl

stl
d
d
d
d
d

Absolute value
Add real
Add real
Add real, float
Add real, double
Add real and pop
Add real and pop
Load packed decimal (BCD)
Store packed decimal (BCD) and pop
Change sign
Clear exception
Clear exception
Compare real
Compare real, float
Compare real, double
Compare real and pop
Compare real and pop
Compare real and pop, float
Compare real and pop, double
Compare real and pop twice
Decrement stack pointer
Disable interrupts
Disable interrupts, no operands
Divide real
Divide real
Divide real. float
Divide real. double
Divide real and pop
Divide real and pop
Divide real reversed
Divide real reversed
Divide real reversed, float
Divide real reversed, double
Divide real reversed and pop
Divide real reversed and pop
Enable interrupts
Enable interrupts, no operands
Free register
Integer add
Integer add, long
Integer compare
Integer compare, long
Integer compare and pop

as 419

flcomp d Integer compare and pop. long
tldiv d Integer divide
fl div d Integer divide. long
tldivr d Integer divide reversed
fldivr d Integer divide, long reversed
tlld d Integer load
fild d Integer load, long
fqld d Integer load. quad
thnul d Integer multiply
flmul d Integer multiply. long
tlncstp Increment stack pointer
tlnit Initialize processor
fninit Initialize processor
fist d Integer store
fist d Integer store. long
tlstp d Integer store and pop
tlstp d Integer store and pop, long
fqstp d Integer store and pop. quad
tlsub d Integer subtract
flsub d Integer subtract. long
fisubr d Integer subtract reversed
flsubr d Integer subtract reversed, long
fld stl Load real
md d Load real. float
fdld d Load real. double
ftld d Load real. temp
tldcw d Load control word
fldenv d Load environment
tldlg2 Load log(10)2
fldln2 Load log(e)2
fldl2e Load log(2)e
fldl2t Load log(2)10
tldpi Load pi
tldz Load +O.O
fldl Load +1.0
fmul Multiply real
fmul sto, stl Multiply real
tlinul stl. sto Multiply real. float
fdmul d Multiply real. double
fmulp d Multiply real and pop
fnop stl No operation
fpatan Partial arctangent
fprem Partial remainder
fptan Partial tangent
frndint Round to integer
frstor d Restore saved state
fsave d Save state
fnsave d Save state
fscale Scale
fsetpm Set protected mode
fsqrt Square root
fst stl Store real
ffst d Store real. float
fdst d Store real, double

LEXICON

420 as

fstcw d
fnstcw d
fstenv d
fnstenv d
fstp stl
ffstp d
fdstp d
ftstp d
fstsw d
fnstsw d
tsub stO, stl
tsub stl, stO
ffsub d
fdsub d
fsubp
tsubp stl
fsubr d
ffsubr d
fdsubr d
fsubrp
fsubrp stl
ftst
fwait
fxam
fxch stl
fxch
fxtract
fyl2x
fyl2xpl

C Compiler Conventions

Store control word
Store control word
Store environment
Store environment
Store real and pop
Store real and pop, float
Store real and pop, double
Store real and pop. temp
Store status word
Store status word
Subtract real
Subtract real
Subtract real, float
Subtract real, double
Subtract real and pop
Subtract real and pop
Subtract real reversed
Subtract real reversed, float
Subtract real reversed. double
Subtract real reversed and pop
Subtract real reversed and pop
Test stack top against +0.0
Wait while 8087 is busy
Examine stack top
Exchange registers
Exchange registers
Extract exponent and significance
Y*log(2)X
Y*log(2)(X+ 1)

as is often used to write small functions that perform tasks not easily or efficiently done in
C. Such functions are intended to be called from a C program. As long as the assembly
language source code follows compiler conventions, the assembler routine will be fully
compatible with C functions. These conventions are (1) the names of external variables and
(2) calling functions.

Naming Conventions
The C compiler appends an underline character '_' to the end of every external declared in a
C source file. When referring to any external variable or function declared in a C source file,
append an underscore to the name. In a similar manner, when defining a function or
variable in an assembly language source file that is to be accessed from a C source file.
append an underline character.

Function-Calling Conventions
Function-calling conventions deal with how arguments are passed to functions, how values
are returned. and which registers are used for special purposes and must be protected.

Arguments
Function arguments are passed on the stack. They are pushed by the calling function,
which also removes them when the called function returns. Looking at the declaration of
the function, the order in which they are pushed onto the stack is from right to left; that is,
the C compiler pushes the argument list in reverse order of declaration. The instruction
call to jump to the function also pushes the return address. so that when the called routine
gains control the first argument is found at offset 2 from the stack pointer.

LEXICON

as 421

Integer and pointer arguments are word size, and are simply pushed with a push
instruction. Characters. although byte size, are not passed as bytes. The C language
requires that char variables be promoted to the type int before being passed. The
promotion is signed or unsigned, depending on the type of the char variable. longs are
pushed one word at a time; the higher-address word is pushed first. This ensures that the
words of the long are in the correct order on the stack, because the stack grows toward low­
addressed memory.

Passing floats. doubles, or structure arguments is more involved. C requires floats to be
promoted to and passed as doubles, so this conversion must be performed first. doubles
and structures are passed so that as they sit on the stack, all bytes are in the correct order;
this is analogous to the passing of longs. This means, for example, that doubles may be
pushed with four push word instructions, beginning with the highest addressed word in the
64-bit double, and ending with the lowest addressed word.

If in doubt about how to apply any of this, try writing a simple C program that uses what
you need, and compile it with the -VASM option to the cc command. This produces an
assembly-language version of the C program, which can be studied to see exactly what the
compiler does, and mimicked to good effect.

Return Values
Functions return values in various registers according to their type. ints and pointers are
returned in the ax register. chars are returned by first promoting them to ints and
returning the result in the ax register; effectively, this means that chars are returned in the
al register. longs are returned in the dx:ax register pair, with the most significant word
(also the high-address word) in the dx register, and the least significant word in the ax
register.

floats, doubles, and structures are returned in a more complex fashion. C requires floats
be returned as doubles, so they are converted. doubles are returned in a special eight-byte
array named _fpac (of course, in assembly language the name is _fpac_). This array is
defined by the compiler. In the event that a function returns a structure, the contents of
the structure are saved in memory, and the function returns a pointer to that structure in
the ax register. The calling function then moves the bytes into the actual destination.

Again, if in doubt about how to do this in assembly language. try compiling a function with
assembly language output to see how the compiler does it.

Important Registers
Every function must preserve the value of the hp register, which is the caller's stack frame
pointer. Also, the compiler uses the si and di registers for register variables, so they must
be preserved.

Example of an Assembly Language Program
The following assembly language file. strchar.s defines a function strchar that returns the
number of occurrences of a character in a string.

LEXICON

422 as

FILE: strchar.s

I
I
I Count and return the occurrences
I of a character in a string.
I
I int
I strchar(s, c)
I char *s;
I int c;
I
I

• globl strchar I Make the name known externally •

strchar 1

push si
push di
push bp
mov bp, sp

mov si, S(bp)
mov bx, lO(bp)
sub ax, ax
sub ex, ex

0: movb cl, (si)
jcxz 2f
cmpb bl, cl
jnz lf
inc ax

inc si
jmp Ob

2: pop bp
pop di
pop si
ret

I Standard C function
I linkage. Save the
I si, di, and bp registers
I and set up new frame pointer.

I String ptr -> si.
I Char -> bx (actually bl).
I Clear ax (count register).
I Clear ex.

I Get character from string.
I End of string?
I No. Do chars match?
I No.
I Yes. Increment count.

I Bump string pointer
I and loop again.

I Standard C return
I linkage. Restore
I saved registers and
I go home.

The following C program. main.c uses strchar The assembly language listing that follows.
main.s was produced from main.c by the -VASM option in cc. The listing has been edited,
and comments added, to illustrate what is happening.

FILE: main.c

LEXICON

main()
{

int n;
n = strchar("aardvark", 'a');

}

FILE: main.s

• shri

.glob! main -

main I -

• strn

L2: .byte Ox61
.byte Ox61
.byte Ox72
.byte Ox64
.byte Ox76
.byte Ox61
.byte Ox72
.byte Ox6B
.byte OxOO

.shri

push si
push di
push bp
mov bp, sp
sub sp, $0x02

mov ax, $Ox61
push ax
mov ax, $L2
push ax
call strchar
add sp, $0x04
mov -Ox02(bp),

mov sp, bp
pop bp
pop di
pop si
ret

Diagnostics

ax

I ''code'' program section .

I ''string'' program section •

I This is the string
I ' 'aardvark' '

I Back to ''code''

I Standard C function
I linkage. Save registers,

as 423

I set up new frame pointer (bp),
I and make room on stack
I for the auto int, ''n''

I Push the
I character 'a',
I Push the address
I of the string ''aardvark''
I Function call.
I Remove args from stack.
I Assign result to auto 'n'.

I Standard c return
I linkage. Adjust stack
I pointer, then restore
I registers and
I go home.

All errors detected by the assembler are reported on the screen as an error message that is
tagged with a line number. If a symbol is associated with the error message (for example, if
a symbol is undefined), then the symbol's name is also given. If more than one input file
appears on the command line, error messages are tagged with the name of the source file.

If a listing is generated, errors are reported on the listing in the same format, with the error
flags at the left margin. The total number of errors is displayed on the screen at the end of
the assembly.

For a full listing of as error messages, see the tutorial for the C compiler, which appears
earlier in this manual.

LEXICON

424 ASCII

See Also
calling conventions, cc, commands

ASCII - Technical Information
ASCII is an acronym for the American Standard Code for Information Interchange. It is a
table of seven-bit binary numbers that encode the letters of the alphabet, numerals,
punctuation, and the most commonly used control sequences for printers and terminals.
ASCII codes are used on all microcomputers sold in the United States.

The following table gives the ASCII characters in octal, decimal, and hexadecimal numbers,
their definitions, and expands abbreviations where necessary.

000 0 OxOO NUL <ctrl-@> Null character
001 1 OxOl SOH <ctrl-A> Start of header
002 2 Ox02 STX <Ctrl-B> Start of text
003 3 Ox03 ETX <ctrl-C> End of text
004 4 Ox04 EOT <ctrl-D> End of transmission
005 5 Ox05 ENQ <ctrl-E> Enquiry
006 6 Ox06 ACK <Ctrl-F> Positive acknowledgement
007 7 Ox07 BEL <ctrl-G> Bell
010 8 Ox08 BS <ctrl-H> Backspace
011 9 Ox09 HT <Ctrl-1> Horizontal tab
012 10 OxOA LF <ctrl-J> Line feed
013 11 OxOB VT <ctrl-K> Vertical tab
014 12 OxOC FF <Ctrl-L> Form feed
015 13 OxOD CR <ctrl-M> Carriage return
016 14 OxOE so <ctrl-N> Shift out
017 15 OxOF SI <ctrl-0> Shift in
020 16 OxlO OLE <ctrl-P> Data link escape
021 17 Oxll DCl <Ctrl-Q> Device control 1 (XON)
022 18 Oxl2 DC2 <Ctrl-R> Device control 2 (tape on)
023 19 Oxl3 DC3 <ctrl-S> Device control 3 (XOFF)
024 20 Oxl4 DC4 <ctrl-T> Device control 4 (tape off)
025 21 Oxl5 NAK <ctrl-U> Negative acknowledgement
026 22 Oxl6 SYN <ctrl-V> Synchronize
027 23 Oxl7 ETB <Ctrl-W> End of transmission block
030 24 Oxl8 CAN <ctrl-X> Cancel
031 25 Oxl9 EM <ctrl-Y> End of medium
032 26 OxlA SUB <Ctrl-Z> Substitute
033 27 OxlB ESC <ctrl-[> Escape
034 28 OxlC FS <ctrl-\> Form separator
035 29 OxlD GS <Ctrl-]> Group separator
036 30 Ox IE RS <Ctrl-"> Record separator
037 31 OxlF us <Ctrl-_> Unit separator
040 32 Ox20 SP Space
041 33 Ox21 Exclamation point
042 34 Ox22 Quotation mark
043 35 Ox23 # Pound sign (sharp)
044 36 Ox24 $ Dollar sign
045 37 Ox25 % Percent sign
046 38 Ox26 & Ampersand
047 39 Ox27 Apostrophe
050 40 Ox28 Left parenthesis
051 41 Ox29 Right parenthesis
052 42 Ox2A • Asterisk

LEXICON

ASCII 425

053 43 Ox2B + Plus sign
054 44 Ox2C Comma
055 45 Ox2D Hyphen (minus sign)
056 46 Ox2E Period
057 47 Ox2F I Virgule (slash)
060 48 Ox30 0
061 49 Ox31 1
062 50 Ox32 2
063 51 Ox33 3
064 52 Ox34 4
065 53 Ox35 5
066 54 Ox36 6
067 55 Ox37 7
070 56 Ox38 8
071 57 Ox39 9
072 58 Ox3A Colon
073 59 Ox3B Semicolon
074 60 Ox3C < Less-than symbol (left angle bracket)
075 61 Ox3D Equal sign
076 62 Ox3E > Greater-than symbol (right angle bracket)
077 63 Ox3F ? Question mark
0100 64 Ox40 @ At sign
0101 65 Ox41 A
0102 66 Ox42 B
0103 67 Ox43 c
0104 68 Ox44 D
0105 69 Ox45 E
0106 70 Ox46 F
0107 71 Ox47 G
OllO 72 Ox48 H
Olli 73 Ox49 I
0112 74 Ox4A J
0113 75 Ox4B K
0114 76 Ox4C L
0115 77 Ox4D M
0116 78 Ox4E N
0117 79 Ox4F 0
0120 80 Ox50 p
0121 81 Ox51 Q
0122 82 Ox52 R
0123 83 Ox53 s
0124 84 Ox54 T
0125 85 Ox55 u
0126 86 Ox56 v
0127 87 Ox57 w
0130 88 Ox58 x
0131 89 Ox59 y
0132 90 Ox5A z
0133 91 Ox5B [Left bracket (left square bracket)
0134 92 Ox5C \ Backslash
0135 93 Ox5D l Right bracket (right square bracket)
0136 94 Ox5E Circumflex
0137 95 Ox5F Underscore
0140 96 Ox60 ;- Grave

LEXICON

426 ascii.h - asctimeO

0141 97 Ox61 a
0142 98 Ox62 b
0143 99 Ox63 c
0144 100 Ox64 d
0145 101 Ox65 e
0146 102 Ox66 f
0147 103 Ox67 g
0150 104 Ox68 h
0151 105 Ox69
0152 106 Ox6A j
0153 107 Ox6B k
0154 108 Ox6C 1
0155 109 Ox6D m
0156 110 Ox6E n
0157 111 Ox6F 0

0160 112 Ox70 p
0161 113 Ox71 q
0162 114 Ox72 r
0163 115 Ox73 s
0164 116 Ox74 t
0165 117 Ox75 u
0166 118 Ox76 v
0167 119 Ox77 w
0170 120 Ox78 x
0171 121 Ox79 y
0172 122 Ox7A z
0173 123 Ox7B { Left brace (left curly bracket)
0174 124 Ox7C I Vertical bar
0175 125 Ox7D } Right brace (right curly bracket)
0176 126 Ox7E Tilde
0177 127 Ox7F DEL Delete

Files
I usr I pub I ascil

See Also
string, technical information

ascii.h - Header File
Define non-printable ASCII characters
#include <ascil.h>

ascil.h defines a set of manifest constants that describe the non-printable ASCII characters.

See Also
ASCII, header files

asctimeO - Time Function (libc)
Convert time structure to ASCII string
#include <time.h>
#include <sys/types.h>
char •asctime(tmp) struct tm *tmp;

asctime takes the data found in tmp, and turns it into an ASCII string. tmp is of the type
tm, which is a structure defined in the header file time.h. This structure must first be
initialized by either gmtime or localtime before it can be used by asctime. For a further

LEXICON

discussion of tm. see the entry for time.

asctime returns a pointer to where it writes the text string it creates.

Example

asinO 427

The following example demonstrates the functions asctime, ctime, gmtime, localtime, and
time, and shows the effect of the environmental variable TIMEZONE. For a discussion of
the variable time_t. see the entry for time.

#include <time.h>
#include <sys/types.h>
main()
{

}

time_t timenumber;
struct tm *timestruct;

/* read system time, print using ctime */
time(&timenumber);
printf("%s", ctime(&timenumber));

/* use gmtime to fill tm, print with asctime */
timestruct = gmtime(&timenumber);
printf("%s", asctime(timestruct));

/* use localtime to fill tm, print with asctime */
timestruct = localtime(&timenumber);
printf("%s", asctime(timestruct));

See Also
time

Notes
asctime returns a pointer to a statically allocated data area that is overwritten by
successive calls.

asinO - Mathematics Function (libm)
Calculate inverse sine
#include <math.h>
double asin(arg) double arg;

asin calculates the inverse sin of arg, which must be in the range (-1., l.J. The result will
be in the range (-/2, /2).

Example
For an example of this function. see the entry for acos.

See Also
mathematics library

Diagnostics
Out-of-range arguments set errno to EDOM and return zero.

LEXICON

428 ASKCC - assert.h

ASKCC - Environmental Variable
Force prompting for CC names
ASKCC:YES/NO

The environmental variable ASKCC directs the program mail to prompt for carbon-copy
names. A carbon-copy (or CC) name gives another person to whom a mail message should
be sent. To turn on prompting, use the command:

export ASKCC=YES

See Also
environmental variables, mail

assertO - Macro Diagnostics (assert.h)
Check assertion at run time
#include <assert.h>
void assert(expression) int expression;

assert checks the value of expression. If expression is false (zero), assert sends a message
into the standard-error stream and calls exit. It is useful for verifying that a necessary
condition is true.

The error message includes the text of the assertion that failed, the name of the source file,
and the line within the source file that holds the expression in question. These last two
elements consist, respectively, of the values of the preprocessor macros __ FILE__ and
__ LINE __ .

assert calls exit, which never returns.

To turn off assert, define the macro NDEBUG prior to including the header assert.h. This
forces assert to be redefined as

#define assert(ignore)

See Also
exit(), assert.h, C preprocessor

Notes
The Standard requires that assert be implemented as a macro, not a library function. If a
program suppresses the macro definition in favor of a function call, its behavior is
undefined.

Turning off assert with the macro NDEBUG will affect the behavior of a program if the
expression being evaluated normally generates side effects.

assert is useful for debugging, and for testing boundary conditions for which more graceful
error recovery has not yet been implemented.

assert.h - Header File
Define assert()
#include <assert.h>

assert.his the header file that defines the macro assert.

LEXICON

at 429

See Also
assert(), header mes

at - Device Driver
Drivers for hard-disk partitions

/dev/at• are the COHERENT system's AT devices for the hard-disk's partitions. Each
device is assigned major-device number 11, and may be accessed as a block- or character­
special device.

The at hard-disk driver handles two drives with up to four partitions each. Minor devices 0
through 3 identify the partitions on drive 0. Minor devices 4 through 7 identify the
partitions on drive 1. Minor device 128 allows access to all of drive 0. Minor device 129
allows access to all of drive 1. To modify the offsets and sizes of the partitions, use the
command fdisk on the special device for each drive (minor devices 128 and 129).

To access a disk partition through COHERENT, directory /dev must contain a device file
that has the appropriate type, major and minor device numbers, and permissions. To
create a special file for this device. invoke the command mknod as follows:

/etc/mknod /dev/atOa b 11 0 drive O, partition 0
/etc/mknod /dev/atOb b 11 1 drive o, partition 1

/etc/mknod /dev/atOc b 11 2 drive o, partition 2
/etc/mknod /dev/atOd b 11 3 I drive o, partition 3
/etc/mknod /dev/atOx b 11 128 I drive o, partition table

Drive Characteristics
When processing BIOS I/O requests prior to booting COHERENT, many IDE drives use
"translation-mode" drive parameters: number of heads, cylinders. and sectors per track.
These numbers are called translation-mode parameters because they do not reflect true
physical drive geometry. The translation-mode parameters used by the BIOS code present
on your host adapter can be obtained using the dpb utility found on the boot diskette of
versions 3.2.0 and later of COHERENT. It is often necessary to patch the at driver with
BIOS values of translation-mode parameters in order to boot COHERENT on IDE hard
drives. In COHERENT versions 3.1.0 and later, drive parameters are stored in table
atparm_ in the driver. For the first hard drive, number of cylinders is a two-byte value at
atparm_ +O, number of heads is a single byte at atparm_ +2. and number of sectors per
track is a single byte at atparm_+l4. For the second hard drive, number of cylinders is a
two-byte value at atparm_+l6. number of heads is a single byte at atparm_+l8. and
number of sectors per track is a single byte at atparm_+30. For example. if testcoh is a
kernel linked with the at driver and you want to patch it for a second hard drive with 829
cylinders, 10 heads, and 26 sectors per track, you can do

/conf/patch testcoh atparm_+16=829 atparm_+lS=lO:c atparm_+30=26:c

To read the characteristics of a hard disk once the at driver is running, use the call to ioctl
of the following form:

#include <sys/hdioctl.h>
hdparm_t hdparms;

ioctl(fd, HDGETA, (char *)&hdparms);

where f d is a file descriptor for the hard disk device and hdparms receives the disk
characteristics.

LEXICON

430 at

Non-Standard and Unsupported Types of Drives
Prior releases of the the COHERENT at hard-disk driver would not support disk drives
whose geometry was not supported by the BIOS disk parameter tables. COHERENT adds
support for these drives during installation by "patching" the disk parameters into the
bootstrap and the /coherent image on the hard disk.

Files
/dev/at• - Block-special files
I dev I rat• - Character-special files

See Also
device drivers, fdisk

at-Command
Execute commands at given time
at [-v I [-c command I time [[day I week I [}lie I
at [-v J [-c command I time month day [file J

at executes commands at a given time in the future.

If the -c option is used. at executes the following command. If.file is named, at reads the
commands from it. If neither is given. at reads the standard input for commands.

If time is a one-digit or two-digit number, at interprets it as specifying an hour. If time is a
three-digit or four-digit number, at interprets it as specifying an hour and minutes. If time
is followed by a. p. n. or m, at assumes AM. PM, noon, or midnight, respectively;
otherwise, it assumes that time indicates a 24-hour clock.

For example, the command

at -c "time I rnsg henry" 1450

set the time command to be executed at 2:50 PM. and pipe time's output to the msg
command, which will pass it to the terminal of user henry. Note that argument to the -c
option had to be enclosed in quotation marks because it contains spaces and special
characters; if this were not done, at would not be able to tell when the argument ended, and
so would generate an error message. Also note that if you wish pass information to a user's
terminal with the at command, you must tell at to whom to send the information. The
command

at 250p cornrnandf ile

will set the file commandfile to be read and executed at 2:50 PM. Note that it is not
necessary to use the file's full path name. Also, if the suffix p were not appended to the
time, the file would be set to be read at 2:50 AM.

The time set in at's command line is not the exact time that the command is executed.
Rather, the daemon cron wakes up the file /usr/lib/atrun periodically to see if any
commands have been scheduled commands to be executed at or before that time. The
frequency with which cron executes atrun determines the "granularity" of at execution
times; it may be changed by editing the file /usr/lib/crontab. For example. the entry

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /usr/lib/atrun

sets /usr/lib/atrun to be executed every five minutes. Thus, the at command that is set,
for example, to 2:53 PM will actually be executed at 2:55 PM. atrun executes specified
commands when it discovers that the given time is past; therefore, at commands are
executed even if the system is down at the specified time or if the system's time is changed.

LEXICON

atanO 431

The at command has two forms, as shown above. In the first form, the option day names a
day of the week (lower case, spelled out). If week is specified, at interprets the given time
and day as meaning that time and day the following week. For example. the command

at -c "time I msg henry" 1450 friday week

executes time and sends its output to henry's terminal one week from Friday at 2:50 PM.

In the second form given above, month specifies a month name (lower case, spelled out) and
the number day specifies a day of the month. For example. the command

at 1450 july 4 commandfile

set the file commandfile to be read at 2:50 PM on July 4.

If the -v flag is given, at prints the time when the commands will be executed. giving you
enough information to plan for the execution of the command. For example. if it is now
August 13. 1990, at 2:30 PM. and you type the command

at -v -c "/usr/games/fortune I msg henry" 1435

at will reply:

Tue Aug 13 14:35:00

indicating that the command will be executed five minutes from now. However, if you type

at -v -c "/usr/games/fortune I msg henry" 1435 august 10

at will reply

Sun Aug 10 14:35:00 1991

which indicates that on Sunday, August 10 of next year. at 2:35 PM, the COHERENT
system will print a fortune onto your terminal.

Should you create such a long-distance at file by accident. you can correct the error by
simply deleting the file that encodes it from the directory /usr/spool/at. The file will be
named after the time that it is set to execute, plus a unique two-character suffix, should
more than one command be scheduled to run at the same time. For example. the file for
the above command would be named 9108101435.aa.

Finally. note that the current working directory. exported shell variables, file creation mask.
user id, and group id are restored when the given command is executed.

Files
/bin/pwd - To find current directory
/usr/lib/atrun- Execute scheduled commands
/usr/spool/at- Scheduled activity directory
/usr/spool/at/ yymmddhhmm.xx- Commands scheduled at given time

See Also
at,commands,cron

atanO - Mathematics Function (libm)
Calculate inverse tangent
#include <math.h>
double atan(arg) double arg;

LEXICON

432 atan20 - atofO

atan calculates the inverse tangent of arg, which may be any real number. The result will
be in the range [-:rc/2, :rc/2].

Example
For an example of this function, see the entry for acos.

See Also
errno, mathematics library

atan20 - Mathematics Function (libm)
Calculate inverse tangent
double atan2(num, den) double num, den;

atan2 calculates the inverse tangent of the quotient of its arguments num/den. num and
den may be any real numbers. The result will be in the range [-:re, :re]. The sign of the result
will have the same sign as num. and the cosine will have the same sign as den.

Example
For an example of this function, see the entry for acos.

See Also
errno, mathematics library

ATclock - Command
Read or set the AT realtime clock
I etc/ ATclock [yy[mm[dd[hh[mm[.ss]]]]]]

ATclock reads or sets the system realtime clock in an IBM PC-AT system. With no
argument, it reads the realtime clock and returns a string in the format expected by the
command date. With an argument, it sets the realtime clock to the given date.

The system startup files I etc/brc and I etc/re typically contain a command of the form

date -s '/etc/ATclock'

to reset the time properly when the COHERENT system starts up. The AT realtime clock
typically contains the current local standard time (not adjusted for daylight savings time).

See Also
commands, date, re

atofO - General Function (libc)
Convert ASCII strings to floating point
double atof(strlng) char• string;

atof converts string into the binary representation of a double-precision floating point
number. string must be the ASCII representation of a floating-point number. It can contain
a leading sign, any number of decimal digits, and a decimal point. It can be terminated
with an exponent, which consists of the letter 'e' or 'E' followed by an optional leading sign
and any number of decimal digits. For example,

123e-2

is a string that can be converted by atof.

atof ignores leading blanks and tabs: it stops scanning when it encounters any
unrecognized character.

LEXICON

atoiO - atolO 433

Example
For an example of this function, see the entry for acos.

See Also
atoi(), atol(), tloat, general functions, long, printf(), scant()

Notes
atof does not check to see if the value represented by string fits into a double. It returns
zero if you hand it a string that it cannot interpret.

atoiO - General Function (libc)
Convert ASCII strings to integers
int atoi(strlng) char *string:

atoi converts string into the binary representation of an integer. string may contain a
leading sign and any number of decimal digits. atoi ignores leading blanks and tabs; it
stops scanning when it encounters any non-numeral other than the leading sign, and
returns the resulting int.

Example
The following demonstrates atoi. It takes a string typed at the terminal, turns it into an
integer, then prints that integer on the screen. To exit, type <ctrl-C>.

main()
{

}

extern char *gets();
extern int atoi();
char string[64];

for (; ;) {

}

printf ("Enter numeric string: ");
if (gets (string))

printf("%d\n", atoi(string));
else

break;

See Also
atof(), atol(), general functions, int, printf(), scant()

Notes
atoi does not check to see if the number represented by string fits into an int. It returns
zero if you hand it a string that it cannot interpret.

atolO - General Function (libc)
Convert ASCII strings to long integers
long atol(strlng) char *string:

atol converts the argument string to a binary representation of a long. string may contain a
leading sign (but no trailing sign) and any number of decimal digits. atol ignores leading
blanks and tabs; it stops scanning when it encounters any non-numeral other than the
leading sign. and returns the resulting long.

LEXICON

434 atrun - auto

Example
main()
{

extern char *gets()J
extern long atol()J
char string[64]J

for(n) {

}
}

See Also

printf ("Enter numeric string 1 ") J
if(gets(string))

printf("%ld\n", atol(string))J
else

breakJ

atof(), atofQ, float, long, prlntt(), scanf()

Notes
No overflow checks are performed. atol returns zero if it receives a string it cannot
interpret.

atrun - System Maintenance
Execute commands at a preset time

atrun is a program that executes programs at a time set by the command at.

When user steve types

at 1230 /v/steve/lunchtime

the command at creates a shell script in directory /usr/spool/at that contains the
information needed to execute command /v/steve/lunchtfme at a later time - in this
instance, 12:30. The spooled file sits in /usr/spool/at until /usr/Ub/atrun sees that the
specified time has been reached, then it executes the spooled command and removes the
entry from /usr/spool/at.

atrun is not a daemon: that is, it is invoked by another program, does its work and exits.
Thus, it is typically run periodically from an entry in the file /usr/Ub/crontab. See the
article on at for more details.

See Also
at, system maintenance

Notes
Although atrun technically is a command, is never invoked directly by a user.

auto - C Keyword
Note an automatic variable

auto is an abbreviation for an automatic variable. This is a variable that applies only to the
function that invokes it, and vanishes when the functions exits. The word auto is a C
keyword, and must not be used to name any function, macro, or variable.

LEXICON

See Also
C keywords, exte1n, static, storage class

awk - Command
Pattern-scanning language
awk [-y)[-Fc][-f progfile J[prog][file ... J

awk 435

awk is a general-purpose language designed for processing input data. Its features allow
you to write programs that scan for patterns, produce reports, and filter relevant
information from a mass of input data. It acts on each inputjlle following the commands
you write into an awk program. awk reads the standard input if no file is specified, which
allows it to act as a filter in a pipeline; the file name·-· means the standard input.

You can specify the program either as an argument prog (usually enclosed in quotation
marks to prevent interpretation by the shell sh) or in the form -f progfile. where progfile
contains the awk program. If no -f option appears, the first non-option argument is the
awk program prog.

The option flag -y specifies that any lower-case alphabetic character in a regular expression
pattern should match both itself and the corresponding upper-case letter. This is identical
to the matching found in the pattern-matching program grep with the -y option.

awk views its input as a sequence of records, each consisting of zero or more fields. By
default, newlines separate records and white space (spaces or tabs) separates fields. The
option -Fe changes the input field separator characters to the characters in the string c. An
awk program can also change the field and record separators. The program can access the
values of each field and the entire record through built-in variables.

For details on the construction of awk programs, consult the tutorial to awk that appears in
this manual. Briefly, an awk program consists of one or more lines, each containing a
pattern or an action, or both. A pattern determines whether awk performs the associated
action. It may consist of regular expressions, line ranges, boolean combinations of variables,
and beginning and end of input-text predicates. If no pattern is specified, awk executes the
action (the pattern matches by default).

An action is enclosed in braces. The syntax of actions is C-like, and consists of simple and
compound statements constructed from constants (numbers, strings), input fields, built-in
and user-defined variables, and built-in functions. If an action is missing, awk prints the
entire input record (line).

Unlike lex or yacc, awk does not compile programs into an executable image. but interprets
them directly. Thus, awk is ideal for quickly-implemented, one-shot efforts.

Examples
The following examples illustrate the economy of expression of awk programs.

The first example prints all lines containing the string "COHERENT" (identical to grep
COHERENT):

/COHERENT/

The built-in variable NR is the number of the current input record, so the following program
prints the number of records (lines) in the input stream.

END { print NR }

The built-in variable $3 gives the value of the third field of the current record, so the
following program sums the elements in column three of an input table and prints the total:

LEXICON

436 awk

{ sum +== $3 }
END { print sum }

See Also
commands, grep, lex, sed, yacc
Introduction to the awk Language

Notes
There is no way to have a null field. such as is necessary to describe the colon-separated
fields in /etc/passwd.

awk converts between strings and numbers automatically. Adding zero to a string forces
awk to treat it as a number; concatenating"" to a number forces awk to treat it as a string.

LEXICON

bad - badscan 437

B

bad - Command
Maintain list of bad blocks
bad optlonjllesystem [block ... I

A hard disk or floppy disk may have bad blocks on it: a "bad block" is a portion of disk that
is flawed, and so cannot be used reliably because read or write errors occur on them. Bad
blocks can result from microscopic flaws in the disk surface, and it is the unusual disk that
is free of them. The COHERENT system keeps a list of bad blocks so it can avoid using
them.

The command bad maintains the bad-block list for the gtvenfllesystem, which must be a
block-special file. option must be exactly one of the characters acdl, which tell bad to do
one of the following:

a Add each given block to the bad-block list
c Clear the bad-block list
d Delete each given block from the bad-block list
1 List all blocks on the bad-block list

bad does not deallocate any i-node associated with a block when adding it to the bad-block
list. You should run the command icheck with the -s option immediately after bad to
correct the problem, or run the command fsck.

fllesystem should be unmounted if possible. The user who invokes bad must have
appropriate permissions for the givenfllesystem. For many file systems, only the superuser
may use bad to change the bad-block list. Use the command badscan to create a prototype
file.

When the mkfs command creates a file system. the prototype specification may include a
bad block list for the new file system.

See Also
badscan,conunands,icheck,mkfs,uniount

badscan - Command
Build bad block list
/etc/badscan [-v) [-o proto] [-b boot] device size
I etc/badscan [-v] [-o proto] [-b boot] device xdevlce

badscan scans a floppy disk or a partition of the hard disk for bad blocks. It writes onto the
standard output a prototype file that lists all bad blocks on the disk.

badscan recognizes the following options:

-v

-o proto

-b boot

Print an estimate of time needed to finish examining the device.

Redirect output into file proto.

Insert a given boot into the proto file as the bootstrap. The default is
/conf/boot.

device names the special device to scan.

The command line for badscan comes in two forms, as shown at the top of this article. The
first version is for a floppy disk; size gives the size of the device. in blocks. The second
version is for a hard-disk partition; xdevlce specifies devices /dev/atOx or /dev/atlx,

LEXICON

438 banner - basename

which uses the partition-table information in the master boot block of the drive to find the
size of the device. Use /dev/atOx when examining a partition on hard-disk drive 0, and
I dev I atlx when examining a partition on hard-disk drive 1.

Examples
The first example uses badscan to find all bad blocks on a high-density, 3.5-inch floppy
disk in drive 1 (i.e., drive BJ. and writes its output into file proto:

/etc/badscan -v -o proto /dev/rfval 2880

See the article tloppy disks for a table that gives the device name and number of sectors to
be found on the various types of floppy disk that COHERENT recognizes.

The second example uses badscan to prepare a list of bad blocks for partition 2 on hard­
drive 0, which is an IDE drive accessed via COHERENT's at driver. Again, the output is
written into file proto:

/etc/badscan -v -o /conf/proto.atOc /dev/ratOc /dev/atOx

See Also
at, bad, commands, tloppy disks, mkfs

Notes
Because SCSI hard-disk drives maintain their own map of bad blocks, badscan is not
required for SCSI drives, and should not be used with them.

banner - Command
Print large letters
banner [argument ... I

banner prints large (seven-character by five-character) letters on the standard output. Each
argument produces one large text output line. If there is no argument, each line from the
standard input produces one line of large-text output.

See Also
commands, lpr, pr

basename - Command
Strip path information from a file name
basenamejlle [suffix I

basename strips its argumentjlle of any leading directory prefixes. If the result contains
the optional sz.ifflx, basename also strips it. basename prints the result on the standard
output.

For example, the command

basename /usr/fred/source.c

returns

source.c

basename is most useful when it is used with other shell commands. For example. the
command

LEXICON

for i in *.c
do

cp $i 'basename $i .c'.backup
done

be 439

copies every file that has the suffix .c into an identically named file that has the suffix
.backup.

See Also
COlllDUlllds,ksh,sh

be-Command
Interactive calculator with arbitrary precision
be I -1 J [file ... I

be is a language that performs calculations on numbers with an arbitrary number of digits.
be is most commonly used as an interactive calculator, where the user types arithmetic
expressions in a syntax reminiscent of C. If be is invoked with no file arguments on its
command line, it reads the standard input. For example:

Input
be
(1000+23)*42
k = 2A10
16 * k
2 A 100

Output

42966

16384
1267650600228229401496703205376

be may also be invoked with one or more file arguments. After be reads eachfile, it reads
the standard input. This provides a convenient way to access programs in files. A library of
mathematical functions is available, obtained by using the -1 option.

The following summarizes briefly the facilities provided by be. More information is available
in the tutorial to be that is included with this manual.

Comments are enclosed between the delimiters'/•' and'•/'. Names of variables or functions
must begin with a lower-case letter, and may have any number of subsequent letters or
digits. Names may not begin with an upper-case letter because numbers with a base
greater than ten may need need upper-case letters for their notation. The three built-in
variables obase, ibase, and scale represent the number base for printing numbers (default,
ten), the number base for reading numbers (default, ten), and the number of digits after the
decimal (radix) point (default, zero), respectively. Variables may be simple variables or
arrays, and need not be pre-declared, with the exception of variables internal to functions.
Some examples of variables and array elements are x25, array[IO], and nUlllber.

Numbers are any string of digits, and may have one decimal point. Digits are taken from
the ordinary digits (0-9) and then the upper-case letters (A-F), in that order.

Certain names are reserved for use as key words. The key words recognized by be include
the following:

if, for, do, while
Test conditions and define loops, with syntax identical to C

break, continue
Alter control flow within for and while loops.

LEXICON

440 be

quit Tell be to exit immediately

define function (arg, ... , arg)
Define a be function by a compound statement. as in C.

auto var, ... , var
Define variables that are local to a function, rather than having global scope.

return (value)
Return a value from a function.

scale (value)
Return the number of digits to the right of the decimal point in value.

sqrt (value)
Return the square root of value

length (value)
Return the number of decimal digits in value.

The following operators are recognized:

+ * I %

+= *=
!= < <=

I=
>

++
%=
>=

These operators are similar to those in C, with the exception of " and "=, which are
exponentiation operators. Expressions can be grouped with parentheses. Statements are
separated with semicolons or newlines, and may be made into compound statements with
braces. be prints the value of any statement that is an expression but is not an
assignment.

As in the editor ed, an '!' at the beginning of a line causes that line to be sent as a command
to the COHERENT shell sh.

The built-in mathematics library contains the following functions and variables:

atan(z) Arctangent of z
cos(z) Cosine of z
exp(z) Exponential function of z
j(n,z) nth order Bessel function of z
ln(z) Natural logarithm of z
pi Value of pi to 100 digits
sin(z) Sine of z

Examples
The first example calculates the factorial of its positive integer argument by recursion.

/*
* Factorial function implemented by recursion.
*/

define fact(n) {

}

if (n <= 1) return (n);
return (n * fact(n-1));

The second example also calculates the factorial of its positive integer argument, this time
by iteration.

LEXICON

/*
* Factorial function implemented by iteration.
*/

define fact(n) {
auto result;

}

Files

result = 1;
for (i=l; i<=n; i++) result *= i;
return (result);

/usr/llb/llb.b- Source code for the library

See Also
commands, conv, de, multi-precision arithmetic
be Desk Calculator Language. tutorial

Notes
Line numbers do not accompany error messages in source files.

bind - Command
Bind key sequence to editing command
bind (-m] [string [= command))

bind 441

The command bind is used by the Korn shell ksh to bind one of its command-line editing
commands to a given key sequence. The editing commands are used by ksh to perform its
MicroEMACS-style command-line editing.

When bind is invoked without arguments. it lists on the standard output all current
bindings.

When invoked with the syntax strlng=command, it binds the key-sequence string to the
command. For example, the command

bind A[X=end-of-line

binds the editing command end-of-line (which moves the cursor to the end of the command
line) with the key sequence <esc>X. Note that <esc> is written "[- that is, a literal carat •A•
followed by'['.

When invoked with the syntax -m strlng=commands, string is bound to commands, which
contains one or more editing commands. This form of the bind command lets you build
keyboard macros that combine several editing commands into one keystroke sequence.

For the list of editing commands, their default bindings. and other details of using
MicroEMACS-style command-line editing. see the Lexicon entry for ksh.

See Also
commands, ksh

LEXICON

442 bit - bit-fields

bit - Definition
bit is an abbreviation for "binary digit". It is the basic unit of data processing. A bit can
have a value of either zero or one. Bits can be concatenated to form bytes.

A bit can be used either as a placeholder to construct a number with an absolute value, or
as a flag whose value has a particular meaning under specially defined circumstances. In
the former use, a string of bits builds an integer. In the latter use. a string of bits forms a
map, in which each bit has a meaning other than its numeric value.

See Also
bit map, byte, definitions, nybble

bit-fields - Definition
A bit:fleld is a member of a structure or union that is defined to be a cluster of bits. It
provides a way to represent data compactly. For example, in the following structure

struct example {
int member 1;
long member2;
unsigned int member3 :5;

}

member3 is declared to be a bit-field that consists of five bits. A colon ':' precedes the
integral constant that indicates the width, or the number of bits in the bit-field. Also, the
bit-field declarator must include a type. which must be one of int, signed int, or unsigned
int.

A bit-field that is not given a name may not be accessed. Such an object is useful as
"padding" within an object so that it conforms to a template designed elsewhere.

A bit-field that is unnamed and has a length of zero can be used to force adjacent bit-fields
into separate objects. For example, in the following structure

struct example {

} ;

int memberl;
int member2 :5;
int :O;
int member3 :5;

the zero-length bit-field forces member2 and member3 to be written into separate objects.

Finally, it is illegal to take the address of a bit-field.

See Also
bit, bit map, byte, definitions

Notes
Because bit-fields have many implementation-specific properties, they are not considered to
be highly portable. Bit-fields use minimal amounts of storage, but the amount of
computation needed to manipulate and access them may negate this benefit. Bit-fields
must be kept in integral-sized objects because many machines cannot directly access a
quantity of storage smaller than a "word" (a word is generally used to store an int).

LEXICON

bit map - boot 443

bit map - Definition
A bit map is a string of bits in which each bit has a symbolic, rather than numeric, value.

See Also
bit, byte, definitions
The C Programming Language. page 136

Notes
C permits the manipulation of bits within a byte through the use of bit-field routines. These
generate code rather than calls to routines. Bit fields are generally less efficient than
masking because they always generate masking and shifting.

block - Technical Information
A block is a mass of data that is read at one time. Blocks are different lengths under
different operating systems; COHERENT defines a block as being BSIZE bytes long.

Information is read in blocks from block-special devices, such as the hard disk or floppy
disks. This is done to increase the speed with which data are read from these devices;
reading characters one at a time, such as is done with character-special devices such as
terminals or modems, would be too slow.

See Also
technical information

boot - Driver
Boot block for hard-disk partition/ nine-sector diskette

To be bootable, a COHERENT file system must contain a boot block that lives in the first
block of the file system. In addition. all hard disks must contain the master boot block
mboot or an equivalent.

mboot is the primary hard-disk boot, which reads the hard-disk partition table in sector 0
of the disk. If you type character 'O' to '7' while booting your computer, mboot boots the
designated hard-disk partition. If a partition is designated as active in the partition table,
mboot boots it if you type no other character during booting. In either case, the boot block
(first sector) of the selected partition must contain the appropriate bootstrap, such as
"boot".

boot is a boot block for a hard-disk partition or a floppy disk. It must be installed as the
first sector of the partition or diskette; for example, the following commands format and
create a file system on a high-density, 5.25-inch diskette:

/etc/fdformat -v /dev/fhaO
/etc/mkfs /dev/fhaO 2400
/bin/cp /conf/boot.fha /dev/fhaO

boot searches its root directory'/' for file autoboot. If it finds this kernel, boot loads and
runs it. Otherwise, it gives the prompt ? , to which the user must type the name of the
operating-system kernel to load (typically, "coherent"). If boot cannot find the requested
kernel or if an error occurs, boot does not print an error message, but re-prompts with'?'.

Creating a Bootable Floppy Disk
In some cases, it is necessary to create a mini-version of COHERENT that can be booted
from a floppy disk. For example, you may wish to test a device driver or a tricky program
written in assembly language; by using a floppy-disk version of COHERENT, you can test
your program yet protect your hard disk's file systems from damage should something go

LEXICON

444 boot

wrong.

The following describes how to create a floppy-disk version of COHERENT. If your drive A is
a 5.25-inch, high-density device, type:

export DEV=/dev/fhaO
export BS=30b

If. however. your drive A is a 3.5-inch, high-density device, type:

export DEV=/dev/fvao
export BS=36b

The rest of the commands will be the same for either device.

The next step is to copy disk 1 of your COHERENT release onto the hard disk. Insert disk 1
into drive A and type:

dd if=$DEV of=jile_name bs=$BS count=SO

where.file_ name is the file into which you are copying the disk.

Now, remove the COHERENT release disk and insert a blank floppy disk. The next step is
to format it; type the following command:

/etc/fdforrnat $DEV

Now, copy the file that contains your copy of COHERENT release disk 1 onto the newly
formatted floppy disk:

dd if:jile _name of=$DEV bs=$BS count=SO

wherejile_name is the file that holds COHERENT.

Now, mount the new floppy disk:

/etc/mount $DEV /fO

From this point on, you must have superuser status. If you have not yet done so, type

su root

and type the password if prompted.

The final steps further prepare the new floppy disk:

cd /fO
mv begin autoboot
rm Coh 3* -
cd etc
rm brc*
rm build

The bootable floppy is now done. Type <ctrl-D> to return from superuser status, and then
type the command

/etc/umount $DEV

to unmount the floppy disk. Put it away in a safe place.

Your bootable floppy disk contains about 700 blocks (350 kilobytes) of an information. We
suggest that you put on it a handful of the most commonly used programs, such as the

LEXICON

boot.fha - booting 445

Micro EMACS screen editor.

Files
/conf/boot- Boot for AT partitions
/conf/boot.at- Boot for AT partitions (linked to /conf/boot)
/conf/boot.atx-AT master boot (linked to /conf/mboot)
/conf/boot.f9a- Boot for single-density, nine-sector, 5.25-inch floppy disk
/conf/boot.fha- Boot for 15-sector, 5.25-inch floppy disk
/conf/boot.fqa- Boot for quad-density, nine-sector, 3.5-inch floppy disk
I conf/boot.fva - Boot for 18-sector, 3.5-inch floppy disk
/conf/mboot-AT master boot

See Also
device drivers, fdisk, mboot, mkfs

boot.fha - Device Driver
Boot block for floppy disk

To be bootable, a COHERENT file system must contain a boot block (either boot or
boot.fha). In addition, all hard disks must contain the master boot block mboot or an
equivalent.

boot.fha is a boot block for a hard disk partition or a 15-sector floppy. It must be installed
as the first sector of the partition or diskette, as follows:

/etc/fdformat -a /dev/fhaO
/etc/badscan -v -o protol /dev/fhaO 2400
/etc/mkfs /dev/fhaO protol
rm protol
cp /conf/boot.fha /dev/fhaO

boot.fha searches its root directory '/' for file autoboot. If it finds this kernel, boot.fha
loads and runs it. Otherwise, it gives the prompt?, to which the user must type the name
of the operating-system kernel to load (typically, coherent). If boot.fha cannot find the
requested kernel or if an error occurs, boot.fha repeats the prompt and the user must type
another name.

Files
/conf/boot.fha- Partition or 15-sector 96tpi floppy boot block

See Also
badscan, boot, device drivers, fdisk, mboot, mkfs

booting - Technical Information
How booting works

This article discusses the events that take place while starting. or booting. the COHERENT
system. You do not need to read this article to know how to boot COHERENT, as all booting
details are handled by COHERENT automatically. However, if you are interested in the
details. or want to tailor COHERENT to your needs, it will help.

Two 1/0 devices are involved in bootstrapping. The first device is called the boot device; it
contains the program necessary to invoke the COHERENT system and start it running. The
second device is called the root device; it contains the root file system after the system is
running. In most cases, these two devices are the same physical device.

LEXICON

446 booting

Initial Startup
The initial installation of COHERENT loads information from floppy disk to the hard disk.
The startup procedure first loads a small program from a floppy disk. This program, called
the bootstrap program, then reads in the COHERENT system itself.

If the bootstrap finds a file called autoboot in the root directory of the device being booted,
this program is loaded into memory and started. If this file does not exist, the bootstrap
prompts you to type the name of the COHERENT image to boot, usually coherent. Note
that autoboot is usually a link to file coherent.

After it loads the system image /coherent from the root device, the system initializes all
devices, as well as starting the idle process and program /etc/init. The idle process uses
any leftover computer time.

init controls the operation of the system from this point on. It first executes the command
/etc/bre (i.e., boot re), which may run commands like fsck. bre can request a reboot,
remain in single-user mode, or enter multi-user mode automatically. init then calls the
shell to handle commands from the system console. The shell responds by prompting with
#, expecting regular commands. At this time, the system is in single-user mode, meaning
that no other users can log in to the system. The shell is running in superuser mode and
only the console's user is logged in.

At this point, you can enter commands to the system in a normal fashion. One difference
from normal. multi-user operation is that the system is in single-user mode, to allow special
processing to take place before other users log in. Being in single-user mode gives you the
opportunity to run fsck to check the file system and perform other administrative tasks
before other users log into the system.

When administrative activities are finished, you should type <ctrl-D>. This terminates
single user operation; init then opens the system to other users.

The file /etc/re contains shell commands which the system executes just before making
the system available to other users. This file typically includes commands to delete
temporary files and mount standard devices. It also performs any installation-specific
commands you require. As system administrator, you maintain this file. You must be sure
that it is properly updated and never removed.

One command that must be included in /etc/re is /etc/update, which periodically calls
sync() to update buffered data to the disk.

init also maintains the file /etc/utmp, noting users' login and logout.

Files Used During Startup
The following files are used when the system is in single-user mode:

/etc/drvld

/etc/init

/etc/bre

I etc I checklist

/bin/sh

/bin/ksh

Load device drivers.

Initiate a process on each terminal line, call login when appropriate.

Shell commands for booting.

List of partitions for fsck.

Bourne shell.

Korne shell.

The following files are needed after the system has gone multi-user:

LEXICON

/etc/re Shell commands for multi-user startup.

/etc/ttys Information about terminals.

/bin/login Login program.

/etc/utmp "who" file.

/etc/logmsg Login prompt.

/etc/motd Message of the day.

/etc/mount.all Shell script to mount partitions.

See Also
technical information

boottime - System Maintenance
File that holds time system was last booted

boottime - break 447

I etc/boottime is an empty file maintained by the init process and the date command. The
modification time of boottime, as displayed by the command ls -1. is the time that the
system was last booted. You can read the time shown by boottime with ls -1. or with the
system calls stat or fstat.

Files
I etc/boottime

See Also
date, init, mount, system maintenance

Notes
Commands that depend upon /etc/boottime may malfunction if the system's date is not
set correctly. For instance, the mount command depends on the relative modification times
of /etc/boottime and /etc/mtab to detect whether the mount table has been invalidated
by a system boot. If the date is set sufficiently far into the past, the mount table may
appear to be valid when in fact it is not.

brc - System Maintenance
Perform maintenance chores, single-user mode
/etc/brc

The shell script /etc/brc is executed by the init process when the COHERENT system
enters single-user mode. The commands in brc do such things as set system clock, set the
local time zone, and call fsck to scan and (if necessary) fix all file systems on your machine.

See Also
init, re, system maintenance

break - Command
Exit from shell construct
break[n I

The command break is used with the shell to control how it performs loops. It is analogous
to the break keyword in C.

When it is used without an argument, break forces the shell to exit from the innermost
current for, until, or while loop. If used with an argument, break exits from n levels of for,
until, or while loops.

LEXICON

448 break- bsearchO

The shell executes break directly.

See Also
commands, continue, for, ksh, sh, until, while

break - C Keyword
Exit from loop or switch statement

break is a C statement that causes an immediate exit from a switch sequence, or from a
while, for, or do loop.

See Also
Ckeywords

brkO - System Call
Change size of data area
brk(addr)
char*addr;

The break is the lowest address above the data area of a process. brk sets the break to the
given addr, possibly rounding up by some machine-dependent factor. It returns zero on
success, -1 on failure.

See Also
end, exec, mallocQ, sbrk(), system calls

Diagnostics
brk sets errno to ENOMEM if the request fails.

bsearchO - General Function (libc)
Search an array
#include <stdlib.h>
char *bsearch(key, array, number, size, comparison)
char *key, •array;
size t number, size;
int fcomparlson)();

bsearch searches a sorted array for a given item. Item points to the object sought. array
points to the base of the array; it has number elements. each of which is size bytes long. Its
elements must be sorted into ascending order before it is searched by bsearch.

comparison points to the function that compares array elements. comparison must return
zero if its arguments match. a number greater than zero if the element pointed to by arg 1 is
greater than the element pointed to by arg2, and a number less than zero if the element
pointed to by argl is less than the element pointed to by arg2.

bsearch returns a pointer to the array element that matches Item. If no element matches
Item, then bsearch returns NULL. If more than one element within array matches Item,
which element is matched is unspecified.

Example
This example uses bsearch to translate English into "bureaucrat-ese".

LEXICON

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct syntab {
char *english, *bureaucratic;

} cdtab[] = {
/* The left column is in alphabetical order */

} ;

int

"affect",
"after",
"building",
"call",
"do",

"false",
"finish",
"first",
"full",
"help",

"kill",
"lie",
"order",
"talk",
"then",
"use",

"impact",
"subsequent to",
"physical facility",
"refer to as",
"implement",

"inoperative",
"finalize",
"initial",
"in-depth",
"facilitate",

"terminate",
"inoperative statement",
"prioritize",
"interpersonal communication",
"at that point in time",
"utilize"

comparator(key, item)
char *key;
struct syntab *item;
{

return(strcmp(key, item->english));
}

main()
{

struct syntab *ans;
char buf[SO];

for(;;) {
printf("Enter an English word: ");
fflush(stdout);

if(gets(buf) 11 lstrcmp(buf, "quit")
break;

bsearchO 449

NULL)

LEXICON

450 buf .h - buffer

}
}

See Also

if((ans bsearch(buf, (char *)cdtab,
sizeof(cdtab)/ sizeof(struct syntab),
sizeof(struct syntab),

else

comparator)) ==NULL)
printf("%s not found\n");

printf("Don't say \"%s\"; say \"%s\"!\n",
ans->english, ans->bureaucratic);

general functions, qsort(), stdlib.h

Notes
The name bsearch implies that this function performs a binary search. A binary search
looks at the midpoint of the array. and compares it with the element being sought. If that
element matches, then the work is done. If it does not, then bsearch checks the midpoint
of either the upper half of the array or of the lower half, depending upon whether the
midpoint of the array is larger or smaller than the item being sought. bsearch bisects
smaller and smaller regions of the array until it either finds a match or can bisect no
further.

It is important that the input array be sorted, or bsearch will not function correctly.

buf.h - Header File
Buffer header
#include <sys/buf.h>

buf.h defines the structure used to hold buffers.

See Also
header files

buffer - Definition
A buft'er is a portion of memory set aside to hold data read from or to be written to another
process or device. Often, although not always, this involves setting aside a portion of the
arena with malloc or its related functions.

Buffering, and problems therewith, are encountered most often when using the standard
input and output (STDIO) routines. Many operating systems (including COHERENT)
automatically place data from a peripheral device into a buffer. Buffers normally can be
cleared with mush, by pressing the carriage return key on routines that perform input, or
by sending a newline character on routines that perform output. The function fclose,
which closes a file stream, flushes all buffers associated with that stream. exit calls fclose.

Combining unbuffered and buffered 1/0 functions on the same file or device within one
program will produce results that are at best unpredictable.

Example
The following example demonstrates what does and does not happen when you use mush
with the output buffer.

LEXICON

#include <stdio.h>
main()
{

}

extern char *malloc();
char *buffer;

/*use malloc() to create a 120-char buffer*/
if ((buffer= malloc(120)) ==NULL) {

}

/* if malloc() fails, bail out */
fprintf (stderr, "malloc failed\n");
exit(l);

printf ("Type your name: ");
fflush(stdout);
gets(buffer);
printf("Your name is %s\n", buffer);

See Also
arena, array, close, definitions, exit, mush, malloc, STDIO

build - Command
Install COHERENT onto a hard disk
/etc/build

build - byte 451

build installs COHERENT onto your hard disk. COHERENT runs /etc/build to install itself
onto your hard disk. After installation, you should never have an occasion to run build.

See Also
commands

builtin - Command
Execute a command as a built-in command
builtin command I arg ... I

The command ksh is used by the Korn shell ksh to establish command as a built-in
command.

See Also
commands, ksh

byte - Definition
A byte is a group of bits that encodes a character or a small-integer quantity. A byte. like a
dollar. consists of eight bits.

The ANSI Standard defines the data type char as being equal to one byte. It defines all
other data types as multiples of char.

See Also
bit, char, data formats, definitions, nybble

LEXICON

452 byte ordering

byte ordering - Technical information
Machine-dependent ordering of bytes

Byte ordering is the order in which a given machine stores successive bytes of a multibyte
data item. Different machines order bytes differently.

The following example displays a few simple examples of byte ordering:

main()
{

}

union
{

} u;

char b[4];
int i[2];
long l;

u.l = Oxl2345678L;

printf("%x %x %x %x\n",
u.b[O], u.b[l], u.b[2], u.b[3]);

printf("%x %x\n", u.i[OJ, u.i[l]);
printf("%lx\n", u.l);

When run on "big-endian" machines, such as the M68000 or the 28000, the program gives
the following results:

12 34 56 78
1234 5678
12345678

As you can see, the order of bytes and words from low to high memory is the same as is
represented on the screen.

However, when this program is run on "little-endian" machines, such as the PDP-11. you
see these results:

34 12 78 56
1234 5678
12345678

As you can see, the PDP-11 inverts the order of bytes within words in memory.

Finally. when the program is run on the i8086 you see these results:

78 56 34 12
5678 1234
12345678

The i8086 inverts both words and long words.

See Also
C language, canon.h, data formats, technical information

LEXICON

c-Command
Print multi-column output
c [-IN] [-wN J [-012 I

c - cabsO 453

c

c reads lines from the standard input and writes them in columns on the standard output.
The longest input line and the width of the page determine how many columns will fit
across the page.

c recognizes the following options:

-IN Set the length of the page to N lines. c columnizes its output by pages when this
option is used with mode 1 or mode 2.

-wN Set the width of the page to N characters. The default is 80.

-0 Multi-column mode 0. Order the fields horizontally across the page.

-1 Multi-column mode 1 (default mode). Order the fields vertically down each column;
the last column may be short.

-2 Multi-column mode 2. Order the fields similarly to mode 1. but place blank fields
in the last output line rather than the last column.

Options may also be given in the environmental variable C, separated by white space.
Command line options override options in the environment. For example,

export C="-156 -w72 -2"
c -wSO <filel

has the same effect as

c -156 -w72 -2 -wso <f ilel

This command sets the page width to 80 rather than to 72.

See Also
co111DUUlds,export,pr

Diagnostics
c prints "out of memory" and returns an exit status of one if it cannot allocate enough
memory to process its input.

cabsO - Mathematics Function (libm)
Complex absolute value function
#include <lll&th.h>
double cabs(z) struct { double r, I; } z;

cabs computes the absolute value, or modulus. of its complex argument z. The absolute
value of a complex number is the length of the hypotenuse of a right triangle whose sides
are given by the real part r and the imaginary part I. The result is the square root of the sum
of the squares of the parts.

Example
For an example of this function. see the entry for acos.

LEXICON

454 cal - calendar

See Also
hypot(), mathematics library

cal - Command
Print a calendar
cal [month] [year I

cal prints a calendar for the specified year (by default, the current year), or for the given
month if one is specified. If neither is specified, a calendar of the current month is printed.
year must be between 1 and 9999. month may be either the month name (lower case,
spelled out or first three letters) or a number between 1 and 12.

For example, try:

cal september 1752

See Also
commands

Notes
cal assumes that the Gregorian calendar was adopted on September 3, 1752, which is the
date of its adoption throughout the British empire.

calendar - Command
Reminder service
calendar [-a] [-ffile] ... [-d[date]] [-w[date]] [-m[month) I

calendar is the COHERENT system's "reminder service". It reads a calendar file, which
should contain information organized by date; if an event is scheduled to happen today or
tomorrow. calendar prints the entry on the standard output. Thus, you can use calendar
to remind you of both one-time events (such as appointments) and yearly events (such as
anniversaries).

calendar recognizes the following command-line options:

-a

-fflle

-d[dateJ

-w[date]

-m[month]

Search the calendars of all users and send mail. Default is to search only
your calendar.

Search each "file" in order given. Default is $HOME/ .calendar.

Print all entries for "date". Default date is today.

Print all entries for the week beginning with "date". Default is to print
entries for today and tomorrow, with "tomorrow" encompassing the
following Monday should "today" be a Friday.

Print entries for the given "month''.

The following gives an example of a calendar file. Note that calendar understands different
formats of dates:

LEXICON

Apr 16
7/6
Sep 26
Jun 30
10/4
Jul 31
Mar 16

Dave's birthday
Dad's birthday
Mom's birthday
Barry's birthday
Marianne's birthday
Anniversary!
Pot luck luncheon

Each user can run calendar by embedding the command

calendar

in his .profile.

calling conventions 455

If you wish. you can run calendar automatically for all users on your system, by inserting it
into file /usr/lib/crontab. In this case, calendar should be used with its -a option, to force
calendar to search every user's $HOME directory for a .calendar file and mail the
appointments it finds to that user.

See Also
commands

Notes
calendar's notion of tomorrow understands weekends but not holidays. Thus, if you invoke
calendar on a Friday. it returns the events for that day and the following Saturday, Sunday.
and Monday. If Monday is a holiday, however, you will not receive appointments for
Tuesday.

calling conventions - Technical Information
The following presents the calling conventions for COHERENT.

The design of the calling conventions had to take into account the fact that C does not
require that the number of arguments passed to a function be the same as the number of
arguments specified in the function's declaration. Routines with a variable number of
arguments are not uncommon; for example, print! and scant can take a variable number of
arguments. Another consideration was the availability of register variables.

Therefore, COHERENT uses the following calling sequence. The function arguments are
pushed onto the stack from the first, or rightmost, through the last, or leftmost. longs are
pushed high-half first; this makes the word order compatible with the dd instruction. The
function is then called with a near call. An add instruction after the call removes the
arguments from the stack.

For example, the function call

int ai
long bi
char ci

foo()
{

}
example(a, b, c)i

generates the code

LEXICON

456 calling conventions

mo vb al,c
cbw
push ax
push b+2
push b
push a
call example_
add sp,8

Note that an underbar character ·_· has been appended to the function name. This serves
two purposes. First, it makes it harder to accidentally call routines written in other
languages. Second, it means that two routines with the same name can be called from C
and another language in identical fashions.

The parameters and local variables in the called function are referenced as offsets from the
bp register. The arguments begin at offset 8 and continue toward higher addresses,
whereas the local variables begin at offset -2 and continue toward lower addresses.

The sp register points the local variable with the lowest address. Thus, when example_ is
reached in the above model. the stack frame resembles the following:

+- High
I c (widened to a word) I
!=======================!
I high half of b I
1=======================1
I low half of b I
!=======================!
I a I

+- Low

Functions return ints in the ax register, longs in the dx:ax register pair. pointers in the ax
register and doubles in fpac_.

The following program

example(a, b, c)
int a, b, c;
{

return (a* b - c);
}

when compiled with the -VASM option, produces the following assembly-language code:

.shri

.globl example_

LEXICON

calling conventions 457

example_:
push si
push di
push bp
mov bp, sp
mov ax, lO(bp)
imul 8(bp)
sub ax, 12(bp)
pop bp
pop di
pop si
ret

The runtime startup initializes the registers cs, ds, es, and ss, and the segment registers
remain unchanged. Other registers may be overwritten.

COHERENT pushes function arguments as follows.

char
int
long
float
double
struct
union

Widened to int, then pushed
Pushed in machine word order
Pushed high order word, then low-order word
Widened to double, then pushed
Pushed high order, then low order
Pushed in memory order
Pushed in memory order

Functions return values as follows:

char In al
int In ax
long In cl.x:ax
float Same as double
double In fpac_
struct Pointer in ax
union Pointer in ax
pointer In ax

A function that returns a struct or union actually returns a pointer; the code generated for
the function call block-moves the result to its destination. Functions that return a float or
double return it in the global double fpac_.

For example, consider the call

example(i, 1, c, cp);

where i is an int, 1 is a long, c is a char, cp is a pointer to a char, and example declares
two automatic ints. After execution of the call and the prologue of example, the stack
contains the following 11 words:

LEXICON

458 calling conventions

==================== +-- High
I cp I
l==================I
I c I
1·=================1

I high word of 1 I
1==================1
I low word of 1 I
!==================!
I i I
!==================!
I return address I
1==================1
I saved SI I
1==================1
I saved DI I
1==================1
I saved BP I
1==================1
I space for auto 1 I
1==================1
I space for auto 2 I
==================== +- Low

The following example performs a simple function call:

main()
{

example(!, 2)1 /*call sample routine*/
}

example(pl, p2)
{

int a, bi

}

When the function example is about to return. the stack appears as follows:

LEXICON

2 I
================!

i I
================!
Return Address I

================!
main's SI I

================!
main's DI I

================!
main's BP I

================!
3 I

================!
I 4 I

See Also
C language, technical information

callocO - General Function (libc)
Allocate dynamic memory

.-- High

.-- parm 2

.-- parm 1

.-a

.-- SP b
+--Low

char •calloc(count, size) unsigned count, size;

callocO 459

lO(bp)

S(bp)

6(bp)

4(bp)

2(bp)

(bp)

-2(bp)

-4(bp)

calloc is one of a set of routines that helps manage a program's arena. calloc calls malloc
to obtain a block large enough to contain count items of size bytes each; it then initializes
the block to zeroes. When this memory is no longer needed, you can return it to the free
pool by using the function free.

calloc returns the address of the chunk of memory it has allocated, or NULL if it could not
allocate memory.

Example
This example attempts to calloc a small portion of memory; it then reallocates it to
demonstrate realloc.

#include <stdio.h>

main()
{

register char *ptr, *ptr2;
extern char *callee(), *realloc();
unsigned count, size;

count = 4;
size= sizeof(char *);

LEXICON

460 candaddrO - caninoO

if ((ptr = calloc(count, size)) !=NULL)
printf("%u blocks of size %u calloced\n",

count, size);
else

printf("Insuff. memory for %u blocks of size %u\n",
count, size);

if ((ptr2 = realloc(ptr, (count*size) + 1)) != NULL)
printf("l block of size %u realloced\n",

(count*size)+l);
}

See Also
arena, free(), general functions, malloc(), memok(), realloc(), setbuf()

candaddrO - General Function (libc)
Convert a daddr t to canonical format
#include <canon.h>
#include <sys/ types.h>
void candaddr(s)
daddr_ts;

candaddr performs canonical conversion upon a daddr_t. It returns nothing. and it is its
own inverse. For details on canonical conversion, see canon.h.

Example
For an example of this function, see canon.h.

See Also
canon.h, general functions

candevO - General Function (libc)
Convert a dev t to canonical format
#include <canon.h>
#include <sys/ types.h>
void candev(s)
dev_t s;

candev performs canonical conversion upon a dev_t. It returns nothing. and it is its own
inverse. For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

caninoO - General Function (libc)
Convert an ino t to canonical format
#include <canon.h>
#include <sys/types.h>
void canino(s)
ino_t s;

canino performs canonical conversion upon a ino_t. It returns nothing, and it is its own
inverse. For more information on canonical conversion. see canon.h.

LEXICON

See Also
canon.h, general functions

canintO - General Function (libc)
Convert an int to canonical format
#include <canon.h>
#include <sys/types.h>
void canint(s)
int s;

canintO - canon.h 461

canint performs canonical conversion upon a int. It returns nothing. and it is its own
inverse. For more information on canonical conversion. see canon.h.

See Also
canon.h, general functions

canlongO - General Function (libc)
Convert a long to canonical format
#include <canon.h>
#include <sys/types.h>
void canlong(s)
longs;

canlong performs canonical conversion upon a long. It returns nothing, and it is its own
inverse. For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

canon.h - Header file
Portable layout of binary data
#include <canon.h>
#include <sys/types.h>

The layout of binary data varies among machines. For example, the byte order of a 16-bit
word on the PDP-11 is low-byte.high-byte, whereas on the Z8000 it is high-byte.low-byte.

To ensure that file systems can be ported among machines with differing byte orders.
COHERENT uses a canonical layout of binary data. (The word "canonical" in this context
means, "of or conforming to a general rule".) Data not in primary memory (e.g .. on disk or
communications line) must conform to COHERENT's canonical layout.

To insulate programs from the details of the difference between the 'natural' and canonical
layouts, the COHERENT system provides a set of procedures to convert from one layout to
another. They are as follows:

canshort().
canint() ...
canlong() ..
canvaddr().
cansize() ..
candadd.r().
cantime() ..
candev()
canino() ..

. Convert a short

. Convert an int

. Convert a long

. Convert vaddr_t

. Convert fsize_t

. Convert daddr_t

. Convert time_t

. Convert dev_t

. Convertino_t

LEXICON

462 canon.h

Each procedure takes an lvalue of the indicated type. converts it in place. and returns
nothing. The argument should not have side-effects. Each procedure is its own inverse.
Several procedures are designed for elements of file systems.

The file formats that contain canonical binary data and the commands that deal with them
are as follows:

Format
ar.h
dir.h
l.out.h

Commands
ar, Id, ranlib
ls, tar
as, cc, db, Id, nm, size, strip

Any program that manipulates binary data within files must perform canonical conversion
immediately upon input and immediately before output. The following fragment of the
source code to the command df should be instructive:

#include <stdio.h>
#include <canon.h>
#include <filsys.h>
char superb[BSIZE];

df(fs)
char *fs;
{

LEXICON

register struct filsys *sbp &superb;
FILE *fp;
daddr t nfree;

if ((fp = fopen(fs, "r")) NULL) {
perror(fs);
return (l);

}

fseek(fp, (long)BSIZE, O);
if (fread(superb, sizeof superb, 1, fp) != 1) {

fprintf(stderr, "%s: read error\n", fs);
return (1);

}

candaddr(sbp->s_tfree);
candaddr(sbp->s_fsize);
canshort(sbp->s_isize);
nfree = sbp->s_tfree;

if (nfree > sbp->s_fsize-sbp->s_isize I I nfree < 0) {
fprintf(stderr, "%s: bad free count\n", fs);
return (1);

}

}

Files

printf("%s: %ld\n", fs, nfree);
fclose(fp);
return (O);

<canon.h>

See Also

canshortO - cantimeO 463

ar.h, byte ordering, candaddr(), candev(), canino(), canint(), canlong(), canshort(),
cansize(), cantime(), canvaddr(), dir.h, l.out.h, header mes

canshortO - General Function (libc)
Convert a short to canonical format
#include <canon.h>
#include <sys/types.h>
void canshort(s)
shorts;

canshort performs canonical conversion upon a short. It returns nothing. and it is its own
inverse. For more information on canonical conversion, see canon.h.

Example
For an example of this function, see canon.h.

See Also
canon.h, general functions

cansizeO - General Function (libc)
Convert an fsize t to canonical format
#include <canon.h>
#include <sys/types.h>
void cansize(s)
size_ts;

cansize performs canonical conversion upon a size_t. It returns nothing. and it is its own
inverse. For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

cantimeO - General Function (libc)
Convert a time t to canonical format
#include <canon.h>
#include <sys/types.h>
void cantime(s)
time_t s;

cantime performs canonical conversion upon a time_t. It returns nothing, and it is its own
inverse. For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

LEXICON

464 canvaddrO - case

canvaddrO - General Function (libc)
Convert a vaddr t to canonical format
#include <canon.h>
#include <sys/types.h>
void canvaddr(s)
vaddr_ts;

canvaddr performs canonical conversion upon a vaddr_t. It returns nothing. and it is its
own inverse. For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

case - Command
Execute commands conditionally according to pattern
case token in (pattern [I pattern] .•.)sequence ;;] ... esac

case is a construct that used by the shell. It tells the shell to execute commands
conditionally, according to a pattern. It tests the given token successively against each
pattern, in the order given. It then executes the commands in the sequence corresponding
to the first matching pattern. Optional '/' clauses specify additional patterns corresponding
to a single sequence. If no pattern matches the token. the case construct executes no
commands.

Each pattern can include text characters (which match themselves), special characters '?'
(which matches any character except newline) and'*' (which matches any sequence of non­
newline characters), and character classes enclosed in brackets '[]'; ranges of characters
within a class may be separated by·-·. In particular. the last pattern in a case construct is
often '*', which will match any token.

The shell executes case directly.

Example
The following example prints a string in response to a command-line option:

case

esac

See Also

$1 in
FOO)
BAR)
BAZ)
*)

echo "This is option FOO";;
echo "This is option BAR";;
echo "This is option BAZ";;
echo "An asterisk marks the

commands, ksh, sh

case - C Keyword
Introduce entry in switch statement

default option";;

The C keyword case is a label within a switch statement. For example:

LEXICON

while ((int= getchar()) != EOF)
switch (foo) {

}

case 'q':
case 'Q' I

exit(O);
case ' ':

n++;
default:

break;

cast - cat 465

case labels each of the three possibilities recognized by the switch statement: a space, 'q'.
and 'Q'. The statements that follow a case statement behave as if they were enclosed within
braces.

Note that a case statement is simply a label: it sets a point to which the switch statement
jumps. and execution continues from that point. Once a switch statement jumps to the
point marked by a given case label. execution continues until an exit. break, or return is
read, or the closing brace of the switch statement is encountered.

See Also
break, C keywords, switch

cast - Definition
The cast operation "coerces" a variable from one data type to another.

There are two reasons to cast a variable. The first is to convert a variable's data into a form
acceptable to a given function. For example, the function hypot takes two doubles. If the
variables leg_x and leg_y are ftoats, the rules of C require that they be cast automatically to
double. If the compiler did not do not do this, hypot would grab a double's worth of
memory: the four bytes of your float,.plus four bytes of whatever happens to be sitting on
the stack. The leads to results that are less than totally accurate.

The other reason to cast a variable is when you cast one type of pointer to another. For
example,

char *foo;
int *bar;
bar = (int *)foo;

Although foo and bar are of the same length. you would cast foo in this instance to stop the
C compiler from complaining about a type mismatch.

See Also
data formats, data types, definitions

cat - Command
Concatenate/print files
cat [-u][file ... I

cat copies each.file arguments to the standard output. A ·-·tells cat to read the standard
input. If no.file is specified, cat reads the standard input.

The -u option makes the output unbuffered. Otherwise, cat buffers the output in units of
the machine's disk block size (e.g .. 512 bytes).

LEXICON

466 caveat utilitor - cc

See Also
commands

Notes
If you redirect cat's the output to one of its input files. it will loop forever. reading from the
file the text that it has just written into it: in effect, cat will chase its own tail endlessly.

caveat utilitor - Definition
Latin (sort oO: "Let the user beware."

See Also
definitions

cc - Command
Compiler controller
cc [compiler opttons)jile [linker options)

cc is the program that controls compilation of C programs. It guides files of source and
object code through each phase of compilation and linking. cc has many options to assist
in the compilation of C programs; in essence, however. all you need to do to produce an
executable file from your C program is type cc followed by the name of the file or files that
hold your program. It checks whether the file names you give it are reasonable, selects the
right phase for each file, and performs other tasks that ease the compilation of your
programs.

File Names
cc assumes that each.file name that ends in .c or .h is a C program and passes it to the C
compiler for compilation.

cc assumes that each.file argument that ends in .s is in Mark Williams assembly language
and processes it with the assembler as.

cc also passes all files with the suffixes .o or .a unchanged to the linker Id.

How cc Works
cc normally works as follows: First. it compiles or assembles the source files, naming the
resulting object files by replacing the .c or .s suffixes with the suffix .o. Then, it links the
object files with the C runtime startup routine and the standard C library. and leaves the
result in file file. If only one object file is created during compilation, it is deleted after
linking; however, if more than one object file is created, or if an object file of the same name
existed before you began to compile, then the object file or files are not deleted.

Options
The following lists all of cc's command-line options. cc passes some options through to the
linker Id unchanged, and correctly interprets to it the options -o and -u.

A number of the options are esoteric and normally are not used when compiling a C
program. The following are the most commonly used options:

-c
-f
-Iname
-o name
-V

LEXICON

Compile only; do not link
Include floating-point printf
Pass library libname.a to linker
Call output file name
Print verbose listing of cc's action

cc 467

-A MicroEMACS option. If an error occurs during compilation. cc automatically invokes
the MicroEMACS screen editor. The error or errors are displayed in one window and
the source code file in the other. with the cursor set to the line number indicated by
the first error message. Typing <ctrl-X>> moves to the next error. <ctrl-X>< moves
to the previous error. To recompile. close the edited file with <ctrl-Z>. Compilation
will continue either until the program compiles without error. or until you exit from
the editor by typing <ctrl-U> followed by <ctrl-X><ctrl-C>.

-B[strlng]
Backup option. Use alternate versions of the compiler for ccO. eel. cc2. and cc3. If
string is supplied. cc prepends it to the names of the phases of the compiler to form
the pathnames where these are found. Otherwise. cc prepends the name of the
current directory. If a -t option was previously given. only the parts of the compiler
specified by it are affected. Any number of -B and -t options may be used, with each
-t option specifying the passes affected by the subsequent -B option. For example,
the command

cc -tp2 -Bnew hello.c

compiles hello.c using newcc2 in place of the ordinarily used /llb/cc2. and using
newcpp in place of the ordinarily used /lib I cpp.

-c Compile option. Suppress linking and the removal of the object files.

-Dname[=value)
Define name to the preprocessor, as if set by a #define directive. If value is present.
it is used to initialize the definition.

-E Expand option. Run the C preprocessor cpp and write its output onto the standard
output.

-f Floating point option. Include library routines that perform floating-point arithmetic.
Because the floating-point routines require approximately five kilobytes of memory,
the standard C library does not include them; the -f option tells the compiler to
include them. If a program is compiled without the -f option but attempts to print a
floating point number during execution by using thee. f, or g format specifications to
printf, the message

You must compile with -f option for floating point

will be printed and the program will exit.

-I name
Include option. Specify a directory the preprocessor should search for files given in
#include directives, using the following criteria: If the #include statement reads

#include "file.h"

cc searches for file.h first in the source directory. then in the directory named in the
-lname option, and finally in the system's default directories. If the #include
statement reads

#include <file.h>

cc searches for file.h first in the directories named in the -Iname option, and then in
the system's default directories. Multiple -Iname options are executed in the order of
their of appearance.

LEXICON

468 cc

-K Keep option. Do not erase the intermediate files generated during compilation.
Temporary files will be written into the current directory.

-1 name
library option. Pass the name of a library to the linker. cc expands -lname into
/lib/libname.a. If an alternative library prefix has been specified by the -ti and -
Bstrlng options. then -lname expands to strlnglibname.a. Note that this is a linker
option. and so must appear at the end of the cc command line, or it will not be
processed correctly.

-M string
Machine option. Use an alternate version of ccO, eel, ccla, cclb. cc2, cc3, as,
lib• .a, and crtsO.o, named by fixing string between the directory name and the pass
and file names.

-n Instruct the linker Id to bind the output with separate shared and private segments,
and which each starting on a separate hardware-segment boundary. This allows
several processes to simultaneously use one copy of the shared segment. Note that
programs linked with this option will run a little more slowly than if they were not so
linked; however, if a program forks (e.g .. kermit) or will be used by more than one
user at a time (e.g .. MicroEMACS), this slightly slower time will be more than offset
by the program's being spared having to read an entire copy of itself from the disk.

-N[p0123sdlrt]strlng
Name option. Rename a specified pass to string. The letters p0123sdlrt refer.
respectively. to cpp, ccO, eel, cc2, ce3, the assembler, the linker, the libraries, the
run-time start-up, and the temporary files.

-o name
Output option. Rename the executable file from the default to name. If this option is
not used, the executable will be named after the first .e or .o file on the command
line.

-0 Optimize option. Run the code generated by the C compiler through the peephole
optimizer. The optimizer pass is mandatory for the i8086, Z8000, and M68000
compilers, and need not be requested. It is optional for the PDPl l compiler, but is
recommended for all files except those that consist entirely of initialized tables of
data.

-q[p0123s]
Quit option. Terminate compilation after running the specified pass. The letters
p0123s refer, respectively. to epp. ccO, eel, cc2, ee3, and the assembler. For
example, to terminate compilation after running the parser ccO, type -qO.

-Q Quiet option. Suppress all messages.

-S Suppress the object-writing and link phases, and invoke the disassembler cc3. This
option produces an assembly-language version of a C program for examination, for
example if a compiler problem is suspected. The assembly-language output file name
replaces the .c suffix with .s. This is equivalent to the -V ASM option.

-t[p0lab23sdlrt]

LEXICON

Take option. Use alternate versions of the compiler phases and other files specified
in the following string. If no following string is given, the cc uses alternate version of
every phase of the compiler. except the preprocessor. If the -t option is followed by a
-B option, cc prepends the prefix string named in the -B option to the phases and
files named in the -t option; otherwise, the it looks for the alternate forms in the
current directory.

cc 469

-U name
Undefine symbol name. Use this option to undefine symbols that the preprocessor
defines implicitly, such as the name of the native system or machine.

-V Verbose option. cc prints onto the standard output a step-by-step description of
each action it takes.

Vstrlng
Variant option. Toggle (i.e .. turn on or off) the variant string during the compilation.
Variants that are marked on are turned on by default. Options marked Strict:
generate messages that warn of the conditions in question. cc recognizes the
following variants:

-VASM
Output assembly-language code. Identical to -S option, above. Default is off.

-VCOMM
Permit .com-style data items. Default is on.

-VFLOAT
Include floating point printf routines. Same as -f option, above.

-VPROF
Generate code to profile functions calls. Programs compiled with this option can
be run with the prof command to print a summary of how much time the
program spends in each subroutine, to help you optimize your programs. You
must use this option to profile compile each module whose functions you wish
to examine; and you must also use this option on the cc command line with
which you link the program, to ensure that the appropriate library routines are
linked into your executable.

-VQUIET
Suppress all messages. Identical to -Q option. Default is off.

-VSBOOK
Strict: note deviations from The C Programming Language. ed. 1. Default is off.

-VSCCON
Strict: note constant conditional. Default is off.

-VSINU
Implement struct-in-union rules instead of Berkeley-member resolution rules.
Default is off. i.e., Berkeley rules are the default.

-VSLCON
Strict: int constant promoted to long because value is too big. Default is on.

-VSMEMB
Strict: check use of structure/union members for adherence to standard rules of
C. Default is on.

-VSNREG
Strict: register declaration reduced to auto. Default is on.

-VSPVAL
Strict: pointer value truncated. Default is off.

-VSRTVC
Strict: risky types in truth contexts. Default is off.

LEXICON

470 ccO - cc2

-VS TAT
Give statistics on optimization.

-VS
Turn on all strict checking. Default is on.

-VSUREG
Strict: note unused registers. Default is off.

-VSUVAR
Strict: note unused variables. Default is on.

-V3GRAPH
Translate ANSI trigraphs. Default is off.

Linking Objects
The linker Id does not know about paths: it links exactly what you tell it to link via the cc
command line. cc looks for compiler phases and for runtime startoff and library by
searching the directories named in the environmental variable LIBPATH. If you do not
define LIBPATH in your environment, it searches the default LIBPATH as defined in
/usr/include/path.h. If you define LIBPATH. cc searches the directories in the order you
specify. For example, a typical definition is:

LIBPATH=:/lib:/usr/lib

This searches the current directory'.', then /lib. then /usr/lib.

See Also
as, C language, ccO, eel, cc2, cc3, commands, cpp, ld
The C Language. tutorial

cco - Definition
ccO is the COHERENT parser. It parses C programs using the method of recursive descent
and translates the program into a logical tree format.

See Also
cc, eel, cc2, cc3, cpp, definitions

cc1 - Definition
eel is the COHERENT code generator. This phase generates code from the trees created by
the parser, ccO. The code generation is table driven, with entries for each operator and
addressing mode.

See Also
cc,ccO,cc2,cc3,cpp,detlnitions

cc2 - Definition
cc2 is the optimizer I object generator phase of COHERENT. It optimizes the code generated
by eel. and writes the object code. COHERENT uses multiple optimization algorithms.
One optimizes jump sequences: it eliminates common code, optimizes span-dependent
jumps, and removes jumps to jumps. The other function scans the generated code
repeatedly to eliminate unnecessary instructions.

LEXICON

cc3 - ceilO 471

See Also
cc, ccO, eel, cc3, cpp, definitions

cc3 - Definition
cc3 is the output phase of COHERENT. It writes a file of assembly language rather than a
relocatable object module. This phase is optional; it allows you to examine the code
generated by the compiler. To produce an assembly-language output of a C program. use
the -S option on the cc command line. For example,

cc -S foo.c

tells cc to produce a file of assembly language called foo.s, instead of an object module.

See Also
cc, ccO, eel, cc2, cpp, definitions

cd -Command
Change directory
cd directory

The shell keeps track of the directory in which the user is currently working. If a command
is not specified by a complete path name beginning with · /', the shell prefixes it with the
name of the current working directory. cd changes the current working directory to
directory. If no directory is specified, the directory named in the $HOME environmental
variable becomes the current working directory.

See Also
commands, ksh, pwd, sh

ceilO - Mathematics Function (libm)
Set numeric ceiling
#include <math.h>
double ceil(z) double z;

cell returns a double-precision floating point number whose value is the smallest integer
greater than or equal to z.

Example
The following example demonstrates how to use cell:

#include <math.h>
#include <stdio.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

}

if (errno)
perror (name) ;

else
printf("%10g %s\n", value, name);

errno = O;

LEXICON

472 cgrep

main()
{

}

extern char *gets();
double x;
char string[64];

for (;;) {

}

printf ("Enter number: ");
if (gets(string) ==NULL)

break;
x = atof(string);

display(x);
display(ceil(x));
display(floor(x));
display(fabs(x));
display(sqrt(x));

putchar('\n');

See Also
absQ, fabs(), floor(), frexp(), mathematics library

cgrep - Command
Pattern search for C source programs
cgrep [-clnsA) (-r new) expresslonfUe ...

cgrep is a string-search utility. It resembles its cousins grep and egrep, except that it is
specially designed to be used with C source files. It checks all C identifiers against
expression and prints all lines in which it finds a match. cgrep allows you to search for a
variable named 'i' without finding every 'if and 'int' in your program. cgrep defines an
"identifier" to be any variable name or C keyword. expression can be a regular expression; if
it includes wildcard characters or 'I's, you must "quote it" to protect it against being
modified by the shell. For details on the expressions that cgrep can recognize, see the
Lexicon entry for egrep.

cgrep tests names that include the'.' and'->' operators against expression. Thus, to look for
ptr->val, type:

cgrep "ptr->val" x.c

This finds ptr->val even if it contains spaces, comments, or is spread across lines. If it is
spread across lines, it will be reported on the line that contains the last token. The only
exception is if you include the -A option, in which case it will be reported on the line which
contains the first token. This is to simplify MicroEMACS macros, as will be described
below.

To find structure.member, type:

cgrep "structure\.member"

because'.' in a regular expression matches any character.

Do not include spaces in any pattern. Only identifiers and '.'or '->'between identifiers are
included in the tokens checked for pattern-matching.

LEXICON

char 473

Command-line Options
cgrep recognizes the following command-line options:

-c Print all comments in eachjlle. This form takes no expression.

-1 List only the names of the files in which expression is found.

-n Prefix each line in which expression is found with its line number in the file.

-r Replace all expression matches with new. This option may not be used with any
others, and it can only match simple tokens, not items like ptr->val. When -r is
used and the input is stdin, a new file will always be created as stdout.

-s Print all strings in each file. This form takes no expression.

-A Write all lines in which expression is found into a temporary file. Then, call
MicroEMACS with its error option to process the source file, with the contents of
the temporary file serving as an "error" list. This option resembles the -A option to
the cc command, and lets you build a MicroEMACS script to make systematic
changes to the source file. To exit MicroEMACS and prevent cgrep from searching
further, <ctrl-U> <ctrl-X> <ctrl-C>.

Examples
The command

cgrep tmp *.c

will find the variable name tmp, but not tmpname, or any occurrence of tmp in a string or
comment.

The script

cgrep -c < myfile.c I we -1

count the lines of comments in myfile.c.

The command

cgrep "x\abc\d" *.c

will find x, ab, or d. Note this is a regular expressions with a surrounding "A()$"which is
applied to every identifier. Thus, reg* will not match register, but reg.• will.

See Also
commands, egrep, grep, me

char - C Keyword
Data type

char is a C data type. It is the smallest addressable unit of data. According to the ANSI
Standard, a char consists of exactly one byte of storage; a byte, in turn. must be composed
of at least eight bits. sizeof(char) returns one by definition, with all other data types
defined as multiples thereof. All Mark Williams compilers sign-extend char when it is cast
to a larger data type.

Under COHERENT. a char by default is signed.

LEXICON

474 chars.h - chase

See Also
byte, C keywords, data formats, unsigned

chars.h - Header File
Character definitions
#include <sys/ chars.h>

chars.h defines manifest constants for some commonly used characters.

See Also
header mes

chase - Command
Highly amusing video game
/usr I games/ chase [-c I [speed I

chase is a COHERENT version of a popular video game. It runs on the console of an IBM
AT COHERENT system with input from the console keyboard. chase assumes that the
system console is a monochrome display adapter unless you select the -c color-display
option.

To accomodate different computer system speeds and different levels of skill, chase prompts
the user to type a speed when the game begins. Press <return> to try out the game with
the default speed of ten; typing a higher number makes the game slower, a lower number
makes it faster. If you can play at speed zero on a fast computer system, you play too many
video games. If you know the speed you want, you can enter it as a command-line
argument. If you see the boss coming, quit by pressing <ctrl-C>.

The Rules
The player (represented by a blinking shaded rectangle) attempts to evade four "ghosts"
(represented by shaded rectangles with arrows) while erasing dots from the playing-board
maze.

At the beginning of a game, the four ghosts are in the ghost box above the center of the
maze and the player is below it. The maze is filled with dots, including four blinking
diamonds called power pellets. The ghosts emerge from the ghost box and chase the player.
The console arrow keys move the player left, right, up, or down through the maze. Typing
'O' stops the player. The player continues to move in the same direction until a wall of the
maze stops him, you type a 'O', or you type another arrow key.

When the player eats a power pellet, he acquires super power and can chase the ghosts
briefly; the ghosts change color while the player has super power. If the player catches a
ghost, he scores a bonus and the ghost returns to the ghost box temporarily. Once a player
eats all the dots on the board, the game continues at the next level.

The upper left comer of the screen displays a score and the current board level. Each dot
the player eats scores ten points. The first ghost a player eats while he has super power
scores 200 points, the second 400, the third 800, and the fourth 1,600. At certain times
during the game, a bonus letter appears below the ghost box; the player scores 100 points
for eating the bonus letter on level 'A', 300 on level 'B', 500 on level 'C'. and so on.

The lower left comer of the screen displays the number of extra players remaining in the
current game (initally two). Another bonus player appears every 10,000 points. to a
maximum of three extra players. The game ends when the ghosts eat the last player.

LEXICON

See Also
commands

chdirO - System Call
Change working directory
chdir(dlrectory) char *directory;

chdirO - checklist 475

The working directory (or current directory) is the directory from which the search for a file
name begins if a path name does not begin with'/'. By convention. the working directory
has the name '.'. chdir changes the working directory to the directory pointed to by
directory. This change is in effect until the program exits or calls chdir again.

See Also
cd, chmod(), chroot(), directory, system calls

Diagnostics
chdir returns zero if successful. It returns -1 if an error occurred, e.g .. that directory does
not exist, is not a directory. or is not searchable.

check - Command
Check file system
check [-s)jllesystem ...

check uses the commands icheck and dcheck to check the consistency of a file system. It
acts on each argumentjllesystem in turn; it calls first icheck and then dcheck on each to
detect problems.

If -s is specified, check attempts to repair any errors automatically. You should first
unmount the file system, if possible. If the root device is involved, you should be in single­
user mode and then reboot the system immediately (without typing sync).

See Also
clrl, commands, icheck, ncheck, sync, uniount

Notes
Certain errors, such as duplicated blocks, cannot be fixed automatically. Decisions must be
made by a human.

In earlier releases of COHERENT, check acted upon a default file system if none was
specified.

This command has largely been superceded by fsck.

checklist - System Maintenance
File systems to check when booting COHERENT
/etc/checklist

The file /etc/checklist names all COHERENT partitions on your hard disk. COHERENT
executes fsck for each file named in this file. This ensures that the file-system of each
partition is checked and cleaned before it is mounted.

When you add a new COHERENT partition to your system, you should insert its name (that
is, the name of its raw device) into /etc/checklist to ensure that its file system is checked
at boot time.

LEXICON

476 chgrp - chmod

See Also
mount.all, system maintenance

chgrp - Command
Change the group owner of a file
chgrp group .file ...

chgrp changes the group owner of each.file to group. The group may be specified by a valid
group name or a valid numerical group identifier.

Only the superuser may use chgrp.

Files
/etc/group- Convert group name to group identifier

See Also
chmod, chown, commands

chmod - Command
Change the modes of a file
chmod +modes file
chmod -modes .file

The COHERENT system assigns a mode to every file, to govern how users access the file.
The mode grants or denies permission to read, write, or execute a file.

The mode grants permission separately to the owner of a file. to users from the owner's
group, and to all other users. For a directory. execute permission grants or denies the right
to search the directory, whereas write permission grants or denies the right to create and
remove files.

In addition, the mode contains three bits that perform special tasks: the set-user-id bit, the
set-group-id bit, and the save-text or "sticky" bit. See the Lexicon entry for the COHERENT
system call chmod for more information on how to use these bits.

The command chmod changes the permissions of each specifiedflle according to the given
mode argument. mode may be either an octal number or a symbolic mode. Only the owner
of a.file or the superuser may change a file's mode. Only the superuser may set the sticky
bit.

A symbolic mode may have the following form. No spaces should separate the fields in the
actual mode specification.

[which] how perm ... [, .. .]

which specifies the permissions that are affected by the command. It may consist of one or
more of the following:

a All permissions, equivalent to gou
g Group permissions
o Other permissions
u User permissions

If no which is given, a is assumed and chmod uses the file creation mask. as described in
umask.

how specifies how the permissions will be changed. It can be

LEXICON

chmodO 477

= Set permissions
+ Add permissions

Take away permissions

perm specifies which permissions are changed. It may consist of one or more of the
following:

g Current group permissions
o Current other permissions
r Read permission
s Setuid upon execution
t Save text {sticky bit)
u Current user permissions
w Write permission
x Execute permission

Multiple how/perm pairs have the same which applied to them. One or more specifications
separated by commas tell chmod to apply each specification to the file successively.

The octal modes (see stat) are as follows:

04000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

Set user id upon execution
Set group id upon execution
Sticky bit (save text)
Owner read permission
Owner write permission
Owner execute permission
Group read permission
Group write permission
Group execute permission
Others read permission
Others write permission
Others execute permission

An octal mode argument to chmod is obtained by ortng the desired mode bits together.

Examples
The first example below sets the owner's permissions to read + write + execute, and the
group and other permissions to read + execute. The second example adds execute
permission for everyone.

chmod u=rwx,go=rx file
chmod +x file

See Also
chgrp, chown, commands, Is, stat, umask

chmodO - System Call
Change file-protection modes
#include <sys/stat.h>
chmod(flle, mode)
char "jlle; int mode;

LEXICON

478 chown

chmod sets the mode bits for.file. The mode bits include protection bits, the set-user-id bit,
and the sticky bit.

mode is constructed from the logical OR of the following, which are defined symbolically in
the header file stat.h:

04000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

Set user identifier
Set group identifier
Save file on swap device ("sticky bit")
Read permission for owner
Write permission for owner
Execute permission for owner
Read permission for members of owner's group
Write permission for members of owner's group
Execute permission for members of owner's group
Read permission for other users
Write permission for other users
Execute permission for other users

For directories. some protection bits have a different meaning: write permission means files
may be created and removed, whereas execute permission means that the directory may be
searched.

The save-text bit (or "sticky bit") is a flag to the system when it executes a shared for of a
load module. After the system runs the program. it leaves shared segments on the swap
device to speed subsequent reinvocation of the program. Setting this bit is restricted to the
superuser (to control depletion of swap space which might result from overuse).

Only the owner of a file or the superuser may change its mode.

See Also
creat(), system calls

Diagnostics
chmod returns -1 for errors. such as file being nonexistent or the invoker being neither the
owner nor the superuser.

chown - Command
Change the owner of files
chown owner file ...

chown changes the owner of each.file to owner. The owner may be specified by valid user
name or a valid numerical user id.

Only the superuser may use chown.

Files
/etc/passwd-To convert user name to user id

See Also
chgrp,chmod,commands

LEXICON

chownO - System Call
Change ownership of a file
chown(flle, uid, gid)
char Cjlle;
short uid, g id;

chownO - ckermit 479

chown changes the owner ofjtle to user id uid and group id gid.

To change only the user id without changing the group id, stat should be used to determine
the value of gid to pass to chown.

chown is restricted to the superuser, because granting the ordinary user the ability to
change the ownership of files might circumvent file space quotas or accounting based upon
file ownership.

chown returns -1 for errors, such as nonexistent file or the caller not being the superuser.

See Also
chmod(), passwd, stat(), system calls

chrootO - System Call
Change process's root directory
int chroot(directory)
char *directory;

The root directory is the directory from which file-name searches commence when a path
name begins with '/'. chroot changes the root directory to directory for the requesting
process and all of its children.

Because of security problems, chroot is restricted to the superuser. It is sometimes useful
for a system administrator; for example, to test a new system environment that resides on a
mounted file system.

See Also
chdir(), fork(), system calls

Diagnostics
chroot returns zero for a successful call. It returns -1 on errors, such as the caller not
being the superuser or the directory being nonexistent or not a directory.

ckermit - Command
Interactive inter-system communication and file transfer
ckermit [-abcdefghiklpqrstwx] [file ...]

ckermit implements the kermit communications protocol. It lets you communicate with
other systems via modem or network. and to exchange files with other systems that have
also implemented the kermit protocol. Unlike the kermit command also included with the
COHERENT system, ckermit uses an interactive shell to remove some of the pain from the
process of exchanging files. The name ckermit relects the fact that this command is
written in the C language. and so has been ported to many different machines and
operating systems.

You can run ckermit in either interactive mode or command mode. Simply typing the
command

ckermit

LEXICON

480 ckermit

invokes ckermit in interactive mode: ckermit displays a prompt, watts for your command,
executes, then prompts you for its next command. Typing the command line plus one or
more arguments invokes ckermit in command mode: ckermit then reads the arguments
from the command line and executes them. After execution of the commands, ckermit
returns to interactive mode.

ckennit's command-line options name either actions or settings. An action option tells
ckennit to send a file, receive a file. or connect to a remote system. The command line may
contain no more than one action option. A settings option changes one or more of the
internal values that control how ckermit operates; for example, one setting option lets you
set the baud rate of the serial port that ckermit will be using. A command line can contain
any number of settings options.

Command-Line Options
ckermit recognizes the following command-line options:

-a filename
Give an alternate name to a file being transferred. For example, the command

ckermit -s foo -a bar

transmits the file foo to a remote system, but tells the remote system that the file is
named bar. Likewise, the command

ckermit -ra baz

stores the first incoming file under the name baz.

If more than one file arrives or is sent, only the first file is affected by the -a option.

-b baudrate
Set the baud rate of the device to baudrate.

-c Connect to serial port, and pass all subsequent typing to that port To resume
talking to your local system, type the escape character followed by the letter 'c'. The
escape character is set by default to <ctrl-\>. although you can change it if you
wish.

-d Debug mode - record debugging information in the file debug.log in the current
directory.

-e n Set the length of the packet to n where n is a number between ten and about 1,000.
Lengths of 95 or greater require that the implementation of kermit on the remote
system support the long-packet extension to the kermit protocol.

-f Send a "finish" command to a remote server.

-gflle Ask a remote system to send file or files. The file name must use the remote
system's own syntax: you must quote all characters normally expanded by the
COHERENT shell, e.g.:

ckermit -g x*.\?

-h Help - display a brief synopsis of the command-line options.

-i The "image" option: specify that the file being transmitted or received is an eight-bit

LEXICON

binary file, and therefore no conversion should be performed upon the data being
received.

ckermit 481

-k Passively receive file or files, copying them to standard output.

-1 device
Name the serial device to be used. For example

ckermit -1 /dev/com2

tells ckennit to use device /dev/com2.

-n Like -c, but used after a protocol transaction has occurred. You can use both -c
and -n in the same command.

-p x Set parity. where xis one of e. o, m. s, or n (respectively. even, odd. mark, space, or
none). If parity is other than none. then ckennit uses the eighth-bit prefixing
mechanism to transfer binary data, provided the impementation of kennit on the
remote system agrees. The default parity is none.

-q Quiet - suppress screen update during file transfer; for example, this lets you
transfer a file in the background.

-r Receive a file or files. Wait passively for files to arrive.

-s file Send the specified file or flies. If Jn is ' -' then ckennit sends from standard input,
which may come from a file:

ckermit -s - < foe.bar

or come from a parallel process:

ls -1 I ckermit -s -

You cannot use this mechanism to send text typed from the keyboard. To send a
file named'-', precede it with a path name, e.g.:

ckermit -s ./-

-t Specify half duplex, line turnaround with XON as the handshake character.

-w Write-Protect - avoid file-name collisions for. incoming files.

-x Begin server operation. This option can be used in either local or remote mode.

If ckennit is in local mode, shows the progress of the file transfer. A dot is printed for
every four data packets; other packets are shown by type (e.g .. 'S' for Send-Init); 'T' is
printed when there's a timeout; and'%' is printed for each retransmission.

During file transfer, you can type the following "interrupt" commands:

<ctrl-F>
Interrupt the current file and go on to the next. if any.

<ctrl-B>
Interrupt the entire batch of files and terminate the transaction.

<ctrl-R>
Resend the current packet.

<ctrl-A>
Display a status report for the current transaction.

These interrupt characters differ from the ones used in other implementations of ckennit to
avoid conflict with the COHERENT shell's interrupt characters.

LEXICON

482 ckermit

Interactive Operation
When you invoke ckermit in interactive mode, it displays the following prompt.

C-Kermit>

Type any valid ckermit command; the set of valid commands is described below. ckennit
executes the command and then prompts you for another. The process continues until you
tell it to quit.

Commands begin with a keyword, normally an English verb, such as send. You can
abbreviate any keyword, as long as you type enough characters to distinguish it from all
other keywords. Certain commonly used keywords (e.g .. send. receive. connect) have
special non-unique abbreviations (respectively, 's', 'r', and 'c').

Certain characters have special functions in interactive commands:

? Print a message that explains what is possible or expected at the current point
within a command. Depending upon the context, the message may be a brief
phrase, a menu of keywords, or a list of files.

<esc> Request completion of the current keyword or file name. or insertion of a default
value. ckennit will beep if the requested operation fails. <tab> does the same
thing.

 Delete the previous character from the command. <backspace> does the same
thing.

<ctrl-W>
Erase the rightmost word from the command line.

<ctrl-U>
Erase the entire command.

<ctrl-R>
Redisplay the current command.

<space>
Delimit fields (keywords, filenames, numbers) within a command.

<return>
Execute the command.

\ Insert any of the above characters into the command, literally. To enter a literal
backslash, type two backslashes in a row (\ \). Typing one backslash immediately
<return> lets you continue the command on the next line.

ckennit recognizes the following interactive commands:

! command
Execute a shell command. A space must follow the!.

% A comment. ckennit ignores everything that follows the %.

bye Terminate and log out a remote kermit server.

close Close a log file.

connect
Connect to the remote system.

LEXICON

cwd directory
Change the working directory to directory.

dial Dial a telephone number.

directory
Display a directory listing.

echo Display arguments literally. Useful in take-command files.

exit Exit from the program. closing any open logs.

finish Instruct a remote kennit server to exit. but not log out.

get Get files from a remote kennit server.

hangup
Hang up the telephone.

help Display a help message for a given command.

log Open a log file - debugging. packet. session. transaction.

quit Same as exit.

receive Passively wait for files to arrive.

remote Issue file-management commands to a remote kermit server.

script Execute a login script with a remote system.

send file
Sendjlle to the remote kennit server.

server Begin server operation.

set Set various internal parameters.

show Display values of parameters. program version. etc.

space Display current disk space usage.

statistics
Display statistics about most recent transaction.

take Execute commands from a file.

ckermit 483

Interactive ckennit accepts commands from files as well as from the keyboard. Upon
startup. ckermit looks for the file .kermrc first in directory $HOME and then in the current
directory; if it finds the file. it executes all commands it finds therein. These commands
must be in interactive format. Command files may be nested to any reasonable depth.

The set Command
As noted above, the set command lets you set the internal parameters by which ckermit
operates. The set command recognizes the following arguments:

block-check
Level of packet error detection.

delay Time to wait before sending first packet.

duplex Specify which side echoes during connect mode.

LEXICON

484 ckermit

escape-character
Character to prefix escape commands during connect mode.

file Set various file parameters.

flow-control
Communication line full-duplex flow control.

handshake
Communication line half-duplex turnaround character.

line Communication-line device name.

modem-dialer
Type of modem-dialer on communication line.

parity Communication line character parity.

prompt
Change the ckennit program's prompt.

receive Set various parameters for inbound packets.

retry Set the packet retransmission limit.

send Set various parameters for outbound packets.

speed Communication line speed.

Remote Commands
ckermit also has a suite of commands that are sent to the remote system for execution.
They are as follows:

cwd Change remote working directory (also, remote cd).

delete Delete remote files.

directory
Display a listing of remote file names.

help Request help from a remote server.

host Issue a command to the remote host in its own command language.

space Display current disk space usage on remote system.

type Display a remote file on your screen.

who Display the users logged in to the remote system. or get information about a user.

Files
.kennrc - ckennit initialization commands

See Also
commands,kermit,uucp

Notes
The kennit protocol was developed at the Columbia University Center for Computing
Activities. ckennit is copyright© by the Trustees of Columbia University.

Please note that ckermit is provided in binary form per the licensing terms set forth by its
copyright holders. It is distributed as a service to COHERENT customers. as is. It is not
supported by Mark Williams Company. Caveat utilltor.

LEXICON

C keywords - C language 485

C keywords - Overview
A keyword is a word that is reserved within C, and must not be used to name variables,
functions. or macros. COHERENT recognizes the following C keywords:

alien ext em signed
auto float sizeof
break for static
case goto struct
char if switch
const int typedef
continue long union
default readonly unsigned
do register void
double return volatile
else short while
enwn

In conformity with the ANSI standard, the keyword entry is no longer recognized. The
keywords const and volatile are now recognized, but not implemented.

See Also
C language

C language - Overview
The following summarizes how COHERENT implements the C language.

Identifiers
Characters allowed: A-Z. a-z. _. 0-9
Case sensitive.
Number of significant characters in a variable name:

at compile time: 128
at link time: 16

C appends ·_· to end of external identifiers

Reserved Identifiers (Keywords)
See C keywords, above.

Data Formats (bits)
char 8
unsigned char 8
double 64
float 32
int 16
unsigned int 16
long 32
unsigned long 32
pointer 16
short 16
unsigned short 16

float format:
DECVAX floating point format:

1 sign bit
8-bit exponent

LEXICON

486 C language

Limits

24-bit normalized fraction with hidden bit
DECVAX double format:

Same as float, but with 56 bits of fraction
Reserved values:

+- infinity, -0
All floating-point operations are done as doubles

Maximum bitfield size: 16 bits
Maximum number of cases in a switch: no formal limit
Maximum block nesting depth: no formal limit
Maximum parentheses nesting depth: no formal limit
Maximum structure size: 64 kilobytes
Maximum array size: 64 kilobytes

Preprocessor Instructions:
#define #if def
#else #ifndef
#ellf #include
#endif #line
#if #undef

Structure Name-Spaces
Supports both Berkeley and Kernighan-Ritchie conventions
for structure in union.

Register Variables
Two available for ints
Two available for pointers

Function Linkage
Return values for ints: AX
Return values for longs: DX:AX
Return values for pointers: AX
Return values for doubles in DX:AX
Parameters pushed on stack in reverse order, chars and shorts pushed

as words, longs and pointers pushed as longs, structures
copied onto stack

Caller must clear parameters off stack
Stack frame linkage is done through SP register

Special Features and Optimizations

Branch optimization is performed: this uses the smallest branch instruction for the
required range.

Unreached code is eliminated.

Duplicate instruction sequences are removed.

Jumps to jumps are eliminated.

Multiplication and division by constant powers of two are changed to shifts when the
results are the same.

Sequences that can be resolved at compile time are identified and resolved.

LEXICON

clear - clri 487

See Also
argc, argv, C keywords, C preprocessor, header files, initialization, Lexicon, libraries,
linker-defined symbols, main()

clear - Command
Clear the screen
clear

The command clear reads the termcap description of your terminal and uses the
information therein to clear your terminal's screen. The environmental variable TERM
must define your terminal's type.

See Also
commands, TERM, termcap

clearerrO - STDIO Macro (stdio.h)
Present stream status
#include <stdio.h>
clearerr(fp) FILE ":fp:

clearerr resets the error flag of the argumentfp. If an error condition is detected by the
related macro ferror. clearerr can be called to clear it.

Example
For an example of this function, see the entry for ferror.

See Also
ferror(), STDIO

closeO - System Call
Close a file
int close(fd) intfd;

close closes the file identified by the file descriptor fd, which was returned by creat, dup,
open, or pipe. close also frees the associated file descriptor.

Because each program can have only a limited number of files open at any given time,
programs that process many files should close files whenever possible. The function exit
automatically calls fclose for all open files; however, the system call _exit does not.

Example
For an example of this function, see the entry for open.

See Also
creat(), open(), system calls

Diagnostics
close returns -1 if an error occurs, such as its being handed a bad file descriptor; otherwise,
it returns zero.

clri - Command
Clear i-node
/etc/clrijllesystem lnumber ...

clri zeroes out each i-node with a given lnumber onjllesystem.jllesystem is almost always a
device-special file that corresponds to a disk device. The raw device should be used.

LEXICON

488 cmp - COHERENT

The user must have read and write permission on thefllesystem. If the inumber corresponds
to an open file, the clri has a very high probability of being ineffective: the system maintains
in core memory a copy of all active i-nodes, and this copy will eventually be written out to
disk, undoing the effects of clri. To counter this problem, unmount the file system before
running clri. If the i-node is for the root file system, you must reboot the system
immediately after running clri.

See Also
commands, dcheck, fsck, icheck, i-node, umount

cmp - Command
Compare bytes of two files
cmp [-ls)fllel flle2 [sklpl sklp2)

cmp is a command that is included with COHERENT. It comparesfllel andflle2 character
by character for equality. Iffllel is '-', cmp reads the standard input.

Normally, cmp notes the first difference and prints the line and character position, relative
to any skips. If it encounters EOF on one file but not on the other, it prints the message
"EOF on filen". The following are the options that can be used with cmp:

-1 Note each differing byte by printing the positions and octal values of the bytes of each
file.

-s Print nothing, but return the exit status.

If the skip counts are present, cmp reads sklpl bytes on fllel and sktp2 bytes on flle2
before it begins to compare the two files.

See Also
commands, difT, sh

Diagnostics
The exit status is zero for identical files, one for non-identical files, and two for errors, e.g.,
bad command usage or inaccessible file.

COHERENT- Technical Information
Principles of the COHERENT System

COHERENT is a multiuser. multitasking operating system. Multiuser means that with
COHERENT. more than one person can use your computer at any given time. Multitasking
means that with COHERENT, any user can run more than one program at any given time.
The design of COHERENT employs a few elegant concepts to give you a powerful and flexible
system that is easy to use.

What is an Operating System?
An operating system is the master program that controls the operation of all other
programs. It loads programs into memory, controls their execution, and controls a
program's access to peripheral devices, such as printers, modems. and terminals.

Some operating systems permit only one user to use the computer at a time; and that user
can run only one program at a time. For example, MS-DOS. the operating system most
commonly used on the IBM PC and its clones, can run only one program at a time.
However, you may well want your computer to support more than one user at a time, and
run more than one program at a time. Sharing not only yields many economies (such as
allowing a group of users to share one printer), but also allows the users to communicate
with each other and so work together more efficiently.

LEXICON

COHERENT 489

Any multitasking operating system must be able to do the following tasks efficiently:

Schedule computer time

Control mass-storage devices (disks and tape drives)

Organize disk-storage space

Protect programs from conflict

Protect stored information from destruction

Ease cooperation among users

Today's operating systems also provide tools. These are programs that are bundled with the
operating system. and that are designed to help you do your work more efficiently. For
example. you need editors. compilers, debuggers. and assemblers to develop and test
programs. Text formatters and spelling checkers help you write memoranda. manuals, or
books. Command processors (also called shells) help you run the computer easily. Status
checkers tell you what programs are being run, who is using the system. and how much
space is left on your disk.

The combination of operating system and its tools transforms a boxful of wires and circuits
into a useful machine.

COHERENT's Design Philosophy
The COHERENT system combines a multitasking operating system with a full set of tools.
But the quality and quantity of the features provided by the COHERENT operating system
distinguishes it from other. similar operating systems.

All but a very small part of the operating system software is written in C, a high-level
language, rather than assembly language. The result is a reliable operating system, with no
observable loss in execution speed. The choice of a high-level language also provides
portability. The C language has been implemented on practically every computer, from
mainframe to micro.

An important guiding principle in the design and implementation of the COHERENT
operating system is that good performance is the direct result of dedication to careful design
and implementation of algorithms and systems. rather than coding tricks.

A computer system is not an end in itself; rather, it is a "bench" for constructing tools to
solve specific problems. If the operating system is too specialized or limited, the range of
problems it can help you solve will be narrow. On the other hand, if the operating system is
too detailed, then it becomes complex, idiosyncratic, and potentially unreliable.

The following quotation from John Conway summarizes well the philosophy that underlies
the design of the COHERENT system:

The engineer who wants a machine for some spec!flc purpose will normally approve the
simplest machine that does the job. He will not usually prefer a multiplicity of parts with the
same effect, nor will he countenance the Insertion of components with no function.

The COHERENT system follows this approach throughout. For example, consider device­
independent 1/0. COHERENT does not distinguish between a program. a device (such as a
terminal or floppy disk). or a file. Programs can move data among devices and files without
knowing any of the physical characteristics of the device. This device independence comes
from designing the 1/0 system using a consistent view of files, devices, and programs. Each
appears like a stream of bytes, so each can communicate directly with all others. If an
application requires a more complex file structure. it can be added at a higher level. This

LEXICON

490 col

approach makes COHERENT simple and easy to maintain, yet powerful.

You may wonder whether this design compromises the performance of the system. On the
contrary, the speed at which the COHERENT system transfers data between files on a disk
is very nearly the hardware speed of disk-to-disk transfers. This is achieved through the
use of simple but ingenious algorithms.

Throughout, the COHERENT system uses this principle of using a few primitive operators to
provide easy communication among programs, files, and devices. With these, any user of
the COHERENT system can construct the tools to solve nearly all of his computing
problems.

COHERENT Properties
The COHERENT file system uses a tree-structured directory. This means that directories
hold files, which in turn may be data files or other directories. The fact that a directory can
contain more directories is a significant help in managing large numbers of files.

The COHERENT operating system is modularly designed, using certain mathematical
concepts. This results in an efficient design for the system. Using this simple but elegant
approach, features are designed to fit well together. This means that COHERENT does not
repeatedly reinvent the wheel - each feature is carefully designed to function well by itself
and work readily with other features. COHERENT avoids the "creeping feature" syndrome
common to usual operating systems.

In brief, COHERENT is what UNIX used to be: an efficient system of selected tools and well­
designed utilities, that brings out the best in modest computer systems.

See Also
MS-DOS, technical information

Notes
For information on how COHERENT compares with MS-DOS, see the Lexicon article on MS­
DOS.

col - Command
Remove reverse and half-line motions
col [-bdfx)[-pn I

The command col reads the standard input and writes to the standard output. It removes
reverse and half-line motions from the output of nroff for the benefit of output devices that
cannot perform them. It maintains an image of the page in memory and performs these
motions virtually so they do not appear on the output.

col understands four escape sequences: <esc> 7 for reverse line feed, <esc> 8 for half
reverse line feed, <esc> 9 for half forward line feed, and <esc> B for a forward line feed. It
removes <esc> (ASCII 033) from the input stream if it is followed by any other character.

Eight control characters besides <e&C> are interpreted by col. Newline, return. space,
backspace, and tab carry their usual meaning. VT (013) is an alternate form of reverse line
feed. The characters SO (017) and SI (016) signal the start and end of text in an alternate
character set. col remembers the character set for each character and uses SO and SI to
distinguish them on the output. col removes all other control characters from· the input
stream.

col recognizes the following options:

LEXICON

com 491

-b The output device cannot backspace. Only the last of a set of characters destined for
a given position will appear.

-d Double-space the output. This doubles the length of a document but preserves
relative vertical spacing. The -f option has precedence.

-f The output device can perform half-forward line feeds. Full lines appear single
spaced with half lines between them. This is the only situation in which half forward
line feeds appear in the output of col- reverse line motions never appear.

-x Suppress the default conversion of white space to tabs on output.

-p n Set the internal page buffer size ton full lines (default, 128).

If neither -f nor -d is chosen, col moves non-empty half lines to the next lower full line and
pushes all later lines down one line. This can distort the appearance of the document.

See Also
ASCII, commands, nroff

Notes
Backing up past the start of a document or of the page buffer loses characters.

com - Device Driver
Device drivers for asynchronous serial lines

The COHERENT system has drivers for four asynchronous serial lines, coml through
com4.

A serial line can be opened into any of four different "flavors", as follows:

com?l
com?r
com?pl
com?pr

Interrupt driven, local mode (no modem control)
Interrupt driven, remote mode (modem control)
Polled, local mode (no modem control)
Polled, remote mode (modem control)

"Local mode" means that the line will have a terminal plugged into it. to directly access the
computer. "Modem control" means that the line will have a modem plugged into it. Modem
control is enabled on a serial line by resetting the modem control bit (bit 7) in the minor
number for the device. This allows the system to generate a hangup signal when the
modem indicates loss of carrier by dropping DCD (Data Carrier Detect). A modem line
should always have its DSR. DCD and CTS pins connected. If left hanging. spurious
transitions can cause severe system thrashing. To disable modem control on a given serial
line, use the minor device which has the modem control bit set (bit 7). An open to a
modem-control line will block until a carrier is detected (DCD goes true).

"Interrupt mode" means that the port can generate an interrupt to attract the attention of
the COHERENT system; "polled mode" means that the port cannot generate an interrupt,
but must be checked (or "polled") constantly by the COHERENT system to see if activity has
occurred on it.

The COHERENT system uses two device drivers to manage serial lines: alO manages COMl
and COM3. and all manages COM2 and COM4. Due to limitations in the design of the
ports, you can enable interrupts on either COMl or COM3 (or on COM2 or COM4), but not
both. If you wish to use both ports simultaneously, one must be run in polled mode. For
example, if you wish to open all four serial lines, you can open two of the lines in interrupt
mode: you can open either COMl or COM3 in interrupt mode, and you can open either
COM2 or COM4 in interrupt mode. The other two lines must be opened in polled mode.

LEXICON

492 com

Opening a device in polled mode consumes many CPU cycles. based upon the speed of the
highest baud rate requested. For example. on a 20 MHz 80386-based machine. polling at
9600-baud was found to consume about 15% of the CPU time. As only one device can use
the interrupt line at any given time, the best approach is to make the high-speed line of the
pair interrupt driven and open the low-speed or less-frequently used line in polled mode.
However. if you enable a polled line for logins. the port is open and will be polled as long as
the port remains open (enabled). Thus, even if a port is not in use, the fact that it has a
getty on it consumes CPU cycles. As a rule of thumb. try and open a port in interrupt
mode. If you cannot, use the polled version. Also note that use of any of the four serial
ports in polled mode prevents other polled serial device drivers, such as the hs generic
multi-port polled serial driver, from being used at the same time.

If you intend to use a modem on your serial port, you must insure that the DCD signal from
the modem actually follows the state of carrier detect. Some modems allow the user to
"strap" or set the DCD signal so that it is always asserted (true). This incorrect setup will
cause COHERENT to think that the modem is "connected" to a remote modem. even when
there is no such connection.

In addition, if you wish to allow remote logins to your COHERENT system via your modem,
you must insure that the modem does not echo any commands or status information.
Failure to do so will result in severe system thrashing due to the getty or login processes
endlessly "talking" to your modem.

Changing Default Port Speeds
Serial lines coml through com4 default to 9600 baud when opened. This default speed
can be permanently changed on a "per port" basis by changing the value of driver variables
ClBAUD_. C2BAUD_, C3BAUD_ or C4BAUD_. The list of acceptible values can be found in
header file <sgtty.h> and range from I. corresponding to 50 baud, up to 17, which
corresponds to 19,200 baud. For a table of legal baud rates, see the Lexicon entry for
sgtty.h.

To change the default value for a port. you must use the /cont/patch command. For
example, to change the default speed for port com2 to 2400 baud, enter the following
command while running as the superuser:

/conf/patch /drv/all C2BAUD_=l2

The change will not take effect until the next time that you boot your system.

Loading a Driver
Beginning with version 3.2. COHERENT has implemented all COM drivers as loadable
drivers. This is done to save space within the kernel. and to let you configure your system
as you prefer.

To load a COM driver. you must use the command drvld to load the appropriate al device.
As noted above. drivers coml and com3 are controlled by device alO, and drivers com2 and
com4 by all. To load alO, use the command:

/etc/drvld /drv/alO

Note that alO is in directory /drv, not /dev.

If you are going to load certain drivers regularly. be sure to write the appropriate drvld
command into system file /etc/drvld.all.

LEXICON

com1 493

See Also
com!, conl2, com3, com4, device drivers, drvld

Diagnostics
An attempt to open a non-existent device will generate error messages. This can occur if
hardware is absent or not turned on.

Notes
The com• series of devices are not compatible with the ioctl() parameters defined in header
file <termio.h>. Be sure to include header file <sgtty.h> if you wish to perform terminal
specific ioctl() calls.

In the current version of these drivers, the following sequence of steps results in a panic:

enable com4pl
enable com3pl
disable com4pl
kill kill <all driver process id>

The key is that the driver containing the polling routine cannot be unloaded if the other
driver is still polling.

Note. too, that if any com device driver is used in polling mode, the hs driver cannot be
used, and vice versa.

Finally, with release 3.2 of the COHERENT system, all COM drivers were make loadable.
This means that they are loaded into memory with the command drvld rather than being
linked directly into the kernel. This lets you pick and choose among drivers, and also lets
you remove the driver from memory should you wish. If you want a COM driver to be
loaded into memory when you boot your system, it should be named in file /etc/drvld.all.
See the Lexicon article for the command drvld for details.

com1 - Device Driver
Device driver for asynchronous serial line COM 1

/dev/coml is the COHERENT system's standard interface to asynchronous serial line
COMl. The interface is assigned major device 5, and is accessed as a character-special
device. The 1/0 address for the corresponding 8250 SlO is Ox3F8 (COMl). coml generates
interrupt IRQ4.

Four versions of device coml are in directory /dev, as follows:

Device Name Major Mirwr l/0 Type
/dev/comll 5 128 Interrupts
/dev/comlr 5 0 Interrupts
/dev/comlpl 5 192 Polled
/dev/comlpr 5 64 Polled

For details on how these versions differ, see the entry for com.

Files
I dev I comll - Interrupt-driven, non-modem (local) line
/dev/comlr- Interrupt-driven, modem (non-local) line
/dev/comlpl- Polled, non-modem (local) line
/dev/comlpr- Polled, modem (non-local) line

Modem
Control?

No
Yes
No

Yes

LEXICON

494 com2 - com3

See Also
com, com3, stty

com2 - Device Driver
Device driver for asynchronous serial line COM2

/dev/com2 is the COHERENT system's standard interface to asynchronous serial line
COM2. The interface is assigned major device 6, and ts accessed as a character-special
device. The I/0 address for the corresponding 8250 SIO ts Ox2F8 (COM2). com2 generates
interrupt IRQ3.

Four versions of device com2 are in directory /dev, as follows:

Device Name Major Mtrwr
/dev/com21 6 128
/dev/com2r 6 0
/dev/com2pl 6 192
/dev/com2pr 6 64

For details on how these differ, see the entry for com.

Files
/dev/com21- Interrupt-driven. non-modem (local) line
/dev/com2r- Interrupt-driven. modem (non-local) line
I dev I com2pl - Polled, non-modem (local) line
/dev/com2pr-Polled, modem (non-local) line

See Also
com, com4, stty

com3 - Device Driver
Device driver for asynchronous serial line COM3

1/0 Type
Interrupts
Interrupts

Polled
Polled

Modem
Control?

No
Yes
No
Yes

/dev/com.3 ts the COHERENT system's standard interface to asynchronous serial line
COM3. The interface is assigned major device 5, and is accessed as a character-special
device. The I/O address for the correspondtng8250 SIO is Ox3E8 (COM3). com3 generates
interrupt IRQ4.

Four versions of device com3 are in directory /dev, as follows:

Device Name Major Mtrwr
/dev/com31 5 129
/dev/com3r 5 1
/dev/com3pl 5 193
/dev/com3pr 5 65

For details on how these differ, see the entry for com.

Files
/dev/com31- Interrupt-driven, non-modem (local) line
/dev/com3r- Interrupt-driven. modem (non-local) line
/dev/com3pl- Polled, non-modem (local) line
/dev/com3pr- Polled, modem (non-local) line

LEXICON

1/0 Type
Interrupts
Interrupts

Polled
Polled

Modem
Control?

No
Yes
No
Yes

com4 - commands 495

See Also
com, com 1, stty

com4 - Device Driver
Device driver for asynchronous serial line COM4

/dev/com4 is the COHERENT system's standard interface to asynchronous serial line
COM4. The interface is assigned major device 6, and is accessed as a character-special
device. The 1/0 address for the corresponding 8250 SlO is Ox2E8 (COM4). com4 generates
interrupt IRQ3.

Four versions of device com4 are in directory /dev, as follows:

Device Name Major Minor
/dev/com41 6 129
/dev/com4r 6 1
/dev/com4pl 6 193
/dev/com4pr 6 65

For details on how these differ, see the entry for com.

Files
I dev I com41- Interrupt-driven, non-modem (local) line
/dev/com4r- Interrupt-driven, modem (non-local) line
/dev/com4pl- Polled, non-modem (local) line
/dev/com4pr- Polled, modem (non-local) line

See Also
com, com2, stty

comm - Command
Print common lines
comm [-123].fllel.flle2

l/O Type
Interrupts
Interrupts

Polled
Polled

Modem
Control?

No
Yes
No

Yes

The command comm prints the lines unique tojtlel in the first column, the lines unique to
fl1e2 in the second column, and the lines common to both in the third. Both.fllel and.flle2
should be sorted in ASCII order. Any or all columns may be suppressed by indicating the
column or columns to suppress in the optional flag. The file ·-·means standard input.

See Also
cmp, commands, cUff, sort, uniq

commands - Overview
The following lists the commands included with COHERENT. The command name is given
on the left and a description on the right.

Communications
The following commands let you exchange information with other users and other systems.

ckermit . Interactive inter-system communication and file transfer
kermit . Remote system communication and file transfer
mail. . Send/read electronic mail
mesg . Permit/ deny messages from other users
msg . . Send a brief message to other users
msgs . Read messages intended for all COHERENT users

LEXICON

496 commands

uucico
uucp
wall ..
write .

Device Handling

. Connect to a remote system

. Copy a file to or from a remote system

. Send a message to all logged in users

. Converse with another user

The following commands help you run peripheral devices. especially printers. For
commands that drive communications devices, e.g .. modems. see the section on
Communications, above.

epson. . Print a file on an Epson printer
fnkey. . Set/print function keys for a terminal
hp Prepare files for HP LaserJet-compatible printer
hpr . . . Send to LaserJet printer spooler
hpskip . Abort/restart current listing on LaserJet
lpr. . . . Send to line printer spooler
lpskip. . Terminate/restart current line printer listing
stty. . . Set/print terminal modes
tty. . . . Print the user's terminal name
ttystat . . Get terminal status

Directory and File Handling
The following commands let you create, remove, and otherwise manipulate files and
directories.

cat .. .
cd .. .
chgrp.
chmod
ch own
cmp ..
compress
cp ...
cpdir .
dd ..
dos .
fdisk
file .
find.
le
In ..
ls ..
mkdir.
mv ..
pwd.
qfind
rm ..
rmdir.
touch.
uncompress.
whereis.
which.
zcat .. .

LEXICON

. Concatenate/print files

. Change directory

. Change the group owner of a file

. Change the modes of a file

. Change ownership of a file

. Compare bytes of two files

. Compress a file

. Copy a file

. Copy directory hierarchy

. File conversion

. Transfer files to/from an MS-DOS file system

. View I change hard-disk partitioning

. Name a file's type

. Search for files satisfying a pattern

. List/categorize files in a directory

. Create a link to a file

. List directory's contents

. Create a directory

. Rename files or directories

. Print the name of the current directory

. Quickly find all files with a given name

. Remove files

. Remove directories

. Update modification time of a file

. Uncompress a file

. Locate source, binary, and manual files

. Locate executable files

. Concatenate a compressed file

commands 497

Editors
COHERENT includes a number of text editors, to suit a variety of tastes .

ed ..
elvis.
ex.
me.
sed
vi .

Games

. Interactive line editor

. Berkeley-style screen editor

. Berkeley-style line editor

. MicroEMACS screen editor

. Stream editor

. Berkeley-style screen editor

The following commands are just for fun.

banner . . Print large sized letters
cal. Print a calendar
chase . . . Highly amusing video game
fortune. . Print randomly selected. hopefully humorous, text
lines . . . Highly amusing board game

Languages and Programming Tools
The COHERENT system comes with a number of languages, and tools for debugging and
maintaining your programs.

as . . . Mark Williams assembler
awk . . Report generation, pattern scanning. and processing language
cc . . . C-language compiler
conv . Numeric base converter
cpp . . C preprocessor
db . . . Assembler-level symbolic debugger
fixstack . Alter size of a program's stack
ld . . Link relocatable object files
lex. . . . Lexical analyzer generator
m4 . . . Macro processor
make . . Program building discipline
nm . . Print a program's symbol table
od . . . Print an octal dump of a file
prof. . Print execution profile of a C program
ref. . . Display a C function header
srcpath. . Find source files
size . . Print size of an object file
strip . . . Strip symbol tables from executable file
yacc. . . . Parser generator

Libraries and Archives
The following commands help you create and read libraries and archives. These can be
used as libraries (such as the libraries used when linking a C program), or to back up files .

ar .. .
cpio
dump
dumpdate.
dumpdir.
pax ..
ranlib.
restor.
tar . ..

. The object librarian/archiver

. Archiving/backup utility

. File-system backup utility

. Print dump dates

. Print the directory of a dump

. Portable archive interchange

. Create index for object library

. Restore file system

. V7 tape archive manager

LEXICON

498 commands

ustar Tape archive utility

Mail
COHERENT comes with with a full-featured, UNIX-style mail facility. This is described in
the overview article mail. The following commands perform mail-related work; note that
some are also listed in other sections of this article .

mail Send/read electronic mail
mkfnames Generate data base of user names
nptx Generate permutations of users' full names

Shell Commands
COHERENT comes with two command interpreters, or shells: ksh, the Korn shell, and sh,
the Bourne shell. The following commands are used either by the Korn shell, by the Bourne
shell, or by both.

alias
basename
bind . .
break.
builtin
case ..
continue.
dirs.
echo
eval.
exec.
exit.
export
expr.
false.
fc ..
for . .
from
getopts.
hash
if . ..
jobs.
let . .
po pd
prep.
print
pushd.
read ..
readonly.
set . .
shift.
sleep
tee . .
test.
times.
trap ..
true ..
typeset.
umask .
unallas.

LEXICON

. Set an alias

. Strip path information from a file name

. Bind key sequence to editing command

. Exit from shell construct

. Execute a command as a built-in command

. Execute commands conditionally according to pattern

. Terminate current iteration of shell construct

. Print contents of directory stack

. Repeat an argument
Evaluate arguments

. Execute command directly

. Exit from a noninteractive shell

. Add a shell variable to the environment

. Compute a command line expression

. Unconditional failure
Edit and re-execute one or more previous commands
Execute commands for tokens in list
Generate list of numbers. for use in loop
Parse command-line options

. Add a command to the shell's hash table

. Execute a command conditionally

. Print information about stopped jobs

. Evaluate an expression

. Pop an item from the directory stack

. Produce a word list

. Echo text onto the standard output

. Push an item onto the directory stack

. Assign values to shell variables

. Mark a shell variable as read only

. Set shell option flags and positional parameters

. Shift positional parameters

. Stop executing for a specified time

. Branch pipe output

. Evaluate conditional expression

. Print total user and system times

. Execute command on receipt of signal

. Unconditional success

. Set/list variables and their attributes

. Set the file-creation mask

. Remove an alias

until ..
wait ...
whence.
while . .

String Processing

. Execute commands repeatedly

. Await completion of background process

. List a command's type

. Execute commands repeatedly

commands 499

Some of the most useful commands are those that process strings. COHERENT has many
commands that search for strings. manipulate strings, sort strings. and otherwise perform
useful manipulations on strings .

c
cgrep.
comm.
cut ..
detab.
diff ..
ditl3 . .
egrep.
grep.
head
join.
look.
more
paste.
rev .
scat.
sort.
split.
strings
tail .
tr ..
tsort
uniq.
view.
we ..

System Accounting

. Print multi-column output

. Pattern search for C programs

. Print common lines

. Select portions of each line of a file

. Replace tab characters with spaces

. Summarize differences between two files

. Summarize differences among three files
Extended pattern search

. Pattern search

. Print the beginning of a file

. Join two data bases

. Find matching lines in a sorted file

. Display text one screenful at a time

. Merge lines of files

. Print text backwards

. Print text files one screenful at a time

. Sort lines of text

. Split a text file into smaller files

. Print all character strings from a file

. Print the end of a file

. Translate characters

. Topological sort

. Remove/count repeated lines in a sorted file

. Berkeley-style text viewer

. Count words, lines, and characters in text files

The following commands help you to keep track of how your COHERENT system is working.

ac Summarize login accounting information
accton . Enable/disable process accounting
df . . Measure free space on disk
du . . Summarize disk usage
ps . . Print process status
sa . . Print a summary of process accounting
quot. . Summarize file-system usage
time. . Time the execution of a command
times . . Print total user and system times
uulog . . Examine UUCP operations

System Maintenance
These commands help you to maintain your COHERENT system .

at
bad .. .
badscan

. Execute commands at given time

. Maintain list of bad blocks

. Examine a device for bad blocks

LEXICON

500 commands

build .
check.
clri ..
date ..
dcheck.
drvld ..
fdformat.
fsck ..
icheck
man ..
mkfs .
mknod.
mount.
ncheck.
newgrp.
newusr.
reboot .
shutdown
sync ...
umount .
unmkfs . .

Text Processors

. Install COHERENT onto a hard disk

. Check file system

. Clear i-node

. Print/set the date and time

. Check directory consistency

. Load loadable drivers into memory

. Format a floppy disk

. Check and repair file systems interactively

. i-node consistency check

. Print Lexicon entries

. Make a new file system

. Make a special file or named pipe

. Mount a file system

. Print file names corresponding to i-node

. Change to a new group

. Add new user to COHERENT system

. Reboot the COHERENT system

. Shut down the COHERENT system

. Flush system buffers

. Unmount a file system

. Create a prototype file system

These commands help you to create orderly. attractive printed text. For information on how
to print the output of these commands, see the commands listed under Device Handling,
above.

col. ..
derotI.
nroff .
fwtable.
pr ..
prps.
spell.
troff.
typo.

UUCP

. Remove reverse and half line motions

. Remove text formatting control information

. Text-formattinglanguage

. Build a font-width table from PCL or Postscript font

. Paginate and print files

. Paginate and print files on Postscript printers

. Find spelling errors

. Extended text-formatting language

. Detect possible typographical and spelling errors

The UUCP commands lets you form a network with other COHERENT or UNIX systems.
Members of the network can grant each other permission to exchange mail and execute
commands on each others' systems remotely and automatically. without having to be
directed by a human being. The overview article UUCP describes the COHERENT UUCP
facility in some detail. The following commands perform UUCP-related work; note that
some of the commands listed here also are also listed in other sections of this article.

uucico ..
uucp ...
uudecode
uuencode
uuinstall.
uulog . ..
uumvlog.
uuname.
uurmlock
uutouch
uux

LEXICON

. Connect to a remote system

. Copy a file to or from a remote system

. Decode a transmitted UUCP file

. Encode a UUCP file for tranmission

. Configure UUCP control files

. Examine UUCP operations

. Archive UUCP log files

. Print names of recognized systems

. Remove UUCP lock files

. Force polling of a remote site

. Execute a command on a remote system

compress 501

uuxqt Execute file as requested by remote system

Miscellaneous
The following commands do not fit neatly into any of the above categories. These include
some of the more interesting and useful COHERENT commands, and are worth your
attention.

ATclock .
be
calendar.
clear .
crypt . .
de
disable.
enable
factor.
help ..
install
kill .
ksh ..
login .
passwd.
phone.
sh ..
SU ..
sum.
units
who.
yes .

. Read/set the AT realtime clock

. Interactive calculator with arbitrary precision

. Electronic reminder service

. Clear your terminal's screen

. Encrypt I decrypt text

. Desk calculator

. Disable a port

. Enable a port

. Factor a number

. Print concise description of command

. Install a software update onto COHERENT

. Signal a process

. Invoke the Korn shell

. Log in or change user name

. Set/change login password

. Print numbers and addresses from phone directory

. Invoke the Bourne shell

. Substitute user id, become superuser

. Print checksum of a file

. Convert measurements

. Print who is logged in

. Print infinitely many responses

For more information on any of these commands. see its entry within the Lexicon.

See Also
Lexicon

compress - Command
Compress a file
compress (-dfvc] (-bnum I (-w tmpjlle I [.file ... I

compress compresses a file using the Lempel-Ziv algorithm. With text files and archives. it
often can achieve 50% rate of compression.

If one or more files are specified on the command, compress compresses them and appends
the suffix .z onto the end of each compressed file's name. If no file is specified on the
command line, compress compresses text from the standard input and writes the
compressed text to the standard output.

compress recognizes the following options:

-d Decompress rather than compress.

-f Force an output file to be generated even if no space is saved by compression.

-v Verbose mode: force compress to write statistics about its performance.

-c Send output to stdout.

LEXICON

502 con.h - console

-b The "bits" option. compress uses the compression level set via the num argument.
Previous releases of compress would only allow values of num up to 12. with 12
being the default value if the -b option was not specified. The version of compress
introduced with COHERENT version 3.1 handles values up to 16. with 12 being the
default.

-w The "workfile" option. compress uses tmpfile to write its temporary file. By default
compress uses RAM device I dev /raml for temporary storage. For this reason. it is
strongly advised that you not use /dev/raml as a RAM disk. This option may be
necessary on machines with limited amounts of RAM.

If you wish to ensure backwards compatibility with previous releases of COHERENT. do not
use compress with a num value greater than 12.

See Also
commands, ram, uncompress, zcat

con.h - Header File
Configure device drivers
#include <sys/con.h>

The header file con.h gives the configuration for each device driver included with the
COHERENT system. Each driver is defined using the structure CON, which is declared in
<sys/con.h>.

See Also
header files, sload()

console - Device Driver
Console device driver

/dev/console is the device driver for the console of a COHERENT system on the IBM AT. It
is assigned major device number 2 and minor device number 0.

/dev/console interprets escape sequences in console output to control output on the
console monitor. These escape sequences are compatible with ANSI X3.25. Thus, they are
similar to those used by the DEC VT-100 and VT-220 terminals.

The special sequences include the following:

<eSC>>=

<eSC>>

<eSC>n

<esc>7

<esc>8

<eSC>C

<esc>D

<esc>E

LEXICON

Enter alternate keypad mode.

Exit alternate keypad mode.

Print the corresponding special graphics character.

Save the current cursor position.

Restore the previously saved cursor position.

Reset to power-up configuration

Move the cursor down one line without changing the column position. This
command moves the scrolling region text up and inserts blank lines if
required.

Move the cursor to the first column of the next line. This command move
the scrolling region down and inserts blank line if required.

console 503

<esc>M Move the cursor up one line without changing column position

<esc>[A Cursor up; stop at top of page.

<esc>[B Cursor down; stop at bottom edge of scrolling region.

<esc>[C Cursor right. Stop at right bottom corner of scrolling region.

<esc>[D Cursor left.

<esc>[E Cursor next line. Move scrolling region up and insert a blank line if
required.

<esc>[F Move scrolling region text down and insert a blank line if required.

<esc>[n G Move the cursor to the nth column of the current line.

<eSC>[n;m H Move the cursor to position m n. Position is relative to the scrolling region.

<esc>[I Move the cursor position to the next horizontal tabulation stop.

<esc>[n J Erase display:

<esc>[n K

<esc>[L

<esc>[M

<esc>[n 0

<eSC>(S

<esc>[T

<esc>[Z

<esc>[n •

<esc>[n a

<esc>[n d

<esc>[n e

<esc>[n;m f

0 Erase from cursor to end of screen.
1 Erase from beginning of screen to cursor.
2 Erase the entire screen.

Erase line:

0 Erase from cursor to end of line.
1 Erase from beginning of line to cursor.
2 Erase entire line.

Insert a line.

Delete a line.

Erase scrolling region:

0 Erase from cursor to end of scrolling region.
1 Erase from beginning of scrolling region to cursor.
2 Erase entire scrolling region. Reposition cursor at

top left corner of scrolling region.

Scroll the characters in the scrolling region up one line. The bottom of the
scrolling region is cleared to blanks.

Scroll the characters in the scrolling region down one line. The top line of
the scrolling region is cleared to blanks.

Move the cursor backwards to the last tabulation stop.

Move the cursor to column n of the current line.

Move the cursor forward n columns in the current line.

Move the cursor to row n of the display.

Move the cursor down n rows.

Move the cursor to column m of row n in the display.

LEXICON

504 console

<e&C>[n;m g Position cursor to column m of line n. Positioning is relative to the scrolling
region.

<esc>[n m Select graphics rendition:

<esc>[n;m r

<esc>[n v

<e8C>[?4h

<esc>[?41

<esc>[?7h

<e&C>[?71

<esc>'

LEXICON

0 All attributes off.
1 Bold intensity.
4 Underscore on.
5 Blink on.
7 Reverse video.
30 Black foreground.
31 Red foreground.
32 Green foreground.
33 Brown foreground.
34 Blue foreground.
35 Magenta foreground.
36 Cyan foreground.
37 White foreground.
40 Black background.
41 Red background.
42 Green background.
43 Brown background.
44 Blue background.
45 Magenta background.
46 Cyan background.
47 White background.
50 Black border.
51 Red border.
52 Green border.
53 Brown border.
54 Blue border.
55 Magenta border.
56 Cyan border.
57 White border.

Display lines n through m become the scrolling region.

Select cursor rendition:

0 Cursor visible.
1 Cursor invisible.

Enable smooth scrolling. This eliminates snow at the expense of speed.

Disable smooth scrolling (default).

Enable wraparound. Typing past column 80 moves the cursor to the first
column of the next line. scrolling if necessary.

Disable wraparound. The cursor will not move past column 80. This is
useful if the screen is being used as a block mode interface.

Disable manual input. Terminal "beeps'' (outputs <ctrl-G>) when a key is
typed on the keyboard. Interrupt and quit signals are still passed to the
terminal process. Input may be renabled via <esc>c (power up reset) or
<esc>b (enable manual input).

console 505

<e&C>b Enable keyboard input that has been disabled by <esc>' (disable manual
input).

<esc>t

<eSC>U

Enter keypad-shifted mode.

Exit keypad-shifted mode.

The console keyboard sends the expected ASCII characters for the usual alphabetic,
numeric, and punctuation keys. The numeric keypad normally sends editing escape
sequences, as described below. When shifted or in num-lock mode, it sends 'O' to '9' and'.'
instead. In num-lock mode (i.e., when the <num-lock> key is depressed, <shift> restores
the normal escape sequences. In alternate-keypad mode, the numeric keypad sends
"<esc>? p" to "<esc>? y" for 'O' to '9' and "<esc>? n" for'.'.

<home>

<Up>

<pg up>

<left>

<right>

<end>

<down>

<pgdn>

<ins>

Send "cursor home" (<esc>[H).

Send "cursor up" (<esc>[A).

Send (<esc>[V).

Send "cursor left" (<esc>[D).

Send "cursor right" (<esc>[C).

Send cursor to bottom left of screen (<esc>[24 H).

Send "cursor down" (<esc>[B).

Move cursor to previous page (<esc>[U).

Toggle insert mode (<esc>[@).

Delete the character at the cursor (<esc>[P).

The effects of the remaining keys are described below:

Fl-FlO Send <esc>[1 x ... <esc>[9 x, <esc>[0 x.

<alt>Fl-FlO Send <esc>[1 y .•• <esc>[9 y, <esc>(0 y.

<esc> Mark the beginning of an escape sequence; <esc><esc> sends ASCII ESC.

<tab> Send ASCII HT.

<ctrl> When combined with 'A' through ·_·. send the corresponding ASCII control
character; when combined with <return>. send ASCII LF; when combined
with <backspace> send ASCII DEL: when combined with <alt> and ,
issue system reset. <ctrl-X> cancels an escape sequence.

<shift> Change alphabetic keys from lower case to upper case, or from upper case
to lower case in "caps lock" mode.

<alt> When combined with <ctrl-alt-del>, issue a system reset.

<backspace> Send ASCII BS: when combined with <ctrl>. send ASCII DEL.

<return> Send ASCII CR; when combined with <ctrl>, send ASCII LF.

• Send ASCII '*'.

<caps lock> Toggle "caps lock" mode.

<num lock> Toggle the interpretation of the numeric keypad, as described above.

LEXICON

506 const - continue

<scroll lock> Toggle console output. like <ctrl-S> and <ctrl-Q>.

Send'-'.

+ Send'+'.

Files
I dev I console

See Also
ASCII, device drivers, signal()

const - C Keyword
Qualify an identifier as not modifiable

The type qualifier const marks an object as being unmodifiable. An object declared as
being const cannot be used on the left side of an assignment (an lvalue), or have its value
modified in any way. Because of these restrictions, ap implementation may place objects
declared to be const into a read-only region of storage.

See Also
C keywords, volatile

Notes
Mark Williams C recognizes this keyword, but its semantics are not yet implemented. Thus,
storage declared with the const qualifier will not be treated as unmodifiable by the compiler,
and no warnings will be generated.

const.h - Header File
Declare machine-dependent constants
#include <sys/const.h>

The header file const.h declares most machine-dependent constants. These are constants
that change among the various machines for which the COHERENT system is available; an
example is the clock speed of the processor.

See Also
header mes, times()

continue - Command
Terminate current iteration of shell construct
continue [n I

The command continue helps to control the flow of commands given to the shell. When it
is used without an argument, continue terminates the execution of the current iteration of
the innermost for, until, or while shell construct; that is, it acts like a branch to the
enclosing done, after which loop execution may continue or terminate. If an argument is
given, continue terminates the current iteration of the nth enclosing for, until, or while
loop.

The shell executes continue directly.

See Also
break, commands, for, ksh, sh, until, while

LEXICON

continue - core 507

continue - C Keyword
Force next iteration of a loop

continue forces the next iteration of a for, while, or do loop. For example,

while ((foo = getchar()) != EOF) {
if ((foo <'a') 11 (foo > 'z'))

continue;
/* do something */

}

forces the while loop to throw away everything except lower-case alphabetic characters.

See Also
C keywords, for, while

conv - Command
Numeric base converter
conv [number]

conv converts number to hexadecimal, decimal, octal, binary, and ASCII characters, and
prints the results on the standard output. If no number is given, conv reads one number
per line from the standard input until you type the end-of-file character <ctrl-D>.

number may be in hexadecimal, decimal, octal, binary, or character format, as shown below.
Each example represents the decimal number 97.

Base

hexadecimal
hexadecimal
decimal
octal
binary
character

Representation

Ox61
#61
97
0141
$1100001
'a'

conv represents an ASCII control character in its output by preceding the character by a
carat •A•, For example, it prints <ctrl-X> as 'AX'. conv prints "bad digit" if anything is
wrong with the input.

See Also
be, commands, conv, dd, od, units

Notes
conv represents the input number internally as a long integer. If number does not fit in a
long, conv silently truncates it.

core - File Format
Core dump file format
#include <sys/ uproc.h>

When a process terminates abnormally because of a process fault or because it receives an
asynchronous signal from another process, COHERENT tries to write a memory dump of the
process into a file called core. This file contains an image of the process code, data
segments, the system description segment for the aborted process. The following lists the
segment types and the symbolic names of their locations in the file:

, LEXICON

508 cosO - coshO

SJUSERP
SISTACK
SIS TEXT
SIPTEXT
SISDATA
SIPDATA

User process description segment
User stack segment
Shared text segment
Private text segment
Shared data segment
Private data segment

Not every dump necessarily contains all of the above segments. Neither shared text nor
shared data segments are dumped. They are write-protected in memory, and the load
module that was running when the dump occurred contains shared segment data.

The best way for a program (such as a debugger) to read the core file is to first read the user
process description segment. which is always at the front and has a fixed size. It should be
read into an area UPASIZE bytes long. but referenced with structured type UPROC
(somewhat smaller than UPASIZE because of the system stack, which contains the user
registers and other information in fixed places).

The u_segl member of the UPROC structure is a list of segment reference descriptors that
contain the virtual address and length of each segment. which correspond exactly to its size
in the dump. NUSEG segments are possible; the flag SRFDUMP in the field sr_flag
indicates that a segment was dumped. By using the above method, you can use the entire
file to reference program data and code at the time of the dump.

Other information found in the user process structure may be pertinent: the header file
sys/uproc.h contains more information.

See Also
db, rue formats, kW, l.out.h, signal(), wait()

Diagnostics
COHERENT will not write core if it already exists as a non-ordinary file or if there is more
than one link to it. The 0200 bit in the status returned to the parent process by wait
indicates a successful dump.

cosO - Mathematics Function (libm)
Calculate cosine
#include <math.h>
double cos(radlan) double radian;

cos calculate$--the cosine of its argument radian. which must be in radian measure.

Example
For an example of this function. see the entry for acos.

See Also
mathematics library

coshO - Mathematics Function (libm)
Calculate hyperbolic cosine
#include <math.h>
double cosh(radlan) double radian;

cosh calculates the hyperbolic cosine of radian, which is in radian measure.

LEXICON

cp 509

Example
The following program prompts you for a number; it then uses cosh, sinh. and tanh to
generate. respectively, the hyperbolic cosine. sine. and tangent of your number.

#include <math.h>
#include <stdio.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

}

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = O;

main ()
{

}

extern char *gets();
double x;
char string[64];

for (;;) {

}

printf ("Enter number: ") ;
if(gets(string) ==NULL)

break;
x = atof(string);

display(x);
display(cosh(x));
display(sinh(x));
display(tanh(x));

See Also
mathematics library

Diagnostics
When overflow occurs. cosh returns a huge value that has the same sign as the actual
result.

cp- Command
Copy a file
cp I -d] oldname newname
cp I -d] jllel ... jlleN directory

cp copies files. In its first form, cp copies the contents of oldname to newname, which it
creates if necessary. If newname is a directory. cp copies oldname to a file of the same
name in directory new file.

In its second form, cp copies eachjlle, fromfllel throughflleN, into directory.

LEXICON

510 cpdir

With the -d option, cp preserves the date (modification time) of the source file or files on the
target file or files. By default, target files get the current time.

A file cannot be copied to itself.

See Also
commands, ksh, mv, sh, wildcards

cpdir - Command
Copy directory hierarchy
cpdir (option . ..) dlrl dlr2

cpdir copies source directory hierarchy dlrl to target hierarchy dlr2, which is created if
necessary. Either hierarchy may straddle device boundaries.

cpdir preserves as much as possible of the source structure. Files under dlrl go to
identically named files under dlr2. Links between source files are preserved as links
between corresponding target files. Preserved source file attributes include mode, subject to
the user's file creation mask. If the user is not the superuser, cpdir cannot preserve the
owner, group. and sticky bits in the mode, and the invoking user owns all new files: under
the superuser it preserves these as well. In addition, the superuser may "copy" special
nodes and pipe nodes; cpdir copies only the facility. not the contents. It also preserves real
major and minor device numbers of special nodes.

If the target file corresponding to a source file exists and is not a directory, cpdir unlinks it
before copying. This differs from the action of cp.

cpdir recognizes the following options:

-a Give a verbose account on one line of the files copied.

-d Preserve the last-modified date instead of using the present date.

-e Print error message and continue execution after an error. The default action is to
exit on any error.

-r [n] Descend no more than n levels in the source hierarchy. Contents of dlrl are at
level 1. If missing. n defaults to 1.

-s name
Suppress the copy of file name, which should be the pathname of the file relative to
dlrl.

-t Test only, make no changes. With this option, cpdir prints a report of all errors (-e
is implied), all unlinked target files, and other useful information, including a
summary of all external links into the target hierarchy that would have been broken
had the unlinking actions been executed.

-u Update regular files. Copy the source only if it was created or altered more recently
than the target file. or if the target does not exist.

-v Print a verbose account of its activities. cp prints a file-by-file account of its
actions, in addition to the information listed under -t.

See Also
cp, commands, linkQ, umaskQ, unlink()

LEXICON

cpio - Command
Archiving/backup utility
cpio -o(Bacv)
cpio -i[Bcdfmrtuv] (pattern ...)
cpio -p[adlmruv] directory

cpio 511

cpio is an archiving utility that reads and writes files in the format specified by the cpio
Archive/Interchange File Format specified in IEEE standard 1003.1-1988.

Options
cpio recognizes the following command-line options:

-a Reset the access times of input files after they have been copied. When the -1 option
is also specified, the linked files do not have their access times reset. Can be used
only with the -o or -i options.

-B Change the size of a block. Input/output is to be blocked 5.120 bytes to the record.
This option can be used only with the -o or -1 options. for data directed to or from
character-special files.

-c Write header information in ASCII characters for portability. Can be used only with
the -1 or -o options.

-d Creates directories as needed. Can be used only with the -1 or -p options.

-f Copy all files except those in whose names match a pattern. Can be used only with
the -1 option.

-1 In. Read the standard input, which it assumes to be an archive that had been
created with the -o option to cpio. Copy all files within the archive whose names
match a pattern into the current directory (default, all files).

-1 Whenever possible, link files rather than copying them. Can be used only with the -
p option.

-m Retain previous modification times. This option is ineffective on directories that are
being copied. Use with the -1. -o. or -p options. If the archive was built without the
-m, using it with the -o option does nothing.

-o Out. Copy all files whose names match a pattern (default, all files) into an archive
written to standard output.

-p Pass mode. This option causes cpio to read standard input for a list of file names
to copy to destination directory. This mode of operation is similar in functionality to
command cpdir, with the added ability to specify individual file names via standard
input.

-r Interactively rename files. Before it copies a file, cplo asks you to rename the file.
If you type just <retUnt>, cplo skips the file. Should be used only with the -1 or -o
options.

-t Print a table of contents of an existing archive; do not copy files from the archive.
Can be used only with the -1 option.

-u Copy files unconditionally. Usually an older file will not replace a new file with the
same name. Can be used only with the -1 or -p options.

LEXICON

512 cpio

-v Verbose option: print the names of all affected files. Can be used only with the -i
option. Provides a detailed listing when used with the -t option.

Operands
The following operands are available:

pattern
This names the files to be manipulated by cpio. This can be a simple regular
expression.

directory
The destination directory.

cpio and Floppy Disks
cpio can write its output to a variety of devices, including tape drives and floppy-disk
drives. Most users, however, will write their backups to floppy disks. This section describes
how to use cpio with floppy disks.

To begin, you must redirect cpio's output to the the "raw" (or character-special) floppy
device in which you have placed the floppy disk. The Lexicon entry for t1oppy disks
includes a table that shows the floppy-disk device associated with each type and size of
floppy-disk drive.

All floppy disks must be preformatted. See the Lexicon entry for fdfonnat for information
on how to format a floppy disk. cpio does not work through COHERENT file systems: if a
floppy disk has COHERENT file systems on it, cpio simply overwrites it. Obviously, since
cpio does not work through the COHERENT file system, there is no need to mount a floppy
disk before you use it with cpio: just pop it into the drive, close the gate, and type the cpio
command.

cpio lets you back up more than one floppy disk's worth of data at one time. If a cpio
archive exceeds the size of one floppy disk. cpio issues a prompt of the form:

Ready for volume 2
Type "device/name" when ready to proceed ...

Just remove the first disk and insert the next; then type the name of the floppy device you
are using, e.g. /dev/rthaO or /dev/rfval. and press <Enter>. As mentioned above, you
must use the raw floppy-disk device and pre-formatted floppy disks.

Examples
The following command copies all files and directories listed by the command find and
copies them into the archive newti.le.cpio:

find • -print I cpio -oc > •• /newfile.cpio

The following command reads the cpio archive newflle.cpio and extracts all files whose
names match the patterns memo/al or memo/b*:

cpio -icdv "memo/al" "memo/b*" < •• /newfile.cpio

Note that the -d option forces cpio to create the sub-directory memo and write the files into
it. Otherwise. the files would have been written into the current directory. Option -v
causes cpio to display each file name as it is extracted from the archive.

The following commands perform a multi-volume backup of all files on mounted filesystem
/v to the character-special (i.e., "raw") floppy device /dev /rthaO:

LEXICON

su root
cd Iv
find • -print

cpp 513

cpio -ocv >/dev/rfhaO

If the cplo archive exceeds one diskette, you will be prompted to insert another formatted
diskette.

See Also
cOJ1lJ1lands,dUIDp,pax,tar,ustar

Notes
cplo has the following restrictions:

Path names are restricted to 256 characters.

You must have appropriate privileges to copy special files.

Blocks are reported in 512-byte quantities.

cplo was developed by Mark H. Colburn and sponsored by The USENIX Association.
Copyright© 1989 by Mark H. Colburn (mark@jhereg.MN.ORG). All rights reserved. See the
compressed tar archive /usr/src/alien/pax.tar.Z for full descriptions of copyright,
restrictions, and licensing terms.

cplo is provided in binary form per the licensing terms set forth by the author. It is
distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat utllitor.

cpp - Command
C preprocessor
/lib/cpp [option ...) [(lie ...)

The command cpp calls the C preprocessor to perform C preprocessing. It performs the
operations described in section 3.8 of the ANSI Standard; these include file inclusion,
conditional code selection. constant definition, and macro definition. See the entry on
preprocessing for a full description of the C's preprocessing language.

Normally. cpp is used to preprocess C programs, but it can be used as a simple macro
processor for other types of files as well. cpp reads each input file, processes directives, and
writes its product on stdout. If the option -E is not used, cpp also writes into its output
statements of the form #linen.filename. so that the parser will be able to connect its error
messages and debugger output with the original line numbers in your source files.

Options
The following summarizes cpp's options:

-DVARIABLE
Define VARIABLE for the preprocessor at compilation time. For example, the
command

cc -DLIMIT=20 foo.c

tells the preprocessor to define the variable LIMIT to be 20. The compiled program
acts as though the directive #define LIMIT 20 were included before its first line.

-E Strip all comments and line numbers from the source code. This option is used to
preprocess assembly-language files or other sources, and should not be used with
the other compiler phases.

LEXICON

514 C preprocessor

-I directory

-ojlle

Callows two types of #include directives in a C program, i.e .. #include "flle.h" and
#include <file.h>. The -I option tells cpp to search a specific directory for the files
you have named in your #include directives. in addition to the directories that it
searches by default. You can have more than one -I option on your cc command
line.

Write output into file. If this option is missing, cpp writes its output onto stdout.
which may be redirected.

-UVARIABLE
Undefine VARIABLE. as if an #undef directive were included in the source program.
This is used to undefine the variables that cpp defines by default.

See Also
C preprocessor, cc, commands

C preprocessor - Overview
Preprocessing encompasses all tasks that logically precede the translation of a program.
The preprocessor processes headers, expands macros, and conditionally includes or
excludes source code.

Directives
The C preprocessor recognizes the following directives:

#if
#elif
#else
#endif

#if def
#ifndef

#define
#undef
#include
#line

Include code if a condition is true
Include code if directive is true
Include code if preceding directives fail
End of code to be included conditionally

Include code if a given macro is defined
Include code if a given macro is not defined

Define a macro
Undefine a macro
Read another file and include it
Reset current line number

A preprocessing directive is always introduced by the'#' character. The'#' must be the first
non-white space character on a line, but it may be preceded by white space and it may be
separated from the directive name that follows it by one or more white space characters.

Preprocessing Operators
The Standard defines two operators that are recognized by the preprocessor: the "stringize"
operator#, and the "token-paste" operator##.

The operator # indicates that the following argument is to be replaced by a string literal;
this literal names the preprocessing token that replaces the argument. For example.
consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the line

display(abs(-5));

LEXICON

C preprocessor 515

it replaces it with the following:

show ((long) (abs (-5)) , "abs (-5) ") ;

The## operator performs "token pasting" - that is. it joins two tokens together, to create a
single token. For example, consider the macro:

#define printvar(x) printf("%d\n", variable## x)

When the preprocessor reads the line

printvar(3);

it translates it into:

printf("%d\n", variable3);

In the past, token pasting had been performed by inserting a comment between the tokens
to be pasted. This no longer works.

Predefined Macros
The ANSI Standard describes the following macros that must be recognized by the
preprocessor:

DATE
FILE
LINE
STDC
TIME

Date of translation
Source-file name
Current line within source file
Conforming translator and level
Time of translation

For more information on any one of these macros, see its entry.

Conditional Inclusion
The preprocessor will conditionally include lines of code within a program. The directives
that include code conditionally are defined in such a way that you can construct a chain of
inclusion directives to include exactly the material you want.

Macro Definition and Replacement
The preprocessor performs simple types of macro replacement. To define a macro. use the
preprocessor directive #define Identifier value. The preprocessor scans the translation unit
for preprocessor tokens that match identifier; when one is found. the preprocessor
substitutes value for it.

cpp
Under COHERENT, C preprocessing is done by the program cpp. The cc command runs
cpp as the first step in compiling a C program. cpp can also be run by itself.

cpp reads each inputjlle; it processes directives, and writes its product on stdout.

If the -E option is not used, cpp also writes into its output statements of the form #line n
filename, so that the parser ccO can connect its error messages and debugger output with
the original line numbers in your source files.

See the Lexicon entry on cpp for more information.

See Also
Clanguage,cc,cpp

LEXICON

516 creatO - cron

creatO - System Call
Create/truncate a file
int creat{flle, mode) char ":file; int mode;

creat creates a new file or truncates an existing file. It returns a file descriptor that
identifiesfile for subsequent system calls. Iffile already exists. its contents are erased. In
this case. creat ignores the specified mode; the mode of the file remains unchanged. If file
did not exist previously. creat uses the mode argument to determine the mode of the new
file. For a full definition of file modes. see chmod or the header file stat.h. creat masks the
mode argument with the current umask. so it is common practice to create files with the
maximal mode desirable.

Example
For an example of how to use this routine. see the entry for open.

See Also
chmod(), fopen(), open(), stat.h, STDIO, system calls

Diagnostics
If the call is successful. creat returns a file descriptor. It returns -1 if it could not create
the file, typically because of insufficient system resources or protection violations.

cron - System Maintenance
Execute commands periodically
/etc/cron&

cron is a daemon that executes commands at preset times. The commands and their
scheduled execution times are kept in the file /usr/llb/crontab.

Once each minute cron searches through crontab. For each command stored there. cron
compares the current time with the scheduled execution time and executes the command if
the times match. When it finishes the search, cron sleeps until the next minute. Because
it never exits, cron should be executed only once (customarily by /etc/re).

crontab consists of lines separated by newlines. Each line consists of six fields separated
by white space (tabs or blanks). The first five fields describe the scheduled execution time
of the command. Respectively. they represent the minute (0-59), hour (0-23). day of the
month (1-31). month of the year (1-12), and day of the week (0-6, 0 indicates Sunday).
Each field may contain a single integer in the appropriate range. a pair of integers separated
by a hyphen ·-· (meaning all integers between the two, inclusive), an asterisk·•· (meaning all
legal values), or a comma-separated list of the above forms. The remainder of the line gives
the command to be executed at the given time.

For example, the crontab entry

29 * * 7 0 msg henry Succotash!

means that every hour on the half-hour during each Sunday in July. cron will invoke the
command msg, and the user named henry will have the message

daemon: Succotash!

written on his terminal's screen (if he is logged in).

cron recognizes three special characters and escape sequences in the crontab. If a
command contains the percent character'%', cron executes only the portion up to the first
'%'as a command and passes the remainder to the command as its standard input. cron
translates any percent characters '%' in the remainder to newlines. The special

LEXICON

cron 517

interpretation of'%' can be prevented by preceding it with a backslash. '\ %'. Finally. cron
removes the sequence \<newline> from the text before passing it to the shell sh; this can be
used to make an entry in the crontab more legible.

cron is designed for commands that must be executed regularly. Temporal commands that
need to be executed only once should be handled with the command at.

Permissions
cron performs some interesting manipulations with permissions. This is necessary to allow
cron to run a wide variety of programs untended without creating loopholes in the system's
security. Occasionally, this can create difficulties for users who do not grasp what cron
does or why. The following describes how cron manipulates permissions on the programs
you ask it to run.

To begin. when cron runs an entry from /usr/lib/crontab with user ID and group ID of
user daemon. This prevents security holes involving entries in /etc/crontab. For example,
the following crontab entry contains redirection:

* * * * * echo hello world >/dev/console 2>&1

cron will not execute it if user daemon lacks permission to write to I dev I console.

To clarify further,

* * * * * echo hello world >/dev/console 2>/tmp/cron.err

does not even create I tmp/ cron.err if daemon cannot write to I dev I console. whereas

* * * * * echo hello world >/tmp/cron.log 2>/tmp/cron.err

works as expected if daemon can write into /tmp).

When the shell executes a command in the background. it reads its standard input from
/dev/null (unless redirected) and writes its standard output to the controlling tty. If cron
is invoked with /etc/cron& from /etc/re, there is no controlling tty, so the standard
output goes to /dev/null. Thus,

* * * * * echo hello world

typically writes hello world to I dev /null. If the superuser kills the I etc/ cron invoked from
/etc/re and reinvokes /etc/cron& directly from the console, this command echoes hello
world to the console every minute.

When a user logs in, /bin/login grabs the tty and runs chown and chmod on it. It is
owned by the user with default permissions 700. If the user logged in on the console says

chmod /dev/console a+w

to allow all users to write to it, then the crontab entry

* * * * * echo hello world >/dev/console 2>/tmp/cron.err

would indeed echo to the console every minute.

Files
I usr /lib I crontab for stored commands

See Also
at, init, system maintenance

LEXICON

518 crypt

crypt - Command
Encrypt I decrypt text
crypt [password]

The command crypt encrypts data. It emulates a rotor-encryption machine, such as the
Enigma or Hagelin C-48 cipher machines. Unlike these machines, crypt uses only one
rotor, with a 256-character alphabet and a keying sequence of period 2A32.

crypt reads text from standard input and writes the encrypted text to standard output.
password is used to construct the model of the machine and to start the keying sequence.
If no password is gtven, crypt prompts for a password on the terminal and disables echo
while it is being typed in. The password may be up to ten characters long. but must not be
empty; all characters past the first ten are ignored. All characters are legal. although it may
not be possible to input certain characters from the terminal.

crypt uses the same password for both encryption and decryption. For example, the
commands

crypt COHERENT <filel >file2
crypt COHERENT <file2 >file3

leavejlle3 identical tojilel.

Encrypted files produced by ed with its -x option may be read by crypt, and vice versa, as
ed uses crypt to perform its encryption.

Security of a cryptosystem depends on several factors:

l. Brute-force attempts to break the system should be infeasible. Passwords should be at
least five characters long; although the construction of the machine model from the
password takes a substantial fraction of a second. it is still plausible that encrypted
files could be read by a brute-force search of a portion of the password space (say. all
passwords less than four characters long).

2. Cryptanalysis of the basic encryption scheme should be very hard. Analysis of rotor
machines is understood, but it is difficult and in most cases probably not worth the
trouble.

3. Passwords must be kept secret. crypt erases password as soon as it can, to avoid the
possibility that it could appear in the output of ps.

4. Privileged access to the system must be guarded. Under COHERENT. the security of
crypt can be no better than the security governing access to superuser status, because
the superuser can do practically anything. This is probably crypt's most vulnerable
point.

Files
I dev I tty - Typed passwords

See Also
commands
Kahn D: The Code Breakers. New York, Macmillan, 1967.
Morris R: The Hagelin cipher machine (M-209). Cryptologla, July 1978.

LEXICON

cryptO - ctags 519

cryptO - General Function (libc)
Encryption using rotor algorithm
char *crypt(key, extra); char *key, •extra;

crypt implements a version of rotor encryption. crypt produces encrypted passwords that
are verified by comparing the encrypted clear text against an original encryption.

key is an ASCII string that contains the user's password. extra is a string of two additional
characters, stored in the password file with the encrypted password. Each character must
come from an alphabet of 64 symbols, which consists of the upper-case and lower-case
letters, digits, the period'.', and the slash'/'.

crypt returns a string built from the 64-character alphabet described above; the first two
characters returned are the extra argument, and the rest contain the encrypted password.

See Also
ASCII, general functions

ct -- Device Driver
Controlling terminal driver

For each process, the controlling terminal driver /dev/tty is an interface to the appropriate
terminal driver. COHERENT passes any input-output call (e.g. close. ioctl, open, read, or
write) on this special file directly to the controlling terminal device for the requesting
process.

Normally. the controlling terminal is the default standard input. output, and error device.
This is not the case for daemon processes started by the initial process.

Files
/dev/tty

See Also
device drivers, init

Diagnostics
When a call finds no valid controlling terminal for a process. it returns a value of -1 and
sets errno to ENXIO.

ctags - Command
Generate tags and refs files for vi editor
ctags [-r]jlles ...

ctags generates the files tags and refs from a group of C-source files. tags is used by the
elvis editor's :tag command, <ctrl-]> command, and -t option. refs is used by the
command ref.

Each C-source file is scanned for #define statements and global function definitions. The
name of the macro or function becomes the name of a tag. For each tag. a line is added to
tags, which contains the following:

• the name of the tag
• a tab character
• the name of the file containing the tag
• a tab character
• a way to find the particular line within the file

LEXICON

520 ctimeO

refs is used by the command ref, which can be invoked via elvis's K command. When
ctags finds a global function definition, it copies the function header into refs. The first line
is flush against the right margin. but the argument definitions are indented. The command
ref can search refs much faster than it could search all C-source files. The file-names list
will typically include the names of all C-source files in the current directory. in the following
format:

ctags -r *. [ch J

The -r to ctags tells it to generate both tags and refs. Without -r. it generates only tags.

See Also
commands, elvis, ref

Notes
This version of ctags does not parse ANSI source code very well. It has trouble recognizing
the ANSI function definitions.

ctags is copyright © 1990 by Steve Kirkendall. and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous
volunteers. It is freely redistributable, subject to the restrictions noted in included
documentation. Source code for ctags is available through the Mark Williams bulletin
board. USENET, and numerous other outlets.

Please note that this program is offered as a service to COHERENT users. but is not
supported by Mark Williams Company. Caveat utllitor.

ctimeO - Time Function (libc)
Convert system time to an ASCII string
#include <time.h>
#include <sys/ types.h>
char •ctime(tlmep) time_t •ttmep;

ctime converts the system's internal time into a string that can be read by humans. It
takes a pointer to the internal time type time_t. which is defined in the header file time.h.
and returns a fixed-length string of the form:

Thu Mar 7 11:12:14 1989\n

time_t is defined in the header types.h.

ctime is implemented as a call to localtime followed by a call to asctime.

Example
For another example of this function, see the entry for asctime.

#include <time.h>
#include <sys/types.h>

main()
{

}

LEXICON

time_t t;

time(&t);
printf(ctime(&t));

See Also
time, time.h

Notes

ctype 521

ctfme returns a pointer to a statically allocated data area that is overwritten by successive
calls.

ctype - Overview
#include <ctype.h>
The ctype macros and functions test a character's type. and can transform some characters
into others. They are as follows:

isalnumQ Test if alphanumeric character
isalpha() Test if alphabetic character
isascU() Test if ASCII character
iscntrl() Test if a control character
isdigit() Test if a numeric digit
islower() Test if lower-case character
isprint() Test if printable character
ispunct() Test if punctuation mark
isspace() Test if a tab, space, or return
isupper() Test if upper-case character
_tolowerQ Change to lower-case character
_toupper() Change to upper-case character

These are defined in the header file ctype.h, and each is described further in its own
Lexicon entry.

Example
The following example demonstrates the macros isalnum, isalpha. isascii, iscntrl. isdigf.t,
islower, isprlnt, ispunct, and isspace. It prints information about the type of characters it
contains.

#include <ctype.h>
#include <stdio.h>

main()
{

FILE *fp;
char fname[20];
int ch;
int alnum
int alpha
int allow

O• ,
O• ,
O• ,

int control = O• ,
int printable =
int punctuation
int space = O• ,

O• I
O• ,

printf("Enter name of text file to examine: ");
fflush(stdout);
gets(fname);

LEXICON

522 ctype.h

}

if ((fp = fopen(fname, "r")) != NULL) {
while ((ch= fgetc(fp)) != EOF) {

}

if (isascii(ch)) {
if (isalnum(ch))

alnum++;
if (isalpha(ch))

alpha++;
if (is lower (ch))

allow++;
if (iscntrl(ch))

control++;
if (isprint(ch))

printable++;
if (ispunct(ch))

punctuation++;
if (isspace(ch))

space++;

} else {

}

printf("%s is not ASCII.\n",
fname);

exit(l);

printf("%s has the following:\n", fname);
printf("%d alphanumeric characters\n", alnum);
printf("%d alphabetic characters\n", alpha);
printf("%d alphabetic lower-case characters\n",

allow);
printf("%d control characters\n", control);
printf("%d printable characters\n", printable);
printf("%d punctuation marks\n", punctuation);
printf("%d white space characters\n", space);
exit(O);

} else {

}

printf("Cannot open \"%s\".\n", fname);
exit(2);

See Also
ctype.h, libraries

ctype.h - Header File
Header file for data tests
#include <ctype.h>

ctype.h is a header file that holds the texts of the macros described in the overview entry
ctype.

LEXICON

curses 523

See Also
ctype,headerfiles

curses - Overview
Library of screen-handling functions

curses is a set of routines that allow you to manipulate the screen in a sophisticated
manner. These routines use the tenncap functions to read information about the user's
terminal. This allows you to write programs that can perform rudimentary graphics on a
wide variety of terminals.

curses contains routines that do the following:

Move the cursor about the screen.

Insert text onto the screen. either in normal or reverse video (if supported by the
display device).

Read what is typed by the user and display it properly.

Organize the screen into one or more rectangular regions. or windows, optionally draw
a border around each. and manage each independently.

curses organizes the screen into a two-dimensional array of cells. one cell for every
character that the device can display. It maintains in memory an image of the screen.
called the curscr. A second image, called the stdcur, is manipulated by the user; when the
user has finished a given manipulation, curses copies the changes from the stdcur to the
curscr. which results in their being displayed on the physical screen. This act of copying
from the stdscr to the curscr is called refreshing the screen. curses keeps track of where all
changes have begun and ended between one refresh and the next; this lets it rewrite only
the portions of the curscr that the user has changed, and so speed up rewriti:i.g of the
screen.

curses records the position of a "logical cursor", which points to the position in the stdscr
that is being manipulated by the user. and also records the position of the physical cursor.
Note that the two are not necessarily identical: it is possible to manipulate the logical cursor
without repositioning the physical cursor, and vice versa, depending on the task you wish to
perform.

Most curses routines work by manipulating WINDOW object. WINDOW is defined in the
header curses.h as follows:

LEXICON

524 curses

#define WINDOW _win_ st
struct _win_st {

short
short
short
short
short
boo!
boo!
boo!
char
short
short
struct

};
win st

_cury, _curx;
_maxy, _maxx;
_begy, _begx;
_flags;
ch off;
_clear;
_leave;
_scroll;
**_y;
*_firstch;
*_lastch;
*_nextp, *_orig;

Type bool is defined in curses.h; an object of this type can hold the value of true (nonzero)
or false (zero).

The following describes each WINDOW field in detail.

_cury,_curx Give the Y and X positions of the logical cursor. The upper left corner of
the window is, by definition, position 0,0. Note that curses by convention
gives positions as Y IX (column/row) rather than X/Y. as is usual
elsewhere.

_maxy, _maxx Width and height of the window.

_begy, _begx Position of the upper left corner of the window relative to the upper left
corner of the physical screen. For example, if the window's upper left
corner is five rows from the top of the screen and ten columns from the left,
then _begy and _begx will be set to ten and five. respectively.

_flags One or more of the following flags. logically OR'd together:

ch oft'

_clear

_leave

_scroll

LEXICON

SUBWIN - Window is a sub-window
:ENDLINE - Right edge of window touches edge of the screen
_FULLWIN - Window fills the physical screen
_SCROLLWIN - Window touches lower right corner of physical screen
_FULLINE - Window extends across entire physical screen
_STANDOUT- Write text in reverse video
_INSL - Line has been inserted into window
_DELL - Line has been deleted from window

Character offset.

Clear the physical screen before next refresh of the screen.

Do not move the physical cursor after refreshing the screen.

Enable scrolling for this window.

Pointer to an array of pointers to the character arrays that hold the
window's text.

curses 525

_firstch Pointer to an array of integers. one for each line in the window, whose value
is the first character in the line to have been altered by the user. If a line
has not been changed, then its corresponding entry in the array is set to
_NOCHANGE.

_lastch

_nextp

_orig

Same as _tlrstch, except that it indicates the last character to have been
changed on the line.

Point to next window.

Point to parent window.

When curses is first invoked, it defines the entire screen as being one large window. The
programmer has the choice of subdividing an existing window or creating new windows;
when a window is subdivided, it shares the same curscr as its parent window, whereas a
new window has its own stdscr.

Mark Williams Company will document its curses library in full in a later release of this
manual. The following table, however, summarizes the functions and macros that that
compose the curses library.

addch(ch) char ch;
Insert a character into stdscr.

addstr(str) char •str:
Insert a string into stdscr.

box(win, vert, hor) WINDOW •win; char vert, hor;
Draw a box. vert is the character used to draw the vertical lines, and hor is used to
draw the horizontal lines. For example

box(win, 'I•, '-');
draws a box around window win, using 'I' to draw the vertical lines and ·-· to draw
the horizontal lines.

clear() Clear the stdscr.

clearok(win,bj) WINDOW •win; bool bf:
Set the clear flag for window win. This will clear the screen at the next refresh, but
not reset the window.

clrtobot()
Clear from the position of the logical cursor to the bottom of the window.

clrtoeol()
Clear from the logical cursor to the end of the line.

crmode()
Turn on control-character mode; i.e., force terminal to receive cooked input.

delch() Delete a character from stdscr; shift the rest of the characters on the line one
position to the left.

deleteln()
Delete all of the current line; shift up the rest of the lines in the window.

delwin(wln) WINDOW •win;
Delete window win.

LEXICON

526 curses

echo() Turn on both physical and logical echoing; i.e., character are automatically inserted
into the current window and onto the physical screen.

end win()
Terminate text processing with curses.

erase() Erase a window; do not clear the screen.

getch() Read a character from the terminal.

getstr(str) char •str;
Read a string from the terminal.

getyx(win,y,x) WINDOW •win; short y,x;
Read the position of the logical cursor in win and store it in y,x. Note that this is a
macro, and due to its construction the variables y and x must be integers, not
pointers to integers.

inch() Read the character pointed to by the stdscr's logical cursor.

WINDOW *initscr()
Initialize curses.

insch(ch) char ch:
Insert character ch into the stdscr.

insertln()
Insert a blank line into stdscr, above the current line.

leaveok(win,q/) WINDOW •win; bool bf;
Set win-> _leave to bf. If set to TRUE, refresh will leave the cursor after the last
character changed by refresh. This makes sense if you want to minimize the
commands sent to the screen and it does not matter where the cursor is.

char *longname(termbuf, name) char •termbuj. •name;
Copy the long name for the terminal from termbzif into name.

move(y,x) short y,x;
Move logical cursor to position y,x in stdscr.

mvaddbytes(y,x,da,count) int y,x; char •da; int count;
Move to position y,x and print count bytes from the string pointed to by da.

mvaddch(y,x,ch) short y,x; char ch;
Move the logical cursor to position y,x and insert character ch.

mvaddstr(y,x,str) short y,x; char •str;
Move the logical cursor to position y,x and insert string str.

mvcur(y cur,x cur,y new,x new) int y cur, x cur, y new, x new;
M:ove cursor-from position y_cur,x_cur to position y_new,x_new.

mvdelch(y ,x) short y ,x;
Move to position y,x and delete the character found there.

mvgetch(y,x) short y,x;
Move to position y,x and get a character through stdscr.

mvgetstr(y,x,str) short y,x; char •str:
Move to position y,x, get a string through stdscr, and copy it into string.

LEXICON

curses 527

mvinch(y,x) short y,x;
Move to position y,x and get the character found there.

mvinsch(y,x,ch) short y,x; char ch;
Move to position y,x and insert a character into stdscr.

mvwaddbytes(win,y,x,da,count) WINDOW *win; int y,x; char *da; int count;
Move to position y,x and print count bytes from the string pointed to by da into
window win.

mvwaddch(win,y,x,ch) WINDOW *win; int y,x; char ch;
Move to position y.x and insert character ch into window win.

mvwaddstr(wln,y,x,str) WINDOW *win; short y,x; char •str;
Move to position y,x and insert character ch.

mvwdelch(win,y,x) WINDOW *win; int y,x;
Move to position y,x and delete character ch from window win.

mvwgetch(wln,y,x) WINDOW *win; short y,x;
Move to position y,x and get a character.

mvwgetstr(wln,y,x,str) WINDOW *win; short y,x; char •str;
Move to position y,x, get a string. and write it into str.

mvwin(win,y,x) WINDOW *win; int y,x;
Move window win to position y,x.

mvwinch(win,y,x) WINDOW *win; short y,x;
Move to position y,x and get character found there.

mvwinsch(win,y,x,ch) WINDOW *win; short y,x; char ch;
Move to position y,x and insert character ch there.

WINDOW •newwin(llnes, cols, yl, xl) int lines, cols, yl, xl;
Create a new window. The new window is lines lines high, cols columns wide, with
the upper-left corner at position y l ,xl.

nl() Turn on newline mode; i.e., force terminal to output <newline> after <linefeed>.

nocrmode()
Turn off control-character mode: i.e., force terminal to accept raw input.

noecho()
Turn off echo mode.

nonl() Turn off newline mode.

noraw()
Turn off raw mode.

overlay(winl ,wln2) WINDOW •wtnl, win2;
Copy all characters. except spaces. from their current positions in winl to identical
positions in win2.

overwrite(winl,win2) WINDOW *winl, win2;
Copy all characters, including spaces, from winl to their identical positions in
win2.

printw(format[,argl, ... argN]) char *format; [data type) argl, .. argN;
Print formatted text on the standard screen.

LEXICON

528 curses

rawQ Turn on raw mode; i.e., kernel does not process what is typed at the keyboard, but
passes it directly to curses. In normal (or cooked) mode, the kernel intercepts and
processes the control characters <ctrl-C>, <ctrl-S>, <ctrl-Q>, and <ctrl-Y>. See the
entry for stty for more information.

refreshQ
Copy the contents of stdscr to the physical screen.

resettyQ
Reset the terminal flags to values stored by earlier call to savetty.

savettyQ
Save the current terminal settings.

scanw{format[,argl, ... argN]) char~ormat; [data type] argl, .. argN;
Read the standard input; translate what is read into the appropriate data type.

scroll(wln) WINDOW *win;
Scroll win up by one line.

scrollok(wln,b_n WINDOW *win; bool bf;
Permit or forbid scrolling of window win, depending upon whether bf is set to true
or false.

standendQ
Turn off standout mode.

standoutQ
Turn on standout mode for text. Usually, this means that text will be displayed in
reverse video.

WINDOW •subwln(wln,llnes,cols,yl ,xl) int wln,llnes,cols,y l ,xl;
Create a sub-window in window win. New sub-window is lines lines high, cols
columns wide, and is fixed at position yl,xl. Note that the position is relative to the
upper-left corner of the physical screen.

touchwln(wln) WINDOW *win;
Copy all characters in window win to the screen.

waddch(wln,ch) WINDOW *win; char ch;
Add character ch to window win.

waddstr(wln,str) WINDOW •wtn; char •str;
Add the string pointed to by str to window win.

wclear(wln) WINDOW *win;
Clear window win. Move cursor to position 0,0 and set the screen's clear flag.

wclrtobot(wln) WINDOW *win;
Clear window win from current position to the bottom.

wclrtoeol(wln) WINDOW *win;
Clear window win from the current position to the end of the line.

wdelch(wln) WINDOW *win;
Delete the character at the current position in window win: shift all remaining
characters to the right of the current position one position left.

wdeleteln(wln) WINDOW *win;
Delete the current line and shift all lines below it one line up.

LEXICON

curses 529

werase(win) WINDOW •win;
Clear window win. Move the cursor to position 0,0 but do not set the screen's clear
flag.

wgetch(win) WINDOW •win;
Read one character from the standard input.

wgetstr(win,str) WINDOW •win; char •str;
Read a string from the standard input; write it in the area pointed to by str.

winch(win) WINDOW •win;
Force the next call to refresh() to rewrite the entire screen.

winsch(win,ch) WINDOW *win; char ch;
Insert character ch into window win at the current position. Shift all existing
characters one position to the right.

winsertln(win) WINDOW •win;
Insert a blank line into window win at the current position. Move all lines down by
one position.

wmove(win,y,x) WINDOW *win; int y, x;
Move current position in the window win to position y,x.

wprintw(winJormat[,argl argN]) WINDOW •win; char ":format; [data type] argl, .. argN;
Format text and print it to the current position in window win.

wrefresh(win) WINDOW •win;
Refresh a window.

wscanw(winJormat[,argl, ... argN]) WINDOW •win; char ":format; [data type) argl, .. argN;
Read standard input from the current position in window win, format it. and store
it in the indicated places.

wstandend(win) WINDOW •win;
Turn off standout (reverse video) mode for window win.

wstandout(win) WINDOW *win;
Turn on standout (reverse video) mode for window win.

These routines are declared and defined in the header file curses.h.

Structure of a curses Program
To use the curses routines. a program must include the header file curses.h. which
declares and defines the functions and macros that comprise the curses library.

Before a program can perform any screen operations. it must call the function initscr() to
initialize the curses environment.

As noted above, curses manipulates text in a copy of the screen that it maintains in
memory. After a program has manipulated text. it must call refresh() to copy these
alterations from memory to the physical screen. (This is done because writing to the screen
is slow; this scheme permits mass alterations to be made to copy in memory, then written
to the screen in a batch.)

Finally, when the program has finished working with curses, it must call the function
endwin(). This frees memory allocated by curses, and generally closes down the curses
environment gracefully.

LEXICON

530 curses

Example
The following program, called curexample.c, gives a simple example of programming with
curses. To compile this program, use the command line:

cc curexample.c -!curses -!term

Note that order in which the libraries are called is significant.

When this program is run, it clears the screen, then waits for you to type a Y coordinate, a
space. and then an X coordinate. Note that these do not echo on the screen. It moves the
cursor to the requested coordinates. and there display any non-numeric string that you
type. If you type numerals, curexample will assume that you wish to move the cursor to a
new location. To exit. type <ctrl-C>.

#include <ascii.h>
#include <ctype.h>
#include <curses.h>

#define NORMAL 0
#define INY 1
#define INX 2

main ()
{

int c, y, x, state;

initscr(); /*initialize curses */
noecho();

LEXICON

raw();

clear();
move(O, O);

for(state =NORMAL;;) {
refresh();
c = getch();
if(isdigit(c)) {

switch (state) {
case NORMAL:

y = x 0. ,
state = INY;

case INY:
y *= 10;
y += c - I 0 I ;

break;
case INX:

x *= 10;
x += c - I 0 I ;

}
} else {

}
}

}

See Also

if (c == A_ETX) { /* ctl-c */
noraw();
echo();
endwin();
exit(O);

}

switch (state) {
case INX:

state = NORMAL;
move(y, x);

case NORMAL:
addch(c);
break;

case INY:
state = INX;

}

curses.h - cut 531

curses.h, libraries, termcap Strang J: Programming with curses. Sebastopol. Calif, O'Reilly
& Associates Inc., 1986.

Notes
curses is copyrighted© by the Regents of the University of California.

Please note that curses will not take any characters with the high bit set. curses is
designed to allow communication with arbitrary terminals, most of which do not have these
characters; therefore, this is a feature, not a bug.

curses.h - Header File
Define functions and macros in curses library
#include <curses.h>

curses.h defines the macros and declares the functions that comprise the curses library.

See Also
header mes

cut - Command
Select portions of each line of its input
cut -cllst lflle ...]
cut -fllst [-s] [-d char] lflle ...]

cut selects portions of each line of its input and writes them to the standard output. list
specifies the portions to select. cut reads its input from file, or the standard input by
default.

list is a comma-separated set of numbers or number ranges. Number ranges consist of a
number, a hyphen('-'), and a second number, and select the fields or columns from the first
number to the second, inclusive. Preceding a number or number range by a hyphen selects
all fields or columns from one to the first number. Following a number or number range by

LEXICON

532 CWD

a hyphen selects all fields or columns from the last number to the end of the line. Numbers
and number ranges may be repeated, overlap, and appear in any order. It is not an error to
select a field or column not present in the input line.

cut recognizes the following command-line options:

-clist list specifies character positions.

-fiist list specifies fields, delimited in the input by one <tab> character. Output fields are
separated by one <tab> character.

-d char
Use char as the field delimiter instead of the <tab> character.

-s Suppress lines with no field-delimiter characters. Unless specified, cut passes
through unmodified all lines with no delimiters.

cut returns zero on success, one if an error occurred.

Examples
The following example displays all serial port device names found in file /etc/ttys.

cut -c4- /etc/ttys

The following example displays the login name and home directory fields from the
/etc/passwd password file. Note that fields in the password file are delimited by the colon
character.

cut -d1 -fl,6 /etc/passwd

See Also
awk, commands, paste, sed

Notes
cut is copyright © 1988,1990 by The Regents of the University of California. All rights
reserved.

cut is distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat uttlitor.

CWD - Environmental Variable
Current working directory

The Korn shell uses the environmental variable CWD to hold the current working directory.

See Also
environmental variables, ksh

LEXICON

daemon - data types 533

D

daemon - Definition
A daemon is a process that is designed to perform a particular task or control a particular
device without requiring the intervention of a human operator.

See Also
definitions

data formats - Technical Information
Mark Williams Company has written C compilers for a number of different computers.
Each has a unique architecture and defines data formats in its own way.

The following table gives the sizes, in chars, of the data types as they are defined by various
microprocessors.

18086 18086
Type 180386 SMALL LARGE Z8001 Z8002 68000 PDPll VAX

char 1 l 1 l 1 1 1
double 8 8 8 8 8 8 8 8
fioat 4 4 4 4 4 4 4 4
int 4 2 2 2 2 2 2 4
long 4 4 4 4 4 4 4 4
pointer 4 2 4 4 2 4 2 4
short 2 2 2 2 2 2 2 2

COHERENT places some alignment restrictions on data, which conform to all restrictions
set by the microprocessor. Byte ordering is set by the microprocessor: see the Lexicon entry
on byte ordering for more information.

See Also
byte ordering, C language, data types, double, tloat, memory allocation, technical
information

Notes
The COHERENT system supports Intel SMALL model only.

data types - Technical Information
The following table gives the data types that COHERENT recognizes:

char
double
tloat
int
long
long tloat
long int
short
short int
unsigned int
unsigned long int
unsigned long
unsigned char
unsigned short

LEXICON

534 date

unsigned short int

The terms long and long int, as are the terms short and short int, double and long float,
unsigned short int and unsigned short, and unsigned long int and unsigned long. The
type unsigned char was added to the language by the ANSI Standard; because COHERENT
uses signed chars by default, you must declare a char to be unsigned if you want it to be
so. If this type is used in arithmetic expressions, it is automatically cast to unsigned int.

See Also
C language, char, data formats, double, float, int, long, pointer, short, technical
information, unsigned

date - Command
Print/ set the date and time
date [-s) [-u] [[yymmdd)hhmm[.sslJ

date prints the time of day and the current date. including the time zone. If an argument is
given, the system's current time and date is changed, as follows:

yy Year (00-99)
mm Month (01-12)
dd Day (01-31)
hh Hour (00-23)
mm Minute (00-59)
ss Seconds (00-59)

The seconds fields are optional. For example, typing

date 860512141233

sets the date to May 12, 1986, and the time to 2:12:33 P.M. At least hh and mm must be
specified- the rest are optional.

The date may be changed only by the superuser.

If option -s is specified, date suppresses daylight savings time conversion when setting the
time.

If option -u is specified, dates are set and printed in Greenwich Mean Time (GMT) rather
than in local time.

The library time conversion routines used by date look for the environmental variable
TIMEZONE, which specifies local time zone and daylight saving time information in the
format described in ctime.

See Also
ATclock, commands, ctime(), time, TIMEZONE

Notes
Note that the COHERENT version of the date command differs from the UNIX version in
that the last two fields of its output are reversed. For example, the UNIX output of date
reads

Sun Jan 13 12:02:09 CST 1991

where the COHERENT output reads:

Sun Jan 13 12:02:09 1991 CST

LEXICON

db 535

This may be important when importing UNIX shell commands into COHERENT.

db-Command
Assembler-level symbolic debugger
db [-cdefort] [mapfile] [datafile]

db is an assembly language-level debugger. It allows you to run object files and executable
programs under trace control (see ptrace), run programs with embedded breakpoints, and
dump and patch files in a variety of forms. You can use it to debug assembly-language
programs that have been assembled by as, the Mark Williams assembler, as well as those
that have been compiled with the Mark Williams C compiler.

What is db?
db is a symbolic debugger, which means that it works with the symbol tables that the
compiler builds into the object files it generates. Because db is designed to work on the
level of assembly language, the user needs a working knowledge of the appropriate assembly
language and microprocessor architecture.

Invoking db
To invoke db, type its name, plus the options you want (if any) and the name of the files
with which you will be working. mapfile is an object file that supplies a symbol table.
datafile is the executable program to be debugged. If both names are given, the options
default to -c. If only one name is given, it is the program; in this case the options default to -
o. If both names are omitted, mapfile defaults to I.out and program defaults to core. If
possible. db accesses datafile with write permission.

The following options to the db command specify the format of program:

-c program is a core file produced by a user core dump. db checks the name of the
command that invoked the process that produced the core, against the name of the
mapfile, if given. Pure segments are read from the mapfile.

-d program is a system dump. If only one file is mentioned, mapftle defaults to
/coherent.

-e The next argument is an object file: db executes it as a child process and passes it the
rest of the command line.

-f Map program as a straight array of bytes (file).

-o program is an object file. If mapfile is given, it is another object file that provides the
symbol table.

-r Read file only. even though you can write into it. This is used to give a file additional
protection.

-t Perform input and output for db via /dev /tty. This permits the debugging of processes
whose standard input or output have been redirected.

Commands and Addresses
db executes commands that you give it from the standard input. A command usually
consists of an address, which tells db where in the program to execute the command: and
then the command name and its options, if any.

An address is represented by an expression, which can be built out of one or more of the
following elements:

LEXICON

536 db

The'.', which represents the current address. When an address is entered, the current
address is set to that location. The current address can be advanced by typing
<return>.

The name of a register. db recognizes the register names rO through r7, sp, and pc for
the PDP-11; rO through rl5 and pc for the Z-8001 and Z-8002; and ax, ah, al, bx, bh,
bl, ex. ch, cl, dx, dh, di, si. di, bp, sp. sp, pc. cs, ds, es, and ss for the i8086. Typing
the name of a register displays its contents. The usual numeric base (octal on the
PDP- I I. hexadecimal on all other machines) is always used for register display and
stack tracebacks, regardless of the current default radix.

The symbols d. i. and u. which represent location 0 in. respectively. the data space, the
instruction space, and the u-area.

The names of global symbols and symbolic addresses can be used in place of the
addresses where they occur. This is useful when setting a breakpoint at the beginning
of a subroutine.

An integer constant, which can be used in the same manner as a global symbol. The
default is decimal; a leading 0 indicates octal and Ox indicates hexadecimal.

The following binary operators can be used:

+ Addition

•
I

Subtraction
Multiplication
Integer division

All arithmetic is done in longs.

The following unary operators can be used:

Complementation
Negation

• Indirection

All operators are supported with their normal level of precedence. Parentheses '()' can
be used for binding.

Every symbol refers to a segment: the data segment, the instruction segment, or the u-area.
This segment, in turn, dictates the format in which db displays by default what it finds at
that address. The format used by an expression is that of its leftmost operand. The
symbols d, i. and u can name specific segments in the absence of other symbols.

Display Commands
The following commands merely display information about program. The symbol '.'
represents the address, which defaults to the current display address if omitted. count
defaults to one.

address[,count]?[format]

LEXICON

Display theformat count times, starting at address. Theformat string consists of
one or more of the following characters:

Reset display address to '.'
+ Increment display address

Decrement display address
b Byte
c char; control and non-chars escaped
C Like 'c' except '\ O' not displayed

db 537

d Decimal
f float
F double
i Machine instruction, disassembled
1 long
n Output '\n'
O octal
p Symbolic address
s String terminated by '\O', with escapes
S String terminated by '\0', no escapes
u unsigned
W word
x Hexadecimal
Y time (as in i-node etc.)

The format characters d, o, u. and x. which specify a numeric base, can be followed by b, 1.
or w, which specify a datum size. to describe a single datum for display. A format item may
also be preceded by a count that specifies how many times the item is to be applied. Note
thatjormat defaults to the previously set format for the segment (initially o for data and u­
area, and i for instructions). Except where otherwise noted, db increments the display
address by the size of the datum displayed after each format item.

Execution Commands
In the following commands, address defaults to the address where execution stopped,
unless otherwise specified; count and expr default to l. commands is an arbitrary string of
db commands, terminated by a newline. A newline may be included by preceding it with a
backslash'\'.

[address]=
Print address in octal. address defaults to '.'. The command = assigns values to
locations in the traced process. The size of the assigned value is determined from
the last display format used. You can set and display the registers of the traced
process, just like any other address in the traced process.

[address[,count]J=value[,value[,value] ...]
Patch the contents starting at address to the given value. address defaults to ','. Up
to ten values can be listed.

? Print verbose version of last error message.

[address] :a
Print address symbolically. address defaults to '.'.

[address]:b[commands]
Set breakpoint at address; save commands to be executed when breakpoint is
encountered. commands defaults to .:a\ni+.?i\n:x.

:br [commands]
Set breakpoint at return from current routine. The defaults are the same as for :b,
above.

[address] :c
Continue execution from address.

[address] :d[r)[s]
Delete breakpoint at address. If optional r ors is specified, delete return or single­
step breakpoint. address defaults to'.'.

LEXICON

538 db

[address]:e[commandline]
Begin traced execution of the object file at address (default. entry point). The
commandllne is parsed and passed to the traced process. argv[O] must be typed
directly after :e if supplied. For example, :e3 foo bar baz sets argv[O] to 3, argv[l]
to foo, argv[2) to bar, and argv[3) to baz. Quotation marks, apostrophes, and
redirection are parsed as by sh, but special characters '?*[]' and shell punctuation
'(){}I ;'are not. For complete shell command line parsing use the -e option.

Note that the :e command must be used to start the program in order to single
step, trace back, or display registers. For example, the folloWing command
sequence sets a breakpoint at main, begins execution, and single-steps through the
program:

main_:b
:e
:s

:f Print type of fault which caused core dump or stopped the traced process.

:m Display segmentation map.

[expr] :n
Set default numeric display base to expr: 8, 10, and 16 indicate, respectively, octal.
decimal, and hexadecimal.

:p Display breakpoints.

[expr] :q
If expr is nonzero, quit the current level of command input (see :x). expr defaults to
1. End of file is equivalent to :q.

:r Display registers.

[address],[count]:s[c][commands]
Single-step execution starting at address. for count steps. executing commands at
each step. commands defaults to i+.?i.

After a single-step command, <return> is equivalent to .,l:s[c]. If the optional c is
present, db turns off single-stepping at a subroutine call and turns it back on upon
return.

[depth] :t
Print a call traceback to depth levels. If depth is 0 (default), unWind the whole
stack.

[expr] :x
If expr is nonzero. read and execute commands from the standard input up to end
of file or :q. expr defaults to 1.

Please note that the :c. :s. :t, and :r commands cannot be executed before a program is
started. If you are debugging the program hello, do the following first:

db hello
main:b
:e

This invokes the debugger for hello and advances it to main. Now you can use the full set of
commands.

LEXICON

See Also
commands, core, l.out.h, od, ptrace()

de - Command
Desk calculator
de [file]

de 539

de is an arbitrary precision desk calculator. It simulates a stacking calculator with ancillary
registers. Input must be entered in reverse Polish notation. de maintains the expected
number of decimal places during addition. subtraction, and multiplication, but the user
must make an explicit request to maintain any places at all during division.

de reads input from file if specified. and then from the standard input. de accepts an
arbitrary number of commands per line; moreover, spaces need not be left between them.

The scale factor of a number is the number of places to the right of its decimal point. The
scale factor register controls decimal places in calculations. The scale factor does not affect
addition or subtraction. It affects multiplication only if the sum of the scale factors of the
two operands is greater than it. The result of every division command has as many decimal
places as it specifies. It affects exponentiation in that multiplication is performed as many
times as the integer part of the exponent indicates; any fractional part of the exponent is
ignored.

de recognizes the following commands and constructions:

number
Stack the value of number. A number is a string of symbols taken from the digits 'O'
through '9', and the capital letters 'A' through 'F' (usual hexadecimal notation), with
an optional decimal point. An underscore '_' as a prefix indicates a negative
number. The letters retain values ten through 15, respectively. regardless of the
base chosen by the user.

+-/•%"
The arithmetic operations: addition(+), subtraction(-), division(/), multiplication(*),
remainder(%), and exponentiation("). de pops the two top stack elements, performs
the desired operation by calling the multiprecision routine desired (see
multiprecision arithmetic), and stacks the result.

c Clear the stack.

d Duplicate the top of the stack (so that it occupies the top two positions of the
stack).

f Print the contents of the stack and the values of all registers.

i Remove the top of the stack and use its integer part as the assumed input base
(default, ten). The new input base must be greater than one and less than 1 7.

I Stack the current assumed input base.

k Remove the top of the stack and put it in the internal scale factor register.

K Put the value of the internal scale register (which the k command sets) on the top of
the stack.

1 x Load the value of register x to the top of the stack. The value of register x is
unaltered. x may be any character.

LEXICON

540 dcheck

o Remove the top of the stack and use its integer part as the assumed output base
(default, ten). The specified base may be any positive integer.

0 Stack the current assumed output base.

p Print the top of the stack. The value remains on the stack.

q Quit the program: control returns to the shell sh.

s x Remove the top of the stack and store it in register x. The previous contents of x are
overwritten. x may be any character.

v Replace the top of the stack by its square root.

x Remove the top of the stack, interpret it as a string containing a sequence of de
commands, and execute it.

X Replace the top of the stack by its scale factor (i.e .. the number of decimal places it
has).

z Place the number of occupied levels of the stack on top of the stack.

[•••] Place the bracketed character string on top of the stack. The string may be
executed subsequently with the x command.

<X >X =x l<X l>X l=x
Remove the top two elements of the stack and compare them. If there is no '!' sign
before the relation, execute register x if the two elements obey the relation. If a '!'
sign is present, execute register x if the elements do not obey the relation.

Interpret the rest of the line as a command to the shell sh. Control returns to de
after command execution terminates.

Example
The following example program prints the first 20 Fibbonacci numbers. The characters 1
and 1 are printed in boldface to help you tell them apart.

lsalsblsc
[lalbdsa+psblcl+dsc2 l<y] sy
lyx

See Also
be, commands

Notes
For most purposes the infix notation of be is more convenient than the Polish notation of
de.

dcheck - Command
Check directory consistency
dcheck [-s] [-i lnumber ...]fllesystem ...

dcheck checks the consistency of each fllesystem. It scans all the directories in each
fllesystem and counts all i-nodes referenced. It then compares its counts against the link
counts maintained in the i-nodes. dcheck notes any discrepancies. and notes allocated i­
nodes with a link count of zero.

The -i argument tells dcheck to compare each lnumber in the list against those in each
directory. It reports matches by printing the i-number, the i-number of the parent
directory, and the name of the entry. The -s argument tells dcheck to correct the link count

LEXICON

dd 541

of errant i-nodes to the entry count.

Because dcheck is uses two passes to check a jllesystem. the file system should be
unmounted. If -s is used on the root file system. the system should be rebooted
immediately (without performing a sync). The raw device should be used.

See Also
check, commands, dir.h, icheck, ncheck, sync, umount

Diagnostics
If the link count is zero and there are entries, the file system must be mounted and all
entries removed immediately. If the link count is nonzero and the entry count is larger, the
-s option must be used to make the counts agree. In all other cases there may be wasted
disk space but there is no danger of losing file data.

Notes
In earlier releases of COHERENT. dcheck acted upon a default file system if none was
specified.

This command has largely been replaced by fsck.

dd-Command
File conversion
dd [optlon=value] •••

dd copies an input file to an output file. while performing requested conversions. Options
include case and character set conversions. byte swapping conversion for other machines,
and different input and output buffer sizes. dd can be used with raw disk files or raw tape
files to do efficient copies with large block (record) sizes. Read and write requests can be
changed with the bs option described below.

The following list gives each available option. Any numbers which specify block sizes or seek
positions may be written in several ways. A number followed by w, b. or k is multiplied by
two (for words), 512 (for blocks), or 1.024 (for kilobytes). respectively. to obtain the size in
bytes. A pair of such numbers separated by x is multiplied together to produce the size. All
buffer sizes default to 512 bytes if not specified.

bs=n Set the size of the buffer for both input and output to n bytes.

cbs=n Set the conversion buffer size to n bytes (used only with character set
conversions between ASCII and EBCDIC).

conv=llst Perform conversions specified by the comma-separated list. which may include
the following:

count=n

ascii
ebcdic
ibm
lease
noerror
swab
sync
ucase

Convert EBCDIC to ASCII
Convert ASCII to EBCDIC
Convert ASCII to EBCDIC, IBM flavor
Convert upper case to lower
Continue processing on I I 0 errors
Swap every pair of bytes before output
Pad input buffers with 0 bytes to size of ibs
Convert lower case to upper

Copy a maximum of n input records.

LEXICON

542 default - definitions

ftles=n

ibs=n

if::iflle

obs=n

of=Jlle

seek=n

Copy a maximum of n input files (useful for multifile tapes).

Set the input buffer size to n (normally used if input and output blocking sizes
are to be different).

Open.file for input; the standard input is used when no if= option is given.

Set the output buffer size ton.

Open.file for output; the standard output is used when no of= option is given.

Seek to position n bytes into the output before copying (does not work on
stream data such as tapes, communications devices, and pipes).

skip=n Read and discard the first n input records.

Examples
The first example copies the entire contents of a 1.44-megabyte, 3.5-inch diskette from drive
0 to file disk.dd:

dd if=/dev/fvaO of=disk.dd bs=36b count=BO

The second example writes the contents of the previously stored 5.25-inch file backup.dd to
a 1.2-megabyte, 5.25-inch floppy disk in drive I:

dd if=backup.dd of=/dev/fhal bs=30b count=BO

See Also
ASCD, commands, conv, cp, tape, tr

Diagnostics
The command reports the number of full and partial buffers read and written upon
completion.

Notes
Because of differing interpretations of EBCDIC, especially for certain more exotic graphic
characters such as braces and backslash, no one conversion table will be adequate for all
applications. The ebcdic table is the American Standard of the Business Equipment
Manufacturers Association. The ibm table seems to be more practical for line printer codes
at many IBM installations.

defauH - C Keyword
Default label in switch statement

default is a prefix used in switch statement. If none of the case labels match the
parameter in the switch statement, then the default label is used. A switch is not required
to have a default case, but it is good programming practice to use one.

See Also
Ckeyw-ords,case,switch

definitions - OveNiew
The Lexicon contains the following articles that define aspects of COHERENT:

address alignment arena
array bit bit map
buffer byte cast
caveat utilitor ccO eel
cc2 cc3 daemon

LEXICON

directory
rue
ruter
I-node
macro
named pipe
nybble
pattern
process
root
standard error
stderr
sticky bit
superuser

See Also
Lexicon

deftty.h - Header File
Define default tty settings
#include <sys/deftty.h>

executable file
FILE
function
interrupt
manifest constant
NUL
object format
pipe
pun
rvalue
standard input
st din
stream
wildcards

deftty.h defines the default tty settings.

See Also
header rues

deroff - Command
Remove text formatting control information
deroff [-w) [-x] Iflle •••]

deftty.h - deroff 543

field
rue descriptor
GMT
lvalue
modulus
NULL
operator
port
random access
stack
standard output
stdout
structure

deroff removes text formatting control information from each input text file, or from the
standard input if no file is specified. It regards all lines that begin with '.' or '" as being
nroff or troff commands and deletes them. deroff also recognizes some additional control
lines. It deletes eqn information (between .EQ and .EN lines), tbl information (between .TS
and .TE lines). and macro definitions. It also deletes embedded .eqn requests. It expands
source file inclusion with .so and .nx requests, with the proviso that no input file is read
twice. It also deletes some troff escape sequences, such as those for font and size change.

When the -x flag is present, deroff uses some additional knowledge about the nroff -ms
macro package.

When the -w flag is present. deroff divides the remaining text into words and prints them to
the standard output, one per line. A word comprises a sequence of letters, digits, and
apostrophes that commences with a letter. deroff strips apostrophes from the output. All
other characters between words are not printed. The spelling checking programs spell and
typo use this option.

See Also
commands, nroff, spell, troff, typo

LEXICON

544 detab - device drivers

detab - Command
Replace tab characters with spaces
detab [-ttabsize]

detab reads the standard input, replaces every tab character with spaces, and writes the
result to the standard output. If you do not specify the -t option, detab uses the standard
value of eight. tabsize can range in value from two to 256, inclusive.

See Also
commands

device drivers - Overview
A device driver is a program that controls the action of one of the physical devices attached
to your computer system.

The following table lists the device drivers included with this edition of the COHERENT
system. The first field gives the device's major device number; the second gives its name;
and the third describes it. When a major device number has no driver associated with it,
that device is available for a driver yet to be written.

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

LEXICON

•mem
tty
nkb/kb/mm
Ip
n
alO
all
hs
nn

at

scsi

sem
shm
msg

Interface to memory
Primitive tty driver
Keyboard and video
Parallel line printer
Floppy drive
Serial line 0 (COMl and COM3)
Serial line 1 (COM2 and COM4)
Generic polled multi-port serial card
Dual RAM disk

AT hard disk

SCSI device drivers: ahal54x, ss

System V compatible semaphores
System V subset shared memory
System V compatible messaging

df 545

Also included are drivers for the following devices:

console Console driver
ct Controlling terminal driver
null The "bit bucket"
sgtty Terminal driver

Major and Minor Numbers
COHERENT uses a system of major and minor device numbers to manage devices and
drivers. In theory, COHERENT assigns a unique major number to each type of device, and
a unique minor number to each instance of that type. In practice, however, a major
number describes a device driver (rather than a device per se). Each device driver uses one
or more unique major numbers, and the individual devices serviced by that driver are
identified by a minor number. There are, however, a number of exceptions to this scheme:

1. Sometimes, certain parts of the minor number specify configuration. For example,
bits 0 through 6 of the minor number for COHERENT RAM disks indicate the size
of the allocated device.

2. In COHERENT, devices using different IRQ's may have different major numbers,
even if the devices are of the same general type. For example, devices coml • and
com3• have major number 5, while com2* and com4• have major number 6.

See Also
at, boot, com, console, ct, fl, Lexicon, Ip, mboot, mem, msg, null, sem, sgtty, shm,
tape

Notes
See the Release Notes for your release of COHERENT for a list of supported devices and
device drivers.

The devices msg, sem, and shm are loadable drivers that can be loaded into memory using
the command drvld. See their respective entries in the COHERENT Lexicon for more
information.

df-Command
Measure free space on disk
df [-alt] device

df measures the amount of free space left on a floppy disk, on a logical device on a hard
disk, or on a RAM disk. device is the name of the device you wish to check. For example,
to check the amount of space left on filesystem x, type:

df /x

The default device is the one you are currently using. df displays three numbers: the total
number of disk blocks in the device, the number of disk blocks being used, and the percent
of total disk blocks that are free. Note that a disk block is 512 bytes (I /2 kilobyte).

dfrecognizes the following options:

-a Prints the amount of space left on all devices.

-1 Show the number and percentage of i-nodes available.

-t Show the total number of blocks on the device. This number is based upon the
number given to /etc/mkfs when the file system was created. The output of df is as
follows:

LEXICON

546 diff

$ df
/dev/atla

(device)
23815/ 75197 = 31.6%

#of free blocks---! 1----max data blocks on this device

Adding option -t yields:

$ df -t
/dev/atla 23814/ 75197 = 31.6%, 76799

size of partition in blocks----A

Note that unless you also specify the -a option, you will see information about the only
file system that you are currently using (i.e., the only which contains the directory that
you are in).

See Also
commands

diff - Command
Summarize differences between two files
ditf [-bdeth] [-c symbol]flle 1 flle2

ditf comparesfllel withj11e2, and prints a summary of the changes needed to turnfllel into
flle2.

Two options involve input file specification. First, the standard input may be specified in
place of a file by entering a hyphen'-' in place ofj1lel orjile2. Second, iffllel is a directory,
ditf looks within that directory for a file that has the same name as flle2, then compares
flle2 with the file of the same name in directory file 1.

The default output script has lines in the following format:

1,2 c 3,4

The numbers 1,2 refer to line ranges in file 1. and 3,4 to ranges in flle2. The range is
abbreviated to a single number if the first number is the same as the second. The
command c was chosen from among the ed commands 'a', 'c', and 'd'. ditI then prints the
text from each of the two files. Text associated withj11el is preceded by'<', whereas text
associated withj11e2 is preceded by'>'.

The following summarizes diff's options.

-b Ignore trailing blanks and treat more than one blank in an input line as a single blank.
Spaces and tabs are considered to be blanks for this comparison.

-c symbol
Produce output suitable for the C preprocessor cpp; the output contains #ifdef,
#ifndef, #else. and #endif lines. symbol is the string used to build the #ifdef
statements. If you define symbol to the C preprocessor cpp, it will producej1le2 as its
output; otherwise, it will producefllel. This option does not work for files that already
contain #ifdef, #ifndef, #else. and #endif statements.

-e Create an ed script that will convertfllel intojl1e2.

-f Produce a script in the same manner as the -e option, but with line numbers taken
directly from the two input files. This will work properly only if applied from end to
beginning; it cannot be used directly by ed.

LEXICON

diff3 547

-h Compare large files that have a minimal number of differences. This option uses an
algorithm that is not limited by file length. but may not discover all differences.

-d Select the -h algorithm only for files larger than 25,000 bytes; otherwise, use the
normal algorithm.

See Also
ed, egrep, commands

Diagnostics
ditrs exit status is zero when the files are identical, one when they are different. and two if
a problem was encountered (e.g .. could not open a file).

Notes
ditl cannot handle files with more than 32,000 lines. Handing ditl a file that exceeds that
limit will cause it to fail, with unpredictable side effects.

diff3 - Command
Summarize differences among three files
difl3 [-ex3]fi!e 1 flle2 flle3

difl3 summarizes the differences among three text files. Each difference encountered is
headed by one of the following separators. which categorizes how many of the three input
files differ in a given range. The headers are as follows

All of the files are different.

====n
Only the nth file differs. where n may be 1, 2, or 3.

For each set of changes marked as above. the actual change is indicated for each file using
a notation similar to commands to ed. For eachjilen the following is printed:

n: la Text is to be appended after line l injllen.

n: !,me The text from line l to line m is to be changed for jllen. The original text fromfllen
follows this line. If this text is identical for two of the files, only the latter (higher
numbered) of the two is printed.

Options are available to print a script of commands to ed. With the -e option, a script that
will make all changes betweenji!e2 andjile3 tojllel is produced. This script is based upon
all changes flagged with ==== or ====3 separators, as described above.

The -x option prints only those changes where all three files differ. i.e .. those flagged with

The -3 option requests only those changes wherejile3 differs.

Example
The following command sequence produces a script, applies it tojllel, and sends the result
to the standard output.

(diff3 -e filel file2 file3; echo '1,$p') I ed - filel

Files
/tmp/d3•
I usr I lib I dift'3

LEXICON

548 dir.h - dirent.h

See Also
commands,difl',ed

Diagnostics
An exit status of zero indicates all three files were identical, one indicates differences, and
two indicates some other failure. ·

dir.h - Header File
Directory format
#include <dir.h>

A COHERENT directory is exactly like an ordinary file, except that a user's process may
write on it only through system calls such as creat, link, mknod, or unlink. The system
distinguishes directories from other types of files by the mode word S_IFDIR in the i-node.
(For more information on i-nodes, see stat).

Every directory is an array of entries of the following structure, as defined in the header file
dir.h:

#define

struct direct {
ino_t d_ino;
char d_name[DIRSIZ];

};

DIRSIZ 14

/* i-number */
/* name */

Any entry in which d_ino has a value of zero is unused.

The command mkdir creates a directory. with the convention that its first two entries are'.'
and·.:. The name'.' is self-referential- a link to the directory itself. The name'..' is a link
to the parent directory. Because the root directory has no parent. its' . .' is a link to itself.

The d_ino entry of the directory structure is stored in the file system in canonical form, as
described in canon.h.

See Also
canon.h, header files, mkdir, statO

directory - Definition
A directory is a table that maps names to files: in other words, it associates the names of a
file with their locations on the mass storage device. Under some operating systems.
directories are also files, and can be handled like a file.

Directories allow files to be organized on a mass storage device in a rational manner, by
function or owner.

See Also
definitions, file

dirent.h - Header File
Define dirent
#include <dirent.h>

dirent.h defines the manifest constant dirent.

LEXICON

See Also
header mes

dirs - Command
Print the contents of the directory stack
dirs

dirs - divO 549

The COHERENT shell sh maintains an internal "directory stack", which is a stack of names
of directories. You can manipulate this stack should you, for any reason, wish to traverse a
number of directories quickly and efficiently.

The command dirs prints the current contents of the directory stack.

See Also
conunands,popd,pushd,sh

disable - Command
Disable a port
I etc I disable port ...

disable tells the COHERENT system not to create a login process for each given
asynchronous port. For example, the command

/etc/disable comlr

disables port /dev/comlr. disable changes the entry for each given port in the terminal
characteristics file /etc/ttys, and signals init to rescan the ttys file.

The command enable enables a port. The command ttystat checks whether a port is
enabled or disabled.

Files
/etc/ttys-Terminal characteristics file

See Also
com, commands, enable, login, ttys, ttystat

Diagnostics
disable normally returns one if it disables the port successfully and zero if not. If more than
one port is specified, disable returns the success or failure status of the last port it finds. It
returns -1 if it cannot find any given port. An exit status of -2 indicates an error.

Notes
Only the superuser root can execute disable.

divO - General Function (libc)
Perform integer division
#include <stdlib.h>
div_t div(numerator, denominator)
int numerator, denominator;

div divides numerator by denominator. It returns a structure of the type div_t, which is
structured as follows:

LEXICON

550 do - domain

typedef struct {
int quot;
int rem;

} div_ti

div writes the quotient into quot and the remainder into rem.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative
if the signs of the arguments differ. The sign of the remainder is the same as the sign of the
numerator.

If the remainder is non-zero. the magnitude of the quotient is the largest integer less than
the magnitude of the algebraic quotient. This is not guaranteed by the operators I and %,
which merely do what the machine implements for divide.

See Also
general functions, ldiv

Notes
The ANSI Standard includes this function to permit a useful feature found in most versions
of FORTRAN, where the sign of the remainder will be the same as the sign of the numerator.
Also, on most machines, division produces a remainder. This allows a quotient and
remainder to be returned from one machine-divide operation.

If the result of division cannot be represented (e.g., because derwminator is set to zero), the
behavior of div is undefined. Caveat utilitor.

do - C Keyword
Introduce a loop

do is a C control statement that introduces a loop. Unlike for and while loops, the
condition in a do loop is evaluated after the operation is performed. do always works in
tandem with while; for example

do {
puts ("Next entry? ") i
fflush(stdout)i

} while(getchar() != EOF)l

prints a prompt on the screen and waits for the user to reply. The do loop is convenient in
this instance because the prompt must appear at least once on the screen before the user
replies.

See Also
break, C keywords, continue, while

domain - System Maintenance
Set your system's mail domain
I etc/ domain

The file /etc/domain sets the domain that the COHERENT mail system uses to create your
fully qualified domain name. Your fully qualified domain name is created by appending the
contents of /etc/domain to the contents of /etc/uucpname, with an intervening ' '
Unless you have a registered domain name, the contents of this file should be UUCP.

For information on registering in the United States catch-all domain .us, send mail to:

LEXICON

dos 551

us-domain-request@venera.isi.edu

UUNET Communications Services of Falls Church, Virginia. will help you set up your own
domain for a modest fee. Contact info@uwiet.uu.net for more information; or telephone
them at 703-876-5050.

See Also
mail, paths, system maintenance, uucpname

dos - Command
Transfer.files to/from an MS-DOS file system
dos [-]dFlrtxlflags) [device) [/lie ...]

The command dos allows the COHERENT user to manipulate an MS-DOS file system,
which may be either a hard-disk partition or a floppy disk. It can build an empty MS-DOS
file system, label it. list the files in it, transfer files between it and COHERENT. or delete
files from it.

The given device must be a special file that specifies an MS-DOS file system. such as floppy­
disk drive /dev/thaO or hard-disk partition /dev/atOa. The default device is /dev/dos.
which the system administrator should link to the most commonly used device name.

dos converts between the differing file-name conventions of COHERENT and MS-DOS. An
MS-DOSfile argument may be specified in lower or upper case, using'/' as the path-name
separator. When transferring files from MS-DOS to COHERENT, dos converts an MS-DOS
file name to a COHERENT file name in lower case only. If the MS-DOS file name contains
no extension. the COHERENT file name contains no ·:. When transferring files from
COHERENT to MS-DOS, dos converts all alphabetic characters in a COHERENT file name
to upper case; if a period'.' appears at the beginning or end of a file name, dos converts it to
'_'. dos truncates the part of the file name before the last '.' to a maximum of eight
characters and truncates the extension to a maximum of three characters.

The command line must specify exactly one of the followingfunctions.

d Delete eachfile from the MS-DOS file system. This option also allows the user to
delete empty directories.

F Create an empty MS-DOS file system on a formatted diskette. This option is
analogous to the COHERENT command /etc/mkfs. The COHERENT commands
/etc/fdformat and /etc/mkfs initialize a COHERENT diskette in two steps. The
MS-DOS command format initializes an MS-DOS diskette by performing both the
physical and logical formatting operations with one command. To initialize an MS­
DOS diskette under COHERENT. use the command /etc/fdformat -v devlcename,
followed by the command dos F devlcename. lfjlle is named. dos copies it to the
boot block of the file system. The dos command cannot build a file system on a
hard-disk partition.

Label the MS-DOS file system. The command line must specify exactly one file
argument, which gives the label.

r Replace eachfile on the MS-DOS file system with the COHERENT file of the same
name. If a givenfile argument specifies a COHERENT directory, dos replaces its
subdirectories recursively to the MS-DOS file system unless the s flag is used. If no
file is specified, dos copies all files in the current directory to the MS-DOS file
system.

LEXICON

552 dos

t List the files on the MS-DOS file system. If noflle argument is given, dos lists the
entire MS-DOS file system; otherwise. it lists eachjlle. If aflle argument specifies
an MS-DOS subdirectory, dos lists its contents. dos lists directories first in
alphabetical order, then ordinary files in alphabetical order.

x Extract each file from the MS-DOS file system to a COHERENT file of the same
name. If a givenjlle argument specifies an MS-DOS subdirectory. dos extracts its
contents recursively unless the s flag is used. If no .file is given. dos extracts all
files from the MS-DOS file system to the current COHERENT directory.

The followingft,ags are available.

a Perform ASCII newline conversion on file transfer. When moving files from
COHERENT to MS-DOS. this option converts each COHERENT newline character
'\n' (ASCII LF) to an MS-DOS end-of-line (ASCII CR and LF); when moving files
from MS-DOS to COHERENT, it does the opposite. By default, dos performs binary
file transfer. without newline conversion.

k Keep the file modification time (mtime) on extract and replace operations. By
default, dos gives extracted or replaced files the current time. With this option. dos
gives the extracted or replaced file the same time as the original file.

n List files in order of creation (newest file last) rather than in alphabetical order.
This option applies only to the table-of-contents function. dos always lists
directories before files, with or without then option.

p Perform a piped extract or replace (for use in pipelines). The command line must
specify exactly oneflle argument. For extract, dos reads the given.file and writes it
to the standard output. For replace, dos reads the standard input and writes it to
the given.file.

s Suppress extraction or replacement of subdirectories. By default, dos extracts or
replaces subdirectories recursively.

v Verbose option. Provide additional information about each function performed.

[1-9) A digit specifies a logical drive number on an extended MS-DOS partition. For
example, dos tv2 /dev/atOc lists the directory of the second logical drive on
extended MS-DOS partition /dev/atOc.

Examples
The first example copies all files located in directories sources and include, as well as any
subdirectories, from floppy drive /dev/fval to correspondingly named subdirectories in the
current COHERENT directory:

dos xavk /dev/fval sources include

Note that fval is a high-density, 3.5-inch floppy disk in floppy-disk drive 1 (a.k.a., drive B:).
The files will be copied with ASCII newline conversion and will retain the time and date that
they had under MS-DOS.

The next example copies a file from an MS-DOS partition on your hard disk. Suppose that
C: is the primary MS-DOS partition on your first hard drive. The following command copies
file C:\AUTOEXEC.BATto /autoexec.bat in your COHERENT root partition:

dos xa /dev/atOa /autoexec.bat

You will want to use the a switch any time you are transferring a text file.

Suppose that the second partition on your first hard drive (COHERENT device /dev/atOb) is

LEXICON

double - drvld 553

an extended MS-DOS partition with two logical drives. D: and E:. To copy a COHERENT text
file /tmp/foo to D:\TMP\FOO, use the command

dos ral /dev/atOb /trnp/foo

To copy non-text file frotz in the current COHERENT directory to MS-DOS file
E:\DBF\AX\FROTZ. use the command

dos rp2 /dev/atOb dbf/ax/frotz < frotz

See Also
commands, fdfonnat, mkfs, MS-DOS

Notes
dos does not work with MS-DOS hard-disk file systems that hold more than 64,000 clusters
(i.e., with four-byte FAT entries rather than I.5-byte or two-byte FAT entries). It does
understand MS-DOS 3.3 extended disk partitions (where a single partition contains more
than one MS-DOS file system), but you must know whether a partition contains a normal
MS-DOS partition or an extended partition.

dos does not check for unusual characters in a COHERENT file name or for file names that
differ from other file names only in case.

double - C Keyword
Data type

A double is the data type that encodes a double-precision floating-point number. On most
machines. sizeof(double) is defined as four machine words, or eight chars. If you wish
your code to be portable, do nnt use routines that depend on a double being 64 bits long.

Different formats are used to encode doubles on various machines. These formats include
IEEE, DECVAX, and BCD (binary coded decimal), as described in the entry for float.

See Also
C keywords, data formats, float, portability

drvld - Command
Load a loadable driver into memory
I etc/ drvld options driver

drvld loads a loadable driver into memory. driver names a loadable driver. Only the
superuser root can run drvld.

A loadable driver is one that is not linked into the kernel when it was built. The current
suite of loadable drivers include multi-port serial cards, various SCSI host adapters, and a
variety of add-on cards. The COHERENT drivers for shared memory, semaphores. and
message passing are also implemented as loadable drivers, due to the efficient size of the
COHERENT kernel.

drvld recognizes the following options:

-k kernel
By default. drvld assumes that file /coherent holds the symbol table for the in-core
copy of COHERENT. The -k option tells drvld to load the driver using a version of
COHERENT other than the default. You must use this option if you are running an
alternate copy of COHERENT (e.g .. a version based on the floppy disk drive).

LEXICON

554 drvld.all - du

-r Su press generation of a debugging symbol table.

-o ouiflle

Files

By default, d.rvld writes the driver's debugging symbol table into a file that has the
same name as the driver but is located in directory /tmp. The -o options tells d.rvld
to output the symbol table to oulfile rather than the default.

I d.rv - Directory that contains loadable drivers
/etc/d.rvld.all- File that names drivers to be loaded at boot-time

See Also
commands, device drivers, d.rvld.all, sload()

Notes
COHERENT supports user-written. loadable device drivers generated with the COHERENT
device-driver kit. By convention, loadable drivers that have been tested thoroughly and
released for production reside in directory /d.rv. not in /dev.

If you see a message of the form "loadable drivers disabled". you have attempted to use
d.rvld on a kernel other than /coherent without specifying the -k option.

drvld.all - System Maintenance
Load loadable drivers at boot time
I etc I d.rvld.all

The file /etc/d.rvld.all holds commands to load loadable drivers into memory when you
boot the COHERENT system. It is read from the script /etc/brc, which is executed
whenever the COHERENT system is rebooted into single-user mode.

The following gtves the contents of a typical version of d.rvld.all:

: Configure US keyboard.
/conf/kbd/us
: Add driver for com!
/etc/drvld -r /drv/alO

The command /conf/kbd/us loads the U.S. keyboard interpreter into memory, for use with
the nkb keyboard driver. See the Lexicon article on keyboard tables for details on
keyboard tables and their use.

The command /etc/d.rvld /d.rv/alO invokes the command d.rvld to load the loadable driver
/d.rv/alO into memory. This is the driver for COM port 0, local mode. See the article COM
for details on COHERENT's COM-port drivers, and the article d.rvld for details on how to
load loadable drivers.

See Also
brc, d.rvld, keyboard tables, system maintenance,

du - Command
Summarize disk usage
du [-a] (-s] (directory ...]

du prints the total number of disk blocks used by each named directory. If no directory is
specified, du prints the disk usage of the current directory.

The -a (all) option causes du to print a line for every file and directory in the substructure.
Normally it prints a line only for each directory.

LEXICON

dump 555

The -s (summary) option prints only the line for the top level directory.

du understands links; it adds a file with more than one link to it into the total only once.

See Also
commands, df, find

Notes
du does not count file-system overhead such as indirect blocks. so occasionally a directory
does not fit on a file system which appears to contain enough room for it.

dump - Command
File-system backup utility
dump [options] [argument ...)

dump dumps either all or a portion of file system argument to magnetic tape or floppy disks.
File-system dumps are in a format that permits you to restore all or some of the files to the
original file system, and to select files either by name or by i-number.

A file-system dump includes all files changed since the dump since date, plus each file's full
path name (for the benefit of dumpdir).

options specifies both the dump-since date and the processing options. It is made up of
characters from the set 0123456789bdfsSuv, which have the following meanings.

0-9 The digit gives the level number of the dump. The dump-since date is the most
recent date in the dump-date file /etc/ddate that is (1) associated with this file
system and (2) has a level number less than the current dump level. For example, if
you request a level-3 dump. dump will back up all files not backed up since the last
level-2 dump. A level-0 dump by definition backs up all files in the file system.

b The next argument gives the output tape's blocking factor. The blocking factor is the
number of dumpdata structures in each tape block. The default blocking factor is
20.

d The next argument gives the density of the output tape in bytes per inch. The default
density is 1600 bytes per inch (bpi). dump uses the density to compute the quantity
of tape needed.

f The next argument gives the path name of the output file. If no f option is given,
/dev/dump is assumed.

s The next argument gives the length of the dump tape in feet. dump keeps a running
total of the quantity of tape it has written, and it asks for a new reel if it appears that
the end of the reel is near. The default length is 2 ,300 feet.

S The next argument gives the size of the dump output device, in blocks. This is used
only if you are backing up the file system to floppy disks or streaming cartridge tape
rather than to nine-track magnetic tape.

u If the dump completes without error. update the record of successful dumps kept in
file /etc/ddate. There is an entry in this file for every file system and every dump
level.

v Inform the user of the 'dump since' date and the length of tape used in feet. The
length is useful for computing the quantity of tape remaining if multiple dumps are
written onto a single reel of tape.

LEXICON

556 dumpdate - dumpdir

If no level number is given. dump assumes the options 9u.

Files
I dev I dump - Default dump device
/etc/ddate- Dump date file

See Also
badscan,conunands,dumpdate,dumpdir,restor

Diagnostics
Most errors are fatal. caused by a table overflowing or a read or write error on the input or
output device.

dump requires that its output be written to disks that are free of bad sectors. If you write a
dump to a disk with bad sectors. you will not be able to restore files from that disk.

When formatting disks to be used with dump. use the command

/etc/fdformat -v device

This forces fdformat to verify the format. It takes twice as long. but it ensures that the disk
is good at least at a first level of testing. Reject any disks that have any defects - or save
them for use with COHERENT file systems. which can map out bad sectors.

Notes
Please note that dump is now regarded as being obsolete. We strongly encourage users to
use cpio instead.

dumpdate - Command
Print dump dates
dumpdate lfilesystem ...]

dumpdate reads through the dump date file /etc/ddate and displays the dump date
records associated with each specifiedfllesystem.

If nojllesystem is specified, the records for all file systems are displayed.

Files
I etc/ ddate - Dump date file

See Also
commands, dump, dumpdir, restor

dumpdir - Command
Print the directory of a dump
dumpdir [af [argument ...]]

dumpdir reads through a file-system dump created by the dump command, gathers up its
directory blocks, and displays the names and i-numbers of all files on the dump.

The a option causes dumpdir to display the directory entries for '.' and ' . .'. which are
normally suppressed.

The f option causes the next argument to be taken as the pathname of the dump device,
which is otherwise assumed to be /dev/dump.

If no options are specified, dumpdir reads from the default dump device /dev/dump and
suppresses the printing of'.' and' . .' entries.

LEXICON

Files
I dev I dump - Default dump device
/tmp/ddXXXXXX -To hold directory blocks

See Also
commands, dump

Diagnostics

dumptape.h - dup2Q 557

The dump/restore format puts a header at the beginning of the dump that includes all the
information about what lives where in the dump. dumpdir reads this header to discover
what files are in the dump. If the header is too large to fit onto one disk. dumpdir will then
prompt you to insert the additional disk or disks; if this happens, insert the requested disk
and then type <return>.

Notes
dump requires that its output be written to disks that are free of bad sectors. If you write a
dump to a disk with bad sectors, you will not be able to restore files from that disk. For
details on using disks with dump. see its Lexicon entry.

dumptape.h - Header File
Define data structures used on dump tapes
#include <dumptape.h>

dumptape.h defines the data structures used on dump tapes. A dump tape begins with a
header record. This contains the attributes of the tape. The remainder of the tape is filled
with arrays of dumpdata records. The map comes first, then all the directories, then all the
files.

See Also
dump,headerfiles

dupO - System Call
Duplicate a file descriptor
int dup(fd) intfd;

dup duplicates the existing file descriptorfd, and returns the new descriptor. The returned
value is the smallest file descriptor that is not already in use by the calling process.

See Also
dup2(), Copen(), fdopen(), STDIO, system calls

Diagnostics
dup returns a number less than zero when an error occurs, such as a bad file descriptor or
no file descriptor available.

dup20 - General Function (libc)
Duplicate a file descriptor
int dup2(fd, newfd) intfd, newfd;

dup2 duplicates the file descriptor fd. Unlike its cousin dup, dup2 allows you to specify a
new file descriptor newfd. rather than having the system select one. If newfd is already
open, the system closes it before assigning it to the new file. dup2 returns the duplicate
descriptor.

LEXICON

558 dup20

See Also
dup(), general functions, STDIO

Diagnostics
dup2 returns a number less than zero when an error occurs. such as a bad file descriptor
or no file descriptor available.

LEXICON

ebcdic.h - echo 559

E

ebcdic.h - Header File
Define manifest constants for non-printable EBCDIC characters
#include <ebcdic.h>

ebcdic.h defines manifest constants for non-printable characters used in the EBCDIC
character set. The constants correspond to those defined in the header file ascii.h.

See Also
ASCD, ascii.h, header files

echo - Command
Repeat/ expand an argument
echo [-n] [argument ••.]

echo prints each argument on the standard output, placing a space between each argument.
It appends a newline to the end of the output unless the -n flag is present.

echo recognizes the following special character sequences. For each occurrence of the
sequence, it substitutes the corresponding ASCII character.

\b
\c
\f
\n
\r
\t
\v
\\
\Onnn
\nnn

Backspace
Print line without a newline (like -n option)
Formfeed
Newline
Carriage return
Tab
Vertical tab
Backslash
nnn is octal value of character (sh only)
nnn is the octal value of character (ksh only)

For example, if you are running the Bourne shell and type

echo 'Please enter your name: \007\c'

or if you are running the Korn shell and type:

echo 'P,lease enter your name: \0007\c'

the shell rings the bell and prints

Please enter your name:

on your screen. Note that the \007 sequence causes the terminal bell to sound, and that
since the \c sequenc~ was specified, the cursor will be left positioned after the colon.

See Also
conunands,ksh,sh

Notes
Under the Korn shell. echo is an alias for its built-in command print.

LEXICON

560 ed

ed - Command
Interactive line editor
ed [-] (+cmopsv) [flle]

ed is the COHERENT system's interactive line editor.

ed is a line-oriented interactive text editor. With it, you can locate and replace text
patterns, move or copy blocks of text, and print parts of the text. ed can read text from
input files and can write all or part of the edited text to other files.

ed reads commands from the standard input, usually one command per line. Normally. ed
does not prompt for commands. If the optionaljlle argument is given, ed edits the given
file, as if the file were read with thee command described below.

ed manipulates a copy of the text in memory rather than with the file itself. No changes to
a file occur until the user writes edited text with thew command. Large files can be divided
with split or edited with the stream editor sed.

ed remembers some information to simplify its commands. The current line is typically the
line most recently edited or printed. When ed reads in a file, the last line read becomes the
current line. The currentjlle name is the last file name specified in an e or f command. The
current search pattern is the last pattern specified in a search specification.

ed identifies text lines by integer line numbers, beginning with one for the first line. Several
special forms identify a line or a range of lines, as follows:

n A decimal number n specifies the nth line of the text.

A period'.' specifies the current line.

$ A dollar sign '$' specifies the last line of the text.

+,- Simple arithmetic may be performed on line numbers.

/pattern/
Search forward from the current line for the next occurrence of the pattern. If .ed
finds no occurrence before the end of the text. the search wraps to the beginning of
the text. Patterns, also called regular expressions, are described in detail below.

?pattern?

'x

n,m

n;m

•

LEXICON

Search backwards from the current line to the previous occurrence of the pattern. If
ed finds no occurrence before the beginning of the text. the search wraps to the end
of the text.

Lines marked with the kx command described below are identified by 'x. The x may
be any lower-case letter.

Line specifiers separated by a comma'.' specify the range of lines between the two
given lines, inclusive.

Line specifiers separated by a semicolon ';' specify the range of lines between the
two given lines, inclusive. Normally. ed updates the current line after it executes
each command. If a semicolon ';' rather than a comma separates two line
specifiers. ed updates the current line before reading the second.

An asterisk'*' specifies all lines; it is equivalent to 1,$.

ed 561

Commands
ed commands consist of a single letter, which may be preceded by one or two specifiers that
give the line or lines to which the command is to be applied. The following command
summary uses the notations [n] and [n[,m]] to refer to an optional line specifier and an
optional range, respectively. These default to the current line when omitted, except where
otherwise noted. A semicolon';' may be used instead of a comma',' to separate two line
specifiers.

Print the current line. Also, a line containing only a period '.' marks the end of
appended, changed, or inserted text.

(n) Print given line. If no line number is given (i.e., the command line consists only of
a newline character), print the line that follows the current line.

(n)= Print the specified line number (default: last line number).

(n)& Print a screen of23 lines; equivalent to n,n+22p.

! line Pass the gtven line to the shell sh for execution. ed prompts with an exclamation
point '!' when execution is completed.

? Print a brief description of the most recent error.

(n)a Append new text after line n. Terminate new text with line that contains only a
period'.'.

(n(.m))c
Change specified lines to new text. Terminate new text with a line that contains
only a period • .'.

(n[.m))d(p)

e lflle)

E lflle)

f lflle)

Delete specified lines. If p follows, print new current line.

Edit the specified file (default: current file name). An error occurs if there are
unsaved changes. Reissuing the command after the error message forces ed to edit
theflle.

Edit the specified file (default: current file name). No error occurs if there are
unsaved changes.

Change the current file name to file and print it. Ifjile is omitted, print the current
file name.

(n(,m))g/[pattern)/commands
Globally execute commands for each line in the specified range (default: all lines)
that contains the pattern (default: current search pattern). The commands may
extend over several lines. with all but the last terminated by '\ '.

(n)i Insert text before linen. Terminate new text with a line that contains only a period

(n(.mJU(p)
Join specified lines into one line. If m is not specified, use range n,n+ 1. If no range
is specified, join the current line with the next line. With optional p, print resulting
line.

LEXICON

562 ed

[n]kx
Mark given line with lower-case letter x.

[n[,mJll
List selected lines, interpreting non-graphic characters.

[n[,m]]m[d]
Move selected lines to follow lined (default: current line).

o options
Change the given options. The options may consist of an optional sign '+' or ' '
followed by one or more of the letters 'cmopsv'. Options are explained below.

[n[,mJllp]
Print selected lines. The pis optional.

q Quit editing and exit. An error occurs if there are unsaved changes. Reissuing the
command after the error message forces ed to exit.

Q Quit editing and exit. No error occurs if there are unsaved changes.

[n]r Iflle]
Read.file into current text after given line (default: last line).

[n[,mJls[k]/ (patternl J/pattern2 I [g][p]
Search for patternl (default, remembered search pattern) and substitute pattern2
for kth occurrence (default, first) on each line of the given range. If g follows,
substitute every occurrence on each line. If p follows, print the resulting current
line.

[n[,m]]t[d]

[n)u[p]

Transfer (copy) selected lines to follow lined (default, current line).

Undo effect of last substitute command. If optional p specified, print undone line.
The specified line must be the last substituted line.

[n[,m]Jv/(pattern)/commands
Globally execute commands for each line in the specified range (default: all lines)
not containing the pattern (default: current search pattern). The commands may
extend over several lines, with all but the last terminated by'\'. The v command is
like the g command, except the sense of the search is reversed.

[n[,m]Jw Iflle]
Write selected lines (default, all lines) to file (default. current file name). The
previous contents of.file, if any, are lost.

[n[,m]JW IfileJ
Write specified lines (default, all lines) to the end of.file (default, current file name).
Like w, but appends to file instead of truncating it.

Patterns
Substitution commands and search specifications may include patterns, also called regular
expressions. A non-special character in a pattern matches itself. Special characters include
the following.

Match beginning of line, unless it appears immediately after '[' (see below).

$ Match end of line.

LEXICON

...

[chars]

Matches zero or more repetitions of preceding character .

Matches any character except newline.

ed 563

Matches any one of the enclosed chars. Ranges of letters or digits may be indicated
using·-·.

[~chars]

Matches any character except one of the enclosed chars. Ranges of letters or digits
may be indicated using·-·.

\c Disregard special meaning of character c.

\(pattern\)
Delimit substringpattern for use with \d, described below.

The replacement part pattern2 of the substitute command may also use the following:

& Insert characters matched by pattern].

\d Insert substring delimited by dth occurrence of delimiters'\(' and '\)'. where d is a
digit.

Options
The user may specify ed options on the command line, in the environment, or with the o
command. The available options are as follows:

c Print character counts one, r. and w commands.

m Allow multiple commands per line.

o Print line counts instead of character counts one, r, and w commands.

p Prompt with an '*' for each command.

s Match lower-case letters in a pattern to both upper-case and lower-case text
characters.

v Print verbose versions of error messages.

The c option is normally set, and all others are normally reset. Options may be set on the
command line with a leading'+' sign. The'-' command line option resets the c option.

Options may be set in the environment with an assignment, such as

export ED=+cv

Options may be set with the'+' prefix or reset with the·-· prefix.

See Also
commands, elvis, ex, me, sed, vi
Introduction to ed

Diagnostics
ed usually prints only the diagnostic '?' on any error. When the verbose option v is
specified, the '?' is followed by a brief description of the nature of the error.

LEXICON

564 EDITOR - egrep

EDITOR - Environmental Variable
Name editor to use by default
EDITOR=edltor

The environmental variable EDITOR names the default editor that you wish to use. For
example, mail invokes editor when you conclude a mail message by typing a question mark
'?'at the beginning of a line followed by <return>. The screen pager more invokes editor
when you enter the command v while displaying a file.

See Also
environmental variables, mail, more

egrep - Command
Extended pattern search
egrep [option ...] (pattern] (Ille ...]

egrep is an extended and faster version of grep. It searches each file for occurrences of
pattern (also called a regular expression). If no file is specified, it searches the standard
input. Normally, it prints each line matching the pattern.

Wildcards
The simplest patterns accepted by egrep are ordinary alphanumeric strings. Like ed, egrep
can also process patterns that include the following wildcard characters:

Match beginning of line, unless it appears immediately after'(' (see below).

$ Match end of line.

• Match zero or more repetitions of preceding character .

Match any character except newline.

[chars]
Match any one of the enclosed chars. Ranges of letters or digits may be indicated
using·-·.

["chars)
Match any character except one of the enclosed chars. Ranges of letters or digits may
be indicated using·-·.

\c Disregard special meaning of character c.

Metacharacters
In addition, egrep accepts the following additional metacharacters:

Match the preceding pattern or the following pattern. For example, the pattern
cat I dog matches either cat or dog. A newline within the pattern has the same
meaning as 'I '.

+ Match one or more occurrences of the immediately preceding pattern element; it
works like '*', except it matches at least one occurrence instead of zero or more
occurrences.

? Match zero or one occurrence of the preceding element of the pattern.

(••.) Parentheses may be used to group patterns. For example, (Ivan)+ matches a
sequence of one or more occurrences of the four letters 'I' 'v' 'a' or 'n'.

Because the metacharacters '*', '?', '$', '(', ')', '(', ')', and 'I' are also special to the shell sh,

LEXICON

else 565

patterns that contain those literal characters must be quoted by enclosing pattern within
single quotation marks.

Options
The following lists the available options:

-b With each output line. print the block number in which the line started (used to
search file systems).

-c Print how many lines match. rather than the lines themselves.

-e The next argument is pattern (useful if the pattern starts with'-').

-f The next argument is a file that contains a list of patterns separated by newlines;
there is no pattern argument.

-h When more than oneflle is specified, output lines are normally accompanied by the
file name; -h suppresses this.

-1 Print the name of each file that contains the string. rather than the lines themselves.
This is useful when you are constructing a batch file.

-n When a line is printed, also print its number within the file.

-s Suppress all output. just return exit status.

-v Print a line only if the pattern is not found in the line.

-y Lower-case letters in the pattern match lower-case and upper-case letters on the
input lines. A letter escaped with'\' in the pattern must be matched in exactly that
case.

See Also
awk, cgrep, commands, ed, expr, grep, lex, sed

Diagnostics
egrep returns an exit status of zero for success. one for no matches. and two for error.

Notes
For matching patterns in C programs. the command cgrep is preferred, because it is
optimized to recognize C-style expressions.

Besides the difference in the range of patterns allowed, egrep uses a deterministic finite
automaton (DFA) for the search. It builds the DFA dynamically. so it begins doing useful
work immediately. This means that egrep is is much faster than grep. often by more than
an order of magnitude, and is considerably faster than earlier pattern-searching
commands. on almost any length of file.

else - C Keyword
Introduce a conditional statement

else is the flip side of an if statement: if the condition described in the if statement fails.
then the statements introduced by the else statement are executed. For example.

if (getchar() == EOF)
exit(O);

else
dosomething ();

LEXICON

566 elvis

exits if the user types EOF. but does something if the user types anything else.

See Also
C keywords, if

elvis - Command
Clone of Berkeley-standard screen editor
elvis (options I (+cmd] [fllel ... flle27]

elvis is a clone of vi and ex, the standard UNIX screen editors.

Unlike MicroEMACS, the COHERENT system's other screen editor, elvis is a modal editor
whose command structure resembles the ed line editor. Modal means that a keystroke
assumes a different meaning. depending upon the mode that the editor is in. elvis uses
three modes: visual-command mode, colon-command mode, and Input mode. The following
sections summarize the commands associated with each mode.

Visual-Command Mode
Visual-command mode closely resembles text-input mode. One quick way to tell the modes
apart is to press the <esc> key. If elvis beeps. then you are in visual-command mode. If it
does not beep, then you were in input mode, but pressing <esc> switched you to visual­
command mode.

Most visual-mode commands are one keystroke long. The commands are in two groups:
movement commands and edit commands. The former group moves the cursor through the
file being edited, and the latter group alters text.

The following sections summarize the command set for elvis's visual-command mode.

Visual-Mode Movement Commands
The following summarizes the visual mode's movement commands. count indicates that the
command can be optionally prefaced by an argument that tells elvis how often to execute
the command. move indicates that the command can be followed by a movement command,
after which the command is executed on the text that lies between the point where the
command was first typed and the point to which the cursor was moved. Typing the
command a second time executes the command for the entire line upon which the cursor is
positioned. key means that the command must be followed by an argument. The following
describes

<ctrl-B>

[count] <ctrl-D>

[count] <ctrl-E>

<ctrl-F>

<ctrl-G>

[count] <ctrl-H>

[count] <ctrl-J>

<ctrl-L>

[count] <ctrl-M>

[count] <ctrl-N>

LEXICON

Move up by one screenful.

Scroll down count lines (default, one-halfscreenful).

Scroll up count lines.

Move down by one screenful.

Show file status and the current line line.

Move one character to the left.

Move down count lines.

Redraw the screen.

Move to the beginning of the next line.

Move down count lines (default, one).

[count] <ctrl-P>

<ctrl-R>

[count] <ctrl-U>

[count] <ctrl-Y>

<ctrl-]>

<ctrl•A>

[count] <space>

! [move]

"key

$

%

'key

[count) (

[count])

•
[count]+

[count],

[count]­

[count].

I text

0

[count];

? text

@key

[count] B

[count] E

[count] F key

[count] G

[count] H

K

[count] L

Move up count lines (default, one).

Redraw the screen.

Scroll up count lines (default, one-half screenful).

Scroll down count lines.

If the cursor is on a tag name, go to that tag.

Switch to the previous file.

Move right count spaces (default, one).

Run the selected text through an external filter program.

Select which cut buffer to use next.

Move to the end of the current line.

Move to the matching(){}[) character.

Move to a marked line.

Move backward count sentences (default, one).

Move forward count sentences (default, one).

Go to the next error in the error list .

Move to the beginning of the next line.

elvis 567

Repeat the previous f or t command, but move in the opposite
direction.

Move to the beginning of the preceding line.

Repeat the previous edit command.

Search forward for text, which can be a regular expression.

If not part of a count. move to the first character of this line.

Switch to colon-command mode to execute one command.

Repeat the previous fort command.

Search backwards for text, which can be a regular expression.

Execute the contents of a cut-buffer as vi commands.

Move backwards count words (default, one).

Move forwards count words (default, one).

Move left to the count'th occurrence of the given character (default,
first).

Move to to the count'th line in the file (default, last).

Move to the top of the screen.

Look up a keyword.

Move to the bottom of the screen.

LEXICON

568 elvis

M

N

p

Q
[count] T key

u
[count]U

[count]Y

zz
[[

I I

'key

[count]b

[count]e

[count] f key

[count]h

[count]j

[count]k

[count]l

mkey

n

p

[count] t key

u

[count]w

ymove

z key

[count]{

[count] I
[count]}

LEXICON

Move to the middle of the screen.

Repeat the last search, but in the opposite direction.

Paste text before the cursor.

Shift to colon-command mode.

Move left almost to the given character.

Undo all recent changes to the current line.

Move forward count words (default. one).

Copy (or "yank") count lines into a cut buffer (default, one).

Save the file and exit.

Move back one section.

Move forward one section.

Move to the beginning of the current line, but after indent.

Move to the key character.

Move back count words.

Move forward to the end of the count'th word.

Move rightward to the count'th occurrence of the given character.

Move left count characters (default, one).

Move down count characters (default, one).

Move up count characters (default, one).

Move right count characters (default, one).

Mark a line or character.

Repeat the previous search.

Paste text after the cursor.

Move rightward almost to the count'th occurrence of the given character
(default. one).

Undo the previous edit command.

Move forward count words (default, one).

Copy (or "yank") text into a cut buffer.

Scroll the screen, repositioning the current line as follows: + indicates
top of the screen. - indicates the bottom, • indicates the middle.

Move back count paragraphs (default, one).

Move to the count'th column on the screen (leftmost, one).

Move forward count paragraphs (default, one).

elvis 569

Visual-Mode Edit Commands
The following describes the visual mode's editing commands.

[count]# Increment a number by count (default. one).

[count] 8t

<move

>move

[count] A Input

C Input

D

[count] I Input

[count] J

[count] 0 Input

R input

[count] S input

[count]X

[count] a Input

c move

dmove

[count] i Input

[count] o input

[count] r key

[count] s input

[count] x

[count] N

Repeat the previous :s/ I command.

Shift the enclosed text left.

Shift the enclosed text right.

Append input at end of the line.

Change text from the cursor through the end of the line.

Delete text from the cursor through the end of the line.

Insert text at the beginning of the line (after indentations).

Join lines the current with the following line.

Open a new line above the current line.

Overtype.

Change lines, like cc.

Delete count characters from the left of the cursor (default, one).

Insert text after the cursor.

Change text.

Delete text.

Insert text at the cursor.

Open a new line below the current line.

Replace count characters with text you type (default, one).

Replace count characters with text you type (default, one).

Delete the character at which the cursor is positioned.

Toggle a character between upper case and lower case.

Colon-Mode Commands
The following summarizes the set of colon-mode commands. It is no accident that these
commands closely resemble those for the ed line editor: they come, in fact, from ex, the
editor upon which both vi (the UNIX visual editor) and ed derive. For that reason. colon­
command mode is sometimes called ex mode.

line indicates whether the command can be executed on one or more lines. line can be a
regular expression. Some commands can be used with an optional exclamation point; if
done so, the editor assumes you know what you are doing and suppresses the warnings
and prompts it would normally issue for these commands. Please note, finally, that most
commands can be invoked simply by typing the first one or two letters of their names.

abbr [wordfullJorm]
Define word as an abbreviation forjullJorm.

LEXICON

570 elvis

[line] append

args {file 1 ... file NJ

cc (files]

cd [directory]

Insert text after the current line.

With no arguments, print the files list on elvis's command line. With
one or more arguments, change the name of the current file.

Invoke the C compiler to compile.flies, and redirects all error messages
into file errlist. After the compiler exits, scan the contents of errlist for
error messages; if one is found, jump to the line and file indicated on
the error line, and display the error message on the status line.

Switch the current working directory. With no argument, switch to the
$HOME directory.

[line][,llne] change ["x]
Replace the range of lines with the contents of cut-buffer x.

chdir [directory] Same as the cd command.

[llne][,llne] copy targetllne
Copy the range of lines to after the targetline.

[line][,line] delete ["x]
Move the range of lines into cut buffer x.

digraph[!] [XX [Y]] Set XX as a digraph for Y. With no arguments, display all currently
defined digraphs. With one argument, undefine the argument as a
digraph.

edit[!] {file] Edit a file not named on the elvis command line.

errllst[/J [errllst] Find the next error message in file errlist, as generated through elvis's
cc or make commands.

file {file] With an argument, change the output file to file. Without an argument,
print information about the current output file.

[llne][,llne] global /regexp/ command

[line J insert

[line][,llne] join

[llne][,llne] list

make [target]

Search the range of lines for all lines that contain the regular
expression regexp, and execute command upon each.

Insert text before the current line.

Concatenate the range of lines into one line.

Display the requested range of lines, making all embedded control
characters explicit.

Same as the cc command, except that make is executed.

map{!] key mapped_to

[line] mark x

mkexrc

Remap key to mapped_to. Normally, remapping applies just to visual­
command mode; '!' tells elvis to remap the key under all modes. With
no arguments, show all current key mappings.

Set a mark on line, and name it x.

Save current configuration into file • I .exrc, which will be read next
time you invoke elvis.

[line][,llne] move targetllne
Move the range of lines to after targetline.

LEXICON

next[!] {files]

Next[!]

Switch to the next file on the elvis command line.

Switch to the preceeding file on the elvis command line.

elvis 571

[llne][,llne] number Display the range of lines. with line numbers.

previous[!] Switch to the preceeding file on the elvis command line.

[llne][,llne] print Display the specified range of lines.

[line] put ["x]

quit[!]

[line] read.file

rewind[!]

set [options]

shell

source file

Copy text from cut buffer x after the current line.

Quit elvis. and return to the shell.

Read the contents of file and insert them after line (default, the last
line).

Switch to the first file on the elvis command line.

Set an elvis option. With no arguments. list current settings for all
options.

Invoke a shell.

Read a set of colon-mode commands fromjile. and execute them.

[llne][,llne] substitute /regexp /replacement/ [p][g][c]
For the range of lines. replace the first instance of regexp with
replacement. p tells elvis to print the last line upon which a
substitution was performed. g means perform a global substitution,
i.e .. replace all instances of regexp on each line with replacement. c tells
elvis to ask for confirmation before performing each substitution.

tat!f!J tagname Find tagname in file tags. which records information about all tags. If
found. jump to the file and line upon which the tag is set.

[line][,llne] to targetllne

unabbrword

undo

unmap[!J key

version

Copy the range of lines to after the targetllne.

Unabbreviate word.

Undo the last editing command.

Unmapkey.

Display the current version of elvis.

[line][,llne] vglobal I regexp I command

visual

Search the range of lines for all lines that do not contain the regular
expression regexp. and execute command upon each.

Enter visual-command mode.

wq Save the changed file, and exit.

[llne][,llne] write[!] [[»}file]

Xit[!J

Write the file being edited into file. With the » argument, append the
edited text onto the end of.file.

Same as the wq command. described above. except that it does not
write files that have not changed.

LEXICON

572 elvis

[line]{,llne] yank ["x] Copy the range of lines into cut buffer x.

[line][,line] ! command

[line][,llne] <

[line]{,line] =

[line]{,line] >

[line][,line] &

@x

Execute command under a subshell, then return.

Shift the range of lines left by one tabwidth.

With no range of lines specified, print the number of the current line.
With line arguments, print the endpoints of the lines in question, and
the number of lines that lie between them. (Remember. line can be a
regular expression as well as a number.)

Shift the range of lines right by one tabwidth.

Repeat the last substitution command.

Read the contents of cut-buffer x as a set of colon-mode commands,
and execute them.

Input-Mode Commands
Most keystrokes are interpreted as being text and inserted directly into the text; however.
some keystrokes are still interpreted as commands. Thus, you can perform an entire
session of simple editing directly within input mode without switching to either of the
command modes.

The following summarizes the commands that can be executed directly within input mode:

<ctrl-A> Insert a copy of the last input text.

<Ctrl-D>

<Ctrl-H>

<ctrl-L>

<Ctrl-M>

<ctrl-P>

<ctrl-R>

<Ctrl-T>

<ctrl-U>

<ctrl-V>

<ctrl-W>

<ctrl-Z><ctrl-Z>

<eSC>

Delete one indent character.

Erase the character before the cursor.

Redraw the screen.

Insert a newline.

Insert the contents of the cut buffer.

Redraw the screen. like <ctrl-L>.

Insert an indent character.

Move to the beginning of the line.

Insert the following keystroke, even if special.

Backspace to the beginning of the current word.

Write the file and exit elvis.

Shift from input mode to visual-command mode.

Delete the current character.

Command-line Options
elvis lets you name up to 27 files on the command line. thus allowing you to edit up to 27
files simultaneously. The "next file" and "previous file" commands described above allow
you to shift from one file to another during the same editing session; in this way, for
example, you can cut text from one file and paste it into another.

elvis recognizes the following command-line options:

LEXICON

enable 573

-r Recover a previous edit. Because elvis uses the program virec for file recovery,
invoking it with this option simply prints a message that tells you to run vlrec.

-R Invoke elvis in "read-only" mode. This is equivalent to invoking elvis via the link
view.

-t tag Begin editing at tag.

-mfflle 1
Invoke elvis in error-handling mode. It searches throughflle for something that
looks like an error message from a compiler. then positions the cursor at that point
for editing.

-e Begin in colon-command mode.

-v Begin in visual-command mode.

-i Begin in input mode.

+command
Execute command immediately upon beginning editing. For example

elvis +237 foo

causes elvis to move directly to line 237 immediately upon beginning to edit file
foo.

Files
/tmp/elv• -Temporary files

See Also
commands, ed, ex, me, vi, view

Notes
Full documentation for elvis is included with this release in compressed file
/usr/src/allen/Elvis.doc.z.

elvis is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous
volunteers. It is freely redistributable, subject to the restrictions noted in included
documentation. Source code for elvis is available through the Mark Williams bulletin
board, USENET, and numerous other outlets.

elvis is distributed as a service to COHERENT customers, as is. It is not supported by
Mark Williams Company. Caveat utllltor.

enable - Command
Enable a port
I etc/enable port. ..

The COHERENT system is a multiuser operating system; it allows many users to use the
system simultaneously. An asynchronous communication port connects each user to the
system, normally by a terminal or a modem attached to the port. The system
communicates with the port by means of a character special file in directory /dev, such as
I dev I com3r or I dev I com21.

The COHERENT system will not allow a user to log in on a port until the system creates a
login process for the port. The enable command tells the system to create a login process
for each given port. For example, the command

LEXICON

574 end - endgrentO

/etc/enable comlr

enables port /dev/comlr.

enable changes the entry for each given port in the terminal characteristics file /etc/ttys.
The baud rate specified in /etc/ttys must be the appropriate baud rate for the terminal or
modem connected to the port. See the Lexicon entry for ttys for more information.

The command disable disables a port. The command ttystat checks whether a port is
enabled or disabled.

Files
/etc/ttys - Terminal characteristics file
I dev I com• - Devices serial ports

See Also
com, commands, disable, getty, login, ttys, ttystat

Diagnostics
enable normally returns one if it enables the port successfully and zero if not. If more than
one port is specified, enable returns the success or failure status of the last port it finds. It
returns -1 if it cannot find any given port. An exit status of -2 indicates an error.

Notes
It is not recommended that you attempt to enable a port that is already enabled. To make
sure, run /etc/disable before running /etc/enable.

Only the superuser root can execute enable.

end - Linker-Defined Symbol
extern int end[];
end is the location after the uninitialized data segment. It is defined by the linker when it
binds the program together for execution. The value of end is merely an address. The
location to which it points contains no known value, and may be illegal memory locations
for the program. The value of end does not change while the program is running.

Example
main ()
{

}

extern int end[];
printf("end=%lx\n", (long) end);

See Also
etext, Id, linker-defined symbols, malloc()

endgrentO - General Function (libc)
Close group file
#include <grp.h>
endgrent()

endgrent closes the file I etc/ group. It returns NULL if an error occurs.

LEXICON

endpwentO - enum 575

Files
/etc/group
<grp.h>

See Also
general functions, group

endpwentO - General Function (libc)
Close password file
#include <pwd.h>
endpwent()

The COHERENT system has five routines that search the file /etc/passwd, which contains
information about every user of the system. endpwent closes the password file. Please
note that this function does not return a meaningful value.

Example
For an example of this function. see the entry for getpwent().

Files
I etc/passwd
pwd.h

See Also
general functions, getpwent(), getpwnam(), getpwuid(), pwd.h, setpwent()

enum - C Keyword
Declare a type and identifiers

An enum declaration is a data type whose syntax resembles those of the struct and union
declarations. It lets you enumerate the legal value for a given variable. For example,

enum opinion {yes, maybe, no} GUESS;

declares type opinion can have one of three values: yes, no, and maybe. It also declares the
variable GUESS to be of type opinion.

As with a struct or union declaration, the tag (opinion in this example) is optional; if
present, it may be used in subsequent declarations. For example, the statement

register enum opinion *op;

declares a register pointer to an object of type opinion.

All enumerated identifiers must be distinct from all other identifiers in the program. The
identifiers act as constants and be used wherever constants are appropriate.

COHERENT assigns values to the identifiers from left to right, normally beginning with zero
and increasing by one. In the above example, the values of yes, no, and maybe are set,
respectively, to one, two, and three. The values often are ints, although if the range of
values is small enough. the enum will be an unsigned char. If an identifier in the
declaration is followed by an equal sign and a constant. the identifier is assigned the given
value, and subsequent values increase by one from that value; for example,

enum opinion {yes=SO, no, maybe} guess;

sets the values of the identifiers yes, no, and maybe to 50, 51. and 52, respectively.

LEXICON

576 ENV - environmental variables

See Also
Ckeywords

ENV - Environmental Variable
File read to set environment

The Korn shell reads the environmental variable ENV to determine what file to read after it
executes the contents of profile and .profile. This file is usually used to set aliases and
variables.

See Also
environmental variables, ksh

environ - Technical Information
Process environment

extern char ••environ;

environ is an array of strings, called the environment of a process. By convention, each
string has the form

name=value

Normally, each process inherits the environment of its parent process. The shell sh and
various forms of exec can change the environment. The shell adds the name and value of
each shell variable marked for export to the environment of subsequent commands. The
shell adds assignments given on the same line as a command to the environment of the
command, without affecting subsequent commands.

See Also
exec, getenv(), sh, technical information

environmental variables - Overview
The environment is a set of information that is read by all programs that run on your
system. It consists of one or more environmental variables that you set. For example, when
you set the environmental variable PATii, you tell COHERENT that you wish to pass this
information to all programs on your system, including COHERENT itself.

By changing the environment, you can change the way a command works without rewriting
any commands that you may have embedded in batch files, scripts, or makefiles.

COHERENT uses the following environmental variables to set its environment. The
programs that you write may use others that you define yourself, if you wish.

LEXICON

ASK CC
CWD
EDITOR
ENV
FCEDIT
IFS
HOME
KSH_ VERSION
LAS TERROR
MAIL
PAGER
PATH
PSI
PS2
SECONDS
SHELL
TERM
TIMEZONE
USER

See Also
Lexicon

envp ~C Language

Have mail prompt for CC names
Current working directory
Editor used by default by mail
File read to set environment
Editor used by the fc command
Characters recognized as white space
User's home directory
List current version of Korn shell
Program that last generated an error
File that holds user's mail messages
User's preferred output filter
Directories that hold executable files
User's default prompt
Prompt when unbalanced quotation marks span a line
Number of seconds since current shell started
Name the default shell
Name the default terminal type
User's current time zone
Name user's identifier

Argument passed to main()
char •envp[];

envp 577

envp is an abbreviation for environmental parameter. It is the traditional name for a
pointer to an array of string pointers passed to a C program's main function, and is by
convention the third argument passed to main.

Example
The following example demonstrates envp, argc, and argv.

#include <stdio.h>

main(argc, argv, envp)
int argc;
char *argv[J:
char *envp [J :
{

int a;

/* Number of args */
/* Argument ptr array */
/* Environment ptr array */

printf("The command name (argv[O]) is %s\n", argv[OJ):
printf("There are %d arguments:\n", argc-1);
for (a=l; a<argc; a++)

printf("\targument %2d:\t%s\n", a, argv[a]);

LEXICON

578 EOF - epson

}

printf("The environment is as follows:\n");
a = O;
while (envp[a] != NULL)

printf("\t%s\n", envp[a++]);

See Also
argc, argv, C language, environ, main()

EOF - Defin~ion (Library/STDIO)
Indicate end of a file
#include <stdio.h>

EOF is an indicator that is returned by several STDIO functions to indicate that the current
file position is the end of the file.

Many STDIO functions, when they read EOF, set the end-of-file indicator that is associated
with the stream being read. Before more data can be read from the stream, its end-of-file
indicator must be cleared. Resetting the file-position indicator with the functions fseek,
fsetpos, or ftell will clear the indicator, as will returning a character to the stream with the
function ungetc.

See Also
me, stream, STDIO, stdio.h

epson - Command
Print files on Epson printer
epson [-cdfrw8] [-b head] [-i n] (-o oflle] (-s n I [file ...]

epson prints each file, or the standard input if none, on an Epson MX-80 printer or
compatible. epson normally sends its output directly to the line printer /dev/lp. It
recognizes the nroff output sequences for boldface and italics and normally converts them
to emphasized print and italics.

epson recognizes the following options:

-bhead
Print the given head as a double-width banner at the top of the first output page.

-c Use compressed printing mode.

-d Print boldface as double strikes. Normally. epson recognizes the sequence "c\bc"
as boldface and prints c in emphasized printing mode. -dis useful in conjunction
with -c.

-f Do not print a formfeed character at the end of each file.

-in Indent n spaces at the start of each output line.

-o oflle
Send output to oflle instead of /dev/lp.

-r Print all characters in Roman; do not use italics. Normally, epson recognizes the
sequence .. _ \be" as italic and prints c in its italic character set.

-sn Print n newlines at the end of each line. n must be I. 2. or 3; the default is I.

LEXICON

errno - errno.h 579

-w Use double width printing mode.

-8 Print lines with vertical spacing of eight lines per inch instead of the default six
lines per inch.

Files
/dev/lp- Line printer

See Also
commands, lpr, nroi'f, pr, printer

Diagnostics
epson prints appropriate messages on the standard error if it cannot open a file or if an
argument is incorrect.

errno - Technical Information
External integer for return of error status
extem int ermo;

ermo is an external integer that COHERENT links into every program. COHERENT sets
ermo to the negative value of any error status returned by COHERENT to the functions that
perform COHERENT system calls.

Mathematical functions use errno to indicate classifications of errors on return. ermo is
defined within the header file ermo.h. Because not every function uses ermo, it should be
polled only in connection with those functions that document its use and the meaning of
the various status values. For the names of the error codes (as defined in ermo.h, their
value, and the message returned by the function perror, see errno.h.

Example
For an example of using errno in a mathematics program, see the entry for acos.

See Also
ermo.h, mathematics library, perror(), signal(), technical information

errno.h - Header File
Error numbers used by errno()
#include <errno.h>

ermo.h is a header that defines and describes the error numbers returned in the external
variable errno. The following lists the the error numbers defined in errno.h:

EPERM: Not super user
You are not the superuser root, and attempted an operation that requires root
privileges.

ENOENT: No such file or directory
A program could not find a required file or directory.

ESRCH: Process not found
A program attempt to communicate with a process that did not exist.

EINTR: Interrupted system call
A COHERENT system call failed due to a signal being received or an alarm expiring.

EIO: 1/0 error
A physical 1/0 error occurred on a device driver. This could be a tape error, a CRC
error on a disk. or a framing error on a synchronous HDLC link.

LEXICON

580 errno.h

ENXIO: no such device or address
A specified minor device is invalid or the unit is powered off. This error might also
indicate that a block number given to a minor device is out of range. suload
returns this error code if the driver was not loaded.

E2BIG: argument list too long
The number of bytes of arguments passed in an exec is too large.

ENOEXEC: exec format error
The file given to exec or load is not a valid load module (probably because it does
not have the magic number at the beginning), even though its mode indicates that
it is executable.

EBADF: bad file descriptor
A file descriptor passed to a system call is not open or is inappropriate to the call.
For example, a file descriptor opened only for reading may not be accessed for
writing.

ECHILD: no children
A process issued a wait call when it had no outstanding children.

EAGAIN: no more processes
The system cannot create any more processes, either because it is out of table space
or because the invoking process has reached its process quota.

ENOMEM: not enough memory
The system cannot accomodate the memory size requested (by exec or brk, for
example).

EACCES: permission denied
The user is denied access to a file.

EFAULT: bad address
An address in a system call does not lie in the address space. Normally, this
generates a SIGSYS signal. which terminates the process.

ENOTBLK: block device required
The mount and umount calls require block devices as arguments.

EBUSY: mount device busy
The special file passed to mount is already mounted, or the file system given to
wnount has open files or active working directories.

EEXIST: file exists
An attempt was made to link to a file that already exists.

EXDEV: cross-device link
A link to a file must be on the same logical device as the file.

ENODEV: no such device
An unsuitable 1/0 call was made to a device; for example, an attempts to read a line
printer.

ENOTDIR: not a directory
A component in a path name exists but is not a directory, or a chdir or chroot
argument is not a directory.

EISDIR: is a directory
Directories cannot be opened for writing.

LEXICON

errno.h 581

EINVAL: invalid argument
An argument to a system call is out of range, e.g .. a bad signal number to kill or
umount of a device that is not mounted.

ENFILE: file table overflow
A table inside the COHERENT system has run out of space, preventing further
open calls and related requests.

EMFILE: too many open files
A process is limited to 20 open files at any time.

ENOTTY: not a tty
An ioctl call was made to a file which is not a terminal device.

ETXTBSY: text file busy
The text segment of a shared load module is unwritable. Therefore. an attempt to
execute it while it is being written or an attempt to open it for writing while it is
being executed will fail.

EFBIG: file too large
The block mapping algorithm for files fails above l ,082 ,201,088 bytes.

ENOSPC: no space left on device
Indicates an attempt to write on a file when no free blocks remain on the associated
device. This error may also indicate that a device is out of i-nodes, so a file cannot
be created.

ESPIPE: illegal seek
It is illegal to lseek on a pipe.

EROFS: read-only file system
Indicates an attempt to write on a file system mounted read-only (e.g .. with creator
unlink).

EMLINK: too many links
A new link to a file cannot be created, because the link count would exceed 32, 767.

EPIPE: broken pipe
A write occurred on a pipe for which there are no readers. This condition is
accompanied by the signal SIGPIPE, so the error will only be seen if the signal is
ignored or caught.

EDOM: mathematics library domain error
An argument to a mathematical routine falls outside the domain of the function.

ERANGE: mathematics library result too large
The result of a mathematical function is too large to be represented.

EKSPACE: out of kernel space
No more space is available for tables inside the COHERENT system. Table space is
dynamically allocated from a fixed area of memory; it may be possible to increase
the size of the area by reconfiguring the system.

ENOLOAD: driver not loaded
Not used.

EBADFMT: bad exec format
An attempt was made to exec a file on the wrong type of processor.

LEXICON

582 etext - eval

EDA'ITN: device needs attention
The device being referenced needs operator attention. For example. a line printer
might need paper.

EDBUSY: device busy
The indicated device is busy. For load, this implies that the given major device
number is already in use.

See Also
ermo, header files, perror(), signal()

etext - Linker-Defined Symbol
extern int etext[];
etext is the location after the shared and private text (code) segments. It is defined by the
linker when it binds the program together for execution. The value of etext is merely an
address. The location to which it points contains no known value, and may be illegal
memory locations for the program. The value of etext does not change while the program is
running.

Example

main ()
{

extern int etext[];
printf ("etext=%ld\n", (long) etext);

}

See Also
brk(), end, Id, linker-defined symbols, malloc()

eval - Command
Evaluate arguments
eval [token ...)

The shell normally evaluates each token of an input line before executing it. During
evaluation. the shell performs parameter, command. and file-name pattern substitution.
The shell does not interpret special characters after performing substitution.

eval is useful when an additional level of evaluation is required. It evaluates its arguments
and treats the result as shell input. For example,

A='>file'
echo a b c $A

simply prints the output

a b c >file

because'>' has no special meaning after substitution, but

A='>file'
eval echo a b c $A

redirects the output

a b c

LEXICON

to ftle. Similarly,

prints

A='$B'
B='string'
echo $A
eval echo $A

$8
string

In the :first echo the shell performs substitution only once.

The shell executes eval directly.

See Also
commands, ksh, sh

ex-Command
Berkeley-style line editor
ex [options I [+cmd I [fllel ... flle27)

ex- exec 583

ex is a link to elvis, which is a clone of the UNIX vi/ex set of editors. Invoking elvis
through this link forces it to operate solely in colon-command mode, just as the UNIX ex
editor operates.

For information on how to use this version of ex, see the Lexicon page for elvis.

See Also
commands, ed, elvis, me, vi, view

Notes
elvis is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous
volunteers. It is freely redistributable, subject to the restrictions noted in included
documentation. Source code for elvis is available through the Mark Williams bulletin
board, USENET, and numerous other outlets.

Please note that elvis is distributed as a service to COHERENT customers, as is. It is not
supported by Mark Williams Company. Caveat utilttor.

exec - Command
Execute command directly
exec [command)

The shell normally executes commands with a fork system call, which creates a new
process. The shell command exec directly executes the given command with an exec
system call instead. Normally, this terminates execution of the current shell.

If the command consists only of redirection specifications, exec redirects the input or
output of the current shell accordingly without terminating it. If the command is omitted,
exec has no effect.

LEXICON

584 execlO - execlpO

See Also
commands, fork(), ksh, sh

execlO - General Function (libc)
Execute a load module
execl{flle, argO, argl, ... , argn, NULL)
char "1ile, *argO, *argl, .. ., *argn;

The function execl calls the COHERENT system call execve() to execute a program. It
specifies arguments individually. as a NULL-terminated list of arg parameters. For more
information on file execution. see execution.

See Also
execution, execve(), general functions, getuid()

Diagnostics
execl does not return if successful. It returns -1 for errors. such as.file being nonexistent.
not accessible with execute permission, having a bad format. or too large to fit in memory.

execleO - General Function (libc)
Execute a load module
execleifile, argO, argl • ... , argn. NULL, env)
char "1ile, *argO, *argl • *argn, char *env[];

The function execle calls the COHERENT system call execve() to execute a program. It first
initializes the new stack of the process to contain a list of strings that are command
arguments. It specifies arguments individually. as a NULL-terminated list of arg
parameters. The argument envp points to an array of pointers to strings that defineJlle's
environment. For more information on program execution and environments. see
execution.

See Also
environ, execution, execve(), general functions

Diagnostics
execle does not return if successful. It returns -1 for errors. such as.file being nonexistent.
not accessible with execute permission. having a bad format. or being too large to fit into
memory.

execlpO - General Function (libc)
Execute a load module
execlp{flle, argO, argl, .. ., argn. NULL)
char"1ile, *argO, *argl, .. ., •argn;

The function execlp calls the COHERENT system call execve() to execute a program. It
initializes the new stack of the process to contain a list of strings that are command
arguments. It specifies arguments individually. as a NULL-terminated list of arg
parameters. Unlike the related function execl. execlp searches for file in all directories
named in the environmental variable PATH. For more information on program execution.
see execution.

See Also
environ, execution, execve(), general functions

LEXICON

executable file - execution 585

Diagnostics
execlp does not return if successful. It returns -1 for errors. such asjlle not existing in the
directories named in PATH, not accessible with execute permission, having a bad format, or
too large to fit in memory.

executable file - Definition
An executable me is one that can be loaded directly by the operating system and executed.
Normally, an executable file is one that has both been compiled. where it is rendered into
machine language. and linked. where the compiled program has received all operating
system-specific information and library functions.

See Also
definitions, me, object format

execution - Technical Information
Program execution under COHERENT is governed by the various forms of the COHERENT
system call exec. This call allows a process to execute another executablejlle (load module.
as described in l.out.h). The code, data and stack ofjlle replace those of the requesting
process. The new stack contains the command arguments and its environment, in the
format given below. Execution starts at the entry point ofjlle.

During a successful exec. the system deactivates profiling. and resets any caught signals to
SIG_DFL.

Every process has a real-user id, an effective-user id. a real-group id, and an effective-group
id, as described in getuid. For most load modules, exec does not change any of these.
However, if thejlle is marked with the set user id or set group id bit (see stat). exec sets the
effective-user id (effective-group id) of the process to the user id (group id) of thejlle owner.
In effect. this changes the file access privilege level from that of the real id to that of the
effective id. The owner ofjlle should be careful to limit its abilities, to avoid compromising
file security.

exec initializes the new stack of the process to contain a list of strings which are command
arguments. execl. execle, and execlp specify arguments individually, as a NULL­
terminated list of arg parameters. execv. execve, and execvp specify arguments as a single
NULL-terminated array argv of parameters.

The main routine of a C program is invoked in the following way:

main(argc, argv, envp)
int argc;
char *argv[), *envp[];

argc is the number of command arguments passed through exec, and argv is an array of
the actual argument strings. envp is an array of strings that comprise the process
environment. By convention, these strings are of the form varlable=value. as described in
the Lexicon entry environ. Typically. each variable is an exported shell variable with the
given value.

execl and execv simply pass the old environment, referenced by the external pointer
environ. execle and execve pass a new environment env explicitly. execlp and execvp
search for file in each of the directories indicated by the shell variable $PATH, in the same
way that the shell searches for a command. These calls will execute a shell commandjlle.

LEXICON

586 execvo - execveo

Files
/bin/sh - To execute command files

See Also
environ, exec(), execl(), execle(), execlp(), execv(), execve(), execvp(), fork(), ioctl(),
signal(), stat(), technical information

Diagnostics
None of the exec routines returns if successful. Each returns -1 for errors. such as if.file is
nonexistent, not accessible with execute permission, has a bad format, or is too large to fit
in memory.

execvO - General Function (libc)
Execute a load module
execv(flle, argv)
char >fjile, •argv[);

The function execv calls the COHERENT system call execve() to execute a program. It
specifies arguments as a single, NULL-terminated array of parameters, called argv. execv
passes the environment of the calling program to the called program. For more information
on program execution, see execution.

See Also
environ, execution, execve(), general functions

Diagnostics
execv does not return if successful. It returns -1 for errors, such as.file being nonexistent,
not accessible with execute permission, having a bad format, or too large to fit in memory.

execveO - System Call
Execute a load module
execve(flle, argv, env)
char >fjile, •argv[), •env[);

The function execve executes a program. It specifies arguments as a single. NULL­
terminated array of parameters, called argv. The argument env is the address of an array of
pointers to strings that define .file's environment. This allows execve to pass a new
environment to the program being executed. For more information on program execution,
see execution.

Example
The following example demonstrates execve. as well as tmpnam, getenv, and path. It finds
all lines with more than LIMIT characters and call MicroEMACS to edit them.

#include <stdio.h>
#include <path.h>
#include <sys/stat.h>

#define LIMIT 70

extern char *getenv(), **environ, *tempnam();

LEXICON

main(argc, argv)
char *argv[];
{

/* me
char *cmda[5] = { NULL,
FILE *ifp, *tmp;
char line[256 J;
int ct, len;

-e tmp file */
"-e", NULL, NULL, NULL};

if ((NULL == (cmda [3 J = argv [1 J)) \ \

}

(NULL== (ifp = fopen(argv[l], "r")))) {
fprintf(stderr, "Cannot open %s\n", argv[l]);
exit(l);

if (cmda[O] = path(getenv("PATH"), "me", AEXEC)
fprintf(stderr, "Cannot locate me\n");
exit(l);

}

execvpO 587

NULL) {

if (NULL== (tmp = fopen((cmda[2] = tempnam(NULL, "lng")), "w"))) {
fprintf (stderr, "Cannot open tmpfile\n");
exit(l);

}

for (ct= 1; NULL!= fgets(line, sizeof(line), ifp); ct++)
if (((len = strlen(line)) >LIMIT) \ \

('\n' I= line[len -1]))
fprintf(tmp, "%d: %d characters long\n", ct, len);

}

fclose(tmp);
fclose(ifp);

if (execve(cmda[OJ, cmda, environ) < O) {
fprintf(stderr, "cannot execute me\n");
exit(l);

}
/* We never reach here */

See Also
environ, execution, general functions

Diagnostics
execve does not return if successful. It returns -1 for errors, such as file being nonexistent,
not accessible with execute permission, having a bad format, or too large to fit in memory.

execvpO - General Function (libc)
Execute a load module
execvp(fi!e, argv)
char ~le, •argv[J;

LEXICON

588 exit - expO

The function execvp calls the COHERENT system call execve() to execute a program. It
specifies arguments as a single, NULL-terminated array of parameters, called argv. Unlike
the related call execv. execvp searches for .file in all of the directories named in the
environmental variable PATH. For more information on program execution. see execution.

See Also
environ, execution, execve(), general functions

Diagnostics
execvp does not return if successful. It returns -1 for errors. such asflle being nonexistent,
not accessible with execute permission. having a bad format, or too large to fit in memory.

exit - Command
Exit from a noninteractive shell
exit [status]

exit terminates a noninteractive shell. If the optional status is specified, the shell returns
it; otherwise, the previous status is unchanged. From an interactive shell, exit sets the
status if specified, but does not terminate the shell. The shell executes exit directly.

See Also
co1nllUlllds,ksh,sh

exitO - System Call
Terminate a program gracefully
void exit(status) int status;

exit is the normal method to terminate a program directly. status information is passed to
the parent process. By convention, an exit status of zero indicates success, whereas an exit
status greater than zero indicates failure. If the parent process issued a wait call. it is
notified of the termination and is passed the least significant eight bits of status. As exit
never returns, it is always successful. Unlike the related function _exit. exit does extra
cleanup, such as flushing buffered files and closing open files.

Example
For an example of this function, see the entry for Copen.

See Also
_exit(), close(), syste1n call, wait()

Notes
If a program leaves Inain() by an error condition, contents of register AX becomes the exit
code. Usually. these register contents are random. If you want to test a program's return
code. you must to exit or return from 1nain().

expo - Mathematics Function (libm)
Compute exponent
#include <Inath.h>
double exp(z) double z;

exp returns the exponential of z. or eAz.

Example
The following program prompts you for a number, then prints the value for it as returned by
exp. pow, log. and logIO.

LEXICON

#include <math.h>
#include <stdio.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

}

if (errno)
perror (name) ;

else
printf("%10g %s\n", value, name);

errno = O;

main ()
{

}

extern char *gets();
double x;
char string[64];

for(;;) {

}

printf ("Enter number: ") ;
if(gets(string) ==NULL)

break;
x = atof(string);

display(x);
display(exp(x));
display(pow(lO.O,x));
display(log(exp(x)));
display(loglO(pow(lO.O,x)));

See Also
ermo, mathematics library

Diagnostics
exp indicates overflow by an errno of ERANGE and a huge returned value.

export - Command
Add a shell variable to the environment
export [name ...]
export [name=value]

export 589

When the shell executes a command, it passes the command an environment. By
convention, the environment consists of assignments, each of the form name=value. For
example, typing

export TERM=vtlOO

sets the environmental variable TERM to equal the string vtlOO.

LEXICON

590 expr

A command may look for information in the environment or may simply ignore it. In the
above example, a program that reads the variable TERM (such as MicroEMACS) will assume
that you are working on a DEC VT- I 00 terminal or one that emulates it.

The shell places the name and the value of each shell variable that appears in an export
command into the environment of subsequently executed commands. It does not place a
shell variable into the environment until it appears in an export command.

With no arguments. export prints the name and the value of each shell variable currently
marked for export.

The shell executes export directly.

See Also
commands, environ, exec, ksh, sh

expr - Command
Compute a command line expression
expr argument ...

The arguments to expr form an expression. expr evaluates the expression and writes the
result on the standard output. Among other uses, expr lets the user perform arithmetic in
shell command files.

Each argument Is a separate token in the expression. An argument has a logical value
'false' if it is a null string or has numerical value zero, 'true' otherwise. Integer arguments
consist of an optional sign followed by a string of decimal digits. The range of valid integers
is that of signed long integers. No check is made for overflow or illegal arithmetic
operations. Floating point numbers are not supported.

The following list gives each expr operator and its meaning. The list is in order of
increasing operator precedence; operators of the same precedence are grouped together. All
operators associate left to right except the unary operators'!', ·-·. and 'len', which associate
right to left. The spaces shown are significant - they separate the tokens of the expression.

{ exprl, expr2, expr3}
Return expr2 if exprl is logically true, and expr3 otherwise. Alternatively, { exprl ,
expr2} is equivalent to { exprl , expr2, 0 }.

expr 1 I expr2
Return exprl if it is true, expr2 otherwise.

expr 1 & expr2
Return expr 1 if both are true. zero otherwise.

expr 1 relation expr2
Where relation is one of<, <=, >, >=, ==. or !=. return one if the relation is true, zero
otherwise. The comparison is numeric if both arguments can be interpreted as
numbers, lexicographic otherwise. The lexicographic comparison is the same as
strcmp (see string).

expr 1 + expr2

expr 1 - expr2

LEXICON

Add or subtract the integer arguments. The expression is invalid if either expr is
not a number.

expr 1 • expr2

exprl I expr2

expr 1 % expr2

extern 591

Multiply. divide, or take remainder of the arguments. The expression is invalid if
either expr is not numeric.

expr 1 : expr2

lenexpr

Match patterns (regular expressions). expr2 specifies a pattern in the syntax used
by ed. It is compared to exprl. which may be any string. If the \(... \) pattern
occurs in the regular expression the matching operator returns the matched field
from the string: if there is more than one \(... \)pattern the extracted fields are
concatenated in the result. Otherwise, the matching operator returns the number
of characters matched.

Return the length of expr. It behaves like strlen (see string). !en is a reserved word
in expr.

!expr Perform logical negation: return zero if expr is true, one otherwise.

-expr Unary minus: return the negative of its integer argument. If the argument is non­
numeric the expression is invalid.

(expr)
Return the expr. The parentheses allow grouping expressions in any desired way.

The following operators have special meanings to the shell sh, and must be quoted to be
interpreted correctly: {} () < > & I •.
See Also
commands, ed, sh, test

Notes
expr returns zero if the expression is true, one if false, and two if an error occurs. In the
latter case an error message is also printed.

extern - C Keyword
Declare storage class

extern indicates that a C element belongs to the external storage class. Both variables and
functions may be declared to be extern. Use of this keyword tells the C compiler that the
variable or function is defined outside of the present file of source code. All functions and
variables defined outside of functions are implicitly extern unless declared static.

When a source file references data that are defined in another file, it must declare the data
to be extern. or the linker will return an error message of the form:

undefined symbol name

For example, the following declares the array tzname:

extern char tzname[2][32];

When a function calls a function that is defined in another source file or in a library, it
should declare the function to be extern. In the absence of a declaration, extern functions
are assumed to return ints, which may cause serious problems if the function actually
returns a 32-bit pointer (such as on the 68000 or i8086 LARGE model), a long, or a double.

LEXICON

592 extern

For example, the function malloc appears in a library and returns a pointer; therefore, it
should be declared as follows:

extern char *malloc();

If you do not do so, the compiler assumes that malloc returns an int, and generate the
error message

integer pointer pun

when you attempt to use malloc in your program.

See Also
auto, C keywords, pun, register, static, storage class

LEXICON

fabsO - Mathematics Function (libm)
Compute absolute value
#include <math.h>
double fa.bs(z) double z;

fabsO - fc 593

F

fa.bs implements the absolute value function. It returns z if z is zero or positive, or -z if z is
negative.

Example
For an example of this function, see the entry for cell.

See Also
absQ, cell(), floor(), frexp(), mathematics library

factor - Command
Factor a number
factor [number ... I

factor computes and prints the prime factorials for each of a list of given numbers. If no
numbers are given on the command line, factor reads numbers from the standard input.

See Also
commands

false - Command
Unconditional failure
false

false does nothing. It is guaranteed to fail. It can be useful in shell scripts, to force certain
situations to occur.

See Also
commands,ksh,sh,true

Notes
Under the Korn shell, false is an alias for its built-in command let.

fblk.h - Header File
Define the disk-free block
#include <sys/tblk.h>

tblk.h defines the disk-free block tblk.

See Also
header mes

fc-Command
Edit and re-execute one or more previous commands
fc [-In) Iflrst [last))
fc -s [old=new] [command]"

fc. the ''fix command", is a command built into the Korn shell ksh. It permits you to edit
and re-execute one or more commands that have been executed previously.

LEXICON

594 FCEDIT - fcntl0

fc has two forms, as shown above. The first version selects commandsfirst through last
and inserts them into a text editor. You can edit the commands in the editor; exiting from
the editor re-executes the edited commands.

first and last can be addressed either by the command's number (the first command issued
to the shell is number one, the second is number two, and so on), or by a string that
matches the beginning of the command. The editor used is the one set in the
environmental variable FCEDIT (default, ed).

When called without a last variable, the command selects just first. Option -1 prints the
commands on the standard output rather than buffering the commands for editing and re­
execution. Option -n suppresses the default command numbers.

The second form of the fc command substitutes string new for string old within command,
then re-executes it. command can be addressed either by its number or by a string that
matches its beginning. Ifno command is specified, it re-executes the previous command.

See Also
commands, FCEDIT, ksh

FCEDIT - Environmental Variable
Editor used by fc command

The Korn shell's command fc reads the environmental variable FCEDIT to see which editor
it should use to edit commands.

See Also
environmental variables, ksh

fcloseO - STDIO Function (libc)
Close a stream
#include <Stdio.h>
int fclose{fp) FILE *:fp;

fclose closes the stream fp. It calls mush on the givenfp, closes the associated file. and
releases any allocated buffer. The function exit calls fclose for open streams.

Example
For examples of how to use this function, see the entries for fopen and fseek.

See Also
STDIO

Diagnostics
fclose returns EOF if an error occurs.

fcntlO - System Call
Control open files
#include <sys/ fcntl.h>
int fcntl(fd, command, arg)
int fd, cmd;

The COHERENT system call fcntl permits manipulation of an open file. fd is the file
descriptor; this description must have been obtained from a call to creat, dup, fcntl, open.
or pipe.

command identifies the task that you want fcntl to perform. The value fcntl returns varies,

LEXICON

fcntl.h - fd 595

depending on what command you ask it to perform. arg is an argument specific to the
given command.

fcntl recognizes the following commands:

F_DUPFD
Duplicate file descriptor jd onto the first available file descriptor greater than or
equal to arg. fcntl returns the new file descriptor.

F GETFL
- Get the file flags for the file specified by jd. With this option, fcntl returns the file

flags.

F_SETFL
Set file flags for file descriptor jd to the value specified by arg. Here. fcntl returns
the new file flags.

See Also
creat(), dup(), fcntl.h, file, file descriptor, open(), pipe(), system calls

fcntl.h - Header File
Manifest constants for file-handling functions
#include <sys/fcntl.h>

fcntl.h declares manifest constants that are used by the file-handling functions open and
fcntl.

See Also
header files

fd - Device Driver
Floppy disk driver

The files /dev/f.* are entries for the diskette drives of COHERENT on the IBM AT. Each
entry is assigned major device number 4. is accessed as a block-special device, and has a
corresponding character-special device entry.

The device entries are linked to a driver that handles up to four 5.25 inch disk drives, each
in one of several formats. The least-significant four bits of an entry's minor device number
identify the type of drive. The next least-significant two bits identify the drive. The
following table summarizes the name, minor device number, sectors per track, partition
sector size, characteristics, and addressing method for each device entry of floppy disk drive
0.

9 sectors I track
f9d0 4 9 720 DSDD surface (5.25 inch)
fqaO 13 9 1440 DSQD cylinder (3.25 inch)
f9a0 12 9 720 DSDD cylinder (5.25 inch)

15 sectors/track
fhaO 14 15 2400 DSHD cylinder (5.25 inch)

18 sectors/ track
fvaO 15 18 2880 DSHD cylinder

Prefixing an r to a name given above gives the name of the corresponding character-device
entry. Corresponding device entries for drives 1, 2, and 3 have minor numbers with offsets

LEXICON

596 fd.h - fdformat

of 16, 32, and 48 from the minor numbers given above and have 1. 2. or 3 in place of 0 in
the names given above.

For device entries whose minor number's fourth least-significant bit is zero (minor numbers
0 through 7 for drive 0), the driver uses surface addressing rather than cylinder addressing.
This means that it increments tracks before heads when computing sector addresses and
the first surface is used completely before the second surface is accessed. For devices
whose minor number's fourth least significant bit is 1 (minor numbers 8 through 15 for
drive 0), the driver uses cylinder addressing.

For a diskette to be accessible from the COHERENT system, a device file must be present in
directory /dev with the appropriate type, major and minor device numbers, and
permissions. The command mknod creates a special file for a device.

Files
<fdioctl.h> - Driver command header file
/dev/fd* - Block-special flies
/dev/rfd• - Character special files

See Also
device drivers, fdformat, mkfs, mknod,

Diagnostics
The driver reports any error status received from the controller and retries the operation
several times before it reports an error to the program that initiated an operation.

Notes
The driver assumes that the disk is formatted with eight, nine. 15. or 18 sectors of 512
bytes each per track, depending upon the /dev entry. Cylinder addressing is the norm for
COHERENT.

Programs that use the raw device interface must read whole sectors into buffers that do not
straddle DMA boundaries.

fd.h - Header File
Declare file-descriptor structure
#include <sys/fd.h>

fd.h declares the file-descriptor structure fd, plus associated constants and the function
fdget.

See Also
header mes

fdformat - Command
Format a floppy disk
I etc/fdfonnat [option ...] special

fdformat formats a floppy disk. The given special should be the name of the special file
that correspond to the floppy disk drive.

fdformat recognizes the following options:

-a Print information on the standard output device during format. As it formats a
cylinder, it will print a line of the form

hd=O cyl=25

on your screen.

LEXICON

fdioctl.h - fdisk 597

-1 number
Use number (0 through 7) as the interleave factor in formatting. Note that the
default interleave is six.

-o number
Use number (default, 0) as the skew factor for sector numbering.

-v Verify formatting and verify data written with the -w option.

-w .file Format the floppy disk and then copy .file to it track by track. The raw device
should be used.

The command mkfs builds a COHERENT file system on a formatted floppy disk. The
command dos builds a DOS file system on a formatted floppy disk and transfers files to or
from it. The command mount mounts a floppy disk containing a file system to allow access
to it through the COHERENT directory structure. The command umount unmounts a
floppy disk.

Examples
The following command formats a 2400-block. 5.25-inch floppy disk in drive 0 (otherwise
known known as drive A):

/etc/fdformat -v /dev/fhaO

The following command formats a 1440-block, 3.5-inch floppy disk in drive 1 (otherwise
known as drive B):

/etc/fdformat -v /dev/fqal

See Also
commands, dos, fd, mkfs, mount, umount

Diagnostics
When errors occur on floppy-disk devices, the driver prints on the system console an error
message that describes the error.

Notes
fdformat formats a track at a time. fdformat can be interrupted between tracks, which
may result in a partially formatted floppy disk.

fdioctl.h - Header File
Control floppy-disk 1/0
#include <sys/ fdioctl.h>

fdioctl.h declares constants and structures used to control floppy-disk 1 /0.

See Also
header mes

fdisk - Command
Hard-disk partitioning utility
/etc/fdisk (-r) (-c) (-b mboot) xdev ...

The COHERENT version of the command fdisk supports flexible hard-disk partitioning
among four operating systems, i.e. MS-DOS, CP /M, COHERENT. and XENIX. This
capability means that with the COHERENT fdisk, you can support COHERENT plus any
combination of MS-DOS, CP /M, or XENIX on one hard disk.

LEXICON

598 fdisk

fdisk recognizes the following flags:

-r Read-only access to partitioning information.

-b Use the first 446 bytes of mboot as master boot code to replace that in xdev.

-c Allow the specification of disk geometry (i.e., number of cylinders, heads, sectors) for
disk drives that are not supported by the system BIOS.

fdisk accesses the first block from the special device xdev (e.g .. /dev/atox) for the
partitioning information. fdisk then queries the user for changes. These changes are
written to xdev only if the user requests the changes to be saved. If omitted, xdev defaults
to /dev/atOx and /dev/atlx. SCSI disk device users will need to specify xdev as
/dev/sdnx where n is a digit corresponding to the SCSI ID for the disk device (e.g ..
/dev/sdOx).

Files
<fdisk.h>

See Also
commands

Notes
If the partition table is changed. the system should be rebooted; most device drivers will not
recognize the revised partition information until a reboot occurs.

As the -r and -b options are contradictocy, attempting to use them together generates an
error message.

Please note that some versions of fdisk for other operating systems can rearrange the order
of entries in the partition table. If this happens, you may lose the ability to run COHERENT
until the table is restored to its previous order. A sign of this problem is getting the prompt
AT boot? when trying to start COHERENT after running any fdisk program. and not being
able to get past it.

Computer systems that use older BIOS releases may report incorrect disk parameters.
Users of such systems should change the CMOS setup values if possible, but the BIOS on
some older systems will not allow you to specify arbitrary values for disk parameters. Users
with such systems can use the fdisk -c option instead.

If you plan to install and run COHERENT and MS-DOS on the same hard disk, note the
following:

If you wish to install COHERENT and MS-DOS on the same hard drive, you must run
the MS-DOS fdisk first!

If you plan on running both operating systems. you must install MS-DOS first and
leave some free cylinders on the disk for COHERENT as well as a free partition. You
can have both primacy as well as extended MS-DOS partitions on the same drive as
COHERENT. but COHERENT cannot use a sub-partition of the MS-DOS extended
partition. COHERENT must have one of the four real partitions.

Failure to observe these rules will result In loss of data

LEXICON

fdisk.h-'- Header File
Fixed-disk constants and structures
#include <sys/ fdisk.h>

fdisk.h - fdopenO 599

fdisk.h declares structures and constants used to manipulate the fixed disk.

See Also
header mes

fdopenO - STDIO Function (libc)
Open a stream for standard 1/0
#include <stdio.h>
FILE •fdopen(fd, type) intfd: char •type;

fdopen allocates and returns a FILE structure, or stream, for the file descriptor fd, as
obtained from open, creat, dup, or pipe. type is the manner in which you wantfd to be
opened, as follows:

r Read a file
w Write into a file
a Append onto a file

Example
The following example obtains a file descriptor with open, and then uses fdopen to build a
pointer to the FILE structure.

#include <ctype.h>
#include <stdio.h>

void adios(message)
char *message;
{

}

fprintf(stderr, "%s\n", message);
exit(1);

main(argc, argv)
int argc; char *argv[];
{

extern FILE *fdopen();
FILE *fp;
int fd;
int holder;

if (--argc != 1)
adios("Usage: example filename");

if ((fd = open(argv[l], 0)) == -1)
adios("open failed.");

if ((fp = fdopen(fd, "r")) ==NULL)
adios ("fdopen failed.");

LEXICON

600 feofO - ferrorO

while ((holder= fgetc(fp)) != EOF) {
if ((holder> '\177') && (holder< ' '))

switch(holder) {
case '\t':
case '\n':

break;
default:

}

fprintf(stderr, "Seeing char %d\n", holder);
exit(l);

fputc(holder, stdout);
}

}

See Also
creat(), dup(), fopen(), open(), STDIO

Diagnostics
fdopen returns NULL if it cannot allocate a FILE structure. Currently. only 20 FILE
structures can be allocated per program, including stdin, stdout, and stderr.

feofO - STDIO Macro (stdio.h)
Discover stream status
#include <stdio.h>
int feof(fp) FILE '1P;

feof is a macro that tests the status of the argument streamjp. It returns a number other
than zero if fp has reached the end of file, and zero if it has not. One use of feof is to
distinguish a value of -1 returned by getw from an EOF.

Example
For an example of how to use this function. see the entry for fopen.

See Also
EOF, STDIO

ferrorO - STDIO Macro (stdio.h)
Discover stream status
#include <stdio.h>
int ferror{fp) FILE '1P;

ferror is a macro that tests the status of the file streamjp. It returns a number other than
zero if an error has occurred onjp. Any error condition that is discovered will persist either
until the stream is closed or until clearerr is used to clear it. For write routines that
employ buffers, mush should be called before ferror. in case an error occurs on the last
block written.

Example
This example reads a word from one file and writes it into another.

#include <stdio.h>

LEXICON

main()
{

}

FILE *fpin, *fpout;
int inerr = O;
int outerr = O;
int word;
char infile[20], outfile[20];

printf("Name data file you wish to copy:\n");
gets(infile);
printf ("Name new file: \n");
gets (out file);

if ((fpin = fopen(infile, "r")) !=NULL) {
if ((fpout = fopen(outfile, "w")) != NULL)

for (;;) {

}

word= fgetw(fpin);
if (ferror(fpin)) {

clearerr(fpin);
inerr++;

}

if (feof(fpin))
break;

fputw(word, fpout);
if (ferror(fpout)) {

clearerr (fpout) ;
outerr++;

}

} else {
printf

}

("Cannot open output file %s\n",
outfile);

exit(l);

} else {

}

printf("Cannot open input file %s\n", infile);
exit(1);

printf("%d - read error(s) %d - write error(s)\n",
inerr, outerr);

exit(O);

ferrorO 601

LEXICON

602 fflushO

See Also
STDIO

fflushO - STDIO Function (libc)
Flush output stream's buffer
#Include <stdlo.h>
Int mush(fp) FILE ~p;

mush flushes any buffered output data associated with the file streamfp. The file stream
stays open after mush is called. fclose calls mush. so there is no need for you to call it
when normally closing a file or buffer.

Example
This example demonstrates mush. When run. you will see the following:

Line 1

Line 1

Line 1
Line 2

The call

fprintf (fp, "Line 2\n");

goes to a buffer and is not in the file when file foo is listed. However if you redirect the
output of this program to a file and list the file. you will see:

Line 1
Line 1
Line 1
Line 2

because the line

printf("-----\n");

goes into a buffer and is not printed until the program is over and all buffers are flushed by
exitQ.

Although the COHERENT screen drivers print all output immediately. not all operating
systems work this way, so when in doubt, mushQ.

#include <stdio.h>

main()
{

FILE *fp;

LEXICON

}

if (NULL == (fp = fopen("foo", "w")))
exit(1);

fprintf (fp, "Line 1\n");
fflush (fp};
system ("cat foo"); /*print Line 1 */

printf("-----\n");
fprintf(fp, "Line 2\n");
system("cat foo"); /*print Line 1 */
printf("-----\n");

fflush(fp);
system("cat foo"); /*print Line 1 Line 2 */
printf("-----\n");

See Also
fclose(), setbuf(), STDIO, write()

Diagnostics

fgetcO 603

mush returns EOF if it cannot flush the contents of the buffers; otherwise it returns a
meaningless value.

Note, also, that all STDIO routines are buffered. mush should be used to flush the output
buffer if you follow a STDIO routine with an unbuffered routine.

fgetcO - STDIO Function (libc)
Read character from stream
#include <stdio.h>
int fgetc(fp) FILE "j"p;

fgetc reads characters from the input streamjp. In general, it behaves the same as the
macro getc: it runs more slowly than getc, but yields a smaller object module when
compiled.

Example
This example counts the number of lines and "sentences" in a file.

#include <stdio.h>

main()
{

FILE *fp;
int filename[20];
int ch;
int nlines = O;
int nsents = O;

printf("Enter file to test: ");
gets(filename};

LEXICON

604 fgetsO

if ((fp = fopen (filename," r")) == NULL) {
printf("Cannot open file %s.\n", filename);
exit (1);

}

}

while ((ch= fgetc(fp)) != EOF) {
if (ch == '\n')

}

++nlines;

else if (ch == ' . ' I I ch == ' ! ' I I ch
if ((ch= fgetc(fp)) != '.')

++nsents;

else
while ((ch=fgetc (fp)) ' . ')

ungetc(ch, fp);
}

printf("%d line(s), %d sentence(s) .\n",
nlines, nsents);

See Also
getc(), STDIO

Diagnostics
fgetc returns EOF at end of file or on error.

fgetsO - STDIO Function (libc)
Read line from stream
#include <stdio.h>
char •rgets(s, n,fp) char •s; int n; FILE *Jp;

I? I) {

fgets reads characters from the streamfp into strings until either n-1 characters have been
read, or a newline or EOF is encountered. It retains the newline, if any, and appends a null
character at the end of of the string. fgets returns the argument s if any characters were
read. and NULL if none were read.

Example
This example looks for the pattern given by argv[I) in standard input or in file argv[2). It
demonstrates the functions pnmatch, fgets, and freopen.

#include <stdio.h>
#define MAXLINE 128
char buf[MAXLINE];

void fatal(s) char *s;
{

}

LEXICON

fprintf(stderr, "pnmatch: %s\n", s);
exit (1);

fgetwO - field 605

main(argc, argv)
int argc; char *argv[];
{

}

if (argc != 2 && argc != 3)
fatal("Usage: pnmatch pattern [file]");

if (argc==3 && freopen(argv[2], "r", stdin)==NULL)
fatal("cannot open input file");

while (fgets(buf, MAXLINE, stdin) !=NULL) {
if (pnmatch(buf, argv[l], 1))

printf("%s", buf);
}

if (lfeof(stdin))
fatal("read error");

exit(O);

See Also
fgetc(), gets(), STDIO

Diagnostics
fgets returns NULL if an error occurs, or if EOF is seen before any characters are read.

fgetwO - STDIO Function (libc)
Read integer from stream
#include <stdio.h>
int fgetw(fp) FILE <ljp;

fgetw reads an integer from the streamjp.

Example
For an example of this function, see the entry for ferror.

See Also
fputw(), STDIO

Notes
fgetw returns EOF on errors. A call to feof or ferror may be necessary to distinguish this
value from a genuine end-of-file signal.

field - Definition
A field is an area that is set apart from whatever surrounds it, and that is defined as
containing a particular type of data. In the context of C programming. a field is either an
element of a structure, or a set of adjacent bits within an int.

See Also
bit map, data formats, definitions, structure

LEXICON

606 file - FILE

file - Definition
A me is a mass of bits that has been given a name and is stored on a nonvolatile medium.
These bits may form ASCII characters or machine-executable data. Under the COHERENT
system and related operating systems, external devices can mimic files. in that they can be
opened, closed. read. and written to in a manner identical to that of files.

To manipulate the contents of a file. you must first open it. This can be done with the
COHERENT system call open, or with the function fopen. You can then read the file. write
material to it. or append material onto it with the COHERENT system calls read and write.
or with the functions tread and fwrite. See the entries on system calls and entry STDIO
for more information on manipulating material within a file.

See Also
close(), definitions, executable :file, fopen(), fclose(), FILE, open()

file - Command
Guess a file's type
mejlle ...

me examines each jlle and takes an educated guess as to its type. file recognizes the
following classes of text files: files of commands to the shell; files containing the source for a
C program; files containing yacc or lex source; files containing assembly language source;
files containing unformatted documents that can be passed to nrotl'; and plain text files
that fit into none of the above categories.

me recognizes the following classes of non-text or binary data files: the various forms of
archives, object files. and link modules for various machines, and miscellaneous binary data
files.

See Also
commands, ls, size

Notes
Because me only reads a set amount of data to determine the class of a text file. mistakes
can happen.

FILE - Definttion
Descriptor for a file stream
#include <stdio.h>

FILE describes ajlle stream which can be either a file on disk or a peripheral device through
which data flow. It is defined in the header file stdio.h.

A pointer to FILE is returned by fopen. freopen, fdopen, and related functions.

The FILE structure is as follows:

LEXICON

file descriptor - file formats 607

typedef struct FILE
{

}

unsigned char *_cp,
*_dp,
*_bp;

int _cc;
int (*_gt) ()I

(*_pt) ();
int _ff;
char _fd;
int _uc;

FILE;

_cp points to the current character in the file. _dp points to the start of the data within the
buffer. _bp points to the file buffer. _cc is the number of unprocessed characters in the
buffer. _gt and _pt point. respectively. to the functions getc and putc. _ff is a bit map that
holds the various file flags. as follows:

_FINUSE OxOl Unused
_FSTBUF Ox02 Used by macro setbuf
_FUNGOT Ox04 Used by ungetc
_FEOF Ox08 Tested by macro feof
_FERR OxlO Tested by macro ferror

_fd is the file descriptor, which is used by low-level routines like open; it is also used by
reopen. Finally, _uc is the character that has been "ungotten" by ungetc, should it be used.

See Also
definitions, fopen(), freopen(), stdio.h, stream

file descriptor - Definition
A me descriptor is an integer between 1 and 20 that indexes an area in the operating
system's list of internal file descriptors. It is used by routines like open, close. and lseek to
work with files. A file descriptor is not the same as a FILE stream, which is used by
routines like fopen. fclose. or fread.

See Also
definitions, file, FILE, system calls

file formats - Overview
The COHERENT system uses a number of different file formats. Each format is designed to
order most efficiently the information that that file holds. This manual describes the
following special file formats:

core
group
L-dev
L.sys
passwd
Permissions
ttys

Core dump file format
Group file format
Describe devices used by UUCP
Describe remote sites to UUCP
Password file format
Format of UUCP permissions file
Active terminal ports

LEXICON

608 filenoO

The following header files also hold information on file formats:

acct.h Format for process-accounting file
ar.h Format for archive files
canon.h Portable layout of binary data
dir.h Directory format
l.out.h Object file format
mtab.h Currently mounted file systems
utmp.h Login accounting information

See their respective entries in this Lexicon for a fuller description of their contents.

See Also
header mes, Lexicon

filenoO - STDIO Function (libc)
Get file descriptor
#include <stdio.h>
int fllenoifp) FILE "'fp;

flleno returns the file descriptor associated with the file streamfp. The file descriptor is the
integer returned by open or creat. It is used by routines such as fopen to create a FILE
stream.

Example
This example reads a file descriptor and prints it on the screen.

#include <stdio.h>

main(argc,argv)
int argc; char *argv[];
{

}

FILE *fp;
int fd;

if (argc ! =2) {

}

printf("Usage: fd_from_fp filename\n");
exit(O);

if ((fp = fopen(argv[l], "r")) ==NULL) {
printf("Cannot open input file\n");
exit(O);

}

fd fileno(fp);
printf("The file descriptor for %sis %d\n",

argv[l], fd);

See Also
FILE, file descriptor, STDIO

LEXICON

filsys.h - Header File
Structures and constants for super block
#include <sys/filsys.h>

filsys.h - find 609

filsys.h declares structures and constants used to by functions that manipulate the super
block.

See Also
header files

filter - Definition
A filter is a program that reads a stream of input, transforms it in a precisely defined
manner, and writes it to another stream. Two or more filters can be coupled with pipes to
perform a complex transformation on a stream of input.

See Also
definitions, pipe

find - Command
Search for files satisfying a pattern
find directory ... [expression ...]

find traverses each given directory, testing each file or subdirectory found with the
expression part of the command line. The test can be the basis for deciding whether to
process the file with a given command.

If the command line specifies no expression or specifies no execution or printing (-print. -
exec, or -ok). by default find prints the pathnames of the files found.

In the following.file means any file: directory, special file, ordinary file, and so on. Numbers
represented by n may be optionally prefixed by a'+' or·-· sign to signify values greater than
nor less than n. respectively.

find recognizes the following expression primitives:

-atimen

-ctimen

Match if the file was accessed in the last n days.

Match if the i-node associated with the file was changed in the last n days, as
bychmod.

-exec command
Match if command executes successfully (has a zero exit status). The command
consists of the following arguments to find, terminated by a semicolon ';'
(escaped to get past the shell). find substitutes the current pathname being
tested for any argument of the form '{}'.

-group name
Match if the file is owned by group name. If name is a number, the owner must
have that group number.

-inum n Match if the file is associated with i-number n.

-links n Match if the number of links to the file is n.

-mtime n Match if the most recent modification to the file was n days ago.

-name pattern
Match if the file name corresponds to pattern, which may include the special
characters'*','?', and'[...]' recognized by the shell sh. The pattern matches only

LEXICON

610 find

the part of the file name after any slash('/') characters.

-newer.file Match if the file is newer than.file.

-nop Always match; does nothing.

-okcommand
Same as -exec above. except prompt interactively and only executes command if
the user types response •y•.

-perm octal Match if owner, group. and other permissions of the file are the octal bit
pattern. as described in chmod. When octal begins with a•-• character. more of
the permission bits (setuid, setgid. and sticky bit) become significant.

-print

-size n

-typec

Always match; print the file name.

Match if the file is n blocks in length; a block is 512 bytes long.

Match if the type of the file is c, chosen from the set bcdfmp (for block special,
character special, directory, ordinary file, multiplexed file. or pipe, respectively).

-user name Match if the file is owned by user name. If name is a number, the owner must
have that user number.

expl exp2 Match if both expressions match. find evaluates exp2 only if expl matches.

expl -aexp2
Match if both expressions match, as above.

expl -oexp2
Match if either expression matches. find evaluates exp2 only if expl does not
match.

! exp Match if the expression does not match.

(exp) Parentheses are available for expression grouping.

Examples
A find command to print the names of all files and directories in user fred's directory is:

find /usr/fred

The following, more complicated find command prints out information on all core and
object (.o) files that have not been changed for a day. Because some characters are special
both to find and sh, they must be escaped with '\' to avoid interpretation by the shell.

find I \(-name core -o -name *,o \) -mtime +1 \
-exec ls -1 {} \;

Finally. the following example a simple tool for keeping files on two COHERENT systems in
synch with each other. find reads directory src and passes to uucp the names of all files
that are newer than file last_upload. It then uses the command touch to update the date
on last_ upload, to use it as a marker of when the last upload was performed.

find $HOME/src -type f -newer last_upload I while read filename
do

uucp -r -nyou $filename yoursysteml-/
echo Queued file $filename to yoursystem

done I mail somebodyorother
touch last_upload

LEXICON

See Also
chmod, commands, ls, sh, srcpath, test

fixstack - Command
Change stack allocation
fixstack +-value [filename J

fixstack - float 611

fixstack alters the stack size of an executable file. It enlarges or shrinks the stack by value
bytes. value is assumed to be a hexadecimal number. and must be preceded by + or -.

If.filename is not given. fixstack by default alters the stack size of file I.out.

See Also
cc, commands, size

float - C Keyword
Data type

Floating point numbers are a subset of the real numbers. Each has a built-in radix point
(or "decimal point") that shifts, or "floats•', as the value of the number changes. It consists
of the following: one sign bit, which indicates whether the number is positive or negative;
bits that encode the number's exponent; and bits that encode the number'sfraction, or the
number upon which the exponent works. In general, the magnitude of the number encoded
depends upon the number of bits in the exponent, whereas its precision depends upon the
number of bits in the fraction.

The exponent often uses a bias. This is a value that is subtracted from the exponent to yield
the power of two by which the fraction will be increased.

Floating point numbers come in two levels of precision: single precision, called floats; and
double precision. called doubles. With most microprocessors, sizeof(fioat) returns four.
which indicates that it is four chars (bytes) Jong. and sizeof(double) returns eight.

Several formats are used to encode fioats, including IEEE, DECVAX. and BCD (binary
coded decimal). COHERENT uses DECVAX format throughout.

The following describes DECVAX, IEEE, and BCD formats, for your information.

DECVAX Format
The 32 bits in a fioat consist of one sign bit, an eight-bit exponent, and a 24-bit fraction, as
follows. Note that in this diagram, 's' indicates "sign", 'e' indicates "exponent", and 'f
indicates "fraction":

I seee eeee I Byte 4
!===========!
I efff ffff I Byte 3
1===========1
I ff ff ff ff I Byte 2
!===========!
I ffff ffff I Byte 1

The exponent has a bias of 129.

If the sign bit is set to one, the number is negative; if it is set to zero, then the number is
positive. If the number is all zeroes. then it equals zero; an exponent and fraction of zero

LEXICON

612 float

plus a sign of one ("negative zero") is by definition not a number. All other forms are
numeric values.

The most significant bit in the fraction is always set to one and is not stored. It is usually
called the "hidden bit".

The format for doubles simply adds another 32 fraction bits to the end of the fioat
representation, as follows:

I seee eeee Byte 8
!===========
I efff ffff Byte 7
!===========
I ff ff ff ff Byte 6
!===========
I ff ff ffff Byte 5
!===========
I ffff ff ff Byte 4
!===========
I ff ff ff ff Byte 3
1===========1
I ff ff ff ff I Byte 2
i===========I
I ffff ffff I Byte 1

IEEE Format
The IEEE encoding of a fioat is the same as that in the DECVAX format. Note, however,
that the exponent has a bias of 127, rather than 129.

Unlike the DECVAX format. IEEE format assigns special values to several floating point
numbers. Note that in the following description, a tiny exponent is one that is all zeroes,
and a huge exponent is one that is all ones:

A tiny exponent with a fraction of zero equals zero, regardless of the setting of the sign
bit.

A huge exponent with a fraction of zero equals infinity, regardless of the setting of the
sign bit.

A tiny exponent with a fraction greater than zero is a denormalized number, i.e., a
number that is less than the least normalized number.

A huge exponent with a fraction greater than zero is, by definition, not a number.
These values can be used to handle special conditions.

An IEEE double, unlike DECVAX format. increases the number of exponent bits. It
consists of a sign bit, an 11-bit exponent, and a 53-bit fraction, as follows:

LEXICON

float 613

seee eeee I Bytes
===========I
eeee fff f I Byte 7

===========!
ffff ffff I Byte6

===========!
ff ff fff f I Byte5

===========I
ffff fff f I Byte 4

===========!
ffff ffff I Byte 3

===========!
ffff f ff f I Byte2

===========I
ffff ffff I Byte 1

The exponent has a bias of 1,023. The rules of encoding are the same as for floats.

BCD Format
The BCD format ("binary coded decimal'', also called "packed decimal") is used to eliminate
rounding errors that alter the worth of an account by a fraction of a cent. It consists of a
sign, an exponent, and a chain of four-bit numbers. each of which is defined to hold the
values zero through nine.

A BCD float has a sign bit, seven bits of exponent, and six four-bit digits. In the following
diagrams. 'd' indicates "digit":

I seee eeee I Byte4
1===========1
I dddd dddd I Byte 3
!===========!
I dddd dddd I Byte2
!===========!
I dddd dddd I Byte 1

A BCD double has a sign bit, 11 bits of exponent, and 13 four-bit digits, as follows:

LEXICON

614 floorO - floppy disks

seee eeee j Byte8
===========!
eeee dddd I Byte 7

===========!
dddd dddd I Byte 6

===========!
dddd dddd I Byte 5

===========!
dddd dddd I Byte4

===========!
dddd dddd I Byte 3

===========!
dddd dddd I Byte 2

===========!
dddd dddd I Byte 1

Passing the hexadecimal numbers A through Fin a digit yields unpredictable results.

The following rules apply when handling BCD numbers:

A tiny exponent with a fraction of zero equals zero.

A tiny exponent with a fraction of non-zero indicates a denormalized number.

A huge exponent with a fraction of zero indicates infinity.

A huge exponent with a fraction of non-zero is, by definition, not a number; these non­
numbers are used to indicate errors.

See Also
C keywords, data formats, double
The Art of Computer Programming. vol. 2. page 180Jf

floorO - Mathematics Function (libm)
Set a numeric floor
#include <math.h>
double floor(z) double z:

floor sets a numeric floor. It returns a double-precision floating point number whose value
is the largest integer less than or equal to z.

Example
For an example of this function, see the entry for ceil.

See Also
abs(), ceil(), tabs(), frexp(), mathematics library

floppy disks - Technical Information
The COHERENT system lets you read or write to floppy disks. using a variety of different
formats. You can choose the format that best suits the task at hand.

LEXICON

floppy disks 615

Disks Supported
COHERENT lets you use either 3.5-inch or 5.25-inch disks, in either high or low density;
what you use depends upon the type of hardware that you have. The following table gives
some commonly used diskette device names and formats:

Device name Sectors I Track Heads Sectors Bytes Format
/dev/f9a0 9 2 720 360 KB 5 .25"
/dev/f9al 9 2 720 360 KB 5 .25"
/dev/fqaO 9 2 1440 720 KB 3. 5"
/dev/fqal 9 2 1440 720 KB 3. 5"
/dev/fhaO 15 2 2400 1.2 MB 5 .25"
/dev/fhal 15 2 2400 1.2 MB 5. 25"
/dev/fvaO 18 2 2880 1. 44 MB 3. 5"
/dev/fval 18 2 2880 1.44 MB 3. 5"

Device names ending in 'O' indicate drive A:, names ending in 'l' indicate drive B:. For a
fuller description of COHERENT's floppy-disk devices, see the Lexicon entry for fd.

MS-DOS Format
COHERENT lets you read or write to floppy disks that contain MS-DOS file systems. Both
tasks use the command dos. This command is discussed in full in its Lexicon entry.

To read files from a MS-DOS disk, use the dos command's -x option, with the appropriate
device name for the floppy-disk device that you will be using (as given in the above table).
For example, to read file fred.exe from a low-density, 5.25-inch MS-DOS floppy disk in drive
A, use the following command:

dos -x /dev/f9a0 fred.exe

The following command reads all files from a high-density. 5.25-inch MS-DOS floppy disk in
drive B:

dos -x /dev/fhal

To write a file to a preformatted MS-DOS floppy disk, use the -r option to the MS-DOS
command. For example, to write file fred.ms, which contains text, to a low-density, 5.25-
inch MS-DOS floppy disk in drive A, use the following command:

dos -ra /dev/f9a0 fred.ms

Note that the 'a' flag in the command line tells COHERENT to convert linefeeds to the
linefeed/carriage return combination, as used by MS-DOS. You will want to use this flag
only when transferring text files to or from an MS-DOS floppy disk.

The following command copies all files in the current directory to a high-density, 3.5-inch
MS-DOS floppy disk in drive B:

dos -r /dev/fval

Note that when you copy a file to an MS-DOS floppy disk, COHERENT observes the MS­
DOS file-name conventions: it permits only eight characters to the left of the period, and
only three characters to the right of it.

(It should be noted in passing that you can use the dos command to read files from or write
files to an MS-DOS partition on your hard disk. All that is necessary is to replace the name
of floppy-disk device with that of the hard-disk device for the partition in question. See the
Lexicon entry for at for a list of hard-disk devices; see the entry for fdisk for information on
how to read the layout of your hard disk; and see the entry for dos for details of how to use

LEXICON

616 floppy disks

the command.)

Finally, COHERENT lets you format a floppy disk and create an MS-DOS file system on it.
To do so, you must use the command fdformat as well as dos. fdformat is described in
detail in its Lexicon article.

To format a high-density, 5.25-inch floppy disk in drive B and write an MS-DOS file system
onto it, use the following commands:

/etc/fdformat -av /dev/fhal
dos -F /dev/fhal

To write files to your newly created file system, use the -r option to the dos command, as
described above.

COHERENT Format
If you wish, you can create a COHERENT file system on a floppy disk, mount it, and
manipulate the files on it with standard COHERENT commands. This is a good illustration
of the fact that to COHERENT a file system is a file system. whether it resides on a hard. a
floppy disk, or any other mass-storage device. You can use such mountable floppy disks as
an easy method of backing up files, or as a flexible extension to any other file system that
you have currently mounted.

To create a COHERENT file system on a floppy disk, you must use the commands fdformat.
badscan, and mkfs. Each is described in detail in its own Lexicon article. The following
example creates a COHERENT file system on a high-density, 3.5-inch floppy disk placed in
drive B:

/etc/fdformat -a /dev/fval
/etc/badscan -v -o proto /dev/fval 2880
/etc/mkfs /dev/fval proto
rm proto

In this example, command fdformat formatted the disk. badscan then scanned the disk for
any bad blocks, and wrote its results into file proto. Finally, command mkfs reads proto
and used its contents to create a COHERENT file system on the disk.

Now that the file system is created on the disk, you must mount it. While it is customary to
mount file systems under directory'/', you are not required to do it. For example, if your
login identifier is fred and your home directory is /usr/fred, you can mount the floppy
disk's file system onto a subdirectory of /usr/fred and so make the floppy disk, in effect, an
extension of your home directory. The following command does this for the 3.5-inch disk
we formatted in the above example:

/etc/mount /dev/fval /usr/fred/temp

Now, all files you copy into directory /usr/fred/temp using the cp command will be written
directly onto the floppy disk. Note that you may need to log in as the superuser root and
use the command chown to ensure that fred owns the file system on that floppy disk. For
details on chown, see its entry in the Lexicon. For details on shorthand notations for
mount, see its entry in the Lexicon.

One important point about mounting file systems: before you remove a COHERENT­
formatted floppy disk from its drive, you must first use the command /etc/umount to
unmount its file system. If you do not. all data that COHERENT has stored in its buffers
will not be written to the disk, and may be lost. Worse, if you remove one COHERENT disk
and insert another without unmounting the old disk and mounting the new one,
COHERENT will write all data in its buffers onto the new disk without regard for what that

LEXICON

fnkey 617

disk contains; in all likelihood, this will trash the file system on the new disk and render its
data unreadable. So, the lesson is: always unmount a.floppy disk before you remove it!. To
unmount the floppy disk we used in our previous example, use the command:

/etc/umount /dev/fval

By the way. that's not a misprint: the command is umount, not "unmount".

Finally, please note that you can mount only a COHERENT file system. You cannot mount
a file system created with MS-DOS. XENIX. or any other operating system.

You can, however Import a set of files - including their directory structure - from UNIX,
XENIX. or any other UNIX-like operating system by using the cpio utility. cpio uses a
standard backup algorithm that is implemented on many operating systems. To import files
from another operating system, go to the machine that holds the files you want and use its
version of cpio to back up the files or directories to a set of floppy disks. Then bring the
floppy disks back to your COHERENT system and use COHERENT's implementation of cpio
to read the back-up disks. The following section gives directions on how to do this; or see
the Lexicon entry for cpio for more information.

Raw Format
Finally, COHERENT lets you use floppy disks in their raw form as a backup medium, much
as you would use magnetic tape on a larger computer. You must first use the command
fdformat with the -v option to format the floppy disks you will be using; it is also wise to
label and number the disks so you can keep them in some reasonable order. Then you can
use any of COHERENT's archiving utilities, such as ustar, cpio, or dump to archive
directories or entire file systems onto the disks. It is recommended that you format a
generous supply of floppy disks before you begin; if you run short of disks while archiving
your files, you will have to abort, format more disks, and begin again. For details on how to
use the archiving programs, see their respective entries in the Lexicon.

See Also
badscan, cpio, dos, dump, fd, fdfonnat, mkfs, mount, technical information, umount,
us tar

fnkey - Command
Set/print function keys for the console
fnkey I n I string I I

The console keyboard of an AT COHERENT system includes ten programmable function
keys, labeled Fl through FlO. Initially, these are programmed to send the escape sequences
set by the nkb keyboard driver.

fnkey with a numeric argument programs function key Fn to send the given string, where n
is a number from one through ten. If no string is given, fnkey resets Fn to send nothing.

With no argument, fnkey prints the current string for each programmed function key.

fnkey also lets you change the default bindings for other special or function keys. See
Lexicon articles keyboard tables and nkb for details.

Example
To set function key F2 to execute the COHERENT command date, use the following
command:

fnkey 2 'date

LEXICON

618 fopenO

Note that this command sets F2 to the string date\n. If you type fnkey without any
arguments, it displays the binding of all function keys including the following:

F2: date\n

Files
I dev I console

See Also
commands, keyboard tables, nkb

Diagnostics
fnkey prints "cannot open /dev/console" if you lack permission to open /dev/console.

fopenO - STDIO Function (libc)
Open a stream for standard 1/0
#include <stdio.h>
FILE •fopen (name, type) char •name, •type;

fopen allocates and initializes a FILE structure, or stream; opens or creates the file name;
and returns a pointer to the structure for use by other STDIO routines. name refers to the
file to be opened. type is a string that consists of one or more of the characters "rwa", to
indicate the mode of the string. as follows:

r Read; error if file not found
w Write; truncate if found, create if not found

a Append to end of file; no truncation. create if not found
r+ Read and write; no truncation, error if not found

w+ Write and read; truncate if found, create if not found
a+ Append and read; no truncation, create if not found

The modes that contain 'a' set the seek pointer to point at the end of the file; all other
modes set it to point at the beginning of the file. Modes that contain'+' both read and write;
however, a program must call fseek or rewind before it switches from reading to writing or
vice versa.

Example
This example copies argv[l) to argv[2) using STDIO routines. It demonstrates the functions
fopen, fread, fwrite, fclose, and feof.

#include <stdio.h>
/* BUFSIZ is defined in stdio.h */
char buf[BUFSIZ];

void fatal(message)
char *message;
{

}

LEXICON

fprintf (stderr, "copy: %s \n" , message) ;
exit(l);

main(argc, argv)
int argci char *argv[]I
{

}

register FILE *ifp, *ofpi
register unsigned int ni

if (argc I= 3)
fatal("Usage: copy source destination")i

if ((ifp = fopen (argv [1 J , "r")) == NULL)
fatal("cannot open input file")i

if ((ofp = fopen(argv[2], "w")) ==NULL)
fatal("cannot open output file") I

while ((n = fread(buf, 1, BUFSIZ, ifp)) != 0) {
if (fwrite(buf, 1, n, ofp) != n)

fatal("write error")i
}

if (lfeof(ifp))
fatal("read error")i

if (fclose(ifp) == EOF I.I fclose(ofp) EOF)
fatal("cannot close") I

exit(O)i

See Also
fclose(), fdopen(), !reopen(), STDIO

Diagnostics

for 619

fopen returns NULL if it cannot allocate a FILE structure, if the type string is nonsense, or
if the call to open or creat fails. Currently, only 20 FILE structures can be allocated per
program, including stdin, stdout, and stderr.

Notes
Many operating systems recognize a 'b' modifier to the type argument; this indicates that
the file contains binary information, and lets the operating system handle "funny
characters" correctly. COHERENT has no need of such a modifier, so .ff you append 'b' to
type, it will be ignored. This modifier, however, is recognized by numerous other operating
systems, including MS-DOS, OS/2, and GEMDOS. If you expect to port developed code to
any of these operating systems, files should append the 'b' to type.

for - Command
Execute commands for tokens in list
for name (in token ...] do sequence done

The shell command for controls a loop. It assigns to the variable name each successive
token in the list, and then executes the commands in the given sequence. If the in clause is
omitted, for successively assigns name the value of each positional parameter to the current
script ('$@'). Because the shell recognizes a reserved word only as the unquoted first word
of a command, both do and done must either occur unquoted at the start of a command or
be preceded by '".

The shell commands break and continue may be used to alter control flow within a for
loop.

LEXICON

620 for - forkO

The shell executes for directly.

See Also
break,collllllands,continue,ksh,sh

for - C Keyword
Control a loop
for(lnltlalizatlon; endcondltion; modification)

for is a C keyword that introduces a loop. It takes three arguments, which are separated by
semicolons ';'. Initialization is executed before the loop begins. endcondltlon describes the
condition that ends the loop. modification is a statement that modifies variable to control
the number of iterations of the loop. For example.

for (i=O; i<lO; i++)

first sets the variable i to zero; then it declares that the loop will continue as long as i
remains less than ten; and finally. increments i by one after every iteration of the loop. This
ensures that the loop will iterate exactly ten times (from i==O through i==9). The statement

for(;;)

will loop until its execution is interrupted by a break. goto, or return statement. Also.
either or both of Initialization and modification may consist of multiple statements that are
separated by commas. For example.

for (i=O, j=O; i<lO; i++, j++)

initializes both I andj, and increments both with each iteration of the loop.

See Also
break, C keywords, continue, while

forkO - System Call
Create a new process
fork()

In the COHERENT system. many processes may be active simultaneously. fork creates a
new process; the new process is a duplicate of the requesting process. In practice, the new
process often issues a call to execute yet another new program.

The process that issues the fork call is termed the parent process, and the newly forked
process is termed the child process. fork returns the process id of the newly created child
to the parent process, and returns zero to the child process. The parent may call wait to
suspend itself until the child terminates.

The following parts of the environment of a process are exactly duplicated by a fork call:

Open files and their seek positions

Current working and root directories

The file creation mask

The values of all signals

The alarm clock setting

LEXICON

fortune - fprintfO 621

Code, data, and stack segments

The system normally makes a fresh copy of the code, data, and stack segments for the child
process. One advantage of shared text processes is that they do not need to copy the code
segment. It is write protected, and therefore may be shared.

Example
For an example of how to use this call. see pipe.

See Also
alarm(), execl(), exit(), sh, system calls, umask(), wait()

Diagnostics
fork returns -1 on failure, which usually involves insufficient system resources. On
successful calls, fork returns zero to the child and the process id of the child to the parent.

fortune - Command
Print randomly selected, hopefully humorous, text
I usr I games I fortune [file)

fortune prints a message that is randomly selected from the contents of a text file. fortune
reads file if it is named on the command line: otherwise, it reads the default file
I usr I games/lib/fortunes.

Files
I usr I games/lib/fortunes- Default fortunes

See Also
commands

fperr.h - Header File
Constants used with floating-point exception codes
#include <fperr.h>

fperr.h declares constants used by routines that handle floating-point exceptions. It also
defines the error messages they use.

See Also
header mes

fprintf0 - STDIO (libc)
Print formatted output into file stream
int fprintf[fp,format, [arg l, argN])
FILE 4:.fp; char c:format;
[data type] argl, ... argN;

fprintf formats and prints a string. It resembles the function printf, except that it writes
its output into the stream pointed to by fp. instead of to the standard output.

fprintfuses the format to specify an output format for argl through argN.

See printf for a description of fprintfs formatting codes.

Example
For an example of this routine. see the entry for fscanf.

LEXICON

622 fputcO

See Also
print!(). sprintf(), STDIO

Notes
Because C does not perform type checking, it is essential that an argument match its
specification. For example, if the argument is a long and the specification is for an int,
fprintf will peel off the first word of that long and present it as an int.

At present, fprintf does not return a meaningful value.

fputcO - STDIO (libc)
Write character into file stream
#include <stdio.h>
int fputc(c,jp) charc; FILE "j'p;

fputc writes the character c into the file stream pointed to by jp. It returns c if c was written
successfully.

Example
The following example uses fputc to write the contents of one file into another.

#include <stdio.h>

void fatal(message)
char *message;
{

}

fprintf(stderr, "%s\n", message);
exit(l);

main ()
{

}

FILE *fp, *fout;
int ch;
int infile[20];
int outfile[20);

printf("Enter name to copy: ");
gets (infile);
printf("Enter name of new file: ");
gets(outfile);

if ((fp = fopen(infile, "r")) == NULL)
fatal("Cannot write input file");

if ((fout = fopen(outfile, "w")) !=NULL)
fatal("Cannot write output file");

while ((ch= fgetc(fp)) != EOF)
fputc(ch, fout);

See Also
STDIO

LEXICON

fputsO - freadO 623

Diagnostics
fputc returns EOF when a write error occurs, e.g .. when a disk runs out of space.

fputsO - STDIO (libc)
Write string into file stream
#include <stdio.h>
int fputs(strlng,fp) char •string; FILE t<jp;

fputs writes string into the file stream pointed to by fp. Unlike its cousin puts, it does not
append a newline character to the end of string.

fputs returns a nonnegative value on success and EOF if a write error occurs.

Example
For an example of this function, see the entry for freopen.

See Also
puts(), STDIO

fputwo - STDIO (libc)
Write an integer into a stream
#include <stdio.h>
int fputw(word,fp) int word; FILE t<jp;

fputw writes word into the file stream pointed to by fp, and returns the value written.

Example
For an example of this function, see the entry for fgetw.

See Also
fgetw(), STDIO

Diagnostics
fputw returns EOF when an error occurs. A call to ferror or feof may be needed to
distinguish this value from a valid end-of-file signal.

freadO - STDIO Function (libc)
Read data from file stream
#include <stdio.h>
int fread(buffer, size, n,fp)
char •buffer; unsigned size, n; FILE t<jp;

fread reads n items, each being size bytes long, from file streamfp into buffer.

Example
For an example of how to use this function, see the entry for fopen.

See Also
fwrite(), STDIO

Diagnostics
fread returns zero upon reading EOF or on error; otherwise, it returns the number of items
read.

LEXICON

624 freeO - freopenO

freeO - General Function (libc)
Return dynamic memory to free memory pool
void free(ptr) char •ptr;

free helps you manage the arena. It returns to the free memory pool memory that had
previously been allocated by malloc. calloc, or realloc. free marks the block indicated by
ptr as unused, so the malloc search can coalesce it with contiguous free blocks. ptr must
have been obtained from malloc, calloc, or realloc.

Example
For an example of how to use this routine, see the entry for malloc.

See Also
arena, calloc(), general functions, malloc(), realloc(), setbuf()

Diagnostics
free prints a message and calls abort if it discovers that the arena has been corrupted.
This most often occurs by storing data beyond the bounds of an allocated block.

freopenO - STDIO Function (libc)
Open file stream for standard 1/0
#include <stdio.h>
FILE •freopen (name, type,fp)
char •name, •type; FILE '"jp;

!reopen reinitializes the file streamfp. It closes the file currently associated with it, opens or
creates the file name, and returns a pointer to the structure for use by other STDIO
routines. name names a file.

type is a string that consists of one or more of the characters "rwa" (for, respectively, read,
write, and append) to indicate the mode of the stream. For further discussion of the type
variable, see the entry for fopen. freopen differs from fopen only in thatfp specifies the
stream to be used. Any stream previously associated withfp is closed by fclose. freopen is
usually used to change the meaning of stdin, stdout, or stderr.

Example
This example, called match.c, looks in argv[2] for the pattern given by argv[I]. If the
pattern is found, the line that contains the pattern is written into the file argv[3] or to
stdout.

#include <stdio.h>
#define MAXLINE 128
char buffer[MAXLINE];

void fatal(message)
char *message;
{

}

LEXICON

fprintf(stderr, "match: %s\n", message);
exit(l);

main(argc,argv)
int argc; char *argv[];
{

}

FILt *fpin, *fpout;

if (argc != 3 && argc != 4)
fatal("Usage: match pattern infile [outfile]");

if ((fpin = fopen(argv[2], "r")) ==NULL)
fatal("Cannot open input file");

fpout = stdout;
if (argc == 4)

if ((fpout = freopen(argv[3), "w", stdout))
fatal("Cannot open output file");

while (fgets(buffer, MAXLINE, fpin) !=NULL) {
if (pnmatch(buffer, argv[l], 1))

fputs(buffer, stdout);
}

exit(O);

See Also
fopen(), STDIO

Diagnostics

frexpO 625

NULL)

freopen returns NULL if the type string is nonsense or if the file cannot be opened.
Currently. only 20 FILE structures can be allocated per program, including stdin, stdout,
and stderr.

frexpO - General Function (libc)
Separate fraction and exponent
double frexp(rea!, ep) double real; int •ep;

frexp breaks double-precision floating point numbers into fraction and exponent. It returns
the fraction m of its real argument. such that 0.5 <= m < l or m=O. and stores the binary
exponent e in the location pointed to by ep. These numbers satisfy the equation real = m *
2e.

Example
This example prompts for a number. then uses frexp to break it into its fraction and
exponent.

#include <stdio.h>

main ()
{

extern char *gets();
extern double frexp(), atof();
double real, fraction;
int ep;

char string[64];

LEXICON

626 from - fscanfO

for (;;) {

}

printf ("Enter number: ") ;
if (gets(string) == NULL)

break;

fraction= frexp(real, &ep);
printf ("%lf is the fraction of %lf\n",

fraction, real);
printf("%d is the binary exponent of %lf\n",

ep, real);

putchar('\n');
}

See Also
atof(), ceilQ, fa.bsQ, floor(), general functions, ldexp(), modf()

from - Command
Generate list of numbers, for use in loop
from start to stop [by Iner]

from prints a list of integers on the standard output, one per line. It prints beginning with
start, and then prints successive numbers incrementing by Iner (default, one) the previous
number. It continues until the generated value matches or exceeds stop. Each of start, stop,
and optional Iner is a decimal integer with an optional leading'-' sign.

Typical uses of from include generating a file of numbers and generating a loop index for
the shell. The following example creates special files for eight terminal ports:

for i in 'from O to 7'
do

/etc/mknod /dev/hs0$i c 7 $i
done

See Also
commands,ksh,sh

Diagnostics
from prints an error message if the generated list is empty.

fscanfO - STDIO (libc)
Format input from a flle stream
#Include <stdfo.h>
Int fscanf(fp,format, argl, ... argN)
FILE ![p; char !format;
[data type] •argl, ... •argN;

fscanf reads the ftle stream pointed to by fp, and uses the string format to format the
arguments argl through argN, each of which must point to a variable of the appropriate
data type.

fscanf returns either the number of arguments matched, or EOF if no arguments matched.

LEXICON

fsck 627

For more information on fscanfs conversion codes, see scanf.

Example
The following example uses fprintf to write some data into a file, and then reads it back
using fscanf.

#include <stdio.h>

main ()
{

}

FILE *fp;
char let[4];

/* open file into write/read mode */
if ((fp = fopen("tmpfile", "wr")) ==NULL) {

printf("Cannot open 'tmpfile'\n");
exit(l);

}

/* write a string of chars into file */
fprintf(fp, "1234");

/* move file pointer back to beginning of file */
rewind (fp) ;

/* read and print data from file */
fscanf(fp, "%c %c %c %c",

&let[O], &let[l), &let[2], &let[3]);
printf("%c %c %c %c\n",

let [3] , let [2 J , let [1 J , let [0]) ;

See Also
scanf(), sscanf(), STDIO

Notes
Because C does not perform type checking. it is essential that an argument match its
specification. For that reason. fscanfis best used only to process data that you are certain
are in the correct data format, such as data previously written out with fprintf.

fsck - Command
Check and repair file systems interactively
/etc/fsck [-fnqsSy I [-t tempjlle I [jllesystem ... J

fsck checks and interactively repairs file systems. If all is well. fsck merely prints the
number of files used, the number of blocks used, and the number of blocks that are free. If
the file system is found to be inconsistent in one of the aspects outlined below, fsck asks
whether it should fix the inconsistency and waits for you to reply yes or no.

The following file system aspects are checked for consistency by fsck:

If a block is claimed by more than one i-node, by an i-node and the free list, or more
than once in the free list.

LEXICON

628 fsck

Whether an i-node or the free list claims blocks beyond the file system's range.

Link counts that are incorrect.

Whether the directory size is not aligned for 16 bytes.

Whether the i-node format is correct.

Whether any blocks are not accounted for.

Whether a file points to an unallocated i-node.

Whether a file's i-node number is out of range.

Whether the super block refers to more than 65,536 i-nodes.

Whether the super block assigned more blocks to the i-nodes than the system
contains.

Whether the format of the free block list is correct.

Whether the counts of the total free blocks and the free i-nodes are correct.

fsck prints a warning message when a file name is null, has an embedded slash • /', is not
null-padded, or if'.' or·.: files do not have the correct i-node numbers.

When fsck repairs a file system, any file that is orphaned (that is, allocated but not
referenced) is deleted if it is empty. or copied to a directory called lost+found, with its i­
node number as its name. The directory lost+ found must exist in the root of the file system
being checked before fsck is executed, and it must have room for new entries without
requiring that new blocks be allocated.

fsck recognizes the following options:

-f Fast check. fsck only checks whether a block has been claimed by more than one i­
node, by an i-node and the free list, or more than once in the free list. If necessary,
fsck will reconstruct the free list.

-n No option: a default reply of no is given to all of fsck's questions.

-q Quiet option: run quietly. fsck automatically removes all unreferenced pipes, and
automatically fixes list counts in the super block and the free list. File-name warning
messages are suppressed, but fsck still prints the number of files used, the number of
blocks used, and the number of blocks that remain free.

-s Sort the free lists, both free blocks and free i-nodes, based on the interleave number.
This is useful in reducing fragmentation of a file system. This option ignores mounted
file systems.

-S Same as -s, except that it also works on mounted file systems. Not recommended for
the faint of heart.

-t Specify temporary file option: fsck uses RAM device /dev/rraml for temporary storage
when checking filesystems larger than approximately 35 megabytes. This option allows
the user to specify temporary storage other than the RAM device.

-y Yes option: a default reply of yes is given to all of fsck's questions.

If you do not name a file system in fsck's command line, fsck checks the file systems
named in the file /etc/checklist.

If fsck is invoked for a file system larger than approximately 35 megabytes, it uses the RAM
device /dev/rraml for temporary storage. For this reason. it is strongly advised that you

LEXICON

not use /dev/rraml as a RAM disk.

Files
I etc I checklist

See Also
clrl, commands, icheck, ncheck, ram, sync, umount

Notes

fseekO 629

The correction of file systems almost always involves the destruction of data.

You should run fsck only when the COHERENT system is in single-user mode.

Previous editions of fsck could check no partition larger than 35 megabytes. This
restriction has been lifted.

fseekO - STDIO Function (libc)
Seek on file stream
#include <stdio.h>
int fseek(fp. where, how)
FILE 4:fp; long where; int how;

fseek changes where the next read or write operation will occur within the file streamfp. It
handles any effects the seek routine might have had on the internal buffering strategies of
the system. The arguments where and how specify the desired seek position. where
indicates the new seek position in the file. It is measured from the start of the file if how
equals zero, from the current seek position if how equals one, and from the end of the file if
how equals two.

fseek differs from its cousin lseek in that lseek is a COHERENT system call and takes a file
number, whereas fseek is a STDIO function and takes a FILE pointer.

Example
This example opens file argv[I] and prints its last argv[2] characters (default, 100). It
demonstrates the functions fseek. ftell. and fclose.

#include <stdio.h>
extern long atol();

void fatal(message)
char *message;
{

}

fprintf(stderr, "tail: %s\n", message);
exit(l);

main(argc, argv)
int argc; char *argv[);
{

register FILE *ifp;
register int c;
long nchars, size;

if (argc < 2 I I argc > 3)
fatal("Usage: tail file (nchars]");

nchars = (argc == 3) ? atol(argv[2]) : lOOL;

LEXICON

630 fstatO

}

if ((ifp = fopen(argv[l], "r")) == NULL)
fatal("cannot open input file");

/* Seek to end */
if (fseek(ifp, OL, 2) == -1)

fatal("seek error");

/* Find current size */
size= ftell(ifp);
size = (size < nchars) ? OL

/* Seek to point */

size - nchars;

if (fseek(ifp, size, 0) == -1)
fatal("seek error");

while ((c = getc(ifp)) != EOF)
/* Copy rest to stdout */
putchar(c);

if (fclose(ifp) == EOF)
fatal("cannot close");

exit(O);

See Also
ftell(), lseek(), STDIO

Diagnostics
For any diagnostic error, fseek returns -1; otherwise, it returns zero. If fseek goes beyond
the end of the file, it will not return an error message until the corresponding read or write
is performed.

tstatO - System Call
Find file attributes
#include <sys/stat.h>
fstat(descrlptor, stalptr) int descriptor; struct stat *statptr;

fstat returns a structure that contains the attributes of a file including protection
information. file type, and file size. descriptor is the file descriptor for the open file, and
stalptr points to a structure of the type stat. which is defined in the header file stat.h.

The following summarizes the structure stat and defines the permission and file type bits.

LEXICON

struct stat {
dev_t st_dev;
ino_t st_ino;
unsigned short st_mode;
short st_nlink;
short st_uid;
short st_gid;
dev t st_rdev;
size_t st_size;
time_t st_atime;
time t st_mtime;
time t st_ctime;

} ;

#define S IFMT 0170000
#define S IFREG 0100000
#define S IFDIR 0040000
#define S IFCHR 0020000
#define S IFBLK 0060000
#define S ISUID 0004000
#define S ISGID 0002000
#define S ISVTX 0001000
#define S IREAD 0000400
#define S IWRITE 000200
#define S IEXEC 0000100

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
I*

file types */
ordinary file */
directory */
character special */
block special */
set user id */
set group id */
save text bit */
owner read permission */
owner write permission */
owner execute permission */

fstatO 631

The entries st_dev and st_ino together form a unique description of the file. The former is
the device on which the file and its i-node reside, whereas the latter is the index number of
the file. The entry st_mode gives the permission bits. as outlined above. The entry
st_nlink gives the number of links to the file. The user id and group id of the owner are
st_uid and st_gid, respectively. The entry st_rdev, valid only for special files. holds the
major and minor numbers for the file.

The entry st_size gives the size of the file. in bytes. For a pipe. the size is the number of
bytes waiting to be read from the pipe.

Three entries for each file give the last occurrences of various events in the file's history.
st_atime gives time the file was last read or written to. st_mtime gives the time of the last
modification, write for files, create or delete entry for directories. st_ctime gives the last
change to the attributes. not including times and size.

Example
For an example of how to use this function, see the entry for pipe.

Files
<sys/stat.h>

See Also
chmod(), chown(), ls, open(), stat(), system calls

LEXICON

632 ftellQ - function

Notes
fstat differs from the related function stat mainly in that it accesses the file through its
descriptor, which was returned by a successful call to open, whereas stat takes the file's
path name and opens it itself before checking its status.

Diagnostics
fstat returns -1 if the file is not found or if statptr is invalid.

ftellO - STDIO Function (libc)
Return current position of file pointer
#include <stdio.h>
long ftell(fp) FILE "'fp;

ftell returns the current position of the seek pointer. Like its cousin fseek, ftell takes into
account any buffering that is associated with the streamfp.

Example
For an example of how to use this function, see the entry for fseek.

See Also
fseek(), lseek(), rewind(), STDIO

ftimeO - System Call
Get the current time from the operating system
#include <sys/timeb.h>
ftime(tbp) struct timeb •tbp;

ftime fills the structure timeb, which is pointed to tbp, with COHERENT's representation of
the current time. timeb is defined in the header file timeb.h, as follows:

struct timeb {

}

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The member time is the number of seconds since January 1, 1970, OhOOmOOs GMT.
millitm is a count of milliseconds. timezone and dsttlag are obsolete; they have been
replaced by the environmentai variable TIMEZONE.

See Also
date, system calls, time, TIMEZONE, types.h

function - Definition
A function is the C term for a portion of code that is named. can be invoked by name, and
that performs a task. Many functions can accept data in the form of arguments. modify the
data, and return a value to the statement that invoked it.

See Also
data types, definitions, executable file, library, portability

LEXICON

fwriteO - fwtable 633

fwriteO - STDIO Function (libc)
Write into file stream
#include <stdio.h>
int fwrlte(buffer, size, n.fp)
char •buffer; unsigned size, n; FILE "'jp;

fwrlte writes n items, each of size bytes, from buffer into the file stream pointed to by fp.

Example
For an example of how to use this function, see the entry for fopen.

See Also
fread(), STDIO

Diagnostics
fwrlte normally returns the number of items written. If an error occurs, the returned value
will not be the same as n.

fwtable - Command
Build font-width table
fwtable [-pv I [lnjlle [oulflle I I

fwtable builds a binary font-width table for use by troff. It understands PCL (Printer
Control Language) bitmap fonts for the Hewlett-Packard LaserJet family of printers (plus
compatibles), and AFM (Adobe Font Metric) descriptions of Postscript fonts.

For the typesetting program troff to use a font, it must know the width of each character in
the font and how to tell the printer to select the font. troff contains built-in information
about a few standard fonts, but to use any other font you must use the troff directive .lf to
load a binary font-width table that contains information about the font. The command
fwtable normally reads a PCL bitmap font for an HP-compatible laser printer from lnjlle (or
the standard input) and writes a font-width table for the font to ouiflle (or the standard
output).

Loading a PCL troff font-width table with an .lf directive provides troff with character-width
information about the font and tells it the PCL command (escape sequence) required to
select the font. However. it does not download the font to the printer. You must download
each required font to the printer with the hpr command (using its -f option) before you print
the troff output; if the fonts are not available in the printer, the output will not be what you
expect.

With option -p, fwtable reads an AFM (Adobe Font Metric) description for a Postscript font
from lnjlle and writes a font-width table to oulflle.

With option -v, fwtable prints a brieffont description to the standard error file.

Files
/usr/llb/roff/troff_pcl/fwt/ - Directory for PCL font-width tables
/usr/llb/roff/troff_ps/fwt/ - Directory for Postscript font-width tables

See Also
commands, hpr, troff

LEXICON

634 fwtable

Notes
fwtable does not understand Intellifont scalable fonts.

LEXICON

gcdO - general functions 635

gcdO - Multiple-Precision Mathematics
Set variable to greatest common divisor
#include <mprec.h>
void gcd(a, b, c)
mint •a, *b, •c;

G

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. gcd sets c to the greatest common divisor of a and b.

See Also
multiple-precision mathematics

general functions - Overview
The library Ube includes a number of functions that perform useful. general tasks:

_exit().
abort() .
abs() ...
assert().
atof()
atoi() ..
atol() ..
bsearch().
calloc() ..
candaddr().
candev()
canino() .
canint() ..
canlong().
canshort().
cansize() ..
cantime() ..
canvaddr().
crypt()
div()
dup2()
endgrent().
endpwent()
execl() .
execle().
execlp().
execv().
execve()
execvp()
free() ..
frexp() .
getenv()
getgrent()
getgrgid().
getgrnam().
getlogin().
getopt() ...

. Terminate a process

. End program immediately

. Return the absolute value of an integer

. Check assertion at run time

. Convert ASCII strings to floating point

. Convert ASCII strings to integers

. Convert ASCII strings to long integers

. Search an array

. Allocate dynamic memory

. Convert a daddr_t to canonical format

. Convert a dev t to canonical format

. Convert a ino_) to canonical format

. Convert a int to canonical format

. Convert a long to canonical format

. Convert a short to canonical format

. Convert an fsize_t to canonical format

. Convert a time_t to canonical format

. Convert a vaddr_t to canonical format

. Encryption using rotor algorithm

. Perform integer division

. Duplicate a file descriptor

. Close group file

. Close password file

. Execute a load module

. Execute a load module

. Execute a load module

. Execute a load module

. Execute a load module

. Execute a load module

. Return dynamic memory to free memory pool

. Separate fraction and exponent

. Read environmental variable

. Get group file information

. Get group file information, by group id

. Get group file information, by group name

. Get login name

. Get a command-line option

LEXICON

636 getcO

getpass() . . .
getpw()
getpwent() . .
getpwnam().
getpwuid() .
getwd().
gtty() ..
isatty() .
13tol() . .
ldexp() .
ldiv() ..
longjmp().
ltol3() . ..
malloc() .
mktemp()
modf() .
mtype() . .
nlist() . ..
path() . .
perror().
qsort() .
rand() . .
realloc()
sbrk() . .
semctl() .
semget() .
semop() . .
setgrent()
setjmp() .
setpwent() .
shellsort() .
shmctl() .
shmget().
sleep() ..
srand() ..
strtod() . .
strtol() ..
strtoul() .
swab() . ..
system() .
ttyname()
ttyslot() .

See Also
libraries, system calls

. Get password with prompting

. Search password file

. Get password file information

. Get password file information, by name

. Get password file information, by id

. Get current working directory name

. Terminal initialization

. Check if a device is a terminal

. Convert file system block number to long integer

. Combine fraction and exponent

. Perform long integer division

. Return from a non-local goto

. Convert long integer to file system block number

. Allocate dynamic memory

. Generate a temporary file name

. Separate integral part and fraction

. Return symbolic machine type

. Symbol table lookup

. Build a path name for a file

. System call error messages

. Sort arrays in memory

. Generate pseudo-random numbers

. Reallocate dynamic memory

. Increase a program's data space

. Control semaphore operations

. Get a set of semaphores

. Perform semaphore operations

. Rewind group file

. Perform non-local goto

. Rewind password file

. Sort arrays in memory

. Control shared-memory operations

. Get the shared-memory segment

. Suspend execution

. Seed random number generator

. Convert string to floating-point number

. Convert string to long integer

. Convert string to unsigned long integer

. Swap a pair of bytes

. Pass a command to the shell for execution

. Identify a terminal

. Return a terminal's line number

getcO - STDIO Macro (stdio.h)
Read character from file stream
#include <stdio.h>
int getc(fp) FILE *.fp;

getc is a macro that reads a character from the file streamjp, and returns an int.

LEXICON

getcharO 637

Example
The following example creates a simple copy utility. It opens the first file named on the
command line and copies its contents into the second file named on the command line.

#include <stdio.h>

void fatal(string)
char *string;
{

}

printf("%s\n", string);
exit (1);

main(argc, argv)
int argc; char *argv[];
{

}

int foo;
FILE *source, *dest;

if (--argc ! = 2)
fatal("Usage: copy [source][destination]");

if ((source= fopen(argv[l], "r")) ==NULL)
fatal("Cannot open source file");

if ((des t = fopen (argv [2] , "w")) == NULL)
fatal("Cannot open destination file");

while ((foo = getc(source)) != EOF)
putc(foo, dest);

See Also
fgetc(), getchar(), putc(), STDIO

Diagnostics
getc returns EOF at end of file or on read fatal.

Notes
Because getc is a macro. arguments with side effects probably will not work as expected.
Also, because getc is a complex macro, its use in expressions of too great a complexity may
cause unforeseen difficulties. Use of the function fgetc may avoid this.

getcharO - STDIO Macro (stdio.h)
Read character from standard input
#include <stdio.h>
int getchar()

getchar is a macro that reads a character from the standard input. It is equivalent to
getc(stdin).

Example
The following example gets one or more characters from the keyboard, and echoes them on
the screen.

LEXICON

638 getegidO - getenvO

#include <stdio.h>

main()
{

}

int foo;
while ((foo = getchar()) I= EOF)

putchar(foo);

See Also
getc(), putchar(), STDIO

Diagnostics
getchar returns EOF at end of file or on read error.

getegidO - System Call
Get effective group identifier
getegid()

Every process has two different versions of its group Identifier, called the real group
identifier and the effective group identifier. The group identifiers determine eligibility to
access files and use system privileges. Normally, these two identifiers are identical.
However, for a set group Identifier load module (see exec), the real group identifier is that of
the group's current group. whereas the effective group identifier is that of the load module
owner. This distinction allows system programs to use files which are protected from
groups that invoke the program.

getegid returns the effective group identifier.

See Also
access, exec, geteuid(), getgid(), getuid(), login, setuid(), system calls

getenvO - General Function (libc)
Read environmental variable
char •getenv(V ARIABLE) char •v ARIABLE;

A program may read variables from its environment. This allows the program to accept
information that is specific to it. The environment consists of an array of strings, each
having the form VARIABLE=VALUE. When called with the string VARIABLE, getenv reads
the environment, and returns a pointer to the string VALUE.

Example
This example prints the environmental variable PATH.

#include <stdio.h>

main ()
{

char *env;
extern char *getenv();

LEXICON

geteuidO - getgrentO 639

if ((env = getenv("PATH")) == NULL) {
printf("Sorry, cannot find PATH\n");

exit(l);
}
printf ("PATH %s\n", env);

}

See Also
environmental variables, envp, exec, sh

Diagnostics
When VARIABLE is not found or has no value, getenv returns NULL.

geteuidO - System Call
Get effective user identifier
geteuid()

Every process has two different versions of its user id, called the real user id and the
effective user id. The user ids determine eligibility to access files or employ system
privileges. Normally, these two ids are identical. However, for a set user id load module (see
exec), the real user id is that of the user, whereas the effective user id is that of the load
module owner. This distinction allows system programs to use files which are protected
from the user who invokes the program.

geteuid returns the effective user identifier

Example
For an example of this call, see the entry for getpwent().

See Also
access(), exec, getegid(), getgid(), getuid(), login, setuid(), system calls

getgidO - System Call
Get real group identifier
getgid()

Every process has two different versions of its user id, called the real user id and the
effective user id. The user ids determine eligibility to access files or employ system
privileges. Normally, these two ids are identical. However. for a set user id load module (see
exec), the real user id is that of the user, whereas the effective user id is that of the load
module owner. This distinction allows system programs to use files which are protected
from the user who invokes the program.

getgid returns the real group id.

See Also
access(), exec, getegid(), geteuid(), getuid(), login, setuid(), system calls

getgrentO - General Function (libc)
Get group file information
#include <grp.h>
struct group •getgrent();

getgrent returns the next entry from file /etc/group. It returns NULL if an error occurs or
if the end of file is encountered.

LEXICON

640 getgrgidO - getgrnamO

Files
/etc/group
<grp.h>

See Also
general functions, group

Notes
All structures and information returned are in a static area internal to getgrent. Therefore.
information from a previous call is overwritten by each subsequent call.

getgrgidO - General Function (libc)
Get group file information, by group name
#include <grp.h>
struct group •getgrgid(gld);
int gld;

getgrgid searches file /etc/group for the first entry with a numerical group id of gld. It
returns a pointer to the entry if found; it returns NULL if an error occurs or if the end of file
is encountered.

Files
/etc/group
<grp.h>

See Also
general functions, group

Notes
All structures and information returned are in a static area internal to getgrgid. Therefore.
information from a previous call is overwritten by each subsequent call.

getgrnamO - General Function (libc)
Get group file information, by group id
#include <grp.h>
struct group •getgrnam(gname);
char *gname;

getgrnam searches file /etc/group for the first entry with a group name of gname. It
returns a pointer to the entry for gname if it is found; it returns NULL for any error or if the
end of the file is encountered.

Files
/etc/group
<grp.h>

See Also
general functions, group

Notes
All structures and information returned are in a static area internal to getgrnam. Therefore.
information from a previous call is overwritten by each subsequent call.

LEXICON

getloginO - getoptO 641

getloginO - General Function (libc)
Get login name
char •getlogin()

The name corresponding to the current user id is not always the same as the name under
which a user logged into the COHERENT system. For example, the user may have issued a
su command, or there may be several login names associated with a user id. getlogin
returns the login name found in the file /etc/utmp.

In cases where getlogin fails to produce a result, getpwuid (described in getpwent) is
normally used to determine the user name for a process.

Files
/etc/utmp login names

See Also
general functions, getpwent(), getuid(), su, ttyname(), utmp.h, who

Diagnostics
getlogin returns NULL if the login name cannot be determined.

Notes
getlogin stores the returned name in a static area that is destroyed by subsequent calls.

getoptO - General Function (libc)
Get option letter from argv
int getopt(argc, argv, optstrlng)
int argc;
char **argv;
char *optstrtng;
extern char *optarg;
extern int optlnd;

getopt returns the next option letter in argv that matches a letter in optstrlng. optstrlng is a
string of recognized option letters. If a letter is followed by a colon, the option is expected to
have an argument, which may or may not be separated from it by white space. optarg is set
to point to the start of the option argument on return from getopt.

getopt places into optlnd the argv index of the next argument to be processed. Because
optlnd is external, it is normally initialized to one automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt
returns EOF. The special option "--"may be used to delimit the end of the options: getopt
will return EOF and skip"--··.

Example
The following code fragment shows how one might process the arguments for a command
that can take the mutually exclusive options a and b, and the options f and o, both of which
require arguments:

LEXICON

642 getoptO

main(argc, argv)
int argc;
char **argv;
{

LEXICON

int c;
extern int optind;
extern char *optarg;

while ((c = getopt (argc, argv, "abf: o: ")) ! = EOF)
switch (c) {

case 'a':
if (bflg)

errflg++;
else

aflg++;
break;

case 'b':
if (aflg)

errflg++;
else

bf lg++;
break;

case 'f':
ifile = optarg;
break;

case 'o':
ofile = optarg;
break;

case '?':
default:

errflg++;
break;

}

if (errflg) {

}

fprintf (stderr, "Usage: •.. ") ;
exit(2);

getopts 643

for (; optind < argc; optind++) {

}

}

See Also
general functions

Diagnostics
getopt prints an error message on stderr and returns a question mark when it encounters
an option letter not included in optstrlng.

Notes
It is not obvious how'-' standing alone should be treated. This version treats it as a non­
option argument, which is not always right.

Option arguments are allowed to begin with'-'. This is reasonable, but reduces the amount
of error checking possible.

getopt returns the parsed letter option in the external int optopt. which is overwritten by
each call to getopt. When getopt returns '?', it can be helpful to examine the contents of
this variable.

getopts - Command
Parse command-line options
getopts optstrlng name [opt]

The command getopts is available under the Korn ksh to parse a command's options and
check their legality. optstrlng must contain the options letters that the command using
getopts will recognize. If a letter is followed by a colon ':', that option must have an
argument that is separated from it by whitespace.

Each time it is invoked, getopts places the next option into the shell variable name and the
index of the next argument to be processed Into the shell variable OPTIND. which is
initialized by default to one. When an option requires an argument, getopts copies it into
the shell variable OPTARG. If getopts encounters an error, it initializes variable name to'?.

When it encounters the end of the options. getopts exits with non-zero status. The special
option"--" can be used to delineate the end of options.

Example
The following example processes a command that takes options a, b, and o; the last option
requires an argument:

LEXICON

644 getpassO - getpgrpO

while getopts abo: c
do

case $c in
a/b) FLAGS=$FLAGS$c;;
o) OARG=$0PTARG; ;
\?) echo $USAGE 1>&2

exit 2;;
esac

done
shift OPTIND-1

This code will accept any of the following as equivalent:

cmd -a -b -o "xxx z yy" file
cmd -a -b -o "xxx z yy" -- file
cmd -ab -o "xxx z yy" file
cmd -ab -o "xxx z yy" -- file

See Also
commands, getopt(), ksh

getpassO - General Function (libc)
Get password with prompting
char •getpass(prompt)
char •prompt;

getpass first prints the prompt. Then it disables echoing of input characters on the terminal
device (either the file /dev/tty or the standard input). reads a password from it, and
restores echoing on the terminal. It returns the given password.

Files
/dev/tty

See Also
crypt(), general functions, login, passwd, su

Notes
The password is stored in a static location that is overwritten by successive calls. This
static buffer is 50 characters long; any password longer than that can cause problems of
one sort or another.

getpgrpO - System Call
Get process group number
getpgrp()

getpgrp gets and returns the process group number for the requesting process.

See Also
system calls, setpgrp()

LEXICON

getpidO - System Call
Get process identifier
getpid()

getpidO - getpwentO 645

Every process has a unique number. called its process id. fork returns the process id of a
created child process to the parent process.

getpid returns the process id of the requesting process. Typically a process uses getpid to
pass its process id to another process which wants to send it a signal, or to generate a
unique temporary file name.

See Also
fork(), kill, mktemp, system calls

getpwO - General Function (libc)
Search password file
getpw(uid, line)
short uld;
char *line;

getpw searches the password file /etc/passwd for the first entry with numerical user id
uld. If found, line receives the corresponding line from the password file.

Files
I etc/passwd

See Also
general

Diagnostics
getpw returns a nonzero value on error.

getpwentO - General Function (libc)
Get password file information
#include <pwd.h>
struct passwd •getpwent()

The COHERENT system has five routines that search the file /etc/passwd, which contains
information about every user of the system. The returned structure passwd is defined in
the header file pwd.h. For a description of this structure, see pwd.h.

getpwent returns the next entry from /etc/passwd.

Example
The following example demonstrates getpwent(), getpwnam(), getpwuid(). setpwent(), and
endpwent().

#include <pwd.h>
#include <stdio.h>

LEXICON

646 getpwentO

main()
{

int euid,
ruid;

struct passwd *pstp;
int i;

/* Effective user id */
/* Real user id */

/* Print out all users and home directories */
i = O;
setpwent(); /*Rewind file /etc/passwd */
while ((pstp = getpwent()) !=NULL)

printf("%d: user name is %s, home directory is %s.\n",
++i, pstp->pw_name, pstp->pw_dir);

/* Find real user name.
* NOTE: functions getpwuid and getpwnam rewind /etc/passwd
*by calling setpwent().
*/

ruid = getuid();
if ((pstp = getpwuid(ruid)) ==NULL) {

} else

/* If this message appears, something's wrong */
fprintf(stderr, "Cannot find user with id number %d\n", pstp);
exit (1);

printf("User's real name is %s\n", pstp->pw_name);

/* Find the user id for superuser root */
((pstp = getpwnam("root")) == NULL) ?

fprintf(stderr, "Do you have user root on your system?\n")
printf("root id is %d\n", pstp->pw_uid);

/* Check if the effective process id is the superuser id.

*

}

* NOTE: if you wish to see how to enable the root
* privileges, you can run this command:
* cc pwfun.c
* su root chown root pwfun
* su root chmod 4511 pwfun
*/

euid = geteuid();
printf("Process ");

/* Get effective user id. */

(euid == pstp->pw_uid)? printf("has ") : printf("doesn't have");
printf("the root privileges\n");
exit(O);

Files
/etc/passwd
pwd.h

LEXICON

getpwnamO - getpwuidO 647

See Also
endpwent(), general functions, getpwnam(), getpwuid(), pwd.h, setpwent()

Diagnostics
getpwent returns NULL for any error or on end of file.

Notes
All structures and information returned are in static areas internal to getpwent. Therefore.
information from a previous call is overwritten by each subsequent call.

getpwnamO - General Function (libc)
Get password file information, by name
#include <pwd.h>
struct passwd •getpwnam(uname)
char *uname:

The COHERENT system has five routines that search the file /etc/passwd, which contains
information about every user of the system. The returned structure passwd is defined in
the header file pwd.h. For a description of this structure, see pwd.h.

getpwnam attempts to find the first entry with a name of uname.

Example
For an example of this function, see the entry for getpwent().

Files
I etc I passwd
pwd.h

See Also
endpwent(), general functions, getpwent(), getpwuid(), pwd.h, setpwent()

Diagnostics
getpwnam returns NULL for any error or on end of file.

Notes
All structures and information returned are in static areas internal to getpwnam. Therefore,
information from a previous call is overwritten by each subsequent call.

getpwuidO - General Function (libc)
Get password file information. by id
#include <pwd.h>
struct passwd •getpwuid(uld)
int uld;

The COHERENT system has five routines that search the file /etc/passwd, which contains
information about every user of the system. The returned structure passwd is defined in
the header file pwd.h. For more information on this structure, see pwd.h.

getpwuid attempts to find the first entry with a numerical user id of uid.

Example
For an example of this function. see the entry for getpwent().

LEXICON

648 getsO

Files
/etc/passwd
pwd.h

See Also
endpwent(), general functions, getpwent(), getpwnam(), pwd.h, setpwent()

Diagnostics
getpwuid returns NULL for any error or on end of file.

Notes
All structures and information returned are in static areas internal to getpwuid. Therefore,
information from a previous call is overwritten by each subsequent call.

getsO - STDIO Function (libc)
Read string from standard input
#include <stdio.h>
char •gets(bulfer) char *buffer;

gets reads characters from the standard input into a buffer pointed at by buffer. It stops
reading as soon as it detects a newline character or EOF. gets discards the newline or EOF,
appends a null character onto the string it has built. and returns another copy of buffer.

Example
The following example uses gets to get a string from the console; the string is echoed twice
to demonstrate what gets returns.

#include <stdio.h>

main ()
{

}

char buffer[SO];

printf ("Type something: ");

/*
* because of the way COHERENT's teletype
* driver works, the following fflush has
* no effect. It should be included for
* portability to other operating systems.
*/

fflush(stdout);
printf("%s\n%s\n", gets(buffer), buffer);

See Also
butfer, fgets(), getc(), STDIO

Diagnostics
gets returns NULL if an error occurs or if EOF is seen before any characters are read.

Notes
gets stops reading the input string as soon as it detects a newline character. If a previous
input routine left a newline character in the standard input buffer. gets will read it and
immediately stop accepting characters; to the user, it will appear as if gets is not working at

LEXICON

getty 649

all.

For example, if getchar is followed by gets, the first character gets will receive is the
newline character left behind by getchar. A simple statement will remedy this:

while (getchar() != '\n')

This throws away the newline character left behind by getchar; gets will now work
correctly.

getty - System Maintenance
Terminal initialization
I etc I getty type

The initialization process init invokes getty for each terminal indicated in the file
/etc/ttys. getty tries to read a user name from the terminal which is the standard input,
adapting its mode settings accordingly. Then getty invokes login with the name read. This
process may set delays. mapping of upper to lower case, speed, and whether the terminal
normally uses carriage return or linefeed to terminate input.

If the terminal baud rate is wrong, the login message printed by getty will appear garbled.
If the specified type indicates variable speeds, as described below, hitting BREAK will try the
next speed.

init passes the third character in a line of the file /etc/ttys as the type argument to getty.
type conveys information about the terminal port. An upper-case letter in the range A to S
specifies a hard-wired baud rate, as indicated in the header file <sgtty.h>. Other characters
specify a range of speeds suitable to a dial-in modem. The following variable-speed settings
are recognized:

0 Cycles through speeds 300, 1200, 150. and 110 baud, in that order. This is a good
default setting for dial-in ports.

Teletype model 33, fixed at 110 baud.

1 Teletype model 37, fixed at 150 baud.

2 9600 baud with delays (e.g., Tektronix4104).

3 Cycles between 2400, 1200, and 300 baud. This is used with 2400-bps modems.

4 DECwriter (LA36) with delays.

5 Like 3, but starts at 300 baud.

getty recognizes the following fixed-speed settings, for hard-wired terminals:

A 50baud
B 75 baud
C 110 baud
D 134 baud
E 150 baud
F 200 baud
G 300 baud
H 600 baud
I 1200 baud
J 1800 baud
K 2000baud
L 2400 baud

LEXICON

650 getuidO - getwO

M 3600baud
N 4800 baud
0 7200 baud
P 9600 baud
Q 19200 baud
R EXT
S EXT

Files
/etc/tty
<Sgtty.h>

See Also
init, ioctl(), login, sgtty.h, system maintenance, stty, ttys

getuidO - System Call
Get real user identifier
getuid()

Every process has two different versions of its user id, called the real user id and the
ejf ective user id. The user ids determine eligibility to access files or employ system
privileges. Normally, these two ids are identical. However, for a set user id load module (see
exec), the real user id is that of the user, whereas the effective user id is that of the load
module owner. This distinction allows system programs to use files which are protected
from the user who invokes the program.

getuid returns the real user id.

Example
For an example of this call, see the entry for getpwent().

See Also
access(), exec, getegid(), geteuid(), getgid(), login, setuid(), system calls

getwO - STDIO Function (libc)
Read word from file stream
#include <Stdio.h>
int getw(fp) FILE >lj'p;

getw reads a word (an int) from the file streamjp.

getw differs from getc in that getw gets and returns an int, whereas getc returns either a
char promoted to an int, or EOF. To detect EOF while using getw, you must use feof.

See Also
canon, getc(), STDIO

Notes
getw returns EOF on errors.

getw assumes that the bytes of the word it receives are in the natural byte ordering of the
machine. This means that such files might not be portable between machines.

LEXICON

getwdO - gmtimeO 651

getwdO - General Function (libc)
Get current working directory name
char •getwd(pathname)
char •pathname

The current working directory is the directory from which file name searches commence
when a pathname does not begin with 'I'. getwd returns the name of the current working
directory. It is useful for processes like spoolers and daemons, which must generate full
path names for files.

If you do not have permission to search all levels of the directory hierarchy above the
current directory. getwd cannot obtain the directory name for you.

See Also
chdir(), general functions, pwd

Diagnostics
getwd returns NULL and writes an error message into pathname if an error occurs, e.g .. if
the current directory cannot be found or if any other error occurs.

Notes
getwd fails if the current directory name is longer than MAXPATHLEN characters (1,024
characters as defined in header file <sys/param.h>). The chunk of memory pointed to by
pathname must be big enough to hold MAXPATHLEN characters plus a trailing NUL.

If getwd fails, the working directory cannot be restored to its initial value.

GMT - Definition
GMT is an abbreviation of Greenwich Mean Time, the time recorded at the Greenwich
Observatory in England, where by international convention the Earth's zero meridian is
fixed.

By definition, COHERENT fixes system time in GMT. It calculates local time as an offset of
GMT; for example, the time zone for Chicago is six hours (360 minutes) behind Greenwich.
so the local time for Chicago is calculated by subtracting 360 minutes from GMT.

See Also
definitions, gmtime(), localtime, time, time.h, TIMEZONE

Notes
The ANSI Standard replaces GMT with UTC (universe/ temps coordonne, or universal
coordinated time) for C programming. The change is mainly one of terminology rather than
substance. as some signatories to international conventions object to naming the standard
for global time after a village in England.

Under international convention, there are two UTC standards: UTCl is based on solar time
and is identical to current GMT, whereas UTC2 uses atomic clocks that are corrected by
comparison with pulsars. These standards drift apart as the earth's rotation slows; thus,
"leap seconds" are inserted periodically into UTCl to bridge the difference.

gmtimeO - Time Function (libc)
Convert system time to calendar structure
#include <time.h>
#include <sys/types.h>
tm •gmtime(tlmep) time_t •timep;

LEXICON

652 goto

gmtime converts the internal time from seconds since midnight January 1. 1970 GMT. into
fields that give integer years since 1900, the month, day of the month. the hour. the minute,
the second. the day of the week, and yearday. It returns a pointer to the structure tm,
which defines these fields, and which is itself defined in the header file time.h. Unlike its
cousin, localtime, gmtime returns Greenwich Mean Time (GMT).

Example
For an example of how to use this function, see asctime.

See Also
GMT, localtime(), time, TIMEZONE

Notes
gmtime returns a pointer to a statically allocated data area that is overwritten by
successive calls.

goto - C Keyword
Unconditionally jump within a function

A goto command jumps to the area of the program introduced by a label. A program can
goto only within a function; to jump across function boundaries, you must use the
functions setjmp and longjmp.

In the context of C programming. the most common use for goto is to exit from a control
block or go to the top of a control block. It is used most often to write "ripcord" routines,
i.e., routines that are executed when an major error occurs too deeply within a function for
the program to disentangle itself correctly. Note that in most instances, goto is a bad
solution to a problem that can be better solved by structured programming.

Example
The following example demonstrates how to use goto.

#include <stdio.h>

main()
{

char line[80];

getline:

LEXICON

printf("Enter line: ");
fflush(stdout);
gets (line) ;

/* a series of tests often is best done with goto's */
if (*line== 'x') {

printf("Bad line\n");
goto getline;

} else if (*line== 'Y') {
printf("Try again\n");
goto get line;

} else if (*line == 'q')
goto goodbye;

else
goto get line;

goodbye:
printf("Goodbye.\n");
exit(O);

}

See Also
C keywords

Notes

grep 653

The C Programming Language describes goto as "infinitely-abusable .. : caveat utllttor.

grep - Command
Pattern search
grep (option ...) [pattern] [flle ...)

grep searches each file for occurrences of the pattern (sometimes called a regular
expression). If no file is specified. grep searches the standard input. The pattern is given in
the same manner as to ed. Normally. grep prints each line matching the pattern.

The following options are available.

-b With each output line, print the block number in which the line started (used to
search file systems).

-c Print the count of matching lines rather than the lines.

-e The next argument is pattern (useful ifthe pattern starts with'-').

-f The next argument is a file containing a list of patterns separated by newlines; there
is no pattern argument.

-h When more than one file is specified, output lines are normally accompanied by the
file name; -h suppresses this.

-1 Print the name of each file containing matching lines rather than the lines.

-n The line number in the file accompanies each line printed.

-s Suppress all output, just return status.

-v Print a line if the pattern is rwt found in the line.

-x Print the line only if it is exactly the same as the pattern; treat wildcards in the
pattern as plain text.

LEXICON

654 group

-y Lower-case letters in the pattern match lower-case and upper-case letters on the
input lines.

See Also
awk, cgrep, commands, ed, egrep, expr, lex, sed

Diagnostics
grep returns an exit status of zero for success. one for no matches, two for error.

Notes
cgrep is a version of grep that is optimized for handling C-style expressions.

egrep is an extended and faster version of grep.

group - File Format
Group file format

The group file /etc/group describes the user groups that have been defined on your
COHERENT system. This allows users to control the access that members of their group
have to certain files. /etc/group contains the information to map any ASCII group name to
the corresponding numerical group identifier, and vice versa. It also contains. in ASCII, the
names of the members of each group. This information is used by, among others, the
command newgrp.

Each group has an entry in the file /etc/group one line per entry. Each line consists of
four colon-separated ASCII fields, as follows:

group_name: password: group_number: member[,member •••]

Passwords are encrypted with crypt, so the group file is generally readable.

The COHERENT system has five system calls that manipulate /etc/ group, as follows:

endgrent Close /etc/group.

getgrent Return the next entry from /etc/ group.

getgmam Return the first entry with a given group name.

getgrgid Return the first entry with a given group identifier.

setgrent Rewind I etc/ group, so that searches can begin again from the beginning of the
file.

The calls getgrent, getgrid, and getgmam each return a pointer to structure group, which
is defined in the header file grp.h as follows:

struct group {

} ;

char
char
int
char

Files
/etc/group

LEXICON

*gr_name;
*gr_passwd;
gr_gid;
**gr_mem;

/* Group name */
/* Group password */
/* Numeric group id */
/* Group members */

grp.h - gttyO 655

See Also
chgrp(). crypt(), endgrent(), me formats, getgrent(), getgrgid(), getgrnam(), grp.h,
newgrp, passwd, setgrend()

Notes
At present the group password field cannot be set directly (no command similar to passwd
exists for groups). One alternative is to set the password in the /etc/passwd file for a user
with the passwd command, and then transcribe the password into the group file manually.

grp.h - Header File
Declare group structure
#include <grp.h>

The header file grp.h declares the structure group, which is composed as follows:

struct group (
char *gr_name; /* group name */
char *gr_passwd; /* group password */
int gr_gid; /* numeric group id */
char **gr_mem; /* group members */

} ;

This structure holds information about the group to which a given user belongs. It is used
by the functions endgrent. getgrent. getgrgid. getgrnam, and setgrent.

See Also
header mes

gttyO - General Function (libc)
Device-dependent control
#include <sgtty.h>
int gtty(fd, sgp)
intfd:
struct sgttyb •sgp:

gtty gets attributes of a terminal. It is shorthand notation for ioctl calls with a command
argument of TIOCGETP.

Example
For examples of this system call. see pipe and stty().

Files
<sgtty.h>

See Also
exec, exec(), general functions, ioctl(), open(), read(), stty(), write()

LEXICON

656 hard disk

H

hard disk - Technical Information
The hard disk is the primary means of storing and accessing data under the COHERENT
system. This article introduces some aspects of the COHERENT system: that affect the care
and feeding of your hard disk.

Device Drivers
The COHERENT system comes with two sets of drivers for hard disks: the at drivers, for AT­
style hard disks; and the scsl drivers, for the SCSI family of hard disks. See their respective
articles in the Lexicon for details.

Partitioning
The COHERENT command fdisk displays information about how your hard disk is
currently configured. You can also use it to repartition your hard disk and reassign
partitions from MS-DOS to COHERENT, or vice versa.

Note that this is an extremely powerful command, with which you can create much mayhem
on your system. Like any powerful tool, it should be treated carefully and with respect. See
the article on fdisk in the Lexicon for details on how to use this command.

Partitioning your hard drive can be an uncomplicated procedure. We offer these guidelines
in an effort to make it as simple as possible. Before attempting any partitioning you should
first back-up all the data currently on your hard drive. If you do not do this you risk losing
data permanently. You should also know the correct physical parameters of your hard
drive. This information can be obtained from your machine documentation or from the
drive manufacturer. It is best not to rely on the parameters given in the BIOS: these may be
translation parameters.

If your drive is formatted for MS-DOS, it is advisable to run MS-DOS fdisk before you start
to install COHERENT. If the whole drive is taken up by DOS partitions. you must use MS­
DOS fdisk to create a non-DOS area on the drive. It is not sufficient to have an empty MS­
DOS logical drive set aside for COHERENT. COHERENT does not recognise MS-DOS logical
drives. it only sees the whole partition. The following diagram shows the way the MS-DOS
fdisk sees your drive:

===========================
DOS Root Partition I

=========================!
DOS Extended Partition I

Logical Drive 1

Logical Drive 2

Logical Drive 3

==========================-

LEXICON

hard disk 657

And the following diagram shows the way the COHERENT fdisk sees your drive:

\ DOS Root Partition \
\=========================\
I I
I I
\ DOS Extended Partition \

I I
I I

If you use COHERENT fdisk to repartition MS-DOS space. you risk causing MS-DOS fdisk
to hang. One further word of warning. If you have an automated disk formatting and
partitioning utility on your MS-DOS partition such as Disk Manager or Speedstor. you
should operate it in "manual" mode, not in "automatic".

Some hard drives have more than 1,024 cylinders. COHERENT can only recognise a drive
up to this limit. You may have a utility such as Speedstor that allows you to place MS-DOS
partitions beyond that boundary. COHERENT will not see those partitions, but you can still
access them as usual through MS-DOS.

When partitioning a drive with more than 1.024 cylinders, be sure to run the partitioning
utility before you start to install COHERENT. You should create a non-DOS partition that
falls completely within the 1.022-cylinder boundary. Your next MS-DOS partition should
start no sooner than the l ,026th cylinder.

Adding a COHERENT Partition
The following describes how to add a new COHERENT partition on your hard disk.

During your initial installation of COHERENT, the installation program handled the details
of preparing your hard disk for COHERENT. Adding a partition after the system is installed
is not difficult. but it requires that you understand the operation of the following
commands: badscan, chmod, chown, fdisk, fsck, mkfs and mount. See the Lexicon
articles for each of these commands for further information before attempting to add a
partition.

In general. the following steps are required when creating a partition for use by COHERENT.
Please note that you must not change the size of your existing root partition, or you may no
longer be able to boot COHERENT from the hard disk.

1. Completely back up all partitions on your hard disk. Be sure to back up the
COHERENT partitions, as well as any non-COHERENT partitions (e.g .. those for MS­
DOS or OS/2). Verify that your backups are readable and correct.

2. Log in as the superuser root. Make sure all other users are off the system; then invoke
the command /etc/shutdown. This shuts down COHERENT and returns the system
to single-user mode. Type the command sync to flush all buffers.

3. Invoke the COHERENT command fdisk and add the COHERENT partition to your disk,
as described above. Be sure to write down the device name associated with your new
partition (e.g., /dev/atOc) and its size.

4. The command badscan checks the device for bad blocks. If your partition resides on a
non-SCSI device (e.g., MFM, RLL, ESDI. or IDE), run the command badscan as follows:

I etc /bad scan -v -o I con f /proto. device raw_ device xdevice

LEXICON

658 hard disk

where device specifies the four-character block-special device name for the partition
(e.g., atOc), raw_devtce is the full device path name for the character-special device
associated with the partition (e.g., /dev/ratOc), and xdevice specifies the partition­
table device for the disk drive (e.g., /dev/atOxJ.

5. Invoke the command mkfs to create a COHERENT file system on the new partition, as
follows:

/etc/mkfs /dev/devlce /conf/proto.devlce

This invocation will cause mkfs to use the contents of the "proto" file that badscan
created when it built the bad_ block list for the new partition.

6. If need be, use command mkdir to create a directory to use as a mount point for the
newly created file system. The mount point is the directory onto which this directory's
file system will be appended. Usually, this directory is located under'/', also called the
root directory. You can, however. mount a file system onto any directory that already
exists. If you create a new directory (e.g., /w or /mydir). use the commands chown
and chmod to set an appropriate ownership and mode for for the directory.

7. Edit the file /etc/mount.all and add a line of the following form:

/etc/mount device /mount_polnt

where device is the full path name of the device that specifies your new partition (e.g.,
/dev/atOc), and mount_polnt is the name of the directory that you created in the
earlier step.

8. Finally, edit the file /etc/checklist and add the character special device name (e.g ..
/dev/ratOc) of the new COHERENT partition to it. This will ensure that COHERENT
will automatically run fsck on that partition's file system whenever you boot the
system. This can be vital in recovering from a system crash.

Adding Another Hard Disk
If you wish to add another hard disk to your system, you may have to run some low-level
routines that are hardware specific. See the documentation that accompanies your
hardware for details.

In brief, when you install the hard disk. you must partition it, as you did your original hard
disk when you first installed COHERENT. If you wish to add non-COHERENT operating
systems to one or more partitions. do so first; then add COHERENT to the remaining
partitions. as described above.

Changing the Size of the Root Partition
Changing the size of your root file system requires that you reinstall COHERENT. It is
strongly advised that you back up all partitions of your system before you attempt to do
this. In addition, to reduce the time involved in restoring your data files, make an
additional backup of all directories and files that have changed form your original MWC
installation. The command find will help you locate all such files: see its Lexicon entry for
details.

You should then follow the directions given in the release notes for installing COHERENT.
Note that when you attempt to install COHERENT over an existing COHERENT partition,
COHERENT will ask you if you are sure you know what you're doing before the installation
procedure creates a new file system on the partition. Be sure to request that a new file
system be created, or the installation will fail.

After installing the COHERENT distribution onto your new root partition, restore any data
files and directories from the second set of backups that you performed.

LEXICON

hash - header files 659

See Also
at, badscan, chmod, chown, fdisk, fsck, technical information, mkfs, mount, scsi

hash - Command
Add a command to the shell's hash table
hash [-r] [command ... I

The command hash lets you manipulate the Korn shell's hashing facility. A hashed
command can be accessed instantly by the shell, without the delay of searching the
directories in the PATH environmental variable.

When called with an argument, hash prints all hashed commands. When called with one or
more command arguments. it adds command to its hash table. The option -r removes
command from the hash table.

Note that before you can use hashing. you must use the set command to turn it on. For
more information on the Korn shell's hashing feature, see the Lexicon entry for ksh.

See Also
commands, ksh

hdioctl.h - Header File
Control hard-disk 1/0
#include <sys/hdioctl.h>

hdioctl.h declares constants and structures used to control hard-disk 1/0.

See Also
header files

head - Command
Print the beginning of a file
head [+n[bcl)] [file]
head [-n[bcl)] [file]

head copies the first part ofjlle, or of the standard input if none is named, to the standard
output.

The given number tells head where to begin to copy the data. Numbers of the form +number
measure the starting point from the beginning of the file: those of the form -number
measure from the end of the file.

A specifier of blocks. characters. or lines (b, c, or l, respectively) may follow the number; the
default is lines. If no number is specified, a default of +4 is assumed.

See Also
commands, dd, egrep, sed, tail

Notes
Because head buffers data measured from the end of the file, large counts may not work.

header files - Overview
A header file is a file of C code that contains definitions, declarations, and structures
commonly used in a given situation. By tradition, a header file always has the suffix ".h".
Header files are invoked within a C program by the command #include, which is read by
cpp, the C preprocessor: for this reason, they are also called "include files".

LEXICON

660 header files

Header files are one of the most useful tools available to a C programmer. They allow you to
put into one place all of the information that the different modules of your program share.
Proper use of header files will make your programs easier to maintain and to port to other
environments.

COHERENT includes the following header files:

access.h.
acct.h
action.h ..
sys I alloc.h
ar.h ...
ascii.h ..
assert.h .
sys/buf.h
canon.h .
sys I chars.h .
sys/con.h ..
sys/const.h.
ctype.h
curses.h .. .
sys/deftty.h.
sys/dir.h .. .
dirent.h .. .
dumptape.h.
ebcdic.h ..
errno.h ...
sys/fblk.h .
sys/fcntl.h
sys/fd.h ..
sys/fdioctl.h
sys/fdisk.h .
sys/filsys.h .
fperr.h
grp.h
sys/hdioctl.h.
sys/ino.h ..
sys/inode.h .
sys/io.h .
sys/ipc.h .. .
l.out.h
limits.h .. .
sys/lpioctl.h
sys I machine.h .
sys/malloc.h
math.h
sys/mdata.h
mnttab.h .. .
mon.h
sys/mount.h
mprec.h ..
sys/msg.h.
sys/msig.h
mtab.h ...
sys/mtioctl.h.

LEXICON

. Check accessibility

. Format for process-accounting file

. Describe parsing action and goto tables

. Define the allocator

. Format for archive files

. Define non-printable ASCII characters

. Define assert()

. Buffer header

. Portable layout of binary data

. Character definitions

. Configure device drivers

. Declare machine-dependent constants

. Header file for data tests

. Declare/define curses routines

. Default tty settings

. Directory format

. Define constant dirent

. Define data structures for dump tapes

. Define constants for non-printable EBCDIC characters

. Error numbers used by errno()

. Define disk-free block

. Manifest constants for file-handling functions"

. Declare file-descriptor structure

. Control floppy-disk 1/0

. Fixed-disk constants and structures

. Structures and constants for super block

. Constants used with floating-point exception codes

. Declare group structure

. Control hard-disk 1/0

. Constants and structures for i-nodes

. Constants and structures for memory-resident i-nodes

. Constants and structures used by 1/0

. Declarations for process communications

. Object file format

. Define numerical limits

. Definitions for line-printer 1/0 control

. Machine-dependent definitions

. Definitions for memory-allocation functions

. Declare mathematics functions

. Define machine-specific magic numbers

. Structure for mount table

. Read profile output files

. Define the mount table

. Multiple-precision arithmetic

. Definitions for message facility

. Machine-dependent signals

. Currently mounted file systems

. Magnetic-tape 1/0 control

mtype.h . . .
n.out.h
sys/param.h
path.h ...
sys I poll.h .
sys/proc.h.
pwd.h
sys I sched.h.
sys/seg.h .
sys/sem.h.
setjmp.h . .
sgtty.h . ..
sys/shm.h.
signal.h ..
sys/stat.h .
stdarg.h
stddef.h
stdio.h.
stdlib.h.
sys/stream.h .
string.h .
termio.h . . .
time.h
sys/timeb.h.
timef.h
sys I timeout.h
sys/times.h.
sys/tty.h . ..
sys/types.h.
sys/uproc.h.
utmp.h
sys/utsname.h.
v7sgtty.h

See Also

. List processor code numbers

. Define n.out file structure

. Define machine-specific parameters

help 661

. Define I declare constants and functions used with path

. Define structures I constants used with polling devices

. Define structures/constants used with processes

. Declare password structure

. Define constants used with scheduling

. Definitions used with segmentation

. Definitions used by semaphore facility

. Define setjmp() and longJmp()

. Definitions used to control terminal I/O

. Definitions used with shared memory
Declare signals

. Definitions and declarations used to obtain file status

. Declare/define routines for variable arguments

. Declare I define standard definitions
Declarations and definitions for I/0
Declare I define general functions
Definitions for message facility"
Declare string functions

. Definitions used with terminal input and output

. Give time-description structure
Declare timeb structure
Definitions for user-level timed functions
Define the timer queue
Definitions used with times() system call
Define flags used with tty processing
Declare system-specific data types

. Definitions used with user processes

. Login accounting information

. Define utsname structure

. UNIX Version 7-style terminal I/0

C language, #include, portability

help - Command
Print concise description of command
help command

help prints a concise description of the options available for each specifed command. If the
command is omitted, help prints a simple description of itself. followed by information about
the command given by $LASTERROR, which is the last command returning a nonzero exit
status.

help provides more information than the usage message printed by a command, but less
than the detailed description given by the man command. The primary purpose of help is
to refresh your memory if you have forgotten an option to command.

help looks in /etc/helptlle for system information and the file named in environmental
variable $HELP for user-specific information. Information about a command begins with a
line

#command

LEXICON

662 HOME-hp

and ends with the next line beginning with'#' in /etc/helpfile or $HELP. help constructs
the index file /etc/helpindex to make subsequent searches of /etc/helpfile faster.

Files
I etc/helpme - Additional system information
/etc/helpindex- Index for helpfile
$HELP - User information
$LASTERROR - Default command help

See Also
commands, man

HOME - Environmental Variable
User's home directory
HOME=home directory

The environmental variable HOME name's the user's home directory. Some commands use
this name by default if they require the name of a directory and none is supplied. For
example, if you type the change directory command cd without an argument, it will change
the current directory to the one named by the HOME.

See Also
environmental variables

hp-Command
Prepare files for Hewlett-Packard LaserJet printer
hp [-acflr I [-imarg I [-ttop I [-pllnes I [flle ... I

The command hp translates nroft' font specifications into the correct escape sequences for
an HP LaserJet compatible printer. It also allows the user to set indentation. page length,
landscape mode. and so on. Because some LaserJet printers stack pages in reverse order
as they are printed, hp can put pages out in reverse order.

hp recognizes the following options:

-t

-imarg

-1

-pllnes

-r

-ttop

Example

Print pages in the normal order. This is the default.

Set the page indentation to marg.

Print pages in landscape mode.

Set the page length to lines.

Print pages in reverse order (for LaserJet I).

Set the top margin to top.

To generate listings of all C programs in the current directory, enter the command

pr *.c I hp I hpr -B

See Also
commands, hpd, printer

LEXICON

hpd - System Maintenance
Hewlett-Packard LaserJet printer spooler daemon
/usr/llb/hpd

hpd - hpr 663

hpd is a daemon program that runs in the background and prints listings queued by the
hpr command. hpd is run automatically by hpr. If there is no printing to do, or if another
daemon is already running (indicated by the dpid file), hpd exits immediately. Otherwise, it
searches the spool directory for control files of listings to print. These control files contain
the names of files to print, the user name, banner pages, and files to be removed upon
completion.

hpd does not print listings in any particular order. There is no prioritization of printing.
either by size or by requester.

Files
I dev I rhp - Raw device for LaserJet printer
/usr/spool/hpd-Spool directory
I usr I spool/hpd/ cf* - Control files
/usr/spool/hpd/df"'- Data files
/usr/spool/hpd/dpid- Lock and process id

See Also
hpr, hpskip, init, lpd, printer, system maintenance

hpr - Command
Send file to Hewlett-Packard LaserJet printer spooler
hpr [-Bcemnr] [-b banner] [-!fontnum] Iflle ...]

hpr lets you print each specified file on the Hewlett-Packard LaserJet printer, without
conflicting with printing by other users. If no file is specified, hpr prints the standard input
on the LaserJet printer.

hpr recognizes the following options:

-B Suppress printing of a banner page.

-b The next argument is the banner.

-c Copy the files (allowing changes to be made before the printing completes).

-e Erase all "soft fonts" from the printer's memory.

-fjontnumfilel ... fileN
Load the Hewlett-Packard "soft fonts" stored in files filel through fileN into the
printer's memory; set the font identifiers to begin atfontnum.

-m Send a message when the printing completes.

-n Do not send a message (default).

-r Remove the files when they have been spooled.

hpskip terminates or restarts the current listing. hp converts nroff output into forms
usable by the LaserJet; it is also used to describe the format of the printing.

Examples
To print the file foo on the LaserJet, type:

LEXICON

664 hpskip - hs

hpr foo

The following example loads the soft fonts in files foo, bar, and baz into the printer's
memory, and sets their font identifiers to begin at 15:

hpr -f 15 foo bar baz

Files
/dev/rhp- Raw device for LaserJet printer
/usr/lib/hpd- Line-printer daemon for LaserJet printer
/usr/spool/hpd- Spool directory for LaserJet printer
/usr/spool/hpd/dpid- Daemon lockfile

See Also
commands, hp, hpd, hpskip, lpr, pr, printer

hpskip - Command
Abort/restart current listing on Hewlett-Packard LaserJet
hpskip [-r]

hpskip gives some control over printing with the LaserJet printer spooler. When invoked
without the -r option, hpskip terminates the current listing with a message. When invoked
with the -r option, hpskip restarts the current listing.

hpr spools files to the LaserJet printer.

Files
/usr/lib/hpd- LaserJet printer daemon
/usr/spool/hpd-Spool directory
/usr/spool/hpd/dpid- Daemon lockfile

See Also
commands, hpd, hpr, lpskip, pr

hs - Device Driver
Device driver for polled serial ports

The COHERENT hs driver adds support for up to eight serial lines, /dev/hsOO through
/dev/hs07.

Serial lines controlled via the hs driver can be opened in one of two ways, as follows:

/dev/hs??
Polled, local mode (no modem control).

/dev/hs??r
Polled, remote mode (modem control).

Any port used with the hs device driver will be polled, i.e., interrupt operation is not used.
Please refer to the Lexicon article com for explanations of "local" vs "remote" and "polled" vs
"interrupt-driven".

To use the hs driver, first configure it to match your equipment (see below), then load the
driver using the following command while running as the superuser root:

/etc/drvld -r /drv/hs

LEXICON

hs 665

To unload the driver without rebooting COHERENT, first use the ps command with the -d
option to get the process identifier for the hs driver process, then unload the driver process
by using the kill command. Note that the hs driver process will not unload until all opened
ports have been closed. For example (user input shown in bold):

$ ps -d
TTY PID

$ kill kill 38

0 <idle>
38 <hs>

The present version of COHERENT limits "polled" operation to one device driver at a time.
Therefore, if any of the com family of devices is used in polled mode, hs devices cannot be
used. Conversely, /dev/comlpl through /dev/com4pl and /dev/comlpr through
/dev/com4pr cannot be used if the hs driver is in use. Both drivers can be present at the
same time, but polled devices may not be open under both drivers at the same time. Note
that enabling a port via /etc/enable keeps it open continuously.

Port Configuration
The default configuration for the hs driver is for four ports, at hexadecimal addresses
Ox3F8, Ox2F8, Ox3E8, and Ox2E8, at a speed of 9600 baud. The driver is configured by
setting the following parameters:

1. The number of ports.

2. The 1/0 address for each port.

3. The default speed of each port.

All steps in the configuration must be done as the superuser root. Patch the number of
ports into driver variable HSNUM_. For example, if you wish to support three ports, enter:

/conf/patch /drv/hs HSNUM_=3

Address and speed information are stored sequentially starting at variable HS_PORTS_.
The speed for each port is indicated by the corresponding value found in <sgtty.h>. from
one, corresponding to 50 baud, to 16, corresponding to 9600 baud. If the three ports in the
example above are at hexadecimal adresses of Ox2AO, Ox2BO. and Ox2CO, with speeds of
2400, 2400, and 9600 baud. respectively, then the following three patches must be
performed:

/conf/patch /drv/hs HS_PORTS_=Ox2AO HS_PORTS_+2=12
/conf/patch /drv/hs HS_PORTS_+4=0x2BO HS_PORTS_+6=12
/conf/patch /drv/hs HS_PORTS_+8=0x2CO HS_PORTS_+10=16

Finally, nodes must be created for each port using the mknod command. The major device
number is 7; the minor number will range from O through 7 for ports /dev/hsOO through
/dev/hs07, respectively, with 128 added to the device minor number if modem control is
desired. The following commands will make nodes in I dev for local and remote versions of
the three ports in the example:

LEXICON

666 hypotO

/etc/mknod -f /dev/hsOO c 7 0
/etc/mknod -f /dev/hsOl c 7 1
/etc/mknod -f /dev/hs02 c 7 2
/etc/mknod -f /dev/hsOOr c 7 128
/etc/mknod -f /dev/hsOlr c 7 129
/etc/mknod -f /dev/hs02r c 7 130

See Also
com, device drivers, drvld

Diagnostics
An attempt to open a non-existent device will generate error messages. This can occur if
hardware is absent or not turned on.

Notes
Note that if any com device driver is used in polling mode, the hs driver cannot be used,
and vice versa.

hypotO - Mathematics Function (libm)
Compute hypotenuse of right triangle
#include <math.h>
double hypot(x, y) double x, y;

hypot computes the hypotenuse, or distance from the origin, of its arguments x and y. The
result is the square root of the sum of the squares of x and y.

Example
For an example of this function, see the entry for acos.

See Also
cabs(), mathematics library

LEXICON

i-node - icheck 667

i-node - Definition
COHERENT system file identifier

Each file on a COHERENT file system is identified by a unique number, called an I-node
number or I-number. Each i-node contains information about a file: its mode, link count,
user identifier, group identifier, size. location on the file system, access time, modify time,
and creation time.

The user refers to a file by a file name, stored in a directory; the directory entry identifies
the file by its i-node number. A device and i-node number together uniquely specify a file.
The headers ino.h and i-node.h define, respectively. disk i-nodes and memory i-nodes.

See Also
definitions

icheck - Command
i-node consistency check
icheck (-s) (-b N ...) (-v)jllesystem ...

Each block in a file system must be either free (i.e., in the free list) or allocated (i.e.,
associated with exactly one i-node). icheck examines each specifiedjllesystem, printing
block numbers that are claimed by more than one i-node, or claimed by both an i-node and
the free list. It also checks for blocks that appear more than once in the block list of an i­
node or in the free list.

The option -v (verbose) causes icheck to print a summary of block usage in thejllesystem.
The option -s causes icheck to ignore the free list, to note which blocks are claimed by i­
nodes, and to rebuild the free list with the remainder. A list of block numbers may be
submitted with the -b flag; icheck prints the data structure associated with each block as
the file system is scanned.

The raw device should be used, and thejllesystem should be unmounted if possible. If this
is not possible (e.g., on the root file system) and the -s option is used, the system must be
rebooted immediately to expunge the obsolete superblock.

The exit status bits for a bad return are as follows:

OxOl
Ox02
Ox04
Ox08
OxlO
Ox20

Miscellaneous error (e.g. out of space)
Too hard to fix without human intervention
Bad free block
Missing blocks
Duplicates in free list
Bad block in free list

See Also
clri,co1nniands,dcheck,fsck,ncheck,sync,111110unt

Diagnostics
The message "dups in free" indicates a block is in the free list more than once. "bad
freelist" indicates the presence of bad blocks on the free list. A "bad" block is one that lies
outside the bounds of the file system. A "dup" (duplicated) block is one associated with the
free list and an i-node, or with more than one i-node. All the errors above must be corrected
before the file system is mounted. "bad ifree" means allocated i-nodes are on the free i-node
list; this is inconsequential.

LEXICON

668 if - IFS

This command has largely been replaced by fsck.

if-Command
Execute a command conditionally
if sequencel then sequence2 [elifsequence3 then sequence4] ••• [else sequence5] fi

The shell construct if executes commands conditionally, depending on the exit status of the
execution of other commands.

First, if executes the commands in sequence I. If the exit status is zero, it executes the
commands in sequence2 and terminates. Otherwise, it executes the optional sequences if
given, and executes sequence4 if the exit status is zero. It executes additional elif clauses
similarly. If the exit status of each tested command sequence is nonzero, it executes the
optional else part sequence5.

Because the shell recognizes a reserved word only as the unquoted first word of a command,
each then, elif, else, and fi must either occur unquoted at the start of a line or be preceded
by';'.

The shell executes if directly.

Example
For an example of this command, see the entry for trap.

See Also
commands, ksh, sh, test

if - C Keyword
Introduce a conditional statement

if is a C keyword that introduces a conditional statement. For example,

if (i==lO)
dosomething();

will dosomething only if i equals ten.

if statements can be used with the statements else if and else to create a chain of
conditional statements. Such a chain can include any number of else if statements, but
only one else statement.

See Also
C keywords, else

IFS - Environmental Variable
Characters recognized as white space

The environmental variable IFS lists the characters that the shell recognizes as white space.

See Also
environmental variables, ksh, sh

LEXICON

indexO - init 669

indexO - String Function (libc)
Find a character in a string
char •index(strtng, c) char •string; charc;

index scans the gtven string for the first occurrence of the character c. If c is found, index
returns a pointer to it. If it is not found, index returns NULL.

Note that having index search for a null character will always produce a pointer to the end
of a string. For example,

char *string;
assert(index(string, O)==string+strlen(string));

will never fail.

Example
For an example of this function, see the entry for stmcpy.

See Also
pnmatch(), rindex(), string functions

Notes
This function is identical to the function strchr, which is described in the ANSI standard.
COHERENT includes strchr in its libraries. It is recommended that it be used instead of
index so that programs more closely approach strict conformity with the ANSI standard.

init - System Maintenance
System initialization
/etc/init

The COHERENT boot procedure executes init as process 1 to perform initialization. init
opens the console terminal /dev/console and invokes the shell script /etc/brc if it exists.
If it does not, init invokes a shell sh on it with HOME set to /etc. The shell executes
/etc/profile and /etc/ .profile if present. The system then runs in single-user mode and
accepts commands from the console.

When the console terminates the shell, normally by typing <ctrl-D>. init brings up the
system in multiuser mode. It executes the shell command file /etc/re, which performs
standard bookkeeping and maintenance chores. Typically it mounts standard file systems,
removes temporary files, and invokes cron and update. If desired, it may load device
drivers, enable swapping with swap, and enable process accounting with accton.

Next, init opens terminals as specified in the file /etc/ttys. It invokes getty to read a user
name and perform a login on each terminal.

When a user shell terminates, init updates the system accounting information in
/etc/utmp and /usr/adm/wtmp. Then it reopens the appropriate terminal and invokes
getty, as above.

init rescans the file /etc/ttys for terminal changes if it receives the signal SIGQUIT. The
command kill quit 1 sends SIGQUIT to the init process. init then invokes getty as
necessary.

init returns the system to single user mode if it receives the signal SIGHUP. The command
kill -I 1 sends SIGHUP to the init process.

LEXICON

670 initialization

Files
/ dev I console - Console terminal
/dev/tty?? -Terminal devices
/etc/brc - Boot command file
/etc/re- initialization command file
I etc I ttys - Active terminals
/etc/utmp- Logged in users
/usr/adm/wtmp- Login accounting data
I usr I spool/uucp/LCK .. • - Terminal locks

See Also
getty, kill, login, sh, system maintenance, ttys

initialization - Definition
The term Initialization refers to setting a variable to its first. or initial, value.

Rules of Initialization
Initializers follow the same rules for type and conversion as do assignment statements.

If a static object with a scalar type is not explicitly initialized, it is initialized to zero by
default. Likewise. if a static pointer is not explicitly initialized. it is initialized to NULL by
default. If an object with automatic storage duration is not explicitly initialized, its contents
are indeterminate.

Initializers on static objects must be constant expressions; greater flexibility is allowed for
initializers of automatic variables. These latter initializers can be arbitrary expressions. not
just constant expressions. For example,

double dsin = sin(30.0);

is a valid initializer. where dsin is declared inside a function.

To initialize an object. use the assignment operator '='. The following sections describe how
to initialize different classes of objects.

Scalars
To initialize a scalar object, assign it the value of a expression. The expression may be
enclosed within braces; doing so does not affect the value of the assignment. For example,
the expressions

int example = 7+12;

and

int example

are equivalent.

{ 7+12 };

Unions and Structures
The initialization ofa union by definition fills only itsjlrst member.

To initialize a union. use an expression that is enclosed within braces:

LEXICON

union example_u {
int member 1 ;
long member2;
float member3;

} { 5 } ;

initialization 671

This initializes memberl to five. That is to say. the union is filled with an int-sized object
whose value is five.

To initialize a structure. use a list of constants or expressions that are enclosed within
braces. For example:

struct example_s {
int member 1 ;
long member2;
union example_u member3;

} ;

struct example_s testl = { 5, 3, 15 };

This initializes memberl to five, initializes member2 to three, and initializes the first
member ofmember3 to 15.

Strings and Wide Characters
To initialize a string pointer or an array of wide characters, use a string literal.

The following initializes a string:

char string[]= "This is a string";

The length of the character array is 1 7 characters: one for every character in the given
string literal plus one for the null character that marks the end of the string.

If you wish. you can fix the length of a character array. In this case, the null character is
appended to the end of the string only if there is room in the array. For example, the
following

char string[l6] ="This is a string";

writes the text into the array string, but does not include the concluding null character
because there is not enough room for it.

A pointer to char can also be initialized when the pointer is declared. For example:

char *strptr = "This is a string";

initializes strptr to point to the first character in This is a string. This declaration
automatically allocates exactly enough storage to hold the given string literal. plus the
terminating null character.

Arrays
To initialize an array, use a list of expressions that is enclosed within braces. For example,
the expression

int array[]= { 1, 2, 3 };

initializes array. Because array does not have a declared number of elements, the
initialization fixes its number of elements at three. The elements of the array are initialized
in the order in which the elements of the initialization list appear. For example, array[O] is
initialized to one, array[l] to two, and array[2] to three.

If an array has a fixed length and the initialization list does not contain enough initializers
to initialize every element, then the remaining elements are initialized in the default
manner: static variables are initialized to zero, and other variables to whatever happens to
be in memory. For example, the following:

LEXICON

672 initialization

int array[3] = { 1, 2 };

initializes array[O] to one, array[l] to two, and array[2] to zero.

The initialization of a multi-dimensional array is something of a science in itself. The ANSI
Standard defines that the ranks in an array are filled from right to left. For example.
consider the array:

int example[2][3][4];

This array contains two groups of three elements, each of which consists of four elements.
Initialization of this array will proceed from example(O][O][O) through example(0)[0][3]; then
from example(OJ[l](O] through example[0](1](3]; and so on, until the array is filled.

It is easy to check initialization when there is one initializer for each "slot" in the array; e.g ..

int example[2][3] = {
1, 2, 3, 4, 5, 6

};

or:

int example[2][3] = {
{ 1, 2, 3 } , { 4, 5, 6 }

};

The situation becomes more difficult when an array is only partially initialized; e.g.,

int example[2][3] = {
{ 1 }, { 2, 3 }

};

which is equivalent to:

int example[2][3] {
{ 1, o, 0 }, { 2, 3, 0 }

};

As can be seen. braces mark the end of initialization for a "cluster" of elements within an
array. For example. the following:

int example[2][3][4] = {

5, { 1, 2 }, { 5, 2, 4, 3 }, { 9, 9, 5 },
{ 2, 3, 7 } };

is equivalent to entering:

int example [2] [3] [4] {
{ 5, o, o, 0 },
{ 1, 2, o, 0 },
{ 5, 2, 4, 3 } ,
{ 9, 9, 5, 0 } ,
{ 2, 3, 7, 0 } ,
{ o, o, o, 0 }

} ;

LEXICON

ino.h - install 673

The braces end the initialization of one cluster of elements; the next cluster is then
initialized. Any elements within a cluster that have not yet been initialized when the brace
is read are initialized in the default manner.

See Also
array, C language, definitions, struct, union

ino.h - Header File
Constants and structures for disk i-nodes
#include <sys/ inode.h>

inode.h declares structures and constants that are used to describe i-nodes.

See Also
i-node, header files

inode.h - Header File
Constants and structures for memory-resident i-nodes
#include <sys/ inode.h>

inode.h declares structures and constants for memory-resident i-nodes.

See Also
header files, i-node

install - Command
Install a software update onto COHERENT
/etc/install Id device ndisks

The command install installs an update of the COHERENT system onto your hard disk. Id
identifies the update to be installed. device is the device from which the update disks will
be read. ndtsks is the number of disks that comprise the update.

Third-Party Software
install also provides a standard mechanism by which software developers can install their
software onto systems that run COHERENT. The rest of this article discusses how to
prepare a software release so that it can be installed using install.

For install to be able to install a software distribution, the distribution must consist of a set
of mountable floppy disks, each holding a COHERENT file system created by mkfs. This
keeps the disks independent of each other and also lets the user to insert the disks in any
order. install records the fact that it has read a given disk from the distribution, thus
preventing the user from attempting to read a given disk more than once during an
installation session.

Floppy disks should be built using mkfs. with possible input being generated by the
command unmkfs. Each disk in the distribution must hold in its root directory a file whose
name is of the form:

/Id.sequence

Here, Id identifies the release. as described above. Note that Id must be formed from the set
of upper- and lower-case letters, digits, the period·:. and the underscore character'_', and
not exceed nine characters in length. sequence indicates which disk in the distribution this
disk is, from one through the total number of disks.

install uses the command cpdir to copy each of the distribution disks to directory / on the

LEXICON

674 install

current system. Therefore, all disks should be "root based" (i.e., full path names should be
used). Because install is run by the superuser, cpdir preserves the date and time for each
file, and preserves ownership and modes. To keep file ownership consistent with
COHERENT conventions, make files that are neither setuld nor setgld owned by user bin
and group bin. Directories found on the distribution disks will be created on the target file
system, as needed. Be careful when choosing the ownership and mode of directories
because you could inadvertently compromise the security of your users' systems.

Postprocessing
After all disks in a distribution have been successfully copied by the user, install checks for
the existence of a file of the form

/conf/ld.post

where Id matches the Id field found on the install command line. If found, install executes
this file to allow special "postprocessing," such as installing manual pages into directory
/usr/man or executing installation-specific commands.

Before an installation procedure completes its postprocessing. it should remove any Id files
of the following form from the target system:

/conf/ld.post
/Id.sequence

Adding Manual-Page Entries
As part of building a distribution, you usually must generate pre-processed or "cooked"
manual-page entries for distribution with your upgrade or add-on package. These should
be inserted into the subdirectories of /usr/man. with the name of the subdirectory being
specific to your product. This naming convention avoids name-space collisions, should
multiple applications use the same name for a manual-page entry.

If you install new or additional manual pages. you must update the index file used by the
man command to locate manual entries. File /usr/man/man.index on the target file
system contains index entries for all manual pages on the system. As part of
postprocessing. you must append index information for your manual pages to the end of the
existing index file. In addition. file /usr /man/man.help contains the man command's help
message. This includes a list of valid topics and some explanatory text. You should also
append to this file a brief list of the manual page entries that you have added. For further
information on manual pages, see the Lexicon entry for the command man.

Logging
install logs all partial as well as completed installations in file /etc/install.log. This
information includes date/time stamps and the command-line arguments to install.

Example
The following installs COHERENT update coh.30 I. which consists of one disk, from a high­
density 5.25-inch floppy drive:

/etc/install coh.301 /dev/fhaO 1

Files
I etc/install.log

See Also
commands, man, mkfs, unmkfs

LEXICON

int - C Keyword
Data type

int - ioctlO 675

An int is the most commonly used numeric data type, and is normally used to encode
integers. With COHERENT, sizeof int equals 2. that is, two chars (15 bits plus a sign bit);
therefore, an int can contain values from -32768 to +32767. An int normally is sign
extended when cast to a larger data type; an unsigned int. however, will be zero extended.

See Also
C keywords, data formats, data types, long

interrupt - Definition
An interrupt is an interruption of the sequential flow of a program. It can be generated by
the hardware, from within the program itself, or from the operating system.

See Also
definitions, signal()

io.h - Header File
Constants and structures used by I/O
#include <sys/io.h>

io.h declares constants and structures used by various I/0 routines.

See Also
header files

ioctlO - System Call
Device-dependent control
ioctlifd, command, Info)
intfd, command;
char *info;

ioctl provides direct interaction with a device driver. Possible uses include setting or
retrieving parameters for devices (line printers, communications lines, terminals) and non­
standard spacing operations for tape drives.

ioctl acts upon a block special file or a character special file associated with the already
open file descriptorfd. command points to the specific request. A system header file defines
symbolic command parameters for each device type. For example, sgtty.h defines
commands for terminals and mtioctl.h defines commands for magnetic tape drives. Using
the symbolic command definitions from the header files promotes device independence
within each device type. The entry for device drivers names other sections that detail
specific devices.

Info passes a buffer of information (defined by structures in the appropriate header files) to
the driver. For any command not needing additional information, this argument should be
NULL.

Some ioctl requests work on all files, and are not passed to any driver.

Files
<sgtty.h>
<lpioctl.h>
<mtioctLh>

LEXICON

676 ipc.h - isalphaO

See Also
exec, getty, openQ, readQ, sgtty, stty, system calls, writeO

Diagnostics
ioctl returns -1 on errors. such as a bad file descriptor. Because the call is device
dependent. almost any other error could be returned.

Notes
The type of the Info argument to ioctl is declared as char • mainly for portability reasons.
In most cases. the actual argument type will be something like struct sgttyb •, depending
on the particular device and command. The actual argument should be cast to type char •
to ensure cross-machine portability.

ipc.h - Header File
Definitions for process communications
#include <sys/ipc.h>

ipc.h defines constants and structures used by functions that perform inter-process
communications.

See Also
header mes

isalnumO - ctype Macro (ctype.h)
Check if a character is a number or letter
#include <ctype.h>
int isalnum(c) int c:

isalnum tests whether the argument c is alphanumeric (0-9, A-Z. or a-z). It returns a
number other than zero if c is of the desired type. and zero if it is not. isalnum assumes
that c is an ASCII character or EOF.

Example
For an example of how to use this macro. see the entry for ctype.

See Also
ASCII, ctype

isalphaO - ctype Macro (ctype.h)
Check if a character is a letter
#include <ctype.h>
int isalpha(c) int c:

isalpha tests whether the argument c is a letter (A-Z or a-z). It returns a number other
than zero if c is an alphabetic character. and zero if it is not. isalpha assumes that c is an
ASCII character or EOF.

Example
For an example of this macro, see the entry for ctype.

See Also
ASCII, ctype

LEXICON

isasciiO - isdigitO 677

isasciiO - ctype Macro (ctype.h)
Check if a character is an ASCII character
#include <ctype.h>
int isascii(c) int c;

isascii tests whether the argument c is an ASCII character (0 <= c <= 01 77). It returns a
number other than zero if c is an ASCII character, and zero if it is not. Many other ctype
macros will fail if passed a non-ASCII value other than EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

isattyO - General Function (libc)
Check if a device is a terminal
int isattyifd) intfd;

isatty checks to see if a device is a terminal. It returns one if the file descriptorfd describes
a terminal, and zero otherwise.

Files
I dev I• - Terminal special files
/etc/ttys - Login terminals

See Also
general functions, ioctl(), tty, ttyname(), ttyslot()

iscntrlO - ctype Macro (ctype.h)
Check if a character is a control character
#include <ctype.h>
int iscntrl(c) int c;

iscntrl tests whether the argument c is a control character (including a newline character)
or a delete character. It returns a number other than zero if c is a control character, and
zero if it is not. iscntrl assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ctype

isdigitO - ctype Macro (ctype.h)
Check if a character is a numeral
#include <ctype.h>
int isdigit(c) int c;

isdigit tests whether the argument c is a numeral (0-9). It returns a number other than
zero if c is a numeral, and zero if it is not. isdigit assumes that c is an ASCII character or
EOF.

LEXICON

678 islowerO - ispunctO

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

islowerO - ctype Macro (ctype.h)
Check if a character is a lower-case letter
#include <ctype.h>
int islower(c) int c;

islower tests whether the argument c is a lower-case letter (a-z). It returns a number other
than zero if c is is a lower-case letter, and zero if it is not. islower assumes that c is an
ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

isposO - Multiple-Precision Mathematics
Return if variable is positive or negative
#include <mprec.h>
int ispos(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. ispos returns true (nonzero) if a is not negative, false (zero) if a is
negative.

See Also
multiple-precision mathematics

isprintO - ctype Macro (ctype.h)
Check if a character is printable
#include <ctype.h>
int isprint(c) int c;

!sprint is a macro that tests if c is printable, i.e. if it is neither a delete nor a control
character. It returns a number other than zero if c is a printable character, and zero if it is
not. !sprint assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

ispunctO - ctype Macro (ctype.h)
Check if a character is a punctuation mark
#include <ctype.h>
int ispunct(c) int c;

ispunct tests whether the argument c is a punctuation mark. i.e., neither an alphanumeric
character nor a control character. It returns a number other than zero if the character

LEXICON

isspaceO - itomO 679

tested is a punctuation mark. and zero if it is not. ispunct assumes that c is an ASCII
character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

isspaceO - ctype Macro (ctype.h)
Check if a character prints white space
#include <ctype.h>
int isspace(c) int c;

isspace tests whether the argument c is a space. tab, newline, carriage return, or form-feed
character. It returns a number other than zero if c is a white-space character, and zero if it
is not. isspace assumes that c is an ASCH character or EOF.

Example
For an example of how to use this macro. see the entry for ctype.

See Also
ASCII, ctype

isupperO - ctype Macro (ctype.h)
Check if a character is an upper-case letter
#include <ctype.h>
int isupper(c) int c;

isupper tests whether the argument c is an upper-case letter (A-Z). It returns a number
other than zero if c is an upper-case letter. and zero if it is not. isupper assumes that c is
an ASCH character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

itomO - Multiple-Precision Mathematics
Create a multiple-precision integer
#include <mprec.h>
mint •itom(n)
intn;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. itom creates a new multiple-precision integer (or mint), initializes
it to the signed integer value n. and returns a pointer to it. You can use the function mintfr
to reclaim the storage used by the mint created by itom.

See Also
multiple-precision mathematics

LEXICON

680 jOQ

jOO - Mathematics Function (libm)
Compute Bessel function
#include <math.h>
doubleJO(z) double z;

J

JO computes the Bessel function of the first kind for order 0 for its argument z.

Example
This example, called bessel.c, demonstrates the Bessel functions JO. JI. and Jn. Compile it
with the following command line

cc -f bessel.c -lm

to include floating-point functions and the mathematics library.

#include <math.h>
#include <stdio.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

}

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = O;

main ()
{

LEXICON

extern char *gets();
double x;
char string[64];

for (; ;) {
printf ("Enter number: ") ;
if(gets(string) == NULL)

break;
x = atof(string);

display(x);
display(jO (x));
display(jl(x));
display(jn(O,x));

j1 O - jobs 681

}

display(jn(l,x));
display(jn(2,x));
display(jn(3,x));

putchar('\n');
}

See Also
jlQ, jn(), mathematics library

j1 O - Mathematics Function (libm)
Compute Bessel function
#include <math.h>
doublejl(z) double z;

j 1 takes z and computes the Bessel function of the first kind for order 1.

Example
For an example of this function, see the entry for JO.

See Also
JOO, Jn(), mathematics library

jnO - Mathematics Function (libm)
Compute Bessel function
#include <math.h>
doublejn(n, z) int n; double z;

Jn takes z and computes the Bessel function of the first kind for order n.

Example
For an example of this function, see the entry for JO.

See Also
JO(), j 1 (), mathematics library

jobs - Command
Print information about jobs
jobs

The command jobs is used with the Korn shell's job-control feature. It prints information
about all backgroundjobs. The information printed is in the following format:

%num [+·] pid status command

num indicates the job number, + indicates that the job is the "current job"; - indicates that
it is the "previous job". pid gives the process identifier of the job. status indicates the
status of the job. command gives the stopped job's command line.

For details about job control. see the Lexicon entry for ksh.

See Also
commands,ksh

LEXICON

682 join

join - Command
Join two data bases
join [-a [n] I [-e string I [-j[n) ke!lfl [-o n.m ...] [-tc]fllelfile2

join processes the text filesfllel andflle2. each of which contains a relational data base. If
either file name is·-·. the standard input is used for that file.

For the purposes of join. a data base file contains a set of records, one per input line. Each
record contains a number of fields. One field is differentiated as key field for each file. Each
file must be sorted by key field, for example with sort.

By default, the key field is the first field in each record. The -j option changes the key field
number to ke!lf for the desired file. In this and other options below. the optional file
number n must be 1 to indicate_filel or 2 to indicate_file2. If no n is given, bothfllel and
flle2 are assumed.

Normally. fields are separated by any amount of white space (blanks or tabs). Leading
blanks or tabs are not considered part of the fields. With the -t option, the separator
character is c. With this option zero-length fields are possible; every occurrence of the
separator ends the previous field and starts a new one.

Output consists only of records for which the key field occurs in both files. As a
consequence of the sorted order of the input, the output is also sorted by the key field.
Each output record has first the key field, then each field from thefllel record but the key
field, and then each field from thefile2 record but the key field. Fields are separated in the
output with the specified field character, or with a space character if no -t option was given.
Output records are always terminated with a newline. Under the -e option, string is printed
for each empty field.

The -a option enables printing of records found in only file n. If n is missing, unpaired
records are printed from both input files. To output only certain fields, the -o option
precedes a list of desired fields to print. Each element is of the form n.m where n is the file
number and m is the field number.

For example,

join -t: -jl 3 -o 1.3 2.4 1.4 1.1 2.2 filea fileb

joins filea and meb which have fields separated by the colon(':') character. The join field
number is 3 for mea and 1 (by default) for fileb. The selected five fields are produced in the
output.

See Also
awk, comm, commands, sort, uniq

LEXICON

kermit 683

K

kermit - Command
Inter-system communication and file transfer
kermit c[belL baud esc line]
kermit r[bdthilLt baud line]
kermit s[abdthilLmtx baud llne]jlle ...

kennit allows the user to communicate with a remote computer system and to transfer files
between the local and remote systems. kennit can transfer ASCII or binary files of any
length in either direction. The two computers must be able to contact each other, such as
through a serial line or by modem over a telephone line, and both systems must have
kermit available. The user must have login privileges on both systems and appropriate
permissions in directories used for file transfer.

The kermit command line specifies a mode, followed without intervening spaces by optional
flags, perhaps followed by additional arguments and.files. The three possible modes are as
follows:

c Connect the two systems so they can communicate
r Receive files from the other system
s Send each.file to the other system.

kermit normally uses a default communication line at a default baud rate; the defaults vary
from system to system. kennit normally strips leading directory information from the path
name of each.file it sends and converts the name to upper case; it converts the file name to
lower case when receiving.

The followingjlags modify kermit's normal behavior.

a

bbaud

d

eesc

f

h

Specify complete path names for sending and receiving files. Used only with s
mode. This flag requires file names in pairs: first gives the file to be sent, the
second the receiving file. For example, the command

kermit sa /usr/joe/stuff.c /usr/tom/src/thing.c

sends the file /usr/joe/stufT.c but specifies its name as /usr/tom/src/thing.c
for the receiving system. The target directory must exist on the receiving
system. The a flag implies the use of the f and x flags described below.

Set the baud rate of the port to baud.

Debug mode. Tell kermit to print messages that describe its actions. Message
appear on the standard output, not the standard error.

Change the escape character from the default w to esc; used only with c mode.
The escape character marks commands to kermit c while it is running. as
described below.

Suppress conversion of the case of file names.

Host mode. Tell kermit to use the same line for file transfer and for
communication; used with either r or s mode on the remote system only. When
invoked with the h flag, kermit resets the line modes properly when it
completes a file transfer. If you do not use the h flag. kermit will probably
leave the remote system line in raw, no-echo mode.

LEXICON

684 kermit

i

I line

L

m

t

x

Image mode. Tell kermit to send a full eight-bit byte for each character: this is
necessary to transfer binary (non-ASCII) files. If you use i flag when sending,
also use it on the receiving system.

Use line. For example, the command

kermit clb /dev/tty50 1200

tells kermit to use line tty50 at 1200 baud instead of the default line and baud
rate.

Log all kermit commands into file Log.

Macintosh mode. Necessary when sending files to an Apple Macintosh: used
only with s mode.

Tymnet mode. Allows Tymnet to keep up with file transmission.

Allows the specification of a complete pathname for the receiving file: used only
with s mode. For example, the command

kermit sx mydir/stuff

sends the file mydir I stufr to mydir I stufr on the receiving system. The target
directory must exist on the receiving system and the user must have write
permission in it.

kermit c recognizes two escape sequences. The default escape character •A• can be changed
with the e flag, as noted above.

"c

"s

Exit from kermit and break the connection between the two systems. This
notation does not mean <Ctrl-C>: rather, you must literally type the escape
character (by default, a carat 'A') and then the letter 'c'.

Suspend kermit on the host system b1;1t do not hang up the line.

Unlike some file transfer protocols. kermit requires that you invoke it on both the sending
and receiving systems to transfer a file. As shown in the example below, you normally use
kermit c to connect to the remote system, invoke kermit with the h flag in either send or
receive mode on the remote system only, type "As" to suspend the local kermit c, and
finally invoke kermit in receive or send mode on the local system.

The following example demonstrates the use of kermit. The example assumes the user is
already logged in on the local system. The communication line is /dev/com2 and runs at
2400 baud. The user wants to transfer locftle to the remote system and remfile from the
remote system. System names are in italics on the left, user input is in Roman, system
responses are in bold, and remarks are in parentheses.

local
local

remote
remote
remote
remote

LEXICON

kermit clb I dev I com2 2400
kermit: connected ...

Coherent login:
kermit shi remfile
)S~_@X#T
AS

(connect to remote system)
(type a carriage return)

(perform login procedure)
(send from remote)
(part of protocol, ignore)
(suspend local kermit)

kermit 685

local kermit: suspended.
local kermit rilb /dev/com2 2400 (receive on local)
local kermit: Receiving REMFILE as remfile
local kermit: done.
local kermit clb /dev/com2 2400 (connect again)

remote
remote

local
local
local
local
local

kermit rhi

kermit: suspended.
kermit silb I dev I com2 2400 locfile
kermit: Sending locfile as LOCFILE
kermit: done.
kermit clb I dev I com2 2400

(receive on remote)
(suspend local kermit)

(send from local)

(connect again)

remote
remote
remote

<ctrl-D> (log off the remote system)
Coherent login:
AC (disconnect local kermit)

local kermit: disconnected.

Problems Connecting to the Modem
Some users occasionally experience problems in having kermit talk to their modems. The
kermit utility requires that the serial port it uses for communications not be enabled for
logins. If you wish to use kermit on your modem line. you must perform the following
steps. Note that comments are shown in italic.

who
/etc/disable port
kermi t options

(make sure nobody ts logged in on the modem)
(where "port" is the modem port)

(disconnect via kermtt)
/etc/enable port

See Also
commands, UUCP

(invoke kermit as needed)

(re-enable modem port for logins)

Kermit: A file-transfer protocol for universities. BYTE. June 1984 pp. 255.[f. July 1984 pp.
143.[f

Diagnostics
kermit may print the following error messages:

Aborting with following error from remote host
Problem appeared on receiving system.

Bad line speed
Transmission was attempted at an illegal baud rate.

Cannot create name
The receiving system cannot create name. Confirm that you have write permission
on the receiving system.

Cannot open file name
The sending system cannot open name. Either you do not have read permission on
the sending system. or the file is not present in the named directory.

LEXICON

686 keyboard tables

Cannot open line
An incorrect line number was specified.

No line specified for connection
The line argument missing after the -1 option.

Receive failed
The file being sent was not received; this could be due to any one of a number of
reasons. Check that everything is functioning normally, and then try to send the
file again.

Send failed
The requested file was not sent.

Speed setting not implemented
An unimplemented baud rate was selected for the -b option.

Yes, I'm still here still here'>=29
The connect command was repeated.

Notes
If you type kermit c and get the message kennit connected but the remote system does
not respond, check the line that connects the two systems and the ability of the remote
system to accept a login on the line.

The file transfer protocol uses small (96-character) checksummed packets, with ACK/NAK
responses from the receiving system. The timeout period is five seconds, and kermit does
ten retries before it abandons an attempted file transfer.

The kennit protocol was developed at the Columbia University Center for Computing
Activities. Tynmet is a trademark of Tymshare, Inc.

keyboard tables - Technical Information
How to write a keyboard table

The COHERENT device-driver nkb supports industry-standard 83-, IOI-, and I02-key AT­
protocol keyboards attached as the computer console.

nkb lets you define both the layout of the keyboard and the values returned by function
keys. You can change layout and function-key bindings by using the special keyboard
mapping programs kept in directory /conf/kbd. This directory contains the C source code
for the mapping tables, as well as a Makefile that helps you rebuild the mapping programs.

Before you begin to write or modify an existing keyboard table, be sure to read throroughly
this article and the Lexicon article on nkb. If you do not, you may foul up the keyboard so
thoroughly that it will not work well enough for you to undo your mistake!

Operational Overview
The device driver nkb provides the system's portion of the interface to the console keyboard.
It handles hardware-specific details, such as initializing the keyboard and internal state,
handling keyboard interrupts, processing key scan codes, and queueing characters.

The user half of the keyboard interface is provided by a set of stand-alone utilities. With
these, you can program the nkb driver via specialized ioctl() calls. These utilities differ from
each other only in the keyboard binding or mapping tables each uses. You can re-construct
the interface to the nkb driver by modifying a keyboard-mapping file and then using a
support module to link that file to the driver.

LEXICON

keyboard tables 687

The keyboard-mapping file is a C program that consists of initialized tables and strings. In
addition, several header files provide the scan codes and other constants required for the
key tables. This format makes the file easy to edit, and also lets you enter characters in
several different formats.

The support module, in turn, performs several tasks. These include scanning the keyboard­
mapping file for errors, reformatting the table for use by the device driver, and passing the
reformatted table to the driver.

Key Mapping Files
By convention, directory /conf/kbd contains the keyboard-mapping files, executables, and
a Makefile that you use to construct the executables from the corresponding source files.

A keyboard-mapping source file consists primarily of three data structures that you must
modify to support a given keyboard mapping. The first, and simplest, of the structures is
tbl_name. This is a character string that describes the keyboard. For example, the stock
101-key US AT keyboard mapping file /conf/kbd/us.c initializes this string to:

"U.S. AT keyboard table"

The second data structure, kbtbl, is an array of key-mapping entries. It has one entry (or
row) for each possible key location. Each entry in this structure consists of 11 fields, which
hold, respectively, the key number, nine possible mapping values, and a mode field. The
following example is for physical key location 3 from key-mapping source file
I conf/kbd/belgian.c:

{ K_3, Ox82, '2', none, none, Ox82, '2', '-', none, '-', OIT },

Field I contains the scan code set 3 code value for the desired key. Header file
<sys/kbscan.h> contains symbolic constants of the form K_nnn that map the AT
keyboard's physical key number nnn to the corresponding scan code set 3 value generated
by the keyboard. In the above example, K_3 corresponds to key location three.

Fields 2 through 10 contain the key mappings corresponding to the following shift states, as
follows:

2 base or unshifted
3 SHIFT
4 CONTROL
5 CONTROL+SHIFT
6 ALT
7 ALT+SHIFT
8 ALT+CONTROL
9 AL T+CONTROL+SHIFT

10 ALT_GRAPHIC

For "regular" keys, the values for these nine fields are eight-bit characters; for "function" or
"shift" keys, they are special values. The symbolic constant none indicates that you want
no output when the key is pressed in the specified shift state.

In the case of a function key, the value specified is the number of the desired function key.
Header file <sys/kb.h> defines a set of symbolic constants of the form fn. where n is the
desired function key number. You should use these constants; they will improve the
readability of your code, and they will protect your keyboard mapping source files from any
future changes in the structure of the keyboard driver.

In the case of a "shift" key, all nine entries must be identical and must consist of one of the

LEXICON

688 keyboard tables

following symbolic constants: scroll. num. caps. lalt. ralt. lshift. rshift. lctrl. rctrl. or
altgr. These are defined in the <sys/kb.h> header file. Note that 83-key XT-layout
keyboards only have one "control'' and "alt" key. so not all shift-key combinations may be
possible on your target keyboard.

The last (11th) field in the key entry is the "mode" field. The following symbolic constants
specify the mode of the current key:

C The caps lock key affects this key.

F The specified key is a "function" or special key. The value of all mapping
entries must name function keys. See header file <kb.h> for a list of
predefined function keys.

M Make: use this mode with keys that do not repeat. Note that accidentally
using this mode with "shift" keys will stop you from being able to "unshift"
upon releasing the key!

MB Make/Break: use this mode with "shift" keys.

N The num lock key affects this key.

0 The specified key is "regular" and requires no special processing.

S The specified key is a "shift" or "lock" key. Note that all mapping entries for
a given key must be identical for a "shift" or "lock" key to work correctly.

T Typematic: this type is usually associated with a "regular'.' key.

TMB Typematic/Make/Break.

The above example specifies a mode field of 0 IT. which corresponds to a "regular" key with
Typematic repeat, and no special handling of the "lock" keys.

The last data structure. funkey. consists of an array of function-key initializers, one per
function key. The initializers are simple quoted character strings delimited by either
hexadecimal value OxFF. octal value \377, or symbolic constant DELIM. Note that any
other value can be used as part of a function-key binding. Function keys are numbered
starting at zero. By convention, function key 0, when enabled, reboots your computer. For
traditional reasons, this function key is usually bound to the key sequence
<ctrl> <alt>.

Function keys are useful not only in the classic sense of the programmable function keys on
the keyboard, but also as a general purpose mechanism for binding arbitrary length
character sequences to a given key. For example. physical key location 16 is usually
associated with the <tab> and <back tab> on the AT keyboard; and /conf/kbd/us.c sets
the key mapping table entry for key 16 as follows:

{ K_16, f42, f43, none, none, f42, f43, none, none, none, FIT },

For traditional reasons. the <back tab> key outputs the sequence <esc>[Z whereas the
<tab> key simply outputs the horizontal-tab character <ctrl-1>. Because at least one of the
mapping values for this key is more than one character long. the key must be defined as a
"function" key and all entries for the the key must correspond to function-key numbers. In
this example. function key number 42 was chosen for <tab>. and function key number 43
was chosen for <back tab>. The constant none indicates that you want no output when
the key is pressed in the specified shift state. The corresponding l'Qnkey initialization
entries for function keys f42 and f43 are as follows:

LEXICON

/* 42 */
/* 43 */

"\t\377",
"\033[Z\377",

keyboard tables 689

/* Tab */
/* Back Tab */

We strongly recommend that you comment your function-key bindings.

You can also change function-key bindings via the command fnkey. This command lets you
temporarily alter one or more function-key mappings without changing your key-mapping
sources.

Building New Binaries
After you have modified an existing keyboard-mappingtable, use the following commands to
rebuild the corresponding executables:

cd /conf/kbd
su root
make

If you have created a new keyboard mapping table, you must edit /conf/kbd/Makefile.
Duplicate an existing entry from the Makefile, and change the duplicated name to match
the name of your new keyboard-mapping table. After you have finished your editing. build
an executable from your source file by simply executing the above series of commands.

To load your new keyboard table, simply type the name of the executable that corresponds
to your keyboard-mapping file. For example, if you just built executable trench from source
file french.c, type the following command:

/conf/kbd/french

If the keyboard-support module finds an error, it will print an appropriate message. If it
finds no errors, it will update the internal tables of the nkb keyboard driver, reprogram the
keyboard, and print a message of the form:

Loaded French AT keyboard table

Examples
Prior to the release of the 101- and 102-key, enhanced-layout AT keyboards, the <Ctrl> key
was positioned to the left of 'A' key. Most terminals also locate the <ctrl> key there. The
first example shows how to swap the left <ctrl> key and the <caps-lock> key on a 101- and
102-key keyboard. The <caps-lock> key is physical key 30, whereas the left <ctrl> key is
physical key 58. Their respective entries in file /conf/kbd/us.c source file are as follows:

{ K_30, caps, caps, caps, caps, caps, caps, caps, caps, caps, SIM },
{ K_58, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, SIMB },

Note that the <caps-lock> key is defined with mode Mas it is a "lock" key. The keyboard
will interrupt only on key depressions, because releasing a "lock" key has no effect. The left
<ctrl> key is defined with mode MB as it is a "shift" key. The keyboard generates an
interrupt on both key depression and key release, because the driver must track the state of
this key.

To swap the aforementioned keys, simply change all occurrences of caps to lctrl and vice­
versa, as well as swapping the mode fields. After making the changes, the entries now
appear as:

{ K_30, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, SIMB },
{ K_58, caps, caps, caps, caps, caps, caps, caps, caps, caps, SIM },

LEXICON

690 kill

The second example converts a 101- or 102-key keyboard table to support an XT-style 83-
key keyboard layout. The following section summarizes the "typical" differences found when
comparing the two keyboard layouts. Needless to say, gtven the extreme variety in keyboard
designs, your mileage may vary.

LocaUon 101I102 Value
14 none
30 caps
58 lctrl
64 retrl
65 none
66
67
68
69
70
71
72
73
74
90
95
100
105
106
107
108
110

112-123
124
125
126

See Also

none
none
none
none
none
none
none
none
none
nwn

I
•

+
none

<Enter>
esc

Fl-F12
none
scroll
none

device drivers, fnkey, nkb

Notes

83-key Value
Various

lctrl
lalt
caps

F2
F4
F6
F8

FlO
Fl
F3
F5
F7
F9

Esc
num
scroll
none
•
+

none
none
none
none
none

Key 14. if used, varies considerably among keyboard models.

Comments
Keyboard-specific

Function Key
Function Key
Function Key
Function Key
Function Key
Function Key
Function Key
Function Key
Function Key
Function Key

<SysReq> not used

Not on XT layout
Not on XT layout
<PrtScr> not used
Not on XT layout
<Pause> not used

The location of the key that contains characters'\' and' I' varies among 101-key US-layout
keyboards.

When designing keyboard tables for keyboards that use the ALT_GRAPHIC shift key, for
reasons of backwards compatibility you should allow the use of combination shift
ALT+CTRL as a synonym for ALT_GRAPWC.

kill - Command
Signal a process
kill (- signal J pld ...

COHERENT assigns each active process a unique process id, or ptd. and uses the pid to
identify the process. kill sends signal to each pid. signal must be one of the numbers
described in the header <signal.h> or <sys/msig.h>. The signal can be gtven by number or

LEXICON

killO - ksh 691

by name, as defined in these header files. By default, signal is SIGTERM, which
terminates a given process.

If pld is zero, kill signals each process started by the user from the same tty.

The shell prints the process id of a process if the command is detached. The command ps
prints a list of all active processes, with process ids and command line arguments.

A user can kill only the processes he owns; the superuser, however, can kill anything. A
process cannot ignore or catch SIGKILL.

See the Lexicon article for signal for a table of the signals and what each means.

Files
<sys/msig.h> - Machine-dependent signal numbers
<signal.h> - Machine invariant signal numbers

See Also
commands, getpid(), init, kill(), ksh, ps, sh, signal()

killO - System Call
Kill a system process
#include <signal.h>
kill(pld, slg)
int pld, slg:

kill() is the COHERENT system call that sends a signal to a process. pld is the process
identifier of the process to be signalled, and slg identifies the signal to be sent, as set in the
header file signal.h. This system call is most often used to kill processes, hence its name.

See the Lexicon article for signal for a table of the signals and what each means.

See Also
signal(), signal.h, system calls

ksh - Command
The Korn shell
ksh token ...

The COHERENT system offers two command interpreters: sh, the Bourne shell; and ksh,
the Korn shell. sh is the default COHERENT command interpreter. The shell tutorial
included in this manual describes the Bourne shell in detail.

This article describes ksh, the Korn shell. ksh is a superset of the Bourne shell, and
contains many features that you may well find useful. These include MicroEMACS-style
editing of command lines; command hashing; a full-featured aliasing feature; and a job­
control facility.

Invoking ksh
To invoke ksh from within the Bourne shell, simply type ksh at the command-line prompt.
To use ksh as your default shell, instead of sh, append the command /usr/bin/ksh to the
end of your entry in the file /etc/passwd. (See the Lexicon entry for passwd for more
information on this file.)

You can invoke ksh with one or more built-in options; these are described below.

LEXICON

692 ksh

Commands
A command consists of one or more tokens. A token is a string of text characters (i.e., one or
more alphabetic characters. punctuation marks. and numerals) delineated by spaces, tabs.
or newlines.

A simple command consists of the command's name, followed by zero or more tokens that
represent arguments to the command, names of files, or shell operators. A complex
command will use shell constructs to execute one or more commands conditionally. In
effect, a complex command is a mini-program that is written in the shell's programming
language and interpreted by ksh.

Shell Operators
The shell includes a number of operators that form pipes, redirect input and output to
commands. and let you define conditions under which commands are executed.

command I command
The pipe operator: let the output of one command serve as the input to a second.
You can combine commands with 'I' to form pipelines. A pipeline passes the
standard output of the first (leftmost) command to the standard input of the second
command. For example, in the pipeline

sort customers I uniq I more

ksh invokes sort to sort the contents of file customers. It pipes the output of sort
to the command uniq, which outputs one unique copy of the text that is input into
it. ksh then pipes the output of uniq to the command more, which displays it on
your terminal one screenful at a time. Note that under COHERENT, unlike MS­
DOS, pipes are executed concurrently: that is, sort does not have to finish its work
before unlq and more can begin to receive input and get to work.

command ; command
Execute commands on a command line sequentially. The command to the left of
the ';' executes to completion; then the command to the right of it executes. For
example, in the command line

a I b ; c I d

first execute the pipeline a I b then, when a and b complete, execute the pipeline c
Id.

command&

LEXICON

Execute a command in the background. This operator must follow the command,
not precede it. It prints the process identifier of the command on the standard
output. so you can use the kill command to kill that process should something go
wrong. This operator lets you execute more than one command simultaneously.
For example, the command

/etc/fdformat -v /dev/fhaO &

formats a high-density, 5.25-inch floppy disk in drive 0 (that is, drive A): but while
the disk is being formatted, ksh returns the command line prompt so you can
immediately enter another command and begin to work. If you did not use the '&'
in this command, you would have to wait until formatting was finished before you
could enter another command.

ksh also prints a message on your terminal when a command that you are running
in the background finishes processing. It does not check these "child" processes
very often, however, so a command may have finished some time before ksh
informs you of the fact. See the Lexicon article for the command ps for information

ksh 693

on all processes: also see the description of the built-in command jobs, below.

command && command
Execute a command upon success. ksh executes the command that follows the
token '&&' only if the command that precedes it returns a zero exit status, which
signifies success. For example, the command

cd /etc
fdformat -v /dev/fhaO && badscan -o proto /dev/fhaO 2400

formats a floppy disk, as described above. If the format was successful, it then
invokes the command badscan to scan the disk for bad blocks; if it was not
successful, however, it does nothing.

command 11 command
Execute a command upon failure. This is identical to operator '&&', except that the
second command is executed if the first returns a non-zero status, which signifies
failure. For example, the command

/etc/fdformat -v /dev/fhaO I I echo "Format failed!"

formats a floppy disk. If formatting failed, it echoes the message Format failed! on
your terminal; however, if formatting succeeds, it does nothing.

Note that the tokens newline, ':' and '&' bind less tightly than '&&' and 'I I'· ksh
parses command lines from left to right if separators bind equally.

>file Redirect standard output. The standard Input, standard output, and standard error
streams are normally connected to the terminal. A pipeline attaches the output of
one command to the input of another command. In addition, ksh includes a set of
operators that redirect input and output into files rather than other commands.

The operator'>' redirects output into a file. For example, the command

sort customers >customers.sort

sorts file customers and writes the sorted output into file customers.sort. It
creates customers.sort if it does not exist. and destroys its previous contents if it
does exist.

>>file Redirect output into a file, and append. If the file does not exist, this operator
creates it; however, if the file already exists, this operator appends the output to
that file's contents rather than destroying those contents. For example. the
command

sort customers.now I uniq >>customers.all

sorts file customers.now, pipes its output to command uniq, which throws away
duplicate lines of input, and appends the results to file customers.all.

<file Redirect input. Here, ksh reads the contents of a file and processes them as if you
had typed them from your keyboard. For example, the command

ed textfile <edit.script

invokes the line-editor ed to edit texttlle: however, instead of reading editing
commands from your keyboard, the shell passes ed the contents of edit.script.
This command would let you prepare an editing script that you could execute
repeatedly upon files rather than having to type the same commands over and over.

LEXICON

694 ksh

<<token
Prepare a "here document". This operator tells ksh to accept standard input from
the shell input until it reads a line that contains only token. For example, the
command

cat >FOO<<\!
Here is some text.

redirects all text between'<<\!' and'!' to the cat command. The'>' in turn redirects
the output of cat into file FOO. ksh performs parameter substitution on the here
document unless the leading token is quoted; parameter substitution and quoting
are described below.

command 2> file
Redirect the standard error stream into a file. For example, the command

nroff -ms textfile >textfile.p 2>textfile.err

invokes the command nroff to format the contents of textfile. It redirects the
output of nroff (i.e., the standard output) into textfile.p; it also redirects any error
messages that nroff may generate into file textfile.err.

Note in passing that a command may use up to 20 streams. By default. stream 0 is
the standard input; stream 1 is the standard output; and stream 2 is the standard
error. ksh lets you redirect any of these streams individually into files, or combine
streams into each other.

<&n ksh can redirect the standard input and output to duplicate other file descriptors.
(See the Lexicon article file descriptor for details on what these are.) This operator
duplicates the standard input from file descriptor n.

>&n Duplicate the standard output from file descriptor n. For example,

2>&1

redirects file descriptor 2 (the standard error) to file descriptor 1 (the standard
output).

Note that each command executed as a foreground process inherits the file descriptors and
signal traps (described below) of the invoking shell, modified by any specified redirection.
Background processes take input from the null device /dev/null (unless redirected), and
ignore interrupt and quit signals.

File-Name Patterns
The shell interprets an input token that contain any of the special characters'?', '*',or'(' as
a file name pattern.

'? Match any single character except newline. For example. the command

•

ls name?

will print the name of any file that consists of the string name plus any one character.
If name is followed by no characters. or is followed by two or more characters. it will
not be printed.

Match a string of non-newline characters of any length (including zero) .

ls name*

prints the name of any file that begins with the string name. regardless of whether it is

LEXICON

ksh 695

followed by any other characters. Likewise, the command

ls name?*

prints the name of any file that consists of the string n8llle followed by at least one
character. Unlike name•, the token name?• must be followed by at least one
character before it will be printed.

Nname
Replace the name of user name with his $HOME directory. For example, the command

ls -1 -norm/src

lists the contents of the src subdirectory located under the $HOME directory for user
norm. This spares you from having to know where a given user's HOME directory is
located.

[!xyz]

[C-c]

Exclude characters xyz from the string search. For example, the command

ls [!abc] *

prints all files in the current directory except those that begin with a, b, or c.

Enclose alternatives to match a single character. A hyphen '-' indicates a range of
characters. For example, the command

ls name[ABC)

will print the names of files n8llleA, n8llleB, and nameC (assuming, of course, that
those files exist in the current directory). The command

ls name[A-KJ

prints the names of files nameA through nameK (again, assuming that they exist in
the current directory).

When ksh reads a token that contains one of the above characters. it replaces the token in
the command line with an alphabetized list of file names that match the pattern. If it finds
no matches, it passes the token unchanged to the command. For example, when you enter
the command

ls name[ABCJ

ksh replaces the token name[ABC) with n8llleA, nameB, and nameC (again, if they exist in
the current directory), so the command now reads:

ls nameA nameB nameC

It then passes this second, transformed version of the command line to the command ls.

Note that the slash'/' and leading period ','must be matched explicitly in a pattern. The
slash, of course, separates the elements of a path name; while a period at the begin of a file
name usually (but not always) indicates that that file has special significance.

Quoting Text
From time to time, you will want to "turn off' the special meaning of characters. For
example, you may wish to pass a token that contains a literal asterisk to a command; to do
so, you need a way to tell ksh not to expand the token into a list of file names. Therefore,
ksh includes the quotation operators '\ ', "'', and '"; these "turn off' (or quote) the special
meaning of operators.

LEXICON

696 ksh

The backslash'\' quotes the following character. For example, the command

ls name*

lists a file named name•, and no other.

The shell ignores a backslash immediately followed by a newline, called a concealed newline.
This lets you give more arguments to a command than will fit on one line. For example, the
command

cc -o output filel.c file2.c file3.c \
file4.c fileS.c file19.c

invokes the C compiler cc to compile a set of C source files, the names of which extend over
more than one line of input. You will find this to be extremely helpful. especially when you
write scripts and makefiles. to help you write neat, easily read commands.

A pair of apostrophes'' prevents interpretation of any enclosed special characters. For
example, the command

find . -name '*.c' -print

finds and prints the name of any C-source file in the current directory and any
subdirectory. The command find interprets the '*' internally; therefore, you want to
suppress the shell's expansion of that operator, which is accomplished by enclosing that
token between apostrophes.

A pair of quotation marks 11 11 has the same effect. Unlike apostrophes, however. ksh will
perform parameter substitution and command-output substitution (described below) within
quotation marks. Note that everything between quotation marks will be a single argument,
even if there are spaces between the tokens. For example, the command

grep "x y" *.c

calls the string-search command grep to look for the string X<space>y.

Scripts
Shell commands can be stored in a file. or script. The command

ksh script [parameter ...]

executes the commands in script with a new subshell ksh. Each parameter is a value for a
positional parameter, as described below. If you have used the command chmod to make
script executable, you may omit the ksh command.

Parameters of the form '$n' represent command-line arguments within a script. n can range
from zero through nine; $0 always gives the name of the script. These parameters are also
called positional parameters.

If no corresponding parameter is given on the command line, the shell substitutes the null
string for that parameter. For example, if the script fonnat contains the following line:

nroff -ms $1 >$1.out

then invoking fonnat with the command line:

format mytext

invokes the command nrotI to format the contents of mytext, and writes the output into
file mytext.out. If. however, you invoke this command with the command line

LEXICON

ksh 697

format mytext yourtext

the script will format mytext but ignore yourtext altogether.

Reference $• represents all command-line arguments. If. for example, we change the
contents of script format to read

nroff -ms $* >$1.out

then the command

format mytext yourtext

will invoke nrotI to format the contents of mytext and yourtext, and write the output into
file mytext.out.

Commands in a script can also be executed with the . (dot) command. It resembles the ksh
command, but the current shell executes the script commands without creating a new
subshell or a new environment; therefore. you cannot use command-line arguments.

Variables
Shell variables are names that can be assigned string values on a command line, in the
form

name=value

The name must begin with a letter, and can contain letters, digits, and underscores
Note that no white space can appear around the ·=·. or the assignment will not work.

In shell input, '$name' or '${name}' represents the value of the variable. For example:

TEXT=mytext

nroff -ms $TEXT >$TEXT.out

Here, ksh expands $TEXT before it executes the nrotI command. This technique is very
useful in large. complex scripts: by using variables, you can change the behavior of the
script by editing one line, rather than having to edit numerous variables throughout the
script.

Note that if an assignment precedes a command on the same command line, the effect of
the assignment is local to that command; otherwise, the effect is permanent. For example,

kp=one testproc

assigns variable kp the value one only for the execution of the script testproc.

ksh sets the following variables by default:

The number of actual positional parameters given to the current command.

@ The list of positional parameters "$1 $2 ... ".

.. The list of positional parameters "$1" "$2" (the same as '$@' unless some
parameters are quoted).

Options set in the invocation of the shell or by the set command.

? The exit status returned by the last command.

LEXICON

698 ksh

The process number of the last command invoked with '&'.

$ The process number of the current shell.

Environmental Variables
ksh references the following environmental variables:

CWD Current working directory: this is the name of the directory in which you are
now working.

ENV

FCEDIT

HOME

IFS

If this variable is set at start-up, after all profile files have been executed, the
expanded value is used as the shell's start-up file. It typically defines functions
and aliases.

This sets the editor used by the command fc.

Initial working directory; usually specified in the password file /etc/passwd.

Delimiters for tokens; by default space, tab, and newline.

KSH_ VERSION

MAIL

The current version of the Korn shell that you are using.

Checked at intervals specified by environmental variable MAILCHECK. If file
specified by this variable is new since last checked, the shell prints "You have
mail." on the user's terminal. If the file has increased in size since the last
check, the shell prints "You have new mail." on the user's terminal.

MAILCHECK
Specifies the number of seconds between checking for new mail. If not
specified, MAILCHECK defaults to 60 seconds.

OLDPWD The prior working directory, if any.

PATH Colon-separated list of directories searched for commands.

PSI First prompt string, usually '$'. Note that in this variable and PS2, ksh
expands the symbol I into the current number of the command line. For
example, the prompt ksh !>prints the prompt ksh NN> with every command,
where NN is the number of the current command. This is useful when you
have enabled the history feature, as described below.

LEXICON

To print a prompt that includes your local site name, include the variable
$PWD (described below) in the definition of PSI. For example,

PS l= I $PWD> I

prints the current directory as your prompt, just like MS-DOS does. To include
your system's name, read the contents of file /etc/uucpname, as follows:

SITEE ='cat/etc/uucpname'
PS1='$SITE !! $PWD>'

This form of the prompt is quite useful when you are working on networked
machines and may not always be sure just what system you are working on.
Note that two exclamation points are necessary; as noted above, ksh expands
one '!' into the number of the current command.

Finally, to include the command number with site name and current directory,
do the following:

SITE='cat /etc/uucpname'

PS2

PWD

ksh 699

PS1='$SITE !! $PWD !>'

This will give you a very long prompt, but one with much information in it.

Second prompt string. usually '>'. ksh prints it when it expects more input.
such as when an open quotation-mark has been typed but a close quotation­
mark has not been typed. or within a shell construct.

The present working directory, i.e., the directory within which you are now
working.

SECONDS
The number of seconds since the current shell was started.

The full path name of the shell that you are now executing. SHELL

TERM The name of the type of terminal you are now using, as used by various
programs for reading the file /etc/termcap.

TIMEZONE
The current timezone you are located in, as set in your .profile. This is an
interesting and powerful variable; see its entry in the Lexicon for details.

USER The login-identifier of the user, i.e., you.

The following special forms substitute parameters conditionally:

${name-token}
Substitite name if it is set; if it is not, substitute token.

${name=token}
Substitute name if it is set; if it is not set, substitute token and set name to equal
token.

${name+token}
Substitute token if name is set.

${name? token}
Substitute name if it is set; if it is not, print token and exit from the shell.

Command Output Substitution
ksh can use the output of a command as shell input (as command arguments, for example)
by enclosing the command in grave characters ' '. For example, to list the contents of the
directories named in file dirs, use the command

ls -1 'cat dirs'

Constructs
ksh lets you control the execution of programs through the following constructs. It
recognizes a construct only if it occurs unquoted as the first token of a command. This
implies that a separator must precede each reserved word in the following constructs; for
example, newline or';' must precede do in the for construct.

breakfnJ
Exit from for, until, or while. If n is given, exit from n levels.

case token in [pattern [I pattern J ...) sequence;;) ... esac
Check token against each pattern, and execute sequence associated with the first
matching pattern.

LEXICON

700 ksh

continue [n]
Branch to the end of the nth enclosing for, until, or while construct.

for name [in token ... J do sequence done
Execute sequence once for each token. On each iteration, name takes the value of
the next token. If the in clause is omitted, $@is assumed. For example, to list all
files ending with .c:

for i in *.c
do

cat $i
done

if seq 1 then seq2 [elif seq3 then seq4 J •.. [else seq5] fi
Execute seql. If the exit status is zero, execute seq2; if not, execute the optional
seq3 if given. If the exit status of seq3 is zero, then execute seq4, and so on. If the
exit status of all tested sequences is nonzero. execute seq5.

time sequence
Time how long it takes sequence to execute. When sequence has finished
exeucting. the time is displayed on the standard output.

while sequencel [do sequence2 J done
Execute sequence2 as long as the execution of sequencel results in an exit status of
zero.

(sequence)
Execute sequence within a subshell. This allows sequence to change the current
directory. for example, and not affect the enclosing environment.

{sequence}
Braces simply enclose a sequence.

Built-in Commands
ksh executes most commands via the fork system call. which creates a new process. See
the Lexicon articles on fork() and exec for details on these calls. ksh also has the following
commands built into itself.

• script Read and execute commands from script. Positional parameters are not allowed.
ksh searches the directories named in the environmental variable PATH to find the
given script.

: [token ...]
A colon ':' indicates a "partial comment". ksh normally ignores all commands on a
line that begins with a colon, except for redirection and such symbols as$,{.?, etc.

A complete comment: if# is the first character on a line, ksh ignores all text that
follows on that line.

alias [name=value ...]

LEXICON

When called without arguments, alias prints all aliases and their values. When
called with a name but no associated value. then it prints the value of name. When
called with a name and value combination, it associated value with name.

For example, the command

alias logout='exit'

binds the token logout to the command exit: hereafter, whenever you type logout,
it will be as if you typed the exit command.

ksh 701

ksh has a number of aliases set by default. See the section Aliases, below, for
details.

bind f-mJ [key_sequence=blndlng_name ...]
When called without arguments, list the current set of key bindings for
MicroEMACS-style editing of command lines. When called with arguments, bind
the key_ sequence to blndlng_name.

For example, the command

bind 'A[AH'=delete-word-backward

binds the editing command delete-word-backward to the key sequence
<esc><backspace>. Note that the carat characters in this command are literally
that, not the shell's representation of a literal <esc> or <backspace> character.

When called with the -m option, bind more than one btndlng_name to a given
key_sequence. This lets you build keyboard macros, to perform complex editing
tasks with one or two keystrokes.

See the section on Command-line Editing. below, for details.

builtin command
Execute command as a built-in command.

cd dlr Change the working directory to dlr. If no argument is given, change to the home
directory as set by the environmental variable HOME. When invoked, it also
changes the environmental variables PWD and OLDPWD.

Using a hyphen·-· as the argument causes ksh to change to the previous directory.
i.e .. the one indicated by shell variable OLDPWD. In effect, this swaps OLDPWD and
PWD, thus allowing you to flop back and forth easily between two directories.

echo token ...
Echo token onto the standard output. ksh replaces the command echo with the
alias echo='print'.

evalftoken ...]
Evaluate each token and treat the result as shell input.

exec [command)
Execute command directly rather than as a subprocess. This terminates the
current shell.

exit [status)
Set the exit status to status, if given, then terminate: otherwise, the previous status
is used.

export [name ...]
ksh executes each command in an environment, which is essentially a set of shell
variable names and corresponding string values. It inherits an environment when
invoked, and normally it passes the same environment to each command it invokes.
export specifies that the shell should pass the modified value of each given name to
the environment of subsequent commands. When no name is given, ksh prints the
name of each variable marked for export.

export V ARIABLE=value
This form of the export command sets VARIABLE to value, and exports it. Thus,
the command

LEXICON

702 ksh

export FOO=bar

is equivalent to the commands:

FOO= bar
export FOO

fc [-1) [-n] [first [last}]
Draw the previously executed commandsfirst through last back for manipulation
and possible execution. first and last can be referenced either by their history
numbers, or by a string with which the command in question begins. Normally, the
commands are pulled into an editor for manipulation before they are executed; the
editor is defined by the environmental variable FCEDIT (default. ed). The
commands in question are executed as soon as you exit from the editor. Option -1
lists the command(s) on stdout, and so suppresses the editing feature. Option -n
inhibits the default history numbers.

fc -s [old=new] [command]
Re-execute command after substituting string new for old.

functionfuncname { script}
Define function funcname for the shell to execute. For example the following
defines function get_name for the shell:

function get_name {

}

echo -n Please enter your name ...
read name
return 0

When ksh encounters get_name, it runs the above-defined function, rather than
trying to find get_name on the disk. Note that the return status can be any valid
status and can be checked in the code that called get_name by reading the shell
variable $? (described above), or by using the function as the argument to an if
statement. This allows you to build constructs like the following:

if get_name; then
do_something

else
do_something_else

fi

To list all defined functions, type the alias functions. To receive detailed
information on a defined function. use the command typename where name is the
name of the function in which you are interested.

getopts optstring name [arg .. .]
Parse the args to command. See the Lexicon entry for getopts for details.

hash [-r] [name ...]
When called without arguments. hash lists the path names of all hashed
commands. When called with name hash check to see if it is an executable
command. and if so adds it to the shell·s hash list. The -r option removes name
from the hash list.

kill [-IJ [signal] process ...

LEXICON

Send signal to process. The default signal is TERM. which terminates the process.
signal may either be a number or a mnemonic as #defined in header file

ksh 703

<signal.h>. When called with the -1 option. it lists all known types of signals. See
the Lexicon entry for kill for details.

let [expression]
Evaluate each expression. This command returns zero if expression evaluates to
non-zero (i.e .. fails). and returns non-zero if it evalutes to zero (i.e .. succeeds). This
is useful for evaluating expressions before actually executing them.

print f-nreunJ [argument ...]
Print each argument on the standard output, separated by spaces and terminated
with a newline. Option -n suppresses printing of the newline. Option -un redirects
output from the standard output to file descriptor n.

Note that each argument can contain the following standard C escape characters:
\b, \f, \n, \r. \v, and\###. See the Lexicon article on C Language for details each
character's meaning. The option -r inhibits this feature, and the -e option re­
enables it.

read name ...
Read a line from the standard input and assign each token of the input to the
corresponding shell variable name. If the input contains fewer tokens than the
name list, assign the null string to extra variables. If the input contains more
tokens, assign the last name the remainder of the input.

readonly [name .. .]
Mark each shell variable name as a read-only variable. Subsequent assignments to
read-only variables will not be permitted. With no arguments, print the name and
value of each read-only variable.

return [status]
Return status to the parent process.

set [-aethkmnuvx [-o keyword] [name ...] J
Set listed flag. The -o option sets keyword, where keyword is a shell option.

When used with one or more names, this command sets shell variables name to
values of positional parameters beginning with $1.

For example, the command

set -h -o emacs ignoreeof

performs the following: turns on hashing for all commands, turns on MicroEMACS­
style command-line editing, and turns off exiting upon EOF (that is. you must type
exit to exit from the shell). set commands are especially useful when embedded in
your .prome. where they can customize ksh to your preferences.

For details of this command, see its Lexicon entry.

shift Rename positional parameter 1 to current value of $2, and so on.

test [option] [expression]
Check expression for condition option. This is a useful and complex command, with
more options than can be listed here. See its Lexicon entry for details.

times Print on the standard output a summary of processing time used by the current
shell and all of its child processes.

trap [command] [n ...]
Execute command if ksh receives signal n. If command is omitted. reset traps to
original values. To ignore a signal. pass null string as command. With n zero,

LEXICON

704 ksh

execute command when the shell exits. With no arguments. print the current trap
settings.

typeset [-firx] [+firx] [name [=value] ... J
When called without an argument. this command lists all variables and their
attributes.

When called with an option but without a name, it lists all variables that have the
specified attribute: - tells typeset to list the value of each variable and + tells it not
to.

When called with one or more names, it gives name to the listed attribute. If name
is associated with a value, typeset also assigns the value to it.

typeset recognizes the following attributes:

-i Store variable's value as an integer
-f List function instead of variable
-r Make the variable read-only
-x Export variable to the environment

umask[nnn]
Set user file creation mask to nnn. If no argument is given, print the current file
creation mask.

unalias [-d] name ...
Remove the alias for each name. The -d option unaliases an alias for a directory.

waitfpld]
Hold execution of further commands until process pld terminates. If pld is omitted,
wait for all child processes. If no children are active, this command finishes
immediately.

whence f-v] name ...
List the type of command for each name. When called with the -v option, also list
functions and aliases.

Aliases
ksh implements as aliases a number of commands that sh calls as separate executable
programs. The echo alias, for instance, does everything that /bin/echo does, but ksh does
not have to fork() and exec() simply to echo a token. Other aliases, like pwd, work by
printing the contents of shell variables. The command /bin/pwd still works should you
prefer it, but you must request it by its full path name should you not wish to use the much
faster alias version.

ksh sets the following aliases by default. If you wish, you can use the built-in command
unalias to make one or all of them go away.

echo=print
false=let
functions=typeset -f
history=fc -1
integer=typeset -i
Iogin=exec login
newgrp=exec newgrp
pwd=print -r $PWD
r=fc -s
true=:
type=whence -v

LEXICON

ksh 705

The alias history is especially useful when you are using the Korn shell's history feature.
When invoked with no argument. it prints the last 13 commands you typed. When invoked
with one numeric argument. it lists the command that corresponds to that argument; for
example

history 106

prints the 106th command you entered (assuming that you've entered that many). When
used with two numeric arguments, it prints the range of commands between the two
arguments; for example

history 10 99

prints the tenth through the 99th commands you entered.

Job Control
ksh lets you manipulate and monitor background jobs via its job control commands.

The following commands manipulate background jobs:

jobs Display information about all controlled jobs. Information is in the following
format:

%num [+-] ptd status command

where num indicates the job number, '+'indicates the current job, '-'indicates the
previous job, ptd is the job's process identifier, status shows the status of the job
(e.g .. Running, Done, Killed), and command is the command description. Note that
ksh only checks for changes in job status when waiting for a command to complete.

kill [-signal] ptd ...
Described above.

wait[pidJ
Hold execution of further commands until process ptd terminates. See its Lexicon
entry for details.

The following'%' syntax can be used with the above commands:

%+ Select the current job.

%- Select the previous job.

%num Select the job with job number num.

%string
Select the most recently invoked job whose command begins with string.

%?string
Select the most recently invoked job whose command contains string.

Command-line Editing
One of the most useful features of ksh is its ability to remember commands that you have
typed previously. You can interactively edit previously issued commands and re-issue them
with just a few keystrokes.

You can recall commands and edit them using the fc command, described above. ksh,
however, also has built into it a MicroEMACS editing feature that lets you recall and edit
commands using MicroEMACS-style editing commands. When you have finished editing.
simply typing <enter> dispatches the command for re-execution.

LEXICON

706 ksh

To turn on MicroEMACS editing. use the command

set -o emacs

The following table gives each editing command and its default keybinding. Note that you
can replace any of the following keybindings by using the bind command, described above.
Note, too, that not every command has a default keybinding. Those that do not have one
are marked "None".

abort (<ctrl-G>)
Abort the current input line or function.

auto-insert
Insert text into the command line. This is the default for almost every key.

backward-char (<ctrl-B>)
Move the cursor one character to the left.

backward-word (<esc>Bl
Move the cursor one word to the left. A word is defined as any cluster of characters
delineated by any of the characters named in the environmental variable IFS: by
default, <space>, <tab>, and <newline>.

beginning-of-line (<ctrl-A> l
Move the cursor to the leftmost position (i.e .. the beginning) of the line.

contplete(<esc><esc>)
Complete as much as is unique of the hashed command name or file name in which
the cursor is positioned. If no unique command or file name is found, ksh beeps.
Note that this command does nothing unless you have used the set command to
turn on hashing.

co01plete-coD1Dland (<ctrl-X> <esc>)
Automatically complete as much as is unique of the hashed command name. Like
the contplete command, above, except that file names are not expanded.

co01plete-tlle (<ctrl-X><ctrl-X>)
Automatically complete as much as is unique of the file name. Like the contplete
command. above. except that commands are not expanded.

delete-char-backward (<ctrl-H>)
Delete the character to the left of the cursor. Shift text to the left to fill the gap left
by the deleted character.

delete-char-forward (<ctrl-D>)
Delete the character upon which the cursor is positioned. Shift text to the left to fill
the gap left by the deleted character.

delete-word-backward (<ctrl-W> l
Delete the word to the left of the cursor. Shift text to the left to fill the gap left by
the deleted word.

delete-word-forward (<esc>Dl
Delete the word to the right of the cursor. Shift text to the left to fill the gap left by
the deleted word.

down-history (<ctrl-N>l
Scroll to the next command in the history buffer, if any.

LEXICON

ksh 707

end-of-line (<ctrl-E>)
Move the cursor to the rightmost position (i.e., the end) of the line.

eot (<ctrl-_>)
Send an EOT (end of transmission) signal to the shell. Normally. this is sent by
<ctrl-D>. but MicroEMACS mode binds this keystroke to an editing command.

forward-char (<ctrl-F>)
Move the cursor one character to the right.

forward-word (<esc>F)
Move the cursor one word to the right.

kill-line (<ctrl-U>)
Delete (i.e .. erase) this entire input line.

kill-to-eol (<ctrl-K>)
Kill the input line from where the cursor is positioned to the end of the line.

list (<esc>?)
Display a sorted listed of all hashed commands and file names that have been
entered so far, and so lists the tokens that can be expanded with the complete
commands. described above.

list-command (<ctrl-X>?)
List all hashed commands.

list-file (none)
List all files used in hashed commands so far.

newline (<Ctrl-J> or <ctrl-M>)
Dispatch the current line to the shell for execution. The cursor need not be at the
beginning or end of the line for this command to work correctly.

prefix- I (<esc>)
Introduce a two-character command sequence.

prefix-2 (<ctrl-X>)
Introduce a two-character command sequence.

quote (<ctrl-">)
Read the following character literally, rather than as an editing command.

redraw (<ctrl-L>l
Redisplay the prompt and the current command line. This is useful if the line is
garbled due to, say. line noise when you are using a modem.

search-character (<ctrl-1>)
Search forward in the current command line for the next character typed.

search-history (<ctrl-R>)
Enter incremental-search mode and search backwards through the history buffer.
abort aborts search and returns you to the line from which you began the search;
<esc> ends searching and leaves you in the current line.

stutf (none)
Take a character that is bound to an editing command and "stuff' it back into the
terminal input, so it can receive special treatment by the terminal handler.

LEXICON

708 ksh

stuff-reset (none)
"Stuffs" a character. then aborts input.

transpose-chars (<ctrl-T>)
Swap the character the cursor in on, with the character to its left.

up-history (<ctrl-P>)
Move to the previous line in the history buffer (if any).

yank (<ctrl-Y>)
Insert the most recently killed text back into the command string. at the point
where the cursor is positioned.

yank-pop (<esc> Y)
Yank a string. then replace it within the "yank" buffer with the next most previously
killed string.

Please note that when you tum on the MicroEMACS-style editing with the command set -o
emacs, you can no longer log out by typing <ctrl-D>: the shell grabs this keystroke to edit
the material in its input buffer. To log out, you must use the command exit, or type the
command set +o emacs before typing <ctrl-D> to log out.

Example
The following C code creates a program called splurt.c. It demonstrates numbered
redirection of ksh, by writing to five streams without opening them. Compile it with the
command:

cc -o splurt splurt.c

To call it from the command line, you could type a command of the form:

splurt 3> splurt3 4> splurt4 5> splurt5 6> splurt6 7> splurt7

This will redirect the splurt's output into files splurt3 through splurt7.

#include <stdio.h>
main()
{

}

Files

int i;
char buf[SOJ;

for(i = 3; i < 8; i++) {
sprintf(buf, "For fd %d\n", i);
write(i, buf, strlen(buf));

}

/etc/profile- System-wide initial commands
$HOME/ .profile- User-specific initial commands
I dev I null - For background input

See Also
bind, commands, dup(), environ, exec, fork(), getopts, jobs, kill, login, newgrp, set, sh,
signal(), test, wait

For a list of commands associated with ksh. see the Shell Commands section of the
Commands Lexicon article.

LEXICON

Introduction to sh, the Bourne Shell, tutorial

Notes

KSH VERSION 709

Note that the queue of previously issued commands is stored in memory, not on disk.

This version of ksh offers a subset of the features of the Korn shell shipped with UNIX
System V.2. It does not offer the following features:

vi-style command-line editing.

Command fc -e.

Variables RANDOM and PPID.

Variable arrays.

Variable attributes other than integers.

The Mark Williams version of ksh is based on the public-domain version of the Korn shell,
which in turn is based on the public-domain version of the seventh edition Bourne shell
written by Charles Forsyth and modified by Eric Gisin, Ron Natalie, Arnold Robbins, Doug
Gwyn, and Erik Baalbergen.

KSH VERSION - Environmental Variable
List current version of Korn shell

The Korn shell stores its current version in environmental variable KSH_VERSION.

See Also
environmental variables, ksh

LEXICON

71 O L·devices - l.out.h

L-devices - File Format
Describe devices used by UUCP
/usr/lib/uucp/L-devices

L

The file L-devices describes the communication lines from your COHERENT system to other
sites. It indicates whether a line is directly wired or under modem control. and it also gives
the protocol needed to manipulate it. The command uucico reads the contents of L-devices
before it attempts to transfer a file to or from a remote site.

Each entry in L-devices has five fields, each field being a string demarcated by one or more
white-space characters. The fields are as follows:

I. Type

2. Line

The first field defines the type of line. A line can be either of two types: DIR (for a
directly wired line), or ACU (for a modem). Note the spelling: both entries must be
entirely in upper case.

The second field defines the serial line into which the device is plugged. This entry
must specify the "local" COM device (e.g., com31 or hsOOJ.

3. Disable
For modem devices (type ACU), the third field must give the remote variant for the
entry in field 2 (e.g .. for com31 the entry would be com3r, for hsOO it is hsOOr).
The device named in this field must appear in the file /etc/ttys. For directly
connected devices (type DIR). the device is the same as the entry in the second field.

4.Baud
The fourth field must give a legal baud rate for your modem, as specified in the
entry in file /etc/modemcap for your modem.

5. Modem
Field 5 must correctly name your modem using an entry from I etc/modemcap.

The file /etc/modemcap contains descriptions for a number of popular modems, to spare
you the trouble of typing control sequences for your modem. For a list of the modems
described in this file, as well as available speeds, see the Lexicon entry for modemcap.

Example
The following entry in file L-devices specifies a 1200-baud Hayes (or Hayes-compatible)
modem attached to serial port COM2:

ACU

See Also
com21

me formats, UUCP

l.out.h - Header File
Object file format
#include <l.out.h>

com2r 1200 ha yes

The header file l.out.h describes the format for the output of compilers, assemblers, and the
linker.

LEXICON

L.sys 711

The assembler outputs an unlinked object module, which must be bound with any required
libraries (leaving no unresolved symbols) to produce an executable file, or load module. A
call to one of the exec routines can then execute the load module directly.

The link module begins with a header, which gives global and size information about each
segment. Segments of the indicated size follow the header in a fixed order. The header file
l.out.h defines the header structure for the ZSOOO and M68000 as follows:

struct ldheader {
short 1 _magic;
short l_flag;
short !_machine;
short 1 _tbase;
size t 1 _ssize[NLSEG];
long 1 _entry;

};

It describes the header structure for the i8086. i8088, i80286, and PDP-11 as follows:

struct

} ;

ldheader
int
int
int
vaddr_t
size t

l_magic;
1 flag;
!_machine;
!_entry;
l_ssize[NLSEG];

l_magic is the magic number that identifies a link module; it always contains L_MAGIC.
l_flag contains flags indicating the type of the object. l_machine is the processor identifier,
as defined in the header file mtype.h. l_tbase is the start of the text segment. l_entry
contains the machine address where execution of the module commences. l_ssize gives the
size of each segment.

Files
I.out - Default load module name
<l.out.h>
<mtype.h> - Machine identifiers

See Also
as, cc, core, exec, Id, mtype, nm, system calls

Notes
In the early releases of COHERENT. the header structure was defined only as shown above
for i8086. It was changed to handle 32-bit addresses. In the future. the header structure
defined above for Z8000 and M68000 machines will be implemented on i8086 and i80286
systems as well.

L.sys - File Format
Format for UUCP site descriptions
I usr I lib I uucp /L.sys

The file L.sys holds descriptions of remote sites that are accessed via UUCP. UUCP utilities
read from this file the description of any system that you ask them to access. The
superuser root can read and edit the contents of this file, both to update its contents and to
add new descriptions.

LEXICON

712 L.sys

Each line in L.sys is either a comment or a site descriptor. If a line begins with a pound
sign('#'), it is a comment; otherwise, it is treated as a site descriptor. Each site description
consists of five or more fields, each field being demarcated by one or more white-space
characters.

Site Description
The first five fields of a site description identify the site and how to contact it. These fields
are as follows:

1. Remote system name
This names the remote system. In COHERENT versions 3.0.0 and 3.1.0, only the
first seven characters are significant.

2. Legal call times
This entry specifies when the remote site may be called. There are several possible
formats:

Never
day_list
day_and_time_list

Never means never call the remote site; use it only for sites that will only be calling
you. day_list may be any of the following: Any (that is, call as soon as a file is
queued for sending), Wk (for Monday through Friday), or one or more of Su, Mo.
Tu, We, Th. Fr. or Sa, separated by commas (be sure not to use spaces here). A
day_and_tlme_llst is identical to a day_list but appends a time field to one or more
of the days specified. The time field consists of two four-digit 24-hour times
separated by a hyphen. The legal call time is any time at or after the first time and
at or before the second time. If the first time is greater than the second time, then
the valid calling times will be from midnight to the second time and from the first
time through midnight. Omitting the time field permits calling at any time on the
specified day. For example:

never dial the site
Never
dial the site whenever a file is queued
Any
dial on Sunday, Monday and Tuesday, 2-5 AM
SuMoTu0200-0500
Weekdays between 1-7 PM and all day on Saturday
Wk1300-1900,Sa
Midnight Sunday through 2 AM and 11 PM through midnight
Su2300-0200

3. Device
This indicates the device on your computer via which UUCP is to contact the remote
site. For sites accessed via a modem, use the entry ACU. For sites directly
connected via a serial port, use the name of the port. e.g.. com31.

4.Speed

LEXICON

This gives the the baud rate at which UUCP is to call the remote system, e.g .. 1200,
2400, or 9600. This speed must be valid according to the file /etc/modemcap for
at least one modem described in the file L-devices.

L.sys 713

5. Telephone number
This gtves the string that UUCP is to send to the modem in order to call the remote
site. This string may include special characters for your modem (e.g.. some
modems accept a comma if a pause is needed during dialing), but will usually be
simply the number to dial. e.g. "17085590412". The string that is actually sent to
the modem consists of the cs and ds strings from the modem's entry in
/etc/modemcap, the telephone number, and finally the de and ce strings from
/etc/modemcap.

Chat Script
The remaining fields in a descriptor form the "chat script", that is, the dialogue that your
UUCP system must perform in order to log on to the remote computer. The chat script
consists of strings of characters to be exchanged between the remote computer and your
UUCP system; first comes an expect_strlng (the string that your system expects), followed by
a send_strlng (the string to send in response to the expect_strlng). When calling a remote
site, your computer waits for a carrier from the remote modem, then waits for the first
expect_strlng, after which it sends the first send_strlng. etc.

Consider. for example, the remote system bazooka, which has a login prompt of Coherent
login:; assume that your login is howard, the remote system prompts for passwords with
password:, and your password is r56d92. The chat script for bazooka will read as follows:

ogin: howard word: r56d92

As you can see from the above example. an expect_strlng need contain only the last five
characters of what the remote system sends.

An expect_strlng may be compound or simple. A slmple_expect_strlng is either a sequence of
characters (not including spaces, tabs, or hyphens) or a pair of quotation marks "". An
empty pair of quotation marks tells UUCP not to wait for any incoming prompt. but go
ahead and send the next send_strlng (i.e., expect a null string). A compound_expect_strlng
is a sequence of fields separated by hyphens, in the format:

simple_ expect_ string-send_ string-simple_ expect_ string-send_ string ...

A compound_expect_string has no spaces or tabs. If the first slmple_expect_strlng is not
received within 25 seconds, the first send_strlng after the hyphen is sent and the system
waits for the second simple_expect_string; if the second slmple_expect_string is not received
after 25 seconds, the second send string is sent, and so on. This syntax allows UUCP to
use any number of alternate expect/send exchanges, rather than failing if it does not receive
the first expect_ string.

A send_string is the character sequence that UUCP sents to the remote site. Unless
otherwise specified, UUCP sends a newline at the end of any send_string. As a special case
of this, an empty alternate send_string tells UUCP to send a single newline to the remote
site if the precedingexpect_string is not received. For example

ogin:--ogin:

is a compound expect_string that tells UUCP to wait for the string ogin: from the remote
site. If UUCP does not receive this string within the specified time limit, it sends a newline
and again waits for ogin: from the remote site.

A send_string that consists of only two quotation marks'"' sends a carriage return and
nothing else. Otherwise, it sends the text specified followed by a carriage return. You can
embed the following escape sequences into a send_string to send special characters:

LEXICON

714 13tolO

Notation

\EOT
\BREAK

\b
\c

\d
\K
\n
\N
\p
\r
\s
\t
\\

\xxx

Meaning

Send an EOT character (\ 004)
Send a break signal on the line
Send a backspace
Suppress the carriage return normally sent
(can occur anywhere in send string)
Delay for two seconds
Send a break signal on the line
Send a newline
Send a NUL character (\000)
Delay for one second
Send a carriage return
Send a space character
Send a tab character
Send a backslash character
Send the octal character specified

Limitations
L.sys has the following limitations:

Site descriptors may not continue beyond one line.

Line length cannot exceed 511 characters.

No line may have more than 27 composite-expect/send pairs.

In the COHERENT versions 3.0.0 and 3.1.0, there is no way to send a break signal
to the remote modem. This feature will be added in a future release.

Example
The following L.sys entries are used to dial into the MWC UUCP BBS. The first entry
corresponds to 2400 b.p.s. access and the second to 9600 b.p.s Via a Telebit Trailblazer
modem. Please note that in the example below, entries are continued over multiple lines; in
the actual file, each entry must be on a single line, but the line may exceed 80 characters in
length.

mwcbbs Any ACU 2400 17085590412 \
\r\d\r in:--in: nuucp word: public word: SERIALNUM

#mwcbbs Any ACU 9600 17085590445 \
FAST \r\d\r in:--in: nuucp word: public word: SERIALNUM

For further details on accessing the MWC BBS, refer to the COHERENT Release Notes.

See Also
file formats, L-devices, modemcap, Permissions, UUCP

13tolO - General Function (libc)
Convert file system block number to long integer
13tol(lp, l3p, n)
long *Ip;
char •l3p;
unsignedn;

LEXICON

LASTERROR - le 715

To conserve space inside i-nodes in COHERENT file systems, the system stores block
addresses in three bytes. Programs that reference or maintain file systems use the
functions 13tol and ltol3 routines to convert between the three-byte representation and
long numbers.

13tol converts n three-byte block addresses at location l3p to an array of long integers at
location Ip.

See Also
canon.h, general functions, ltol3()

LASTERROR - Environmental Variable
Program that last generated an error
LASTERROR=program name

The environmental variable LASTERROR names the last program to have returned an error
to the shell. For example, if you had used the command set with an incorrect number of
arguments, it would have failed to run and would have exited with an error condition, and
LASTERROR would read LASTERROR=set.

The command help reads LASTERROR to determine what the last program was for which
you needed help. Thus, if you type help without an argument, it will return information
about the program named in LASTERROR.

See Also
environmental variables

le-Command
List/categorize files in a directory
le [-labcdfp] [directory ...)

le lists the names of the files in each directory, or the current directory if no directory is
named. The files are categorized by type (files, directories, and so on) and listed in columns
within each category.

The following options modify the output.

-1 List only one file name per line (do not print in columns).

-a List all file names, including'.' and'..'.

-b List block-special files only.

-c List character-special files only.

-d List directories only.

-f List regular files only.

-p List pipe files only.

See Also
commands, ls

LEXICON

716 Id

Id - Command
Link relocatable object files
Id [option . ..]file ...

A compiler translates a file of source code into a relocatable object. This relocatable object
cannot be executed by itself, for calls to routines stored in libraries have not yet been
resolved. Id combines, or links, relocatable object files with routines stored in libraries
produced by the archiver ar to construct an executable file. For this reason, Id is
sometimes called a linker, a link editor. or a loader.

Id scans its arguments in order and interprets each option as described below. Each non­
option argument is either a relocatable object file, produced by cc, as, or Id, or a library
archive produced by ar. It rejects all other arguments and prints a diagnostic message.

Each relocatable file argument is bound into the output file if its machine type matches the
machine type of the first file so bound; if it does not, Id prints a diagnostic message. The
symbol table of the file is merged into the output symbol table and the list of defined and
undefined symbols updated appropriately. If the file redefines a symbol defined in an earlier
bound module, the redefinition is reported and the link continues. The last such
redefinition determines the value that the symbol will have in the output file, which may be
acceptable but is probably an error.

Each library archive argument is searched only to resolve undefined references, i.e., if there
are no undefined symbols, the linker goes to the next argument immediately. The library is
searched from first module to last and any module that resolves one or more undefined
symbols is bound into the output exactly as an explicitly named relocatable file is bound.
The library is searched repeatedly until an entire scan adds nothing to the executable file.

The order of modules in a library is important in two respects: it will affect the time required
to search the library, and, if more than one module resolves an undefined symbol. it can
alter the set of library modules bound into the output.

A library will link faster if the undefined symbols in any given library module are resolved
by a library module that comes later in the library. Thus, the low-level library modules,
those with no undefined symbols, should come at the end of the library, whereas the
higher-level modules, those with many undefined symbols. should come at the beginning.
The library module ranlib.sym, which is maintained by the ar s modifier, provides Id with a
compressed index to the symbols defined in the library. But even with the index. the library
will link much faster if the modules occur in top-down rather than bottom-up order.

A library can be constructed to provide a type of "conditional" linking if alternate resolutions
of undefined symbols are archived in a carefully thought-out order. For instance, libc.a
contains the modules

finit.o
exit.o
_finish.o

in precisely the order given, though some other modules may intervene. finit.o contains
most of the internals of the STDIO library, exit.o contains the exit() function, and _finish.o
contains an empty version of _finish(), the function that exit() calls to close STDIO streams
before process termination. If a program uses any STDIO routines, macros, or data, then
finit.o will be bound into the output with its version of finish(). If a program uses no
STDIO, then the "dummy" _finish.o will be bound into the output because it is the first
module that defines _finish() that the linker encounters after exit.o adds the undefined
reference. This saves approximately 3,000 bytes. To set the order of routines within a
library. use the archiver ar.

LEXICON

Id 717

The available options are as follows:

-d Define common regions even if relocation information is retained. By default, Id
leaves common areas undefined if there are undefined symbols or if the -r option is
specified.

-e entry
Specify the entry point of the output module, either as a symbol or as an absolute
octal address.

-k[system]
Bind the output as a kernel process or linkable driver. The starting address
depends on the target machine, and Id scans the system link file symbol table for
symbols that are currently undefined. system defaults to /coherent.

-1 name An abbreviation for the library /llb/llbname.a or /usr/llb/llbname.a if the first is
not found.

-m This option tells Id to perform in-memory load if possible. This requires more
memory. but is faster than using a buffer file.

-n Bind the output with separate shared and private segments, and with each starting
on a hardware segment boundary. so that several processes can use a single copy of
the shared segment simultaneously.

-ofile Write output tofile (default, I.out.)

-R value
Relocation base option. By default, Id links executeable files to run at the user­
base for the computer. In almost all cases. the user-base is zero. If the -R option is
used, Id will link the executeable to run at value instead of at zero. value can be set
to any C-style constant. or to a symbol name that Id can find in the object files and
archives being linked; remember that a C-accessible symbol must end with an
underscore character ·_·. This option is used primarily to produce output files that
can be burned into ROM. These programs must make their own provisions for
relocating initialized data and other tasks.

-r Retain relocation information in the output, and issue no diagnostic message for
undefined symbols. By default Id discards relocation information from the output if
there are no undefined symbols.

-s Strip the symbol table from the output. The same effect may be obtained by using
the command strip. The -s and -r options are mutually exclusive.

-usymbol
Add symbol to the symbol table as a global reference, usually to force the linking of
a particular library module.

-X Discard local compiler-generated symbols of the form 'L .. .'.

-x Discard all local symbols.

Files
I.out - Default output
/coherent for -k option
/llb/llb•.a- Libraries
/usr/llb/llb•.a- More libraries

LEXICON

718 ldexpO - ldivO

See Also
ar, ar.h, as, cc, commands, I.out.h, strip

Notes
By default, COHERENT allocates two kilobytes of stack to a process. This is sufficient for
most processes. To change the amount of stack used by a given executable program, use
the command ftxstack. See its Lexicon entry for details. If you are linking a program by
hand (that is, running ld independently from the cc command), be sure to include the
appropriate run-time start-up routine with the Id command line; otherwise, the program
will not link correctly.

ldexpO - General Function (libc)
Combine fraction and exponent
double ldexp{f, e) double]; int e;

ldexp combines the fraction] with the binary exponent e to return a floating-point value
real that satisfies the equation real=m*2 Ae.

See Also
atof(), cell(), fabs(), tloor(), frexp(), general functions, modf()

ldivO - General Function (libc)
Perform long integer division
#include <stdlib.h>
ldiv_t ldiv(numerator, denominator)
long numerator, denominator;

ldiv divides numerator by denominator. It returns a structure of the type ldiv_t, which is
structured as follows:

typedef struct {
long quot;
long rem;

} ldiv_t;

ldiv writes the quotient into quot and the remainder into rem.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative
if the signs of the arguments differ. The sign of the remainder is the same as the sign of the
numerator.

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than
the magnitude of the algebraic quotient. This is not guaranteed by the operators I and %,
which merely do what the machine implements for divide.

See Also
div, general functions

Notes
The ANSI Standard includes this function to permit a useful feature found in most versions
of FORTRAN, where the sign of the remainder will be the same as the sign of the numerator.
Also, on most machines, division produces a remainder. This allows a quotient and
remainder to be returned from one machine-divide operation.

If the result of division cannot be represented (e.g .. because denominator is set to zero), the
behavior of ldiv is undefined. Caveat utilitor.

LEXICON

let - Command
Evaluate an expression
let [expression)

let - lex 719

The command let is built into the Korn shell ksh. It evalutes expression; it returns zero if
expression evaluates to non-zero status, and non-zero if it evaluates to zero status.

See Also
commands, ksh

lex - Command
LeXical analyzer generator
lex [-t][-v][flle]
cc lex.yy.c -11

Many programs, e.g .. compilers. process highly structured input according to rules. Two of
the most complicated parts of such programs are lexical analysis and parsing (also called
syntax analysis). The COHERENT system includes two powerful tools called lex and yacc to
help you construct these parts of a program. lex converts a set of lexical rules into a lexical
analyzer. and yacc converts a set of parsing rules into a parser.

The output of lex may be used directly. or may be used by a parser generated by yacc.

lex reads a specification from the given file (or from the standard input if none). and
generates a C function called yylex(). lex writes the generated function in the file lex.yy.c.
or on standard output if you use the -t option. The -v option prints some statistics about
the generated tables.

The tutorial on lex that appear in this manual describes lex in detail. In brief, the
generated function yylex() matches portions of its input to one pattern (sometimes called a
regular expression) from a set of rules, or context, and executes associated C commands.
Unmatched portions of the input are copied to the output stream. yylex() returns EOF
when input has been exhausted.

lex uses the following macros that you may replace with the preprocessor directive #undef
if you wish: input() (read the standard input stream). and output(c) (write the character c to
the standard output stream). You may also replace the following functions if you wish:
main() (main function), error(...) (print error messages; takes same arguments as printf).
and yywrap() (handle events at the end of a file). If an action is desired on end of file, such
as arranging for more input, yywrap() should perform it, returning zero to keep going.

A full lex specification has the following format:

Macro definitions, of the form:
name pattern

Start condition declarations:
%S NAME •••

Context declarations:

%C NAME •••

Code to be included in the header section:

%{
anything
%}
<tab or space> anything

LEXICON

720 lex

Rules section delimiter (must always be present):

%%

Code to appear at the start ofyylexQ:

<tab or space> anything

Rules for initial context, in any of the forms:

rule action;
rule I (means use next action)
rule {
<tab or space>
<tab or space>

action;
}

For each additional context:

%C NAME
... rules for this context ...

End of rules section delimiter:

%%

Code to be copied verbatim, such as user provided input(), output(), yywrap(), or other.

lex matches the longest string possible: if two rules match the same length string. the rule
specified first takes precedence. lex puts the matched string, or token, in the char array
yytext[], and sets the variable yyleng to its length.

Actions may use the following:

ECHO
REJECT
BEGIN NAME
BEGINO
yyswitch(NAME)
yyswitch(O)
yynext()
yyback(c)
yyless(n)
yymore()
yylookQ

Output the token
Perform action for lower precedence match
Set start condition to NAME
Clear start condition
Switch to context NAME, return current
Switch to initial context
Steal next character from input
Put character c back into input
Reduce token length to n. put rest back
Append next token to this one
Returns number of chars in input buffer

lex rules are contiguous strings of the form

[<NAME, ... >)[" I token [/lookahead)[$)

where brackets'[)' indicate optional items.

<NAME, ... > Match only under given start conditions
Match the beginning of a line

$ Match the end of a line
token
/lookahead

Pattern elements:

LEXICON

Pattern that a given token is to match
Pattern that given trailing text is to match

a
\a

[abx-z]
["abx-z]
abc
{name}
(exp)

The character a
The character a, even if special
Any character except newline
Any of a, b, or x through z
Any except a, b, or x through z
The string abc, even if any are special
The macro definition name
The pattern exp (grouping operator)

Optional operators on elements:

e?
e•
e+
e{n}
e{m,n}

Zero or one occurrence of e
Zero or more consecutive es
One or more consecutive es
n (a decimal number) consecutive es
m through n consecutive es

Patterns may be of the form:

e 1 e2 Matches the sequence e 1 e2
e 1 I e2 Matches either e 1 or e2

Lexicon 721

lex recognizes the standard C escapes: \n, \ t, \r, \ b, \f, and \ooo (octal representation).
The special characters

\ () < > { } % * + ? [- l A I $ • I
must be prefixed with \ or enclosed within quotation marks (excepting " and \) to be
normal. Within classes, only the characters. " - \ and] are special.

Files
/usr/llb/llbl.a
/usr/src/llbl/• - library source code

See Also
commands, yacc
lntroductlon to lex, the Lexical Analyzer

Lexicon - Introduction
The Mark Williams Lexicon is a new approach to documentation of computer software. The
Lexicon is designed to improve documentation and eliminate some limitations found in
more conventional documentation.

How to Use the Lexicon
The Lexicon consists of one large document that contains entries for every aspect of
COHERENT. You will not have to search through a number of different manuals to find the
entry you are looking for.

Every entry in the Lexicon has the same structure. The first line gives the name of the topic
being discussed, followed by its type (e.g .. Command).

The next lines briefly describe the item, then give the item's usage. where applicable. These
are followed by a brief discussion of the item, and an example.

Cross-references follow. These can be to other entries or to other texts. Diagnostics and
notes, where applicable, conclude each entry.

LEXICON

722 Lexicon

Internally, the Lexicon has a tree structure. The "root" entry is the present entry, for
Lexicon. Below this entry comes the set of Overview entries. Each Overview entry
introduces a group of entries; for example, the Overview entry for string introduces all of
the string functions and macros, lists them, and gives a lengthy example of how to use
them.

Each entry cross-references other entries. These cross-references point up the
documentation tree, toward an overview article and, ultimately, to the entry for Lexicon
itself. They also point down the tree to subordinate entries, and across to entries on related·
subjects. For example. the entry for getchar cross-references STDIO. which is its Overview
article, plus putchar and getc. which are related entries of interest to the user. The
Lexicon is designed so that you can trace from any one entry to any other, simply by
following the chain of cross-references up and down the documentation tree.

Use the Lexicon
If. while reading an entry. you encounter a technical term that you do not understand, look
it up in the Lexicon. You should find an entry for it. For example. if a function is said to
return a data type float and you do not know exactly what a float is, look it up. You will
find it described in full. In this way. you should increase your understanding of
COHERENT. and make your programming easier and more productive.

Overview Articles
The Lexicon includes the following overview articles. Look at the appropriate overview
article for information on the subject in which you are interested. The overview article will
give you an overview of the topic, and tell you which Lexicon articles you should read to find
detailed information.

Clanguage
This article summarizes COHERENT's implementation of the C lanaguage. It
introduces subordinate articles, such as those that describe each C keyword.

commands
This article briefly summarizes each COHERENT system command.

definiUons
The Lexicon includes a number of articles that define technical terms that are used
through it. This overview article lists the definition articles included in the Lexicon.

device drivers
This article introduces COHERENT's suite of device drivers, and points to
subordinate articles that describe each driver in details.

environmental variables
This article lists the commonly used environmental variables that are described in
the Lexicon.

file formats
The COHERENT system has a number of special files that contain information
presented in a special format. Some files are meant to be read mechanically, such
as executable files or relocatable objects; others you can edit to change the behavior
of one or another COHERENT system. This overview article introduces the
subordinate articles that describe the formats of these special files.

libraries

LEXICON

This introduces the libraries included with the COHERENT system, for use with the
COHERENTC compiler. and the families of functions in each.

libraries 723

system maintenance
Certain files and commands are used only to help you maintain your COHERENT
system and help it run smoothly. This article introduces the subordinate articles
that describe the COHERENT system's tools for to help you perform system
maintenance.

technical information
Finally, the Lexicon contains a set of articles that do not easily fit into any other
category. These give broad technical information, both to help you decypher other
articles within the Lexicon, and to provide you with a "cookbook" with which you
can solve common problems. The article names should be self-explanatory, e.g.,
terminal, printer, and RS-232. If you're trying to tackle a new problem and don't
have a clue as to where to begin. check this overview article first. You may well find
that it lists a subordinate article that is helpful.

libraries - Overview
A library is an archive file of commonly used functions that have been compiled, tested, and
stored for inclusion in a program at link time.

The COHERENT system stores its libraries in two directories, /usr/lib and /lib. The
following libraries are kept in /usr/llb:

libcurses.a
libl.a
libmp.a
libterm.a
liby.a
lib.b

curses library
lex library
Multi-precision arithmetic library
termcap library
yacc library
bc's function library (in be source)

The following libraries are kept in /lib:

libc.a
libm.a

Library Functions

General functions and system calls
Mathematics routines

The following overview articles introduce the library functions included with the COHERENT
system:

ctype macros
curses
general functions
mathematics library
multiple-precision mathematics
STDIO
string functions
system calls
terminal-independent operations
time
variable arguments

See Also
ar, C language

LEXICON

724 limits.h

limits.h - Header File
Define numerical limits
#include <limits.h>

The header file limits.h defines macros that set the numerical limits for the translation
environment. It is described in sections 2.2.4.2 and 4.1.4 of the ANSI Standard.

The following table gives the macros defined in limits.h. Each value given is the macro's
minimum maximum: a conforming implementation of C must meet these limits, and may
exceed them.

CBAR_BIT
Number of bits in a char. This must be at least eight.

CBAR_MAX
Largest value representable in an object of type char. If the implementation defines
a char to be signed, then it is equal to the value of the macro SCBAR_MAX:
otherwise, it is equal to the value of the macro UCllAR_MAX.

CHAR_ MIN
Smallest value representable in an object of type char. If the implementation
defines a char to be signed, then it is equal to the value of the macro SCBAR_MIN:
otherwise, it is zero.

INT_MAX
Largest value representable in an object of type int: it must be at least 32,767
(Ox7FFF).

INT_MIN
Smallest value representable in an object of type int: it must be at most -32, 767
(Ox8000).

LONG_MAX
Largest value representable in an object of type long int: it must be at least
2.147,483,647(0x7FFFFFFFL).

LONG_MIN
Smallest value representable in an object of type long int; it must be at most
-2.147,483,647(0x80000000L).

MB_LEN_MAX
Largest number of bytes in any multibyte character, for any locale; it must be at
least one.

SCBAR_MAX
Largest value representable in an object of type signed char; it must be at least
127.

SCBAR_MIN
Smallest value representable in an object of type signed char; it must be at most
-127.

SHRT_MAX
Largest value representable in an object of type short int: it must be at least
32,767 ((short)OX7FFF).

SHRT_MIN

LEXICON

Smallest value representable in an object of type short int; it must be at most
-32. 76 7 ((short)OxBOOOJ.

lines - linkO 725

UCHAR MAX
Largest value representable in an object of type unsigned char; it must be at least
255.

UINT_MAX
Largest value representable in an object of type unsigned int; it must be at least
65,535 ((unsigned int)OxFFFF).

ULONG MAX
-Largest value representable in an object of type unsigned long int; it must be at
least 4.294,96 7,295 ((unsigned long)OxFFFFFFFFL).

USHRT MAX
-Largest value representable in an object of type unsigned short int: it must be at
least 65,535 ((unsigned short)OxFFFF).

See Also
header mes

lines - Command
Highly amusing board game
/usr/gaJD.es/lines

lines is an interactive COHERENT version of a two-player board game by Claude Soucie
called Lines of Action. The screen displays the game board with "X" and "O" characters
marking the positions of the pieces. To see the rules of the game, type "r" and then press
<Enter>. To see the available interactive commands. type "h" and press <Enter>.

Two players can use lines to keep track of a game between them by moving with the '"M"
command. Alternatively. one player can play against the computer by moving with the "m"
command. The program uses a tree-search technique to consider possible moves; the
player can vary the speed of the program's replies with commands that change the tree
search width and depth.

For a more detailed description of Lines of Action. see A Gamut of Games by Sid Sackson
(New York, Random House, 1969).

See Also
commands

linkO - System Call
Create a link
link(old, new)
char *old, •new;

A link to a file is another name for the file. All attributes of the file appear identical among
all links.

link creates a link called new to an existing file named old.

For administrative reasons, it is an error for users other than the superuser to create a link
to a directory. Such links can make the file system no longer tree structured unless
carefully controlled, posing problems for commands such as find.

LEXICON

726 linker-defined symbols - In

Example
This example, called lock.c, demonstrates how link can be used to perform intertask
locking. With this technique, a program can start a process in the background and stop
any other user from starting the identical process.

main ()
{

if (link ("lock. c", "lockfile")
printf("Cannot link\n");
exit (1);

}

-1) {

sleep(50); /*do nothing for 50 seconds */
unlink("lockfile");
printf("done\n");
exit (O);

}

See Also
find, In, system calls, unlink()

Diagnostics
link returns zero when successful. It returns -1 on errors, e.g .. old does not exist, new
already exists, attempt to link across file systems, or no permission to create new in the
target directory.

Notes
Because each mounted file system is a self-contained entity. links between different
mounted file systems fail.

linker-defined symbols - Overview
The following symbols are set by the linker Id when it links a program together:

edata
end
et ext

Location after shared and private data
Location after uninitialized data segment
Location after text segments

These symbols may be read from the program's symbol table, e.g., for debugging.

See Also
C language, Id

In -Command
Create a link to a file
In [-f] oldjlle [newjlle]
In [-f] oldflle ... directory

A link lets you give you a file more than one name. The file's contents or attributes may be
changed via either name.

In its first form, In links the name new.file to the file that is already named oldjlle, provided
that newjlle does not already exist. If newjlle is omitted, a link is created in the current
directory with the same file name as oldflle, with leading directory information removed.

In the second form, In links oldjlle with an identical name in another directory. In effect, one
file will "live" in two directories.

LEXICON

localtimeO 727

If new.file already exists, -f forces Jn to unlink it and assign its name to oldfile.

Links to directories or across file systems are impossible.

See Also
commands, cp, ls, mv, nn

localtimeO - Time Function (libc)
Convert system time to calendar structure
#include <time.h>
#include <sys/types.h>
tm •localtime(tlmep) time_t •timep;

localtime converts the COHERENT internal time into the form described in the structure
tm.

timep points to the system time. It is of type time_t. which is defined in the header file
types.h.

localtime returns a pointer to the structure tm. which is also defined in time.h. The
function asctime turns tm into an ASCII string.

Unlike its cousin gmtime, localtime returns the local time, including conversion to daylight
saving time, if applicable. The daylight saving time flag indicates whether daylight saving
time is now in effect, not whether it is in effect during some part of the year. Note, too, that
the time zone is set by localtime every time the value returned by

getenv("TIMEZONE")

changes. See the Lexicon entry for TIMEZONE for more information on how COHERENT
handles time zone settings.

Example
The following example recreates the function asctime. It builds a string somewhat different
from that returned by asctime to demonstrate how to manipulate the tm structure.

#include <time.h>
#include <sys/types.h>

char *month[] = {
''January", "February", 11 March 11

, "April",
"May", 11 June 11

,
11 July 11 I 11 August 11

, "September" I

"October", "November", "December"
} ;

char *weekday[]= {

} ;

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday" , "Friday" , "Saturday"

LEXICON

728 logO

main()
{

}

char buf[20];
time_t tnum;
struct tm *ts;
int hour = O;

time(&tnum); /* get time from system */

/* convert time to tm struct */
ts=localtime(&tnum);

if (ts->tm_hour == 0)

else

sprintf(buf,"121%02d:%02d A.M.",
ts->tm_min, ts->tm_sec);

if(ts->tm_hour>=12) {
hour=ts->tm_hour-12;
if (hour==O)

hour=12;
sprintf(buf,"%02d:%02d:%02d P.M.",

hour, ts->tm_min,ts->tm_sec);

} else
sprintf(buf,"%02d:%02d:%02d A.M.", ts->tm_hour,

ts->tm_min,ts->tm_sec);

printf("\n%s %d %s 19%d %s\n",
weekday[ts->tm_wday], ts->tm_mday,
month[ts->tm_mon], ts->tm_year, buf);

printf("Today is the %d day of 19%d\n",
ts->tm_yday, ts->tm_year);

printf("Daylight Saving Time %sin effect\n",
ts->tm isdst ? "is" : "is not");

See Also
gmtimeo. time, TIMEZONE

Notes
localtlme returns a pointer to a statically allocated data area that is overwritten by
successive calls.

logO - Mathematics Function (libm)
Compute natural logarithm
#Include <math.h>
double log(z) double z;

log returns the natural (base e) logarithm of its argument z.

LEXICON

log100 - login 729

Example
For an example of this function, see the entry for exp.

See Also
loglO(), mathematics library

Diagnostics
A domain error in log (z is less than or equal to zero) sets errno to EDOM and returns zero.

log100 - Mathematics Function (libm)
Compute common logarithm
#include <math.h>
double loglO(z) double z;

loglO returns the common (base 10) logarithm of its argument z.

Example
For an example of this function, see the entry for exp.

See Also
log(), mathematics library

Diagnostics
A domain error in logIO (z is less than or equal to zero) sets errno to EDOM and returns
zero.

login - Command
Log in or change user name
login [username]

The COHERENT system normally invokes login as part of the log in sequence on an unused
terminal. The user may also invoke login directly from the shell sh. usually to change to a
different user name. If username is not present. login prompts the user. If the account has
a password, login asks for it.

If the user logs in successfully. login then reads the file /etc/motd (which holds the
"message of the day") and prints its contents on the screen, then notifies the user if mail is
waiting to be read. It then sets the working directory to the user's base directory and sets
the user id and group id, transfers ownership of the tty to the user, and updates the login
accounting file. Finally. if a program is specified in /etc/passwd, login reads /etc/profile
for lines beginning "export". inserts the remainder of the line into the environment. then
executes the specified program. If the program field is blank, login executes sh, which
executes the contents of $HOME/ .profile if it is present.

From the shell, a user may log in by typing login or by typing an end of file (normally <ctrl­
D>) to terminate the previous shell.

When the superuser root logs in, login sets HOME to '/'and reads the file /.profile should
one exist.

Files
/etc/logmsg- Login message (default, "Coherent login:")
/etc/passwd- User information
/etc/profile- System profile
/etc/motd- Message of the day
/etc/utmp- Users currently using system
/usr/adm/wtmp-- Login accounting history

LEXICON

730 logmsg - longjmpO

/usr/adJn/failed- Log of failed login attempts
$HOME/ .profile - User profile

See Also
ac, commands, getty, sh, su, utmp.h

Notes
Under the Korn shell, login is an alias for the expression exec login.

logmsg - System Maintenance
Hold COHERENT Login Message
/etc/logmsg

The file I etc/logmsg holds the message that COHERENT displays to prompt the user to log
in. The superuser bin can use ed or MicroEMACS to change the message to whatever she
prefers.

See Also
system maintenance

Notes
The default message consists of the bell character <ctrl-G> followed by the text Coherent
login:. If the bell annoys you. simply delete the <ctrl-G> from /etc/logmsg.

long - C Keyword
Data type

A long is a numeric data type. By definition, a long is the largest integer data type. It
cannot be smaller than an int, although on some machines an int and a long will be the
same size. Under COHERENT, sizeof long equals two machine words. or four chars (31
data bits plus a sign bit).

See Also
C keywords, data formats, int

longjmpO - General Function (libc)
Return from a non-local goto
#include <setjmp.h>
int longjmp(env, rval) jmp_buf env; int rval;

The function call is the only mechanism that C provides to transfer control between
functions. This mechanism is inadequate for some purposes, such as handling unexpected
errors or interrupts at lower levels of a program. To answer this need. longjmp provides a
non-local goto.

longjmp restores an environment that had been saved by a previous call to the function
setjmp. It returns the value rval to the caller of setjmp, just as if the setjmp call had just
returned. Note that longjmp must not restore the environment of a routine that has
already returned. The type declaration for jmp_buf is in the header file setjmp.h. The
environment saved includes the program counter. stack pointer. and stack frame. These
routines do not restore register variables in the environment returned.

Example
For an example of this function, see the entry for longjmp.

LEXICON

look - Ip 731

See Also
general functions, setjmp()

Notes
Programmers should note that many user-level routines cannot be interrupted and
reentered safely. For that reason, improper use of longjmp and setjmp can result in the
creation of mysterious and irreproducible bugs. Do not attempt to use longjmp within an
exception handler.

look - Command
Find matching lines in a sorted file
look [-df] string [file I

The command look scans the sortedflle and prints each line that begins with string.

The following options specify the order of the search:

-d Use dictionary order: the only characters tested are alphanumerics and blanks.

-f Convert all alphabetic characters to upper case.

If no file is specified, look uses /usr/dict/words with the -df option.

Example
For an example of how to use this command, see the entry for spell.

Files
I usr I diet /words - File of words (sorted with sort -df).

See Also
commands, sort

Notes
Because the file /usr/dict/words is quite large, you may not have installed it or
uncompressed it when you installed your COHERENT system. If this is the case, look will
not work correctly.

Ip - Device Driver
Line printer driver

Files /dev/lp• access the line-printer's device drivers for IBM AT COHERENT. The drivers
are assigned major device number 3.

The COHERENT system supports three printers, in both cooked and raw modes. The
following gives the device name, minor device, and I/ 0 port:

/dev/lptl 0 Ox3BC (/etc/mknod /dev/lptl c 3 0)
/dev/lpt2 1 Ox378 (/etc/mknod /dev/lpt2 c 3 1)
/dev/lpt3 2 Ox278 (/etc I mknod I dev /lpt3 c 3 2)
/dev/rlptl 128 Ox3BC (/etc/mknod /dev/rlptl c 3 128)
/dev/rlpt2 129 Ox378 (/etc/mknod /dev/rlpt2 c 3 129)
/dev/rlpt3 130 Ox278 (/etc/mknod /dev/rlpt3 c 3 130)

"Cooked" processing processes the special characters BS (backspace), HT (horizontal tab),
LF (line feed), FF (form feed), and CR (carriage return) appropriately; raw processing simply
passes them on to the printer.

The driver uses a hybrid busy-wait/timeout discipline to support printers efficiently that

LEXICON

732 lpd

have varying buffer sizes in a multi-tasking environment.

The kernel variable LPWAIT_ sets the time for which the processor waits for the printer to
accept the next character. If the printer is not ready within the LPWAIT_ period, the
processor then resumes normal processing for the number of ticks set by by the kernel
variable LPTIME_. Thus. setting LPWAIT_ to an extremely number (e.g.. 1.000) and
LPTIME_ to a very small number (e.g .. one) results in a fast printer, but leaves very few CPU
cycles available for anything else. Conversely, setting LPWAIT_ to a small number (e.g .. 50)
and LPTIME_ to a large number (e.g .. five) result in efficient multi-tasking but also results
in a slow printer unless the printer itself contains a buffer (as is normal with all but the
least expensive printers). By default. LPWAIT_ is set to 400 and LPTIME_ to four.

We recommend that you set LPWAIT_ to no less than 50 and no more than 1,000, and
LPTIME_ to no less than one. To change the values of LPWAIT_ to 500 and LPTIME_ to
one, use the following command:

/conf/patch -k /coherent LPWAIT_=500 LPTIME_=l

The kernel variable LPTEST _ determines whether the device driver checks to see if the
printer is in an "on-line" condition before it uses the device. If your printer does not
support this signal, you must set LPTEST_ to zero.

Files
/dev/lp• - "Cooked" printer interfaces
/dev/rlp• - Raw printer interfaces

See Also
ascil, db, device drivers, epson, lpr

lpd - System Maintenance
Line printer spooler daemon
/usr/llb/lpd

lpd is a daemon program that runs in the background and prints listings queued by the
command lpr. It is run automatically by lpr. If there is no printing to do, or if another
daemon is already running (indicated by the file dpid), lpd exits immediately. Otherwise, it
searches the spool directory for control files of listings to print. These control files contain
the names of files to print, the user name, banners, and files to be removed upon
completion.

lpd does not print listings in any particular order. Priority is not given to any file, either by
size or by requester.

The command lpsklp command terminates or restarts the current line printer listing.

Files
/dev/lp- Printer
/usr/spool/lpd- Spool directory
/usr/spool/lpd/cf*- Control files
/usr/spool/lpd/df*- Data files
/usr/spool/lpd/dpid-Lock and process id

See Also
lnlt, lpr, lpsklp, system maintenance

LEXICON

lpioctl.h - Header File
Definitions for line-printer 1/0 control
#include <sys/lpioctl.h>

lpioctl.h - lpskip 733

lpioctl.h defines constants used by routines that control 1/0 on the line printer.

See Also
header mes

lpr - Command
Send to line printer spooler
lpr [-cmnr] [-b banner] (flle ...]

lpr lets a user print each specifiedjlle on the line printer, without conflicting with printing
by other users. If noflle is specified, lpr prints the standard input on the line printer.

lpr recognizes the following options:

-B Suppress printing of a banner.

-b banner
Print banner at the beginning of the file. The default banner is the user's login
name.

-c Copy the files (allowing changes to be made before the printing completes).

-m Send a message when the printing completes.

-n Do not send a message (default).

-r Remove the files when they have been spooled.

The command lpskip aborts or restarts the current listing.

Files
/dev/lp- Line printer
/usr/llb/lpd- Line printer daemon
/usr/spool/lpd- Spool directory
/usr/spool/lpd/dpid- Daemon lockfile

See Also
commands, lpd, lpskip, pr, printer

lpskip - Command
Terminate /restart current line printer listing
lpskip [-rJ

The command lpskip aborts or restarts the printing of a file. By default, lpskip aborts the
current listing and prints a diagnostic message. When invoked with the -r option, it restarts
the current listing. This is useful when a printing is spoiled due to, say, a paper jam.

lpskip works only with files that have been spooled to the line printer via the command lpr.

Files
/usr/llb/lpd-Line printer daemon
/usr/spool/lpd- Spool directory
/usr I spool/lpd/ dpid Daemon lockfile

LEXICON

734 Is

See Also
commands, lpd, pr

Is -Command
List directory's contents
ls [-abCcdFfgf.lmnopqRrstux] [flle ...]

The command ls prints information about each.file. Normally, ls sorts its output by file
name and prints only the name of each.file. If a directory name is given as an argument, ls
sorts and lists its contents, not including'.' and' . .'. If no file is named, ls lists the contents
of the current directory.

The following options control how ls sorts and displays its output:

-a Print all directory entries, including'.',' . .', any hidden files, and volume ID's.

-b Print non-graphic characters in octal.

-C Print the output in multi-column format, sorted down the columns.

-c Print the time the files' attributes were last changed.

-d Treat directories as if they were files.

-F Print a '/'after the name of each directory, and print an ·•·after each executable
file.

-f Force each argument to be treated as a directory. This disables the -lrst options
and sorting. and enables the -a option.

-g Same as -1 except that the user id is not displayed.

-i Print the i-number of each file.

-1 Print information in long format. The fields give mode bits, link count, owner uid,
owner gid, size in bytes, date, and file name. For special files, major and minor
device numbers replace the size field.

-m "Stream" the output horizontally across the screen, with each file name separated
by a comma.

-n Same as -I. except the group identifiers and user identifiers are numbers rather
than names.

-o Same as -1, except that the group id is not printed.

-p Print a 'I' after the each directory name.

-q Print non-graphics characters as'?'.

-r Reverse the sense of the sort.

-R Recursively print directories.

-s Print the size in blocks of each file.

-t Sort by time, newest first.

-u Sort by the access time.

-x Print multicolumn output, sorted across the columns. This resembles the output of
the command le.

LEXICON

lseekO 735

The date ls prints with the -1 and -t options is the modification time, unless the -c or -u
option is used as well.

The mode field in the long list format consists of ten characters. The first character will be
one of the following:

Regular file
b Block special file
c Character special file
d Directory
p Pipe
x Bad entry (remove it immediately!)

The remaining nine characters are permission bits, in three sets of three characters each.
The first set pertains to the owner of the file, the second to users from the owner's group,
and the third to users from other groups. Each set may contain 3 characters from the
following.

r The file can be read
s Set effective user ID or group ID on execution
t Shared text is sticky
w The file can be written
x The file is executable

No permission is given

See Also
chmod, commands, le, stat

lseekO - System Call
Set read/write position
long lseek(fd, where, how)
intfd, how; long where;

lseek. changes the seek position. or the point within a file where the next read or write
operation is performed. fd is the file's file descriptor. which is returned by open.

where and how describe the new seek position. where gives the number of bytes that you
wish to move the seek position; it is measured from the beginning of the file if how is zero.
from the current seek position if how is one, or from the end of the file if how is two. A
successful call to lseek returns the new seek position. For example,

position= lseek(fd, lOOL, O);

moves the seek position 100 bytes past the beginning of the file; whereas

position= lseek(fd, OL, l);

merely returns the current seek position. and does not change the seek position at all.

Sparse files may be created by seeking beyond the current size of the file and writing. The
"hole" between the end of the file and where the write occurs is read as zero and will occupy
no disk space. For example. if you lseek 10,000 bytes past the current end of file and write
a string. the data will be written I 0.000 bytes past the old end of file and all intervening
matter will be considered part of the file.

lseek. differs from its cousin fseek. in that lseek is a system call and uses a file descriptor.
whereas fseek is a C function and uses a FILE pointer.

LEXICON

736 ltol30 - lvalue

See Also
STDIO. system calls

Diagnostics
lseek returns -lL on an error, such as seeking to a negative position. If no error occurs. it
returns the new seek position.

Notes
lseek is permitted on character-special files, but drivers do not generally implement it. As a
result, seeking a terminal will not generate an error but will have no discernible effect.

ltol30 - General Function (libc)
Convert long integer to file system block number
ltol3(l3p, lp, n)
char•l3p;
long •lp;
unslgnedn;

To conserve space inside i-nodes in COHERENT file systems, the system stores block
addresses in three bytes. Programs that reference or maintain file systems use the
functions l3tol and ltol3 to convert between the three byte representation and long
numbers.

ltol3 converts n long integers at address lp to the more compact form at address l3p.

See Also
canon.h. general functions. 13tolO

lvalue - Definition
An lvalue is an expression that designates a region of storage. The name comes from the
assignment expression el:e2;, in which the left operand must be an lvalue.

An identifier has both an lvalue (its address) and an rvalue (its contents). Some C operators
require lvalue operands: for example, the left operand of an assignment statement must be
an lvalue. Some operators give lvalue results: for example, if e is a pointer expression, •e is
an lvalue that designates the object to which e points.

A variable can be used as an lvalue, whereas a constant cannot. For example, you cannot
say

6 = (foo+bar);

A pointer is a variable, and can be manipulated within limits. An array name, however, is a
constant and cannot be altered legally. Thus, the code

int foo[10];
int *bar;
foo = bar;

will generate an error message when you attempt to compile it, whereas

int foo[10];
int *bar;
bar = foo;

will not.

LEXICON

The following example shows the use of both an lvalue and a rvalue:

int i, *ip;

ip = &i;
i = 3;
*ip = 4;

/* ip is an lvalue, i and &i are rvalues */
/* i is an lvalue, 3 is an rvalue */
/* *ip is an lvalue, 4 is an rvalue */

See Also
definitions, rvalue

lvalue 737

LEXICON

738 m4

m4-Command
Macro processor
m4 cme ...]

M

The command m4 processes macros. It allows you to define strings for which m4 is to
search, and strings to replace them; m4 then opens.file, reads its contents, replaces each
macro with its specified replacement string, and writes the results into the standard output
stream.

m4 can also perform file manipulation, conditional decision making, substring selection,
and arithmetic. The Introduction to the m4 Macro Processor describes m4 in detail.

The.files are read in the order given; if no file is named, then m4 reads the standard input
stream. The file name·-· indicates the standard input.

m4 copies input to output until it finds a potential macro. A macro is a string of
alphanumerics (letters, digits, or underscores) that begins with a non-digit character and is
surrounded by non-alphanumerics. If m4 does not recognize the macro, it simply copies it
to the output and continues processing. If m4 recognizes the macro and the next character
is a left parenthesis'(', an argument set follows:

macro(argl, ••• , argn)

The arguments are collected by processing them in the same manner as other text (thus, an
arguments may itself be another macro), and resulting output text is diverted into storage.
m4 stores up to nine arguments; any more will be processed but not saved. An argument
set consists of strings of text separated by commas (commas inside quotation marks or
parentheses do not terminate an argument), and must contain balanced parentheses that
are free of quotation marks (i.e., that are unquoted). m4 strips arguments of unquoted
leading space (blanks, tabs, newline characters).

m4 then removes the macro and its optional argument set from the input stream, processes
them, and replaces them in the input stream with the resulting value. The value becomes
the next piece of text to be read.

Quotation marks, of the form• ', inhibit the recognition of macro. m4 strips off one level of
quotation marks when it encounters them (quotation marks are nestable). Thus, 'macro' is
not processed, but is changed to macro and passed on.

m4 determines the value of a user-defined macro by taking the text that constitutes the
macro's definition and replacing any occurrence within that text of '$n' (where n is 'O'
through '9') with the text of the nth argument. Argument 0 is the macro itself.

m4 recognizes the following predefined macros:

changequote[([openquote],[closequote]))
Changes the quotation characters. Missing arguments default to ' for open or ' for
close. Quotation characters will not nest if they are defined to be the same
character. Value is null.

decr[(number)]
Decrement number (default, 0) by one and returns resulting value.

define(macro,dejlnltlon)

LEXICON

Define or redefine macro. If a predefined macro is redefined, its original definition is
irrecoverably lost. Value is null.

m4 739

divert((n)]
Redirects output to output stream n (default is 0). The standard output is O. and 1
through 9 are maintained as temporary files. Any other n results in output being
thrown away until the next divert macro. Value is null.

divnum
Value is current output stream number.

dnl Delete to newline: removes all characters from the input stream up to and including
the next newline. Value is null.

dumpdef[(macros))
Value is quoted definitions of all macros specified, or names and definitions of all
defined macros if no arguments.

errprlnt(text)
Print text on standard error file. Value is null.

eval(expresslon)
Value is a number that is the value of evaluated expression. It recognizes, in order
of decreasing precedence: parentheses, ••. unary + • I %. binary + -. relations.
and logicals. Arithmetic is performed in longs.

ifdef(macro,defvalue, undefvalue)
Return defvalue if macro is defined, and undefvalue if not.

ifelse(arg l ,arg2,arg3 .. .)
Compares argl and arg2. If they are the same. returns arg3. If not, and arg4 is the
last argument, return arg4. Otherwise, the process repeats. comparing arg4 and
arg5. and so on. Like other m4 macros. this takes a maximum of nine arguments.

include(/Ue)
Value is the entire contents of the file argument. If file is not accessible. a fatal
error results.

incr((number)]
Increments given number (default, zero) by one and returns resulting value.

index(text,pattern)
Value is a number corresponding to position of pattern in text. If pattern does not
occur in text. value is -1.

len(text)
Value is a number that corresponds to length of text.

maketemp(fllenameXXXXXX)
Value is filename with last six characters. usually XXXXXX. replaced with current
process id and a single letter. Same as system call mktemp.

sinclude(flle)
Value is the entire contents offile. lffile is not accessible. return null and continue
processing.

substr(text(,start[,count)))
Value is a substring of text. start may be left-oriented (nonnegative) or right-oriented
(negative). count specifies how many characters to the right (if positive) or to the left
(if negative) to return. If absent. it is assumed to be large and of the same sign as
start. If start is omitted. it is assumed to be zero if count is positive or omitted, or -1
if count is negative.

LEXICON

740 machine.h - maddO

syscmd(command)
Pass command to the shell sh for execution. Value is null. Same as system call
system.

translit(text,characters[,replacements))
Replaces characters in text with the corresponding characters from replacements. If
the replacements is absent or too short. replace characters with a null character.
Value is text with specified replacements.

undefine(macro)
Remove macro definition. Value is null. If a predefined macro is redefined, its
original definition is irrecoverably lost.

undivert[(stream[, •••])]
Dumps each specified stream into the current output stream. With no arguments,
undivert dumps all output streams in numeric order. m4 will not dump any
output stream into itself. At the end of processing. m4 automatically dumps all
diverted text to standard output in numeric order. Value is null.

See Also
commands,mktemp,system
Introduction to the m4 Macro Processor

machine.h - Header File
Machine-dependent definitions
#include <sys/machine.h>

machine.h defines macros, constants, and structures that are specific to the machine upon
which COHERENT is being run.

See Also
header mes

macro - Definition
A macro is a body of text that is gtven a name. When the name is used in a program. it is
replaced with the text to which it refers; this is called macro expansion. For example,
getchar is a macro that consists of the function call getc(stdin).

Because macros may employ an argument n times, any arguments that have side effects
will have the side effect repeated n times as well, which may be undesirable.

See Also
#define, definitions, function, m4

maddO - Multiple-Precision Mathematics
Add multiple-precision integers
#include <mprec.h>
void madd(a, b, c)
mint •a, •b, •c;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. madd sets the multiple-precision integer (or mints) pointed to by c
to the sum of the the mints pointed to by a and b.

LEXICON

mail 741

See Also
multiple-precision mathematics

mail - Overview
Electronic mail system

The COHERENT system includes a full-featured, UNIX-style mail system. It consists of a
number of commands and files through which you can describe potential recipients of mail,
either on your system or other systems, and send mail to them either directly or via UUCP.
This article describes the design of the COHERENT mail system, and introduces the
commands and files that compose it.

Structure of the COHERENT Mail System
The COHERENT mail system has three major components: the user agent (i.e., mail); the
routing agent (the commands small and rmall); and the delivery agents (the commands
lmail and uux).

The user agent collects messages from the user and reads messages from a user's mailbox.
It hands to the routing agent for delivery any messages it receives from the user.

The routing agents decode addresses and decide how to deliver a message. They are the
only components of the mail system that must run setuid to assume the privilege of the
superuser root.

The delivery agents move messages to their destination.

The local delivery agent, lmail, places messages into users' mailboxes. To discourage mail
forging, lmail does not use setuid. It must be run by a privileged user (generally root) to
write into all mail boxes. As a rule, lmall is invoked only by a routing agent.

The UUCP delivery agent, uux, queues messages for transmission to remote systems. It
uses setuid to assume the identity of user uucp in order to write into the necessary spool
directories. It has long been trivial to forge messages to remote systems with uux; keep this
in mind if you plan to use electronic mail for any kind of authorization system.

small looks up each user in file /usr/lib/mall/aliases. If it finds a match, it uses the
matched name in place of user. If user is of the form

sys I user

or

sys I ••. I user

or

user@sys[.domaln]

it is treated as a remote destination. small then invokes command uux to pass the message
to sys, whose responsibility it becomes to pass the message to user.

If small finds no match in /usr/lib/mall/aliases, or $HOME/ .aliases, however, it attempts
to look up each user in file /etc/passwd, to see if this is a local user. If it does not find
user in this file, small mails an error message back to the sender. If, however, it does find
user in this file, small checks file $HOME/ .forward for any possible forwarding
instructions. If this file is absent, small passes the message to lmail. lmail writes the
message into the file /usr/spool/mail/user. This file is called the user's "mailbox". Note
that user owns this file. and can therefore permit or deny access to her mail by other users.

LEXICON

742 mail

Note that before you can send mail, either locally or to a remote site. you must run the
program uuinstall and use its 'S' option to set the name of your local site and domain.
Your local system must, of course. also have permission to log into any remote site to which
you wish to send mail. See the tutorial and Lexicon articles on UUCP for details on using
UUCP to exchange mail and files with remote sites.

Files
$HOME/dead.letter- Message that mail could not send
$HOME I .aliases - Personal mail alias file for outgoing mail
$HOME/ .forward- Forwarding instructions for inbound mail
/etc/domain-Name of your system's domain
/etc/passwd- User identities
/etc/uucpname- Name of your system
/tmp/mail*-Temporary and lock files
/usr/lib/mail/aliases-Aliases of users
/usr/lib/mail/fullnames- Short full name aliases of users
/usr/lib/mail/paths - Mail routing control file
/usr/spool/mail- Mailbox directory, filed by user name

See Also
aliases, commands, mail, mkfuames, msg, nptx, paths, uu.x

Notes
To mail a file to another user, use the shell's redirection operator '<'. For example, the
command

mail stephen <bug.report

mails file bug.report to user stephen. The file will be prefixed with your address, and
suffixed with your mail "signature", should you have one.

mail - Command
Computer mail
mail [-mpqrv] [-ffile] [user ...]

mail allows you to exchange electronic mail with other COHERENT system users. either on
your own system or on other systems via UUCP. Depending upon its form, this command
can be used either to send mail to other users or to read the mail that other users have sent
to you.

Sending Mail
If you name one or more users, mail assumes that you wish to send a mail message to each
user. mail first prints the prompt

Subject:

on the screen, requesting that you give the message a title.

mail then reads what you type on the standard input. A message is terminated by <Ctrl­
D>, by a line that contains only the character '. ·. or by a line that contains only the
character'?'. Ending with a question mark prompts mail to feed the message into an editor
for further editing. The editor used is the one named in the environmental variable
EDITOR. If this variable is not defined, mail uses ed.

If you have defined environmental variable ASKCC to YES, mail asks you, after a message
is ended, for a list of users to whom you wish to send a copy of the message.

LEXICON

mail 743

Finally. mail prepends the date and the sender's name, and sends the result to each user
named either on the command line or on the carbon-copy list with the rmail command.

Each user who has received mail is greeted by the message "You have mail." when she logs
in. mail normally changes the contents of the mailbox as the user works with them;
however. mail has options that allow the contents of the mailbox to remain unchanged if
the user desires.

Reading Mail
If no user is named on its command line, mail reads and displays the user's mail, message
by message. If environmental variable PAGER is defined, mail will "pipe" each message
through the command it names. For example, the .profile command line:

export PAGER="exec /bin/scat -1"

invokes /bin/scat for each mail message with the command-line argument -1 (the digit
one).

While reading mail, the user can use any of the following commands to save, delete. or send
each message to another user interactively.

d Delete the current message and print the next message.

m [user ...)
Mail the current message to each user given (default: yourself).

p Print the current message again.

q Quit, and update mailbox file to reflect changes.

r Reverse the direction in which the mailbox is being scanned.

s [file ...)
Save the current mail message with the usual header in each file (default:
$HOME/ mbox).

t [user ...)
Send a message read from the standard input, terminated by an end-of-file
character or by a line containing only ·.' or '?', to each user (default: yourself).

w [file ...)
Write the current message without the usual header in each .file (default:
$HOME/mbox).

x Exit without updating the mailbox file.

<newline>
Print the next message.

Print the previous message.

EOF Quit, updating mailbox: same as q.

? Print a summary of available commands.

!command
Pass command to the shell for execution.

The following command line options control the sending and reading of mail.

LEXICON

744 mainO

-!file

-m

-p

-q

-r

-v

Read mail from.file instead of from the default, I usr I spool/ mail/ user.

Send a message to the terminal of user if he is logged into the system when mail is
sent.

Print all mail without interaction.

Quit without changing the mailbox if an interrupt character is typed. Normally. an
interrupt character stops printing of the current message.

Reverse the order of printing messages. Normally, mail prints messages in the
order in which they were received.

Verbose mode. Show the version number of the mail program, and display
expanded aliases.

If you wish, you can create a signature file, .sig.mail, in your home directory. mail appends
the contents of the signature file to the end of every mail message you send, as a signature.
A signature can be your system's path name (for uucp messages), your telephone number,
an amusing bon mot, or what you will.

Files
$HOME/dead.letter- Message that mail could not send
$HOME/mbox - Default saved mail
$HOME/ .sig.mail- Signature file
I etc/ domain - Name of your system's domain
/etc/uucpname- Name of your system
/tmp/mail• - Temporary and lock files
/usr/spool/mail- Mailbox directory. filed by user name

See Also
aliases, ASKCC, commands, EDITOR, mkfnames, msg, nptx, PAGER, paths, uux

Notes
Note that before you can send mail, either locally or to a remote site, you must run the
program uuinstall and use its 'S' option to set the name of your local site and domain.
Your local system must, of course, also have permission to log into any remote site to which
you wish to send mail. See the tutorial and Lexicon articles on UUCP for details on using
UUCP to exchange mail and files with remote sites.

mainO - C Language
Introduce program's main function

A C program consists of a set of functions, one of which must be called main. This function
is called from the runtime startup routine after the runtime environment has been
initialized.

Programs can terminate in one of two ways. The easiest is simply to have the main routine
return. Control returns to the runtime startup; it closes all open file streams and otherwise
cleans up, and then returns control to the operating system, passing it the value returned
by main as exit status.

In some situations (errors, for example), it may be necessary to stop a program. and you
may not want to return to main. Here, you can use exit; it cleans up the debris left by the
broken program and returns control directly to the operating system.

A second exit routine. called _exit, quickly returns control to the operating system without
performing any cleanup. This routine should be used with care, because bypassing the
cleanup will leave files open and buffers of data in memory.

LEXICON

major number - make 745

Programs compiled by COHERENT return to the program that called them; if they return
from main with a value or call exit with a value, that value is returned to their caller.
Programs that invoke other programs through the system function check the returned
value to see if these secondary programs terminated successfully.

See Also
_exit, argc, argv, C language, envp, exit

major number - Definition
Device numbering

A major number specifies the device driver associated with a given device name found in the
directory /dev. COHERENT uses a device's the major number as an index into an internal
table of device-driver pointers.

Every COHERENT device has a device number associated with it. This device number is of
type dev_t, as defined in <sys/types.h>. The macro major() in <sys/stat.h> extracts the
major number from a given device number.

See Also
device drivers, minor number, stat.h

make - Command
Program building discipline
make [option ...) [argument ...) [target ...)

make helps you build programs that consist of more than one file of source code.

Complex programs often consist of several object modules, each of which is the product of
compiling a source.file. A source file may refer to one or more include files, which can also
be changed. Some programs may be generated from specifications given to program
generators, such as yacc. Recompiling and relinking complicated programs can be difficult
and tedious.

make regenerates programs automatically. It follows a specification of the structure of the
program that you write into a file called makefile. make also checks the date and time that
COHERENT has recorded for each source file and its corresponding object module; to avoid
unnecessary recompilation, make will recompile a source file only if it has been altered
since its object module was last compiled.

The Makefile
A makefile consists of three types of instructions: macro definitions, dependency definitions,
and commands.

A macro definition simply defines a macro for use throughout the makefile; for example.
the macro definition

FILES=filel.o file2.o file3.o

Note the use of the equal sign'='.

A dependency definition names the object modules used to build the target program, and
source files used to build each object module . It consists of the target name, or name of
the program to be created, followed by a colon ':' and the names of the object modules that
build it. For example, the statement

LEXICON

746 make

example: $(FILES)

uses the macro FILES to name the object modules used to build the program example.
Likewise, the dependency definition

filel.o: filel.c macros.h

defines the object module filel.o as consisting of the source file filel.c and the header file
macros.h.

Finally. a command line details an action that make must perform to build the target
program. Each command line must begin with a space or tab character. For example, the
command line

cc -o example $(FILES)

gives the cc command needed to build the program example. The cc command lists the
object modules to be used. not the source files.

Note that if you prefix an action with a hyphen'-', make will ignore errors in the action. If
the action is prefixed by '@', it tells make to be silent about the action - that is, do not
echo the command to the standard output.

Finally. you can embed comments within a makefile. make recognizes any line that begins
with a pound sign '#' as being a comment, and ignores it.

make searches for makefile first in directories named in the environmental variable PATH.
and then in the current directory.

Dependencies
The makefile specifies which files depend upon other files, and how to recreate the
dependent files. For example, if the target file test depends upon the object module test.o,
the dependency is as follows:

test: test.o
cc -o test test.o

make knows about common dependencies, e.g., that .o files depend upon .c files with the
same base name. The target .SUFFIXES contains the suffixes that make recognizes.

make also has a set of rules to regenerate dependent files. For example, for a source file
with suffix .c and a dependent file with the suffix .o, the target .c.o gives the regeneration
rule:

.c.o:
cc -c $<

The -c option to the cc commands tells cc not to link or erase the compiled object module.
$< is a macro that make defines; it stands for the name of the file that causes the current
action. The default suffixes and rules are kept in the files /usr/lib/makemacros and
/usr/lib/makeactions.

Macros
To simplify the writing of complex dependencies, make provides a macro facility. To define
a macro. write

NAME = string

LEXICON

make 747

string is terminated by the end-of-line character. so it can contain blanks. To refer to the
value of the macro. use a dollar sign '$' followed by the macro name enclosed in
parentheses:

$(NAME)

If the macro name is one character. parentheses are not necessary. make uses macros in
the definition of default rules:

.c.o:

$(CC) $(CFLAGS) -c $<

where the macros are defined as

CC=cc

CFLAGS=-V

The other built-in macros are:

$• Target name, minus suffix
$@ Full target name
$< List of referred files
$? Referred files newer than target

Each command line argument should be a macro definition of the form

OBJECT=a.o b.o

Arguments that include spaces must be surrounded by quotation marks, because blanks
are significant to the shell sh.

You can specify macro definitions in the makefile. in the environment. or as a command­
line argument. A macro defined as a command-line argument always overrides a definition
of the same macro name in the environment or in the makefile. Normally. a definition in a
makefile overrides a definition of the same macro name in the environment; however, with
the -e option (described below). a definition in the environment overrides a definition in the
makefile.

Options
The following lists the options that can be passed to make on its command line.

-d (Debug) Give verbose printout of all decisions and information going into decisions.

-e Force macro definitions in environment to override those in the makefile.

-fjlle file contains the make specification. If this option does not appear. make uses the
file makefile, which is sought first in the directories named in the PATH
environmental variable, and then in the current directory. If file is '-', make uses
the standard input; note. however. that the standard input can be used only if it is
piped.

-i Ignore all errors from commands, and continue processing. Normally, make exits if
a command returns an error.

-n Test only; suppresses actual execution of commands.

-p Print all macro definitions and target descriptions.

LEXICON

748 mallocO

-q Return a zero exit status if the targets are up to date. Do not execute any
commands.

-r Do not use the built-in rules that describe dependencies.

-s Do not print command lines when executing them. Commands preceded by '@' are
not printed, except under the -n option.

-t (Touch option) Force the dates of targets to be the current time, and bypass actual
regeneration.

Source File Path
If a file is not specified with an absolute pathname beginning with'/', make first looks for
the file in the current directory. If the file is not found in the current directory, make
searches for it in the list of directories specified by macro $(SRCPATH). This allows you to
compile a program in an object directory separate from the source directory. For example

export SRCPATH=/usr/src/local/me
make

or alteratively

make SRCPATH=/usr/src/local/me

builds objects in the current directory as specified by the makefile and sources in
/usr/src/local/me. To test changes to a program built from several source files, copy only
the files you wish to change to the current directory; make will use the local sources and
find the other sources on the $(SRCPATH).

Note that $(SRCPATH) can be a single directory, as in the above example, or a ':'-separated
list of directories, as described in the Lexicon entry for the function path().

Files
makefile
Makefile - List of dependencies and commands
/usr/lib/makeactions- Default actions
/usr/lib/makemacros- Default macros

See Also
as, cc, commands, Id, srcpath, touch
The make Programming Discipline, tutorial

Diagnostics
make reports its exit status if it is interrupted or if an executed command returns error
status. It replies "Target name not defined" or "Don't know how to make target name" if it
cannot find appropriate rules.

Notes
The order of items in makemacros/ .SUFFIXES is significant. The consequent of a default
rule (e.g., .o) must precede the antecedent (e.g., .c) in the entry .SUFFIXES. Otherwise,
make will not work properly.

mallocO - General Function (libc)
Allocate dynamic memory
char •malloc(slze) unsigned size;

malloc helps to manage a program's free-space arenas. It uses a circular, first-fit algorithm
to select an unused block of at least size bytes, marks the portion it uses, and returns a
pointer to it. The function free returns allocated memory to the free memory pool.

LEXICON

mallocO 749

Each area allocated by malloc is rounded up to the nearest even number and preceded by
an unsigned int that contains the true length. Thus, if you ask for three bytes you get four,
and the unsigned that precedes the newly allocated area is set to four.

When an area is freed, its low order bit is turned on; consolidation occurs when malloc
passes over an area as it searches for space. The end of each arena contains a block with a
length of zero, followed by a pointer to the next arena. Arenas point in a circle.

The most common problem with malloc occurs when a program modifies more space than
it allocates with malloc. This can cause later mallocs to crash with a message that
indicates that the arena has been corrupted.

Example
This example reads from the standard input up to NITEMS items, each of which is up to
MAXLEN long, sorts them, and writes the sorted list onto the standard output. It
demonstrates the functions qsort, malloc, free, exit, and strcmp.

#include <stdio.h>
#define NITEMS 512
#define MAXLEN 256
char *data[NITEMS];
char string[MAXLEN];

main()
{

register char **cpp;
register int count;
extern int compare();
extern char *malloc();
extern char *gets();

for (cpp = &data[O]; cpp < &data[NITEMS]; cpp++) {
if (gets(string) == NULL)

}

}

break;
if ((*cpp = malloc(strlen(string) + 1))

exit(l);
strcpy(*cpp, string);

count= cpp - &data[O];
qsort(data, count, sizeof(char *), compare);

NULL)

for (cpp = &data[O]; cpp < &data[count]; cpp++) {
printf("%s\n", *cpp);
free(*cpp);

}
exit(O);

LEXICON

750 malloc.h - man

compare(pl, p2)
register char **pl, **p2;
{

}

extern int strcmp();
return(strcmp(*pl, *p2));

See Also
arena, calloc(), free(), general functions, malloc.h, memok(), realloc(), setbuf()

Diagnostics
malloc returns NULL if insufficient memory is available.

Notes
The commonest error associated with malloc is failing to declare it properly. You should
always declare malloc as returning a pointer to char.

malloc.h - Header File
Definitions for memory-allocation functions
#include <sys/malloc.h>

malloc.h defines constants, structures, and macros used with COHERENT's memory­
allocation functions. Note that this header does not declare the library's memory-allocation
functions.

See Also
header mes

man - Technical Information
Manual macro package
nroff -man.file ...

The nroff macro package man formats manual pages in the style of the Lexicon. It includes
the following macros:

.B Boldface font .
• BI Bold/italic alternating fonts .
• BR Bold/Roman alternating fonts .
• CO COHERENT .
• DE Display end .
• DS Display start .
• DT Default tabs .
• HE Help end .
. HP Hanging paragraph .
• HS Help start .
. I Italic font .
. IB Italic/bold alternating fonts .
. IP Indented paragraph .
. IR Italic/Roman alternating fonts .
. LP Paragraph. flush left .
. PD Paragraph distance .
• PP Paragraph. indented .
. RB Roman/bold alternating fonts .
. RE Relative indent end .
. RI Roman/italic alternating fonts.

LEXICON

. RS

. SH

. SM

. TH

. TP

Files

Relative indent start .
Subheader .
Smaller size .
Define header .
Tagged paragraph .

/usr/llb/tmac.an- Macro package

See Also
ms, nroff, technical infonnation, troff
nroff, The Text Processing Language, tutorial

man - Command
Print Lexicon entries
man [-w] [topic ...]

man 751

man prints the COHERENT lexicon entries for each specified topic on the standard output.
It uses scat to display text (with the -s option to suppress blank lines). With no arguments.
man prints a list of each available topic.

When used with the -w option, it prints the path name of the file instead of printing the
document itself.

If environmental variable PAGER is defined, man pipes its output through the command
specified in PAGER. For example. the .profile command line:

export PAGER="exec /bin/scat -1"

invokes /bin/scat with the command-line argument -1 (the digit one).

Manual-Page Control Files
man uses two control files when processing manual-page requests. File
/usr/man/man.help contains the man's help message. This includes a list of valid topics
and some explanatory text. The second control file. /usr/man/man.index, contains index
entries for all manual pages on the system. Lines in this text file are of the form:

relative-path-name topic

where relative-path-name gives the subdirectory and file in /usr/man that hold the manual­
page entry. and topic gives a manual-page topic associated with this file. For example.
entries

COHERENT/ascii ascii
COHERENT/ascii ASCII
local/chess chess

associate system manual-page /usr/man/COHERENT/ascil with either upper- or lower­
case spellings of topic ascil. Likewise, rules for a user-written chess game are found in file
/usr/man/local/chessand are retrieved using topic chess.

Adding Manual-Page Entries
When writing new manual-page entries for COHERENT, we recommend that you place them
in subdirectories of /usr/man. These subdirectories should be uniquely named to avoid
possible name-space collisions. A good rule of thumb is to name the subdirectory after the
application with which it is associated. This also allows them to be updated easily. as all
manual-pages associated with a given application reside in a specific subdirectory.

LEXICON

752 manifest constant - mathematics library

When you add manual-page entries to the system. you should also append a list of topics to
/usr/man/man.help. In addition. you must append a line to the end of file
/usr/man/man.indexfor each newly added topic.

Files
/usr/man/* - Directories that hold manual pages

See Also
commands, help, install, more, PAGER, scat

manifest constant - Definition
A manifest constant is a numeric constant that is given a name so it can be defined
differently under different computing environments. An example is EOF, the end-of-file
marker, which has wildly different representations under different operating systems. Note,
too, that numerals are manifest constants by definition.

The use of manifest constants in programs helps to ensure that code is portable by isolating
the definition of these elements in a single header file, where they need to be changed only
once.

See Also
#define, definitions, NULL, portability

math.h - Header File
Declare mathematics functions
#include <math.h>

math.h is the header file to be included with programs that use any of COHERENT's
mathematics routines. It includes the following: definitions for mathematical functions;
error return values, as used by the errno function; definitions of mathematical constants,
e.g., HUGE_VAL; the definition of structure cpx, which describes complex variables;
definitions of internal compiler functions; and, finally, declarations of all mathematical
functions.

See Also
header mes, mathematics library

mathematics library - Overview
The following mathematics routines are available with COHERENT:

acoso ...
asinQ ..
atan() ..
atan20.
cabs().
ceil() .
cos() ..
cosh().
exp() .
fabsQ .
noorQ.
hypot() ..
JOO
jl()
jn()

LEXICON

. Calculate inverse cosine

. Calculate inverse sine

. Calculate inverse tangent

. Calculate inverse tangent of quotient

. Calculate complex absolute value

. Set numeric ceiling

. Calculate cosine

. Calculate hyperbolic cosine

. Calculate exponent

. Calculate absolute value function

. Calculate floor function

. Calculate hypotenuse

. Calculate Bessel function, order 0

. Calculate Bessel function, order 1

. Calculate Bessel function, order n

log() ..
loglO()
pow().
sin() ..
sinh().
sqrt() .
tan() ..
tanh().

See Also

. Calculate natural logarithm

. Calculate common logarithm

. Calculate power

. Calculate sine

. Calculate hyperbolic sine

. Calculate square root

. Calculate tangent

. Calculate hyperbolic tangent

Lexicon, Libraries, math.h

mboot 753

Press, W.H .. Flannery, B.P .. Teukolsky. S.A .. Vetterling. W.T.: Numerical Recipes in C. New
York: Cambridge University Press, 1988. Highly recommended.

Notes
When programs that contain mathematics routines are compiled, the mathematics libraries
must be called specifically on the cc command line. For example, to compile the example
presented under the entry for acos, use the following cc command line:

cc -f acos.c -lm

The -f option links in the floating point routines for printf, while the -Im option links in the
mathematics libraries. Note that the -Im option must come last on the cc command line. or
the library will not be searched properly.

mboot - Device Driver
Master boot block for hard disk

To be bootable. a COHERENT file system must contain a boot block (either boot or
mboot). In addition. all hard disks must contain the master boot block mboot or an
equivalent.

mboot is the master boot block for a hard-disk drive. It is compatible with, and therefore
can replace, the IBM master boot block installed by the MS-DOS command FDISK. It must
be installed in the first sector of the hard disk. as follows:

/etc/fdisk -b /conf/mboot /dev/atOx
/bin/sync

mboot searches its internal partition table (updated by the command fdisk) for an active
partition. You can select an alternate partition by pressing 0 through 7 before the system
selects the active partition. If the selected partition is of non-zero size with a valid partition
boot block, COHERENT executes that partition's boot block. Otherwise, the prompt

Select partition [0-7]

appear, and the system waits for you to select the partition you want.

Files
I conf/mboot - Hard-disk master boot block

See Also
boot, device drivers, fdisk, mkfs

LEXICON

754 mcmpO - mdivO

mcmpO - Multiple-Precision Mathematics
Compare multiple-precision integers
#include <mprec.h>
int mcmp(a, b)
mint •a, •b;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mcmp compares the multiple-precision integers (or
mints) pointed to by a and b. It returns a signed integer less than, equal to, or greater than
zero according to whether the value pointed to by a is less than, equal to, or greater than
that pointed to by b.

See Also
multiple-precision mathematics

mcopyO - Multiple-Precision Mathematics
Copy a multiple-precision integer
#include <mprec.h>
void mcopy(a, b)
mint •a, •b;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mcopy sets the multiple-precision integer (or mint)
pointed to by b to the value pointed to by a.

See Also
multiple-precision mathematics

mdata.h - Header File
Define machine-specific magic numbers
#include <sys/mdata.h>

mdata.h defines the "magic numbers" for the machine upon which COHERENT is being
run.

See Also
header files

mdivO - Multiple-Precision Mathematics
Divide multiple-precision integers
#include <mprec.h>
void mdiv(a, b, q, r)
mint •a, •b, •q, •r;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mdiv divides the multiple-precision integer (or mint)
pointed to by a with that pointed to by b. It writes the quotient and remainder into,
respectively, q and r. b must not be zero. The results of the operation !lre defined by the
following conditions:

1. a=q*b+r

2. The sign of r equals the sign of q

LEXICON

3. The absolute value of r is greater than the absolute value of b.

See Also
multiple-precision mathematics

me - Command
MicroEMACS screen editor
me [-e errolflle) [-f bindfile] [texljlle ...]

me 755

me is the command for MicroEMACS, the screen editor for COHERENT. With MicroEMACS.
you can insert text. delete text. move text, search for a string and replace it. and perform
many other editing tasks. MicroEMACS reads text from files and writes edited text to files;
it can edit several files simultaneously. while displaying the contents of each file in its own
screen window.

Screen Layout
Before you can use MicroEMACS. you must set the environmental variable TERM in your
environment. If you do not set this variable explicitly in your .profile file, COHERENT sets
it by default to ansipc. See the Lexicon entry TERM for details.

If the command me is used without arguments, MicroEMACS opens an empty buffer. If
used with one or more file name arguments, MicroEMACS will open each of the files named,
and display its contents in a window. If a file cannot be found, MicroEMACS will assume
that you are creating it for the first time, and create an appropriately named buffer and file
descriptor for it.

The last line of the screen is used to print messages and inquiries. The rest of the screen is
portioned into one or more windows in which text is displayed. The last line of each
window shows whether the text has been changed, the name of the buffer, and the name of
the file associated with the window.

MicroEMACS notes its current position. It is important to remember that the current
position is always to the left of the cursor. and lies between two letters. rather than at one
letter or another. For example, if the cursor is positioned at the letter 'k' of the phrase
"Mark Williams", then the current position lies between the letters 'r' and 'k'.

Commands and Text
The printable ASCII characters, from · · to '~'. can be inserted at the current position.
Control characters and escape sequences are recognized as commands. described below. A
control character can be inserted into the text by prefixing it with <ctrl-Q> (that is. hold
down the <control> key and type the letter 'Q').

There are two types of commands to remove text. Delete commands remove text and throw
it away, whereas kill commands remove text but save it in the kill buffer. Successive kill
commands append text to the previous kill buffer. Moving the cursor before you kill a line
will empty the kill buffer, and write the line just killed into it.

Search commands prompt for a search string terminated by <return> and then search for
it. Case sensitivity for searching can be toggled with the command <esc>@. Typing
<return> instead of a search string tells MicroEMACS to use the previous search string.

Some commands manipulate words rather than characters. MicroEMACS defines a word as
consisting of all alphabetic characters, plus ·_· and '$'. Usually. a character command is a
control character and the corresponding word command is an escape sequence. For
example. <ctrl-F> moves forward one character and <esc>F moves forward one word.

MicroEMACS can handle blocks of text as well as individual characters. words, and lines.
MicroEMACS defines a block of text as all the text that lies between the mark and the

LEXICON

756 me

current position of the cursor. For example. typing <ctrl-W> kills all text from the mark to
the current posit1on of the cursor: this is useful when moving text from one file to another.
When you invoke MicroEMACS. the mark is set at the beginning of the file; you can reset
the mark to the cursor's current position by typing <ctrl-@>.

Using MicroEMACS with the Compiler
MicroEMACS can be invoked automatically by the compiler command cc to help you repair
all errors that occur during compilation. The -A option to cc causes MicroEMACS to be
invoked automatically when an error occurs. The compiler error messages are displayed in
one window. the source code in the other, and the cursor is at the line on which the first
error occurred. You can correct the errors one by one. To move to the next error in the list,
type <ctrl-X>>; to move the previous error, type <ctrl-X><.

When have finished making corrections, exit from MicroEMACS by typing <ctrl-Z>. as
usual; the compiler will automatically be re-invoked to re-compile the corrected source code.
If more errors are found, MicroEMACS will be re-invoked with the new list of errors. This
cycle will continue either until the file compiles without error, or until you break the cycle
by typing <ctrl-U> <ctrl-X> <ctrl-C>.

The option -e to the me command allows you to invoke the error buffer by hand. For
example. the commands

cc myprogram.c 2>errorfile
me -e errorfile myprogram.c

divert the compiler's error messages into errorfile, and then invokes MicroEMACS to let you
correct them interactively.

The MicroEMACS Help Facility
MicroEMACS has a built-in help facility. With it. you can ask for information either for a
word that you type in, or for a word over which the cursor is positioned. The MicroEMACS
help file contains the bindings for all library functions and macros included with
COHERENT.

For example, consider that you are preparing a C program and want more information
about the function Copen. Type <ctrl-X>?. At the bottom of the screen will appear the
prompt

Topic:

Type Copen. MicroEMACS will search its help file. find its entry for Copen. then open a
window and print the following:

Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and copy it into your program.
to ensure that you prepare the function call correctly.

Consider. however. that you are checking a program written earlier. and you wish to check
the call for a call to Copen. Simply move the cursor until it is positioned over one of the
letters in Copen, then type <esc>?. MicroEMACS will open its help window, and show the
same information it did above.

To erase the help window, type <ctrl-X>l.

LEXICON

me 757

Options
The following list gives the MicroEMACS commands. They are grouped by function, e.g ..
Moving the cursor. Some commands can take an argument. which specifies how often the
command is to be executed. The default argument is 1. The command <ctrl-U> introduces
an argument. By default, it sets the argument to four. Typing <ctrl-U> followed by a
number sets the argument to that number. Typing <ctrl-U> followed by one or more <ctrl­
U>s multiplies the argument by four.

Moving the Cursor
<ctrl-A> Move to start of line.

<ctrl-B> (Back) Move backward by characters.

<esc>B Move backward by words.

<ctrl-E> (End) Move to end of line.

<ctrl-F> (Forward) Move forward by characters.

<esc>F (Forward) Move forward by words.

<esc>G Go to an absolute line number in a file. Same as <ctrl-X>G.

<ctrl-N> (Next) Move to next line.

<ctrl-P> (Previous) Move to previous line.

<ctrl-V> Move forward by pages.

<esc>V Move backward by pages.

<Ctrl-X>= Print the current position.

<ctrl-X>G Go to an absolute line number in a file. Can be used with an argument;
otherwise, it will prompt for a line number. Same as <esc>G.

<ctrl-X>[Go to matching C delimiter. For example, if the cursor is positioned under the
character'{', then typing <ctrl-X>[moves the cursor to the next'}'. Likewise, if
the cursor is positioned under the character}. then typing <ctrl-X>[moves the
cursor to the first preceding'{'. MicroEMACS recognizes the delimiters[,], {. }.
(,), /•, and •I.

<ctrl-X>) Toggle reverse-video display of matching C delimiters. For example, if reverse­
video displaying is toggled on, then whenever the cursor is positioned under a
'}' MicroEMACS displays the first preceding '{' in reverse video (should it be on
the screen). MicroEMACS recognizes the delimiters[,], {. }. (,), /•,and• I.

<esc>I Move the current line to the line within the window given by argument; the
position is in lines from the top if positive, in lines from the bottom if negative,
and the center of the window if zero.

<eSC>< Move to the beginning of the current buffer.

<esc>> Move to the end of the current buffer.

Killing and Deleting
<ctrl-D>

<esc>D

(Delete) Delete next character.

Kill the next word.

LEXICON

758 me

<Ctrl-H>

<Ctrl-K>

<ctrl-W>

If no argument, delete previous character. Otherwise, kill argument previous
characters.

(Kill) With no argument, kill from current position to end of line; if at the end,
kill the newline. With argument set to one, kill from beginning of line to
current position. Otherwise, kill argument lines forward (if positive) or
backward (if negative).

Kill text from current position to mark.

<ctrl-X><ctrl-0>

<Ctrl-Y>

Kill blank lines at current position.

(Yank back) Copy the kill buffer into text at the current position; set current
position to the end of the new text.

<esc><ctrl-H>

<esc>

Windows

Kill the previous word.

Kill the previous word.

If no argument, delete the previous character. Otherwise, kill argument
previous characters.

<ctrl-X>l Display only the current window.

<Ctrl-X>2 Split the current window into two windows. This command is usually followed
by <ctrl-X>B or <ctrl-X><ctrl-V>.

<ctrl-X>N (Next) Move to next window.

<ctrl-X>P (Previous) Move to previous window.

<ctrl-X>Z Enlarge the current window by argument lines.

<ctrl-X><ctrl-N>
Move text in current window down by argument lines.

<ctrl-X><ctrl-P>
Move text in current window up by argument lines.

<ctrl-X><ctrl-Z>
Shrink current window by argument lines.

Buffers
<ctrl-X>B (Buffer) Prompt for a buffer name, and display the buffer in the current

window.

<ctrl-X>K (Kill) Prompt for a buffer name and delete it.

<ctrl-X><ctrl-B>
Display a window showing the change flag, size, buffer name, and file name of
each buffer.

<ctrl-X><ctrl-F>
(File name) Prompt for a file name for current buffer.

LEXICON

me 759

<ctrl-X><ctrl-R>
(Read) Prompt for a file name, delete current buffer, and read the file.

<ctrl-X><ctrl-V>
(Visit) Prompt for a file name and display the file in the current window.

Saving Text and Exiting

<ctrl-X><ctrl-C>
Exit without saving text.

<ctrl-X><Ctrl-S>
(Save) Save current buffer to the associated file.

<ctrl-X><ctrl-W>
(Write) Prompt for a file name and write the current buffer to it.

<ctrl-Z> Save current buffer to associated file and exit.

Compilation Error Handling

<ctrl-X>> Move to next error.

<ctrl-X>< Move to previous error.

Search and Replace

<ctrl-R>

<esc>R

<ctrl-S>

<eSC>S

<eSC>%

<eSC>/

(Reverse) Incremental search backward; a pattern is sought as each character
is typed.

(Reverse) Search toward the beginning of the file. Waits for entire pattern
before search begins.

(Search) Incremental search forward; a pattern is sought as each character is
typed.

(Search) Search toward the end of the file. Waits for entire pattern before
search begins.

Search and replace. Prompt for two strings; then search for the first string
and replace it with the second.

Search for next occurrence of a string entered with the <esc>S or <esc>R
commands; this remembers whether the previous search had been forward or
backward.

<esc>@ Toggle case sensitivity for searches. By default, searches are case insensitive.

Keyboard Macros

<ctrl-X>(Begin a macro definition. MicroEMACS collects everything typed until the next
<ctrl-X>) for subsequent repeated execution. <ctrl-G> breaks the definition.

<Ctrl-X>) End a macro definition.

<ctrl-X>E (Execute) Execute the keyboard macro.

<Ctrl-X>M Bind a newly created keyboard macro to a given keystroke or set of keystrokes.

LEXICON

760 me

Flexible Key Bindings

<ctrl-X>R Replace one binding with another.

<ctrl-X>X Rebind the prefix (meta) keys, and the multiple-execution key <ctrl-U>.

<ctrl-X>S Prompt for a file name, and write all flexible keybindings and macros into it.

<ctrl-X>L Prompt for a file name, and read all flexible keybindings and macros from it.

<ctrl-X>I Rebind current macro to the initialization macro.

By default, MicroEMACS checks for the existence of file $HOME/ .emacs.re and executes it
if found. The -f option lets you specify an alternate file of keybindings macros from the me
command line. After loading the file, MicroEMACS then executes the initialization macro, if
one exists. For example. to load the keybindings file bindings and edit file texttlle. use the
command:

me -f bindings textf ile

Change Case of Text

<eSC>C (Capitalize) Capitalize the next word.

<ctrl-X><ctrl-L>
(Lower) Convert all text from current position to mark into lower case.

<eSC>L (Lower) Convert the next word to lower case.

<Ctrl-X><ctrl-U>
(Upper) Convert all text from current position to mark into upper case.

<esc>U (Upper) Convert the next word to upper case.

White Space

<ctrl-1>

<ctrl-J>

<Ctrl-M>

<Ctrl-0>

LEXICON

Insert a tab. Default behavior is to move the cursor to the nearest 8's
boundary; for example, if the cursor is in the 62nd column on the screen,
pressing <Ctrl-1> movei:i it to column 64.

When used with a positive argument, change the behavior of the tab key. For
example, <ctrl-U>4<ctrl-1> commands MicroEMACS to insert enough spaces
for a tab key to reach a four's boundary.

When used with a negative argument, change the behavior of the tab
character. For example, <ctrl-U>-4<ctrl-1> says that a tab character on a file
will take you to the nearest 4's boundary. Thus. if you have a file with tabs in
it and you use '-4', the appearance of the file on the screen will change: but if
you use '4' the appearance of the file on the screen will not change.

Exporting the shell variable TABSIZ=4 will also change the behavior of
MicroEMACS this way.

Insert a new line and indent to current level. This is often used in C programs
to preserve the current level of indentation.

(Return) If the following line is not empty. insert a new line: if empty. move to
next line.

Open a blank line: that is, insert newline after the current position.

<tab>

me 761

With argument, set tab fields at every argument characters. An argument of
zero restores the default of eight characters. Setting the tab to any character
other than eight causes space characters to be set in your file instead of tab
characters.

Send Commands to Operating System
<ctrl-C>

<ctrl-X>!

Suspend MicroEMACS and execute a subshell. Typing <ctrl-D> returns you to
MicroEMACS and allows you to resume editing.

Prompt for a shell command and execute it.

These commands recognize the shell variable SHELL to determine the shell to which it
should pass the command.

Setting the Mark
<ctrl-@>

<eSC>.

Set mark at current position.

Set mark at current position.

<ctrl><space>
Set mark at current position.

Help Window
<ctrl-X>'? Prompt for word for which information is needed.

<esc>'? Search for word over which cursor is positioned.

<esc>2 Erase help window.

Miscellaneous
Abort a command.

Redraw the screen.

<ctrl-G>

<ctrl-L>

<ctrl-Q>

<eSC>Q

(Quote) Insert the next character into text; used to insert control characters.

Quote a character by numeric value. When you type this command.
MicroEMACS prompts you for a numeric value, in decimal. It then inserts into
your text the character whose value you type. This command is useful when
you wish to enter characters with the high bit set.

<ctrl-T> Transpose the characters before and after the current position.

<ctrl-U> Specify a numeric argument, as described above.

<ctrl-U><Ctrl-X><ctrl-C>
Abort editing and re-compilation. Use this command to abort editing and
return to COHERENT when you are using the -A option to the cc command.

<ctrl-X>H Use word-wrap on a region.

<ctrl-X>F Set word wrap to argument column. If argument is one, set word wrap to
cursor's current position.

<ctrl-X><ctrl-X>
Mark the current position. then jump to the previous setting of the mark. This
is useful when moving text from one place in a file to another.

LEXICON

762 mem - memccpyO

Diagnostics
MicroEMACS prints error messages on the bottom line of the screen. It prints informational
messages (enclosed in square brackets'[' and T to distinguish them from error messages) in
the same place.

MicroEMACS manipulates text in memory rather than in a file. The file on disk is not
changed until you save the edited text. MicroEMACS prints a warning and prompts you
whenever a command would cause it to lose changed text.

See Also
commands, ed, elvis, ex, sed, TERM, vi

Notes
Because MicroEMACS keeps text in memory. it does not work for extremely large files. It
prints an error message if a file is too large to edit. If this happens when you first invoke a
file. you should exit from the editor immediately. Otherwise. your file on disk will be
truncated. If this happens in the middle of an editing session, however. delete text until the
message disappears. then save your file and exit. Due to the way MicroEMACS works.
saving a file after this error message has appeared will take more time than usual.

The current version of MicroEMACS, including source code, is proprietary to Mark Williams
Company. The code may be altered or otherwise changed for your personal use, but it may
not be used for commercial purposes. and it may not be distributed without prior written
consent by Mark Williams Company. The source code for MicroEMACS is included with
COHERENT. and is kept in directory /usr/src/local. You are invited to experiment with
source code, to modify existing features or add new ones for your own use.

MicroEMACS is based upon the public domain editor by David G. Conroy.

mem - Device Driver
Physical memory file

The special file /dev/mem allows the physical memory of the host computer to be read and
written just like an ordinary file. The location where 1/0 will occur can be positioned to any
valid byte address by a call to lseek. Note that ps and related commands use /dev/kmem,
which manipulates the kernel's data space.

Commands may examine or change addresses in physical memory. Addresses to use when
changing the system itself normally are obtained from the system load module (/coherent)
name list, so that they always reflect the currently running version of the system.

Files
/dev/mem

See Also
core, device drivers, lseek, ps

Diagnostics
On an error. such as nonexistent memory location, mem returns -1.

memccpyO - String Function (libc)
Copy a region of memory up to a set character
#include <string.h>
char *memccpy(dest, src, c, n)
char *dest, *src; unsigned int c, n;

LEXICON

memchrO 763

memccpy copies characters from src to dest, stopping when either it finds the first
occurrence of character c or it has copied n characters. Unlike the routines strcpy and
stmcpy, memcpy copies from one region to another. Therefore. it will not halt
automatically when it encounters a null character.

memccpy returns a pointer to the first location after character c in dest. or NULL if
character c was not found.

See Also
memcpy(), strcpy(), stmcpy(), string functions, string.h

Notes
memccpy is not part of the ANSI C Standard. Use of this library routine may restrict
portability.

If dest and src overlap. the behavior of memccpy is undefined. dest should point to enough
reserved memory to hold n bytes of data: otherwise, data corruption may result.

memchrO - String Function (libc)
Search a region of memory for a character
#include <string.h>
char •memchr(reglon, character, n)
char •region; int character; unsigned int n;

memchr searches the first n characters in region for character. It returns the address of
character if it is found. or NULL if it is not.

Unlike the string-search function strchr. memchr searches a region of memory. Therefore.
it does not stop when it encounters a null character.

Example
The following example deals a random hand of cards from a standard deck of 52. The
command line takes one argument, which indicates the size of the hand you want dealt. It
uses an algorithm published by Bob Floyd in the September 1987 Communications of the
ACM.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DECK 52

main(int argc, char *argv[])
{

char deck[DECK], *fp;
int deckp, n, j, t;

if (argc ! = 2 I I

}

52 < (n = atoi(argv[l])) I I
1 > n) {

printf("usage: memchr n #where 0 < n < 53\n");
exit(EXIT_FAILURE);

LEXICON

764 memcmpO

}

/*exercise rand() to make it more random*/
srand((unsigned int)time(NULL));
for(j = O; j < 100; j++)

rand ();

deckp = O;
/* Bob Floyd's algorithm */
for(j =DECK - n; j <DECK; j++) {

t =rand() % (j + l);

}

if((fp = memchr(deck, t, deckp)) !=NULL)
*fp = (char)j;

deck[deckp++] = (char)t;

for(t = j = O; j < deckp; j++) {
div_t card;

}

card= div(deck[j], 13);
t += printf("%c%c

/* note useful string addressing */
"A23456789TJQK" [card.rem],
"HCDS"[card.quot]);

if(t > 50) {

}

t = O;
putchar('\n');

putchar('\n');
return(EXIT_SUCCESS);

See Also
strchr(), string functions, string.h

memcmpO - String Function (libc)
Compare two regions
#include <string.h>
int memcmp(reglonl, reglon2, count)
char •reglonl; char *reglon2; unsigned int count;

memcmp compares reglonl with reglon2 character by character for count characters.

If every character in reglonl is identical to its corresponding character in reglon2, then
memcmp returns zero. If it finds that a character in regionl has a numeric value greater
than that of the corresponding character in reglon2, then it returns a number greater than
zero. If it finds that a character in regionl has a numeric value less than less that of the
corresponding character in reglon2, then it returns a number less than zero.

For example. consider the following code:

LEXICON

char regionl[l3], region2[13];
strcpy(regionl, "Hello, world");
strcpy(region2, "Hello, World");
memcmp(regionl, region2, 12);

memcpyO - memmoveo 765

memcmp scans through the two regtons of memory. comparingregionl[O] with region2[0],
and so on, until it finds two corresponding "slots" in the arrays whose contents differ. In
the above example, this will occur when it compares regionl[7] (which contains 'w') with
region2[7] (which contains 'W'). It then compares the two letters to see which stands first
in the character table used in this implementation, and returns the appropriate value.

memcmp differs from the string comparison routine strcmp in a number of ways. First,
memcmp compares regions of memory rather than strings; therefore, it does not stop when
it encounters a null character.

Also, memcmp can be used to compare an int array with a char array is permissible
because memcmp simply compares areas of data.

See Also
strcmpQ, string f'unctions, strlng.h

memcpyO - String Function (libc)
Copy one regton of memory into another
#include <string.h>
char •memcpy(reglonl, reglon2, n)
char •reglonl: char •reglon2; unsigned int n:

memcpy copies n characters from reglon2 into reglonl. Unlike the routines strcpy and
strncpy. memcpy copies from one regton to another. Therefore, it will not halt
automatically when it encounters a null character.

memcpy returns reglonl.

See Also
strcpy(), string functions, string.h

Notes
If reglonl and reglon2 overlap, the behavior of memcpy is undefined. reglonl should point
to enough reserved memory to hold n bytes of data; otherwise, code or data will be
overwritten.

memmoveO - String Function (libc)
Copy regton of memory into area it overlaps
#include <string.h>
char •memmove(reglonl, reglon2, count)
char •reglonl, char •reglon2, unsigned int count;

memmove copies count characters from reglon2 into reglonl. Unlike memcpy. memmove
correctly copies the regton pointed to by reglon2 into that pointed by reglonl even if they
overlap. To "correctly copy" means that the overlap does not propagate, not that the moved
data stay intact. Unlike the string-copying routines strcpy and stmcpy. memmove
continues to copy even if it encounters a null character.

memmove returns reglonl .

LEXICON

766 memokO - memory allocation

See Also
string functions, string.h

Notes
reglonl should point to enough reserved memory to hold the contents of reglon2. Otherwise,
code or data will be overwritten.

memokO - General Function (libc)
Test if the arena is corrupted
memok();

The library function memok checks to see if the area has been corrupted. It returns one if
the arena is sound, and zero if it has been corrupted.

Example
The following example purposely corrupts the arena, to demonstrate memok. Please note
that this is not a recommended programming practice.

extern char *malloc();
main ()
{

char *p;

p = malloc(2); /*get 2 bytes of memory*/
printf("Arena is %s\n", memok() ? "OK" : "bad");
strcpy(p, "too long"); /* clobber memory */
printf("Arena is %s\n", memok() ? "OK" : "bad");

}

See Also
arena, calloc(), general functions, malloc(), realloc()

memory allocation - Technical Information
The following diagram shows how COHERENT allocates memory.

Data Segment (maximum size 64 kilobytes)

I ARENA AND I
I FREE MEMORY I
!=====================! +-- SP starts here
I STACK I
!=====================!
I UNITIALIZED DATA I
I (bssd) I
!=====================!
I PRIVATE DATA (prvd) I
!=====================!
I SHARED DATA (shrd) I
======================= +-- DS ES SS point here

Code Segment (maximum size 64 kilobytes)

LEXICON

memsetO - mesg 767

I CODE I
i=====================I
I RUNTIME STARTUP I
======================= <---- CS points here

Note that COHERENT can relocate the code and data segments at its own convenience and
merely repoint the required segment registers.

The stack descends from the highest address in its space toward the static data area; new
arguments are placed on the stack in its lowest address. Everything from the top of the
stack space to the end of the data segment is free to accept dynamically allocated data.

The size of the stack cannot be altered while a program is running. By default, the runtime
startup sets the stack size to four kilobytes (4,096 bytes). Note, however. that a highly
recursive function may cause the stack to grow larger than four kilobytes so that it
overwrites other data areas. This will cause your program to work incorrectly. To reset the
amount of stack allocated to a program, use the command fixstack.

See Also
data formats, fixstack, technical information

memsetO - String Function (libc)
Fill an area with a character
#include <string.h>
char •memset(buffer, character, n)
char •buffer; int character; unsigned int n;

memset fills the first n bytes of the area pointed to by buffer with copies of character. It
casts character to an unsigned char before filling buff er with copies of it.

memset returns the pointer buffer.

See Also
string functions, string.h

mesg - Command
Permit/deny messages from other users
mesg [ny]

Normally, a user can communicate with other users by using the commands msg and
write.

In certain situations, it is useful to suppress messages from other users. Therefore,
COHERENT supplies the command mesg, which, lets you permit or suppress messages
from other users. The argument y allows messages, whereas argument n disallows
messages. With no argument, mesg tells you whether you can receive messages (as yes or
no) without changing the message state.

Files
/dev/•

See Also
commands, msg, write

LEXICON

768 minO - mintfrO

Notes
The owner-execute mode bit of the user's tty indicates whether messages are allowed.

minO - Multiple-Precision Mathematics
Read multiple-precision integer from stdin
#include <mprec.h>
void min(a)
mint *a;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function min reads a multiple-precision integer (or mint) from
the standard input and writes it at the address held by a. The base of the mint is indicated
by the value held in the external variable ibase.

min accepts leading blanks and an optional leading minus sign; the number is terminated
by the first non-legal digit.

See Also
multiple-precision mathematics

minitO - Multiple-Precision Mathematics
Condition global or auto multiple-precision integer
#include <mprec.h>
void minit(a)
mint *a;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mint helps to create a multiple-precision integer (or
mint). If a new mint is declared to be global or automatic, you must call minit before
using the variable. This prevents garbage values in the newly created mint structure from
causing chaos. A mint conditioned by minit has no value; however, it may be used to
receive the result of an operation.

See Also
multiple-precision mathematics

minor number - Definition
Device numbering

A minor number specifies the device or type of device to use. COHERENT uses the minor
number of a given device in a driver-specific manner. For example, a hard-disk driver may
use the minor number to select a disk drive and partition.

Every COHERENT device has a device number associated with it. It is of type dev_t, as
defined in <sys/types.h>. The macro minor() in <sys/stat.h> extracts the minor number
from a given device number.

See Also
device drivers, major number, stat.h

mintfrO - Multiple-Precision Mathematics
Free a multiple-precision integer
#include <mprec.h>
void mintfr(a)
mint *a;

LEXICON

misc - mkdir 769

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function itom creates a multiple-precision integer (or mint).
You can call the function mintfr to free the storage used by a mint.

See Also
multiple-precision mathematics

misc - Technical Information
Library of miscellaneous functions

misc is a collection of library routines. These routines are useful for handling such
programming tasks as allocation of memory. copying of strings. displaying variables from C
with COBOL-like "picture" descriptions, and supporting virtual arrays via secondary
storage.

Source code for the library is kept in the compressed tar archive file /usr/src/misc.tar.Z.
To extract the files into a new subdirectory called misc. use the command:

zcat /usr/src/misc.tar.Z I tar xvf -

To build the library, type the following:

cd misc
make

For a full description of each function, consult the included Read_me file.

Files
/usr/src/misc.tar.Z- Compressed tar archive of sources

See Also
tar, technical information, zcat

Notes
The misc library is provided on an as-ls basis only. Caveat utilitor!

mitomO - Multiple-Precision Mathematics
Reinitialize a multiple-precision integer
#include <mprec.h>
void mitom(n, a)
mint •a; int n;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mitom reinitializes the existing multiple-precision
integer (or mint) pointed to by a ton.

See Also
multiple-precision mathematics

mkdir - Command
Create a directory
mkdir [-r I directory

mkdir creates directory. Files or directories with the same name as directory must not
already exist. directory will be empty except for the entries'.', the directory's link to itself,
and '..', its link to its parent directory. The option -r creates directories recursively. For
example, the command

LEXICON

770 mkfnames - mkfs

mkdir -r /foo/bar/baz

creates directory foo in I; then creates directory bar in the newly created directory foo; and
finally creates directory baz in the newly created directory bar.

See Also
commands, rm, rmdir

Diagnostics
mk.dir fails and prints an error message if you do not have permission to write into
directory in which you are attempting to create a new directory, or if the directory in which
you attempted to create a new directory does not exist.

mkfnames - Command
Generate data base of user names
mkfnames [name.file ...]

mkfnames reads the contents of name.file and writes to the standard output a sorted data
base that the command mail can use as its data base of full users' names. The command
nptx defines the format of an input line.

If no name.files are named on the command line. mkfnames reads the file /etc/passwd,
and attempts to parse its contents into the form required by nptx.

mkfnames is usually used to generate /usr/lib/mail/fullnames. If more than one login
account has the same part of a name (i.e., the same last name), the lexicographically first
login name will be used.

See Also
commands, mail, nptx

mkfs - Command
Make a new file system
/etc/mkfs [-b boot] [-di [-f name) [-i tnodesJ [-m arg) [-n arg) [-p packlfllesystem proto

mkfs makes a new file system. filesystem names the file (normally a block special file)
where the new file system will reside. The contents of the newly created file system are
described in proto. proto can be either a number or a file name.

If proto is a number. mkfs creates an empty file system (containing only a root directory) of
the size in blocks given by proto. The number of i-nodes is calculated as a percentage of this
number. The command

/etc/mkfs /dev/fhaO 2400

creates a file system on a high-density, 5.25-inch diskette in drive 0. If the disk is a high­
density. 3.5-inch diskette. use the command:

/etc/mkfs /dev/fvao 2880

If proto is a file name, however, the contents of that file will be used as a prototype for
modeling the new file system. This prototype file must be laid out in the following manner:

LEXICON

mkfs 771

bootstrap_Jlle_name file_system_name device name
no._of_blocks no._of_i-nodes n m
%bXXXXXX

directory_ name
directory_name mode user _id group _id contents

$
$

Each line is described below.

The first line has three fields. Field 1. bootstrap Jile _name. contains the name of a file that
holds the boot strap. which mus't fit into block 0 of the disk. Field 2. file_ system _name.
gives the name of the file system; and field 3, device __ name. gives the name of file system's
physical device (for example, I dev /hdl). Only the first six characters in field 2 and the
first 11 in field 3 are significant; all characters after them are ignored.

The second line contains four fields. Field 1, no._of_blocks, gives the size of the file system
in blocks; field 2. no_of_i-nodes, gives the number of i-nodes in the file system. Because
each file or directory requires one i-node, this number represents the limit on the number of
files that may be created in the file system. A ratio of seven blocks per i-node generally
works well.

Fields 3 and 4 control free list interleaving on your disk. n is the size of a "virtual cylinder":
fsck allocates all the blocks on one virtual cylinder before it advances to the next virtual
cylinder. The value of n must be less than or equal to 255, and should evenly divide the
actual size of a cylinder on the device. m tells the system how many blocks to skip each
time it increments a free list block number. i.e .. the free list "interleave"; n mod m must be
zero. Choosing an optimal interleave value may improve system performance for the device.
The optimal values for n and m are hardware-specific and can be determined by
experimentation.

Next. the third line and following begin with o/ob. These list the bad blocks on your storage
device. One or more block numbers may appear on each line, separated by white space.
These blocks are allocated to the bad block file (i-node 1).

The remaining lines in the proto file define the names, modes, and contents of the
directories and files in the file system. These lines are divided into fields separated by white
space (blanks or tabs) as follows:

The first field names the file or directory to be created. This field is missing on the first
line, which describes the root directory of the file system.

The second field describes the mode of the file, which is six characters long. The first
character gives the file type. that is, whether the file is ordinary ('-'), directory ('d'),
block special ('b'), or character special ('c'). The second character is 'u' for set user id
on execution, and·-· otherwise. The third character is ·g· for set group id on execution,
and ·-· otherwise. Characters 4 through 6 specify permissions in octal; for example,
644 specifies read and write permission for the owner, read permission for other users
from the same group. and read permission for users from other groups.
If the above file type were a directory, subsequent files are recursively defined under
that directory, until the current level of directory is terminated by a line containing a'$'
character.

LEXICON

772 mkfs

The next two fields specify the owner's numerical user id and group id.

The last field describes file contents. For a directory. it is not needed. For an ordinary
file, it is the name of a COHERENT file that will be copied into the newly created file.
For block or character-special files, there are two fields that specify the numbers of the
major and minor devices.

Finally, each directory's description and the entire proto file must terminate with dollar
signs'$'.

The proto file need not contain all of the above fields. However, it must contain the name of
the boot block (line 1), the number of blocks and the number of i-nodes (line 2), the list of
bad blocks, the name of at least one directory. and the dollar sign that ends the file.

Command-line Options
mkfs recognizes the following command-line options:

-b boot
Specifies the file to use as the "bootstrap" for the filesystem.

-d Preserve file dates and times on the new file system.

-!name
Label the filesystem with the given name. name must be less than seven characters in
length.

-i inodes
Use tnodes as the number of inodes for the filesystem.

-marg
Set the number of blocks to skip when incrementing virtual block number. This is the
same as the m option as set on line 2 of the prototype file. You can use this option if
you choose not to use a prototype file.

-narg
Set the size of a "virtual cylinder". This is the same as the n option as set on line 2 of
the prototype file. You can use this option if you choose not to use a prototype file.

-ppack
Set the filesystem "pack name" to pack. pack must be less than seven characters in
length.

Example
The following example specifies a proto file for a high-density, 5.25-inch floppy disk; note
that this floppy disk is faulty and contains a number of bad blocks:

LEXICON

/conf/boot. fha
2400 100
%b 55
%b 185 86
d--755 3 1

coherent ---644 3 1 /coherent
tmp d--777 3 1
$
bin d--755 3 1

mail -u-755 0 1 /bin/mail
$
dev d--755 3 1

tty30 c--644 0 1 3 0
tty35 c--644 0 1 3 5
mtO b--600 0 1 12 0

$
$

mknod 773

You can use the command badscan to draw up the list of bad blocks on your disk and
create a skeletonproto file.

See Also
badscan, chmod, commands, fsck, mowit, restor, unmkfs

Diagnostics
Diagnostic message are generated for badly constructed proto files or for I IO errors on the
file system.

mknod - Command
Make a special file or named pipe
I etc/mknod [-f Jfllename type major mtrwr
/etc/mknod [-f)jllename p

In the first form. mknod creates a special file, which provides access to a device by the
fllename specified. Special files are conventionally stored in the /dev directory.

type can be either 'b' (for block-special file) or 'c' (for character-special file). Block-special
files tend to be devices such as disks or magnetic tape. upon which COHERENT uses an
elaborate buffering strategy. Character-special files are unstructured (character at a time)
devices such as terminals. line printers, or communications devices. Character-special files
may also be random-access devices; this circumvents system buffering. allowing transfers of
arbitrary size directly between the user and the hardware.

The major device number uniquely identifies a device driver to COHERENT. The minor
device number is a parameter interpreted by the driver; it might specify the channel of a
multiplexor or the unit number of a drive.

The caller must be the superuser.

In the second form. mknod creates a named pipe with the givenjllename. Named pipes can
be used for communication between processes.

The -f option to mknod forces the creation of a new node, even if one of the same name
already exists.

LEXICON

774 mknodO - mnegO

Files
/dev/*

See Also
commands, mount

mknodO - System Call
Create a special file
#include <sys/ino.h>
#include <sys/stat.h>
mknod(name, mode, addr)
char •name; int mode, addr;

mknod is the COHERENT system call that creates a special file. A special file is one
through which a device is accessed, or a named pipe.

mode gives the type of special file to be created. It can be set to IFBLK. for a block-special
device, such as a disk driver; to IFCHR, for a character-special device, such as a serial-port
driver; to IFDIR, for a directory; or to IFPIPE. for a named pipe.

address is a parameter interpreted by the driver; it might specify the channel of a
multiplexor or the unit number of a drive. Note that this is not used with named pipes.

See Also
named pipe, pipe, system calls

Notes
Only the superuser root can use the system call mknod; this is a security feature.

mktempO - General Function (libc)
Generate a temporary file name
char *mktemp(pattern) char •pattern;

mktemp generates a unique file name. It can be used, for example, to name intermediate
data files. pattern must consist of a string with six X's at the end. mktemp replaces these
X's with the five-digit process id of the requesting process and a letter that is changed for
each subsequent call. mktemp returns pattern. For example. the call
mktemp("/tmp/sortXXXXXX"); might return the name /tmp/sort01234a. It is normal
practice to place temporary files in the directory /tmp. The start of the file name identifies
the originator of the file.

See Also
general functions, getpid(), tempnam(), tmpnam()

mnegO - Multiple-Precision Mathematics
Negate multiple-precision integer
#include <mprec.h>
void mneg(a, b)
mint •a, *b;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mneg negates the value of the multiple-precision
integer (or mint) pointed to by a, and writes the result into the mint pointed to by b.

LEXICON

See Also
multiple-precision mathematics

mnttab.h - Header File
Structure for mount table
#include <mnttab.h>

mnttab.h - modem 775

mnttab.h defines the structure for the mount table maintained by the functions
/etc/mount and /etc/umount.

See Also
header files, mount, umount

modem - Technical Information
The word modem is an abbreviation for "modulation/demodulation device". With the
COHERENT system, you can attach a modem to your computer either to dial out for remote
communication, to let others dial into your COHERENT system. or both. With your modem,
too, you can use COHERENT's UUCP commands to exchange mail and files with remote
sites automatically. and to download news and files from the USENET.

This article gives a summary of how to connect your modem to your computer and describe
it to the COHERENT system. It also discusses some problems that may crop up when you
attempt to use your modem.

Internal vs. External Modems
You can use internal and external modems with COHERENT. An internal modem is,
however. more difficult to diagnose problems because there are typically no status lights to
indicate operation.

Hooking up a Modem
A modem must be hooked up to a serial port on your computer. To plug your modem into
the computer, simply take a normal serial-port cable. one with an RS-232 plug of the
appropriate gender at each end, plug one end into your modem and the other into the serial
port you wish to use. The Lexicon article RS-232 describes the wiring of the RS-232 plug in
detail; but if you are not skilled with a soldering iron. you are well advised simply to
purchase a cable from your local electronics store and be done with it.

Serial Ports
The COHERENT system supports up to four serial ports; the devices for these are named
/dev/comlr through /dev/com4r. If you are not sure which port you have plugged your
modem into, perform the following test: First, turn on the modem. Then, type the following
command:

echo FOO >/dev/comll

If the "TX" light on the modem blinks. then you know the modem is plugged into COMl. If it
does not, try the command again for /dev/com21. and so on through com41 until you find
the appropriate port. If no command works. check the wiring on your cable and make sure
that the plugs are securely inserted.

Once you have established which port your modem is plugged into, links the device
/dev/modem to it, using the following command:

ln -f /dev/com?l /dev/modem

where ? gives the number of the port, l through 4.

LEXICON

776 modem

Edit /etc/ttys
The next step is to edit the file /etc/ttys to tell COHERENT how you want the port handled.
You must know (1) whether you want the port enabled or disabled; (2) the baud rate of the
port (as set by your modem): and (3) the name of the port (which you just determined).

If a port is enabled. remote users can log into the system, either via a terminal directly
plugged into the port or via a modem. COHERENT sends a login prompt to every enabled
port. The COHERENT system also restricts permissions on all enabled serial ports, so that
only the superuser root can read and write to the port. This prevents other users who may
be using the system from accessing the serial port. If a port is disabled, you can dial out or
use a direct-connect UUCP connection via that disabled port.

To dial out on an enabled port, you must first use the command disable to disable the port.
When you have finished dialing out, run the command enable to re-enable the port. Before
you can use these commands with a port, the port must first be described in the file
/etc/ttys.

See the Lexicon article on ttys for details on how to edit this file. Note that a modem is a
remote device. and must be so described in /etc/ttys, or it will not work correctly.

After you have made your changes, type the command

kill quit 1

to make COHERENT re-read /etc/ttys and implement your changes.

Remote-Access Password
If you intend to let people dial into your computer, you are well advised to set the remote­
access password. This will require that people who dial in know a special password in
addition to whatever password their personal account may have. To set this password, log
in as the superuser root; then enter the command

passwd remacc

This will walk you through setting a password for user remacc, which is the remote-access
account.

Edit /etc/modemcap
Next. you must check the file /etc/modemcap and see if that file holds a description that
matches your modem. modemcap is used by a number of programs to control access to
modems. and this file comes with descriptions for many commonly used modems. You find,
however, that you must edit an existing entry to match your modem's features exactly; for
example. the existing entry may assume that you have a Touch-Tone telephone whereas you
actually have a pulse telephone. The Lexicon entry on modemcap will walk you through
this process. When you have completed editing this entry. note it down, for you will need to
insert it elsewhere.

Edit /usr/bin/modeminit
Next, check the file /usr/bin/modeminit. This program is read by programs that
manipulate the modem, to re-initialize it after use. You must decide how you want the
modem to be re-initialized. Basically, if you wish to have people dial into your system, you
turn on the modem's auto-answer feature; and you must turn off echoing and the printing
of result codes. The commands to use will vary from modem to modem; see the
documentation that comes with your modem for details. See below for details on modifying
this script.

LEXICON

modem 777

Edit L-devices
If you intend to use your modem with UUCP, you must insert an entry for it into your the
file /usr/lib/uucp/L-devices. See the Lexicon entry L-devices for details.

Modem Maladies
The rest of this article discusses problems that have arisen with remote login via modem, as
diagnosed by the technical support staff of Mark Williams Company.

Difficulty in logging in from a remote site via modem can be the result of problems in one or
more of the following: cabling; enabling/disabling the port; flaws in the contents of file
/etc/ttys; incorrect configuration of the modem; and setting the port to an incorrect state.
See Lexicon articles terminal and UUCP for additional information. The following
paragraphs discuss the above-named items in detail.

RS-232 Cabling
When attaching an external modem to your computer, it is important to use a modem cable
that supports "full modem control". COHERENT relies on modem-control signals when
operating a modem for remote access purposes. When attaching a terminal directly to a
serial port. a "null modem" cable must be used. When attaching a modem, a "straight
through" cable must be used. See Lexicon articles RS-232 and tenninal for further details
on cabling.

Enabled vs. Disabled Ports
A serial port can be either enabled or disabled for remote access. Enabling a port allows a
user on a remote terminal or modem to log into your COHERENT system. Disabling a port
permits a user to dial out or use a direct connect UUCP connection via that disabled port.

If a port is enabled for remote logins and you will use it to call out, you must use the
command disable to disable the port before you access the port. The commands uucp and
mail automatically disable and re-enable a port.

The port name supplied to an enable or disable command must exactly match the last part
of a line in the /etc/ttys file (see below). For example, for the command enable com2pr to
work, there must be an entry in the file /etc/ttys which ends with com2pr.

When a port is enabled, (1) the first character for the port in file /etc/ttys is set to a 'l'
(one), (2) the permissions for the port are changed so that only the superuser root can read
and write to the port. preventing other users on the system from accessing the port while a
remote session is in progress, and (c) a login prompt is sent to the port.

/etc/ttys
This file should have permissions of 644 (-rw-r--r--) and belong to owner and group root.
Review the Lexicon entry for ttys to ensure that the format of your version of /etc/ttys is
correct.

Leaving blanks at the end of a line in /etc/ttys usually results in error messages stating
that a device could not be found.

You do not need to edit the initial 'O' or 'l' in entries in /etc/ttys; this digit is updated by
the commands enable and disable. See the Lexicon entries for enable and disable for more
information.

Another problem can arise when using a variable-speed modem and specifying the baud
rate as '3' in file /etc/ttys. The '3' setting represents a 2400-1200-300 baud variable-speed
port. The problem appears to be that while a modem defaults to 2400 baud, COHERENT
may actually be set at one of the other speeds. The answer to this probem is to run the
command modeminit.

LEXICON

778 modem

Constant Flickering
Another problem is a constant flickering of send/receive LEDs and an unexplained
continual access of the hard drive. This occurs when the port is enabled and the modem is
set in echo mode: COHERENT sends the login prompt to the modem, the modem echoes it
back to COHERENT, COHERENT then thinks the modem is trying to talk to it and sends
the password prompt. and so on ad Infinitum. To fix this problem, place the modem into
no-echo mode, and turn off the display of result codes. The following section discusses this
in more detail.

Modem Configuration
A modem that fails to answer an incoming call, hangs up before locking onto the remote
carrier, becomes stuck in a loop echoing characters sent to it from the computer, or fails to
operate at the expected baud rate probably is configured improperly. To remedy this
situation, send the appropriate control string to the modem.

We offer some guidelines here for modem settings. Be warned, however, that modems from
different manufacturers usually behave differently, regardless of claims of Hayes
compatibility, and that you will need to check the manual for your particular modem.

Echo should be OFF (usually by setting "EO").

Result codes should be OFF (usually by setting "Q l ").

Modem status "DCD" should follow true carrier detect status, rather than being always
on (usually by setting "&Cl").

Auto answer should be ON (usually obtained by setting register SO to a nonzero value
equal to the number of rings before answer).

The delay value for "Wait for Carrier/Dial Tone" (usually register S7) should not be too
short.

The scripts below show typical initialization for "Hayes-compatible" and Trailblazer modems.
They are only examples; your modem may need something different. Please note that the
commands sleep and stty are necessary in the first example so that the command string
will be sent to the modem at 2400 baud; otherwise, the string is sent at the default port
speed, which is 9600 baud.

LEXICON

initialize 2400-baud Hayes-compatible modem
disable com3r
sleep 3 > /dev/com31 &
stty 2400 > /dev/com31
echo 'AT EO Ql VO SO=l &Cl M3' > /dev/com31
sleep 3
enable com3r

initialize 9600 baud internal Trailblazer on com2
/etc/disable com2r
cat > /dev/com21 << EOF
at
at eO t vo x3 hO
at sO=l s7=60 s48=1 s51=252 s52=0 s54=3 s58=2
at
EOF
/etc/enable com2r

modemcap 779

You can edit the file /usr/bin/modeminit to suit your modem. To ensure that your
modem is initialized every time you start COHERENT, you should add a line saying

/usr/bin/modeminit

to your copy of the file /etc/re.

See Also
modemcap, modem control, modeminit, RS-232, technical information, terminal

Notes
One final bit of hard-won wisdom: once you have something working, write down what you
did, and store it in a place where you won't lose it. It makes life easier just knowing that
you're looking for a female-to-female cable instead of male-to-female or male-to-male.

modemcap - System Maintenance
Modem-description language
I etc/modemcap

modemcap is a language for describing modems to your system. It resembles the termcap
language in its syntax, although the two are by no means identical. With modemcap, you
can describe your modem to any program that automatically dials out on your modem; this
should spare you the tedium of continually describing your modem to one program after
another.

The copy of /etc/modemcap included with your release of COHERENT already contains
descriptions of many popular modems; the chances are good that yours has already been
described for you.

Each modemcap command is one of three types:jlag, string, or number. Ajlag command
signals that your modem is performs a particular action or has a particular feature. A
string command gives the command that your modem recognizes to perform a particular
action. For example, many modems recognize that the string at means that you want to
gain its attention. Finally, a number command sets a value or parameter for your modem,
such as the highest baud rate it recognizes.

The following table describes each modemcap command:

Name Type Meaning

ad number
as flag
at string

bd number
bl number
ce string
cl string
co string
cs string
de string
di flag
ds string
id number
is string

he flag

Delay after as
Numbers are in ASCII, not binary
Attention string, forces model into command mode
from online mode
Highest online baud rate
Alternate lower baud rate
Command end string (required if CS is present)
String from modem on remote connection at BL baud rate
String from modem on remote connection at BD baud rate
Command start string
End dial command string (required if DS is present)
Modem has a dialer
Start dial command string
Delay after IS
Initialization string, resets modem to offline,
ready to dial
Modem hangs up when DTR drops

LEXICON

780 modemcap

hu
tt

string
flag

Hangup command
Modem dials touchtone by default (or DS is set
that way)

All commands, such as ds (dial command) and hu (hang up) will be prefixed by cs and
ended with ce. If there is a common prefix and suffix, use this feature. Otherwise, each
command will have to have the entire string built in.

Example Entry
The following gives the entry in I etc/ modemcap for the Hayes Smartmodem 1200:

hyjhayesjHayes Smartmodem 1200:\
1as1at=+++1ad#31bd#1200:bl#3001cs=AT:ce=\r:co=CONNECT:\
1cl=CONNECT1di1ds=DT 1de=:is=ATQO Vl El\r:id#2:\
1hc1hu=HO VO EO Q11tt1

Each field is separated by a colon. A backslash '\' character at the end of each line but the
last lets the description extend over more than one line.

The three fields gives three versions of the modem's name, separated by vertical bars 'I'.
The first version of the name is a two-character mnemonic; this must be unique. The other
two versions give fuller versions of the name; these are optional.

The following explains each field in detail:

as

at=+++

ad#3

bd#l200

bl#300

cs=AT

ce=\r

co:CONNECT

cl= CONNECT

di

ds=DT

de=

is=ATQO

id#2

he

hu=HO

LEXICON

Numbers are in binary mode.

To gain the attention of the modem, type+++.

Delay three milliseconds after a number.

Maximum baud rate is 1200.

Minimum baud rate is 300.

To initiate a command string, type AT.

A command string is ended by a carriage-return character.

Modem returns the string CONNECT when it makes a connection
at 1200 baud.

Modem returns the string CONNECT when it makes a connection
at 300 baud.

The modem can dial a telephone number.

Begin dialing. touch-tone mode.

No special string is needed to end the dial string.

To initialize the modem, type ATQO VI El <return>.

Delay two seconds after entering the initialization string.

The modem hangs up when DTR drops (i.e., it hangs up when the
program requests a hangup).

To hangup, type HO VO EO QI.

modem control 781

tt The modem dials touch-tone by default.

Currently Recognized Modems
The file /etc/modemcap includes descriptions of the following modems:

tbfast Trailblazer, 9600 baud
xtb2400 Trailblazer, 2400 baud
hayes Hayes Smartmodem 1200
avatex Avatex 2400 (clone of Hayes Smartmodem 2400)
promodem Prometheus Promodem 1200
mk.12 Signalman Mark XII
dc300 Radio Shack Direct-Connect 300 Modem

See Also
system maintenance, termcap

modem control - Technical Information
This article documents COHERENT's modem control protocol. Modem control describes how
COHERENT handles RS-232 signals other than Receive Data and Transmit Data. The
behavior of COHERENT's suite of device drivers for serial devices is evolving; changes will be
documented in further revisions to this manual.

Many processes can have a device open at the same time. First open occurs if a process
opens a device when no process has opened the device. Last close occurs when a process
closes the port and no other remaining process has the port open.

al[01] Drivers (Devices com[1·4r)
On first open, RTS and DTR are asserted by the computer, regardless of whether the
specified device used modem control. If modem control is used (the high-order bit in minor
number set to zero), openO does not complete until CD is true. Once an al[Ol] device has
been opened with modem control. loss of CD to that port causes SIGHUP to be sent to all
processes in the group keeping the port open.

hs Driver (Devices hs0[0·7]{r})
Unfortunately, in this driver the meaning of the high-order bit in minor device numbers is
reversed from that of the al[Ol) drivers: a one in this bit position indicates modem control ls
used.

Setting the speed of an hs device to a nonzero value causes assertion of RTS and DTR.
regardless of whether the device has modem control; this happens whenever the device is
opened, and at other times. Setting the speed to zero deasserts RTS and DTR.

If modem control is used (high-order bit in minor number is set to one), open() completes
regardless of other modem signals, but attempts to read or write the device fail until DSR
from the modem is true, with errno set to EIO. Transition to false of DSR causes SIGHUP
to be sent to the process group using the device. In addition, when modem control is used,
the computer halts transmission to the port whenever CTS from the modem goes false.

See Also
modem, RS-232, technical information

LEXICON

782 modeminit - modfO

modeminit - System Maintenance
Initialize a modem
/usr/bin/niodeuainit

The script /usr/bin/mod.eminit can be used to initialize a modem. In its default form, this
script sets a Hayes-compatible modem into no-echo mode, turns off command responses,
and turns on auto-answering.

You can edit the file re to have it call this script. This will ensure that your modem is
properly initialized when you boot COHERENT.

See Also
modem, system maintenance

modfO - General Function (libc)
Separate integral part and fraction
double modf(real, Ip) double real, *Ip;

mod.f is the floating-point modulus function. It returns the fractional part of its argument
real, which is a valuef in the range 0 <=f < 1. It also stores the integral part in the double
location referenced by Ip. These numbers satisfy the equation real =f +*Ip.

Example
This example prompts for a number from the keyboard, then uses modf to calculate the
number's fractional portion.

#include <stdio.h>

main()
{

}

extern char *gets();
extern double modf(), atof();
double real, fp, ip;
char string[64];

for (;;) {

}

printf ("Enter number: ");
if (gets(string) == 0)

break;

real= atof(string);
fp = modf(real, &ip);
printf("%lf is the integral part of %lf\n",

ip, real);
printf("%lf is the fractional part of %lf\n",

fp, real);

See Also
atof(), ceilQ, tabs(), ftoor(), frexp(), general function, ldexp()

LEXICON

modulus - more 783

modulus - Definition
Modulus is the operation that returns the remainder of a division operation. For example,
12 modulus four equals zero, because when 12 is divided by four it leaves no remainder.
The term "modulo" also refers to the product of a modulus operation; in the above example,
the modulo is zero. ln C. the modulus operation is indicated with a percent sign '%';
therefore. 12 modulus 4 is written 12%4.

The modulus operation often is used to trim numbers to a preset range. For example, if you
wanted to create a list of single-digit random numbers, you would use the command:

rand() %10

This is demonstrated by the following example.

Example
This example prints a list of 20 single-digit random numbers. The random-number table is
seeded with a portion of the current system time.

main()
{

}

long nowhere;
int counter;

/* place to put unused data */

srand((int)time(&nowhere));
for (counter = O; counter <20; counter++)

printf("%d\n", rand()%10);

See Also
definitions, operator

Notes
The implementation of C defines how a modulus operator behaves when it operates upon
numbers with different signs. On the i8086,

10 % -4

yields -2. This is not mathematical modulus, which is +2.

mon.h - Header File
Read profile output files
#include <mon.h>

mon.h is used with programs that read the profile output files.

See Also
header files

more - Command
Display text one page at a time
more [-cdflsu I [-window_ size I [+line_ number I [+I pattern I [file ... I [· I

more is a filter for paging through text one screenful at a time. file is a text file; the
operator - tells more to read and display the standard input.

LEXICON

784 more

Options
more reads options from the command line and from the environmental variable MORE. In
case of a conflict, the options given on the command line take precedence. Every cluster of
options must be preceded with a hyphen ·-·. even if passed via the environmental variable
MORE.

more recognizes the following options:

-c Paint the screen from the top line down. more normally repaints the screen by
scrolling from the bottom of the screen.

-d Prompt the user at the end of each screen with the message:

[Press space to continue, 'q' to quit.]

The default is to not issue a prompt.

-f Count actual lines from the input file rather than screen lines. This option is useful
when the input contains escape sequences that more does not recognize.

-1 Do not treat the formfeed character <ctrl-L> as special. By default, more pauses at
each formfeed character, as if a full screen had been displayed.

-s Squeeze consecutive blank lines into one blank line. This is useful for looking at nroff
output, such as manual pages.

-u Display backspaces as control characters and leave the carriage return-linefeed (CR-LF)
pair alone. By default, more displays backspaces that appear adjacent to an
underscore character as underlined text; backspaces that appear between two identical
characters as emboldened text; and compresses CR-LF sequences.

+/pattern
Search for pattern before displaying a file. pattern is a regular expression, as
recognized by commands ed or egrep. pattern should be escaped to avoid being
processed by the shell.

-window size
Set the size of the window that more displays to wln.dow_stze, which is a decimal
integer less than or equal to the number of lines on your terminal. The default window
size is read from the termcap description for your terminal.

+line number
Make line_ number the beginning line to display in file. line_ number is a decimal integer
less than the number of lines infile.

Commands
The following describes more's interactive commands. These commands are based on those
for the UNIX editor vi. Some commands may optionally be preceded by a decimal number.
If you enter an invalid command, more will beep at you.

h
? Help: display a summary of these commands.

[N)<space>

[N]z

Display the next N lines of text (default, one screenful).

If N is not specified, display the next screenful. Otherwise, display N lines and set the
default scrolling size to N for all subsequent <space> and z commands.

LEXICON

more 785

[N]<ctrl-F>
[N]f

Scroll forward N screenfuls (default, one screenful). If N is more than the screen size,
only the final screenful is displayed.

[NJ<ctrl-B>
[N]b

[N]s

Scroll backward N screenfuls (default, one screenful). If N is more than the screen size.
only the final screenful is displayed.

Skip forward N lines (default, one line) and display one screenful.

[NJ<return>
[NJ<enter>

Scroll forward N lines (default, one). Display all N lines, even if N is more than the
screen size.

[NJ<ctrl-D>
[N]d

Scroll forward N lines (default, one half of the screen size). If N is specified. it becomes
the new default for subsequent d and <ctrl-D> commands.

<ctrl-L>
Redraw the screen.

(Apostrophe) Return to the position in the current file where the previous search
command started, or to the beginning of the file if no search commands have occurred.
This information is lost when a new file is examined.

[NJ I pattern
Search forward for the N-th line that contains pattern (default. one). pattern is a
regular expression, as recognized by ed or egrep. The search starts at the second line
displayed.

n Repeat previous search.

:f Display the name of the current file with the current line number.

[NJ:n

[NJ:p

Examine the N-th file after the current file. as given in the command line (default, the
next file).

Examine the N-th file previous to the current file, as given in the command line
(default, the previous file).

! command
:! command

Pass command to the shell specified by environment variable SHELL for execution.
The default shell is /bin/sh.

v Invoke an editor to edit the current file. The editor is set by the environment variables
VISUAL and EDITOR. in that order. If these variables are not set, use vi.

= Display the current line number.

q

LEXICON

786 motd - mountO

:q
Q
:Q Quit.

Environment
more uses the following environment variables:

EDITOR

MORE

SHELL

TERM

Specify default editor.

Set default options for more

Specify the shell being used (normally set at login time).

Specify the type of terminal you are using. more uses this variable to read
from /etc/termcap the terminal characteristics needed to manipulate the
screen.

VISUAL Specify default visual editor.

See Also
commands, egrep, scat, vi

Author
This software is derived from software contributed to Berkeley by Mark Nudleman. more is
copyright © 1988, 1990 by The Regents of the University of California. Copyright © 1988 by
Mark Nudleman. All rights reserved.

more is distributed as a service to COHERENT customers, as is. It is not supported by
Mark Williams Company. Caveat utilltor.

motd - System Maintenance
File that holds message of the day
/etc/motd

The file motd holds the message of the day. Its contents are displayed on every user's
screen whenever he logs in.

Only the superuser can alter the contents of this file.

See Also
login, system maintenance

mountO - System Call
Mount a file system
#include <sys/mount.h>
#include <sys/filsys.h>
mount (special, nameJlag)
char *special, •name; intjlag;

mount() is the COHERENT system call that mounts a file system. special names the
physical device that through which the file system is accessed. name names the root
directory of the newly mounted file system. flag controls the manner in which the file
system is mounted. as set in header file sys/mount.h.

See Also
fd, system calls

LEXICON

mount.all - System Maintenance
Mount file systems at boot time
I etc/mount.all

mount.all - mount 787

The file /etc/mount.all holds a set of mount commands to mount all COHERENT file
systems on hard disk. It is invoked by the script /etc/re, which COHERENT reads and
executes at boot-time.

When you add a new COHERENT partition to your system, you should insert an
appropriate entry into this file, to ensure that the new partition is mounted whenever you
reboot your system.

See Also
checklist, mount, re, system maintenance

mount - Command
Mount a file system
/etc/mount [special directory [-ru 11

mount mounts a file system from the block special file special onto directory in the system's
directory hierarchy. This operation makes the root directory of the mounted file system
accessible using the specified directory name.

If the -r option is specified. the file system is read-only. This is useful for preventing
inadvertent changes to precious file systems. The system will not update information such
as access times if the -r option is used.

The -u option causes mount to write an entry into the mount table file /etc/mtab without
actually performing the mount. This is used to note the file system.

When invoked with no arguments, mount summarizes the mounted file systems and where
they attach.

The command umount unmounts a previously mounted file system.

The script /bin/mount calls /etc/mount, and provides convenient abbreviations for
commonly used devices. For example,

mount fO

executes the command:

/etc/mount /dev/fhaO /fO

The system administrator should edit this script to reflect the devices used on your system.

Files
I etc/mtab - Mount table
/etc/mnttab- Mount table
/bin/mount - Shell script that calls I etc/mount

See Also
commands, fsck, mkfs, mknod, umount

Diagnostics
Errors can occur if special or directory does not exist or if the user has no permissions on
special.

LEXICON

788 mount.h - ms

The message

/etc/mtab older than /etc/boottime

indicates that /etc/mtab has probably been invalidated by booting the system.

Attempting to mount a block-special file which does not contain a COHERENT file system
may have disastrous consequences. mkfs must be used to create a file system on a blank
disk before it is mounted.

mount.h - Header File
Define the mount table
#include <sys/mount.h>

mount.h defines the structures and constants that constitute the COHERENT system's
mount table. It also declares functions that are used internally by routines that manipulate
the mount table.

See Also
header mes

moutO - Multiple-Precision Mathematics
Write multiple-precision integer to stdout
#include <mprec.h>
void mout(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mout writes the multiple-precision integer (or mint)
pointed to by a onto the standard output. The base of the output is set by the value of the
external variable obase.

See Also
multiple-precision mathematics

mprec.h - Header File
Multiple-precision arithmetic
#include <mprec.h>

The header file mprec.h declares a set of routines used to perform multiple-precision
arithmetic. It also declares the structure mint, which holds multiple-precision integers.

See Also
header mes, multiple-precision arithmetic

ms - Technical Information
Manuscript macro package
nroff-msjlle ...

The nroff macro package ms formats manuscripts. The tutorial on nroff describes the ms
macros in detail.

ms includes the following macros:

.AB Begin the abstract portion of a document's title page.

LEXICON

ms 789

.AE End the abstract

.AI Indicate author's institution on a document's title page .

. AU Name the author on the title page of a document .

. B Boldface font: set the following argument in boldface. If the argument is longer
than one word, it must be enclosed in quotation marks. Anything on the line after
the argument is thrown away .

. BD Block-centered display. Take a portion of text; do not adjust it or break it between
two lines, but center it as a whole .

. BT Bottom title. This controls the printing of the footer title, should you want one. It
uses three strings, all or any of which can be defined by the user: LF. for left-hand
portion; CF. for center portion; and RF. for right-hand portion. CF has the default
definition of printing the page number; the other two strings are undefined .

. CD Centered display. Center individually every line within a display .

. DA Set the date .

. DE Mark the end of a display. Do not use after the macros .LD .. CD. or .RD .

. DS Mark the beginning of a display. Do not use for displays longer than one page .

. FE Mark the end of a footnote entry .

. FS Mark the beginning of a footenote entry .

. I Italic font. Used like .B. above .

. ID Indent a display I /2 inch before printing .

. IP Indent a paragraph of text before printing. This macro can take two arguments:
argument I is used as a tag that is printed to the left of the first line of the
paragraph: argument 2 indicates how far to indent the paragraph. in characters
(the default is five characters. or I /2 inch) .

. KE Indicate the end of a keep. or a portion of text that must not be broken between two
pages .

. KF Start floating keep .

. KS Indicate the beginning of a keep .

. LD Set a display flush left; used with displays that are longer than one page .

. NH Set a numbered heading. This macro takes one argument: the depth of numbering.
For example, a '4' here would yield a number of the format "1.1.1.1 ". No number
higher than five is accepted here. The following line gives the text of the heading .

. PP Begin a new paragraph .

. QE Mark the end of a quoted paragraph .

. QP Quoted paragraph. Used like .IP. above .

. QS Mark the beginning of quoted text; text is indented by five characters (1 /2 inch) .

. R Roman font. Used like .B. above.

LEXICON

790 MS-DOS

.RE Mark the end of a relative indentation .

• RS Mark the beginning of a relative indentation. A relative indentation is a block of
text that is indented five characters (1 /2 inch) more than the text before it .

• SH Subheading. One line of space is inserted, and the following line of text is set
boldface and flush left .

• TA Set tabs, in characters .

• TL Title: format the title entry on the cover page of a document.

Files
/usr/llb/tmac.s

See Also
man, nroff, technical information, troff
Introduction to nroff, Text Processing Language. tutorial

MS-DOS - Technical Information
That other operating system

MS-DOS is the native operating system of the IBM-AT and compatible computers. As such,
it needs no introduction to most users. Many customers have asked, however, how MS­
DOS and COHERENT compare in terms of their capabilities; and many have also asked for
a chart that maps familiar MS-DOS commands to their COHERENT equivalents. This
article attempts to fulfill these requests.

MS-DOS vs. COHERENT
MS-DOS differs significantly from COHERENT in practically every aspect of its design. For
example, its file system is incompatible with COHERENT; its shell command.com differs
significantly from COHERENT's suite of shells; the manner in which it loads and executes a
program differs completely from COHERENT's.

The most noticeable difference in design, however, is that MS-DOS is a single-user, single­
process operating system. whereas COHERENT is a multi-user, multi-tasking operating
system.

Single-user means that only one user can use MS-DOS at any given time: whoever sits at
the keyboard "owns" the machine and all its facilities. Multi-user means, of course, that
more than one user can use COHERENT at any given time, via terminals or modems
plugged into the computer's serial ports. The number of users who can use your
COHERENT system at once is limited only by your computer's speed. available memory. and
by the number of serial ports that can be plugged into your computer.

Single-tasking means that MS-DOS can do only one task at a time: it loads a program into
memory, runs it to completion, then awaits your request to execute another program. Multi­
tasking means that COHERENT can execute more than one program at a time.

To grasp how multi-tasking can simplify some work, consider the task of formatting floppy
disks. Under MS-DOS. you pop the floppy disk into the drive, invoke the MS-DOS program
format, answer its queries. then go get a cup of coffee while the machine grinds away.
Formatting a box of high-density floppy disks ties up your machine for the better part of an
hour. which is largely wasted time for you. Under COHERENT, however, you can format a
floppy disk in the background - that is, you can tell COHERENT to execute the disk-format
program unsupervised, and let you work with another program. For example, if you wish to
low-level format a 5.25-inch, high-density floppy disk in drive 0 (that is, drive A), use the
following command:

LEXICON

MS-DOS 791

/etc/fdformat -v /dev/fhaO &

Try it. You'll notice that the COHERENT prompt returns immediately: while COHERENT is
formatting your disk for you, you can edit a file, play a video game. dial out to a remote
system, or even format a second disk in your machine's B drive (should you have one).

Multi-tasking also means that you can program COHERENT to execute programs untended.
even while you are away from your machine. The UUCP system is a good example of this
feature. UUCP lets you exchange mail and files with remote systems via modem; once the
system is set up. it runs automatically, without requiring that you sit at the keyboard to
run it.

This discussion only gives you a taste of the advantages COHERENT enjoys over an obsolete
system like MS-DOS. The following documents contain information that MS-DOS users will
find helpful:

The tutorial Using the COHERENT System introduces COHERENT to new users. If you
are new to COHERENT and have not yet read this tutorial, you should do so before you
continue any farther.

The Lexicon article dos describes a COHERENT command that lets you transfer files
from MS-DOS file systems to COHERENT, and vice versa. The file systems can reside
either on floppy disks or on different partitions of your hard disk.

The Lexicon articles floppy disks and hard disk discuss the in's and out's of using
mass-storage device with COHERENT. The article floppy disks in particular discusses
in detail all the steps required to format and manipulate MS-DOS-style floppy disks
under COHERENT.

The Lexicon articles modem. printer, and terminal discussion how to connect these
devices to COHERENT. and introduce the set of commands with which you can
manipulate them under COHERENT.

The Lexicon article execution describes in detail how COHERENT loads and executes
a program. This article is aimed at the technically knowledgeable, but neophytes may
find parts of it helpful.

The Lexicon article commands summarizes all commands available under the
COHERENT system. This article will help you grasp the scope of COHERENT's suite of
commands, and will help you explore them systematically.

COHERENT Equivalents to MS-DOS Commands
The following table lists the most commonly used MS-DOS commands, and gives
COHERENT equivalents.

Note that often there is no single COHERENT command that equates to a given MS-DOS
command. COHERENT often offers several alternatives, and you can select the one that
best suits your needs. Every COHERENT command has its own article in the COHERENT
Lexicon; look there first for details on how to use the command.

BACKUP
This command copies a directory's files to a formatted floppy disk to back them up.
To do so under COHERENT, use the command:

find • -print I cpio -oc > /dev/rfhaO

Note that cpio requires a formatted, defect free floppy disk, however you do not
need to create a filesystem on the floppy disk prior to using cpio.

Note that if you want COHERENT to prompt you before it backs up a file, use the

LEXICON

792 MS-DOS

BREAK

command:

find • -print I cpio -ocr > /dev/rfhaO

See the article on the archiving command cpio for details on this command -
especially important if you expect to retrieve your backed-up files.

Note, too, that the device /dev/rfh.aO corresponds to a 5.25-inch, high-density
floppy disk in drive 0 (drive A). See the article fioppy disks for a list of the devices
that correspond to different sizes and configuration of floppy disks.

Abort a command. Aborting a command under COHERENT varies, depending upon
whether the command is running in the foreground or the background. The
keystroke

<ctrl-c>

aborts most commands that are running in the foreground. To abort a command
that is running in the background, you must use the kill command. See its
Lexicon entry for details on how to use it.

CHDIRorCD
Change to another directory. To do so under COHERENT, use the command

cd dlr

where dlr is the directory to which you wish to go. The directories '.' and ' . .' are
used by both COHERENT and MS-DOS; since MS-DOS "borrowed" its directory
structure from UNIX (of which COHERENT is an implementation), the similarity
should not be surprising.

Note that MS-DOS requires that before you can change to directory on another
physical device or partition, you must first switch to that device by typing its name
before you use the chdir command. COHERENT has no such restriction.

CHKDSK
Check the integrity of a file system. Under COHERENT. use the command:

/etc/fsck [option] [jllesystem]

See the Lexicon on fsck for details on how to use it.

COMP Compare the contents of two files. To do so under COHERENT, use the_ following
command to compare two binary files:

cmp [option] file 1 flle2

cmp displays the bytes which differ between the files.

To compare the contents of two text files, use the command:

dif f [option] .file 1.ftle2

COPY Copy the contents of one file into another; create the target file if it does not already
exist. Under COHERENT. say:

cp old.filename new.filename

LEXICON

MS-DOS 793

To copy a set of files into a directory without changing their names, use the
following form of the command:

cp jllel ... jlleN directory

DATE Reset the current date and time. Under COHERENT, use the command:

date yymmddhhmm.ss

Only the superuser can reset the system's date and time. When date is used
without an argument, it prints the date and time on the standard output.

DIR Type the contents of a directory. Under COHERENT, use the command:

ls -1

DIR/W List a directory's contents in columnar form. Under COHERENT, use either the
command:

le

or the command:

ls -c

DISKCOPY
Copy one floppy disk track-by-track to another floppy disk. COHERENT has no
exact equivalent to this command; however, you can copy the contents of one disk
to another by using the following set of commands.

First, place a write-protect tab on your source disk; insert the disk into drive 0
(drive A). then type the following command:

dd if=/dev/fhaO of=/tmp/filename

This copies the contents of the 5.25-inch, high-density floppy disk in drive 0 into
file /tmp/ffiename. For a table of devices that correspond to other sizes and
configurations of floppy disks, see the Lexicon article t1oppy disks.

Second, insert formatted destination diskette into drive 0, and then type the
command:

dd if=/tmp/filename of=/dev/fhaO

This command copies the files in directory /tmp/tllename onto the target floppy
disk. Note that the target disk must be formatted before it can receive files; see the
Lexicon article floppy disks for information on how to do this.

EDLIN Perform simple-minded editing of text files. Under COHERENT. the ed editor
performs line editing, but is much more sophisticated than edlin. COHERENT also
includes the vi and MicroEMACS screen editors, which are more useful still.

ERASEorDEL
Remove a file or a directory. To erase a file, use the command:

rm file 1 [• • • jlleN]

To erase a directory, use the command:

rrndir directory

LEXICON

794 MS-DOS

To erase a directory and all files and directories below it, use the command:

rm -r directory

FIND Find a pattern within a text file. Under COHERENT. use the command:

grep [option] pattern [file •••]

grep is an extremely useful command; see its Lexicon entry for details on how to
use it.

MEM Find how much space is left free on your hard disk. Under COHERENT, say:

df [options J

See the Lexicon entry on df for details.

MKDIR Create a new directory. Under COHERENT:

mkdir directory

MODE Set parameters for terminals and ports. Under COHERENT, use the command
stty. This command comes with many options; see its Lexicon entry for details.
The default speeds of all ports and terminals reside in file /etc/ttys. The superuser
can use a text editor to edit this file to change any or all default settings.

MORE Display text a screenful at a time. Under COHERENT. the command more does the
same thing, as does the command scat.

PRINT Print files via a serial port. To print a file on a dot-matrix printer, use the
command:

!pr fllel [••• fileN J

To print a file on a Hewlett-Packard LaserJet printer, use the command

hpr file 1 [••• flleN J

Note that before these commands can be used, the appropriate devices must be
linked to your system. See the Lexicon article on printer for details.

Note, too, that COHERENT uses a spooling system to manage the printing of files;
thus, attempting to print a non-existent file will not hang the system.

PROMPT
Change the command.com prompt. The COHERENT shells store the prompt
format within the environmental variable PSI. This variable is usually defined in
each user's .profile file; this file holds commands that are executed whenever the
user logs in. To change the definition of your prompt, edit .profile to define PSI to
suit your preference, then log in again.

Note that the information that can be embedded within the prompt varies between
the Bourne and Korn shells. See the Lexicon articles sh and ksh for details on
those shells and their prompts.

RENAME
Rename a file. Under COHERENT, use the command:

LEXICON

msg 795

mv oldjlle newjile

mv can also be used to move files from one directory or file system to another.

RESTORE
Restore a file saved with the BACKUP command. Under COHERENT. insert the
floppy disk upon which the cpio utility saved its backup archive; then type the
command:

cpio -icv < /dev/rfhaO

Note that this command assumes you are using /dev/rfhaO, which describes a
5.25-inch, high-density floppy disk in drive 0 (drive A). For a table of devices that
correspond to other sizes and configurations of floppy disks, see the Lexicon article
floppy disks.

TREE List all directories on a file system. Under COHERENT. use the command:

find I -type d I more

To list all files and directories that are subordinate to the current directory, use the
command:

find . I more

The COHERENT command ls -IR also lists a directory tree, in a somewhat different
output format.

See Also
COHERENT, dos, floppy disks, hard disk, modem, printer, terminal, technical
information

msg - Device Driver
Message device driver

The file /dev/msg is an interface to the message device driver. It is assigned major device
25 (minor device 0) and can be accessed as a character-special device.

All messaging operations are performed through the COHERENT system call ioctl. Each of
the operations msgctl, msgget, msgsnd, and msgrcv is performed with an integer array as
its parameter. The first element of the array is reserved for the return value (default, -1).
Subsequent elements represent arguments. The call to ioctl passes MSGCTL, MSGGET.
MSGSND, or MSGRCV as the second argument, and an array of parameters as the third
argument. The first argument is an open file descriptor to /dev /msg.

Prior to accessing the devices. a entry must be created in directory I dev. as follows:

/etc/mknod /dev/msg c 25 O
/bin/chmod 444 /dev/msg

Notes
The space allocated for message text is set by the kernel variables NMSG and NMSC. These
set. respective, the number of message queues and the number of messages. The total
space allocated (NMSG * NMSC) must be less than 64 kilobytes.

Allocation of too many message queues or messages can exhaust kernel data space. thus
preventing the system from running. Recommended safe limits are NMSQID=l6 and
NMSG=lOO. The values of these variables can be reset using the program /conf/patch;

LEXICON

796 msg - msg.h

you should only do so, however, if you are thoroughly familiar with the workings of the
COHERENT kernel.

Private message queues are not supported. Message queues must be removed manually
when no longer required. Queue identifiers consist of a scaled slot number plus a slot
usage sequence number. Using the system call msgctl with the option IPC_STAT will
obtain information on the specified slot, even when it returns an error.

To remove all message queues, compile and run the following C code:

msgget (0, 0) ; /* must do first */

for (qid = OxlOO; qid < Ox4000; qid += OxlOO) {
struct msqid_ds msb;
msb.msg_perm.seq = O;
msgctl(qid, IPC_STAT, &msb);

if (msb.msg__perm.seq > 0)
msgctl (msb.msg__perm.seq, IPC_RMID, 0);

}

To load msg use the command drvld.

Files
/usr/include/sys/ipc.h
/usr/include/sys/msg.h
/dev/msg

See Also
device drivers, drvld, msgctl(), msgget(), msgop()

msg - Command
Send a brief message to other users
msguser
message

The command msg prints the one-line message on the screen of user.

The message is send as soon as you type <return> on the message line. If user is not
logged in or is not known to the system, msg prints an error message on your screen.

See Also
commands

msg.h - Header File
Definitions for message facility
#include <sys/msg.h>

msg.h defines the structures and constants used with the COHERENT message facility.

See Also
header files

LEXICON

msgctlO 797

msgctlO - System Call
Message control operations
#include <sys/msg.h>
int msgctl(msqld, cmd, bl!f)
int msqld; int cmd; struct msqid_ds *biif;

msgctl performs the message-control operations specified by cmd. The following cmds are
available:

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated
with msqld into the structure pointed to by buf.

Set the value of the following members of the data structure associated
with msqld to the corresponding value found in the structure pointed to by
buf:

msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that has an effective-user
identifier equal to either that of superuser or to the value of msg_perm.uid
in the data structure associated with msqld. Only superuser can raise the
value of msg_qbytes.

Remove the system identifier specified by msqld from the system and
destroy the message queue and data structure associated with it. This cmd
can only be executed by a process that has an effective-user identifier equal
to either that of superuser or to the value of msg_perm.uid in the data
structure associated with msqid.

msgctl fails if any of the following are true:

msqid is not a valid message queue identifier. msgctl sets the global variable errno to
EINVAL.

cmd is not a valid command (EINVALJ.

cmd is equal to IPC_STAT and operation permission is denied to the calling process
(EACCES).

cmd is equal to IPC_RMID or IPC_SET. and the effective-user identifier of the calling
process is not equal to that of superuser and it is not equal to the value of
msg_perm.uid in the data structure associated with msqld (EPERM).

cmd is equal to IPC_SET. an attempt is being made to increase to the value of
msg_qbytes, and the effective-user identifier of the calling process is not equal to that
of super user (EPERM).

bufpoints to an illegal address (EFAULT).

Return Value
Upon successful completion, msgctl returns zero. If a problem occurs, it returns -1 and
sets errno to an appropriate value.

LEXICON

798 msggetO

Files
/usr/include/sys/ipc.h
I usr /include/ sys /msg.h
/dev/msg

See Also
msg, msgget(), msgrcv(), msgsnd(), system calls

Notes
To improve portability, COHERENT implements the msg functions as a device driver rather
than as an actual system call.

msggetO - System Call
Get message queue
#include <sys/msg.h>
msgget(key, msgflg)
key_t key; int msgflg;

msgget returns the message queue identifier associated with key. should it exist. If key
has no message queue associated with it, msgget checks whether (msgflg & IPC_CREAT) is
true; if it is, then msgget creates a message queue identifier and associated message queue
and data structure for key.

Upon creation, the data structure associated with the new message queue identifier is
initialized as follows:

msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set to,
respectively, the effective user identifier and effective group identifier of the calling
process.

The low-order nine bits of msg_perm.mode are set to the low-order nine bits of msgflg.
These nine bits define access permissions: the top three bits specify the owner's access
permissions (read, write, execute), the middle three bits specify the owning group's
access permissions, and the low three bits specify access permissions for others.

msg_ctime is set to the current time.

msg_qbytes is set equal to the system limit, as defined by the kernel variable NMSQB.

msgget fails if any of the following is true. The term within parentheses gives the value to
which msgget sets errno, as defined in the header file errno.h:

A message queue identifier exists for key but operation permission as specified by the
low-order nine bits of msgflg would not be granted (EACCES).

A message queue identifier does not exist for key and (msgflg & IPC_CREAT) is false
(ENO ENT). ..

A message queue identifier is to be created but the number of message queue
identifiers system-wide exceeds the system limit as specified in the kernel variable
NMSQID (ENOSPC).

A message queue identifier exists for key, but ((msgflg & IPC_CREAT) && (msgflg &
IPC_EXCL)) is true (EEXIST).

Return Value
Upon successful completion, msgget returns the message-queue identifier, which is always
a non-negative integer. Otherwise, it returns -1 and sets ermo to an appropriate value.

LEXICON

Files
I usr I include/ sys I ipc.h
I usr /include/ sys I msg.h
/dev/msg

See Also
msg, msgctl(), msgrcv(), msgsnd(), system calls

Notes

msgrcvO 799

To improve portability. the msg functions are presently implemented as a device driver
rather than as an actual system call.

msgrcvO - System Call
Receive a message
#include <sys/msg.h>
msgrcv(msqld, msgp, msgsz, msgtyp, msgflg)
int msqid, msgsz, msgflg; struct msgbuf*msgp; long msgtyp;

msgrcv reads a message from the queue associated with the queue identifier msqld and
writes it in the structure pointed to by msgp. This structure consists of the following
members:

long mtype;
char mtext [] ;

/* message type */
/* message text */

mtype is the received message's type. as specified by the sending process. mtext is the text
of the message. msgsz gives the size of mtext, in bytes. The received message is truncated
to msgsz bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is true. The
truncated portion of the message is lost. with no indication given to the calling process.

msgtyp specifies the type of message requested, as follows:

If msgtyp equals OL, the first message on the queue is received.

If msgtyp is greater than OL, the first message of type msgtyp is received.

If msgtyp is less than OL, the first message of the lowest type that is less than or equal
to the absolute value of msgtyp is received.

msgflg specifies the action taken if a message of the desired type is not on the queue, as
follows:

If (msg/1g & IPC_NOWAIT) is true, the calling process immediately returns -1 and sets
errno to ENOMSG.

If (msgflg & IPC_NOWAIT) is false, the calling process suspends execution until one of
the following occurs:

1. A message of the desired type is placed on the queue.

2. msqtd is removed from the system. When this occurs, msgrcv sets errno to
EDOM

3. The calling process receives a signal that is to be caught. In this case, a message
is not received and the calling process resumes execution in the manner
prescribed in signal.

msgrcv fails and no message is received if any of the following is true:

LEXICON

800 msgs

msqld is not a valid message queue identifier. msgrcv errno to EINVAL.

Operation permission is denied to the calling process (EACCES).

msgsz is less than zero (EINVAL).

mtext is greater than msgsz and (msgftg & MSG_NOERROR) is false (E2BIG).

The queue does not contain a message of the desired type and (msgtyp &
IPC_NOWAIT) is true (ENOMSG).

msgp points to an illegal address (EFAULT).

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqld:

msg_qnum is decremented by one.

msg_lrpid is set equal to the process identifier of the calling process.

msg_rtime is set equal to the current time.

Return Values
If msgrcv returns due to the receipt of a signal, it returns -1 and sets errno to EINTR. If it
returns due to the removal of msqld from the system, it returns -1 and sets errno to EDOM.
Upon successful completion, msgrcv returns a value equal to the number of bytes written
into mtext. Otherwise, it returns -1 and sets ermo to an appropriate value.

Files
/usr/include/sys/ipc.h
/usr/include/sys/msg.h
/dev/msg

See Also
msg, msgctl(), msgget(), msgsnd(), system calls

Notes
To improve portability, the COHERENT system implements the msg as a device driver
rather than as an actual system call.

msgs - Command
Read messages intended for all COHERENT users
msgs [-q] [number]

msgs selects and displays messages that are intended to be read by all COHERENT users.
Messages are mailed to the login msgs. They should contain information meant to be read
once by most users of the system.

The command msgs normally is in a user's .profile, so that it is executed every time he logs
in. When invoked, it prompts the user with the identifier of the user who sent the message
and the message's size. msgs then asks the user if he wishes to see the rest of the message.
The user should reply with one of the following:

LEXICON

y
<return>
n

q
number

Display the message.
Display the message.
Skip this message and go to the next one.
Redisplay the last message.
Quit msgs.
Display message number; then continue.

msgsndO 801

If environmental variable PAGER is defined, msgs will "pipe" each message through the
command specified in PAGER. For example, the .profile command line:

export PAGER="exec /bin/scat -1"

would invoke /bin/scat for each message with the command line argument -1 (the digit
one).

msgs writes into the file $(HOME)/ .msgsrc the number of the next message the user will
see when he invokes msgs. msgs keeps all messages in the directory /usr/msgs; each
message is named with a sequential number, which indicates its message number. The file
/usr/msgs/bounds contains the low and high numbers of the messages in the directory;
msgs determines whether a user has not read a message by comparing the information "in,
$(HOME)/ .msgsrc with that in /usr/msgs/bounds. If the contents of /usr/msgs/bounds
are incorrect, the problem can be fixed by removing that file; msgs will create a new bounds
file the next time it is run.

When the contents of a message are no longer needed, simply remove that message. Avoid
removing the bounds file and the highest numbered message at the same time.

msgs accepts the following command-line options:

-q Query whether there are messages; print "There are new messages" if there are, and
"No new messages" if not. The command msgs -q is often used in profile scripts.

number Start at message number rather than at the message recorded in
$(HOME)/ .msgsrc. If number is greater than zero, then start with that message: if
number is less than zero, then begin number messages before the one recorded in
$(HOME)/ .msgsrc.

Files
/usr/spool/mail/msgs- Mail messages file
/usr/msgs/(1-9)* - Data base
/usr/msgs/bounds- File that contains message number bounds
$(HOME) I .msgsrc - Number of next message to be presented

See Also
commands, mail, PAGER, scat

msgsndO - System Call
Send a message
#include <sys/msg.h>
msgsnd(msqld, msgp, msgsz, msgjlg)
int msqid, msgsz, msgjlg; struct msgbuf*msgp;

The COHERENT system call msgsnd sends a message to the queue associated with the
message queue identifier msqld. msgp points to a structure that contains the message. This
structure consists of the following members:

LEXICON

802 msgsndO

long
char

mtype;
mtext [J;

/* message type */
/* message text */

mtype is a positive long integer that the receiving process uses to select messages. mtext is
a string that is msgsz bytes long. msgsz can range from zero to a system-imposed limit as
specified in the kernel variable NMSC.

msgflg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes.

The number of messages on all queues system-wide equals the system limit specified
in the kernel variable NMSG.

msgflg can specify any of the following actions:

If (msgflg & IPC_NOWAIT) is true, the message is not sent and the calling process
returns immediately.

If (msgflg & IPC_NOWAIT) is false, the calling process suspends execution until one of
the following occurs:

1. The condition responsible for the suspension no longer exists, in which case the
message is sent.

2. msqid is removed from the system. When this occurs, msgsnd sets errno to
EDOM and returns -1.

3. The calling process receives a signal that is to be caught. In this case, the
message is not sent and the calling process resumes execution in the manner
prescribed in signal.

msgsnd fails and no message is sent if one or more of the following are true:

msqld is not a valid message queue identifier. msgsnd sets errno to EINVAL.

Operation permission is denied to the calling process (EACCES).

mtype is less than one (EINVAL).

The message cannot be sent for one of the reasons cited above and (msgflg &
IPC_NOWAIT) is true (EAGAIN).

msgsz is less than zero or greater than the system-imposed limit (EINVAL).

msgp points to an illegal address (EFAULT).

Upon successful completion, the following actions are taken with respect to the data
structure associated with msqid.

msg_qnum is incremented by one.

msg_lspid is set equal to the process ID of the calling process.

msg_stime is set equal to the current time.

Return Values
If msgsnd return because it has received a signal, it returns -1 and sets errno to EINTR. If
it returns because msqid was removed from the system, it returns -1 and sets errno to
EDOM.

Upon successful completion, msgsnd returns zero. Otherwise, it returns -1 and sets enno
to an appropriate value.

LEXICON

Files
I usr I include I sys I ipc.h
I usr /include/ sys /msg.h
/dev/msg

See Also
msg, msgctl(), msgget(), msgrcv(), system calls

Notes

msig.h - msubO 803

To improve portability. the msg functions are presently implemented as a device driver
rather than as an actual system call.

msig.h - Header File
Machine-dependent signals
#include <signal.h>

The header file msig.h defines the machine-dependent signals that the COHERENT system
uses to communicate with its processes. The header file signal.h declares constants for the
machine-independent signals, and includes msig.h.

See Also
header files, signal.h

msqrtO - Multiple-Precision Mathematics
Compute square root of multiple-precision integer
#include <mprec.h>
void msqrt(a, b, r)
mint •a, *b, •r;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function msqrt sets the multiple-precision integer (or mint)
pointed to by b to the integral portion of the positive square root of the mint pointed to by
a. It sets the mint pointed to by r to the remainder. The value pointed to by a must not be
negative. The result of the operation is defined by the condition

a= b • b + r.

See Also
multiple-precision mathematics

msubO - Multiple-Precision Mathematics
Subtract multiple-precision integers
#include <mprec.h>
void msub(a, b, c)
mint •a, *b, •c;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function msub subtracts the multiple-precision integer (or
mint) pointed to by a from the mint pointed to by b. and writes the result into the mint
pointed to by c.

See Also
multiple-precision mathematics

LEXICON

804 mtab.h - mtoiO

mtab.h - Header File
Currently mounted file systems
#include <mtab.h>

The file /etc/mtab contains an entry for each file system mounted by the mount command.
This does not include the root file system, which is already mounted when the system
boots.

Both the mount and umount commands use the following structure, defined in mtab.h. It
contains the name of each special file mounted, the directory upon which it is mounted,
and any flags passed to mount (such as read only).

#define MNAMSIZ 32
struct mtab {

};

char mt_name(MNAMSIZ J;
char mt_special[MNAMSIZ];
int mt_flag;

Files
/etc/mtab
<mtab.h>

See Also
header files, mount, umount

mtioctl.h - Header File
Magnetic-tape I/O control
#include <sys/mtioctl.h>

mtioctl.h defines constants and structures used by routines that control magnetic-tape
I/O.

See Also
header files

mtoiO - Multiple-Precision Mathematics
Convert multiple-precision integer to integer
#include <mprec.h>
int mtoi(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mtoi returns an integer equal to the value of the
multiple-precision integer (or mint) pointed to by a. The value pointed to by a should be in
the range allowable for a signed integer.

See Also
multiple-precision mathematics

LEXICON

mtosO - Multiple-Precision Mathematics
Convert multiple-precision integer to string
#include <mprec.h>
char •mtos(a) mint •a;

mtosO - multO sos

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mtos converts the multiple-precision integer (or mint)
pointed to by a to a string. It returns a pointer to the string it creates. The string is
allocated by malloc, and may be freed by tree. The base of the string is set by the value of
the external variable obase.

See Also
multiple-precision mathematics

mtypeO - General Function (libc)
Return symbolic machine type
#include <mtype.h>
char •mtype(type)
int type;

mtype takes an integer machine type and returns the address of a string that contains the
symbolic name of the machine. The header file mtype.h defines the possible machine
types. For example,

mtype(M_PDPll)

returns the address of the string PDP-11.

Files
<mtype.h>

See Also
general functions, l.out.h, ld

Diagnostics
mtype returns NULL to indicate that it doesn't recognize the type of machine requested.

mtype.h - Header File
List processor code numbers
#include <mtype.h>

The header file mtype.h assigns a code number to each of the processors supported by
Mark Williams C compilers and operating systems. These include the Intel i8086, i8088,
i80186, and i80286; the Zilog Z8001 and Z8002; the DEC PDP-11 and VAX; the IBM 370,
and the Motorola 68000.

See Also
header file

multO - Multiple-Precision Mathematics
Multiply multiple-precision integers
#include <mprec.h>
void mult(a, b, c)
mint •a, •b, •c;

LEXICON

806 multiple-precision mathematics

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mult multiplies the multiple-precision integers (or
mints) pointed to by a and b, and writes the product into the mint pointed to by c.

See Also
multiple-precision mathematics

multiple-precision mathematics - Overview
The COHERENT system includes the library llbmp. whose routines allow you to perform
multiple precision arithmetic. These functions manipulate a data structure called a mint,
or "multiple-precision integer," which the header file mprec.h defines as follows:

typedef struct {
unsigned !en;
char *val;

} mint;

You should not depend on the details of this structure, because on some machines a
different representation may be more efficient. Using the listed functions is always safe.

The following gives the multiple-precision routines:

gcd() . .
fspos()
itom().
madd()
mcmp().
mcopy()
mdiv().
min() ..
minft() .
mintfr().
mi tom()
mneg().
mout() .
msqrt().
msub()
mtof().
mtos().
mult().
mvfree()
pow() ..
rpow() ..
sdiv() ..
smult().
spow().
xgcd() ..
zerop() .

. Set variable to greatest common divisor

. Return if variable is positive or negative

. Create a multiple-precision integer

. Add multiple-precision integers

. Compare multiple-precision integers

. Copy a multiple-precision integer

. Divide multiple-precision integers

. Read multiple-precision integer from stdin

. Condition global or auto multiple-precision integer

. Free a multiple-precision integer

. Reinitialize a multiple-precision integer

. Negate multiple-precision integer

. Write multiple-precision integer to stdout

. Compute square root of multiple-precision integer

. Subtract multiple-precision integers

. Convert multiple-precision integer to integer

. Convert multiple-precision integer to string

. Multiple multiple-precision integers

. Free multiple-precision integer

. Raise multiple-precision integer to power

. Raise multiple-precision integer to power

. Divide multiple-precision integers

. Multiply multiple-precision integers

. Raise multiple-precision integer to power

. Extended greatest-common-divisor function

. Indicate if multi-precision integer is zero

itom() creates a new mint, initializes it to the signed integer value n, and returns a pointer
to it. Storage used by a mint created with ftom may be reclaimed using mintfr().

A mint that already exists may be reinitialized by mitom(), which sets a to the value n. If
the mint was declared as a global or automatic variable, it must be conditioned before first
use by mfnit(), which prevents garbage values in the mint structure from causing chaos. A
mint conditioned by minit() has no value; however, it may be used to receive the result of

LEXICON

multiple-precision mathematics 807

an operation. For mints automatic to a function. mvfree() should be used before the
function is exited to free the storage used by the val field of the mint structure. Otherwise.
this storage will never be reclaimed.

madd(), msub(), and mult() set c to the sum, difference. or product of a and b. mdiv divides
a by b and writes the quotient and remainder in q and r. b must not be zero. The results of
the operation are defined by the following conditions:

1. a=q*b+r

2. The sign of r equals the sign of q

3. The absolute value of r < the absolute value of b.

smult() is like mult(), except the second argument is an integer in the range O <= n <= 127.
sdiv() is like mdiv(). except the second argument is an integer in the range 1 <= n <= 128,
and the remainder argument points to an int instead of a mint().

pow() sets c to a raised to the b power reduced modulo m. rpow() sets c to a raised to the b
power. spow() is like rpow(). except the exponent is an integer. In no case may the
exponent be negative.

mcopy() sets b equal to a. mneg() sets b equal to negative a.

msqrt() sets b to the integral portion of the positive square root of a; r is set to the
remainder. a must not be negative. The result of the operation is defined by the condition

a=b*b+r

gcd() sets c to the greatest common divisor of a and b. xgcd() is an extended gcd routine
that sets g to the greatest common divisor of a and b, and sets r ands so the relation

g=a*r+b*s

holds. For xgcd(}, r, s and g must all be distinct.

mints may be compared with mcmp(). which returns a signed integer less than, equal to, or
greater than zero according to whether a is less than. equal to. or greater than b. tspos()
returns true (nonzero) if a is not negative. false (zero) if a is negative. zerop returns true if a
is zero, false otherwise.

mtoi() returns an integer equal to the value of a. a should be in the allowable range for a
signed integer.

The external integers ibase and obase govern the 1/0 and ASCII conversion routines.
Allowable bases run from two to 16. Permissible digits are 0 through 9 and A through F
(lower-case letters are not allowed). min reads a mint in base ibase from the standard
input and sets a to that value. Leading blanks and an optional leading minus sign are
allowed; the number is terminated by the first non-legal digit. mout() outputs a on the
standard output in base obase. mtos() performs the same conversion as mout(). but the
result is placed in a character string instead of being output; a pointer to the string is
returned. The string is actually allocated by malloc(}, and may be freed by free().

mzero() and mone() point to mints with values zero and one. mminint() and mmaxint()
point to mints containing the minimum and maximum values that will fit in a signed
integer. These constants should never be used as the result of an operation.

All the necessary declarations for these constants and for the library functions are
contained in the header file mprec.h. They need not be repeated.

To link mp modules with an executable object, use the argument -Imp with the cc or Id

LEXICON

808 multiple-precision mathematics

commands.

Example
The following example converts a string into a multi-precision integer.

#include <stdio.h>
#include <mprec.h>
#include <ctype.h>

/*
* "ibase" is an int which contains the input base used by "stom".
* It should be between 2 and 16.
*/

int ibase = 10;

/*
* stom() reads in a number in base ibase from string 'a' and returns
* pointer to multiple-precision integer.
*/

mint *stom(s)
register char *s;
{

}

char cval;
mint c = {l, &cval};
register int ch;
char mifl = O; /* leading minus flag */
static mint number;

mcopy(mzero, &number);
if ((ch= *s) == '-') {

mifl = l;
ch = *++s;

}

/* set number to zero */
/* skip leading '-' */

/* scan thru string 's', building result in "number" */
while (isascii(ch) && isdigit(ch)) {

}

cval = (isdigit(ch) ? ch - '0': ch - 'A');
smult(&number, ibase, &number);
madd(&number, &c, &number);
ch = *++s;

if (mi fl) /* adjust sign of a "number" *I
mneg(&number, &number);

return(&number);

/* simple test for "stom" */
main()
{

char buffer[SO];

LEXICON

printf("Input string ? ");

gets(buffer);

mv - mvfreeO 809

rnout(storn(buffer)); /*Print in stdout multiple-precision int*/
}

Files
<mprec.h>
/usr /llb/llbmp.a

See Also
be, de, libraries, malloc, mprec.h

Diagnostics
On any error, such as division by zero, running out of space or taking the square root of a
negative number, an appropriate message is printed on the standard error stream and the
program exits with a nonzero status.

mv-Command
Rename files or directories
mv [-fl oldjlle [newjlle]
mv [-f]jlle ... directory

mv renames files. In the first form above, it changes the name of oldftle to newjlle. If
newjlle already exists, mv replaces it with the file being moved; if not, mv creates it. If
newjlle is a directory, mv places oldflle under that directory.

In the second form, mv moves eachjlle so that it resides under directory. If a file with the
new name exists but is unwritable, mv will not delete it unless the -f option is specified.

mv will not copy directories between devices and will not remove directories that occupy the
destination of the command.

Normally, mv creates a link to the old file with the new file and then removes the old file. If
it cannot create the link (e.g., because the new file is on a different file system than the old),
mv performs a copy and then removes the old file.

See Also
commands, cp, In

Notes
mv tests the validity of directory moves by means of search permission. The superuser
always has search permission and thus can use mv incorrectly.

mvfreeO - Multiple-Precision Mathematics
Free multiple-precision integer
#include <mprec.h>
void mvfree(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function mvfree frees the space allocated to an automatic
multiple-precision integer (or mint). You should call mvfree before exiting the function
that uses the mint, or the storage used by the val field of the mint structure will never be
reclaimed.

LEXICON

810 mvfreeQ

See Also
multiple-precision mathematics

LEXICON

n.out.h - Header File
Define n.out file structure
#include <n.out.h>

n.out.h - ncheck 811

N

n.out.h defines the n.out file structure. This file structure is used to encode executable
files; it is the same as the standard COHERENT form I.out. except that it uses 32-bit
addressing. This file structure is used internally in COHERENT, but is not available under
the COHERENT C compiler or assembler.

See Also
header files, I.out

named pipe - Definition
A named pipe is a special file created with the command /etc/mknod. Unlike the block­
and character-special files created by mknod, a named pipe is not a device.

A named pipe acts like a conventional pipe set up between related processes. It differs in
that it has a visible name that can be seen in a file system. It also differs in that it has
permissions (since it's a file and has a name) associated with it just like any other file. This
allows a named pipe to be accessed by processes that are not related to each other, and can
even be used for processes that are running on behalf of difference users.

The following illustrates how one process can write data into a named pipe and an
unrelated process can read from it:

/etc/mknod my_pipe p # create the named pipe
chmod 644 my_pipe
ls -lR I > my_pipe & # pump data into pipe in background
mail fred < my_pipe # read from the pipe and process

This script creates a named pipe called my_pipe and makes sure that it is readable; it then
pumps a mass of data into the pipe (in the background), and then has a process read data
from the named pipe and perform some action on them (in this case, mail the data to use
fred). In this example. the mail process could be running from some other login and could
either be in the foreground or background.

See Also
definitions, mknod, pipe

ncheck - Command
Print file names corresponding to i-node
ncheck [-i number •.•] [-as Jjllesystem ...

An I-number identifies an i-node. ncheck generates a list of file names by i-number for each
jllesystem, which should be the name of a device special file that contains a proper
COHERENT file system. Using the raw device generally decreases the time ncheck requires
to do its work.

The output is in the unsorted traversal order of the file system hierarchy. ncheck
distinguishes directories from files by suffixing 'I.· to directory names.

Under the -i option, ncheck prints the file name corresponding to each i-number number in
the given list. Under the -a option, ncheck prints only the names of special files and set
user-ID mode files; this option allows the system administrator to ascertain quickly whether

LEXICON

812 newgrp - newusr

these files represent possible security breaches.

See Also
commands, i-node

Diagnostics
ncheck appends '??' to the generated file name if it cannot find the proper parent structure
while retrieving the file-name information. It represents any loops detected in the file name
by the characters · .. .'. Extremely addled file systems may generate other reasonably self­
explanatory diagnostics.

newgrp - Command
Change to a new group
newgrp group

newgrp changes the user's group identification to the specified group. if access is permitted.
The file /etc/group determines group access. Group access may be unrestricted, or open
to all users with specific exceptions. or restricted to certain users via a password.

The shell executes newgrp directly.

Files
I etc/ group - Give group access

See Also
commands, group, ksh, sh

Diagnostics
If newgrp succeeds, no diagnostic is printed.

Notes
Interruption of newgrp can result in the user being logged off.

Under the Korn shell. newgrp is an alias for exec newgrp.

newusr - Command
Add new user to COHERENT system
/etc/newusrlogln "User Name" parentdtr [shell]

newusr adds a new user to the system. It automatically adds an entry to the file
/etc/passwd, creates a home directory for the user, installs the user in the mail system.
and otherwise performs the myriad tasks required to add a new user to your COHERENT
system.

login is the login idenifier of the new user. This is a single word in lower case, by which that
user is identified. Note that each user must have a unique login identifier. Identifiers are
usually the user's first name. initials. or a nickname. parentdlr is the directory or (more
usually) the file system in which newusr will create the new user's home directory. User
Name is the name of the human for whom login is being created. shell names the shell to be
used; the default is the Bourne shell /bin/sh.

For example, the command

/etc/newusr batman "Bruce Wayne" Iv /usr/bin/ksh

creates new user Bruce Wayne. with login batman. home directory /v /batman, and default
shell /usr/bin/ksh.

LEXICON

Files
/etc/group- User groups
/etc/passwd- User passwords
/parentdlr/user - User home directory
/usr/spool/mall/user- User mailbox

See Also
commands, passwd

Diagnostics
newusr complains if an entry for user already exists in the password file.

Notes
Only the superuser can add new users to the system with newusr.

nkb - Device Driver
Device driver for console keyboard

nkb 813

The COHERENT device-driver nkb supports industry-standard 83-, 101-, and 102-key AT­
protocol keyboards attached as the computer console. Unlike kb, the other COHERENT
keyboard driver, nkb lets you define both the layout of the keyboard and the values
returned by function keys. It also lets you change layout and function-key bindings by
using the special keyboard mapping programs kept in directory /conf/kbd. This directory
contains the C source code for the mapping tables, as well as a Makefile that helps you
rebuild the mapping programs. See the Lexicon article keyboard tables for details.

Internal Structure
The following paragraphs describe the internal structure of the nkb driver. This information
is of interest mainly to persons who wish to study the design of device drivers.

nkb understands the following "shift" and "lock" keys:

scroll
num
caps
lalt
ralt
lshift
rshift
lctrl
rctrl
altgr

Scroll lock
Keypad NUM lock
Shift or CAPS lock
LeftALT key
Right ALT key
Left SHIFT key
Right SHIFT key
Left CTRL key
Right CTRL key
ALT Graphic key (non-US keyboards)

nkb records an internal shift state, as defined by the current positions of the shift and lock
keys. The shift state is a logical combination of internal states SHIFT, CTRL, ALT. and
ALT_GR. The lshift and rshift keys combine to form the current SHIFT state for non­
alphabetic keys. Alphabetic keys generally use the current state of the caps lock key in
addition to lshift and rshift. Numeric keys found on the keypad generally use the state of
the num lock key combined with lshift and rshift. The two "control" keys, lctrl and rctrl,
form the internal CTRL state. In a similar manner, the two "alt" keys. lalt and ralt, form
the internal ALT state. Note that 102-key keyboards generally replace the ralt key with the
altgr key, to allow access to the alternate graphics characters found on some keyboards.

nkb lets you configure or read the internal mapping tables via the following ioctl() requests,
as defined in header file <sgtty .h>:

LEXICON

814 nkb

TIOCGETF Get function key bindings
TIOCSETF Set function key bindings
TIOCGETKBT Get keyboard table bindings
TIOCSETKBT Set keyboard table bindings

Requests TIOCGETF and TIOCSETF reference a data structure of type FNKEY, which is a
typedef defined in header file <sys/kb.h>. Structure member k_fnval is a character array
that contains a series of contiguous function key /value bindings; the end of the bindings is
marked by manifest constant DELIM. You can use any value other than DELIM as part of a
function-key binding. Structure member k_nfkeys indicates how many function keys have
associated entries in k_fnval. Function keys are numbered from zero through k_ntkeys-1.

By convention, function-key 0, when enabled, causes the computer system to reboot. This
function key is usually bound to the key sequence <ctrl><alt>. but you can disable it
by setting the value of driver-variable KBBOOT_ to zero. To do so, use the following
command:

/conf/patch /coherent KBBOOT_=O

Requests TIOCGETKBT and TIOCSETKBT reference an array that contains MAX_KEYS
occurrences of data structure KBTBL, which is a typedef defined in header file <sys/kb.h>.
Structure member k_key contains the scan code set three code value for the desired key.
Header file <sys/kbscan.h> contains manifest (symbolic) constants of the form K_nnn,
which map AT keyboard physical key number nnn to the corresponding scan-code set-three
value generated by the keyboard. Note that the nkb driver disables the scan-code
translation that the keyboard controller normally performs, as well as setting the keyboard
to scan code set three.

Structure member k_val is a nine-element array that contains the key mappings that
correspond to the following index values and shift states:

0 BASE
1 SHIFT
2 CTRL
3 CTRL_SHIFT
4 ALT
5 ALT_SHIFT
6 ALT_CTRL
7 ALT_CTRL_SHIFT
8 ALT_GR

Structure member k_tlags contains mode information for the given key. One field in k_tlags
indicates the class of key. This sub-field lets you specify whether a key is a "shift" key (as
defined above), a special or programmable "function" key, or a "regular" key. The following
symbolic constants specify the class of key:

S The specified key is a "shift" or "lock" key. Note that all entries in array
k_val must be identical for a "shift" or "lock" key to work correctly.

F The specified key is a "function" or special key. The value of all elements of
array k_val must specify a function key number. See header file <kb.h> for
a list of predefined function keys.

0 The specified key is "regular" and requires no special processing.

The next sub-field of k_tlags specifies the type of key, as specified in the AT keyboard
technical reference. The type sub-field specifies under what conditions a given key will

LEXICON

nkb 815

generate an interrupt. The possible choices are:

M

T

MB

TMB

Make: generate an interrupt only upon key .. make" (i.e .. when the key is
depressed). This mode is useful for keys which do not repeat. Note that
using this mode with "shift" keys stops you from unshifting upon release of
the key!

Typematic: generate an interrupt when the key is depressed, and generate
subsequent key-depression interrupts while the key is depressed. The rate
at which interrupts are generated is specified by the typematic rate of the
keyboard. This type is usually associated with a .. regular" key.

Make/Break: generate an interrupt when the key is depressed, and when it
is released. No additional interrupts are generated no matter how long the
key is depressed. This mode is used for "shift" keys.

Typematic/Make/Break: generate an interrupt when the key is first
depressed; generate subsequent key depression interrupts while the key
remains depressed; and generate an interrupt when the key is released.

The last sub-field of k_tlags specifies the lock keys. if any. that affect the specified key:

C The caps lock key that affects this key. If the specified key is depressed
while caps lock is active, it is equivalent to having used either of the SHIFT
keys with this key. When caps lock is in effect. use of either of the SHIFT
keys temporarily toggles the state of the caps lock.

N The num lock key affects this key. If the specified key is depressed while
num lock is active, it is equivalent to having used either of the SHIFT keys
in conjunction with the specified key. When num lock is in effect, use of
either of the SHIFT keys temporarily toggles the state of the num lock.

See Also
device drivers, fnkey, keyboard tables

Technical Reference for the IBM Personal Computer AT, IBM Corporation, 1984.

Multi-Function Keyboards: Layouts, Cherry Electrical Products Corp.

Notes
With release 3.2 of COHERENT, nkb became the standard keyboard driver, replacing the kb
driver used in earlier releases. Please note that both drivers. nkb and kb, are linked into
the COHERENT kernel, like most other COHERENT device drivers. Neither driver is found
in directory /drv; this directory is reserved for loadable device drivers, such as those for the
COM ports or for the shared-memory driver. The COHERENT Device Driver Kit contains
tools and information to rebuild the COHERENT kernel, which is necessary if you wish to
switch keyboard drivers.

The main difference between nkb and kb is that nkb uses a "supplemental" process to
interpret keystrokes. This permits COHERENT users to switch among flavors of
international keyboards with a minimum of difficulty. As noted above, the source code for
these supplemental programs is kept in directory I conf/kbd. See the Lexicon article on
keyboard tables for details on how to modify, compile, and load one of these keyboard­
interpretation programs.

Please note, finally, that if you attempt to use a keyboard interpreter with kb, it will fail with
an error message.

LEXICON

816 nlistQ - nm

nlistO - General Function (libc)
Symbol table lookup
#include <l.out.h>
int nlist(file. nlp)
char ":file;
struct nlist *nlp;

nlist searches the name list (symbol table) of the load module file for each symbol in the
array pointed to by nlp. For example, the command ps uses this routine on the system load
module (/coherent) to obtain the addresses of system tables in memory(/ dev /mem).

nip points to an array of nlist structures. terminated by a structure with a null string as its
n_name member. The header file l.out.h defines nlist as follows:

#define NCPLN16

struct nlist {
char n_name[NCPLN];
int n_type;
unsignedn_value;

} ;

The caller should set the entry n_name; nlist will fill in the other entries. nlist sets both
n_type and n_value to zero if the symbol is not found.

Files
l.out.h

See Also
general functions, l.out.h, nm, strip

Diagnostics
If .file is not a load module or has had its symbol table stripped, all returned n_type and
n_value entries will be zero.

nm -Command
Print a program's symbol table
nm [-adgnopru].file ...

The command nm prints the symbol table of each.file. It can read binary files produced by
the compiler, assembler, or linker.

When a C source file is compiled with the -c switch to the cc command, or when a file of
assembly language is assembled, the result is an object module, which is signified by the
suffix .o.

The linker Id links multiple object modules to form an executable program. Frequently
used object modules often are grouped by the archiver ar into a library, which is signified by
the suffix .a. nm can read all three kinds of files: .o, .a, and fully linked executables.

Options
nm recognizes the following options:

-a Print all symbols. Normally. nm prints names that are in C-style format and ignores
symbols with names inaccessible from C programs.

LEXICON

nm 817

-d Print only defined symbol.

-g Print only global symbols.

-n Sort numerically rather than alphabetically. nm uses unsigned compares when
sorting symbols with this option.

-o Append the file name to the beginning of each output line.

-p Print symbols in the order in which they appear within the symbol table.

-r Sort in reverse-alphabetical order.

-u Print only undefined symbols.

Output
Output of nm is a series of lines of the form:

addr type symbol

For example,

0020 SI main

If the input file is a library, symbols are listed separately for each member of the library,
preceded by a header line that names the library element. For example, if too.a contains
elements fool.o and foo2.o, then the output of nm is something like this:

#nm foo.a
fool.o:

u exl
0002 c ex2
0024 PD ex3
0000 SI fnl

foo2.o:
0022 PD exl

u ex2
u fnl

0015 SI fn3
0000 SI main

The addr field gives the value of the symbol in hexadecimal. If the symbol belongs to the
instruction or data segment of a program, then the value of the symbol is the offset within
that segment. If the value is unknown, this field is left blank.

The type field is one of the following (symbol types Pl and SD are relatively obscure and are
available only through the assembler):

LEXICON

818 notmemO

SI Shared instruction
Pl Private instruction
Bl Uninitialized instruction
SD Shared data
PD Private data
BD Uninitialized data
D Debug tables
A Absolute symbol
C Reference
U Undefined

Please note that the type field is printed in lower case (e.g., si instead of SI) if the symbol is
local rather than global. By default, the C compiler strips local symbols from the object
modules files it creates.

See Also
cc, commands, Id, size, strip

notmemO - General Function (libc)
Check if memory is allocated
int notmem(ptr);
char •ptr;

notmem checks if a memory block has been allocated by calloc, malloc, or realloc. ptr
points to the block to be checked.

notmem searches the arena for ptr. It returns one if ptr is not a memory block obtained
from malloc, calloc, or realloc, and zero if it is.

Example
The following example prints a string. and frees it if it was malloc'd.

#include <sys/malloc.h>

pfree(s)
char *s;
{

}

printf("%s\n", s);
if (! notmem(s))

free(s);

main()
{

LEXICON

char *mallocked_string;
char notmallocked_string[SO];

if ((mallocked_string = malloc(SO)) ==NULL)
exit(l);

strcpy(mallocked_string, "This is a malloc'd string");
strcpy(notmallocked_string, "This is not a malloc'd string");

}

pfree(rnallocked_string);
pfree(notrnallocked_string);

See Also
arena, calloc(), free(), general functions, malloc(), realloc(), setbuf()

nptx - Command
Generate permutations of users' full names
nptx

nptx 819

The command nptx reads an address/name pair (that is, an address and a user's full
name), and prints on the standard output as many permutations of the user's name as it
can think of, each linked to the given address. A set of such permutations helps to relieve a
user of needing to know the exact form of another user's name when she wishes to send
mail to that user.

When a set of users' names are filtered through nptx, its output can be used as a "full­
name data base" that can be used by the COHERENT mail system.

The format of an input line is:

address name

address can contain any address. It is terminated by a <tab> character. name consists of
white-space-separated names or initials, with an optional nickname given in parentheses,
terminated by either a newline character or a comma.

nptx prints all permutations of the first names and initials, with the last name appearing in
each permutation. Permutations are not necesarily unique.

Example
Given the address I name pair

chicago!widgetllc LaMonte Cranston(Shadow)

nptx produces the following set of permutations:

Cranston
L.Cranston
LaMonte.Cranston
s.cranston
Shadow.Cranston

See Also

chicago!widget!lc
chicago!widget!lc
chicago!widget!lc
chicago!widget!lc
chicago!widget!lc

commands, mail, mkfnames, paths

Notes
The command mkfnames can read a file of names and massage them into the form
expected by nptx.

nptx assumes European-style names, i.e., that the family name comes last (unlike Oriental
names. in which the family name comes first).

LEXICON

820 nroff

nroff - Command
Text-formatting language
nroff [option ...] Iflle ...]

nroff is the COHERENT text-formatter and text-formatting language. By embedding
commands within files of text. you can instruct nroff to format text. create paragraphs.
subheadings. headers, footers, and in general perform all tasks required to format text for
the printed page or for screen display.

nroff is designed to be used with character-display terminals or monospace printers. The
related program troff performs typeset-quality formatting, suitable for printing on the
Hewlett-Packard LaserJet printer or any printer for which the Postscript language has been
implemented. trof'fs formatting language is a superset of that used by nroff. Text that you
have encoded for formatting by nroff will work with troff, but the reverse is not always true.
See the Lexicon entry on troff for information that applies to troff alone.

nroff Input
nroff processes each file, or the standard input if none is specified, and prints the formatted
result on the standard output. The input must contain formatting instructions as well as
the text to be processed.

Basic nroff commands provide for such things as setting line length. page length, and page
offset, generating vertical and horizontal motions. indentation, filling and adjusting output
lines, and centering. The great flexibility of nroff lies in its acceptance of user-defined
macros to control almost all formatting. For example, the formation of paragraphs, header
and footer areas, and footnotes must all be implemented by the user via macros.

The following summarizes the commands and options that can be used with nroff. Four
types of commands and options are described: (1) command line options; (2) nrof'fs basic
commands (also called primitives); (3) escape sequences that can be used with nroff; and (4)
nrof'fs dedicated number registers, and what information each one keeps.

Command-line Options
Command-line options may be listed in any order on the command line. They are as
follows:

-d Debug: print each request before execution. This options is extremely useful when
you are writing new macros.

-fname
Write the temporary file in file name.

-k Keep: do not erase the temporary file.

-i Read from the standard input after reading the givenjiles.

-mname
Include the macro file /usr/lib/tmac.name in the input stream.

-nN Number the first page of output N.

-mN Set number register a to the value N.

-mbN Set number register ab to value N. For obvious reasons, ab cannot contain a digit.

-x Do not eject to the bottom of the last page when text ends. Use this option when
you wish to use nroff interactively. It, too, is useful when debugging macros.

If the environmental variable NROFF is set when nroff is invoked, its contents are prefixed

LEXICON

nroff 821

to list of command-line arguments. This let you set commonly used options once in the
environment. rather than having to retype them for each invocation of nrotl'.

Primitives
The following gives the basic commands. or primitives. that are built into nrotl'. These
primitives can be assembled into macros. or can be written directly into the text of your
document. Commands may begin either with a period '.' or with an apostrophe; the former
causes a break (see .br. below), the latter does not .

• ab msg
Abort: print msg on the standard error and abort processing .

• ad [bclr]

• afRX

.am xx

Enter adjust mode: that is, insert white space between words to create right­
justified output. b adjusts for both margins; this is the default. c adjusts and
centers on the line. 1 adjusts, flush with the left margin. r adjusts, flush with the
right margin .

Assign format X to number register R. The assigned format may be one of the
following:

1 Arabic numerals (default)
i Lower-case Roman numerals
I Upper-case Roman numerals
a Lower-case alphabetic characters
A Upper-case alphabetic characters

Append the following to macro XX. Used like .de. below .

. as XX Append the following to string XX. Used like .ds, below .

• bp Begin a new page .

• br Break; print any fraction of a line of text that is in the input buffer before reading
new text .

• c2 c Set the no-break control character to c. With no argument, reset it to the default
apostrophe .

. cc c Set the normal control character to c. With no argument, reset it to the default
period .

• ce N Center N lines of text (default, one) .

. chXXN
Change the location of the trap for macro XX to vertical position N on the page.
Used like command .wh. below .

. coendmark
Copy input directly to the output until endmark is seen. If no endmark is given,
copy until another .co is seen .

. cu Underline continuously .

• da X Divert and append the following text into macro X. A diversion is ended by a .da
command that has no argument.

LEXICON

822 nroff

.de X Define macro X. The macro definition is ended by a line that contains only two
periods" .. ·· .

. di X Divert the following text into macro X. Diversion is ended by a .di command that
has no argument .

. ds X value
Define string X to have the given value .

. ec c Set the escape characer to c. With no argument. reset it to the default backslash
character · \ · .

. el action

. em XX

Execute action when the test in an .ie command fails. This command must be used
with an .ie command .

Execute macro XX when processing is completed .

. eo Escape off: turn off special handling of all escape sequences .

. ev N Change the environment. When followed by O. l, 2. the command pushes that
environment; when used without an argument. the command pops the present
environment and returns to the previous environment .

. ex Exit from nroff without further ado .

. fl Enter fill mode .

. fl Flush; same as .br .

. ft X Change the current font to X. nroff recognizes R. B. and I. for Roman. bold, and
italic. respectively .

. ie condition action
This command tests to see if condition is true; if true. it then executes action;
otherwise, it performs the action introduced by an .el primitive. This command
must be used with the .el command .

. if condition action

. igX

. inNX

. itNXX

LEXICON

This command tests to see if condition is true; if so. then action is executed;
otherwise. action is ignored. The command .if o applies if the page number is odd,
and the command .if e applies if the page number is even. The command .if n
applies if the text is processed by nroff, and the command .if t applies if the text is
processed by troff. The command .if I applies in landscape mode. The command .if
p applies to troff Postscript mode. Note that the last two conditions are unique to
the COHERENT implementation of nroff, and may not be portable to other
implementations .

Ignore all input until macro .X is called; if no argument is given. ignore input until
two periods " .. " .

Change the normal indentation to N units of X scale. X can be u or i. for machine
units or Inches. respectively. If N is used without X. nroff assumes the indentation
to be given in number of character-widths (in picas. or tenths of an inch). Default
indentation is zero .

Set an input trap to execute macro XX after N input lines (not counting request
lines).

nroff 823

.le c Set the leader dot character to c. When nroff sees the escape sequence \a, it fills
space to the next tab stop with the leader dot character. le with no argument tells
nroff to use spaces to fill leaders .

• 11 NX Set the line length. Used like the .in command, above .

• ls X Leave spaces; insert X vertical spaces after each line of text. Default is zero .

• It NX Length of title. Used like the .in command, above .

• na Enter no-adjust mode. Line lengths are not changed .

• neNX
Confirm that at least N portions of X units of measure of vertical space are needed
before the next trap. If this amount of space is not available, then move the text to
the top of the next page. X can be i or v. for inches or vertical spaces, respectively.
This command is used in display macros and in paragraph macros to help prevent
widows and orphans .

• nf Enter no-fill mode; no right justification is performed, although line lengths are
changed to approximate uniform line length .

. nh Turn off hyphenation. nroff hyphenates according to built-in algorithms that are
correct most of the time, but not always .

• nrX Nl N2
Set number register X to value Nl; set its default increment/decrement to N2. For
example, .nr X 2 3 sets number register X to 2. and sets its default increment to 3 .

• ns No-space mode .

• nxflle Terminate processing of the current input file and begin processingflle instead .

• plNX
Set the page length to N. The unit of measure X can be V or i, for vertical spaces
(sixths of an inch) or inches, respectively. The default unit of measure is vertical
spaces .

• pn N Set the page number to N .

• poNX
Set the default page offset to N. The unit of measure X can be set to i, for inches.
The default unit of measure is number of characters .

• rbflle Read binary: read the given file and copy it directly to the output without
processing .

• rd prompt
Read an insertion from the standard input after issuing the given prompt .

• rtXXYY
Rename font XX as YY .

• rm XX Remove macro or string XX .

• mXXYY
Change the name of a macro or string from XX to YY .

• rr X Remove register X.

LEXICON

824 nroff

.rs Restore normal space mode .

• soflle Openflle, read its contents, and process them. When the end offlle is reached,
resume processing the contents of the present file .

• sp !IJNX
Space down N. The unit of measure X can be i, for inches, with the default unit of
measure being vertical spaces. or sixths of an inch. The optional vertical bar 'I'
indicates that N is an absolute value; for example .. sp I I.5i means to move to 1.5
inches below the top of the page. whereas .sp l.5i means to move to 1.5 inches
below the present position .

• taNX ...

• tcXN

Set the tab to N. The unit of measure X can be set to i, for inches; the default unit
of measure is number of characters, or tenths of an inch. A tab setting, of course,
is for an absolute, not a relative, value. If more than one tab setting is defined, the
first defines the first tabulation character on a text line. the second defines the
second tabulation character. etc. Any undefined tabulations are thrown away .

Fill any unused space within a tabulation field with the character X. If the optional
N is present, it specifies a width for the character; for example, .tc •• Ii fills tabs
with dots spaced one-tenth of an inch apart .

. ti NX Temporary indent; indent only the next line. Used like the .in command. above .

. ti 'left'center'right'
Set a three-part title, with left being set flush left. center being centered on the line,
and right being set flush right. Note the use of the apostrophes to separate the
fields; the apostrophes for an undefined field must still be present, or a syntax error
will be generated .

. tmmessage
Print message on the standard error device. This is often used with .if or .ie
commands to indicate an error condition .

• tr xy Translate character x toy on output .

. ul N Underline the next N lines .

. vs Np Reset the normal vertical spacing to N points p. One point equals I/ 72 of an inch:
the default setting is 12 points, or 1 /6 of an inch .

• wh NX action
Set a trap to perform action when point N is reached on every formatted page. If N
is negative, it is measured up from the bottom of the page. The unit of measure X
may be i or v, for inches or number of vertical lines, respectively; the default unit of
measure is v.

Escape Sequences
The following lists nroff's escape sequences, or commands that suspend or work around the
normal operation of nroff. All escape sequences are introduced by the escape character,
normally the backslash character'\'.

\(xx Print special character xx, as defined by a .de request. nrotl' reads default special
character definitions from file /usr/lib/rotl'/nroff/specials.r. For example. the
escape sequence\(<= prints the less-than-or-equal-to symbol :s.

LEXICON

nroff 825

\ \ Print a backslash character. This can be used to print a literal backslash character
in the output text. or to defer the interpretation of a macro or string from the time it
is processed to the time that it is called.

\- Print a minus sign.

\lie Ignore what is normally a command string.

\$N Call macro argument N.

\" Introduce a comment within your text. All text to the right of this escape sequence
will be ignored by nroff. This sequence must read • \" when used at the beginning
of a line.

\ •s Call string S.

\•(ST
Call string ST.

\a Fill the space to the next tab stop with leader dots (normally'.').

\e Print the escape character in the output text.

\fX Set font to X; this can be either R, I, B, or P. for Roman. Italic, bold. or previous
font, respectively.

\h'!IJNX'
Move horizontally by N units of X. If N is positive, move to the right; if negative,
move to the left. The unit of measure X may be i, for inches; the default unit of
measure is character-widths. When the optional vertical bar 'I' is used, move to an
absolute position on the line. For example \h' I 1.51' moves to 1.5 inches to the
right of the left margin, whereas \h'l.51' moves 1.5 inches to the right of the
current position.

\l'NX' Draw a horizontal line N units of X long. The unit of measure X may be i, for
inches; the default unit of measure is character-widths.

\L'NX' Draw a vertical line; used like \1, above.

\nX Read the value of number register X.

\n(XY Read the value of number register XY.

\o'chars'
Overstrike the given chars, centered on the widest.

\ t Print a tab.

\v'NX' Vertical motion; move N units of X vertically. If N is positive, move down; if
negative, move up. The unit of measure X may be i or v, for inches or vertical
spaces (sixths of an inch}, respectively. The default unit of measure is v.

\ w'argument'
Measure the width of argument. For example

\w'stuff and nonsense'

measures the width of the phrase stutr and nonsense; or

\w'\$1'

measures the width of the first argument passed to a macro, whatever that
argument might happen to be. Therefore, the command .in \w'\$1' will indent a

LEXICON

826 nroff

line by the width of argument 1.

\Xdd Output the character with hexadecimal value dd. where dd are two hexadecimal
digits.

\zc Print character c with zero width.

\<newline>
Ignore this <newline> character.

\{ Begin conditional commands; used after an .if. an .ie, or an .el command.

\{\ Begin conditional commands. and ignore the following carriage return.

\} End conditional commands.

Dedicated Number Registers
The following lists the number registers that are predefined in nroff. You can read or reset
these registers to suit the need of any special formats that you wish to devise .

. $ Number of arguments in a call to a macro.

% Present page number.

dy Day of the month, as set by COHERENT .

. F Name of input file being read .

. i Present level of indentation .

• I Present line length.

mo Month, as set by COHERENT .

. o Present page offset.

.p Page length.

yr Year. as set by COHERENT.

Printer Configuration
nroff reads several files in directory /usr/lib/roff/nroffto find printer-specific information.
It reads special character definitions from file specials.r. If file fonts.r exists. nroff reads
font information from it; nroff understands only Roman. bold and italic fonts, but .rf
requests may define alternative font names. If file .pre exists. nroff copies it at the
beginning of the output. If file .post exists. nroff copies it at the end of the output. In
landscape mode, nroff looks for files .pre_land and .post_land instead. You can change
these files as desired to include printer-specific commands in nroff output.

Miscellaneous
The -ms macro package is kept in file /usr/lib/tmac.s. The macros in this package are
more than sufficient for most ordinary text processing. Beginners should work through this
macro package rather than trying to deal at once with the basic program.

The tutorial to nroff, which is included with this manual. provides a detailed introduction
to nroff. Error messages for nroff appear in the appendix to this manual.

Files
/tmp/rof" - Temporary files
/usr/lib/tmac.• -Standard macro packages
/usr/lib/roff/nroff/ - Support files directory
/usr/lib/roff/nroff/ .pre- Output prefix

LEXICON

NUL - nybble 827

/usr/lib/roff./n:roff./ .pre_land- Output prefix, landscape mode
/usr/lib/roff./n:roff./ .post- Output suffix
/usr/lib/roff./n:roff./ .post_land- Output suffix, landscape mode
I usr /lib I roff./ nroff./ fonts.r - Alternative font name definitions
/usr/lib/roff./n:roff./specials.r- Special character definitions

See Also
col, commands, deroff., man, ms, troff.
nroff. The Text-Formatting Language, tutorial

Notes
You should avoid using characters with values OxOl through OxlF. and those with values
Ox80 through Ox9F. These are reserved for internal use by nroff. and troff, and using them
in your input will cause errors.

NUL - Definition
NUL is the ASCII null character· '. Do not confuse it with the null pointer NULL or with
the empty string '"'. A C-language string is always terminated with a NUL. The empty
string"" is an array of chars with only one element. namely a NUL.

See Also
ASCII, definitions, NULL

NULL - Definition
NULL is defined in the header file stddef.h. It is the null pointer (char "')0, which is a
pointer initialized to zero. Numerous routines return this value to indicate failure; it is
useful as a return value because it points nowhere, and so removes the possibility of
accidentally destroying a section of memory after failure.

See Also
definitions, NUL, pointer, stdio.h

null - Device Driver
The "bit bucket"

All data written to the special file /dev/null is thrown away (sent to the "bit bucket"). This
is useful. for example, to test a program's side effects while ignoring its output.

A read from file /dev/null returns end of file (zero bytes of data). The shell sh uses
/dev/null as input to background processes.

Files
/dev/null

See Also
device drivers, sh

nybble - Definition
A nybble is four bits, or half of an eight-bit byte. The term is generally used to refer to the
low four bits or the high four bits of a byte. Thus, a byte may be said to have a "low nybble"
and a "high nybble". One nybble encodes one hexadecimal digit.

See Also
bit, byte, definitions

LEXICON

828 object format - openO

0

object format - Defin~ion
An object format describes the form of compiled program that still contains relocation
information. The linker Id reads file in object format to create executable files.

COHERENT creates object modules that are in the format I.out.

See Also
definitions, I.out, Id

ad-Command
Print an octal dump of a file
od [-bcdox) lflle) [[+) offset[.)[b)]

od prints the specified file as a sequence of octal numbers. or machine words. If no file is
specified, od dumps the standard input.

The following options set the format of od's output:

-b Bytes in default base
-c Bytes in ASCII characters
-d Words in decimal
-o Words in octal
-x Words in hexadecimal

The default base is octal on the PDP-11 and hexadecimal on the i80286, Z-8001. and
M68000 families of microprocessors.

Dumping can start at position offset into the file. The specified offset is octal unless the'.'
suffix is present to signify decimal. offset is in bytes unless the b suffix is present to signify
512-byte blocks.

See Also
ASCII, commands, conv, db, scat, strings

openO - System Call
Open a file
int open{flle, type) char "'file; int type;

open opens a.file to receive data, or to have its data read. When it opens.file. open returns
a file descriptor, which is a small. positive integer that identifies the open.file for subsequent
calls to read, write, close. dup. or dup2. type determines how the file is opened, as follows:

0 Read only
1 Write
2 Read and write

After file is opened. reading or writing begins at byte 0.

Example
This example copies the file named in argv[l] to the one named in argv[2] by using system
calls. It demonstrates the system calls open. close. read. write. and creat.

LEXICON

#include <stdio.h>
#define BUFSIZE (20*512)
char buf[BUFSIZE];

void fatal(s)
char *s;
{

}

fprintf(stderr, "copy: %s\n", s);
exit(l);

main(argc, argv)
int argc; char *argv[];
{

}

register int ifd, ofd;
register unsigned int n;

if (argc != 3)
fatal("Usage: copy source destination");

if ((ifd = open(argv[l], 0)) == -1)
fatal("cannot open input file");

if ((ofd = creat(argv[2), 0666)) == -1)
fatal("cannot open output file");

while ((n = read(ifd, buf, BUFSIZE)) != 0) {
if (n == -1)

}

fatal("read error");
if (write(ofd, buf, n) != n)

fatal("write error");

if (close(ifd) == -1 11 close(ofd) -1)
fatal("cannot close");

exit(O);

See Also
Copen(), system calls

Diagnostics

operator 829

open returns -1 if the file is nonexistent, if the caller lacks permission, or if a system
resource is exhausted.

Notes
open is a low-level call that passes data directly to COHERENT. lt should not be mixed
with high-level calls, such as tread, fwrite, or Copen.

operator - Definition
An operator is a function that is built into the C language. lt usually relates one operand
to another. For example, the statement

1+2

LEXICON

830 operator

relates the operands 1 and 2 through the operation of addition; on the other hand, the
statement

A>B

relates the operands A and B logically, by asserting that the former is greater than the
latter; whereas

A=B

relates the operands A and B by assigning the value of the latter to the former. The
following is a table of the C operators:

LEXICON

*
I
%
+

<
<=
>
>=

&&
!=

I I
&

<<
>>

=
+=
-=
·=
I=
%=
++

&=
"=
I=
<<=
>>=

•
&
()
[)
->

?:

Multiplication
Division
Remainder
Addition
Subtraction

Less than
Less than or equal to
Greater than
Greater than or equal to

Logical AND
Inequality
Logical negation
logical OR

Bitwise AND
Bitwise exclusive OR
Bitwise complement
Bitwise inclusive OR
Bitwise shift left
Bitwise shift right

Assign
Increment and assign
Decrement and assign
Multiply and assign
Divide and assign
Modulus and assign
Increment
Decrement
Equivalence
Bitwise AND and assign
Bitwise exclusive OR and assign
Bitwise inclusive OR and assign
Bitwise shift left and assign
Bitwise shift right and assign

Indirection
Render an address
Function indicator
Array indicator
Structure pointer
Structure member
Conditional expression

sizeof

Precedence

operator 831

size of an object

Precedence refers to the order in which C executes operators. The C languages assigns a
level of precedence to each operator. Operators are executed in the order of their
precedence level. from highest to lowest.

The following table summarizes the precedence of C operators. The are listed in descending
order of precedence: those listed higher in the table are executed before those lower in the
table. Operators listed on the same line have the same level of precedence, and the
implementation determines the order in which they are executed. If you use two or more
such operators in the same expression, you would be wise to use parentheses to indicate
exactly the order in which you want the operators executed.

Operator

() [l

++

* I %

+

<< >>

< <= >

!=

&

&&

II
? I

+=

->

(type)

>=

*= /= %=

* & sizeof

Associativity

Left to right

Right to left

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Right to left

Right to left

Left to right

You can always determine precedence in an expression by enclosing sub-expressions within
parentheses: the expression enclosed within the innermost parentheses is always executed
first.

See Also
definitions, sizeof

LEXICON

832 PAGER - passwd

PAGER - Environmental Variable
Specify Output Filter
PAGER="command options"

p

The environmental variable PAGER directs programs such as msgs, mail and others to
"pipe" their output into the command specified as the value of PAGER. For example. the
following sets up /bin/scat as the desired output filter and passes a command line option
to it to specify that the output screen has 20 lines.

export PAGER="exec /bin/scat -120"

See Also
scat, environmental variables, mail, msgs

param.h - Header File
Define machine-specific parameters
#include <sys/param.h>

param.h defines machine-specific parameters. These parameters set limits on the operation
of the COHERENT system; e.g., the number of files that can be open at any one time.

See Also
header files

passwd - Command
Set/ change login password
passwd [user]

passwd sets or changes the password for the specified user. If user is not specified, passwd
changes the password of the caller.

passwd requests that the old password (if any) be typed, to ensure the caller is who he
claims to be. Next it requests a new password, and then requests it again in case of typing
errors. passwd will ask for a longer password if the one given is too short or not unusual
enough.

Files
/etc/passwd- Encrypted passwords

See Also
commands, crypt(), login

Notes
One good way to construct a password is to concatenate two common words plus a
punctuation mark. For example, "dog@collar" or "hamlet&horatio" are passwords that are
both easy to remember and difficult to guess.

passwd - File Format
Password file format

The file /etc/passwd holds information about each user who has permission to use the
COHERENT system. This information is read by the commands login and passwd
whenever a user attempts to log in, to ensure that that user is really himself and not an
impostor.

LEXICON

paste 833

/etc/passwd holds one record for each user; each record, in turn, consists of seven colon­
separated fields, as follows:

name1password:user_id1group_id:comrnents:home_dir:shell

name is the user's login name. password is his encrypted password. user _id is a unique
number that is also used to identify the user. group _Id identifies the group to which the
user belongs, if any. comments holds miscellaneous data. such as names, telephone
numbers, or office numbers. home_dtr gives the user's home directory. Finally, shell gives
the program that is first executed when the user logs on; in most instances, this is an
interactive shell (default, /bin/sh).

/etc/passwd includes a special entry for remacc. This entry controls access to the system
by remote devices (for example, by a modem). If an entry in file /etc/ttys indicates that a
serial line is remote (as set by placing an 'r' as the second character in its entry),
COHERENT prompts

Remote access password:

when a user attempts to log in on that line.

To set the password for remacc, enter the following command while running as the
superuser.

passwd remacc

See Also
rue formats, passwd (command)

Notes
I etc/passwd can be read by anyone: if access to it were refused to a user, he could not log
on. Thus, the passwords encrypted within it can be read and copied by anyone, and so may
be vulnerable to brute-force decryption. For this reason, close attention should be paid to
passwords: they should not be common words or names, preferably mix cases or use
unique spellings. and be at least six characters long.

paste - Command
Merge lines of files
paste [-s) [-d llst)flle ...

paste merges corresponding lines from multiple input files. By default, paste uses the
<tab> character to delineate texts from different files. paste writes the the merged text to
standard output; thus, paste can be used at the head of a shell pipeline.

If paste reads EOF from any of the input files while other files still contain data, it
substitutes blank lines as input from the file that has ended.

Options
paste recognizes the following command-line options:

-d list
Use the characters in list to separate the output fields. The characters in list are
taken in sequence and used circularly, i.e., taken in order until the end of list is
reached, then returning to the first character in list. Normally, paste uses the <tab>
character to delineate the output fields. The following character sequences have
special meaning when encountered in list:

\ \ Output a single backslash character

LEXICON

834 patch

\t Output a <tab> character
\n Output a <newline> character
\0 Output a null string (i.e., no separator between output fields)

-s Output successive lines from each input.file across the page, with each input line
separated from the next by a <tab> character. After all input lines from a given file
have been concatenated, terminate the output line with a <newline> character and
repeat the process on the next input file.

Example
The following two files will be used for subsequent examples. Filel contains:

Filel Linel
Filel Line2
Filel Line3
Filel Line4

File2 contains:

File2 Linel
File2 Line2
File2 Line3
File2 Line4

The command

paste Filel File2

generates the following output:

Filel Linel
Filel Line2
Filel Line3
Filel Line4

File2 Linel
File2 Line2
File2 Line3
File2 Line4

Adding the option -s yields the output:

Filel_Linel
File2 Linel

See Also
awk, commands, cut, sed

Notes

Filel Line2
File2 Line2

Filel Line3
File2 Line3

Filel Line4
File2 Line4

paste is copyright © 1989 by The Regents of the University of California. All rights
reserved.

paste is distributed as a service to COHERENT customers, as is. It is not supported by
Mark Williams Company. Caveat utllltor.

patch - Command
Modify portions of an executable
/conf/patch [-kl Image symbol=value ...

The command patch alters the value of datum symbol to value in executable Image. In
general. you should use patch to alter configuration data (constants) in programs, in device
drivers. and in the COHERENT kernel. For patch to work with a symbolic constant. Image
must have a symbol table that includes information about symbol. Therefore. executables

LEXICON

patch 835

that have been processed by the command strip cannot be patched.

Option -k patches the kernel memory of the running COHERENT system via device
/dev/kmem. Only the superuser root can access kernel memory from the patch command.

Both symbol and value may consist of numeric constants or a symbol from the symbol table
of Image. Note that trailing underscore ('_') characters are significant when specifying
symbol. symbol and value expressions may include an optional numeric offset. In addition,
the value field may optionally be composed of the construct makedev(major,mlnor), where
major and minor are the "major" and "minor" device numbers, respectively, resulting in a
dev_t-sized device type.

Numeric constants default to decimal, but may be specifyed with a leading 0 prefix to
specify an octal number or a Ox prefix to specify a hexadecimal number.

The size of the altered symbol field is, by default, sizeof(int). patch recognizes the following
explicit size overrides:

:c The size of the altered field is sizeof(char).

:i The size of the altered field is sizeof(int).

:1 The size of the altered field is sizeof(long).

:s The size of the altered field is sizeof(short).

Examples
The following example patches the value of kernel variable KBBOOT_ in the nkb keyboard
device driver to disallow rebooting of the system via the traditional <ctrl><alt> key
sequence. See Lexicon article nkb for details. Note that this command changes /coherent
on the boot device, not the copy of /coherent that is now running in memory.

/conf/patch /coherent KBBOOT_=O

The second example patches the value of character variable myvar in user-supplied
program myprog to hexadecimal value 12. Note that the COHERENT C compiler appends a
trailing underscore character('_') to all C variable names.

/conf/patch myprog myvar_=Ox12:c

The final example modifies the default "root" and "pipe" devices for COHERENT kernel
/testcoh to be AT/IDE hard-disk partition /dev/atOb.

/conf/patch /testcoh 'rootdev_=makedev(ll,1)' 'pipedev_=makedev(ll,1)'

Note that in this last example, the arguments to patch must be quoted to avoid
interpretation by the shell.

See Also
commands, device drivers

Notes
No spaces can appear around the equal sign in the symbol=constant construct.

Using patch to modify the kernal data area of a running system is extremely dangerous. It
should only be done by experienced writers of device drivers. Caveat utllttor!

LEXICON

836 pathO

pathO - General Function
Path name for a file
#include <path.h>
#include <stdio.h>
char •path(path,filename, mode);
char •path, ":filename;
int mode;

The function path builds a path name for a file.

path points to the list of directories to be searched for the file. You can use the function
getenv to obtain the current definition of the environmental variable PATH. or use the
default setting of PATH found in the header file path.h, or, you can define path by hand.

filename is the name of the file for which path is to search. mode is the mode in which you
wish to access the file, as follows:

1 Execute the file
2 Write to the file
4 Read the file

path calls the function access to check the access status of filename. If path finds the file
you requested and the file is available in the mode that you requested, it returns a pointer
to a static area in which it has built the appropriate path name. It returns NULL if either
path or filename are NULL, if the search failed, or if the requested file is not available in the
correct mode.

Example
This example accepts a file name and a search mode. It then tries to find the file in one of
the directories named in the PATH environmental variable.

#include <path.h>
#include <stdio.h>
#include <stdlib.h>

void
fatal(message)
char *message;
{

}

fprintf(stderr, "%s\n", message);
exit (1);

main(argc, argv)
int argc; char *argv[);
{

LEXICON

char *env, *pathname;
int mode;

if (argc != 3)
fatal("Usage: findpath filename mode");

if(((mode=atoi(argv[2]))>4) I I (mode==3) I I (mode<l))
fatal("modes: l=execute, 2=write, 3=read");

PATH - paths 837

}

env = getenv("PATH");
if ((pathname= path(env, argv[l], mode)) !=NULL) {

printf("PATH = %s\n", env);
printf("pathname = %s\n", pathname);
return;

} else
fatal("search failed");

See Also
access(), access.h, general functions, PATH, path.h

PATH - Environmental Variable
Directories that hold executable files

PATH names a default set of directories that are searched by COHERENT when it seeks an
executable file. You can set PATH with the command PATH. For example. typing

PATH=/bin:/usr/bin

tells COHERENT to search for executable files first in /bin, and then in /usr/bin. Note the
use of the colon ':'to separate directory names.

See Also
environmental variables, path.h

path.h - Header File
Define I declare constants and functions used with path
#include <path.h>

path.h declares constants used to handle the path environmental variable. These include.
among others, the default path. the path separator. and the list separator. path.h also
declares the function path.

See Also
header files, path(), PATH

paths - Technical Information
Routing data base for mail
/usr/lib/mail/paths

File /usr/lib/mail/paths holds the data base used by the COHERENT mail system to route
mail. Each line gives routing information to a host, and has the following format:

host route [cost]

host names a UUCP host. Because smail uses a binary-search algorithm when searching
the data base for a given host name, the lines in paths must be sorted into ascending order.
(See the Lexicon entry for bsearch for details on binary searches.) small ignores case when
it searches paths, so you should convert each host name to lower case before you sort
paths.

The route field details the route by which mail can travel from your system to host. Note that
it includes a printf-style format string.

The optional field cost is used by the COHERENT mail system to decide whether to queue
outbound UUCP mail, or to invoke uucico to deliver the mail immediately. If the cost is at

LEXICON

838 pattern - pauseO

or below small's "queueing threshold", then small will attempt to deliver it immediately.
This speeds mail delivery between hosts that enjoy an inexpensive UUCP link, such as a
hard-wired line, and batches mail that must be sent over expensive media, such as long­
distance telephone. If the cost field is absent, small gives this host a cost value above that
of its queueing threshold.

Example
The following gives a sample paths file for a COHERENT system that its owner has named
lepanto.

friend friend!%s 300
hubsys hubsys!%s 95
lepanto %s 0
lepanto.ampr.org %s 0
smart-host hubsys!%s 95
widget hubsys!widget!%s 95

As this file shows, lepanto is linked to systems hubsys and friend. The cost of 95
associated with hubsys is low, and is appropriate to a low-cost link, such as a hard-wired
link; On the other hand, the cost of 300 associated with friend is high. which indicates that
the connection with friend is high-cost, such as a long-distance telephone connection. If
cost is 100 or greater. mail will be queued for latter delivery. A cost below 100 causes small
to attempt immediate delivery.

In this example, machine lepanto is registered in the ampr.org Amateur Packet Radio
domain. Note that machine name lepanto appears in both conventional and domain forms
in order to help resolve addressing.

In order to avoid haVing to maintain a huge data base, the owner of lepanto uses hubsys as
a smart host. The smart-host designation in the paths data base signals small to forward
any mail that it doesn't know how to deliver onto site hubsys.

Finally, lepanto can use hubsys to pass mail on to widget. Thus. when rmall receives mail
for system widget, it will transmit it to hubsys for forwarding. Note that hubsys's
administrator must have given lepanto permission to use it as a mail relay, or this would
not work.

See Also
mail, technical information

pattern - Definition
A pattern is any combination of ASCII characters and wildcard characters that can be
interpreted by a command.

The function pnmatch compares two patterns and signals if they match.

See Also
definitions, egrep, pnmatch(), wildcards

pauseo - System Call
Wait for signal
int pause()

pause suspends execution until the process receives a signal. The awaited signal could
come from kill. alarm, or the controlling terminal.

LEXICON

pax - pcloseO 839

See Also
alann, kill, signal(), sleep(), system calls,

pax - Command
Portable archive interchange

pax is an archiving utility that reads and writes tar and cpio formats, both the traditional
ones and the extended formats specified in IEEE document 1003 .1. It handles muiti­
volume archives and automatically determines the format of an archive while reading it.

pax supports three user interfaces: tar, cpio, and pax. The pax interface was designed by
IEEE 1003.2 as a compromise in the chronic controversy over which of tar or cpio
interfaces is superior.

See Also
commands, cpio, tar, ustar

Notes
To avoid confusion with the traditional COHERENT tar command, the tar command
distributed with pax is renamed ustar.

See the compressed tar archive /usr/src/alien/pax.tar.Z for full documentation on pax,
cpio, and ustar.

pax was developed by Mark H. Colburn and sponsored by The USENIX Association. It is
provided in binary form per the licensing terms set forth by the author. See file
/usr/src/alien/pax.tar.Z for licensing terms. Copyright © 1989 by Mark H. Colburn. All
rights reserved.

pax is provided in binary form per the licensing terms set forth by the author. It is
distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat utilltor.

pcloseo - STDIO Function (libc)
Close a pipe
#include <stdio.h>
int pclose{fp)
FILE >tjp;

pclose closes the pipe pointed to by fp. which must have been opened by the function
popen.

pclose awaits the completion of the child process and performs other cleanup. It returns
the value from a WAIT done on the child process. This value includes information in
addition to the "simple" exit value of the child process.

Files
<Stdio.h>

See Also
fclose(), fopen(), pipe(), popen(), sh, STDIO, system(), wait()

Diagnostics
pclose returns -1 iffp had not been created by a call to popen. Otherwise, pclose returns
the exit status of the command, in the format described in the entry for wait: exit status in
the high byte, signal information in the low byte.

LEXICON

840 Permissions

Permissions - File Format
Format of UUCP permissions file
I usr /lib/uucp /Permissions

The file Permissions describes the remote sites that can communicate via UUCP with your
COHERENT system, and lists the programs that each site can execute on your system.
Before a remote site can communicate with your COHERENT system, that site must have
an entry in Permissions.

When the command uucico attempts to execute a file transfer to or from a remote site, it
checks to see that there is an entry for the site in Permissions. If your Permissions entries
are not written correctly, you risk a breach of system security.

Each entry in Permissions takes one of two forms:

LOGNAME entries detail the permissions granted to an individual user when he calls
your system from a remote site.

MACIUNE entries detail the permissions for the remote sites that you call.

You can combine the two types of entries into one entry if the permissions are the same in
both entries.

An entry in Permissions consists of pairs of entries of the form OPTION=value, each
separated by one or more white-space characters. The OPTION side must be in upper-case
characters, and the value side in lower-case characters. At the end of each line (except the
last), you must include a backslash character ('\ ') to continue the current line onto the next
one. Blank lines between entries are ignored.

For the READ. NOREAD, WRITE, and NOWRITE fields, described below, the value specified
is a sequence of one or more directories on your computer, separated only by colons (i.e., no
white space allowed).

An entry in Permissions can have up to ten fields:

I.MACHINE
This field names the remote system that you wish to communicate with. It is
limited to seven characters. (Future releases of COHERENT will increase this limit.)

2.LOGNAME
This field specifies the login name that the remote system will use when it calls
your system. Please note that if the remote site attempts to log into your system
with a login name other than the one specified by this field, uucico will terminate
the call for security reasons. There must be a valid entry in file /etc/passwd for
the name specified in this field.

3.READ
This entry names the directories on your system that the UUCP commands can
access. You must give the full path name of the directory. The default is
/usr/spool/uucppublic.

4.NOREAD

LEXICON

When a directory is entered in the READ field, all of its sub-directories become
available for reading. If you wish to make any of its sub-directories unreadable by
the remote site, name it here. You must give the full path name of the directory.
The default is NULL.

Permissions 841

5. WRITE
Here, name the directories on your system into which the command uucico can
deposit files. You must give the full path name of the directory. The default is
/usr/spool/uucppublic.

6.NOWRITE
When a directory is entered in the WRITE field, the remote system can write into all
of its sub-directories. lf you wish to make any of its sub-directories unwriteable by
the remote site, enter it here. You must give the full path name of the directory.
The default is NULL.

7.COMMANDS
Here, name the commands that the remote system can execute on your computer.
The two most basic commands to put in this entry are rmail and uucp. This lets
the remote site send electronic mail to you and to use uucp to transfer files. You
may add other commands, but the shorter the list, the greater your level of system
security. The default is nnail.

8.REQUEST
This entry asks if the remote site can request to transfer files from your system.
Respond yes if security is not an issue. If the value is no, only your system can
request that files be transfered to the remote system. The default is no.

9. SENDFILES
This entry asks if your system can initiate file transfers to the remote site. Your
response can be yes, no, or call. The default is call, which allows files to be sent
only when your system calls the remote site. A value of yes allows your system to
transfer files to the remote system regardless of which system originated the
conversation. A value of no prohibits any file transfers from your system to the
remote system.

10. MYNAME
This field contains the site name that you have been assigned by the system
administrator of the remote site. It must contain no more than seven characters. If
MYNAME is defined, its value is used as your site name rather than the value in
/etc/uucpname. This is useful in situations where your site name is already used
by an existing account on the remote site you wish to call. or when the remote site
does not support "anonymous" UUCP access.

When writing your Permissions file, keep these considerations in mind:

White space is not allowed before or after the '=' sign.

Each line corresponds to one entry. You may continue to the next line by ending the
line with a backslash charcter ('\').

If a field has more than one value, use a colon to separate them.

Example
The following example gives an entry in Permissions to set up a connection with the Mark
Williams Company's UUCP BBS:

MACHINE=mwcbbs MYNAME=bbsuser \
REQUEST=yes SENDFILES=yes \
COMMANDS=rmail:uucp \
READ=/usr/spool/uucppublic1/tmp \
WRITE=/usr/spool/uucppublic:/tmp

LEXICON

842 perrorO - pipe

See Also
file formats, UUCP

perrorO - General Function (libc)
System call error messages
#include <errno.h>
perror(strlng)
char •string; extern int sys_nerr; extern char •sys_errltst(J;

perror prints an error message on the standard error device. The message consists of the
argument string. followed by a brief description of the last system call that failed. The
external variable errno contains the last error number. Normally. string is the perror of the
command that failed or a file perror.

The external array sys_errlist gives the list of messages used by perror. The external
sys_nerr gives the number of messages in the list.

See Also
errno, errno.h, general functions

phone - Command
Print numbers and addresses from phone directory
phone person ...

The command phone searches a number of telephone directory files for each person
argument that is given. Any lines that matches any of the person arguments is printed.
Typically, such lines contain the telephone number, name, and address of a person or
organization. Lower-case letters in person can be matched by both the same letter and the
corresponding upper-case letter in the phone directory.

The user may supply his own phone directory by setting the (exported) shell variable
PHONEBOOK, to the name of that file. If given, this file is searched first. Then, the system­
wide phone book is always searched.

Files
$PHONEBOOK- User-supplied phonebook (searched first)
/usr/pub/phonebook- System-wide phone directory

See Also
commands

Diagnostics
phone exits with non-zero status if a call fails. A diagnostic message is written to stderr if
no matching entries are found.

pipe - Definition
A pipe directs the output stream of one program into the input stream of another program,
thus coupling the programs together. With pipes, two or more programs (or filters) can be
coupled together to perform complex transforms on streams of data. For example, in the
following command

cat DATAFILEl DATAFILE2 I sort I uniq -d

the filter cat opens two files and prints their contents. Its output is piped to the filter sort,
which sorts it. The output of sort is piped, in turn. to the filter uniq. which (with the -d
option) prints a single copy of each line that is duplicated within the file. Thus, with this
simple set of commands and pipes. a user can quickly print a list of all lines that appear in

LEXICON

both files.

See Also
definitions, filter, named pipe

pipeO - System Call
Open a pipe
int pipe(fd)
intfd[2];

pipeO 843

A pipe is an interprocess communication mechanism. pipe creates a pipe, typically to
construct pipelines in the shell sh.

pipe fills in fd[O] and fd[l) with read and write file descriptors. respectively. The file
descriptors allow the transfer of data from one or more writers to one or more readers.
Pipes are buffered to 5,120 bytes. If more than 5,120 bytes are written into the pipe, the
write call will not return until the reader has removed sufficient data for the write to
complete. If a read occurs on an empty pipe. its completion awaits the writing of data.

When all writing processe close their write file descriptors. the reader receives an end of file
indication. A write on a pipe with no remaining readers generates a SIGPIPE signal to the
caller.

pipe is generally called just before fork. Once the parent and child processes are created,
the unused file descriptors should be closed in each process.

Example
The following example prints the word Waiting until a line of data is entered. It illustrates
how to use pipe, fstat. and fork.

/*
* For greatest effeciency compile with -n option.
* This causes seperate code and data segments, when the
* fork() occurs there will be one code and 2 data segments.
* Use of the -n option prevents db from setting breakpoints.
*/

#include <stdio.h>
#include <sys/stat.h>
#include <sgtty.h>

static int fd[2];

main ()
{

/* for stat */
/* for stty/gtty functions */

/* pipe array */

printf("This prints 'Waiting' every second until a 'q' is hit.\n");

/*
* Pipe may also be constructed by /etc/mknod
* If it is desired to have tasks communicate where
* they are not parent and child. In this case make
* sure the constructed pipe has the correct owner and
* permissions. Such pipe may be used exactly like this
*but open()ed on each side.
*/

LEXICON

844 pipeO

}

if (-1 == pipe(fd)) {

}

fprintf (stderr, "Cannot open pipe\n");
exit (1);

if (fork())
parentProcess();

else
childProcess();

exit(O);

parentProcess()
{

}

struct stat s;
char buff;

for (buff= ' '; 'q' !=buff;) {

}

fstat(fd[O], &s); /*get status of pipe*/
if (s.st_size) { /* char in the pipe */

}

read(fd[O], &buff, sizeof(buff));
printf("Got a '%c'\n", buff);
continue;

/*
*This can be any process, it can use system()
* or exec()
*/

printf("Waiting\n");
sleep(1);

childProcess()
{

}

LEXICON

struct
char buff;

sgttyb os, ns;

gtty(fileno(stdin), &os); /*save old state*/
ns = os; /* get base of new state */
ns.sg_flags /= RAW; /* process each character as entered */
ns.sg_flags &= -(ECHO/CRMOD); /*no echo for now .•. */
stty(fileno(stdin), &ns); /*set mode*/

do {
buff= getchar(); /*wait for the keyboard*/
write(fd[l], &buff, sizeof(buff));

} while ('q' I= buff);

stty(fileno(stdin), &os); /*reset mode*/

pnmatchO - pointer 845

See Also
close(), mknod(), read(), sh, signal(), system calls, write()

Diagnostics
pipe returns zero on successful calls. or -1 if it could not create the pipe.

If it is necessary to create a pipe between tasks that are not parent and child, use
/etc/mknod to create a named pipe. These named pipes can be opened and used by
different programs for communication. Remember to give them the correct owner and
permissions.

pnmatchO - String Function (libc)
Match string pattern
int pnmatch(string, pattern,flag)
char •string, •pattern; int.flag;

pnmatch matches string with pattern, which is a regular expression. The shell sh uses
patterns for file name expansion and case statement expressions.

pnmatch returns one if pattern matches string. and zero if it does not. Each character in
pattern must exactly match a character in string; however, the wildcards '*', '?', '['and ')',
and '(!' and ')' can be used in pattern to expand the range of matching.

flag must be either zero or one: zero means that pattern must match string exactly, whereas
one means that pattern can match any part of string. In the latter case, the wildcards " and
'$'can also be used in pattern.

Example
For an example of this function, see the entry for fgets.

See Also
egrep, general functions, grep, sh

Notes
flag must be zero or one for pnmatch to yield predictable results.

pnmatch is a more powerful version of the ANSI functions strstr and strcmp.

pointer - C Language
A pointer is an object whose value is the address of another object. The name "pointer"
derives from the fact that its contents "point to" another object. A pointer may point to any
type. complete or incomplete, including another pointer. It may also point to a function, or
to nowhere.

The term pointer type refers to the object of a pointer. The object to which a pointer points
is called the referenced type. For example, an int • ("pointer to int") is a pointer type; the
referenced type is int. Constructing a pointer type from a referenced type is called pointer
type derivation.

The Null Pointer
A pointer that points to nowhere is a null pointer. The macro NULL. which is defined in the
header stdio.h. defines the null pointer. The null pointer is an integer constant with the
value zero. It compares unequal to a pointer to any object or function.

LEXICON

846 pointer

Declaring a Pointer
To declare a pointer, use the indirection operator'*'. For example, the declaration

int *pointer;

declares that the variable pointer holds the address of an int-length object. Likewise, the
declaration

int **pointer;

declares that pointer holds the address of a pointer whose contents, in turn, point to an
int-length object.

Failure to declare a function that returns a pointer will result in that function being
implicitly declared as an int. This will not cause an error on microprocessors in which an
int and a pointer have the same size; however, transporting this code to a microprocessor in
which an int consists of 16 bits and a pointer consists of 32 bits will result in the pointers
being truncated to 16 bits and the program probably failing.

C allows pointers and integers to be compared or converted to each other without
restriction. The COHERENTC compiler flags such conversions with the strict message

integer pointer pun

and comparisons with the strict message

integer pointer comparison

These problems should be corrected if you want your code to be portable to other computing
environments.

See for more information.

Wild Pointers
Pointers are omnipresent in C. C also allows you to use a pointer to read or write the object
to which the pointer points; this is called pointer dereferencing. Because a pointer can point
to any place within memory. it is possible to write C code that generates unpredictable
results. corrupts itself. or even obliterates the operating system if running in unprotected
mode. A pointer that aims where it ought not is called a wild pointer.

When a program declares a pointer, space is set aside in memory for it. However, this space
has not yet been filled with the address of an object. To fill a pointer with the address of the
object you wish to access is called initializing it. A wild pointer. as often as not, is one that
is not properly initialized.

Normally, to initialize a pointer means to fill it with a meaningful address. For example. the
following initializes a pointer:

int number;
int *pointer;

pointer = &number;

The address operator '&' specifies that you want the address of an object rather than its
contents. Thus, pointer is filled with the address of number, and it can now be used to
access the contents of number.

The initialization of a string is somewhat different than the initialization of a pointer to an
integer object. For example.

LEXICON

pointer 847

char *string= "This is a string."

declares that string is a pointer to a char. It then stores the string literal This is a string in
memory and fills string with the address of its first character. string can then be passed to
functions to access the string. or you can step through the string by incrementing string
until its contents point to the null character at the end of the string.

Another way to initialize a pointer is to fill it with a value returned by a function that
returns a pointer. For example, the code

extern char *malloc(size_t variable);
char *example;

example= malloc(50);

uses the function malloc to allocate 50 byies of dynamic memory and then initializes
example to the address that malloc returns.

Reading What a Pointer Points To
The indirection operator '*' can be used to read the object to which a pointer points. For
example,

int number;
int *pointer;

pointer = &number;

printf ("%d\n", *pointer);

uses pointer to access the contents of number.

When a pointer points to a structure, the elements within the structure can be read by
using the structure offset operator'->'. See the entry for operators for more information.

Pointers to Functions
A pointer can also contain the address ofa function. For example,

char *(*example)();

declares example to be a pointer to a function that returns a pointer to a char.

This declaration is quite different from:

char **different();

The latter declares that dift'erent is a function that returns a pointer to a pointer to a char.

The following demonstrates how to call a function via a pointer:

(*example) (argl, arg2);

Here, the ••• takes the contents of the pointer. which in this case is the address of the
function, and uses that address to pass to a function its list of arguments.

A pointer to a function can be passed as an argument to another function. The functions
bsearch and qsort both take function pointers as arguments. A program may also use of
arrays of pointers to functions.

LEXICON

848 poll.h

Pointer Conversion
One type of pointer may be converted, or cast, to another. For example. a pointer to a char
may be cast to a pointer to an Int. and vice versa.

Pointers to different data types are compatible in expressions. but only if they are cast
appropriately. Using them without casting produces a pointer-type mismatch.

Pointer Arithmetic
Arithmetic may be performed on all pointers to scalar types, i.e., pointers to chars or Int.
Pointer arithmetic is quite limited and consists of the following:

1. One pointer may be subtracted from another.

2. An Int or a long. either variable or constant, may be added to a pointer or subtracted
from it.

3. The operators ++ or -- may be used to increment or decrement a pointer.

No other pointer arithmetic is permitted. No arithmetic can be performed on pointers to
non-scalar objects, e.g .• pointers to functions.

When an Int or long is added to a pointer. it is first multiplied by the length of what the
pointer is declared as pointing to. Thus. if a pointer to an Int is incremented by two, it
points down two more lnts. not two more characters. The following program demonstrates
this feature:

char *pc= "Welcome";
int array[S] = { 1, 2, 3, 4, 5 };
int *pi = array;

main()
{

}

pc += 2;
pi += 2;

i8086 Pointers

/*pc points to 'l' */
/* pi points to 3 */

Intel designed the i8086 to use a segmented architecture. This means that the i8086
divides memory into 64-kilobyte segments. To program the i8086 requires that you use a
specific memory model, which describes how the segments of memory are to be organized.

See Also
C language, data formats, operators, portability

poll.h - Header File
Define structures/constants used with polling devices
#include <sys/poll.h>

poll.h defines structures and constants used by routines that poll devices.

See Also
header mes

LEXICON

popd - portability 849

popd - Command
Pop an item from the directory stack
popd (Item ... I

The COHERENT shell sh maintains an internal "directory stack", which is a stack of names
of directories. You can manipulate this stack should you, for any reason, wish to traverse a
number of directories quickly and efficiently.

The command popd pops an item from the directory stack. If called without an argument,
it pops the last item. Otherwise, it pops the given stack Items in the order requested, where
each Item is a positive integer and zero is the top of the stack.

See Also
commands, dirs, pushd, sh

popenQ - STDIO Function (libc)
Open a pipe
#include <stdio.h>
FILE *popen(command, how)
char *command, *how;

popen opens a pipe. It resembles the function Copen, except that the opened object is a
command line to the shell sh rather than a file.

The caller can read the standard output of command when how is r, or write to the standard
input of command when how is w. popen returns a pointer to a FILE structure that may be
read or written.

Files
<Stdio.h>

See Also
fclose(), Copen(), pclose(), pipe(), sh, STDIO, system(), wait()

Diagnostics
popen returns NULL if the link to command could not be established.

port - Definition
A port passes data to and receives data from a remote device.

See Also
definitions, FILE, stream

portability - Technical Information
Portability means that code can be recompiled and run under different computing
environments without modification. Although true portability is an ideal that is difficult to
realize, you can take a number of practical steps to ensure that your code is portable:

Do not assume that an integer and a pointer have the same size. Remember that
undeclared functions are assumed to return an int. If a function returns a pointer,
declare it so.

Do not write routines that depend on a particular order of code evaluation, particular
byte ordering, or particular length of data types.

LEXICON

sso powo - powO

Do not write routines that play tricks with a machine's "magic characters"; for
example, writing a routine that depends on a file's ending with <ctrl-Z> instead of EOF
ensures that that code can run only under operating systems that recognize this magic
character.

Always use manifest constants, such as EOF, and make full use of #define
statements.

Use header files to hold all machine-dependent declarations and definitions.

Declare everything explicitly. In particular, be sure to declare functions as void if they
do not return a value; this avoids unforeseen problems with undefined return values.

Do not assume that integers and pointers have the same size or even the same kind of
structure. Do not assume that pointers are all the same or can point anywhere. On
the i8086, in SMALL model a pointer to a function addresses relative to the code
segment, whereas a pointer to data addresses relative to the data segment. On some
machines, character pointers are of a different size or structure than word pointers.

The constant NULL is defined as being different from any valid pointer. Use it and
nothing else for that purpose.

Keep test scripts, preferably at the function level. That is, follow each function with an

#ifdef TEST

section that will exercise that function. Running these can rapidly isolate portability
problems.

Place plenty of

#assert

statements in your programs. These can often pick up portability problems.

See Also
header me, pointer, technical information, void

powO - Multiple-Precision Mathematics
Raise multiple-precision integer to power
#include <mprec.h>
void pow(a, b, m, c)
mint •a, *b, •m, •c;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function pow sets the multiple-precision integer (or mint)
pointed to by c to the value pointed to by a raised to the power of the value pointed to by b,
reduced modulo of the value pointed to by m.

See Also
multiple-precision mathematics

powO - Mathematics Function (libm)
Compute a power of a number
#include <math.h>
double pow(z, x) double z, x;

pow returns z raised to the power of x, or z"x.

LEXICON

pr - prep 851

Example
For an example of this function, see the entry for exp.

See Also
mathematics library

Diagnostics
pow indicates overflow by an ermo of ERANGE and a huge returned value.

pr- Command
Paginate and print files
pr [options I [file ...]

pr paginates each namedfile and sends it to the standard output. The file name'-' means
standard input. If no file is named, pr reads the standard input.

Each page has a header that gives the date, file name, and page and line numbers. pr may
be used with the following options.

+ skip Skip the first skip pages of each input file.

-N Print the text in N columns. This is used to print out material that was typed in
one or more columns.

-h header
Use header in place of the text name in the title. If header is more than one word
long, it must be enclosed in quotation marks.

-IN Set the page length to N lines (default, 66).

-m Print the texts simultaneously, in separate columns. Each text will be assigned an
equal amount of width on the page. and any lines longer than that width will be
truncated. This is used to print several similar texts or listings simultaneously.

-n Number each line as it is printed.

-sc Separate each column by the characterc. You can separate columns with a letter of
the alphabet, a period, or an asterisk. Normally. each column is left justified in a
fixed-width field.

-t Suppress the printing of the header on each page. and the header and footer space.

-wN Set the page width to N columns (default. 80). Text lines are truncated to fit the
column width. The maximum width is 254 columns.

See Also
cat, commands, nroff, prps

Diagnostics
Messages are written on the standard error.

prep - Command
Produce a word list
prep [-dfp] [-i !file I [-o ofile I [file ... I

The command prep prepares a word list that is useful for statistical processing from the
textual data found in each input file. If no file is given, prep reads the standard input for
text.

LEXICON

852 print

For the purposes of prep. a word consists of a string of alphabetic letters and apostrophes.
Words are written, one per line, to the standard output. Hyphenated words are treated as
two words. However, any word hyphenated between two lines is rejoined as one word.

prep recognizes the following options:

-d Print a sequence number (of words in the input text) before each output word.

-f Fold upper-case letters into lower case. This is sometimes useful for producing
unique lists of words.

-i !file Ignore words found in !file. !file has words one per line that are matched again each
input word independent of case.

-o Qfile Print only words found in ojlle. Only one of-i or -o may be specified.

-p In addition to printing words, also print each punctuation character (printable,
non-numeric characters that separate words), one per line. These lines are not
counted for -d.

See Also
commands, deroff, ksh, sh, sort, spell, typo, wc

Notes
What constitutes a word is different in deroff, prep, and we.

print - Command
Echo text onto the standard output
print [-enrun] [argument ...]

The command print is built into the Korn shell ksh. It echoes each argument onto the
standard output. Arguments are separated from each other by whitespace, and the list of
arguments is terminated by a newline character.

print recognizes and substitutes for the following C-style escape sequences:

\b
\f
\n
\r
\t
\v
\Onnn

Backspace
Formfeed
Newline
Carriage return
Tab
Vertical tab
nnn is the octal value of the desired character

print recognizes the following options:

-e Re-enable expansion of C escape sequences.

-n Suppress printing of a newline at the end of the list of arguments.

-r Suppress expansion ofC escape sequences.

-un Redirect output from the standard output to shell file descriptor n.

See Also
commands,echo,ksh

LEXICON

printer 853

printer - Technical Information
The printer is the device that transfers human-readable data to paper. It can be plugged
into either a parallel or a serial port, depending upon how your printer is designed. The
former is faster, whereas the latter permits the printer to be positioned farther away from
the computer. The following descriptions assume that you have your printer plugged into a
parallel port.

COHERENT permits you to have up to three parallel ports on your computer. Devices
/dev/lptl, /dev/lpt2, and /dev/lpt3 control. respectively. parallel ports 1. 2, and 3 in
cooked mode. The device /dev/lp is normally linked to the above device that you wish to
use by default as your line printer. See the Lexicon article Ip for more details on these
devices.

COHERENT can print text on all "dumb" printers that have no special text-formatting
features. It also supports text formatting on three varieties of printers: Epson-compatible
dot-matrix printers; laser printers compatible with the Hewlett-Packard LaserJet family of
printers that implement the Hewlett-Packard Page Control Language (PCL); and all printers
that have implemented the Postscript language.

Dumb Printers
To print on a "dumb" printer plugged into the parallel port, use the command lpr. This
command performs some formatting on a file, and invokes the line-printer daemon lpd to
spool the file for printing. Using the line-printer daemon is necessary in a multi-user
environment to ensure that print requests from different users do not arrive at the printer at
the same time, causing the printer to output a jumbled mess (if it prints anything at all).

For example, if FOO is a text file. the command

lpr FOO

prints it on your dumb printer. You should use the lpr command to print "simple" text
(such as program listings) on any variety of dot-matrix printer. To print listings or other
simple text on a laser printer, see below.

The output of the text-formatting command nroff can also be printed, with some success,
on dumb printers. To represent an italicized character. it prints the character, followed by a
backspace, followed by an underscore character; to represent a bold-face character, it
output the character, followed by a backspace, followed by the character again (in the hope,
perhaps naive, that presenting the same text twice will make it appear bolder).

Epson-Compatible Printers
The command epson massages text into a form that uses some of the text-formatting
features of the Epson MX-80 printer and clones thereof. It is especially to be used with text
that has been formatted with nroff, as described above; there, it turns the
"character/backspace/character" sequence into the Epson escape sequences for
emphasized text and italics. It then directs its output to the line-printer device /dev/lp,
which it assumes has an Epson-style printer plugged into it.

The following example uses nroff to format file FOO and prints the output on an Epson­
style printer:

nroff -ms FOO / epson

LaserJet-style Printers
COHERENT includes a large suite of commands to support the Hewlett-Packard LaserJet
family of printers, as well as clones that run Hewlett-Packard's PCL.

LEXICON

854 printer

To begin. these commands use the HP devices /dev/hp and /dev/rhp. When you installed
COHERENT on your system, you may have created these devices; if you did not. however.
you should create them by simply using the command In to link I dev /Ip to I dev /hp and to
link /dev/rlp to /dev/rhp. as follows:

ln /dev/lp /dev/hp
ln /dev/rlp /dev/rhp

You must log in as the superuser root to execute these commands.

The daemon hpd spools files to be printed on your laser printer. It works like the line­
printer daemon lpd. as described above.

The command hp prepares files to be printed on a laser printer. You should use it to
prepare "simple" text, such as program listings. for printing on your laser printer. Like the
command epson. hp also massages the output of nroff into PCL-style escape sequences;
unlike epson. however. it does not automatically spool the file for printing.

The command hpr spools files to be printed on a laser printer. It works like the command
lpr. except that it includes a number of special features; for example, you can use it to
download LaserJet "soft fonts" into your printer.

The following command uses nroff to format file FOO. then prints on a Hewlett-Packard
style laser printer:

nroff -ms FOO I hp I hpr -B

Note that the -B option to hpr suppresses the printing of a banner page.

The text-formatting command troff can create proportionally spaced text to be printed on
either a PCL or Postscript printer. In PCL mode, troff can make full use of all "sofJ fonts"
that you have loaded onto your printer. For example, this manual was printed by
COHERENT troff in PCL mode driving a Hewlett-Packard LaserJet III with soft fonts. See
the Lexicon for details on how to use troff with laser printers.

Postscript Printers
COHERENT includes two commands that can drive Postscript style printers. such as the
Apple LaserWriter.

The command prps is a PostScript version of the COHERENT command pr. It paginates
text. and supplies each page with a simple header. See its Lexicon entry for details.

As noted above. troff, the COHERENT text formatter. can create proportionally space text
for either PCL or Postscript printers. In PostScript mode. troff can handle all 35 fonts
available with most Postscript cartridges; it supports full font scaling and features such as
outlining and shadowing. It also permits you to embed "raw" Postscript within your file, to
create effects not already available with the troff text-formatting language. For details on
using troff with Postscript printers. see its entry in the Lexicon.

Printer Problems
The following paragraphs describes the problems most commonly encountered with
printers. and suggests some solutions.

If you are trying to access your parallel interface printer via special files /dev/lp or
/dev/lptl and receive an error message of the form

cannot open device /dev/lp

LEXICON

printfO 855

this means that your printer is not attached to the device that COHERENT associates with
/dev/lptl. Your printer is at either attached to /dev/lpt2 or to /dev/lpt3. To discover
which one, log in as the superuser root and use cd to enter directory /dev. Make sure that
your printer is plugged in, turned on, and on-line; then enter the command:

cat .file > lpt2

.file can be any readable file that you specify (e.g .. /etc/passwd). If your printer does not
print.file. then repeat the command for device I dev /lpt3:

cat .file > lpt3

The command that works indicates the device into which your printer is plugged.

The final step is to "link" the actual location of the printer to devices I dev /Ip and I dev /rip,
so that the COHERENT utilities know how to print a file. Enter the appropriate commands:

ln -f lpt2 lp
ln -f rlpt2 rlp

if your printer is attached to /dev/lpt2. or

ln -f lpt3 lp
ln -f rlpt3 rlp

if your printer was attached to I dev /lpt3.

If you have an Hewlett-Packard LaserJet or compatible printer, perform the above "link"
operation again but substitute hp for Ip and rhp for rlp. This allows the command hpr to
find your printer.

If you are using a serial printer, note that flow control via CTS (clear-to-send) is not
supported in the coml through com4 family of devices, but is available in devices hsOOr
through hs07r. See Lexicon articles com, hs. and terminal for details.

See Also
epson, hp, hpd, hpr, lp, lpd, lpr, prps, technicalinformation, troff

printfO - STDIO (libc)
Print formatted text
int printf{format [,arg l, argN])
char c:format; [data type) argl, ... argN;

printf prints formatted text. It uses the format string to specify an output format for each
arg, which it then writes on the standard output.

printf reads characters fromformat one at a time; any character other than a percent sign
'%'or a string that is introduced with a percent sign is copied directly to the output. A'%'
tells printf that what follows specifies how the corresponding arg is to be formatted; the
characters that follow'%' can set the output width and the type of conversion desired. The
following modifiers, in this order, may precede the conversion type:

1. A minus sign'-' left-justifies the output field, instead of the default right justify.

2. A string of digits gives the width of the output field. Normally. printf pads the fiel
padded with spaces to the field width; it is padded on the left unless left justification is
specified with a '-'. If the field width begins with 'O', the field is padded with 'O'
characters instead of spaces; the ·o· does not cause the field width to be taken as an
octal number. If the width specification is an asterisk·•·. the routine uses the next arg

LEXICON

856 printfO

as an integer that gives the width of the field.

3. A period ·: followed by one or more digits gives the precision. For floating point (e, f,
and gJ conversions, the precision sets the number of digits printed after the decimal
point. For string (s) conversions. the precision sets the maximum number of
characters that can be used from the string. If the precision specification is given as
an asterisk'*', the routine uses the next arg as an integer that gives the precision.

4. The letter 'l' before any integer conversion (d, o, x, or u) indicates that the argument is
a long rather than an int. Capitalizing the conversion type has the same effect; note,
however, that capitalized conversion types are not compatible with all C compiler
libraries, or with the ANSI standard. This feature will not be supported in future
editions of COHERENT.

The following format conversions are recognized:

% Print a'%' character. No arguments are processed.

c Print the int argument as a character.

d Print the int argument as signed decimal numerals.

D Print the long argument as signed decimal numerals.

e Print the fioat or double argument in exponential form. The format is d.ddddddesdd,
where there is always one digit before the decimal point and as many as the precision
digits after it (default, six). The exponent signs may be either'+' or'-'.

C Print the fioat or double argument as a string with an optional leading minus sign'-',
at least one decimal digit, a decimal point (':). and optional decimal digits after the
decimal point. The number of digits after the decimal point is the precision (default.
six).

g Print the fioat or double argument as whichever of the formats d, e, or C loses no
significant precision and takes the least space.

o Print the int argument in unsigned octal numerals.

0 Print the long argument in unsigned octal numerals.

r The next argument points to an array of new arguments that may be used recursively.
The first argument of the list is a char • that contains a new format string. When the
list is exhausted, the routine continues from where it left off in the original format
string.

s Print the string to which the char • argument points. Reaching either the end of the
string, indicated by a null character, or the specified precision, will terminate output.
If no precision is given, only the end of the string will terminate.

u Print the int argument in unsigned decimal numerals.

U Print the long argument in unsigned decimal numerals.

x Print the int argument in unsigned hexadecimal numerals.

X Print the long argument in unsigned hexadecimal numerals.

Example
The following example demonstrates many printf statements.

LEXICON

main()
{

}

extern void demo_r();
int precision = 1;
int integer = 10;
float decimal = 2.75;
double bigdec = 27590.21;
char letter= 'K';
char buffer[20);

strcpy (buffer, "This is a string.\n");

printf("This is an int: %d\n", integer);
printf("This is a float: %f\n", decimal);
printf("Another float: %3.*f\n", precision, decimal);
printf ("This is a double: %lf\n" , bigdec) ;
printf("This is a char: %c\n", letter);
printf("%s", buffer);
printf("%s\n", "This is also a string.");

demo_r("Print everything: %d %f %lf %c",
integer, decimal, bigdec, letter);

exit(O);

void demo_r(string)
char *string;
{

printf("%r\n", (char **)&string);
}

See Also
fprintf(), putc(), puts(), scanf(), sprintf(), STDIO

Notes

proc.h 857

Because C does not perform type checking, it is essential that each argument match its
counterpart in the format string.

The use of upper-case format characters to specify long arguments is not standard, and will
be phased out to conform with the ANSI standard. You should use the 'I' modifier to
indicate a long.

At present, printf does not return a meaningful value.

proc.h - Header File
Define structures/constants used with processes
#include <sys/proc.h>

proc.h defines structures and constants used by routines that manipulate processes.

See Also
header mes

LEXICON

858 process - profile

process - Definition
A process is a program in the state of execution.

See Also
daemon, definitions, me

prof - Command
Print execution profile of a C program
prof [-abcs JI progflle [mor!flle 11
prof interprets the profile file produced by an execution of a C program and reports the
execution frequencies of each routine. It also reports the percentage of execution time spent
in each routine.

prof normally reports times and frequencies spent for regions of programs between
externally defined names. progftle is the executable program; if omitted, I.out is assumed.
monflle is the monitor file produced during execution of the program; if omitted, mon.out is
assumed.

To produce mon.out, a program must be compiled with the -VPROF option to cc. To profile
all modules, each module must be compiled with this option.

The following options are available.

-a Profile all symbols, not just externals.

-b Print all bin information.

-c Print all call information.

-s Report stack usage high-water mark.

Files
I.out - Program file (with name list intact)
mon.out - Raw execution profile

See Also
cc, commands, Id, nm

profile - System Maintenance
Set user's environment at login
I etc I profile

File /etc/profile holds a set of commands that the shell reads and executes when a user
logs in.

If /etc/passwd specifies a program in the login shell slot, then /etc/profile is read by
/bin/sh and those lines that begin with the command export are recognized as global
environments, and the remainder of the line is inserted into the environment.

Please note that if /bin/sh is not the shell, any constructions other than

export foo=value

are not likely to work.

LEXICON

See Also
ksh, sh, system maintenance

prps - Command
Prepare files for Postscript-compatible printer
prps [options] Ifile ... I

prps 859

prps invokes a driver for a PostScript-compatible device, typically a printer such as an Apple
LaserWriter or a Hewlett-Packard LaserJet with a Postscript cartridge. It generates a
Postscript program listing each inputjlle and writes it to the standard output. If nojlle is
given, prps reads the standard input.

The Postscript output program generates a sequence of standard 8.5 by 11-inch pages, each
containing a header line (filename, current time and date. and page number) and a box that
encloses the text ofjlle. The default output typeface is ten-point Courier.

The most common use of prps is to print output via /dev /hp. For example, the command

prps file.c file.doc j hpr -B

pipes the output from prps into hpr (the print spooler for /dev/hpl to generate a listing of
rue.c and rue.doc.

prps recognizes the following options:

-b Suppress the box around the page text. If the box is present, PostScript clips text
that would extend beyond its right border.

-h Suppress the header line.

-in Indent the left margin by an additional n characters.

-1 Generate "landscape"-format output. prps normally generates output pages in
"portrait" format (upright 8.5 by 11 inches). The -1 option generates output pages
in landscape format (11 by 8.5) instead. This option is useful for files with long
lines; by default. it prints 46 lines per page.

-12 Generate landscape-format output pages that each contain two side-by-side "pages"
of text. This format is useful for saving paper. especially when used with a small
size of type. As it prints in a small size of type. it prints 66 lines per page.

-nname Use name in place of the file name in the header line.

-tN Set tab stops at every N characters. The default tab setting is eight.

-ptslze Change the size of type to ptslze points. By default, prps sets its output in ten-
point type. This yields 64 lines per normal output page, 46 lines in landscape
format. and 52 lines per half page in -12 format. (Note that a "point" is one twelfth
of a pica. which in turn is one sixth of an inch; thus. there are 72 points in an
inch.) By specifying the ptslze on its command line, you can tell prps to use a
different size of type. For example. -8 tells prps to use eight-point type.

-pN Print N lines of text on each output page (or half page). Note that the point size
determines how many lines fit on a page, and lines per page determine point size. If
you specify both. prps will use the given values unless the lines do not fit at the
given point size.

+N Skip the first N output pages.

LEXICON

860 prps

Setting Fonts
prps recognizes the standard nrotl' font specification sequences and translates them into
Postscript font specifications. The default font is Courier. Because the naming conventions
for PostScipt fonts are anything but uniform, prps appends a suffix to the fontname to
designate a Roman, boldface and italic font variety. The default suffix is·· for Roman, "­
Bold" for bold and "-Oblique" for italic. These give the standard Postscript names for the
Courier family, "Courier", "Courier-Bold", and "Courier-Oblique".

Option -ffontname specifies an alternative fontname. Option -FsXsziffix specifies an
alternative font suffix, where Xis one of the three characters RBI (for Roman, Bold or Italic)
and sulflx is the desired suffix. For example, the option

-fTimes -FsR-Roman -FsI-Italic

generates the usual Postscript font names for the Times family, namely "Times-Roman",
"Times-Bold", and "Times-Italic".

To spare you some of this grief, a few fonts have built-in abbreviations. Option -FX, where
Xis one of the characters ABHNPST, specifies a Postscript fontname as follows:

-FA AvantGarde
-FB Bookman
-FH Helvetica
-FN Helvetica-Narrow
-FP Palatino
-FS New Century Schoolbook
-FT Times

These options also set each suffix appropriately for the desired font. However, font naming
conventions may differ on various Postscript devices; examine the prps output and your
device documentation if problems occur.

Examples
prps is especially useful as a way of printing the output of nrotl', including manual pages.
For example,

man prps I prps I hpr -B

or

man prps I prps -12 I hpr -B

prints this Lexicon article in, respectively, portrait mode or two-page landscape mode. It
looks nicer if you center the output with an indent:

man prps I prps -iB I hpr -B

or

man prps I prps -12 -i4 I hpr -B

See Also
commands, hp, hpr, pr, nrotl', printer

LEXICON

ps 861

ps - Command
Print process status
ps (-afglmnrtwx] [-c sys I (-k mem I

ps prints information about a process or processes. It prints the information in fields,
followed by the command name and arguments. The fields include the following:

TTY

PID

GROUP

PPID

UID

K

F

s

EVENT

The controlling terminal of the command, printed in short form. "44:" means
/dev/tty44 and"??:" means there is no controlling terminal.

Process id; necessary to know when the process is to be killed.

PIO of the group leader of the process; the shell started up when the user logs
in.

PIO of the parent of the process; very often a shell.

User id or name of the owner.

Size of the process in kilobytes.

Process flag bits. as follows:

PFCORE
PFLOCK
PFSWIO
PFSWAP
PFWAIT
PFSTOP
PFTRAC
PFKERN
PFAUXM
PFDISP
PFNDMP
PFWAKE

00001
00002
00004
00010
00020
00040
00100
00200
00400
01000
02000
04000

Process is in core
Process is locked in core
Swap 1/0 in progress
Process is swapped out
Process is stopped (not waited)
Process is stopped (waited on)
Process is being traced
Kernel process
Auxiliary segments in memory
Dispatch at earliest convenience
Command mode forbids dump
Wakeup requested

State of the process, as follows:

R Ready to run (waiting for CPU time)
S Stopped for other reasons (1/0 completion, pause, etc.)
T Being traced by another process
W Waiting for an existent child
Z Zombie (dead, but parent not waiting)

The condition which the process is anticipating; not applicable if the process is
ready to run.

CVAL SVAL IVAL RVAL
Scheduling information; bigger is better.

UTIME Time consumed while running in the program (in seconds).

STIME Time consumed while running in the system (in seconds).

Normally, ps displays the TTY and PID fields of each active process started on the caller's
terminal. as well as the command name and arguments. The following flags can alter this
behavior.

LEXICON

862 PS1 - PS2

a Display information about processes started from all terminals.

c The next argument sys gives the system executable image (default: I coherent). The
namelist is searched for table addresses.

d Print information about status of loadable drivers.

f Blank fields have ·-·place-holders. This enables field-oriented commands like sort
and awk to process the output.

g Print the group leader field GROUP if the l option is given.

1 Long format. In addition to the TTY and PIO fields. prints the PPID. UID. K. F. S
and EVENT fields.

k The next argument mem is the memory file (default: /dev/mem).

m Print the scheduling fields CVAL, SVAL. IVAL and RVAL.

n Suppress the header line.

r Print the real size of the process, which includes the user and auxiliary segments
assigned to the process. Because the user segment (usually 1 kilobyte) is shared by
all processes owned by that user. this may give a misleading total size for all the
user's processes.

t Print elapsed CPU time fields UTIME and STIME.

w Wide format output; print 132 columns instead of 80.

x Display processes which do not have a controlling terminal (e.g. the swapper).

Files
I coherent - Default system file
/dev/mem- Default memory file
I dev I tty• - List of terminal names

See Also
commands, kill, mem, size, wait

Notes
Each process can modify or destroy its command name and arguments. The state of the
system changes even as ps runs.

PS1 - Environmental Variable
User's default prompt
PSl=prompt

The environmental variable PSI sets the prompt for your shell. The default is$.

See Also
environmental variables, PS2, sh

PS2 - Environmental Variable
Prompt when user continues command onto additional lines
PS2=prompt

The environmental variable PS2 sets the prompt that is displayed when a command extends
onto additional input lines. The default is >.

LEXICON

See Also
environmental variables, PSI, sh

ptraceO - System Call
Trace process execution
#include <signal.h>
int ptrace(command, pid, location, value)
Int command, pld, •location, value;

ptraceO 863

ptrace provides a parent process with primitives to monitor and alter the execution of a
child process. These primitives typically are used by a debugger such as db, which needs to
examine and change memory. plant breakpoints. and single-step the child process being
debugged.

Once a child process indicates it wishes to be traced, its parent issues various commands to
control the child. pid identifies the affected process. The parent may issue a command only
when the child process is in a stopped state. which occurs when the child encounters a
signal. A special return value of 0177 from wait informs the parent that the child has
entered the stopped state. The parent may then examine or change the child process
memory space or restart the process at any point.

When the child process issues an exec, the child stops with signal SIGTRAP to enable the
parent to plant breakpoints. The set user id and set group id modes are ineffective when a
traced process performs an exec.

The following list describes each available command. A command ignores any arguments not
mentioned.

0 This is the only command the child process may issue. It tells the system that the
child wishes to be traced. Parent and child must agree that tracing should occur to
achieve the desired effect. Only the command argument is significant.

1,2 The int at location is the return value. Command 1 signifies that location is in the
instruction space, whereas command 2 signifies data space. Often these two
spaces are equivalent.

3 The return value is the int of the process description, as defined in sys/uproc.h.
This call may be used to obtain values such as hardware register contents and
segment allocation information.

4,5 Modify the child process's memory by changing the int at location to value.
Command 4 means instruction space and command 5 means data space. Shared
segments may be written only if no other executing process is using them.

6 Modify the int at location in the process description area, as with command 3. The
permissible values for location are restricted to such things as hardware registers
and bits of machine status registers that the user may safely change.

7 This command restarts the stopped child process after it encounters a signal. The
process resumes execution at location, or from where the process was stopped if
location is (int •)I. value gives a signal number that the process receives as it
restarts. This is normally the number of the signal that caused the process to stop,
fetched from the process description area by a 3 command. If value is zero, the
effect of the signal is ignored.

8 Force the child process to exit.

LEXICON

864 pun - putcO

9 Like command 7. except that the child stops again with signal SIGTRAP as soon as
practicable after the execution of at least one instruction. The actual hardware
method used to implement this command varies from machine to machine,
explaining the imprecise nature of its definition. This call may provide part of the
basis for breakpoints.

Files
<signal.h>
<sys/ uproc.h>

See Also
db, exec, signal(), system calls, wait()

Diagnostics
ptrace returns -1 if pld is not the process id of an eligible child process or if some other
argument is invalid or out of bounds. Some commands may return an arbitrary data value,
in which case errno should be checked to distinguish a return value of -1 from an error
return.

Notes
There is no way to specify which signals should not stop the process.

pun - Definition
In the context of C, a pun occurs when a programmer uses one data form interchangeably
with another. A pun most often occurs unintentionally when the programmer fails to
declare a function as returning a pointer; by default, what the function returns is assumed
to be an int, and is handled as such. No trouble will arise if the program is run on a
machine that defines an int and a pointer to have the same length (e.g .. i8086 SMALL
model); however, such code cannot be transported to an environment in which this is not
the case (e.g .. i8086 LARGE model).

See Also
definitions, pointer, portability

pushd - Command
Push an item onto the directory stack
pushd [dlrectoryO ... dtrectoryN]

The COHERENT shell sh maintains an internal "directory stack", which is a stack of names
of directories. You can manipulate this stack should you, for any reason, wish to traverse a
number of directories quickly and efficiently.

The command pushd pushes directoryl through directoryN onto the directory stack, and
changes the current directory to the last directory pushed. If called without an argument, it
transposes the last two directories on the directory stack.

See Also
commands, dirs, popd, sh

putcO - STDIO (stdio.h)
Write character into stream
#include <Stdio.h>
int putc(c,fp) charc; FILE "'fp;

putc is a macro that writes a character c into the file stream pointed to by fp. It returns c
upon success.

LEXICON

putcharO 865

Example
The following example demonstrates putc. It opens an ASCII file and prints its contents on
the screen. For another example of putc. see the entry for getc.

#include <stdio.h>
main()
{

}

FILE *fp;
int ch;
int filename[20];

printf ("Enter file name: ");
gets(filename);

if ((fp = fopen(filename,"r")) !=NULL)
while ((ch= fgetc(fp)) != EOF)

putc(ch, stdout);
} else

printf("Cannot open %s,\n", filename);
fclose(fp);

See Also
fputc(), getc(), putchar(), STDIO

Diagnostics
putc returns EOF when a write error occurs.

Notes
Because putc is a macro, arguments with side effects may not work as expected.

putcharO - STDIO (stdio.h)
Write a character onto the standard output
#include <stdio.h>
int putchar(c) charc;

putchar is a macro that expands to putc(c, stdout). It writes a character onto the standard
output.

Example
For an example of this routine, see the entry for getchar.

See Also
fputc(), putc(), STDIO

Diagnostics
putchar returns EOF when a write error occurs.

Notes
Because putchar is a macro. arguments with side effects may not work as expected.

LEXICON

866 putsO - pwd

putsO - STDIO (libc)
Write string onto standard output
#include <stdio.h>
int puts(strlng) char •string

puts appends a newline character to the string pointed to by string, and writes the result
onto the standard output. puts returns a nonnegative value on success and EOF if a write
error occurs.

Example
The following uses puts to write a string on the screen.

#include <stdio.h>

main()
{

puts("This is a string.");
}

See Also
fputs(), STDIO

Notes
For historical reasons, fputs outputs the string unchanged, whereas puts appends a
newline character.

putwO - STDIO (stdio.h)
Write word into stream
#include <stdio.h>
int putw(word,fp) int word; FILE ":.fp;

The macro putw writes word into the file stream pointed to by Jp. It returns the value
written.

putw differs from the related macro putc in that putw writes an int, whereas putc writes a
char that is promoted to an int.

See Also
ferror(), STDIO

Diagnostics
putw returns EOF when an error occurs. You may need to call ferror to distinguish this
value from a genuine end-of-file flag.

Notes
Because putw is a macro, arguments with side effects may not work as expected. The bytes
of word are written in the natural byte order of the machine.

pwd - Command
Print the name of the current directory
pwd

pwd prints the name of the directory that you are in.

LEXICON

See Also
cd, commands, ksh, sh

Notes
Under the Korn shell, pwd is an alias for the expression print -r $PWD.

pwd.h - Header File
Declare password structure
#include <pwd.h>

pwd.h 867

The header file pwd.h declares the structure passwd. which is used to build COHERENT's
password file. passwd is defined as follows:

struct passwd {
char *pw_name; /* login user name */
char *pw_passwd; /* login password */
int pw uid; /* login user id */
int pw_gid; /* login group id */
int pw_quota; /* file quota (unused) */
char *pw_comment; /* comments (unused) */
char *pw_gecos; I* (unused) */
char *pw_dir; /* working directory */
char *pw_shell; /* initial program */

} ;

For detailed descriptions of the above fields, see the entry for passwd.

See Also
endpwentQ, getpwent(), getpwnam(), getpwuid(), header mes, setpwent()

LEXICON

868 qfind - qsortO

qfind - Command
Quickly find all files with a given name
qfind [-adp] name •..
qfind [-b]

Q

qfind prints the full path name of each file with a given name. When invoked with the -b
option, it builds a data base in file /usr/adm/qffiles; this data base names every file and
directory in the system. When invoked without the -b option, qfind reads this data base to
find file names fairly quickly.

Normally, qflnd prints the full path name of each file in the COHERENT system that ends
with the given name (as they were at the time you last executed qfind -b.) With the -d
option, qfind prints matching directories instead of files. With the -a option, qfind prints
both matching files and matching directories.

Option -p specifies partial name matching. For example, qflnd -p foo matches files
/src/foo.c and /doc/foo.r as well as file /usr/bin/foo.

Files
/usr/adm/qmles

See Also
commands, cron, find, whereis, which

Notes
Building the qfind data base with the -b option is slow. but it speeds finding files. You may
find it convenient to use cron to execute qfind -b to rebuild the data base at night, or some
other time when the machine is otherwise idle. The superuser root must run qflnd -b if
you want all files to appear in the data base.

qsortO - General Function (libc)
Sort arrays in memory
void qsort(data, n, size, comp) char *data; int n, size; int (*comp)();

qsort is a generalized algorithm for sorting arrays of data in memory, using C. A. R. Hoare's
"quicksort" algorithm. qsort works with a sequential array of memory called data, which is
divided into n parts of size bytes each. In practice, data is usually an array of pointers or
structures, and size is the sizeof the pointer or structure. Each routine compares pairs of
items and exchanges them as required. The user-supplied routine to which comp points
performs the comparison. It is called repeatedly. as follows:

(*comp) (pl, p2)
char *pl, *p2;

Here, pl and p2 each point to a block of size bytes in the data array. In practice, they are
usually pointers to pointers or pointers to structures. The comparison routine must return
a negative, zero, or positive result, depending on whether pl is logically less than, equal to,
or greater thanp2. respectively.

Example
For an example of this function, see the entry for malloc.

LEXICON

See Also
general functions, shellsort(), strcmp(), strncmp()
The Art of Computer Programming, vol. 3

Notes

quot 869

qsort differs from the other sorting function. shellsort, in that it uses a recursive algorithm
that makes heavy use of the stack.

quot - Command
Summarize file-system usage
quot [-c] [-f] [-n I [-t)jllesystem

quot produces several different summaries about the ownership of files for eachjllesystem
argument given. When no options are specified. quot produces a two-column listing that
gives the amount of space used by each user, sorted in decreasing order of file space used;
the first column gives the number of blocks used and the second gives the use name. Space
is always given in blocks.

Options are available to modify the normal output or specify a completely different action.

quot recognizes the following options:

-c Give a three-column breakdown of files by size. The first column contains all file sizes,
in increasing order. The second column gives the number of files of the size indicated
in the first. The third gives a cumulative sum of the sizes of all files less than or equal
to the current size.

-f Add an initial column that contains the number of files to the front of the normal
output.

-n Takes as input a list of i-numbers and file names, one per line and sorted in ascending
order by i-number; ignore all lines not in this form. The output is in two columns: the
first gives the owner and the second contains the file name for each entry in the
output. This conforms to usage with the following pipeline:

ncheck filesystem I sort +On I quot -n f ilesystem

-t To the normal output, add a line that contains totals.

quot runs much faster with a raw device forjllesystem.

Only the superuser root can run quot.

Files
/etc/passwd

See Also
ac,commands,ncheck,sort

Notes
Sparse files are recorded as if they had all of their blocks allocated.

LEXICON

870 ram

R

ram - Device Driver
Driver for manipulating RAM

The COHERENT ram devices let you allocate and use the random access memory (RAM) of
the computer system directly. A typical use is for a RAM disk, which is a COHERENT file
system kept in memory rather than on a floppy disk or hard disk.

The COHERENT RAM device driver has major number 8. It can be accessed either as a
block-special device or as a character-special device. The high-order bit of the minor
number gives a RAM device number (0 or 1), which lets you use up to two RAM devices
simultaneously. The low-order seven bits specify the device size in 64-kilobyte increments.
The first open call on a RAM device with nonzero size (1 to 127) allocates memory for the
device; the system call open fails if sufficient memory is not available. Accessing a RAM
device with a minor number specifying size zero frees the allocated memory, provided all
earlier open calls have been closed.

Initially, COHERENT includes two block-special devices for RAM disks: the 512-kilobyte
device /dev/ramO (8, 8) and the 192-kilobyte device /dev/raml (8, 131). It also includes
the devices /dev/ramOclose (8, OJ and /dev/ramlclose (8, 128). You should change the
RAM devices to sizes appropriate for the amount of memory available on your system.

Examples
The following example formats and mounts a 512-kilobyte RAM disk on directory /fast.

mkdir /fast
/etc/mkfs /dev/ramO 1024
/etc/mount /dev/ramO /fast

When the RAM disk is no longer needed, its allocated memory can be freed as follows:

/etc/umount /dev/ramO
cat /dev/null >/dev/rramOclose

The next example replaces the default /dev/ramO with a one-megabyte device containing a
COHERENT file system. The new minor number 16 specifies RAM device 0 and size 16
times 64 kilobytes (i.e .. one megabyte). The new RAM device contains 2,048 blocks of 512
bytes each.

rm /dev/ramO
/etc/mknod /dev/ramO b 8 16
/etc/mkfs /dev/ramO 2048

Files
/dev/ram*

See Also
compress, device drivers, fsck, mkfs, mount, umount, uncompress, zcat

Notes
Moving frequently used commands or files to a RAM disk can improve system performance
substantially. However, the contents of a RAM device are lost if the system loses power,
reboots, or crashes, files kept on a RAM disk should frequently be copied the hard disk or
floppy disk.

LEXICON

randO 871

If a RAM device uses most but not all available system memory, its open call will succeed
but subsequent commands may fail because insufficient memory remains for the system.

The COHERENT installation program /etc/build uses RAM device /dev/raml as a RAM
disk during installation. Commands compress, wicompress, zcat, and fsck sometimes
use /dev/raml as a temporary storage device. Users should avoid using /dev/raml as a
RAM disk because of these programs. In addition, users of compress, uncompress, and
zcat may have to change the size of /dev/raml from the default size of 192 to 512
kilobytes. to handle files compressed to 16 bits. The following script makes this change;
note that it must be run by the superuser root:

cat /dev/null >/dev/rramlclose
rm /dev/raml /dev/rraml
mknod /dev/raml b 8 136
mknod /dev/rraml c 8 136

Please note that increasing the size of /dev/raml to 512 kilobytes requires a system with at
least one megabyte of RAM.

randO - General Function (libc)
Generate pseudo-random numbers
int rand()

rand generates a set of pseudo-random numbers. It returns integers in the range 0 to
32.767. and purportedly has a period of 232. rand will always return the same series of
random numbers unless you first call the function srand to change rand's seed, or
beginning-point.

Example
This example demonstrates the functions rand and srand. It uses a threshold level that is
passed in argv[l] (default, MAXVAL/2), the number of trials passed in argv[2] (default,
1,000), and a seed passed in argv(3] (default. no seeding).

#define MAXVAL 32767 /* range of rand: [0,2A15-1] */

main(argc, argv)
int argc; char *argv[];
{

}

register int i, hits, threshold, ntrials;

hits = O;
threshold = (argc > 1) ? atoi(argv[l]) : MAXVAL/2;
ntrials = (argc > 2) ? atoi(argv[2]) 1000;
if (argc > 3)

srand(atoi(argv[3]));

for (i = 1; i <= ntrials; i++)
if (rand() >threshold)

++hits;

printf("%d values above %din %d trials (%D%%).\n",
hits, threshold, ntrials, (lOOL*hits)/ntrials);

LEXICON

872 random access - ranlib

See Also
general functions, srand()
The Art of Computer Programming, vol. 2

random access - Definition
In the context of computing, random access means that an entity, such as memory, can be
accessed at any point, not just at the beginning. This means that all points within memory
can be accessed equally quickly. This contrasts with sequential access, in which entities
must be accessed in a particular order. so that some entities take longer to access than do
others.

A tape drive is an example of a sequential access device, i.e., the order in which data are
read is dictated by the order in which they stream past the tape head. Random-access
memory (RAM) is an example of random access. Hard disks and floppy disks combine
elements of random access and sequential access.

RAM, which usually consists of semiconductor integrated circuits, is also strictly random
access. In this regard, the term "RAM" is slightly misleading; a more accurate name would
be "read/write memory", to contrast RAM with read-only memory (ROM), which is also
random access memory.

See Also
definitions, read-only memory

ranlib - Command
Create index for object library
ranlib library ...

The ranlib is a "directory" that appears at the beginning of each library. It contains the
name of each global symbol (i.e .. function name) that appears within the library, and a
pointer to the module in which that symbol is defined. Thus, the ranlib eliminates the need
for the linker to search the entire library sequentially to find a given global symbol, which
speeds up linking noticeably.

If the date on the library file is later than that in the ranlib header. the linker will ignore the
ranlib and perform a sequential search through the library: the linker will also send the
warning message

Outdated ranlib

to the standard error device. This is done to prevent the accidental use of an outdated
ranlib, which could be disastrous.

The COHERENT command ranlib creates a ranlib header for an archive. If the header
already exists, ranlib updates it.

Files
_.SYMDEF - Index module

See Also
ar, ar.h, commands, Id

Diagnostics
ranlib issues appropriate messages for 1/0 errors or bad format files. It does not rewrite a
library until the last possible moment. so the library is usually unchanged in case of error.
ranlib processes each library independently. The exit status is the number of libraries in
which errors were encountered.

LEXICON

re - System Maintenance
Perform standard maintenance chores
/etc/re

re - readO 873

The shell script /etc/re is executed by the init process when the COHERENT system enters
multi-user mode. The commands in re do such things as set the local time zone, and
initialize the time /usr/adm/wtmp, which holds records of user logins.

See Also
brc, init, system maintenance

read - Command
Assign values to shell variables
read name ...

read reads a line from the standard input. It assigns each token of the input to the
corresponding shell variable name. If the input contains fewer tokens than the number of
names specified, read assigns the null string to each extra variable. If the input contains
more tokens than the number of names specified, read assigns the last name in the list the
remainder of the input.

The shell executes read directly.

Example
The command

read f oo bar baz
hello how are you

parses the line "hello how are you" and assigns the tokens to. respectively, the shell
variables foo, bar, and baz. If you further type

echo $foo
echo $bar
echo $baz

you will see:

hello
how
are you

See Also
commands,ksh,sh

Diagnostics
read normally returns an exit status of zero. If it encounters end of file or is interrupted
while reading the standard input, it then returns one.

readO - System Call
Read from a file
int read(fd, buffer, n) intfd; char *buffer; int n;

read reads up to n bytes of data from the file descriptorfd and writes them into buffer. The
amount of data actually read may be less than that requested if read detects EOF. The data
are read beginning at the current seek position in the file, which was set by the most

LEXICON

874 readonly - reallocO

recently executed read or lseek routine. read advances the seek pointer by the number of
characters read.

Example
For an example of how to use this function, see the entry for open.

See Also
STDIO, system calls

Diagnostics
With a successful call, read returns the number of bytes read; thus, zero byies signals the
end of the file. It returns -1 if an error occurs, such as bad file descriptor, bad b4ffer
address, or physical read error.

Notes
read is a low-level call that passes data directly to COHERENT. It should not be intermixed
with high-level calls, such as fread, fwrite, or fopen.

readonly - Command
Mark a shell variable as read only
readonly

Mark each variable as a read-only shell variable. The shell will not permit subsequent
assignments to a readonly variable. With no arguments, readonly prints the name and
value of each read-only variable.

See Also
commands, ksh, sh

readonly - C Keyword
Storage class

readonly is a C keyword that modifies data declarations. As its name implies, the readonly
modifier declares that data are to be read only: this helps protect key data against casual
modification by the user or another programmer.

See Also
C keywords, keyword

Notes
The ANSI standard for the C language eliminates this keyword.

read-only memory - Definition
As its name suggests, read-only memory, or ROM. is memory that can be read but not
overwritten. It most often is used to store material that is used frequently or in key
situations, such as a language interpreter or a boot routine.

See Also
definitions, random access

reallocO - General Function (libc)
Reallocate dynamic memory
char *realloc(ptr, size) char *ptr; unsigned size;

realloc helps you manage a program's arena. It returns a block of size byies that holds the
contents of the old block, up to the smaller of the old and new sizes. realloc tries to return
the same block, truncated or extended; if size is smaller than the size of the old block,

LEXICON

realloc will return the same ptr.

If ptr is set to NULL. realloc behaves like malloc.

Example
For an example of this function, see the entry for calloc.

See Also

reboot - ref 875

arena, calloc(), free(), general functions, malloc(), memok(), setbuf()

Diagnostics
realloc returns NULL if insufficient memory is available. It prints a message and calls
abort if it discovers that the arena has been corrupted. which most often occurs by storing
past the bounds of an allocated block. realloc will behave unpredictably if handed an
incorrect ptr.

reboot - Command
Reboot the COHERENT system
/etc/reboot [-p I

reboot reboots the COHERENT system. The option -p prompts the user if she really wishes
to reboot before executing the reboot.

reboot can be run only by the superuser.

The COHERENT system should be rebooted only while In single-user mode. Failure to return
to single-user mode before rebooting could damage the COHERENT file system and destroy
data.

See Also
commands, shutdown

ref - Command
Display a C function header
ref junction

ref looks up the function header of junction in any of a series of reference files built by the
command ctags. It is used by the elvis editor's <shift-K> command. This command checks
the file refs in the current directory.

See Also
commands, ctags, elvis

Notes
ref is copyright © 1990 by Steve Kirkendall. and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous
volunteers. It is freely redistributable, subject to the restrictions noted in included
documentation. Source code for ref is available through the Mark Williams bulletin board.
USENET. and numerous other outlets.

Please note that ref is included as a service to COHERENT users, but is not supported by
Mark Williams Company. Caveat utilltor.

LEXICON

876 register - rename

register - C Keyword
Storage class

register is a C keyword that declares a class of data storage. A variable so declared may be
stored in a register, which may increase the speed with which it is read by a program.

See also
auto, C keywords, extern, register variable, static

register variable - Definition
register is a C storage class. A register declaration tells the compiler to try to keep the
defined local data item in a machine register. Under the COHERENT C compiler, the int
foo can be declared to be a register variable with the following statement:

register int foo;

COHERENT places the first two register variables declared in a function into registers SI
and DI if the variable type is appropriate, i.e., int or SMALL-model pointer. Subsequent
register declarations are ignored, because no registers are left to hold them. Note because
of this fact, declaring more than two register variables may slow processing rather than
speed it.

By definition of the C language, registers have no addresses, so you cannot pass the address
of register variable as an argument to a function. For example, the following code will
generate an error message when compiled:

register int i;

dosomething(&i); /* WRONG */

This rule applies whether or not the variable is actually kept in a register.

Placing heavily-used local variables into registers often improves performance, but in some
cases declaring register variables can degrade performance somewhat.

See Also
auto, definitions, extern, static, storage class

rename - Technical Information
How to rename a file

The COHERENT system has no "rename" procedure per se. On the shell level. you can use
the mv command to rename a file. To rename a file from within a C program, you must use
the COHERENT system calls link and unlink.

Example
The following program demonstrates how to use link and unlink to rename a file.

#include <stdio.h>
main(argc, argv) int argc; char *argv[];
{

register char *old, *new;

LEXICON

}

if (argc I= 3) {

}

fprintf(stderr, "Usage: rename old new\n");
exit(!);

old = argv [1 J ;
new = argv [2 J ;

if (link(old, new) == -1) {

restor 877

fprint f (stderr, "rename: link (%s, %s) failed \n" , old, new) ;
exit(l);

} else if (unlink(old) == -1) {
fprintf(stderr, "rename: unlink(%s) failed\n", old);
exit(l);

}
exit(O);

See Also
mv, technical information

restor - Command
Restore file system
restorcommand [dump_devlce] lfllesystem] [file ...)

restor copies to the hard disk one or more files from floppy disks or tapes written by the
command dump.

restor recognizes the following commands:

r Mass restore both full and incremental dump disks /tapes into the fllesystem. The
target file system must have enough data blocks and i-nodes to hold the dump.

The mass restoration is performed in three phases. In phase 1. restor clears all i­
nodes that were either clear at dump time or are going to be restored. Any allocated
blocks are released. Second, it restores all files on the disk. The i-numbering is
preserved; however, data blocks are allocated in the standard fashion. Third. a pass is
made over the i-nodes and the list of free i-nodes in the superblock is updated.

Restoration begins immediately. using the currently mounted disk or tape.

R Like the r command, except that it pauses to ask for numbers of disks or reels.

t Read the header from the dump. Display the date the dump was written and the
"dump since" date that produced the dump.

x Extract each flle from the dump and restore it to the hard disk. All file names are
absolute path names starting at the root of the dump (the first directory dumped,
which is always the root directory of the file system). A numeric file name is taken to
be an i-number on the dumped file system, permitting restore by i-number.

restor looks up each argument file in the directories of the dumped file system and
prints out each name and associated i-number. restor extracts the files from the
currently mounted dump disk or tape, and writes the extracted files into the current
directory. Extracted files are named after their !-numbers.

LEXICON

878 restor

X Like command x, except that before it begins, it asks you for the number of the disk (or
the reel number of the dump tape). It continues asking for dump disks until all files
have been extracted or you types <ctrl-D>.

Each of the above commands can be modified either or both of the following modifiers:

f Tell restor to take the next argument as the path name of the dump device (floppy-disk
drive or tape drive). If the f modifier is not specified, restor uses the device
/dev/dump.

v Verbose output. Tell restor to print a step-by-step trace of its actions when restoring
an entire file system. This is for discovering what went wrong when a mass restore
runs into trouble.

Restoring from a Damaged Medium
As noted below, dump requires that its output be written to disks or tapes that are free of
defects. Restoring a file system from a damaged medium is difficult and is not associated
with a high probability of success; if, however. you must try to do so, the following
directions will give you a fighting chance of restoring your data.

1. Use the command fdfonnat to format a blank disk. Use the command badscan to
examine it for bad sectors: if it does have bad sectors, put it aside and try another.

2. Use the command dd to copy the bad disk to directory /tmpfool dd should die at the
bad sector in the disk.

3. dd again to directory /tmp/foo2 using that command's skip=n to skip past the bad
sector (or sectors).

4. Repeat step 3 (if it died too) until the end of the disk is reached. Now you have a set of
directories named /tmp/joo[l...n] that contain parts of the bad disk.

5. Use the command

dd if=/tmp/jool of=/dev/fhaO

with the new, defect-free disk.

6. Now, use the command

dd if=/tmpifoo2 of=/dev/fhaO seek=whatever

to placefoo2 into the right place on the new disk.

7. Repeat 6 for each directoryjoo3 throughfooN.

8. Create a 512-byte file that contain the string

GARBAGE\n

repeated 64 times. Use dd to copy it into new disk where the bad sectors were.

Now, you should have a disk that is a mirror image of the old, damaged dump disk. Each
bad sectors will have been replaced by 64 iterations of the string GARBAGE\n. As noted,
there is no guarantee that this scheme will work in every instance (the chances of error are
quite high), but it will give you a fighting chance to save your data.

Files
I dev I dump - Dump device
/etc/ddate- Dump date file

LEXICON

return - rev 879

See Also
commands, dump, dumpdir

Diagnostics
Most of the diagnostics produced by restor are self-explanatory, and are caused by internal
table overflows or I/O errors on the dump medium or file system.

If the dump spans multiple disks or reels. restor asks you to mount the next disk at the
appropriate time. Type a newline when the disk has been mounted. restor verifies that
this is the correct disk. and gives you another chance if the disk number in the dump
header is incorrect.

Notes
You cannot perform a mass restore onto a live root partition. Instead, boot a stand-alone
version of COHERENT on a floppy-disk drive, or boot from an alternative COHERENT file
system on another hard-disk partition before you attempt to do a mass restoration.

The handling of tapes with multiple dumps on them (created by dumping to the no rewind
special files) is not very general. Basically, restor assumes that tapes holding multiple
dumps and tapes holding dumps that span multiple reels are mutually exclusive. You can
restore from any file on a reel by positioning the tape and then restoring with the x or r
commands, which do not reposition the tape. It is (almost) impossible to use the X or R
commands, as the position of the dump tape will be lost when restor closes it.

dump requires that its output be written to disks that are free of bad sectors. If you write a
dump to a disk with bad sectors, you will not be able to restore files from that disk. See
dump for directions on processing disks to ensure that they are free of bad sectors.

return - C Keyword
Return a value and control to calling function

return is a C statement that returns a value from a function to the function that called it.
return can be used without a value, to return control of the program to the calling function;
also, the calling function is free to ignore the value return hands it. Note that it is good
programming practice to declare functions that return nothing to be of type void.

A function can return only one value to the function that called it. Most often, this value is
used to signal whether the function performed successfully or not.

See Also
C keywords

rev - Command
Print text backwards
rev (file ...)

rev reverses the order of the characters in each line of each inputji!e and writes the result
to the standard output. If no.file is specified, the standard input is used instead.

Example
The following allows you to give a command like Mandrake the Magician

rev
Rocks break down wall!
<ctrl-D>

LEXICON

880 rewindO - rindexO

which displays:

!llaw nwod kaerb skcoR

on your screen.

See Also
commands

rewindO - STDIO Function (libc)
Reset file pointer
#include <stdio.h>
int rewind(fp) FILE ":fp;

rewind resets the file pointer to the beginning of streamfp. It is a synonym for fseek(fp, OL,
0).

Example
For an example of this routine, see the entry for fscanf.

See Also
fseek(), ftell(), lseek(), STDIO

Diagnostics
rewind returns EOF if an error occurs; otherwise, it returns zero.

rindexO - String Function (libc)
Find a character in a string
char •rfndex(strlng, c) char •string; char c;

rindex scans string for the last occurrence of character c. If c is found, rindex returns a
pointer to it. If it is not found. rindex returns NULL.

Example
This example uses rindex to help strip a sample file name of the path information.

#include <stdio.h>
#define PATHSEP '/'

extern char *rindex();
extern char *basename();

main()
{

/* path name separator */

char *testpath = "/foo/bar/baz";

}

LEXICON

printf("Before massaging: %s\n", testpath);
printf("After massaging: %s\n", basename(testpath));

char *basename(path)
char *path;
{

char *cp;
return (((cp rindex(path, PATHSEP))

? path : ++cp);
}

See Also
index(), string functions

Notes

rm 881

NULL)

This function is identical to the function strrchr, which is described in the ANSI standard.

COHERENT includes strrchr in its libraries. It is recommended that it be used instead of
rlndex so that programs more closely approach strict conformity with the ANSI standard.

rm - Command
Remove files
rm [-firtv].file ...

rm removes each.file. If no other links exist, rm frees the data blocks associated with the
file.

To remove a file, a user must have write and execute permission on the directory in which
the file resides, and must also have write permission on the file itself. The force option -f
forces the file to be removed if the user does not have write permission on the file itself. It
suppresses all error messages and prompts.

The interactive option -i tells rm to prompt for permission to delete each.file.

The recursive removal option -r causes rm to descend into every directory, search for and
delete files, and descend further into subdirectories. Directories are removed if the directory
is empty, is not the current directory, and is not the root directory.

The test option -t performs all access testing but removes no files.

The verbose option -v tells rm to print each file rm and the action taken. In conjunction
with the -t option, this allows the extent of possible damage to be previewed.

See Also
commands, In, rmdir

Notes
Absence of delete permission in parent directories is reported with the message ':file:
permission denied". Write protection is not inherited by subdirectories; they must be
protected individually.

Note that unlike the similarly named command under MS-DOS, COHERENT's version of rm
will not prompt you if you request a mass deletion. Thus, the command

rm*

will silently and immediately delete all files in the current directory. Caveat utilitor!

LEXICON

882 rmdir - RS-232

rmdir - Command
Remove directories
rmdir [-f] directory ...

rmdir removes each directory. This will not be allowed if a directory is the current working
directory or is not empty. The force option -f allows the superuser to override these
restrictions. nndir removes the '.' and ' . .' entries automatically. Note that using the -f
option on a directory that is not empty will damage the file system, and require that it be
fixed with fsck.

See Also
commands, mkdir, rm

Notes
rmdir -f does rwt remove files from a nonempty directory; it simply orphans them. To
remove a nonempty directory and its contents, use nn -r instead.

root - Definition
root is the login name for the superuser.

See Also
definitions, superuser

rpowO - Multiple-Precision Mathematics
Raise multiple-precision integer to power
#include <mprec.h>
void rpow(a, b, c)
mint •a, *b, •c;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function rpow sets the multiple-precision integer (or mint)
pointed to by c to the value pointed to by a raised to power of the value pointed to by b.

See Also
multiple-precision mathematics

RS-232 - Technical Information
COM port wiring

This article details the connections (pinouts) of EIA standard RS-232C. This connect
consists of a D-shaped plug with 25 pins in two rows: 13 pins in the upper row and 12 in
the lower. This interface is commonly used by devices that require a serial interface to a
computer; these devices include modems, terminals, serial printers. and such specialized
devices as bar-code scanners. In addition, this articles gives the pinouts of the nine-pin
DB-9P connector. which is a nine-pin version of the RS-232 that is commonly used in AT
and AT-compatible computers.

RS-232 Pinout
The following table gives the 25-pin EIA standard RS-232C pinouts. It also gives:

LEXICON

Nine-pin DB-9P convention
Common abbreviations of signal names
Abbreviations of RS-232 signal names
Equivalent CCITT signal-number designations
Signal direction (as appropriate)
Signal description

RS-232 883

Please note that in this table, DTE stands for "data terminal equipment" and refers to
terminal-type equipment such as a PC or a terminal, whereas DCE stands for "data
communications equipment" and refers to modems and modem-type equipment.

DB-25 DB-9 Common
Pin# Pin# Name EIA CCIIT DTE-DCE Description

1 FG AA 101 Frame ground
2 3 TD BA 103 Transmitted data
3 2 RD BB 104 Received data
4 7 RTS CA 105 ---+ Request to send
5 8 CTS CB 106 Clear to send
6 6 DSR cc 107 Data set ready
7 5 SG AB 102 Signal ground
8 1 DCD CF 109 ,.__ Data carrier detect
9 Positive DC test voltage
10 Negative DC test voltage
11 QM ,.__ Equalizer mode
12 SDCD SCF 122 Secondary carrier detect
13 SCTS SCB 121 ,.__ Secondary clear to send
14 STD SBA 118 ---+ Secondary transmitted data
15 TC DB 114 Transmitter clock
16 SRO SBB 119 Secondary receiver clock
17 RC DD 115 ---+ Receiver clock
18 OCR ,.__ Divided clock receiver
19 SRTS SCA 120 Secondary request to send
20 4 DTR CD 108.2 ---+ Data terminal ready
21 SQ CG 110 ,.__ Signal quality
22 9 RI CE 125 Ring indicator
23 CH 111 Data rate selector
24 TC DA 113 Transmitted clock
25

Files
/usr/pub/rs232 - On-line version of above table

See Also
modem control, technical information, terminal

Seyer, M.D.: RS-232 Made Easy: Connecting Computers, Printers, Terminals, and Modems.
Englewood Cliffs, NJ, Prentice-Halllnc., 1984.

Notes
Serial ports on the back of the PC use either a 25-pin male (DB-25P) or a nine-pin male
(DB-9P) connector. Due to what can only be considered as extreme stupidity. the 25-pin
female (DB-25S) connector was chosen for the parallel printer port, rather than using the
usual 36-pin parallel connector. Do not confuse these ports when wiring custom cable
assemblies, as you can damage your equipment!

LEXICON

884 rvalue

rvalue - Definition
An rvalue is the value of an expression. The name comes from the assignment expression
el=e2;, in which the right operand is an rvalue.

Unlike an lvalue, an rvalue can be either a variable or a constant.

See Also
definitions, lvalue

LEXICON

sa -Command
Print a summary of process accounting
sa [-abcjlmnrstu) [-v NJ (/lie)

sa 885

s

One of the accounting mechanisms available on the COHERENT system is process
accounting (also called shell accounting), which records the commands executed by each
user. The command accton enables or disables shell accounting.

The command sa scans the accounting information injl!e and prints a summary. Ifjlle is
omitted, it reads the file /usr/adm/acct by default. For each command executed, sa prints
the number of calls made, the total CPU time (user and system), and the total real time.
The output is ordered by decreasing CPU time.

sa recognizes the following options:

a Place commands executed only once and command names with unprintable
characters in the category "•••other".

b Sort by average CPU time per call.

c Also print CPU time as a percentage of all CPU time used.

j Print average times per call rather than totals.

1 Separate user and system time.

m Accumulate information for each user rather for each command.

n Sort by number of calls.

r Reverse the order of the sort.

s After scanning. condense the accounting file and merge it into the summary files.

t Also print the CPU time as a percentage of real time.

u Print the user and command for each accounting record; this option overrides all
others.

v N For commands called no more than N times, where N is a digit. sa asks whether to
place the command in the category "**junk**".

sa uses the summary files /usr/adm/savacct and /usr/adm/usracct to lessen disk usage.

Files
I usr I adm/ acct - Default account data
I usr I adm/ savacct- Summary
I usr I adm/ usracct - Summary

See Also
ac, acct(), acct.h, accton, commands

Notes
The file /usr/adm/acct can become very large; therefore, you should truncate it
periodically. Special care should be taken if process accounting is enabled on a COHERENT
system with limited disk space.

LEXICON

886 sbrkO - scanfO

sbrkO - General Function (libc)
Increase a progrrun's data space
char *sbrk(lncrement) unsigned int Increment;

sbrk increases a progrrun's data space by Increment bytes. It increments the variable
__ end; this variable is set by the C runtime startup routine. and points to the end of the
program's data space. The memory allocation routine malloc calls sbrk should you attempt
to allocate more space than is available in the program's data space.

sbrk returns a pointer to the previous setting of __ end if the requested memory is available.
or NULL if it is not.

See Also
brk(), general functions, malloc(),

Notes
sbrk will not increase the size of the program data area if the physical memory requested
exceeds the physical memory allocated by COHERENT. or if the requested memory exceeds
the limit set in the user-defined variable maxmem. sbrk does not keep track of how space is
used; therefore. memory seized with sbrk cannot be freed. Caveat utllltor.

scanfO - STDIO (libc)
Accept and format input
#include <stdio.h>
int scanf(format, arg l, ... argN)
char ":format; [data type] •argl, ... •argN;

scanf reads the standard input, and uses the stringJormat to specify a format for each arg 1
through argN, each of which must be a pointer.

scanf reads one character at a time fromformat; white space characters are ignored. The
percent sign character'%' marks the beginning of a conversion specification. '%' may be
followed by characters that indicate the width of the input field and the type of conversion
to be done.

scanf reads the standard input until the return key is pressed. Inappropriate characters
are thrown away; e.g .. it will not try to write an alphabetic character into an int.

The following modifiers can be used within the conversion string:

I. The asterisk'*', which indicates that the next input field should be skipped rather than
assigned to the next arg.

2. A string of decimal digits, which specifies a maximum field width.

3. An 1, which specifies that the next input item is a long object rather than an int object.
Capitalizing the conversion character has the same effect.

The following conversion specifiers are recognized:

c Assign the next input character to the next arg. which should be of type char•.

d Assign the decimal integer from the next input field to the next arg, which should be of
type int•.

D Assign the decimal integer from the next input field to the next arg. which should be of
type long*.

LEXICON

scanfO 887

e Assign the floating point number from the next input field to the next arg. which
should be of type tloat •.

E Assign the floating point number from the next input field to the next arg. which
should be of type double •.

f Same as e.

F Same as E.

o Assign the octal integer from the next input field to the next arg. which should be of
type int•.

0 Assign the octal integer from the next input field to the next arg. which should be of
type long•.

r The next argument points to an array of new arguments that may be used recursively.
The first argument of the list is a char • that contains a new format string. When the
list is exhausted, the routine continues from where it left off in the original format
string.

s Assign the string from the next input field to the next arg. which should be of type
char •. The array to which the char • points should be long enough to accept the
string and a terminating null character.

x Assign the hexadecimal integer from the next input field to the next arg. which should
be of type int•.

X Assign the hexadecimal integer from the next input field to the next arg, which should
be of type long •.

It is important to remember that scanf reads up. but not through. the newline character:
the newline remains in the standard input device's buffer until you dispose of it somehow.
Programmers have been known to forget to empty the buffer before calling scanf a second
time. which leads to unexpected results.

Example
The following example uses scanf in a brief dialogue with the user.

#include <stdio.h>

main()
{

int left, right;

printf("No. of fingers on your left hand: ");
/* force message to appear on screen */
fflush(stdout);
scanf("%d", &left);

/* eat newline char */
while(getchar() I= '\n')

printf("No. of fingers on your right hand: ");
fflush(stdout);
scanf("%d", &right);

LEXICON

888 scat

}

/* again, eat newline */
while(getchar() I= '\n')

printf("You've %d left fingers, %d right, & %d total\n",
left, right, left+right);

See Also
fscanf(), sscanf(), STDIO

Diagnostics
scanf returns the number of arguments filled. It returns EOF if no arguments can be filled
or if an error occurs.

Notes
Because C does not perform type checking. it is essential that an argument match its
specification. For that reason. scanf is best used to process only data that you are certain
are in the correct data format. The use of upper-case format characters to specify long
arguments is not standard; use the 'I' modifier for portability.

scanf is difficult to use correctly, and its misuse can be associated with intermittent and
dangerous bugs. Rather than use scanf to obtain a string from the keyboard: it is
recommended that you use gets to obtain the string. and use strtok or sscanf to parse it.

scat - Command
Print text files one screenful at a time
scat [[option .. . 1 [file ... 11 •••

scat prints each.file on the standard output. one screenful (24 lines) at a time if the output
is a screen. scat reads and prints the standard inputif no file is named.

The text is processed to allow convenient viewing on a screen; the options described below
select the nature of the processing. Options begin with·-· and may be interspersed with file
names.

scat scans two argument lists. The first is in the environmental SCAT. It should consist of
arguments separated by white space (space, tab, or newline characters), with no quoting or
shell metacharacters. This string is a useful place to set terminal-dependent parameters
(such as page width and length) and to place invocation lists (see below). The second
argument list is supplied on the command line.

scat recognizes the following options:

-1 Do not stop at EOF if exactly one file was specified on the command line.

-bn Begin output at input line n.

-c Represent all control characters unambiguously. With this option, scat prints
control characters in the range 0-037 as a character in the range 0100-0137
prefixed by a carat ""; for example, SOH appears as ""A" and DEL as ""?" It prints
mark-parity characters (in the range of 0200-0377) with ·-·; for example, mark­
parity 'A' and SOH appear as "-A" and "-"A", respectively. It also prefixes the
characters'"',·-·. and'\' with a'\'. This option overrides the option -t.

-cs Like -c, but map space'' to underscore·_· and prefix underscore·_· with'\'.

LEXICON

scat 889

-ct Like -c, but map tabs to spaces, not "'I".

-in Shift the display window right n columns into the text field. This is useful for
viewing long lines.

-In Set the display window length to n lines. The default is 24 normally, 34 for the Tek
4012.

-n Number input lines; wrapped lines are not numbered.

-r Remote; the output is not paged.

-s Skip empty lines.

-Sn Seek n bytes into input before processing.

-t Truncate long lines. Normally, scat wraps each long line, with the interrupted
portion delimited by a '\ '.

-wn Set the display window width to n columns. The default is 80 normally, 72 for the
Tek 4012.

-x Expand tabs.

-. suJftx Invoke options by file-name suffix. If a file name ends with .suffix, then scat scans
the argument sublist starting immediately after the invocation flag. New options
will apply to the invoking file only. A sublist is terminated by the end of the
argument list. by a file name, by the"--" flag, or by another"-." (invocation lists do
not nest).

Terminate a sublist (see previous option).

Numbers may begin with 0 to indicate octal, and may end in b or k to be scaled by 512 or
1.024. respectively.

If the output is being paged, scat waits for a user response, which may be one of the
following:

newline
I
space
f
n
q

Example

Display next page
Display next half-page
Display next line
Print current file name and line number
scat next file
Quit

The following shows how to use the environment argument list, invocation lists, and
sublists:

SCAT="-124 -.c -n -.s -b5"
export SCAT
scat *.c *.s

After processing the SCAT argument list, scat processes the command line argument list
"•.c •.s" with the page length at 24 lines. If a file is a C source ("*.c") the invoke option in
the SCAT argument list numbers the output lines. If a file is an assembly source ("•.s")
scat skips the first four lines.

LEXICON

890 sched.h - sdivO

See Also
cat,co1D1Bands,pr

sched.h - Header File
Define constants used with scheduling
#Include <sys/ sched.h>

sched.h defines constants and structures that are used by routines that perform
scheduling.

See Also
header files

SCSI - Device Driver
SCSI device drivers

The COHERENT SCSI series of device drivers lets you use SCSI-interface devices attached to
host adapters from several vendors.

All COHERENT SCSI device drivers use major number 13, thus allowing all SCSI devices to
be accessed via standard device-naming conventions. Peripherals can be accessed as either
block- or character-special devices. The minor number specifies the device and partition
number for disk-type devices: this allows the use of up to eight SCSI identifiers (SCSI-ID's),
with up to four logical unit numbers (LUNs) per SCSI-ID and up to four partitions per LUN.
Tape and other special devices decode the minor number to perform special operations such
as "rewind on close" or "no rewind on close".

The first open call on a SCSI disk device allocates memory for the partition table and reads
it into memory.

See the release notes for further information regarding supported host adapters and
peripherals.

Files
/dev/sd* - block-special devices
I dev /rsd• - character-special devices

See Also
aha154x, device drivers, drvld, ss

Notes
The Mark Williams Company's bulletin board makes available loadable device drivers for
various SCSI host adapters, as well as device driver updates. See the release notes for
further information.

sdivO - Multiple-Precision Mathematics
Divide multiple-precision integers
#Include <mprec.h>
void sdlv(a, n, q, Ip)
mint •a, •q; Int n, *Ip:

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function sdlv divides the multiple-precision integer (or mint)
pointed to by a with the integer n, which is in the range 1 <= n <= 128. It writes the
quotient into the mint pointed to by q and the remainder into the integer pointed to by Ip.

LEXICON

SECONDS - security 891

See Also
multiple-precision mathematics

SECONDS - Environmental Variable
Number of seconds since current shell started

The Korn shell stores in environmental variable SECONDS the number of seconds since the
current shell was started.

See Also
environmental variables, ksh

security- Technical Information
Because COHERENT is a multi-user. multi-tasking operating system which can support
users from remote terminals, steps must be taken to ensure that the system is secure.
Sensitive information that is stored on the system must be protected from being read or
copied by unauthorized persons; files must be protected against vandalization by intruders.
Unless a reasonable degree can be guaranteed, no multi-user operating system can be
trusted to archive important information.

In one sense, it is easy to achieve perfect security in a computer system. As Grampp and
Morris have noted, "It is easy to run a secure computer system. You merely disconnect all
dial-up connections, put the machine and its terminals in a shielded room, and post a
guard at the door." For practical uses, however, security means balancing ease of access
against restrictiveness: users should have easy access to what is properly theirs, and should
be barred from system facilities that do not belong to them.

The COHERENT system has the following tools to assist with security.

Passwords

Permissions

Encryption

Every user account can be "locked" with a password. Each user can assign
her own password, and the system administrator can set passwords for the
superusers root and bin.

Passwords should be changed frequently. A password should have at least
six characters, should not be a common name or word, and preferably
should include a mixture of upper- and lower-case letters, to prevent
decryption by brute-force methods.

Passwords should be guarded jealously. In particular, the password for the
superuser root should be kept secret, as she can read every file and
execute every program throughout the system.

Execution of system-level programs, such as mount, is restricted to the
superuser root. This prevents intruders from seizing superuser
permissions through unauthorized manipulation of system services.
Ordinary users are also restricted from directly access system devices, for
the same reason.

The command crypt performs rotary encryption, similar to that used by the
German Enigma machine. Files of sensitive information should be
encrypted, to protect them against being read by unauthorized persons.
Note that encryption is the only true defense against unauthorized reading:
not even the superuser can read an encrypted file unless she has the
encryption key.

Many COHERENT systems have only one user and are not networked; for such
installations, the normal level of security may be an annoyance. Passwords can be turned
off by using the command passwd to set the password to <return>. The command chmod

LEXICON

892 sed

can be used to widen access to devices and system-level utilities; see the Lexicon entry for
chmod for more information on file access.

Security ultimately is a system-wide responsibility. To quote Grampp and Morris, "By far,
the greatest security hazard for a system ... is the set of people who use it. If the people
who use a machine are naive about security issues, the machine will be vulnerable
regardless of what is done by the local management. This applies particularly to the
system's administrators, but ordinary users should also take heed."

See Also
chmod, crypt, passwd, technical infonnation

Grampp, F.T .. Morris, R.H.: UNIX operating system security. AT&T Bell Lab Tech J
1984;8: 1649-1672.

sed - Command
Stream editor
sed [-n] [-e command] [-f script] ... file ...

sed is a non-interactive text editor. It reads input from each.file, or from the standard input
if no file is named. It edits the input according to commands given in the commands
argument and the script files. It then writes the edited text onto the standard output.

sed resembles the interactive editor ed, but its operation is fundamentally different. sed
normally edits one line at a time, so it may be used to edit very large files. After it
constructs a list of commands from its commands and script arguments, sed reads the
input one line at a time into a work area. Then sed executes each command that applies to
the line, as explained below. Finally, it copies the work area to the standard output (unless
the -n option is specified). erases the work area, and reads the next input line.

Line Identifiers
sed identifies input lines by integer line numbers. beginning with one for the first line of the
firstjtle and continuing through each successive.file. The following special forms identify
lines:

n A decimal number n addresses the nth line of the input.

A period'.' addresses the current input line.

$ A dollar sign'$' addresses the last line of input.

/pattern/
A pattern enclosed within slashes addresses the next input line that contains
pattern. Patterns, also called regular expressions, are described in detail below.

Commands
Each command must be on a separate line. Most commands may be optionally preceded by
a line identifier (abbreviated as [n] in the command summary below) or by two-line
identifiers separated by a comma (abbreviated as [n[,m]J). If no line identifier precedes a
command, sed applies the command to every input line. If one line identifier precedes a
command, sed applies the command to each input line selected by the identifier. If two-line
identifiers precede a command, sed begins to apply the command when an input line is
selected by the first, and continues applying it through an input line selected by the second.

sed recognizes the following commands:

[n]= Output the current input line number.

LEXICON

sed 893

[n[,m]]!command
Apply command to each line not identified by [n[,m]].

[n[,m]]{command ... }
Execute each enclosed command on the given lines.

:label Define label for use in branch or test command.

[n]a \ Append new text after given line. New text is terminated by any line not ending in
'\'.

b [label]
Branch to label, which must be defined in a':' command. If label is omitted, branch
to end of command script.

[n[,m]]c\
Change specified lines to new text and proceed with next input line. New text is
terminated by any line not ending in · \ ·.

[n[,m]]d Delete specified lines and proceed with next input line.

[n[,m]]D Delete first line in work area and proceed with next input line.

[n[,m]]g Copy secondary work area to work area, destroying previous contents.

[n[,m]]G Append secondary work area to work area.

[n[,m]]h Copy work area to secondary work area, destroying previous contents.

[n[,m]]H Append work area to secondary work area.

[n]i\ Insert new text before given line. New text is terminated by any line not ending in
'\'.

[n[,m]]l Print selected lines, interpreting non-graphic characters.

[n[,m]]n Print the work area and replace it with the next input line.

[n[,m]]N Append next input line preceded by a newline to work area.

[n[,m]]p Print work area.

[n[,m]]P Print first line of work area.

[n]q Quit without reading any more input.

[n]rjlle Copyjlle to output.

[n[, m]]s[k] I pattern] I pattern2 I [g][p][w file]
Search for pattern] and substitute pattern2 for kth occurrence (default, first). If
optional g is given, substitute all occurrences. If optional p is given, print the
resulting line. If optional w is given, append the resulting line tojlle. Patterns are
described in detail below.

[n[, m]]t[label]
Test if substitutions have been made. If so, branch to label, which must be defined
in a ':' command. If label is omitted, branch to end of command script.

[n[,m]]Wjlle
Append lines tojlle.

[n[,m]] x
Exchange the work area and the secondary work area.

LEXICON

894 seg.h

[n[,m]]y I chars I replacements/
Translate characters in chars to the corresponding characters in replacements.

Patterns
Substitution commands and search specifications may include patterns, also called regular
expressions. Pattern specifications are identical to those of ed. except that the special
characters '\n' match a newline character in the input.

A non-special character in a pattern matches itself. Special characters include the
following:

Match beginning of line, unless it appears immediately after '[' (see below).

$ Match end of line.

\n Match the newline character.

Match any character except newline.

• Match zero or more repetitions of preceding character .

[chars] Match any one of the enclosed chars. Ranges of letters or digits may be indicated
using'-'.

["chars]
Match any character except one of the enclosed chars. Ranges of letters or digits
may be indicated using'-'.

\c Disregard special meaning of character c.

\(pattern\)
Delimit substringpattern; for use with \d. described below.

In addition, the replacement part pattern2 of the substitute command may also use the
following:

& Insert characters matched by patternl.

\d Insert substring delimited by dth occurrence of delimiters'\(' and'\)', where dis a
digit.

Options
sed recognizes the following options:

-e Next argument gives a sed command. sed's command line can have more than one
-e option.

-f Next argument gives file name of command script.

-n Output lines only when explicit p or P commands are given.

See Also
commands, ed, elvis, ex, me, vi

seg.h - Header File
Definitions used with segmentation
#include <seg.h>

seg.h defines structures and constants used by routines that handle memory segmentation.

LEXICON

See Also
header files

sem - Device Driver
Semaphore device driver

sem - sem.h 895

/dev/sem is an interface to the semaphore device driver. It is assigned major device 23
(minor device 0) and can be accessed as a character-special device.

All semaphore operations are performed through the COHERENT system call ioctl. The
operations semctl, semget, and semop are performed with an integer parameter array. The
first element of the array is reserved for the return value (default -1). Subsequent elements
represent arguments. The call to ioctl passes SEMCTL. SEMGET, or SEMOP as the second
argument, and the parameter array as the third argument. The first argument is an open
file descriptor to I dev I sem.

Access
If entry /dev/sem does not exist, it must be created in /dev. as follows:

/etc/mknod /dev/sem c 23 O
chmod 666 /dev/sem

Files
<sys/ipc.h>
<sys/sem.h>
I dev I sem - Device
I drv I sem - Loadable device driver

See Also
device drivers, drvld, semctl(), semget(), semop()

Notes
Allocation of too many semaphore ids (NSEMID) or semaphores per identifier (NSEM) can
exhaust kernel data space, which will stop the system in its tracks. You can use the
command /conf/patch to change either of these variables. Please note that you must
patch the driver /drv/sem. not the kernel itself. Be sure to exercise extreme care when
attempting to patch a driver!

Private semaphore sets are not supported. Semaphore ids must be removed manually when
no longer required. To remove all semaphore identifiers. use the following code:

#include <sys/sem.h>
#define NSEMID 16

semget (O, O) ; /* must do first */

for (id=O; id < NSEMID; ++id)
semctl(id, O, IPC_RMID, 0);

To load the driver sem into memory, use the command drvld.

sem.h - Header File
Definitions used by semaphore facility
#include <sys/sem.h>

sem.h defines constants and structures used by the COHERENT semaphore facility.

LEXICON

896 semctlO

See Also
header mes

semctlO - General Function
Control semaphore operations
#include <sys/sem.h>
semctl(semld, semnum, cmd, arg)
int semld, cmd, semnum;
union semun {

int val;
struct semid_ds •buj;
unsigned short array();

}arg;

semctl controls a variety of semaphore operations. cmd sets the operation to be performed:
the following cmds are executed with respect to the semaphore specified by semld and
semnum:

GE1VAL

SE1VAL

GETPID

GETNCNT

GETZCNT

Return the value of semval (READ).

Set the value ofsemval to arg.val (ALTER).

Return the value of sempid (READ).

Return the value of semncnt (READ).

Return the value of semzcnt (READ).

The following cmds return and set, respectively, every semval in the set of semaphores.

GETALL Place semvals into array pointed to by arg.array (READ).

SET ALL Set semvals according to the array pointed to by arg.array (ALTER).

The following cmds are also available:

IPC_STAT Place the current value of each member of the data structure associated
with semid into the structure pointed to by arg.buf (READ).

IPC_SET

IPC_RMID

Set the value of the following members of the data structure associated
with semid to the corresponding value found in the structure pointed to by
arg.buf:

sem_perm.uid
sem_perm.gid
sem_perm.mode /* only low 9 bits */

This command can only be executed by a process that has an effective user
identifier equal to either that of superuser or to the value of sem_penn.uid
in the data structure associated with semld.

Remove the system identifier specified by semid from the system and
destroy the set of semaphores and data structure associated with it. This
cmd can only be executed by a process that has an effective user identifier
equal to either that of super user or to the value of sem_penn.uid in the
data structure associated with semld.

semctl will fail if one or more of the following are true:

LEXICON

semld is not a valid semaphore identifier [EINVAL).

semnum is less than zero or greater than sem_nsems [EINVALJ.

cmd is not a valid command [EINVAL).

Operation permission is denied to the calling process. [EACCES)

semgetO 897

cmd is SETVAL or SETALL and the value to which semval is to be set is greater than
the system imposed maximum [ERANGEJ.

cmd is equal to IPC_RMID or IPC_SET and the effective user identifier of the calling
process is not equal to that of superuser and it is not equal to the value of
sem_perm.uidin the data structure associated with semld [EPERM).

arg.buf points to an illegal address [EFAULT).

Return Value
Upon successful completion. the value returned depends on cmd as follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
Zero

Otherwise, semctl returns -1 and sets errno to an appropriate value.

Files
/usr/include/sys/ipc.h
I usr /include/ sys I sem.h
/dev/sem
/drv/sem

See Also
general !Unctions, sem, semget(), semop()

Notes
To improve portability, the COHERENT system implements the semaphore functions as a
device driver rather than as an actual system call.

semgetO - General Function
Get a set of semaphores
#include <sys/sem.h>
semget(key, nsems, semjlg)
key_t key; int nsems, semjlg;

semget returns the semaphore identifier associated with key. It creates a semaphore
identifier and associated data structure and set that contains nsems semaphores for key
should one of the following be true:

key equals IPC_PRIVATE.

key does not have a semaphore identifier associated with it, and (semjlg &
IPC_CREAT) is true.

When semget creates a data structure for a new semaphore identifier, it initializes the
structure as follows:

LEXICON

898 semopO

It sets the fields sem_penn.cuid, sem_penn.uid, sem_perm.cgf.d, and sem_penn.gf.d
equal to the effective user identifier, the calling process's identifier, and the effective
group identifier, respectively.

It sets the low-order nine bits of sem_perm.mode equal to the low-order nine bits of
semflg. These nine bits define access permissions: the top three bits specify the owner's
access permissions (read, write, execute), the middle three bits the owning group's
access permissions, and the low three bits access permissions for others.

sem_nsems is set equal to the value of nsems.

sem_otime is set to zero and sem_ctime to the current time.

semget fails if any of the following are true:

nsems is either less than or equal to zero, or greater than the system imposed limit. It
sets errno to EINVAL.

A semaphore identifier exists for key but operation permission as specified by the low­
order nine bits of semjlg would not be granted (EACCES).

A semaphore identifier exists for key but the number of semaphores in the set
associated with it is less than nsems and nsems is not equal to zero (EINVAL).

A semaphore identifier does not exist for key and (semjlg & IPC_CREAT) is false
(ENO ENT).

The number of semaphore identifiers allowed system-wide would be exceeded
(ENOSPC).

The number of semaphores allowed system-wide would be exceeded (ENOSPC).

A semaphore identifier exists for key but ((semjlg & IPC_CREAT) && (semjlg &
IPC_EXCL)) is true (EEXIST).

Return Value
Upon successful completion, semget returns a non-negative integer, namely a semaphore
identifier. Otherwise, it returns -1 and sets errno to an appropriate value.

Files
/usr/include/sys/ipc.h
I usr I include/ sys I sem.h
/dev/sem
/drv/sem

See Also
general functions, sem, semctl(), semop()

Notes
To improve portability. the COHERENT system implements the semaphore functions as a
device driver rather than as an actual system call.

semopO - General Function
Perform semaphore operations
#include <sys/sem.h>
semop(semld, sops, nsops)
int semld, nsops; struct sembuf(sops)[];

LEXICON

semopO 899

semop can atomically perform a number of operations on the set of semaphores associated
with the semaphore identifier semld. sops pointer to the array of semaphore-operation
structures. nsops is the number of such structures in the array. Each structure includes
the following members:

short
short
short

sem_num;
sem_op;
sem_flg;

/* semaphore number */
/* semaphore operation */
/* operation flags */

Each semaphore operation specified by sem_op is performed on the semaphore specified by
semld and sem num.

sem_op specifies one of three semaphore operations, as follows:

If sem_op is negative, one of the following occurs:

1. If semval is greater than or equal to the absolute value of sem_op, the absolute
value of sem_op is subtracted from semval.

2. If semval is less than the absolute value of sem_op and (sem..flg & IPC_NOWAIT)
is true, semop sets errno to EGAIN and returns -1.

3. If semval is less than the absolute value of sem_op and (sem.Jlg & IPC_NOWAIT)
is false, semop increments the semncnt associated with the specified semaphore
and suspend execution of the calling process until one of the following occurs:

a. semval becomes greater than or equal to the absolute value of sem_op.
When this occurs, the value of semncnt associated with the specified
semaphore is decremented, and the absolute value of sem_op is subtracted
from semval.

b. The semld for which the calling process is awaiting action is removed from
the system.

c. The calling process receives a signal. When this occurs, the value of
semncnt associated with the specified semaphore is decremented. and the
calling process resumes execution in the manner prescribed in signal.

If sem_op is positive, the value of sem_op is added to semval.

If sem_op is zero, one of the following occurs:

1. If semval is zero, semop returns immediately.

2. If semval does not equal zero and (sem.Jl.g & IPC_NOWAIT) is true, semop
immediately returns -1, with errno set to EGAIN.

3. If semval is not equal to zero and (sem..flg & IPC_NOWAIT) is false, semop
increments the semzcnt associated with the specified semaphore and suspends
execution of the calling process until one of the following occurs:

a. semval becomes zero, at which time the value of semzcnt associated with
the specified ·semaphore is decremented.

b. The semld for which the calling process is awaiting action is removed from
the system.

c. The calling process receives a signal. When this occurs, the value of
semzcnt associated with the specified semaphore is decremented, and the
calling process resumes execution in the manner prescribed in signal.

LEXICON

900 set

semop fails if one or more of the following are true for any of the semaphore operations
specified by sops:

semld is not a valid semaphore identifier. semop sets errno to EINVAL

sem_num is less than zero or greater than or equal to the number of semaphores in the
set associated with semld (EFBIG).

nsops is greater than the system imposed maximum (E2BIG).

Operation permission is denied to the calling process (EACCES).

The operation would result in suspension of the calling process but (sem.Jlg &
IPC_NOWAIT) is true (EAGAIN).

An operation would cause a semval to overflow the system imposed limit (ERANGE).

sops points to an illegal address (EFAULT).

Upon successful completion, the value of sempid for each semaphore specified in the array
pointed to by sops is set equal to the process identifier of the calling process.

Return Value
If semop returns due to the receipt of a signal, it returns -1 to the calling process and sets
errno to EINTR. If it returns due to the removal of a semld from the system, it returns -1
and sets errno to EDOM.

Upon successful completion, semop returns the value of semval at the time of the call for
the last operation in the array pointed to by sops. Otherwise, it returns -1 and sets errno to
an appropriate value.

Files
/usr/include/sys/ipc.h
/usr/include/sys/sem.h
/dev/sem
/drv/sem

See Also
general functions, sem, semctl(), semget()

Notes
The flag SEM_UNDO is not supported. This flag would allow semaphore operations to be
undone upon the termination of the process which performed the operations.

To improve portability, the COHERENT system implements semaphore operations as a
device driver rather than as an actual system call.

set - Command
Set shell option flags and positional parameters
set [-ceiknstuvx [name ...)) (Bourne shell)
set [[+-Jaefhkmnuvx) [[+-Jo name) (Korn shell)

set changes the options of the current shell and optionally sets the values of positional
parameters. This command is used implemented by both the Bourne and Korn shells:
however, its syntax and options vary from one shell to the other.

LEXICON

set 901

Bourne Shell
The shell variable '$-' contains the currently set shell flags. If the optional name list is
given, set assigns the positional parameters $1, $2 ... to the given shell variables.

set recognizes the following options:

-c string
Read shell commands from string.

-e Exit on any error (command not found or command returning nonzero status) if the
shell is not interactive.

-i The shell is interactive, even if the terminal is not attached to it; print prompt strings.
For a shell reading a script, ignore signals SIGTERM and SIGINT.

-k Place all keyword arguments into the environment. Normally, the shell places only
assignments to variables preceding the command into the environment.

-n Read commands but do not execute them.

-s Read commands from the standard input and write shell output to the standard
error.

-t Read and execute one command rather than the entire file.

-u If the actual value of a shell variable is blank, report an error rather than
substituting the null string.

-v Print each line as it is read.

-x Print each command and its arguments as it is executed.

Cancel the -x -v options.

The shell executes set directly.

Korn Shell
set recognizes the following options. Preceding an option with - turns on the option;
preceding it with'+' turns it off.

-a allexport: Automatically export all new variables.

-e errexit: Exit from the shell when non-zero status is received.

-f noglob: Do not expand file names. This globally turns off the special meaning of
characters ·•· and '?'.

-h trackall: Automatically add all commands to the shell's hash table.

-k keyword: Recognize variable assignments anywhere in a command.

-m monitor: Enable job control. See the Lexicon article on ksh for details on job control
and how to use it.

-n noexec: Compile an input command. but do not execute it.

-o option
Set option. set recognizes the following options:

allexport Same as -a option, above.

emacs Turn on MicroEMACS-style editing of command lines.

LEXICON

902 setbufO - setgidO

errexit Same as -e option, above.

ignoreeof Tell the shell not to exit when reading EOF: must use exit command to
exit from the shell.

keyword Same as -k option, above.

monitor Same as -m option, above.

noexec Same as -n option, above.

no glob Same as -f option, above.

trackall Same as -h option, above.

no unset Same as -u option, below.

verbose Same as -v option. below.

xtrace Same as -x option, below.

-u nounset: Treat dollar-sign expansion of an unset variable as an error.

-v verbose: When compiling a command, echo its compiled (i.e., expanded) version on the
standard output before executing it.

-x xtrace: Echo simple commands while executing.

The shells execute set directly.

See Also
commands, ksh, sh

setbufO - STDIO (libc)
Set alternative stream buffers
#include <stdio.h>
void setbuf[fp, buffer) FILE >lj'p; char •buffer;

The standard 1/0 library STDIO automatically buffers all data read and written in streams,
with the exception of streams to terminal devices. STDIO normally uses malloc to allocate
the buffer, which is a char array BUFSIZ characters long; BUFSIZ is defined in the header
file stdio.h.

setbuf's arguments are the file streamfp and the buffer to be associated with the stream.
The call should be issued after the stream has been opened, but before any input or output
request has been issued. If buffer is NULL, the stream will be unbuffered. If buffer is not
NULL. the area of memory it points to must contain at least BUFSIZ bytes.

setbuf returns nothing.

See Also
fopen(), malloc(), STDIO

setgidO - System Call
Set group id and user id
int setgid(ld) int Id;

setgid sets the group id. This calls can be used to set group id privileges. (For more
information on group id, see exec.)

The call is allowed if the real id of the calling process matches Id or is the superuser.

LEXICON

setgrentO - setjmpO 903

See Also
exec, getuid(), login, setuid(), system calls

Diagnostics
setgid returns zero on success, or -1 on failure.

setgrentO - General Function (libc)
Rewind group file
#include <grp.h>
struct group •setgrent();

setgrent rewinds the file I etc/ group. It returns NULL if an error occurs.

Files
/etc/group
<grp.h>

See Also
general functions, group

setjmpO - General Function (libc)
Perform non-local goto
#include <setjmp.h>
int setjmp(env) jmp_buf env:

The function call is the only mechanism that C provides to transfer control between
functions. This mechanism, however, is inadequate for some purposes, such as handling
unexpected errors or interrupts at lower levels of a program. To answer this need, setjmp
helps to provide a non-local goto facility. setjmp saves a stack context in env, and returns
value zero. The stack context can be restored with the function longjmp. The type
declaration for jmp_buf is in the header file setjmp.h. The context saved includes the
program counter, stack pointer, and stack frame.

Example
The following gives a simple example of setjmp and longjmp.

#include <setjmp.h>

jmp_buf env;

main()

/* place for setjmp to store its environment */

{

}

int re;

if(rc = setjmp(env)) { /*we come here on return*/
printf("First char was %c\n", re);
exit(O);

}
subfun(); /*this never returns*/

subfun()
{

char buf[BO];

LEXICON

904 setjmp.h - setpwentO

do {
printf("Enter some data\n");
gets(buf); /*get data*/

} while(!buf[O]); /*retry on null line*/

longjmp(env, buf[O]); /* buf[OJ must be non zero */
}

See Also
general functions, getenv(), longjmp()

Notes
Programmers should note that many user-level routines cannot be interrupted and
reentered safely. For that reason, improper use of setjmp and longjmp can create
mysterious and irreproducible bugs. The use of longjmp to exit interrupt exception or
signal handlers is particularly hazardous.

setjmp.h - Header File
Define setjmp() and longjmp()
#include <setjmp.h>

setjmp.h defines the structurejmp_buffor a setjmp environment.

See Also
header me, longjmp. setjmp

setpgrpO - System Call
Set group id and user id
int setpgrp()

setpgrp sets the group number for the requesting process to the numerical value of its
process ID number. It is used to detach a process from its parent group.

setpgrp returns the new process group number.

See Also
getpgrp(), system calls

setpwentO - General Function (libc)
Rewind password file
#include <pwd.h>
setpwent()

The COHERENT system has five routines that search the file /etc/passwd, which contains
information about every user of the system. setpwent rewinds the password file, which
allows searches to begin from the beginning of the file. Please note that this function does
not return a meaningful value.

Example
For an example of this function, see the entry for getpwent().

Files
I etc/passwd
pwd.h

LEXICON

settzO - sgtty 905

See Also
endpwent(), general functions, getpwent(), getpwnam(), getpwuid(), pwd.h

settzO - Time Function
Set local time zone
#include <time.h>
#include <sys/types.h>
voidsettz()
extern long timezone; char •tzname[2][16];

settz is one of the suite of COHERENT functions that control and display the system's time.
It searches for the environmental parameter TIMEZONE, which gives information on the
local time zone. For more information on TIMEZONE, see its Lexicon entry.

If TIMEZONE is set, settz initializes the external variables timezone and tzname.
timezone contains the number of seconds to be subtracted from GMT to obtain local
standard time. tzname[O] and tzname[l] are character arrays that hold. respectively. the
names of the local standard time zone and the local daylight saving time zone. If
TIMEZONE is not set, timezone defaults to 0, tzname[O] to GMT, and tzname[l] to the
empty string.

See Also
date, ftime(), time, TIMEZONE

setuidO - System Call
Set user id
int setuid(ld) int Id;

setuid sets the real user id and the user id of the calling process to Id. (For more
information on the user id, see exec).

The call is allowed if the real id of the calling process matches Id or is the superuser.

See Also
exec, getuid(), login, setgid(), system calls

Diagnostics
setuid returns zero on success, or -1 on failure.

sgtty - Device Driver
General terminal interface

Under the COHERENT system, all asynchronous ports use the same interface, no matter
what hardware is involved. The remainder of this section discusses the common features of
this interface.

When a terminal file is opened, it normally causes the process to wait until a connection is
established. In practice, users' programs seldom open these files; they are opened by the
program getty and become a user's standard input. output. and error files. The very first
terminal file opened by the process group leader of a terminal file not already associated
with a process group becomes the controlling terminal for that process group. The
controlling terminal plays a special role in handling quit and interrupt signals. as
discussed below. The controlling terminal is inherited by a child process during a call to
fork. A process can break this association by changing its process group using setpgrp.

A terminal associated with one of these files ordinarily operates in full-duplex mode.
Characters can be typed at any time, even while output is occurring. and are only lost when

LEXICON

906 sgtty

the system's input buffers become completely full, which is rare, or when the user has
accumulated the maximum allowed number of input characters that have not yet been read
by some program. Currently, this limit is 256 characters. When the input limit is reached,
the sytems throws away all the saved characters without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a newline
character (ASCII LFJ or an end-of-file character (ASCII EOT). Unless otherwise directed, a
program attempting to read will be suspended until an entire line has been typed. Also, no
matter how many characters are requested in the read call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any number of
characters may be requested in a read, even one, without losing information.

During input, the system normally processes erase and kill characters. By default, the
backspace character erases the last character typed, except that it will not erase beyond the
beginning of the line. By default, the <ctrl-U> kills (deletes) the entire input line, and
optionally outputs a newline character. Both these characters operate on a keystroke-by­
keystroke basis, independently of any backspacing or tabbing which may have been done.
Both the erase and kill characters may be entered literally by preceding them with the
escape character(\). In this case, the escape character is not read. You may change the
erase and kill characters via command stty.

Certain characters have special functions on input. These functions and their default
character values are summarized as follows:

INTR

QUIT

ERASE

KILL

EOF

NL

STOP

START

LEXICON

(<ctrl-C> or ASCII ETX) generates an Interrupt signal that is sent to all
processes associated with the controlling terminal. Normally. each such
process is forced to terminate. but arrangements may be made either to
ignore the signal or to receive a trap to an agreed-upon location; see the
Lexicon entry for signal.

(Control-\ or ASCII ES) generates a quit signal. Its treatment is identical to
that of the interrupt signal except that, unless a receiving process has
made other arrangements, it will not only be terminated but a core image
file (called core) will be created in the current working directory.

(<backspace> or ASCII BS) erases the preceding character. It will not erase
beyond the start of a line, as delimited by a newline or EOF character.

(<ctrl-U> or ASCII NAK) deletes the entire line, as delimited by a newline or
EOF character.

(<ctrl-D> or ASCII EOT) generates an end-of-file character from a terminal.
When received, all the characters waiting to be read are immediately passed
to the program without waiting for a newline, and the EOF is discarded.
Thus, if no characters are waiting, which is to say the EOF occurred at the
beginning of a line. zero characters will be passed back, which is the
standard end-of-file indication.

(ASCII LF) is the normal line delimiter. It cannot be changed or escaped.

(<ctrl-S> or ASCII DC3) can be used to suspend output. It is useful with
CRT terminals to prevent output from disappearing before it can be read.
While output is suspended, STOP characters are ignored and not read.

(<Ctrl-Q> or ASCII DC 1) resumes output that has been suspended by a
STOP character. While output is not suspended, START characters are
ignored and not read. The start/stop characters can be changed via
command stty, or via special ioctl() calls described below.

sgtty 907

The character values for INTR. QUIT, ERASE, EOF, and KILL may be changed to suit
individual tastes. The ERASE, KILL. and EOF character may be escaped by a preceding \
character, in which case the system ignores its special meaning. See the Lexicon article on
stty for information on how to change these settings dynamically.

When using a "modem control" serial line, loss of carrier from the data-set (modem) causes
a hangup signal to be sent to all processes that have this terminal as the controlling
terminal. Unless other arrangements have been made, this signal causes the process to
terminate. If the hangup signal is ignored, any subsequent read returns with an end-of-file
indication. Thus programs that read a terminal and test for end-of-file can terminate
appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as
previously written characters have finished typing. Input characters are echoed by putting
them into the output queue as they arrive. If a process produces characters more rapidly
than they can be printed, it will be suspended when its output queue exceeds some limit,
known as the "high water mark". When the queue has "drained" down to some threshold,
the program resumes.

The header file <sgtty.h> declares structures and manifest constants to control the sgtty
interface. Of interest to users are the constants that define baud rates for terminal ports;
these are as follows:

B50
B75

BllO
B134
B150
B200
B300
B600

B1200
B1800
B2000
B2400
B3600
B4800
B7200
B9600

B19200

Terminal ioctlO Functions

50 baud
75 baud

110 baud
134 baud
150 baud
200 baud
300 baud
600baud

1200 baud
1800 baud
2000 baud
2400 baud
3600 baud
4800 baud
7200 baud
9600 baud

19,200 baud

Header file <sgtty.h> defines the following data structures used by the various device
drivers to convey terminal specific information. These structures are used in conjunction
with special terminal or device driver symbolic constants as part of ioctl() requests.

The sgttyb structure contains information related to line discipline, such as serial line
speed, if appropriate, the "erase" and "kill" characters, and a series of flags which set the
mode of the line.

LEXICON

908 sgtty

/*
* Structure for TIOCSETP/TIOCGETP
*/

struct sgttyb {
char sg_ispeed; I* Input speed */
char sg_ospeed; /* Output speed */
char sg_erase; /* Character erase *I
char sg_kill; /* Line kill character */
int sg_flags; /* Flags */

} ;

The following symbolic constants are used to access bit positions of member sg_ftags in
data structure sgttyb:

CBREAK

CRMOD

CRT

ECHO

EVENP

LC ASE

ODDP

RAW

RAWIN

RAWOUT

TANDEM

XTABS

Each input character causes wakeup (i.e .. forces a return from a read()
system call).

Map the carriage return characters '\r' to the newline character '\n'.

Use CRT-style character erase.

Echo input characters.

Select even parity. If used in conjunction with ODDP, allow either
parity.

Lowercase mapping on input.

Select odd parity. If used in conjunction with EVENP. allow either
parity.

Raw mode. Same as RAWIN plus RAWOUT.

Input is treated as 8-bit characters and not interpreted.

Output is treated as 8-bit characters and not interpreted.

Use X-ON /X-OFF flow control protocol to remote device.

Expand tabs to spaces.

Data structure tchars specifies additional special terminal characters such as the
"interrupt" and "quit" characters. the "start" and "stop" characters used for flow control.
and the "end-of-file" character.

LEXICON

/*
* Structure for TIOCSETC/TIOCGETC
*I

struct tchars {
char t intrc; I* Interrupt */
char t_quitc; /* Quit */
char t _startc; /* Start output */
char t _stopc; /* Stop output */
char t_eofc; /* End of file */
char t_brkc; /* Input delimiter

} ;
*/

sgtty 909

The following symbolic constants are used to access various device functions via ioctl()
calls, as defined in header file <sgtty.h>. Note that not all functions are appropriate for all
classes of devices.

TIOCCBRK

TIOCCDTR

TIOCCHPCL

TIOCCRTS

TIOCEXCL

TIOCFLUSH

TIOCGETC

TIOCGETF

TIOCGETKBT

TIOCGETP

TIOCGETTF

TIOCHPCL

TIOCRMSR

TIOCNXCL

TIOCQUERY

TIOCSBRK

TIOCSDTR

Clear a BREAK condition on a serial line (i.e .. "mark" the line). This
request cancels a previously issued TIOCSBRK request.

Clear modem control signal Data Terminal Ready (DTR) on a serial line.

Do not force a hangup on "last close" on a modem line. The normal
mode of operation for serial lines is to drop modem signal Data Terminal
Ready (DTR) when the last close() operation is performed. thus
requesting the attached modem to drop the connection.

Clear the Request To Send (RTS) signal on a serial line. Modem control
signal RTS is often used for hardware flow control.

Set device access as exclusive use. This request requires the process to
have root privileges.

Flush the input queue, discarding any pending input characters, and
wait for the output queue to "drain".

Get current values of the special terminal characters, as defined by data
structure tchars.

Get current console keyboard function key bindings. This request is
specific to the nkb console keyboard device driver. See Lexicon article
nkb for further details.

Get current console keyboard key mapping table. This request is
specific to the nkb console keyboard device driver. See Lexicon article
nkb for further details.

Get current terminal line settings. as defined by data structure sgttyb.

Get current value of the terminal flags. as defined by field t_flags in the
TIY structure.

Set hangup on "last close". See TIOCCHPCL for further details.

Get the current value of the Modem Status Register (MSR) for the
specified serial line. This request is device driver specific and is
currently supported only in the al device driver. Symbolic constants
MSRCTS, MSRDSR, MSRRI, and MSRRLSD correspond to the Clear To
Send, Data Set Ready, Ring Indicator and Receive Line Status Detect
(i.e. Carrier Detect) signals, respectively. in the MSR.

Set this device or port as non-exclusive use. See TIOCEXCL for further
details.

Query the number of characters currently waiting in the input queue.

Assert BREAK (i.e., "space the line") on the given serial port. This is
often used during login to signal a remote system to "hunt" to the next
baud rate in a sequence. See TIOCCBRK for further details.

Assert modem control signal Data Terminal Ready (DTRJ on a serial line.

LEXICON

910 sgtty.h

TIO CS ETC Wait for output to "drain", then set the terminal control characters for
this device, as specified by data structure tchars.

TIOCSETF Set console keyboard function key mapping. This request is specific to
the nkb console keyboard device driver. See Lexicon article nkb for
further details.

TIOCSETKBT Set console keyboard key mapping table. This request is specific to the
nkb console keyboard device driver. See Lexicon article nkb for further
details.

TIOCSETN Set terminal line settings, as defined by data structure sgttyb. Do not
flush the input queue prior to using the new settings.

TIOCSETP

TIOCSRTS

Same as request TIOCSETN, but also flush the input queue.

Assert the Request To Send (RTS) signal on a serial line. Modem control
signal RTS is often used for hardware flow control.

Examples
The following code fragment gets the current terminal settings and turns off echo.

#include <sgtty,h>
static struct sgttyb new, orig;

/*
* Get the existing terminal parameters for the terminal
*device associated with file descriptor 0 (stdin),
* turn off echo, turn on CBREAK (break on every input character)
* and set the new parameters.
*/

(void) ioctl(O, TIOCGETP, &orig);
new = orig;
new.sg_flags &= -ECHO;
new.sg_flags != CBREAK;
(void) ioctl(O, TIOCSETN, &new);

/* Turn off echo */
/* Turn on CBREAK mode */

The following line uses the previously saved terminal mode to return the terminal mode to
its prior state:

(void) ioctl(O, TIOCSETN, &orig);

See Also
device drivers, gtty(), ioctl(), sgtty.h, stty(), stty, terminal

sgtty.h - Header File
Definitions used to control terminal I/0
#include <sgtty.h>

sgtty.h defines structures. constants, and macros used by routines that control terminal
1/0.

LEXICON

sh 911

See Also
header files, sgtty

Notes
Note that for historical reasons, the set of baud rates defined in header file termio.h differs
from the ones defined in sgtty.h. If you #include <termio.h> before doing terminal ioctl's.
you will get the wrong baud rates.

sh-Command
The Bourne shell
sh [-ceiknstuvx:] token ...

The COHERENT system offers two command interpreters: ksh, the Korn shell; and sh, the
Bourne shell. sh is the default COHERENT command interpreter. The tutorial included in
this manual describes the Bourne shell in detail.

As you will see from the following description, a shell is both a command interpreter and a
programming language in its own right. Taking some time to learn the rudiments of your
shell's programming language will pay great benefits in taking command of your
COHERENT system.

Commands
A command consists of one or more tokens. A token is a string of text characters (i.e .. one or
more alphabetic characters. punctuation marks, and numerals) delineated by spaces, tabs,
or newlines.

A simple command consists of the command's name, followed by zero or more tokens that
represent represent arguments to the command, names of files, or shell operators. A
complex command will use shell constructs to execute one or more commands conditionally.
In effect. a complex command is a mini-program that is written inthe shell"s programming
language and interpreted by sh.

Shell Operators
The shell includes a number of operators that form pipes, redirect input and output to
commands, and let you define conditions under which commands are executed.

command I command
The pipe operator: let the output of one command serve as the input to a second.
You can combine commands with 'I' to form pipelines. A pipeline passes the
standard output of the first (leftmost) command to the standard input of the second
command. For example, in the pipeline

sort customers I uniq I more

sh invokes sortB to sort the contents of file customers. It pipes the output of sort
to the command uniq, which outputs one unique copy of the text that is input into
it. sh then pipes the output of uniq to the command more, which displays it on
your terminal one screenful at a time. Note that under COHERENT, unlike MS­
DOS, pipes are executed concurrently: that is, sort does not have to finish its work
before uniq and more can begin to receive input and get to to work. passes the
standard output of

command ; command
Execute commands on a command line sequentially. The command to the left of
the ';'executes to completion; then the command to the right of it executes. For
example, in the command line

a I b : c I d

LEXICON

912 sh

first executes the pipeline a I b then. when a and b are finished, executes the
pipeline c I d.

command &: command
Execute a command in the background. This operator must follow the command,
not precede it. It prints the process identifier of the command on the standard
output, so you can use the kill command to kill that process should something go
wrong. This operator lets you execute more than one command simultaneously.
For example, the command

fdformat -v /dev/fhaO &

formats a high-density. 5.25-inch floppy disk in drive 0 (that is. drive A); but while
the disk is being formatted. sh returns the command line prompt so you can
immediately enter another command and begin to work. If you did not use the '&'
in this command, you would have to wait until formatting was finished before you
could enter another command.

command &:&: command
Execute a command upon success. sh executes the command that follows the
token '&&'only if the commands that precedes it returns a zero exit status, which
signifies success. For example. the command

cd /etc
fdformat -v /dev/fhaO && badscan -o proto /dev/fhaO 2400

formats a floppy disk. as described above. If the format was successful. it then
invokes the command badscan to scan the disk for bad blocks; if it was not
successful. however, it does nothing.

command 11 command
Execute a command upon failure. This is identical to operator '&&', except that the
second command is executed if the first returns a non-zero status. which signifies
failure. For example, the command

/etc/fdformat -v /dev/fhaO I I echo "Format failed!"

formats a floppy disk. If formatting failed, it echoes the message Format failed! on
your terminal; however, if formatting succeeds, it does nothing.

Note that the tokens newline. ';' and '&' bind less tightly than '&&' and 'I I'. sh
parses command lines from left to right if separators bind equally.

>file Redirect output. The standard Input. standard output. and standard error streams
are normally connected to the terminal. A pipeline attaches the output of one
command to the input of another command. In addition, sh includes a set of
operators that redirect input and output into files rather than other commands.

The operator'>' redirects output into a file. For example, the command

sort customers >customers.sort

sorts file customers and writes the sorted output into file customers.sort. It
creates customers.sort if it does not exist, and destroys its previous contents if it
does exist.

>>file Redirect output into a file, and append. If the file does not exist, this operator
creates it; however. if the file already exists. this operator appends the output to
that file's contents rather than destroying those contents. For example, the
command

LEXICON

sh 913

sort customers.now I uniq >>customers.all

sorts file customers.now, pipes its output to command uniq. which throws away
duplicate lines of input, and appends the results to file customers.all.

<iflle Redirect input. Here, sh reads the contents of a file and processes them as if you
had typed them from your keyboard. For example, the command

ed textfile <edit.script

invokes the line-editor ed to edit textff.le; however, instead of reading editing
commands from your keyboard, the shell passes ed the contents of edit.script.
This command would let you prepare an editing script that you could execute
repeatedly upon files rather than having to type the same commands over and over.

<<token
Prepare a "here document". This operator tells sh to accept standard input from
the shell input until it reads the next line that contains only token. For example.
the command

cat >FOO<<\!
Here is some text.

redirects all text between'<<\!' and'!' to the cat command. The'>' in turn redirects
the output of cat into file FOO. sh performs parameter substitution on the here
document unless the leading token is quoted; parameter substitution and quoting
are described below.

command 2> file
Redirect the standard error stream into a file. For example, the command

nroff -ms textfile >textfile.p 2>textfile.err

invokes the command nroff to format the contents of textfile. It redirects the
output of nroff (i.e .. the standard output) into textfile.p; it also redirects any error
messages that nroff may generate into file textff.le.err.

Note in passing that a command may use up to 20 streams. By default, stream 0 is
the standard input; stream 1 is the standard output; and stream 2 is the standard
error. sh lets you redirect any of these streams individually into files, or combine
streams into each other.

<llm sh can redirect the standard input and output to duplicate other file descriptors.
(See the Lexicon article ff.le descriptor for details on what these are.) This operator
duplicates the standard input from file descriptor n.

>llm Duplicate the standard output from file descriptor n. For example,

2>&1

redirects file descriptor 2 (the standard error) to file descriptor 1 (the standard
output).

<&- Close the standard input.

>&- Close the standard output.

Note that each command executed as a foreground process inherits the file descriptors and
signal traps (described below) of the invoking shell, modified by any specified redirection.
Background processes take input from the null device /dev/null (unless redirected), and

LEXICON

914 sh

ignore interrupt and quit signals.

File Name Patterns
The shell interprets an input token that contain any of the special characters '?', '*', or '(' as
a file name pattern.

? Match any single character except newline. For example. the command

ls name?

*

will print the name of any file that consists of the string name plus any one character.
If name is followed by no characters. or is followed by two or more characters. it will
not be printed.

Match a string of non-newline characters of any length (including zero).

ls name*

will print the name of any file that begins with the string name. regardless of whether
it is followed by any other characters. Likewise, the command

ls name?*

will print the name of any file that consists of the string name followed by at least one
character. Unlike name*. the token name?* insists that be followed by at least one
character before it will be printed.

(!xyz)

[C-c)

Exclude characters xyz from the string search. For example, the command

ls [!abc]*

prints all files in the current directory except those that begin with a, b. or c.

Enclose alternatives to match a single character. A hyphen ·-· indicates a range of
characters. For example, the command

ls name[ABC]

will print the names of files nameA. nameB, and nameC (assuming. of course. that
those files exist in the current directory). The command

ls name[A-K]

prints the names of files nameA through nameK (again, assuming that they exist in
the current directory).

When sh reads a token that contains one of the above characters, it replaces the token in
the command line with an alphabetized list of file names that match the pattern. If it finds
no matches, it passes the token unchanged to the command. For example. when you enter
the command

ls name[ABC]

sh replaces the token name(ABC] with nameA, nameB, and nameC (again. if they exist in
the current directory). so the command now reads:

ls nameA nameB namec

It then passes this second, transformed version of the command line to the command ls.

Note that the slash • /' and leading period ·: must be matched explicitly in a pattern. The

LEXICON

sh 915

slash. of course, separates the elements of a path name; while a period at the begin of a file
name usually (but not always) indicates that that file has special significance.

Quoting Text
From time to time. you will want to "turn off' the special meaning of characters. For
example, you may wish to pass a token that contains a literal asterisk to a command; to do
so, you need a way to tell sh not to expand the token into a list of file names. Therefore, sh
includes the quotation operators '\'. '"'. and "'; these "turn off' (or quote) the special
meaning of operators.

The backslash'\' quotes the following character. For example, the command

ls name*

lists a file named name•, and no other.

The shell ignores a backslash immediately followed by a newline, called a concealed newline.
This lets you give more arguments to a command than will fit on one line. For example, the
command

cc -o output filel.c file2.c file3.c \
file4.c file5.c file19.c

invokes the C compiler cc to compile a set of C source files, the names of which extend over
more than one line of input. You will find this to be extremely helpful, especially when you
write scripts and makeffies, to help you write neat, easily read commands.

A pair of apostrophes'' prevents interpretation of any enclosed special characters. For
example. the command

find • -name '*.c' -print

finds and prints the name of any C-source file in - the current directory and any
subdirectory. The command find interprets the ••• internally; therefore, you want to
suppress the shell's expansion of that operator, which is accomplished by enclosing that
token between apostrophes.

A pair of quotation marks"" has the same effect. Unlike apostrophes, however, sh will
perform parameter substitution and command-output substitution (described below) within
quotation marks.

Scripts
Shell commands can be stored in a file, or script. The command

sh script [parameter ...]

executes the commands in script with a new subshell sh. Each parameter is a value for a
positional parameter, as described below. If you have used the command chmod to make
script executable, you may omit the sh command.

Parameters of the form '$n' represent command-line arguments within a script. n can range
from zero through nine; $0 always gives the name of the script. These parameters are also
called pos ltlonal parameters.

If no corresponding parameter is given on the command line, the shell substitutes the null
string for that parameter. For example. if the script format contains the following line:

nroff -ms $1 >$1.out

LEXICON

916 sh

then invoking format with the command line:

format mytext

invokes the command nrotr to format the contents of mytext, and writes the output into
file mytext.out. If, however, you invoke this command with the command line

format mytext yourtext

the script will format mytext but ignore yourtext altogether.

Reference $* represents all command-line arguments. If, for example, we change the
contents of script format to read

nroff -ms $* >$1.out

then the command

format mytext yourtext

will invoke nrotr to format the contents of mytext and yourtext, and write the output into
file mytext.out.

Commands in a script can also be executed with the . (dot) command. It resembles the sh
command, but the current shell executes the script commands without creating a new
subshell or a new environment; therefore, you cannot use command-line arguments.

Variables
Shell variables are names that can be assigned string values on a command line, in the
form

The name must begin with a letter, and can contain letters, digits, and underscores '_'. In
shell input, '$name' or '${name}' represents the value of the variable. For example:

TEXT=mytext

nroff -ms $TEXT >$TEXT.out

Here, sh expands $TEXT before it executes the nrotr command. This technique is very
useful in large. complex scripts: by using variables, you can change the behavior of the
script by editing one line, rather than having to edit numerous variables throughout the
script.

Note that if an assignment precedes a command on the same command line, the effect of
the assignment is local to that command; otherwise, the effect is permanent. For example,

kp=one testproc

assigns variable kp the value one only for the execution of the script testproc.

sh sets the following variables by default:

@

•

The number of actual positional parameters given to the current command.

The list of positional parameters "$1 $2 ... ".

The list of positional parameters "$1" "$2" ... (the same as '$@'unless quoted) .

LEXICON

Options set in the invocation of the shell or by the set command.

? The exit status returned by the last command.

The process number of the last command invoked with '&'.

$ The process number of the current shell.

sh also references the following variables:

sh 917

CWD Current working directory: this is the name of the directory in which you are
now working.

HOME

IFS

Initial working directory; usually specified in the password file /etc/passwd.

Delimiters for tokens; usually space, tab and newline.

LAS TERROR

MAIL

PATH

PSI

PS2

Name of last command returning nonzero exit status.

Checked at the end of each command. If file specified in this variable is new
since last command, the shell prints "You have mail." on the user's terminal.

Colon-separated list of directories searched for commands.

First prompt string, usually'$'.

Second prompt string. usually '>'. sh prints it when it expects more input,
such as when an open quotation-mark has been typed but a close quotation-
mark has not been typed, or within a shell construct.

The special forms '${nameCtoken}' perform conditional parameter substition: C is one of the
characters'-', '='. '+', or'?'. sh replaces the form '${name-token}' by the value of name if it is
set, and by token otherwise. It handles the '=' form in the same way, but also sets the value
of name to token if it was not set previously. sh replaces the '+'form by token if the given
name is set. It replaces the '?' form by the value of name if set, and otherwise prints token
and exits from the shell.

Command Output Substitution
sh can use the output of a command as shell input (as command arguments, for example)
by enclosing the command in grave characters''. For example, to list the contents of the
directories named in file dirs, use the command

ls -1 'cat dirs'

Constructs
sh lets you control execution of commands by the constructs break, case, continue, for, if,
until. and while. It recognizes each reserved word only if it occurs unquoted as the first
token of a command. This implies that a separator must precede each reserved word in the
following constructs; for example. newline or';' must precede do in the for construct.

break[nJ
Exit from for, until, or while. If n is given, exit from n levels.

case token in [pattern [I pattern I ...) sequence;;] ... esac
Check token against each pattern, and execute sequence· associated with the first
matching pattern.

continue [n]
Branch to the end of the nth enclosing for. until, or while construct.

LEXICON

918 sh

for name [in token ...] do sequence done
Execute sequence once for each token. On each iteration, name takes the value of
the next token. If the in clause is omitted, $@ is assumed. For example, to list all
files ending with .c:

for i in *.c
do

cat $i
done

if seql then seq2 [ellf seq3 then seq4] ... [else seq5] fi
Execute seql. If the exit status is zero, execute seq2; if not, execute the optional
seq3 if given. If the exit status of seq3 is zero, then execute seq4, and so on. If the
exit status of all tested sequences is nonzero, execute seq5.

until sequence 1 [do sequence2 J done
Execute sequence2 until the execution of sequencel results in an exit status of
zero.

while sequencel [do sequence2 J done
Execute sequence2 as long as the execution of sequence I results in an exit status of
zero.

(sequence
)
Execute sequence within a subshell. This allows sequence to change the current
directory, for example, and not affect the enclosing environment. Note that the
closing')' must appear on the line that follows sequence.

{sequence
}
Braces simply enclose a sequence. Note that the closing '}' must appear on the line
that follows sequence.

Special Commands
sh usually executes commands with the fork system call. which creates another process.
However, sh executes the commands in this section either directly or with an exec system
call. See the Lexicon articles on fork() and exec for details on these calls .

• script Read and execute commands from script. Positional parameters are not allowed. sh
searches the directories named in the environmental variable PATH to find the
given script.

: [token ...]
A colon ':' indicates a "partial comment". sh normally ignores all commands on a
line that begins with a colon, except for redirection and such symbols as $, {. ? , etc.

A complete comment: if # is the first character on a line, sh ignores all text that
follows on that line.

cd dlr Change the working directory to dlr. If no argument is given, change to the home
directory.

dirs sh lets you maintain a "directory stack", or stack of names of directories. You can
push, pop, and otherwise manipulate the contents of this stack, which you can use
for any purpose for which you need to access a number of directory names quickly.
The command dirs prints the contents of the directory stack. The commands
pushd and popd also manipulate the directory stack.

LEXICON

sh 919

eval {token ...]
Evaluate each token and treat the result as shell input.

exec {command]
Execute command directly rather than performing fork. This terminates the current
shell.

exit {status}
Set the exit status to status, if given; otherwise, the previous status is unchanged.
If the shell is not interactive, terminate it.

export {name ... }
sh executes each command in an environment, which is essentially a set of shell
variable names and corresponding string values. It inherits an environment when
invoked, and normally it passes the same environment to each command it invokes.
export specifies that the shell should pass the modified value of each given name to
the environment of subsequent commands. When no name is given, sh prints the
name and value of each variable marked for export.

popd{N ... }
Pop the directory stack. When used without an argument, it pops the stack once.
When used with one or more numeric arguments, popd pops the specified items
from the stack; item 0 is the top of the stack. (For information on the directory
stack, see the entry for the command dirs, above.)

pushd {dlrO ... dlrNJ
Push dlrO through dlrN onto the directory stack, and change the current directory
to the last directory pushed onto the stack. When called without an argument,
pushd exchanges the two top stack elements. (For information on the directory
stack, see the entry for the command dirs, above.)

read name ...
Read a line from the standard input and assign each token of the input to the
corresponding shell variable name. If the input contains fewer tokens than the
name list, assign the null string to extra variables. If the input contains more
tokens, assign the last name the remainder of the input.

readonly {name .. . }
Mark each shell variable name as a read only variable. Subsequent assignments to
read only variables will not be permitted. With no arguments, print the name and
value of each read only variable.

set (-ceiknstuvx: {name ... J J
Set listed flag. If name list is provided, set shell variables name to values of
positional parameters beginning with $1.

shift Rename positional parameter 1 to current value of $2, and so on.

times Print the total user and system times for all executed processes.

trap {command] {n ... }
Execute command if sh receives signal n. If command is omitted, reset traps to
original values. To ignore a signal, pass null string as command. With n zero,
execute command when the shell exits. With no arguments, print the current trap
settings.

umask{nnn}
Set user file creation mask to nnn. If no argument is given, print the current file
creation mask.

LEXICON

920 sh

wait[pid]
Hold execution of further commands until process pld terminates. If pld is omitted.
wait for all child processes. If no children are active, this command finishes
immediately.

Command-line Options

-c string
Read shell commands from string.

-e Exit on any error (command not found or command returning nonzero status) if the
shell is not interactive.

-i The shell is interactive, even if the terminal is not attached to it; print prompt strings.
For a shell reading a script, ignore the signals SIGTERM and SIGINT.

-k Place all keyword arguments into the environment. Normally, sh places only
assignments to variables preceding the command into the environment.

-n Read commands but do not execute them.

-s Read commands from the standard input and write shell output to the standard
error.

-t Read and execute one command rather than the entire file.

-u If the actual value of a shell variable is blank, report an error rather than
substituting the null string.

-v Print each line as it is read.

-x Print each command and its arguments as it is executed.

Cancel the -x and -v options.

If the first character of argument 0 is'-', sh reads and executes the scripts /etc/profile and
$HOME/ .profile before reading the standard input. /etc/profile is a convenient place for
initializing system-wide variables, such as TIMEZONE.

Files
I etc/profile - System-wide initial commands
$HOME/ .profile- User-specific initial commands
I dev I null - For background input
/tmp/sh• - Temporary files

See Also
commands, dup(), environ, exec, fork(), ksh, login, newgrp, set, signal(), test

For a list of all commands associated with sh, see the section Shell Commands in the
commands Lexicon article.

Introduction to sh, the Bourne Shell, tutorial

Diagnostics
sh notes on the standard error all syntax errors in commands, and all commands which it
cannot find. Syntax errors cause a noninteractive shell to exit. It gives error messages if
1/0 redirection is incorrect. sh returns the exit status of the last command executed or the
status specified by an exit command.

LEXICON

SHELL - Environmental Variable
Name the default shell
SHELL=shell

SHELL - shift 921

The environmental variable SHELL names the shell that COHERENT invokes when you log
in. The default is SHELL=/bin/sh. which invokes the Bourne shell.

See Also
environmental variables, sh

shellsortO - General Function (libc)
Sort arrays in memory
void shellsort(data, n, size, comp)
char •data; int n, size; int (*comp)();

shellsort is a generalized algorithm for sorting arrays of data in memory. using D. L. Shell's
sorting method. shellsort works with a sequential array of memory called data, which is
divided into n parts of size bytes each. In practice, data is usually an array of pointers or
structures, and size is the sizeofthe pointer or structure.

Each routine compares pairs of items and exchanges them as required. The user-supplied
routine to which comp points performs the comparison. It is called repeatedly, as follows:

(*comp) (pl, p2)
char *pl, *p2;

Here, pl and p2 each point to a block of size bytes in the data array. In practice, they are
usually pointers to pointers or pointers to structures. The comparison routine must return
a negative, zero, or positive result, depending on whether pl is less than, equal to. or
greater than p2. respectively.

Example
For an example of how to use this routine, see the entry for string.

See Also
ctype, general functions, qsort()
The Art of Computer Programming, vol. 3, pp. 84Jf. l 14Jf

Notes
shellsort differs from the sort function qsort in that it uses an iterative algorithm that does
not require much stack.

shift - Command
Shift positional parameters
shift

Commands to the shell can be stored in a file, or script. Positional parameters pass
command-line variables to a script.

shift changes the values of positional parameters. The old parameter values $2. $3, ...
become the new parameter values $1, $2 shift also reduces the value of$#, which gives
the number of positional parameters, by one.

The shell executes shift directly.

LEXICON

922 shm

See Also
commands, ksh, sh

shm - Device Driver
Shared memory device driver

The device /dev/shm is an interface to the shared memory device driver. It is assigned
major device 24 (minor device 0) and can be accessed as a character-special device.

Shared memory access operations are performed by seeks, reads, and writes through the
interface /dev/shm. The desired seek location is (shmid << 16L) +offset.

Shared memory control operations are performed through the system call ioctl. The
operations shmctl and shmget are performed with an integer parameter array. The first
element of the array is reserved for the return value (default, -1). Subsequent elements
represent arguments. ioctl passes SHMCTL, SHMGET, SHMAT, or SHMDT as the second
argument, and the parameter array as the third argument. The first argument is an open
file descriptor to /dev/shm. Seeks, reads, and writes on shared memory can be performed
through the file descriptor shmfd.

Access
To access shared memory, do the following:

1. Be sure that /dev/shm is present as a special-character file with major number 24,
minor number 0, and broad enough permissions. The command

/etc/mknod /dev/shm c 24 O

will create I dev I shm if it does not yet exist.

2. Become the superuser root. Execute the command

/etc/drvld /drv/shm

to load the driver.

3. Use the COHERENT system call shmget() to create a shared-memory segment and
obtain shmid value for it.

4. Use the COHERENT system call lseek() to position for read or write of a shared­
memory segment. The first argument to lseek is shmfd, which is an external declared
in <sys/shm.h>. The second argument to lseek is a long whose high word is the
segment identifier shmid and whose low word is the offset within the shared-memory
segment. The third argument to lseek is zero.

5. Use the COHERENT system calls read() and write() to access the segment. Again, use
shmfd as the file descriptor.

6. When you are finished using shared memory. use the call

shmctl(shmid, IPC_RMID, 0)

to remove segments when you are finished.

7. Finally, use ps -d to obtain the process identifier of the shared-memory driver. To
unload the driver, become the superuser root, and then type the command

kill -9 xxxx

where xx.xx is the process identifier for the shm driver.

LEXICON

shm.h - shmctlO 923

Note that this manner of proceding is not entirely in the spirit of System V IPC shared
memory: COHERENT does not support functions shmat() and shmdt(). Unfortunately. true
attachment of shared segments is not possible in SMALL-model systems.

Notes
If you allocate too many shared memory identifiers, you will exhaust kernel data space, and
thus halt the system in its tracks.

Creating many large shared memory segments can exhaust main memory, as shared
memory segments do not currently support swapping.

The functions shmat and shmdt are not currently supported.

Private shared memory is not supported. Shared memory segments must be removed
manually when no longer required. To remove all shared memory segments use the
following C code:

#include <sys/shm.h>

#define NSHMID 16

shmget (O, o, O) ; /* must do first */

for (id=O; id < NSHMID; ++id)
shmctl(id, IPC_RMID, 0);

To load shm into memory, use the command drvld.

Files
I usr I include I sys I ipc.h
/usr/include/sys/shm.h
/dev/shm
/drv/shm

See Also
device drivers, drvld, shmctl(), shmget()

shm.h - Header File
Definitions used with shared memory
#include <sys I shm.h>

shm.h defines constants and macros used by routines that implement the COHERENT
shared-memory facility.

See Also
header rues

shmctlO - General Function
Control shared-memory operations
#include <sys I shm.h>
shmctl(shmld, cmd, bu_n
int shmld, cmd; struct shmid_ds "'buf;

shmctl provides controls the COHERENT system's shared-memory facility. cmd specifies
the operation to perform, as follows:

LEXICON

924 shmgetO

IPC_STAT

IPC_SET

IPC_RMID

Place the current value of each member of the data structure associated
with shmid into the structure pointed to by btif.

Set the value of the following members of the data structure associated
with shmid to the corresponding value found in the structure pointed to by
buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode /* only low 9 bits */

This cmd can be executed only by a process whose effective user ID equals
either that of the superuser or shm_perm.uid in the data structure
associated with shmid.

Remove the system identifier specified by shmid from the system and
destroy the shared memory segment and data structure associated with it.
This cmd can be executed only by a process whose effective user ID equals
either that of the superuser or shm_perm.uid in the data structure
associated with shmid.

shmctl fails if any of the following is true:

shmid is not a valid shared memory identifier shmget sets ermo to EINVAL.

cmd is not a valid command (EINVAL).

cmd equals IPC_STAT and operation permission is denied to the calling process
(EACCES).

cmd equals IPC_RMID or IPC_SET and the effective user identifier of the calling
process does equals neither that of the superuser nor shm_perm.uid in the data
structure associated with shmid (EPERM).

btif points to an illegal address (EFAULTJ.

Return Value
Upon successful completion, shmctl returns zero: otherwise, it returns -1 and sets errno to
an appropriate value.

Files
I usr /include/ sys/ipc.h
/usr/include/sys/shm.h
/dev/shm
/drv/shm

See Also
general functions, shm, shmget()

Notes
To improve portability, the COHERENT system implements its shared-memory functions as
a device driver instead of as an actual system call.

shmgetO - General Function
Get shared-memory segment
#include <sys/shm.h>
shmget(key, size, shmjlg)
key_t key; int size, shrrif1.g;

LEXICON

shmgetQ 925

shmget returns the shared-memory identifier associated with key.

A shared-memory identifier and associated data structure and shared memory segment of
size size bytes is created for key if key does not already have a shared-memory identifier
associated with it, and (shmflg & IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

shm_perm.cuid, shm_perm.uid, shm_perm.cgid, and shm_perm.gid are set equal to
the effective user lD and effective group ID, respectively. of the calling process.

The low-order nine bits of shm_perm.mode are set equal to the low-order nine bits of
shmflg. These nine bits define access permissions: the top three bits give the owner's
access permissions (read, write, execute), the middle three bits the owning group's
access permissions, and the low three bits access permissions for others.

shm_segsz is set equal to the value of size.

shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to zero.
shm_ctime is set equal to the current time.

shmget fails if any of the following is true:

size is less than the system-imposed minimum or greater than the system-imposed
maximum. shmget sets errno to EINVAL.

A shared-memory identifier exists for key but operation permission as specified by the
low-order nine bits of shmflg would not be granted (EACCES).

A shared-memory identifier exists for key but the size of the segment associated with it
is less than size and size is not equal to zero (EINVAL).

A shared-memory identifier does not exist for key and (shmflg & IPC_CREATJ is false
(ENO ENT).

A shared-memory identifier is to be created but the system-imposed limit on the
maximum number of allowed shared memory identifiers system-wide would be
exceeded (ENOSPCJ.

A shared-memory identifier and associated shared-memory segment are to be created,
but the amount of available physical memory is not sufficient to fill the request
(ENOMEMJ.

A shared-memory identifier exists for key but ((shmflg & IPC_CREAT) && (shmflg &
IPC_EXCL)) is true (EEXISTJ.

Return Value
Upon successful completion, shmget returns a shared-memory identifier, which is always a
non-negative integer. Otherwise, it returns -1 and sets errno to an appropriate value.

Files
/usr/include/sys/ipc.h
/usr/include/sys/shm.h
/dev/shm
/drv/shm

LEXICON

926 short - signalO

See Also
general functions, shm, shmctlO

Notes
To improve portability, the COHERENT system implements its shared-memory functions as
a device driver rather than actual system calls.

short - C Keyword
Data type

short is a numeric data type. By definition, it cannot be longer than an Int. Under
COHERENT. an Int is equal to an short; that is, both sfzeof Int and sfzeof short equals
two chars, or 15 bits plus a sign. A short normally is sign extended when cast to a larger
data type: however, an unsigned short will be zero extended when cast.

See Also
C keywords, data format, data type

shutdown - Command
Shut down the COHERENT system
/etc/shutdown

shutdown shuts down the COHERENT system. It is a shell script that leads you through
each step of system shutdown. Only the superuser root can run shutdown. When shut
down has been completed, the COHERENT system is in single-user mode. At this point, the
user can safely run fsck, reboot the system, or turn the computer off.

Failure to shut down the system before rebooting or shutting off the computer could damage
the COHERENT file system and destroy data.

See Also
commands, reboot

signalO - System Call
Specify disposition of a signal
#Include <slgnal.h>
Int (*slgnal(slgnum, action))()
Int slgnum, (*action)();

A process can receive a signal. or interrupt, from a hardware exception. terminal input, or a
kill call made by another process. A hardware exception might be caused by an illegal
instruction code or a bad machine address, caught by the segmentation hardware. A
terminal interrupt character. described in detail in tty, generates a process interrupt (and
in one case a core dump file for debugging purposes).

When a process receives a signal, it performs an appropriate action. The default action
SIG_DFL causes the process to terminate. By calling signal, you can specify what action
the process takes when it receives a given signal signum is the number of the signal, and
action points to the routine to execute when slgnum is received. The action SIG_IGN causes
a signal to be ignored. Note that the signal SIGKILL, which kills a process, can be neither
caught nor ignored. signal returns a pointer to the previous action.

With the exception of SIGKILL and SIGTRAP. caught signals are reset to the default action
SIG_DFL. To catch a signal again, the specified action must reissue the signal call.

The following list gives machine-independent signals by symbolic name (defined in the
header file slgnal.h), numeric value, and description. Signals marked by an asterisk

LEXICON

signal.h 927

produce a core dump if the action is SIG_DFL.

SIGHUP 1 Hangup
SIG INT 2 Interrupt
SIGQUIT 3* Quit
SIGALRM 4 Alarm clock
SIG TERM 5 Termination
SIG REST 6 Restart indication
SIGSYS 7* Bad system call argument
SIG PIPE 8 Write on closed pipe
SIG KILL 9 Kill
SIG TRAP 10* Breakpoint
SIGSEGV 11* Segmentation violation

The following lists gives machine-dependent signals defined in the header file msig.h.

The following signals are specific to the Zilog Z8002 version of COHERENT:

SIG UNI
SIGPRV
SIGNVI
SIGPAR

12*
13*
14*
15*

Unimplemented instruction
Privileged instruction
Non-vectored interrupt
Parity error

The following signals are specific to the Zilog Z8001 version of COHERENT:

SIGEPA
SIGPRV
SIGNVI
SIGNMI

12*
13*
14*
15*

Extended processor trap
Privileged instruction
Non-vectored interrupt
Non-maskable interrupt (not in all versions)

The following signals are specific to the Intel 8086 or 80286 version of COHERENT:

SIG DIVE
SIGOVFL

12*
13*

Divide error
Overflow

A signal may be caught during a system call that has not yet returned. In this case. the
system call appears to fail, with e1T110 set to EINTR. If desired, such an interrupted system
call may be reissued. System calls which may be interrupted in this way include pause,
read on a device such as a terminal. write on a pipe. and wait.

See Also
kill, ptrace(), sh, signame, system calls

Diagnostics
In case of an error. signal returns a pointer to a function returning int. That is. it returns
(int (*)())-1 for an invalid slgnum.

signal.h - Header Files
Declare signals
#include <signal.h>

The header file signal.h declares manifest constants that name all of the machine­
independent signals that the COHERENT system uses to communicate with its processes.
The header file msig.h declares constants for the machine-dependent signals.

LEXICON

928 signame - size

See Also
header mes, kill, msig.h, signal()

signame - Technical Information
Array of names of signals
#include <signal.h>
extern char *signame[NSIG+l];

When a program terminates abnormally, its parent process receives a byte of termination
information from the wait call. This byte contains a signal number, as defined in the
header file signal.h. For example, SIGINT indicates an interrupt from the terminal.

The array signame, indexed by signal number, contains strings that give the meaning of
each signal. Thus, signame[SIGINT+l] points to the string "interrupt". For portability
reasons, all programs which wait on child processes (such as the shell sh) should use
signame.

Files
<Signal.h>

See Also
sh, signal(), technical information, wait

sinO - Mathematics function (libm)
Calculate sine
#include <math.h>
double sin(radian) double radian;

sin calculates the sine of its argument radian, which must be in radian measure.

Example
For an example of this function, see the entry for acos.

See Also
mathematics library

sinhO - Mathematics Function (libm)
Calculate hyperbolic sine
#include <math.h>
double sinh(radian) double radian;

sinh calculates the hyperbolic sine of radian, which is in radian measure.

Example
For an example of this function, see the entry for cosh.

See Also
mathematics library

size - Command
Print size of an object file
size Iflle ...]

size prints the sizes, in bytes, of the segments of each.file (in decimal) and also prints the
total size of all the segments (in both decimal and octal). Each.file must be an object file.

One line is output for each file, listing the following segments:

LEXICON

Shared instructions
Private instructions
Uninitialized instructions
Shared data
Private data
Uninitialized data

sizeof - sleep 929

If you specify the -c option, the total size of the common areas is displayed immediately after
the uninitialized data.

See Also
commands, l.out.h

Notes
size makes no concessions to machines that use hexadecimal.

sizeof - C Keyword
Return size of a data element

sizeof is a C operator that returns a constant int that gives the size of any given data
element. The element examined can be a data object. a portion of a data object. or a type
cast. sizeof returns the size of the element in chars; for example

long foo;
sizeof foo;

returns four, because a long is as long as four chars.

sizeof can also tell you the size of an array. This is especially helpful for use with external
arrays. whose size can be set when they are initialized. For example:

char *arrayname[] = {
"COHERENT", "Mark Williams C for the Atari ST",
"Let's C 11 , 11 Fast Forward 11

} ;

main()
{

}

printf("\"arrayname\" has %d entries\n",
sizeof(arrayname)/sizeof char*);

sizeof is especially useful in malloc routines. and when you need to specify byte counts to
1/0 routines. Using it to set the size of data types instead of using a predetermined value
will increase the portability of your code.

See Also
C keywords, data types, operators

sleep - Command
Stop executing for a specified time
sleep seconds

The command sleep suspends execution for a specified number of seconds. This routine is
especially useful with other commands to the shell. For example, typing

LEXICON

930 sleepQ - sloadQ

(sleep 3600; echo coffee break time) &

executes the echo command in one hour (3,600 seconds) to indicate an important
appointment.

See Also
alarm(), commands, ksh, pause(), sh

sleepO - General Function
Suspend execution for interval
sleep(seconds)
unsigned seconds;

sleep suspends execution for seconds.

Example
The following example, called godot.c, demonstrates how to use sleep.

main ()
{

printf ("Waiting for Godot ... \n");

for (; ;) {

}
}

See Also

/* sleep for five seconds */
sleep(5);
printf(" .•. still waiting ... \n");

general functions

sloadO - System Call
Load device driver
#include <con.h>
int sload(major,flle, conp)
int major; char ":file; CON *conp;

The COHERENT system accesses all devices through drivers residing in the system. Except
for the root device, drivers must be explicitly loaded before use; this operation does not
involve re-booting.

sload loads the driver given by file as device number major. This number uniquely identifies
the driver to the system. conp is a reference to a CON structure. as defined in the header
file con.h. It describes standard entry points and gives other information on the driver.
Normally, major and conp are obtained from the driver load module; this is the method used
by the load command.

file must be in the correct format. Usually, it is created using the -k option to ld.

This call is restricted to the superuser.

Files
<con.h>
/drv/*

LEXICON

smultO - sort 931

See Also
con.h, init, l.out.h, Id, suload, system calls

Diagnostics
sload return zero upon successful loading of the appropriate driver. or -1 on errors. sload
errors include nonexistentflle. parameter (such as major) out of range. driver already loaded
for major, or file not a file containing a proper driver.

smultO - Multiple-Precision Mathematics
Multiply multiple-precision integers
#include <mprec.h>
void smult(a, n, c)
mint •a, •c; int n;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function smult multiplies the multiple-precision integer (or
mint) pointed to by a by the integer n. which is <= 127. It writes the product into the mint
pointed to by c.

See Also
multiple-precision mathematics

sort - Command
Sort lines of text
sort (-bcdfimnru] [-t c] [-o ouljlle] [-T dlr] [+beg[-end]]Iflle ...]

sort reads lines from eachflle. or from the standard input if no file is specified. It sorts
what it reads, and writes the sorted material to the standard output.

sort sorts lines by comparing a key from each line. By default, the key is the entire input
line (or record) and ordering is in ASCII order. The key. however. can be one or moreflelds
within the input record; by using the appropriate options. you can select which fields are
used as the key, and dictate the character that is used to separate the fields.

The following options affect how the key is constructed or how the output is ordered.

-b Ignore leading white space (blanks or tabs) in key comparisons.

-d Dictionary ordering: use only letters, blanks. and digits when comparing keys. This is
essentially the ordering used to sort telephone directories.

-f Fold upper-case letters to lower case for comparison purposes.

-i Ignore all characters outside of the printable ASCII range (octal 040-0176).

-n The key is a numeric string that consists of optional leading blanks and optional
minus sign followed by any number of digits with an optional decimal point. Ordering
is by the numeric. as opposed to alphabetic. value of the string.

-r Reverse the ordering, i.e., sort from largest to smallest.

As noted above. the key compared from each line need not be the entire input line. The
option +beg indicates the beginning position of the key field in the input line. and the
optional -end indicates that the key field ends just before the end position. If no -end is
given, the key field ends at the end of the line. Each of these positional indicators has the
form +m.nf or -m.nf, where m is the number of fields to skip in the input line and n is the
number of characters to skip after skipping fields. Optional flags f are chosen from the
above key flags (bdfinr) and are local to the specified field.

LEXICON

932 spell

The following additional options control how sort works.

-c Check the input to see if it is sorted. Print the first out-of-order line found.

-m Merge the input files. sort assumes eachfile to be sorted already. With large files,
sort runs much faster with this option.

-o ouifile
Put the output into ouifile rather than on the standard output. This allows sort to
work correctly if the output file is one of the input files.

-tc Use the character c to separate fields rather than the default blanks and tabs. For
example, -t/ uses the slash instead of white space to separate fields; this is useful
when sorting file names and directory names.

-Tdlr
Create temporary files in directory dir rather than the standard place.

-u Suppress multiple copies of lines with key fields that compare equally.

The following example sorts the password file /etc/passwd, first by group number (field 4)
and then by user name (field 1):

sort -t: +3n -4 +0 -1 /etc/passwd

Files
/usr/tmp/sort•- First attempt at temporary files
/tmp/sort• - Second attempt at temporary files

See Also
ASCII, commands, ctype, tsort, uniq

Diagnostics
sort returns a nonzero exit status if internal problems occurred or if the file was not
correctly sorted, in the case of the -c option.

spell - Command
Find spelling errors
spell [-a][-b]iflle ...)

spell builds a set of unique words from a document contained in each inputjile, or the
standard input if none. It writes a list of words believed to be misspelled onto the standard
output.

spell should normally be invoked with the document in the form of the input to the text
formatter nrotl' rather than the output. spell deletes control information to the formatter by
invoking deroff.

The default dictionary is for American spelling of English. The -a option specifies this
dictionary explicitly. Under the -b option, British spelling is checked. This accepts favour,
fibre, and travelled rather than the American spellingsfavor.ftber, and traveled for the same
words. Words ending in ize are also accepted when ending in tse (e.g., digitize. digitise).

The dictionary has a reasonably complete coverage of proper names as well as technical
terms in certain fields. However, it covers some fields (e.g .. computer science) better than
others (e.g .. medicine).

LEXICON

split 933

Looking up a Word
The COHERENT command look reads spell's dictionaries to find words that resemble a
fraction of a word that you type. For example, the command

look consider

returns the following to the standard output:

consider#
considerable
considerably
considerate
considerately
consideration#
considered
considering

The '#' indicates a possible plural form by adding 's' to the end of the word. This lets you
check the spelling of a word without having to enter the word into a file and run spell on it.

Files
I usr I diet/ cllsta- Compressed American dictionary
/usr/dict/clistb- Compressed British dictionary
/usr/dict/spellhist- History file for dictionary maintainer
/usr/lib/spell

See Also
commands, deroff, look, nroff, sort, typo

Notes
Dictionaries are not provided for languages other than English.

No dictionary can be complete. You must add new words to the dictionary to ensure that it
fully meets your needs.

Obscure words (such as opcodes, variable names, etc.) are flagged as spelling errors.

Because the data files required for spell are quite large. they might not be included on
COHERENT systems for machines with insufficient disk space. As a result, the command
might not work as expected on all systems.

split - Command
Split a text file into smaller files
split [-nlines][-ccount][in.file [outflle)]

split divides a file into a number of smaller files. This is especially useful for dividing text
files into chunks that can be managed by MicroEMACS or similar editors. or for dividing
binary files into chunks that can be easily transmitted via UUCP.

split uses in.file as its input file if given; otherwise, it uses the standard input. If in.file is ·-·.
split uses the standard input.

split puts its output into files with names prefixed by ouifile and suffixed consecutively with
aa, ab, ac, and so on. If no outflle is specified, file names are prefixed with x.

Normally, split puts 1,000 lines in each output file. This default may be changed for text
files by the option -nlines, where nlines gives the desired number of lines per file. When
using split on binary files, the count argument to the -c option allows you to specify the

LEXICON

934 spowO - sqrtQ

number of characters to place in each output file.

See Also
commands

spowO - Multiple-Precision Mathematics
Raise multiple-precision integer to power
#include <mprec.h>
void spow(a, n, b)
mint •a, *b; int n;

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function spow raises the multiple-precision integer (or mint)
pointed to by a to the power of n, and writes the result into the mint pointed to by b. In no
case may the exponent be negative.

See Also
multiple-precision mathematics

sprintfO - STDIO (libc)
Format output
#include <stdio.h>
int sprintf(strtng,format [, arg I ...)
char •string, "format;

sprintf formats and prints a string. It resembles the function printf, except that it writes
its output into the memory location pointed to by string, instead of to the standard output.

sprintf reads the string pointed to by format to specify an output format for each arg; it
then writes every arg into string, which it ends with a null character. For a detailed
discussion of sprintfs formatting codes, see printf.

Example
For an example of this function. see the entry for sscanf.

See Also
printf(), fprintf(), STDIO

Notes
The output string passed to sprintfmust be large enough to hold all output characters.

Because C does not perform type checking. it is essential that each argument match its
format specification.

At present, sprintf does not return a meaningful value.

sqrtO - Mathematics Function (libm)
Compute square root
#include <math.h>
double sqrt(z) double z;

sqrt returns the square root of z.

Example
For an example of this function, see the entry for cell.

LEXICON

See Also
mathematics library

Diagnostics

srandO - srcpath 935

When a domain error occurs (i.e., when z is negative), sqrt sets errno to EDOM and returns
zero.

srandO - General Function (libc)
Seed random number generator
void srand(seed) int seed;

srand uses seed to initialize the sequence of pseudo-random numbers returned by rand.
Different values of seed initialize different sequences.

Example
For an example of this function, see the entry for rand.

See Also
general functions, rand()
The Art of Computer Programming, vol. 2

srcpath - Command
Find source files
srcpath [-aw] [-p path]fllename pattern .•.

The command srcpath expands the environmental variable SRCPATH. applies it to each
argument, and prints the full path of each unique result.

An argument can either be a file name or a pattern. For example, the command

srcpath "*. [ch J"

finds all .c and .h files on SRCPATH. By default. srcpath keeps only the first file that it
finds with a given name. srcpath automatically appends'.' to the beginning of SRCPATH
so files in the current directory have precedence.

srcpath recognizes the following command-line options:

-ppath
Use path as its path instead ofSRCPATH. For example,

srcpath -p ".:/usr/src/cmd" "*.c"

tells srcpath to search'.' and /usr/src/cmd instead of SRCPATH. Note that with this
option, srcpath does not automatically place'.' at the beginning of the list.

-a Disable shadowing. Normally. if srcpath finds a file is found in more than one
directory on the path, it prints only the first. The -a option forces srcpath to print all
instances of the file name.

-w By default, srcpath silently bypasses directories and matching files for which it has no
read permission. The -w option causes it to print a warning message when this
happens.

See Also
commands, find, make, PATH

LEXICON

936 SS

ss - Device Driver
Future Domain/Seagate SCSI device driver

The device driver ss lets you use SCSI interface devices attached to any of the following host
adapters:

Future Domain TMC-845/850/860/875/885
Future Domain TMC-840/841/880/881
Seagate STOl /ST02

This driver has major number 13. It can be accessed either as a block-special device or as a
character-special device. The minor number specifies the device and partition number for
disk-type devices; this lets you use up to eight SCSI-IDs, with one logical unit number
(LUN) per SCSI-ID and up to four partitions per LUN. The present version supports only
LUN 0 per SCSI-ID.

The first open call on a SCSI disk device reads the partition table into memory.

Controller Configuration
For your Future Domain or Seagate host adapter to work with COHERENT. you must install
it with interrupts enabled. If you have been running your host adapter with interrupts
disabled, a good first choice for interrupt number is IRQ 5, unless you know that you have
another device installed on your computer that already uses this interrupt. Consult the
instructions provided with your host adapter, and the jumper settings, to determine the IRQ
number.

The base address value used by ss is the four-digit hexadecimal memory-segment number
of the host adapter's starting address. This number is most often CAOO: other common
values are C800, CCOO, CEOO, DCOO, and DEOO. You must use the correct value, as
specified by the jumper settings on your host adapter.

Device driver variables SS_BASE_ and SS_INT_ correspond to the base address and
interrupt vector, respectively. Device driver variable NSDRIVE_ must be patched before the
driver is loaded. The low-order byte of this variable is a bit map that indicates the SCSI-IDs
of all installed target devices. The high-order byte indicates the type of host adapter.
Labelling the bits in the low-order byte ofNSDRIVE_ is as follows:

Bit number: 7 6 5 4 3 2 1 0 ...__ least signljlcant bit

There should be a value of one for each installed target device. Do not set a value of one for
the SCSI-ID of the host adapter. The high-order byte of NSDRIVE_ is OxOO for Seagate
STOl and ST02, Ox80 for TMC-845/850/860/875/885, and Ox40 for TMC-
840 I 841 I 880 I 881. For example, if you are using a TMC-885 and a single hard drive with
SCSI ID of zero, then set NSDRIVE_ to Ox8001. See Lexicon article hs for an example of
how to configure a device driver.

When processing BIOS 1/0 requests prior to booting COHERENT, SCSI host adapters use
"translation-mode" drive parameters: number of heads, cylinders, and sectors per track.
These numbers are called translation-mode parameters because they have nothing to do
with physical drive geometry. The translation-mode parameters used by the BIOS code
present on your host adapter can be obtained using the dpb utility found on the boot
diskette of versions 3.2.0 and later of COHERENT.

ss has a table, drv_parm_, which contains eight two-word entries, one for each possible
SCSI-ID. The first word of each entry must contain the number of cylinders for the drive.
The high-order byte of the second word is the number of sectors per track; the low-order
byte is the number of heads. Entries in drv_parm_ should be patched for each drive which

LEXICON

sscanfO 937

is accessible by the BIOS. Values need not be patched for drives inaccessible by the BIOS.
Note that BIOS code is executed by COHERENT only during the initial bootstrap. After
that, drive parameters are of no consequence because SCSI I/0 requests are based upon
logical block number, rather than upon cylinder I head I sector addressing.

The installation procedure for COHERENT versions 3.2.0 and later patches all necessary
variables for the accompanying version of the ss driver by executing the command:

/etc/mkdev scsi

Minor Device Numbers
ss usually uses the special files /dev/sd• and /dev/rsd•. For information on the meaning
of minor numbers with these special files, see the article on ahal54x.

Loading the Driver
ss must be loaded on a system that does not have a SCSI hard disk as the root device. To
do so, use the command /etc/drvld, as follows:

/etc/drvld -r /drv/ss

Files
I dev I sd• - block-special devices
I dev I rsd• - character-special devices

See Also
device drivers, drvld, scsi

Notes
Current releases of ss support disk-type devices only. Zero is the only LUN allowed. Future
versions will add support for tape-type and other devices, as well as nonzero LUN's.

In version 3.2.0 of COHERENT. another variable. SS_HOST_. must be patched in the driver
to be equal to the SCSI-ID of the host adapter. This value is six for Future Domain
adapters, and seven for Seagate. Variable SS_HOST_ has been deleted from versions of the
ss driver later than that shipped with COHERENT 3.2.0.

sscanfO - STDIO (libc)
Format a string
#include <stdio.h>
int sscanf(string,format [, arg] ...)
char •string; char ~ormat;

sscanf reads the argument string, and uses format to specify a format for each arg, each of
which must be a pointer. For more information on sscanfs conversion codes, see scant.

Example
This example uses sprintf to create a string. and then reads it with sscanf. It also
illustrates a common problem with this routine.

#include <stdio.h>

main()
{

char string[SO];
char sl[lO], s2[10];

LEXICON

938 stack - standard error

}

sprintf(string, "123456789012345678901234567890");
sscanf(string, "%9c", sl);
sscanf(string, "%10c", s2);

printf("\n%s is the string\n", string);
printf("%s: first 9 characters in string\n", sl);
printf("%s: first 19 characters in string\n", s2);

See Also
fscanf(), scanf(), STDIO

Diagnostics
sscanf returns the number of arguments filled. It returns zero if no arguments can be filled
or if an error occurs.

Notes
Because C does not perform type checking, an argument must match its format
specification. sscanf is best used only to process data that you are certain are in the
correct data format, such as data that were written with sprintf.

sscanfis difficult to use correctly, and incorrect usage can create serious bugs in programs.
It is recommended that strtok be used instead.

stack - Definition
The stack is the segment of memory that holds function arguments, local variables,
function return addresses, and stack frame linkage information. The COHERENT library
sets the stack size to four kilobytes. You can change the size of the stack by using the
command fixstack.

If your program uses recursive algorithms. or declares large amounts of automatic data. or
simply contains many levels of functions calls, the stack may "overflow", and overwrite the
program data.

See Also
definitions, fixstack

standard error - Definition
The standard error is the peripheral device or file where programs write error messages by
default. It is defined in the header file stdio.h under the abbreviation stderr, and by default
is the computer's monitor.

The COHERENT shell sh lets you redirect into a file all text written to the standard error
device. To do so, use the shell operator 2>. For example

make 2>errorf ile

redirects all error messages generated by make into file errortlle.

See Also
definitions, stderr, stdio.h

LEXICON

standard input - statO 939

standard input - Definition
The standard input is the device or file from which data are accepted by default. It is
defined in the header file stdio.h under the abbreviation stdin, and will be the computer's
keyboard unless redirected by the operating system, a shell, or freopen.

The COHERENT shell sh lets you redirect the standard input device. To do so, use the shell
operator<. For example

mail fwb <textfile

the standard input device from your terminal to file textffie; in effect, this commands mails
the contents of textfile to user fwb.

See Also
definitions, stdin, stdio.h

standard output - Definition
The standard output is the device or file where programs write output by default. It is
defined in the header file stdio.h under the abbreviation stdout, and in most instances is
defined to be the computer's monitor.

The COHERENT shell sh lets you redirect into a file all text written to the standard output
device. To do so, use the shell operator >. For example

sort myfile >sortfile

redirects the text output by sort into file sortrue.

See Also
definitions, stdio.h, stdout

statO - System Call
Find file attributes
#include <sys/stat.h>
int stat(flle, statptr)
char '1'tle; struct stat *statptr;

stat returns a structure that contains the attributes of a file, including protection
information, file type, and file size.

file points to the path name of file. statptr points to a structure of the type stat, as defined
in the header file stat.h.

The following summarizes the structure stat:

LEXICON

940 statO

struct stat {
dev t st_dev; /* Device */
ino_t st_ino; /* i-node number */
unsigned short st_mode;/* Mode */
short st_nlink; /* Link count */
short st_uid; /* User id */
short st_gid; /* Group id */
dev t st_rdev; /* Real device */
fsize_t st_size; /* Size */
time_t st_atime; /* Access time */
time_t st_mtime; /* Modify time */
time_t st_ctime; /* Change time */

};

The following lists the legal settings for the element st_mode which defines the file's
attributes:

S_IFMT 0170000 File types
S_IFREG 0100000 Ordinary file
S_IFDIR 0040000 Directory
S_IFCHR 0020000 Character-special file
S_IFBLK 0060000 Block-special file
S_ISUID 0004000 Set user identifier
S_ISGID 0002000 Set group identifier
S_ISVTX 0001000 Save text bit
S_IREAD 0000400 Owner read permission
S_IWRITE 0000200 Owner write permission
S_IEXEC 0000100 Owner execute permission

st_dev and st_ino together form a unique description of the file. The former is the device
on which the file and its i-node reside, and the latter is the index number of the file.
st_mode gives the permission bits. as outlined above. st_nllnk gives the number of links to
the file. The user id and group id of the owner are st_uid and st_gid, respectively. st_rdev,
which is valid only for special files. holds the major and minor numbers for the file.

The entry st_sfze gives the size of the file, in bytes. For a pipe. the size is the number of
bytes waiting to be read from the pipe.

Three entries for each file give the last occurrences of various events in the file's history.
st_atime gives the time the file was last read or written to. st_mtime gives the time of the
last modification, write for files, create or delete entry for directories. st_ctime gives the last
change to the attributes, not including times and size.

Example
The following example uses stat to print a file's status.

#include <sys/stat.h>
main()
{

struct stat sbuf;
int status;

LEXICON

if (status= stat("/usr/include", &sbuf)) {
printf("Can't find\n");
exit(l);

}

stat.h - static 941

printf("uid = %d gid %d\n", sbuf.st_uid, sbuf.st_gid);
}

Files
<sys/stat.h>

See Also
chmod(), chown(), ls, open(), system calls

Notes
stat differs from the related function fstat mainly in that fstat accesses the file through its
descriptor, which was returned by a successful call to open, whereas stat takes the file's
path name and opens it before checking its status.

Diagnostics
stat returns -1 if an error occurs, e.g., the file cannot be found. Otherwise, it returns zero.

stat.h - Header File
Definitions and declarations used to obtain file status
#include <sys/stat.h>

stat.h is a header file that contains the declarations of several structures used by the
routines fstat and stat, which return information about a file's status.

See Also
chmod(), fstat(), header file, stat()

static - C Keyword
Declare storage class

static is a C storage class. It has two entirely different meanings, depending upon whether
it it appears inside or outside a function.

Outside a function, static means that the function or variable it preceeds may not be seen
outside the module.

Inside a function, static may only precede a variable. It means that that variable is
permanently allocated, rather than allocated on the stack when the function is entered and
discarded when the function exits. If a static variable is initialized. that occurs before the
program starts rather than every time the function is entered. If a function returns a
pointer to a variable, often that variable is declared static within the function. If a pointer
to a non-static local variable is returned, that variable is freed when the function returns
and the pointer points to an unprotected location.

Example
The following example demonstrates the uses of the static keyword. It returns the next
integer in a sequence as a string.

LEXICON

942 stdarg.h - stderr

/* static to keep function hidden outside of this module */
static char *nextint()
{

/* static to protect value between calls */
static int next = O;
/* static to allow the return of a pointer to s */
static char s[5];

sprintf (s, "%d", next++) ;
return(s);

}

See Also
auto, C keywords, extern, register variable, storage class

stdarg.h - Header File
Header for variable numbers of arguments
#include <stdarg.h>

The header stdarg.h declares and defines the routines used to traverse a variable-length
argument list. It declares the type va_llst and the function va_end, and it defines the
macros va_start and va_arg.

See Also
header mes, varargs.h

stddef .h - Header File
Header for standard definitions
#include <stddef.h>

stddef.h defines three types and two macros that are used through the library. They are as
follows:

NULL
offsetof()
ptrdiff_t
size_t
wchar_t

See Also
header mes

stderr - Definition

Null pointer
Offset of a field within a structure
Numeric difference between two pointers
Type returned by sizeof operator
Typedef for wide chars

stderr is the name of the FILE pointer assigned to the standard error device. It is set in the
header file stdio.h.

See Also
definitions, stdin, stdio.h, stdout, standard error

LEXICON

stdin - STDIO 943

stdin - Definition
stdin is the name of the FILE pointer that is assigned to the standard input device. It is set
in the header file stdio.h.

See Also
definitions, standard input, stderr, stdio.h, stdout

STDIO - Overview
STDIO is an abbreviation for standard Input and output. It refers to a set of standard library
functions that accompany all C compilers and that govern input and output with peripheral
devices.

COHERENT includes the following STDIO routines:

clearerr(). . Present status stream
!close() . . . Close a file stream
fdopen() . . Open a file stream for 1/0
feof() Discover a file stream's status
ferror() . . Discover a file stream's status
mush() . . . Flush an output buffer
fgetc(). . . Get a character
fgets() . . . Get a string
fgetw() . . Get a word
fileno() . . Get a file descriptor
fopen() . . Open a file stream
fprintf(). . Format and print to a file stream
fputc() . . . Output a character
fputs() . . . Output a string
fputw() . . . Output a word
fread() . . . Read a file stream
freopen() . . Open a file stream
fscanf() . . . Format and read from a file stream
fseek() . . . Seek in a file stream
ftell() Return file pointer position
fwrite() . . . Write to a file stream
getc() Get a character
getchar() . . Get a character
gets() Get a string
getw() Get a word
pclose(). . . Close a pipe
popen() . . . Open a pipe
printf() . . . Print a formatted string
putc(). . . . Output a character
putchar(). . Output a character
puts() Output a string
putw(). . . . Output a word
rewind() . . Reset a file pointer
scanf() Format and input from standard input
setbuf() Set alternative file-stream buffers
sprintf() . . Format and print to a string
sscanf(). . . . Format and read from a string
ungetc() . . . Return character to file stream

STDIO routines are buffered by default.

LEXICON

944 stdio.h - stdlib.h

See Also
buffer, FILE, Libraries, stdio.h, stream

stdio.h - Header File
Declarations and definitions for 1/0

stdio.his a header file that defines several manifest constants used in standard 1/0, such
as NULL and FILE. declares the STDIO functions, and defines numerous 1/0 macros.

See Also
header ffie, STDIO

stdlib.h - Header File
Declare/define general functions
#include <stdllb.h>

stdllb.h is a header file that is defined in the ANSI standard. It declares a set of general
utilities and defines attending macros and data types, as follows:

Types
div_t Type of object returned by div
ldiv_t Type of object returned by ldiv

Manifest Constants
EXIT_FAILURE . . Value to indicate that program failed to execute properly
EXIT_SUCCESS . . Value to indicate that program executed properly
MB_CUR_MAX .. Largest size of multibyte character in current locale
RAND_MAX . . . Largest size of pseudo-random number

Functions
abort()
abs().
atof() .
atoi() .
atol() .
bsearch().
calloc().
div() . ..
exit() ..
free() ..
getenv()
labs() .. .
ldiv() .. .
malloc() .
qsort() .
rand() . .
realloc()
srand() .
strtod().
strtol() .
strtoul()
system()

LEXICON

. End program immediately

. Compute the absolute value of an integer

. Convert string to floating-point number

. Convert string to integer

. Convert string to long integer

. Search an array

. Allocate dynamic memory

. Perform integer division

. Terminate a program gracefully

. De-allocate dynamic memory to free memory pool
. . Read environmental variable

. Compute the absolute value of a long integer
. . Perform long integer division
. . Allocate dynamic memory
. . Sort an array
. . Generate pseudo-random numbers
. . Reallocate dynamic memory
.. Seed the random-number generator
. . Convert string to floating-point number

. Convert string to long integer

. Convert string to unsigned long integer

. Suspend a program and execute another

See Also
header files

stdout - Definition

stdout - storage class 945

stdout is the name of the FILE pointer that is assigned to the standard output device. It is
set in the header file stdio.h.

See Also
definitions, standard output, stderr, stdin, stdio.h

sticky bit - Definition
The sticky bit is one of the mode bits associated with a file. If the sticky bit is set for an
executable file and swapping is enabled, COHERENT behaves in a special way when it
executes that file.

When the COHERENT system executes the file the first time, all proceeds normally. When
the program exits, however, the pure segments are left on the swap device; when the
program is re-invoked, COHERENT reads "pure" code (text) areas from the swap device and
all other (impure) segments from the file system. This speeds execution of large programs
that are executed frequently.

This strategy works well on systems that have large swap devices. Because overuse of the
sticky bit would quickly swamp the swap device, only the superuser can set the sticky bit.

See Also
chmod, definitions

stimeO - System Call
Set the time
#include
int stime(timep)
time_t *tlmep;

stime sets the system time. timep points to a variable of type time_t, which contains the
number of seconds since midnight GMT of January 1, 1970.

stime is restricted to the superuser.

Files
<sys/types.h>

See Also
ctime(), date, ftime(), stat(), system calls, utime()

Diagnostics
stime returns -1 on error, zero otherwise.

storage class - Technical Information
Storage class refers to the part of a declaration that indicates how data are to be stored.
The C language recognizes the following storage clases:

auto
extern
register
static

LEXICON

946 strcatO - strcmpO

typedef is technically defined as a storage class as well. but it does not actually indicate
how data are stored. The default class is auto.

See Also
auto, extern, register, static, technical information, typedef

strcatO - String Function (libc)
Concatenate strings
#include <string.h>
char •strcat(strlng 1, strlng2)
char •strlngl, •strlng2;

strcat appends all characters in strlng2 onto the end of strlngl. It returns the modified
strlngl.

Example
For an example of this function, see the entry for string functions.

See Also
string functions, string.h, strncat()

Notes
strlngl must point to enough space to hold itself and strlng2; otherwise. another portion of
the program may be overwritten.

strchrO - String Function (libc)
Find a character in a string
#include <string.h>
char •strchr(strlng, character)
char •string; int character;

strchr searches for the first occurrence of character within string. The null character at the
end of string is included within the search. It is equivalent to the COHERENT function
index.

strchr returns a pointer to the first occurrence of character within string. If character is not
found. it returns NULL.

Having strchr search for a null character will always produce a pointer to the end of a
string. For example.

char *string;
assert(strchr(string, '\0')

never fails.

See Also
string functions

strcmpO - String Function (libc)
Compare two strings
#include <string.h>
int strcmp(strlng 1, strlng2)
char •string 1 , •strlng2;

LEXICON

string+ strlen(string));

strcollO - strcpyO 947

strcmp compares strlngl with strlng2 lexicographically. It returns zero if the strings are
identical, returns a number less than zero if string 1 occurs earlier alphabetically than
strlng2, and returns a number greater than zero if it occurs later. This routine is
compatible with the ordering routine needed by qsort.

Example
For examples of this function, see the entries for string functions and malloc.

See Also
qsort(), shellsort(), string functions, string.h, stmcmp()

strcollO - String Function (libc)
Compare two strings. using locale-specific information
#include <string.h>
int strcoll(strlng 1, strlng2)
char •strlngl; char •strlng2;

strcoll lexicographically compares the string pointed to by string 1 with one pointed to by
strlng2. Comparison ends when a null character is read.

strcoll compares the two strings character by character until it finds a pair of characters
that are not identical. It returns a number less than zero if the character in string 1 is less
(i.e., occurs earlier in the character table) than its counterpart in strlng2. It returns a
number greater than zero if the character in strlngl is greater (i.e., occurs later in the

'character table) than its counterpart in strlng2. If no characters are found to differ, then the
strings are identical and strcoll returns zero.

See Also
string functions, string.h

Notes
The string-comparison routines strcoll, strcmp, and stmcmp differ from the memory­
comparison routine memcmp in that they compare strings rather than regions of memory.
They stop when they encounter a null character, but memcmp does not.

The ANSI Standard's description of strcoll emphasizes that it uses locale-specific
information, as set by the ANSI function setlocale, to perform string comparisons. The
COHERENT system has not yet implement ANSI locales; therefore, strcoll does not differ
significantly from strcmp. It is included to support programs written in ANSI C.

strcpyO - String Function (libc)
Copy one string into another
#include <string.h>
char •strcpy(strlng 1, strlng2)
char •string 1 , •strlng2;

strcpy copies the contents of strlng2. up to the null character, into strlngl and returns
strlngl.

Example
See string.

See Also
memcpy(), string functions, string.h, stmcpy()

LEXICON

948 strcspnO - strerrorO

Notes
sfringl must point to enough space to hold strlng2, or another portion of the program or
operating system may be overwritten.

strcspnO - String Function (libc)
Return length a string excludes characters in another
#include <strlng.h>
unsigned int strcspn(stringl, strlng2)
char •stringl, •strlng2;

strcspn compares stringl with string2. It then returns the length, in characters, for which
sfringl consists of characters not found in string2.

See Also
string fUncUons, strlng.h

stream - Definition
The term stream is a metaphor for any entity that can be named and from which bits can
flow, such as a device or a file. The name "stream" reflects the fact that the C programming
environment does not depend upon record descriptors and other devices that predetermine
what form data can assume: instead, data from whatever source are conceived as being a
flow of bytes whose significance is set entirely by the program that reads them.

For example, whether 16 bits forms an int, two chars, and should be used as an absolute
value or a bit map, is entirely up to the program that receives it. It is also irrelevant to the
program that processes these 16 bits whether they come from the keyboard. from a file on
disk, or from a peripheral device.

The FILE structure holds all of the information needed to manipulate a stream. The STDIO
functions can be used to open, close, or reopen a stream: read data from it: or write data to
it.

See Also
bit, byte, data formats, deflniUons, me, FILE, STDIO

stream.h - Header File
Definitions for message facility
#Include <stream.h>

stream.h definitions constants and structures used by the routines that implement the
COHERENT message facility.

See Also
header files

strerrorO - String Function (libc)
Translate an error number into a string
#include <strlng.h>
char •strerror(error)
int error;

strerror helps to generate an error message. It takes the argument error, which presumably
ts an error code generated by an error condition in a program, and may return a pointer to
the corresponding error message.

The error numbers recognized and the texts of the corresponding error messages are set by
COHERENT.

LEXICON

string.h - string functions 949

See Also
perror(), string functions, string.h

Notes
strerror returns a pointer to a static array that may be overwritten by a subsequent call to
strerror.

strerror differs from the related function perror in the following ways: strerror receives the
error number through its argument error, whereas perror reads the global constant errno.
Also, strerror returns a pointer to the error message, whereas perror writes the message
directly into the standard error stream.

The error numbers recognized and the texts of the messages associated with each error
number are set by COHERENT. However, strerror and perror return the same error
message when handed the same error number.

string.h - Header File
Declarations for string library
#include <string.h>

string.h is the header that holds the declarations and definitions of all ANSI routines that
handle strings and buffers.

See Also
header mes

string functions - Overview
The character string is a common formation in C programs. The runtime representation of
a string is an array of ASCII characters that is terminated by a null character ('\0').
COHERENT uses this representation when a program contains a string constant; for
example:

"I am a string constant"

The address of the first character in the string is used as the starting point of the string. A
pointer to a string holds only this address. Note. too, that an array of 20 characters can
hold a string of 19 (rwt 20) non-null characters; the 20th character is the null character
that terminates the string.

The following routines are available to help manipulate strings:

index() ...
memchr() .
memcmp().
memcpy() .
memmove().
memset().
strcmp().
strncmp()
strcpy() ..
strncmp()
strcoll() ..
strcspn().
strerror().
strlen() ..
strpbrk().

. Search string for a character; use strchr instead

. Search a region of memory for a character

. Compare two regions of memory

. Copy one region of memory into another

. Copy one region of memory into another with which it overlaps

. Fill a region of memory with a character

. Compare two strings

. Compare two lengths for a set number of bytes

. Copy a string

. Copy a portion of a string

. Compare two strings, using locale information

. Return length one string excludes characters in another

. Translate an error number into a string

. Measure the length of a string

. Find first occurrence in string of character from another string

LEXICON

950 string functions

strchr().
strrchr()
strspn().
strstr() .
strtok().
strxfrm().

. Find leftmost occurrence of character in a string

. Find rightmost occurrence of character in a string

. Return length one string includes character in another

. Find one string within another string

. Break a string into tokens

. Transform a string. using locale information

See their respective entries in the Lexicon for details.

Example
This example reads from stdin up to NNAMES names, each of which is no more than
MAXLEN characters long. It then removes duplicate names, sorts the names, and writes the
sorted list to the standard output. It demonstrates the functions shellsort, strcat, strcmp,
strcpy. and strlen.

#include <stdio.h>

#define NNAMES 512
#define MAXLEN 60

char *array[NNAMES];
char first[MAXLEN], mid[MAXLEN], last[MAXLEN];
char *space= " ";

int compare();
extern char *strcat();

main ()
{

LEXICON

register int index, count, inflag;
register char *name;

count = O;
while (scanf("%s %s %s\n", first, mid, last) 3) {

}

strcat(first, space);
strcat(mid, space);
name= strcat(first, (strcat(mid, last)));
in flag = 0;

for (index=O; index < count; index++)
if (strcmp(array[index], name) == 0)

in flag = 1;

if (inflag == 0) {

}

if ((array[count]

}

malloc(strlen(name) + 1)) ==NULL) {
fprintf(stderr, "Insufficient memory\n");
exit(l);

strcpy(array[count], name);
count++;

}

shellsort(array, count, sizeof(char *),compare);
for (index=O; index < count; index++)

printf("%s\n", array[index]);
exit(O);

compare(sl, s2)
register char **sl, **s2;
{

}

extern int strcmp();
return(strcmp(*sl, *s2));

See Also
ASCII, libraries

Notes
The ANSI standard allows adjacent string literals, e.g.:

"hello" "world"

strings 951

Adjacent string literals are automatically concatenated. Thus, the compiler will
automatically concatenate the above example into:

"helloworld"

Because this departs from the Kernighan and Ritchie description of C, it will generate a
warning message if you use the compiler's -VSBOOK option.

strings - Command
Print all character strings from a file
strings [-dopx) [-length] lflle ... I

strings looks for ASCII strings in a binary file. A "string" is defined as any sequence of four
or more printable characters. strings is useful for identifying unknown object files, or for
looking at the messages printed by commands. You can also use it as a filter ifjile is not
specified.

strings recognizes the following command-line options:

-d Precede each string by its offset in the file in decimal.

-o Precede each string by its offset in the file in octal.

-p Strip the parity bits of all characters in the string prior to comparison.

-x Precede each string by its offset in the file in hexadecimal.

Finally. the option -length forces strings to use length as the minimum length for a
printable string.

See Also
commands, isprint, od

LEXICON

952 strip - strncatO

strip - Command
Strip debug. relocation, and symbol tables from executable file
strip -drsflle [...]

strip removes the symbol table, relocation information, and debug tables from a file. It
makes the executable file noticeably smaller.

strip recognizes the following options:

-d Keep debug information.

-r Keep relocation information.

-s Keep symbols.

See Also
cc, commands, Id, nm, size

strlenO - String Function (libc)
Measure the length of a string
#include <string.h>
int strlen(strlng)
char •string;

strlen measures string. and returns its length in bytes, not including the null terminator.
This is useful in determining how much storage to allocate for a string.

Example
For an example of how to use this function, see the entry for string.

See Also
string functions, string.h

strncatQ - String Function (libc)
Append one string onto another
#include <string.h>
char •stmcat(strlng 1, strtng2, n)
char •stringl, •string2; unsigned n;

stmcat copies up to n characters from string2 onto the end of stringl. It stops when n
characters have been copied or it encounters a null character in strlng2, whichever occurs
first, and returns the modified string 1 .

Example
For an example of this function, see the entry for stmcpy.

See Also
strcat(), string functions, string.h

Notes
string 1 should point to enough space to hold itself and n characters of string2. If it does not,
a portion of the program or operating system may be overwritten.

LEXICON

strncmpO - strncpyO 953

strncmpO - String Function (libc)
Compare two strings
#include <string.h>
int stmcmp(strlng 1, strlng2, n)
char •strlngl, •strtng2; unsigned n;

stmcmp compares lexicographically the first n bytes of strtngl with strlng2. Comparison
ends when n bytes have been compared. or a null character encountered. whichever occurs
first. strncmp returns zero if the strings are identical. returns a number less than zero if
strlngl occurs earlier alphabetically than strlng2. and returns a number greater than zero if
it occurs later. This routine is compatible with the ordering routine needed by qsort.

Example
For an example of this function. see the entry for stmcpy.

See Also
strcmp(), string functions, string.h

strncpyO - String Function (libc)
Copy one string into another
#include <string.h>
char •stmcpy(strlngl, strlng2, n)
char •string 1, •strlng2; unsigned n;

strncpy copies up to n bytes of strlng2 into string 1. and returns string 1 . Copying ends when
n bytes have been copied or a null character has been encountered, whichever comes first.
If strlng2 is less than n characters in length. strlng2 is padded to length n with one or more
null bytes.

Example
This example. called swap.c, reads a file of names. and changes them from the format

first name [middle_initial] last name

to the format

last_name, first_name [middle_initial]

It demonstrates strncpy. strncat. stmcmp. and index.

#include <stdio.h>
#define NNAMES 512
#define MAXLEN 60

char *array[NNAMESJ;
char gname[MAXLEN], lname[MAXLENJ;
extern int strncmp(), strcomp():
extern char *strcpy(), *strncpy(), *strncat(), *index();

LEXICON

954 strncpyO

main(argc, argv)
int argc; char *argv[];
{

}

FILE *fp;
register int count, num;
register char *name, string[60], *cptr, *eptr;
unsigned glength, length;

if (--argc != 1) {

}

fprintf (stderr, "Usage: swap filename\n");
exit(l);

if ((fp = fopen(argv[l], "r")) ==NULL)
printf("Cannot open %s\n", argv[l]);

count = O;

while (fgets(string, 60, fp) !=NULL) {

}

if ((cptr = index (string, ' . ')) ! = NULL) {
cptr++;
cptr++;

} else if ((cptr = index(string,' ')) !=NULL)
cptr++;

strcpy(lname, cptr);
eptr = index(lname, '\n');
*eptr = ',';

strcat (!name," ") ;
glength = (unsigned)(strlen(string) - strlen(cptr));
strncpy(gname, string, glength);

name= strncat(lname, gname, glength);
length= (unsigned)strlen(name);
array[count] = malloc(length + 1);

strcpy(array[count],name);
count++;

for (num = O; num < count; num++)
printf("%s\n", array[num]);

exit(O);

See Also
strcpy(), string functions, strlng.h

Notes
strlngl must point to enough space to n bytes; otherwise, a portion of the program or
operating system may be overwritten.

LEXICON

strpbrkO - String Function (libc)
Find first occurrence of a character from another string
#include <string.h>
char •strpbrk(strlng 1, strlng2)
char •string 1 , •strlng2;

strpbrkO - strspnO 955

strpbrk returns a pointer to the first character in strlngl that matches any character in
strlng2. It returns NULL if no character in strlngl matches a character in strlng2.

The set of characters that strlng2 points to is sometimes called the "break string". For
example,

char *string= "To be, or not to be1 that is the question.";
char *brkset = ",;";
strpbrk(string, brkset);

returns the value of the pointer string plus five. This points to the comma, which is the
first character in the area pointed to by string that matches any character in the string
pointed to by brkset.

See Also
string functions, string.h

Notes
strpbrk resembles the function strtok in functionality, but unlike strtok, it preserves the
contents of the strings being compared. It also resembles the function strchr, but lets you
search for any one of a group of characters, rather than for one character alone.

strrchrO - String Function (libc)
Search for rightmost occurrence of a character in a string
#include <strlng.h>
char ~trrchr(strlng, character)
char •string; int character;

strrchr looks for the last, or rightmost, occurrence of character within string. character is
declared to be an int, but is handled within the function as a char. Another way to describe
this function is to say that it performs a reverse search for a character in a string. It is
equivalent to the COHERENT function rindex.

strrchr returns a pointer to the rightmost occurrence of character, or NULL if character
could not be found within string.

See Also
rindexQ, string functions, string.h

strspnO - String Function (libc)
Return length a string includes characters in another
#include <string.h>
unsigned int strspn(strlng 1, strlng2)
char •string 1 ; char •strlng2;

strspn returns the length for which string 1 initially consists only of characters that are
found in strlng2. For example,

LEXICON

956 strstrO - strtodO

char *sl ="hello, world";
char *s2 = "kernighan & ritchie";
strcspn(sl, s2);

returns two. which is the length for which the first string initially consists of characters
found in the second.

See Also
string functions, string.h

strstrO - String Function (libc)
Find one string within another
#include <string.h>
char •strstr(string J, string2)
char •stringl, •string2;

strstr looks for string2 within stringl. The terminating null character is not considered part
of string2.

strstr returns a pointer to where string2 begins within stringl. or NULL if string2 does not
occur within string 1.

For example.

char *stringl "Hello, world";
char *string2 "world";
strstr(stringl, string2);

returns string I plus seven. which points to the beginning of world within Hello, world. On
the other hand.

char *stringl ="Hello, world";
char *string2 ="worlds";
strstr(stringl, string2);

returns NULL because worlds does not occur within Hello, world.

See Also
string functions, strlng.h

strtodO - General Function (libc)
Convert string to floating-point number
#include <stdlib.h>
double strtod(strlng, tatlptr)
char •string; char ••tatlptr;

strtod converts the number given in string to a double-precision floating-point number and
returns its value. It is a more general version of the function atof. strtod also stores a
pointer to the first character following the number through tatlptr. provided tatlptr is not
NULL.

strtod parses the input string into three portions: beginning. subject sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the input string that strtod converts into a floating­
point number. It consists of an optional sign character. a nonempty sequence of decimal
digits optionally including a decimal-point character. and an optional exponent. If present.

LEXICON

strtokO 957

the exponent consists of either 'e' or 'E' followed by an optional sign and a nonempty
sequence of decimal digits. strtod reads characters until it encounters either a second
decimal-point character or exponent marker, or any other non-numeral.

The tail continues from the end of the subject sequence to the null character that ends the
string.

strtod ignores the beginning portion of the string. It converts the subject sequence to a
double-precision number. Finally, it sets the pointer pointed to by tailptr to the address of
the first character of the string's tail.

strtod returns the double generated from the subject sequence. If no subject sequence
could be recognized, it returns zero and stores the initial value of string through tailptr. If
the number represented by the subject sequence is too large or too small to fit into a
double, then strtod sets the global constant errno to ERANGE and returns HUGE_ VAL or
zero, respectively.

Example
The following gives an example for strtod.

extern double strtod();

main()
{

}

static char st[]=• 123.4 567,8";
char *head, *tail;

for (head= st;; head= tail) {

}

double amt= strtod(head, &tail);

/* No token found is end of string */
if (head == tail)

break;
printf("%f0, amt);

See Also
atof, double, ermo, general functions, llmits.h, stdlib.h, strtol, strtoul

Notes
strtod ignores initial white space in the string pointed to by string; white space is defined as
being all characters so recognized by the function isspace.

strtokO - String Function (libc)
Break a string into tokens
#include <string.h>
char •strtok(string 1, strtng2)
char •strlngl, •string2;

strtok helps to divide a string into a set of tokens. string 1 points to the string to be divided,
and string2 points to the character or characters that delimit the tokens.

strtok divides a string into tokens by being called repeatedly.

On the first call to strtok, string 1 should point to the string being divided. strtok searches
for a character that is not included within string2. If it finds one, then strtok regards it as
the beginning of the first token within the string. If one cannot be found, then strtok

LEXICON

958 strtokO

returns NULL to signal that the string could not be divided into tokens. When the
beginning of the first token is found. strtok then looks for a character that is included
within string2. When one is found. strtok replaces it with a null character to mark the end
of the first token, stores a pointer to the remainder of stringl within a static buffer, and
returns the address of the beginning of the first token.

On subsequent calls to strtok, set stringl to NULL. strtok then looks for subsequent
tokens. using the address that it saved from the first call. With each call to strtok, string2
may point to a different delimiter or set of delimiters.

Example
The following example breaks command_strlng into individual tokens and puts pointers to
the tokens into the array tokenlist[]. It then returns the number of tokens created. No
more than maxtoken tokens will be created. command_stringis modified to place '\O' over
token separators. The token list points into command_string. Tokens are separated by
spaces, tabs, commas, semicolons, and newlines.

#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <stdio.h>

tokenize(conunand_string, tokenlist[], maxtoken)
char *conunand_string, *tokenlist(]; size_t maxtoken;
{

}

static char tokensep[J="\t\n
int tokencount;
char *thistoken;

, , ,

if(conunand_string == NULL I I !maxtoken)
return O;

thistoken = strtok(conunand_string, tokensep);

for(tokencount = O; tokencount < maxtoken &&
thistoken !=NULL;) {

tokenlist[tokencount++] = thistoken;
thistoken = strtok(NULL, tokensep);

}

tokenlist[tokencount) = NULL;
return tokencount;

#define MAXTOKEN 100
char *tokens[MAXTOKENJ;
char buf[80];

main ()
{

for (;;) {
int i, j;

LEXICON

}

}

See Also

printf ("Enter string ");
fflush(stdout);
if(gets(buf) == NULL)

exit(O);

i tokenize(buf, tokens, MAXTOKEN);
for (j = O; j < i; j++)

printf("%s\n", tokens[j]);

string functions, string.h

strtolO - General Function (libc)
Convert string to long integer
#include <stdlib.h>
long strtol(string, tailptr, base)
char •string; char ••tailptr; int base;

strtolO 959

strtol converts the number given in string to a long and returns its value; it is a more
general version of the function atol. strtol also stores a pointer to the first character
following the number through tailptr, provided tailptr is not NULL.

base gives the base of the number being read, either 0 or a value from 2 to 36. If the given
base is zero, strtol determines an implicit base for the number: hexadecimal if the number
starts with Ox or OX, octal if the number starts with 0, or decimal otherwise. Alternatively,
you can specify a base between 2 and 36.

strtol parses string into three portions: beginning, subject sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that strtol converts into a long. It consists
of an optional sign character, an optional prefix Ox or OX if the base is 16, and a nonempty
sequence of digits in the specified base. For example, if the base is 16, then strtol
recognizes numeric characters 'O' to '9' and alphabetic characters 'A' through 'F' and 'a' to 'f
as digits. It continues to scan until it encounters a nondigit.

The tall continues from the end of the subject sequence to the null character that ends the
string.

strtol ignores the beginning portion of the string. It converts the subject sequence to a
long. Finally, if tailptr is not NULL, it sets the pointer pointed to by tailptr to the address of
the first character of the string's tail.

strtol returns a long representing the value of the subject sequence. If the input string
does not specify a valid number, it returns zero and stores the initial value of string through
tailptr. If the number it builds is too large or too small to fit into a long, it sets the global
variable errno to the value of the macro ERANGE and returns WNG MAX or WNG MIN,
respectively. - -

See Also
atol. errno, general functions, limits.h, long, stdllb.h, strtoul

LEXICON

960 strtoulO

Notes
strtol ignores initial white space in the input string. White space is defined as being all
characters so recognized by the ftmction isspace.

strtoulO - General Function (libc)
Convert string to unsigned long integer
#include <stdlib.h>
unsigned long strtoul(strlng, tallptr, base)
char •string; char ••tallptr; int base;

strtoul converts the number given in string to a unsigned long and returns its value. It is
the unsigned long counterpart of strtol and a more general version of the function atol.
strtoul also stores a pointer to the first character following the number through tallptr,
provided tatlptr is not NULL.

base gives the base of the number being read. either O or a value from 2 to 36. If the given
base is zero, strtoul determines an implicit base for the number: hexadecimal if the number
starts with Ox or OX, octal if the number starts with 0, or decimal otherwise. Alternatively,
the user can specify an explicit base between 2 and 36.

strtoul parses the string into three portions: beginning. subject sequence, and tail.

The beginning consists of zero or more white-space characters that begin the string.

The subject sequence is the portion of the string that strtoul converts into an unsigned
long. It consists of an optional sign character, an optional prefix Ox or OX if the base is 16,
and a nonempty sequence of digits in the specified base. For example, if the base is 16,
then strtoul recognizes numeric characters 'O' to '9' and alphabetic characters 'A' through
'F' and 'a' to 'fas digits. It continues to scan until it encounters a nondigit.

The tall continues from the end of the subject sequence to the null character that ends the
string.

strtoul ignores the beginning portion of the string. It converts the subject sequence to an
unsigned long. Finally. if tallptr is not NULL. it sets the pointer pointed to by tallptr to the
address of the first character of the string's tail.

strtoul returns an unsigned long representing the value of the subject sequence. If the
input string does not specify a valid number, it returns zero and stores the initial value of
string through tallptr. If the number it builds is too large to fit into an unsigned long, it sets
the global variable ermo to the value of the macro ERANGE and returns ULONG_MAX.

Example
This example uses strtoul as a hash function for table lookup. It demonstrates both
hashing and linked lists. Hash-table lookup is the most efficient when used to look up
entries in large tables; this is an example only.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

LEXICON

/*
* For fastest results, use a prime about 15% bigger
* than the table. If short of space, use a smaller prime.
*/

#define HASHP 11
struct symbol {

struct symbol *next;
char *name;
char *descr;

} *hasht[HASHP], codes[] {

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

};

void
buildTable(void)
{

long h;

"a286",
"xy7800",
"z678abc",
"xj781",
"h778a",
"q167"'
"18888"'
NULL,

"frogs togs",
"doughnut holes",
"used bits",
"black-hole varnish",
"table hash",
"log(-5.2) ",
"quid pro quo",
NULL /* end marker

register struct symbol *sym, **symp;

*/

for(symp = hasht; symp I= (hasht + HASHP); symp++)
*symp = NULL;

}

for(sym = codes; sym->descr != NULL; sym++) {

}

/*
* hash by converting to base 36. There are
* many ways to hash, but use all the data.
*/

h = strtoul(sym->name, NULL, 36) % HASHP;
sym->next = hasht[h];
hasht[h] = sym;

struct symbol *
lookup(char *s)
{

long h;
register struct symbol *sym;

strtoulO 961

LEXICON

962 struct

}

h = strtoul(s, NULL, 36) % HASHP;
for(sym = hasht[h]; sym I= NULL; sym

if(!strcmp(sym->name, s))
return (sym);

return (NULL);

main(void)
{

char buf[SOJ;
struct symbol *sym;

buildTable();
for (; ;) {

printf("Enter name");
fflush(stdout);

if(gets(buf) == NULL)
exit(EXIT_SUCCESS);

sym->next)

if((sym = lookup(buf)) ==NULL)
printf("%s not found\n", buf);

else
printf("%s is %s\n", buf, sym->descr);

}
}

See Also
ermo, general functions, llmits.h, stdlib.h, strtol

Notes
strtoul ignores initial white space in the input string. White space is defined as being all
characters so recognized by the function isspace.

struct - C Keyword
Data type

struct is a C keyword that introduces a structure. The following is an example of how
struct can be used in the description of a name and address file:

struct address {

} ;

char firstname[lO];
char lastname[15];
char street[25];
char city[10];
char state[2];
char zip[5];
int salescode;

The C Programming Language prohibits the assignment of structures, the passing of
structures to functions, and the returning of structures by functions. COHERENT.
however. lifts these restrictions. It allows one structure to be assigned to another. provided

LEXICON

structure - strxfrmO 963

the two structures are of the same type. It also allows structures to be passed by and
returned by functions. These features are supported by most compilers, but users should
be aware that their use can cause problems in porting code to some compilers.

See Also
array, C keywords, field, initialization, structure

structure - Definition
A structure is a set of variables that has been given a name and can be manipulated as a
single entity. The variables may be of different data types. Structures are a convenient way
to deal with data elements that belong together, such as names and addresses, employee
descriptions, or sales and inventory information.

See Also
definitions, struct

structure assignment - Technical Information
The C Programming Language forbids structure assignment, the passing of structures to
functions, and returning structures from functions (as opposed to the passing or returning
of pointers to structures). The COHERENT C compiler lifts these restrictions.

Some C compilers transform structure arguments and structure returns into structure
pointers. Note that the use of structure assignment, structure arguments, or structure
returns may create problems when porting the code to another C compiler.

See Also
portability, struct, structure, technical information

Notes
Because this feature deviates from the description of the C language found in the first
edition of The C Programming Language, compiling with the -VSBOOK option will flag all
points where it occurs in your program.

strxfrmO - String Function (libc)
Transform a string
#include <string.h>
unsigned int strxfrm(strlng 1, strlng2, n)
char •string 1, •strlng2; unsigned int n);

strxfrm transforms strlng2 using information concerning the program's locale, as set by the
function setlocale.

strxfrm writes up to n bytes of the transformed result into the area pointed to by string 1. It
returns the length of the transformed string. not including the terminating null character.
The transformation incorporates locale-specific material into strlng2.

If n is set to zero, strxfrm returns the length of the transformed string.

If two strings return a given result when compared by strcoll before transformation, they
will return the same result when compared by strcmp after transformation.

See Also
string functions, string.h

LEXICON

964 sttyO

Notes
If strxfrm returns a value equal to or greater than n, the contents of the area pointed to by
strlngl are indeterminate.

COHERENT has not yet implemented the ANSI locale functions. Therefore, strxfnn behaves
the same as strcpy.

sttyO - System Call
Set terminal modes
#Include <sgtty.h>
Int stty(fd, sgp)
lntfd;
structsgttyb•sgp;

The COHERENT system call stty sets a terminal's attributes. See the Lexicon article for
stty for information on terminal attributes and their legal values.

Example
This example demonstrates both stty and gtty. It sets terminal input to read one character
at a time (that is, it reads the terminal in "raw" form). When you type 'q', it restores the
terminal to its previous settings, and exits. For an additional example, see the pipe Lexicon
article.

#include <sgtty.h>

main ()
{

}

Files

struct sgttyb os, ns;
char buff;

printf ("Waiting for q\n");
gtty(l, &os); /*save old state*/
ns = os;
ns. sg_flags I=
ns.sg_flags &=
stty(l, &ns);

do {

/* get base of new state */
RAW; /* prevent <ctl-c> from working */
-(ECHOjCRMOD);/* no echo for now ... */

/* set mode */

buff= getchar();
} while(buff != 'q');

/* wait for the keyboard */

stty(l, &os); /* reset mode */

<sgtty.h> - Header file

See Also
exec, gtty(), Ioctl(), open(), read(), sgtty.h, stty, system calls, write()

Notes
Please note that if you use stty to change the baud rate on a port. you must first invoke
sleep(). If you do not, the port reverts back to its default settings.

LEXICON

stty 965

stty - Command
Set/print terminal modes
stty [option ...]

If no option is specified, stty prints the modes of the standard output device in the standard
error stream. Otherwise, each option modifies the modes of the standard output device.
The device is usually a terminal, although tapes, disks and other special files may be
applicable.

In normal processing ("cooked" mode), the erase and kill characters (normally <crtl-H> and
<Ctrl-U>) erase, respectively, one typed character and a typed line. The stop-output and
start-output characters (normally <ctrl-S> and <ctrl-Q>) stop and restart output. The
Interrupt character (normally DELETE or RUBOUT ASCII 0177), sends the signal SIGINT,
which usually terminates program execution. The quit character (normally ASCII 034, FS,
which differs on various terminals but is often <Ctrl-\>) sends the signal SIGQUIT, which
usually terminates program execution with a core dump. The end of file character (normally
<ctrl-D>) generates an end of file from the terminal. Each special character can be changed
with the appropriate option.

On some machines, the default characters differ from those given above. On the IBM
Personal Computer. for example. the default kill character is <ctrl-U> and the default
interrupt character is <ctrl-C>.

The following table describes each available option. The c argument may be a literal
character or may be of the form 'AX' for <Ctrl-X>.

number

0

-a

breakc

cbreak

-cbreak

cooked

crt

-crt

echo

-echo

ek

eofc

erasec

even

-even

Set input and output baud rates of the device to the speed number, if possible.

Hang up phone immediately.

Display all modes.

Set the break character to c.

Break after every input character. This allows a program to return after having
read N characters from a terminal. even if no end of file. break or newline
character was typed.

Exit from cbreak mode.

Exit from raw mode.

Terminal is a CRT. Echoing is enhanced.

The terminal is not a CRT.

Echo characters as they are received on the input.

Disable echoing.

Set the erase character to'#' and the kill character to'@.

Set the end of file character to c.

Set the erase character to c.

Accept even-parity characters.

Do not accept even-parity characters.

LEXICON

966 stty

ex cl

-excl

flush

-flush

hup

-hup

intc

kill c

nl

-nl

odd

-odd

print

quite

raw

-raw

rawin

-rawin

rawout

-rawout

sane

startc

stopc

tabs

-tabs

tandem

Exclusive use: subsequent opens will fail.

Non-exclusive use.

Flush characters waiting in output or input queues.

Do not flush characters.

Hang up the phone on last close.

Do not hang up on last close.

Set the interrupt character to c.

Set the kill character to c.

Disable newline mapping.

Enable newline mapping: map carriage returns to linefeeds on input, and
append carriage returns before linefeeds on output.

Accept odd-parity characters.

Do not accept odd-parity characters.

Print terminal attributes.

Set the quit character to c.

Raw mode: suppress all processing and mapping (except echo).

Exit from raw mode.

Suppress all processing and mapping on the input stream.

Exit from rawin mode.

Suppress all processing and mapping on the output stream.

Exit from rawout mode.

Set the terminal to a known state.

Set the start-output character to c.

Set the stop-output character
1
to c.

Do not expand tabs: useful for terminals which process tabs internally.

Expand tabs to the appropriate number of spaces on output. The system
assumes tabstops are at every eighth column.

Tandem mode. The system will send the programmed stop-output character
whenever there is a danger of losing characters from the input stream due to
buffering limitations. The system will send the start-character when the level of
unprocessed characters has subsided.

-tandem Disable tandem mode.

See Also
ASCII, commands, getty, init, ioctl(), signal()

LEXICON

su -sum 967

Notes
The system does not support character delays or mapping upper to lower case.

su -Command
Substitute user id, become superuser
su [user [command)]

Default user is root; default command is sh. su changes the real user id and the effective
user id to that of the user. If user has a login password, su requests it. Then it executes the
specified command.

If command is absent, su invokes an interactive sub-shell.

If user is absent, su assumes user name root (the superuser).

Files
/etc/passwd- Login names and passwords

See Also
commands, login, newgrp, sh, superuser

suloadO - System Call
Unload device driver
#include <con.h>
int suload(major)
int major;

The COHERENT system accesses all devices through drivers residing in the system. Except
for the root device, drivers must be explicitly loaded before use; this operation does not
involve re-booting.

suload unloads the driver identified by major, which was previously loaded by a call to
sload. This call is restricted to the superuser.

Files
<con.h>
/drv/*

See Also
init, l.out.h, Id, load, sload, system call

Diagnostics
suload returns zero upon successful unloading of the appropriate driver, or -1 on errors. It
fails if the driver major is not loaded.

sum - Command
Print checksum of a file
sum [flle ...)

sum prints an unsigned integer checksum and a size in blocks (rounding up) for each.file
specified. If more than one file is specified, sum also prints the file name. If no file is
specified, sum reads the standard input.

sum may be used to verify the integrity of data transferred across phone lines or stored on
an unreliable medium.

LEXICON

968 superuser - switch

See Also
cmp, commands

superuser - Definition
The superuser is the user who has system-wide permissions. He can execute any program,
read any file, and write into any directory. Thus, superuser status is reserved to the system
administrator, also called root, who needs this status to control the operation of the
system.

No person should be able to become the superuser without knowing a password. Because
the superuser in effect "owns" the system, the superuser password should be guarded most
carefully.

See Also
definitions, root, su

swabO - General Function (libc)
Swap a pair of bytes
void swab(src, dest, nb) char *src, *dest; unsigned nb;

The ordering of bytes within a word differs from machine to machine. This may cause
problems when moving binary data between machines. swab interchanges each pair of
bytes in the array src that is n bytes long, and places the result into the array dest. The
length nb should be an even number, or the last byte will not be touched. src and dest may
be the same place.

Example
This example prompts for an integer: it then prints the integer both as you entered it, and
as it appears with its bytes swapped.

#include <stdio.h>

main ()
{

}

int word;

printf ("Enter an integer: \n") ;
scanf("%d", &word);
printf("The word is Ox%x\n", word);
swab(&word, &word, 2);
printf("The word with bytes swapped is Ox%x\n", word);

See Also
dd, canon.h, general functions

switch - C Keyword
Test a variable against a table

switch is a C keyword that lets you perform a number of tests on a variable in a convenient
manner. For example,

LEXICON

while(foo < 10)
switch(foo) {

}

case 11
dosomething();
break;

case 21
somethingelse();

case 31
anotherthing();
break;

default:
break;

}

is equivalent to

while(foo < 10) {

}

if(foo == 1) {
dosomething();
continue;

} else if (foo == 2) {
somethingelse();
anotherthing();
continue;

} else if(foo == 3) {
/* Note: compiler eliminates duplicate code */

anotherthing();
continue;

} else
break;

sync 969

switch is always used with the case statement. and nearly always with the default
statement.

See Also
break, C keywords, case, default, keyword, while

sync - Command
Flush system buffers
sync

Most COHERENT commands manipulate files stored on a disk. To improve system
performance, the COHERENT system often changes a copy of part of the disk in a buffer in
memory. rather than repeatedly performing the time-consuming disk access required.

sync writes information from the memory buffers to the disk. updating the disk images of
all mounted file systems which have been changed. In addition, it writes the date and time
on the root file system.

sync should be executed before system shutdown to ensure the integrity of the file system.

LEXICON

970 syncO - system calls

See Also
commands

syncO - System Call
Flush system buffers
sync()

sync() is the COHERENT system call that copies the contents of all memory buffers to disk.

See Also
system calls

systemO - General Function (libc)
Pass a command to the shell for execution
int system(commandltne) char •commandline;

system passes commandline to the shell sh. which loads it into memory and executes it.
system executes commands exactly as if they had been typed at the COHERENT command
level. system may be used by commands such as ed. which can pass commands to the
COHERENT shell in addition to processing normal interactive requests.

Example
This example uses system to list the names of all C source files in the parent directory.

#include <stdio.h>
main ()
{

system("cd ls *.c > mytemp; cat mytemp");
}

See Also
exec, fork(), general functions, popen(), wait

Diagnostics
system returns the exit status of the child process. in the format described in wait: exit
status in the high byte, signal information in the low byte. Zero normally means success,
whereas nonzero normally means failure. This, however, depends on the command. If the
shell is not executable. system returns a special code of octal 01 77.

system calls - Overview
The COHERENT system makes many services available to the C programmer. A
programmer can use a COHERENT service through a system call. COHERENT's libraries
include intefaces to the following system calls:

access().
acct() ..
alarm().
alarm2()
brk() ...
chdir() .
chmod()
chown().
chroot() ..
close()
creat()
dup() .

LEXICON

. Check if file can be accessed in given mode

. Enable/disable process accounting

. Set an alarm

. Set an alarm

. Change size of data area

. Change working directory

. Change file protection modes

. Change ownership of a file

. Change process's root directory

. Close a file

. Create/truncate a file

. Duplicate a file descriptor

execve()
exit() .
fcntl().
fork() .
fstat().
ftime()
getegid() .
geteuid().
getgid() . .
getpgrp().
getpid().
getuid().
ioctl().
kill() . .
link() .
ls eek()
mknod()
mount()
msgctl()
msgget()
msgrcv().
msgsnd().
open() ..
pause().
pipe() . .
ptrace().
read() . .
setgid().
setpgrp().
setuid().
signal().
sload()
stat() .
stime()
stty() .
suload().
sync().
tick() ..
times() .
umask() ..
umount().
unique()
unlink().
utime().
wait() . .
write() .

See Also
libraries

. Execute a load module

. Terminate a program gracefully

. Manipulate an open file

. Create a new process

. Find file attributes

. Get the current time

. Get effective group id

. Get effective user id

. Get real group id

. Get process group number

. Get process id

. Get real user id

. Device-dependent control

. Send a signal to a process

. Create a link

. Set read/write position

. Create a special file

. Mount a file system

. Control message operation

. Get a message queue

. Receive a message

. Send a message

. Open a file

. Wait for signal

. Create a pipe

. Trace process execution

. Read from a file

. Set group id and user id

. Set process group number

. Set user id

. Specify disposition of a signal

. Load device driver

. Find file attributes

. Set the time

. Set terminal modes

. Unload device driver

. Flush system buffers

. Get time

. Obtain process execution times

. Set file creation mask

. Unmount a file system

. Return a unique long integer

. Remove a file

. Change file access and modification times

. Await completion of child process

. Write to a file

system calls 971

LEXICON

972 system maintenance

system maintenance - Overview
The COHERENT system automatically invokes a number of utilities that help COHERENT to
maintain itself. These utilities will, for example, run programs for you at pre-determined
times, swap temporary files in and out of memory, update files, and perform other useful
tasks. COHERENT includes the following system maintenance routines:

aliases ..
atrun . ..
boottime.
brc
checklist.
cron ...
domain.
drvld.all
getty ..
hpd .. .
init .. .
logmsg.
lpd
modemcap.
modeminit
motd ...
mount.all
paths.
profile .
re
termcap
update.
uucpname.

See Also
Lexicon

LEXICON

. File of users' aliases

. Execute programs at a preset time

. Time of last system boot

. Perform maintenance chores. single-user mode

. File systems to check when booting COHERENT

. Execute commands periodically

. Set system's mail domain

. Loadable driver to load when booting COHERENT

. Terminal initialization

. Spooler daemon for Hewlett-Packard LaserJet printer

. System initialization

. File that holds login prompt

. Line printer spooler daemon

. Modem-description language

. Initialize a modem

. File that holds message of the day

. File systems to mount when booting COHERENT

. Routing data base for mail

. Set user's environment at login

. Perform standard maintenance chores

. Terminal-description language

. Update file systems periodically

. Set system's UUCP name

tail - tanhO 973

tail - Command
Print the end of a file
tail (+n[bcfl)) Iflle]
tail [-n(bcfl)) Iflle]

T

tail copies the last part ofjlle, or of the standard input if none is named, to the standard
output.

The given number tells tail where to begin to copy the data. Numbers of the form +number
measure the starting point from the beginning of the file; those of the form -number
measure from the end of the file.

A specifier of blocks, characters, or lines (b, c. or 1. respectively) may follow the number; the
default is lines. If no number is specified, a default of -10 is assumed.

The -f option opens the tail of a file. and then displays new material as it is added to a file.
This command lets you watch a file as it is being built, such as by nrotI. Note that when
tail is invoked with this option, it does not exit; therefore. when you wish to exit, type the
interrupt character.

See Also
co0111UU1d.s,dd,egrep,head,sed

Notes
Because tail buffers data measured from the end of the file, large counts may not work.

tanO - Mathematics Function (libm)
Calculate tangent
#include <niath.h>
double tan(radlan) double radian;

tan calculates the tangent of its argument radian, which must be in radian measure.

Example
For an example of this function, see the entry for acos.

See Also
niatheniatics library, tanh()

Diagnostics
tan returns a very large number where it is singular, and sets errno to ERANGE.

tanhO - Mathematics Function (libm)
Calculate hyperbolic cosine
#include <niath.h>
double tanh(radlan) double radian;

tanh calculates the hyperbolic tangent of radian, which is in radian measure.

Example
For an example of this function, see the entry for cosh.

LEXICON

974 tape

See Also
mathematics library

Diagnostics
tanh sets errno to ERANGE when an overflow occurs.

tape - Device Driver
Magnetic tape devices

This section gives a general explanation of COHERENT's use of industry-standard half-inch.
nine-track magnetic tape. Exceptions or additional information may be found in sections of
this manual describing particular devices.

A tape volume contains files, each consisting of one or more records and terminated by a
tape mark. Two tape marks terminate the last file. Tape records may vary in length. but
cannot exceed 2 A 16 bytes (2 A 15 is more practical).

Like other block-oriented devices, tape units may be accessed through the system's cooked
interface or through the raw interface. On a cooked device, seeking to any byte offset and
reading in any number of bytes is possible. It is not possible to read beyond the tape mark
at the end of the current file. All records in the file must be 512 bytes long. except the last.
Write requests must be made in increments of 512 bytes. except the last. A cooked tape
may be mounted like a disk. but only as a read-only file system.

A raw device bypasses the buffer cache. so 1/0 occurs directly to or from the user's buffer.
One write request generates one tape record, and one read request returns exactly one
record. The number of bytes read may be less than expected. If the tape mark is read, a
count of zero is returned, but the system positions the tape at the start of the next tape file.
Seeking on a raw device is ignored, and mounting is not allowed.

A unit cannot be opened if it is off-line or already in use. If the write ring is absent, the unit
cannot be opened for writing. Closing the device has varying effects, depending on the
minor device opened and whether the device was opened for reading or writing. In the case
of reading, the tape is rewound; if the no-rewind option was specified, the tape advances to
the next file. In the case of writing, two tape marks are written at the current position and
the tape is rewound; if the no-rewind option was specified, two tape marks are written and
the tape is positioned between them. When you close a device that had been opened for
writing, the tape volume ends at the current position; data beyond this point are undefined.

The following device options exist, selected by prefixes to the device name:

h Read or write data at high density. The exact density depends on the drive model,
but 1600 BPI (high) and 800 BPI (low) are typical.

n Do not rewind on close.

r The device is raw.

Hard errors may occur during tape operation. They include detection of the end-of-tape
(EOT) reflector, reading an unexpectedly long record, or seeking a cooked tape into a tape
mark. After an error, no further operations may be performed on the unit until the program
closes the device and the operator rewinds the tape. Soft parity errors may arise due to dirt,
bad tape or misaligned heads. On writes, the driver attempts to place the record further
along the tape. On reads, the driver simply rescans the record. After several failures, the
driver announces a hard error.

Most utilities use generic device names, which are links to the actual device files
appropriate for the site.

LEXICON

Files
/dev/mt-Generic cooked tape device
I dev I nnt - Generic raw tape device

See Also
device drivers

Diagnostics
Drivers may report errors to the console.

Notes
Not every edition of COHERENT supports magnetic tape.

tar - Command
V7 tape archive manager
tar [crtux[0-7bflmvwU) [blocks] [archlve)jile ...

tar 975

tar is a utility that lets you read, write, and update archives in a machine-independent
format. Its name is an abbreviation for tape archive; however, tar can read/write output to
files and floppy disks. as well as to magnetic tape.

Before proceeding further, users should note that tar is an obsolete utility. The command
ustar should be used instead, especially if you wish to move archives from COHERENT to
other operating systems.

The first argument of the command line must contain exactly one directive character,
followed by zero or more option characters. file is the file to be written into or extracted
from the archive. lfjile is a directory. tar processes its contents recursively. For directives
that read an archive, the absence of afile argument tells tar to process every file in the
archive. For directives that write to an archive, the absence of afile argument tells tar to
process every file in the current directory.

The directives are as follows:

c Create a new archive. Overwrite the previous contents of the archive.

r Replace (append) the named files in the archive.

t Write a table of contents of the archive to the standard output.

u Update the archive by replacing the named files that are newer (mtlme larger) than any
version in the archive.

x Extract the named files from the archive. Overwrite identically names files. tar
extracts each version of each file, leaving the latest version at the end.

The options are as follows:

0-7 A single octal digit specifies a tape drive on which the archive may be found. tar
concatenates this digit to the default tape name /dev /mt to form the path name
accessed. This option, of course, is available only to COHERENT systems that support
a nine-track magnetic tape drive.

b The next argument is a number between one and 20, specifying how many blocks are
to be written in each archive. tar determines the blocking factor automatically on
input. When the blocking factor is not one, tar automatically writes its output to
device /dev/nnt, i.e .. the raw tape-drive device.

LEXICON

976 tar

f The next argument names the archive. If the argument is a hyphen '-', it signifies the
standard input for input directives and the standard output for output directives.

1 tar preserves links within the structure it writes into its archive, but breaks any links
across the boundary of the structure. This option requests that tar report all such
broken links.

m Ignore the mtlme for each extracted file. By default, tar restores the mtlme for each
extracted file.

v Verbose flag. If directive is t, the output for each file includes its mode, group id, user
id, size, and mtime, in addition to its path name. Otherwise, tar writes the directive
and the path name to the standard output for input directives or the standard error for
output directives as each file is processed.

w For each file to be processed, tar writes the directive and path name to the terminal
device, then reads a line from that device and acts on it as follows:

n Skip the file.
y Process the file.
x Exit immediately.

An empty response is treated as n, and end of file is treated as x. If a directory is
skipped, all its contents are skipped. If included, all its contents are processed with
this option.

U The version of tar found on some UNIX systems have following bug: when the blocking
factor is not one, the last few blocks of the last record written may be garbage. This
bug is described elsewhere by other symptoms. This option says that the tape was
created by the buggy program, so the trailing garbage should be ignored.

Examples
To tar the contents of directory piggy into file piggy .tar, use the command:

tar cf piggy.tar piggy

To tar files to a floppy disk, it is sufficient to have a floppy disk formatted with the
command fdformat. The floppy does not have to have a COHERENT file system on it. For
example, to tar directory stephen to a high-density, 5.25-inch. formatted floppy disk in
drive 0, use the following command:

tar cf /dev/fhaO stephen

Note that this permits you to tar only one archive per floppy disk. To read files from this
archive, use the command:

tar xf /dev/fhaO

Files
/dev/mt•- Default tape device
I dev I rmt• - Default tape device for blocking factor greater than one

See Also
commands, cpio, dump, link(), restor, stat(), ustar

Notes
Path names must be less than l 00 characters. The m option does not affect directories.
The only way to extract the Nth version of a file is with the w option.

LEXICON

technical information - tee 977

technical information - Overview
The LeXicon includes the following entries that describe technical aspects of COHERENT:

aliases .
ASCII
booting
byte ordering .
calling conventions
COHERENT.
data formats
data types
environ . .
errno
execution.
floppy disks .
harddisk ..
keyboard tables
man
memory allocation
misc
modem
modem control.
ms
MS-DOS ..
portability
printer.
rename.
security
signame
storage class
structure assignment
terminal
type checking
type promotion

See Also
Lexicon

tee - Command
Branch pipe output
tee I -a I I -i] [file ... J

. File of users· aliases

. ASCII table
How booting works
Machine-dependent order of bytes

Principles of the COHERENT system

. Process environment

. External integer for return of error status

. Program execution
Information about floppy disks
Information about hard disks
How to write a keyboard table
Manual macro package

. Archive of miscellaneous library functions

. Information about modems

. Information about controlling modems

. Manuscript macro package

. That other operating system

. Information about printers

. How to rename a file

. Array of names of signals

. Information about terminals

tee reads from standard input, usually a pipe, and writes to the standard output, usually a
pipe. tee also writes a copy of the input data to eachfile specified.

The -a flag tells tee to append data to eachfile, analogous to the shell construct ">>file".
Otherwise, it creates eachfile, analogous to the construct ">file".

The flag -i means ignore interrupts.

See Also
commands, ksh, sh

LEXICON

978 tempnamO - termcap

tempnamO - General Function (libc)
Generate a unique name for a temporary file
char •tempnam(directory, name);
char •directory, •name;

tempnam constructs a unique temporary name that can be used to name a file.

directory points to the name of the directory in which you want the temporary file written.
If this variable is NULL. tempnam reads the environmental variable TMPDIR and uses it for
directory. If neither directory nor TMPDIR is given, tempnam uses /tmp.

name points to the string of letters that will prefix the temporary name. This string should
not be more than three or four characters. to prevent truncation or duplication of temporary
file names. If name is NULL. tempnam sets it to t.

tempnam uses malloc to allocate a buffer for the temporary file name it returns. If all goes
well, it returns a pointer to the temporary name it has written. Otherwise, it returns NULL
if the allocation fails or if it cannot build a temporary file name successfully.

See Also
general functions, mktemp(), tmpnam()

Notes
tempnam is not described in the ANSI Standard. Programs that use it will not conform
strictly the Standard, and may not be portable to other compilers or environments.

TERM - Environmental Variable
Name the default terminal type
TERM=terminal type

The environmental variable TERM names the type of terminal that you are using. This
variable is read by every program that uses the termcap library. to ensure that the correct
entry in the file /etc/termcap is read when the program is invoked. You should set this
variable in your prome. to ensure that the system understands what type of terminal you
use. The file /etc/prome sets TERM to ansipc.

See Also
environmental variables, me, termcap

termcap - System Maintenance
Terminal-description language
I etc/termcap

termcap is a language for describing terminals and their capabilities. Terminal descriptions
are collected in the file /etc/termcap and are read by tgetent and its related programs to
ensure that output to a particular terminal is in a format that that terminal can
understand.

A terminal description written in termcap consists of a series of fields, which are separated
from each other by colons ':'. Every line in the description, with the exception of the last
line, must end in a backslash'\'. Tab characters are ignored. Lines that begin with a'#'
are comments. A termcap description must not exceed 1,024 characters.

The first field names the terminal. Several different names may be used, each separated b
a vertical bar 'I'; each name given, however, must be unique within the file /etc/termca
By convention, the first listed must be two characters long. The second name is the na
by which the terminal is most commonly known; this name may contain no blanks in

LEXICON

'

termcap 979

Other versions of the name may follow. By convention, the last version is the full name of
the terminal; here, spaces may be used for legibility. Any of these may be used to name
your terminal to the COHERENT system. For example, the name field for the VT-100
terminal is as follows:

dllvtlOOlvt-lOOlptlOOlpt-lOOidec vtlOO:\

Note that the names are separated by vertical bars 'I ', that the field ends with a colon, and
that the line ends with a backslash. Using any of these names in an export command will
make the correct terminal description available to programs that need to use it.

The remaining fields in the entry describe the capabilities of the terminal. Each capability
field consists of a two-letter code, and may include additional information. There are three
types of capability:

Boolean

Numeric

This indicates whether or not a terminal has a specific feature. If the field is
present, the terminal is assumed to have the feature; if it is absend, the terminal is
assumed not to have that feature. For example, the field

am:

is present, termcap assumes that the terminal has automatic margins, whereas if
that field is not present, the program using termcap assumes that the terminal
does not have them.

This gives the size of some aspect of the terminal. Numeric capability fields have
the capability code, followed by a '#' and a number. For example, the entry

co#80:

means that the terminal screen is 80 columns wide.

String capabilities
These give a sequence of characters that trigger a terminal operation. These fields
consist of the capability code, an equal sign'=', and the string.

Strings often include escape sequences. A "\E" indicates an <ESC> character; a
control character is indicated with a carat "' plus the appropriate letter; and the
sequences \b, \f, \n, \r, and \t are, respectively, backspace, formfeed, newline,
<return>, and tab.

An integer or an integer followed by an asterisk in the string (e.g .. 'Int*') indicates
that execution of the function should be delayed by Int milliseconds; this delay is
termed padding. Thus, deletion on lines on the Microterm Mime-2A is coded as:

dl=20*AW:

di is the capability code for delete, the equal sign introduces the deletion sequence,
20• indicates that each line deletion should be delayed by 20 milliseconds, and "W
indicates that the line-deletion code on the Mime-2A is <ctrl-W>.

The asterisk indicates that the padding required is proportional to the number of
lines affected by the operation. In the above example, the deletion of four lines on
the Mime-2A generates a total of 80 milliseconds of padding; if no asterisk were
present, however, the padding would be only 20 milliseconds, no matter how many
lines were deleted. Also, when an asterisk is used, the number may be given to one
decimal place, to show tenths of a millisecond of padding.

Note that with string capabilities, characters may be given as a backslash followed

LEXICON

980 termcap

by the three octal digits of the character's ASCII code. Thus, a colon in a capability
field may be given by \072. To put a null character into the string, use \200,
because termcap strips the high bit from each character.

Finally, the literal characters "'' and · \' are given by "\ A" and "\ \ ".

Capability Codes
The following table lists termcap's capability codes. Type indicates whether the code is
boolean, numeric, or string; a dagger 't' indicates that this capability may include padding,
and a dagger plus an asterisk "t•" indicates that it may be used with the asterisk padding
function described above.

Name Type Definition

ae stringt End alternate set of characters
al stringt• Add blank line
am boolean Automatic margins
as string+ Start alternate set of characters
be string Backspace character, if not AH
bs boolean Backspace character is AH
bt stringt Backtab
bw boolean Backspace wraps from column 0

to last column
cc string Command character in prototype

if it can be set at terminal
cd stringt• Clear to end of display
ce stringt Clear line
ch string+ Horizontal cursor motion
cl string+• Clear screen
cm stringt Cursor motion, both vertical and

horizontal
co number+ Number of columns
er stringt• <return>; default "M
cs stringt Change scrolling region (DEC

VTlOO only); resembles cm
CV string+ Vertical cursor motion
da boolean+ Display above may be retained
dB number Milliseconds of delay needed by bs
db boolean Display below may be retained
dC number Milliseconds of delay needed by er
de stringt• Delete a character
dF number Milliseconds of delay needed byff
di string+• Delete a line
dm string Enter delete mode
dN number Milliseconds of delay needed by nl
do string Move down one line
dT number Milliseconds of delay needed by tab
ed string Leave delete mode
ei string Leave insert mode; use :ei=:

if this string is the same as ic
eo string Erase overstrikes with a blank
ff string+• Eject hardcopy terminal page;

default AL
he boolean Hardcopy terminal
hd string Move half-line down, i.e., forward

1 /2 line feed)

LEXICON

termcap 981

ho string Move cursor to home position; use
if cm is not set

hu string Move half-line up, i.e., reverse
1 /2 line feed

hz string Cannot print tilde·-· (Hazeltine
terminals only)

le stringt Insert a character
if string Name of the file that contains is
Im string Begin insert mode; use :Im=:

if le has not been set
in boolean Nulls are distinguished in display
Ip stringt• Insert padding after each

character listed
is string Initialize terminal
k0-k9 string Codes sent by function keys 0-9
kb string Code sent by backspace key
kd string Code sent by down-arrow key
ke string Leave "keypad transmit" mode
kh string Code sent by home key
kl string Code sent by left-arrow key
kn number No. of function keys; default is 10
ko string Entries for for all other

non-function keys
kr string Code sent by right-arrow key
ks string Begin "keypad transmit" mode
ku string Code sent by up-arrow key
10-19 string Function keys labels if not f0-f9
u number Number of lines
11 string Move cursor to first column of

last line; use if cm is not set
ma string Map keypad-to-cursor movement for

vi version 2
mi boolean Cursor may be safely moved while

in insert mode
ml string Turn on memory lock for area of

screen above cursor
ms boolean Cursor may be safely moved while

in standout or underline mode
mu string Turn off memory lock
nc boolean <return> does not work
nd string Move cursor right non-destructively
nl stringt• Newline character; default is \n. Obsolete
ns boolean Terminal is CRT. but does not scroll
OS boolean Terminal can overstrike
pc string Pad character any character other than null
pt boolean Terminal's tabs set by hardware;

may need to be set with is
se string Exit standout mode
sf stringt Scroll forward
sg number Blank characters left by so or se
so string Enter standout mode
sr stringt Reverse scroll
ta stringt Tab character other than Al,

or used with character padding

LEXICON

982 termcap

tc string Similar terminal - must be
last field in entry

te string End a program that uses cm
ti string Begin a program that uses cm
UC string Underscore character and skip it
ue string Leave underscore mode
ug number Blank characters left by us or ue
ul boolean Terminal underlines but does not overstrike
up string Move up one line
us string Begin underscore mode
vb string Visible bell; may not move cursor
ve string Exit open/visual mode
vs string Begin open/visual mode
xb boolean Beehive terminal (fl=<esc>,

f2 =<crtl-C> l
xn boolean Newline is ignored after wrap
xr boolean <return> behaves like ce \r \n
XS boolean Standout mode is not erased by writing over it
xt boolean Tabs are destructive

The following is the termcap description of the Zenith Z-19 terminal. The meaning of each
field will be described:

kblh19lheathlh19blheathkitlheath-19lzl9lzenithlheathkit h19:\
:al=l*\EL:am:bs:cd=\EJ:ce=\EK:cl=\EE:cm=\EY%+ %+ :\
:co#BO:dc=\EN:dl=l*\EM:do=\EB:ei=\EO:ho=\EH:\
:im=\E@:li#24:mi:nd=\EC:as=\EF:ae=\EG:ms:pt:\
:sr=\EI:se=\Eq:so=\Ep:up=\EA:vs=\Ex4:ve=\Ey4:\
:kb=Ah:ku=\EA:kd=\EB:kl=\ED:kr=\EC:kh=\EH:kn#B:\
:kl=\ES:k2=\ET:k3=\EU:k4=\EV:k5=\EW:\
:16=blue:l7=red:l8=white:k6=\EP:k7=\EQ:k8=\ER:

The first field, which occupies line 1. gives the various aliases for this terminal. The
Heathkit H-19, which appears most prominently, was the home-kit version of the
commercially sold Z-19. The remaining fields mean the following:

:al= I *\EL: <esc>L adds new blank line; use

:am:
:bs:
:cd=\EJ:
:ce=\EK:
:cl:\EE:
:cm=\EY%+ %+:
:co#80:
:dc=\EN:\

:dl=l*\EM:
:do=\EB:
:ei:\EO:
:ho=\EH:
:im=\E@:

:li#24:
:mi:

one millisecond for each line added
Terminal has automatic margins
Backspace character is <ctrl>-H (the default)
<esc>J clears to end of display
<esc>K clears to end of line
<esc>E clears screen
Cursor motion (described later)
Screen has 80 columns
<esc>N deletes a character
(backslash indicates end of a line)
<esc>M deletes a line
<esc>B moves cursor down one line
<esc>O exits from insert mode
<esc>H moves cursor to home position
<esc>@ begins insert mode (note that
ic is set)
Terminal has 24 lines
Cursor may be moved safely while terminal

LEXICON

:nd=\EC:
:as=\EF:
:ae=\EG:\
:ms:

:pt:
:sr=\EI:
:se=\Eq:
:so=\Ep:
:up=\EA:
:vs=\Ex4:

:ve=\Ey4:\

:kb="h:
:ku=\EA:
:kd=\EB:
:kl=\ED:
:kr=\EC:
:kh=\EH:
:kn#8:\

:kl=\ES:
:k2=\ET:
:k3=\EU:
:k4=\EV:
:k5=\EW:\
:16=blue:
:17=red:
:18=white:
:k6=\EP:
:k7=\EQ:
:k8:\ER:

is in insert mode
<esc>C moves cursor right non-destructively
<esc>F begins set of alternate characters
<esc>G ends set of alternate characters
Cursor may be moved safely while terminal
is in standout and underline mode
Terminal has hardware tabs
<esc>I reverse-scrolls the screen
<esc>q exits standout mode
<esc>p begins standout mode
<esc>A moves the cursor up one line
<esc>x begins visual mode; insert
4 milliseconds of padding
when visual mode is begun
<esc>y ends Visual mode; insert
4 milliseconds of padding when visual
mode is ended
Backspace key sends <Ctrl>-H
Up-arrow key sends <esc>A
Down-arrow key sends <esc>B
Left-arrow key sends <esc>D
Right-arrow key sends <esc>C
Home key sends <esc>H
There are eight other keys on the
keyboard
Other key 1 sends <esc>S
Other key 2 sends <esc>T
Other key 3 sends <esc>U
Other key 4 sends <esc>V
Other key 5 sends <esc>W
Other key 6 is labeled "blue"
Other key 7 is labeled "red"
Other key 8 is labeled "white"
Other key 6 sends <esc>P
Other key 7 sends <esc>Q
Other key 8 sends <esc>R

termcap 983

Note that the last field did not end with a backslash; this indicated to the COHERENT
system that the termcap description was finished.

A terminal description does not have to be nearly so detailed. If you wish to use a new
terminal, first check the following table to see if it already appears by termcap. If it does
not. check the terminal's documentation to see if it mimics a terminal that is already in
/etc/termcap. and use that description, modifying it if necessary and changing the name
to suit your terminal. If you must create an entirely new description, first prepare a
skeleton file that contains the following basic elements: number of lines, number of
columns, backspace, cursor motion, line delete, clear screen, move cursor to home position,
newline, move cursor up a line, and non-destructive right space. For example, the following
is the termcap description for the Lear-Siegler ADM-3A terminal:

laladm3al3allsi adm3a:\
:am1bs1cd=AW:ce=AX:cm=\E=%+ %+ :cl=AZ:co#80:ho=AA:li#24:\
:nd=AL:up=AK:

LEXICON

984 termcap

Once you have installed and debugged the skeleton description, add details gradually until
every feature of the terminal is described.

Cursor Motion
The cursor motion characteristic contains prlntf-like escape sequences not used elsewhere.
These encode the line and column positions of the cursor. whereas other characters are
passed unchanged. If the cm string is considered as a function. then its arguments are the
line and the column to which the cursor is to move; the % codes have the following
meanings:

%d Decimal number. as in prlntf. The origin is O.

%2 Two-digit decimal number. The same as %2d in prlntf.

%3 Three-digit decimal number. The same as %3d in prlntf.

%. Single byte. The same as %c in prlntf.

%+n Add n to the current position value. n may be either a number or a character.

%>nm If the current position value is greater than n+m; then there is no output.

%r Reverse order of line and column. giving column first and then line. No output.

%1 Increment line and column.

%% Give a % sign in the string.

%n Exclusive or line and column with 0140 (Datamedia 2500 terminal only).

%B Binary coded decimal (16 • (n/10))+(n% 10). No output.

%D Reverse coding (n-(2•(n%16)). No output (Delta Data terminal only).

To send the cursor to line 3, column 12 on the Hewlett-Packard 2645, the terminal must be
sent <esc>&al2c03Y padded for 6 milliseconds. Note that the column is given first and
then the line, and that the line and column are given as two digits each. Thus, the cm
capability for the Hewlett-Packard 2645 is given by:

:cm=6\E&%r%2c%2Y:

The Microterm ACT-N needs the current position sent preceded by a <Ctrl-T>. with the line
and column encoded in binary:

:cm=AT%.%.1

Terminals that use %. must be able to backspace the cursor (bs or be) and to move the
cursor up one line on the screen (up). This is because transmitting \t, \n, \r, or <ctrl-D>
may have undesirable consequences or be ignored by the system.

Similar Terminals
If your system uses two similar terminals. one can be defined as resembling the other. with
certain exceptions. The code tc names the similar terminal. This field must be last in the
termcap entry. and the combined length of the two entries cannot exceed 1,024 characters.
Capabilities given first over-ride those in the similar terminal. and capabilities in the similar
terminal can be cancelled by xx@ where xx is the capability. For example, the entry

hnl2621nllHP 2621nl1ks@1ke@1tc=2621

defines a Hewlett-Packard 2621 terminal that does not have the ks and ke capabilities, and
thus cannot turn on the function keys when in visual mode.

LEXICON

terminal 985

Initialization
A terminal initialization string may be given with the is capability; if the string is too long. it
may be read from a file given by the if code. Usually. these strings set the tabs on a
terminal with settable tabs. If both is and if are given, is will be printed first to clear the
tabs, then the tabs will be set from the file specified by if. The Hewlett-Packard 2626 has;

:is=\E&j@\r\E3\r:if=/usr/lib/tabset/stdcrt:

Terminals Supported
The following table lists the terminals described in /etc/termcap. and an abbreviated name
for each.

Name

act5.
adm3a
adm31
ansipc
cohibm.
dos ..
hl510
hl9 ..
hl9a .
mimel
mime2a
mime3a
qvtl02.
qume5
tvi912
tvi920
tvi925
vt52 ..
vtlOO.
vtlOOn.
vt100s.
vtlOOw.
wy50 ..

Example

Terminal

. Microterm Act V

. Lear-Siegler ADM3A

. Lear-Siegler ADM31

. ATCOHERENTconsole

. PC COHERENT console

. DOS 3.1 ANSI.SYS

. Hazeltine 151 O

. Heathkit H-19

. Heathkit H-19 in ANSI

. Microterm Mimel

. Microterm Mime2a

. Microterm Mime3a

. Qume QVT-102

. Qume Sprint 5

. Televideo 920

. Televideo 920

. Televideo 925

. DEC VT-52

. DECVT-100

. DEC VT-100 without initialization

. DEC VT-100, 132 columns, 14 lines

. DEC VT-100, 132 columns, 24 lines

. Wyse 50

For an example of using tenncap definitions within a C program to perform terminal­
independent 1/0. see the Lexicon article on terminal-independent operations.

Files
I etc/termcap

See Also
modemcap, system maintenance, tenninal, terminal-independent operations

terminal - Technical Information
This article describes how you can hook up a terminal to your COHERENT system via a
serial port. It also discusses common problems that arise with this procedure, as diagnosed
daily by the technical support staff at Mark Williams Company. For information on
connecting a modem to your computer's serial port. see the article modem.

LEXICON

986 terminal

Hooking Up a Terminal to COHERENT
This process is straightforward, but can be confusing if you overlook any details. Typical
problems include send/receive confusion, baud rate confusion, and shell/no shell
confusion.

Send/Receive Confusion
A serial connection between your computer and a terminal requires at least three wires: one
each for pins 2, 3, and 7. These pins, respectively. control send (TD), receive (RD), and
signal-ground (Gnd or SG). These pin numbers correspond to the 25-pin "DB-25"
connectors used on most equipment. If your system has the AT-style nine-pin "DB-9"
connectors, you will need to wire to the corresponding signals. See the Lexicon entry for
RS-232 for details of the pin-outs for these two connectors.

When hooking up a terminal to a serial port using a three-wire connection, you must cross
pins 2 and 3, so that each device's send pin talks to the other device's receive pin. You can
plug a device called a "null modem'" between the cable and the serial port. to do this
automatically. Unless someone has sat down and taught you how to solder connectors, we
strongly urge you to purchase the necessary cable and null modem at your local computer
store or electronics shop.

Note that the only symptom of a problem in the cable is that nothing appears on your
terminal when you type.

Baud-Rate Confusion
The terminal and the computer must speak to each other at the same baud rate. A typical
symptom of baud-rate confusion is garbage characters on the screen. When the wiring is
wrong, you see nothing; when the baud rate is wrong, you see something, but nothing
meaningful. You can fix baud-rate problems by using the command stty to reset the baud
rate on the port, or resetting the baud rate on the terminal. For directions on how to reset
the baud rate for a port. see the Lexicon entry for stty.

The Old Shell Game
Before a terminal is useful to you, you must enable the port into which it is plugged.
Enabling a port means that the COHERENT system creates a shell for that port: this, in
turn, means that COHERENT prints a login prompt on the device plugged into that port,
and reads and processes interactively commands that are entered from that port. The
COHERENT system also restricts permissions on all enabled serial ports, so that only the
superuser root can read and write to the port. This prevents other users who may be using
the system from accessing the serial port.

Note that not all ports need be enabled: printer ports, for example, should not be enabled;
nor should you enable any port whose device you want to accept data passively.

When you boot the COHERENT system, it reads system file /etc/ttys and creates a shell
for each serial port that needs one. One way to enable a port is to log in as the superuser
root, then use a text editor to change the port's entry in /etc/ttys, as described its Lexicon
article. Finally, typing the command

kill quit 1

forces COHERENT to re-read /etc/ttys and so create a shell for the port. Note that doing
this will ensure that the port is re-enabled every time you boot.

A better way to enable a port is to use the command enable, as described in its Lexicon
article. For example, to put up a shell on COM port /dev/comlr, log in as the superuser
root and type the command:

LEXICON

terminal-independent operations 987

/etc/enable comlr

Exiting Raw Mode
A terminal is in cooked mode. In cooked mode, the tty driver interprets and correctly
processes such predefined characters as the end-of-file character or the quit character. In
raw mode, however, processing of such characters is turned off; and in general the terminal
will behave bizarrely. Raw mode is used by programs that do not want the tty driver to
interpret characters; for example. a program that uses a tty to transmit a binary to another
machine does not want the tty driver to be interpreting the binary information being passed
through it.

Occasionally. a program will exit abruptly and leave the terminal in raw mode. To return to
cooked mode, use the command <ctrl-J> stty sane <ctrl-J>. This invokes the command
stty. which lets you manipulate terminal settings. to restore the previous cooked state. See
the Lexicon entry on stty for details on raw and cooked modes; this article also describes
the options of this most useful command.

See Also
device drivers, hs, modem, RS-232, sgtty, stty, technical information, termcap, ttys

Notes
One final bit of hard-won wisdom: once you have something working. write down what you
did, and store it in a place where you won't lose it. Note especially what connectors are
where and how they have been cabled together. It makes life easier just knowing that you
are looking for a female-to-female cable instead of male-to-female or male-to-male. If you
know whether to insert a null modem. you are even better off.

COHERENT supports multi-port serial cards as well as COM ports 1 through 4. See the
Lexicon entry on device drivers for a list of the devices that COHERENT supports.

terminal-independent operations - Overview
The COHERENT system includes a set of functions, found in the library /usr/llb/llbterm.a.
that extract and use the descriptions stored in the file /etc/termcap. These functions
return information about how a given terminal functions; thus, they allow a program to
address any number of different terminals correctly, without having to change source code
or recompile.

The following functions perform terminal-independent operations:

tgetent() Read the appropriate termcap entry.

tgetflag() Check if a given Boolean capability is present in the terminal's entry.

tgetnum()

tgetstr()

tgoto()

tputs()

Return the value of a numeric termcap feature.

Read and decode a termcap string feature.

Read and decode a termcap cursor-addressing string.

Read and decode the leading padding information of a termcap string
feature.

See the Lexicon entry for each function for more details on its operation.

The external variable ospeed is the output speed to the terminal as encoded by stty. The
external variable PC is a padding character from the pc capability if a null (<crtl-@>) is not
appropriate.

LEXICON

988 terminal-independent operations

Example
The following gtves an example of using the termcap functions to perform terminal­
independent operation.

#include <stdio.h>

static char *CM, *SO, *SE,
static int rows, cols;
static int am;
static int errflag;
static char *ptr;
static char *tv_stype;

extern char *tgoto();
extern char *tgetstr();
extern int tgetflag () ;
extern int tgetnum();
extern void tputs();
extern char PC;

/*

*CL;

/*
/*
/*
/*
/*
/*

termcap cursor position command */
get string code from termcap */
get boolian flag from termcap */
get numeric code from termcap */
termcap put data command */
termcap's pad character */

* Get a required termcap string or exit with a message.
*/

static char *
qgetstr(ref)
char *ref;
{

}

/*

register char *tmp;

if ((tmp = tgetstr(ref, &ptr)) ==NULL) {

}

printf("/etc/termcap terminal %s must have a %s= entry\n",
tv_stype, ref);

errflag = 1;

return (tmp);

* Get required termcap information for this terminal type.
*/

static void
tcapopen()
{

LEXICON

extern char *getenv(), *realloc();
char *tcapbuf;
char tcbuf[l024]; /*this must hold the whole tml entry*/
char *p;

}

terminal-independent operations 989

/* set up termcap type */
if ((tv_stype = getenv("TERM")) == NULL) {

printf("Environment variable TERM not defined\n");
exit(l);

}

if (tgetent(tcbuf, tv_stype) I= 1) {
printf("Terminal type %snot in /etc/termcap\n", tv_stype);
exit(l);

}

/* get far too much and shrink later */
if ((ptr = tcapbuf = malloc(1024)) ==NULL) {

printf ("out of space\n");
exit(l);

}

/* get termcap entries for later use */
CM qgetstr("cm"); /* this string used by tgoto() */
CL qgetstr ("cl") ; /* this string used to clear screen
so qgetstr("so"); /* this string used to set standout

*/
*/

SE qgetstr("se"); /* this string used by clear standout */
if (errflag) /* set if any missing entries */

exit(l);

/* set termcap's pad char */
PC = (((p = tgetstr("pc", &ptr)) == NULL) ? 0 : *p);

if (tcapbuf I= realloc(tcapbuf, (unsigned)(ptr - tcapbuf))) {
printf("Buffer not shrunk in place!\n");
exit(l);

}

if ((cols = tgetnum("co")) < O) /* Get rows and columns *I
cols = 80;

if ((rows = tgetnum("li")) > O)
rows = 24;

am= tgetflag("am"); /*automatic margins ? */

/*
* output char function.
*/

static void
ttputc(c)
{

fputc(c, stdout);
}

LEXICON

990 terminal-independent operations

/*
* output command string, set padding to one line affected.
* use ttputc as character output function. Use only for
* termcap created data not your own strings.
*/

void
putpad(str)
char *str;
{

tputs(str, 1, ttputc);
}

/*
* Move cursor.
*/

void
move(col, row)
{

putpad(tgoto(CM, col, row));
}

/*
* Demonstrate termcap.
*/

main()
{

}

Files

tcapopen();

putpad(CL);

move (3 0, 5) ;
putpad(SO);
printf("Termcap Demo");
putpad(SE);

move(O, 7);

/* clear the screen */

/* standout mode */

/* end standout mode */

printf("This terminal has %d columns and %d rows.", cols, rows);

if (am) {

}

move(O, 8);
printf("Automatic margins.");

move(O, rows); /*quit at bottom of screen*/
exit(O);

/etc/termcap-Terminal capabilities data base
/usr/lib/libterm..a- Function library

LEXICON

termio.h - test 991

See Also
libraries, stty, termcap, tgetent(), tgettlag(), tgetnum(), tgetstr(), tgoto(), tputs()

termio.h - Header File
Definitions used with terminal input and output
#include <termio.h>

termio.h defines structures and constants used by functions that control terminal input
and output.

See Also
header mes, termio

test - Command
Evaluate conditional expression
test expression ...

test evaluates an expression, which consists of string comparisons, numerical comparisons,
and tests of file attributes. For example, a test command might be used within a shell
command file to test whether a certain file exists and is readable. The logical result (true or
false) of the expression is returned by the command, for use by a shell construct such as if.

expression is constructed from the following elements, which are true if the given condition
holds and false if not:

expl -a exp2

-bfile

-cfile

-dfile

file 1 -effile2

nl -eq n2

-ffile

-gfile

nl -ge n2

nl -gt n2

-kfile

-Lfile

nl -le n2

nl -lt n2

-n string

nl -ne n2

filel -ntfile2

expl -o exp2

Both expressions expl and exp2 are true.

file is a block-special device. ksh only.

.file is a character-special file. ksh only.

.file exists and is a directory.

.ftlel is the same file as.ft1e2. ksh only.

Numbers nl and n2 are equal.

.file exists and is not a directory.

File mode has setgid bit. ksh only.

Number nl is greater than or equal to n2.

Number nl is greater than n2.

File mode has sticky bit. ksh only.

File is a symbolic link. ksh only.

Number nl is less than or equal to n2.

Number nl is less than n2.

string has nonzero length.

Numbers nl and n2 are not equal.

.ftlel is newer thanfi1e2. ksh only.

Either expression expl or exp2 is true. -a has greater precedence than -o.

LEXICON

992 test

fllel -otflle2 filel is older thanfile2. ksh only.

-pfile file is a named pipe. ksh only.

-rflle

-sflle

-t {fd]

-uflle

-wflle

-xflle

-z string

string

file exists and is readable.

file exists and has nonzero size.

fd is the file descriptor number of a file which is open and a terminal. If no
fd is given, it defaults to the standard output (file descriptor I).

File mode has setuid set. ksh only.

file exists and is writable.

file exists and executable. ksh only.

string has zero length (is a null string).

string has nonzero length.

strlngl = strlng2
string 1 is equal to strlng2.

! exp Negates the logical value of expression exp.

strlngl != strlng2

(exp)

Example

string 1 is not equal to string2.

Parentheses allow expression grouping.

The following example uses the test command to determine whether a file is writable.

if test ! -w /dev/lp
then

echo The line printer is inaccessible.
fi

Under COHERENT, the command Tis linked to test. If invoked as '[', test checks that its
last argument is ']'. This allows an alternative syntax: simply enclose expression in square
brackets. For example, the above example can be written as follows:

if [I -w /dev/lp]
then

echo The line printer is inaccessible.
fi

For a more extended example of the square-bracket syntax, see sh.

See Also
commands, expr, find, if, ksh, sh, while

Notes
The Korn shell's version of this command is based on the public-domain version written by
Erik Baalbergen and Arnold Robbins.

LEXICON

tgetentO - Terminal-Independent Operation
Read termcap entry
int tgetent(bp, name)
char •bp, •name;

tgetentO - tgetnumO 993

tgetent is one of a set of functions that help COHERENT to perform terminal-independent
operations. It extracts the entry from file /etc/tenncap for the terminal name and writes it
into a buffer at address bp. bp should be a character buffer of 1.024 bytes and must be
retained through all subsequent calls to the other functions. It returns -1 if it cannot open
/etc/termcap. zero if the terminal name given does not have an entry. and one upon a
successful search.

tgetent first looks in the environment to see if the termcap variable had already been set.
If it finds that the variable termcap has been set, that the value does not begin with a slash.
and that the terminal type name in the tenncap variable is the same as that in the
environment variable TERM. then tgetent uses the termcap string instead of reading the
file /etc/termcap. However. if the tenncap string does begin with a slash, then it is used
as the path name of a terminal-capabilities file other than /etc/tenncap. This can speed
entry into programs that call tgetent, and can be used to help debug new terminal
descriptions.

Files
/etc/termcap-Terminal capabilities data base
/usr/llb/llbterm.a- Function library

See Also
termcap, terminal-independent operation

tgetflagO - Terminal Independent Operation
Get termcap Boolean entry
int tgetflag(name)
char •name;

tgetflag is one of a set of functions that help COHERENT to perform terminal-independent
operation. It returns one if the requested Boolean capability name is present in the
terminal's tenncap entry. zero if it is not.

Files
/etc/termcap-Terminal capabilities data base
/usr/llb/llbterm.a- Function library

See Also
termcap, terminal-independent operation

tgetnumO - Terminal-Independent Operation
Get termcap numeric feature
int tgetnum(name)
char •name;

tgetnum is one of a set of functions that permit the COHERENT system to perform
terminal-independent operations. It returns the value of the numeric feature name, as
defined in the terminal's termcap entry. It returns -1 if the feature is not present in the
terminal's entry.

LEXICON

994 tgetstrO - tickO

Files
/etc/termcap-Terminal capabilities data base
/usr/llb/libterm.a- Function library

See Also
termcap, terminal-independent operations

tgetstrO - Terminal-Independent Operation
Get termcap string entry
char •tgetstr(name, area)
char •name, ••area:

tgetstr is one of a set of functions that help COHERENT to perform terminal-independent
operations. It reads the string value of feature name from the terminal's termcap
description, and writes it into the buffer at address area. It also advances the value of the
pointer to area.

tgetstr decodes the abbreviations for the fields used in the termcap entry, except for
padding and for cursor-addressing information.

Files
/etc/termcap-Terminal capabilities data base
/usr/lib/llbterm.a- Function library

See Also
termcap, terminal-independent operation

tgotoO - T erminal-1 ndependent Operation
Read/interpret termcap cursor-addressing string
char •tgoto(cm, destcol, destline)
char •cm: int scrcol, scrline;

tgoto is one of a set of funtions that permit COHERENT to perform terminal-independent
operations. It decodes a cursor-addressing string from the cm termcap feature, and writes
it onto the screen, at column scrcol and line destline. tgoto uses the external variables UP
(from the up feature) and BC (if be is given rather than bs) if it is necessary to avoid placing
\n, <ctrl-D>, or <ctrl-@> into the returned string. Programs calling tgoto should turn off
the XTABS bits, as tgoto may write a tab. If a'%' sequence is given that is not understood,
tgoto returns "OOPS".

Files
/etc/termcap-Terminal capabilities data base
/usr/llb/libterm.a- Function library

See Also
termcap, terminal-independent operation

tickO - System Call
Get time
long tick()

tick returns the number of clock ticks since system startup. The number of clock ticks per
second is set by the manifest constant HZ. which is defined in header file const.h. At
present. there are 100 ticks per second.

LEXICON

time - time 995

See Also
alarm(), alann2(), system calls

time - Overview
COHERENT includes a number of routines that allow you to set and manipulate time, as
recorded on the system's clock, into a variety of formats. These routines should be
adequate for nearly any task that involves temporal calculations or the maintenance of data
gathered over a long period of time.

All functions, global variables, and manifest constants used in connection with time are
defined and described in the header files time.hand timeb.h.

The COHERENT system includes the following functions to manipulate time:

asctime
ctime
ftime
gm time
local time
settz
time

Convert time structure to ASCII string
Convert system time to an ASCII string
Get the current time from the operating system
Convert system time to calendar structure
Convert system time to calendar structure
Set local time zone
Get current time

To print out the local time, a program must perform the following tasks: First, read the
system time with time. Then, it must pass time's output to localtime, which breaks it
down into the tm structure. Next, it must pass localtime's output to asctime. which
transforms the tm structure into an ASCII string. Finally, it must pass the output of
asctime to printf, which displays it on the standard output device. See the entry for
asctime for an example of such a program.

Example
For an example of time functions, see the entry for asctime.

See Also
Libraries

time - Command
Time the execution of a command
time [command]

time invokes the given command with any arguments provided. Upon termination, time
prints the elapsed real time, CPU time in the system, and CPU time in the user program on
the standard error output.

If no command is given, time simply invokes date to print the current time of day.

See Also
commands,date,ps,times

Diagnostics
If the command terminates abnormally, the reason is printed.

LEXICON

996 time.h - timeout.h

time.h - Header File
Give time-description structure
#include <time.h>

time.h is a header file that contains descriptions and declarations for elements used to
manipulate system time under COHERENT.

See Also
header files, time

timeO - Time Function (libc)
Get current time
#include <time.h>
#include <sys/types.h>
time_t time(tp) time_t •tp;

time reads and returns the current system time. COHERENT defines the current system
time as the number of seconds since January I. 1970, OhOOmOOs GMT.

tp points to a data element of the type time_t, which is defined in the header file types.has
being equivalent to a long. If Ip is initialized to a value other than NULL, then time
attempts to write the system time into the address to which Ip points. If. however. Ip is
initialized to NULL. then time returns the current system time but does not attempt to
write it anywhere.

Example
For an example of this function, see the entry for asctime.

See Also
date, ftime, time (overview)

timeb.h - Header File
Declare timeb structure
#include <sys/timeb.h>

The header file timeb.h declares the structure timeb, which is used by the function ftime
to return time information.

See Also
ftime(), header files, time

timef.h - Header File
Definitions for user-level timed functions
#include <timef.h>

timef.h defines structures and constants used by user-level timed functions.

See Also
header files

timeout.h - Header File
Define the timer queue
#include <timeout.h>

timeout.h defines the timeout queue. The timeout queue can, as its name implies, be used
to call a function when a process has "timed out".

LEXICON

timesO - times 997

See Also
header mes

timesO - System Call
Obtain process execution times
#include <sys/times.h>
#include <sys/ const.h>
int times(tbp)
struct tbuffer •tbp:

times reads CPU time information about the current process and its children, and writes it
into the structure pointed to by tbp. The structure tbufrer is declared in the header file
sys/times.h, as follows:

struct tbuffer {

};

long tb_utime;
long tb_stime;
long tb_cutime;
long tb_cstime;

/* process user time */
/* process system time */
/* childrens' user times */
/* childrens' system times */

All of the times are measured in basic machine cycles, or HZ, which may be obtained from
the header file sys/const.h. Under AT COHERENT, HZ is 100.

The childrens' times include the sum of the times of all terminated child processes of the
current process and of all of their children. The user time represents execution time of user
code, whereas system time represents system overhead, such as executing system calls,
processing signals, and other monitoring functions.

Files
<sys/times.h>
<sys/ const.h>

See Also
acctQ, const.h, ftime(), system calls, time()

times - Command
Print total user and system times
times

times prints the total elapsed user time and system time for the current shell and all its
children. It gives each time in minutes, seconds and tenths of seconds. For example,

lmll. Ss lm35. Ss

indicates a total user time of 1 minute 11.8 seconds, and a total system time of 1 minute
35.8 seconds.

The shell executes times directly.

See Also
commands, ksh, time, sh

LEXICON

998 times.h -TIMEZONE

times.h - Header File
Definitions used with times() system call
#include <times.h>

times.h defines the structure tbutler. which is used to implement the times system call.

See Also
header mes, times()

TIMEZONE - Environmental Variable
Time zone information
TIMEZONE=standard:q[f set[:dayltg ht: date :date :hour:mlnutes]

TIMEZONE is an environmental parameter that holds information about the user's time
zone. This information is used by COHERENT's time routines to construct their description
of the current time and day.

To set the TIMEZONE parameter. use the following command:

export TIMEZONE=[description]

where [description J is the string that describes your time zone. What this string
consists of will be described below. Most users write this command into the file .profile. so
that TIMEZONE is set automatically whenever they log onto the COHERENT system.

COHERENT's installation procedure creates file /etc/timezone, which sets TIMEZONE.
This file is executed by /etc/profile when each user logs in. Thus, you must set the
TIMEZONE in your .profile only if it differs from the system's TIMEZONE as set in
/etc/timezone. This would be necessary if, for example, a user in New York were to
regularly login on a system in Chicago.

The Description String
A TIMEZONE description string consists of seven fields that are separated by colons. Fields
1 and 2 must be filled; fields 3 through 7 are optional.

Field 1 gives the name of your standard time zone. Field 2 gives the time zone's offset from
Greenwich Mean Time in minutes. Offsets are positive for time zones west of Greenwich
and negative for time zones east of Greenwich. For example, users in Chicago set these
fields as follows:

TIMEZONE=CST:360

CST is an abbreviation for Central Standard Time, that area's time zone; and 360 refers to
the fact that Chicago's time zone is 360 minutes (six hours) behind that of Greenwich.

Field 3 gives the name of the local daylight saving time zone. In Chicago, for example, this
field would be set as follows:

TIMEZONE=CST:360:CDT

CDT is an abbreviation for Central Daylight Time. The absence of this field indicates that
your area does not use daylight saving time.

Fields 4 and 5 specify the dates on which daylight saving time begins and ends. If field 3 is
set but fields 4 and 5 are not, changes between standard time and daylight saving time are
assumed to occur at the times legislated in the United States: at 2 A.M. standard time on
the first Sunday in April, and at 2 A.M. daylight saving time on the last Sunday in October.

LEXICON

tmpnamO 999

Fields 4 and 5 each consist of three numbers separated by periods. The first number
specifies which occurrence of the day in the month marks the change, counting positive
occurrences from the beginning of the month and negative occurrences from the the end of
the month. The second number specifies a day of the week, numbering Sunday as one.
The third number specifies a month of the year, numbering January as one. For example,
in Chicago fields 4 and 5 are set to the following:

TIMEZONE=CST13601CDT11.1.4:-1.1.10

If the first number in either field is set to zero, then the last two numbers are assumed to
indicate an absolute date. This is done because some countries switch to daylight saving
time on the same day each year. instead of a given day of the week.

Finally. fields 6 and 7 specify the hour of the day at which daylight saving time begins and
ends, and the number of minutes of adjustment. In Chicago, these are set as follows:

TIMEZONE=CST:360:CDT:l.1.4:-1.1.10:2:60

The '2' of field 6 indicates that the switch to daylight savings time occurs at 2 A.M. The "60"
of field 7 indicates that daylight savings time changes the local time by 60 minutes.
Although 60 minutes is the standard change, some regions of the world shift by 30, 45, 90,
or 120 minutes; the last shift is also called "double daylight saving time".

For an example of this variable's use in a program, see the entry for asctime.

See Also
environmental variables, time (overview)

Notes
For those requiring more information on this subject, much research has been performed by
astrologers. See Time Changes In the World, compiled by Doris Chase Doane (three
volumes, Hollywood, California, ProfessionalAstrologers, lnc .. 1970).

tmpnamO - General Function (libc)
Generate a unique name for a temporary file
#include <stdio.h>
char •tmpnam(name);
char•name;

tmpnam constructs a unique name for a file. The names returned by tmpnam generally
are mechanical concatenations of letters, and therefore are mostly used to name temporary
files, which are never seen by the user. A file named by tmpnam does not automatically
disappear when the program exits. You must explicitly remove it before the program ends if
you want it to disappear.

name points to the buffer into which tmpnam writes the name it generates. If name is set
to NULL, tmpnam writes the name into an internal buffer that may be overwritten each
time you call this function.

tmpnam returns a pointer to the temporary name. Unlike the related function tempnam,
tmpnam assumes that the temporary file will be written into directory /tmp and builds the
name accordingly.

Example
For an example of this function. see execve.

LEXICON

1000 tolowerO

See Also
general functions, mktemp(), STDIO, tempnam()

Notes
If you want the file name to be written into buffer. you should allocate at least L_tmpnam
bytes of memory for it; L_tmpnam is defined in the header stdio.h. Under COHERENT, it is
64 characters long.

tolowerO - ctype Macro
Convert characters to lower case
#include <ctype.h>
int tolower(c) int c;

tolower converts the letter c to lower case. tolower returns c converted to lower case.

Note that tolower is not guaranteed to work correctly if handed anything other than an
upper-case character, that is, a character for which isupper() returns true.

Example
The following example demonstrates tolower and toupper. It reverses the case of every
character in a text file.

#include <ctype.h>
#include <stdio.h>

main ()
{

}

FILE *fp;
int ch;
int filename(lOO];

printf("Enter name of file to use:");
fflush (stdout) ;
gets(filename);

if ((fp = fopen(filename,"r")) !=NULL) {
while ((ch= fgetc(fp)) != EOF) {

}
} else

if (islower(ch))
putchar(toupper(ch));

else if (isupper(ch))
putchar(tolower(ch));

else
putchar(ch);

printf("Cannot open %s.\n", filename);

See Also
ctype, toupper()

LEXICON

touch - Command
Update modification time of a file
touch [-c]file ...

touch - tr 1001

COHERENT keeps track of when each file was last modified. touch changes the
modification time of eachjlle to the current time. but does not modify its contents. By
default, touch createsjlle if it does not already exist; the -c flag suppresses this.

See Also
commands, make

toupperO - ctype macro
Convert characters to upper case
#include <ctype.h>
int toupper(c) int c;

toupper is a macro that converts the letter c to upper case and returns the converted
character.

Note that toupper is not guaranteed to work correctly if it is passed something other than a
lower-case character, that is, any character for which !slower() returns true.

Example
For an example of this routine, see the entry for tolower.

See Also
ctype, tolower()

tputsO - Terminal-Independent Operation
Read/decode leading padding information
tputs(cp, ajfcnt, outc)
register char •cp; int ajfcnt; int c•outc)();

tputs is one of a set of functions that permit COHERENT to perform terminal-independent
operations. It decodes the leading padding information of the string name. ajfcnt is the
number of lines affected by the operation, and is set to one if it is not applicable. outc is a
routine called to write each character.

Files
/etc/termcap-Terminal capabilities data base
/usr/lib/llbterm.a- Function library

See Also
termcap, terminal-independent operation

tr - Command
Translate characters
tr [-eds] strlngl [strtng2]

tr reads characters from the standard input, possibly translates each to another value or
deletes it, and writes to standard output.

Each specified string may contain literal characters of the form a or \b (where b is non­
numeric), octal representations of the form \ooo (where o is an octal digit), and character
ranges of the form X-Y. tr rewrites each string with the appropriate conversions and range
expansions.

LEXICON

1002 trap

If an input character is in strlngl. tr outputs the corresponding character of strlng2. If
strlng2 is shorter than string 1, the result is the last character in strlng2.

The following flags control how tr translates characters:

-c Replace string 1 by the set of characters not in string 1.

-d Delete characters in string 1 rather than translating them.

-s The "squeeze" option: map a sequence of the same character from string 1 to one output
character.

Example
The following example prints all sequences of four or more spaces or printing characters
from inflle:

tr -cs ' --' '\12' <infile I grep ...•

Here strlngl is the range from <space> to '-', which includes all printing characters.
Because this example uses the flags -cs, tr maps sequences of nonprtnting characters to
newline (octal 12).

See Also
ASCII, commands, ctype, sed

trap - Command
Execute command on receipt of signal
trap [command) [n ...)

trap instructs the shell to execute the given command when the shell receives signal n or
any other signal in the optional list. If the command is omitted, trap resets traps for the
given signals to the original values. If the command is a null string (i.e., a string that
consists only of one null character), the shell ignores the given signals. If n is zero, the shell
executes the specified command when it exits. When it is invoked with no arguments, trap
prints the signal number and command for each signal on which a trap is set.

The shell executes trap directly.

Example
The following example takes two files and outputs only those lines which are the same.

#If input only one file-name then simply "cat".
if [$# = 1]; then

cat $1
exit 0

#If input two file-names - Ok, else "Usage".
else

fi

if [$# != 2]; then

fi

echo "Usage: cmn filel [file2]"
exit 1

TMP is original name of temporary file (/tmp/temp_(pid)
TMP=/tmp/temp_$$

LEXICON

Temporary file has to be removed
trap 'rm $TMP; exit l' 1 2 9

troff

Difference between "filel" and "difference between filel and file2"
is the common strings "filel" and "file2"
The strings that are in "filel" and absent in "file2" print in TMP.
diff $1 $2 \ sed -n -e "s/"< /Ip" > $TMP

The strings that are in "filel" and absent in TMP print in stdout.
diff $1 $TMP \ sed -n -e "s/"< //p"

Remove temporary file
rm $TMP

See Also
commands, ksh, sh, signal

troff - Command
Extended text-formatting language
troff [option ...] ifile ...]

1003

The command troff is the COHERENT typesetter and text-formatting language. It performs
typeset-quality text formatting. suitable for printing on either the Hewlett-Packard LaserJet
II or III printers, or on any printer for which the Postscript language has been implemented.

troff Input
troff processes each given file, or the standard input if none is specified, and prints the
formatted result on the standard output. The input must consist of text with formatting
commands embedded within it.

troff provides a full suite of commands that set line length. page length and page offset.
generate vertical and horizontal motions, indentation, fill and adjust output lines, and
center text. The great flexibility of troff lies in its acceptance of user-defined macros to
control almost all higher-level formatting. For example, the formation of paragraphs. header
and footer areas. and footnotes must all be implemented by the user via macros.

troff uses a supeerset of the commands and syntax used by nroff, the other COHERENT
text-formatter: files prepared for the latter usually can be processed through the former
without requiring any changes. troff differs from nroff in that nroff can perform only
monospaced formatting. whereas troff can handle multiple fonts of type, both monospaced
and proportionally spaced. It lets you load font-width tables dynamically. so you can use
whatever fonts you have loaded into your printer at a given time. troff also lets you move
about the page in increments other than sixths of an inch vertically or tenths of an inch
horizontally.

troff produces output either in the Hewlett-Packard Printer Control Language (PCL) or
Postscript, whichever you prefer. The former can be printed on the Hewlett-Packard
LaserJet family of laser printer, and can use any PCL bitmapped "soft font". The latter can
be printed on any printer that supports the Postscript language. and can use any font for
which you have an Adobe Font Metric (AFM) description. The default is PCL output; to
obtain Postscript, use the -p command-line option.

Fonts
The COHERENT version of troff produces output suitable for printing on a Hewlett-Packard
LaserJet or HP-compatible laser printer, using either PCL or Postscript. troff knows about
three fonts by default, as follows:

LEXICON

1004 troff

\fR Times Roman
\fl Times Italic
\ fB Times Bold

troff also recognizes the alternative font names TR, TI and TB for the same three Times
family fonts. The default font information for troff is in file /usr/lib/rotI/trotI_pcl/fonts.r
or /usr/lib/rotI/trotI_ps/fonts.r, as described in detail below.

To use other fonts, you must use the .If request (see below) to load a font width table. The
font width table is a binary file that describes the width of each character in the font and
the printer command (escape sequence) needed to tell the printer to use the font. The
program fwtable builds a font width table from a PCL bitmap font or from a Postscript AFM
description. See its Lexicon entry for details on its use.

troff output includes a printer command for each desired font change. You must use the
hpr command to download bitmapped soft fonts (fonts that are always resident in the
printer) to the printer before printing trotI output that uses the soft fonts. If a specified font
is not available in the printer, the output will not be what you expect.

Command-line Options
Command-line options may be listed in any order. They are as follows:

-d

-D

-fname

-iflles

-k

-1

-mname

-nN

-p

-raN

-rabN

-x

Debug: print each request before execution. This option is very useful when
you are writing and debugging new macros.

Display the available fonts. These are all the fonts that have been loaded into
troffwith the .If primitive (described below).

Write the temporary file into file name.

Read from the standard input after reading the givenjlles.

Keep: do not erase the temporary file.

Landscape mode: output is rotated 90 degrees, with default size 11 by 8.5
inches rather than 8.5 by 11 inches.

Include the macro file /usr/lib/tmac.name in the input stream.

Number the first page of output N.

Produce output for a Postscript printer rather than for a HP-compatible
printer.

Set number register a to the value N.

Set number register ab to value N. For obvious reasons, ab cannot contain a
digit.

Do not eject to the bottom of the last page when text ends. This option lets
you use trotiinteractively, which is especially useful when debugging macros.

If the environmental variable TROFF is set when trotI is invoked, its contents are prefixed
to the list of command-line arguments. This allows the user to set commonly used options
once in the environment rather than on each trotI command line.

troff's Primitives
As noted earlier, trotf's command set is a superset of that used by nrotI: see the Lexicon
entry on nrotI for information on the commands and escape sequences shared by trotI and
nroff. This article describes the primitives that trotI does not share with nrotI.

LEXICON

troff 1005

Please note that the basic troff unit is one-tenth of a point. A printer's point is 1I12 of a
pica, which is in turn one-sixth of an inch; therefore, there are 72 points and 720 troff
units in an inch .

• coendmark
Copy input to output file directly, with no processing. If endmark argument is
present, troff copies input until it finds a line containing endmark followed by \n.
If no endmark is given, troff copies input until it finds a line containing .co\n.
This directive is useful for embedding Postscript commands in an input file .

• cs XX NM
Set font XX to use constant character spacing. The width of each character is N
divided by 36 ems. If M is present, it specifies the width of an em; otherwise. N
assumes the point size em for the given font .

• fd Display the currently available fonts .

• fpNXX
Associate font name XX with numeric font position N. The given N should be a
number between 1 and 9. Subsequently. the numeric font position can be used in
an escape sequence \fN to select the font. (This nomenclature comes from the days
when phototypesetters used print wheels that were set in fixed positions on the
device.) The nroff primitive .rf performs a similar task. and is more flexible in its
syntax .

. fzXX N
Fix the point size of font XX at N. The point size of the font will not be affected by
subsequent .ps commands or \sN point size escapes .

. lf XX file (n]
Load font width table fromjlle and use it for font XX. lfjile is not found, troff looks
for /usr/lib/roff/troff_pcl/fwt/jlle or /usr/lib/roff/troff_ps/fwt/jlle (depending
on whether the -p option is used).

The optional third argument sets the default point size of the loaded font to n. Note
that this argument takes effect only if troff is running in -p (Postscript) mode.

For example, to load the font-width table for the PCL bitmapped font cn090rpn.usp
(which sets Century Roman, nine point, portrait mode) and name it font RS. use
the command:

.lf RS cn090rpn.usp

To do the same thing under Postscript, use the command:

.lf RS Century_R.fwt 9

Thereafter. you can reference font RS with either .ft RS or \f(RS.

Note that the second argument to this primitive must name a font-width table
generated by the COHERENT command fwtable, not the font itself, although both
may have the same name. Look in directories /usr/lib/roff/troff"/fwt for the set
of font-width tables that are included with COHERENT. If you purchase additional
PCL fonts, you must use fwtable to generate font-width tables for them. Note, too,
that if you are using troff in PCL mode. you must both load the font-width table
into troff and use the command hpr to load the font itself into your printer: doing
one without the other will not produce the results you desire.

Finally. please note that .lf is unique to the COHERENT implementation of troff.

LEXICON

1006 troff

and cannot be ported to other implementations .

• ps Np Set point size to N points. The default point size is 10 point .

• rbjlle Read input fromjlle and copy it to the output without processing. This directive is
useful for including files containing PostScript routines in the output .

• ss N Set the minimum word spacing to N divided by 36 ems .

• vs Np Set the vertical spacing to N points. The default vertical spacing for troft' is 11
points.

Escape Sequences
troft' recognizes the following escape sequences, in addition to those recognized by nrof!':

\s'N' Set the point-size escape sequence to N. Like the .ps primitive, it changes the point
size to N. The specified N may have a leading plus or minus sign to make the new
size relative to the current point size.

\XNN Output character NN where NN are two hexadecimal digits. This is useful for
forcing troft' to print characters outside the normal printable range. e.g .. those with
the high-order bit set. Note that this escape sequence is unique to the COHERENT
implementation of trof!' and cannot be ported to other implementations.

Special Characters
troft' includes a set of escape sequences for setting special characters. These escape
sequences are defined in the files /usr/lib/rof!'/trof!'_•/speclals.r. If you have additional
fonts or an extended Postscript cartridge on your printer, you can modify these files to
change the current definitions or add new ones.

The following shows the escape sequences currently defined in specials.r. and the character
each prints:

\(em
\(ru
\(fi
\(Fl
\(ct
\(pl
\(sc
\(sl
\(•d
\(*h

ft
m
¢

+
§

I
{)

0
\(*m µ.
\(*p
\(*t
\(*q
\(*G
\(*Y
\(*L
\(*0
\(*T
\(*Q
\(>=
\Cap
\Cua
\(+­
\(sp

'ljJ
r
H
A
0
T
qr

t

\(hy
\(14
\(fl
\(de
\(rg
\(mi
\(aa
\(*a
\(*e
\(*i
\(*n
\(*r
\(*u
\(*w
\(*D
\(*H
\(*M
\(*P
\(*U
\(*W
\(<=
\(!=
\(da
\(cu
\(ib

1/4
fl .
®

a
£

v
p
'U

(J)

11
e
M
n
y
Q

..

\(bu
\(12
\(ff
\(dg
\(co
\(eq
\(ga
\(*b
\(*z
\(*k
\(*c
\(*s
\(*f
\(*A
\(*E
\(*I
\(*N
\(*R
\(*F
\(sr
\(==
\(->
\(mu
\(ca
\(ip

1/2
ff
t
©

0

• A
E
I
N
p
<l>
v
•
x
n
:2

\(sq
\(34
\(Fi
\(fm
\(tm
\(**
\(ul
\(•g
\(*y
\(*l
\(*o
\(ts
\(*x
\(*B
\(*Z
\(*K
\(*C
\(*S
\(*X
\(rn
\(-=
\(<­
\(di
\(sb
\(in

[]
3/4
m

*
y
TJ
A.
0

s
:x:
B
z
K

I:
x

I
c
00

LEXICON

troff

\(pd iJ \(gr V' \(no \(is
\(pt oc \(es 0 \(mo E \(br
\(dd

"'
\(rh w \(lh <- \(or

\(ci 0 \(It { \(lb \ \(rt
\(rb J \(lk ~ \(rk ~ \(bv
\(If L \(rf J \(le r \(re

Example
The following example prints an enormous 'E' on a Hewlett-Packard LaserJet III:

.sp IBi

.ps 500

.ce
E

Printer Configuration

f
I
I

1
l

1007

troff reads several files in directory /usr/lib/rotl'/trotl'_pcl (for normal trotl') or
/usr/lib/roff/trotl'_ps (for Postscript trotl') to find printer-specific information. It reads
special character definitions from file specials.r. It reads font loading requests from file
fonts.r. It copies file .pre at the beginning of the output. It copies file .post at the end of
the output. In landscape mode, trotl' looks for files .pre_land and .post_land instead. You
can change these files as desired to include printer-specific commands in troff output.

Files
/tmp/rof"' - Temporary files
/usr/lib/tmac.• - Standard macro packages
/usr/lib/rotl'/trotl'_pcl/ - Support files directory for PCL
/usr/lib/rotl'/trotl'_ps/ - Support files directory for Postscript
/usr/lib/rotl'/trotl'_*/ .pre- Output prefix
/usr/lib/rotl'/trotl'_ *I .pre_land- Output prefix, landscape mode
/usr/lib/rotl'/trotl'_*/ .post- Output suffix
/usr/lib/rotl'/trotl'_ •/ .post_land- Output suffix, landscape mode
/usr/lib/rotl'/trotl'_ * /fonts.r- Font definitions
/usr/lib/rotl'/trotl'_ * /fwt/ - Directory for font width tables
/usr/lib/rotl'/trotl'_ * /specials.r- Special character definitions

See Also
col, commands, derotl', fwtable, hpr, man, ms, nrotl'
nrq[f, The Text-Formatting Language, tutorial

Adobe Systems Incorporated: Postscript Language Reference Manual. Reading, Mass.:
Addison-Wesley Publishing Company. Inc., 1988.

Adobe Systems Incorporated: Postscript Language Tutorial and Cookbook. Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1988.

Emerson, S.L .. Paulsell, K.: troff Typesetting for Unix Systems. Englewood Cliffs, N.J.:
Prentice-Hall. Inc .. 1987 (ISBN 0-13-930959-4).

Lawson, A.: Printing Types: An Introduction. Boston: Beacon Press. 1971. An excellent, one­
volume Introduction to type and typesetting.

Tufte, E.W.: The Visual Display of Quantitative Information. Cheshire. Conn.: Graphics
Press, 1983. Superbly introduces the subject of graphic design. Especially useful if you wish
to explore Postscript.

University of Chicago Press: A Manual of Style for Authors, Editors, and Copywriters, ed. 12,
revised. Chicago: University of Chicago Press, 1969. Still the best one-volume reference for

LEXICON

1008 true - tsort

copy editors: if you're going to publish manuals, you should do it right.

Notes
Like nrofl', trofl' should be used with the macro packages ms, which is found in the file
/usr/lib/tmac.s, and man, which is found in the file /usr/llb/tmac.an.

troff output, unlike that ofnrofl', cannot be processed through a terminal driver.

Laser printers cannot print on an area near each edge of the output page. Output sent to
the unprintable area will disappear. On some printers, the logical page does not correspond
to the physical page, so printed trofl' output may be offset from the specified position on the
physical page.

true - Command
Unconditional success
true

true does nothing, successfully. It always returns zero (i.e., true).

true is useful in shell scripts when you want to execute a condition indefinitely. For
example, the following example

while true; do
date

done

prints the current date and time on your screen forever (or at least until interrupted by
typing <ctrl-C>).

See Also
commands,false,ksh,sh

Notes
Under the Korn shell, true is an alias for the partial-comment:.

tsort - Command
Topological sort
tsort lflle I

tsort performs a topological sort of a set of input items. The inputjlle (or the standard
input. if noflle is given) specifies an ordering on pairs of items. It consists of pairs of items
separated by blanks, tabs or newlines. If a pair contains the same item twice. it simply
indicates that the item is in the input set. Otherwise, the pair indicates that the first item
precedes the second in the ordering.

tsort prints a sorted list of the input items on the standard output.

See Also
commands, sort

Diagnostics
tsort prints an error message on the standard error if its input contains an odd number of
items or if the specified ordering includes a cycle.

LEXICON

tty - ttys 1009

tty - Command
Print the user's terminal name
tty

tty prints the name of the character-special file that manages your terminal.

Diagnostics
tty prints the message "Not a tty." if the user is not associated with any controlling
terminal.

See Also
commands, who

tty .h - Header File
Define flags used with tty processing
#include <sys/tty.h>

tty.h defines flags that are used by routines that handle ttys.

See Also
header mes, tty

ttynameO - General Function (libc)
Identify a terminal
char •ttyname(fd)
intfd;

Given a file descriptorfd attached to a terminal, ttyname returns the complete pathname of
the special file (normally found in the directory I dev).

Files
I dev I• - Terminal special files
/etc/ttys- Login terminals

See Also
general functions, ioctl(), isatty(), tty(), ttyslot()

Diagnostics
ttyname returns NULL if it cannot find a special file corresponding to fd.

Notes
The string returned by ttyname kept in a static area, and is overwritten by each
subsequent call.

ttys - File Format
Describe terminal ports

The file /etc/ttys describes the terminals in the COHERENT system. The process init
reads this file when it brings up the system in multi-user mode.

/etc/ttys contains one line for each terminal. Each line consists of the following four
fields:

1. The first field is one character long. and indicates if the device is enabled for logins:
'O' indicates that the device is not enabled, and 'I' (one) indicates that logins are
enabled for the device.

LEXICON

1010 ttys

2. The second field is one character long, and indicates whether the device is local
(i.e .. a terminal) or remote (i.e., a modem): 'r' indicates remote, and 'I' (lower-case L)
indicates local. If 'r' is used and a password is included for remacc (remote access)
in /etc/passwd, then persons logging in on this device will be required to supply
the remote-access password. (See the Lexicon entry for passwd for more about
remacc).

3. The third field is one character long. and sets the baud rate for the device. Note
that a device can have either a fixed baud rate, or a variable baud rate. The
following table gives the codes for fixed baud rates:

c 110
G 300
I 1200
L 2400
N 4800
p 9600
Q 19200

The common variable-speed codes terminal types are as follows:

0 300, 1200, 150, 110
3 2400, 1200,300

When a user dials into a variable-speed line, a message is sent to the terminal
using the first speed listed. If the message is unintelligible, the user hits the
<break> key and the system tries the next speed; and so on, until the correct speed
is selected.

4. The fourth field names the port that this device is plugged into. The following table
names the ports that COHERENT recognizes:

console
comll
comlr
comlpl
comlpr
com21
com2r
com2pl
com2pr
com31
com3r
com3pl
com3pr
com41
com4r
com4pl
com4pr

The tube and keyboard on your computer
Serial port coml, local device
Serial port coml, remote device
Serial port coml. local device
Serial port coml. remote device
Serial port com2, local device
Serial port com2, remote device
Serial port com2, local device
Serial port com2, remote device
Serial port coma, local device
Serial port com3, remote device
Serial port coma. local device
Serial port coma. remote device
Serial port com4, local device
Serial port com4. remote device
Serial port com4, local device
Serial port com4. remote device

Note that if field 2 (described above) says that this is a local device, then you must
use a port descriptor that ends in '!'; likewise, if field 2 states that this is a remote
device, the port descriptor must end in 'r'. Doing otherwise will result in trouble.
See Lexicon entry com for further details.

Do not leave trailing spaces at the end of an entry in /etc/ttys. Leaving blanks at the end
of a line usually results in errors that state that a device could not be found.

LEXICON

ttyslotO 1011

After you have edited /etc/ttys. the following command forces COHERENT to re-read the
file and use the new descriptions:

kill quit 1

Examples
Consider the following ttys entry:

llPconsole

Field 1 is the first character. Here it is set to 'l' (one), which indicates that the device is
enabled for logins. Field 2 is the second character. Here it is set to 'I' (lower-case L), which
indicates that this is a local device. Field 3 is the third character. Here, it is set to 'P',
which indicates that the device operates at the fixed baud rate of 9600 baud. This field is
ignored by the console device driver since the console is not a serial device. Finally. field 4
is the remainder of the line. Here, it indicates that the device in question is the console.

Now, consider another example:

lr3com3r

Field 1 is the first character. Here it is set to 'I' (one), which indicates that the device is
enabled for logins. Field 2 is the second character. Here it is set to 'r', which indicates that
this is a remote device, i.e., a modem. Field 3 is the third character. Here, it is set to '3',
which indicates that the device operates at variable baud rates of 2400, 1200, and 300. By
hitting the <break> key on the terminal, the user can select from among those three baud
rates, in that order. Finally, field 4 is the remainder of the line. Here, it indicates that the
device in question is plugged into port com3, and is accessed via special file /dev/com3r.

Files
/etc/ttys

See Also
com, file formats, getty, init, login, stty, terminal, tty

ttyslotO - General Function (libc)
Return a terminal's line number
int ttyslot()

ttyslot returns the number of the line in the file /etc/ttys that describes the controlling
terminal (see ttys).

Files
/dev/• -Terminal special files
/etc/ttys - Login terminals

See Also
general functions, ioctl(), isatty(), tty, ttyname()

Diagnostics
ttyslot returns zero if an error occurs.

LEXICON

1012 ttystat - typedef

ttystat - Command
Get terminal status
/etc/ttystat [-d I port

ttystat checks the status of the specified asynchronous port in directory /dev. It normally
just returns an exit status that indicates the status of the port. The option -d tells ttystat to
print the status of the port on the standard output.

Only the superuser root can execute ttystat.

Example
The following example prints the status of port I dev / com2r:

/etc/ttystat -d corn2

If /dev/com2ris enabled, ttystatprints:

corn2r is enabled

ttystat finds the port status from the /etc/ttys file.

Files
/etc/ttys -Terminal characteristics file

See Also
commands, disable, enable, ttys

Diagnostics
ttystat returns one if the port is enabled and zero if the port is disabled. It returns -2 if an
error occurs.

type checking - Technical Information
Every expression has a type, such as int, char. or double. C is not strongly typed. which
means that it allows different types to be mixed relatively freely. and be changed (or cast)
from one type to another.

COHERENT checks types more strictly than the C standard implies. COHERENT's type
checking can be enabled or disabled in degrees, using -VSTRICT and other "variant"
options with the cc command.

See Also
cc, technical information, type promotion

typedef - C Keyword
Define a new data type

typedef is a C facility that lets you define new data types. Such definitions are always
made in terms of existing data types: for example,

typedef long tirne_t;

establishes the data type time_t, and defines it to be equivalent to a long. By convention,
programmer-defined data types are written in capital letters.

Judicious use of the typedef facility can make programs easier to maintain, and improve
their portability.

LEXICON

type promotion - typo 1013

See Also
C keyword, manifest constants, portability, storage class

type promotion - Technical Information
In arithmetic expressions, COHERENT promotes one signed type to another signed type by
sign extension, and promotes one unsigned type to another unsigned type by zero padding.
For example, char promotes to int by sign extension, whereas unsigned char promotes to
unsigned int by zero padding.

See Also
data formats, technical information

types.h - Header File
Declare system-specific data types
#include <sys/types.h>

The header file types.h declares a number of data types that are used throughout the
COHERENT system.

See Also
header mes

typeset - Command
Set/list variables and their attributes
typeset
typeset [+-]fr
typeset [irx] vartable=value

The command typeset is built into the Korn shell ksh. It sets or lists all variables and their
attributes.

When called with an argument of the form varlable=value, it sets variable variable to value.
The following options modify variable or value:

i Store value as an integer
r Make variable read-only
x Export variable to the environment

When called without an argument, typeset lists all variables and their attributes. When
called with one of the following options, it lists the variables of the appropriate type. When
prefixed with a hyphen '-', it prints the variable plus its value; when prefixed with a plus
sign'+', it prints the variable alone:

f List functions instead of variables
r List read-only variables

See Also
commands, ksh

typo - Command
Detect possible typographical and spelling errors
typo [-nrs][flle ...]

typo proofreads an English-language document for typographical errors. It conducts a
statistical test of letter digrams and trigrams in each input word against digram and trigram
frequencies throughout the entire document. From this test, typo computes an index of

LEXICON

1014 typo

peculiarity for each word in the document. A high index indicates a word less like other
words in the document than does a low index. Built-in frequency tables ensure reasonable
results even for relatively short documents.

typo reads each inputflle (or the standard input if none), and removes punctuation and
non-alphabetic characters to produce a list of the words in the document. To reduce the
volume of the output, typo compares each word against a small dictionary of technical
words and discards it if found. The output consists of a list of unique non-dictionary words
with associated index of peculiarity, most peculiar first. An index higher than ten indicates
that the word almost certainly occurs only once in the document.

typo recognizes the following arguments:

-n Inhibit use of the built-in English digram and trigram statistics, and inhibit
dictionary screening of words. More words will be output and the indices of
peculiarity will be less useful for short documents.

-r Inhibit the default stripping of nroff escape sequences. Normally, typo strips lines
beginning with'.' and removes the nroff escape sequences'\'.

-s Produce output files digrams and trigrams that contain, respectively. the digram
and trigram frequency statistics for the given document. No indices of peculiarity
are calculated or printed. If desired, these files may be installed in directory
/usr/dict.

Files
/tmp/typo* - Intermediate files
/usr/dict/dict- Limited dictionary
I usr I diet/ digrams - Digram frequency statistics
/usr/dict/trlgrams-Trigram frequency statistics

See Also
commands, nroff, sort, spell

LEXICON

umask - Command
Set the file-creation mask
umask [mask]

u

umask - umaskO 1015

The.file-creation mask modifies the default mode assigned to each file upon creation. The
mode sets the permissions granted by the file's owner, plus other important information
about a file.

The command umask sets the default file-creation mask to mask. mask is usually entered
as an octal number prefixed by a zero digit. If invoked without an argument, umask prints
the current file-creation mask in octal.

Note that zero bits in mask correspond to permitted permission bits in the target. and that
execute permission cannot be enabled via any setting of mask. See the Lexicon entries for
umask() and chmod for further details on file mode. The shell executes umask directly.

Example
Setting mask to octal 022 (i.e., 000 010 010) causes a file created with mode octal 0666 to
actually have permissions of

rw- r-- r--

Setting mask to zero (i.e .. 000 000 000) causes a file created with mode octal 0666 to
actually have permissions of

rw- rw- rw-

See Also
chmod, commands, ksh, sh, umask()

umaskO - System Call
Set file-creation mask
int umask(mask)
int mask;

umask allows a process to restrict the mode of files it creates. Commands that create files
should specify the maximum reasonable mode. A parent (e.g. the shell sh) usually calls
umask to restrict access to files created by subsequent commands.

mask should be constructed from any of the permission bits found in chmod (the low-order
nine bits). When a file is created with creator mknod, every bit set in the mask is zeroed
in mode; thus, bits set in mask specify permissions that will be denied.

umask returns the old value of the file-creation mask.

Example
Setting mask to octal 022 (i.e .. 000 010 010) causes a file created with mode octal 0666 to
actually have permissions of

rw- r-- r--

Setting mask to zero (i.e., 000 000 000) causes a file created with mode octal 0666 to
actually have permissions of

rw- rw- rw-

LEXICON

1016 umount - unalias

See Also
creat(), mknod(), sh, system calls

Notes
A file's default permission cannot be set to execute, regardless of the value of umask.

umount - Command
Unmount file system
I etc/umount special

umount unmounts a file system special that was previously mounted with the mount
command.

The script /bin/umount calls /etc/wnount. and provides convenient abbreviations for
commonly used devices. For example, typing

umount f O

executes the command

/etc/umount /dev/fhaO

The system administrator should edit this script to reflect the devices used on your specific
system.

Files
I etc/mtab - Mount table
/dev/•
/bin/umount - Script that calls I etc/wnount

See Also
clri, commands, fsck, icheck, mount

Diagnostics
Errors can occur if special does not exist or is not a mounted file system.

umountO - System Call
Unmount a file system
umount(fllesystem)
char C<filesystem;

umount is the COHERENT system call that unmounts a file system. fllesystem names the
block-special file through which the file system is accessed. Note that this must have been
previously mounted by a call to mount, or the call will fail.

See Also
mount(), system calls

unalias - Command
Remove an alias
unalias alias ...

The command unalias is built into the Korn shell ksh. It removes each alias.

See Also
alias, commands, ksh

LEXICON

uncompress - Command
Uncompress a compressed file
uncompress [-w tmpflle I [file ... I

uncompress - union 1017

uncompress uncompressses one or more files that had been compressed by the command
compress.

Each file's name must have the suffix .z, which was appended onto it by compress;
otherwise, uncompress prints an error message and exits. When uncompress has
uncompressed a file, it removes the .z suffix from that file's name.

If no file is specified on the command line, uncompress uncompresses matter read from the
standard input. and writes its output to the standard output.

Older versions of uncompress could only uncompress files that had been compressed with
option -bl2 or lower, with -bl2 being the default. The edition of uncompress released with
COHERENT version 3.1 now handles values up to 16 by using RAM device /dev/raml for
temporary storage. For this reason, it is strongly advised that you not use /dev/raml as a
RAM disk.

The -w option allows the user to specify an alternate temporary storage file to uncompress.
The default value for temp file when the -w option is omitted is I dev I raml.

See Also
commands,compress,ram,zcat

ungetcO - STDIO (libc)
Return character to input stream
#include <stdio.h>
Int ungetc (c,fp) Int c; FILE ":fp;

ungetc returns the character c to the streamfp. c can then be read by a subsequent call to
getc, gets, getw. scanf, or fread. No more than one character can be pushed back into any
stream at once. A call to fseek will nullify the effects of a previous ungetc.

Example
For an example of this function, see fgetc.

See Also
fgetc(), getc(), STDIO

Diagnostics
ungetc normally returns c. It returns EOF if the character cannot be pushed back.

union - C Keyword
Multiply declare a variable

A union defines an area of storage that can accept any one of several types of data. In
effect, it is a multiple declaration of a variable. For example, a union may be declared to
consist of an Int, a double, and a char •. Any one of these three elements can be held by
the union at a time. and will be handled appropriately by it. For example, the declaration

LEXICON

1018 uniq - uniqueQ

union {
int number;
double bignurnber;
char *stringptr;

} example;

allows example to hold either an int, a double, or a pointer to a char, whichever is needed
at the time. All of these have the same address. The elements of a union are accessed like
those of a struct: for example, to access number from the above example, type
example.number.

unions are helpful in dealing with heterogeneous data. especially within structures;
however, you are responsible for keeping track of what data type the union is holding at any
given time. Passing a double to a union and then reading the union as though it held an
int will yield results that are unpredictable, and probably unwelcome.

Example
For an example of how to use a union in a program, see the entry for byte ordering.

See Also
C keywords, initialization, struct, structure

uniq - Command
Remove/count repeated lines in a sorted file
uniq [-cdu] [-n] [+n] [infile[ouifilell

uniq reads input line by line from in.file and writes all non-duplicated lines to ouifile. The
input file must be sorted. uniq uses the standard input or output if either infile or out;flle is
omitted. The following describes the available options:

-c Print each line once, discarding duplicate lines; before each line, print the number
of times it appears within the file.

-d Print only lines that are duplicated within the file; print each line only once; do not
print any counts.

-u Print only lines that are not duplicated within the file.

uniq by default behaves as if both -u and -d were specified, so it prints each unique line
once.

Optional specifiers allow uniq to skip leading portions of the input lines when comparing for
uniqueness.

-n Skip n fields of each input line, where a field is any number of non-white space
characters surrounded by any number of white space characters (blank or tab).

+n Skip n characters in each input line. after skipping fields as above.

See Also
comm, commands, sort

uniqueo - System Call
Return a unique long integer
long unique()

unique returns a unique long integer. The value of this integer is incremented with each
call to unique, and is saved in the root file system.

LEXICON

See Also
system calls

units - Command
Convert measurements
units [-u I

units 1019

units is an interactive program that tells you how to convert one unit of measurement into
another. It prompts you for two quantities with the same dimensions (e.g.. two
measurements of weight, or two of size). It first prints the prompt "You have:" to ask for the
unit you wish to convert from, and then prints the prompt "You want:" for the unit you wish
to convert to.

Example
The following example returns the formula for convert fortnights into days:

You have: fortnight
You want: days
* 14
I o.071428

The following fundamental units are recognized: meter, gram, second, coulomb, radian.
bit, unitedstatesdollar, sheet. candle, kelvin, and copperpiece (shillings and pence).

A quantity consists of an optional number (default 1) and a dimension (default none).
Numbers are floating point with optional sign. decimal part and exponent. Dimensions may
be specified by fundamental or derived units, with optional orders. A quantity is evaluated
left to right: a factor preceded by a • /' is a divisor, otherwise it is a multiplier. For example,
the earth's gravitational acceleration may be entered as any of the following:

9.8e+O rn+l sec-2
32 ft/sec/sec
32 ft/sec+2

British equivalents of US units are prefixed with br, e.g. brpint. Some other units include c
(speed of light), G (gravitational constant), R (gas law constant), phi (golden ratio), %
(1I100), k (1,024), and buck (United States dollar).

/usr/lib/units is an ASCII file that contains conversion tables. The binary file
/usr/lib/binunits may be recreated by using the -u option.

See Also
bc,commands,conv

Files
/usr/lib/units- Known units
/usr/lib/binunits - Binary encoding of units file

Diagnostics
If the ASCII file /usr/lib/units has been changed more recently that the binary file
/usr/lib/binunits. units prints a message and regenerates the binary file before
continuing; this takes up to a few minutes, depending on the speed of your system.

The error message "conformability" means that the quantities are not dimensionally
compatible. For example. m/sec and psi. units prints each quantity and its dimensions in
fundamental units.

LEXICON

1020 unlinkO - unmkfs

Notes
There are the inevitable name collisions: g for gram vs. gee for Earth"s gravitational
acceleration, exp for the base of natural logarithms vs. e for the charge of an electron, ms
for (plural) meters vs. millisecond, and of course batman for the Persian measure of
weight rather than the Turkish.

unlinkO - System Call
Remove a file
Int unlink(name) char •name:

unlink removes the directory entry for the given file name, which in effect erases name from
the disk. name cannot be opened once it has been unlinked. If name is the last link.
unlink frees the i-node and data blocks. Deallocation is delayed if the file is open. Other
links to the file remain intact.

Example
This example removes the files named on the command line.

main(argc, argv)
int argc; char *argv[];
{

int i;

for (i = 1; i < argc; i++) {
if (unlink(argv[i]) == -1) {

}

}
}
exit(O);

See Also

printf("Cannot unlink \"%s\"\n", argv[i]);
exit(l);

link(), In, nn, nndlr, system calls

Diagnostics
unlink returns zero when successful. It returns -1 ifjile does not exist, if the user does not
have write and search permission in the directory containingflle, or ifjlle is a directocy and
the invoker is not the superuser.

unmkfs - Command
Construct a prototype file system
unmkfs [-prefix] directory nblocks [/lie]

unmkfs scans directory and builds prototype files with which you can build file systems on
backup disks.

If prefix is given, it creates files preflx.p01, prejl.x.p02. etc. If it is not given, unmkfs writes
its output to the standard-output device.

nblocks gives the maximum size of a prototype file. COHERENT current defines a block as
being 512 bytes (half a kilobyte); thus, to make the maximum size of a prototype file 10
kilobytes, set nblocks to 20.

The file option tells unmkfs to suppress all files in directory that are older thanfile. If it is
not used, then unmkfs builds prototypes for all files in directory.

LEXICON

unsigned - update 1021

unmkfs provides a useful way to back up file systems onto floppy disks. To do this,
perform the following steps:

1. unmkfs a directory, producing prototype files.

2. Format one floppy disk for each prototype file.

3. Using the prototype files in sucession, mkfs each floppy disk. This puts the indicated
files onto floppy disk, preserving links.

Later, you can use the command cpdir to restore all the files from the floppy disks, or you
can use cp to restore individual files.

See Also
commands, mkfs

Notes
unmkfs builds a file system in memory as it does its work. With large directory structures,
it can run out of memory.

unsigned - C Keyword
Data type

unsigned tells the compiler to treat the variable as an unsigned value. In effect, this
doubles the largest absolute value that that type can hold, and changes the lowest storage
value to zero.

See Also
C keywords, data type

until - Command
Execute commands repeatedly
until sequence 1 [do sequence2] done

The shell's until loop executes the commands in sequence I. If the exit status is nonzero,
the shell then executes the commands in the optional sequence2 and repeats the process
until the exit status of sequence I is zero. Because the shell recognizes a reserved word only
as the unquoted first word of a command, both do and done must occur either unquoted at
the start of a line or preceded by·;·.

The shell commands break and continue may be used to alter control flow within an until
loop. The contruct while has the same form as until but the sense of the test is reversed.

The shell executes until directly.

See Also
break, commands, continue, ksh, sh, test, while

update - System Maintenance
Update file systems periodically
/etc/update

update periodically calls sync to write to the disk all file system data that are in memory. It
never exits.

The initialization command file /etc/re normally executes update. It should not be
executed directly.

LEXICON

1022 uproc.h - ustar

See Also
init, sync, system maintenance

uproc.h - Header File
Definitions used with user processes
#include <sys/uproc.h>

uproc.h defines constants and structures used by routines that manage user processes.

See Also
header files

USER - Environmental Variable
Name user's identifier
USER=user _identifier

The environmental variable USER names your login identifier. For example, if your login
identifier is fwb, then by typing set you will see the entry USER=fwb. USER is set by login.

See Also
environmental variables, ksh, login, sh

ustar - Command
Process tape archives
ustar-c[vw) [-farchlve]flle .. .
ustar -r[vw] [-f archive]flle .. .
ustar -t[v] [-f archive]
ustar -x[lmovw] [-f archive] Ifile ...)

ustar reads and writes archive files that conform to the Archive/Interchange File Format
specified in IEEE Standard 1003.1-1988.

Options
ustar recognizes the following command-line options:

-c Create a new archive. Write each.file into the newly created archive

-r Append each.file to the end of the archive.

-t Display a directory (table of contents) of the archive.

-x Extract eachflle from the archive. If.file matches a directory whose contents had
been written onto the archive, extract that directory recursively. If file does not
exist on the system, ustar creates it with the same mode as the one in the archive,
except that the set-user-id and get-group-id modes are not set unless you have
appropriate privileges.

Ifflle exists, ustar does not change file modes except as described above. It restores
the owner, the group, and the modification time if possible.

If the command line does not name a.file, ustar extracts the entire contents of the
archive. Note that if several files with the same name are in the archive, the last
one overwrites all earlier ones.

-f Use the next argument on the command line as the name of the archive instead of
the default, which is standard input or standard output, whichever is appropriate
for the options given. Thus, you can use ustar in a pipe. If you specify·-· as the
archive name with option -f, ustar uses the default input and output streams.

LEXICON

utimeO 1023

-1 Order ustar to report if it cannot resolve all of the links to the files being archived.
If -1 is not specified. no error messages are written to the standard output. This
modifier is valid only with the -c or -r options.

-m Do not restore the modification times; set the modification time of the file to the
time of extraction. This modifier is invalid with the -t option.

-o Give extracted files your user and group identifiers. rather than those on the
archive. This modifier is only valid with the -x option.

-v Verbose operation. With this option, ustar prints the name of each file it processes,
preceded by the option letter. With the -t option, the -v option tells ustar to give
more information about the archive's entries than just their names.

-w Print the action to be taken and the name of the file, then wait for your
confirmation. If you type a word beginning with 'y', ustar performs the action. Any
other input means "no". This modifier is invalid with the -t option.

See Also
commands, cpio, dd, find, pax

Notes
ustar was developed by Mark H. Colburn and sponsored by The USENIX Association.
Copyright© 1989 by Mark H. Colburn (mark@jhereg.MN.ORG). All rights reserved. See the
compressed tar archive /usr/src/allen/pax.tar.Z for full descriptions of copyright,
restrictions. and licensing terms.

ustar is provided in binary form per the licensing terms set forth by the author. It is
distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat uttlitor.

utimeO - System Call
Change file access and modification times
#include <sys/types.h>
int utime(flle, times)
char >lj'ile;
time_t tlmes[2];

utime sets the access and modification times associated with the given file to times
obtained from tlmes[O] and tlmes[l], respectively. The time of last change to the attributes
is set to the time of the utime call.

This call must be made by the owner of file or by the superuser.

Files
<sys/types.h>

See Also
restor, stat(), system calls

Diagnostics
utime returns -1 on errors, such as if file does not exist or the invoker not the owner.

LEXICON

1024 utmp.h - uucheck

utmp.h - Header File
Login accounting information
#Include <utmp.h>

/etc/utmp contains a utmp entry for every user currently logged into the COHERENT
system. The structure utmp is defined in the the header file utmp.h. as follows:

#define DIRSIZ 14
struct utmp {

char ut_line[S]; /*terminal name*/
char ut_name[DIRSIZ];/* user name */
time t ut_time; /* time of login */

} ;

If either the user name or terminal name is cleared, the entry is unused. The element
ut_line is the name of the special file for the user's terminal, and is normally found in the
directory /dev. ut_time gives the date and time the user logged into COHERENT.

The file /usr/adin/wtmp maintains a record of all logins and logouts, and may be
summarized by the command ac. The processes login and init write entries into the file
wtmp; neither creates the file, so login accounting is disabled unless /usr/adm/wtmp
exists.

Entries in wtmp are identical to those in utmp. A null string in the ut_name field indicates
a logout. The following three special terminal names may be found in wtmp. When the
system is booted, inlt writes a ut_line entry of·-·. When the time is changed with the
command date, it writes an entry giving the old date C' I 'l and an entry giving the new date
('}'). This allows ac to adjust connect times appropriately.

Files
<Utmp.h>
/etc/utmp
/usr/adm/wtmp

See Also
ac, date, me formats, header mes, lnit, login, who

utsname.h - Header File
Define utsname structure
#Include <sys/utsname.h>

utsname.h defines the structure utsname. This structure holds information that describes
a given release of the COHERENT system.

See Also
header files

uucheck - Command
Sanity check the UUCP system
uucheck [-fsv J

uucheck is a script which calls a series of programs designed to locate and fix problems in
the UUCP system. The phases of the uucheck system all accept the same arguments.

uucheck recognizes the following options:

LEXICON

uucico 1025

-f Attempt to fix errors in the UUCP system. Note that ·it is not possible to
automatically correct all errors. Only root (the super user) can use this option.

-s Run in "silent" mode (i.e., generate no output). Normally uucheck will report all
errors and warnings encountered. With this option set. only errors internal to
uucheck will be reported. Option -s overrides option -v.

-v Generate verbose output messages. This will include messages on what is being
checked, and often longer messages suggesting remedies.

The phases of uucheck are:

uucheckperms
uucheckname
uuchecklock

Notes

Check file permissions.
Check /etc/uucpname.
Look for lock files.

This system does not and probably cannot identify all possible failure modes of the UUCP
system - nothing beats an experienced UUCP administrator.

Files
/usr/lib/uucheck/ - Directory for phases

See Also
commands, UUCP

uucico - Command
Transmit data to or from a remote site
/usr/lib/uucp/uucico [-rl] [-sslte] [-sail] [-Sslte] [-xlevel]

uucico is the UUCP command that actually transfers files to or from a remote site. Its
syntax is as follows:

-rO Act as slave in polling process; that is. carry out the orders of another uucico that
has dialed into your system.

-rl Act as master in polling process; that is, dial out to another system and give it
orders. This is the default.

-sslte Name site as a place to be polled. site must name one of the entries in
/usr /lib/uucp/L.sys.

-sall Poll all sites automatically.

-Sslte Name site as a place to be polled. site must be a site described in file L.sys. Unlike
the -s option. this option forces transfer of any queued files even if the time is not
one specified as valid in L.sys.

-xlevel Set the debugging level. where level is a number between one and ten. inclusive.
uucico prints all messages at or below the current debugging level. The following
gives the class of messages controlled by each level of debugging:

0 No additional logging
1 The call and pre-protocol negotiation
2 Conversation level
3 File transfer
4 Spool files
5 Messages sent out during call/pre-protocol
6 High-level protocol

LEXICON

1026 UUCP

7 Medium-level protocol
8 Low-level protocol (framing and such)
9 Actual packet data
IO Reading configuration files

If you do not use this option, uucico sets the debugging level to zero. Please note
that enabling the debugging option causes certain non-COHERENT versions of
uucico to fail.

The messages sent by uucico are differentiated by the first letter of the message.

Example
To poll the site sys at five minutes after the hour, each hour, put the following entry into
I usr /lib I crontab:

05 * * * * /usr/lib/uucp/uucico -ssys -rl

Files
/usr/lib/uucp/L.sys- List of reachable systems
/usr/spool/uucp/ .Log/uucico/ sitename- uucico activities log file for sitename
/usr/spool/uucp/sltename-Spool directory for work

See Also
commands, cron, uucp, UUCP, uulog, uutouch, uuxqt

UUCP - Overview
Unattended communication with remote systems

UUCP stands for "UNIX to UNIX copy". It is a system of commands that allows you to
exchange files with other COHERENT or UNIX systems, in an unattended manner. With
UUCP. you can send mail to other systems, upload files, and execute commands. When
configured correctly. UUCP also lets other users upload files to your system, copy files from
it, and execute commands. All this can be done without your having to sit at your console
and type commands; thus, files can be transferred in the small hours, when telephone rates
are lower and computers are relatively free.

UUCP gives you access to the Usenet, a nation-wide network of UNIX and COHERENT
users. Access to the Usenet will let you exchange mail with any of the thousands of Usenet
users. receive mail from them, download source code for many useful programs. and read
the latest news on a host of subjects. For details on contacting UUNET. a commercially
accessible Usenet site, enter the command:

phone uunet

The UUCP protocol is implemented through a suite of commands and files. The following
Lexicon entries relate to UUCP:

LEXICON

L-devices
L.sys
Permissions
uucheck
uucico
uucp
uucpname
uudecode
uuencode
uuinstall
uulog
uumvlog
uuname
uunnlock
uutouch
uux
uuxq

File that describes devices used by UUCP
File that describes systems contacted by UUCP
File that sets remote system permissions
Sanity check the UUCP system
Transmit data to a remote site
Prepare files for transmission
File that sets your system's UUCP name
Decode a binary file sent from a remote system
Encode a binary file for sending to a remote system
Install UUCP on your system
Read UUCP log files
Move UUCP log files to backup archive
List UUCP names of known systems
Remote UUCP lock files
Touch a file to trigger uucico poll
Execute command on a remote system
Execute commands requested by a remote system

UUCP 1027

The following sections discuss problems that can arise when using UUCP, as diagnosed by
the Mark Williams Technical Support Staff.

Using Trailblazer Modems With UUCP
The Trailblazer modem has been designed to be used with UUCP. It is extremely fast and
extremely accurate; however, some users reported problems in using COHERENT UUCP
with a Trailblazer modem. The following describes how Mark Williams Company has
configured the Trailblazer modem that it uses under COHERENT at 9600 baud.

To begin, the following gives the permissions in /usr/lib/uucp for selected files:

-rw-r--r-- 1
-rw-r--r-- 1

uucp uucp
uucp uucp

196 Wed May 23 10:16 L-devices
740 Tue May 22 15:40 L.sys

-rw-r--r-- 1 uucp uucp 2151 Wed Jul 11 10:44 Permissions

The following gives partial contents of file /usr/lib/uucp/L-devices:

#type line remote baud brand
#-----
ACU
ACU

com31
com31

com3r
com3r

2400
9600

tb2400
tbfast

The following gives partial contents of file /usr/lib/uucp/L.sys (note that # should be
replaced by the actual phone number):

uunet Any ACU 9600 # FAST \d\r\c in:-\r-in: \dmwc\r\c rd: PASSWORD\r

The following gives partial contents of /usr/lib/uucp/Pennissions:

MACHINE=uunet LOGNAME=uuunet \
COMMANDS=rmail:rnews: \
READ=/usr/spool/uucppublic:/tmp \
WRITE=/usr/spool/uucppublic:/tmp \
SENDFILES=yes REQUEST=no

The following gives permissions and partial contents of file /etc/ttys:

LEXICON

1028 UUCP

-rw-r--r-- 1 root

llPconsole
lrPcom3r

root 163 Wed Jul 11 11:36 /etc/ttys

Finally, the following gives permissions on /dev/com3r (while enabled):

c--s------ 1 root root 21 38 Wed Jul 11 11:50 /dev/com3r

To use the Trailblazer, log in as root, and type the following commands:

disable com3r
kermit cbl 9600 /dev/com31 > /tmp/modem_dump

Note that we disabled the "remote" device but used the "local" modem device when using
kermit. This allows us to access the modem registers without having to wait for the modem
to assert the carrier detect signal.

While talking to the Trailblazer, we sent It ATN? followed by the <Enter> key. We then
entered " (the circumflex) followed by the letter C in order to exit from kermit. The following
gives the results contained in file /tmp/modem_dump:

kermit: connected •••

EO Fl Ml Q9 T VO WO X3 YO &PO &T4 Version BAS.01
SOO=OOl SOl=OOO S02=043 S03=013 S04=010 S05=008 S06=002 807:060 \

S08=002 S09=006
Sl0=007 Sll=070 Sl2=050 Sl8=000 S25=005 S38=000
S41=000 S45=000 S47=004 848:001 S49=000
SSO=OOO 851:252 S52=000 854:003 SSS=OOO

858:000 S59=000
S60=000 861:230 S62=003 S63=001 S64=000 S65=000

S68=255 S69=000
S90=000 S91=000 S92=000 S94=001 S95=000 S96=001
SlOO=OOO SlOl=OOO 8102=000 Sl04=000 Sl05=001
Sll0=255 Slll=255 Sll2=001
Sl21=000 Sl30=002 5131:001 S255=000
NO:
Nl:
N2:
N3:
N4:
NS:
N61
N7:
NS:
N91

0
kermit: disconnected.

/etc/ttys Problems

S56=017 S57=019 \

S66=000 S67=000 \

Sometimes, UUCP problems will arise because the entry in file /etc/ttys for the serial port
your modem is using, is either missing or is incorrect.

LEXICON

UUCP 1029

To discover which port UUCP thinks your modem is using, invoke the command uuinstall.
Then. under its Devices option, look at the remote line. The remote device you specified on
this line must be described in file I etc/ttys. If it is not, then you will find statements in the
log file for the site you are calling stating that a device was not found.

If you see errors in the log files that state that a device is not found, and you have checked
the "remote" entry in uulnstall against the contents of /etc/ttys, the next possible cause
may be the /etc/ttys entry for the port. Look for trailing spaces at the end of the line that
describes the com port. If you find a space at the end of a line, delete it.

com Port Driver Permissions
By far, the most common problem deals with permissions associated with the com port
devices. If you are trying to get UUCP to call out on a port, and keep seeing errors of the
form

Dial failed, Line Problem

in the output of uulog. you may need to fix permissions on the port in question.

If you are using one com port both for remote logins and to call out using UUCP. note the
following: When a port is enabled for remote access via a modem, the permissions for the
port are changed so that only the superuser root can access the port. This prevents
someone from inadvertently trying to send data out the port. When the port is later
disabled so that UUCP can dial out, the permissions for that com port are rwt changed to
give everyone access to the port. Remember. when UUCP is executing. it is just another
user with the name "uucp" and does not have root privileges.

To set the permissions properly. use the command chmod to reset the permission of the
com port device in directory /dev. For example, if your UUCP connection is via comlr. log
in as the superuser root and enter the command:

chmod 666 /dev/coml*

Usually. serial ports should have read and write permissions turned on for all users. The
main exception to this rule is that a port enabled for logins becomes readable and writeable
only by root. This not a problem for UUCP as the port is disabled (and permissions
expanded) temporarily when uuclco runs.

Lock Files and Temporary Files
UUCP controls access to the modem and to various directories and sites via a set of "lock
files". This is to prevent UUCP from tripping over its own feet by attempting to write more
than one file to the same site at the same site.

When a UUCP session fails, it may fail to remove all of its lock files before it exits, depending
upon the seriousness of the failure. "Stale" lock files and temporary files in directory will
prevent UUCP from accessing a given site or even from working altogether. Symptoms of
this problem are messages in the log files that state:

Site locked

This, of course, is not indicative of a problem unless no UUCP connection has been made
recently (within the last minute or so). To cure this problem, log in as the superuser root
and then enter the command:

uurmlock

This will remove all "stale" lock or temporary files.

LEXICON

1030 UUCP

UUCP Configuration Files
By far the most common cause of problems are mistakes in one or another UUCP
configuration file. If problems persist, check all UUCP configuration files against the
descriptions found in correspondingly named Lexicon articles. The files in question are
ttys. L-devices, L.sys. and Permissions.

UUCP Executable File Permissions
UUCP commands can invoke each other from time to time. If a UUCP executable file's
permissions are set incorrectly, that command may be prevented from being executed under
certain conditions, or from reading or writing certain key files.

Key UUCP executable files are /usr/lib/uucp/uucico. /usr/lib/uucp/uuxqt.
/usr/bin/uucp. and /usr/bin/uux. These files must belong to user and group uucp.
Permissions on these files must be 6511 (-r-s--s--x). See the Lexicon article for the
command chmod for further details on how to reset permissions for files.

UUCP Connects, but ...
Once UUCP is dialing out, it is extremely difficult to diagnose problems, as they can occur
at either end of the connection. In most cases, one must know both systems to diagnose
problems related to communication problems. Check the following:

Check your chat scripts. Contact the other system's system administrator to be sure
that you are expecting the correct prompts in the chat script for the system you are
calling.

Use the debugging mode of uucico to watch communications. Debugging mode is
accessed using the uucico command suffixed by a -x#. where # is 1 to 9 which
determines the debugging level. For example

/usr/lib/uucp/uucico -smwcbbs -xl

Please note, the uucico debugging option is incompatible with certain non-COHERENT
versions of uucico.

Note also that the COHERENT default mailer does not yet support domains. If domain
information is being sent to your system, an error may result and possibly cause
unexpected results or errors from uucico. The error will usually state that a log file
could not be written to. Alternate mailers are available from the various COHERENT
archive sites, as well as the MWC UUCP bulletin board system.

Remote Won't Accept Files ... Where'd My Mail Go?
If you see messages in your log files that a site would not accept a file from your site, the
other site may not have its permissions set to allow you to send files to it, or to write the
files you are sending to a directory that you specified.

When sending files across systems. check the length of the site name. Currently,
COHERENT can only work with a seven-character or shorter site name. If you are using an
eight-character or longer site name, COHERENT will not properly distribute files transferred
from your site. To change the name of your system. edit the contents of file
/etc/uucpname; and to change the name of your system's domain, edit the conten.ts of file
/etc/domain.

See Also
com, commands, domain, L-dev, L.sys, Permissions, terminal, uucico, uucp,
uucpname, uudecode, uuencode, uuinstall, uulog, uumvlog, uuname, uurmlock,
uutouch,uux,uuxqt
UUCP, Remote Communications Utility. tutorial

LEXICON

uucp 1031

uucp - Command
Ready files for transmission to other systems
uucp [-cCdfmr] [-nuser] [-s dlr] [-xn] source ... dest

uucp copies files source 1 through sourceN to the destination system dest. Either source or
destination files can contain specifications for the remote system.

uucp recognizes the following options:

-c Do not copy the source file into spool directory; rather use the file itself. This is the
default.

-C Copy the source file into spool directory.

-d Create directories as required on the destination system.

-f Do not make intermediate directories for the file copy.

-m Send mail to requester when the file is sent.

-nuser
Notify user on destination system when the file is received. Note that user may
contain a path. e.g.:

-nuser!site

-r Spool transfer request. but do not initiate uucico.

-xn Assign debug level n (0 to 9).

Examples
The first example copies file foo to directory /bar on system george:

uucp foo george!/bar

The next example copies file /foo from system george into directory /tmp on your system:

uucp george!/foo /tmp

The next example copies file /foo from system george into file or directory /bar on system
Ivan:

uucp george!/foo ivan!/bar

Note that this assumes your system can talk to both george and Ivan and that your system
has permission to read file /foo on system george as well as to write file /bar on system
Ivan.

The next example downloads files /foo and /bar from remote systems Ivan and george into
directory /tmp on your system:

uucp ivan!/foo george!/bar /tmp

For an example of using the command find with uucp to spool files automatically. see the
entry for find.

Files
/usr/lib/uucp/L.sys- List of reachable systems
/usr/lib/uucp/Permissions- List of system permissions
I usr I spool/uucp I .Log/• I sltename - uucp activities log files for site name
/usr/spool/uucp/sltename-Spool directory for work

LEXICON

1032 uucpname - uuencode

See Also
commands, mail, uucico, UUCP, uudecode, uuencode, uutouch, uuwatch, uuxqt

uucpname - System Maintenance
Set the system's UUCP name
/etc/uucpname

The file /etc/uucpname sets the name by which your system is known to all other system
with which it communicates via UUCP. To rename your system, simply change the
contents of this file. Note that only the superuser root can edit this file.

See Also
domain system maintenance, UUCP

uudecode - Command
Decode a binary file sent from a remote system
uudecode [.file I

uudecode takes a file encoded by uuencode and translates it back to binary. Any leading
and trailing lines added by uucp are discarded.

If the.file is not specified. standard input is read.

Example
Consider the file tmp consisting of:

begin 644 sys
MS&AE('%U:6-K(&)R;W=N(&90>"IJ=6UP<RIO=FSR('1H921L87IY(&l09RX*

end

Note that the third line is a space followed by a newline. To decode it. type:

uudecode tmp

The output contained in file sys will be:

The quick brown fox jumps over the lazy dog.

See Also
commands, uucp, UUCP, uuencode

Notes
The user on the remote system must be able to write the file.

uuencode - Command
Encode a binary file for transmission
uuencode [source I remotedest

uuencode prepares a binary file for transmission to a remote destination via uucp.
uuencode takes binary input and produces an encoded version. consisting of printable
ASCII characters, on standard output. which may be redirected or piped to uucp. If source
is not specified. the standard input is read.

The format of the encoded file is as follows:

LEXICON

uuinstall 1033

I. A header line starting with the characters begin followed by a space. This is followed
by the mode of the file in octal (see chmod for details) and the name of the output file
specified on the command line. These last two fields are also separated by a space.
The mode and the system name can be changed by directing the output into a file and
editing it.

2. The body of the file, consisting of a number of lines, each no more than 62 characters
long, including a newline character. Each line starts with a character count written as
a single ASCII character, representing an integer value from 0 (octal 40) to 63 (octal
135) giving the number of characters in the rest of the line. This is followed by the
encoded characters and a newline. The last line of the body is a line consisting of an
ASCII space (octal 40).

3. The trailer line has just the characters end on a line by itself.

The encoding is done by taking three bytes and storing them in four characters. six bits per
character.

Example
To encode the file tmp consisting of the line

The quick brown fox jumps over the lazy dog.

to be sent to the remote system george, enter:

uuencode trnp george

The output will be:

begin 644 george
MS&AE ('%U: 6-K(&) R;W=N(&90>" ! J=6UP<R!O=F5R('1H92 !L87IY (&109RX*

end

Note that the third line consists of a space followed by a newline.

See Also
commands, uucp, UUCP, uudecode

Notes
The file is expanded by more than one third, causing increased transmission time. This can
be a factor when sending large files.

uuinstall - Command
Install UUCP
uuinstall

uuinstall assists with the installation of UUCP. It uses screen templates. help lines. and
prompts to help walk you through the installation of devices. remote systems. site names,
domains, and permissions. For a detailed description of its use, see the tutorial on UUCP in
the front of this manual.

See Also
commands, UUCP

LEXICON

1034 uulog - uuname

Notes
Only the superuser root can execute uuinstall.

uulog - Command
Examine UUCP operations
uulog [-fx] [system]

uulog copies the last part of the file /usr/spool/uucp/ .Log/uucico/system to see what
uucico has done recently. system names the remote system whose logfile will be examined.
If it is not specified, logfiles for all systems are displayed.

uulog recognizes the following options:

-f Similar to the command tail -f: this forces uulog to display UUCP activity as it is
written into the log file. until you interrupt it by typing <ctrl-C>.

-x Display the log files for the command uuxqt rather than uucico.

Files
/usr/spool/uucp/ .Log/uucico/system- uucico log file for system
/usr/spool/uucp/ .Log/uuxqt/system- uuxqt log file for system

See Also
commands, uucico, uucp, UUCP, uuxqt

uumvlog - Command
Archive UUCP log files
uumvlog days

uumvlog copies all UUCP log files into backup files, named for their respective commands
and the date upon which the backup was performed. days gives the number of days for
which backup files should be kept: if a backup file is more than days days old. then
uumvlog will delete it.

This command should be run by cron, because the UUCP log files can threaten to exhaust
available file space on a small system unless they are chopped back daily. For directions on
how to do this, see the tutorial for UUCP or the Lexicon entry for cron.

Files
/usr /spool/uucp/ .Log/ command/ system- UUCP log files

See Also
commands, crontab, uucico, uucp, UUCP, uuxqt

uuname - Command
List UUCP names of known systems
uuname [-1]

uuname lists the names of all systems reachable directly by uucp. When used with the -1
option, it reads and prints the contents of file /etc/uucpname, which holds the name of
your local system.

Files
/etc/uucpname~ Name of local system
/usr/lib/uucp/L.sys- Site and remote login data list

LEXICON

uurmlock - uutouch 1035

See Also
commands, uucico, uucp, UUCP, uulog

uurmlock - Command
Remove UUCP lock files
uurmlock

UUCP uses a system of lock files to ensure that sites are polled in an orderly manner. It
creates a lock file named after the site being polled. to prevent more than one invocation of
uucico or another UUCP command from polling the same site at the same time. On
occasion, if UUCP fails or crashes, it will neglect to clean up its lock files, thus preventing
itself from polling the locked sites.

The command uurmlock removes all UUCP lock files. You should run this if you suspect
that UUCP has died in a disorderly manner and has left lock files lying around unattended.

Before you run uurmlock, examine the output of the command ps to ensure that no UUCP
command is running at the moment (and so has legitimately locked a site). Note that only
the superuser root can run uurmlock.

Files
/usr/spool/uucp/LCK.•- UUCP lock files

See Also
commands, UUCP

uutouch - Command
Touch a file to trigger uucico poll
uutouch system

uutouch creates an empty control file for system in the directory /usr/spool/uucp/system.
This forces UUCP to poll system when uucico is called with the option -sany. If the empty
file for system aready exists, it is left alone.

There are three types of files in the spool directory /usr/spool/uucp/system:

C. Command file.

D. Data file.

X. Execute file.

Example
A typical usage is to put the following line into /usr/llb/crontab:

0 7 * * * /usr/lib/uucp/uutouch george

This forces UUCP to schedule a poll to the remote system george at 7 AM local time. The
actual poll take place when uucico is started.

Files
/usr/spool/uucp/sltename- Directory for uucp work files

See Also
commands, cron, uucico, uucp, UUCP, uuxqt

LEXICON

1036 uux

uux - Command
Execute a command on a remote system
uux [-a user] [-mpz) command-string

The command uux executes commands on a remote system. uux works in conjunction
with the UUCP system. It is not generally used by the end user, but is instead called by the
various UUCP subsystem components to request that work be performed at a remote
system. For security reasons, you can execute on the remote system only the commands
that are explicitly permitted by the remote system, as described in the entry for your system
in the remote system's copy of /usr/llb/uucp/Permissions.

If all permissions are in order, an appropriately named X. file is created in the remote
system's directory /usr/spool/uucp/yoursystem, where yoursystem gives the name by
which the remote system knows your system. This file is then executed by the remote
system's copy of uuxqt.

command-string consists ofa command name followed by zero or more arguments. Both the
command name and the arguments may be prefixed by an optional system name (sitename)
and an exclamation mark. Note that all special characters must be escaped or enclosed in
quotation marks to avoid being processed by your system's shell.

For example, the simplest form of the uux command is:

uux host!command argO arg2 argN

where host is the name of the remote system being contacted, as described in the file
/usr/llb/uucp/L.sys. command is the name of the command to execute on the remote
system, and argO through argN give the arguments to command.

If an argument names a file. that file can either be on the remote system. on your system. or
on some third system. For example, the command

uux widget!lpr /usr/sally/herfile

requests site widget to print its own file /usr/sally/herfile. On the other hand, the
command

uux widget!lpr !$HOME/myfile

requests that site widget print on its line printer the file myfile from your home directory
on your home system. Note that the '!' that prefixes mytlle indictes that it is on your
system. Finally. the command

uux widgetllpr ZEUSl/usr/fred/hisfile

requests that widget print file /usr/fred/hisfile which resides on site ZEUS. Note that if
widget does not know how to contact site ZEUS. the command will fail.

If you wish, you can embed the shell operators'<'. '>'. ';',or' I' within a uux command. This
lets you construct a more powerful command than you could do otherwise. Commands that
contain these operators must. of course, be quoted so ensure that your shell does not
interpret them. For example. the command

uux "widget!pr /usr/sally/herfile > ZEUS!-/fred/hisfile"

tells uux to use pr to format its file /usr/sally/herfile. and write the output into file
/usr/spool/uucppubllc/fred/hisfile on site ZEUS. (Note that the tilde '-', as always. is a
synonym for /usr/spool/uucppubllc.) Again, the command will fail if you do not have
appropriate permissions on widget or if widget does not have appropriate permissions on

LEXICON

uux 1037

·ZEUS.

The operator·-· lets you use the standard input when constructing a uux command. For
example, the command

who I uux - widget!lpr

executes the who command on your system, pipes the output to uux, and tells uux to
invoke the command lpr on remote system widget to print the list of users on your system.

uux will attempt to transfer any needed input files to the system which will be executing the
requested command. You must enclose in parentheses any output files generated by
command, to distinguish them from input file names.

uux recognizes the following options:

-a user
Use user as the name of the requester. The default is the requester's login name.

-r Queue up the uux request but do not invoke uucico to actually handle the transfer.
The default is to initiate uucico.

-n Suppress notification of command completion. The default is to send mail to the
requester after the command has been run.

-p Input to uux will be via a pipe or input redirection.

-z Notify requester when command-string succeeds. The default is to not generate a
notification.

Examples
The following script uses a remote system to print files. Print files specified on the
command line are sent unprocessed to system pmsrvr for printing using command lpr.
Note that since the -r option is specified to uux, uucico will not be invoked automatically.
thus causing the requests simply to be queued.

for i in $*
do

uux -r prnsrvrllpr 1$i
done

The next example copies file /foo from system george and file /bar from system norms to
your system and then invokes command cmp to compare the contents of the files. The
results of the comparison are placed in output file /tmp/cmp.results on the local system,
and notification of command completion is sent via electronic mail.

uux -z "lcmp -1 georgel/foo norms!/bar >/tmp/cmp.results"

Note that this example assumes that your system can talk to both george and norms and
that your system has permission to read file /foo on system george as well as to read file
/bar on system norms.

The last example runs a remote C compile on system cserver using local file mycode.c as
input and producing executable file mycode as output. Any C compiler error messages will
be placed in file /tmp/errors on the local system.

uux 'cserverlcc -o -o (lmycode) lmycode.c >!/tmp/errors'

LEXICON

1038 uuxqt

See Also
commands, UUCP, uuxqt

uuxqt - Command
Execute commands requested by a remote system
uuxqt

uuxqt takes the execute files, those marked with the prefix X. in the directory
/usr/spool/uucp/sltename, and executes them. It will only execute programs for which
the remote system has permission.

uuxqt may be called by either uucp or uucico. It is not generally considered a user-callable
program.

Files
I usr I spool/ uucp I site name - Directory for execute files

See Also
commands, uuclco, uucp, UUCP, uux

LEXICON

v7sgtty.h - Header File
UNIX Version 7-style terminal 1/0
#include <v7sgtty.h>

v

v7sgtty.h - va_endO 1039

v7sgtty.h defines structures and constants used by routines that perform terminal l/O in
the manner of UNIX version 7.

See Also
header mes, sgtty.h, tty.h

va_argO - Variable Arguments
Return pointer to next argument in argument list
#include <stdarg.h>
typename •va_arg(llstptr, typename)
va_list llstptr, typename;

va_arg returns a pointer to the next argument in an argument list. It can be used with
functions that take a variable number of arguments, such as printf or scanf, to help write
such functions portably. It is always used with va_end and va_start within a function that
takes a variable number of arguments.

listptr is of type va_list, which is defined in the header stdarg.h. This object must first be
initialized by the macro va_start.

typename is the name of the type for which va_arg is to return a pointer. For example, if
you wish va_arg to return a pointer to an integer, typename should be of type int.

va_arg can only handle "standard" data types, i.e., those data types that can be transformed
to pointers by appending an asterisk'*'.

Example
For an example of this macro, see the entry for variable arguments.

See Also
variable arguments

Notes
If there is no next argument for va_arg to handle, or if typename is incorrect, then the
behavior ofva_arg is undefined.

The ANSI Standard demands that va_arg be implemented only as a macro. If its macro
definition is suppressed within a program, its behavior is undefined.

va_endO - Variable Arguments
Tidy up after traversal of argument list
#include <stdarg.h>
void va_end(listptr)
va_list llstptr;

va_end helps to tidy up a function after it has traversed the argument list for a function
that takes a variable number of arguments. It can be used with functions that take a
variable number of arguments, such as printf or scanf. to help write such functions
portably. It should be used with the routines va_arg and va_start from within a function
that takes a variable number of arguments.

LEXICON

1040 va_startO - variable arguments

listptr is of type va_list, which is declared in header stdarg.h. listptr must first have been
initialized by macro va_start.

Example
For an example of this function, see the entry for variable arguments.

See Also
variable arguments

Notes
If va_list is not initialized by va_start, or if va_end is not called before a function with
variable arguments exits, then the behavior ofva_end is undefined.

va_startO - Variable Arguments
Point to beginning of argument list
#include <stdargs.h>
void va_start(llstptr, rlghtparm)
va_list listptr, type rlghtparm;

va_start is a macro that points to the beginning of a list of arguments. It can be used with
functions that take a variable number of arguments. such as printf or scant. to help
implement them portably. It is always used with va_arg and va_end from within a function
that takes a variable number of arguments.

listptr is of type va_list, which is a type defined in the header stdarg.h.

rlghtparm is the rightmost parameter defined in the function's parameter list. Its type is set
by the function that is using va_start. Undefined behavior results if any of the following
conditions apply to rightparm: if it has storage class register; if it has a function type or an
array type; or if its type is not compatible with the type that results from the default
argument promotions.

Example
For an example of this macro, see the entry for variable arguments.

See Also
variable arguments

Notes
The ANSI Standard demands that va_start be implemented only as a macro. If the macro
definition of va_start is suppressed within a program. the behavior is undefined.

variable arguments - Overview
The ANSI Standard mandates the creation of a set of routines to help implement functions,
such as printf and scanf, that take a variable number of arguments. These routines are
called from within another function to help it handle its arguments.

These routines are declared or defined in the header stdarg.h, and are as follows:

va_arg()
va_end()
va_start()

Return pointer to next argument in argument list
Tidy up after an argument list has been traversed
Initialize object that holds function arguments

va_arg and va_start must be implemented as macros; va_end must be implemented as a
library function. All three use the special type va_list, which is an object that holds the
arguments to the function being implemented.

LEXICON

vi 1041

Example
The following example concatenates multiple strings into a common allocated string and
returns the string's address.

#include <stdarg.h>
#include <stdlib.h>
#include <stddef.h>
#include <stdio.h>

char *
multcat(numargs)
int numargs;
{

}

va_list argptr;
char *result;
int i, siz;

/* get size required */
va_start(argptr, numargs);
for(siz = i = O; i < numargs; i++)

siz += strlen(va_arg(argptr, char*));

if ((result= calloc(siz + 1, 1)) ==NULL) {
fprintf(stderr, "Out of space\n");
exit(EXIT_FAILURE);

}
va_end(argptr);

va_start(argptr, numargs);
for(i = O; i < numargs; i++)

strcat(result, va_arg(argptr, char*));
va_end(argptr);
return(result);

int
main(void)
{

}

printf (mul teat (5, "One ", "two " "three "
"testing", ".\n"));

See Also
libraries, stdarg.h

vi -Command
Clone of Berkeley-style screen editor
vi [options I [+cmd) [fllel ... flle27)

vi is a link to the editor elvis, which is a clone of the UNIX editors ex and vi. For details on
how to run vi, see the entry for elvis in the Lexicon.

LEXICON

1042 view- virec

See Also
commands, ed, ex, elvis, me, view

Notes
elvis is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous
volunteers. It is freely redistributable, subject to the restrictions noted in included
documentation. Source code for elvis is available through the Mark Williams bulletin
board, USENET, and numerous other outlets.

elvis is distributed as a service to COHERENT customers, as is. It is not supported by
Mark Williams Company. Caveat utilitor.

view - Command
Screen-oriented viewing utility
view file 1 ... jlle2 7

view is a link to elvis, which is a clone of the UNIX vi/ex set of editors. Invoking elvis
through this link forces it to operate solely in read-only mode, just as the UNIX view utility
operates.

For information on how to use this version of view, see the Lexicon page for elvis.

See Also
commands, ed, elvis, ex, me, vi

Notes
view is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous
volunteers. It is freely redistributable, subject to the restrictions noted in included
documentation. Source code for virec is available through the Mark Williams bulletin
board, USENET. and numerous other outlets.

elvis is distributed as a service to COHERENT customers. as is. It is not supported by
Mark Williams Company. Caveat utilltor.

virec - Command
Recover the modified version of a file after a crash
virec [-d tmpdlr] texifllename ...
virec </tmp/elvXXX

virec extracts the most recent version of a text file from a temporary file in /tmp.

When you edit a file with elvis, only about five kilobytes of the file are stored in RAM; the
rest is stored in a file in /tmp. virec extracts the "undo" version from the file stored in
/tmp. This is most useful when the system (or elvis) crashes in the middle of a long editing
session, since the "undo" version of the file contains everything except your last change.

There are two ways to use virec. The first, and most common, way to invoke virec is to give
it the name of the file you were editing; it finds the matching file in /tmp and writes the
newest available version of the file over the existing version. It then deletes the /tmp file.

The second way is to use the'<' to let virec read a particular /tmp file via stdin. Use this
method when you either have forgotten which file you were editing and want to see its
contents, or when you wish to recover a file without losing either the /tmp file or the
current version of the text file.

The -d option tells virec to look for a temporary file in directory rather than in /tmp.

LEXICON

void - volatile 1043

Files
/tmp/elv* -Temporary file created by elvis

See Also
commands, elvis

Notes
virec is copyright © 1990 by Steve Kirkendall. and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous
volunteers. It is freely redistributable, subject to the restrictions noted in included
documentation. Source code for virec is available through the Mark Williams bulletin
board, USENET, and numerous other outlets.

Please note that this program is distributed as a service to COHERENT users, but it is not
supported by Mark Williams Company. Caveat utilitor.

void - C Keyword
Data type

The keyword void indicates that the function does not return a value. Using void
declarations makes programs clearer and is useful in error checking. For example, a
function that prints an error message and calls exit to terminate a program should be
declared void because it never returns. A function that performs a calculation and stores
its result in a global variable (rather than returning the result), or one that returns no
value, should also be declared void to prevent the accidental use of the function in an
expression.

See Also
C keywords

volatile - C Keyword
Qualify an identifier as frequently changing

The type qualifier volatile marks an identifier as being frequently changed, either by other
portions of the program, by the hardware, by other programs in the execution environment,
or by any combination of these. This alerts the translator to re-fetch the given identifier
whenever it encounters an expression that includes the identifier. In addition, an object
marked as volatile must be stored at the point where an assignment to this object takes
place.

See Also
C keyword, const

Notes
Although COHERENT recognizes this keyword, the semantics are not implemented in this
release. Thus, storage declared to be volatile might have references removed by
optimizations that the compiler performs. The compiler will generate a warning if the
peephole optimizer is enabled and the keyword volatile is detected.

LEXICON

1044 wait - waitO

w
wait - Command

Await completion of background process
wait (pld]

Typing the character'&' after a command tells the shell sh to execute it as a background (or
detached) process: otherwise, it is executed as ajoreground process. You can perform other
tasks while a background process is being executed. The shell prints the process id number
of each background process when it is invoked. ps reports on currently active processes.

The command wait tells the shell to suspend execution until the child process with the
given pid is completed. If no pid is given, wait suspends execution until all background
processes are completed. If the process with the given pid is not a child process of the
current shell, wait returns immediately.

The shell executes wait directly.

See Also
commands, ps, sh

Notes
If a subshell invokes a background process and then terminates, wait will return
immediately rather than waiting for termination of the grandchild process.

waitO - System Call
Await completion of a child process
wait(statp)
int •statp:

wait suspends execution of the invoking process until a child process (created with fork)
terminates. It returns the process identifier of the terminating child process. If there are no
children or if an interrupt occurs, it returns -1.

If it is successful. wait returns the process identifier of the terminated child process. In
addition, wait fills in the integer pointed to by statp with exit-status information about the
completed process. If statp is NULL, wait discards the exit-status information.

wait fills in the low byte of the status-information word with the termination status of the
child process. A child process may have terminated because of a signal. because of an exit
call, or have stopped execution during ptrace. Termination with exit, which is normal
completion, gives status 0. Other terminations give signal values as status (as defined in
the article on signal). The 0200 bit of the status code indicates that a core dump was
produced. A status of 0177 indicates that the process is waiting for further action from
ptrace.

The high byte of the returned status is the low byte of the argument to the exit system call.

If a parent process does not remain in existence long enough to wait on a child process, the
child process is adopted by process 1 (the initialization process).

See Also
_exit(), fork(), ksh, ptrace(), signal(), sh, system calls

LEXICON

wall - Command
Send a message to all logged-in users
/etc/wall

wall - whence 1045

wall types a message to every user currently logged into the COHERENT system, with the
exception of the sender. It can be used to inform users of information of general interest;
for example, that man has landed on the moon, or that the system is going down in 15
minutes.

wall reads the message to be broadcast from the standard input until end of file. When it
sends the message, it prefaces it with the herald "Broadcast message ... ", which includes an
audible warning. Only the superuser should invoke /etc/wall (to override access
protections of the target terminals).

Files
/etc/utmp- Current users file
/dev/tty•

See Also
commands, msg, who, write

Diagnostics
The message "Cannot send to user on ttyname" indicates that wall cannot write to the given
user.

wc -Command
Count words, lines. and characters in text files
wc [-clw) Ifile .. .]

wc counts words. lines, and characters in eachjlle. If no file is given. wc uses the standard
input. If more than one file is given, wc also prints a total for all of the files.

wc defines a word to be a string of characters surrounded by white space (blanks, tabs, or
newlines). It defines the number of lines to be the number of newline characters in the file.
plus one.

wc recognizes the following options:

-c Count only characters.

-l Count only lines.

-w Count only words.

The default action is to print all counts.

See Also
commands

whence - Command
List a command's type
whence [-v] command ...

The command whence is built into the Korn shell ksh. It lists the type for each command.
Option -v lists function and alias values as well.

LEXICON

1046 whereis

See Also
commands, ksh

whereis - Command
Locate source, binary, and manual files
whereis [-bmrsu] [-BMS dlr ... -fl name ...

The command whereis locates source files, binary files (executables), and manual pages
(documentation) that match a given name. Prior to searching. whereis strips name of any
path information, extensions, and the s. prefix.

By default, whereis searches the following directories:

Sources
/usr/src/cmd
I usr I src I games
I usr I src /local
/usr /src/alien
I usr I include
/usr /include/sys

Options

Binaries
/bin
/usr/bin
/usr/games
/usr/local
/etc
/lib
/usr/lib

Manual Pages
/usr/man/ALL
/usr /man/COHERENT
/usr /man/KERNEL
/usr/man/MULTI

whereis recognizes the following command-line options:

-b Search only for binary files.

-B Use the directory list specified by dlr instead of the default directory list for binary
files.

-f Terminate the directory list introduced by options -B, -M, or -S, and treat any
additional command-line arguments as file names to be searched for.

-m Search only for manual pages (documentation files).

-M Use the directory list specified by dlr instead of the default directory list for manual
pages.

-r Search recursively downward from the directories specified by dlr or from the default
directories. This option is useful when the searched directories contain sub­
directories. By default, whereis searches only the directories specified or the default
directories.

-s Search only for source files.

-S Use the directory list specified by dlr instead of the default directory list for source
files.

-u Search for "unusual" files. A file is said to be unusual if it does not have one entry
for each of the three search categories.

Please note that if you use options -B. -S. or -M. you must use the -f option to terminate the
directory list specified by dlr.

Example
The following example finds all commands in directory bin that have either no
corresponding source code in directory src or no corresponding documentation in directory
doc:

LEXICON

which - while 1047

whereis -u -M doc -s src -B bin -f bin/*

See Also
commands, find, qf:l.nd, which

Notes
whereis is copyright © 1980, l 990 by The Regents of the University of California. All rights
reserved.

whereis is distributed as a service to COHERENT customers, as is. It is not supported by
Mark Williams Company. Caveat utilitor.

which - Command
Locate executable files
which command ...

which displays the full path name associated with command. It searches the directories
named by environment variable PATH for the first executable that matches command and
that you have permission to execute. If which can find no executable that matches your
request, an error message is displayed.

Example
The following example displays the path names that correspond to commands write, vi,
myprog, and fsck:

which write vi myprog fsck

See Also
commands, find, PATH, qf:l.nd, whereis

while - Command
Execute commands repeatedly
while sequencel [do sequence2] done

The shell construct while controls a loop. It first executes the commands in sequencel. If
the exit status is zero, the shell executes the commands in the optional sequence2 and
repeats the process until the exit status of sequencel is nonzero. Because the shell
recognizes a reserved word only as the unquoted first word of a command, both do and
done must occur unquoted at the start of a line or preceded by ';'.

The shell commands break and continue may be used to alter control flow within a while
loop. The until construct has the same form as while, but the sense of the test is reversed.

The shell executes while directly.

See Also
break,conunands,continue,ksh,sh,test,until

while - C Keyword
Introduce a loop
while(condltlon)

while is a C keyword that introduces a conditional loop. condition is tested on reiteration of
the loop, and the loop ends when condition is no longer satisfied. For example,

while (foo < 10)

LEXICON

1048 who - wildcards

introduces a loop that will continue until the variable foo is reset to ten or greater. Note
that the statement

while (1)

will loop forever, unless interrupted by a break, goto, or return statement.

See Also
break, C keywords, continue, do, for

who - Command
Print who is logged in
who Iflle] [am i]

The command who prints the names of the users who are logged in to the system. For each
user, who prints her name, terminal name, login date, and login time. The form who am i
prints this information only about yourself.

lfflle is specified. who uses it instead of /etc/utmp to obtain information about who is
logged in. This is useful, for example, with the file /usr/adm/wtmp. which contains a
continuous record of logins, logouts and reboots. When file is specified, who displays
logouts; otherwise, they are suppressed.

Files
/etc/utmp-To get user information

See Also
ac,commands,sa

wildcards - Definition
Wildcards are characters that, in some circumstances, can represent a range of ASCII
characters. Another name for them is "metacharacters". The wild cards available under the
COHERENT are as follows:

?

•
I I

[! I

Match any one character.

Match any number of characters. or no characters at all.

A set of characters enclosed between '[' and ']' match any one character of the set.
Sets of characters may include ranges. such as [a-z] for all lower-case letters or (0-
9] for all numerals.

A set of characters enclosed between '(!' and ']' match any one character except one
of the set. Sets of characters may include ranges, such as [a-z) for all lower-case
letters or [0-9] for all numerals. For example, the command

ls [labc]*

prints the names of all files except those that begin with a, b, or c.

\ Ignore the special meaning of a wildcard.

See Also
definitions, egrep, patterns, pnmatch()

LEXICON

write - Command
Converse with another user
write user [tty I

write - writeO 1049

The COHERENT system provides several commands that allow users to communicate with
each other. write allows two logged-in users to have an extended, interactive conversation.

write initiates a conversation with user. If tty is given, write looks for the user on that
terminal; this is useful if a user is marked as being logged in on more than one device.
Otherwise, write holds the conversation with the first instance of user found on any tty.

If found, write notifies user that you are beginning a conversation with him. All subsequent
lines typed into write are forwarded to the user's terminal. except lines beginning with '!',
which are sent to the shell sh. Typing end of file (usually <ctrl-D>) terminates write and
sends user the message "EOT" to tell him that communication has ended.

Two users typing lines to write at about the same time can cause extreme confusion, so
users should agree on a protocol to limit when each is typing. The following protocol is
suggested. One user initiates a write to another, and waits until the other user replies
before beginning. The first user then types until he wishes a reply and suffixes "o" (over) to
indicate he is through. The other user does the same, and the conversation alternates until
one user wishes to terminate it. This user types "oo" (over and out). The other user replies
in the same way. indicating he too is finished. Finally each of the users leave write by
typing end-of-file (usually <ctrl-D>).

Any user may deny others the permission to write to his terminal by using the command
mesg.

Files
/etc/utmp
/dev/•

See Also
comm.ands, mail, mesg, msg, sh, wall, who

Notes
You should use write only for extended conversations. Use msg to send brief
communications to a logged in user, and mail to communicate with a user not currently
logged in. wall broadcasts a message to all logged in users.

writeO - System Call
Write to a file
int wrlte(fd, buffer, n)
intfd; char •buffer; int n;

write writes n bytes of data, beginning at address buffer, into the file associated with the file
descriptor fd. Writing begins at the current write position, as set by the last call to either
write or lseek. write advances the position of the file pointer by the number of characters
written.

Example
For an example of how to use this function, see the entry for open.

LEXICON

1050 writeO

See Also
STDIO, system calls

Diagnostics
write returns -1 if an error occurred before the write operation commenced, such as a bad
file descriptor fd or invalid buffer pointer. Otherwise. it returns the number of bytes
written. It should be considered an error if this number is not the same as n.

Notes
write is a low-level call that passes data directly to COHERENT. It should not be mixed
with high-level calls. such as tread. fwrite. or fopen.

LEXICON

x
xgcdO - Multiple-Precision Mathematics

Extended greatest-common-divisor function
#include <mprec.h>
void xgcd(a, b, r, s, g)
mint •a, •b, •r, •s, •g;

xgcdO 1051

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function xgcd is an extended version of the greatest-common­
division function. It sets the multiple-precision integer (or mint) pointed to by g to the
greatest common divisor of the mint pointed to by a and that pointed to by b. It also sets
the mints pointed to by r and s so the following relation holds:

g=a*r+b*s

r, s. and g must all be distinct.

See Also
multiple-precision mathematics

LEXICON

1052 yacc

y

yacc - Command
Parser generator
yacc [option ...]file
cc y.tab.c [-ly]

Many programs process highly structured input according to given rules. Compilers are a
familiar example. Two of the most complicated parts of such programs are lexical analysis
and parsing (sometimes called syntax analysts). The COHERENT system includes two
powerful tools called lex and yacc to assist you in performing these tasks. lex takes a set of
lexical rules and writes a lexical analyzer, whereas yacc takes a set of parsing rules and
writes a parser; both output C source code that can be compiled into a full program.

The term yacc is an acronym for "yet another compiler-compiler". In brief, the yacc input
file describes a context free grammar using a BNF-like syntax. The output is a file y.tab.c;
it contains the definition of a C function yyparse(), which parses the language described in
file. The output is ready for processing by the C compiler cc. Ambiguities in the grammar
are reported to the user. but resolved automatically by precedence rules. The user must
provide a lexical scanner yylex(), which you may generate with lex. The yacc library
includes default definitions of main, yylex, and yyerror, and may be included with the
option -ly on the cc command line.

yacc recognizes the following options:

-d Enable debugging output; implies -v.

-hdr headeiflle

-l ltsiflle

Put the header output in headeiflle instead of y.tab.h.

Place a description of the state machine, tokens, parsing actions, and statistics in
file llsiflle.

-st Print statistics on the standard output.

-v Verbose option. Like -1, but places the listing in file y.output by default.

The following options are useful if table overflow messages appear:

-ntermsN
Allow for N nonterminals; default, 100.

-prodsN
Allow for N productions (rules); default, 1 75.

-statesN
Allow for N states; default, 300.

-termsN
Allow for N terminal symbols; default 100.

-typesN
Allow for N types; default, ten.

Files
y.tab.c- C source output
y.tab.h- Default C header output
y.output- Default listing output

LEXICON

/lib/yyparse.c- Protoparser
/tmp/y[ao)• -Temporaries
/usr/include/action.h- Header referenced by protoparser
/usr/lib/liby.a- Library

See Also
cc, commands, lex
Introduction to yacc, Yet Another Compiler-Compiler

yes 1053

DeRemer F. Pennello TJ: Efficient computation of LALR(l) lookahead sets. SIGPLAN
conference, 1979.

Diagnostics
yacc reports the number of R/R (reduce/reduce) and S/R (shift/reduce) conflicts
(ambiguities) on the standard error stream.

yes - Command
Print infinitely many responses
yes [string)

With no argument, yes prints the string y\n forever. If a string is named on the command
line, then yes prints it forever.

Example
The following example scribbles the string foo\n over a high-density, 5.25-inch floppy disk
in drive 0 (drive A):

yes foo >/dev/fhaO

See Also
commands

LEXICON

1054 zcat - zeropO

z
zcat - Command

Concatenate a compressed file
zcat [file ... I

zcat concatenates one or more files that had been compressed with the command
compress. It uncompresses eachfile "on the fly," and prints the uncompressed text onto
the standard output.

If no file is specified on the command, zcat uncompresses matter read from the standard
input.

Older versions of zcat could only uncompress files that had been compressed with option -
bl2 or lower, with -bl2 being the default if the option was omitted. This release of zcat
now handles values up to -bl6 by using RAM device I dev /ram I for temporary storage. For
this reason, it is strongly advised that you not use I dev /ram I as a RAM disk.

Example
zcat is extremely useful for extracting selected items from large archives; it spares you the
overhead of having to uncompress the entire archive just to get at one or two files.

For example, to extract myfile from the compressed archive backup.tar.Z. use the following
command line:

zcat backup.tar.z I tar xf - myfile

See Also
commands, compress, ram, uncompress

zeropO - Multiple-Precision Mathematics
Indicate if multi-precision integer is zero
#include <mprec.h>
int zerop(a)
mint •a:

The COHERENT system includes a suite of routines that allow you to perform multiple­
precision mathematics. The function zerop returns true if the multiple-precision integer (or
mint) pointed to by a is zero; otherwise, it returns false.

See Also
multiple-precision mathematics

LEXICON

Section 17:

Appendix: Error Messages

The following lists the error messages produced by major utilities within COHERENT.

COHERENT System Error Messages
The following gives the error messages returned by the COHERENT kernel. The messages
describe two categories of error:

Hardware: These messages indicate serious problems with your system hardware. If
any appears, you need to contact a representative of the hardware manufacturer. Note
that the symbol '#' in the following messages stands for a number that appears when
the kernel prints the message on the console. When reporting the problem, be sure to
include the number actually printed out.

Halts: These messages appear when COHERENT has crashed.

When you see a halt message on the console, copy it down, as well as all other information
on the screen. If the advice offered in this section does not help the problem, call Mark
Williams Support.

Arena# too small (hardware)

Bad block # (alloc) (hardware)
The kernel attempted to allocate a block of memory, only to find that there was
something physically wrong with it.

Bad block # (free) (hardware)
The kernel attempted to free a block of memory, only to find that there was
something physically wrong with it.

Bad free # (hardware)

Bad freelist (halt)
Thefreellst is a list of free blocks on the disk. The COHERENT system maintains
this list so it can see where it can write data on the disk. This message indicates
that the freelist has been corrupted somehow. To fix this problem, run
/etc/shutdown to return to single-use mode: use sync to flush the buffers: use
umount to unmount the affected file system: and then run fsck to repair the file
system.

Bad segment count (hardware)

Bus error at # (hardware)

Cannot allocate stack (hardware)

Cannot create process (hardware)

Corrupt arena (hardware)

Illegal instruction at# (hardware)

1055

1056 The COHERENT System

lnode # busy (hardware)

lnode table overflow (hardware)

Not a separate 1/D machine (hardware)

Out ofi-nodes (halt)
A COHERENT file system has one i-node for each file it maintains. The number of
i-nodes is set when the file system is created. If you have numerous small files on a
file system, it is possible to exhaust that file system's resources even though the
command dt shows that space remains on the file system. To get around this
problem, you must delete files, one file for each i-node needed; or you must use ar
to archive a mass of files. To do this, first use /etc/shutdown to return the system
to single-user mode, as described above. Delete files, or use ar as described above.
Then use sync to flush all buffers, and use the command wnount to unmount the
affected file system. Then run fsck on the affected file system before rebooting.
fsck checks COHERENT file systems and fixes them if necessary. Consult the
Lexicon entry on fsck before you use this program for the first time.

Out of space (m,n) (halt)
When this error message appears, your file system still has i-nodes but the alloted
disk space has been exhausted; perhaps you have a few large files that are eating
up disk space. To get around this problem, you must delete or compress files to
clear up disk space. First, use /etc/shutdown to return to single-user mode, as
described above; then delete files or compress them as described above until
enough space has been cleared to allow you to continue your work. Use sync to
flush buffer, use wnount to unmount the affected file system, and run fsck on the
affected file system. Then reboot.

Random trap (hardware)

Raw 1/0 from non user (hardware)

System too large (hardware)

Swapio bad parameter (hardware)

Swapio error (hardware)

Compiler Error Messages
The following gives the error messages returned by the COHERENT C compiler, the
assembler as, and the linker Id. The messages are in alphabetical order, and each is
marked as to whether it is ajatal, error, warning, or strict condition. The compilation
phases are cpp, the preprocessor; ccO, the parser; eel, the code generator: and cc2, the
optimizer. ·

A fatal message usually indicates a condition that caused the compiler to terminate
execution. Fatal errors from the later phases of compilation often cannot be fixed, and may
indicate problems in the compiler.

An error message points to a condition in the source code that the compiler cannot resolve.
This almost always occurs when the program does something illegal, e.g .• has unbalanced
braces.

Warning messages point out code that is compilable, but may produce trouble when the
program is executed. A strict message refers to a passage in the code that is unorthodox
and may not be portable.

ERROR MESSAGES

The COHERENT System 1057

Assembler Error Messages
. (error)

a (error)

Dot label error. This indicates that a period was used as a label, e.g .. ".:".

Addressing error. This is generated by nearly any kind of operand/instruction
mismatch or semantic error in address fields.

string: cannot create (error)
The assembler cannot create the output file it was requested to create. This often is
due to a problem with the output device; check and make sure that it is not full,
and that it is working correctly.

internal error, c=number in expr. (error)
The assembler has detected a situation that "should not occur". Please send a copy
of the source code that triggered this error to Mark Williams Company. For
immediate help during business hours, contact Mark Williams Company technical
support.

m (error)

o (error)

p (error)

q (error)

r (error)

s (error)

u (error)

Multiple definition. The offending line is involved in the multiple definition of a
label.

An unrecognized opcode mnemonic was found. Contrast this with error 'q', where
the opcode is recognized but the syntax is in error.

Phase error. The value of a label changed during the assembly. An instruction has
a size that differs between the first and second passes.

Questionable syntax. The assembler has no idea how to parse this line, and it has
given up.

Relocation error. The program attempted to create or use an expression in a way
that the linker cannot resolve.

Segment error. The program attempted to initialize something in a segment that
contains only uninitialized data.

A symbol is used but never defined. The symbol's name is displayed.

cpp Error Messages
string argument mismatch (error)

· The argument string does not match the type declared in the function's prototype.
Either the function prototype or the argument should be changed.

#assert failure (error)
The condition being tested in a #assert statement has failed.

ERROR MESSAGES

1058 The COHERENT System

at beginning of macro (error)
Macro replacement lists may contain tokens that are separated by ##, but ##
cannot appear at the beginning or the end of the list. The tokens on either side of
the ## are pasted together into one token.

at end of macro (error)
Macro replacement lists may contain tokens that are separated by ##. but ##
cannot appear at the beginning or the end of the list. The tokens on either side of
the ## are pasted together into one token.

string: cannot create (fatal)
The preprocessor cpp cannot create the output file string that it was asked to
create. This often is due to a problem with the output device; check and make sure
that it is not full and that it is working correctly.

string: cannot open (ccO. fatal)
The compiler cannot open the file string of source code that it was asked to read.
cpp may not have been told the correct directory in which this file is to be found;
check that the file is located correctly, and that the -I options, if any, are correct.

cannot open include file string (ccO, fatal)
The program asked for file string, which was not found in the same directory as the
source file, nor in the default include directory specified by the environmental
variable INCDIR, nor in any of the directories named in -I options given to the cc
command.

conditional stack overflow (fatal)
A series of #if expressions is nested so deeply that it overflowed the allotted stack
space. You should simplify this code.

#define argument mismatch (warning)
The definition of an argument in a #define statement does not match its
subsequent use. One or the other should be changed.

#elif used without #if or #ifdef (error)
An #elif control line must be preceded by an #if, #ifdef, or #ifndef control line.

#elif used after #else (error)
An #elif control line cannot be preceded by an #else control line.

#else used without #if or #ifdef (error)
An #else control line must be preceded by an #if. #ifdef. or #ifndef control line.

#endif used without #if or #ifdef (error)
An #endif control line must be preceded by an #if, #ifdef, or #ifndef control line.

EOF in comment (fatal)
Your source file appears to end in mid-comment. The file of source code may have
been truncated, or you failed to close a comment: make sure that each open­
comment symbol 'I*' is balanced with a close-comment symbol '*I'.

EOF in macro string invocation (error)
Your source file appears to end in a macro call. The source file may be been
truncated.

EOF in midline (warning)
Check to see that your source file has not been truncated accidentally.

ERROR MESSAGES

The COHERENT System 1059

EOF in string (cpp ,error)
Your file appears to end in the middle of a quoted string literal. Check to see that
your source file has not been truncated accidentally. Also, check that you did not
accidentally embed a <ctrl-Z> in the line.

#error: string (fatal)
An #error control line has been expanded, printing the remaining tokens on the
line and terminating the program.

error in #define syntax (error)
The syntax of a #define statement is incorrect. See the Lexicon entry for #define
for more information.

error in #include syntax (error)
An #include directive must be followed by a string enclosed by either quotation
marks(" ")or angle brackets(<>). Anything else is illegal.

identifier string has too many arguments (error)
Too many actual parameters have been provided.

illegal control line (error)
A '#' is followed by a word that the compiler does not recognize.

illegal cpp character (n decimal) (error)
The character noted cannot be processed by cpp. It may be a control character or a
non-ASCII character.

illegal use of defined (error)
The construction defined(token) or defined token is legal only in #if, #elif, or
#assert expressions.

string in #if (error)
A syntax error occurred in a #if declaration. string describes the error in detail.

include stack overflow (fatal)
A set of #Include statements is nested so deeply that the allotted stack space
cannot hold them. Examines the files for a loop. You should try to fold some of the
header files into one, instead of having them call each other.

macro body too long (fatal)
The size of the macro in question exceeds the limit designed into the preprocessor.
Try to shorten or split the macro.

macro expansion buffer overflow in string (fatal)
A macro call has expanded into more characters than cpp can handle. Try to
shorten the macro, or break it up.

macro string redefined (error)
The program redefined the macro string.

macro string requires arguments (error)
The macro calls for arguments that the program has not supplied.

macros nested number deep, loop likely (error)
Macros call each other number times; you may have inadvertently created an
infinite loop. Try to simplify the program.

missing #endif (error)
An #If, #ifdef, or #ltildef statement was not closed with an #endlf statement.

ERROR MESSAGES

1060 The COHERENT System

missing output file (fatal)
The preprocessor cpp found a -o option that was not followed by a file name for the
output file.

multiple #else's (error)
An #if, #ifdef, or #ifndef expression can be followed by no more than one #else
expression.

nested comment (warning)
The comment introducer sequence 'I*' has been detected within a comment.
Comments do not nest.

new line in string literal (error)
A newline character appears in the middle of a string. If you wish to embed a
newline within a string. use the character constant · \ n'. If you wish to continue the
string on a new line, insert a backslash '\' before the new line.

newline in macro argument (warning)
A macro argument contains a newline character. This may create trouble when the
program is run.

out of space (ccO, eel. cc2, cc3, fatal)
The compiler ran out of space while attempting to compile the program. To remove
this error. examine your source and break up any functions that are extraordinarily
large.

parameter must follow # (error)
Macro replacement lists may contain# followed by a macro parameter name. The
macro argument is converted to a string literal.

preprocessor assertion failure (warning)
A #assert directive that was tested by the preprocessor cpp was found to be false.

string redefined (error)
cpp macros should not be redefined. You should check to see that you are not
#includeing two different versions of a file somehow, or attempting to use the same
macro name for two different purposes.

too many arguments in a macro (fatal)
The program uses more than the allowed ten arguments with a macro.

too many directories in include list (fatal)
The program uses more than the allowed ten #include directories.

string: unknown option (fatal)
The preprocessor cpp does not recognize the option string. Try re-typing the cc
command line.

cco Error Messages
ambiguous reference to "string" (error)

string is defined as a member of more than one struct or union, is referenced via a
pointer to one of those structs or unions, and there is more than one offset that
could be assigned.

argument list has incorrect syntax (error)
The argument list of a function declaration contains something other than a
comma-separated list of formal parameters.

ERROR MESSAGES

The COHERENT System 1061

array bound must be a constant (error)
An array's size can be declared only with a constant: you cannot declare an array's
size by using a variable. For example, it is correct to say foo[5]. but illegal to say

bar = 5;
foo[bar];

array bound must be positive (error)
An array must be declared to have a positive number of elements. The array flagged
here was declared to have a negative size, e.g .. foo[-5).

array bound too large (error)
The array is too large to be compiled with 16-bit index arithmetic. You should
devise a way to divide the array into compilable portions.

array row has O length (error)
This message can be triggered by either of two problems. The first problem is
declaring an array to have a length of zero; e.g .. foo[O]. The second problem is
failing to declare the size of a dimension other than the first in a multi-dimensional
array. C allows you to declare an indefinite number of array elements of n bytes
each, but you cannot declare n array elements of an indefinite length. For example,
it is correct say foo[][5] but illegal to say foo[5)[].

bad argument storage class (error)
An argument was assigned a storage class that the compiler does not recognize.
The only valid storage class is register.

bad external storage class (error)
An extem has been declared with an invalid storage class, e.g .. register or auto.

bad field width (error)
A field width was declared either to be negative or to be larger than the object that
holds it. For example, char foo:9 or char foo:-1 will trigger this error.

bad filler field width (error)
A filler field width was declared either to be negative or to be larger than the object
that holds it. For example, char foo:9 or char foo:-1 will trigger this error.

bad flexible array declaration (error)
A flexible array is missing an array boundary; e.g .. foo[5][]. C permits you to
declare an indefinite number of array elements of n bytes each. but you cannot
declare an array to have n elements of an indefinite number of bytes each.

break not in a loop (error)
A break occurs that is not inside a loop or a switch statement.

call of non function (error)
What the program attempted to call is not a function. Check to make sure that you
have not accidentally declared a function as a variable; e.g .. typing char •roo; when
you meant char •roo();.

cannot add pointers (error)
The program attempted to add two pointers. ints or longs may be added to or
subtracted from pointers, and two pointers to the same type may be subtracted, but
no other arithmetic operations are legal on pointers.

cannot apply unary'&' to a register variable (error)
Because register variables are stored within registers. they do not have addresses,
which means that the unary 8t operator cannot be used with them.

ERROR MESSAGES

1062 The COHERENT System

cannot apply unary'&' to an alien function (error)
The unary '&' operator cannot be used with any function that has been declared to
be of type alien. alien functions cannot be called by pointers.

cannot cast double to pointer (error)
The program attempted to cast a double to a pointer. This is illegal.

cannot cast pointer to double (error)
The program attempted to cast a pointer to a double. This is illegal.

cannot cast structure or union (error)
The program attempted to cast a struct or a union. This is illegal.

cannot cast to structure or union (error)
The program attempted to cast a variable to a union or struct. This is illegal.

cannot declare array of functions (error)
For example, the declaration extern int (•t)[J(): declares f to be an array of pointers
to functions that return ints. Arrays of functions are illegal.

cannot declare flexible automatic array (error)
The program does not explicitly declare the number of elements in an automatic
array.

cannot initialize fields (error)
The program attempted to initialize bit fields within a structure. This is not
supported.

cannot initialize unions (error)
The program attempted to initialize a union within its declaration. unions cannot
be initialized in this way.

case not in a switch (error)
The program uses a case label outside of a switch statement. See the Lexicon
entry for case.

character constant overflows long (error)
The character constant is too large to fit into a long. It should be redefined.

character constant promoted to long (warning)
A character constant has been promoted to a long.

class not allowed in structure body (error)
A storage class such as register or auto was specified within a structure.

compound statement required (error)
A construction that requires a compound statement does not have one, e.g .. a
function definition, array initialization, or switch statement.

constant expression required (error)
The expression used with a #if statement cannot be evaluated to a numeric
constant. It probably uses a variable in a statement rather than a constant.

constant "number" promoted to long (warning)
The compiler promoted a constant in your program to long; although this is not
strictly illegal. it may create problems when you attempt to port your code to
another system, especially if the constant appears in an argument list.

ERROR MESSAGES

The COHERENT System 1063

constant used in truth context (strict)
A conditional expression for an if, while, or for statement has turned out to be
always true or always false. For example, while(l) will trigger this message.

construction not in Kernighan and Ritchie (strict)
This construction is not found in The C Programming Language; although it can be
compiled by COHERENT, it may not be portable to another compiler.

continue not in a loop (error)
The program uses a continue statement that is not inside a for for while loop.

declarator syntax (error)
The program used incorrect syntax in a declaration.

default label not in a switch (error)
The program used a default label outside a switch construct. See the Lexicon
entry for default.

divide by zero (warning)
The program will divide by zero if this code is executed. Although the program can
be parsed, this statement may create trouble if executed.

duplicated case constant (error)
A case value can appear only once in a switch statement. See the Lexicon entries
for case and switch.

empty switch (warning)
A switch statement has no case labels and no default labels. See the Lexicon
entry for switch.

error in enumeration list syntax (error)
The syntax of an enumeration declaration contains an error.

error in expression syntax (error)
The parser expected to see a valid expression, but did not find one.

exponent overflow in floating point constant (warning)
The exponent in a floating point constant has overflowed. The compiler has set the
constant to the maximum allowable value, with the expected sign.

exponent underflow in floating point constant (warning)
The exponent in a floating point constant has underflowed. The compiler has set
the constant to zero, with the expected sign.

external syntax (error)
This could be one of several errors, most often a missing '{'.

file ends within a comment (error)
The source file ended in the middle of a comment. If the program uses nested
comments, it may have mismatched numbers of begin-comment and end-comment
markers. If not. the program began a comment and did not end it, perhaps
inadvertently when dividing by •something. e.g .. a=b/"'cd:.

function cannot return a function (error)
The function is declared to return another function, which is illegal. A function.
however. can return a pointer to a function, e.g .. int ("'signal(n, a))().

function cannot return an array (error)
A function is declared to return an array. which is illegal. A function. however, can
return a pointer to a structure or array.

ERROR MESSAGES

1064 The COHERENT System

functions cannot be parameters (error)
The program uses a function as a parameter, e.g .. int q(); x(q);. This is illegal.

identifier "string" is being redeclared (error)
The program declares variable string to be of two different types. This often is due
to an implicit declaration, which occurs when a function is used before it is
explicitly declared. Check for name conflicts.

identifier "string" is not a label (error)
The program attempts to goto a nonexistent label.

identifier "string" is not a parameter (error)
The variable "string" did not appear in the parameter list.

identifier "string" is not defined (error)
The program uses identifier string but does not define it.

identifier "string" not usable (error)
string is probably a member of a structure or union which appears by itself in an
expression.

illegal character constant (error)
A legal character constant consists of a a backslash'\' followed by a, b, f, n, r, t, v,
x, or up to three octal digits.

illegal character (number decimal) (error)
A control character was embedded within the source code. number is the decimal
value of the character.

illegal # construct (error)
The parser recognizes control lines of the form #line number (decimal) or
#file_ name. Anything else is illegal.

illegal integer constant suffix (error)
Integer constants may be suffixed with u, U, 1, or L to indicate unsigned, long, or
unsigned long.

illegal label "string" (error)
The program uses the keyword string as a goto label. Remember that each label
must end with a colon.

illegal operation on "void" type (error)
The program tried to manipulate a value returned by a function that had been
declared to be of type void.

illegal structure assignment (error)
The structures have different sizes.

illegal subtraction of pointers (error)
A pointer can be subtracted from another pointer only if both point to objects of the
same size.

illegal use of a pointer (error)
A pointer was used illegally, e.g .. multiplied, divided, or &-ed. You may get the
result you want if you cast the pointer to a long.

illegal use of a structure or union (error)
You may take the address of a struct, access one of its members. assign it to
another structure, pass it as an argument, and return. All else is illegal.

ERROR MESSAGES

The COHERENT System 1065

illegal use of floating point (error)
A float was used illegally, e.g .. in a bit-field structure.

illegal use of "void" type (error)
The program used void improperly. Strictly. there are only void functions;
COHERENT also supports the cast to void of a function call.

illegal use of void type in cast (error)
The program uses a pointer where it should be using a variable.

inappropriate signed (error)
The signed modifier may only be applied to char, short, int, or long types.

inappropriate "long" (error)
Your program used the type long inappropriately.

inappropriate "short" (error)
Your program used the type short inappropriately.

inappropriate "unsigned" (error)
Your program used the type unsigned inappropriately.

indirection through non pointer (error)
The program attempted to use a scalar (e.g .. a long or int) as a pointer. This may
be due to not de-referencing the scalar.

initializer too complex (error)
An initializer was too complex to be calculated at compile time. You should simplify
the initializer to correct this problem.

integer pointer comparison (strict)
The program compares an integer or long with a pointer without casting one to the
type of the other. Although this is legal. the comparison may not work on machines
with non-integer size pointers, e.g .. Z8001 or LARGE-model on the i8086 family. or
on machines with pointers larger than ints, e.g.. the M68000 family of
microprocessors.

integer pointer pun (strict)
The program assigns a pointer to an integer. or vice versa, without casting the
right-hand side of the assignment to the type of the left-hand side. For example,

char *foo;
long bar;
foo = bar;

Although this is permitted, it is often an error if the integer has less precision than
the pointer does. Make sure that you properly declare all functions that returns
pointers.

internal compiler error (fatal)
The program produced a state that should not happen during compilation. Try to
localize the offending statement if at all possible. Forward a minimal program that
exhibits the error, preferably on a machine-readable medium, to Mark Williams
Company, together with the version number of the compiler. the command line
used to compile the program. and the system configuration. For immediate advice
during business hours, telephone Mark Williams Company technical support.

"string" is a enum tag (error)

ERROR MESSAGES

1066 The COHERENT System

"string" is a struct tag (error)
"string" is a union tag (error)

string has been previously declared as a tag name for a struct, union, or enum,
and is now being declared as another tag. Perhaps the structure declarations have
been included twice.

"string" is not a tag (error)
A struct or union with tag string is referenced before any such struct or union is
declared. Check your declarations against the reference.

"string" is not a typedef name (error)
string was found in a declaration in the position in which the base type of the
declaration should have appeared. string is not one of the predefined types or a
typedef name. See the Lexicon entry on typedef for more information.

"string" is not an "enum" tag (error)
An enum with tag string is referenced before any such enum has been declared.
See the Lexicon entry for enum for more information.

class "string" [number) is not used (strict)
Your program declares variable string or number but does not use it.

label "string" undefined (error)
The program does not declare the label string. but it is referenced in a goto
statement.

left side of "string" not usable (error)
The left side of the expression string should be a pointer. but is not.

lvalue required (error)
The left-hand value of a declaration is missing or incorrect. See the Lexicon entries
for !value and rvalue.

member "string" is not addressable (error)
The array string has exceeded the machine's addressing capability. Structure
members are addressed with 16-bit signed offsets on most machines.

member "string" is not defined (error)
The program references a structure member that has not been declared.

mismatched conditional (error)
In a'?:' expression. the colon and all three expressions must be present.

missing"(" (error)
The if. while. for. and switch keywords must be followed by parenthesized
expressions.

missing "=" (warning)
An equal sign is missing from the initialization of a variable declaration. Note that
this is a warning. not an error: this allows COHERENT to compile programs with
"old style" initializers. such as int i 1. Use of this feature is strongly discouraged,
and it will disappear when the ANSI standard for the C language is adopted in full.

missing"," (error)
A comma is missing from an enumeration member list.

missing":" (error)
A colon':' is missing after a case label. after a default label, or after the'?' in a'?'-':'
construction.

ERROR MESSAGES

The COHERENT System 1067

missing";" (error)
A semicolon ';' does not appear after an external data definition or declaration, after
a struct or union member declaration, after an automatic data declaration or
definition, after a statement, or in a for(;;) statement.

missing"]" (error)
A right bracket ']' is missing from an array declaration, or from an array reference;
for example, foo[5.

missing"{" (error)
A left brace '{' is missing after a struct tag, union tag, or enum tag in a definition.

missing"}" (error)
A right brace '}' is missing from a struct, union, or enum definition, from an
initialization, or from a compound statement.

missing "while" (error)
A while command does not appear after a do in a do-while() statement.

missing label name in goto (error)
A goto statement does not have a label.

missing member (error)
A'.' or'->' is not followed by a member name.

missing right brace (error)
A right brace is missing at end of file. The missing brace probably precedes lines
with errors reported earlier.

missing "string" (error)
The parser ccO expects to see token string. but sees something else.

missing semicolon (error)
External declarations should continue with',' or end with';'.

missing type in structure body (error)
A structure member declaration has no type.

multiple classes (error)
An element has been asigned to more than one storage class, e.g .. extern register.

multiple types (error)
An element has been assigned more than one data type, e.g .. int float.

nonterminated string or character constant (error)
A line that contains single or double quotation marks left off the closing quotation
mark. A newline in a string constant may be escaped with'\'.

number has too many digits (error)
A number is too big to fit into its type.

only one default label allowed (error)
The program uses more than one default label in a switch expression. See the
Lexicon entries for default and switch for more information.

out of tree space (fatal)
The compiler allows a program to use up to 350 tree nodes; the program exceeded
that allowance.

ERROR MESSAGES

1068 The COHERENT System

parameter string is not addressable (error)
The parameter has a stack frame offset greater than 32.767. Perhaps you should
pass a pointer instead of a structure.

potentially nonportable structure access (strict)
A program that uses this construction may not be portable to another compiler.

return type/function type mismatch (error)
What the function was declared to return and what it actually returns do not
match. and cannot be made to match.

return(e) illegal in void function (error)
A function that was declared to be type void has nevertheless attempted to return a
value. Either the declaration or the function should be altered.

risky type in truth context (strict)
The program uses a variable declared to be a pointer. long. unsigned long. fioat, or
double as the condition expression in an if, while, do, or '?'-':'. This could be
misinterpreted by some C compilers.

size of string overflows size_t (strict)
A string was so large that it overran an internal compiler limit. You should try to
break the string in question into several small strings.

size of union "string" is not known (error)
A pointer to a struct or union is being incremented. decremented, or subjected to
array arithmetic. but the struct or union has not been defined.

size of string too large (error)
The program declared an array or struct that is too big to be addressable, e.g .. long
a[20000); on a machine that has a 64-kilobyte limit on data size and four-byte
longs.

sizeof truncated to unsigned (warning)
An object's sizeofvalue has lost precision when truncated to a size_t integer.

sizeof(strlng) set to number (warning)
The program attempts to set the value of string by applying sizeof to a function or
an extern; the compiler in this instance has set string to number.

storage class not allowed in cast (error)
The program casts an item as a register. static. or other storage class.

string initializer not terminated by NUL (warning)
An array of chars that was initialized by a string is too small in dimension to hold
the terminating NUL character. For example, char foo[3] = "ABC".

structure "string" does not contain member "m" (error)
The program attempted to address the variable strlng.m, which is not defined as
part of the structure string.

structure or union used in truth context (error)
The program uses a structure in an if. while. or for. or '?:' statement.

switch of non integer (error)
The expression in a switch statement is not type int or char. You should cast the
switch expression to an int if the loss of precision is not critical.

ERROR MESSAGES

The COHERENT System 1069

too many adjectives (error)
A variable's type was described with too many of long. short. or unsigned.

too many arguments (fatal)
No function may have more than 30 arguments.

too many initializers (error)
The program has more initializers than the space allocated can hold.

too many structure initializers (error)
The program contains a structure initialization that has more values than
members.

trailing"," in initialization list (warning)
An initialization statement ends with a comma. which is legal.

type clash (error)
The parser expected to find matching types but did not. For example. the types of
el and e2 in (x) ? el : e2 must either both be pointers or neither be pointers.

type of function "string" adjusted to string (warning)
This warning is given when the type of a numeric constant is widened to unsigned.
long. or unsigned long to preserve the constant's value. The type of the constant
may be explicitly specified with the u or L constant suffixes.

type of parameter "string" adjusted to string (warning)
The program uses a parameter that the C language says must be adjusted to a
wider type. e.g .. char to int or float to double.

type required in cast (error)
The type is missing from a cast declaration.

unexpected end of enumeration list (error)
An end-of-file flag or a right brace occurred in the middle of the list of enumerators.

unexpected EOF (eel. cc2. cc3, fatal)
EOF occurred in the middle of a statement. The temporary file may have been
corrupted or truncated accidentally. Check your disk drive to see that it is working
correctly.

union "string" does not contain member m (error)
The program attempted to address the variable string m, which is not defined as
part of the structure string.

zero modulus (warning)
The program will perform a modulo operation by zero if the code just parsed is
executed. Although the program can be parsed. this statement may create trouble
if executed.

cc1 Error Messages
associative expression too complex (fatal)

An expression that uses associative binary operators (e.g .. '+') has too many
operators; for example, i=il+i2+i3+ ... +i30;. You should simplify the expression.

expression too complex (fatal)
The code generator cannot generate code for an expression. You should simplify
your code.

ERROR MESSAGES

1070 The COHERENT System

internal compiler error (fatal)
The program produced a state that should not happen during compilation. Try to
localize the offending statement if at all possible. Forward a minimal program that
exhibits the error. preferably on a machine-readable medium. to Mark Williams
Company. together with the version number of the compiler. the command line
used to compile the program, and the system configuration. For immediate advice
during business hours, telephone Mark Williams Company technical support.

misplaced ":"operator (error)
The program used a colon without a preceding question mark. It may be a
misplaced label.

switch overflow (fatal)
The program has more than ten nested switches.

too many cases (fatal)
The program cannot allocate space to build a switch statement.

cc2 Error Messages
string: cannot reopen (fatal)

The optimizer in cc2 cannot reopen a file with which it has worked. Make sure that
your mass storage device is working correctly and that it is not full.

internal compiler error (fatal)
The program produced a state that should not happen during compilation. Try to
localize the offending statement if at all possible. Forward a minimal program that
exhibits the error, preferably on a machine-readable medium. to Mark Williams
Company, together with the version number of the compiler, the command line
used to compile the program. and the system configuration. For immediate advice
during business hours, telephone Mark Williams Company technical support.

write error on output object file (fatal)
cc2 could not write the relocatable object module. Most likely. your mass storage
device has run out of room. Check to see that your disk drive or hard disk has
enough room to hold the object module, and that it is working correctly.

Linker Error Messages
address wraparound (fatal)

A segment of the program has exceeded the size allowed by the microprocessor's
architecture.

baddisk: disk error (fatal)
Id either cannot read or cannot write to the mass-storage device. Check the disk
you are using to see that it is working correctly.

cannot create string (fatal)
The linker Id cannot create the output file it was requested to create. This often is
due to a problem with the output device; check and make sure that it is working
correctly and is not full.

cannot open string (seg number) (fatal)
The linker Id cannot open the object module that it was asked to read. Make sure
that the storage device is working correctly, and that Id has been given the correct
names of the file and of the directory in which it is stored.

ERROR MESSAGES

The COHERENT System 1071

can't open libstrlng .a (fatal)
The linker ld cannot open a library that it has been asked to link into your
program. Make sure that you named the library correctly and that the LIBPATH is
set correctly if you used the -1 option to the cc command line.

can't open temp file (fatal)
The linker ld cannot open a temporary file. Make sure that your mass storage
device is working correctly.

can't read string (fatal)
The linker ld cannot read the file named. Make sure that your mass storage device
is working correctly, and that ld has been given the correct names of the file and of
the directory in which it is stored.

disk error (fatal)
The linker ld encountered a problem with the storage device when it attempted to
read or write a file. Check that the disk is working correctly.

no input found (fatal)
The ld command line names no object or archive files to link.

out of space (fatal)
malloc could not allocate adequate space in memory for the linker ld to work.

outdated ranlib (warning)
The date stamp on the library file is younger than that in the ranlib header. If the
library has been altered, the ranlib can be updated with the archiver ar; see the
Lexicon entry on ar to see how this is done. If the library has not been altered, this
message may be due to an installation error; see the Lexicon entry on ranllb for
more information.

fsck Error Messages
The COHERENT command fsck checks the COHERENT file systems. This command
produces an especially rich set of error messages. both to keep you abreast of its actions
and to warn you of potential problems with a file or file system.

fsck can correct most of the common error conditions it detects; however. before it will ask
for your approval before it makes any changes that modify a file system. Therefore. if it
detects an error that it can correct, it will stop and ask your permission.

The following describes fsck's error messages and questions. The error messages fall into
two categories: warnings, which describe something possibly wrong with a file; and fatals,
which indicate that something has gone wrong with a file system or with fsck with which
fsck cannot cope. Each question describes the condition in question; here. it is followed by
advice on what is probably the correct response.

Initialization
Can't open checklist file: I etc/ checklist (Fatal)

Too many file systems in checklist file: /etc/checklist (Fatal)

file is not a block or character device; OK? [yes/no): (Question)
You are attempting to fsck a file that is not a block or character device. If you are
certain it is a file system, then answer yes to continue.

ERROR MESSAGES

1072 The COHERENT System

Can't open:file system (Warning)

Can't stat:file system (Warning)

Size check: fsize blocks isizefirst non-I-node block (Warning)

Too large free block count (Warning)

Too large free i-node count (Warning)

fsck:file system: Bad Super Block: number (Warning)

file system mounted on point as of time (Message)

file system unmounted. Last mounted on point. (Message)

Phase 1: Check Blocks and Sizes
Unknown File Type i-number =number (Clear) [yes/no): (Question)

The mode field in the specified i-node is unknown. If you wish, you can clear the
named i-node.

Excessive Bad Blocks i-number =number (Continue) [yes/no) (Question)
The specified i-node references an excessive number of bad blocks. You can
continue with the fsck (at the next i-node), or abort.

DUP Table Overflow (Continue) [yes/no) (Question)
The table of duplicately referenced disk blocks has overflowed. You can continue
with the fsck (as best as it is able), or abort.

Excessive Dup Blocks i-number =number (Continue) [yes/no) (Question)
The specified i-node references an excessive number of duplicate blocks. You can
continue with the fsck (at the next i-node), or abort.

Bad block number, i-number =number (Warning)

Dup Block number, i-number = number (Warning)

Directory Misaligned i-number = number (Warning)

Possible Directory Size Error i-number = number (Warning)

Possible File Size Error i-number = number (Warning)

Phase 1 b: Rescan for more Duplicates
Dup Block number, i-number =number (Warning)

Phase 2: Check Path Names
Root i-node is unallocated. Terminating (FATAL)

File System Read-Only (NO WRITE) (FATAL)

Can't malloc memory. phase 2 (FATAL)

Fixblock error. (FATAL)

Tried to checkpath i-node number which is not dir. (FATAL)

ERROR MESSAGES

The COHERENT System 1073

, Root i-node is not a directory (FIX) [yes/no) (Question)
The root i-node must be a directory. fsck is asking whether you wish to fix this. If
not. then fsck will abort.

Dup/Bad blocks in root i-node (Continue) [yes/no) (Question)
The root i-node has bad or duplicate blocks. This may require a guru to fix
properly. fsck is asking whether you want it to continue. If not, then fsck will
abort.

I-number is out of range I::file name (Remove) [yes/no) (Question)
jlle has an i-node number that is out of range. fsck is asking if you wish to remove
the stated me (which. after all. does not exist).

Unallocatedjlle (Remove) [yes/no) (Question)
file's i-node is unallocated. fsck is asking if you wish to remove the stated file
(which, after all. does not exist).

Bad or Dup blocks in directory/jlle (Remove) [yes/no) (Question)
The given file's i-node references bad or duplicately referenced blocks. fsck is
asking if you wish to removeflle from the directory.

Null name entry in block number in directory name I I-node (Warning)

Non null padded entry in block number in directory name/ I-node (Warning)

Embedded slashes in entry in block number in directory name/ I-node (Warning)

Inconsistent . entry in block number in directory name I I-node (Warning)

Inconsistent .. entry in block number in directory name/I-node (Warning)

Bad entry in block number in directory name/ I-node (Warning)

I-number = number is in a bad inode block. (Warning)

I-node number ts a multiply referenced directory i-node. (Warning)

Name too long. (Warning)

Phase 3: Check Connectivity
UnrefDir name (Reconnect) [yes/no) (Question)

The given directory's i-node is unreferenced. You are asked if you would like to
reconnect the stated directory. If you answer yes, then the directory will be
reconnected in directory /lost+found in the given file system. If not, it will remain
unreferenced and you will be asked later if you would like to remove it.

Dir I-number= number connected. Parent was i-number = number (Warning)

Dir I-number= number connected. It has bad/dup blocks. (Warning)

Dir i-number =number connected. It has no .. entry. (Warning)

Sorry. No lost+found directory. (Warning)

Sorry. No space in lost+found directory. (Warning)

ERROR MESSAGES

1074 The COHERENT System

Phase 4: Check Reference Counts
Unref I-node type.file name (Reconnect) [yes/no] (Question)

The given i-node is unreferenced. fsck is asking if you wish to reconnect it to the
stated file. If you answer yes, then the file will be reconnected in directory
/lost+found in the given file system. If not, it will remain unreferenced and you
will be asked later if you would like to remove it.

Unrefl-node type.file name (Clear i-node) [yes/no) (Question)
The given i-node is unreferenced. fsck asks if you wish to clear the i-node
completely. If you answer yes, the file is lost forever. You have already decided not
to reconnect it, so there seems to be no reason to keep it anyway.

Bad/Dup blocks in I-node type.file name (Clear i-node) [yes/no] (Question)
The given i-node contains bad or duplicately referenced blocks. You are asked if
you would like to clear the inode completely. If you answer yes, then the file will be
lost forever.

Link count discrepancy in I-node type.file name

Count= count, should be count (Adjust) [yes/no) (Question)
The given i-node claims to have a different number of links than was actually found
in the file system. You are asked if you wish to adjust the count found in the i­
node. If you answer yes, then fsck will correct the i-node count.

Free i-node count wrong in superblock. (FIX) [yes/no) (Question)
The free i-node count in the superblock is incorrect. You should allow fsck to
repair it unless you are a guru and have reason to believe that fsck should not use
the redundancy in the file system (via all previously reported messages) to repair
this crucial piece of data in the super block.

Phase 5: Check Free List
Free Block count wrong in superblock. (FIX) [yes/no) (Question)

The free block count in the superblock is incorrect. You should allow fsck to repair
it unless you are a guru and have reason to believe that fsck should not use the
redundancy in the file system (via all previously reported messages) to repair this
crucial piece of data in the superblock.

Excessive bad/dup blocks in free list (Continue) [yes/no) (Question)
This indicates that there are excessive bad or duplicately referenced blocks in the
free list off of the superblock. This is a very bad condition. You should choose to
continue, which will fall to phase 6 to salvage the free list. If you answer no, then
fsck will abort.

Bad Free List (SALVAGE) [yes/no) (Question)
fsck is asking if you want it to salvage the free list automatically. This is almost
certainly a good thing to do.

Number Bad blocks in Free List (Warning)

Number Dup blocks in Free List (Warning)

Number Blocks missing (Warning)

ERROR MESSAGES

The COHERENT System 1075

Phase 6: Salvage Free List
Invalid interleave factors in superblock. Default free-block list spacing assumed. (Warning)

Can't malloc space for interleave table. Free-block list is not rebuilt. (Warning)

Cleanup
Number files number blocks number free (Message)

Expect roughly number missing blocks next time fsck is run as a result of i-nodes being
cleared. (Message)

••••• File System system was modified ••••• (Message)

••••• BOOT Coherent (NO SYNC!) ***** (Message)
Do as the message says: reboot COHERENT without running the command sync.

General Messages
Bad action in virtual system (FATAL)

Can not Seek: Blk num: number (CONTINUE) [yes/no] (Question)
The given action could not be performed. If you choose to not continue, fsck will
abort. If you choose to continue, the results may be unpredictable.

Can not Read: Blk num: number (CONTINUE) [yes/no] (Question)
The given action could not be performed. If you choose to not continue, fsck will
abort. If you choose to continue, the results may be unpredictable.

Can not Write: Blk num: number (CONTINUE) [yes/no] (Question)
The given action could not be performed. If you choose to not continue, fsck will
abort. If you choose to continue, the results may be unpredictable.

Cannot create temp file name (FATAL)

Cannot close Ram Disk Close /dev/rramlclose (FATAL)

Cannot open Ram Disk Close /dev/rramlclose (FATAL)

Cannot open read/write Ram Disk /dev/rraml (FATAL)

Can't access ram disk /dev/rraml, use the -t option (FATAL)

Can't stat temp file name (FATAL)

Error seeking tmp file (FATAL)

Error writing tmp file (FATAL)

Error writing to tmp file (FATAL)

internal linktable corruption. (FATAL)

Invalid Response (FATAL)

Out of Range Block number: number (CONTINUE) [yes/no] (Question)
The given action could not be performed. If you choose to not continue, fsck will
abort. If you choose to continue. the results may be unpredictable.

ERROR MESSAGES

1076 The COHERENT System

Possible file system on ram disk /dev/rraml. use the -t option (FATAL)

Ram disk close /dev/rramlclose not mknoded properly (FATAL)

Ram disk /dev /rraml not mknoded properly (FATAL)

Temp File must not be on file system to fsck (FATAL)

Too many links in i-node number (FATAL)

make Error Messages
The following gives the error messages that can be produced by make. Its message describe
fatal conditions. errors, or warnings. as described above.

; after target or macroname (error)
A semicolon appeared after a target name or a macro name.

Bad macro name (error)
A bad macro name was used; for example, a macro name included a control
character.

= in or after dependency (error)
An equal sign '=' appeared within or followed the definition of a macro name or
target file; for example, OBJ=atod.o=factor.owill produce this error.

Incomplete line at end of file (error)
An incomplete line appeared at the end of the makefile.

Macro definition too long (error)
The macro definition exceeds the limited designed into the preprocessor.

Multiple actions for name (error)
A target is defined with more than one single-colon target line.

Multiple detailed actions for name (error)
A target is defined with more than one single-colon target line.

Must use'::' for name (error)
A double-colon target line was followed by a single-colon target line.

Newline after target or macroname (error)
A newline character appears after a target name or a macro name.

'::'not allowed for name (error)
A double-colon target line was used illegally; for example, after single-colon target
line.

::: or: in or after dependency list (error)
A triple colon is meaningless to and therefore illegal wherever it appears. A single
colon may be used only in a target line (which is also called the dependency list),
and nowhere else.

Out of core (adddep) (error)
This results from a system problem. Try reducing the size of your makefile.

Out of range number input. (resource, warning)
You attempted to use a numeric value that is out of range.

To clear this message, press the left mouse button or any key.

ERROR MESSAGES

The COHERENT System 1077

Out of space (error)
System problem. Try reducing the size of your makefile.

Out of space (lookup) (error)
System problem. Try reducing the size of your makefile.

Syntax error (error)
The syntax of a line is faulty.

Too many macro definitions (error)
The number of macros you have created exceeds the capacity of your computer to
process them.

= without macro name or in token list (error)
An equal sign '=' can be used only to define a macro, using the following syntax:
"MACRO=deflnttlon". An incomplete macro definition, or the appearance of an
equal sign outside the context of a macro definition, will trigger this error message.

: without preceding target (error)
A colon appeared without a target file name. e.g .. :string.

nroff Error Messages
The following gives nro:trs error messages, and hints about how to correct the situation.
Errors are of two types: simple errors, which simply cause an error message to be printed on
your screen; and panics, which causes processing to abort. Note that a panic will leave
behind a half-written temporary file; you may wish to look at the end of it to see just how
far processing proceeded, but otherwise it should be thrown away.

-f option requires file argument (fatal)

.bd not implemented yet

.co: unexpected EOF before string (error)

.dt not implemented yet

.el without .ie (error)

.fc not implemented yet

.he not implemented yet

.hw not implemented yet

.hy not implemented yet

.ie nested more than N levels (error)
The .ie/ .el combination can be nested only 15 levels deep .

. ie without matching .el (error)
Every .ie must be followed by an .el.

.If: string. file "string" (error)
nroff could not load a font-width table from file string .

.If: "string" is not a PCL font width table (error)
nroff expects a PCL font-width table, but file string is not in the PCL font-width
format.

ERROR MESSAGES

1078 The COHERENT System

.If: "string" is not a Postscript font width table (error)
nroff expects a Postscript font-width table, but file string is not in the PostScript
font-width format .

.If: cannot load more than N fonts (error)
nroff has a static limit on the number of font-width tables that can be loaded at one
time .

.If: cannot open file "string" (error)

.If: requires fontname and filename (error)

.nm not implemented yet

.nn not implemented yet

.pi not implemented yet

.rb: cannot open file string (error)

.rb: no file specified (error)

.rf: requires name and new name (error)

\}without matching \{(error)
Every\} must be preceded by a\{.

arguments too long (error)

attempted zero divide (error)

attempted zero modulus (error)

bad adjustment type (error)

bad argument reference (error)

bad directive N (fatal)

bad font N (fatal)

bad font N at dev _font, nfonts=N (fatal)

bad font N. nfonts=N (fatal)

bad pattern (fatal)

bad tab stop (error)

bad tab stop (error)

botch: fontname(N) (fatal)
nroff cannot handle font N and must abort processing.

botch: swdmul=N psz=N swddiv=N (fatal)
An undefined error has occurred within nroff. The printed numbers give the value
of nroff's internal registers. If such an error occurs regularly when you process a
given piece of text, please send the text in question and a copy of the error message
to Mark Williams technical support.

bracket building not implemented yet

cannot create temp file (fatal)

ERROR MESSAGES

cannot dehyphenate (fatal)

cannot end diversion (error)

cannot find current file (error)

cannot find font XX (error)

cannot find font N (error)

cannot find register string (error)

cannot open string (error)

cannot open file "string" (error)

cannot pop environment (error)

cannot read environment (fatal)

cannot remove string (error)

cannot reopen temp file (fatal)

cannot write environment (fatal)

delimiter argument too large (error)

diversion buffer odd alignment (fatal)

environment does not exist (error)

environments stacked too deeply (error)

field with too large (error)

file "string" not found (error)

flushd -- current diversion null (fatal)

font position out of range (error)

fonts.r not found (fatal)

illegal hex digit (error)

The COHERENT System 1079

The escape sequence \XNN prints a character by its literal hexadecimal value. This
should be used when processing characters that are not normally printable on the
terminal screen. Digit N can be the numerals 'O' through •g·, the letters 'a' through
'f, or the letters 'A' through 'F', All other characters will trigger this error.

illegal option: string (fatal)

incomplete macro in trap (fatal)

line buffer overflow (fatal)

no room for new font name XX (error)

out of space - memory string (fatal)

request 'string' not found (error)

section N of title too large (error)

ERROR MESSAGES

1080 The COHERENT System

special character)()(not found (error)

syntax error (error)

temporary file write error (fatal)

too many tab stops (error)

unexpected end of file (fatal)

unknown macro/register type N (fatal)

vertical line drawing not implemented yet

word buffer overflow (fatal)

ERROR MESSAGES

.... .
... .
#define .
#elif ...
#else ..
#endif ..
#if" "
#ifdef ..
#ifndef .
#include
#line ...
#undef.

$...

& ...
&& ..

) . . .
•
*) •..

, (comma).

- (hyphen)

I
I (slash) .
/bin
/coherent
/dev
/dev/console
/dev/tty /? /?.
/drv
/etc
/etc/drvld .. .
/etc/group .. .
/etc/passwd ..
/etc/re
/etc/ttys
/etc/update ..
/etc/utmp ..
/etc/wtmp ..
/lib
/u
/usr
/usr/adm

Index

#to

/usr/adm/acct ..
/usr/adm/savacct
/usr/adm/wtmp .
/usr/bin
/usr/games

" . 380
. .. 381
105, 382

383
384
384
384
384
385

104,385
. .. 386
. . . 386

323,327

42,318
330

. .. 334

. 320-321. 334

. 334

. 41

. 41

322
. 27
12,27,327

446
. 27
669
669
. 27
. 28
. 27
476

28. 47-48
. . 394, 446. 669

28,42.669
26.446

446.669
" . 446

. 28
. ... 28

. 28
. ... 28

55.394
. 56

53.390
.. 28

. 28

The COHERENT System 1081

/usr /games/lib/fortunes .. .
/usr /include
I usr /lib I crontab .
/usr /lib/lib.b ..
/usr/man .
/usr/msgs.
/usr/pub ..
/usr/spool.
/usr/wtmp.

24-hour time ...

: (colon)

;; (double semicolon) .

<
<ctrl-D> .. .
<ctrl-H> .. .
<erase> .. .
<interrupt>.
<kill> ...
<Return>.

> .

? ..

[.....
.sig.mail

l

abort()
abs()
ac
access permission.
access()
access.h ..
accounting . .

login
process
reports
starting login . .
starting process . .

acct() .. .
acct.h

A

. .. 28

. .. 28
28,41

441
. 28
. 28
. 28
. 28
669

. 41

327

317
334

. 30
. 9,35

5
. 5, 40

5
. 5,40
. 5,37

.. 410

14.29.327.330

. ... 321

. 322, 409

.... 744

322,409

386
387
387
387
388
388

389
389
390
. 20
391
392

52
52
53
52
53
55

392
393

INDEX

1082 The COHERENT System

accton
acos()
action.h
adding a modem
adding a terminal .
adding hard disk
address ..
aggregate.
ahal54x
alarm() .
alarm2() .
alias
aliases ..
alignment
alloc.h
altering stack size.
apostrophe .
ar
ar.h
archive

extracting from compressed
archive file, format
arena·
argc
argument.
arguments
arguments, variable number of.
argv
array
array, search
as

error messages .
ASCII ...
ASCII file.
ascii.h ...
asctime() .
asin() ...
ASKCC ..
assembler

80286 instructions
8086 instructions .
8087 op codes ...
address descriptors
blank between tokens.
blank character
C compatibility.
comments
current location counter
diagnostics
directives
error messages
expressions
function arguments .
function return values
function-calling conventions.
identifiers
labels name.
labels temporary. . .
names
naming conventions.

INDEX

394
394
395
775
985
656

98, 103,395
404
396
398
398
399
399
401
401
. 97
321
401
402

1054
. 402

403, 1055
104,403
. . . 100

6
. . 1040
104,404
.. . 404
.. . 448

97,405
1057
424
606
426
426
427
428

417
412
418
411
407
407
420
407
408
423
410

1057
408
420
421
420
406
410
410
406
420

operators .
options -g.
options -1 .
options -o.
private data
private instruction.
register names .
registers
sections
shared data.
shared instruction.
statements . . .
strings section . . .
symbol table
symbols
tabulation between tokens .
tokens
type propagation
uninitialized data
uninitialized instruction

assembler directive
ascii .
blkb .
blkw.
bssd .
bssi .
byte .
even .
globl .
odd ..
page.
prvd .
prvi ..
shrd.
shri. .
strn .
symt.
title ..
word

assembler expressions
grouping

assembler operators
•
+
binary -
unary-

assembler statements
assignment . .
null

assembler types
absolute ..
register
refocatable . .
undefined ...

assembly language .
assembly-language generator.
assembly-language programs .
assert() .
assert.h

409
406
406
406
408
408
406
421
407
408
408
410
408
408
406
407
406
409
408
408

411
411
411
410
410
411
411
411
411
411
410
410
410
410
410
410
411
411

409

410
409
410
409
409

410
410

409
409
409
409

44.98
. 94
. 97
428
428

assertion, check at run time
at
atan() ..
atan2() .
ATclock.
atod.c.
atof() .
atoi() ..
atol() ..
atrun .
auto ..
awk

tutorial

background

B

. . . 428
429-430

431
432
432
. 96
432
433
433
434
434
435
. 57

running programs in 790
background process 318
background, execution in . 691, 911
backup. 614
backup files . . 511. 555, 975, 1022
backups

strategies .
bad
badscan ..
banner ...
basename .
Bathsheba.
baud rate ..

table .. .
be

assignment
exponentiation operator
library
tutorial

BCD format
bibliography
binary coded decimal.
binary files . .
binary search
bind .. .
bit
bit map .. .
bit-fields ..
block
block, disk
block-special device.
boot

device
boot.fha
bootable floppy disk .
booting
boottime
boottime, check file system . . .
boottime, load loadable drivers .
boottime, mount file system.
boottime, standard chores.
Bourne shell
brace

. 49
437
437
438
438
238
491
907
439
. 77
. 75
. 92
. 75
613
113
613
606
448
441
442
443
442
443
. 19
443
443
445
445
443
445
447
475
554
787
873

.. 911
45,325

The COHERENT System 1083

braces
brc
break
break a string into tokens .
brk()
bsearch().
bssd .. .
bssi .. .
buf.h ..
buffer ..
build ..
builtin .
byte
byte ordering.

c
c ..•........
c

program linker .
C keywords
C language

tutorial
C preprocessor . .

error messages .
C programming

introduction . .
cabs()
cal.
calendar
calling conventions .
calloc() ...
candaddr() .
candev() ..
canino() ..
canint() ..
canlong() .
canon.h ...
canshort() .
cansize() ..
cantime() ..
canvaddr() .
carriage return
case
case sensitivity

in file names . .
in shell variable

cast
cat
caveat utilitor . . .
cc•....

error messages . . .
MicroEMACS mode

ccO
error messages .

eel
cc2
cc3
cd .

c

... 100

... 447
447-448

957
448
448
408
408
450
450
451
451
451
452

44-45, 489
453

. 45
485
485

. .. 93
94,514

1057

. 97
453
454
454
455
459
460
460
460
461
461
461
463
463
463
464
100

333-334, 464

....... 10
....... 324
....... 465
. 6, 14. 29. 465
....... 466
44-45. 93, 466
...... 1056
....... 228

94,470
..... 1060
94.470, 1069
94.470. 1070

94,471
15,327.471

INDEX

1084 The COHERENT System

cell(). 471
cgrep 472
char. 103, 473
character. copy 762, 765
character, fill an area with. 767
character, reverse search for 955
character, search for in region of memory 763
character, search for in string 946, 955
character, search string for . 955
character-special device . . . 443
chars.h. 474
chase. 474
chdir(). 475
check. 475
check assertion at run time . 428
checklist . 4 75
chgrp. 476
chmod . . 21. 319, 476
chmod(). . 4 77
choices

in case statements. 334
chown. . 478
chown() . . 4 79
chroot() . . 4 79
ckermit . . 4 79
clear. . . . 487
clearerr() . 487
close(). . . 487
clri. 487
cmp 328-329, 488
code generator. 94
code, conditional inclusion, end 384
code, include code conditionally . 384-385
code, include conditionally . . 384
COHERENT 488

description 1
hardware requirements. l
on same hard drive as MS-DOS . 598
principles 488
rebooting 7
shutting down 7

COHERENT file format. . 548
COHERENT system

error messages .
col
Colburn, Mark H ..
com.
co ml
com2 ..
com3 ..
com4 ..
comm ..
command

definition
command, definition .
commands

background.
COHERENT
concurrent execution ..
first part

INDEX

1055
490
. 50
491
493
494
494
495
495

. . 6
691. 911

495
318
317
318
. 6

in files
value

comment
compare strings .
compare two regions .
compare two strings .
compiler

c
error messages
function-caliing conventions .
naming conventions •....

compiling without linking .. .
compress
computer

connecting via serial port. .
computer language
computer time accounting. . .
con.h
conditional inclusion of code, end
conforming translator, mark
connector

DB-9P ..
RS-232C
serial.

console.
const ..
const.h.
cont ...
continue ...
control key . .

... 319

... 328

. .. 101
948,955

. 764

. 947

. . 93

. . 45
1056
420
420
. 96
501

985
. 98
. 52
502
384
387

882
882
882
502
506
506
. 4

506-507
. 4

conv...... 507
956
959
960
965

convert string to floating-point number ..
convert string to long integer
convert string to unsigne<flong integer . .
cooked devices.
cooked files
cooked terminal
copy a region of memory. .
copy header into program .
core
core dump file format
cos() ...
cosh() ..
cp ..
cpdir ..
cpio .. .
cpp .. .

error messages .
crackers
creat() ..
cron ...
crontab.
crypt ..
crypt() ..
ct
ctags ..
ctime() .
ctrl key.
ctype ..
ctype.h.

. 26
987

762.765
385

. 507

.. 507

. . 508

. . 508
16.509
. . 510

. . 50, 511
94, 513-514
.... 1057
...... 4
. 516
28, 41. 516

. .. 516
49,518

519
519
519
520

4
521
522

current directory
current line within source file.
curses ..
curses.h
cut ..
CWD •.

daemon
data formats . .
data structure.
data types .. .
date
date of translation
db

setting registers
DB-25 connector .
DB-9P connector .
de
dcheck .. .
dd
debugging .
default ...

directory.
prompt .

definitions .
deftty.h ...
del key
dereferencing, pointer
deroff ..
detab ..
device

boot .
root

D

device drivers
device-independentl/O
df . . .
diff .•...
diff3
dir.h
directory .

current
home ..
parent.
removing
root
tree-structured.

dirent.h.
dirs
disable .. .
disk

block ...
disk usage.
disk, floppy ...
disk, MS-DOS .
div()
div t.
division, integer .
do

12.27
387
523
531
531
532

533
533
103

. . 533
39,534

. 386
44, 46-47, 535

537
882
882
539
540
541
. 46
542
327
327
542
543
. 5
845
543
544

445
445

.. 544
25,489
19,545

. . . 546

. . . 547

. . . 548
9-10,548

. 12, 27
10-11, 320, 327

.. 327

... 18
12. 27

490
548
549
549

. 19

. 19
614
614
549
549

549, 718
330,550

The COHERENT System 1085

dollar ..
domain.
done .. .
dos
dot command
double .
drvld ...
drvld.all ..
du
dump .. .
dumpdate
dumpdir ..
dumptape.h .
dup()
dup2()

ebcdic.h
echo.
ed ..

$.
&.
•
+ .

. (dot)

,
<ctrl-D>.

?

E

adding lines.
advanced commands .
backslash
caret.
carriage return
changing lines
characters, special. ..
commands, advanced .
commands, global ...
copying blocks of texts
current. line
deleting lines
file, editing commands ...
file, name, in ed command.
global substitute ..
global, command ..
inserting lines . . .
joining lines.
line, locators
line, number
line, number ranges . .
line, number zero ...
line, numbers, relative
move, blocks of text .
pattern
print command. .
prompt character .
removing lines . . .

451
550
330
551
328
553

27.553
. .. 554

19,554
26,555

556
556
557
557
557

. 559
320-321. 559

5,44,560
124
145

... 124

. . . 131

. . . 131
121, 130

125
149
118
124
134
121
141
136
144
118
126

129, 143
130, 141
... 150
... 134
122, 148

125
. .. 141
... 122
. .. 129
137, 150

122
137
134
120
123
133
130
132
127
123
120
125

INDEX

1086 The COHERENT System

reverse searching
sed
special characters
spliting lines
substitute command . .
tutorial

EDITOR.
egrep ..
efif. .. .

141
121
143
138
127
117
564
564
332

else 111, 332, 565
elvis.
enable
end......... .
end conditional inclusion of code. .
end-of-file indicator.
endgrent()
endpwent()
enter
enum
ENV
environ
environmental variables . .
envp
EOF
eol

566
573
574
384
578
574
575

4
575
576
576
576
577
578

4
epson.. 578
Epson MX-80 853
erase 40
errno
errno.h
error message. return text of
error messages

assembler
cc
ccO ••
eel ..
cc2 ••
cpp ..
fsck
Id ••....•..
make•
nroff
system

esac
etext
eval••••.
event scheduling .
ex
example.
exec ...
execl() ..
execle() .
execlp() ..
executable file . . .
executable files
executable program
execution
execv() ••••.•••
execve()
execvp() ••..•..••..••.

INDEX

579
. . 579

.... 948

1057
1056
1060
1069
1070
1057
1071
1070
1076
1077
1055

.. .. 334

. . .. 582

.. .. 582
. .. 41

583
379
583
584
584
584
585

... 95

. .. 95
585
586
586
587

exit
exit() .. .
exp() .. .
export. .
expr ...
extern ..

fabs() ..
factor ..
factor.c.
failure ..
false ...
fblk.h ..
fc
FCEDIT.
fclose()
fcntl() ..
fcntl.h ..
fd
fd.h .. .
fdformat
fdioctl.h.
fdisk ...
fdisk.h
fdopen().
feoft) ...
ferror()
fflush()
fgetc() ..
fgets ...
fgets() ..
fgetw(J ..
fi
field .. .
FILE .. .
file

block special .
concatenation
copying
creating empty .
creation
include
links
modification time
move
name
of commands.
protection .
prototype .
raw
removal of.
rename ..
restoring
special character. .

file descriptor
file format

archive file
COHERENT file ..

F

.. 108.588
.. .. 588
.... 588

327,589
590

.... 591

593
593
. 96
328

332,593
593
593
594
594
594
595
595
596

49,596
597
597
599
599
600
600
602
603
104
604
605
332
605

103,606
9,606

. 26
14
16

321
15

. 46
19

. 46
16
10

319
. 48
. 23
. 26

18
16

. 51

. 26
607

402
548

coredump
file format, processing accounting .
file formats
file locking. UUCP
file system

layout
mounting non-COHERENT.

.... 507

.... 393

.... 607
338, 1035

root

. 26
617
. 25
999
578
385
551

file, generate name for temporary file
file, indicate end of
file, source, include
file, transfer to/from MS-DOS
file-creation mask.
fileno() ..
files

1015
. 608

backup 511,555,975, 1022
cooked

fill an area with a character . .
filsys.h
filter
find
find one string within another
fixstack
flexible arrays

.... 26

... 767

. . . 609
30,609

609
956
611
405
611
956
. 95
614

float.
floating-point number, create from string.
floating-point numbers
floor()
floppy disk

bootable 443
551
614
617

floppy disk, copy MS-DOS files to/from.
floppy disks
fnkey ...
font, soft .
fopen ..
fopen() .
for
fork() ..
fortune.
fperr.h .
fprintf() .
fputc().
fputs() ..
fputw() .
fread() ..
free() ...
freelist .
freopen()
frexp() ..
from ...
fscanf() .
fsck ...

error messages .
fseek()
fstat()
ftell()
ftime()
function .. .

. 853

. 103, 106-107
. 618

104, 108-109,330,619-620
620
621
621
621
622
623
623
623
624

1055
624

. 625

. 626
. .. 626
25-26, 627

1071
629

. .. 630

. . . 632

. . . 632

function keys . .
function, pointer to .

99,632
617

. .. 845

The COHERENT System 1087

fwrite()
fwtable

gallows
gcd()
general functions . . .

G

generate name for temporary file .
getc() ..
getchar()
getegtd().
getenv().
geteuid()
getgid() ..
getgrent() .
getgrgtd() .
getgrnam() .
getlogin() .
getopt() .
getopts .
getpass()
getpgrp()
getpid() .
getpw() .
getpwent()
getpwnam().
getpwuid()
gets() ..
getty ...
getuid().
getw() ..
getwd() .
GMT ...
gm time()
goto. . . .
grave accent .
grep .. .
group

id
name

group structure .
grp.h ...
gtty()
guillotine

H

633
633

276
635
635
999
636
637
638
638
639
639
639
640
640
641
641
643
644
644
645
645
645
647
647
648
649
650
650

. . 651
39,651

. .. 651

. .. 652
. ... 327
38-39, 653

654
. 47
. 47
655
655
655
276

hard disk. 656
656
658
551
659
960
659

adding.
addinp; another

hard disk, copy MS-DOS files to/from.
hash
hashing, example .
hdioctl.h
head
header file
header files.
header, copy into program.
help

.. 659
100, 104
.. 659
.. 385

7, 661

INDEX

1088 The COHERENT System

here document
Hewlett-Packard LaserJet .
high-level language.
HOME
home directory
hp
hpd .. .
hpr .. .
hpskip .
hs
hypot() .

i-node
list

I/ 0 redirection
i8086

registers .. .
i8087

I

icheck.
identifier. define as macro .
idle
if.
IFS
include code conditionally.
include file
include source file
inclusion of code, conditional, end.
index()
init
initialization
initialization of pointers
ino.h
inode.h
install
instruction set .
instructions . .
int
integer division
interrupt
introduction to C programming.
io.h
ioctl() .. .
ipc.h
isalnum().
isalpha()
isascii() .
isatty() .
iscntrl().
isdigit() .
islower().
ispos() ..
isprint().
ispunct()
isspace()
isupper()
itom() ..

INDEX

J

691, 911
... 853

98,489
327, 662

10-11. 320
662
663
663
664
664
666

.. 667

. .. 25
14.29

421
418
667
382

... 446
332,668
. .. 668
383-385
... 659
... 385
. . . 384
669,946
446,669
404,670

845
673
673
673
. 98

. . 98
105, 675
549, 718

675
. 97
675
675
676
676
676
677
677
677
677
678
678
678
678
679
679
679

jO() ..
j 1 () ..
jn() ..
jobs .
join .

kermit
kermit, interactive . .
Kernighan, Brian W ..
keyboard tables .
keys, function ..
keyword

parameters .
kill.
kill()
King David.
KingLear ..
Korn shell .
ksh
KSH VERSION

L-devices.
I.out .. .
l.out.h .. .
L.sys .. .
l3tol() .. .
LaserJet .
LASTERROR.
le
LCK files .. .
ld

error messages .
ldexp() ..
!div().
!div t .
let -: ..
lex ...

$..
%%.
%S ..
%{%}.
(and).
•
+

K

L

680
681
681
681
682

683
479
. 99
686
617

. . 325
40.43.690

691
238
237
691
691
709

710
406
710
711
714
853

... 715
6. 12. 715
338. 1035

45. 716
1070
718
718
718
719
719
164
155
166
172
163
161
161

......................... 164
I I
< >
?
abbreviations.
action
alternatives . . .
angle brackets .
BEGIN action. . . .
beginning of line $.
braces

164
166
162
165
155
163
166
166
164
157

braces, in patterns.
character classes.
context match . .
context, separate.
context. start . . .
context, switch . .
definitions
definitions section .
dot
ECHO
end ofline
exception
grouping. () . . .
Iieader section .
lex specification
macro
match, exception.
match, in context
match, longest ..
match. non-graphic characters
match. optional
non-graphic character .
non-graphic characters.
optional match . . .
pattern
patterns
program generator. .
regular expressions .
REJECT
repetion. zero or more.
repetition
repetition. specific count .
repetitions. zero or more
repetitions, zero or one .
rules
rules. context start .. .
rules. with same action.
section, header
sections. definitions .
start condition
statements
statements multiple .
tokens.
tutorial
yacc ..
yylex ..
yytext .
yywrap.
I

Lexicon ..
introduction

libm ...
libraries ..
library

c
limits.h .. .
line control.
line numbering, reset.
linefeed
lines

. .. 162

. .. 160
164-165

. .. 167

. . . 166

... 168
155, 166

170
159
169
164
160
163
171
153

165-166
. .. 160
164-165

161
163
162
163
163
162

. 155
158-159

153
158
169
161
161
162
157
162
155
166
158
171
170
166
156
157
172
153
172
170

.. 158
156, 172

163
721
377
. 96
723
. 99
. 45
724
386
386

4
725

The COHERENT System 1089

link()
linked list. example .
linker

error messages . .
linker-defined symbols . . .
linking without compiling .
links
In
load-module execution .. .

. 725

. 960

.. 95
1070

. 726

. . 96

.. 19

locale-specific string transformation.
localtime() .

19. 726
.. 585
.. 963

. .. 727
338, 1035

728
729

lock files ..
log()
IoglOO .. .
logging in

-definition
logging out .
login

time
login accounting
login identifier . .
logmsg
long
long integer, create from string .
lon~mp()
1001{ •••••••
loop
lower case

in file names
lp
lpd
lpioctl.h.
lpr ...
lpskip.
ls ...
lseek().
ltol3() .
lvalue.

m4
argument

M

argument substitution
changequote
decision-making macro.
deer ..
define .
divert .
divnum
dnl. ...
dumpdef .
endless loop
errprint ...
eval.
expression evaluation .
extra newlines
ifdef ..
ifelse
include

3
9

9.48,729
. 52
390
812
730
730
959
730
731
104

. 10
731
732
733
733
733

6, 12. 734
735
736

.... 736

44,46,738
177
177
178
178
181
176
179
179
178

177, 183
184

... 179

. .. 181

... 181
178-179

178
181

. .. 178

INDEX

1090 The COHERENT System

incr
index
macro name recognition
maketemp
nestable quotes
output stream
quote marks removing
quoted text .
repeat
sinclude .. .
string length
subsfr
syscmd .
translit .
tutorial .
undefine.
undivert ...
unquoted text

machine instructions.
machine.h
macro
macro, undefine.
madd() .. .
mail

receiving
main
main()
major device number .
major number .
make.

$* ..
$< .
$? .
$@.

181
181
176
182
176
179
176
175
181
178
181
179

182-183
180
175
178
179
175

. 46
740

44. 100. 740
...... 386

. 740
30.36-37,741-742

....... 37
45, 100, 102

... 744

. .. 545

. .. 745
46,745

192
... 192
... 193
... 193
190, 196

.DEFAULT. 195

.IGNORE 195

. SILENT 195

.SUFFIXES 192
I usr I lib I makeactions I 91-192
/usr/lib/makemacros 191-192
actions. . . 191-192
archive. 193-194
assembler 193
colon. 187. 193
command line 187, 190-192
command line, macro definition. 191
command line. options 190
command line. target specification . . . 192
command, error . . 191. 196
command. printing 191
comment 188
debugoption. . . 190
defau1t rules . . . 192
double colon . . . 193
error messages . 1076
error status . 191. 196
errors 196
exit status. 196
file 187. 191

INDEX

file modification time
file option
hyphen
ignore errors option .
interrupt
lex
macro
macro. definition.
macro, printing ..
macros
Makefile
modification time
no execution option .
no rules option .
options
print option.
printing
program, maintenance
program, specification
return value .
rules option. .
silent option .
special targets
specification .
target
target. line . .
target, printing.
target, program.
target. specification .
test suites.
touch option
tutorial
usr /lib /makeactions
yacc.

malloc()
malloc.h
man
Mandrake the Magician
manifest constant
manual

how to use
user reaction report .

mark a conforming translator.
mask, default
math.h
mathematics library
mboot ..
mcmp().
mcopy().
mdata.h
mdiv() ..
me

tutorial
mem
memccpy().
memchr() ..
memcmp().
memcpy() ..
memmove().
memok() ..

... 191

. .. 191

. .. 190
191. 196
. .. 196
. .. 193
. . . 191
188, 191
. .. 191
191-192

191
191
191
191
190
191
191
194

187. 191
. .. 196
. . . 191
191. 195
. .. 195
187, 191
192, 195

193
191
192
192
194
191
185
192
193
748
750

7, 28, 750-751
... 879
382, 752

1
2

. 387
1015

. 752
96, 752

753
754

.. 754

.. 754

. . 754
31. 755

197
762
762
763
764
765
765
766

memory allocation
memory, copy .. .
memset()
mesg
message of the day .
MicroEMACS ..

<ctrl-@>.
<ctrl-A> .
<ctrl-B>.
<ctrl-C>.
<ctrl-D>.
<ctrl-E> .
<ctrl-F> .
<ctrl-G>.
<ctrl-L> .
<ctrl-N>.
<ctrl-P> .
<ctrl-T> .
<ctrl-U>. . .
<ctrl-U><ctrl-L>
<ctrl-V> .
<ctrl-W>.
<ctrl-X> .
<ctrl-X>!.
<ctrl-X>l
<ctrl-X>2
<ctrl-X><
<ctrl-X><ctrl-B> .
<ctrl-X><ctrl-C> .
<ctrl-X><ctrl-F> .
<ctrl-X><ctrl-N> .
<ctrl-X><ctrl-P> .
<ctrl-X><ctrl-R> .
<ctrl-X><ctrl-S> .
<ctrl-X><ctrl-V> .
<ctrl-X><ctrl-W>.
<ctrl-X><ctrl-Z>
<ctrl-X>> .
<ctrl-X>B .
<ctrl-X>E .
<ctrl-X>F .
<ctrl-X>K .
<ctrl-X>N .
<ctrl-X>P
<ctrl-X>Z
<ctrl-Y>
<ctrl-Z>
<ctrl> .
 ..
<esc>! .
<esc>%
<esc>2.
<eSC><.
<esc>
<eSC>>.
<esc>?.
<esc>B.
<esc>C.
<esc>D
<esc>F.

... 766
762, 765
. .. 767
. . . 767
. .. 786

31, 755
205
200
200
228
203
200
200
211
207
200
201
207
214
207
201
205

212,229
. .. 228
218,220
. . . 219
. . . 229
. . . 217
202.204

216
221
221
216
202

. . 216
212,215

220
229
221
223
208
218
220
220
220
204
213
197
203
221
211
230
201
203
201
229
200
206
203
200

The COHERENT System 1091

<eSC>L.
<esc>R.
<esc>S .
<esc>U.
<esc>V.
<return>.
arguments .
arguments, default value.

206
210
209
206
201

200,210
214
214
214
214
214

arguments, deleting.
arguments, increasing or decreasing .
arguments. selecting values . . .
arguments. with create window. 220

200
228
200
200
200
200
200
201
207
204
217

arrowkeys
automatic mode
back
backspace key
backward, end of line .
backward, one space
backward, one word .
beginning of text .
block indentation ..
block-kill text
buffer status
buffer status command .
buffer status command, with windows .
buffer status window .
buffer, definition
buffer, delete
buffer, for killed text
buffer, how differs from file.
buffer, naming
buffer. need unique names.
buffer, prompting for new name.
buffer, replace with named file.
buffer. switch b
buffer, with windows ..
buffers. number allowed
cancel a command ..
capitalization
center line on screen ..
commands
compiling and debugging.
copying text.
cursor movement display.
delete buffer command . .
delete key
delete text, versus killing.
end macro command
end of text
erase text
erase text. by line
erase text, erasing spaces
erase text, to the left . . .
erase text, to the right . .
execute macro command.
exit
extended commands . . .
f option
file and buffer commands
file. definition

217
222
217
215
218
204
215
215
218
218
216
216
221
217
211
206
207
209
228
222
200
218
203
202
223
201
202
204
202
203
203
223
212
212
760
215
215

INDEX

1092 The COHERENT System

file, how differs from buffer
file, naming
file. rename
file, replace buffer with named f.
file, with windows .
forward, end of line
forward, one space. . .
forward, one word . . .
help window
help, in MicroEMACS .
kill and move commands .
kill text, block
kill text. versus deleting
killing and deleting . . .
left
line position
lowercase ..
metakey ...
move text ..
movement commands.
next error
next line
number of buffers allowed .
previous error . . .
previous line
program interrupt
quit
quit without saving text.
redraw screen
rename file
repetition
replace buffer with named file .
restore (yank back) killed text .
return indent .
reverse search
right
saving text . .
screen down .
screen redraw
screen up ...
scroll down . .
scroll up
search and replace.
search, forward.
search, reverse . . .
searching
store command.
switch buffer command.
switch buffers . .
text, block kill . . .
text, capitalize ...
text, erase to left . .
text, erase to right.
text, kill by lines . .
text, lowercase . . .
text, move

215
215
216
216
221
200
200
200
229
229
204
205
202
202
200
200
206
226
204
200
229
200
217
229
201
228
202
204
207
216
201
216
204
207
210
200

202,212
201
207
201
221
221
211
209
210
209
213
221
216
205
206
203
203
204
206

text, move from one buffer to another
text, restore (yank back)

204
217
204
212
206

text, saving
text, uppercase

INDEX

text, write to new file . .
text, yank back (restore)
transpose characters .
tutorial
uppercase
visit command

212
204
207
197
206

window manipulation.
window, buffer status command use.
window, copying text among.
window, enlarge
window, move within
window, moving text among .
window, number possible

216
219
222
222
220
221
222
220
222
221
220
220
221
221
208
215

window, saving text
window, scroll down
window, shifting between.
window, shrink
window, use with editing.
window, using multiple buffers
word wrap
write text to new file
yank back text

MicroKVETCH Electronic Nag.
microprocessor
min()
minit()
minor device number.
minor number.
mintfr() .
misc
mitom() ..
mkdir ...
mkfnames
mkfs
mknod ..
mknod() ..
mktemp().
mneg() ..
mnttab.h.
mode ...
mode field
modem ..

adding.
cabling.

modem control
modem problems, UUCP.
modem, Trailblazer, with UUCP
modemcap.
modeminit.
modf() ..
modulus
mon.h.
more ..
motd ..
mount ..
mount().
mount.all.
mount.h .
mout() ...
move files.

204,214
247
. 98
768
768
545
768
768
769
769

14, 769
.. 770
23.770

773
774
774
774
775
. 13
. 21
775
775
882
781

1028
1027

779
782

. 782

. 783

. 783
14,783
. . 786
23,787

786
787
788
788
. 16

mprec.h 788
ms 28,788
MS-DOS 790

differences from COHERENT.
equivalent COHERENT commands .
on same hard drive as COHERENT .

790
790
598
617 MS-DOS file system, mounting.

MS-DOS, copies files to/from.
MS-DOS, reading floppy.
msg ...
msg.h ..
msgctl().
msgget().
msgrcv()
msgs ..
msgsnd().
msig.h
msqrt() ..
msub() ..
mtab.h ..
mtioctl.h .
mtoi() ..
mtos() ..
mtype() ..
mtype.h ..
mult() ...
multi-tasking, definition .
multi-user, definition ...
multiple source files
multiple-precision mathematics
multiprocessing execution.
multitasking . . .
multiuser
multiuser mode .
mv
mvfree()

N

n.out.h
name of system
name. generate for temporary file
named pipe .
ncheck
new&rp
newfine

in C strings.
newusr.
nkb
nlist()
nm
non-COHERENT file system

mounting
not modifiable, type qualifier
notmem()
nptx
nroff

% number register.
%, page number ..
.AB macro

551
. 615

35, 795-796
796

. . . 797

. . . 798

... 799
38,800

801
803
803
803
804
804
804
805
805
805
805
790
790
. 96
806

691,911
.. 488
. . 488
.. 446
16.809
.. 809

. 811
1032
999
811
811
812

. 45
48,812

813
816
816

617
506
818
819

28,33,820
257
244

. 243

The COHERENT System 1093

.ad primitive

.AE macro.

.AI macro ..

.AU macro ..

.BDmacro .

. bp primitive

. br primitive

.CD macro .

.ce primitive

.da primitive

.DEmacro .

.di primitive .

.DS macro ..

.ds primitive

.el primitive .

.ev primitive

.FE macro ..

.fi primitive .

.FO macro ..

.FS macro ..

.ft primitive .

.hd primitive .

.ID macro ..

.ie primitive .

.IP macro .

.KEmacro ..

.KS macro ..

.LD macro ..

.11 primitive .

.ls primitive .

.lt primitive .

.na primitive

.nf primitive.

.NH macro .

.nr primitive

.pl primitive.

. po primitive

.PP macro.

.QEmacro

.QS macro.

.RE macro.

.RS macro.

.SH macro.

.sp primitive

.ta primitive.

.tc primitive.

.ti primitive .

.TL macro ..

.tl primitive .

.wh primitive .
/usr /lib/tmac .
adjust
begin page
block-centered display
boldface
break
breaking line
centered display
characters, special. ..
command. argument .

250-252
243

. .. 243

. .. 243

... 248
244.248,254

250,255
248

. .. 253

. .. 284

. .. 247
283-284

. .. 247
244.264
... 273
. .. 277
... 247
250.252

257
247
282
257
248
273
237
248
248
248

249,271
... 278
258.281
250,252

250
... 241
... 266
. .. 254

249,272.277
234.236.256

241
241

...... 238

...... 238

...... 241
236.248.253.255

254
254
255
243
258
257
288
250
248

247-248
. .. 245
250,252
... 236
247-248

246
... 236

INDEX

1094 The COHERENT System

command, break.
command, conditional
command, divert.
command, environment.
command, fill
command, line length.
command. line space .
command, page offset.
command, title length.
command, when .
comments
conditional input
CTstring
display
display indented
display. block-centered.
display, centered.
display, indented.
display, left .. .
diversion
error messages .
expression
fill
fonts .. .
footer .. .
footnote ..
header
headings. section
hyphenation
indentation, relative.
indented display.
indented, display.
italic
justify .. .
justify text
keep
left display
line. length
LT string
macro ...
macro definition .
macro, arguments .
macro, definition.
macro, name.
margin. right
margins
measurement. .
measurement, absolute.
measurement, units .
ms macros
newpage .. .
no-fill
numbered heading.
page number
page. break . .
page, offset
paragraph
paragraph tag . .
paragraph, indented.
paragraph. quoted ..

INDEX

250
273
283
277
250
249
278

249,277
258
257
250
273
244
247
247

247-248
248
248
248
283

1077
270
250
245

244,257
247
244
241
236
238
248
247
245
250
235

247-248
248
249

... 244

... 255

. .. 233
259-260

260
236
235
250
271
274

257, 271
233
248
250
241
244
248
249

236,252
237
237
241

quoted paragraph .
register, number.
relative indent
Roman
RT string
section heading
skip lines
space, vertical
specification
stack. environment
string
string. within strings
strings
tab

~Ye~~ ~~r~~~~h: :
traps
tutorial .. .
unit, default
units

nroff macros .
NUL
NULL
null
null pointer
number of arguments, variable.
nybble

object format. .
object module .
od
open()
operating system
operator

0

precedence . .
operator, strtngize.
operator, token-pasting
operators
optimization
optimizer I object generator
option
options
order

of matched file names.
ospeed
output formatting ...

packed decimal
PAGER
param.h
parameter .. .

assigning keyword .
fewer ...
keyword.
name ...
null ..

p

241
266
238
245
244
241
248
236
249
279
264
265
244
254
237
244

254,259
231
271

. . 271

... 28

.. 827
107,827

827
845

1040
827

.. 828
94,96

828
828
488
829
831
380
381

99,409
94
94

6
13

322
987
. 45

613
832
832

6
326
323
325

6
323

option
positional . .
references . .
substitution .

parent directory .
parentheses . . .
Parkinson's law .
parser
partition

........ 6

. 322-323, 326
... 323

46,329
327

45
. 19
. 94

root, changing size of . . 658
partition. adding COHERENT p. . 656
passwd . . 28, 39, 48, 832
password. . . 31. 39, 47-48
paste 833
patch 834
PATH 27. 327. 837
path name. . . . 11-12

fully specified. . 11
path(). . 836
p~h~. . ~7
paths . . . 837
pattern . . 838
patterns 38-39, 320, 322
pause() . 838
pax . . . 839
PC.. . . 987
PCL. . . 853
pclose() . 839
permission

access ..
read .. .
write .. .

Permissions
perror() .
phone .. .
PIO
pinout

. 20

. 22

. 21
840
842
842
. 42

DB-9P. 882
RS-232 882

pipe 30, 842
pipe() 843
pipeline, definition 691. 911
pnmatch() 845
pointer 99, 845
pointer dereferencing. . 845
pointer type 845
pointer type derivation . 845
pointer-type mismatch. 845
poll.h . . 848
popd. . . . 849
popen(). . 849
port. . . . 849
portability 849
Postscript 853
pow() 850
pr 33, 851
precedence, . . . 831
prep. 851
preprocessing directive, include source file 385
preprocessing directive, reset line number 386

The COHERENT System 1095

print
printer

cabling, serial
printf. . .
printf()
proc.h
process

background. .

............ 852
578,662-663,733,853

...... 882
45, 100, 104

. 855

...... 857
42,318,858

...... 318
id 42,318,645

393
858
858

process accounting, file format .
prof
profile
program

debugging
modularity . . .

program execution
programminp;

structured
prompt ..
protection
prototype.
prps.
prvd.
prvi .
ps ..
PSl .
PS2.
ptrace()
Puddnhead Wilson .
pun
pushd .. .
putc() .. .
putchar().
puts() ..
putw() ..
pwd ...
pwd.h ..

qfind
qsort()
question mark.
quot

RAM .. .
ram .. .
raml ..
rand()
random access ..
ranlib
raw devices ..
raw files ...
raw terminal .
re
read
read permission .
read()

Q

R

. 46

. 46
585

. 46
31. 320, 327

. 48
. . 23

...... 859

...... 408

...... 408
42,318,861

327, 862
327. 862

863
256
864
864
864
865
866

. 866
15,866
.. 867

868
868
321
869

872
870
871
871
872
872
966
. 26
987
873
873
. 22
873

INDEX

1096 The COHERENT System

read-only memory. 874
readonly 874
real time 53
realloc() 87 4
reboot. 51. 875
rebooting COHERENT . 7
receiving mail 3 7
redirection 14
ref. 875
referenced type 845
region of memory. copy 762, 765
region of memory, search for character . . 763
regions, compare 764
register 98, 876
register declaration . 876
register names. 406
register variable 876
regular expressions. 38
refeases, software, preparing . 673
remacc. 833
remote access password . 833
remote communication. . 775
remove a directory . 18
rename. 876
rename a file 876
rename files 16
reset line number . 386
restor. 877
restore

files 51
return
rev.

4, 879
.. 879
.. 955
.. 880

reverse search for character in string .
rewind()
rindex()
Ritchie, Dennis
rm
rmdir ..
ROM
root

device ..
directory.
file system

root partition
changing size of .

rpow()•...
RS-232
rub out key
run time, check assertion .
rvalue

sa ...
sbrk() .
scanf().
scat .. .
sched.h
screen editor .
script

INDEX

s

. 880, 955

.. 93, 98
18-19, 881

18,882
. 874

11-12. 30, 43, 882
445
. 27
. 25

658
882
882
. 5
428
884

885
886
886
888
890
. 31

. 317. 319, 323

SCSI. 890
sdiv() 890
search an array 448
search for character in a string 946, 955
search for character in region of memory . 763
search string for character 955
SECONDS 891
security. . 891
sed 892

$ 295
> 292
change lines 301
ed 291
including a file . 302
line range 295
line selection . . 294
next line 303
p command withs . 297
pattern 295
pipes. 291
reading in . . . 302
substitution . 293
tutorial 291

seg.h . . 894
sem. . . . 895
sem.h.. . 895
semctl() . . 896
semget(). . 897
semicolon . 100
semicolons . 31 7
semop(). . 898
set. 900
setbuf() . . 902
setgid() . . 902
setgrent() . 903
setjmp(). . 903
setjmp.h . 904
setpgrp() . 904
setpwent() 904
settz(). . 905
setuid() . 905
sgtty. . . 905
ssR:tt.y .. h. ·. 91 o n 21.29.319.911,311
SHELL 921
shell. 27. 29. 317

script 319
sequential execution of commands . . . 31 7
simple commands 31 7
variable . . 324, 327

shell, Bourne 911
shell, Korn . 691
shellsort(). 921
shift.. . 921
shm... 922
shm.h.. 923
shmctl(). 923
shmget() 924
short 926
shrd. . . 408

shri
shutdown
shutting down COHERENT .
signal()
signal.h
signame
sin()
single-user mode
sinli()
size
sizeof
slash

in path name .
sleep .
sleep()
sload()
smult()
soft fonts

408
926

7
926
927
928
928
446
928
928
929

software, installing under COHERENT
software, preparing releases.

. 11
929
930
930
931
853
673
673
931
. 96
385
387
387
388
324

sort
source file
source file inclusion
source file name.
source file, current line . .
source file, time translated
space ...
special file

block
spell
spelling. looking up a word
split
spow() ..
sprintf().
sqrt() ..
srand() .
srcpath.
SS •• , •

sscanf().
stack ..
stack size.
stackalter size of
standard

input
output

standard error.
standard 1/0 ..
standard input
standard output.
stat() ..
stat.h ..
static ..
stdarp;.h.
stddef.h.
stderr ..
stdin ..
STDIO ..
stdio.h .
stdlib.h.
stdout ..

. 26
932
932
933
934
934
934
935
935
936
937
938
. 97
718

. 30

. 29
938
. 28
939

14,939
939
941
941
942
942
942
943
943

104,944
944

. .. 945

The COHERENT System 1097

sticky bit. . . 476, 945
stime() 945
storage class . 945
strcat() . 946
strchr() . 946
strcmp(). 946
strcoll() . 94 7
strcpy() . 947
strcspn() 948
stream . 948
stream.h . 948
strerror() . 948
string functions . 949
string transformation, locale specific 963
string. break into tokens. 957
string. compare two. 947
string. comparison 948, 955
string. convert to floating-point number 956
string. convert to long integer. 959
string. convert to unsigned long integer. 960
string. find one within another . . . 956
string. reverse search for character 955
string. search for character . . . 955
string, search for character in 946, 955
string-ize operator 380
string.h. 949
strings 951
strip. . . 952
strlen() . 952
strn . . . 408
strncat() 952
strncmp(). 953
strncpy() 953
strpbrk() 955
strrchr(). 955
strspn() . 955
strstr() 956
strtod() . 956
strtok() . 957
strtol(). . 959
strtoul(). 960
struct. . 962
structure . 963

group . 655
structure assignment. 963
structured

programming
structured programming.
strxfrm()
stty
stty()
SU •••••••••

subject sequence
substitution

in commands.
of parameters.

success ..
succotash
suload().
sum

. 46

. 99
. 963

5,40,965
.... 964

43,967
956, 959-960

. . 320
46,329

328
516
967
967

INDEX

1098 The COHERENT System

superuser
swab().
switch.
symt ..
sync ..
sync().
system

30,43,968
..... 968
. 968

...... 408
25-26,51,446,969

time .
system calls .
system maintenance .
system name
system()

tab .. .
tail .. .
tan() ..
tanh() ..
tape .. .
tar
technical information.
tee

T

tempnam().
temporary file, generate name
TERM ...
termcap ..
terminal .

adding.
cabling.
cooked ..
functions
interface.
mode .. .
raw

terminal-independent operations.
termio.h
test
testing

strings
text of error message, return
tgetent() ..
tgetflag()
tgetnum()
tgetstr()
tgoto()
The C Programming Language
Thompson, Ken
tick()
time
time source file is translated
time() .. .
time.h .. .
timeb.h ..
timef.h ..
timeout.h.
times ...
times() ..
times.h ...
timesharing

INDEX

970

. . 53

. 970

. 972
1032

. 970

. 40
973
973
973
974
975
977
977
978
999
978

.. 978
40,985

985
882
987
905
905
. 26
987
987

. 991
329.991

329
948
993
993
993
994
994
. 99
. 93

. . 994
39.995

388
996
996
996
996
996
997
997
998
488

TIMEZONE. . 998
timezone 39
tmpnam(). . . 999
token pasting 381
token, break a string into sequence of. 957
token, definition. 691. 911
token-pastingoperator. . . 381
tolower() 1000
touch. 1001
toupper() 1001
tputs(). 1001
tr 1001
Trailblazer modem with UUCP 1027
transform a string. 963
translation, date. 386
translator, mark conforming . 387
trap 1002
tree-structured . 490
troff. 33, 1003
true . 1008
tsort. . . . 1008
tty. 1009
tty.h. . . . 1009
ttyname() . 1009
ttys 1009
ttyslot() . . . 10 l1
ttystat. 1012
type checking . . 1012
type promotion 1013
type qualifier. not modifiable . . 506
type. pointer. 845
type, referenced. . 845
typedef . 1012
types.h . 1013
typeset . 1013
typo . . . 1013

u

umask 1015
umask(). 1015
umount. . 24-25. 1016
umount() . 1016
unalias . . 1016
uncompress . . 1017
undefine a macro . . 386
ungetc(). 1017
union. . 1017
uniq. . . 1018
unique(). . 1018
units . . 28, 1019
unlink() . . . 1020
unmkfs. . . . 1020
unsigned 1021
unsigned long integer. create from strinp;. 960
until. 333. 1021
update . 446, 1021
uproc.h. . 1022
USENIX. 50
USER.. . .. 1022

The COHERENT System 1099

user wild pointer ... 845
id. 47 wildcards 1048
nrune. 47 word 442
time . 53 write 35, 1049

user name 29 write permission .. 21
user reaction report 2 write() 1049
usr ... 11
ustar 49, 1022 x
utime() ... 1023
utmp.h . .. 1024 XENIX file system, mounting . 617
utsnrune.h . 1024 xgcd() 1051
uucheck 1024
uucico 1025 y
UUCP 1026
uucp 1031 yacc 1052
UUCP %% 356

domain nrune. 1030 %left 365-367
lock files 338, 1035 %nonassoc. . .. 367
system name . 1030 %prec 366
tutorial 335 %right 365-366

uucpnrune. 1032 %token . .. 362-363, 365
uudecode. 1032 accept action . 356
uuencode. 1032 action statements . 357
uuinstall . 1033 action, accept. 356
uulog ... 1034 action, error 356
uumvlog . 1034 action, reduce 356
uuname 1034 action. shift. . 356
uurmlock. 1035 actions 358
uutouch 1035 ambiguity 363
uux .. 1036 ambiguity, default handling . 364
uuxqt ... 1038 ambiguity, resolution . 365

associative. left. .. 365
v associative, right .. 365

associativity 365
v7sgtty.h. 1039 Backus-Naur Form 355
va_arg() .. 1039 BNF 355
va_end() .. 1039 comments, in rules 358
va start(). 1040 default, action . . . 363
value from command . 328 definition section 356. 365
variable definitions section . 357

shell 324,327 error action . . . 356
variable arguments . 1040 error, recovery . . . 367
vertical bar . 334 error. token 367
vi .. 1041 LALR 355
view .. 1042 left-to-right parsing . 355
virec .. 1042 library 356
void .. 1043 library, yacc .. 356
volatile 1043 LR parsing ... 355

nonassociative . 367
w nonterminals . 357

parse actions . . 356
wait. 318, 1044 precedence . . . 365-366
wait() .. 1044 production 357
wall. 50, 1045 push-down list 356
WC •••• 1045 reduce 356,364
whence. . . 1045 reduction .. 357
whereis. .. 1046 right 367
which. .. 1047 rule format . 358
while 333, 1047 rule, actions 359
who ... 29. 35, 50. 1048 rule, format. 358

INDEX

1100 The COHERENT System

rule, sections . .
rule, style
rule, type
rule, values . . .
rules section . . .
rules, precedence .
section. defmition .
section, rules
shift
shift-reduce conflicts ..
stack
start symbol
terminals
token definition .
token, definition . .
token, error
token, value
tutorial
type. of nonterminal. . .
user code
value. qualification
yyerrok
yyparse
{}.

yes

zcat ...
zerop() ..

{}.

I i

INDEX

z

357
358
363
360
356
366
356
356

356,364
. .. 364
.. . 356
356-357

357
357
362
367
360
351
363
357
363
367
356
357

. 1053

1054
1054

. .. 45

30,334
.... 329

User Evaluation Report

To keep this manual free of errors and to help us improve COHERENT. please sent us your
reactions. Please fill in the form below, detach it, and mail it to:

Name:

Company:

Address:

City/State/Zip:

Phone:

Date:

Version and hardware used:

Mark Williams Company
60 Revere Drive

Northbrook, IL 60062

Did you find any errors in the manual?

Can you suggest any improvements to the manual?

Did you find any bugs in the software?

Can you suggest any improvements or enhancements to the software?

Additional comments:

MARK WILLIAMS COMP ANY ("MWC")
Software License Agreement

YOU SHOULD CAREFULLY READ TIIIS SOFTWARE LICENSE AGREEMENT BEFORE BREAKING TIIE
SEAL ON TIIE DISKEITE ENVELOPE. BREAKING TIIE SEAL INDICATES YOUR ACCEPTANCE OF TIIE
TERMS AND CONDIDONS OF TIIIS AGREEMENT. IF YOU DO NOT AGREE WITH TIIEM, YOU SHOULD
PROMPTLY RETURN TIIE DISKEITE UNOPENED, AND YOUR MONEY WILL BE REFUNDED.

MWC provides this software and licenses its use to you. You assume responsibility for the selection of the software to
achieve your intended results, and for the installation, use and results obtained from it.

LICENSE
MWC grants you a license only to: (a) use the software on a single machine; and (b) copy the software into any machine
readable form for backup purposes in support of your use of the software on the single machine.

As an exception to the foregoing paragraph, we grant you the right to include portions of the MWC Runtime Library (as
defined below) in software programs that you develop, called Composite Programs, and to use, distribute and license
Composite Programs to third parties without payment of any fee. You shall, however, include in each Composite
Program, and on the exterior label of every diskette, a copyright notice in this form: "Portions of this program, copyright
1982, 1990, Mark Williams Company." As an express condition to the use of the software, you agree to indemnify and
hold MWC harmless from all claims by you and third parties arising out of the use of any Composite Program. Any por­
tion of the Runtime Library merged into another program will continue to be subject to the terms and conditions of this
Agreement. "Runtime Library" is defined as the set of copyrighted MWC language subroutines provided with the
software, a portion of which must be linked to and become part of a Composite Program for that Program to run on a
computer.

You may not transfer the software, or any copy, modification or merged portion, in whole or in part, except as expressly
provided herein.

TERM
You may terminate the license at any time by destroying the software together with all copies, modifications and merged
portions in any form. It will also terminate upon conditions set forth elsewhere in this Agreement or if you fail to comply
with any terms or conditions of this Agreement. You agree upon termination to destroy the software together with all
copies, modifications and merged portions in any form. The license shall terminate upon termination of this Agreement.

LIMITED WARRANTY
EXCEPT FOR TIIE LIMITED WARRANTY SET FORTH IN THE NEXT PARAGRAPH, THE PROGRAM IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITIIER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF TIIE
PROGRAM IS WITII YOU. SHOULD TIIE PROGRAM PROVE DEFECTIVE, YOU (AND NOT MWC OR ANY
AUTHORIZED MWC DEALER) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION. MWC DOES NOT WARRANT TIIAT THE FUNCTIONS CONTAINED IN TIIE SOFTWARE WILL
MEET YOUR REQUIREMENTS OR TIIAT THE OPERATION OF TIIE SOFTWARE WILL BE
UNINTERRUPTED OR ERROR FREE.

MWC warrants to the original licensee that the diskettes on which the software program is recorded is free from defects
in material and workmanship under normal use and service for a period of 60 days from the delivery date as evidenced by
a copy of your receipt. Your exclusive remedy is the return of the diskettes as described below.

IN NO EVENT WILL MWC BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS,
LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILffY TO USE THE SOFTWARE EVEN IF MWC OR AN AUTIIORIZED MWC DEALER HAS BEEN
ADVISED OF TIIE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

MISCELLANEOUS
If you are dissatisfied with the diskette[s] for any reason whatsoever (including if the diskettes are defective in material
or workmanship), you may return them for replacement or refund of amounts previously paid them so Jong as the return
is made within 60 days after purchase, and is accompanied by (a) a Return Authorization Number form Mark Williams
Company, (b) your receipt, (c) an affirmative statement that you have not retained any copies of the software (including
back-up copies) and (d) a statement as to the reason for the return.

You may not sublicense, assign or transfer the license to the software except as expressly provided in this Agreement.
Any attempt otherwise to sublicense, assign or transfer any of the rights, duties or obligations hereunder is void. This
Agreement will be governed by the laws of the State of Illinois.

Should you have any questions concerning this Agreement, you may contact MWC by writing to the Mark Williams Com­
pany, (,() Revere Dnve, Northbrook, IL 60062.

YOU ACKNOWLEDGE TIIAT YOU HAVE READ TIIIS AGREEMENT, UNDERSTAND ff AND AGREE TO DE
BOUND BY ITS TERMS AND CONDIDONS. YOU FURTIIER AGREE TIIAT ff IS TIIE COMPLETE AND
EXCLUSIVE STATEMENT OF THE AGREEMENT BEIWEEN US WHICH SUPERSEDES ANY PROPOSAL OR
PRIOR AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN US
RELATING TO THE SUBJECT MATTER OF TIIIS AGREEMENT.

COHERENT™
fllJ Mark Wimams

Company

COHERENT™
QDb Mark Williams

Company

