
Ill Mark Williams
Company

A Multi-User, Multi-Tasking Operating System
for IBM PC Compatibles.

C 0 HERE NT™

IJ M••k Wimams
Company

A Multi-User, Multi-Tasking Operating System
for IBM PC Compatibles.

Copyright© 1982, 1992 by Mark Wllllams Company.

All rights reserved.

This publication conveys Information that ls the property of Mark Willlams Company. It shall not be
copied, reproduced or duplicated in whole or In part without the express written permission of Mark
Williams Company. Mark Williams Company makes no warranty of any kind with respect to this material
and disclaims any Implied warranties of merchantability or fitness for any particular purpose.

COHERENT ls a trademark of Mark Wllllams Company. UNIX ls a trademark of AT&T. MS-DOS ls a
copyright of Microsoft Corporation. All other products are trademarks or registered trademarks of the
respective holders.

Revisions Printing 5 4 3 2 1

Published by Mark Wllllams Company, 60 Revere Drive, Northbrook, Illlnols 60062.

Sales:
Phone:
FAX:
E-mail:

(800) MARK-WMS
(708) 291-6750
uunet!mwclsales
sales@mwc.com

Technical Support:
Phone:
FAX:
E-mail:

BIX:
CompUServ:

(708) 291-6700
(708) 291-6750
uunet!mwclsupport
support@mwc.com

jolnmwc
76256,427

This manual was written under the COHERENT operating system, using the MlcroEMACS and ed text
editors. Text formatting - Including posltlonlng of Postscript clip art - was performed by the
,COHERENT edltlon of the tro:tr text formatter, using Its Postscript output function. Page design was
Implemented with custom-written macros written In the tro:tr text-formatting language and In Postscript.
Capitals are derived from the Golden Bible of Augsburg, and were supplied in encapsulated Postscript
form by BBL Typographic, 137 Narrow Neck Rd., Katoomba, NSW 2780, Australia. Typesetting of this
manual, from the table of contents through the index, was performed by one script written In the
COHERENT Korn shell. Camera-ready copy was printed on a Hewlett-Packard LaserJet UP printer using
the Pacific Page Postscript cartridge.

Printed in the U.S.A.

Preface

COHERENT is the work of a large number of exceptionally talented people. The development of a
multi-user. multi-tasking operating system is a daunting task. Creating COHERENT took an
enormous effort by all involved. The system and manual are dedicated to those who dedicated
themselves to COHERENT.

These people include the following:

Jay Alter
Bob Beals
Luddyne Blue
Fred Butzen
Allan Cornish
Ella Dashevsky
Tom Duff
Charles Fiterman
Johann George
Walter Grogan
Randall Howard
Michael Kaufman
William Lederer
Jeanne Lewis
Esther Munoz
Gerson Negron
Douglas Peterson
Vladimir Smelyansky
Julie Stewart
Trevor Thompson
Bill Witt

Riyaz Asaria
James Behr
Barry Bowen
Henry Cejtin
Roger Critchlow
Stephen Davis
Mark Epstein
Charles Forsyth
Daniel Glasser
Robert Hemedinger
Owen Jacobsen
Nancy Kenston
Irene Lee
Karen McBride
Tim Murphy
Steve Ness
Frank Pfeiffer
Hal Snyder
Robert Swartz
Diane Tracey
La Monte Yarroll

Norman Bartek
Chris Berrios
Denise Buirge
David Conroy
Richard Critchlow
Mimi Diaz
Michael Farley
Kim Fruin
Michael Griffm
Scott Hermes
Mary Karabatsos
J.T. Kittridge
Dave Levine
Scott Moody
Asia Negron
Ciaran O'Donnell
Norma Reyes
Michael Spertus
Angus Telfer
Rico Tudor
Jim Yonan

The "port" of the COHERENT kernel to the 80386 was implemented using software provided by
Ciaran O'Donnell, Bievres. France.

Table of Contents

Introduction
Editions of COHERENT

COHERENT 286 ..
COHERENT 386 ..

How To Use This Manual
The Lexicon

Installation.
User Registration and Reaction Report
Technical Support

Using the COHERENT System
How Do I Begin?

Logging in
Special Terminal Keys
Try Some COHERENT Commands .
Giving Commands to COHERENT .
help, man: Help with Commands. .
Shutting Down COHERENT and Rebooting.
Logging Out

Working With Files and Directories
File Names
Introduction to Directories .
Path Names
ls, le: Listing Your Directory.
cat: Print Contents of a File .
more: List Files on the Screen
mkdir: Create a Directory . . .
cd: Change Directory.
pwd: Print Working Directory.
mv. cp: Move and Copy Files .
rm, rmdir: Remove Files and Directories
du. df: How Much Space? .
ln: Link Files.
File Permissions
chmod: Change File Permissions .
Creating and Mounting a File System .
fdformat: Format a Diskette.
mkfs: Create a File System
mount: Mount a File System
Using a Newly Mounted File System.
umount: Unmount a File System.
fsck: Check a File System .
Devices. Files. and Drivers
Character-SpecialFiles ..
tty Processing
A Tour Through the File System .
General File System Layout .
/bin.
/dev.
/drv.

1
1
1
1
2
2
2
3
3
5
5
5
6
7
8
9
9

10
11
11
12
12
14
15
16
16
16
17
17
19
20
20
21
23
23
23
24
24
25
25
26
26
27
27
27
27
28
28
28

i

ii The COHERENT System

/etc.
/lib .
/usr.
Ju . .
Files: Conclusion .

Introduction to COHERENT Commands
The Shell
Redirecting Input and Output . . .
Pipes
Superuser
Manipulating Text Under COHERENT.
MicroEMACS: Text Screen Editor ..
pr, prps, lpr: Print Files ...
nroff, troff: Text Formatters .
Miscellaneous Commands . .
who: Who Is On the System.
write: Electronic Dialogue . .
mail: Send an Electronic Letter.
msgs: Cumulative Message Board .
grep: Find Patterns in Text Files ..
date: Print the Date.
passwd: Change Your Password ..
stty: Change Terminal Behavior . .
Scheduling Commands For Regular Execution
Managing Processes
ps: List Active Processes
kill: Signal Processes

Programming Under COHERENT
Basic Steps in COHERENT Programming.
Create the Program Source . .
cc: Compile the Program
m4: Macro Processing
make: Build Larger Programs .
db: Debug the Program

Administering the COHERENT System
Adding a New User .
System Security.
Passwords
File Protection . .
Encryption
Dumping and Saving Files.
Back-ups Using ustar
Back-ups Using cpio .
Restoring Information
System Accounting . .
ac: Login Accounting.
sa: Processing Accounting.

Conclusion.
Introducing sh, the Bourne Shell. .

Simple Commands
Special Characters
Running Commands in the Background
Scripts

CONTENTS

28
29
29
29
29
29
30
30
31
31
32
32
33
34
35
35
36
36
38
39
39
40
40
41
42
42
43
44
44
44
45
46
46
46
47
47
48
48
48
48
49
49
50
51
52
52
53
56
57
57
57
58
58

.profile: Login Shell Script.
Substitutions
File Name Substitution ..
Parameter Substitution ..
Shell Variable Substitution .
Command Substitution
Special Shell Variables
dot . : Read Commands . . .
Values Returned by Commands
test: Condition Testing
Executing Commands Conditionally.
Control Flow.
for: Execute a Loop
if: Execute Conditionally.
while: Execute a Loop ..
until: Another Looping Construct
case: Serial Conditional Execution.
Summary

Introduction to MicroEMACS .
What is MicroEMACS? ...
Keystrokes: <ctrl>, <esc> .
Becoming Acquainted with MicroEMACS.

Beginning a Document
Moving the Cursor

Moving the Cursor Forward . .
Moving the Cursor Backwards
From Line to Line
Repetitive Motion
Moving Up and Down by a Screenful of Text .
Moving to Beginning or End of Text
Saving Text and Quitting

Killing and Deleting.
Deleting Vs. Killing
Erasing Text to the Right
Erasing Text to the Left .
Erasing Lines of Text . . .
Yanking Back (Restoring) Text
Quitting

Block Killing and Moving Text . . .
Moving One Line of Text
Multiple Copying of Killed Text .
Kill and Move a Block of Text . .

Capitalization and Other Tools
Capitalization and Lowercasing.
Transpose Characters
Screen Redraw
Return Indent
Word Wrap

Search and Reverse Search .
Search Forward . . .
Reverse Search . . .
Cancel a Command.
Search and Replace.

The COHERENT System iii

60
60
60
62
64
67
67
68
68
68
69
70
70
71
73
73
73
74
75
75
75
75
76
77
78
78
78
79
79
79
79
80
80
80
81
81
81
82
82
82
82
83
83
83
84
84
85
85
86
86
87
88
88

CONTENTS

iv The COHERENT System

Saving Text and Exiting
Write Text to a New File .
Save Text and Exit

Advanced Editing
Arguments

Arguments: Default Values
Selecting Values
Deleting With Arguments: An Exception

Buffers and Files
Definitions
File and Buffer Commands . . .
Write and Rename Commands .
Replace Text in a Buffer
Visiting Another Buffer.
Move Text From One Buffer to Another .
Checking Buffer Status
Renaming a Buffer
Delete a Buffer

Windows
Creating Windows and Moving Between Them .
Enlarging and Shrinking Windows.
Displaying Text Within a Window
One Buffer
Multiple Buffers
Moving and Copying Text Among Buffers .
Checking Buffer Status ...
Saving Text From Windows .

Keyboard Macros
Creating a Keyboard Macro .
Execute a Macro Repeatedly
Replacing a Macro
Renaming a Macro
Renaming Macros: A Few Caveats.
Setting the Initialization Macro .

Flexible Key Bindings
Changing a Keybinding
Rebinding Metakeys
Save and Restore Keybindings .

Sending Commands to COHERENT .
Compiling and Debugging Through MicroEMACS .
The MicroEMACS Help Facility

Where To Go From Here
Introduction to ed, Interactive Line Editor .

Why You Need an Editor ..
Learning To Use the Editor

General Topics
ed. Files. and Text
Creating a File
Changing an Existing File .
Working on Lines . .
Error Messages . . .

Basic Editing Techniques
Creating a New File .

CONTENTS

89
89
90
90
91
91
92
92
92
92
93
93
93
94
94
95
95
95
96
97
97
98
99
99
99

100
100
100
100
101
101
102
102
102
103
103
103
104
105
105
106
107
109
109
109
109
llO
110
111
Ill
112
ll2
ll2

Changing a File
Printing Lines
Abbreviating Line Numbers .
How Many Lines?
Removing Lines
Abandoning Changes.
Substituting Text Within a Line
Undoing Substitutions.
Global Substitutions ..
Special Characters . . .
Ranges of Substitution.

Intermediate Editing
Relative Line Numbering.
Changing Lines
Moving Blocks of Text . .
Copying Blocks of Text. .
String Searches
Remembered Search Arguments . .
Uses of Special Characters
Global Commands
Joining Lines
Splitting Lines
Marking Lines
Searching in Reverse Direction .

Expert Editing.
File Processing Commands . . .
Patterns
Matching Many With One Character.
Beginning and Ending of Lines . . .
Replacing Matched Part
Replacing Parts of Matched String .
Listing Funny Lines
Keeping Track of Current Line . . .
When Current Line Is Changed. . .
More About Global Commands ...
Issuing COHERENT Commands Within ed .

For More Information.
Introduction to the sed Stream Editor .

Getting to Know sed . . .
Getting Started . . .
Simple Commands .
Substituting ...
Selecting Lines . .
p: Print Lines . . .
Line Location . . .
Add Lines of Text .
Delete Lines
Change Lines . . .
Include Lines From a File .
Quit Processing
Next Line

Advanced sed Commands . .
WorkArea

The COHERENT System v

113
115
115
116
116
118
118
120
121
121
121
122
122
123
124
125
126
127
128
128
129
130
130
132
132
132
134
135
135
136
136
138
139
139
141
142
142
143
143
143
144
144
146
147
150
151
152
153
153
154
155
156
156

CONTENTS

vi The COHERENT System

Add to Work Area
Print First Line
Save Work Area
Transform Characters
Command Control
{ }: Command Grouping
!: All But
= : Print Line Number
Skipping Commands
t: Test Command

For More Information.
The C Language

Compiling C Programs under COHERENT
Try the Compiler
Phases of Compilation
Renaming Executable Files
Floating-Point Numbers
Compiling Multiple Source Files ... ·
Linking Without Compiling
Compiling Without Linking
Assembly-Language Files
Changing the Size of the Stack . . .
Where To Go From Here

C for Beginners
Programming Languages and C. . .
Assembly and High-Level Languages
So, What Is C?.
Structured Programming
Writing a C Program

A Sample C Programming Session
Designing a Program
The main() Function
Open a File and Show Text
Accepting File Names.
Error Checking
Print a Portion of a File
Checking for the End of File.
Polling the Keyboard
For More Information. . . .

Bibliography.
Introduction to the awk Language.

Usingawk
Program Structure
Records and Fields
Command Line Arguments

Printing with awk
Printing Individual Fields
Changing the Output Field and Record Separators .
Printing Predefined Variables
Redirecting Output
Formatting Output

Piping Output
awk Pattern Scanning

CONTENTS

157
158
159
162
163
163
164
164
164
165
166
167
167
167
168
168
169
169
170
170
170
171
171
171
171
172
172
172
173
174
174
175
176
178
179
182
183
185
187
187
189
189
189
189
191
192
193
193
193
194
194
195
195

Special Patterns: BEGIN and END.
Patterns
Arithmetic Relational Expressions .
Boolean Combinations of Expressions.
Pattern Ranges

Specifying awk Actions
Functions

Assignment of Variables .
Field Variables
String Concatenation.
Arrays

Control Statements ..
if (condition) else
while (condition).
for
break ..
continue
next .. .
exit .. .

For More Information.
Introduction to lex, the Lexical Analyzer

How To Use lex
Translating Strings
Remove Blanks From Input .
Trimming Blanks .

lex Specification Form .
Simple Form
Rules in lex
Statements in lex .
Groups of Statements
Using the Same Action.

Patterns
Simple Patterns
Classes of Characters
Repetition
Choices and Grouping .
Matching Non-Graphic Characters.

More Patterns
Line Context
Context Matching. . .
Macro Abbreviations .
Context: Start Rules .
Separate Contexts . .

More About Writing Actions.
ECHO
Processing Overlapping Strings .
yylex
Header Section . . .
Additional Routines.

Using lex With yacc.
Summary

Introduction to yacc
Examples

The COHERENT System vii

195
196
197
198
198
198
198
200
201
201
201
202
202
203
203
203
203
204
204
204
205
205
205
206
206
206
206
207
208
209
210
210
210
211
212
214
214
215
215
215
217
217
218
220
220
220
221
222
223
223
224
225
225

CONTENTS

viii The COHERENT System

Phrases and Parentheses . . .
Simple Expression Processing

Background
LR Parsing
Input Specification .
Parser Operation .

Form of yacc Programs.
Rules
Definitions .
UserCode .

Rules
General Form of Rules .
Suggested Style

Actions
Basic Action Statements.
Action Values . . .
Structured Values

Handling Ambiguities .
How yacc Reacts .
Additional Control
Precedence.

Error Handling . .
Summary

Helpful Hints
Example
Where to Go From Here

be Desk calculator Language .
Entry and Exit.
Example of Simple Use.

Simple Statements
Numbers with Fractions . . .

The Scale of Numbers .
Addition and Subtraction .
Scale During Multiplication .
Setting the Scale of Results .
Scale for Divisions
Scale From Exponentiation .
What Is the Current Scale? .

The if Statement
Using the if Statement .. .
Comparisons.
Grouped Statements
Many Statements Per Line.

The while Statement
Abbreviations in the while Statement .

The for Statement "
Three Parts of the for Statement
Similarities Between the for and while Statements

Functions in be
Example of Function Use
Functions Using Other Functions
Functions That Call Themselves .
The auto Statement

CONTENTS

225
227
229
229
229
229
230
230
231
231
231
231
232
233
233
233
236
237
238
238
239
240
241
242
243
249
251
251
251
252
255
255
255
256
256
256
257
257
257
257
258
258
259
260
260
261
261
262
263
263
264
264
264

Programs in a File
Using a Program From a File
Using Libraries
The be Library.

Summary
Introduction to the m4 Macro Processor.

Definitions and Syntax.
Defining Macros. . .
Input Control
Output Control .. .
String Manipulation
Numeric Manipulation .

COHERENT System Interface .
Errors

For More Information.
The make Programming Discipline.

How Does make Work?.
Trymake ...

Essential make
The makefile
Building a Simple makefile
Comments and Macros.
Setting the Time

Building a Large Program
Command Line Options . .
Other Command Line Features .

Advanced make
Default Rules
Source File Path.
Double-Colon Target Lines
Alternative Uses.
Special Targets .. .
Errors
Exit Status

Where To Go From Here .
nroff, The Text-Formatting Language.

What is nroff?
nroff Input and Output
Printing nroff Output. .
nroff Limitations
The ms Macro Package.
Using this Tutorial ..

The -ms Macro Package ..
Text and Commands .
Command Names .
Paragraphs
Section Headings . . .
Title Page
Headers and Footers .
Fonts
Special Characters .
Footnotes
Displays and Keeps.

The COHERENT System ix

265
265
266
267
267
269
269
270
272
273
273
274
276
277
278
279
279
280
281
281
282
282
283
283
284
285
285
286
287
287
288
289
289
289
289
291
291
292
292
293
293
293
294
294
296
296
301
302
303
304
305
306
306

CONTENTS

x The COHERENT System

Other Commands
Introducing nroff's Primitives .

Page Format
Breaks
Fill and Adjust Modes
Defining Paragraphs
Centering .. .
Tabs
Page Breaks .

Macros and Traps.
What Is a Macro? .
Introducing Traps.
Headers and Footers .
Macro Arguments . . .
Double vs. Single Backslashes

Designing and Installing Macros .
Strings

Strings Within Strings
Number Registers

Incrementing and Decrementing .
Units of Measurement ..

Conditional Input
Environments and Diversions.
Buffers

Headers and Footers .
More About Fonts.
Diversions
A Footnote Macro .

Command Line Options
For Further Information .

UUCP, Remote Communications Utility
Contents of This Tutorial

An Overview of UUCP ...
The Programs
Directories and Files . . .

Attaching a Modem to Your Computer
Selecting Site and Domain Names .
Installing UUCP With uuinstall.

Setting Up Your Local Site.
Devices
Describing a Remote Site
Day and Time To Call . .
The Chat Script
Granting Permissions . .
Polling a Remote Site Automatically .
Where To Go Next

Setting Up UUCP for Dialout: An Extended Example .
Site and Domain Names
Setting Up the Serial Port/Communications Device.
Configuring L.sys
The Chat Script .

Configuring the Permissions File
Requesting Files From a Remote UUCP System .

CONTENTS

308
308
308
309
310
312
313
313
313
314
314
316
317
318
319
320
323
324
325
327
329
331
335
338
339
340
341
344
344
346
347
347
348
348
349
350
352
352
353
353
354
355
356
358
360
361
361
361
361
363
365
367
368

The COHERENT System xi

Sending Files to a Remote UUCP System
Setting Up UUCP for Dial-in: An Extended Example

Configuring /etc/ttys
Setting Up a Modem for Logins .
Answering the Phone
Setting Echo and Result Codes .
Modem Reinitialization
Modem Registers
Enabling a Serial Device for Remote Access

Direct Connections
Giving a Remote UUCP Site a Login
Configuring L.sys for Remote UUCP Access.
Configuring Permissions for Remote UUCP Access
Configuring a Spooling Directory for Remote UUCP Access
One Last, Loose Thread

Other UUCP Configuration Considerations .
Debugging UUCP Calls

What ls the Problem?
UUCP Reports: Cannot Get Own Name .
The Modem Isn't Dialing.
The Modem Dials, Carrier is Established, Nothing Else Happens .
UULOG Shows Incorrect Response... .
Files Refuse to be Sent.
Non-COHERENT UUCP Site Problems.

UUCP Administration .
Where to Go From Here

The Lexicon.
example.
... .
.. .
#define
#elif ..
#else .
#endif.
#if ...
#ifdef .
#ifndef
#include
#line ...
#pragma
#undef .

DATE
-FILE
-LINE-
- -

STDC .
-TIME-

exit() .
abort().
abs() .. .
ac
access().
access.h
acct() ..

. Give an example of Mark Williams Lexicon format.

. String-ize operator

. Token-pasting operator

. Define an identifier as a macro .

. Include code conditionally. . . .

. Include code conditionally. . . .

. End conditional inclusion of code

. Include code conditionally.

. Include code conditionally. . . .

. Include code conditionally. . . .

. Read another file and include it

. Reset line number

. Perform implementation-specific preprocessing .

. U ndefine a macro . .

. Date of translation

. Source file name

. Current line within a source file

. Mark a conforming translator.

. Time source file is translated .

. Terminate a program

. End program immediately. . .

. Return the absolute value of an integer .

. Summarize login accounting information.

. Check if a file can be accessed in a given mode

. Check accessibility

. Enable/disable process accounting

368
369
369
370
371
371
372
372
372
373
373
374
374
374
374
375
375
375
375
375
376
376
376
376
377
377
379
381
382
383
384
385
385
386
386
386
387
387
387
388
389
389
390
390
390
391
391
392
392
393
394
395
395

CONTENTS

xii The COHERENT System

acct.h.
accton.
acos() .
action.h.
address.
ahal54x
alarm() .
alarrn2()
alias ...
aliases .
alignment
alloc.h.
alloca()
ar ...
ar.h ..
arena.
argc ..
argv ..
ARHEAD.
array ..
ARTAlL.
as 286
as 386
ASCII .
ascii.h.
asctime() .
asfix ...
AS HEAD
asin() ..
ASKCC.
assert() .
assert.h.
ASTAIL.
asy
at .. .
at .. .
atan() .
atan2()
ATclock.
atof()
atoi() ..
atol() ..
atrun
auto.
awk.
bad.
bad scan
banner .
base name
be ..
bind .. .
bit
bit-fields

CONTENTS

. Format for process-accountingfile

. Enable/disable process accounting .. .

. Calculate inverse cosine

. Describe parsing action and goto tables.

. Adaptec AHA-154x device driver .

. Set a timer . .

. Set an alarm.

. Set an alias

. File of users' aliases

. Define the allocator.

. Dynamically allocate space on the stack

. The librarian I archiver .

. Format for archive files

. Argument passed to main() .

. Argument passed to main() .

. Append options to beginning of ar command line .

. Append options to end of ar command line .

. i80286 assembler.

. i80386 assembler

. Define non-printable ASCII characters

. Convert time structure to ASCII string

. Convert assembly-language programs into as 80386 format.

. Append options to beginning of as command line .

. Calculate inverse sine

. Force prompting for CC names

. Check assertion at run time

. Define assert()

. Append options to end of as command line.

. Device driver for asynchronous serial lines .

. Drivers for hard-disk partitions ..

. Execute commands at given time.

. Calculate inverse tangent

. Calculate inverse tangent

. Read or set the AT realtime clock.

. Convert ASCII strings to floating point

. Convert ASCII strings to integers. . . .

. Convert ASCII strings to long integers .

. Execute commands at a preset time .

. Note an automatic variable

. Pattern-scanning language

. Maintain list of bad blocks

. Build bad block list.

. Print large letters

. Strip path information from a file name.

. Interactive calculator with arbitrary precision .

. Bind key sequence to editing command .

396
397
397
398
398
399
401
401
402
402
404
404
404
405
406
407
407
407
408
408
409
410
425
448
450
451
451
452
452
452
452
453
453
453
457
459
460
461
461
461
462
462
463
463
463
465
465
466
466
467
469
470
470

bit map.
block ..
boot ...
boot.tha.
booting.
boottime
brc ...
break.
break.
brk() ..
bsearch().
buf.h .
buffer.
build .
builtin
byte ..
byte ordering.
c
cabs() ..
cal. ...
calendar
calling conventions .
calloc() ...
candaddr() .
candev().
canino() ..
canint() ..
canlong() .
canon.h ..
cans ho rt()
cansize() .
cantime().
canvaddr()
captoinfo .
case.
case.
cast.
cat ..
caveat utilitor
cc .
ccO
eel
cc2
cc3
CCHEAD.
CCTAIL.
cd ..
cdmp
ceil().
cgrep
char.
chars.h.
chase ..

The COHERENT System xiii

. Boot block for hard-disk partition I nine-sector diskette

. Boot block for floppy disk

. How booting works

. File that holds time system was last booted ...

. Perform maintenance chores, single-user mode .

. Exit from shell construct

. Exit from loop or switch statement.

. Change size of data area.

. Search an array .

. Buffer header

. Install COHERENT onto a hard disk.

. Execute a command as a built-in command .

. Machine-dependent ordering of bytes .

. Print multi-column output

. Complex absolute value function.

. Print a calendar .

. Reminder service

. Allocate dynamic memory .

. Convert a daddr t to canonical format.

. Convert a dev t to canonical format .

. Convert an ino t to canonical format

. Convert an int to canonical format.

. Convert a long to canonical format. .

. Portable layout of binary data.

. Convert a short to canonical format .

. Convert an fsize t to canonical format.

. Convert a time t to canonical format .

. Convert a vaddr t to canonical format.

. Convert termcap data to terminfo form .

. Execute commands conditionally according to pattern .

. Introduce entry in switch statement.

. Concatenate I print files

. C compiler .

. Append options to beginning of cc command line .

. Append options to end of cc command line .

. Change directory

. Dump COFF files into a readable form

. Set numeric ceiling

. Pattern search for C source programs .

. Data type

. Character definitions

. Highly amusing video game .

471
471
471
472
472
477
478
478
478
478
479
481
481
482
482
482
482
484
484
485
485
486
492
493
493
493
494
494
494
496
496
497
497
497
497
498
498
499
499
499
504
505
505
505
505
506
506
506
507
508
509
509
509

CONTENTS

xiv The COHERENT System

chdir() ..
check ..
checklist
chgrp ..
chmod .
chmod().
chmog ..
chown ..
chown().
chroot ..
chroot().
ckermit.
C keywords ..
C language.
clear
clearerr() .
close() ...
closedir() .
clri. .
cmp
coff.h .. .
COHERENT
col ..
com.
coml
com2
com3
com4
comm.
commands.
compress.
con.h ..
console .
const ..
const.h .
continue
continue
conv.
core ..
cos() ..
cosh().
cp ..
cpdir
cpio.
cpp .
C preprocessor
creat() ..
cron ...
crontab.
crypt .
crypt().
ct ..
ctags .

CONTENTS

. Change working directory

. Check file system

. File systems to check when booting COHERENT

. Change the group owner of a file

. Change the modes of a file

. Change file-protection modes

. Change mode, owner, and group simultaneously .

. Change the owner of files .

. Change ownership of a file

. Change root directory

. Change the root directory

. Interactive inter-system communication and file transfer

. Clear the screen. . . .

. Present stream status

. Close a file

. Close a directory stream .

. Clear i-node

. Compare bytes of two files.

. Format for COHERENT 386 objects

. Principles of the COHERENT System

. Remove reverse and half- line motions .

. Device drivers for asynchronous serial lines

. Device driver for asynchronous serial line COM l

. Device driver for asynchronous serial line COM2

. Device driver for asynchronous serial line COM3

. Device driver for asynchronous serial line COM4

. Print common lines .

. Compress a file

. Configure device drivers .

. Console device driver. . .

. Qualify an identifier as not modifiable.

. Declare machine-dependent constants

. Terminate current iteration of shell construct .

. Force next iteration of a loop

. Numeric base converter

. Core dump file format

. Calculate cosine.

. Calculate hyperbolic cosine .

. Copy a file

. Copy directory hierarchy.

. Archiving/backup utility.

. C preprocessor

. Create/truncate a file

. Execute commands periodically

. Copy a command file into the crontab directory .

. Encrypt/ decrypt text

. Encryption using rotor algorithm.

. Controlling terminal driver

. Generate tags and refs files for vi editor.

510
510
511
511
511
513
513
514
514
514
515
515
520
520
525
525
525
526
526
526
527
528
530
531
533
533
534
535
535
535
542
543
543
546
547
547
547
547
548
549
549
550
551
551
554
554
557
557
559
561
561
562
562

ctime()
ctype ..
ctype.h .
curses ..
curses.h
cut.
CWD •.
daemon.
data formats.
data types
date.
db .. .
de .. .
dcheck
dd ...
decvax d()
decvax-f().
default- ..
defined ..
definitions
deftty.h.
deroff .. .
detab .. .
device drivers
df .
diff.
diff3.
dir.h.
directory
dirent.h.
dirs ..
disable
div() ..
do.
domain.
dos ..
doscat.
doscp ..
doscpdir
dosdel. .
dosdir ..
dosformat
doslabel.
dosls ...
dosmkdir.
dosrm ..
dosrmdir.
double
drvld
drvld.all.
du ...
dump ..
dumpdate

The COHERENT System xv

. Convert system time to an ASCII string .

. Header file for data tests

. Library of screen-handling functions ..

. Define functions and macros in curses library .

. Select portions of each line of its input

. Current working directory.

. Print/set the date and time .

. Assembler-level symbolic debugger

. Desk calculator

. Check directory consistency.

. File conversion

. Convert a double from IEEE to DECVAX format.

. Convert a float from IEEE to DECVAX format

. Default label in switch statement . .

. Perform an action if a macro is defined .

. Define default tty settings

. Remove text formatting control information

. Replace tab characters with spaces

. Measure free space on disk

. Summarize differences between two files .

. Summarize differences among three files .

. Directory format.

. Define dirent.

. Print the contents of the directory stack

. Disable a port

. Perform integer division

. Introduce a loop

. Set your system's mail domain

. Manipulate files on MS-DOS file systems.

. Concatenate a file on an MS-DOS file system

. Copy files to/from an MS-DOS file system ..

. Copy a directory to/from an MS-DOS file system .

. Delete a file from an MS-DOS file system .

. List contents of an MS-DOS directory.

. Format a floppy disk

. Label an MS-DOS floppy disk

. List files on an MS-DOS file system

. Create a directory in an MS-DOS file system.

. Remove a file from an MS-DOS file system ..

. Remove a directory from an MS-DOS file system

. Data type

. Load a loadable driver into memory .

. Load loadable drivers at boot time .

. Summarize disk usage ...

. File-system backup utility.

. Print dump dates

563
564
565
566
578
578
579
580
580
581
582
582
593
595
595
596
597
597
597
598
598
598
599
599
600
601
602
603
603
604
604
604
604
605
605
606
608
608
611
612
612
613
613
614
614
614
615
615
615
616
617
617
618

CONTENTS

xvi The COHERENT System

dumpdir ..
dumptape.h
dup() ..
dup2() ..
ebcdic.h
echo .. .
ed
EDITOR.
egrep .
else ..
elvis ..
enable.
endgrent()
endpwent() .
enum.
ENV .. .
env .. .
environ.
environmental variables .
envp ..
EOF ..
epson.
errno .
errno.h .
eval.
ex ...
exec ..
execl().
execle()
execlp().
executable file .
execution.
execv() ..
execve().
execvp().
exit .
exit() ..
exp() ..
export.
expr ..
extern.
fabs() .
factor .
false ..
fblk.h.
fc ...
FCEDIT.
fclose()
fcntl() .
fcntl.h.
fd ...
fd.h ..
fdformat

CONTENTS

. Print the directory of a dump

. Define data structures used on dump tapes

. Duplicate a file descriptor

. Duplicate a file descriptor

. Define constants for non-printable EBCDIC characters

. Repeat/expand an argument .

. Interactive line editor.

. Name editor to use by default.

. Extended pattern search. . . .

. Introduce a conditional statement .

. Clone of Berkeley-standard screen editor .

. Enable a port

. Close group file

. Close password file

. Declare a type and identifiers .

. File read to set environment. .

. Execute a command in an environment.

. Process environment

. Argument passed to main() .

. Indicate end of a file

. Print files on Epson printer .

. External integer for return of error status

. Error numbers used by errno() .

. Evaluate arguments

. Berkeley-style line editor ..

. Execute command directly

. Execute a load module .

. Execute a load module .

. Execute a load module .

. Execute a load module .

. Execute a load module .

. Execute a load module .

. Exit from a shell.

. Terminate a program gracefully.

. Compute exponent

. Add a shell variable to the environment.

. Compute a command-line expression .

. Declare storage class . . .

. Compute absolute value ..

. Factor a number

. Unconditional failure

. Define the disk-free block .

. Edit and re-execute one or more previous commands

. Editor used by fc command .

. Close a stream.

. Control open files

. Manifest constants for file-handling functions .

. Floppy disk driver.

. Declare file-descriptor structure

. Low-level format a floppy disk .

619
619
619
620
621
621
622
626
626
628
628
635
636
636
637
637
637
638
638
639
639
640
641
641
643
644
645
645
645
645
646
646
647
647
648
649
649
649
650
651
652
654
654
654
654
655
655
655
656
656
656
657
657

fdioctl.h.
fdisk ...
fdisk.h .
fdopen().
feof() ..
ferror()
fflush()
fgetc().
fgets() .
fgetw().
field .
file ..
file ..
FILE.
file descriptor
file formats .
fileno()
filsys.h .
filter .. .
find .. .
fixstack.
fixterm()
float ...
floor() ..
floppy disks
fnkey .
fopen()
for ..
for ...
fork() .
fortune
fperr.h
fprintf() .
fputc().
fputs().
fputw()
fread().
free() ..
freopen()
frexp().
from ..
fscanf()
fsck ..
fseek().
fstat() .
fstatfs() .
ftell() ...
ftime() ..
function
fwrite()
fwtable .
gcd() ...
general functions .

The COHERENT System xvii

. Control floppy-disk I/O

. Hard-disk partitioning utility

. Fixed-disk constants and structures.

. Open a stream for standard I/O

. Discover stream status

. Discover stream status.

. Flush output stream's buffer .

. Read character from stream.

. Read line from stream . .

. Read integer from stream

. Guess a file's type

. Descriptor for a file stream

. Get file descriptor.

. Structures and constants for super block.

. Search for files satisfying a pattern .

. Change stack allocation

. Set the terminal into program mode .

. Data type

. Set a numeric floor

. Set/ print function keys for the console .

. Open a stream for standard I/O ...

. Execute commands for tokens in list

. Control a loop

. Create a new process.

. Print randomly selected, hopefully humorous, text .

. Constants used with floating-point exception codes.

. Print formatted output into file stream

. Write character into file stream.

. Write string into file stream

. Write an integer into a stream

. Read data from file stream.

. Return dynamic memory to free memory pool

. Open file stream for standard I/0

. Separate fraction and exponent.

. Generate list of numbers. for use in loop .

. Format input from a file stream

. Check and repair file systems interactively .

. Seek on file stream

. Find file attributes

. Get information about a file system ..

. Return current position of file pointer .

. Get the current time from the operating system .

. Write into file stream

. Build font-width table

. Set variable to greatest common divisor.

658
659
660
660
661
661
663
664
665
666
666
666
667
667
668
668
669
669
669
670
671
672
672
676
676
679
679
681
681
682
682
683
683
683
684
684
685
685
685
686
687
688
689
690
691
693
693
694
694
694
695
696
696

CONTENTS

xviii The COHERENT System

getc() ...
getchar() .
getdents().
getegid().
getenV() ..
geteuid() .
getgid() ..
getgrent() .
getgrgid() .
getgrnam() .
getlogin() .
getopt() .
getopts .
getpass()
getpgrp()
getpid() .
getpw() .
getpwent()
getpwnam().
getpwuid()
gets() ..
getty ...
getuid().
getw() ..
getwd() .
GMT ...
gm time()
goto ..
grep ..
group.
grp.h .
gtty() .
guess .
hard disk.
hash
hdioctl.h .
head
header files.
help ..
HOME.
hp ...
hpd ..
hpr ..
hpskip
hs ...
hypot()
i-node.
icheck.
ieee d() .
ieee -f()
if .. -
if. .
IFS .

CONTENTS

. Read character from file stream . . .

. Read character from standard input. . "

. Read directory entries

. Get effective group identifier

. Read environmental variable

. Get effective user identifier .

. Get real group identifier ...

. Get group file information . .

. Get group file information. by group id

. Get group file information, by group name .

. Get login name

. Get option letter from argv . .

. Parse command-line options .

. Get password with prompting.

. Get process group number . .

. Get process identifier.

. Search password file

. Get password file information.

. Get password file information, by name.

. Get password file information, by id .

. Read string from standard input .

. Terminal initialization

. Get real user identifier

. Read word from file stream

. Get current working directory name .

. Convert system time to calendar structure .

. Unconditionally jump within a function.

. Pattern search.

. Group file format

. Declare group structure

. Device-dependent control

. Extraordinarily amusing guessing game

. Add a command to the shell's hash table.

. Control hard-disk 1/0

. Print the beginning of a file

. Print concise description of command.

. User's home directory

. Prepare files for Hewlett-Packard LaserJet printer.

. Hewlett-Packard LaserJet printer spooler daemon.

. Send file to Hewlett-Packard LaserJet printer spooler.

. Abort/restart current listing on Hewlett-Packard LaserJet.

. Device driver for polled serial ports . .

. Compute hypotenuse of right triangle

. COHERENT system file identifier.

. i-node consistency check

. Convert a double from DECVAX to IEEE format.

. Convert a float from DECVAX to IEEE format

. Execute a command conditionally . . .

. Introduce a conditional statement . . .

. Characters recognized as white space .

698
699
699
700
700
701
701
702
702
702
703
703
704
705
705
705
705
706
707
708
708
709
710
711
711
711
712
712
713
714
715
715
715
717
720
720
720
721
723
723
723
724
724
725
725
727
728
728
729
729
729
730
730

index() .
infocmp.
init ...
initialization .
ino.h ..
inode.h.
install ..
int
interrupt .
io.h .
ioctl() .. .
ipc.h
isalnum().
isalpha()
isascii() .
isatty() .
iscntrl().
isdigit() .
islower().
ispos() ..
isprint().
ispunct()
isspace()
isupper()
itom() .
jO().
j l().
jn().
jobs
join
kermit.
keyboard tables .
kill ..
kill()
ksh
KSH VERSION
l .. -: ...
L-devices.
l.out.h.
L.sys .. .
l3tol() .. .
LASTERROR.
le .. .
ld
ldexp() .. .
LDHEAD.
ldiv() ...
LDTAIL.
let
lex
Lexicon.
If. ...
libmisc .

The COHERENT System xix

. Find a character in a string .

. De-compile a terminfo file .

. System initialization

. Constants and structures for disk i-nodes

. Constants and structures for memory-resident i-nodes

. Install a software update onto COHERENT.

. Data type

. Constants and structures used by 1/0

. Device-dependent control

. Definitions for process communications

. Check if a character is a number or letter

. Check if a character is a letter

. Check if a character is an ASCII character .

. Check if a device is a terminal

. Check if a character is a control character .

. Check if a character is a numeral

. Check if a character is a lower-case letter.

. Return if variable is positive or negative ..

. Check if a character is printable

. Check if a character is a punctuation mark

. Check if a character prints white space ...

. Check if a character is an upper-case letter

. Create a multiple-precision integer.

. Compute Bessel function

. Compute Bessel function . .

. Compute Bessel function . .

. Print information about jobs

. Join two data bases

. Inter-system communication and file transfer .

. How to write a keyboard table

. Signal a process. . . .

. Kill a system process

. The Korn shell.

. List current version of Korn shell.

. List directory's contents in long format .

. Describe devices used by UUCP

. Format for COHERENT 286 objects .. .

. Format for UUCP site descriptions

. Convert file system block number to long integer .

. Program that last generated an error

. List directory's contents in columnar format .

. Link relocatable object modules

. Combine fraction and exponent

. Append options to beginning of Id command line

. Perform long integer division

. Append options to end of Id command line .

. Evaluate an expression

. Lexical analyzer generator.

. List directory's contents in columnar format .

. Library of miscellaneous functions.

730
731
731
732
735
735
735
738
738
738
738
739
739
739
740
740
740
740
741
741
741
741
742
742
742
743
744
744
744
745
746
749
753
754
754
773
774
774
775
776
778
779
779
780
783
783
783
784
784
784
787
788
788

CONTENTS

xx The COHERENT System

LIBPATH.
libraries.
limits.h.
lines ...
link() ..
linker-defined symbols .
In
localtime()
logo ..
IoglO()
login ..
Iogmsg
long ..
longjmp().
look.
Ip
lpd
lpioctl.h.
lpr ...
lpskip.
Ir
ls .. .
lseek().
ltol3() .
lvalue.
Ix .. .
m4 .. .
machine.h
macro.
madd()
mail ..
mail ..
main().
major number .
make ..
malloc().
malloc.h
man .. .
man .. .
manifest constant.
math.h
mathematics library
mboot ..
mcmp().
mcopy().
mdata.h
mdiv().
me
mem .. .
memccpy().
memchr().
memcmp()
memcpy().

CONTENTS

. Directories that hold compiler phases and libraries .

. Define numerical limits . . .

. Highly amusing board game.

. Create a link.

. Create a link to a file

. Convert system time to calendar structure .

. Compute natural logarithm

. Compute common logarithm ...

. Log in or change user name. . . .

. Hold COHERENT Login Message .

. Data type

. Return from a non-local goto .. .

. Find matching lines in a sorted file

. Line printer driver

. Line printer spooler daemon

. Definitions for line-printer 1/0 control

. Send to line printer spooler

. Terminate/restart current line printer listing

. List subdirectories' contents in columnar format

. List directory's contents

. Set read/write position

. Convert long integer to file system block number .

. List directory's contents in columnar format .

. Macro processor.

. Machine-dependent definitions .

. Add multiple-precision integers.

. Electronic mail system

. Computer mail

. Introduce program's main function

. Device numbering

. Program building discipline

. Allocate dynamic memory

. Definitions for memory-allocation functions

. Manual macro package

. Print Lexicon entries

. Declare mathematics functions.

. Master boot block for hard disk

. Compare multiple-precision integers

. Copy a multiple-precision integer ..

. Define machine-specific magic numbers

. Divide multiple-precision integers

. MicroEMACS screen editor

. Physical memory file

. Copy a region of memory up to a set character

. Search a region of memory for a character .

. Compare two regions

. Copy one region of memory into another .

795
795
796
797
798
798
799
799
801
801
801
802
802
803
803
804
805
805
805
806
806
806
808
809
809
810
811
813
813
814
814
815
817
818
818
821
823
823
824
825
825
825
826
826
827
827
827
827
834
835
835
837
837

memmove()
memok()
memory allocation
memset().
mesg
min()
minit()
minor number.
mintfr().
mitom().
mkdir ..
mkdir() .
mkfnames
mkfs ...
mknod ..
mknod() ..
mktemp().
mnegO ..
mnttab.h.
modem ..
modemcap.
modem control
modeminit.
modf() ..
modulus
mon.h.
moo.
more .
motd .
mount().
mount.all.
mount ..
mount.h
mout() ..
mprec.h.
ms
MS-DOS
msg ..
msg ...
msg.h ..
msgctl().
msgget().
msgrcv()
msgs ..
msgsnd() .
msig.h
msqrt()
msub()
mtab.h
mtioctl.h .
mtoi() ..
mtos() ..
mtype().

The COHERENT System xxi

. Copy region of memory into area it overlaps

. Test if the arena is corrupted .

. Fill an area with a character

. Permit/deny messages from other users

. Read multiple-precision integer from stdin.

. Condition global or auto multiple-precision integer .

. Device numbering

. Free a multiple-precision integer

. Reinitialize a multiple-precision integer.

. Create a directory.

. Create a directory.

. Generate data base of user names .

. Make a new file system.

. Make a special file or named pipe

. Create a special file.

. Generate a temporary file name .

. Negate multiple-precision integer.

. Structure for mount table ...

. Modem-description language .

. Initialize a modem

. Separate integral part and fraction.

. Read profile output files

. Greatly amusing numeric guessing game.

. Display text one page at a time . . .

. File that holds message of the day .

. Mount a file system

. Mount file systems at boot time

. Mount a file system

. Define the mount table.

. Write multiple-precision integer to stdout

. Multiple-precision arithmetic .

. Manuscript macro package

. That other operating system

. Message device driver

. Send a brief message to other users .

. Definitions for message facility .

. Message control operations

. Get message queue

. Receive a message

. Read messages intended for all COHERENT users

. Send a message .

. Machine-dependent signals

. Compute square root of multiple-precision integer

. Subtract multiple-precision integers

. Currently mounted file systems

. Magnetic-tape 1/0 control

. Convert multiple-precision integer to integer.

. Convert multiple-precision integer to string

. Return symbolic machine type

838
838
838
839
840
840
840
841
841
841
841
842
842
843
845
846
846
846
847
847
851
853
853
854
854
855
855
856
858
858
859
859
860
860
860
860
862
867
868
868
868
870
871
872
873
874
875
875
875
876
876
876
876

CONTENTS

xxii The COHERENT System

mtype.h List processor code numbers
mult(} Multiply multiple-precision integers .
multiple-precision mathematics
mv. Rename files or directories . . .
mvdir . . . Rename a directory.
mvfree(). . Free multiple-precision integer .
n.out.h . . Define n.out file structure
named pipe
ncheck.
newgrp.
newusr.
nkb ..
nlist() ..
nm
notmem().
nptx.
nroff.
NUL.
NULL
null .
nybble
object format.
od
open() ..
opendir(}
operator
PAGER.
param.h
passwd.
passwd.
paste .
patch .
path(} .
PATH.
path.h.
paths .
pattern .
pause() .
pax ...
pclose().
Permissions
perror().
phone.
pipe ...
pipe() ..
pnmatch()
pointer
poll().
poll.h .
popd ..
popen().
port ...
portability

CONTENTS

. Print file names corresponding to i-node

. Change to a new group

. Add new user to COHERENT system

. Device driver for console keyboard .

. Symbol table lookup

. Print a program's symbol table .. .

. Check if memory is allocated

. Generate permutations of users' full names

. Text-formatting language

. The 'bit bucket'

. Print an octal dump of a file.

. Open a file

. Open a directory stream .

. Specify Output Filter ...

. Define machine-specific parameters .

. Set/ change login password .

. Password file format

. Merge lines of files

. Modify portions of an executable .

. Path name for a file.

. Directories that hold executable files

. Define/declare constants and functions used with path .

. Routing data base for mail .

. Wait for signal

. Portable archive interchange

. Close a pipe

. Format of UUCP permissions file .

. System call error messages

. Print numbers and addresses from phone directory.

. Open a pipe

. Match string pattern .

. Query several 1/0 devices.

. Define structures I constants used with polling devices .

. Pop an item from the directory stack

. Open a pipe

877
877
877
880
881
881
882
882
883
883
883
884
887
888
890
891
891
899
900
900
900
901
901
901
903
904
907
907
907
908
908
910
911
912
912
912
913
914
914
914
915
917
917
917
918
920
920
923
924
924
925
925
925

pow()
pow()
pr ..
prep.
print.
printer
printf()
proc.h.
process.
prof ..
profile.
.profile
prps.
ps.
PSI .
PS2 .
ptrace().
pty .. .
pun .. .
pushd ..
putc() ..
putchar().
putp().
puts() .
putw().
pwd ..
pwd.h.
qfind .
qsort().
quot ..
ram ..
ramdisk.
rand() ..
random access.
ranlib.
re ...
read ..
read() .
readdir()
read only
read only
read-only memory.
realloc().
reboot. .
ref
register.
register variable .
rename ...
resetterm() .
restor.
return ..
rev
rewind().

The COHERENT System xxiii

. Raise multiple-precision integer to power.

. Compute a power of a number

. Paginate and print files

. Produce a word list

. Echo text onto the standard output .

. Print formatted text

. Define structures I constants used with processes.

. Print execution profile of a C program

. Set user's environment at login.

. Set user's personal environment at login

. Prepare files for Postscript-compatible printer .

. Print process status

. User's default prompt

. Prompt when user continues command onto additional lines .

. Trace process execution

. Device driver for pseudoterminals . . .

. Push an item onto the directory stack.

. Write character into stream

. Write a character onto the standard output

. Write a string into the standard window

. Write string onto standard output

. Write word into stream.

. Print the name of the current directory .

. Declare password structure

. Quickly find all files with a given name .

. Sort arrays in memory

. Summarize file-system usage

. Driver for manipulating RAM

. Script to create a RAM-disk

. Generate pseudo-random numbers

. Create index for object library

. Perform standard maintenance chores

. Assign values to shell variables. . .

. Read from a file

. Read a directory stream

. Mark a shell variable as read only .

. Storage class

. Reallocate dynamic memory. . .

. Reboot the COHERENT system.

. Display a C function header.

. Storage class

. How to rename a file

. Reset the terminal to its previous settings

. Restore file system

. Return a value and control to calling function .

. Print text backwards .

. Reset file pointer

926
926
926
927
928
928
931
933
933
933
934
934
935
937
939
939
939
941
942
942
943
943
944
944
944
945
945
946
946
947
949
950
951
951
952
952
952
953
954
954
954
955
955
955
955
956
956
956
957
957
959
960
960

CONTENTS

xxiv The COHERENT System

rewinddir() .
rindex().
rm ...
rmail .
rmdir .
rmdir()
root ..
rpow().
RS-232.
rubik .
rvalue.
sa ...
sbrk().
scanf().
scat ..
sched.h.
SCSI. ..
sdiv() ..
SECONDS
security.
sed ...
seekdir()
seg.h ..
sem ...
sem.h ..
semctl().
semget().
semop().
set
setbuf().
setgid() .
setgrent().
setjmp().
setjmp.h .
setpgrp() .
setpwent()
settz() ...
setuid() ..
setupterm().
sgtty ..
sgtty.h ..
sh
SHELL ..
shellsort().
shift ..
shm ...
shm.h ..
shmctl().
shmget()
short ..
shutdown
signal() .
signal.h ..

CONTENTS

. Rewind a directory stream. .

. Find a character in a string .

. Remove files

. Receive UUCP mail .

. Remove directories .

. Remove a directory .

. Raise multiple-precision integer to power.

. COM port wiring

. Play Rubik's cube

. Print a summary of process accounting.

. Increase a program's data space

. Accept and format input

. Print text files one screenful at a time . .

. Define constants used with scheduling .

. SCSI device drivers

. Divide multiple-precision integers

. Number of seconds since current shell started.

. Stream editor

. Reset the position within a directory stream .

. Definitions used with segmentation . .

. Semaphore device driver.

. Definitions used by semaphore facility

. Control semaphore operations

. Get a set of semaphores

. Perform semaphore operations

. Set shell option flags and positional parameters.

. Set alternative stream buffers.

. Set group id and user id

. Rewind group file

. Perform non-local goto

. Define setjmp() and long;mp() .

. Set process group number.

. Rewind password file .

. Set local time zone .

. Set user id

. Initialize a terminal. .

. General terminal interface.

. Definitions used to control terminal 1/0

. The Bourne shell

. Name the default shell

. Sort arrays in memory

. Shift positional parameters .

. Shared memory device driver .

. Definitions used with shared memory .

. Control shared-memory operations

. Get shared-memory segment

. Data type

. Shut down the COHERENT system

. Specify disposition of a signal.

. Declare signals

960
961
961
962
963
963
964
964
964
965
966
967
968
968
970
972
972
972
973
973
974
976
977
977
978
978
980
981
983
984
985
985
985
986
986
987
987
987
988
988
993
993

1003
1003
1003
1004
1005
1005
1006
1008
1008
1008
1011

signame
sin() .
sinh() .
size ..
sizeof .
sleep .
sleep().
sload().
small .
smult()
sort .
spell ..
split ..
spow().
sprintf().
sqrt() ..
srand() .
srcpath.
SS ••••

sscanf().
stack ..
standard error.
standard input
standard output.
stat() .
stat.h .
statfs()
static .
stdarg.h.
stddef.h.
stderr.
stdin .
STDIO.
stdio.h
stdlib.h.
stdout ..
sticky bit.
stime() ..
storage class .
strcat() .
strchr() .
strcmp().
strcoll() .
strcpy() .
strcspn()
stream .
stream.h
strerror()
string.h ..
string functions .
strings
strip ..
strlen()

The COHERENT System xxv

. Array of names of signals

. Calculate sine

. Calculate hyperbolic sine

. Print size of an object file

. Return size of a data element .

. Stop executing for a specified time.

. Suspend execution for interval .

. Load device driver.

. Send UUCP mail

. Multiply multiple-precision integers .

. Sort lines of text

. Find spelling errors

. Split a text file into smaller files .. .

. Raise multiple-precision integer to power.

. Format output.

. Compute square root

. Seed random number generator

. Find source files

. Future Domain/Seagate SCSI device driver

. Format a string .

. Find file attributes

. Definitions and declarations used to obtain file status .

. Get information about a file system

. Declare storage class

. Header for variable numbers of arguments .

. Header for standard definitions.

. Declarations and definitions for 1/0.

. Declare/define general functions.

1011
1011
lOll
1012
1012
1013
1013
1014
1014
1018
1018
1019
1020
1021
1021
1021
1022
1022
1022
1024
1025
1025
1025
1026
1026
1028
1028
1029
1029
1029
1030
1030
1030
1031
1031
1032
1032

. Set the time 1032

. 1033

. Concatenate strings 1033

. Find a character in a string. 1033

. Compare two strings 1034

. Compare two strings. using locale-specific information. 1034

. Copy one string into another 1034

. Return length a string excludes characters in another . 1035

. 1035

. Definitions for message facility 1035

. Translate an error number into a string. 1035

. Declarations for string library. 1036

. 1036

. Print all character strings from a file. . . 1038

. Strip debug. relocation, and symbol tables from executable file 1039

. Measure the length of a string 1039

CONTENTS

xxvi The COHERENT System

strncat() .
strncmp().
strncpy()
strpbrk()
strrchr().
strspn().
strstr()
strtod()
strtok()
strtol().
strtoul().
struct ..
structure.
structure assignment.
strxfrm()
stty().
stty ...
SU ••••

suload().
sum ...
superuser
swab().
switch.
sync ..
sync() .
system().
system calls
system maintenance .
tail. ..
tan() ..
tanh().
tape.
tar ...
tboot .
technical information.
tee
telldir() .. .
tempnam().
TERM ..
term ...
termcap.
terminal
terminfo
termio ..
termio.h
test ...
tgetent().
tgetflag()
tgetnum().
tgetstr().
tgoto().
tic ..
tick() ..

CONTENTS

. Append one string onto another

. Compare two strings

. Copy one string into another

. Find first occurrence of a character from another string .

. Search for rightmost occurrence of a character in a string.

. Return length a string includes characters in another .

. Find one string within another

. Convert string to floating-point number.

. Break a string into tokens

. Convert string to long integer

. Convert string to unsigned long integer .

. Data type

. Transform a string .

. Set terminal modes .

. Set/print terminal modes .

. Substitute user id, become superuser.

. Unload device driver ..

. Print checksum of a file

. Swap a pair of bytes ..

. Test a variable against a table

. Flush system buffers

. Flush system buffers

. Pass a command to the shell for execution .

. COHERENT system calls.

. Print the end of a file . . .

. Calculate tangent

. Calculate hyperbolic cosine .

. Magnetic tape devices

. V7 tape archive manager . .

. Describe the tertiary bootstrap .

. Branch pipe output.

. Return the current position within a directory stream

. Generate a unique name for a temporary file.

. Name the default terminal type.

. Format of compiled terminfo file

. Terminal-description language .

. terminal description language .

. General terminal interface. . . .

. Definitions used with terminal input and output

. Evaluate conditional expression

. Read termcap entry

. Get termcap Boolean entry . .

. Get termcap numeric feature .

. Get termcap string entry

. Read/interpret termcap cursor-addressing string.

. Compile a terminfo description .

. Get time , .

1039
1040
1040
1042
1042
1042
1043
1043
1044
1046
1047
1049
1050
1050
1050
1051
1052
1054
1054
1054
1055
1055
1055
1056
1057
1057
1057
1059
1060
1060
1061
1061
1062
1064
1065
1065
1066
1066
1067
1067
1068
1078
1080
1088
1093
1094
1095
1096
1096
1096
1097
1097
1098

time.
time.
time()
time.h.
timeb.h.
timef.h .
timeout.h.
times ..
times.h ..
times() ..
TIMEZONE.
TMPDIR..
tmpnam().
tolower() .
touch ...
toupper().
tparm().
tputs().
tr ..
trap.
troff.
true.
tsort.
ttt ..
tty ..
tty.h.
ttyname().
ttys ...
ttyslot() ..
ttystat. ..
type checking
typedef
type promotion
types.h .
typeset
typo ...
umask .
umask().
umount.
umount().
unalias ..
uname() ..
uncompress .
ungetc().
union ..
uniq ...
unique().
units ..
unlink().
unmkfs.
unsigned.
until. .
update ..

The COHERENT System xxvii

. Time the execution of a command .

. Get current system time

. Give time-description structure .. .

. Declare timeb structure

. Definitions for user-level timed functions.

. Define the timer queue

. Print total user and system times

. Definitions used with times() system call .

. Obtain process execution times

. Time zone information

. Directory that holds temporary files

. Generate a unique name for a temporary file.

. Convert characters to lower case .

. Update modification time of a file

. Convert characters to upper case

. Output a parameterized string

. Read/decode leading padding information

. Translate characters

. Execute command on receipt of signal

. Extended text-formatting language.

. Unconditional success.

. Topological sort

. Play 3-D tic-tac-toe

. Print the user's terminal name . . .

. Define flags used with tty processing

. Identify a terminal

. Describe terminal ports

. Return a terminal's line number .

. Get terminal status . . .

. Define a new data type.

. Declare system-specific data types .

. Set/list variables and their attributes .

. Detect possible typographical and spelling errors .

. Set the file-creation mask .

. Set file-creation mask .

. Unmount file system ..

. Unmount a file system.

. Remove an alias

. Get the name and version of COHERENT.

. Uncompress a compressed file

. Return character to input stream

. Multiply declare a variable

. Remove/ count repeated lines in a sorted file.

. Return a unique long integer . . .

. Convert measurements

. Remove a file.

. Construct a prototype file system

. Data type

. Execute commands repeatedly .

. Update file systems periodically

1098
1099
1099
1099
1099
1100
1100
1100
1100
1100
1101
1102
1103
1103
1104
1104
1105
1105
1106
1106
1107
1112
1113
1113
1113
1113
1114
1114
1116
1116
1117
1117
1117
1117
1117
1118
1120
1120
1121
1121
1122
1122
1122
1123
1123
1123
1124
1124
1125
1126
1127
1127
1127

CONTENTS

xxviii The COHERENT System

uproc.h.
USER.
ustar .
ustat().
utime()
utmp.h.
utsname.h.
uucheck
uucico
UUCP ..
uucp ..
uucpname.
uudecode.
uuencode.
uuinstall .
uulog ...
uumvlog .
uuname .
uurmlock.
uutouch
uux ...
uuxqt ..
va_argO.
va end().
va=start().
variable arguments .
vi
vidattr().
vidputs()
view.
virec ..
void ..
volatile
wait.
wait()
wall.
we ..
whence.
whereis.
which.
while
while .
who ..
wildcards.

. Definitions used with user processes

. Name user's identifier

. Process tape archives.

. Get statistics on a file system

. Change file access and modification times

. Login accounting information.

. Define utsname structure

. Sanity-check the UUCP system

. Transmit data to or from a remote site

. Unattended communication with remote systems.

. Ready files for transmission to other systems . .

. Set the system's UUCP name

. Decode a binary file sent from a remote system .

. Encode a binary file for transmission .

. Install UUCP.

. Examine UUCP operations

. Archive UUCP log files

. List UUCP names of known systems.

. Remove UUCP lock files

. Touch a file to trigger uucico poll ...

. Execute a command on a remote system .

. Execute commands requested by a remote system

. Return pointer to next argument in argument list.

. Tidy up after traversal of argument list .

. Point to beginning of argument list .

. Clone of Berkeley-style screen editor.

. Set the terminal's video attributes ..

. Write video attributes into a function

. Screen-oriented viewing utility

. Recover the modified version of a file after a crash

. Data type

. Qualify an identifier as frequently changing

. Await completion of background process ..

. Await completion of a child process

. Send a message to all logged-in users

. Count words, lines, and characters in text files

. List a command's type

. Locate source, binary, and manual files.

. Locate executable files

. Execute commands repeatedly .

. Introduce a loop

. Print who is logged in

write. . . Converse with another user.
write() . . Write to a file
xgcd() . . Extended greatest-common-divisor function .
yacc . . Parser generator
yes. . . . Print infinitely many responses
zcat . . . Concatenate a compressed file
zerop(). . Indicate if multi-precision integer is zero .

Error Messages
COHERENT System Error Messages

CONTENTS

1127
1127
1128
1129
1129
1130
1130
1131
1131
1132
1136
1138
1138
1139
1140
1140
1140
1141
1141
1141
1142
1144
1145
1145
1146
1146
1147
1148
1148
1148
1149
1150
1150
1151
1151
1152
1152
1152
1153
1154
1154
1154
1155
1155
1155
1156
1157
1158
1159
1160
1160
1162
1162

Compiler Error Messages . .
as 286 Error Messages.
as 386 Error Messages.
cpp Error Messages.
ccO Error Messages . . .
cc 1 Error Messages . . .
cc2 Error Messages. . .
ld 286 Error Messages .
ld 386 Error Messages .

fsck Error Messages
Initialization
Phase 1: Check Blocks and Sizes.
Phase 1 b: Rescan for more Duplicates.
Phase 2: Check Path Names
Phase 3: Check Connectivity .. .
Phase 4: Check Reference Counts
Phase 5: Check Free List. .
Phase 6: Salvage Free List.
Cleanup
General Messages.

make Error Messages.
nroff Error Messages .

Index

The COHERENT System xxix

1163
1163
1164
1168
1171
1180
1180
1181
1182
1183
1183
1184
1184
1184
1185
1185
1186
1186
1186
1186
1187
1188
1193

CONTENTS

Introduction

COHERENT is a professional operating system designed for use on machines that can run MS-DOS.
It has many of the same features and functionality of the UNIX operating system. but is the creation
of Mark Williams Company. COHERENT gives your computer multi-tasking, multi-user capabilities
without the tremendous overhead, both in hardware and money, required by current editions of
UNIX. COHERENT is what UNIX used to be: an efficient system of selected tools and well-designed
utilities, that brings out the best in modest computer systems.

The COHERENT system consists of the following:

A fully multi-tasking, multi-user kernel.

Choice of Bourne or Korn shells.

The Mark Williams C compiler. linker, assembler, archiver. and other tools.

A suite of commands. including editors. languages. tools. and utilities.

Drivers for peripheral devices, including terminals, ASCII printers. and the Hewlett-Packard
LaserJet printer.

Libraries, including the standard C library and the mathematics library.

Sample programs, including full source code for the MicroEMACS editor.

For a list of third-party programs that you can run under COHERENT, see the Release Notes that
accompany this manual. New programs are released regularly, so consult the Mark Williams
Bulletin Board for the latest information.

COHERENT comes in two editions: COHERENT 286 and COHERENT 386.

COHERENT 286
COHERENT 286 runs on all machines that are fully compatible with the IBM PC-AT. It requires 640
kilobytes of RAM, at least one high-density floppy disk drive, and a hard disk. It requires
approximately ten megabytes of space on the hard disk, although it performs better when given
more space than that.

COHERENT 286 is designed to work well on modest hardware. Therefore, all of its executables are
compiled into the Intel SMALL model. This model uses 16-bit pointers and integers, and so allows a
program a maximum of 64 kilobytes of code space and 64 kilobytes of data space. It uses the Mark
Williams I.out format for its objects.

COHERENT 286 can also run on machines built around the Intel 80386 and 80486
microprocessors. but does not take advantage of their ability to address larger amounts of memory.

COHERENT 386
COHERENT 386 runs on machines built around the Intel 80386 and 80486 microprocessors. It
runs in 80386 protected mode, which means that it uses 32-bit pointers and integers. and can
address far larger amounts of memory than can be addressed by COHERENT 286. It requires at
least one megabytes of RAM (more is preferred), at least one high-density floppy disk drive, and a

1

2 Introduction

hard disk. It requires approximately 10 megabytes of space on the hard disk, although it performs
better when given more space than that.

COHERENT 386 uses the Common Object File Format (COFFJ for its executables. This offers many
advantages. including the ability to execute some programs compiled under some versions of UNIX.
The COHERENT-386 kernel can also execute programs compiled by COHERENT 286, which means
that upgrading from COHERENT 286 to COHERENT 386 is relatively straightforward.

This manual is in two parts. The first part consists of a set of tutorials that introduce COHERENT
and its utilities.

If you are new to COHERENT, you should first read the first tutorial, Using the COHERENT System.
This gives you an overview of COHERENT, and will get you up and running. It also includes
information for advanced users on how to administer a COHERENT system properly.

The subsequent tutorials introduce the COHERENT shell, its editors, its languages, and its utilities.

The Lexicon
The second half of this manual is taken up by the Lexicon. The Lexicon consists of approximately
1,000 articles that summarize all library routines, system calls, and commands available under the
COHERENT system. It also includes numerous articles that define terminology and give technical
information.

The articles are arranged in alphabetical order, to make it easy for you to find information on any
topic. The articles are also linked via their cross-references into a tree structure, with the "root" of
the tree being the article titled Lexicon. You can trace from any one article in the Lexicon to any
other article simply by following the cross-references up and down the Lexicon's tree. The Index
also references all topics discussed in the Lexicon or the tutorials, should you wish to look
something up quickly.

If you are unfamiliar with a technical term used in this manual. look it up in the Lexicon. Chances
are, you will find a full explanation. If you are not sure how to use the Lexicon, look up the entry
for Lexicon within the Lexicon. This will help you get started. If you have struggled with multi­
volume manuals for other operating systems, we think you will quickly come to appreciate the
Lexicon.

The Lexicon is followed by a table of error messages, and an index.

The release notes that accompany this manual also describe how to install COHERENT.

The release notes also list hardware that is known to work with COHERENT. and they also list
hardware that is known not to work with COHERENT. Before you begin to install COHERENT on
your system, be sure to check those lists and make sure that your system is compatible with
COHERENT.

Please note that Mark Williams Company tries to keep these lists up to date, but it is not possible to
keep pace with the continual introduction of new machines and new models. If you do not find your
machine on either list, the odds are that COHERENTwill work correctly with it.

TUTORIALS

Introduction 3

Before you continue, fill out the User Registration Card that came with your copy of COHERENT.
When you return this card, you become eligible for direct telephone support from the Mark Williams
Company technical staff, and you will automatically receive information about all new releases and
updates.

If you have comments or reactions to the COHERENT software or documentation, please fill out and
mail the User Reaction Report included at the end of the manual. We especially wish to know if you
found errors in this manual. Mark Williams Company needs your comments to continue to improve
COHERENT.

Mark Williams Company provides free technical support to all registered users of COHERENT. If
you are experiencing difficulties with COHERENT, outside the area of programming errors, feel free
to contact the Mark Williams Technical Support Staff. You can telephone during business hours
(Central time), send electronic mail, or write. This support is available only if you have returned
your User Registration Card for COHERENT.

Before you contact Mark Williams Technical Support with your problem, please check the manual
.first. If you do not find an article in the Lexicon that addresses your problem, be sure to check the
index at the back of the manual. Often, the information that you want is kept in an article that you
didn't consider, and the index will point you to it.

If the manual does not solve your problem - or if you find it to be misleading or difficult to
understand - then Mark Williams Technical Support is available to help you. If you telephone
Mark Williams Company. please have at hand your manual for COHERENT, as well as your serial
number and version number. Please collect as much information as you can concerning your
difficulty before you call. Note as carefully as possible what you did that invoked the problem, and
copy down exactly any error messages that appeared on the screen. If you write, be sure to include
the product serial number (from the COHERENT Registration Form) and your return address. If you
send electronic mail to the Mark Williams Bulletin Board, be sure to include your mailing address
as well, to ensure that we can contact you even if return electronic mail fails.

TUTORIALS

4 Introduction

TUTORIALS

Using the COHERENT Sy,stem

This tutorial introduces the COHERENT system. It introduces such basic concepts as command
and.file system, and walks you through simple exercises to help you gain some familiarity with the
dimensions of COHERENT. If you are new to COHERENT, you should read through this tutorial
first. Not every section in here will be immediately useful to every user; for example, a beginner will
probably not need to study the section on system administration, at least at first. But sooner or
later, you will need to work with all of the material in this tutorial.

If you are unfamiliar with what an operating system is, or if you are unsure how COHERENT differs
from other operating systems (such as MS-DOS), turn to the Lexicon article for COHERENT. There,
you will find a brief description of what an operating system is and what makes COHERENT special.

Before you can begin to use this tutorial. you must install COHERENT on your computer. If you
have not yet done so, turn to the Release Notes that came with this manual and follow the directions
in them.

For everyone, there's that first time. You have installed COHERENT on your computer, you've
checked the file system, mounted all of your file systems, and have gone into multi-user mode. Now
you are sitting in front of your computer and all you see on your screen is the enigmatic phrase:

Coherent login:

"What," you ask yourself, "do I do now?" Well, the rest of this section will tell you how to get started
with COHERENT.

Logging in
To begin, you must log in. Unlike MS-DOS, COHERENT is a multi-user system: many people can
use the same computer, accessing it either via terminals that you plug into the computer's serial
ports, or via modem. Each user owns his personal set of files, his special way of setting up his
environment, his own mailbox. and other things which are special to him alone. Because many
people can use COHERENT. before you begin to work with COHERENT you must tell it who you are.
This process of identifying yourself to COHERENT is called logging in. That mysterious prompt

Coherent login:

is COHERENT's way of asking you who you are.

To log in, type your personal login identifier. You set this identifier when you first installed
COHERENT on your computer. Most people set their login identifier to their initials or their first
names, usually in all lower case letters. Once you type your login identifier, press the <Return> key
(sometimes labelled as <Enter>). If you did not set up a login for yourself during installation, log in
as the superuser root and add one for yourself. For information on how to log in as the superuser,
see below. For information on how to add a new user. see the section on Adding a New User, below,
or see the Lexicon article for the command newusr.

While you were installing COHERENT on your system, you were given the option of setting a
password for your login identifier. This is done to stop other users from logging in as yourself - or
to keep outside "crackers" from dialing into your system and vandalizing it. If you did set a
password, after you enter your login identifier COHERENT will prompt you for it with the following

5

6 Using COHERENT

prompt:

Password:

Type your password. Note that COHERENT does not display the password on the screen as you type
it; this is to prevent bystanders from seeing your password over your shoulder as you enter it. After
you type your password, again type <Return>.

If you entered your login identifier and passwords correctly, COHERENT will display the command
prompt:

$

This is COHERENTs way of saying, "Give me a command, I'm ready to go!" If you made a mistake
while logging in, either with the identifier or the password, COHERENT will reply.

Sorry!

and display its

Coherent login:

prompt again. Try again, until you do manage to log in. If you have received the '$',
congratulations! COHERENT is now ready to work with you.

Special Terminal Keys
The next sections will introduce you to a few elementary COHERENT commands. Before we
continue, however, you must first become familiar with a few special keys on your computer's
keyboard, and with the special meanings they have to the COHERENT system.

One special key on the keyboard will be used frequently in your work: the <Return> key. As noted
above, this key is sometimes labelled <Enter>.

You must conclude every command you type into COHERENT by pressing the <Return> key. This
tells COHERENT that you have finished typing, and that you now want it to execute your command.
COHERENT will not execute your command until you press this key.

Another special key is the control key. This key is usually labelled Ctrl or cntl or cont. Most
terminals place it to the left of the keyboard. This key is used to send certain special characters.

The ctrl key is like another kind of shift key: to use it, hold it down while you press another key.
For example, to send the computer a <ctrl-D> character, hold down the ctrl key, strike the D key,
then release both keys.

Because control characters have no corresponding printable characters, in this tutorial they will be
represented in the form:

<ctrl-D>

for the character ctrl-D.

While you are typing information into the COHERENT system, you can correct the information
before it is processed. Two keys will help you do this. The first is the <kill> character, which erases
the line entirely and allows you to begin again. This is usually <ctrl-U>.

The other key is the <erase> character, normally <ctrl-H> or <backspace>. This moves the cursor
one character to the left, to erase the most recently typed character. <ctrl-H> also serves as the
backspace key.

TUTORIALS

Using COHERENT 7

One more special key is the <interrupt> key. This key aborts a command before it normally
finishes. By default, <ctrl-C> is the abort key on your keyboard.

Try Some COHERENT Commands
Now that you've logged in to your COHERENT system, try a few simple COHERENT commands to
get a feel for COHERENT. Type the following examples just as they are shown, and observe what
COHERENT does in response to each. Be sure to end each line with a <Ret11n1> .

The first example uses the command cat, to let you type a small chunk of text and save it in a file.

cat >fileOl
This is a sample COHERENT file.
<ctrl-D>

Remember, don•t type <ctrl-D> literally- rather, hold down the ctrl key and press 'D' at the same
time.

In the above script, the characters cat tell COHERENT to invoke its concatenation program. The
characters >meOl tells COHERENT to write what you type into a file that you name meol. The
line

This is a sample COHERENT file.

is the text that COHERENT writes into me01. Finally, <ctrl-D> signals COHERENT that you have
finished typing.

Now type:

cat fileOl

This command again invokes the concatenation program cat, but this time tell it to print on your
screen the contents of meOl. which you just created. In reply to your command, COHERENT
should print on your screen:

This is a sample COHERENT file.

which is the text you entered in the previous exercise.

Finally, type the command:

le

This command lists all of the files that you have in the current directory. In reply to your command,
COHERENT should print on your screen:

Files1
fileOl

which is the file you just created. (You may see other files as well.)

Congratulations! You have just made COHERENTwork for you.

To review: The first command, cat, created a file and filled it with some text: the second cat typed
the file out on your terminal: and the command le printed the name of each of your files. The
following sections of this tutorial describe each of these commands in more depth. Each command
also has its own entry in the Lexicon, which appears in the second half of this manual: look there
for a full description of each command, what it does, and how you can use it.

TUTORIALS

8 Using COHERENT

Giving Commands to COHERENT
Once you have logged into COHERENT, all of its resources are yours to command. COHERENT's
commands give you control over these resources.

Every COHERENT command has the same structure: the command name, which tells COHERENT
the command you want it to execute: and the arguments, which detail what you want the command
to do, how you want it to do it, and to what you want it done.

Some commands consist only of the command name. and do not take arguments. For example. the
command

le

which was introduced in the previous section, has le as the first part and prints the names of all
files in the current directory; in columns. If you have no files, le prints nothing.

The second part of the command consists of the arguments given to the command. (These are also
known by the term parameters.) Arguments are separated from each other by spaces or tab
characters.

The arguments of the command are further divided into options and names. Names usually name
files; options modify the action of the command. An option is usually prefixed by a hyphen·-·.

An example of a name argument is shown in this example of a cat command:

cat fileOl

This command types the contents of meOl on your terminal. The name argument is flleOl.

For an example of options, consider the command ls. ls lists your file names one name per line.
Thus. typing

ls

produces a list of the form:

fileOl

However, ls can tell you more about a file than just its name. To see additional information about
each file. type:

ls -1

The '-1' option to ls prints a "long'' output, of the following form:

-rw-r--r-- 1 you 17 Sat Aug 15 17:20 fileOl

This listing shows the size of the file, the date it was created or last modified, and its degree of
protection. The letters to the left of the listing give the permissions for the flle: these describe who is
allowed to do what to the flle. These are described in detail in the Lexicon articles for the commands
ls and chmod. The other entries on that line respectively name the owner of the file (in this case,
you); the size of the flle in bytes; the date and time the file was last modified; and finally, the file's
name.

As an example of combining an option parameter with a name parameter. consider the command:

ls -1 fileOl

This invokes the command ls, tells it to print a long listing. and tells it to list only the flle flleOl.

TUTORIALS

Using COHERENT 9

As you will see in the following sections, almost all COHERENT commands have this syntax.

help, man: Help with Commands
The COHERENT system has two commands that give information about other commands: the help
command, which prints a brief summary of how to use a command; and the man command, which
prints the full Lexicon entry for that command on your screen.

To find out about the help command, type

help

by itself, or type:

help help

The latter command tells help to print the help entry for the help command itself.

To get information on the le command, type:

help le

To obtain detailed information on a command, use the man command. (man is short for "manual".)
As noted above, the man prints on your screen a duplicate of that command's entry in the Lexicon.
To learn more about the man command itself, type:

man man

If your screen fills with information, man will wait for you to type <Return> to continue. This is to
prevent you from missing information should it scroll too fast. man also waits for you to type
<Return> after it prints the last line of the description.

Our survey of elementary commands will conclude by describing two important tasks: how to reboot
the computer, and how to log out.

Shutting Down COHERENT and Rebooting
Under many operating systems, such as MS-DOS, rebooting is as simple as pressing a couple of
keys or cycling power on the computer. The COHERENT system, however, is a multi-user, multi­
tasking operating system that is more sophisticated than MS-DOS or similar operating systems.
COHERENT maintains an elaborate system of internal buffers that are designed to reduce the
frequency with which a program has to read data from, or write data to, the hard disk. If you were
just to turn the computer off and turn it on again, all of the data in those buffers would be lost. At
the very least, each user would lose whatever data he was working with at the time; at worst, the
COHERENT file system could be damaged and files lost.

For this reason, it is extremely important that you shut down COHERENT properly. You must
follow these procedures if you want to shut off the computer, or if you wish to reboot MS-DOS.

To shut down COHERENT, do the following:

Log in as the superuser root by typing the following command:

su root

COHERENT will ask you for the superuser's password; type the password that you assigned to
the superuser when you installed COHERENT on your computer. The Lexicon article on
superuser describes what the superuser is; as will later sections of this tutorial.

TUTORIALS

10 Using COHERENT

Once you have logged in as the superuser, type the following command:

/etc/shutdown

As its name implies, this command shuts down the COHERENT system. The command will
ask you if you really, truly wish to shut down COHERENT; reply 'y', for .. yes".

COHERENT will indicate that it has returned to single-user mode by printing the prompt '#'.
When this prompt appears, type the command:

sync

This command flushes all buffers and writes their contents to the hard disk. When you first
type this command, you should hear or see the disk in action. Now, type it again. You
probably will not hear any activity from the disk: that is because the buffers have been flushed
and nothing remains to be written to the disk.

Now, you can turn the computer off. If you wish to reboot COHERENT. instead of turning the
computer off type the command:

/etc/reboot

This will reboot COHERENT automatically. Or, you can type <ctrl><alt>. or press the
reset button on your computer (should it have one).

After you have rebooted your computer, just sit back and wait until you receive the Coherent
login: prompt on your screen.

If you wish to reboot MS-DOS, type the command:

/etc/reboot

Instead of sitting back, however, watch the computer: wait until you see the computer
attempting to read from the floppy-disk drive. At that moment, press the number key that
corresponds to the hard-disk sector on which you stored MS-DOS, from 0 to 7. For example, if
MS-DOS is kept on partition 2. then press 2 when the computer is attempting to read the
floppy-disk drive. Be sure to press the number key that is on the main bank of keys. - not the
key on the numeric keypad.

That's all there is to it. Shutting down is relatively simple and straightforward; but if you do not
take the time to shut COHERENT down properly, you will find that you have destroyed some or all
of your data.

Logging Out
As noted above, logging in tells COHERENT who you are and that you wish to work with COHERENT
for a while. When you have finished working with COHERENT. you must tell COHERENT that you
are done for now. This process is called logging out.

There are three ways to log out. Each involves typing a special command to the COHERENT
prompt. The first way is to type <ctrl-D> at the COHERENT prompt. The second is to type the
command:

login

which logs you out and prepares for another login.

The third way is to type the command:

exit

TUTORIALS

Using COHERENT 11

Each of these commands has the same effect: the COHERENT system flushes all buffers that you
"own" and prints the prompt

Coherent login:

on your screen. At this point. you cannot issue any commands to COHERENT; but you (or someone
else) can log into COHERENT from this terminal.

Please note that logging out is not the same as shutting down COHERENT. When you shut down
COHERENT, you are shutting down the entire system. When you log out, however, you are simply
ceasing to work with COHERENT. After you log out. COHERENT continues to work on its own:
organizing files, exchanging information with other computers via modem, executing programs for
users who have logged in via modem or other terminals, and in general making itself useful. If you
shut off the computer after you log out. you will damage the file system, just the same as if you shut
it off while you were logged in.

The following sections in this tutorial will go into COHERENT's commands in much more detail. All.
however. will build on the elementary actions presented here: logging into COHERENT; issuing
commands; receiving responses from COHERENT; and logging out.

The file and the directory are the cornerstones of the COHERENT system. Practically everything you
do on the system will involve files: changing files, invoking files, transmitting or receiving files. filling
files up or emptying files out. And directories let you organize masses of files into a rational
hierarchy.

This section discusses manipulating files and directories under the COHERENT system. It covers
the following:

Whatflle and directory mean to COHERENT

Introduces the commands for manipulating files. directories and their contents

Discusses more advanced topics, such as creating and mounting new file systems

Tours the COHERENT file system

This section of the tutorial covers much ground in a relatively brief space. Readers who are new to
personal computers should concentrate on the earlier sub-sections. which cover elementary topics;
whereas more experienced readers may wish to concentrate on the later sub-sections, which cover
the more technical material.

File Names
Aflle is a mass of electronic impulses that is given a name and stored on a disk. Files are given
names to make them easy for you to retrieve. COHERENT has rules about how files can be named,
to ensure that each file's name is unique.

The following are examples of legal file names:

.profile
FileOl
crnd.sh
fileOl
test.c

File names are generally made up of upper-case and lower-case letters and numbers. COHERENT,
unlike MS-DOS. distinguishes capital letters from lower-case letters; therefore. to COHERENT the

TUTORIALS

12 Using COHERENT

me names FileOl and fileOl are different.

Any character can be used to name a file, including a control character. We recommend, however,
that you name files using only upper- or lower-case alphabetic characters, numerals, and the
punctuation marks'.' or·_·.

The file name must not be more than 14 characters long. If you specify a longer name, characters
beyond the 14th will be lopped off and thrown away. For example, COHERENT regards the file
names

this_is_very_long_file_name_l

and

this_is_very_long_file_name_2

as being identical.

Introduction to Directories
A directory is a group of files that have been given a name. Directories let you organize files
systematically. This may not seem important now, but as you work with COHERENT you will find
that you accumulate hundreds, or even thousands, of mes; without system of directories to organize
mes, you would quickly lose track of what each file held, and find it nearly impossible to find any
given file within your system.

Because files are stored within directories, the complete name of a file actually consists of its name
plus the name of the directory in which it is stored. This lets COHERENT distinguish files that have
the same name but are stored in different directories. COHERENT uses the slash character•/' to
distinguish a directory name from a file name; for example, to view the contents of file junk in
directory text_files, you would use the command:

cat text_files/junk

This system of naming will be described in full in the next sub-section; for the moment, just bear in
mind that for COHERENT to find a file, you must tell COHERENT not only the name of the file. but
the name of the directory in which it is kept.

When you work with COHERENT. you are always "in" a directory. The directory you happen to be
"in" at any given moment is called the current directory. The current directory is the one whose files
you are working with at this moment. When you type the name of a file and do not mention what
directory it is stored in. COHERENT assumes that the file is kept in the current directory.
COHERENT includes commands that let you shift from one directory to another.

When you log into COHERENT, COHERENT places you "in" a directory that you "own". This
directory is called your home directory. You control all of the files in your home directory; it is your
"base of operations" for working within COHERENT.

Path Names
As you may have deduced by now, a directory can contain both files and other directories. The
directories within a directory may themselves contain both files and directories; which then may
contain other files and directories; and so on.

This design of directories branching into other directories, which in tum branch into still other
directories. is called tree structured. As the tree-metaphor implies, the COHERENT system of
directories has a root directory, that is, a directory that is not contained in any other directory but
from which all other directories descend. directly or indirectly. The name of the root directory is
simply:

TUTORIALS

Using COHERENT 13

I

One subdirectory of the root directory is called usr. This subdirectory contains the home directories
of all users. Other common paths for home directories are /u and /usr/acct. To list the names of
all user directories, type the command:

le /usr

If your login name is henry. then the command

le /usr/henry

lists the names of the files in your home directory. Please note that in the argument /usr/henry,
the first slash names the root directory: all subsequent slashes serve simply to separate one
directory name from the next.

The name /usr /henry is called a path name. The term "path name" means the full name of a given
file or directory - including all the directories that lead from the root directory to it.

Path names may be full or partial. All full path names begin with I for root, and continue with
further subdirectory names. Path names that do not begin with a slash are partial; COHERENT
automatically prefixes them with the path name of the current directory to make them complete
before it uses them.

The elements of path names are separated by slashes. so if there were a file in newdirectory named
newflle. you would refer to it as

newdireetory/newfile

The absence of a beginning slash indicates that the path name begins in the current directory.
Thus, if your home directory name is henry, then another way to name the path to newflle is to
type:

/usr/henry/newdireetory/newfile

The following diagram gives a rough description of the structure of the COHERENT file system:

I

bin usr

henry other

Please note that unlike a real tree, the root of a tree structure has its root at the top rather than at
the bottom. Here, the root directory '/' is at the top of the structure. It contains the directories bin
and usr (among many others). Directory usr contains directories henry and other (again, among
many others. These directories can contain many other directories and subdirectories.

In summary, a path name lists all the subdirectories leading from the root directory to the file in
question. In the above example, newflle is a file in subdirectory newdirectory, which in turn is a
file in the home directory henry, which is further a file in the directory usr. The directory usr is a
file in the master or root directory for the system.

You don't need to specify all of this, fortunately, whenever you want to specify a file in a
subdirectory. COHERENT assumes that partially specified path names are within the current
directory. Therefore, you can specify a subdirectory by specifying the name of the directory first,
followed by the rest of the path name.

TUTORIALS

14 Using COHERENT

COHERENT also allows two special abbreviations for directories. The abbreviation ' . .' always
represents the current directory's parent directory. In the case of the directory /usr/henry,
directory usr is the parent of directory henry. In other words, ' . .'stands for the directory in which
the current directory resides. Every directory in the system except the root directory has a parent.
For the root directory, ' . .' refers to itself.

Another directory abbreviation is • .', which means the current directory.

The following sub-sections describe the commands that COHERENT includes for manipulating files
and directories. As you work with COHERENT, you will use these commands continually, so it
would be worth your while to spend a lit~le time learning them.

Is, le: Usting Your Directory
This sub-section introduces two of the more commonly used commands: ls and le. Both ls and le
list the files in a directory.

To see how these commands work, presume that your directory has the files created in previous
sections and that you did not remove directory newdirectory. To list the files in your directory,
simply use the command with no parameters:

ls

This produces a list of files, such as:

another
backup
docl
doc2
fileOl
file02
newdirectory
stuff

The command le also lists file names, but it prints the files and directories separately, in columns
across the screen. For example, typing

le

gives something of the form:

Directories:
backup newdirectory

Files:
another docl doc2 fileOl file02
stuff

If you want to list files in a directory other than your own, name that directory as an argument to
the command. For example, /bin is a directory in the COHERENT system that contains commands.
Type

le /bin

and le will print the contents of /bin.

Both ls and le can take options. An option is indicated by a hyphen'-'. The option must appear
before any other argument. For example, to list only the files in the directory for user carol, leaving
out any directories, use the f option with le:

TUTORIALS

le -f /usr/carol

Or. if you type the command

le -f

Using COHERENT 15

the COHERENT system prints all of the files in the current directory. The following gives the
commonly used options to the command le:

-d List directories only. omitting files
-f List files only. omitting directories
-1 List files in single column format

ls produces a list of file names. one per line, and optionally much more information. To produce all
the information, use the -1 option (note that this is an "el", not a numeral 1):

ls -1

The following gives a sample of the long list that this option produces. Headings have been added to
show the meaning of each column:

Size,
Mode # Owner Bytes

-rw-r--r-- 1 you 17
drwxrwxrwx 2 you 32
-rw-r--r-- 1 you 17

Modification
Date Time
Wed Aug 19 17:51
Wed Aug 19 17:53
Wed Aug 19 17:53

Name
fileOl
backup
docl

The meaning of each column will be explained later. For now, note that the last column gives the
name of each file, and the fourth column from the left gives the size of each file. in bytes.

cat: Print Contents of a File
The command cat opens and prints the contents of a text file - that is. a file of source code, a
document, or a message file. For example, to list the contents of file fileOl, type:

cat fileOl

This command types the file's contents on the terminal (sometimes also called the standard output).

Another use for cat - the use from which it gets its name - is to concatenate several files on the
standard output. For example, the command

cat one two three

prints the files one, two. and three, one after the other, on the screen.

You can use cat to concatenate several files into one file by redirecting the standard output into a
file. The special character '>' tells COHERENT to redirect the standard output into a file. For
example. the command

cat one two three >four

concatenates files one two three into file four. four need not exist prior to this command; ifit does,
its previous contents are replaced with the data redirected into it.

Redirection is a very useful feature of COHERENT that will be used through the rest of this tutorial.
The '>' operator also gives an example of the set of operators that can be used with COHERENT
commands. These operators. which increase the power of each COHERENT command, will be
described in detail later in this tutorial.

TUTORIALS

16 Using COHERENT

more: List Files on the Screen
If the file you list with cat is more than 24 lines long, the beginning lines of the file scroll off the
screen too quickly for you to read them. To ensure that you see all of the lines in the file, use the
command more.

more prints a file in 24-line chunks. After it has listed a chunk of text, it pauses and waits for you
to press <space>. If you call more with an option of-s,

more -s file

it will skip all blank lines that are in the text file.

mkdir: Create a Directory
The command mkdir creates a new directory. For example, to create a new directory named
newdirectory, type the following command:

mkdir newdirectory

If you follow this command with le, it lists your regular files, but it also lists newdirectory
separately as a directory:

Directories:
newdirectory

Files:
fileOl f ile02

To refer to any files in newdirectory. use its name in specifying the path name.

Now, create a file in the new directory:

cat >newdirectory/newfile
lines to be
contained in newfile
<ctrl-D>

This command copies lines to the file described by the partial path name newdirectory /newfile.

eel: Change Directory
The command cd changes the current working directory. For example, the command

cd newdirectory

moves you into directory newdirectory that you created in the previous sub-section. Now, if you
type the command le, to show the contents of the current directory, it will show the following:

Files:
newfile

To return to the previous directory, use the command:

cd ••

As noted earlier, the abbreviation·.: always indicates the current directory's parent directory.

TUTORIALS

Using COHERENT 17

pwd: Print Working Directory
The command pwd prints the name of the current. or working, directory. For example, if your login
name is henry. then if you type

pwd

you will see:

/usr/henry

Now, use the cd command to switch to directory newdirectory. as follows:

cd newdirectory

When you type

pwd

you will see:

/usr/henry/newdirectory

Finally. use the cd command to return to the previous directory. as follows:

cd ••

When you type

pwd

you now see:

/usr/henry

If you are ever unsure what directory you are in. use the pwd command.

mv, cp: Move and Copy Files
The command mv moves files. You can move a file from one name to another within the current
directory (in effect rename the file), or you can move a file from one directory to another. The mv
command takes two parameters: the first names the file to be moved; the second names either the
new name that you are giving to the file. or the directory into which you are moving the file.

For example, to move file fileOl into directory newdirectory. type:

mv fileOl newdirectory

To see where fileOl is now, type the following command:

le newdirectory

The result is:

Files:
newfile

To move newfile back into the current directory, use the command:

mv newdirectory/newfile .

Remember. the abbreviation'.' always stands for the current directory.

TUTORIALS

18 Using COHERENT

As noted above, the mv command can also be used to rename files within the current directory. For
example, to change the name of newtlle to oldfile, use the following command:

mv newfile oldfile

If the current directory already has a file named oldfile, it will be thrown away and replaced with
the file that used to be named newtlle.

The command cp copies a file. This command has two parameters: the first names the file to be
copied, and the second names the file or directory into which it is to be copied. For example, to copy
oldfile in the current directory back into newtlle. use the following command:

cp oldf ile newf ile

If newtlle already exists, it will be replaced by a copy of oldfile.

If you wished to copy newfile into directory newdirectory. use the command:

cp newfile newdirectory

Now, when you type the command

le newdirectory

you will see:

Files:
newfile

As you can see, newtlle has been copied into newdirectory. If newdirectory had already contained
a file called newtlle. that file would have been replaced with the newer newfile being copied into
newdirectory.

The following example summarizes what's been presented so far about files and directories. For
purposes of the example, assume that your login name is henry, and that you have in your home
directory files docl and doc2 that you wish to back up for safekeeping.

Before you can back up these files. you must first create them. First, use the command cat to
create file ftleOl, as follows:

cat >docl
a few
lines of
text
<ctrl-D>

Likewise, create file doc2:

cat >doc2
second file
with some text
<ctrl-D>

(Don't forget that <ctrl-D> means to hold the control key down and simultaneously type D.)

The command le will now show you the files and directories in your current directory:

TUTORIALS

Directories1
newdirectory

Files1
docl doc2

Using COHERENT 19

newfile old file

The next step is to create the directory to hold the back-up copies. To help remind yourself what
the directory is for, name it backup.

mkdir backup

Now, le shows you:

Directories1
backup

Files1
docl

newdirectory

doc2 newfile oldf ile

The next step is to use cp to copy your files into backup:

cp docl backup
cp doc2 backup

After you issue these commands, le still says:

Directories1
backup newdirectory

Files1
docl doc2 newfile oldf ile

However, if you list the contents of subdirectory backup

le backup

you will see:

Files1
docl doc2

The files have been successfully copied into the back-up directory.

For a full description of these commands and the options available with each, see their respective
entries in the Lexicon.

rm, rmdir: Remove Files and Directories
The command rm removes a file. For example, if you wish to remove file doc2 in directory backup,
type the following command:

rm backup/doc2

After typing this command, use the command le to show the contents of directory backup, as
follows:

le backup

You should see:

TUTORIALS

20 Using COHERENT

Files:
docl

As you can see, file doc2 has been removed.

You can remove several files at once, simply by listing them on the rm. command's command line.
For example:

rm fileOl file02

removes files flleO I and flle02.

Note that once you remove a file with rm., it is gone forever. The COHERENT system does not warn
you if you rm. several files at once: it will assume that you know what you're doing and carry out
your command silently. For this reason, be careful when you use the rm. command, or you may
receive a rude surprise.

You cannot use the command nn to remove a directory. COHERENT does this to help prevent you
from wiping out an entire file system with one simple nn command. To remove a directory, use the
command nndir. For example, to remove the directory newdJrectory, type:

rmdir newdirectory

Note that before you can delete a directory, that directory must not have any files or directories in it.
If you try to remove a directory that has files or directories in it, COHERENT will print an erro·r
message on your screen and refuse to remove the directory.

For a full description of these commands and the options available with each, see their respective
entries in the Lexicon.

du, df: How Much Space?
Files occupy space on your hard disk. (A corollary to Parkinson's law states that files expand to fill
the disk allotted to them.) It is somewhat disconcerting to attempt to save a large file, only to find
that you have run out of disk space. To help you manage your hard disk, COHERENT includes the
commands du and df.

The disk-usage command du tells you how much disk space the files in the current directory
occupy. If the directory has sub-directories, these are listed separately. du prints disk usage in
blocks: each block is 512 bytes (half a kilobyte).

The disk-free command df tells you how many blocks are left free on your disk. By default it prints
information only about the file system you are now in.

If you find that you are running low on disk space, you must free up some space. You can do that
by removing files you no longer need; by compressing files that you do not use often; or by backing
files up to floppy disk and then removing them. We have already described how to remove files.
Look in the Lexicon entry for the command compress for information on how to compress and
uncompress files. Following sections in this tutorial will describe how to copy files to floppy disk.

For more information on these commands, see their respective entries in the Lexicon.

In: Link Files
COHERENT has a feature that allows a file to have more than one name. When you create a file,
you give it a name; COHERENT links the name you give the file with its internal system of managing
files. (For more information on how COHERENT identifies files, see the Lexicon entry for I-node.)
COHERENT allows you to give a file more than one name; another way of expressing this is to say
that you can give a file multiple links.

TUTORIALS

Using COHERENT 21

To create a new link to an existing file, use the command In. This command takes two arguments:
the first names the file to which you wish to give a new link, and the second gives the name that you
wish to link to that file. If the name you are linking to a file is already being used by a file. that
name is unlinked from its current file and linked to the file named in the In command line.

For example to link the file docl to the name another, use the following command:

ln docl another

The "new" file has the same data in it as the "old" file; in fact, the names docl and another are
synonyms for the same file.

The next point is somewhat subtle. When you use the command nn to remove a file, what you are
actually doing is breaking the link between that file and its name. The file is not actually removed
from disk until all links are broken between it and all of its names. In the above example, if you use
the command

rm another

to remove the file another. the file docl remains in existence, and the data to which the names
another and docl remains on the disk. If you then use the command

rm docl

to remove docl, then you will have broken all links between that file and the COHERENT system,
and COHERENT will remove it from the disk.

Links are useful if you wish a file to be used in two different contexts but have the same data. For
example. if you file docl in two different manuscripts, you can create links to the file in two
different directories, one for each manuscript. Thus, any changes you make to the file under either
its names will appear automatically in both manuscripts. Note that if you copy over one link to a
file. all links still point to the same file. However, if you use either a command of the form

ln -f fileOl f ile02

or a command of the form

mv fileOl file02

only the link which is overwritten points to the new file; other links continue to point to the old file.

As always, see the Lexicon for a full description of the In command.

File Permissions
As you recall, the command ls -1 prints a mass of information about each file. The following repeats
the information that appeared when you typed ls -1:

Size, Modification
Mode # Owner Bytes Date Time Name

-rw-r--r-- 1 you 17 Wed Aug 19 17 :51 fileOl
drwxrwxrwx 2 you 32 Wed Aug 19 17:53 backup
-rw-r--r-- 1 you 17 Wed Aug 19 17:53 docl

Column 3 names the owner; in this example, you represents your login name, whatever you have
set it to. Column 4 gives the size of the file. in bytes. Columns 5 through 7 give the day of the week
and the date on which the file was last modified. Column 8 gives the time the file was last modified
or, if the file was last modified more than a year ago. the year it was last modified. Column 9 gives

TUTORIALS

22 Using COHERENT

the name of the file.

Column I gives the mode of the file. The mode summarizes the permissions attached to this file.

Before going further, the concept of file permissions should be reviewed. COHERENT is a multi-user
operating system. which means that more than one person can log into the system, walk through its
file system, execute commands, and manipulate files. Every user has files that she "owns" - that
is, that she has created and that she wishes to protect against being altered or removed by others.
After all. it would be disconcerting if you were to log into your system. only to find that some of your
key files had been trashed by another user. without your knowledge or permission.

The COHERENT system protects files by its system of file permissions. Permissions have two
aspects: the type of permission, and the scope of permission. There are three types of permission:

read permission
Permission to read a file.

write permission
Permission to write into a file.

execute permission
Permission to execute a file, assuming that file contains executable code instead of text.

Likewise, there are also three types of scope:

user The permissions extended to the owner of the file.

group The permissions extended to the group of users to which the owner belongs. For more
information on what group is, see the Lexicon entry for group.

other The permissions extended to all other users.

The mode column describes all permissions attached to a file. It also gives other information about
a file, such as whether the file is a directory. Taking the entry for file ftleOl as an example, we see:

1 2 3 4 #Owner
-rw-r--r-- 1 you

Size Date Time File name
17 Sat Aug 15 17120 fileOl

As you can see, the mode field is divided into four subfields, in this example labelled 'I' through '4'.

Subfield I indicates whether this file is a directory. If the file were a directory, this would contain a
d; otherwise, it contains a hyphen.

Subfields 2 through 4 describe the type of permission extended to. respectively. the owner. the
owner's group. and other users. Each subfield consists of three characters. The first character
indicates whether the file is readable; if it is, then the character is an 'r'; otherwise, it's a hyphen.
The second character indicates whether the file is writable; if it is, then the character is a 'w';
otherwise, it's a hyphen. The third character indicates whether the file is executable; if it is. then
the character is an 'x'; otherwise, it's a hyphen.

In the above example, file meOl grants read and write permission to its owner, read permission to
the other members of the owner's group. and read permission to all other users.

The COHERENT system has a set of default permissions that it applies to every file when it's
created. To change this default set of permissions, use the command umask. For information
about this command, see its entry in the Lexicon. To change the permissions of an existing file, use
the command chmod, as described in the following sub-section.

TUTORIALS

Using COHERENT 23

chmod: Change File Permissions
To change the mode of a file, use the change-mode command chmod. For example, to protect file
doc I in directory backup from being overwritten, use the command:

chmod -w backup/docl

where the -w means "remove write permission" and is followed by the file name. Henceforth, if you
try to write into this file. the COHERENT system will refuse to do so and will print an error message
on your screen.

To allow other users to read the backup file doc2. type:

chmod o+r backup/doc2

where the letter o signifies "other users", and the +r tells chmod to grant read permission.

To see the new set of permissions, type the command:

ls -1 backup

As you can see, the mode string has changed from what it was above.

Directory access permissions are similar to file access permissions in that they can easily be
changed via command chmod. However, the permission bits have different meanings for directories.
Permitting reads on a directory allows the user to see the contents of the directory via commands
such as le or ls; permitting execution on a directory allows access to the files in the directory: and
permitting writes on a directory allows the user to create or delete files in the directory, regardless of
the permissions on the actual file. The latter causes the most difficulty for new users since they
mistakenly associate file deletion permissions with the actual file rather than with the directory
containing the file.

Creating and Mounting a File System
Earlier, we described how the COHERENT system consists of a tree of directories; and how that tree
branches from the root directory'/'. This is a useful description, and true as far as it goes; but the
full situation is a little more complex.

The tree of COHERENT directories in fact consists of any number of file systems, each of which
exists on its own physical device. A physical device may be a partition on your hard disk, a floppy
disk, or even a chunk of RAM.

The COHERENT system contains a suite of commands that let you create a new file system on a
physical device, and graft (or mount) that new file system onto the COHERENT directory tree. The
following few sub-sections will walk you through the steps of creating a new file system on a floppy
disk and mounting it onto your existing COHERENT directory tree. These descriptions may be a bit
too advanced for beginners; but most users will file them to be interesting and helpful.

fdformat: Format a Diskette
The first step in creating our new file system is to format a floppy disk. The command fdformat
formats a diskette. When a diskette is formatted, COHERENT writes information on each track that
makes it possible for the diskette to hold a file system.

fdformat uses the following syntax:

I etc/fdformat device

where device is the name of the device to be formatted. To format a high-density, 5.25-inch

TUTORIALS

24 Using COHERENT

diskette, use the command:

/etc/fdformat /dev/fhaO

To format a high-density, 3.5-inch diskette, type:

/etc/fdformat /dev/fvaO

To format a low-density, 5.25-inch diskette, type:

/etc/fdformat /dev/f9a0

For this example, we'll assume that you have a high-density, 5.25-inch floppy disk. Insert into drive
0 (that is, drive A) of your computer, and type the command:

/etc/fdformat -v /dev/fhaO

The -v option to fdformat tells it to verify that the disk is sound. This option means that the
command will take longer to execute, but in the long run it's worth it as it will ensure that you do
not waste time to trying to copy data onto a flawed disk.

When this command has finished executing. leave the floppy disk in drive 0.

See the Lexicon entry for fdformat for more information on this command and its options.

mids: Create a File System
The command mkfs creates a file system on a physical device. This command has the following
syntax:

I etc/mkfs special proto

special names the physical device on which the file system is to be built. proto is either a number or
a file name. If it is a number, mkfs builds a file system of that size in blocks.

For our example, type the command:

/etc/mkfs /dev/fhaO 2400

This command will write a file system onto device /dev/thaO, which in this case represents the
floppy disk in drive 0 that we just formatted. The number 2400 represents the number of blocks
that fits onto such a disk. Please note that the above example is for a 5.25-inch, high-density floppy
disk. For directions on how to create a file system on a floppy disk of different size or density, see
the Lexicon article on floppy disks.

If proto is not a number, mkfs assumes that it is a prototype file. The command badscan scans a
physical device for bad blocks and writes such a prototype file for you. Prototype files are beyond
the scope of this example: but for information on them see the Lexicon entry for badscan or the
Lexicon entry for floppy disks. The latter article summarizes all the ways in which floppy disks are
used by the COHERENT system.

mount: Mount a File System
Now that you have formatted your floppy disk and built a file system on it, you can mount the newly
created file system. Mounting grafts this device's file system onto the COHERENT system's directory
tree. Thereafter, you can write files onto that device, read them, remove them, or do anything else
that you wish with that device and its contents.

mount has the following syntax:

TUTORIALS

Using COHERENT 25

/etc/mount device directory

device names the physical device whose file system is to be mounted. directory names the base
directory for that file system. The base directory is the directory by which the file system is
accessed. For example. directory /usr is the base directory for the file system that holds all users'
home directories. We'll describe base directories a little further in a few paragraphs.

For purposes of our example, type the following command:

/etc/mount /dev/fhaO /fO

This mounts the file system on the disk in drive 0 onto base directory /fO.

The base directory by convention is a directory in the root directory'/'. You do not have to do this,
however. For example, if your user name was henry and you wished to mount the file system on
the floppy disk in your home directory, you could type:

/etc/mount /dev/fhaO /usr/henry/backup

This will mount the file system on the floppy disk onto directory /etc/henry and name its base
directory as backup. Note that if directory backup already existed in directory /usr/henry, its
contents will be inaccessible until you unmount the file system on the floppy disk. Unmounting is
discussed in the following sub-section.

For more information on mounting a file system, see (surprise!) the Lexicon article mount.

Using a Newly Mounted File System
Now that you have created and mounted a file system, you can use it like any other directory. To
see how this works. type the following command:

cat >/fO/testfile
Here's some text we're writing onto the
newly mounted file system on a floppy disk.
<ctrl-D>

Here you can use the cat command to write some text into file testfile which lives on the floppy
disk you just mounted. To see that this text has been written there, type:

cat /f 0/textf ile

You should see the floppy-disk drive whirl briefly. and the following appear on your screen:

Here's some text we're writing onto the
newly mounted file system on a floppy disk.

You can now use this file system like any other. even though it lives on a floppy disk rather than
your hard disk. As you can see, this is an easy way to extend the size of your COHERENT system's
file system.

umount: Unmount a File System
Finally. when you have finished working with a file system, you must use the command umount to
un-mount it. This command prunes the file system on a given physical device from the COHERENT
system's directory tree. You will use this command frequently as you use floppy disks.

umount takes one argument: the name of the physical device being unmounted. In our example,
the command

TUTORIALS

26 Using COHERENT

/etc/umount /dev/fhaO

unmounts the file system on the high-density, 5.25-inch floppy disk insert into drive 0 (that is, drive
Al on your computer.

Under unsophisticated operating systems like MS-DOS, you can insert or remove floppy disks
without giving the matter a second though. The COHERENT system, however, uses a complex set of
buffers to speed the reading and writing of information to the floppy disk: for this reason, if you
simply yank a floppy disk out of its drive, all of the information in the COHERENT system's buffers
will be lost. Worse, if you yank out a floppy disk and insert a COHERENT-formatted floppy disk, the
COHERENT system will write the data in its buffers onto that new floppy disk - and probably
destroy its file system in the process. Unmounting a file system tells the COHERENT system to
flush all information in its buffers and write it onto the disk.

To emphasize this point, please read the following carefully:

lf you mount a floppy disk, you must use the umount command to unmount it before you remove the
diskfrom its drive. lf you do not, data will be destroyed.

This concludes the discussion of how to mount create a file system, mount it, and use it. See the
Lexicon article floppy disks for further information on how to do this task.

The following two sub-sections discuss how to check a file system, to ensure its integrity.

fsck: Check a File System
The command fsck checks a file system, to ensure its integrity. For example:

fsck /dev/root

where /dev/root is a disk device, checks the file system located on device /dev/root.

If possible, you should umount the file system before you check it. You cannot umount the root file
system. If you can't unmount it. be sure that no other users are on the system (i.e., that you are in
single-user mode), then reboot the system immediately without performing a sync. If other users are
creating or expanding files while the file systems are being checked, fsck will report false errors.

If fsck finds any discrepancies, it writes appropriate messages on the terminal. An absence of
messages indicates that there are no problems with the file system. The appendix to this manual
gives all of fsck's error messages, and suggests how you should respond to each.

COHERENT's boot routines run fsck automatically, and will rerun it if necessary to fix problems
with the file system. For more information on fsck, see its entry in the Lexicon.

Devices, Files, and Drivers
The next few sub-sections introduce the topic of special files and devices. You brushed this topic in
the earlier section that described how to format and mount a file system on a floppy disk; the
following few sections go into it more systematically. Beginners will probably find that much of this
sub-section is mystifying. but experienced users and ambitious beginners probably will find much of
value here.

To begin. the COHERENT system is designed to provide device-independent 1/0. Devices and files
are handled in a consistent way. Each 1/0 device is represented as a speclalflle in directory /dev.
For example, if your system has a line printer device named Ip, you can list a file, named prog for
example, on the printer by saying:

cat prog >/dev/lp

TUTORIALS

Using COHERENT 27

Another example is to copy the file prog with the cp command to your terminal:

cp prog /dev/tty

There are two types of special files represented in /dev, and when you list /dev with le it will
separate them.

The first type is a block special file. This type includes disks and magnetic tape. These devices are
read and written in blocks of 512 bytes, and can be randomly accessed. (As a practical note. note
that magnetic tape can be read in a random fashion only by positioning backwards and forwards
one record at a time; disks can be read or written in a totally random fashion.)

The 1/0 to and from block devices is buffered to improve overall system performance. When a
program writes a block of data, the data are held in a buffer to be written at a later time. If the
same block is read twice in a row. the data for it is still available in memory and do not have to be
fetched from the physical device.

A special program named /etc/update forces all buffered data to the physical device periodically by
calling the command sync. to protect against losing data in the case of an accident, such as a power
failure. If you must bring the system down. you must force the latest data to be written by typing
the command sync.

Character-Special Files
The second kind of special file is called a character-special file. Included in this class are devices
that are not block special: terminals. printers, and so on. Disks and tapes can also be treated as
character special files. For every block special file for a disk, such as

/dev/atOc

there is usually a character-special file:

/dev/ratOc

Character-special files are sometimes called raw files, hence the prefix r in ratOc. A raw file has no
buffering or other intermediate processing performed on its information. This difference is an
efficient benefit to commands such as dump and fsck. which do their own buffering.

tty Processing
One special set of devices has other processing - the tty or terminal files. A terminal-special file
with this special processing is called a cooked device. The processing includes handling the kill.
erase. interrupt, quit, stop, start, and end-of-file characters. Processing can be disabled with the
command stty so the program deals with the raw device. However, using a raw tty device generally
has negative effects on performance of the COHERENT system.

A Tour Through the File System
Our introduction to COHERENT's system of files and directories concludes with a tour of the
COHERENT file system. Much of this material has been described earlier.

General File System Layout
The base of the file system is the root directory, whose name is simply:

I

Most of the files in the root are directories. To list the files in the root directory, type:

TUTORIALS

28 Using COHERENT

le I

/bin
Most of the commonly used commands are programs contained in /bin, such as the command le
used in the above example. Foreign commands, such as MicroEMACS and kennit, are placed in
directory /usr/bin.

The shell does not automatically look in /bin for commands, but consults the variable PATH to
determine where commands are to be found. A typical value for PATH is:

/bin:/usr/bin:.

This tells the shell to look for commands in three places (in this order): /bin, /usr/bin, and finally.,
the current directory. The shell does not consult PATH if the command contains one or more I
characters, indicating a complete or partial path specification.

/dev
Devices in the COHERENT system are accessed through files in the directory /dev. If there is a line
printer available on the system named Ip. you can print characters from a file named testdata by
typing the command:

cat testdata >/dev/lp

All devices on the system are represented in the /dev directory. Note that it is not recommended
you access devices directly, but use the COHERENT system's utilities that spool files to them. This
will prevent two users attempting to write material to a device simultaneously, and so garbling the
output. For example, to access the line-printer device, use the spooler lpr. See the Lexicon's entries
on lpr and device drivers.

/drv
A unique feature of the COHERENT system is the concept of loadable device drivers. This feature
lets COHERENT system programmers write their own device drivers without modifying the rest of
the system. Drivers can be unloaded, modified, and reloaded without halting and rebooting the
system. Loadable drivers are kept in directory /drv. To load a driver, type:

/etc/drvld /drv/drtver

where driver is the driver to load. See the Lexicon's entry on drvld for more information.

/etc
Several commands that you will use in your role as system administrator are kept in directory I etc.
These are described in detail elsewhere in this guide. They include commands for system
accounting, booting the system, mounting the system, create file systems, and control system time.

Also in /etc are several data files used in system administration. These include /etc/passwd, the
file containing user names, ids, and passwords; news files; and file /etc/ttys, which describes the
properties of each user terminal attached to the system.

TUTORIALS

Using COHERENT 29

/lib
The COHERENT system provides many useful functions for performing input and output (1/0) and
mathematics. for use in your C programs. These and other libraries, along with the phases of the C
compiler itself, are kept in directory /lib. This directory includes files containing standard system
calls. standard I/0. and mathematical routines such as sin. cos. and log.

/usr
The directory /usr contains user directories, along with a few system directories.

/usr/adm contains additional information of interest to the system administrator.

/usr/bin contains commands that were not entirely created by Mark Williams Company.

/usr/games contains computer games. /usr/games/lib/fortunes holds a set of bon mots; the
game fortune selects one at random and prints it on your screen. A call to this game can be placed
in a user's .profile. so he will see a new fortune each time that he logs on. To add fortunes of your
own. just edit the file /usr/games/lib/fortunes.

The directory /usr/include contains header files for C programs, such as stdio.h. Other header files
define formats of files and other important data structures in the system.

/usr/lib contains the macro files ms and man used the nrofl' text processor; the unit conversion
tables for the command units; and the file /usr/lib/crontab used to hold commands for cron. This
directory also holds the C libraries.

/usr/man contains manual sections referenced by the commands man and help commands.

/usr/msgs stores messages displayed by the command msgs.

/usr/pub contains public files, such as telephone numbers and a copy of the ASCII table.

/usr/spool contains information for line-printer spooling. and mail that has not yet been delivered.

/u
In some systems, users' directories are placed on a separate device to save space. Because a
separate device has a separate file system. the directory on that device is called /u.

Files: Conclusion
This concludes this tutorial's discussion of files and directories. The rest of this tutorial introduces
COHERENT's suite of commands, and discusses topics of special interest to persons who are
administering COHERENT systems.

This section introduces COHERENT's commands. The COHERENT system comes with more than
200 commands. which perform a variety of work. from formatting text, to editing files. to performing
low-level administration of the system. The commands that manipulate files and directories were
introduced in the previous section; there are, however, many other varieties of commands. many of
which will be introduced here. To begin. we'll introduce the COHERENT system's master command.
the shell.

TUTORIALS

30 Using COHERENT

The Shell
When you type commands into the COHERENT system, it appears that you are communicating
directly with the computer. This is not exactly true, however. When you type into the COHERENT
system, you ar~,actually working with a special COHERENT program, the shell. This program
reads, interprets, and executes every command that you type into the system. The shell can also
interpret, expand, and otherwise flesh out what you type; this is done to help spare you
unnecessary typing, and to permit you to assemble powerful commands with only a few keystrokes.

Please note, in passing, that the COHERENT system comes with two shells: the Korn shell ksh and
the Bourne shell sh. These shells have somewhat different features. The descriptions in this
section assume that you are using sh, which is COHERENT's default shell.

The shell is so powerful that mastering it is a major accomplishment: however, you can take
advantage of much of what the shell offers by learning a few simple commands and procedures.

This section introduces some commands commonly used by COHERENT users. For more
information on these or other commands see help and man. Also, consult the Lexicon.

Please note the following special punctuation characters:

* ? c l I ~ { }
() $ = I - ' " < > << >>

These characters have special meaning to the shell, and typing them can cause the shell to behave
quite differently from what you may expect. Do not use these characters until you have read the
following section, which discusses their use, or until they are presented in examples.

Redirecting Input and Output
Most COHERENT commands write their output to the standard output device, which is normally
your terminal's screen. For example, who prints on your terminal the name of each user currently
logged into your COHERENT system:

who

By using the special character>, you can redirect the output of who into a file. The command

who >whofile

writes this information into whome. The operator > tells COHERENT to redirect the standard
output. Later. you can list the information on your terminal using cat:

cat whofile

Once the information is in a file, you can process it in other ways. For example

sort whofile

sorts the contents ofwhome and prints the results on your screen. In this way, you can display the
users' names on your terminal in alphabetical order.

You can also redirect the standard input to accept input from a file rather than from your terminal.
To redirect the standard input, use the special character < before the name of the file that you want
read as the standard input. For example, the command mail sends electronic mail to another user:
normally, it "mails" what you type on the standard input, but you can use'<' to tell it to mail the
contents of a file instead.

TUTORIALS

Using COHERENT 31

mail fred <whofile

mails the contents of whome to user fred.

Pipes
The pipe is an important feature of the COHERENT system. Pipes allow you to hook several
programs together by redirecting the output of one into the input of the next. A pipe is represented
by the character' I' in the command line.

Most COHERENT programs are written to act as.filters. A filter is a program that reads its input one
line at a time or one character at a time, performs some transformation upon what it has read, and
then writes the transformed data to the standard output device. You can easily perform complex
transformations on data by hooking a number of simple filters together with pipes. Consider. for
example, the command:

who I sort

Here. the command who generates a list of persons who are logged into the system. The output of
who is then piped to the program sort. which sorts the list of users into alphabetical order and
prints them on the standard error device.

The power and flexibility of the COHERENT operating system owes much to the pipe.

Superuser
A special user in the COHERENT system, called the superuser, has privileges greater than those of
other users. The superuser can read all files (except encrypted files) and execute all programs. You
must be logged in as the superuser during certain phases of your work as system administrator.

There are two ways to access the COHERENT system as the superuser. The first is to login under
the user name root. When the system prompts

Coherent login:

reply:

root

This automatically makes you superuser. To remind you that you are superuser, the COHERENT
system prompts you with root: instead of the usual $.

The second way to acquire the privileges of superuser is to issue the command

SU

when you are logged in as a user other than root. You must have privileges to access root to do
this, and you must know the password for root. When you type

<ctrl-D>

in this mode, COHERENT returns you to your previous identity.

To be the superuser for only one command, use the form of the command

su root command

command is the command to be executed as superuser. For example, to edit the message of the day
file /etc/motd if you are not the superuser, type

TUTORIALS

32 Using COHERENT

su root me /etc/motd

When you finish using MicroEMACS, your original user id will be unchanged.

To limit access to privileged resources, the COHERENT system requires users to enter passwords
before being granted that privilege. Users may be required to enter passwords before logging in.

If the root user has a password, you will be prompted for it. If you do not enter it correctly, the
system will tell you

Sorry

and not allow you to become the superuser.

It is normal practice to protect access to superuser status by setting the password. If you are the
only user of your COHERENT system, or if you deeply trust all other users, you do not have to do
so. However, because the superuser can perform any sort of mayhem on your system, it is
advisable to set the password, especially if outsiders can dial into your system via modem.

Manipulating Text Under COHERENT
The COHERENT system includes a number of commands and utilities with which you can process
text. The phrase process text means to edit it and prepare it for printing.

MicroEMACS: Text Screen Editor
COHERENT includes a full-featured screen editor, called MicroEMACS. MicroEMACS allows you to
divide the screen into sections, called windows, and display and edit a different file in each one. It
has a full search-and-replace function, allows you to define keyboard macros, and has a large set of
commands for killing and moving text.

Also, MicroEMACS has a full help function for C programming. Should you need information about
any macro or library function that is included with COHERENT, all you need to do is move the text
cursor over that word and press a special combination of keys; MicroEMACS will then open a
window and display information about that macro or function.

For a list of the MicroEMACS commands, see the Lexicon entry for me, the MicroEMACS command.
A following section of this manual gives a full tutorial on MicroEMACS. In the meantime, however,
you can begin to use MicroEMACS by learning a half-dozen or so commands.

To invoke MicroEMACS, type the command

me hello.c

at the COHERENT prompt. This invokes MicroEMACS to edit a file called hello.c. Now, type the
following text. as it is shown here. If you make a mistake, simply backspace over it and type it
correctly; the backspace key will wrap around lines:

main ()
{

}
printf("hello, world\n");

When you have finished, save the file by typing <ctrl-X><ctrl-S> (that is. hold down the control key
and type 'X'. then hold down the control key and type 'S'). MicroEMACS will tell you how many lines
of text it just saved. Exit from the editor by typing <ctrl-X><ctrl-C>.

TUTORIALS

Now, re-invoke MicroEMACS by typing

me hello.c

Using COHERENT 33

The text of the file you just typed is now displayed on the screen. Try changing the word hello to
Hello, as follows: First, type <ctrl-N>. That moves you to the next line. (The command <ctrl-P>
would move you to the previous line, if there were one.) Now, type the command <ctrl-F>. As you
can see, the cursor movedforward one space. Continue to type <ctrl-F> until the cursor is located
over the letter 'h' in hello. If you overshoot the character, move the cursor backwards by typing
<ctrl-B>.

When the cursor is correctly positioned, delete the 'h' by typing the delete command <ctrl-D>: then
type a capital 'H' to take its place.

With these few commands, you can load files into memory. edit them, create new files, save them to
disk, and exit. This just gives you a sample of what MicroEMACS can do, but it is enough so that
you can begin to do real work.

Now, again save the file by typing <ctrl-X><ctrl-S>. and exit from MicroEMACS by typing <ctrl­
X><Ctrl-C>.

Just as a reminder, the following table gives the MicroEMACS commands presented above:

<Ctrl-N> Move cursor to the next line
<Ctrl-P>

<ctrl-F>
<Ctrl-B>

<ctrl-D>

<ctrl-X><ctrl-S>
<ctrl-X><ctrl-C>
<ctrl-Z>

Move cursor to the previous line

Move cursor forward one character
Move cursor backward one character

Delete a character

Save the edited file
Exit from MicroEMACS
Save a file and exit

Note that on some terminals, the arrow keys will not work. Note, too, that some remote terminals
may have trouble using <Ctrl-S>, if they use XON /XOFF to control flow. In this case, use <ctrl-Z>
instead.

For more information, see the tutorial for MicroEMACS included with in this manual.

pr, prps, lpr: Print Files
The command lpr prints files for you, making sure that your request does not conflict with other
uses of the printer. To print a file, type the command

lpr .file

substituting the name of the file to be printed for "file". Normally, the system prints a banner page
before it prints a job; if you wish to suppress the banner page, use the -B option:

lpr -B .file

If no file is given, the standard input is printed. Thus. lpr can be used in pipes: this allows you to
print immediately matter that you type on your keyboard.

lpr will take your file and try to print it on any printer you have plugged into your computer's
parallel port. If you do not have a printer plugged in, or if it is not turned on, lpr will hold onto your
files until the printer becomes ready; it will wait days, if necessary, until the printer becomes
available.

TUTORIALS

34 Using COHERENT

lpr is also intelligent enough to handle requests from several different users: if more than one user
wants to print a flle. lpr will print them one at a time. In this way. the COHERENT system lets
several users share one printer.

lpr does nothing to the file other than print it. This means that no page headings are printed, nor
does it break it the file up neatly into page-sized chunks. Another command, pr, does this for you.
It paginates the standard input, giving a header with date, file name, page number, and line
numbers. The paginated output appears on the standard output.

To print a paginated file on the line printer. type:

pr file I lpr -b banner

Note the use of the pipe 'I'. which passes the output of pr as input to lpr.

nroff, troff: Text Formatters
The commands nroft' and trotT format text for display or printing. They are. in fact, text-formatting
languages: you type commands into your text file, and nroft' or troft' interprets the commands to
format the text in the manner that you want.

nrotT and troft' differ in the style of formatting that they perform. nroft' formats text into
monospaced font. like that on an ordinary typewriter, Its output is suitable for display on the
screen. troft' formats text into proportionally spaced fonts, like those seen on this page. Its output
is suitable for printing on a laser printer or other sophisticated typesetting device. The commands
for nroft' and troft' closely resemble each other. The following descriptions will assume that you are
using nroft', but they apply to trotT as well.

nroff's programming language is quite complex and sophisticated. This manual includes a tutorial
that introduces nroff's language. You can. however, use nrotT to perform simple formatting tasks
by using the ms macro package. The following describes some of the more commonly used nroft'
commands.

To see how nroft'works, type the following script:

cat >script.r
.ds CF "Print on Bottom of Each Page"
Here is some text.
Here is some more text .
• PP
The above command set a new paragraph.
Yet more text •
• SH
Here is a Section Heading
.PP
More text.
\fBThis is printed in bold face.\fR
This printed in Roman.
\fIThis is printed in italics or underlined.\fR
.PP
Here's some more text.
Here's yet more text.
And more text yet.
<ctrl-D>

TUTORIALS

Using COHERENT 35

Now, format and display the text with the following command:

nroff -ms script.r I more

You will see the text formatted for your screen. The string Print on Bottom of Each Page appears
at the bottom of the display. The following describes the nroff commands with which this
formatting was performed.

nroff's commands are introduced in either of two ways: by a period '.' in thejlrst column of a line: or
by a backslash'\' occurring anywhere in a line. The following reviews this script in detail.

.ds CF This defines the text to appear on the bottom of each page. If the text is more than one
word long, it must be enclosed within quotation marks .

. PP Begin a new paragraph. nrotl' skips one line and indents the following line by five spaces
(one-half inch) .

. SH Print a section heading. nrotl' skips one line and prints in boldface the line of text that
follows this command.

\tB Print the following text in boldface.

\tR Print the following text in Roman.

\fl Print the following text in italics.

With these few commands, you can perform simple formatting of your text.

To print the formatted text on an dot-matrix line printer, use the command lpr: to print it on a
Hewlett-Packard LaserJet printer, use the command hpr. For example, to print scrlpt.r on a line
printer. use the command:

nroff -ms script.r I lpr

To print script.r on a laser printer, use the command:

nroff -ms script.r I hpr -B

The -B option to hpr tells it to not print a banner page.

This discussion is sufficient to get you started, but it just scratches the surface of what you can do
with nrotl' and trotl'. See their respective entries in the Lexicon for details of what these commands
can do. See the tutorial for nrotl' that appears later in this manual for a thorough introduction to
the formatting language used by these commands.

Miscellaneous Commands
COHERENT includes numerous commands that perform miscellaneous tasks. These include some
of the most useful. and entertaining, commands in the COHERENT system.

who: Who ts On the System
To find who is Jogged into the system, use the COHERENT command who. This command lists who
is Jogged into the COHERENT system, one name per line. You will see your own user name there as
well.

If you sit down at a terminal that is not in use, but at which someone has already logged in, the
following command tells you who is logged in:

who am i

COHERENT replies with the name of the user logged in at that terminal.

TUTORIALS

36 Using COHERENT

write: Electronic Dialogue
The command write lets you carry on a "conversation" with another user. The conversation
continues until you or the other user type <ctrl-D> on his terminal.

For example, user fred can begin a conversation with user anne by typing:

write anne

On anne's terminal. the message

Message from fred •.•

will appear. To establish the other half of the communication, anne should then say

write fred

and a similar notification appears on fred's terminal.

At this point, both users simply type lines on their terminal and write sends the message to the
other user. To avoid typing at the same time, each user should end a "speech" by typing a line that
has the single letter

0

to signify "over", or "go ahead". When the other user sends you this, you know it is your turn to
"talk", and vice versa.

When your communication is finished, you should type

00

<ctrl-D>

Here, oo means "over and out", and the <Ctrl-D> terminates the write command. Note that o and
oo are polite conventions, and are not necessary to using write.

mail: Send an Electronic Letter
You can send electronic mail to another user on your COHERENT system by using the command
mail. This command works whether or not that person is logged into the system at the time you
type your message. The message is stored in an electronic "mailbox", and the user will notified that
a message is waiting for him the next time he logs into your system.

Before you can use mail on your system, you must run the program uuinstall. This program will
ask you some questions about how you have configured your COHERENT system, and will write
files of information that mail and the communications protocol UUCP need to deliver your mail. For
detailed directions on how to run uuinstall, see the section Installing UUCP in the UUCP tutorial
that appears later in this manual.

Among other things. this program will ask you to name your "site" and your "domain". Without
going into too much detail at this point, the site is nom de plume by which your machine is known
to other COHERENT or UNIX systems. Site names generally are not computer-ese: conan,
terminator, lepanto, chelm, and smiles are all examples of site names. If you don't intend to
communicate with other systems, use your first name as the site name. The domain is the name by
which a group of related machines are together known. If you and a number of other local
COHERENT systems wish to be known together, you can establish a domain and register it with the
network. Domain names, too, should be descriptive. If you don't intend to use a domain, set the
domain name to UUCP.

TUTORIALS

Using COHERENT 37

To mail a message to user anne, just type:

mail anne

mail immediately prompts you for a title for your message:

Subject1

You can type the message's subject, which will be used to title the message, or you can just press
<Return>.

Once you have titled your message. type the body of the message. You can conclude your message
in any of three ways: you can type <ctrl-D>, type a period'.' at the beginning of a line. or a question
mark '?' at the beginning of a line. The first two methods end the message immediately; the last
method. however. invokes an editor, and lets you edit the message further before sending it on to
the intended recipient. Environmental variable EDITOR. if defined, selects the editor to be used.

For example. to send your message to user anne. you might do the following. First, invoke mail:

mail anne

Next. give your message a title:

Subject: I'll be working late

Finally. type the body of the message:

I'll be working late. I hope to get home before Catherine
and George go to bed. Please remind Ivan and Marian to do
their homework. Marian should remember to practice her
violin.
<ctrl-D>

If you wish, you can first type your message into a file and then mail it. For example:

cat >hb.msg
All come to the birthday party at four
next to the pump room.
<ctrl-D>

To mail the message to user Jill, type:

mail jill <hb.msg

You can send a mail message to several users at one time by listing each user's name on the
command line. For example, the command

mail jill jack ted barb <hb.party

mails the contents of file hb.party to Jill. jack, ted, and barb. To illustrate the use of the mail
command, send yourself a mail message. Type the following; substitute your user name for "you"' in
the mail command:

mail you
Subject: test the COHERENT mail system
This is a note to
myself to test
mail.

TUTORIALS

38 Using COHERENT

If someone has sent you mail, the COHERENT system will tell you:

You have mail.

when you log in.

To receive mail, type the mail command with no parameters:

mail

If you have no mail. COHERENT will tell you:

No mail.

If you do have mail. the system will print each message on your terminal. along with the user name
of the sender. and the date and time that the message was mailed.

After each message. the mail program types a question mark? and waits for your reply. You can
type any of the following commands in reply to the prompt:

d Delete the message.

<Return>
Proceed to the next message.

sjile Save. or copy. the message into.file.

q Quit - exit from mail and return to the shell.

You will know that you are finished with all of your messages when mail sends you a ? without
typing anything before it.

mail can also send messages to other COHERENT or UNIX systems via the UUCP utility. See the
accompanying tutorial on UUCP to see how you can set up mail to do this.

msgs: Cumulative Message Board
The message of the day is deleted when a new message is inserted. If a user does not log in for
several days. the message of the day may no longer be there. For items that you want everyone to
see, such as hours of operation or new operating procedures, you should use msgs instead of motd.

msgs helps users get all important messages. even if they don't log in every day. The system
remembers which users have seen each message. After a user logs in, invoking msgs will show the
number. date, and author of each message written since the user last logged in. Therefore it is easy
for the user to stay up to date with the system-wide messages.

To add a message to the file, simply mail the message to msgs. To title the message. write it as the
first line in the message. after the "Subject:" prompt from mail.

The home directory for msgs will grow over time. as more and more messages accumulate. Also, if a
new user is enrolled on your COHERENT system, he may have to wade through several hundred
messages when he first logs in. Therefore, you should purge the home directory for msgs every now
and again; you may wish to throw away the announcements of office parties three Christmases ago.
and save important information on diskette.

msgs keeps track of what messages each user has read by recording the number of the last message
read in the file $HOME/ .msgsrc. When each user logs on, his version of .msgsrc is inspected to
determine the last message seen. If messages were added after that. msgs prints the ones the user
wants to see, and then updates .msgsrc.

TUTORIALS

Using COHERENT 39

grep: Find Patterns in Text Files
The command grep lets you find lines that contain a pattern within one or more files. Patterns are
sometimes called regular expressions.

To illustrate grep. create file docl by typing:

cat >docl
a few lines
of text.
<ctrl-D>

Then the command

grep text docl

prints the second line of file doc 1:

of text.

The first parameter to grep is the pattern for which you are looking; the rest of the arguments are
the names of files to be examined. text is the pattern and docl is the file.

To find if a particular user is on the system, pipe who into grep:

who I grep you

(Substitute the user name in question for you.) Try it with your user name. The pattern is you. but
no file name is specified. grep reads input from the standard input. which in this example is
connected to the output of the who command.

You can specify several files to be searched; simply put the additional file names after the first:

grep pattern docl doc2

Or. you can search all files in the current directory for the pattern with

grep pattern *

The asterisk will be interpreted to mean all files. and grep will look for pattern in each.

The search pattern can be a pattern. Patterns are fully discussed in the tutorial for ed.

You can also locate lines that do not contain given patterns by using the grep option -v.

grep -v bugs progl prog2

This command finds and prints all lines in files progl and prog2 that do not contain the pattern
bugs.

date: Print the Date
The COHERENT system keeps track of the time and date. To find the date and time, use the
command:

date

COHERENT responds with the day of the week. the month day and year. and the time of day.

TUTORIALS

40 Using COHERENT

Internally. the COHERENT system records the date and time as the number of seconds since
January I. 1970, 00:00:00 Greenwich Mean Time (GMT). This means that files created in one time
zone and referenced in another time zone will bear the correct time. The time and date printed out
is converted from the internal form to the local time.

passwd: Change Your Password
You should change your password from time to time, to ensure that no unauthorized person can
gain access to your files (or to the system as a whole).

It is easy to change passwords on the COHERENT system: just type the command passwd. passwd
first asks you for your current password (if you have one), and then asks you to enter your new
password twice. Entering the new password twice helps ensure that the system gets the password
as you want it. If you do not type it the same way both times, COHERENT will say:

Password not changed.

You must then begin again with the command passwd.

Be sure the password is something that you can remember. It is recommended that the password
be at least six characters long. Do not write it down. but memorize it. You can use a four-letter
password. but if you do, you should mix upper-case and lower-case letters to make it more difficult
for outsiders to guess.

stty: Change Terminal Behavior
Because a wide variety of terminals can be used with the COHERENT system. you must pass some
information to the COHERENT system so it can handle your terminal correctly.

The command stty describes the information COHERENT currently has for you; you can then use
stty with arguments to change how COHERENT handles your terminal.

For example, COHERENT normally echoes each character you type, as you type it. However, if your
terminal also echoes what you type. you will see double characters. To prevent this, issue the
command:

stty -echo

The program login uses this feature when you type your password, to help keep it secret from
anyone who is kibbitzing at your desk.

To set the echo feature again. type:

stty echo

When you first log in. the system presumes that your terminal does not directly handle the tab
character, so when COHERENT sends a tab to your terminal it simulates it with spaces. If your
terminal does handle tabs, issue the command:

stty tabs

The COHERENT system will no longer substitute spaces for tabs. To go back to substitution.

stty -tabs

The <erase> character lets you delete the previously typed character. The <kill> character lets you
delete the line that you have been typing but have not yet finished. By default, COHERENT sets
these to. respectively, <ctrl-H> and <ctrl-U>. To change them to, respectively, <ctrl-E> and <ctrl­
K>. use the stty command as follows:

TUTORIALS

stty erase AE kill AK

The carat •A• tells stty that you want to specify a control character.

To reset erase and kill to the default values at login, the command

stty ek

suffices. This is equivalent to:

stty erase AH kill Au

To see what your current terminal parameter settings are, type

stty

with no arguments.

Scheduling Commands For Regular Execution

Using COHERENT 41

The command cron is a valuable tool for using your COHERENT system. With it, you can schedule
commands to be executed, even in your absence.

To specify a command to be executed at some later time, simply enter one line of information in the
file /usr/llb/crontab. You must be logged in as root to modify this file.

For example, assume that you want to greet user nonn, if he is logged into the system on Monday
morning. You can do this by sending him a message at 8:13 on Monday. Use MicroEMACS to add
the following lines to the file /usr/llb/crontab:

13 8 * * 1 msg norm%You are sure in early!

The numbers and • at the beginning specify the time:

13 8 * * 1

The 13 means "13 minutes past the hour". (cron numbers the minutes zero through 59.) The 8
means "8 AM". (cron numbers the hours of the day zero through 23, with zero indicating 12 AM.)
The positions containing • normally specify the day and month. The two • characters mean "any
day" and "any month". Finally, the 1 means "day 1 of the week," which is Monday. (cron numbers
the days of the week zero through six, with zero indicating Sunday.) The breakdown of this
command is shown as follows:

minute
hour
day of month
month
day of week

13
8
•-all days
• - all months
I -Monday

Because each entry in crontab must be on one line, the symbol % represents the beginning of the
input string. If the information is too long for one line, enter a backslash character before the
<Return> at the end of the line. The backslash tells cron to ignore the <return>.

With this information in the file, cron executes the command

msg norm
Am Monday!

at 8: 13 every Monday morning.

TUTORIALS

42 Using COHERENT

cron expects time to be in the 24-hour clock, so 1 PM is represented as 13 hours. If you need to
print a literal percent sign '%', precede it with a backslash:

\%

The times for cron commands can be even more complex than the numbers and • shown above.

You can express a range for any of the five parts of a time by separating two numbers with a
hyphen. For example, to send user marlanne a humorous message on week days. use the
command:

59 11 * * 1-5 /usr/games/fortune I msg marianne

To list a choice of times, separate single numbers or ranges with commas but no spaces. To send
notification about a meeting on Monday, Wednesday, and Friday at 3 PM. use:

0 15 * * 1,3,5

The time specification

0 15 * * 1,3,5

echo Meeting at 3130 ••• I mail fred anne joe

represents the time 1500 (3 PM) on every Monday. Wednesday. and Friday.

mail and msg are just some examples of commands that can be used with cron: many others can
be used. For example, cron is commonly used to execute UUCP commands late at night, when
telephone rates are low. See the Lexicon article on cron for more information about this command.
If you wish to schedule commands to be run but not on a regular basis, use command at. See its
Lexicon article for further details.

Managing Processes
A process is a command that is undergoing execution. Because COHERENT is a multi-tasking
operating system, numerous processes can be undergoing execution at the same time. The
following commands let you monitor and, within limits. affect the operation of the processes your
COHERENT system is executing.

ps: List Active Processes
Each process in the system is assigned a number called the process id, or PID. Each user logged
into the system has one or more processes. Except in special circumstances, the first process that
he has is the shell, or command-line interpreter. The commands he types are run by the shell.

The shell normally waits for a command to terminate before it begins to process the next command.
However, if you use the '&' operator, the shell creates simultaneous processes: that is, while it
executes one command it will let you type another. Thus, you can execute two or more commands
simultaneously.

You can examine the processes associated with your login, or all processes in the system, with the
command ps. Type:

ps

The result will resemble:

TTY PID
console 3937 -sh
console 4010 ps

The first column

TUTORIALS

Using COHERENT 43

TTY
console
console

names the terminal you are running on, in this case the console. This identifier is taken from the
file /etc/ttys. with the prefix tty removed from name. The tty identifier is also printed by the
command who. The second column

PIO
3937
4010

lists the corresponding process identifier (PIO). The third column names each command and gives
its parameters, if any:

-sh
ps

-sh represents the shell process, and ps represents the ps command itself.

To see all the processes, type:

ps -a

The result will resemble:

TTY PIO
3a: 41 -sh
39: 42 -sh
32: 47 - 3
31: 48 - 3
34: 193 -sh
36: 634 -sh
3e: 1738 -sh
20: 2568 -sh
3e: 2581 SU

3c: 6317 -sh
3c: 6322 SU

3f: 7333 - p
35: 7789 - p
3c: 8058
3d: 9053 - p
33: 9076 - p
30: 9814 -sh
30: 9829 ps -a

This display will, of course, differ quite a bit from system to system and from minute to minute.

For a full description of all options to ps. see its entry in the Lexicon.

kill: Signal Processes
Occasions will arise when the system administrator must log other users out of the system. For
example, you may need to bring the system down quickly; or perhaps a user forgot to log out before
leaving the terminal and did not see your broadcast message requesting that all users log out.

TUTORIALS

44 Using COHERENT

The command kill, when used by the superuser. terminates processes. To log out a user whose
shell has process number 300, use the command:

kill -9 300

You must be logged in as root or use the command su to kill a process that belongs to another
user. Each user can kill all processes that he owns, including his own shell process (which
automatically logs him out).

kill has other uses as well - see the Lexicon's entry for kill for more information.

The COHERENT system provides a number of languages in which you can write programs.

The shells included with COHERENT - sh. the Bourne shell. and ksh. the Korn shell - not only
process commands, but are powerful programming languages in their own right. For details on how
to program in these languages, see their respective entries in the Lexicon; and see the tutorial
Introducing sh, lhe Bourne Shell, which follows in this manual.

COHERENT includes a full-featured assembler, with which you can assemble your assembly­
language programs. Assembly language is sometimes required for operations that require you to
work very closely with the operating system or hardware. For more information on the COHERENT
assembler, see the Lexicon entry for as.

Most programming that cannot be executed efficiently by a shell language is done in C, the language
in which the COHERENT system was written. The COHERENT system comes with a full-featured C
compiler, with which you can compile the program you write in that language. If you are new to C,
the tutorial The C Language. which follows in this manual, will introduce you to it. The following
sub-sections briefly describe the tools available under COHERENT with which you can write,
compile, and debug your C programs.

Basic Steps in COHERENT Programming
The steps that are necessary to generate a program are:

1. Create the program source file
2. Compile the source program, correcting any errors
3. Test and debug the program
4. Run the program

If you have compilation errors in step 2, or program errors in step 3 or 4, return to step 1 .

Use ed or MicroEMACS to build and change the source program, the cc command to compile the
source program and produce an object program, and db to help debug the program. Although the C
compiler provides a macro facility. other languages do not. Therefore, if the source program uses
macros, you can use m4 to expand the macros.

This section covers each of these steps and provides some example programs.

Create the Program Source
The first step is to use MicroEMACS, vi, ed. or some other editor to create the program's source file.
Details on the use of ed and MicroEMACS are covered in their respective tutorials. which follow in
this manual. Each editor's commands are summarized in its Lexicon article.

TUTORIALS

Using COHERENT 45

For the first program, try a simple program that prints a short message on your terminal. For the
sake of simplicity, we'll enter text using cat instead of invoking an editor. To build the program,
type the following:

cat > small.c
main ()
{

printf ("The COHERENT operating system\n");
}
<ctrl-D>

The first line invokes the concatenation program cat to enter the program's source code. The <ctrl­
D> signals that you have finished entering text.

The program itself begins with the special word main which defines a function and must appear in
every C program. The parentheses, here with nothing between them, enclose any arguments that
are passed to the function. They are required even if there are no arguments. The body of the
program appears between the braces { and }.

The function printf is part of the standard library of C programs. It prints formatted information on
the terminal. In this case it will produce the string enclosed between quotation marks. The special
character string

\n

means "newline". Two lines of output to the terminal can be produced by

"line 1\nline 2\n"

as an argument to prlntf. This appears in the output as:

line 1
line 2

For a fuller introduction to the C language, see the tutorial on the The C Language, which follows in
this manual.

cc: Compile the Program
The command cc compiles C programs. It executes all the parts of the C compiler and the
associated linker Id. The linker combines pieces of programs and includes necessary elements from
the library. such as printf. The linker is occasionally called from the command line, but only for
more complex problems than you are trying here. To compile our test program, type the command

cc small.c

If the compiler detects any errors, it prints a message on the terminal, along with the line number
that contains the error. You can use this line number to find the error with your editor and fix it.
You can now use the program by simply typing:

small

The tutorial on The C Language describes cc in greater detail; also see its entry in the Lexicon for a
full summary of its many capabilities.

TUTORIALS

46 Using COHERENT

m4: Macro Processing
To extend the capabilities of all languages, the COHERENT system provides a macro processor.
calledm4.

Program source for all languages consists of character strings. Macro processors perform string
replacement. whereby a string in the input file may be replaced by another string. m4 provides
parameter substitution, as well as testing values of currently available strings and conditional
processing. m4 is unique in that you can rearrange large sections of the input text by using the
macros. For more information on m4. see the tutorial Introduction to the m4 Macro Processor. which
follows in this manual.

make: Build Larger Programs
All the examples of programs thus far have been self-contained. As programs grow larger, it is usual
to divide the source program into smaller files. This simplifies editing. speeds compilation,
increases modularity. and lets several different programs share common functions.

Thus, in developing the larger program. you may have several source files in your directory. possibly
a header file or two, and the object files that result from compilation. From these are built the
executable file that runs when you type its name.

To change or fix the program, you must edit the source programs or header files in question with
ed. recompile the required source, and relink all the modules. But, with a change that affects
several modules. it can be tricky to remember exactly which modules need recompilation, and it can
be time-consuming to recompile all modules.

COHERENT provides a command called make, which solves this problem. make examines the time
a file was last modified, and the time of modification of files that it depends upon. and performs the
necessary compilation or other processing. (COHERENT file system directories contain the time that
each file was created or modified.)

The tutorial The make Programming Discipline, which follows in this manual. fully introduces this
powerful and useful program.

db: Debug the Program
The first and most critical step to debugging programs is to not put bugs in them! The methods of
structured analysis, design. and programming. or the method of stepwise refinement can
substantially reduce the number of errors in a program.

One can also place prlntf statements at strategic points throughout the program to display logic
flow and key data values. These display statements should be designed so that they can be turned
off for normal operation without removing them from the program.

On occasion, however. you may find that it is necessary to debug at the machine level. If you must,
COHERENT's db will make it possible to do so.

db provides tools that make the machine program instructions visible in the most natural notation.
That is, instructions are displayed in a fashion that resembles assembly language, numbers can be
displayed in hexadecimal, octal, or decimal as needed, and strings of characters displayed in
familiar graphic form. db can also patch a program to be run again, as well as to control the
execution of a program with breakpoints and one step at a time.

Briefly. to use db on a program like our sample small above, use the command:

TUTORIALS

Using COHERENT 47

db small

Now you can inspect and display instructions and data in the system, control execution, and even
change the instructions in the program if you are bold enough.

To examine a data segment location in the program, simply type the address of the location. db
knows about symbols in the program, so if you want to examine the location corresponding to main,
type:

main

db types out the value in hexadecimal or octal (depending upon which is appropriate for your
machine).

You can expand the display command to print many locations at one time, and choose the format of
printout. To print five locations interpreted as instructions, type

main,5?i

where the format character i follows the question mark indicating format, and 5 is the count of
locations to be printed. To exit db, type

:q

For a complete list of the format that db recognizes, and other details about db, see its entry in the
Lexicon.

The COHERENT system can be used by many people at the same time. One person must coordinate
its use, like a key operator does for an office copier. This person is called the system administrator,
and he sees to it that the COHERENT system runs smoothly every day. The administrator can also
customize the COHERENT system to the needs of an individual installation.

Although you may be the only person to use your COHERENT system, many of the ideas discussed
here are important for making your system work at its best. Please spend a few minutes reading
this manual to familiarize yourself with the elementary concepts of COHERENT system
maintenance.

Adding a New User
Each user allowed to use your COHERENT system must have a user name and a user Id; the user
may also have a password. The user name is usually the user's initials or a nickname. The user Id
is an integer number used to identify the user internally to the system. As system administrator,
you will assign both of these for each user. This section tells you how.

To log in to the system, a user must have an entry in the password file /etc/passwd. The password
file contains each user's name, id, and password if any. As system administrator, you will maintain
this file.

Likewise, each group of users is assigned a group name, as well as a group Id. Groups are not
necessary to use the COHERENT system, but some installations prefer to set up groups by project
or department.

It is simple to add a new user to the system. The command newusr takes care of all the details, and
makes an entry in the password file. You must be logged in as root. For example, to create an entry
for a user named Henry. log in as root, and then issue the command:

TUTORIALS

48 Using COHERENT

/etc/newusr henry "Henry Smith" /usr

This creates an entry in /etc/passwd for henry, creates his home directory in the /usr file system,
creates all appropriate files for him (such as his .profile and his mailbox), and sets all permissions
correctly.

System Security
One of the most important tasks in running your COHERENT system is maintaining its security.
Basically, security means two things: keeping outsiders from logging into your system. and keeping
your system's users from doing untoward things. This section describes some steps you can take to
ensure that your system is secure.

Passwords
Passwords provide the first level of COHERENT system security.

For systems with passwords, each user with a password must type his password as part of the login
process. Ifhe enters the password incorrectly, he cannot log in.

Your system's administrator can assign a password when she creates a user's log-in account, as
described above. If you do not assign a password, anyone will be able to log in as that user.

In any system with passwords, it is especially important to assign a password to the root, or
superuser. If the superuser does not require a password. any user can log in as root and
automatically have access to the powerful tools that control the operation of the system.

Any user with a password can restrict access to his files. Once you assign him his password, he can
change it with the command passwd. However, because of higher privileges, root can always access
everyone's files.

The passwords are kept in file /etc/passwd, with the rest of the user login information. Passwords
are encrypted, so reading /etc/passwd will not reveal passwords.

File Protection
The second level of COHERENT system security is file protection. A user can set each of three
categories of protection for each of his files. A standard protection, or access permission, is given to
each file when it is created.

The three categories of permissions are for the user himself, for other users in his group. and for all
other users. To see the levels of protection of your files, type the command

ls -1

For more details on the meaning of each column in this printout, see the Lexicon entry for the
change-mode command chmod.

Encryption
The command crypt provides a third level of system security. It lets a user encode and decode
information in a file. The superuser has access to every file in the system; so to protect sensitive
information even from his prying eyes, a user can disguise it with encryption. Sensitive system
information, such as passwords, are also encrypted for security purposes; and the mail command
lets users send encrypted mail to each other. For details about encryption, see the entry on crypt
in the Lexicon.

TUTORIALS

Using COHERENT 49

Dumping and Saving Files
This section discusses how you can copy files to floppy disk. You should do this regularly. both to
free up disk space and to back up valued files to protect them against catastrophe.

There are two general strategies for dumping files.

One strategy uses the commands ustar or tar to create archives of files on a floppy disk. This
strategy is fine for systems that are used by a handful of users, and that are not used for "real­
world" jobs. such as running a business.

The other strategy uses the command cpio to implement a system of regular dumps. This strategy
is preferred for systems that daily amass data of importance for a real-world job. such as running a
business or managing a research project.

You should always have a system of back-ups for your system. Which strategy you use depends on
how you are using your system. The following sub-sections describe how to implement each
strategy of back-ups.

Please note that the following descriptions assume that you are using a 5.25-inch, high-density
floppy disks set in drive 0 (drive A).

Back-ups Using ustar
This sub-section describes how to back-up files using the COHERENT command ustar.

The first step is to prepare floppy disks to receive files. Insert a 5.25-inch floppy disk into drive 0,
and then type the following command:

/etc/fdforrnat -v /dev/fhaO

The command fdfonnat formats the diskette, verifying that no media defects exist. You must
perform this task of formatting a floppy disk only before you use it the first time.

The next step is to create an archive of the files you wish to back up. Use the portable archive
command ustar to collect a mass of files into an archive on the floppy disks. For example. to
archive all files in directory source. use the following command:

ustar cvf /dev/rfhaO source

The options cvf tell ustar to create an archive, run in verbose mode. and write the archive onto the
device or into the file named in the next argument. /dev/rfhaO names the floppy device onto which
you wish to write the archive. Finally. source is the directory whose files you wish to back up.

To perform a listing of the contents of the newly created archive. enter

ustar tvf /dev/rfhaO

The options tvf tell ustar to list the contents of the archive. run in verbose mode. and read the
archive from the device or file named in the next argument.

To extract several files from the archive. enter a command of the form

ustar xvf /dev/rfhaO source/rnyfile 'source/*.c'

The options x:vf tell ustar to extract or unarchive the specified files. run in verbose mode, and read
the archive from the device or file named in the next argument. Note that the second file argument
contains a "wildcard" character and thus must be quoted to prevent expansion by the shell.

TUTORIALS

50 Using COHERENT

For more information on how to use ustar, see its entry in the Lexicon.

Back-ups Using cpio
The following sub-sections describe how to perform back-ups using the COHERENT command cpio.
cpio is a public domain program written by Mark H. Colburn for the USENIX association, which is
included with the COHERENT system. This program performs mass dumps and restores of files
using a universally recognized file format. In general, cpio is easier to use than dump and restor,
and its output can be portable among other COHERENT and UNIX systems.

In this example, dumps are performed monthly. weekly. and daily. You should prepare at least
three sets of floppy disks for the monthly saves, giving you three months of full backup. You will
use the diskettes in rotation, with the oldest always used next.

Once a week, you should dump information in the system that is new or has been changed since
the end of the previous week. You will need five sets of diskettes, since some months have five
weekends in them.

Finally, every day you should save information that has changed that day. For these dumps, you
will need five sets of diskettes: one for each working day. You may need extras in case of weekend
work.

Label each set of disks carefully as monthly, weekly, or daily. Label the daily diskettes Monday
through Friday, the weekly diskettes Week l through Week 5, and the monthly diskettes Month 1
through Month 3. When you do the dump, write the date on the label.

The following gives a step-by-step description of how to use cpio to back up files.

1. Log into the system as root. You must have superuser privileges to perform a dump.

2. If you have not yet done so, use the command fdfonnat to format a set of diskettes, as shown
above. With high-density, 5.25-inch diskettes, a rule of thumb is to prepare one diskette for
each megabyte of data to be dumped.

3. Tell other users to log off the system by typing:

/etc/wall
Please log off,
Time for file dump.
<ctrl-D>

If you are the only user on your system, skip this and the following step.

4. Be sure that all users are logged off the system by typing the command:

who

This command names all users who are still on the system.

If they have not logged off in a few minutes, send another message. Repeat the process until
who shows no users except yourself.

5. When all other users have logged off, execute /etc/shutdown as described near the beginning
of this tutorial.

6. If this is the last workday of the month, perform a monthly dump, to back up the entire system.
Insert the first volume of the correct monthly dump floppy disk into the floppy drive, after
adding today's date to the label, and type the commands:

TUTORIALS

Using COHERENT 51

cd I
find • -type f -print I cpio -oc >/dev/rfhaO

This will dump all files to the raw, 2400-block, floppy-disk device /dev/rthaO. cpio

As more floppies are needed, cpio will ask you to insert them. After you insert the floppy disk,
you will have to type the device name, e.g .. /dev/rthaO, at cpio's prompt. Be sure to label
each floppy disk with its volume number.

7. If this is the last work day of the week, but not the last workday of the month, perform a
weekly dump. Prepare the correct weekly dump diskettes, add today's date to the label, insert
the first diskette, and type the command:

cd I
find • -type f -newer cpio.weekly -print I cpio -oc >/dev/rfhaO
touch cpio.weekly

This will dump all files that are younger than file cpio.weekly.

8. If this is neither the last workday of the month nor the last workday of the week, you will
perform a daily dump. Prepare the daily dump diskette with today's day of the week, add
today's date to the label. insert the first diskette into the drive, and type the command:

cd I
find • -type f -newer cpio.daily -print I cpio -oc >/dev/rfhaO
touch cpio.daily

This will dump files that are younger than file cpio.daily.

9. Type sync to ensure that all buffers are flushed.

I 0. When you are finished dumping data, reboot the system by typing the command:

/etc/reboot

For more information on how to use cpio and find, see their respective entries in the Lexicon.

Restoring Information
If you find that a file has been inadvertently destroyed, you can restore the information to disk from
backup floppy disk.

To restore a file from a compressed tar archive, use the following commands. First, select the
appropriate back-up disk, insert it into its drive, and mount it with the following command:

/etc/mount /dev/fhaO /fO

Next, use the commands zcat and tar to extract the file you want. For example, if your archive is
called backup.tar.Z and the file wish to restore is called myfile, use the following command to
extract it from its archive:

zcat /fO/backup.tar.Z I tar xf - myfile

The zcat command reads the compressed archive without requiring that you uncompress it. The
tar command reads the standard input (as indicated by the hyphen'-') and extracts myfile from
what it reads.

TUTORIALS

52 Using COHERENT

Once you have extracted your file or files, you can unmount the floppy disk in the usual way and
put it away.

To restore information from back-ups created with cpio, the process is a little more complicated. To
begin. you must first determine the date and time that the file was last known to have been
modified. From this date, determine on which set of disks the file was last correctly dumped. Find
the set of floppy disks labeled with that date. and mount the first one in the set. For example, if you
wish to restore the file mytlle, use the command:

cpio -icdv myfile < /dev/rfhaO

This assumes that the disks high-density, 5.25-inch floppies that are in drive 0 (drive A). See the
Lexicon article floppy disk for a table that shows which COHERENT device is associated with which
size and density of disk, and which disk drive. You may have to insert more than one disk from the
set of backups until you find the one that holds the file you want.

System Accounting
The COHERENT system provides two types of computer time accounting to help you track the use of
the system. Three commands control the accounting and provide reports at various levels of detail.

Note that system accounting adds overhead to your system, because your system has to do more
work to record everything it does, and because the accounting files can quickly grow to
unmanageable sizes. System accounting is useful for COHERENT systems that are being used by
multiple users who must account for (i.e .. pay for) their use of the system, or in other circumstances
where it is important to note each user's activity. For most systems that support a handful of users,
system accounting simply isn't worth the bother.

If, however, you decide that you need system accounting, read on.

ac: Login Accounting
Whenever a user logs into the COHERENT system, it records the user's name. the terminal number,
and the date and time of the login. It also records when he logs out.

You can use this information to compute the time each user, or all users, were logged into the
system. The command ac prints the total of all login times recorded in the accounting file. An
example of the result is

Total: 835 7: 00

You can ask for a summary of total login times for each day by typing:

ac -d

An example result would be:

Friday November 13:
Total: 53: 08

Saturday November 14:
Total: 75:36

Sunday November 15:
Total: 73: 15

Finally, you can summarize the times for individual users with the command:

ac -p jack ted fred

This will show the total login times for these users:

TUTORIALS

Also,

fred
jack
ted
Total:

ac -pd

1100:42
910:41
641:58
2653:21

gives the time for each user, for each day that he logged in.

Using COHERENT 53

Login accounting is not automatically operational. The login information is collected only if the file
I usr I adm/wtmp exists.

To start login accounting if it is not working, type the command

>/usr/adm/wtmp

while logged in as root. This creates the file /usr/adm/wtmp if it does not exist (and destroys
existing information if it does) and thereby enables login accounting.

To turn off login accounting while it is running, you can type:

rm /usr/adm/wtmp

After you activate login accounting, you should purge /usr/adm/wtmp periodically as it grows
continuously, and on an active system will eventually consume much disk space. To purge the
current information but leave accounting turned on, type:

>/usr/adm/wtrnp

sa: Processing Accounting
While login accounting tells you how much time a user spends logged into the system, it does not
tell you the individual commands used. Process accounting does so. Under COHERENT, each
execution of each command constitutes a separate process. (COHERENT's ability to maintain a list
of processes and swap each in and out of memory until all are executed, is what gives COHERENT
its multi-tasking capability.) Process accounting records system time, user time, and real time for
each command executed by each user on the system. The command sa reports this information for
you, using a format that you set.

sa has several options, to generate different reports. When used with no options, sa lists the
number of times each call is made, the total CPU time, and the total real time used by the
command, ordered by decreasing CPU time. This is a summary by command: the following gives an
example:

#CALL CPU REAL
sh 61 1 832
ld 5 1 7
ar 5 0 1
ran lib 3 0 1
p 16 0 11
dld 2 0 1
le 19 0 1
cc 4 0 8
atrun 43 0 1
find 1 0 0
ed 1 0 2

TUTORIALS

54 Using COHERENT

cat 4 0 1
rm 3 0 0
j 1 0 0
spin 2 0 1
grep 2 0 0
msg 4 0 0
ps 1 0 0
pr 2 0 0
watch 4 0 0
who 2 0 0
stty 3 0 0
ch own 1 0 0
sort 1 0 0
mv 2 0 0
pwd 1 0 0
nm 1 0 0
df 1 0 0
ls 1 0 0
echo 3 0 0
accton 1 0 0

The listing will depend on what commands are used in your system, and the characteristics of your
hardware. To summarize by user, use the -m option:

sa -m

The option -1 separates CPU time expended by users from that expended by the system. This
command

sa -1

produces:

#CALL USER SYS REAL
sh 61 0 1832
ld 5 0 07
ar 5 0 01
ran lib 3 0 01
p 16 0 011
dld 2 0 01
le 19 0 01
cc 4 0 08
atrun 43 0 01
find 1 0 00
ed 1 0 02
cat 4 0 01
rm 3 0 00
j 1 0 00
spin 2 0 01
grep 2 0 00
msg 4 0 00
ps 1 0 00
pr 2 0 00
watch 4 0 00
who 2 0 00
stty 3 0 00
ch own 1 0 00

TUTORIALS

Using COHERENT 55

sort 1 0 00
mv 2 0 00
pwd 1 0 00
nm 1 0 00
df 1 0 00
ls 1 0 00
echo 3 0 00
acct on 1 0 00

To list the user name and the command name, use sa with the option -u. No times or counts are
given. The command:

sa -u

produces output of the form:

tj p
tj le
tj find
tj pr
bin le
tj spin
tj sh
bin cc
bin cat
bin ld
bin dld
farl who
farl sh

This report has been truncated and edited to save space. In practice, it is longer. The -u option
overrides other options.

Process accounting is on only if you turn it on. To turn on process accounting, type the command:

/etc/accton /usr/adm/acct

while logged in as root. The file /usr/adm/acct holds the raw accounting information.

To turn off process accounting, use the same command with no file name:

/etc/accton

If accounting is not on when you type this command, you will get an error message. No information
is gathered when accounting is turned off.

When process accounting is in use, the file /usr/adm/usracct grows with each user command
issued. You should regularly condense or remove the information, to keep the file from devouring
all free space on your disk. To condense the information, invoke sa with the -s option. You must
turn off accounting while condensing information.

The information summarized by user will appear in /usr/adm/usracct, and information saved by
command is placed in /usr/adm/savacct. These summarized files are used in future requests to sa.
After condensing, you can turn accounting back on.

Additional options give flexibility to the report. See the entry for sa in the Lexicon for additional
details on these options.

TUTORIALS

56 Using COHERENT

The following sections of this manual give tutorials to teach you how to use many of COHERENT's
tools and commands. The Lexicon contains brief synopses of all commands, library routines,
system calls, and macros available under the COHERENT system. It also includes many technical
references and definitions, to help you with terminology throughout this manual.

TUTORIALS

Introducing sh, the Bourne Shell

sh is the command that invokes the Bourne shell, which is the COHERENT system's default
command interpreter. The Bourne shell interpets commands, expands file names in various
sophisticated ways, permits conditional execution of commands, and much more. The Bourne shell
is, in effect, both a programming language and an interpreter.

At least one writer has noted that the shell is the original "fourth-generation language" - that is, a
powerful programming language that is straightforward enough to be programmed by non­
programmers. You will find that taking a little time to master the rudiments of the shell
programming language will pay enormous benefits in making best use of your COHERENT system.

The shell command language is built around simple commands. For example, the following
command lists all files in the current directory:

le

You can combine several simple commands on one line by separating them with semicolons:

who;du;mail

The shell executes the commands in sequence as if they had been typed:

who
du
mail

In both of these examples, du does not begin execution until who is finished, and mail does not
begin until du is done.

The shell treats the following characters specially; if you want to use them without their special
meaning, you must precede them with the backslash character\, or enclose them within quotation
marks:

*?CJl;{}(l
$ = : - , " < > << >>

The function of these characters will be explained later in this section. To use one of these
characters in a command, for example '?', type:

echo \?

In addition, the shell treats the following words in a special way when they appear as the first word
of a command:

case do done elif else esac
fi if in then until while

57

58 The Bourne Shell

The shell can execute commands simultaneously as well as sequentially. This means that while the
shell is executing one command, it lets you type and execute another command. Under the shell,
the number of commands you can execute at the same time is limited mainly by the amount of
memory and disk space on your system.

If a command is followed by the special character'&', the shell begins to execute it immediately, and
prompts you to enter another command. For example. if you need to sort a large file but want to
continue with other commands while the sort is executing, you can type:

sort >bigfile.sorted bigfile.unsorted &
ed prog

This allows you to edit file prog while your computer quietly executes the sort in the background.

When you run a command with &, the shell types the process Id of the command started in
background. When the COHERENT system runs a command, it assigns that command a process Id,
which is a number that uniquely identifies that command to COHERENT. Normally. there is no
need to be concerned about these numbers. However. when you run commands in the background,
the shell tells you the id of the background process so you can keep track of its execution.

The command

ps

lists the processes you are currently running. If you have no background jobs, the response is:

TTY PIO
301 362 -sh
301 399 ps

The first column shows the number that COHERENT has assigned to your terminal. This is the
same terminal number printed out by who. The second column shows the process id; the third
column shows the program or command executing. The characters -sh in the third column means
the login shell. There are two processes because the shell is running the ps command as a separate
process.

Once you have started a background command, ps shows you the process entry, which has the
process id that the shell typed out for you.

If you need the results from a background job, you can wait for it to finish by issuing the command:

wait

The shell will then accept no further commands until all your background jobs are finished. If there
are no background jobs, there will be no delay.

Many of the commands that you use in COHERENT are programs. such as ed. Others, like the man
command, are scripts, or files that merely contain calls to other commands. You can write scripts
on your own, simply by using a text editor to type into a file the commands you wish to execute. If
you frequently use a set of commands, you can save yourself from having to type them over and over
by simply typing them once into a script.

TUTORIALS

The Bourne Shell 59

For example, suppose that you wish to check periodically the amount of disk space that you have
used, the amount of disk space still available. and see who is using the system. You can write a
script to do all of this automatically. Create the script good.am by typing the following commands:

ed
a
du
df
who sort
mail

w good.am
q

From now on. to execute the above-listed commands, you need only type:

sh good.am

where sh is a command that means: read commands from a file, in this case good.am. If you can
issue a command from your terminal, you can also execute it from within a script.

You can make a command file directly executable by using the command chmod. For example, the
command

chmod +x good.am

lets you execute the script good.am by typing

good.am

and leaving off the sh. Once you have done the chmod command, you can still issue the commands
by typing:

sh good.am

as well as use ed or MicroEMACS to change the contents of the script.

Notice that the commands called by a script may themselves be scripts. This is illustrated by the
following script, second.sh:

ed
a
sh good.am
le

w second.sh
q

Thus, typing:

sh second.sh

calls the script good.am, and also calls the command le.

TUTORIALS

60 The Bourne Shell

When you log into the system and before you are issued your first prompt, COHERENT checks your
home directory for a file named .profile; if it is present, the shell executes the commands it
contains.

This enables you to have COHERENT execute commands as soon as you log in. Check if your
installation provides one for you by doing an le (be sure that your current directory is the home
directory). If the file is there. print it by saying:

cat .profile

Some of the commands may be of the form:

PATH=':/bin:/usr/bin'

This sort of command will be discussed below.

Scripts of the form shown above are processed by the COHERENT shell without change. However.
the COHERENT shell increases the power of commands by performing three kinds of substitutions
within commands before it executes them.

First, it replaces special characters in commands with file names from the current or other
directories. This allows you to issue a single command that processes several files.

Second, you can give a script arguments, much like arguments that are passed to a Pascal, Algol. or
C procedure. This lets you target the action of the script to a specific file name specified when you
call it.

Third. the output of one command can be "piped" into another command to serve as its input.

We will use the command echo to illustrate these kinds of substitution. Remember that
substitutions take place for all commands in the same way that they do for echo . .

File names are often used as command parameters. That is, you will often tell a command to do
something to one or more files. By using special shell characters. you can substitute file names in
commands. These special characters describe file name patterns for the shell to look for in the
directory. When the shell finds the file names, it replaces the pattern with them.

The asterisk• matches any number of any characters in file names. Thus,

echo *

echoes all the file names in the current directory, whereas

echo f*

gives all file names that begin with the letter f, and

echo a*z

lists all names that begin with a and end with z.

To illustrate more clearly. create two files by typing

TUTORIALS

cat >zzl
<ctrl-D>
cat >zz2
<ctrl-D>

Then the echo command

echo zz*

produces the output:

zzl zz2

The Bourne Shell 61

Thus, by using a single•, you can substitute several file names into a command. In other words,
the command

echo zz*

is equivalent to

echo zzl zz2

If no file names fit the pattern, the special characters are not changed, but left in the command
exactly as you typed them. To illustrate, type the command

rm zz*
echo zz*

The first command will remove all files whose names begin with zz. and is therefore equivalent to:

rm zzl zz2

The echo command that follows, however, echoes

zz*

because no files begin with zz; they were just removed.

Enclosing command words within apostrophes prevents the shell from matching file names with the
enclosed characters. In the unlikely event that you have a file whose name is

zz*

that you want to remove, use the command

rm 'zz*'

The• is enclosed within apostrophes, and therefore is not changed by the shell.

Another special character'? match any one letter. To see how this works, create empty files filel,
me2' and file33 by typing:

>f ilel
>f ile2
>f ile33

The command

echo file?

replies

TUTORIALS

62 The Bourne Shell

filel file2

because? does not match 33.

You can use brackets [and] to indicate a choice of single characters in a pattern:

echo file[l2]

This command replies:

filel file2

To match a range of characters, separate the beginning and end of the range with a hyphen. The
command

echo (a-m]*

prints any file name beginning with a lower-case letter from the first half of the alphabet, and is
exactly equivalent to:

echo [abcdefghijklm]*

When such patterns find several file names, they are inserted in alphabetical order.

Because the character I is important in path names, the shell does not match it with • or ? in
patterns. The slash must be matched explicitly; that is, it is matched only by a I itself. Therefore,
to find all the files in the /usr directories with the name notes. type:

echo /usr/*/notes

The asterisk matches all the subdirectories of /usr that contain a file named notes.

In addition, a leading period in a file name must be matched explicitly. If you have a file in your
current directory with the name .profile, the command

echo *file

does not match it.

These patterns can appear anywhere within a command or a command file.

Each shell script can have up to nine positional parameters. This lets you write scripts that can be
used for many circumstances. Recall that command parameters follow the command itself and are
separated by tabs or spaces. An example of a command reference with two parameters is:

show first second

where first and second are the parameters.

To substitute the positional parameters in the script, use the character$ followed by the decimal
number of the parameter. For example, build the script show by typing:

TUTORIALS

ed
a
cat $1
cat $2
diff $1 $2

w show
q
chmod +x show

The Bourne Shell 63

$1 and $2 refer to the first and second parameters, respectively. Create two sample files:

cat >first
line 1
line two
line 3
<ctrl-D>
cat >second
line 1
line 2
line 3
<ctrl-D>

Then, issue the show command

show first second

which has the same effect as typing:

cat first
cat second
diff first second

If you issue the show command with fewer than the required number of parameters, the shell
substitutes an empty string in its place. For example, using the command with only one parameter

show first

is equivalent to

cat first
cat
diff first

where the null string has been substituted for $2.

The example above shows the parameter references separated from each other by a space. In some
uses, you may wish to prefix a substituted parameter to a name or a number. When more than one
digit follows a $, the shell picks up the first digit as the number of the parameter. To illustrate,
build a shell file pos:

TUTORIALS

64 The Bourne Shell

ed
a
echo $167

w pos
q
chmod +x pos

Then call the script with

pos five

and the result will be:

five67

In addition to positional parameters, the shell provides variables. You can assign values to
variables, test them, and substitute them in commands.

The variable name can be built from letters, numbers, and the underscore character; for example:

high_tension
a
directory
167

Note that keywords must not be single digits, because the shell then treats them as positional
parameters. Be aware that the shell treats upper-case and lower-case letters differently in variable
names.

An assignment statement gives a value to a shell variable:

a=welcome

You can inspect their value with theecho command:

echo $a

The shell substitutes the value of the variable a in the echo command, which then appears as

echo welcome

COHERENT responds to this command by printing:

welcome

Don't forget the $ when referring to the value.

Notice that the shell looks for special characters in any command that it sees - this includes the
space character. To avoid problems, enclose the value to be assigned in apostrophes:

phrase='several words long'

There are several uses for variables. One is to hold a long string that you expect to type repeatedly
as part of a command. If you are editing flies in a subdirectory like

TUTORIALS

/usr/wisdom/source/widget

you can abbreviate if you set a variable pw to:

pw='/usr/wisdom/source/widget'

Then simply using $pw in a command

echo $pw

substitutes the long path name.

The Bourne Shell 65

Another use of shell variables is as keyword parameters to commands. These then can be used the
same way as positional parameters. To see how this works, create another script resembling show:

ed
a
cat $one
cat $two
dif f $one $two

w show2
q
chmod +x show2

To use show2, issue:

one=first two=second show2

This is equivalent in effect to:

cat first
cat second
diff first second

Unlike positional parameters. keyword parameters may be several characters in length. If you want
some text to follow immediately a keyword parameter, enclose the keyword parameter in braces. To
illustrate this, build a command file called brace, as follows:

ed
a
echo 'with brace:' ${a}bc
echo 'without brace:' $abc

w brace
q
chmod +x brace

Call the command file with a set:

a=567 brace

The result is:

with brace: 567bc
without brace:

When used in this way, the keyword parameters must be assigned before the command and on the

TUTORIALS

66 The Bourne Shell

same line as the command. In this case, the assignment of keyword parameters does not affect the
variable after the command is executed. For example, if you type:

one=ordinal
one=first two=second show2
echo 'value of one is ' $one

echo produces:

value of one is ordinal

Variables set other than on the line of a command are not normally accessible to a script. To
illustrate, build a parameter display script:

ed
a
echo 1 $1 2 $2 pl $pl p2 $p2

w pars
q
chmod +x pars

This will be used to show the behavior of parameters. The parameters to echo without a$ help to
read the output. To pass positional parameters. type:

pars ay bee

The output is:

1 ay 2 bee pl p2

To pass keyword parameters, type:

pl=start p2=begin pars

The result is:

1 2 pl start p2 begin

To illustrate that the setting of pl and p2 did not "stick", type:

echo $pl $p2 'to show'

echo replies:

to show

This indicates that pl and p2 are not set.

Illustrating that variables set separately from a command are not seen by the command, type:

pl=outsidel p2=outside2
pars

This replies:

1 2 pl p2

By using the export command, however, such variables can be made available to commands. The
commands

TUTORIALS

export pl p2
pl='see me' p2=hello
pars

produce:

1 2 pl see me p2 hello

The Bourne Shell 67

This indicates that after the export of pl and p2, they are available to other commands. Once a
variable has appeared in an export command. its value can be changed without a need to export it
again.

By enclosing a command between ' characters. you can feed its output onto the command line of
another command. For example

echo 'ls'

echoes the output of the ls command.

When you log into the COHERENT system. it sets the shell variable HOME to your home or default
directory path. If your user name is henry, then the command

echo $HOME

on most systems prints:

/usr/henry

The change directory command cd sets the working directory to the path found in HOME if no
argument is given.

The shell normally prompts you with$ for commands. and with > if more information is needed.
These two prompts are taken by the shell from the variables PSI and PS2. You can change these if
you want different prompts. for example

PSl="Fred's Software Palace: "
PS2='!'

To have these take effect each time you log in. put the assignment statements in your .profile file.

The shell variable PATH lists the path names of directories that contain commands. To show the
contents of PATH. type:

echo $PATH

It typically will show:

:/bin:/usr/bin

This means that the shell looks for a command first in the current directory. then in /bin, and. if
not found there, then in /usr/bin. The path names are separated by':'. This means that an empty
string precedes the first':'. the current directory. Another common setting for PATH is:

: •• :/bin:/usr/bin

This means that the shell seeks commands first in the current directory. then in ·.: (the parent

TUTORIALS

68 The Bourne Shell

directory of the current directory), then in /bin, and finally in /usr/bin.

Similar to the command sh is the • command. The command

• cfil

causes the shell to read and execute commands from cfll.

This differs from the sh command in several respects. First, there's no way to pass parameters to
cm with the'.' command. Second, the sh command executes another shell to read the commands,
whereas'.' simply reads the commands directly. Finally, all the string variables and parameters are
accessible by cfll.

The command file good.am created earlier can be executed with:

• good.am

This has the same effect. Similarly, the'.' can be itself be used within a command file:

ed
a
• good.am
le

w third.sh
q

Then, the command

• third.sh

has the same result as the command:

sh third.sh

Most COHERENT commands return a value that indicates success or failure. For example. if grep
cannot find your file. it issues a diagnostic message and returns a value that tells the shell that
something went wrong. You can examine this value by typing the command:

echo $?

This tells you the value returned by the last command executed. Zero indicates success (true),
whereas a non-zero value indicates failure (false). Note that this convention is the opposite of that
in the C language (a fact that has led to confusion on occasion).

You can use the value returned by a command to affect decisions about executing other commands.

For most commands, the return value is a side-effect of their operation. However, the test
command's only task is to return a value. This command can test many conditions, and return a
value to indicate whether the requested condition is true or false.

TUTORIALS

The Bourne Shell 69

To determine if a file exists, the command

test -f f ileOl

returns true (zero) if fileOl exists and is not a directory. To check if a file is a directory. use:

test -d fileOl

test can also test strings. This is useful when you are using parameter substitution. To illustrate,
build the following command:

ed
a
test $1 =
echo 'test
test $1 I=
echo 'test

w test.ed
q

$2
1 & 2
$2
1 & 2

chmod +x test.ed

for equal:' $?

for not equal:' $?

Because the'=' is a parameter, be sure to surround it with space characters.

This command file tests its two parameters for equality. Try the commands:

test.ed one two
test.ed one one

The test command has many other options; see the Lexicon entry for test for details.

Type the following commands to create two files:

cat >f ilel
line one
line two
line three
<ctrl-D>
cat >file2
line one
two is different
line three
<ctrl-D>

Now, compare the files and print the return value:

cmp -s filel file2
echo $?

The command cmp compares two files byte-by-byte; the -s option tells cmp merely to indicate
whether the files were the same. This prints 1 (false) because the files are not the same.

To process a second command based on the result returned by the first, type:

cmp -s filel file2 I I cat file2

TUTORIALS

70 The Bourne Shell

The characters 11 signify that the following command cat should be executed if the cmp command
returns a non-zero value, which it will for this example.

The two characters && execute the command that follows them only if the preceding command
returns true (zero).

To see how this works, create a third file with the command:

cp filel file3

Type the command:

cmp -s filel file3 && rm file3

This command removes mea if cmp indicates that fllel and mea are identical. Because cmp is
preceded by the copy command cp, the files mel and flle3 are identical, and so mea is removed.

Because the shell is a programming language as well as a program, it provides constructs for
conditional execution and loops. These are for, ff, while, until, and case. Also, a subshell can be
executed within'(' and')'.

The for construct processes a set of commands once for each element in a list of items.

To illustrate for, type the following commands to COHERENT:

for i in a b c
do echo $i
done

The items a, b, and c form the list of value that the variable i assumes. The shell executes echo
with i assuming each value in turn. The result of these commands is:

a
b
c

Notice that after you type the line containing for, COHERENT prompts with a different character >
(on most COHERENT systems). The shell does this to remind you that you must type more
information. After you type the line containing done. the prompt again becomes$.

The for command is usually used within a script. Also, you can leave off the list of value to the
index variable: when you do this, the shell by default uses the arguments typed on the script's
command line as the values for the index variable. To illustrate, type:

TUTORIALS

The

ed
a
for i
do echo $i
echo '---'
done

w script.for
q
chmod +x script.for

for i

statement is equivalent to:

for i in $*

The Bourne Shell 71

where$• means "all positional parameters". Notice that two commands are repeated for each value
of i. Now, call script.for with the following command line:

script.for 1 2 3 4 test

The result is:

1

2

3

4

test

if tests the result of a command and conditionally executes other commands based upon that
result. It can be used instead of && and 11 • as shown above. Instead of:

cmp -s filel file2 && cat file2

you can use:

if cmp -s filel file2
then cat file2
fi

This means that the shell executes

cat file2

if cmp returns zero (true).

TUTORIALS

72 The Bourne Shell

To get the same result as given by the previously illustrated command:

cmp -s filel file3 I I rm file3

with the if statement. also use else:

if cmp -s filel file3
then
else rm file3
fi

The commands between else and fl are executed if the result of the command following the if is
false or non-zero. Note that there is no command following then.

The elif statement lets you test several conditions with one if statement and act on the one that is
true. In general terms.

if commandl
then actionl
elif command2
then action2
elif command3
then action3
else action4
fi

The items labeled command and action are both commands or lists of commands.

First, the shell executes command!. If the result is true, it performs action!. If the result from
command! is not true. the shell then executes command2. If its result is true. then it performs
action2. This process continues so long as none of the commands return a true result. If none of
the command results are true, the action following the else is executed.

To illustrate, create a shell script that list on your terminal only one of the three file-name
arguments. Use the command

test -f name

which returns true if name is an existing non-directory file.

ed
a
if test -f $1
then cat $1
el if test -f
then cat $2
el if test -f
then cat $3

$2

$3

else echo 'None
fi

w cat.1
q
chmod +x cat.1

TUTORIALS

are files'

The Bourne Shell 73

Another looping or repetitive shell statement is the while statement. The commands

while command!
do command2
done

first performs commandl. If its result is true. command2 is executed, and commandl is again
executed. This process continues until commandl returns false (non-zero).

The construct until resembles while. For example, the commands:

until command!
do command2
done

execute command2 until commandl returns true (zero).

i't';~!,'r'~~~~r;1i~ti;~~,~~~~erf n1,'::~"'"i!Jtf onlt~~~~utt<?i:1:,::1,:,1 T~;;::10;e i: ~:~,~~r~!~;~(,~;~::~::~~~lrw'.f~.
The case statement resembles the if statement in that it offers a multiple choice. To illustrate, type
the following script, which lets you choose one of several ways to list the contents of a directory:

ed
a
case

esac

w dir
q

$1
1)
2)
3)

*)

in
ls -1;;
ls;;
le;;
echo unknown parameter $1;;

chmod +x dir

The words case and esac bracket the entire case statement. The effect of the command

dir 2

is equivalent to:

ls

Each choice within the case statement is indicated by a string followed by):

2)

indicates what is to be executed if argument $1 has the value 2.

The strings that select the choices may be patterns. The choice '*)' signifies that a match can be
made on any string. Notice that this resembles the use of * to substitute any file name. An
expression of the form

TUTORIALS

74 The Bourne Shell

[1-9])

in a case statement matches any digit from 1 through 9. A list of alternatives can be presented by
separating the choices with a vertical bar:

alblc) command

Each command or command list in the case choice must be terminated by a double semicolon ;;.

The shell is a command programming language that handles simple commands as well as complex
commands that can iterate as well as make decisions. Three kinds of substitution are provided to
increase the power of your commands.

For more information about the shell, see the tutorial for the shell that follows in this manual. For
more information about a given command, see its entry in the Lexicon.

Note, too, that the COHERENT system also includes the Korn shell ksh. This is a superset of the
Bourne shell described here, and has many features that you may find useful. For information
about this shell, see the Lexicon entry for ksh.

TUTORIALS

Introduction to MicroEMACS

This section introduces MicroEMACS, the interactive screen editor for COHERENT.

MicroEMACS is an interactive screen editor. An editor lets you type text into your computer, name
it, store it, and recall it later for editing. Interactive means that MicroEMACS accepts an editing
command, executes it, displays the results for you immediately. then waits for your next command.
Screen means that you can use nearly the entire screen of your terminal as a writing surface: you
can move your cursor up, down, and around your screen to create or change text, much as you
move your pen up. down, and around a piece of paper.

These features, plus the others that will be described in the course of this tutorial, make
MicroEMACS powerful yet easy to use. You can use MicroEMACS to create or change computer
programs or any type of text file.

This version of MicroEMACS was developed by Mark Williams Company from the public-domain
program written by David G. Conroy. This tutorial is based on the descriptions in his essay
MicroEMACS: Reasonable Display Editing in Little Computers. MicroEMACS is derived from the
mainframe display editor EMACS, created by Richard Stallman.

For a summary of MicroEMACS and its commands, see the entry for me in the Lexicon.

The MicroEMACS commands use control characters and meta characters. Control characters use
the control key, which is marked Control or ctrl on your keyboard. Meta characters use the escape
key, which is marked Esc.

Control works like the shift key: you hold it down while you strike the other key. This tutorial
represent it with a hyphen; for example, pressing the control key and the letter 'X' key
simultaneously will be shown as follows:

<ctrl-X>

The esc key, on the other hand, works like an ordinary character. You strike it first, then strike the
letter character you want. This tutorial does not represent the Escape codes with a hyphen; for
example, it represents escape X as:

<esc>X

lt!i1(!iflff~~~~~;~~~,::~~1~~1·0°:'S~~9JlitiJJF~~qgaiH(ea:":}t;t11":41;~fciJgf!fAC,$. ·
Now you are ready for a few simple exercises that will help you get a feel for how MicroEMACS
works.

To begin, type the following command to COHERENT:

me sample

Within a few seconds, your screen will have been cleared of writing, the cursor will be positioned in
the upper left-hand corner of the screen, and a command line will appear at the bottom of your
screen.

75

76 MicroEMACS Screen Editor

Now type the following text. If you make a mistake, just backspace over it and retype the text.
Press the carriage return or enter key after each line:

main()
{

printf("Hello, worldl\n");
}

Notice how the text appeared on the screen character by character as you typed it, much as it would
appear on a piece of paper if you were using a typewriter.

Now, type <Ctrl-X><ctrl-S>; that is, type <ctrl-X>, and then type <ctrl-S>. It does not matter
whether you type capital or lower-case letters. Notice that this message has appeared at the bottom
of your screen:

[Wrote 4 lines]

This command has permanently stored, or saved, what you typed into a file named sample.

Type the next few commands, which demonstrate some of the tasks that MicroEMACS can perform
for you. These commands will be explained in full in the sections that follow; for now, try them to
get a feel for how MicroEMACS works.

Type <eSC><. Be sure that you type a less-than symbol'<'. Notice that the cursor has returned to
the upper left-hand corner of the screen. Type <esc>F. The cursor has jumped forward by one
word, and is now on the left parenthesis.

Type <ctrl-N>. Notice that the cursor has jumped to the next line, and is now just to the right of the
left brace 'f.

Type <ctrl-A>. The cursor has jumped to the beginning of the second line of your text.

Type <ctrl-N> again. Now the cursor is at the beginning of the third line of the program, the printf
statement.

Now, type <ctrl-K>. The third line of text has disappeared, leaving an empty space. Type <ctrl-K>
again. The empty space where the third line of text had been has now disappeared.

Type <esc>>. Be sure to type a greater-than symbol'>'. The cursor has jumped to the space just
below the last line of text. Now type <ctrl-Y>. The text that you erased a moment ago has
reappeared, but in a new position on he screen.

By now, you should be feeling more at ease with typing MicroEMACS's control and escape codes.
The following sections will explain what these commands mean. For now, exit from MicroEMACS by
typing <ctrl-X><ctrl-C>, and when the message

Quit [y/n]?

appears type y and then <return>. This will return you to COHERENT.

Beginning a Document
This section practices on the file examplel.c. This file is stored in the directory /usr/src/example.
Before beginning. copy it into the current directory with this command:

cp /usr/src/sample/examplel.c •

Now, type the following command to invoke MicroEMACS:

TUTORIALS

MicroEMACS Screen Editor 77

me examplel.c

In a moment, the following text will appear on your screen:

/*
* This is a simple c program that computes the results
* of three different rates of inflation over the
* span of ten years. Use this text file to learn
* how to use MicroEMACS commands
* to make creating and editing text files quick,
* efficient and easy.
*/

#include <stdio.h>
main ()
{

int i; /* count ten years */
float wl, w2, w3; /* three inflated quantities */

}

char *msg = " %2d\t%f %f %f\n";/* printf string */
i = O;
wl 1. O;
w2 = 1.0;
w3 = 1.0;
for (i = 1; i<= 10; i++) {

wl *= 1.07; /* apply inflation */
w2 *= 1.08;
w3 *= 1.10;
printf (msg, i, wl, w2, w3);

}

When you invoke MicroEMACS, it copies that file into memory. Your cursor also moved to the
upper left-hand corner of the screen. At the bottom of the screen appears the status line, as follows:

-- Coherent MicroEMACS -- examplel.c -- File: examplel.c --

The word to the left. MicroEMACS. is the name of the editor. The word in the center, examplel.c. is
the name of the buffer that you are using. (We will describe later just what a buffer is and how you
use it.) The name to the right is the name of the text file that you are editing.

Now that you have read a text file into memory, you are ready to edit it. The first step is to learn to
move the cursor.

Try these commands for yourself as we described them. That way, you will quickly acquire a feel for
handling MicroEMACS's commands.

TUTORIALS

78 MicroEMACS Screen Editor

Moving the Cursor Forward
This first set of commands moves the cursor forward:

<ctrl-F>
<esc>F
<Ctrl-E>

Move forward one space
Move forward one word
Move to end of line

To see how these commands work. do the following: Type the forward command <ctrl-F>. As
before, it does not matter whether the letter 'F' is upper case or lower case. The cursor has moved
one space to the right. and now is over the character••• in the first line.

Type <esc>F. The cursor has moved one word to the right. and is now over the space after the word
this. MicroEMACS considers only alphanumeric characters when it moves from word to word.
Therefore, the cursor moved from under the • to the space after the word this. rather than to the
space after the•. Now type the end of line command <ctrl-E>. The cursor has jumped to the end of
the line and is now just to the right of the e of the word three.

Moving the Cursor Backwards
The following summarizes the commands for moving the cursor backwards:

<ctrl-B> Move back one space
<esc>B Move back one word
<ctrl-A> Move to beginning of line

To see how these work, first type the backward command <ctrl-B>. As you can see, the cursor has
moved one space to the left, and now is over the letter e of the word three. Type <esc>B. The
cursor has moved one word to the left and now is over the t in three. Type <esc>B again, and the
cursor will be positioned on the o in of.

Type the beginning of line command <ctrl-A>. The cursor jumps to the beginnning of the line. and
once again is resting over the • /' character in the first line.

From Line to Line

<ctrl-P>
<Ctrl-N>

Move to previous line
Move to next line

These two commands move the cursor up and down the screen. Type the next line command <ctrl­
N>. The cursor jumps to the space before the ·•· in the next line. Type the end of line command
<ctrl-E>. and the cursor moves to the end of the second line to the right of the period.

Continue to type <ctrl-N> until the cursor reaches the bottom of the screen. As you reached the
first line in your text, the cursor jumped from its position at the right of the period on the second
line to just right of the brace on the last line of the file. When you move your cursor up or down the
screen. MicroEMACS tries to keep it at the same position within each line. If the line to which you
are moving the cursor is not long enough to have a character at that position. MicroEMACS moves
the cursor to the end of the line.

Now. practice moving the cursor back up the screen. Type the previous line command <ctrl-P>.
When the cursor jumped to the previous line, it retained its position at the end of the line.
MicroEMACS remembers the cursor's position on the line. and returns the cursor there when it
jumps to a line long enough to have a character in that position.

TUTORIALS

MicroEMACS Screen Editor 79

Continue pressing <ctrl-P>. The cursor will move up the screen until it reaches the top of your text.

Repetitive Motion
Some computers repeat a command automatically if you hold down the control key and the
character key. Try holding down <ctrl-N> for a moment. and see if it repeats automatically. If it
does, that will speed moving your cursor around the screen, because you will not have to type the
same command repeatedly.

Moving Up and Down by a Screenful of Text
The next two cursor movement commands allow you to roll forward or backwards by one screenful
of text.

<ctrl-V>
<CSC>V

Move forward one screen
Move back one screen

If you are editing a file with MicroEMACS that is too big to be displayed on your screen all at once,
MicroEMACS displays the file in screen-sized portions (on most terminals. 22 lines at a time). The
view commands <ctrl-V> and <esc>Vallow you to roll up or down one screenful of text at a time.

Type <ctrl-V>. Your screen now contains only the last three lines of the file. This is because you
have rolled forward by the equivalent of one screenful of text, or 22 lines.

Now, type <esc>V. Notice that your text rolls back onto the screen, and your cursor is positioned in
the upper left-hand corner of the screen, over the character'/' in the first line.

Moving to Beginning or End of Text
These last two cursor movement commands allow you to jump immediately to the beginning or end
of your text.

<CSC><
<CSC>>

Move to beginning of text
Move to end of text

The end of text command <eSC>> moves the cursor to the end of your text. Type <esc>>. Be sure to
type a greater-than symbol '>'; this symbol may have been placed anywhere on your keyboard.
although on IBM-style keyboards it appears above the period. Your cursor has jumped to the end of
your text.

The beginning of text command <esc>< will move the cursor back to the beginning of your text.
Type <esc><. Be sure to type a less-than symbol '<'; on IBM-style keyboards it appears above the
comma. The cursor has jumped back to the upper left-hand corner of your screen.

These commands move you immediately to the beginning or the end of your text, regardless of
whether the text is one page or 20 pages long.

Saving Text and Quitting
If you do not wish to continue working at this time, you should save your text, and then quit.

It is good practice to save your text file every so often while you are working on it. If an accident
occurs. such as a power failure, you will not lose all of your work. You can save your text with the
save command <ctrl-X><ctrl-S>. Type <ctrl-X><ctrl-S> that is. first type <ctrl-X>, then type
<ctrl-S>. If you had modified this file, the following message would appear:

[Wrote 23 lines]

TUTORIALS

BO MicroEMACS Screen Editor

The text file would have been saved to your computer's disk. (MicroEMACS sends you messages
from time to time. The messages enclosed in square brackets'['')' are for your information. and do
not necessarily mean that something is wrong.) To exit from MicroEMACS, type the quit command
<ctrl-X><ctrl-C>. This will return you to COHERENT.

Now that you know how to move the cursor. you are ready to edit your text.

To return to MicroEMACS, type the command:

me examplel.c

Within a moment. example I .c will be restored to your screen.

By now. you probably have noticed that MicroEMACS is always ready to insert material into your
text. Unless you use the <ctrl> or <esc> keys. MicroEMACS assumes that whatever you type is text
and inserts it onto your screen where your cursor is positioned.

The simplest way to erase text is simply to position the cursor to the right of the text you want to
erase and backspace over it. MicroEMACS. however. also has a set of commands that allow you to
erase text easily. These commands, kill and delete. behave differently; the distinction is important.
and will be explained in a moment.

Deleting Vs. Killing
When MicroEMACS deletes text, it is erased completely and disappears forever. However, when
MicroEMACS kills text. the text is copied into a temporary storage area in memory. This storage
area is overwritten when you move the cursor and then kill additional text. Until then. however. the
killed text is saved. This aspect of killing allows you to restore text that you killed accidentally, and
it also allows you to move or copy portions of text from one position to another.

MicroEMACS is designed so that when it erases text, it does so beginning at the left edge of the
cursor. This left edge is called the current position.

You should imagine that an invisible vertical bar separates the cursor from the character
immediately to its left. As you enter the various kill and delete commands, this vertical bar moves
to the right or the left with the cursor, and erases the characters it touches.

Erasing Text to the Right
The first two commands to be presented erase text to the right.

<ctrl-D>
<esc>D

Delete one character to the right
Kill one word to the right

<ctrl-D> deletes one character to the right of the current position. <esc>D deletes one word to the
right of the current position.

To try these commands. type the delete command <ctrl-D>. MicroEMACS erases the character'/' in
the first line. and shifted the rest of the line one space to the left.

Now, type <esc>D. MicroEMACS erases the·•· character and the word This, and shifts the line six
spaces to the left. The cursor is positioned at the space before the word is. Type <esc>D again.
The word is vanishes along with the space that preceded it. and the line shifts four spaces to the
left.

TUTORIALS

MicroEMACS Screen Editor 81

Remember that <ctrl-D> deletes text, but <esc>D kills text.

Erasing Text to the Left
You can erase text to the left with the following commands:

<backspace>
<ctrl-H>

<esc>
<esc><backspace>
<esc><ctrl-H>

Delete one character to the left
Delete one character to the left
Delete one character to the left

Kill one word to the left
Kill one word to the left
Kill one word to the left

To see how to erase text to the left, first type the end of line command <ctrl-E>; this will move the
cursor to the right of the word three on the first line of text. Now, type . The second e of the
word three has vanished.

Type <esc>. The rest of the word three has disappeared, and the cursor has moved to the
second space following the word of.

Move the cursor four spaces to the left, so that it is over the letter o of the word of. Type
<esc>. The word results has vanished, along with the space that was immediately to the right
of it. AB before, these commands erased text beginning immediately to the left of the cursor. The
<eSC> command can be used to erase words throughout your text.

If you wish to erase a word to the left but preserve both spaces that are around it, position the
cursor at the space immediately to the right of the word and type <esc>. If you wish to erase a
word to the left plus the space that immediately follows it, position the cursor under the first letter
of the next word and then type <esc>.

Typing <deb deletes text, but typing <esc> kills text.

Erasing Lines of Text
Finally, the following command erases a line of text:

<Ctrl-K> Kill from cursor to end of line

This command kills a line of text, from the line beginning from immediately to the left of the cursor
to the end of the line.

To see how this works, move the cursor to the beginning of line 2. Now, strike <ctrl-K>. All of line
2 has vanished and been replaced with an empty space. Strike <ctrl-K> again. The empty space
has vanished, and the cursor is now positioned at the beginning of what used to be line 3, in the
space before • Use.

Yanking Back (Restoring) Text
The following command allows you restore material that you have killed:

<ctrl-Y> Yank back (restore) killed text

Remember that when you kill text, MicroEMACS temporarily stores it elsewhere. You can return
this material to the screen by using the yank back command <ctrl-Y>. Type <ctrl-Y>. All of line 2
has returned; the cursor, however, remains at the beginning of line 3.

TUTORIALS

82 MicroEMACS Screen Editor

Quitting
When you are finished. do not save the text. If you do so, the undamaged copy of the text that you
made earlier will be replaced with the present mangled copy. Rather. use the quit command <ctrl­
X><ctrl-C>. Type <ctrl-X><ctrl-C>. On the bottom of your screen, MicroEMACS responds:

Quit [y/n]?

Reply by typing y and a carriage return. If you type n. MicroEMACS will return you to where you
were in the text. MicroEMACS will now return you to COHERENT.

As noted above, text that is killed is stored temporarily within memory. You can yank killed text
back onto your screen. and not necessarily in the spot where it was originally killed. This feature
allows you to move text from one position to another.

Moving One Line of Text
You can kill and move one line of text with the following commands:

<ctrl-K>
<ctrl-Y>

Kill text to end of line
Yank back text

To test these commands, invoke MicroEMACS for the file examplel.c by typing the following
command:

me examplel .c

When MicroEMACS appears, the cursor will be positioned in the upper left-hand corner of the
screen.

To move the first line of text. begin by typing the kill command <ctrl-K> twice. Now, press <esc>>
to move the cursor to the bottom of text. Finally. yank back the line by typing <ctrl-Y>. The line
that reads

/* This is a simple c program that computes the results

is now at the bottom of your text.

Your cursor has moved to the point on your screen that is after the line you yanked back.

Multiple Copying of Killed Text
When text is yanked back onto your screen, it is not deleted from memory. Rather, it is simply
copied back onto the screen. This means that killed text can be reinserted into the text more than
once. To see how this is done. return to the top of the text by typing <esc><. Then type <ctrl-Y>.
The line you just killed now appears as both the first and last line of the file.

The killed text will not be erased from its temporary storage until you move the cursor and then kill
additional text. If you kill several lines or portions of lines in a row, all of the killed text will be
stored in the buffer: if you are not careful. you may yank back a jumble of accumulated text.

TUTORIALS

MicroEMACS Screen Editor 83

Kill and Move a Block of Text
If you wish to kill and move more than one line of text at a time, use the following commands:

<ctrl-@>
<esc>.
<ctrl-W>
<ctrl-Y>

Set mark
Set mark
Kill block of text
Yank back text

If you wish to kill a block of text, you can either type the kill command <ctrl-K> repeatedly to kill
the block one line at a time, or you can use the block kill command <ctrl-W>. To use this
command, you must first set a mark on the screen, an invisible character that acts as a signal to the
computer. The mark can be set with either <esc>. or <ctrl-@>.

Once the mark is set. you must move your cursor to the other end of the block of text you wish to
kill, and then strike <ctrl-W>. The block of text will be erased, and will be ready to be yanked back
elsewhere.

Try this out on examplel.c. Type <esc>< to move the cursor to the upper left-hand corner of the
screen. Then type the set mark command <ctrl-@>. (By the way, be sure to type '@', not '2'.)
MicroEMACS will respond with the message

[Mark set)

at the bottom of your screen. Now, move the cursor down six lines, and type <Ctrl-W>. Note how
the block of text you marked out has disappeared.

Move the cursor to the bottom of your text. Type <ctrl-Y>. The killed block of text has now been
reinserted.

When you yank back text, be sure to position the cursor at the exact point where you want the text
to be yanked back. This will ensure that the text will be yanked back in the proper place. To try
this out, move your cursor up six lines. Be careful that the cursor is at the beginning of the line.
Now, type <ctrl-Y> again. The text reappeared above where the cursor was positioned, and the
cursor has not moved from its position at the beginning of the line which is not what would have
happened had you positioned it in the middle or at the end of a line.

Although the text you are working with has only 23 lines, you can move much larger portions of text
using only these three commands. Remember, too, that you can use this technique to duplicate
large portions of text at several positions to save yourself considerable time in typing and reduce the
number of possible typographical errors.

The next commands perform a number of tasks to help with your editing. Before you begin this
section, destroy the old text on your screen with the quit command <ctrl-X><ctrl-C>, and read into
Micro EMACS a fresh copy of the program, as you did earlier.

Capitalization and Lowercasing
The following MicroEMACS commands automatically capitalize a word (that is, make the first letter
of a word upper case), or make an entire word upper case or lower case.

<esc>C
<esc>L
<eSC>U

Capitalize a word
Lowercase an entire word
Uppercase an entire word

TUTORIALS

84 MicroEMACS Screen Editor

To try these commands, do the following: First, move the cursor to the letter d of the word different
on line 2. Type the capitalize command <e&C>C. The word is now capitalized, and the cursor is now
positioned at the space after the word. Move the cursor forward so that it is over the letter t in
rates. Press <esc>C again. The word changes to raTes. When you press <esc>C, MicroEMACS
capitalizes thejlrst letter the cursor meets.

MicroEMACS can also change a word to all upper case or all lower case. (There is very little need for
a command that will change only the first character of an upper-case word to lower case, so it is not
included.)

Type <esc>B to move the cursor so that it is again to the left: of the word Difl'erent. It does not
matter if the cursor is directly over the D or at the space to its left: as you will see, this means that
you can capitalize or lowercase a number of words in a row without having to move the cursor.

Type the uppercase command <esc>U. The word is now spelled DIFFERENT, and the cursor has
jumped to the space after the word.

Again, move the cursor to the left of the word DIFFERENT. Type the lowercase command <esc>L.
The word has changed back to different. Now, move the cursor to the space at the beginning of line
3 by typing <ctrl-N> then <ctrl-A>. Type <esc>L once again. The character"*' is not affected by the
command, but the letter U is now lower case. <esc>L not only shifts a word that is all upper case to
lower case: it can also un-capitalize a word.

The uppercase and lowercase commands stop at the first punctuation mark they meet after the first
letter they find. This means that, for example, to change the case of a word with an apostrophe in it
you must type the appropriate command twice.

Transpose Characters
MicroEMACS allows you to reverse the position of two characters, or transpose them, with the
transpose command <ctrl-T>.

Type <ctrl-T>. MicroEMACS transposes the character that is under the cursor with the character
immediately to its left. In this example,

* use this

in line 3 now appears:

* us ethis

The space and the letter e have been transposed. Type <ctrl-T> again. The characters have
returned to their original order.

Screen Redraw

<ctrl-L> Redraw screen

Occasionally, while you are working on a text another COHERENT user will write or mail you a
message. COHERENT will write the message directly on your screen, which scrambles your screen.
A message sent from another user or a message from the COHERENT system is not recorded into
your text: however, you may wish to erase the message and continue editing. The redraw screen
command <ctrl-L> will redraw your screen to the way it was before it was scrambled.

Type <ctrl-L>. Notice how the screen flickers and the text is rewritten. Had your screen been
spoiled by extraneous material, that material would have been erased and the original text
rewritten.

TUTORIALS

MicroEMACS Screen Editor 85

The <Ctrl-L> command also has another use: it can move the line on which the cursor is positioned
to the center of the screen. If you have a file that contains more than one screenful of text and you
wish to have that particular line in the center of the screen, position the cursor on that line and type
<Ctrl-U><ctrl-L>. Immediately. MicroEMACS redraws the screen, and places the line you selected in
the center of the screen.

Return Indent

<ctrl-J> Return and indent

You may often be faced with a situation in which, for the sake of programming style, you need to
indent many lines of text: before every line you must tab the correct number of times before typing
the text. These block indents can be a time-consuming typing chore. The MicroEMACS <ctrl-J>
command makes this task easier. <ctrl-J> moves the cursor to the next line on the screen and
automatically positions the cursor at the previous line's level of indentation.

To see how this works, first move the cursor to the line that reads

w3 *= 1.10:

Press <ctrl-E>. to move the cursor to the end of the line. Now, type <ctrl-J>.

As you can see, a new line opens up and the cursor is indented the same amount as the previous
line. Type

/* Here is an example of auto-indentation */

This line of text begins directly under the previous line.

Word Wrap

<ctrl-X>F Set word wrap

Although you have not yet had much opportunity to use it, MicroEMACS will automatically wrap
text that you are typing. Word-wrapping is controlled with the word wrap command <ctrl-X>F. To
see how the word wrap command works, first exit from MicroEMACS by typing <ctrl-X><ctrl-C>;
then reinvoke MicroEMACS by typing

me cucumber

When MicroEMACS re-appears, type the following text; however, do not type any carriage returns:

A cucumber should be
well sliced, and dressed
with pepper and vinegar,
and then thrown out, as
good for nothing.

When you reached the edge of your screen, a dollar sign was printed and you were allowed to
continue typing. MicroEMACS accepted the characters you typed, but it placed them at a location
beyond the right edge of your screen.

Now, move to the beginning of the next line and type <ctrl-U>. MicroEMACS will reply with the
message:

Arg: 4

Type 30. The line at the bottom of your screen now appears as follows:

TUTORIALS

86 MicroEMACS Screen Editor

Arg1 30

(The use of the argument command <Ctrl-U> will be explained in a few minutes.) Now type the word­
wmp command <ctrl-X>F. MicroEMACS will now say at the bottom of your screen:

[Wrap at column 30)

This sequence of commands has set the word-wrap function, and told it to wrap to the next line all
words that extend beyond the 30th column on your screen.

The word wrap feature automatically moves your cursor to the beginning of the next line once you
type past a preset border on your screen. When you first enter MicroEMACS, that limit is
automatically set at the first column, which in effect means that word wrap has been turned off.

When you type prose for a report or a letter of some sort, you probably will want to set the border at
the 65th column, so that the printed text will fit neatly onto a sheet of paper. If you are using
MicroEMACS to type in a program, however, you probably will want to leave word wrap off, so you
do not accidentally introduce carriage returns into your code.

To test word wrapping, type the above text again, without using the carriage return key. When you
finish, it should appear as follows:

A cucumber should be well
sliced, and dressed with
pepper and vinegar, and then
thrown out, as good for nothing.

MicroEMACS automatically moved your cursor to the next line when you typed a space character
after the 30th column on your screen.

If you wish to fix the border at some special point on your screen but do not wish to go through the
tedium of figuring out how many columns from the left it is, simply position the cursor where you
want the border to be, type <ctrl-X>F, and then type a carriage return. When <ctrl-X>F is typed
without being preceded by a <Ctrl-U> command, it sets the word-wrap border at the point your
cursor happens to be positioned. When you do this. MicroEMACS will then print a message at the
bottom of your terminal that tells you where the word-wrap border is now set.

To re-word wrap the text between the cursor and the mark, type <Ctrl-X>B.

If you wish to turn off the word wrap feature again, simply set the word wrap border to one.

When you edit a large text, you may wish to change particular words or phrases. To do this, you
can roll through the text and read each line to find them; or you can have MicroEMACS find them
for you. Before you continue, close the present file by typing <ctrl-X> <ctrl-C>; then reinvoke the
editor to edit the file examplel.c, as you did before. The following sections perform some exercises
with this file.

Search Forward

<ctrl-S>
<e&c>S

Search forward incrementally
Search forward with prompt

As you can see from the display, MicroEMACS has two ways to search forward: incrementally, and
with a prompt.

TUTORIALS

MicroEMACS Screen Editor 87

An Incremental search is one in which the search is performed as you type the characters. To see
how this works, first type the beginning of text command <esc>< to move the cursor to the upper
left-hand corner of your screen. Now, type the Incremental search command <ctrl-S>. MicroEMACS
will respond by prompting with the message

i-search forward:

at the bottom of the screen.

We will now search for the pointer •msg. Type the letters •msg one at a time, starting with •. The
cursor has jumped to the first place that a• was found: at the second character of the first line. The
cursor moves forward in the text file and the message at the bottom of the screen changes to reflect
what you have typed.

Now type m. The cursor has jumped ahead to the letter s in •msg. Type s. The cursor has jumped
ahead to the letter gin •msg. Finally, type g. The cursor is over the space after the token •msg.
Finally, type <esc> to end the string. MicroEMACS replies with the message

[Done]

which indicates that the search is finished.

If you attempt an incremental search for a word that is not in the file, MicroEMACS will find as
many of the letters as it can, and then give you an error message. For example, if you tried to
search incrementally for the word •msgs. MicroEMACS would move the cursor to the phrase •msg;
when you typed 's', it would tell you

failing i-search forward: *msgs

With the prompt search. however. you type in the word all at once. To see how this works, type
<esc><, to return to the top of the file. Now, type the prompt search command <esc>S.
MicroEMACS responds by prompting with the message

Search [*msgs J :

at the bottom of the screen. The word •msgs is shown because that was the last word for which you
searched, and so it is kept in the search buffer.

Type in the words editing text, then press the carriage return. Notice that the cursor has jumped
to the period after the word text in the next to last line of your text. MicroEMACS searched for the
words editing text, found them, and moved the cursor to them.

If the word you were searching for was not in your text, or at least was not in the portion that lies
between your cursor and the end of the text, MicroEMACS would not have moved the cursor, and
would have displayed the message

Not found

at the bottom of your screen.

Reverse Search

<Ctrl-R>
<esc>R

Search backwards incrementally
Search backwards with prompt

The search commands, useful as they are, can only search forward through your text. To search
backwards, use the reverse search commands <ctrl-R> and <esc>R. These work exactly the same
as their forward-searching counterparts, except that they search toward the beginning of the file
rather than toward the end.

TUTORIALS

88 MicroEMACS Screen Editor

For example, type <esc>R. MicroEMACS replies with the message

Reverse search [editing text]:

at the bottom of your screen. The words in square brackets are the words you entered earlier for the
search command; MicroEMACS remembered them. If you wanted to search for editing text again,
you would just press the carriage return. For now. however. type the word program and press the
carriage return.

Notice that the cursor has jumped so that it is under the letter p of the word program in line 1.
When you search forward, the cursor moves to the space after the word for which you are searching.
whereas when you reverse search the cursor moves to the.first letter of the word for which you are
searching.

Cancel a Command

<ctrl-G> Cancel a search command

As you have noticed. the commands to move the cursor or to delete or kill text all execute
immediately. Although this speeds your editing, it also means that if you type a command by
mistake. it executes before you can stop it.

The search and reverse search commands, however, wait for you to respond to their prompts before
they execute. If you type <esc>S or <esc>R by accident. MicroEMACS will interrupt your editing
and wait for you to initate a search that you do not want to perform. You can evade this problem,
however, with the cancel command <ctrl-G>. This command tells MicroEMACS to ignore the
previous command.

To see how this command works, type <esc>R. When the prompt appears at the bottom of your
screen, type <ctrl-G>. Three things happen: your terminal beeps, the characters "G appear at the
bottom of your screen, and the cursor returns to where it was before you first typed <esc>R. The
<esc>R command has been cancelled, and you are free to continue editing.

If you cancel an Incremental search command, <ctrl-S> or <esc-S>. the cursor returns to where it
was before you began the search. For example. type <esc>< to return to the top of the file. Now
type <ctrl-S> to begin an incremental search. and type m. When the cursor moves to the m in
simple. type <ctrl-G>. The bell rings. and your cursor returns to the top of the file. where you began
the search.

Search and Replace

<esc>% Search and replace

MicroEMACS also gives you a powerful function that allows you to search for a string and replace it
with a keystroke. You can do this by executing the search and replace command <esc>%.

To see how this works, move to the top of the text file by typing <esc><; then type <esc>%. You will
see the following message at the bottom of your screen:

Old string:

As an exercise, type msg. MicroEMACS will then ask:

New string:

Type message, and press the carriage return. As you can see, the cursor jumps to the first
occurrence of the string msg. and prints the following message at the bottom of your screen:

TUTORIALS

MicroEMACS Screen Editor 89

Query replace: [msg] -> [message]

MicroEMACS is asking if it should proceed with the replacement. Type a carriage return: this
displays the options that are available to you at the bottom of your screen:

<SP>[,] replace, [.] rep-end, [n] dont, (!] repl rest <C-G> quit

The options are as follows:

Typing a space or a comma executes the replacement. and moves the cursor to the next occurrence
of the old string; in this case. it replaces msg with message. and moves the cursor to the next
occurrence of msg.

Typing a period '.' replaces this one occurrence of the old string and ends the search and replace
procedure. In this example. typing a period replaces this one occurrence of msg with message and
ends the procedure.

Typing the letter 'n' tells MicroEMACS not to replace this instance of the old string. but move to the
next occurrence of the old string. In this case. typing 'n' does not replace msg with message. and
the cursor jumps to the next place where msg occurs.

Typing an exclamation point '!' tells MicroEMACS to replace all instances of the old string with the
new string automatically. without checking with you any further. In this example. typing'!' replaces
all instances of msg with message without further queries from MicroEMACS.

Finally. typing <ctrl-G> aborts the search and replace procedure.

This set of basic editing commands allows you to save your text and exit from the MicroEMACS
program. They are as follows:

<ctrl-X><ctrl-S> Save text
<Ctrl-X><ctrl-W>

<ctrl-Z>
<ctrl-X><ctrl-C>

Write text to a new file

Save text and exit
Exit without saving text

You have used two of these commands already: the save command <ctrl-X><ctrl-S> and the quit
command <ctrl-X><ctrl-C>. which respectively allow you to save text or to exit from Micro EMACS
without saving text. (Commands that begin with <ctrl-X> are called extended commands; they are
used frequently in the commands described later in this tutorial.)

Write Text to a New File

<ctrl-X> <ctrl-W> Write text to a new file

If you wish, you can copy the text you are currently editing to a text file other than the one from
which you originally read the text. Do this with the write command <ctrl-X><ctrl-W>.

To test this command. type <ctrl-X><ctrl-W>. MicroEMACS displays the following message on the
bottom of your screen:

Write file:

MicroEMACS is asking for the name of the file into which you wish to write the text. Type sample.
MicroEMACS replies:

TUTORIALS

90 MicroEMACS Screen Editor

[Wrote 23 lines]

The 23 lines of your text have been copied to a new file called sample. The status line at the bottom
of your screen has changed to read as follows:

-- MicroEMACS -- examplel.c -- File1 sample --------------

The significance of the change in file name will be discussed in the second half of this tutorial.

Before you copy text into a new file, be sure that you have not selected a file name that is already
being used. If you do, MicroEMACS will erase whatever is stored under that file name, and the text
created with MicroEMACS will be stored in its place.

Save Text and Exit
Finally, the store command <ctrl-Z> will save your text and move you out of the MicroEMACS
editor. To see how this works, watch the bottom line of your terminal carefully and type <ctrl-Z>.
MicroEMACS has saved your text, and now you can issue commands directly to COHERENT.

The second half of this tutorial introduces the advanced features of MicroEMACS.

The techniques described here will help you execute complex editing tasks with minimal trouble.
You will be able to edit more than one text at a time, display more than one file on your screen at a
time, enter a long or complicated phrase repeatedly with only one keystroke, and give commands to
COHERENT without having to exit from MicroEMACS.

Before beginning, however, you must prepare a new text file. Type the following command to
COHERENT:

me example2.c

In a moment, example2.c will appear on your screen, as follows:

TUTORIALS

MicroEMACS Screen Editor 91

/* Use this program to get better acquainted
* with the MicroEMACS interactive screen editor.
* You can use this text to learn some of the
* more advanced editing features of MicroEMACS.
*/

#include <stdio.h>
main()
{

}

FILE *fp;
int ch;
int filename[20];

printf ("Enter file name: ");
gets (filename) ;

if ((fp =fopen(filename, "r")) !=NULL) {
while ((ch= fgetc(fp)) != EOF)

fputc(ch, stdout);
} else

printf("Cannot open %s.\n", filename);
fclose (fp) ;

Most of the commands already described in this tutorial can be used with arguments. An argument
is a subcommand that tells MicroEMACS to execute a command a given number of times. With
MicroEMACS. arguments are introduced by typing <ctrl-U>.

Arguments: Default Values
By itself, <ctrl-U> sets the argument atjour. To illustrate this, first type the next line command
<ctrl-N>. By itself. this command moves the cursor down one line. from being over the '/' at the
beginning of line 1. to being over the space at the beginning of line 2.

Now. type <ctrl-U>. MicroEMACS replies with the message:

Arg: 4

Now type <ctrl-N>. The cursor jumps downjour lines, from the beginning of line 2 to the letter m
of the word main at the beginning of line 6.

Type <ctrl-U>. The line at the bottom of the screen again shows that the value of the argument is
four. Type <Ctrl-U> again. Now the line at the bottom of the screen reads:

Arg: 16

Type <Ctrl-U> once more. The line at the bottom of the screen now reads:

Arg: 64

Each time you type <ctrl-U>, the value of the argument is multiplied by four. Type thejorward
command <ctrl-F>. The cursor has jumped ahead 64 characters. and is now over the i of the word
me in the prlnif statement in line 11.

TUTORIALS

92 MicroEMACS Screen Editor

Selecting Values
Naturally. an argument does not have to be a power of four. You can set the argument to whatever
number you wish. simply by typing <ctrl-U> and then typing the number you want.

For example, type <ctrl-U>. and then type 3. The line at the bottom of the screen now reads:

Arg: 3

Type the delete command <esc>D. MicroEMACS has deleted three words to the right.

You can use arguments to increase the power of any cursor movement command. or any kill or
delete command. The sole exception is <ctrl-W>. the block kill command.

Deleting With Arguments: An Exception
Killing and deleting were described in the first part of this tutorial. They were said to differ in that
text that was killed was stored in a special area of the computer and could be yanked back. whereas
text that was deleted was erased outright. However. there is one exception to this rule: any text that
is deleted using an argument can also be yanked back.

To see how this works, first type the begin text command <esc>< to move the cursor to the upper
left-hand corner of the screen. Then, type <ctrl-U> 5 <ctrl-D>. The word Use has disappeared.
Move the cursor to the right until it is between the words better and acquainted, then type <ctrl­
Y>. The word Use has been moved within the line (although the spaces around it have not been
moved). This function is very handy. and should greatly speed your editing.

Remember. too, that unless you move the cursor between one set of deletions and another, the
computer's storage area will not be erased, and you may yank back a jumble of text.

Before beginning this section. replace the edited copy of the text on your screen with a fresh copy.
Type the quit command <ctrl-X><ctrl-C> to exit from MicroEMACS without saving the text; then
return to MicroEMACS to edit the file example2.c, as you did earlier.

Now, look at the status line at the bottom of your screen. It should appear as follows: As noted in
the first half of this tutorial. the name on the left of the command line is that of the program. The
name in the middle is the name of the buff er with which you are now working. and the name to the
right is the name of the.file from which you read the text.

Definitions
A.file is a mass of text that has been given a name and has been permanently stored on your disk.
A buffer is a portion of the computer's memory that has been set aside for you to use. which may be
given a name, and into which you can put text temporarily. You can place text into the buffer either
by typing it at your keyboard or by copying it from a file.

Unlike a file. a buffer is not permanent: if your computer were to stop working (because you turned
the power off, for example), a file would not be affected, but a buffer would be erased.

You must name your files because you work with many different files. and you must have some way
to tell them apart. Likewise, MicroEMACS allows you to name your buffers, because MicroEMACS
allows you to work with more than one buffer at a time.

TUTORIALS

MicroEMACS Screen Editor 93

File and Buffer Commands
MicroEMACS gtves you a number of commands for handling files and buffers. These include the
following:

<ctrl-X><ctrl-W>
<ctrl-X><ctrl-F>

<ctrl-X><ctrl-R>
<ctrl-X><ctrl-V>

<ctrl-X>K
<ctrl-X><ctrl-B>

Write and Rename Commands

Write text to file
Rename file

Replace buffer with named file
Switch buffer or create a new buffer

Delete a buffer
Display the status of each buffer

The write command <ctrl-X><ctrl-W> was introduced earlier when the commands for saving text
and exiting were discussed. To review, <ctrl-X><Ctrl-W> changes the name of the file into which
the text is saved, and then copies the text into that file.

Type <Ctrl-X><Ctrl-W>. MicroEMACS responds by printing

Write file:

on the last line of your screen.

Type junkfile, then <return>. Two things happen: First, MicroEMACS writes the message

[Wrote 21 lines]

at the bottom of your screen. Second, the name of the file shown on the status line changes from
example2.c to junktlle. MicroEMACS is reminding you that your text is now being saved into the
file junkflle.

The.file rename command <ctrl-X><ctrl-F> allows you rename the file to which you are saving text,
without automatically writing the text to it. Type <ctrl-X><ctrl-F>. MicroEMACS will reply with the
prompt:

Name:

Type example2.c and <return>. MicroEMACS does not send you a message that lines were written
to the file; however, the name of the file shown on the status line has changed fromjunkflle back to
example2.c.

Replace Text in a Buffer
The replace command <ctrl-X><ctrl-R> allows you to replace the text in your buffer with the text
from another file.

Suppose, for example, that you had edited example2.c and saved it, and now wished to edit
examplel.c. You could exit from MicroEMACS. then re-invoke MicroEMACS for the file
example2.c, but this is cumbersome. A more efficient way is to simply replace the example2.c in
your buffer with examplel.c.

Type <ctrl-X><ctrl-R>. MicroEMACS replies with the prompt:

Read file:

TUTORIALS

94 MicroEMACS Screen Editor

Type examplel.c. Notice that example2.c has rolled away and been replaced with examplel.c.
Now, check the status line. Notice that although the name of the buffer is still example2.c, the
name of the file has changed to examplel.c. You can now edit examplel.c; when you save the
edited text, MicroEMACS will copy it back into the file examplel.c unless. of course, you again
choose to rename the file.

Visiting Another Buffer
The last command of this set. the visit command <ctrl-X><ctrl-V>. allows you to create more than
one buffer at a time. to jump from one buffer to another. and move text between buffers. This
powerful command has numerous features.

Before beginning. however, straighten up your buffer by replacing examplel.c with example2.c.
Type the replace command <ctrl-X><ctrl-R>; when MicroEMACS replies by asking

Read file:

at the bottom of your screen. type example2.c.

You should now have the file example2.c read into the buffer named example2.c.

Now. type the visit command <ctrl-X><ctrl-V>. MicroEMACS replies with the prompt

Visit file:

at the bottom of the screen. Now type examplel.c. Several things happen. example2.c rolls off
the screen and is replaced with example I .c; the status line changes to show that both the buffer
name and the file name are now examplel.c; and the message

[Read 23 lines]

appears at the bottom of the screen.

This does not mean that your previous buffer has been erased, as it would have been had you used
the replace command <ctrl-X><ctrl-R>. MicroEMACS is still keeping example2.c "alive" in a buffer
and it is available for editing; however, it is not being shown on your screen at the present moment.

Type <ctrl-X><ctrl-V> again. and when the prompt appears, type example2.c. examplel.c scrolls
off your screen and is replaced by example2.c. and the message

[Old buffer]

appears at the bottom of your screen. You have just jumped from one buffer to another.

Move Text From One Buffer to Another
The visit command <ctrl-X><ctrl-V> not only allows you to jump from one buffer to another: it
allows you to move text from one buffer to another as well. The following example shows how you
can do this.

First. kill the first line of example2.c by typing the kill command <ctrl-K> twice. This removes both
the line of text and the space that it occupied. If you did not remove the space as well the line itself.
no new line would be created for the text when you yank it back. Next, type <Ctrl-X><ctrl-V>.
When the prompt

Visit file:

appears at the bottom of your screen, type examplel.c. When examplel.c has rolled onto your
screen. type the yank back command <ctrl-Y>. The line you killed in example2.c has now been
moved into examplel.c.

TUTORIALS

MicroEMACS Screen Editor 95

Checking Buffer Status
The number of buffers you can use at any one time is limited only by the size of your computer.
You should create only as many buffers as you need to use immediately; this will help the computer
run efficiently.

To help you keep track of your buffers, MicroEMACS has the bt![fer status command <ctrl-X><ctrl­
B>. Type <ctrl-X><ctrl-B>. The status line moves up to the middle of the screen, and the bottom
half of your screen is replaced with the following display:

c

*
*

Size Lines

655
403

24
20

Buff er

examplel.c
example2.c

File

examplel.c
example2.c

This display is called the bt![fer status window. The use of windows will be discussed more fully in
the following section.

The letter C over the leftmost column stands for Changed. An asterisk indicates that that buffer
has been changed since it was last saved, whereas a space means that the buffer has not been
changed. Size indicates the buffer's size. in number of characters; Buffer lists the buffer name. and
File lists the file name.

Now. kill the second line of examplel.c by typing the kill command <ctrl-K>. Then type <ctrl­
X><ctrl-B> once again. The size of the buffer examplel.c shrinks from 657 characters to 595 to
reflect the decrease in the size of the buffer.

To make this display disappear, type the one window command <ctrl-X>l. This command will be
discussed in full in the next section.

Renaming a Buffer
One more point must be covered with the visit command. COHERENT does not allow you to have
more than one file with the same name. For the same reason. MicroEMACS does not allow you to
have more than one buff er with the same name.

Ordinarily. when you visit a file that is not already in a buffer. MicroEMACS creates a new buffer
and gives it the same name as the file you are visiting. However. if for some reason you already have
a buffer with the same name as the file you wish to visit. MicroEMACS stops and asks you to give a
new, different name to the buffer it is creating.

For example, suppose that you wanted to visit a new file named sample. but you already had a
buffer named sample. MicroEMACS would stop and give you this prompt at the bottom of the
screen:

Buffer name1

You would type in a name for this new buffer. This name could not duplicate the name of any
existing buffer. MicroEMACS would then read the file sample into the newly named buffer.

Delete a Buffer
If you wish to delete a buffer. simply type the delete buffer command <ctrl-X>K. This command
allows you to delete only a buffer that is hidden. not one that is being displayed.

TUTORIALS

96 MicroEMACS Screen Editor

Type <ctrl-X>K. MicroEMACS will give you the prompt:

Kill bufferi

Type example2.c. Because you have changed the buffer. MicroEMACS asks:

Discard changes [y/n]?

Type y. Now, type the buffer status command <ctrl-X><ctrl-B>. The buffer status window no
longer shows the buffer example2.c. Although the prompt refers to killing a buffer, the buffer is in
fact deleted and cannot be yanked back.

Before beginning this section, it will be necessary to create a new text file. Exit from MicroEMACS
by typing the quit command <ctrl-X><ctrl-C>: then reinvoke MicroEMACS for the text file
examplel.c as you did earlier.

Now, copy example2.c into a buffer by typing the visit command <ctrl-X><ctrl-V>. When the
message

Visit file1

appears at the bottom of your screen, type example2.c. MicroEMACS reads example2.c into a
buffer, and shows the message

[Read 21 lines]

at the bottom of your screen.

Finally, copy a new text, called example3.c, into a buffer. (You can find it in the same place where
the files examplel.c and example2.c are kept.) Type <ctrl-X><ctrl-V> again. When MicroEMACS
asks which file to visit, type example3.c. The message

[Read 123 lines]

appears at the bottom of your screen.

The first screenful of text appears as follows:

/*
* Factor prints out the prime factorization of numbers.
* If there are any arguments, then it factors these. If
* there are no arguments, then it reads stdin until
* either EOF or the number zero or a non-numeric
* non-white-space character. Since factor does all of
* its calculations in double format, the largest number
* which can be handled is quite large.
*/

#include <stdio.h>
#include <math.h>
#include <ctype.h>

#define NUL '\0'
#define ERROR OxlO /* largest input base */
#define MAXNUM 200 /* max number of chars in number */

TUTORIALS

MicroEMACS Screen Editor 97

main(argc, argv)
int argc;
register char *argv[];

-- MicroEMACS -- example3.c -- File: example3.c --------------

At this point. example3.c is on your screen. and examplel.c and example2.c are hidden.

You could edit first one text and then another, while remembering just how things stood with the
texts that were hidden; but it would be much easier if you could display all three texts on your
screen simultaneously. MicroEMACS allows you to do just that by using windows.

Creating Windows and Moving Between Them
A window is a portion of your screen that can be manipulated independent of the rest of the screen.
The following commands let you create windows and move between them:

<ctrl-X>2
<Ctrl-X>l

<ctrl-X>N
<ctrl-X>P

Create a window
Delete extra windows

Move to next window
Move to previous window

The best way to grasp how a window works is to create one and work with it. To begin. type the
create a window command <ctrl-X>2.

Your screen is now divided into two parts, an upper and a lower. The same text is in each part. and
the command lines give example3.c for the buffer and file names. Also, note that you still have only
one cursor, which is in the upper left-hand comer of the screen.

The next step is to move from one window to another. Type the next window command <ctrl-X>N.
Your cursor has now jumped to the upper left-hand corner of the lower window.

Type the previous window command <ctrl-X>P. Your cursor has returned to the upper left-hand
corner of the top window.

Now, type <ctrl-X>2 again. The window on the top of your screen is now divided into two windows,
for a total of three on your screen. Type <ctrl-X>2 again. The window at the top of your screen has
again divided into two windows. for a total of four.

It is possible to have as many as 11 windows on your screen at one time. although each window will
show only the control line and one or two lines of text. Neither <ctrl-X>2 nor <ctrl-X>l can be
used with arguments.

Now. type the one window command <ctrl-X>l. All of the extra windows have been eliminated. or
closed.

Enlarging and Shrinking Windows
When MicroEMACS creates a window. it divides into half the window in which the cursor is
positioned. You do not have to leave the windows at the size MicroEMACS creates them. however.
If you wish. you may adjust the relative size of each window on your screen. using the enlarge
window and shrink window commands:

<ctrl-X>Z
<ctrl-X><ctrl-Z>

Enlarge window
Shrink window

To see how these work. first type <ctrl-X>2 twice. Your screen is now divided into three windows:

TUTORIALS

98 MicroEMACS Screen Editor

two in the top half of your screen, and the third in the bottom half.

Now. type the enlarge window command <ctrl-X>Z. The window at the top of your screen is now
one line bigger: it has borrowed a line from the window below it. Type <ctrl-X>Z again. Once again.
the top window has borrowed a line from the middle window.

Now, type the next window command <ctrl-X>N to move your cursor into the middle window.
Again. type the enlarge window command <Ctrl-X>Z. The middle window has borrowed a line from
the bottom window, and is now one line larger.

The enlarge window command <ctrl-X>Z allows you to enlarge the window your cursor is in by
borrowing lines from another window, provided that you do not shrink that other window out of
existence. Every window must have at least two lines in it: one command line and one line of text.

The shrink window command <ctrl-X><ctrl-Z> allows you to decrease the size of a window. Type
<ctrl-X><ctrl-Z>. The present window is now one line smaller, and the lower window is one line
larger because the line borrowed earlier has been returned.

The enlarge window and shrink window commands can also be used with arguments introduced
with <ctrl-U>. However. remember that MicroEMACS will not accept an argument that would
shrink another window out of existence.

Displaying Text Within a Window
Displaying text within the limited area of a window can present special problems. The view
commands <ctrl-V> and <esc>V roll window-sized portions of text up or down. but you may become
disoriented when a window shows only four or five lines of text at a time. Therefore. three special
commands are available for displaying text within a window:

<ctrl-X><ctrl-N> Scroll down
<ctrl-X><ctrl-P> Scroll up

<esc>! Move within window

Two commands allow you to move your text by one line at a time, or scroll it: the scroll up command
<Ctrl-X><ctrl-N>. and the scroll down command <Ctrl-X><ctrl-P>.

Type <Ctrl-X><ctrl-N>. The line at the top of your window has vanished, a new line has appeared at
the bottom of your window, and the cursor is now at the beginning of what had been the second line
of your window.

Now type <ctrl-X><ctrl-P>. The line at the top that had vanished earlier has now returned, the
cursor is at the beginning of it. and the line at the bottom of the window has vanished. These
commands allow you to move forward in your text slowly so that you do not become disoriented.

Both of these commands can be used with arguments introduced by <ctrl-U>.

The third special movement command is the move within window command <esc>!. This command
moves the line your cursor is on to the top of the window.

To try this out, move the cursor down three lines by typing <ctrl-U>3<ctrl-N>; now type <esc>!. (Be
sure to type an exclamation point '!', not a numeral one 'l', or nothing will happen.) The line to
which you had moved the cursor is now the first line in the window, and three new lines have
scrolled up from the bottom of the window. You will find this command to be very useful as you
become more experienced at using windows.

All three special movement commands can also be used when your screen has no extra windows,
although you will not need them as much.

TUTORIALS

MicroEMACS Screen Editor 99

One Buffer
Now that you have been introduced to the commands for manipulating windows, you can begin to
use windows to speed your editing.

To begin with. scroll up the window you are in until you reach the top line of your text. You can do
this either by typing the scroll up command <ctrl-X><ctrl-P> several times, or by typing <esc><.

Kill the first line of text with the kill command <ctrl-K>. The first line of text has vanished from all
three windows. Now, type <ctrl-Y> to yank back the text you just killed. The line has reappeared in
all three windows.

The main advantage to displaying one buffer with more than one window is that each window can
display a different portion of the text. This can be quite helpful if you are editing or moving a large
text.

To demonstrate this, do the following: First, move to the end of the text in your present window by
typing the end of text command <esc>>. then typing the previous line command <ctrl-P> four times.
Now, kill the last four lines.

You could move the killed lines to the beginning of your text by typing the beginning of text
command <esc><; however, it is more convenient simply to type the next window command <ctrl­
X>N, which moves you to the beginning of the text as displayed in the next window. MicroEMACS
remembers a different cursor position for each window.

Now yank back the four killed lines by typing <ctrl-Y>. You can simultaneously observe that the
lines have been removed from the end of your text and that they have been restored at the
beginning.

Multiple Buffers
Windows are especially helpful when they display more than one text. Remember that at present
you are working with three buffers, named examplel.c, example2.c. and example3.c, although
your screen is displaying only the text example3.c. To display a different text in a window, use the
switch btiffer command <ctrl-X>B.

Type <ctrl-X>B. When MicroEMACS asks

Use buffer:

at the bottom of the screen, type examplel.c. The text in your present window is replaced with
examplel.c. The command line in that window changes, too, to reflect the fact that the buffer and
the file names are now examplel.c.

Moving and Copying Text Among Buffers
It is now very easy to copy text among buffers. To see how this is done. first kill the first line of
examplel.c by typing the <ctrl-K> command twice. Yank back the line immediately by typing
<ctrl-Y>. Remember, the line you killed has not been erased from its special storage area, and may
be yanked back any number of times.

Now, move to the previous window by typing <ctrl-X>P. then yank back the killed line by typing
<ctrl-Y>. This technique can also be used with the block kill command <ctrl-W> to move large
amounts of text from one buffer to another.

TUTORIALS

100 MicroEMACS Screen Editor

Checking Buffer Status
The b4ffer status command <Ctrl-X><ctrl-B> can be used when you are already displaying more
than one window on your screen.

When you want to remove the buffer status window, use either the one window command <ctrl­
X>l, or move your cursor into the buffer status window using the next window command <ctrl-X>N
and replace it with another buffer by typing the switch b4ffer command <ctrl-X>B.

Saving Text From Windows
The final step is to save the text from your windows and buffers. Close the lower two windows with
the one window command <Ctrl-X>l. Remember, when you close a window, the text that it
displayed is still kept in a buffer that is hidden from your screen. For now, do not save any of these
altered texts.

When you use the save command <Ctrl-X><Ctrl-S>, only the text in the window in which the
cursor is positioned is written to its file. If only one window is displayed on the screen, the save
command will save only its text.

If you made changes to the text in another buffer, such as moving portions of it to another buffer,
MicroEMACS would ask

Quit [y/n]:

If you answer 'n', MicroEMACS will save the contents of the buffer you are currently displaying by
writing them to your disk, but it will ignore the contents of other buffers. and your cursor will be
returned to its previous position in the text. If you answer 'y', MicroEMACS again will save the
contents of the current buffer and ignore the other buffers. but you will exit from MicroEMACS and
return to Exit from MicroEMACS by typing the quit command <ctrl-X><Ctrl-C>.

A keyboard macro is a set of MicroEMACS commands that are stored in memory and given a name.
After you create a keyboard macro, you can execute it again and again just by typing its name. If
you are revising a big file, you will find that keyboard macros are one of the most useful features in
Micro EMACS, and one that you will use often.

The following table summarizes MicroEMACS's keyboard-macro commands:

<Ctrl-X>(
<ctrl-X>)
<ctrl-X>E

<ctrl-X>M
<Ctrl-X>I

Creating a Keyboard Macro

Open a keyboard macro
Close a keyboard macro
Execute a keyboard macro

Rename a keyboard macro
Bind current macro as initialization macro

To begin to create a macro, type the begin macro command <ctrl-X>(. Be sure to type an open
parenthesis'(', not a numeral '9'. MicroEMACS will reply with the message

[Start macro]

Type the following phrase:

TUTORIALS

MicroEMACS Screen Editor 101

MAXNUM

Then type the end macro command <ctrl-X>). Be sure you type a close parenthesis ')', not a
numeral ·o·. MicroEMACS will reply with the message

[End macro]

Move your cursor down two lines and execute the macro by typing the execute macro command
<ctrl-X>E. The phrase you typed into the macro has been inserted into your text.

If you give these commands in the wrong order, MicroEMACS warns you that you are making a
mistake. For example, if you open a keyboard macro by typing <ctrl-X>(, and then attempt to open
another keyboard macro by again typing <ctrl-X>(, MicroEMACS will say:

Not now

Should you accidentally open a keyboard macro. or enter the wrong commands into it. you can
cancel the entire macro simply by typing <ctrl-G>.

Execute a Macro Repeatedly
As with most MicroEMACS commands. you can use a keyboard macro with an argument to execute
it repeatedly. For example, if you have defined a keyboard macro. then typing

<ctrl-U><ctrl-X>E

executes that macro four times. (Remember, four is the default value for <ctrl-U>.)

As described above, <ctrl-U> normally is used with a positive number. to indicate how often
MicroEMACS should execute a given command or macro. With keyboard macros. however. you can
use a special value for <ctrl-U>: -1. This tells MicroEMACS to repeatedly execute a keyboard macro
until it fails.

For example, consider that you define the following keyboard macro:

<ctrl-S> foo <ctrl-K>

This macro searches for the string "foo", then kills the rest of line that that string is on. Now, when
you type the command

<ctrl-U> -1 <ctrl-X>E

executes this macro until MicroEMACS can no longer find the string "foo"; it then quits.

Obviously. you should define your macro carefully before you execute it with this -1 option to <ctrl­
U>: otherwise, you can commit tremendous mayhem on your file with one keystroke.

Replacing a Macro
To replace this macro with another, go through the same process. Type <ctrl-X>(. Then type the
bt![fer status command <ctrl-X><ctrl-B>, and type <ctrl-X>). Remove the buffer status window by
typing the one window command <ctrl-X>l.

Now execute your keyboard macro by typing the execute macro command <ctrl-X>E. The bt![fer
status command has executed once more.

TUTORIALS

102 MicroEMACS Screen Editor

Renaming a Macro
Many times during a long editing session, you will find that you use one keyboard macro, then use a
second keyboard macro, then find that you need the first macro again. In previous releases of
MicroEMACS, the only way to do this work was to type the first macro, replace it with the second
macro, then retype the first macro when you need it again. The present edition of MicroEMACS.
however, lets you define any number of keyboard macros, and save them by giving each one a
unique "name" that is, its own unique keyboard binding.

To rename a keyboard macro that you have already created. use the rename macro command <ctrl­
X>M. To see how this works. do the following: (1) Type <ctl-X>(to open the keyboard macro. (2)
Now, type <esc>s xyz <ctrl-U> <Ctrl-D> to fill the macro with something. (3) Finally, type <ctrl-X>)
to close the macro.

Now, type <ctrl-X>M, to rename the macro. MicroEMACS will reply with the prompt:

enter keybinding for macro

Type <esc>L. This tells MicroEMACS to take the keyboard macro you created and link it to the
keystrokes <esc>L.

Now, whenever you type <esc>L, MicroEMACS will execute <esc>s xyz <ctrl-U> <ctrl-D>. You can
now define another keyboard macro without wiping out the one you have renamed. There is no
theoretical limit to the number of keyboard macros you can create, although there are practical
limits imposed by the amount of memory available to MicroEMACS.

Renaming Macros: A Few Caveats
Please note that if you name a keyboard macro with a keystroke that is already defined,
MicroEMACS will no longer be able to access that keystroke's functionality.

For example. if instead of naming your new macro <esc>L you named it <ctrl-A>, then every time
you typed <ctrl-A> MicroEMACS would execute <esc>S xyz <ctrl-U> <ctrl-D> and you would no
longer be able to jump to the beginning of a line (which <ctrl-A> normally does).

The only exceptions are <ctrl-X>. <esc>, and the <ctrl-X>R command (described below). which
MicroEMACS will not let you reassign. Obviously. you should be very careful when you assign a
name to a keyboard macro. or you could easily clobber much of the editor's functionality.

Note, too. that MicroEMACS lets you define reflexive keybindings, but these never work. For
example, if you named the above example macro <ctrl-D> instead of <esc>L, then every time you
typed <ctrl-D> MicroEMACS would try to execute a macro that included <Ctrl-D> in it. Obviously.
this can tie MicroEMACS into knots in no time. Again, please be very careful when you assign
names to keyboard macros.

The commands <ctrl-X>S and <ctrl-X>L let you save all named keyboard macros into a me, and
restore them during a later editing session. These commands are described in the next section.

Setting the Initialization Macro
MicroEMACS allows one macro to be specified which will be executed every time MicroEMACS is
invoked. This "initialization macro" can be set using the key sequence <ctrl-X>I and causes
MicroEMACS to "bind" the currently defined macro to the initialization macro.

TUTORIALS

MicroEMACS Screen Editor 103

As you have noticed by now, MicroEMACS works through standard key bindings: that is, one
keystroke or combination of keystrokes tells MicroEMACS to perform a particular task. For
example, typing <ctrl-A> tells MicroEMACS to move the cursor to the beginning of the line; typing
<ctrl-E> tells Micro EMACS to move the cursor to the end of the line; and so on.

MicroEMACS allows you to change its key bindings, so you can bind a given keystroke or
combination of keystrokes to a task other than the default one documented in this tutorial. In this
way, you can reconfigure MicroEMACS so that it resembles another editor with which you are more
familiar.

To perform this magic. MicroEMACS uses two tables for keybindings: a default table that is loaded
at compile time and never changes, and a dynamic table that you can modify with MicroEMACS's
keybinding commands.

The following table summarizes MicroEMACS's commands for flexible keybindings:

<ctrl-X>R Replace one binding with another
<ctrl-X>X Rebind prefix keys

<Ctrl-X>S
<Ctrl-X>L

Changing a Keybinding

Save flexible bindings and macros into file
Load flexible bindings and macros from file

The replace binding command <ctrl-X>R replaces one binding with another. For example, if you
wished to replace the beginning of line command <ctrl-A> with <esc>Z, you would do the following:

1. Type <Ctrl-X>R to invoke the rebinding command.

2. When you see the prompt

Enter old keybinding

type the keybinding you wish to change in this case, <ctrl-A>.

3 When you then see the prompt

Enter new keybinding

type the keybinding to which you wish to change it in this case, <esc>Z.

Note that you cannot rebind the command <ctrl-X>R itself; otherwise, you would paint yourself into
a corner. Also, note that if you rebind a command to itself (that is, if you type the same keybinding
in response to both prompts), then that keybinding is bound to the old meaning of the keybindings,
should there be any.

Rebinding Metakeys
MicroEMACS's keybindings depend on several pre-defined metakeys. A metakey is a keystroke that
introduces a further set of commands. MicroEMACS's default keybindings use two metakeys: <ctrl­
X> and <esc>. Other editors use other keystrokes as metakeys. If you wish to rebind a metakey,
use the rebind metakey command <ctrl-X>X. This command prompts you to bind up to three
metakeys, and the argument key <ctrl-U>.

TUTORIALS

104 MicroEMACS Screen Editor

For example, suppose that you wish to change the metakey <ctrl-X> to <ctrl-Q>. To begin, type the
command <ctrl-X>X. You will see the prompt

Enter pref ix character 1 or space

"Prefix character l" is <ctrl-X> in the default bindings. Type <ctrl-Q>. You will then see the
prompt:

Enter pref ix character 2 or space

"Prefix character 2" is <esc> in the default bindings. Since you do not want to change it. type
<Space>. You will then see the prompt:

Enter pref ix character 3 or space

There is no "prefix character 3" in the default bindings, but you can set a third one for your
keybindings if you wish. Since (for the sake of this example) you do not wish to set one, type
<space>. Finally, you will see the prompt:

Enter repeat code or space

The "repeat code" executes a command repeatedly; in this tutorial, it is often called the "argument
key" or "argument command". Since (in this example) you do not wish to change it. type <space>.

Now that you have reset the <ctrl-X> metakey, you must now type <ctrl-Q> every time in place of
<ctrl-X> throughout all of the MicroEMACS commands. For example, if you wished to change the
metakey back from <ctrl-Q> to <ctrl-X>. you would have to type <ctrl-Q>X to invoke the rebind
metakey command.

Note that because <ctrl-Q> already is bound in the MicroEMACS keybindings, when you rebind it
the command to which it was bound is no longer available to you. However. if you un-rebind the
key, then it automatically is rebound to its old command. In the above example, <ctrl-Q> is bound
to the insert literal character command. which lets you insert control characters into your file. When
you rebound the <ctrl-X> metakey to <ctrl-Q>, then the insert literal character command was no
longer available to you. However, when you re-rebound the <ctrl-Q> metakey to <ctrl-X>, then
<Ctrl-Q> was automatically rebound to the insert literal character command.

Save and Restore Keybindings
MicroEMACS lets you save your rebound keybindings into a file, and reload them during another
editing session. To save your keybindings into a file, type the save keybindings command <ctrl­
X>S. Try it. You will see the prompt:

Store bindings file:

Type the name of a file. MicroEMACS then writes its keybindings into that file. Note that this
command also saves all named keyboard macros that you have created.

To restore a set of keybindings. use the restore keybindlngs command <ctrl-X>L. Try it. You will
see the prompt:

Load bindings file:

Type the name of the find in which you saved the system's keybindings and all named keyboard
macros. MicroEMACS will then load them into memory foryou.

These commands let you prepare several sets of customized keybindings and macros. You can
customize keybindings to suit your preference, or create custom sets of macros to suit any number
of specialized editing tasks.

TUTORIALS

MicroEMACS Screen Editor 105

By default. MicroEMACS checks for the existence of file $HOME/ .emacs.re and executes it if found.
The -f option lets you specify an alternate file of keybindings macros from the me command line.
After loading the file, MicroEMACS then executes the initialization macro, if one exists. For
example, if you wish to use the set of keybindings saved in file keybind to edit file textfile, then you
would type the following:

me -f keybind textfile

As you can see, MicroEMACS's system of keyboard macros and flexible key bindings help make it an
extremely flexible and powerful editor.

The only remaining commands you need to learn are the program interrupt commands <ctrl-X>! and
<ctrl-C>. These commands allow you to interrupt your editing. give a command directly to
COHERENT, and then resume editing without affecting your text in any way.

The command <ctrl-X>! allows you to send one command line (one command, or several commands
plus separators) to the operating system. To see how this command works. type <ctrl>!. The
prompt I has appeared at the bottom of your screen. Type le. Observe that the directory's table of
contents scrolls across your screen. followed by the message [end]. To return to your editing.
simply type a carriage return. The interrupt command <ctrl-C> suspends editing indefinitely, and
allows you to send an unlimited number of commands to the operating system. To see how this
works, type <ctrl-C>. After a moment, the COHERENT system's prompt will appear at the bottom of
your screen. Type time. The COHERENT system replies by printing the time and date. To resume
editing, then simply type <ctrl-D>.

If you wish, you can suspend MicroEMACS's operation, tell the COHERENT system to invoke
another copy of the MicroEMACS program. edit a file, then return to your previous editing. To see
how this is done, type <ctrl-C>. When the prompt appears at the bottom of your screen, type

me examplel.c

It doesn't matter that you are already editing examplel.c. MicroEMACS will simply copy the
examplel.c file into a new buffer and let you work as if the other MicroEMACS program you just
interrupted never existed.

Exit from this second MicroEMACS program by typing the quit command <ctrl-X><ctrl-C>. Then
type <ctrl-D>. Your original MicroEMACS program has now been resumed. However, none of the
changes you made in the secondary MicroEMACS program will be seen here.

It is not a good idea to use multiple MicroEMACS programs to edit the same program: it is too easy
to become confused as to which edits were made to which version.

The only time this is advisable is if you wish to test to see how a certain edit would affect your text:
you can create a new MicroEMACS program. test the command, and then destroy the altered buffer
and return to your original editing program without having to worry that you might make errors
that are difficult to correct.

Now type <ctrl-X><ctrl-C> to exit.

Compiling and Debugging Through MicroEMACS
MicroEMACS can be used with the compilation command cc to give you a reliable system for
debugging new programs.

Often, when you're writing a new program, you face the situation in which you try to compile. but
the compiler produces error messages and aborts the compilation. You must then invoke your
editor. change the program, close the editor, and try the compilation over again. This cycle of

TUTORIALS

106 MicroEMACS Screen Editor

compilation editing recompilation can be quite bothersome.

To remove some of the drudgery from compiling, the cc command has the automatic, or
MicroEMACS option, -A. When you compile with this option, the MicroEMACS screen editor will be
invoked automatically if any errors occur. The error or errors generated during compilation will be
displayed in one window, and your text in the other, with the cursor set at the number of the line
that the compiler indicated had the error.

Try the following example. Use MicroEMACS to enter the following program, which you should call
error.c:

main() {
printf("Hello, worldl\n")

}

The semicolon was left off of the prlntf statement, which is an error. Now, try compiling error.c
with the following cc command:

cc -A error.c

You should see no messages from the compiler because they are all being diverted into a buffer to be
used by MicroEMACS. Then MicroEMACS will appear automatically. In one window you should see
the message:

3: missing';'

and in the other you should see your source code for error.c, with the cursor set on line 3.

If you had more than one error, typing <ctrl-X>> would move you to the next line with an error in it;
typing <ctrl-X>< would return you to the previous error. With some errors, such as those for
missing braces or semicolons, the compiler cannot always tell exactly which line the error occurred
on, but it will almost always point to a line that is near the source of the error.

Now, correct the error by typing a semicolon at the end of line 2. Close the file by typing <ctrl-Z>.
cc will be invoked again automatically.

cc will continue to compile your program either until the program compiles without error, or until
you exit from MicroEMACS by typing <Ctrl-U> followed by <ctrl-X><ctrl-C>.

The MicroEMACS Help Facility
MicroEMACS has a built-in help function. With it, you can ask for information either for a word
that you type in, or for a word over which the cursor is positioned. The MicroEMACS help file
contains the bindings for all library functions and macros included with COHERENT.

For example, consider that you are preparing a C program and want more information about the
function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic:

Type fopen. MicroEMACS will search its help file, find its entry for fopen, then open a window and
print the following:

fopen - Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and yank it into your program to
ensure that you prepare the function call correctly.

TUTORIALS

MicroEMACS Screen Editor 107

Consider. however. that you are checking a program written earlier, and you wish to check the call
to fopen. Simply move the cursor until it is positioned over one of the letters in fopen, then type
<esc>?. MicroEMACS will open its help window. and show the same information It did above.

To erase the help window, type <esc>l.

For a complete summary of MicroEMACS's commands. see the entry for me in the Lexicon. The
COHERENT system includes three other editors: the stream editor sed, the popular screen editor vi.
and the interactive line editor ed. Each can help you accomplish editing tasks that may not be well
suited for MicroEMACS. For more information on these editors. see their tutorials or check their
entries in the Lexicon.

TUTORIALS

108 MicroEMACS Screen Editor

TUTORIALS

Introduction to ed, Interactive Line Editor

This tutorial introduces the interactive editor ed. It is intended both for readers who want a tutorial
introduction to ed. and those who want to use specific sections as a reference.

Related tutorials include those for sed, the stream editor, and for me, the MicroEMACS screen
editor. This tutorial assumes that you already understand the basics of using the COHERENT
system, such as what a file is, what it means to edit text, and how to issue commands to the
operating system. If you not yet know your way around the COHERENT system, we suggest that
you first study the Using the COHERENT System, which appears in the front of this manual. It
covers the basics of using COHERENT and introduces many useful programs.

Why You Need an Editor
A significant feature of computers is the capacity to store, retrieve, and operate upon information. A
computer can store many different kinds of information: programs, computer commands and
instructions, data for programs, financial information, electronic mail, or natural-language text (e.g.,
French, English) destined for a manuscript or book.

ed is a program with which you can enter and edit text on your computer. You can use ed to create
or change computer programs, natural-language manuscripts, files of commands, or any other file
that consists of text that you can read.

ed is designed to be easy to use, and requires little training to get started. The fundamental
commands are simple, but have enough flexibility to perform complex tasks.

Learning To Use the Editor
Practice on your part will help you learn quickly. The following sections contain examples that
illustrate each topic discussed. We strongly recommend that you type each example presented as
you encounter it in the text. Even if you understand the concept presented, performing the example
reinforces the lesson, and you will learn more quickly how to use ed.

In addition to reading the text and doing the examples as you encounter them in the text, try your
own variations on the commands, and branch out on your own. Try things that you suspect might
work, but are not shown as examples.

This section presents the background information you will need to understand how ed works.

To help illustrate the discussion to follow, log into your COHERENT system and type the following
commands:

ed
a
this is a sample
ed session

w test
q

109

110 ed Interactive Line Editor

This example calls ed, then uses the a command to add lines to the text kept in memory. The
period signals the end of the additions. Thew command writes the lines of text to file test, and the
command q tells ed to return to COHERENT. You will notice that after you type thew command, ed
will respond with

28

which is the number of characters in the file.

Thus, to entered, simply type

ed

and to exit, type

q

You can also exit by typing <ctrl-D>: that is, hold down the control key on your keyboard, and at
the same time strike the D key.

Notice that you are issuing two different kinds of commands in the above example. The command
ed is an COHERENT command, whereas the rest are commands to the editor. After ed is given the
q command, it exits, and following commands are processed by COHERENT.

ed, Files, and Text
ed works with one file at a time. With ed, you can create a file, add to a file, or change a file
previously created.

As you use ed to create or change files, you will type both text and controlling commands into the
editor. Text is, of course, the matter that you are creating or changing. Commands, on the other
hand, tell ed what you want it to do. As you will see shortly, there is a simple way to tell ed
whether what you are typing is text or commands.

ed has about two dozen commands. Almost every one is only one letter long. Although they may
seem terse, they are easy to learn. You will appreciate the brevity of the commands once you begin
to use ed regularly.

You must end each command to ed by striking the <return> key. This key is present on all
terminals. However, the labeling of the key may vary. It may be called newline, linefeed, enter, or
eol, and is larger than any key on the keyboard except for the space bar. This key will be called the
<return> key in the remainder of this document.

Creating a File
The example shown above created a file. Here is another example of file creation - here, creating a
file called twoline:

ed
a
Two line Example,
thank you,

w twoline
q

The letter a tells ed to add lines to the file. You are creating a new file with this example; and when
ed creates a new file, it is initially empty. The w command writes the lines you have added to file
twollne. The command q tells the editor that you are finished, whereupon it returns to

TUTORIALS

ed Interactive Line Editor 111

COHERENT. You can use the COHERENT command cat to list the contents of the new file:

cat twoline

the reply will be:

Two line Example,
thank you.

Each command used here will be described in detail in later sections.

Changing an Existing File
Suppose that a manuscript file of yours needs a few spelling corrections. ed will help you make
them. To begin. simply name the file to correct when you issue the COHERENT command:

ed filename

where filename stands for the name of the file that you wish to edit. For example, the following adds
a line to the file twollne. which we just created:

ed twoline
$a
This is the third line of the file.

w
q

Listing the file with cat gives:

Two line Example,
thank you.
This is the third line of the file.

The command $a tells ed to add one or more lines at the end of the file.

Correcting the spelling of a misspelled word is easy with ed. You can rearrange groups of words in a
manuscript. and you can move or copy larger portions of text, such as a paragraph. from one spot to
another.

Working on Lines
ed uses the line as the basic unit of information: for this reason. it is called a line-oriented editor. A
line is defined as a group of characters followed by an end-of-line character, which is invisible.
When you type out a file on your terminal. each line in the file will be shown on your terminal as
one line. The commands for ed are based upon lines. When you add material to a file. you will be
adding lines. If you remove or change items. you will do so to groups of lines.

ed knows each line by its number. A line"s number. in turn. indicates its position within the file:
the first line is number 1. the second line is number 2. and so on.

ed remembers the line you worked on most recently. This can help shorten the commands you
type. as well as reduce the need for you to remember line numbers. The line most recently worked
on is called the current line. ed commands use a shorthand symbol for the current line: the period

Another shorthand symbol used in ed commands is $. which represents the number of the last line
in the file.

TUTORIALS

112 ed Interactive Line Editor

Many of the ed commands operate on more than one line at a time. Groups of lines are denoted by
a range of line numbers. which appears as a prefix to the command.

Error Messages
If you type a command to ed incorrectly. ed respond with:

?

This indicates that it has detected an error. Many times, this error will be evident to you when you
review the command that you just typed.

If you do not see what the error is, you can get a more lengthy description by typing to ed:

?

It will reply with an error message.

This section discusses in more detail the elementary techniques and commands that you need to
use ed. With the material presented in this section, you will be able to do most basic editing tasks.

Again, it is recommended that you type each example. This will help you understand each example,
as well as remember the technique it demonstrates.

Creating a New File
To begin, let us presume that you need to create an entirely new file named first. Perhaps you only
want one line in the file, and it is to read

This is my first example

These are the steps that you will need to go through to create this file.

The first step is to invoke theed program. To do this, simply type

ed

Remember that you must end each line of commands or text line by pressing the <return> key,
because ed will not act upon it until you do. Thus, you invoke the editor by typing ed and a
<return>. Notice that these two characters must be lower case.

ed is now ready for commands. The first command that you will use is the append command a.
This tells ed to add lines to the text in memory. which will later be written to the file. The number
of lines that ed can hold in memory depends upon the amount of memory in your computer. For
editing very large files, you should use sed, the COHERENT stream editor, which is described in its
own tutorial.

ed will continue to add lines until you type a line that contains only a period. While it is adding
lines, ed does not recognize commands.

After you issue the a command, you can type the lines to be included, concluding with a line that
consists only of a period. This special line signals ed that you want to stop appending lines. The
information that you have typed so far is:

TUTORIALS

ed Interactive Line Editor 113

ed
a
This is my first example

Next, you must tell ed to write the edited text into a file. Do so by issuing the write command w.
plus the name of the file that is to hold the edited text. For example, if you wish to store this
example in a file named first, issue the command:

w first

ed will write the file and tell you how many characters were written, in this case 25.

Finally, to quit the editor issue the quit command:

q

The commands you type after this will be interpreted and acted upon by COHERENT.

Now, review the example in its entirety. First you invoked ed by typing ed at the COHERENT
prompt. Then you issued the add command a to add lines to the file. added lines with the a
command, and finished the adding by typing a line that consists only of a period. You then wrote
the editing text into a file by issuing the write command w, and finally you exited from ed by issuing
the quit command q. The complete example is:

ed
a
This is my first example

w first
q

ed replied to the w command by printing the number of characters it wrote into the file. After you
typed q, COHERENT prompted you for a command again.

Changing a File
Suppose that you wish to change the file that you have just created: you want to add two more lines
to the file so that the original line will be sandwiched between the new lines. You want the file to
contain:

Example two, added last
This is my first example
Example two, added first

You will do this with ed using two new commands.

Again. you start by telling COHERENT to run ed. This time, however. you must type the name of
the file that you are changing after the characters ed:

ed first

ed will remember this file name for later use with thew command.

ed reads the file in preparation for editing, and tells you the number of characters that it read in,
again 25.

TUTORIALS

114 ed Interactive Line Editor

After reading the file, ed automatically sets the current line to the last line read in.

Now, add the third line shown in the second example by entering:

a
Example two, added first

This resembles the first example. In that case, however, the file had no information, whereas now it
does. How did ed know where to add the lines?

The a command adds lines after the current line. When ed reads a file, it initially sets the current
line to the last line read in; therefore, the a command added the new line after the last line.

The current line is used implicitly or explicitly by most commands, so it is helpful to know where it
is. In general, the current line is left at the last line ed has processed. If you lose track of the
current line, you can asked to tell you where it is, as you will see shortly.

To add the very first line to the second example, you will use yet another command, the insert
command i. This command is identical to the a command, except that it inserts lines before the
current line rather than after it.

Another word about the current line. After an a command finishes, the current line is the last line
added. Thus, after the addition of "Example two, added first" above, the current line is now the last
line in the file. So, if you were to do the i command immediately, you would be adding lines just
before the last line, which is not what you want to do.

Nearly every ed command is flexible enough to allow you to specify the line upon which the
command is to operate. Now you can complete the second example:

li
Example two, added last

The numeral 1 before the i tells ed to insert lines before the first line in the file. The line-number
prefix is used frequently, and applies to nearly every command.

Now, to finish the second example and save it into the same file, type:

w
q

Note that the file name was left off thew command. ed remembers the name of the file that you
began with, and uses that name if none is used with the w command. Therefore, the edited text is
written back into file first. Note, too, that the previous contents of the file first are lost when you
write the new file first. Alternatively. you can type:

w second

This leaves the contents of first unchanged and creates a new file called second.

In case you forget, ed can tell you the name of the file with which you began. Simply type the
command:

f

If you had used f any time while working on this second example, ed would have replied:

first

Remember to use the q command to leave ed and return to COHERENT.

TUTORIALS

ed Interactive Line Editor 115

Printing Lines
As you use ed to edit a file, you will find it most useful to print sections of the file on your terminal.
This helps you see what you have done (and sometimes what you have not done), and helps you
pinpoint where you wish to make changes.

The print command p prints the current line unless you specify a line number.

Continuing with the example begun above. when you type the commands

ed first
p

ed replies by printing

Example two, added first

which is the last line in the file named first from the previous example.

Again. like the commands i and a. if you want ed to print a line other than the current one. just
prefix the p command with a line number. Thus, if you want to print the second line in the file,
type:

2p

ed will reply with:

This is my first example

If you wish to print more than one line of a file, you can tell ed to print a range of line numbers:
type the numbers of the first and last lines you wish to see, separated by a comma. For example. to
print all three lines in the second example, type:

1,3p

ed responds by printing all lines. This same principle applies to other commands. The print
command can also appear after other commands such as s or d. which are discussed later in this
section.

Abbreviating Line Numbers
ed recognizes some shorthand descriptions for certain line numbers. The number of the last line
can be represented by the dollar sign$. Thus, the command

1,$p

prints every line in the file. The advantage of this shorthand is that the command as typed works
for any file, regardless of its size. This construct of l,$p Is used often enough that it has an
abbreviation of its own:

*p

The number of the current line can also be abbreviated by using the period or dot in the place of a
line number. To print all lines from the beginning of the file through the current line. type:

1, .p

To print all lines from the current line through the end of the file, type:

TUTORIALS

116 ed Interactive Line Editor"

'I $p

The special symbol & prints one screenful of text. Simply type:

&

This is equivalent to:

o I ,+22p

If there are fewer than 23 lines between the current line and the end of the file, it is equivalent to

'I $p

All forms of the p command change the current line to the last line printed. The command

'I $p

after printing changes the current line to the last line of the file.

How Many Lines?
You can easily see the current line with p. Type:

p

This tells ed to print the current line. On your terminal, try the command:

.p

You will see that it does the same thing as p.

To discover how large your file is, just type:

ed will reply by typing the number of lines in the file.

To find the number of the current line, use the dot equals command:

ed responds with the number of the current line.

Removing Lines
Editing means removing lines of text, as well as adding them. To illustrate how ed lets you remove
lines of text, create another example file with ed:

TUTORIALS

ed Interactive Line Editor 117

ed
a
This is the first line.
The second line is good.
However, line three is bad.
line four wishes to go away.
line 5 similarly wants to be forgotten,
as does line 6.
the next to last line stays.
as does the last line in the file.

w example3
q

This creates a file named example3.

Now, you can practice removing lines that you no longer want. Begin editing the file by typing:

ed example3

Now, print the contents of the file by typing:

1,$p

Our first task is to delete lines 3 through 6. First, delete line 3, then print the entire file again.

3d
1,$p

anded will respond with

This is the first line.
The second line is good.
line four wishes to go away.
line 5 similarly wants to be forgotten,
as does line 6.
the next to last line stays.
as does the last line in the file.

Notice that the original file's third line is no longer there. Line 3 is now what used to be line 4.
Remember that the line numbers always begin with 1 for the first line of the file and progress
consecutively even after the file has been changed. Thus, deleting a line will change the line
number of each line from the deleted line to the the last line in the file.

You still need to remove three more lines. You can do this with one command:

3,Sd

Again. type •p to print the contents of the file:

This is the first line.
The second line is good.
the next to last line stays.
as does the last line in the file.

Finally. write the updated file and quit:

TUTORIALS

118 ed Interactive Line Editor

w
q

This illustrates how to delete lines, both singly and in a group.

Abandoning Changes
Sometimes, you may make a mistake; rather than damage your file with badly edited text, you may
wish to abandon what you have done and begin all over again. You can do so by using the q
command in a different fashion than is shown above.

If you tell ed to q before you tell it to write the file with w. you abandon any changes made since
beginning editing. However. to prevent you from accidentally selecting this option, ed checks to see
if you have made any changes to the file; and if you have, it responds with a question mark '?'. To
tell ed that you know what you are doing and really do wish to abandon the edited file. reply with a
second q. ed will then quit and return you to COHERENT.

You can avoid the question mark prompt by typing the upper-case Q rather than lower-case q: ed
will exit without regard to unsaved changes. You can also exit from ed by typing the end-of-file key
<Ctrl-D>.

Substituting Text Within a Line
If you type a line incorrectly. or later wish to rearrange some words or symbols within it, you know
enough about ed now to do so. You only need to delete the line with the delete command d and re­
type the line with the insert command i. To see how this is done, prepare the file example4, as
follows:

ed
a
Software technology today has
adbanced to the point that large
software projects unherd of in
earlier times are undertaken and

w example4
q

This example has two misspelled words. We will correct each of them using different ed features.

The first method will be the direct way that you probably can anticipate. Give the following
commands to the editor exactly as shown:

ed example4
2d
i
advanced to the point that large

These commands use the delete command d to delete the second line, and then uses the insert
command f to insert the correct new line in its place.

Use the command

*p

to verify that the file now contains:

TUTORIALS

Software technology today has
advanced to the point that large
software projects unherd of in
earlier times are undertaken and

ed Interactive Line Editor 119

You can also use a second method to change the spelling of a word. This is the substitute
commands. This command is very powerful. and probably is used more frequently than any other
edcommand.

The substitute commands is more complex than commands we have discussed so far, in that it has
more elements, as follows: First is a line number or optional range of line numbers. Then comes the
letters, to invoke the substitute command itself. Third comes two patterns or strings, which are set
off from the rest of the command and from each other with the slash character. For example:

1,$s/patternl/pattern2/

Here, patternl represents the string that you want ed to replace, and pattern2 is the string that ed
is to substitute in place of patternl. Note that three slashes separate the two patterns from the s,
from each other, and from the end of the line. These slashes must always be present.

With this command, you can correct the second spelling error in the example4:

3s/herd/heard/
p

ed replies:

software projects unheard of in

Note that these two command lines can be condensed to one:

3s/herd/heard/p

The meaning of these commands is: on the third line of the file, change herd to heard and, when
finished, print the entire line. Without the p command, ed will change the line as you direct, but
will not show you the new line. It is a good idea to print lines that you substitute in this manner
until you gain in confidence with ed. Some ed experts always print the lines after substitution.

After these two changes, the file will look like this:

Software technology today has
advanced to the point that large
software projects unheard of in
earlier times are undertaken and

Although the above example substitutes one word for another, note that the s command can replace
any consecutive group of characters with any other: it may be one word, several words (including
the space characters that separate them), or a fragment of a word.

Because ed looks for patterns rather words, you should keep in mind that it may find the wrong
pattern. For example, assume that the current line in a file is

let not rain fall on a parade

and instead you want to say:

let not rain fall on the parade

You commanded to:

TUTORIALS

120 ed Interactive Line Editor

s/a/the/p

and are shocked to discover that the result is:

let not rthein fall on a parade

A better command to give ed would have been a substitute command that substituted the letter a
preceded and followed by a space:

s/ a I the /p

Another correct way to do this task is to indicate within the substitution command which of several
possible matches within the line is to be substituted. In our example, it is actually the third a that
we are trying to match, so we could have used the special form of the command

s3/a/the/p

to get ed to select the one we wanted.

Undoing Substitutions
If you did change a to the inappropriately, you can retract the substitution by issuing the undo
command

u

before you move on to another current line.

To illustrate this, enter this example:

ed
a
let not rain fall on a parade

w undo
q

Now, perform the substitution with

ed undo
s/a/the/p

which will result in:

let not rthein fall on a parade

To retract the substitution, simply type:

u
p

This undoes the substitution and prints the result.

Note that the undo command undoes the substitution only on the current line. Remember that if
your substitution command operated over a range of lines, when it finishes the current line is the
last one upon which the substitution was made. Thus, if you made an inappropriate substitution
over a range of lines, the undo command will fix only the last line.

TUTORIALS

ed Interactive Line Editor 121

Global Substitutions
As you saw with the above examples, the s command substitutes only the first occurrence of the
requested pattern on a given line.

A different form of the substitute command finds every occurrence of the indicated string on a line.
Simply add the letter g for global after the third slash in the substitute command, and ed finds and
changes every one:

s/patternl/pattern2/g

So, if the current line contains a phrase:

a rose is a rose is a rose

and we tell ed to substitute

s/a/the/g

the line is changed to:

the rose is the rose is the rose

Again, be careful that your command does not inadvertently match all or part of a word that you
wish to keep untouched.

Special Characters
In its first two parts, the substitute command uses some special punctuation characters. They will
be discussed below in detail. However, you should be aware of these characters and avoid them
until you progress to the advanced section, for unless used properly, they will give you undesired
results. The characters are:

[A $ * • \ &

They are used in ed and other COHERENT programs to form complex patterns.

Ranges of Substitution
Perhaps you need to change several lines that have the same misspelling or need the same editorial
change. s can do that for you also. Simply prefix the command s with the line-number range as
you would do with p. Borrowing the "rose" example again, if the saying were typed:

a rose is
a rose is
a rose

then you could do the same change as before, but across the entire file by typing

1,$s/a/the/

Note that the g after the s command has been omitted here, because you know that the string that
you want to change appears only once on each line.

If some of the lines do not have the string you want to change, ed will not complain that the string
is missing. However, if none of the lines in the range has the requested string, ed will print a ? .

TUTORIALS

122 ed Interactive Line Editor

This section introduces the more advanced command features of ed. Although you have already
learned enough about ed to become productive, this section covers additional features that will
increase your editing power considerably.

This section discusses the following topics: relative line numbering, moving blocks of text, finding
strings, using special characters in substitution and search commands, processing global
commands, and marking lines.

Relative Line Numbering
As discussed in the previous section. most commands allow you to use line numbers to control their
range of operation. Before the command you can enter a single line number; for example:

lp

This, of course, prints the first line of the file. You may also specify a range of line numbers, by
entering two numbers separated by a comma. For example, if the file contains at least ten lines, the
command

1,lOp

prints the first ten lines of the file.

The period (dot) always represents the number of the current line. For example, to print the file
from the first line through the current line, just type:

1, .p

A command used without a line number always acts on the current line only. For example, typing

p

is equivalent to typing:

.p

There is yet another level of shorthand to line numbering - the plus and minus characters. These
characters indicate offsets from the current line. For example, the command

.+3p

prints the third line after the current line. Likewise, the command

.-lp

prints the line that precedes the current line. Note that using a line offset changes the current line
to the one addressed. Thus, after the above command is executed, the current line will be the one
that preceded the original current line.

You can abbreviate this notation still further by leaving out the dot. The commands

+p
-p

do the following: First, ed advances to the next line and prints it; then it backs up to the previous
line (which was the original current line) and printing it.

TUTORIALS

ed Interactive Line Editor 123

You can place several of these commands on one line to move the current line multiple lines. To
back up three lines and then print. type:

---p

Note that in the absence of any other command, ed defaults to the p command. Thus

is equivalent to

---p

and

5

is identical to:

Sp

The print command has one more abbreviation. If ed is expecting a command from you and you
type nothing except <return>, ed interprets this as a command to advance the current line to the
next line and print it. This action is equivalent to

+

or

.+1

<return> is the shortest command in ed.

All of the abbreviations for line numbers can be used by other commands that expect a range of line
numbers. For example, if you want to delete five lines centered about the current line, you could
type:

.-2, .+2d

and you would get your wish.

Note that ed does not allow you to specify a line number that is beyond the range of the file; this is
regardless of whether you are typing a line number or any form of abbreviated line numbering. For
example. suppose the current line is the last line in the file and you type:

+

This tells ed to "advance one line then print"; however, this is impossible because you are at the last
line of the file, so there is no next line to print. When you request an impossible line number. ed
replies by printing a question mark. Note, however. that the current line is always be valid so long
as the file has at least one line in it. Thus, unless the file is empty, the command

will never give an error message.

Changing Lines
Earlier, an example of spelling correction was solved two ways. The first way was the clumsy way of
deleting a line and retyping the entire line. This strategy means much work to change a single
letter, so the substitute command was introduced instead.

TUTORIALS

124 ed Interactive Line Editor

On occasion, however, it is handy to be able to change lines en masse - as was done by deleting
then inserting. ed provides this power with the change command c. In general terms,

m,nc
new lines
to be inserted

removes lines m through n, and insert new lines up to the period in place of them.

Moving Blocks of Text
When handling text, you will often need to shift a block of text from one position to another. In a
manuscript, for example, you may need to rearrange the order of paragraphs to increase clarity. In
a program, you may need to rearrange the order in which procedures appear.

To allow you to do this easily, ed provides a move command m that moves a block of text from one
point in the file to another.

mis different from the other commands that we have discussed so far, in that line numbers follow
as well as precede the m command itself. The line number that follows the command gives the line
after which the text is to be moved. So, the general form of the move command is

b,emd

which means "move lines b through e to after line d".

To see how this works, first build the following file:

ed
a

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.

w examples
q

The file example5 contains two paragraphs, each three lines long. We will now move the first
paragraph to after the second paragraph.

You can do this in either of two ways: you can move the first paragraph to after the second
paragraph, or you can move the second paragraph to before the first paragraph. Either gives the
same result, but the commands are somewhat different. To shift the first paragraph to after the
second paragraph, type:

ed examples
1,3m$
*p
Q

Remember that$ always represents the last line in the file. The result is:

TUTORIALS

ed Interactive Line Editor 125

If you can read this paragraph first,
the text has been properly arranged, and
our move example has been successfully done.

This is a paragraph of natural language
text. Due to stylistic considerations, it
really should be the second paragraph.

To move the second paragraph to before the first, type:

4,6m0

Note that the destination is 0, which means that the text is to be moved to immediately after line 0.
Because there is no line number 0, the move command interprets this to mean the beginning of the
file.

Of course, in our small example, line number abbreviations and knowledge of the current line may
be used in a number of different ways to perform exactly the same action. For example,

1,3m.

says to move lines 1 through 3 of the file to the line after the current line. When you invoke ed, it
always sets the line number to the last line in the file. Thus, this form of the command has the
same effect as the previous forms.

If the destination of a move command is not specified, ed assumes the current line. Therefore, the
command

1,3m

also repositions the first paragraph correctly.

The move command changes the line numbers in the file, although the number of lines in the file
remains the same. The different forms of the move command will, however, yield different settings
for the current line.

After a move command, the current line becomes the number of the last line moved. Thus, if you
moved the first paragraph to after the second paragraph. the current line will be reset to the last line
in the file - the original line 3. However, if you moved the second paragraph to before the first
paragraph. the current line would be reset to line 3 - which was originally the last line in the file.

Copying Blocks of Text
The transfer command t resembles the move command, except that it copies text rather than
moving it. When you move text, it is erased from its original position. When you copy text,
however, the text then appears both in its original position and in the position to which you copied
it. ed uses the term transfer rather than copy because the command c is already used as the
change command.

The form of the transfer command is as follows:

b,etd

This means to transfer (copy) the group of lines that begins with b and that ends withe (inclusive) to
after line d.

After copying the text, ed sets the current line to the last line copied.

TUTORIALS

126 ed Interactive Line Editor

String Searches
The methods of line location that have been discussed to this point all involve line numbers. They
specified an absolute line number. a relative line number, or a shorthand symbol such as. or$.

Often. however. line numbers are not useful. because there is no easy way to tell what number a
line has. how many lines ago a block of text began. and so on.

ed's solution to this problem is to locate a line by asking ed to search for a pattern of text. ed
begins searching on the line that follows the current line. and looks for a line that matches the
specified pattern. If it finds a line that contains the requested pattern. ed resets the current line to
that line.

If ed encounters the end of the file before it finds a match. ed jumps to the first line in the file. and
continues its search from there. If it finds no match by the time it returns to the line where the
search began, ed. gives up and issues an error message - the question mark?. Remember. if you
type a question mark in response to an error message. ed will tell you in more detail what the error
is.

What does it mean to "match" a pattern? The simplest meaning is that two patterns are the same -
the strings have exactly the same characters in exactly the same order. To see how this works. type
the following to create file example6:

ed
a

This is an example that we will
use for string searching. There
is much natural language here as well
as some genuine arbitrary strings.
890, ;+ foxtrot
qwertyuiop ##

w example6
q

Now, to locate and print any line contains the pattern fox, type:

ed example6
/fox/p

In response. ed prints the line:

890, ;+ foxtrot

Also. you can use string expressions to print a range of lines. For example:

ed example6
/This/,/much/p

This prints:

This is an example that we will
use for string searching. There
is much natural language here as well

That is. it printed all lines from the first line that contains the pattern This through the first line
that contains the pattern much.

TUTORIALS

ed Interactive Line Editor 127

Pattern searches can also be combined with relative line numbers. If you have a Pascal program file
with several procedures in it, but you find that you need to rearrange the procedures, you can
combine the power of the move command with the string searches.

PROCEDURE A;

PROCEDURE B;

PROCEDURE C;

Assume that the section of text that begins with PROCEDURE A should follow the line that contains
PROCEDURE B. The following command moves the text properly:

/PROCEDURE A/,/PROCEDURE B/-lm/PROCEDURE C/-1

This commands ed (1) to locate the chunk of text that begins with a line containing the pattern
PROCEDURE A and ends with the line just before the first line that contains the pattern
PROCEDURE B, and then (2) move that text to just before the first line that contains the pattern
PROCEDURE C. As you can see, you can pack a lot of information into one ed command.

Let's look at this command in more detail, to see exactly how it works. First, remember that the
move command m is defined as

b,emd

where b indicates the first line of the text to be moved, e indicates the last line of the text to be
moved, and d indicates the line that the moved text is to follow. Thus, b corresponds to the number
of the line that contains PROCEDURE A and is the first line of the procedure in question. e,
however, corresponds to the line before the PROCEDURE B begins, by virtue of the -1. Here is an
example of mixing pattern searches with relative line numbers. as mentioned above. Thus, you have
found the beginning and ending lines of procedure A.

The final string search locates the first line of subroutine C. The move command normally moves
text to after the given line; and because we wish to move the text to before the line that contains
PROCEDURE C, we must include the -1 to move the text up one line.

Remembered Search Arguments
As discussed earlier, line numbers may be abbreviated in many ways. They may be entered as • , or
+, or-, and certain combinations of these. With some commands, pressing <return> tells ed to use
the current line number.

ed encourages you to abbreviate the search string. If you enter no string between the slashes in a
search or substitution, then ed uses the last-used search string. A common use is in the global
substitution command (which will be discussed in detail later in this section):

g/please remove this string/sf/ /p

This does not quite remove it, but replaces it with a blank. The last-used string can be specified by
a string search, a substitute command, or a reverse string search (also discussed later in this
section). Also, the remembered search argument may also be used in any one of these. You can
use the remembered search feature to "walk" through the file. finding the next occurrence of a
remembered search pattern.

TUTORIALS

128 ed Interactive Line Editor

Uses of Special Characters
As powerful as the line locator seems, some features are even even more powerful. These will be
discussed in the Expert Editing section, below. However, these more powerful capabilities depend
upon certain punctuation marks used in a special way. As you use the line locator (as well as the
substitute command), be aware of these following characters:

["$*.\&

They have special significance to ed when they appear in a string search or a substitution pattern.

If you need to use one of these characters without invoking its special meaning, precede it with a
backslash'\', This tells ed not to interpret the character in a special way.

For example, to find a backslash character, type the search command:

/\\/

If any of these characters is to be used in another context, for example, within lines that you are
adding with the a command, it should not be preceded with the backslash. Only use the backslash
to hide the meaning when it appears within the string search command, or within the first part of
the substitution command.

Global Commands
The global commands g and v let you repeat commands on all lines within a specified range. For
example, to print all lines that contain the word example, type:

g/example/p

The global command can prefix almost any command. For example, the following command deletes
all lines that contain three consecutive plus signs:

g/+++/d

Likewise, the command

g/foxtrot/.-2,.+2p

prints the five lines that surrounds any line that contains the word foxtrot.

A common use of the global command is to perform global substitution. The command

g/PROCEDURE/s/PROCEDURE/PROC/gp

performs the substitution on each line that contains the string PROCEDURE and prints the
resulting line.

This may appear similar to the command

1,$s/PROCEDURE/PROC/gp

but is different in that the global command prints each of the changed lines, whereas the substitute
command prints only the last line changed. Also, the method of operation of these two commands
is different.

A related command v performs much the same task, but executes the commands only for lines that
do not contain the specified string. Thus, to print all the lines that do not have the letter w, use:

v/w/p

TUTORIALS

ed Interactive Line Editor 129

For more sophisticated uses of the g and v commands and how they work, see the section on Expert
Editing.

Joining Lines
What do you do if you inadvertently hit <return> as you are adding lines and need to combine the
two lines?

ed
a
Look out, I seem to have hit ret
urn in the
middle of a word and don't know
what to dol
w rid
q

Rather that retyping the entire line, you can use the join commandj:

ed rid
1,2j
1,$p

This will gives:

Look out, I seem to have hit return in the
middle of a word and don't know
what to dol

If no line number is specified, J joins the current line and the following line. If a single line number
is specified, join operates on that and the following line.

Several lines can be joined by using the form of the command:

a,bj

This joins lines a through b into one line. Likewise, the command

1,$j

joins all the lines in the file into one line. Then, the command .p or p prints the entire file.

Note that the command

3j

does the same job as the command

3,4j

The join command generates its own second line number if none is specified, so that the command

nj

is equivalent to

n,n+lj

where n is a line number. This command is the only one that interprets a missing line number this
way.

TUTORIALS

130 ed Interactive Line Editor

Splitting Lines
You can split one line into two with the substitute command s. To illustrate. suppose you typed in
the following commands:

ed
a
This line wants to be two, with this second.

w split
q

To perform the split, type:

ed split
s/two, /two,\
/p
*p
wq

The line split is caused by the backslash that precedes the <return>. This tells ed that the
<return> does not terminate the command, but that it is part of the substitution. The contents of
file split are now:

This line wants to be two,
with this second.

Marking Lines
As you edit a manuscript or program, it is sometimes handy to be able to leave a "bookmark" in the
text for later reference. ed provides this feature with the mark command k. To mark the next line
that has the word ftnd. use

/f ind/ka

where the letter a is the mark. To print the line that has been so marked, use:

'ap

You can place these references anywhere that a line number is expected.

The mark must be one lower-case letter. Also, each mark is associated with one line. Marking a
line with the k command does not change the current line.

Marks can be especially handy when you move paragraphs with them command. They give you a
chance to review the sections that you will be moving before you do the move.

For example, suppose that you have a manuscript with a paragraph that must be moved to a
different part of the document. Create the following example:

TUTORIALS

ed Interactive Line Editor 131

ed
a

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

text
text
text

Next paragraph begins here.

This is the spot that we want the paragraph
to precede.

w example?
q

Now, place three marks to help with the move:

ed example?
/first line,/ka
/Next paragraph/kb
/is the spot/kc

This marks the first line to be moved with a, the line after the last to be moved with b, and the
paragraph's destination with c. But you can see that the move command moves lines to the line
after the third number specified. so let's change the third mark:

'c-lkc

Now we can use c in the move command without arithmetic. Now, print the paragraph to be moved
to be sure that the marks are correct.

'a, 'bp

ed replies with

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

Next paragraph begins here.

You can see that we would move one line too many if we used the marks as they are. So, change b
also.

'b-lkb

Now, do the move:

'a, 'bm'c
1,$p

The file now contains:

TUTORIALS

132 ed Interactive Line Editor

text
text
text

Next paragraph begins here.

This is a paragraph, first line, that
needs to be moved.
text
text
And this is the last sentence of the paragraph.

This is the spot that we want the paragraph
to precede.

Marking sections of text can increase the ease with which you solve your complexed problems.

Searching in Reverse Direction
All scanning. processing. and searching has been shown going from the beginning of the file toward
the end. Sometimes it is useful to find some word that occurs before the current line.

You can get ed to do string searching in the reverse direction by specifying the search with question
marks ? rather than slashes I. To find the previous occurrence of the word last, use:

?last?

This form of searching can be useful in finding the beginning and end of a repeat/until statement.
For example, if the current line is in the middle of a Pascal repeat/until group. you can print the
group with the command:

?repeat?,/until/p

The reverse search is like the forward search in every way except the direction of search. The search
begins one line before the current or specified line, and proceeds toward the beginning of the file. If
the string is not found by the time that the search reaches the beginning of the file, the search
resumes at the end of the file. and progresses towards the starting point of the search. If the string
is not found when the search reaches the original starting point, the question-mark error message is
issued signifying no match.

Also, the command

??

uses the remembered search argument.

This section describes the most advanced ed commands.

File Processing Commands
Earlier, we discussed the commands

ed

and:

ed filename

TUTORIALS

ed Interactive Line Editor 133

ed also has file-handling commands that go beyond those already discussed.

If you decide that you were editing the wrong file, or have finished the current file with aw, you can
begin to edit an entirely new file with the command:

e newfile

This forgets all the changes that you have made, if any, up to this point since the last w command
and begins all over again with newtlle.

The e command:

e new

has the same effect as

ed new

issued within COHERENT, but is handier because you do not need to exit ed and then reenter to
edit a new file. Note that the ed command e, like the q command, issues an error message if
another file is being edited and you have not stored it since your last change was made. If you
immediately repeat the command, ed proceeds even if there are unsaved changes. The command

E new

commands ed to edit the new file, whether or not there are unsaved changes.

The r command also reads a new file, but adds it to the file being edited instead of using it to replace
the current file. This can be handy for copying one file into another one. For example, if you have a
manuscript prefix stored in the file prefix to include the prefix at the beginning of the file you are
editing. type:

Or prefix

r inserts the file being read after the line number specified; in this case, line 0 means at the
beginning of the file. If used without a line number, r appends the newly read lines to the end of the
file.

The w command writes the entire file if no line number is specified; however, you can specify line
numbers. For example

1,3w new

writes the first three lines to file new. If the file name is omitted, the lines are written to the
remembered file name.

The w command is unique in that it never changes the current line. This is true regardless of what
line numbers are specified in the range for the command, or how those line numbers were
developed.

The W command resembles the w command, except that it appends lines to the end of the file,
whereas w creates a new file and erases any previous contents.

The f command prints the remembered file name that was set in

ed filename

or

e filename

or

TUTORIALS

134 ed Interactive Line Editor

w filename

commands. You can also use fto reset the remembered name, by typing:

f newname

This form of the command tells you what the new remembered file name is, even though you just
typed it in.

Note that the command

w filename

changes the remembered name only if there is currently no remembered name, as does the r
command.

Patterns
Earlier, you were cautioned that certain punctuation characters have special effect in search and
substitute commands. These characters are:

They are used to form powerful substitute and locator commands. An orderly combination of these
special characters is called a pattern, sometimes called a regular expression. You can use a pattern
to find or match a variety of strings with one search argument.

The simplest patterns use alphabetic characters and numeric digits, which match themselves. For
example,

/ab/

finds and prints the next line containing the string ab.

The next simplest character to use in a pattern is the period or dot. It matches any character except
the newline character that separates lines. Two periods in succession match any two consecutive
characters, and so on. For example, if you have a file that contains algebraic statements of the form

a+b
c+e
a-b
a/b
d*e

and wanted to find and print any line involving a and b (in that order), then use the search
statement:

/a.bl

The • in this example matches+. -. and /.

Then, you ask, how do I find a string that contains a period? For example, if you want to find all the
sentences that ended with "lost." (that is, the word lost followed by a period), you might first try:

/lost.Ip

This, however, also matches the string "lost " (the word lost followed by a space), which is not what
you want.

TUTORIALS

ed Interactive Line Editor 135

This is where the special character backslash comes in handy. A backslash tells ed. to treat the next
character as a regular character, even if it usually is a special character. Thus, to find "lost.". you
need only type:

/lost\./p

This will not incorrectly find "lost ". If you want to find backslashes in your file, simply say:

/\\/p

Matching Many With One Character
The asterisk • matches an indefinite number of characters. For example, to remove extra spaces
between words in a document, type

g/##*/s//#/p

(The character # has been substituted here for the space character to make the example more
readable.) This replaces each series of spaces by one space.

Note that there are two spaces before the • in the search string. This is necessary because the •
matches any length of string. including zero. Therefore. searching for a space followed by any
number of spaces finds strings that are at least one space long.

The •matches the longest possible string of the previous character. This requires careful attention
on your part, because the string matched by • might be longer than your required string. or even
zero in length. Either way could give you unexpected results.

If you have a line

a+b-c

in your file and want to change it to

a+c

type the command:

s/a.*c/a+c/p

However, if the line read instead

a+b-c*d+c

and you applied the command, the result would be

a+c

since the • • matches the longest string between any a and any c.

Beginning and Ending of Lines
The characters " and $ match. respectively, the beginning and ending of a line. Thus, you can find
and print all lines that end with a bang:

g/bang$/p

or those that begin with a whimper:

g/"whimper/p

These two characters can also help you find lines of specific length. If you need to see all lines

TUTORIALS

136 ed Interactive Line Editor

exactly five characters long. the command

g/" $/p

does the trick. To find and delete all blank lines, type:

g/" *$/d

Note that this time the• matches a string of zero spaces. However, this is correct, because a blank
line includes lines that have nothing in them. as well as lines that contain only spaces.

Replacing Matched Part
In many cases of substituting, you find yourself extending a word, or adding information to the end
of a phrase. This can lead to extensive retyping of characters. The special & character can help out.

This character is special only when used in the right part, or pattern2 of the substitute command. It
means "the string that matched the left part". For example, to add Ing to the word help in the
current line, use:

s/help/&ing/

The ampersand may appear more than once in the right side.

This can be more interesting if the left part has a non-trivial pattern. For every word in a line that is
preceded by two or more spaces, double the number of spaces before it:

s/###*/&&/gp

(Again, spaces have been replaced with# for clarity.)

Replacing Parts of Matched String
A more sophisticated feature, which is similar to the ampersand. helps you to rearrange parts of a
line. To see how this works. create a file by typing:

ed
a
first part=second part

w eql
q

Two special bracket symbols, \(and \) can be used to delineate patterns in the left part of a
substitution expression. Then, you can use the special symbols \ 1, \2, etc., to insert the delimited
parts. The symbol\(marks the beginnning of the pattern, and \) marks the end. For example, to
delete everything in the line except the characters to the left of the=. type

ed eql
S/A\(,*\)=,*/\1/p
wq

In the substitute command, the A matches the beginning of the line, .•matches "first part", and=.•
matches the rest of the line. The symbol \ 1 signifies the matched characters between the first \ (
(the only one in this example) and\). The p then prints the result, which will be:

first part

TUTORIALS

ed Interactive Line Editor 137

With this example, you can interchange parts of a line:

ed
a
first part=second part

w eql2
q

To interchange the two parts, type

ed eql2
s/\(.*\)=\(.*\)/\2=\1/
p
wq

The result is

second part=f irst part

The first portion of the substitution expression,

\(.*\)=\(.*\)

can be thought of as being in three parts. The first part

\ (. *\)

matches all characters up to but not including the=. which are

first part

The second part

matches the = in the line, and finally the third part

\ (. *\)

matches all characters following the "=", or

second part

The remainder of the substitution expression

\2=\1

which is the replacement part, rebuilds the line in interchanged order. The symbol \2 replaces the
matched string enclosed in the second pair of \(\) delimiters. and the symbol \ 1 inserts the
matched string enclosed in the first pair of\(\).

The right side of the substitution inserts the second matched expression (from \2), then inserts the
= sign again. followed finally with the first part of the line from \ 1.

This may appear involved, but can be immensely valuable in situations that require rearrangement
of a large number of lines.

The next special characters for patterns that we will consider are the bracket characters [and).
These are used to define the character class. Inside the brackets, put a group of characters; ed will
match any of them if it appears. For example. to print a line that contains any odd digit. say:

TUTORIALS

138 ed Interactive Line Editor

g/[13579]/p

For even more power and flexibility, you can combine character classes with the asterisk. For
example, the following command finds and prints all lines that contain a negative number followed
by a period:

g/-[0123456789]*\./p

This matches lines containing the following example strings:

-1.
-666.
-3.7.77

You can also match all lower-case letters by listing them in brackets, but the following abbreviation
simplifies this:

g/[a-z]/p

This can also be used for the negative number example above:

g/-[0-9]*\./p

Most special characters lose their original meaning within the brackets, but one of the special
characters, caret ", gets a new meaning. In this context, it matches all characters except those
listed in the brackets. For example, the following pattern matches a string that begins with Kand
continues with any character except a number:

This matches:

but not:

KQ
KK
KK9

K7
kKO

Other special characters may be part of a character class, but lose their special meaning when used
in that context. Remember, however, that if you want to match the right bracket, it must appear
first in the list. So, to find all occurrences of special characters in the file, type:

g/[]"\.*[&]/p

Listing Funny Lines
The p command prints lines with graphic characters in them. It also prints lines with non-graphic
(or control) characters, but these do not appear on the screen. For example, printing a line that
contains the BEL character <ctrl-G> will ring your terminal's bell, but you will not see where the
BEL character occurs within the line.

The I command behaves like the p command, except that it also decodes and prints control
characters. For example, if you use the I command to print a line that containing the word bell
followed by a BEL character, you would see:

TUTORIALS

ed Interactive Line Editor 139

bell \007

Note that "007" is the ASCII value for <ctrl-G>. (ASCII is the system of encoding characters within
your computer; see ASCII in the Lexicon for the full ASCII table.) The 1 command displays the
backspace character <ctrl-H> as a hyphen - overstruck with a <. which appears simply as < on your
screen. It displays a tab character as a - overstruck with a >. which appears as a >. If the line being
listed with 1 is too long to be displayed on one line on your screen, 1 separates it into two lines, with
the backslash character placed at the end of the first line to indicate the split.

All other features of the p command apply to the 1 command.

Keeping Track of Current Line
The most commonly used abbreviation in ed. is the dot, or period, which stands for the current line.
Many commands can change the value of the dot. and it is useful to you to be able to anticipate this
change when using the abbreviation.

Different classes of commands affect the value of the dot in different ways; in general. however. the
simple explanation is usually correct: the current line is the last line processed by the last command
to be executed.

Consider, for example, how the substitution commands changes the current line:

1,$s/flow/change/
p

In this example, the current line will be the last line modified by the substitutions; and that will be
the line that the p command prints.

Thew command is an exception to this rule. It does not change the current line, regardless of any
line range selection or how these ranges are developed.

The r command changes the current line to the last of the lines read.

The d command sets the current line to the line after the last line deleted unless the last line in the
file was deleted, in which case the new last line becomes the current line.

The line insertion commands 1. c. and a all leave the current line as the last line added. If no lines
are added, however. their behaviors differ: i and c effectively back up the last line by one, whereas a
leaves it the same.

When Current Line Is Changed
When the current line changes is also important. Normally. the current line does not change until
the command is completed.

To illustrate. create a file semi by typing:

TUTORIALS

140 ed Interactive Line Editor

ed
a
begin
second
first
in between
second
last

w semi
q

Now, edit the file and type all lines from first to second:

ed semi
/first/,/second/p
Q

This will cause an error! The reason is that the search command begins with current line set to$,
so "first" is found on line 3. But the search for "second" also begins with the current line set at $,
and finds "second" on line 2. Thus, the command translates to

3,2p

which is clearly invalid.

To do what was intended, use the semicolon ; instead of the comma to separate the two searches.
This forces ed to change the current line to be changed after the search for first rather than after
the entire command. Thus, the commands

ed semi
/first/;/second/p
Q

are correct and will do what is intended. The result will be:

first
in between
second

The search for first still begins with the current line set at$. However, after it finds first, ed resets
the current line to 3, and begins the search for second there, and succeeds on line 5.

Finally. to be sure of where the current line is, you can use the p command to show you the line; or
you can have ed tell you the number of the current line by typing:

To give you a perspective on where you are with respect to the end of the file, type

&=

anded will tell you the number of the last line in the file.

You can put any line number expression before = and it will type the result. For example

/next/=

types the number of the next line to contain "next" (if there is one). The command = never changes

TUTORIALS

ed Interactive Line Editor 141

the line number.

More About Global Commands
All the global commands discussed thus far have been followed by only one command - substitute,
print, and delete. You can, however, put several commands after a global command, and execute
each of those commands for each line that matches.

To change all occurrences of the word cacophonous to the word noisy and print the three lines that
follow, issue the command:

g/cacophonous/s//noisy/\
.+1,.+3p

Here, the additional commands are separated by the backslash before the <return>. Several
commands can be added, and all but the last need the backslash at the end.

This will work for the line-adding commands, as well. To insert a spelling warning before each line
that contains the word occurrance, issue the command:

g/occurrance/i\
((the following line needs spelling check))\

Note that the last line of the i group can be entered without a backslash, in which case the line
containing only the period must be omitted. This has the same effect as:

g/occurrance/i\
((the following line needs spelling check))

You should not depend upon the setting of the current line in any multiline global command. There
are two reasons for this. First, if one of the commands is a substitute and the string is not found in
the matched line, the current line will not be changed.

Second, the global command operates in two phases. The first part scans the file for lines that
match the string argument. ed marks these lines internally in a manner similar to the k command.
The second phase then executes the commands on each of the marked lines. Therefore, you cannot
count on a string search following the g to set the current line number.

Again, the v command behaves in the same way, except that it selects lines that do not match the
pattern.

Caution is advised when using remembered search arguments, for a similar reason. A search
argument is remembered only if the search has been executed. Thus, in a command of the form

g/backup/s//reverse/\
s/backin /backing/

the first remembered search may use backup on some occasion, and "backin" on others. The
reason for this is that the second phase of the g command begins with a remembered search
argument of backup. After the second line of the multiline command executes, the remembered
search argument is "backin ". This remains throughout the remainder of the second g phase.

Thus, it is recommended that you avoid remembered search arguments when using multiline global
commands.

TUTORIALS

142 ed Interactive Line Editor

Issuing COHERENT Commands Within ed
While you are using ed, you can issue COHERENT commands by prefixing them with the !
command.

This can be useful if, for example. you need to discover a file name while in the middle of an edit,
and you want to find it without leaving ed. Thus, to list your directory while in ed. type:

Ile

ed sends the command to COHERENT and echoes a ! character when the command is finished.

There is no limitation on the type of command that you may issue with this feature. It is even
plausible that you want to start another ed.

The Lexicon article on ed summarizes its commands and options. The COHERENT system also
includes three other useful editors: sed, the stream editor; MicroEMACS, the screen editor; and vi. a
clone of the standard UNIX screen editor. MicroEMACS and sed are introduced with their own
tutorials, and each is summarized in the Lexicon.

TUTORIALS

Introduction to the sed Stream Editor

This is a tutorial for the COHERENT editor sed. It describes in elementary terms what sed does.

This guide is meant for two types of reader: the one who wants a tutorial introduction to sed, and
the one who wants to use specific sections as references.

Related tutorials include Using the COHERENT System, which presents the basics of using
COHERENT and introduces many useful programs. and the tutorials for the interactive line editor
ed and for the screen editor MicroEMACS.

In a nutshell, sed edits files non-interactively: that is, sed applies your set of commands to every
line of the file being edited. Although sed is not as easy to control as ed or MicroEMACS, both of
which are interactive, it can edit a large file very quickly. You can use sed to change computer
programs, natural language manuscripts, command files. electronic mail messages, or any other
type of text file.

sed is a text editor. It reads a text file one line at a time, and applies your set of editing commands
to each line as it is read. Because it does not ask you for instructions after it executes each
command, sed is a non-Interactive text editor.

The advantages of sed are that it can readily apply the same editing commands to many files: it can
edit a large file quickly; and it can readily be used with pipes. A pipe takes the product of one
program and feeds it into another program for further processing. If you are unsure of how a pipe
works, refer to sh Shell Command Language Tutorial.

sed resembles closely ed. sed and ed use almost all of the same commands, and locate lines in
much the same way. However, there are important differences between ed and sed. ed is
interactive: when you give ed a command from the keyboard, it executes that command immediately
and then waits for you to enter the next command. sed, on the other hand, accepts your editing
commands all at once, either from the keyboard or. more often. from a file you prepare: then, as it
reads your text file one line at a time, it applies every command to every line of text. Therefore,
addressing (that is, telling the program what commands should be applied to which lines) is much
more important with sed than with ed.

Keep in mind, too, that sed does not change your original text file; rather. sed copies it, changes it,
and sends the edited file either to the standard output or to another file that you name in the
command line.

Getting Started
Here are a few exercises to introduce you to sed. Type them into your COHERENT system to get a
feel for how sed works.

As explained above. sed applies a set of editing commands to your text file. To edit a file with sed,
you must prepare three elements: (1) the text file that you wish to edit; (2) a command file (or script)
that contains the sed commands you want to apply to the text file: and (3) a command line that tells
the COHERENT system what you want done and with which files.

To begin. then, type the following text into your computer using the cat command. (Remember that
<Ctrl-D> is typed by holding down the ctr! key and simultaneously typing D.)

143

144 sed Stream Editor

cat >exercisel
No man will be a sailor who has contrivance enough
to get himself into a gaol; for being in a ship is
being in a gaol, with the chance of being drowned.
<ctrl-D>

Now, type in the following sed script. This script will substitute jail for gaol:

cat >scriptl
s/gaol/jail/g
<ctrl-D>

The last step is to prepare the command line. The command line consists of the sed command, the
options that tell sed where its instructions will be coming from (either from a file or directly from the
command line), the name of the file to be edited, and where the edited file should be send. The
general for of the command line is as follows:

sed [-n] [-e commands] [-f scrtptname] texifile [>file]

The -n option will be explained below, in the section on Output. The -e option tells sed that
commands follow immediately. The -f option tells sed that the commands are contained in the file
scrtptname. texifile is the name of the text file to be edited. The greater-than symbol'>' followed by
a file name redirects the edited version of the text file intoftle; if this option is not used, the edited
copy of the text file will be sent to the standard output.

In this example, a command script has been prepared, so the -f option will be used. Also, the edited
text should appear on the terminal screen, so the '>' will not be used. Type the command line as
follows:

sed -f scriptl exercisel

The following text will appear on your screen:

No man will be a sailor who has contrivance enough
to get himself into a jail; for being in a ship is
being in a jail, with the chance of being drowned.

You can use sed not only to substitute one word for another, but to add lines to files, delete lines,
and perform more involved editing. No matter how complex your sed editing becomes, though, sed
will always use the basic format just described.

The next few sections describe sed's basic commands.

Simple Commands
Type in the exercises exactly as shown and examine the results. Use the cat command to enter the
command file as well as the input file. The edited text will appear on your terminal. Usually when
you edit, you will want to redirect the edited text to a new file; however, for the exercises presented
here, let the edited text appear on your terminal so you can examine the results immediately.

Substituting
The substitution command is used very often when editing. sed's substitution command s
resembles the same command in ed. Its form is as follows:

s/terml /term2/

This tells sed to substitute term2 for terml. To correct a misspelled word, for example, use this

TUTORIALS

sed Stream Editor 145

command form:

s/mispel/misspell/

As written. this command changes only the first occurrence of mispel in each line of your text file.
To change every occurrence of mlspel in each line. add g (the global option) at the end of the
command:

s/mispel/misspell/g

If you want to change only the third occurrence of mispel on every line, put a 3 after the s:

s3/mispel/misspell/

When no digit follows the s and no g follows the command, only the first occurrence of the term in
each line (should there be one) will be changed.

To practice the substitution, type the following file into your system (please include the
misspellings):

cat >exercise2
From the Devils Dictionary1
Hemp, n. A plant from whose fiberous bark is made
an article of neckware which is frequently put on
after public speaking in the open air and prevents
the wearer from tking cold.
<ctrl-D>

Now, prepare the following sed script to correct the misspellings:

cat >script2
s/Devils/Devil's/
s/fiberous/f ibrous/
s/tking/taking/
<ctrl-D>

Invoke sed with the following command:

sed -f script2 exercise2

The following will appear on your screen:

From the Devil's Dictionary1
Hemp, n. A plant from whose fiberous bark is made
an article of neckwear which is frequently put on
after public speaking in the open air and prevents
the wearer from taking cold.

To see how the g command and the number option work, prepare the following text file:

cat >exercise3
sd sd sd sd
sd sd sd sd
sd sd sd sd
<ctrl-D>

The following sed script changes the third sd in each line to sed:

TUTORIALS

146 sed Stream Editor

cat >script3
s3/sd/sed/
<ctrl-D>

Invoke sed with the following command line:

sed -f script3 exercise3

The following will appear on your screen:

sd
sd
sd

sd
sd
sd

sed
sed
sed

sd
sd
sd

To change every sd to sed, use the g option. Prepare the following sed script:

cat >script3a
s/sd/sed/g
<ctrl-D>

The following will appear on your screen:

sed
sed
sed

sed
sed
sed

sed
sed
sed

sed
sed
sed

The g command will be most useful for editing prose, when you have no way to tell how many times
a given error will appear on a line. The numeric option will be most useful for editing tables and
lists.

Selecting Lines
Each of the substitution commands given above will be applied to every input line. Unlike ed. there
is no error message if no line of text contains terml .

In certain instances, however, you may wish to apply a particular command only to specific lines.
Lines can be specified (or addressed) by preceding the command with the identifying line number.
The following exercise demonstrates line selection. First, prepare the following text file:

cat >exercise4
When a man is tired of London,
he is tired of life~ for there
is in London all that life can afford.
<ctrl-D>

To change the word tired to fatigued on line 2 only, prepare the following sed script:

cat >script4
2s/tired/fatigued/
<ctrl-D>

Begin the editing of your text file by typing the following command line:

sed -f script4 exercise4

The following will appear on your screen:

TUTORIALS

sed Stream Editor 147

When a man is tired of London,
he is fatigued of life; for there
is in London all that life can afford.

Remember that to specify a line number, you must place the number before the command; but to
specify the numeric option (that is, position within the line), you must place the number after the
command.

You can define a range of lines to be edited. One way to do this is to list the first and last line
numbers, separated by commas, of the block of text in question. For example, the following script
will change is to was only in the first two lines of the text file you just prepared:

cat >script4a
1,2s/is/was/
<ctrl-D>

Entering the command line

sed -f script4a exercise4

will bring the following text to your screen:

When a man was tired of London,
he was tired of life, for there
is in London all that life can afford.

Note that the word is in line 3 was unaffected by the substitution command, because it lay outside
the range of lines specified by the command.

You can also select lines by patterns. Patterns are strings (any collection of letters and numbers,
such as a word) that can be combined with commands. A fuller description of patterns can be found
in the tutorial for ed. Later on, when we show you other commands, you will see that line selection
by pattern rather than by line number is quite useful.

You can use the end-of-file symbol'$' for line selection. When you use this symbol. you do not have
to know the exact number of lines in your text file. For example. if you want to apply a substitution
command from line 10 through the end of your text file, the command form is:

10, $s/terml /term2/

p: Print Lines
When sed edits a text file. the edited text is by default sent to the standard output, which usually is
your terminal's screen. (As noted above, the edited text can be optionally redirected to another file
by using the shell's '>' operator.) Normally. sed prints every line in the text file. whether the line is
changed or not.

The next exercise will demonstrate these defaults. First, type in the following text file:

TUTORIALS

148 sed Stream Editor

cat >exercises
Bill g7 rllS
Nora g8 rllS
Steve g7 rl20
Ella g8 r120
Dave g7 rllS
Robert g8 r120
<ctrl-D>

Next, create a script that contains no commands, by typing:

cat >scripts
<ctrl-D>

Now, execute this empty script:

sed -f scripts exercises

Note that sed simply copied your text file to the screen, without changing it in any way.

This default. however. can be inconvenient if you want to print only a selected portion of a file.
Fortunately. with a couple of commands you can control sed's printing.

The command line option -n changes sed's printing behavior. When you invoke -n. the text file no
longer is printed automatically. sed prints only the lines specified by the p command. The p
command makes sed print whatever line (or lines) to which it is applied. Use-non the command
line to stop sed from printing every line automatically; then use the p command in the script to
target the lines you want to print. The following exercise will help you grasp this point. First, type
in the following sed script:

cat >scriptSa
/g7/p
<ctrl-D>

Enter the command line:

sed -n -f scriptSa exercises

and the following text will appear on your terminal:

Bill
Steve
Dave

g7
g7
g7

rllS
r120
rllS

sed prints only the records of the students in grade 7 (g7J.

It is important to note the order, or syntax, of the -n and -f command line options. The correct
order is to enter -n. then -f. (-nf or -fn are also acceptable.) If you type -f and then -n. however. all
you will get is an error message.

When you use the p option with a sed command, sed will print every line of text in which that
command makes a substitution. This can be useful. but if you are not careful it can also create
some problems. sed normally prints every line in your text file. whether or not it is changed by your
script, unless you specify the -n option in your command line. Therefore, if you do not use the -n
option in your command line and you do use the p option with yours commands, every line that
sed edits will be printed more than once.

TUTORIALS

The following script illustrates this point:

cat >scriptSb
s/g7/gS/gp
s/r11S/r120/gp
<ctrl-D>

Now, execute it with the following command:

sed -f scriptSb exercises

The result will look like this:

Bill gS rllS
Bill gs r120
Bill gS r120
Nora gS r120
Nora gs r120
Steve gS r120
Steve gs r120
Ella gS r120
Dave gS rllS
Dave gS r120
Dave gs r120
Robert gS r120

sed Stream Editor 149

Bill and Dave were printed three times: the first time because the p option was specified after
editing the grade number. the second time because the p option was specified after editing the room
number. and the third time because the -n option was not used on the command line. Steve and
Nora were printed twice: the first time because their lines were edited once each. and the second
time because the -n option was not used on the command line. Ella and Robert appeared once
because their lines were not edited at all and the -n option was not specified in the command line.

To get around this problem, use the -n option and use p only once, on the last substitution:

cat >scriptSc
s/g7/g8/g
s/r11S/r120/gp
<ctrl-D>

When you enter the following command line

sed -n -f scriptSc exercises

the new result will be:

Bill
Nora
Dave

gS
gS
gs

r120
r120
rl20

The w command acts like the p command, except that matched lines are written to the file whose
name follows thew. The following script shows the correct form:

TUTORIALS

150 sed Stream Editor

cat >scriptSd
s/g8/g9/w grade.9
s/gu/gB/w grade.a
<ctrl-D>

When you execute script5d with this command:

sed -f scriptSd exercises

the normal product will be seen produced at your terminal, and the edited lines will be written to
files grade.8 and grade.9. File grade.8 will contain:

Bill
Steve
Dave

gB
gB
g8

rllS
r120
rllS

Note the order in which the two s commands were given. If their order were reversed, every text line
with g7 in it would have g7 changed to gs by the first s command, then have this newly created gs
changed to g9 by the seconds command. Thus, all the students would be shown to be in g9, and
every text line would be printed into the file grade.9.

Line Location
When you edit a file with sed, it is hard to keep track of line numbers. As noted earlier, you can
locate specific lines with sed by using patterns as line locators. To see how this works, type the
following text file into your system:

cat >exercise6
From the Book of Proverbs1
As a door turneth upon his hinges, so the
slothful man turneth upon his bed.
A soft answer turneth away wrath: but grievous
words stir up anger.
<ctrl-D>

Now, prepare the following sed script:

cat >script6
/door/,/bed/s/turneth/turns/
<ctrl-D>

Execute it by entering the following command line:

sed -f script6 exercise6

The text will appear on your terminal this way:

From the Book of Proverbs:
As a door turns upon his hinges, so the
slothful man turns upon his bed.
A soft answer turneth away wrath: but grievous
words stir up anger.

Note that the word turns was substituted for the word turneth only in the first proverb, not the
second. The reason is that the s command in this instance was preceded by the patterns door and
bed. These told sed to begin making the substitution on the first line in which the word door
appears, and to stop making the substitution with the first line in which the word bed appears. In

TUTORIALS

sed Stream Editor 151

the text file, the fourth line also contained the word turneth, but because it lay outside the range of
line specified by the line locators, no substitution was made.

When sed locates the last line of a block of text that you have defined. it will immediately look for
the next occurrence of the first line locator. If it finds that first line locator, it will then resume
making the substitution to your file until it again finds the second line locator or comes to the end
of the file. whichever occurs first. In this example, when sed found the word bed, it began to look
again for the word door; and if it had found the word door, it would have resumed substituting
turns for turneth.

Remember that, as explained earlier, line numbers can also be used as line locators. For example,
the sed script

2,3s/turneth/turns/

would have produced the same changes as did the script with the pattern line locators prepared
earlier.

Add Lines of Text
sed can add lines to your text file. To see how sed does this, first prepare the following text file:

cat >exercise?
From the Devil's Dictionary:
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.
<ctrl-D>

Now, type in the following script:

cat >script?
3a\
Economy, n. Purchasing the barrel of whiskey you do not \
need for the price of the cow you cannot afford.
<ctrl-D>

When you implement the script:

sed -f script? exercise?

you will see this result:

From the Devil's Dictionary:
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.
Economy, n. Purchasing the barrel of whiskey you do not
need for the price of the cow you cannot afford.

The append command a added text after the third line of the file. You defined where the text went.
Notice the backslash '\' at the end of the line with the a command. This indicates that the next line
is part of the command. When you append several lines of text, each line but the last one to be
added must end with a '\'as in our example.

Note that no other editing command, such as s, can affect any line added with a. These lines go
directly to your screen, or to a file, should you be sending the edited text there, and are invisible to
all other sed commands.

TUTORIALS

152 sed Stream Editor

The insert command i works like the a command, except that it adds its lines before the addressed
line, rather than after. The following script shows how the i command works:

cat >script7a
2i\
Peace, n. In international affairs, a period of cheating\
between two periods of fighting.
<ctrl-D>

Invoking it with this command:

sed -f script7a exercise?

produces this:

From the Devil's Dictionary:
Peace, n. In international affairs, a period of cheating
between two periods of fighting.
Syllogism, n. A logical formula consisting of a major
and a minor assumption and an inconsequent.

As with the a command, no substitutions or other changes are performed on lines added with i.

Note, too, that you can bracket a text line by using the a and i commands at the same time. Adding
a line with either a or i does not change line numbers of the text file you are editing (although it
does, of course, change the line numbers of the file sed writes).

Delete Lines
The d command deletes lines that you do not want in the edited text. The original file stays
unchanged, of course.

Lines that match the address (be it a line number, range, or pattern) of ad command do not appear
in the output. Exercise 8 illustrates the d command:

cat >exercises
The sun was shining on the sea,
Shining with all his might.
He did his very best to make
The billows smooth and bright
And this was odd, because it was
The middle of the night.
<ctrl-D>

Now, you have to define the lines to be deleted by matching them with a unique pattern or a line
number. To delete lines 3 through 6, prepare this script:

cat >scripts
/best/,/night/d
<ctrl-D>

The command:

sed -f scripts exercises

generates this result:

TUTORIALS

The sun was shining on the sea,
Shining with all his might.

sed Stream Editor 153

Note that when a line is deleted, no other commands are applied to it. Usually. if a sed script holds
a number of commands, every one of those commands is applied to every line read from your text
file; however, sed is logical enough to read the next text line immediately, should a d command
delete the current line before the series of commands has finished.

Change Lines
The c command combines the i and d options. Text is inserted before the addressed lines, which
are then deleted. To see how this command works, prepare the following text file:

cat >exercise9
Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.
<ctrl-D>

Now, type in the following script:

cat >script9
1,2c\
Twas brilliant, and the shining cove\
Did glare and glimmer in the wave;
<ctrl-D>

When you execute your script with the following command line:

sed -f script9 exercise9

the result is:

Twas brilliant, and the shining cove
Did glare and glimmer in the wave;
All mimsy were the borogoves,
And the mome raths outgrabe.

Like the i and a commands, the c command requires all added lines but the last to end with '\ '.

Include Lines From a File
When you edit a file, you may wish to include, or read in, a second file as part of it. This is done
with r command. To see how this works, type the following file into your computer, and call it
include:

cat >include
Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

<ctrl-D>

Now, prepare the file to be edited:

TUTORIALS

154 sed Stream Editor

cat >exerciselO
To write a poem doesn't take much time;
Just string some words to rhythm and a rhyme.
What poets do to language is a crime,
Words and syntax twisted for a rhyme.
<ctrl-D>

When you write your script. you must tell sed where to read in include. The form of the command
should be familiar by now:

cat >scriptlO
/rhyme/r include
<ctrl-D>

The result is:

To write a poem doesn't take much time;
Just string some words to rhythm and a rhyme.

Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

What poets do to language is a crime,
Words and syntax twisting for a rhyme.

Then there comes the often-used refrain
Whose repetitious writing dulls the brain.

Note that the r command inserted include after the addressed line. You can address lines by
number, of course, as well as by pattern.

Quit Processing
The q command makes sed stop processing the text file. You will use this command most often to
limit the application your sed script to a portion of your text file. For example, if you were editing a
large file and you knew that your commands would be irrelevant to the last half of the file, you could
insert an appropriately addressed q and save some computer time. You can also use this command
to print portions of a file.

To see how this is done, prepare the following text file:

cat >exercisell
An hourglass has a very wide top,
a very narrow
middle
and a bottom
that is also extremely wide.
<ctrl-D>

The following script will print the top of the text file. Note how the script uses middle to address the
line where the file is to be split.

cat >scriptll
/middle/q
<ctrl-D>

The command:

TUTORIALS

sed -f scriptll exercisell

produces:

An hourglass has a very wide top,
a very narrow
middle

sed Stream Editor 155

To print out only the lines after the pattern middle, simply delete the first half of the file with the d
command, as follows:

cat >scriptlla
1,/middle/d
<ctrl-D>

The result is the output:

and a bottom
that is also extremely wide.

Next Line
The n command advances to the next line of the text file. The n command is useful for instances
when you have two or more interrelated lines, and you want to ensure th a particular set of patterns
is matched over the entire set of lines. To see how n works. prepare the following text file:

cat >exercise12
Alpha
One
Beta
Two
Gamma
Three
Delta
Four
Epsilon
Five
<ctrl-D>

To print a list of letters alone, type the following script:

cat >script12
n
d
<ctrl-D>

and execute it with the following command line:

sed -f script12 exercise12

The result will be the following:

TUTORIALS

156 sed Stream Editor

Alpha
Beta
Ganuna
Delta
Epsilon

Remember that n does rwt stop processing, go to the next text line, and begin processing all over
again. Rather, it simply reads the next input line and continues processing from where it left off.
For example, if your sed file consisted of three commands. the second of which was then command,
sed would apply the first command to the first line it read. then jump to the second line and apply
the last commands. Then. it would read the third line and begin the pattern over again. To see how
this works, prepare the following text file:

cat >exercise13
Alpha
Alpha
Alpha
Alpha
<ctrl-D>

Now type in this script:

cat >script13
s/Alpha/Apple/
/Apple/n
a/Alpha/Banana/
<ctrl-D>

When you execute the script with this command line:

sed -f script13 script13

the following will appear on your terminal:

Apple
Banana
Apple
Banana

Note that the first substitution command changed the first Alpha to Apple; the n command moved
sed to the next line; and the second s command changed that Alpha to Banana.

The following sections discuss sed's advanced features. They also discuss the method of operation.

Work Area
As described earlier. sed reads your text file one line at a time, and applies all of your editing
commands to that line. After the editing commands have been applied, the edited line is either sent
to the standard output, written to a file you have named. or thrown away. depending on what you
have told sed to do.

When sed reads a line from your text file, it copies that line into a work area, where it actually
executes your editing commands. sed notes the number of the line in the work area. then executes
each editing command in turn, first checking to see if the patterns or line numbers specified in each

TUTORIALS

sed Stream Editor 157

command actually apply to that line. After each command is checked in turn and performed if
indicated, sed prints the edited line (if it is supposed to be), and reads the next text line.

Add to Work Area
The exercises so far have used only one line in the work area. The N command, however, tells sed
to read a second line into the work area. The following exercise illustrates the use of the work area
and the N command.

cat >exercise14
This exercise has a brok
en word.
<ctrl-D>

Now, prepare the following sed script:

cat >script14
/brok$/N
s/brok\nen/broken/
s/has/had/
<ctrl-D>

and execute it with the following command line:

sed -f script14 exercise14

which produces the following text:

This exercise had a broken sentence.

You will find it helpful to review this exercise in some detail. The first command in the script

/brok$/N

tells sed to search for the pattern brok at the end of the line of text. (The dollar sign '$' in this
instance indicates the end of the line: remember that when the '$' is used with a line number. it
indicates the end of thejlle.) The N command tells sed to keep this line in the working space, and
copy the next line into the working space as well.

When sed executes this command on the present text file. the work area will look like this:

This example has a brok<newline>en word.

Note that the two lines now appear to sed as though they formed one long line. The word
<newline> represents the end of line character that tells your terminal or printer to jump to a new
line when the text file is printed out. This character is invisible, but it is there, and it can be
changed or deleted. You can describe this character to sed by using the characters \n. The first
substitution in this script

s/brok\nen/broken/

replaces brok<newline>en with broken. Because the newline character is deleted from the text,
what used to be printed out as two lines on your screen will now be printed out as one.

Note the difference, too, between then and N commands. Then command will replace the text line
in the work area with the next line from your text file. The N command, however. appends the next
line from your text file to the end of the text already in the working area. The next exercise
demonstrates this difference. First, create the following text file:

TUTORIALS

158 sed Stream Editor

cat >exercise15
Apple
Apple
Apple
Apple
<ctrl-D>

Now, prepare the following two scripts:

cat >script15
/Apple/n
s/Apple/Banana/g
<ctrl-D>

cat >script15a
/Apple/N
s/Apple/Banana/g
<ctrl-D>

When scriptl 5 is executed with the following command line:

sed -f script15 exercise15

this will appear on your screen:

Apple
Banana
Apple
Banana

The n command told sed to print out the line already in the work area before reading in the next
line from the text file. This meant that sed substituted Banana for Apple only on the second line of
each pair.

Note what happens, however, when you run script! Sa, using this command line:

sed -f script15a exercise15

This text appears:

Banana
Banana
Banana
Banana

Because both lines of each pair were kept in the work area, the substitution command changed both
of them.

Print First Line
The P command prints material from the work area. Unlike the p command, which prints
everything in the work area, P prints only the.first line in the work area. To see how this works,
prepare the following text file:

TUTORIALS

cat >exercise16
Student: George
Teacher:
Student:
Teacher:
Student:
Teacher:
<ctrl-D>

Mr. Starzynski
Marian
Miss Peterson
Ivan
Mr. Starzynski

Now, prepare the following scripts:

cat >script16
/Student/N
/Mr. Starzynski/p
<ctrl-D>

cat >script16a
/Student/N
/Miss Peterson/P
<ctrl-D>

sed Stream Editor 159

When the first of these scripts is executed with the following command line (note the use of the -n
option):

sed -n -f script16 exercise16

the result is

Student:
Teacher:
Student:
Teacher:

George
Mr. Starzynski
Ivan
Mr. Starzynski

whereas scriptl6a. when executed as follows:

sed -n -f script16a exercise16

produces

Student: George
Student: Ivan

Note that the N command lines pull both the name of the student and the name of the teacher into
sed's work area; then the P command allows you to print only the names of the students whose
teacher is Mr. Starzynski. Obviously, Pis a powerful tool that will allow you to select material from
tables. lists. and other repetitive files.

Save Work Area
sed can create a second work area in addition to the primary work area in which sed performs its
editing. sed does not execute any editing commands on the material stored in this secondary work
area; rather. this work area can be used to store material that you want to edit or insert later.

The commands h and H copy material from the primary work area into the secondary work area. h
and H differ in that h displaces any material in the secondary work area with the line being copied
there, whereas H appends the line being copied onto the material already in the work area. Note,
too, that both h and H merely copy the primary work area into the secondary work area - after

TUTORIALS

160 sed Stream Editor

these commands have been executed, the material in the primary work area remains intact. and can
be edited further. printed out, or deleted, whichever you prefer.

The commands g and G copy material back from the secondary work area into the primary work
area. Again, these commands differ in that g displaces whatever is in the primary work area with
the material from the secondary work area, whereas G appends the material from the secondary
work area onto the material already in the primary work area.

The following exercises will demonstrate how these commands are used. First, create the following
text file:

cat >exercisel7
fruit: apple
berry: gooseberry
fruit: orange
berry: raspberry
fruit: pear
berry: blueberry
<ctrl-D>

The first script uses the hand g commands:

cat >scriptl7
/fruit/h
/fruit/ct
/berry/g
<ctrl-D>

When you execute this script with the following command line:

sed -f scriptl7 exercisel7

you receive the following text on your screen:

fruit: apple
fruit: orange
fruit: pear

Review the last script in detail. The first command, /fruit/h, copied the line beginning with "fruit"
into the secondary work area, displacing whatever happened to be there. The command /fruit/d
then deleted the line from the primary work area; if this were not done, it would then have been
printed out. The third command, /berry/g then recopied the material from the secondary work
area into the primary work area, displacing whatever was already in the primary work area. The
result of all this shuffling and displacing was that the three lines that begin with fruit were printed
out.

The next script demonstrates the H command:

cat >scriptl7a
/fruit/H
/fruit/ct
/berry/g
<ctrl-D>

When you execute this script with the following command line:

sed -f scriptl7a exercise 17

TUTORIALS

sed Stream Editor 161

you see:

fruit: apple
fruit: apple
fruit: orange
fruit: apple
fruit: orange
fruit: pear

Because the H command appends material into the secondary work area. rather than replacing it as
h does. all three lines that began with fruit were cumulatively stored in the secondary work area.
Because the g command was used for every line that began with berry. the contents of the
secondary work area (that is, the fruit lines) were written over each of the three lines that began
with berry.

The next script demonstrates the use of the G command:

cat >script17b
/fruit/H
/fruit/d
/berry/G
s/berry://g
s/fruit://g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17b exercise17

you will see:

gooseberry
apple

raspberry
apple
orange

blueberry
apple
orange
pear

The H command copies the lines that begin with fruit into the secondary work area. The G
command then re-copies them from the secondary work area into the primary work area. and
appends them to the material already in the primary work area - that is, to a line that begins with
berry.

The two substitution commands then strip off the fruit and berry prefixes; obviously, these
substitutions do not affect the operation of the H and G commands, but they do create a tidier
result.

By the way, be sure you distinguish the g command from the g option used with the s command. If
you do not. what sed finally prints out for you may appear very strange.

The final command that uses the secondary work area is x, which exchanges the two work areas.
The following script shows how this is used:

TUTORIALS

162 sed Stream Editor

cat >script17c
/fruit/H
/fruit/d
/blueberry/x
s/berry://g
s/fruit://g
<ctrl-D>

When you execute this script with the following command line:

sed -f script17c exercise17

you see:

gooseberry
raspberry

apple
orange
pear

The text lines that began with fruit were moved into the secondary working area. The x command
was executed when the line that contained the word blueberry was reached. and the two working
areas exchanged their contents. The fruit lines were then printed out. while the blueberry line was
simply left in the secondary working at the end of the program, and disappeared when the program
concluded.

Note that x simply swaps the two working areas - there is no "X" command that appends the work
areas onto each other.

Transform Characters
The y command is a special form of the s command. With the y command, you can replace a
number of characters easily, without having to write a series of s commands.

The form of the command is:

y/123/abc/

In the above example, l will be replaced with a, 2 with b, and 3 with c throughout the document (no
g option is needed). For y to work properly there must be a one-to-one relationship between the
characters being replaced and the characters replacing them. Also, y cannot make exchanges that
involve more than one character - it cannot, for example, replace apple with banana.

One useful task for the y command is to change all upper-case letters in a file to lower case.
Prepare the following text file to see how this is done:

cat >exercise18
NOW IS THE TIME FOR ALL GOOD MEN TO COME
TO THE AID OF THE PARTY.
<ctrl-D>

And prepare the following script, which will change these capitals:

TUTORIALS

cat >script18
y/ABCDEFGHI/abcdefghi/
y/JKLMNOPQR/jlkmnopqr/
y/STUVWXYZ/stuvwxyz/
<ctrl-D>

sed Stream Editor 163

The alphabet is entered here in three chunks, to prevent the command from being too long to type
easily. Execute this script with the following command line:

sed -f script18 exercise18

The res ult is:

now is the time for all good men to come
to the aid of the party.

Command Control
sed gives you advanced control over the execution of commands. The next subsections describe
how these command controls help you write compact, powerful scripts.

{ }: Command Grouping
In several of the exercises presented so far, more than one command specified the same line locator.
By using braces'{' and'}', you can bundle commands, which makes writing your scripts easier and
lessens the chance of making a typographical error.

To see how this is done, type the following script:

cat >exercise19
When my love swears that she is made of truth,
I do believe her, though I know she lies,
That she might think me some untutored youth,
Unlearned in the world's false subtleties.
<ctrl-D>

Now, prepare the following script:

cat >scriptl9
/truth/{N
p

}
/lies/d
<ctrl-D>

When you execute this script with the following command line:

sed -f scriptl9 exercise19

the result on your terminal is:

When my love swears that she is made of truth,
That she might think me some untutored youth,
Unlearned in the world's false subtleties.

Note the syntax of this command. Each subsequent command must go on a line of its own, as must

TUTORIALS

164 sed Stream Editor

the right brace '}'. If this syntax is not observed. you will receive an error message.

!: All But
The ! flag inverts a line selector; that is to say. the command will be performed on every line but the
one named in the line selector. The following script will show how this works:

cat >scriptl9a
2!d
<ctrl-D>

which. when run with the following command line:

sed -f script19a exercise19

produces

I do believe her, though I know she lies,

This script deleted every line except line 2. The ! flag may also be used with a range of lines. as
indicated by line numbers or line patterns; in either case. you must place the ! flag after the line
selectors and immediately before the command. Obviously. the ! flag is very powerful. and can be
used to sift out a few desired lines from a large file.

= : Print Line Number
You may wish to print only the line number of lines that contain a selected pattern. This is done
with the = command. For example, you may wish to know the number of each line in the exercise
that contains the word she. The following script:

cat >scriptl9b
/she/=
<ctrl-D>

when executed with the following command line (note the -n option):

sed -n -f script19b exercise19

produces this result:

1
2
3

These numbers can be stored in a file and used in further editing. or included with the text of the
fully edited file to provide a series of line markers.

Skipping Commands
sed normally processes editing commands in order, beginning with the first command and
proceeding sequentially to the last. This behavior can be modified by the branching commands: b,
t, and:.

These commands must be used with the colon (:) command, which defines a label point in the list of
commands.

The branch command b allows you to skip unconditionally some editing commands in your script.
The following exercise demonstrates how this can be used:

TUTORIALS

cat >exercise20
They went to sea in a sieve, they did;
In a sieve they went to sea;
In spite of all their friends could say,
On a winter's morn, on a stormy day,
In a sieve they went to sea.
<ctrl-D>

sed Stream Editor 165

The following script uses the b command to avoid making certain changes to the first line of the
poem:

cat >script20
s/sea/drink/g
/They/bend
s/sieve/ship/g
1end

When you execute this script with the following command line:

sed -f script20 exercise20

you will see:

They went to drink in a sieve, they did;
In a ship they went to drink;
In spite of all their friends could say,
On a winter's morn, on a stormy day,
In a ship they went to drink.

Note that the word sea is changed to drink throughout the file; however, when sed noted that the
word They appeared in line 1. the b command forced it to seek the : command that was labeled with
the word end, and to continue editing only after it found the labelled: command. In so doing, sed
skipped the command to substitute ship for sieve. which is why that substitution was not made in
line 1.

Note the syntax of the b command: the label follows it without a break. The text of the label is
unimportant, just so long as it matches that used in the b command: however, the use of a label
allows you to place several b or (as will be seen) t commands in the same script without mixing
them up.

t: Test Command
The test command, t, also allows you to change the order in which editing commands are executed.
Unlike the b command, which simply examines a line for a given pattern, the t command tests to
see if a particular substitution has been performed.

The following script demonstrates the use of the t command:

TUTORIALS

166 sed Stream Editor

cat >script20a
s/They/they/g
tend
s/sieve/ship/
:end
s/sea/drink/g
<ctrl-D>

which, when executed with the following command line:

sed -f script20a exercise20

produces:

they went to drink in a sieve, they did;
In a ship they went to drink;
In spite of all their friends could say,
On a winter's morn, on a stormy day,
In a ship they went to drink.

Note that the t command checked to see that they was substituted for They before branching to the
':'command labeled with the word end.

Also note the syntax of the t command: Like the b command, the label immediately follows the
command and is not separated by a space; unlike the b command, however, the t command appears
on the line below the substitution command for which it is testing.

The Lexicon entry for sed summarizes its command-line options and commands. The COHERENT
line editor ed resembles sed, except that it works interactively instead of in a stream. For
information on ed, see its tutorial or its entry in the Lexicon.

TUTORIALS

The C Language

C is a computer language invented by Dennis Ritchie and Ken Thompson at AT&T Bell Laboratories
in the early 1970s. In the approximately 20 years since its creation, C has become one of the most
popular compter languages in the world. C is powerful, flexible; it is highly portable. and has been
implemented on practically every computer, and under practically every operating system, in the
world.

C is the "native language" of the COHERENT system. COHERENT is written in C, and it includes a
powerful C compiler among its suite of language tools for your use. You do not need to know C to
use COHERENT to great advantage; however, if you plan to program under COHERENT, you would
be well advised to become at least passably acquainted with it.

This tutorial is an introduction to the COHERENT C compiler and to the C language itself. The first
part of this section describes how to compile programs under COHERENT. The second part is a
brief tutorial in the C language itself.

A C compiler is a program that transforms files of C source code into machine code. Compilation is
a complex process that involves several steps: however, COHERENT simplifies it with the command
cc, which controls all the actions of the compiler.

Try the Compiler
Before we launch into a lengthy explanation of what cc is and what it does, you can get a feel for it
by trying it with a simple example. To begin. type the following to create a simple C program:

cat >hello.c
main() {

printf("Hello, world\n")~
}
<ctrl-0>

This creates a simple C program called hello.c. Now. compile your program by typing the following
command:

cc -V hello.c

If you typed the program correctly. cc will print something like the following on your screen:

/lib/ccO 023400000100 hello.c /tmp/cc15029b
/lib/eel 023000000100 /tmp/cc15029b /tmp/cc15029a
/lib/cc2 023000000100 /tmp/cc15029a hello.o /tmp/cc15029b
rm /tmp/cc15029a
rm /tmp/cc15029b
/bin/ld -X /lib/crtsO.o hello.o /lib/libc.a
rm hello.o

What each of these messages means will be described below. If you receive an error message. try re­
typing the program, and then re-compile it. When compilation is successfully completed, you will
now have an executable program called hello. To invoke it, type:

167

168 The C Language

hello

It should print the following on your screen:

Hello, world

As you can see, cc makes it easy to transform a file of C code into an executable program.

Phases of Compilation
As you noticed, cc printed a number of messages on your screen as it compiled hello.c. The reason
you saw the messages was that compilation was performed with the -V option to cc; this tells cc to
print a verbose output that describes each of its actions. cc prints numerous messages because the
COHERENT C compiler is not just one program, but a number of different programs that work
together. Each program performs a phase of compilation. The following summarizes each phase:

cpp The C preprocessor. This processes any of the'#' directives, such as #include or #ifdef, and
expands macros.

ccO The parser. This phase parses programs. It translates the program into a parse-tree format,
which is independent of both the language of the source code and the microprocessor for
which code will be generated.

eel The code generator. This phase reads the parse tree generated by ccO and translates it into
machine code. The code generation is table driven. with entries for each operator and
addressing mode.

cc2 The optimizer/object generator. This phase optimizes the generated code and writes the
object module.

cc3 COHERENT also includes a fifth phase, called cc3, which can be run after the object
generator, cc2. cc3 generates a file of assembly language instead of a relocatable object
module. cc3 allows you to examine the code generated by the compiler. You did not see this
phase when you compiled hello.c because this phase is optional and you did not request it.
If you want COHERENT to generate assembly language, use the -S option on the cc command
line.

Unless you specify the -S option. cc creates an object module that is named after the source file
being compiled. This module has the suffix .o. An object module is not executable; it contains only
the code generated by compiling a C source file, plus information needed to link the module with
other program modules and with the library functions.

As the final step in its execution, cc calls the linker Id to produce an executable program.

As you can see, cc also removes the temporary files it creates to pass information from one compiler
phase to another. If your program is built out of only one file of C source code, it also deletes the
object module that it creates after that module is linked to create an executable program.

Renaming Executable Files
When cc compiles a source file. by default it names the executable program after the.first source file
named on the cc command line. If you wish, you can give the executable file a different name. Use
the -o (output) option, followed by the desired name.

TUTORIALS

The C Language 169

Floating-Point Numbers
Often, you will need to use floating-point numbers in your programs. If you are unsure what a
floating-point number is, see the Lexicon entry for Doat.

The routines that print floating-point numbers are large. and most C programs do not need to print
floating-point numbers; therefore. the code to perform floating-point arithmetic is not included in a
program by default. You must ask cc to include these routines with your program by using the -f
option to cc.

To see how this works. let's modify hello.c to use floating-point numbers. Edit hello.c by typing the
following commands:

ed hello.c
2
c

w
q

printf("Hello, world %f\n", 123.4);

Now, compile the program with the same command line as before:

cc -V hello.c

When compilation has finished, type hello. You'll see the following output:

You must compile with the -f flag
to include printf() floating point.

Hello, world

COHERENT is telling you that you are using a floating-point number but that you did not compile
the program to include code to process floating-point numbers. Now, recompile the program using
the -f option to cc:

cc -V -f hello.c

When compilation has finished, type hello. If you typed the program correctly, you will see the
following:

Hello, world 123.400000

As you can see, hello is now displaying the floating-point number 123.4 for you. For detailed
information on prlntf, see its entry in the Lexicon; prlntf is also discussed in the tutorial section
below.

Compiling Multiple Source Files
Many programs are built from more than one file of C source code. For example, the program
factor, which is provided with COHERENT, is built from the C source files factor.c and atod.c. To
produce the executable program factor, both source files must be compiled; the linker Id then joins
them to form an executable file.

To compile a program that uses more than one source file, type all of the source files onto the cc
command line. For example, to compile factor you would type the following:

TUTORIALS

170 The C Language

cc -o factor -f factor.c atod.c -lm

This command compiles both C source files to create the program factor.

In the above example. cc produces the non-executable object modules factor.a and atod.o. and
then links them to produce the executable file factor.

The argument -Im tells cc to include routines from the mathematics library when the object
modules are linked. This option must come after the names of all of the source files. or the program
will not be linked correctly.

Linking Without Compiling
When you are writing a program that consists of several source files. you will need to compile the
program, test it, and then change one or more of the source files. Rather than recompile all of the
source files, you can save time by recompiling only the modified files and relinking the program.

For example. if you modify the factor program by changing the source file factor.c. you can
recompile factor.c and relink the entire program with the following command:

cc -o factor -f factor.c atod.o -lm

This cc command refers to the C source file factor.c and the object module atod.o. cc recognizes
that atod.o is an object module and simply passes it to the linker Id without re-compiling it. You
will find this particularly useful when your programs consist of many source files and you need to
compile only a few of them.

To simplify compiling. especially if you are developing systems that use many source modules. you
should consider using the make utility that is included with COHERENT. For more information on
make. see its entry in the Lexicon, or see the tutorial for make that appears later in this manual.

Compiling Without Linking
At times. you will need to compile a source file but not link the resulting object module to the other
object modules. You will do this. for example, to compile a module that you wish to insert into a
library. Use cc's option -c to tell cc not to link the compiled program. This option is often used to
create relocatable object modules that can be archived into a library for later use.

For example. if you wanted just to compile factor.c without linking it. you would type:

cc -c factor.c

To link the resulting object module with the object module atod.o and with the appropriate
libraries, type the following command:

cc -o factor -f factor.o atod.o -lm

Assembly-Language Files
C makes most assembly language programming unnecessary. However, you may wish to write
small parts of your programs in assembly language for greater speed or to access processor features
that C cannot use directly. COHERENT includes an assembler. named as. which is described in
detail in the Lexicon.

To compile a program that consists of the C source file example.c and the assembly-language
source file example.s, simply use the cc command as usual:

TUTORIALS

The C Language 171

cc -o example examplel.c example2.s

cc recognizes that the suffix .s indicates an assembly-language source file, and assembles it with as;
then it links both object modules to produce an executable file.

Changing the Size of the Stack
The stack is the segment of memory that holds function arguments, local variables, and function
return addresses. COHERENT by default sets the size of the stack to two kilobytes (2.048 bytes).
This is enough stack space for most programs; however, some programs, such as the example
program on page 26 of the first edition of The C Programming Language, require more than two
kilobytes of stack. A program that uses more than its allotted amount of stack will cause a stack
oveiflow, which will cause your program to crash.

The size of the stack cannot be altered while a program is running. Should your program need more
than two kilobytes of stack, use the COHERENT command :Oxstack. For more information, see the
entry for flxstack in the Lexicon.

Where To Go From Here
This discussion of the cc command is by no means complete. but it includes enough information for
you to begin to compile your programs. The Lexicon's entry for cc gives all of the command-line
options available with cc. The Lexicon also has entries for cpp, the compiler phases, and for the
linker Id, and describes them at greater length. All error messages generated by cc and by the
assembler as appear in the appendix to this manual.

The next section in this tutorial introduces the C programming language.

This section briefly introduces the C programming language. It is in two parts. The first part
describes what a programming language is, and gives the history of the C programming language.
This section also introduces some concepts basic to C, such as structured programming, pointer, and
operator. The second part walks through a C programming session. It emphasizes how a C
programmer deals with a real problem, and demonstrates some aspects of the language.

This chapter is not designed to teach you the entire C language. It introduces you to C, so you can
read the rest of this manual with some understanding. We urge you to look up individual topics of
C programming in the Lexicon, and especially to study the example programs given there.

Programming Languages and C
Before beginning with C, it is worthwhile to review how a microprocessor and a computer language
work.

A microprocessor is the part of your computer that actually computes. Built into it is a group of
instructions. Each instruction tells the microprocessor to perform a task; for example, one
instruction adds two numbers together, another stores the result of an arithmetic operation in
memory, and a third copies data from one point in memory to another.

Together, a microprocessor's instructions form its instruction set. The instruction set is, in effect,
the microprocessor's "native language".

A microprocessor also contains areas of very fast storage, called registers. The registers are
essential to arithmetic and data handling within the microprocessor. How many registers a
microprocessor has, and how they are designed, help to determine how much memory the
microprocessor can read and write, or address, and how the microprocessor handles data.

TUTORIALS

172 The C Language

A computer language, as the name implies, lets a human being use the microprocessor's instruction
set. The lowest level language is called "assembly language". In assembly language. the
programmer calls instructions directly from the microcomputer's instruction set, and manipulates
the registers within the microprocessor. To write programs in assembly language. a programmer
must know both the microprocessor's instruction set and the configuration of its registers.

Assembly and High-Level Languages
With assembly language, the programmer can tailor the program specifically to the microprocessor.
However, because each microprocessor has a unique instruction set and configuration of registers. a
program written in one microprocessor's assembly language cannot be run on another
microprocessor. For example, no program written in the assembly language for the Motorola 68000
microprocessor can be run on the IBM PC or any PC-compatible computer. The program must be
entirely rewritten in the assembly language for the Intel i8086 microprocessor, which is difficult and
time consuming.

A high-level language helps programmers to avoid these problems. The programmer does not need
to know the microprocessor in detail; instead of specific microprocessor instructions. he writes a set
of logical constructions. These constructions are then handed to another program, which translates
them into the instructions and register calls used by a specific microprocessor. In theory, a
program written in a high-level language can be run on any microprocessor for which someone has
written a translation program.

A high-level language allows the programmer to concentrate on the task being executed, rather than
on the details of registers and instructions. This means that programs can be written more quickly
than in assembly language, and can be maintained more easily.

So, What Is C?
As noted earlier. C was invented at AT&T Bell Laboratories by Dennis Ritchie and Ken Thompson.
They created C specifically to re-write the UNIX operating system from PDP-11 assembly language.
Ritchie designed C to have the power, speed, and flexibility of assembly language, but the portability
of high-level languages.

In 1978, Ritchie and Brian W. Kernighan published The C Programming Language, which describes
and defines the C language. The C Programming Language is the "bible" of C, a standard work to
which all programmers can refer when writing their programs.

Because C is modeled after assembly language. it has been called a "medium-level" language. The
programmer doesn't have to worry about specific registers or specific instructions, but he can use all
of the power of the computer almost as directly as he can with assembly language.

Because C was written by experienced programmers for experienced programmers. it makes little
effort to protect a programmer from himself. A programmer can easily write a C program that is
legal and compiles correctly but crashes the program. Also, C's punctuation marks, or "operators",
closely resemble each other. Thus, a mistake in typing can create a legal program that compiles
correctly but behaves very differently from what you expect.

Structured Programming
C is a structured language. This means that a C program is assembled from a number of sub­
programs. or functions, each of which performs a discrete task. If this concept is difficult to grasp.
consider the following example.

TUTORIALS

The C Language 173

Suppose you want to turn a file of text into upper-case letters and print it on the screen. This job
seems simple, but a program to do it must perform five tasks:

1. Read the name of the file to open.

2. Open the file so it can be read. in much the same way that you must open a book before you
can read it.

3. Read the text from the file.

4. Turn what is read into upper-case letters.

5. Print the transformed text onto the screen.

A good program will also perform the following tasks:

1. Check that the file requested actually exists.

2. Check that the file requested is actually a text file rather than a file of binary information; the
latter makes very little sense when printed on the screen.

3. Close the program neatly when the work is finished.

4. Stop processing and print an error message if a problem occurs.

A structured language like C allows you to write a separate function for each of these tasks.

A structured programming language offers two major advantages over a non-structured language.
First. it is easier to debug a function than an entire program because the function can be unplugged
from the program as a whole, made to work correctly, and then plugged back in again. Second,
once a function works. it can be used again and again in different programs. This allows you to
create a library of reliable functions that you can pull off the shelf whenever you need them.

The functions within a program communicate by passing values to each other. The value being
passed can be an integer, a character, or - most commonly- an address within memory where a
function can find data to manipulate. This passing of addresses, or pointers, is the most efficient
way to manipulate data because by receiving one number, a function can find its way to a large
amount of data. This speeds up a program's execution.

C adds some extra tools to help you construct programs. To begin. C allows you to store functions
in compiled form. These precompiled functions are added only when the program is finally loaded
into memory; this spares you the trouble of having to recompile the same code again and again.
Second, C adds a preprocessor that expands definitions, or macros, and pulls in special material
stored in header files. This allows you to store often-used definitions in one file and use them just
by adding one line to your program.

Writing a C Program
As noted above, a C program consists of a bundle of sub-programs, or functions, which link together
to perform the task you want done. Every C program must have one function that is called main.
This is the main function; when the computer reads this, it knows that it must begin to execute the
program. All other functions are subordinate to main. When the main function is finished, the
program is over.

To see how these elements work, review the program hello.c, which you worked with earlier in this
tutorial:

TUTORIALS

174 The C Language

main ()
{

}
printf("Hello, world\n");

As you can see, this program begins with the word main. The program begins to work at this point.
The parentheses after main enclose all of the arguments to main - or would, if this program's main
took any. An argument is an item of information that a function uses in its work.

The braces 'f and'}' enclose all the material that is subsidiary to main.

The word "printf' calls a function called printf. This function performs formatted printing. The line
of characters (or "string") Hello, world is the argument to printf: this argument is what printf is to
print.

The characters '\n' stand for a newline character. This character "tosses the carriage", or moves the
cursor to a new line and returns it to the leftmost column on your screen. Using this character
ensures that when printing is finished, the cursor is not left fixed in the middle of the screen.
Finally, the semicolon';' at the end of the command indicates that the function call is finished.

One point to remember is that printf is not part of the C language. Rather, it is a function that was
written by Mark Williams Company, then compiled and stored in a library for your use. This means
that you do not have to re-invent a formatted printing function to perform this simple task: all you
have to do is call the one that Mark Williams has written for you.

Although most C programs are more complicated than this example, every C program has the same
elements: a function called main, which marks where execution begins and ends; braces that fence
off blocks of code; functions that are called from libraries; and data passed to functions in the form
of arguments.

This section walks you through a C programming session. It shows how you can go about planning
and writing a program in C.

C allows you to be precise in your programming. which should make you a stronger programmer.
Be careful, however, because C does exactly what you tell it to do, nothing more and nothing less. If
you make a mistake. you can produce a legal C program that does very unexpected things.

Designing a Program
Most programmers prefer to work on a program that does something fun or useful. Therefore, we
will write something useful: a version of the COHERENT utility scat, that we'll call display. It will do
the following:

1. Open a text file on disk.

2. Display its contents in 23-line chunks (one full screen).

3. After displaying a chunk, wait to see if the user wants to see another chunk. ·If the user
presses the <return> key alone, display another chunk: if the user types any other key before
pressing the <return> key, exit.

4. Exit automatically when the end of file is reached.

As you can see, the first step in writing a program is to write down what the program is to do, in as
much detail as you can manage, and preferably in complete sentences.

TUTORIALS

Now, invoke ed or MicroEMACS and get ready to type in the program:

ed display.c

or:

me display.c

The C Language 175

We suggest that you use the MicroEMACS editor, because this tutorial will make numerous changes
to the program as it progresses and it will be easier to see these changes in context if you use a
screen editor rather than a line editor. The rest of this tutorial assumes that you are using
MicroEMACS. If you are not familiar with MicroEMACS, it is briefly described in Using the
COHERENT System. A tutorial for MicroEMACS also appears in this manual, or you may wish to
see the entry for me in the Lexicon.

In the above commands, the suffix.con the file name indicates that this is a file of C code. If you
do not use this suffix. the cc command will not recognize that this is a file of C code and will refuse
to compile it.

Begin by inserting a description of the program into the top of the file in the form of a comment.
When a C compiler sees the symbol'/*', it throws away everything it reads until it sees the symbol
'*/'. This lets you insert text into your program to explain what the program does.

Type the following:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait,
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

Save what you have typed by pressing <ctrl-X> and then <ctrl-S>. Now, anyone, including you,
who looks at this program will know exactly what it is meant to do.

The mainO Function
As described earlier, the C language permits structured programming. This means that you can
break your program into a group of discrete functions, each of which performs one task. Each
function can be perfected by itself, and then used again and again when you need to execute its
task. C requires, however, that you signal which function is the main function, the one that
controls the operation of the other functions. Thus. each C program must have a function called
main().

Now, add main() to your program. Type the code that is shaded, below:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

TUTORIALS

176 The C Language

The parentheses"()'' show that main is a function. If main were to take any arguments, they would
be named between the parentheses. The braces "{}"delimit all code that is subordinate to main:
this will be explained in more detail below.

Note that the shortest legal C program is mainQ{}. This program doesn't do anything when you run
it, but it will compile correctly and generate an executable file.

Now, try compiling the program. Save your text by typing <ctrl-X><ctrl-S>, and then exit from the
editor by typing <Ctrl-X><ctrl-C>. Compile the program by typing:

cc display.c

When compilation is finished. type display. The shell will pause briefly, then return the prompt to
your screen. As you can see. you now have a legal, compilable C program, but one that does
nothing.

Open a File and Show Text
The next step is to install routines that open a file and print its contents. For the moment, the
program will read only a file called tester, and not break it into 23-line portions.

Type the shaded lines into your program, as follows:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

main()
{

}

Note first how comments are inserted into the text, to guide the reader.

Now, note the lines

char string[128Ji
FILE *fileptri

These declare two data structures. That is, they tell COHERENT to set aside a specific amount of
memory for them.

TUTORIALS

The C Language 177

The first declaration, char string[l28);, declares an array of 128 chars. A char is a data entity that
is exactly one byte long: this is enough space to store exactly one alphanumeric character in
memory, hence its name. An array is a set of data elements that are recorded together in memory.
In this instance, the declaration sets aside 128 chars-worth of memory. This declaration reserves
space in memory to hold the data that your program reads.

The second declaration, FILE *fileptr, declares a pointer to a FILE structure. The asterisk shows
that the data element points to something, rather than being the thing itself. When a variable is
declared to be a pointer, the C compiler sets aside enough space in memory to hold an address.
When your program reads that address, it then knows where the actual data are residing. and looks
for them there. C uses pointers extensively, because it is much more efficient to pass the address of
data than to pass the data themselves. You may find the concept of pointers to be a little difficult to
grasp; however, as you gain experience with C, you will find that they become easy to use.

The FILE structure is the data entity that holds all the information your program needs to read
information from or write information to a file on the disk. For a detailed discussion of the FILE
structure, see its entry in the Lexicon. For now, all you need to remember is that this declaration
sets aside a place to hold a pointer to such a structure, and the structure itself holds all of the
information your program needs to manipulate a file on disk. In effect, the variable fileptr is used
within your program as a synonym for the file itself.

Now, the line

fileptr = fopen("tester", "r");

opens the file to be read. The function fopen opens the file, fills the FILE structure, and fills the
variable fileptr with the address of where that structure resides in memory.

fopen takes two arguments. The first is the name of the file to be opened, within quotation marks.
The second argument indicates the mode in which to open the file; r indicates that the file will be
read rather than written into.

The lines

for (;;)
{

begin a loop. A loop is a section of code that is executed repeatedly until a condition that you set is
fulfilled. For example, you may define a loop that executes until the value of a particular variable
becomes greater than zero.

for is built into the C language. Note that it has braces, just like main() does; these braces mean
that the following lines, up to the next right brace (})are part of this loop. You can set conditions
that control how a for loop operates; in its present form, it will loop forever. This will be explained
in more detail shortly.

Two library functions are executed within the loop. The first,

fgets(string, 128, fileptr);

reads a line from the file named in the ffieptr variable, and writes it into the character array called
string. The middle argument ensures that no more than 128 characters will be read at a time. The
second line within this loop,

printf("%s", string);

prints the line. printf is a powerful and subtle function; in its present form, it prints on the screen
the string contained in the variable string.

TUTORIALS

178 The C Language

Finally. the line at the top of the program:

#include <stdio.h>

tells the C preprocessor cpp to read the header file called stdio.h. The term "STDIO" stands for
"standard input and output"; stdio.h declares and defines a number of routines that will be used to
read data from a file and write them onto the screen.

When you have finished typing in this code, again compile the program as you did earlier. If an
error occurs. check what you have typed and make sure that it exactly matches the code shown on
the previous page. If you find any errors. fix them and then recompile. If errors persist, check it in
the table of error messages that appear at the end of this tutorial.

When compilation is finished, execute display as you did earlier. You will see the text from tester
scroll across the screen. When the text is finished, however. the COHERENT prompt does not
return; you have not yet inserted code that tells the program to recognize that the file is finished.
Type <Ctrl-C> to break the program and return to COHERENT

Accepting File Names
Of course, you will want display to be able to display the contents of any file. not just files named
display.c. The next step is to add code that lets you pass arguments to the program through its
command line. This task requires that you give the mainQ function two arguments. By tradition,
these are always called argc and argv. How they work will be described in a moment.

The enhanced program appears as follows. You should change or insert the lines that are shaded:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>

/* file */

/* Read material and display it */
for

}
}

TUTORIALS

The C Language 179

First. a small change has been added: the line

#define MAXCHAR 128

defines the manifest constant MAXCHAR to be equivalent to 128. This is done because the "magic
number" 128 is used throughout the program. If you decide to change the number of characters
that this program can handle at once, all you would have to do is to change this one line to alter the
entire program. This cuts down on mistakes in altering and updating the program. If you look
lower in the program. you will see that the declaration

char string[l28]

has been changed to read

char string[MAXCHAR]

The two forms are equivalent; the only difference is that the latter is easier to use. It is a good idea
to use manifest constants wherever possible, to streamline changes to your program.

Now. look at the line that declares main(). You will see that main() now has two arguments: argc
and argv.

The first is an int. or integer. as shown by its declaration - int argc;. argc gives the number of
entries typed on a command line. For example. when you typed

display filename

the value of argc was set to two: one for the command name itself. and one for the file-name
argument. argc and its value are set by the compiler. You do not have to do anything to ensure
that this value is set correctly.

argv, on the other hand, is an array of pointers to the command line's arguments. In this instance.
argv[l] points to name of the file that you want display to read. This, too. is set by COHERENT.
and works automatically.

If you look below at the line that declares fopen(), you will see that tester has been replaced with
argv[l]; this means that you want fopen() to open the file named in the first argument to the
display command.

Now. try running the program by typing

display display.c

display will open display.c and print its contents on the screen. You still need to type <ctrl-C>
when printing is finished; the code to recognize the end of the file will be inserted later.

Also. be sure that you give the command only one file name as an argument. no more and no less.
Code that checks against errors has not yet been inserted, and handing it the wrong number of
arguments could cause problems for you.

Error Checking
Obviously. the program runs at this stage. but is still fragile. and could cause problems. The next
step is to stabilize the program by writing code to check for errors. To do so, a programmer must
first write code to capture error conditions, and then write a routine to react appropriately to an
error.

Our edited program now appears as follows:

I*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.

TUTORIALS

180 The C Language

* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
/*define arguments to main() */
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptr;

/* Open file */

/* Read material and display it */
for (;;) {

}
}

fgets(string, MAXCHAR, fileptr);
printf("%s", string);

The additions to the program are introduced by comments.

The first addition

if (argc ! = 2)
error("Usage: display filename");

checks to see if the correct number of arguments was passed on the command line; that is to say. it
checks to make sure that you named a file when you typed the display command.

As noted above, argc is the number of arguments on the command line, or rather, the number of
arguments plus one, because the command name itself is always considered to be an argument.
The statement if (argc != 2) checks this. The if statement is built into C. If the condition defined
between its parentheses is true, then do something. but if it is not true, do nothing at all. The
operator!= means "does not equal". Therefore. our statement means that if argc is not equal to two
(in other words, if there are not two and only two arguments to the display command - the

TUTORIALS

The C Language 181

command name itself plus a file name), execute the function error. error is defined below.

Our fopen function also has some error checking added (which will be described in a moment):

if ((fileptr = fopen (argv[l], "r")) == NULL)
error("Cannot open file");

fopen returns a value called "NULL" if, for any reason, it cannot open the file you requested. Thus,
our new if statement says that if fopen cannot open the file named on the command line (that is,
argv(l]), it should invoke the error function.

C always executes nested functions from the "inside out". That means that the innermost function
(that is, the function that is enclosed most deeply within the pairs of parentheses) is executed first.
Its result, or what it returns, is then passed to next outermost function as an argument; that
function is then executed and what it returns is, in turn, passed to the function that encloses it,
and so on. In this instance, the innermost function is

fileptr = fopen(argv[l], "r")

fopen is executed and what it returns is written into 0.leptr. What fopen returned is then passed to
the next outer operation; in this case, it is compared with NULL, as follows:

(fileptr = fopen (argv[l], "r")) == NULL)

What that operation returns is then passed to the outermost function, in this case the if statement,
which evaluates what it is passed, and acts accordingly. If O.leptr is NULL (that is, if fopen couldn't
open the file), the if statement will be true and the error function called. If, however, the file was
opened, 0.leptr will not equal NULL and the program will proceed.

As this example shows, C allows a programmer to nest functions quite deeply. Although nested
functions are sometimes difficult to untangle when you read them, they make programming much
more convenient.

Finally, at the bottom of the file is a new function, called error:

error(message)
char *message;
{

}

printf("%s", message);
exit(l);

This function stands outside of main, as you can tell because it appears outside of main's closing
brace. This function is called only when your program needs it. If there are no errors, the program
progresses only until the closing brace in main and the error function is never called.

error takes one argument. the message that is to be printed on the screen. This message is defined
by the routine that calls error. error uses the function printf to print the message, then calls the
exit function; this, as its name implies, causes the program to stop. The argument 1 is a special
signal that tells COHERENT that something went wrong with your program.

When the error checking code is inserted, recompile the program without an argument. Previously,
this would cause the program to crash; now, all it does is print the message

Usage: display filename

and terminate the program.

TUTORIALS

182 The C Language

Print a Portion of a File
So far. our utility just opens a file and streams its contents over the screen. Now, you must insert
code to print a 23-line portion of the file. At present, it will only print the first 23 lines, and then
exit.

To do so, you must insert another for loop. Unlike our first loop, which ran forever, this one will
cycle only 23 times, and then stop. Our updated program appears as follows:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHARJ;
FILE

/* Check if right number of arguments was passed */
if (argc != 2)

error("Usage: display filename");

/* Open file */

}

if ((fileptr = fopen(argv(l], "r"))
error("Cannot open file");

/* Process error messages */
error(message)
char *message;
{

}

printf("%s", message);
exit (1);

TUTORIALS

NULL)

The C Language 183

The new for loop is nested inside the loop governed by for(;;). The program also declares a new
variable, ctr, at the beginning of the program. ctr keeps track of how many times the loop has
executed. Now, look at the line:

for (ctr = O; ctr< 23; ctr++)

It has three sub-statements, which are separated by semicolons. The first sub-statement sets ctr to
zero; the second says that execution is to continue as long as ctr is less than 23; and the third says
that ctr is to be increased by one every time the loop executes (this is indicated by the ++ appended
to ctr). With each iteration of this loop. fgets reads a line from the file named on the display
command line, and printfprints it on the screen.

Also, an exit call has been set after this new loop. This ensures that the program will exit
automatically after the loop has finished executing. This is a temporary measure, to make sure that
you no longer have to type <ctrl-C> to return to the shell.

When you have updated the program, recompile it in the usual way. When you run it, display will
show the first 23 lines of the file, and then the shell's prompt will return.

The program is now approaching its final form.

Checking for the End of File
The next-to-last step in preparing the program is teaching it to recognize the end of a file when it
sees it. This does not appear to be needed now because the program exits automatically after 23
lines or fewer, but it will be quite necessary when the program begins to display more than one 23-
line portion of text.

The function fgets checks to see if it has arrived at the end of a file. and returns a special value if it
has. fgets normally returns the address of the string into which it writes its output; however. if it
runs into the end of a file (or if any other error occurs), it returns the special value NULL. By
reading the value of what fgets returns, display can detect if the end of the file has been
encountered, and stop reading. To do so, the fgets statement must be set within an if statement.
The if statement will capture what fgets returns, and continue execution as long as the value of the
number returned is not NULL.

The updated program now appears as follows:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string(MAXCHAR];
FILE *fileptr;
int ctr;

TUTORIALS

184 The C Language

/* Check if right number of arguments was passed */
if (argc != 2)

error("Usage: display filename");

/* Open file */
if ((f ileptr = fopen (argv [l] , "r"))

error("Cannot open file");

= O; ctr < 23; ctr++) {

NULL)

c;r:c.t~~'s&~t.~;~ri~,11 f~~f.~.ltf .~~~Pct~~!',iJH:¥~Q!.;t:SfJs11.f 1111 i?1t•~;f11f;~1~11 :f
printf("%s", string);

.... ,iit~~'
exit(O);

}
}

I* Process error messages */
error(message)
char *message;
{

}

printf("%s", message);
exit(l);

First, note that the comment that describes the program's output has been changed to reflect our
changes to the program. It is important for a programmer to ensure that the comments and the
code are in step with each other.

Our new if statement

if (fgets(string, MAXCHAR, fileptr) I= NULL)

checks what fgets returns: if it does not return NULL, the end of the file has not been reached, the
if statement is true and the program prints out the next line. (The operator != indicates "not
equal".) If it returns NULL, however, the end of file has been reached, the if statement is false so the
else statement is executed, which causes display to exit.

Note, too, that a new control statement is introduced: else. This, like if, is built into the C language.
An else statement is always paired with an if statement; together, they mean that if the condition
for which if is testing is true, the program should do one thing; otherwise, it should do something
else. In this case, the. program says that if the end of file has not been reached, another line has
been read from the file and should be printed on the screen; however, if it has been reached, then
the program should exit. As you can imagine, if/else pairs are common in C programming; they are
logical and useful.

One more task must be done on our program; then it is finished.

TUTORIALS

The C Language 185

Polling the Keyboard
For the program to be complete, it has to ask you if you want to see another 23-line portion of text.
The program should write another portion if you press the <return> key alone: if you type any other
key before you press <return>. then it should exit.

To do so, we will print a query on the screen, then read what the user has typed and interpret it.
When these changes are inserted. the program is complete:

/*
* Truncated version of the 'scat' utility.
* Open a file, print out 23 lines, wait.
* If user types <return>, print another 23 lines.
* If user types any other key, exit.
* Exit when EOF is read.
*/

#include <stdio.h>
#define MAXCHAR 128

main(argc, argv)
int argc;
char *argv[];
{

char string[MAXCHAR];
FILE *fileptq
int ctr;

/* Check if right number of arguments was passed */
if (argc I= 2)

error("Usages display filename");

/* Open file */
if ((fileptr = fopen (argv[1], "r"))

error("Cannot open file");

/* Output 23 lines, while checking for EOF */
for (;;) {

for (ctr = O; ctr< 23; ctr++) {

NULL)

if (fgets(string, MAXCHAR, fileptr) I= NULL)
printf("%s", string);

else
exit(O);

--~···-==·· 1111•1111111-.111111•••11111111111'11'111"111' •11111111111111·1•11 exit(O);
}

}

TUTORIALS

186 The CLanguage

/* Process error messages */
error(message)
char *message;
{

}

printf("%s", message);
exit(l);

These new lines introduce a few new twists. The lines

printf("Continue? ");
fflush(stdout);

print the prompt Continue? on the screen. Note that no '\n' appears after the the prompt; this
ensures that the cursor does not jump to the next line, but stays next to the prompt. Because no
'\n' appears after the line, however, you have to force it to appear on the screen; this is
accomplished with the statement:

fflush(stdout);

mush flushes matter to an output device. stdout points to a file stream, just like the stream that
you opened with the call to Copen. earlier in the program. stdout is opened in the header file
stdio.h. which was read at the beginning of the program; it always points to the user's screen.

The next line reads the user's keyboard:

fgets(string, MAXCHAR, stdin);

This version of fgets reads matter into our array string; however. instead of reading the file pointed
to by flleptr. it reads what is pointed to by stdin. stdin is a stream that is also defined in stdio.h;
it always points to the user's keyboard.

Finally. the statement

if (string[O] != '\n')

checks what the user typed by reading the first (that is. the zero-th) character written in the array
string by the preceding call to fgets. (Note that with C, counting always begins with zero rather
than one.) If the user just types <return>, then string[O] will hold '\n'; and the if statement will not
be true, the program jumps to the preceding for statement. and more text is written to the screen.
However, if the user types anything before typing <return>, the if statement will succeed and the
program will exit. This may seem a little convoluted, but it actually is a straightforward and efficient
way to receive information from the user.

After you have inserted these changes. again compile the program.

When compilation is finished. try typing

display display.c

The first 23 lines of the source code to the program now appear on your screen. Hit <return>; the
next 23 lines appear. Now, type any other key. and then press <return>: the program exits.

You now have a simple but helpful display utility.

TUTORIALS

The C Language 187

For More Information
This section has given you a brief, concentrated introduction to writing a C program. If you are new
to programming, much of what happened must seem strange. but we hope it helped you to
appreciate the logic of how C works.

Numerous books are on the market to teach beginners how to program in C; the following section
gives a small bibliography of books on C. Also, look at the sample C programs in the Lexicon.
These demonstrate how to use many of the functions available to you with COHERENT.

The following books may be helpful in developing your skills with C. This list also contains all
books that are referenced in this manual. It is by no means exhaustive; however. it should prove
helpful to both beginners and experienced programmers.

American National Standards Institute: Draft Programming Language C (October 1986 Draft).
Washington, D.C.: X3 Secretariat, Computer and Business Equipment Manufacturers Association,
1986.

AT&T Bell Laboratories: The C Programmer's Handbook. Englewood Cliffs, N.J.: Prentice-Hall. Inc ..
1985.

Bentley, J.: Programming Pearls. Reading, Mass.: Addison-Wesley Publishing Company, 1986.
Not, strictly speaking, about C - but belongs on every programmer's bookshelf.

'
Brooks, F.P .. Jr.: The Mythical Man-Month: Essays on Software Engineering. Reading. Mass.:
Addison-Wesley Publishing Company, Inc .. 1975. Not about programming, but should be read by
every programmer.

Chirlin, P.M.: Introduction to C. Beaverton, Or.: Matrix Publishers, Inc., 1984.

Derman, B. (ed.): Applied C. New York: Van Nostrand Reinhold Co., Inc .. 1986.

Feuer, A.R.: The C Puzzle Book. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1982.

Gehani, G.: Advanced C: Foodfor the Educated Palate. Rockville, Md.: Computer Science Press,
1985.

Hancock, L.: Krieger, M.: The C Primer. New York: McGraw-Hill Book Publishers, Inc .. 1982.

Harbison. S.; Steele, G.: C: A Reference Manual. Englewood Cliffs. NJ: Prentice-Hall. Inc .. 1984.

Haviland, K.F .. Salama, B.: UNIX System Programming. Reading, Mass.: Addison-Wesley Publishing
Company, Inc., 1987.

Hogan, T.: The C Programmer's Handbook. Bowie, Md.: Brady Publishing. 1984.

Kelley, A.; Pohl. I.: C by Dissection: The Essentials of C Programming. Menlo Park, Ca.: The
Benjamin/Cummings Publishing Company. Inc., 1987.

Kernighan, B.W.; Ritchie, D.M.: The C Programming Language. Englewood Cliffs, N.J.: Prentice­
Hall. Inc .. 1978.

Kernighan. B.W.; Plauger, P.J.: The Elements of Programming Style, ed. 2. New York: McGraw-Hill
Book Co .. 1978.

Kochan, S.G.: Programming In C. Hasbrouck Heights, N.J.: Hayden Book Co .. Inc .. 1983.

TUTORIALS

188 The C Language

Knuth, D.E.: The Art of Computer Programming, vol. 1: Baste Algorithms. Reading, Ma.: Addison­
Wesley Publishing Co., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 2: Semlnumerlcal Algorithms. Reading, Ma.:
Addison-Wesley Publishing Co., 1969.

Knuth, D.E.: The Art of Computer Programming, vol. 3: Sorting and Searching. Reading, Ma.:
Addison-WesleyPublishingCo., 1969.

Lapin, J.E.: Portable C and UNIX System Programming. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1987.

Mark Williams Company: ANSI C: A Lexical Gulde. Englewood Cliffs, NJ: Prentice-Hall, 1988.

Plum, T.: C Programming Guidelines. Cardiff, N.J.: Plum Hall, Inc., 1984.

Plum, T.; Brodie, J.: E.ffictent C. Cardiff, NJ: Plum Hall. Inc., 1985.

Purdum, J.: C Programming Gulde. Indianapolis: Que Corp., 1983.

Purdum, J.; Leslie, T.C.; Stegemoller, A.L.: C Programmer's Library. Indianapolis: Que Corp ..
1984.

Rochkind, M.J.: Advanced UNIX Programming. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1985.

Traister, R.J.: Going from BASIC to C. Englewood Cliffs, N.J.: Prentice-Hall. Inc., 1984.

Traister, R.J.: Mastering C Pointers. New York: Academic Press, Inc., 1990.

Traister, R.J.: Programming In Cfor the Microprocessor User. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1984.

Vile, R.C., Jr.: Programming In C with Let's C. Glenview, IL: Scott, Foresman and Company, 1988.

Waite, M.; Prata, S.; Martin, D.: C Primer Plus. Indianapolis: Howard W. Sams, Inc .. 1984.

Weber Systems, Inc.: C Language User's Handbook. New York: Ballantine Books, 1984.

Zahn, C.T.: C Notes. New York: Yourdan Press, 1979.

TUTORIALS

Introduction to the awk Language

awk is a general-purpose pattern scanning language available with the COHERENT operating
system. awk performs pattern matching, string manipulation, record processing, and report
generation.

The syntax for awk is simple. It uses only one kind of statement, consisting of one or both of two
elements: a pattern and an action. Patterns select the data to be processed, and actions specify the
function to be performed on the selected data.

This tutorial explains how to write awk programs to process input. It will teach you how to use the
awk interpreter and how to create an awk program. It describes the basic function of printing and
the specification of input and output field and record separators. It explains the pattern scanning
capabilities of awk. Finally. it describes the actions awk performs in addition to printing. such as
assigning variables, defining arrays. and controlling the flow of data.

awk reads input from the standard input (entered from your terminal or from a file you specify),
processes each input line according to a specified awk program, and writes output to the standard
output. This section explains the structure of an awk program and the syntax of awk command
lines.

Program Structure
The basic element of an awk program is a statement in the form:

pattern {action}

A program may contain as many sets of patterns and actions as you need to accomplish your
purposes.

awk checks each line of input with the patterns specified for a match, one pattern at a time. Each
time the line matches a pattern, awk performs the corresponding action. After awk has compared
the line with each pattern in the program, awk tests the next input line against the patterns.

An awk program may specify an action without a pattern. When awk processes an action which has
no pattern, each input line matches. Therefore, awk performs the action on every line of the input.

An awk program may also specify a pattern without an action. In this case, when an input line
matches the pattern. awk prints the line to the standard output.

One of the special patterns that awk recognizes is the word FILENAME. This pattern causes awk to
print the name of the file that it is reading. Other special patterns are discussed below.

Records and Fields
awk divides its input into separate records, and subdivides each record into fields. Records are
separated by a character called the input record separator (RS), and fields are separated by the
input field separator (FS).

The default input record separator is the newline character, so awk normally regards each input line
as a separate record. Because the default input field separator is either the space or the tab
character, white space normally separates fields.

189

190 The awk Language

In addition to input record and field separators, awk provides output record and field separators
(ORS and OFS), which it prints between output records and fields. The default output record
separator is the newline character; awk normally prints each output record as a separate line. The
default output field separator is the space character.

To process input with a record separator other than the newline character, use the special BEGIN
pattern (fully described below) with an action that assigns the desired record separator to the
variable RS. For example,

BEGIN {RS= ":"}

changes the record separator to a colon. You may specify any one character as the record separator.
Specifying the null string (RS="") makes two consecutive newlines the record separator. If you
include more than one character within quotation marks, awk ignores all characters after the first
one.

To change the output record separator, assign the desired character to the variable ORS. The
output record separator may be a single character or a string. For example, the following program
assigns the string •••record end••• to ORS:

BEGIN {ORS = "***record end***"}

The variable NR gives you the number of the current record. In the following program, awk prints
this number at the beginning of each record to make editing easier:

{print NR, $0}

Here is a program that prints the total number of records in the input file.

END {print NR}

awk can also use the record number in relational expressions. To select a particular record for
printing (for example, line 6), use the following program:

NR == 6 {print $0}

which tells awk to print the whole record when the number of the record is equivalent to 6.

Each record is subdivided into fields. Within the record, you may refer to each field separately by
the name $n, where n is the field number. For example, the fourth field is called $4. The entire
current record is called $0.

Like records, fields have a default separator. For fields, the default separator is white space for both
input and output fields (usually spaces or tabs; newlines can separate fields when RS is null).

You may change the field separator (variable FSJ in two ways. The first way is to specify the change
within the awk program. as follows:

BEGIN {FS = ":"}
The sample statement changes the field separator to a colon. When you specify several characters
within quotation marks. each character becomes a field separator. and all separators have equal
precedence. For example. you can specify commas, colons, and periods to separate fields. In the
following program. awk looks for any of these separators. and breaks the record into fields at each
occurrence of each character:

BEGIN {FS = ", 1. "}

The second method of changing the field separator is to use a command-line argument. The
command line method enables you to declare the field separator at the time you invoke awk. To
show how changing the input field separator affects the output. consider the following record from

TUTORIALS

The awk Language 191

the file "now":

Now is the time for all good men

and the awk statement:

{print $1,$2}

When the input field separator is the default. the result of the awk program is:

Now is

When using the same statement but setting FS = "i". awk prints the following:

Now s the t

As the input field separator, 'i' is not printed; however, in its place a blank separates the two output
fields. The first field consists of uppercase 'N'. lowercase 'o' and 'w'. and a space. The second field
consists of the 's', a space, the word "the", and the 't' of time.

When you use an input field separator other than the default, the printed output can look
confusing. as in the example above. However. you can change the output field separator by
assigning a character or string to the variable OFS.

To indicate where fields are divided when the output is printed, you can assign a character such as
• to OFS as follows:

BEGIN {OFS = "*"}
{FS = "i" ; print $1, $2}

This program prints the following:

Now *s the t

Notice that a semicolon (;) separates two statements on the same line.

The variable NF contains the number of fields in the current record. In the following program, awk
prints the number of fields at the beginning of each output record. telling you the number of
elements in the record:

{print NF,$0}

awk can also use the variable NF in relational expressions. For example. to print all records with
ten or more fields. you could use this program:

NF >= 10 {print $0}

Command Line Arguments
As with any COHERENT program or command, you invoke awk by typing the lowercase letters awk.
To process files with awk. you must include some additional elements on the command line. called
arguments.

The complete form for the awk command line is:

awk [-y] [-Fe) [:f progflle) [prog) [fllell (Jlle21 ...

Each argument is described below.

The -y option enables you to name patterns in lowercase characters. which awk then matches to
both uppercase and lowercase characters in the input file. This option is similar to its counterpart
in the regular expression pattern-matching utility, egrep.

TUTORIALS

192 The awk Language

The following programs show how the -y option works on the file named the, which contains the
following two lines:

The time is right.
Now is the time.

Command

awk -y '/the/' the

awk '/the/' the

Output

The time is right.
Now is the time.

Now is the time.

The option -Fe is the command-line version of

FS = 11 c"

which is an assignment like the one described earlier. This option changes the input field separator
from the default (white space) to the character c. You may include any characters you want awk to
use as field separators after the -F flag.

The -f progflle option enables you to use a file progflle containing awk commands as an awk
program. The option flag (-t) must precede the name of the file to be used as a program.

If you do not use the -f progflle option, you must use the prog option. This option specifies the awk
program on the command line. When writing a command-line awk program, use an apostrophe
before the first statement (pattern, action, or both); then enter the subsequent lines of the program.
After the last statement of the program, type another apostrophe mark followed by the file or files to
be processed. Note that COHERENT prompts you to enter more information by displaying the '>' at
the beginning of each line until you enter the closing apostrophe and newline character.

The following program is an awk command-line program. It prints a heading before awk reads the
input file test. and then prints the entire file with each line preceded by its line number.

$ awk 'BEGIN {print "sample output file"}
> {print NR, $0}' test

Thefllelflle2 ... option enables you to process existing files. When you want to process more than
one file, separate the file names with white space. If you do not specify a file name in the command
line, awk takes input from the standard input.

The following program prints the files testl and test2. Each line is preceded by its record number.

$ awk '{print NR, $0}' testl test2

Printing is an awk action. In fact, it is the action most often used, because it is the simplest to use.
The following short awk program prints its entire input:

{print}

When you specify awk actions, you may include several actions within one set of braces; however,
each action must be separated from the others by semicolons (;)or newlines.

TUTORIALS

The awk Language 193

Printing Individual Fields
With awk, you can print output fields in a different order from the input fields.

You can print fields in any order you desire. For example, you can print the second and third fields
in reverse order:

{print $3,$2}

When this program processes the input file now containing the sample record used above, the
printed result is:

the is

Because the field names are separated by a comma, awk inserts an output field separator between
the fields when printing them.

If you do not separate field names by commas in the print statement, awk concatenates the fields
when printing them. For example, the following program prints the second and third fields:

{print $2 $3}

The result is:

is the

Changing the Output Field and Record Separators
You may change the output field separator by assigning your desired separator to the variable OFS.
To use the same field separator with the entire input, make the assignment before the first print
statement. For example, to make the colon your output field separator, use a statement like this:

{OFS=":"; print $2,$3,$4}

You will receive this output:

is:the:time

To change the separator for the first line only. use the statement:

NR ==l{ OFS=":";print $2,$3,$4}

To change the output record separator from the default newline, assign required separator to the
variable ORS in the same manner.

Printing Predefined Variables
As discussed earlier, you can print either or both of the NF (number of fields) or NR (number of
records) predefined variables. To print a predefined variable, simply name it in the print statement.
For example, to include the NF variable before the other output in the previous example, edit the
program to read as follows:

{OFS =":";print NF,$2,$3,$4}

The output resulting from this statement is:

4 1i.s1 the: time

You can specify the NR variable in the same way. When you add the name of the variable to the
desired place in the list of fields to be printed, awk prints the record number in that place in the

TUTORIALS

194 The awk Language

output.

Redirecting Output
In addition to printing to the standard output, you also may redirect output to a file or files of your
choosing. This ability to direct output to any file enables you to extract information from a: given file
and construct new documents.

Suppose you have a file named accounts with accounting information stored in it. The first column
of the file contains payroll information, the second column shows income for the year, and the third
column reports accounts payable information. You are to make an income report for the year
containing text and tables.

To extract the income information from the accounts file and put it into a separate file named
income, you can use the following awk program:

{print $2 > "income"}

With this program, awk creates the file income if it does not already exist, and enters the second
column of the accounts file as the contents of the new file. If a file named income already exists,
awk replaces the current contents of the file with the second column of the accounts file.

If you need the first two columns for two separate reports, you can redirect both columns to
separate files using one statement.

{print $2 >"income"; print $1 >"payroll"}

You can specify a maximum of ten files for output.

If text for your report is already contained in the file report, you can append the second column of
the accounts file to the end of your report using this awk program:

{print $2 >> "report"}

Appending enables you to complete your report without retyping a column of numbers that exists in
another file.

Formatting Output
When you use awk to process a column of text or numbers as in the example above, you may want
to specify a consistent format for the output. The statement for formatting a column of numbers
follows this pattern:

{printf "format", expression}

where format is prescribed by the format control characters and separators defined below.
expression specifies the fields for awk to print.

The following table shows the names and meanings of the most frequently used awk format control
characters. To be recognized as format control characters by awk, these characters must be
preceded by the percent sign % and a number in the form of n or n.m.

Format-Control Characters Meaning

%nd
%n.mf
%n.ms

Decimal number
Floating-point number
String

When you ca:ll the prlntf function through awk to format the output, you must specify the output
separators you want to use.

TUTORIALS

Output-Separator Character

\n
\t
\f
\r
\"

Meaning

Newline
Tab
Form feed
Carriage return
Quotation mark

The awk Language 195

For example, if you wish to print a column of numbers with up to nine places to the left of the
decimal and two to the right (for a total of 12 places, including the decimal), and you want a new
entry for each line, use a format like this:

{printf "%12.2f\n", $2}

You can pipe the output of your awk program to another process. The pipe connects the standard
output of awk to the standard input of another process, program, or utility.

For example, you can pipe output to the mail utility with the following program, which mails the
output to name:

{print I "mail name"}

The pipe operator is the vertical bar character between the print and mail commands in this
statement.

The previous section described printing in terms of fields. Fields are generally the best way to select
single elements from columnar input files. In addition to names of fields, awk can scan records for
the following:

• Two special patterns: BEGIN and END
• Regular expressions
• Arithmetic relational expressions
• Boolean combinations of expressions
• Pattern ranges

Special Patterns: BEGIN and END
BEGIN is a special pattern that matches the beginning of the input, before awk processes any of the
input. As mentioned above, BEGIN is the best place to set the field and record separators if you
want the same separators for the entire input. BEGIN is also a good place to perform the action of
assigning values to variables when the values are known.

Actions that require awk to compare input with the variable NR may not produce the results you
expect from a BEGIN pattern, because all BEGIN processing is finished before NR=l. Also, awk does
not permit field references in BEGIN or END statements.

END is a special pattern which matches the end of awk input. The END pattern enables you to
request an action to occur when all processing is finished. A common use of END is printing the
value of variables. For example:

TUTORIALS

196 The awk Language

END {print NR}

tells awk to print the value of NR after processing is finished, giving the total number of records
processed. When you reach the END pattern, you may not return for further processing.

You may make awk into a calculator by using END with no action. At the end of the input, you may
enter any arithmetic equation or awk function and have the result automatically printed on the
standard output. When you are finished using awk as a calculator. type <ctrl-D>.

Patterns
You can enclose strings of characters in slashes '/' for awk to match, as ed (the COHERENT text
editor) and egrep (the COHERENT text pattern matching command) do. For example, take this
pattern:

/ted/

When a statement contains this expression, awk prints every record with the string ted, whether
ted occurs as a word or as part of a word. For example:

interested
busted
tedious

In addition to specific strings, you can scan for classes and types of characters. To do so, enclose
the characters within brackets, and place the bracketed characters between the slashes. For
example, to specify a range of lowercase letters, enclose the range of letters within brackets:

/[a-z]/

You can specify ranges of uppercase letters or numerals the same way.

In addition, you can use the following special characters for further flexibility:

I I
()

I
+
?
•

Class of characters
Grouping subexpressions
Alternatives among expressions
One or more occurrences of the expression
Zero or more occurrences of the expression
Zero. one, or more occurrences of the expression
Any non-newline character

When adding a special character to a pattern, enclose the special character as well as the rest of the
pattern within slashes.

To search for a string that contains one of the special characters. you must precede the character
with a backslash. For example, if you are looking for the string "today?", use the following pattern:

/today\?/

When you need to find an expression in a particular field, not just anywhere in the record, you can
use one of these operators:

Contains the data in question
!- Does not contain the data in question

For example, if you need to find the characters jam in the fourth field of the input, you can use the
following statement:

TUTORIALS

The awk Language 197

$4-/[Jj]am/

This statement prints all lines where the fourth field contains Jam or jam. The statement also
prints lines where the fourth field contains words like James, jammed, and pajamas. To prevent
the awk program from selecting lines with characters other than separators on either side of the
required expression, use the following special characters:

Beginning of the record or field
$ End of the record or field

With these characters, you can be still more specific about which field or record you want printed.
For example, to allow James to be printed, but not pajamas, use the following statement:

$4-/"[Jj]am/

To allow only Jam or jam, use this statement:

$4-/"[Jj]am$/

Arithmetic Relational Expressions
An awk pattern may consist of relational expressions using the following operators:

< Less than
<= Less than or equal to
= Equivalent
I= Not equal
>= Greater than or equal to
> Greater than

With these operators, you can select fields according to their relation to one another. For example,
if you want to print the first field only when it does not equal the second field, use this statement:

$1 != $2 {print $1}

You also can establish relationships among records. If you want to print no more than the first ten
records, use the following statement:

NR <= 10

Because this example specifies no action, the statement prints all the records whose record number
is ten or less.

Relational tests default to string comparison if either operand is nonnumeric. Thus, if one operand
is numeric and the other is a string, awk makes a string comparison. The following example shows
how awk compares one field to part of the alphabet:

$1 <= "C"

This statement selects all lines beginning with an ASCII value less than or equal to that of the letter
·c· (octal 103).

When you compare fields that have numeric values to one another, awk performs a numeric
comparison. Consider the comparison in this example:

$2 < $1 + 100 {print $2}

This statement causes field 2 to be printed only when the value of field 2 does not exceed the value
of field 1 by 100. If field 2 is alphabetic, it always matches in this comparison because strings

TUTORIALS

198 The awk Language

evaluate to 0 in numeric comparisons.

Boolean Combinations of Expressions
awk tests logical eombinatlons of expresssions in its pattern-scanning process. Use the following
operators for combining expressions:

11 Boolean OR
&It Boolean AND
I Boolean NOT

The following example tests for records that begin field l with a character that is less than u, greater
than or equal to t, and begin field I with a string other than the.

$1 < "u" && $1 >= "t" && $1 I= "the"

The effect of this pattern is to select records that have a t as the first character in field I but do not
begin field I with the letters the.

Pattern Ranges
awk may cause an action to be performed on all records between two specified patterns. For
example. to print all records between the patterns April 10 and April 19 inclusive, enclose the
strings in slashes and separate them with a comma: then indicate the print action, as follows:

/April 10/,/April 19/ {print}

You also may specify a range of record numbers using a statement such as this:

NR == 5, NR == 17 {print}

This statement specifies that records 5 through I 7 of the input are to be printed.

This section describes awk actions other than printing actions. In addition to printing, awk is
capable of:

• Performing functions
• Assigning variables
• Using fields as variables
• Concatenating strings
• Defining arrays
• Using control statements

awk includes functions that enable you to perform specific calculations with input information. You
may assign these functions to any variable and use them in patterns. The following list shows the
functions and their definitions; an argument can be any expression.

length Return the length of the current record.

length(argument)
Return the length of argument.

TUTORIALS

The awk Language 199

sqrt(argument)
Return the square root of argument.

e:xp(argument)
Return e to the power of argument.

log(argument)
Return the natural logarithm of argument.

lnt(argument)
Return the integer part of argument.

abs(argument)
Return the absolute value of argument.

substr(str,beg,len)
Return the substring of str that is len characters long beginning at position beg. When
substr occurs in a statement, awk scans str for the position beg within the string. When
awk finds beg, it prints a substring len characters long starting at beg. If len is not
included in the argument, the substring includes everything from beg to the end of the
record.

lndex(sl ,s2)
Return the position of s2 within sl, or zero if s2 does not occur in sl.

sprlntf[f,e 1,e2)
Return strings el and e2 in the prlntfformatf

spllt(str,array Js)
Divide str into fields associated with array (an array is a collection of fields listed under a
single name) that are separated byfs or the default field separator.

The sprlntf function lets you format expressions el and e2 according to format specificationj. The
following example demonstrates the operation of the sprlntf function.

> awk 'x = sprintf("%7.2s",$1)
> {print $1}
> END {print x}'

When you run this sample program, awk accepts input data from the keyboard of the terminal. The
first line of the program begins the awk program and sets variable x so that it contains five blank
spaces and the first two characters of the first input field. The second line causes awk to print the
first field as it was received. The third line ends the program by printing x, the formatted version of
the first input field.

If you enter the word chicago as the first input field for this program, awk prints:

chicago
ch

The split function divides fields into subfields, breaking str into elements of array separated by js.
or white space whenfs is not specified. In the following example, awk splits the first field of the
record into subfields. If the record has a single colon in the first field, awk splits the field into two
subfields. These subfields become the first and second fields of the array named time:

{split ($1,time,"1")}

At this point, you may manipulate the information stored in the array time or simply print the
subfields. ·

TUTORIALS

200 The awk Language

Assignment of Variables
In addition to the intrinsic variables, such as NR (which contains the number of the current input
record) and FILENAME (which contains the name of the current file), you may assign other
variables as described below.

Variables in awk may be string or numeric variables, depending on the context. By default,
variables are set to the null string (numeric value zero) on start-up of the awk program. To set the
variable x to the numeric value one. you can use the following assignment statement:

x = 1

To set x to the string ted, use the following statement:

x = 11 ted 11

When the context demands it, awk converts strings to numbers or numbers to strings. For
example, the statement

x = 11 3 11

assigns to x the string 3. When an expression contains an arithmetic operator such as the'-', awk
interprets the expression as numeric. (Alphabetic strings evaluate to zero.) Therefore.

x = 11 3 11
-

11 1 11

assigns the value two to variable x.

When the operator is included within the quotation marks, awk treats the operator as a character in
the string. In the following example

x = "3 -1"

assigns the string

"3 - 1"

to variable x.

You also can perform numeric calculations on fields. For example, you can calculate the sum of the
fourth field in the following manner:

{sum += $4}
END {print sum}

The following table includes all the available operators for awk:

TUTORIALS

+ Addition

•
I
%
++

+=
-=

I=
%=

Subtraction
Multiplication
Division
Modulus
Increment
Decrement
Add and assign value
Subtract and assign value
Multiply and assign value
Divide and assign value
Divide modulo and assign value

You may use any of these operators in awk expressions.

Field Variables

The awk Language 201

In awk. fields may receive assignments, be used in arithmetic, and be manipulated in string
operations. The following awk statement shows some of the available uses of fields as variables.

{print $i, $(i+l), $(i+n)}

awk permits you to use numeric expressions to refer to fields. Here, print fields i, i+l. and i+n.

String Concatenation
As mentioned earlier, you can concatenate strings by omitting comma separators from printing
actions. For example, the following print statement concatenates the first two fields by inserting a
new connecting string:

{print $1 " telephones " $2}

If $1 contains "Tom" and $2 contains "John", this statement prints:

Tom telephones John

Arrays
Under awk, an array is a collection of values that is labeled with the name of the array. Each
element has at least one named index. The array is implicitly declared because awk creates the
array when you name it. Also, you can name the individual indices with any legal string or numeric
value.

Because the indices for any array may have any value, the ordering of array elements is arbitrary.
However, when you use numeric index names exclusively. awk follows an ascending numeric
sequence.

You should specify the array element using an identifier followed by the array index, an arbitrary
expression enclosed in brackets ([)). For example, consider an array called surname. This example
uses array indices named tom, van, and gorclon. The following action assigns a value to each of
these indices:

TUTORIALS

202 The awk Language

BEGIN {surname ["tom"]= "jones"
surname ["van"]= "johnson"
surname ["gordon"] = "smith"}

You can print the contents of the array by naming the array in a print statement. awk also enables
you to print the name of the index by associating another variable with the index, using a special
form of the for statement. This form of for is:

for (index in array)

To retrieve the index names of the array surname, you may use the following statement:

END {for (person in surname)
print person, surname[person]}

This statement yields the following output:

tom jones
van johnson
gordon smith

In addition to being a generic term for the indices in the array surname. awk creates an array of
names called person, to which you can make further associations as needed.

To store the number of occurrences of a pattern, you may use the associative array capabilities of
awk. For example, if you want to determine the number of occurrences of mark and test, and print
the number next to its respective word, you can use the following program:

/[Mm]ark/
/[Tt]est/
END

{n["mark"]++}
{n("test"]++}
{for (word in n)

print word, n[word]}

With each occurrence of Mark or mark, awk increments the variable n[mark]. (awk automatically
initializes n[mark] and n[test] to zero at the start of execution.) After awk processes the last line of
the input, the program prints each word and the number of occurrences of that word as stored in
n[word].

awk has seven defined control statements. The following section explains the statements and gives
examples of their use.

if (condition) else
If the condition within the parentheses is true, the statement following the if is executed. If there is
a clear alternative, the else precedes the action to be performed when the condition is false. The
else is optional. If awk does not perform the action of the if statement and there is no else
statement, awk continues with the next statement. For example:

TUTORIALS

The awk Language 203

{
if (NR % 2 == 1)

print "odd-numbered record"
else

print "even-numbered record"
}

while (condition)
While condition remains true, the statement following while is executed. For example:

{

}

for

i = 1
while (i <=NF){

print $i
i++

}

The for statement lets you execute actions a specified number of times. This statement may contain
an initialization portion, a Boolean test, and an incremental counter. The initialization portion sets
the initial value of the count variable, which awk changes each time it performs the action. The
Boolean test defines the conditions under which awk should continue the action. The incremental
counter specifies how awk is to alter the count variable each time it performs the action. For
example:

break

{
for (i = 1; i <= NF; i++)

print $i
}

The break statement immediately interrupts a while or for execution. For example:

{
for (i in numbers){

}

continue

if (numbers (i] == "stop")
break
print i, numbers (i]

}

The continue statement immediately begins the next iteration of the while or for statement. For
example:

TUTORIALS

204 The awk Language

next

$1- /Smith/ {

}

for (i = 2; i <=NF; i++){
if ($i < 100)

continue
sum += $1

}

The next statement causes processing to skip to the next record for comparison with all the
patterns, beginning with the first, and in order. For example:

exit

NR % 2 == l{

}

print "odd-numbered record"
next

{ print "even-numbered record"
}

The exit statement forces the awk program to skip any remaining input and to execute the actions
at the END patterns. For example:

sum >= 1000 {exit}
{sum += $4}

END {print NR, sum}

The Lexicon's article on awk gives a quick reference of its features and options.

TUTORIALS

Introduction to lex, the lexical Analyzer

Many computer applications involve reading text strings. This is especially true for man-machine
communication.

For some forms of textual input, a programmer can design a program by hand to process it.
However, it is much easier to implement such programs when you use a software tool that will
automatically construct a program to process the data. The COHERENT command lex is such a
tool.

lex accepts expressions that describe the text input, and generates a program to process it. In
computer-ese, lex is a "lexical scanner program generator".

This document tells you how to use lex. It presents many simple examples to illustrate how to use
its features and how to use the generated program with other tools provided with COHERENT.
notably the parser generator yacc.

Readers of this document are presumed to be familiar with the C programming language and the
use of the COHERENT system. Related documents include Using the COHERENT System and the
tutorial to yacc, the COHERENT parser generator.

lex generates lexical scanners for compilers. to do statistical analysis of text, and to generate filters
for many diverse tasks. This section gives examples of how to use lex. Later sections discuss the
concepts used in these examples in detail.

Translating Strings
The first example tells lex to match an input string and replace it with a different string; strings not
recognized by the program are output unchanged. Enter the following program into the file rmv.lex.

%%
removeable printf ("executable");

This creates the lex specification. Use the following command line to pass this specification through
lex:

lex rmv.lex

This produces a C program named lex.yy.c, which you can compile by typing:

cc lex.yy.c -11 -o rmv

The executable program rmv is now ready to use. To illustrate its use, type:

rmv
Is this file removeable?
<ctrl-D>

rmv replies:

Is this file executable?

Note that the generated program reads from standard input and writes to standard output.

205

206 lex Lexical Analyzer

Remove Blanks From Input
The next example deletes all blanks and tabs from the input. Type the following lex program into
file nosp.lex:

%%
[\t]+

Generate and compile the program with the following commands:

lex nosp.lex
cc lex.yy.c -11 -o nosp

To invoke the program, type nosp. Now. test it by typing the following:

This may be hard to read after processing.
<ctrl-D>

nosp outputs:

Thismaybehardtoreadafterprocessing.

Trimming Blanks
The previous example can be rewritten to remove strings of blanks or tabs and replace them with
one space. Type the following into file onesp.lex:

%%
[\t]+ printf (" ");

Generate and compile this with the following commands:

lex onesp.lex
cc lex.yy.c -11 -o onesp

Invoke your new program with the command onesp. Now, type the following text to test the
program:

This should be easier to read.
<ctrl-D>

The words in this input are separated by two spaces. onesp prints the following:

This should be easier to read.

This section discusses the form of the lex specification.

Simple Form
The examples shown above use the simplest form of a lex program. Consider the text of the
example rmv.lex:

%%
removeable printf ("removable");

TUTORIALS

The symbol

%%

lex Lexical Analyzer 207

divides sections of the lex specification. Not all specifications need to be present, but at least one
%% must appear in a lex program.

This symbol separates lex dejlnltlons from rules. With nothing before the %%, there are no
definitions. Rules follow the %%. No definitions are needed in the simplest of lex specifications.

Rules in lex
The format of a lex rule is simple. Every rule has two parts. Refer to the program rm.v:

removeable printf ("removable");

The first part begins at the beginning of the line and ends with a space or tab. In the example rule.
the first part is

removeable

This part is called the pattern.

The second part follows the space or tab, and is called the action. The action in this example is:

printf ("removable");

When the pattern specified by the rule is found in the input. the corresponding action is performed.
Thus, this rule detects every appearance of removeable and outputs the correct spelling.

A lex program tries each rule's pattern in turn, and performs the associated action if and only if the
pattern matches. Actions often modify the input that matched the pattern; they may also do
nothing for certain patterns. To illustrate this, type the following specification into file erase.lex:

%%
erase

Then compile the generated program with the following commands:

lex erase.lex
cc lex.yy.c -11 -o erase

This program copies all its input to its output. except for any appearance of the string erase. Invoke
the program by typing erase, and then test it by typing:

Have you erased the blackboard?
<ctrl-D>

erase then prints:

Have you d the blackboard?

If the input contains patterns that do not match any of the patterns in the suite of rules you typed
into lex, they are simply output unchanged. Usually. you will want to write a rule to cover every
case.

TUTORIALS

208 lex Lexical Analyzer

Statements in lex
As noted earlier, lex is a program generator. It reads the specifications that you prepare for it, and
writes a C program that is used with the lex library. Many of the actions in the rules you specify,
such as

printf ("removable");

are themselves C statements. These statements are included in the resulting program, along with
other statements that lex provides so the program can run.

You can include other statements, should the program need them, by placing them in appropriate
places. The following program, called count.lex, shows how this is done. It counts the number of
tokens, or strings of non-blank characters. Type the following into the file count.lex

int count;
%%
[" \t\n]+
[\t\n]+
%%
yywrap ()
{

count++;

printf ("Number of tokens:%d\n", count);
return (l);

}

Statements other than rule actions appear in two places in the program. The first such statement is
in the definition section, which precedes the rule section delimiter%%:

int count;

This C statement declares the variable count to be an integer variable. Notice that it is preceded by
a tab; a tab or a space indicates to lex that an input line is not a rule.

The second kind of non-rule statement follows the second %%, which marks the end of the rules
section. lex regards anything that follows the second delimiter as being source statements.

The above example includes a function named yywrap. lex programs always call this function at
the end of processing. The above program fills this function with code that prints the number of
tokens in the text.

Compile the program by typing the following commands:

lex count.lex
cc lex.yy.c -11 -o count

Run the program by typing:

count <count.lex

This counts the tokens in the count.lex file itself. count will print the following:

Number of tokens:21

If you do not include a routine named yywrap, lex will use a standard one.

TUTORIALS

lex Lexical Analyzer 209

Groups of Statements
In previous examples, the C statement in the action part of the rule is a single statement. In many
lex applications, however, you will need to use more than one statement per rule.

To do so, enclose the statements in the braces { }. The following example illustrates grouping. This
lex specification generates a program to add numbers found in the input and print the total
whenever it reads asterisk '*'. Type the following program into nsum.lex:

int number, sum;
%%
[0-9] + {

sscanf (yytext, "%d" , &number) ;
sum += number;
printf ("%s", yytext);
}

II* II {

printf ("%s", yytext);
printf ("%d", sum);
sum = 0;
}

To run the generated nsum program, enter a sample data file by typing

cat >numbers
one two three
1 2 3 4 * 1 2 3 5 *
*
done
<ctrl-D>

This builds a sample data file. Run the program by typing:

nsum <numbers

nsum will print:

one two three
1 2 3 4 *10 1 2 3 5 *11
*O
done

The statements that follow the definitions

[0-9]+

and

*
are enclosed in braces. because each action triggers several statements. Consider the first of these:

TUTORIALS

21 O lex Lexical Analyzer

[0-9]+{
sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

The pattern looks for strings of digits. sscanf converts each such string into a number and saves it
in the variable number. Now, consider the second rule:

fl* If {

printf ("%s", yytext);
printf ("%d", sum);
sum = O;
}

This specifies that upon detection of • in the input, the program is to print the sum of the numbers
and then reset the counter to zero. In both of these rules, the statement

printf ("%s", yytext) ;

prints the number or • so that the output shows the input as well as the total. lex defines the
variable yytext. It always contains the string that matches the rule.

If the input is neither a number or an asterisk, no rule specifically matches it. Therefore. the
program echoes it unchanged to the standard output.

Using the Same Action
To make it easier for you to write actions, lex allows you to abbreviate rules; that is, you have to
write only once any action that is performed by several rules. To abbreviate rules represented
symbolically by

pl actionl
p2 actionl

use the vertical bar operator:

pl
p2 actionl

The vertical bar means "use the action from the rule that follows."

The first part of each rule in the lex rules section is a pattern that may match parts of the input.
This section describes how to construct these patterns, sometimes called regular expressions. If you
are familiar with ed and how its patterns work. this will be familiar to you.

Simple Patterns
The simplest kind of pattern is a string of characters that matches itself. A previous section
presented an illustration of this:

%%
removeable printf ("executable");

This regular expression matches all occurrences of removeable that appear in the input text.

TUTORIALS

lex Lexical Analyzer 211

Certain characters have special meaning to lex patterns. To match a special character literally. you
must quote it. For example. • has special meaning. To match the asterisk literally (that is to match
any '•'s that appear in the input), surround it with quotation marks:

"*"

Another way to quote characters is to precede it with the backslash character'\·.

*

The following characters each have special meaning and must be quoted to be matched as text
characters:

"\()<>{}%*+?[]-"/$. j

However, within", the\ still has its meaning, so to match the string\• use the regular expression:

"\ *"

Also. to match a quote character. use:

\"

Classes of Characters
The power of patterns comes from special characters that match more than one character. The
following examines each special character in detail.

The period or dot matches any character except newline. The following regular expression matches
any pair of characters that begins with J:

J.

The following example prints in square brackets any sequence of five characters that ends with a
blank. Type the following into the file five.lex:

%%
printf ("[%s]", yytext);

Compile the program with the following commands:

lex five.lex
cc lex.yy.c -11 -o five

Invoke it by typing five, and test it with the following text:

how well does this work?
no match
<ctrl-D>

The result is

how[well]does[this]work?
no match

The second line of the input does not have any matches. Because the dot pattern character does
not match the end-of-line character, all five characters that precede the blank must be on the same
line.

TUTORIALS

212 lex Lexical Analyzer

Another way to match many characters, but selectively, is with the character class operation.
Enclose in square brackets the set of characters to be matched. Any of the characters listed there
will match one character of the input. For example,

[0123456789]

matches any decimal digit in the input. Characters may be in any order within the brackets. Thus

[0246813579]

is equivalent to the example above.

To simplify specifying for character classes, you can specify ranges of characters. The beginning and
end of the range is separated by a hyphen. To match all decimal digits as above, use:

[0-9]

To match all alphabetic characters. type:

[a-zA-ZJ

The special character A, when used after the opening bracket '(', tells lex to match any character
except those enclosed. The following example finds all two-digit numbers not followed by a period or
alphabetic character and prints them surrounded by {and }. Type the following into file twodig.lex:

%%
[0-9][0-9][A\.a-zA-Z] printf ("{%s}", yytext);

Process and compile the program by typing the following commands:

lex twodig.lex
cc lex.yy.c -11 -o twodig

Invoke the program by typing twodig, and test it by entering the following text:

12. 12 12a 1 12 b
<ctrl-D>

twodig prints the following in reply:

12. {12 }12a 1 {12 }b

Repetition
In the patterns shown so far, each character matches only one character at a time. However, many
interesting input patterns involve repetition of characters.

To match one or more instances of a character. follow it with the pattern operator+. Consider the
summation example in nsum.lex, shown earlier, which recognized strings of input numbers and
added them to a total:

[0-9]+{

The pattern

TUTORIALS

sscanf (yytext, "%d", &number);
sum += number;
printf ("%s", yytext);
}

lex Lexical Analyzer 213

[0-9]+

matches a string of one or more digits.

The operator • will match zero or more characters of a specified type. The following example deletes
all characters between square brackets. Type it into file star.lex:

%%
\[.*\] printf ("[]");

Type the following commands to generate and compile the program:

lex star.lex
cc lex.yy.c -11 -o star

Invoke the program by typing star, and test it by typing the following text:

[This should disappear]
[what happens with two] of them [on a line?]
<ctrl-D>

A backslash precedes each bracket, because the bracket has a special meaning in regular
expressions. The output from this example is:

[l
[l

In looking at the example's input, you might have expected the output to be:

I I
[]of them[]

lex does not produce the latter output because it generates recognizers that find the longest match
if several matches are possible. Therefore, star matched the first (, then all characters up to and
including the second]. When you write a pattern that matches many characters. you should bear
this possibility in mind.

To change the program to match the first), rewrite it as follows:

%%
\[[A\]]*\] printf (" [] ");

The regular expression now matches a string of all characters except a), when that string is
enclosed in square brackets.

The '?' character signals that the previous character or regular expression is optional. In other
words, '?' signals zero or one instance of a character or regular expression.

To see how this would be used in a program, consider a text processor that regards a word as being
a strings of alphabetic characters that may or may not be followed by a period. The following
example does this, and encloses the recognized words in parentheses. Enter it into file word.lex:

%%
[a-zA-Z]+\.? printf ("(%s)", yytext);

Generate and compile the program with the following commands:

lex word.lex
cc lex.yy.c -11 -o word

TUTORIALS

214 lex Lexical Analyzer

Invoke the program by typing word, and test it the program with the following text:

These are words.
Question mark not included?
<ctrl-D>

The result is

(These) (are) (words.)
(Question) (mark) (not) (included)?

The question mark, like the • and + operators, can also follow another specification of a pattern. If
you wanted to be able to end a sentence with a character other than a period, the following code will
do the job for you:

[a-zA-ZJ+[.?!,]?

The characters

• ? ! I

are optional.

The '+'and •••operators may match many characters. If you wish to match a specific number of
characters or patterns, follow the patterns with the repetition within braces {and}. For example

[0-9]{3}

matches a string of exactly three digits.

You can also specify a range of counts. To match from seven to nine occurrences of lower-case
alphabetic characters, use:

[a-zl{7,9}

Choices and Grouping
To indicate alternate choices of characters or regular expressions, separate them in the regular
expression with a vertical bar operator I· For example, if you wish to match either three decimal
digits or the character a, use:

[0-9]{3} la
Parentheses help to group the parts of the pattern that are separated by the vertical bar:

(abc) I (def)

This pattern will match either the string abc or the string def.

Matching Non-Graphic Characters
Non-special. graphic characters in patterns match themselves. Most non-graphic characters, such
as space. tab, and control characters, cannot be matched directly. lex provides special sequences to
match control characters. The following example removes tabs and blanks from the beginning and
end of input lines. Type it into file deblank.lex:

%%
[\t]+\n
\n[\t]+

TUTORIALS

printf ("\n");
printf ("\n");

lex Lexical Analyzer 215

Generate and compile the program with the following commands:

lex deblank.lex
cc lex.yy.c -11 -o deblank

Invoke the program by typing debJank, and test it by typing the following input:

begins with no space or tab
begins with tab

begins with three spaces
<ctrl-D>

The res ult will be

begins with no space or tab
begins with tab
begins with three spaces

The special regular expression \ t represents tab, and \n represents newline.

To match the backspace character, use \b. Form feed is matched by \f. To match an arbitrary
character with a known octal value. use three octal digits after the backslash; for example,

\007

i:Iiiii:--
This section discusses more advanced capabilities of patterns.

Line Context
Like ed. lex patterns can include characters that represent the beginning and end of line. To match
a line that contains exactly five alphabetic characters, type:

"[a-zA-Z 1{5} $

The character" matches the beginning of the line. and$ matches the end of the line.

Context Matching
A slash (virgule) '/' shows that a following context is necessary to match a string. For example. the
following program matches the string match only if it is immediately followed by the string Ing.
Type it into file match.lex:

%%
match/ing printf ("{%s}", yytext)1

To compile the program, type the following commands:

lex match.lex
cc lex.yy.c -11 -o match

To invoke the program, type match; and test it by typing the following input:

Will this match?
This is a matching test.
<ctrl-D>

TUTORIALS

216 lex Lexical Analyzer

The result will be

Will this match?
This is a {match}ing test.

Notice that the string before the slash is matched. The program does not match the part that
follows the slash, even though the string must be there for the first part to be matched. Thus, the
regular expression that follows the slash may also be matched on its own. To see how this works,
type the following into the file match2.lex:

%%
match/ing
ing

printf ("{%s}", yytext)7
printf ("ed") 1

To compile the program, type the following commands:

lex match2.lex
cc lex.yy.c -11 -o match2

To invoke the program, type match2: then test it by typing the following input:

Will this match?
This is a matching test.
You must now sing for your supper.
<ctrl-D>

The result will be

Will this match?
This is a {match}ed test.
You must now sed for your supper.

The context-string that follows the I may be a regular expression. The following example matches
the whole-number portion of a decimal fraction. Type it into the file wholept.lex:

%%
"-"?[0-9]+/"."[0-9]+ printf ("(%s)", yytext)7

To compile the program. type the following commands:

lex wholept.lex
cc lex.yy.c -11 -o wholept

Invoke the program by typing wholept; then type the following to test it:

123 12345 1234.567
<ctrl-D>

The result will be:

123 12345 (1234).567

As you can see. the part of the regular expression

"-"?

matches an optional leading minus sign. Then

[0-9]+

matches a string of at least one decimal digit. Then, the following context must match the regular

TUTORIALS

lex Lexical Analyzer 217

expression

... "[0-9]+

which matches the fractional part of the number. When it finds a number that matches. it prints
the number's whole part enclosed in parentheses.

Macro Abbreviations
lex also provides a macro facility that can substantially simplify the writing of complex regular
expressions.

A macro is a named body of text. A macro processor simply replaces the name of the macro with the
text of the macro.

To illustrate. type following example into file float.lex. It recognizes integer and floating point
constants according to the C format:

d [0-9]+
e [Ee][+-J?[0-9]+
%%
{d}\.
{d}\.{d}
\.{d}
{d}\.{e}
\. {d}{e}
{d}\.{d}{e}
{d}{e} printf ("F:[%s]", yytext);

lex replaces the macro name e with the code that matches a string of digits at least one digit long.
It replaces the macro name d with code that matches the number's exponent. These two are
invoked in the manner of

{d}

within a pattern. To compile the program. type the following commands:

lex float.lex
cc lex.yy.c -11 -o float

Invoke the program by typing float, and then test it by typing the following text:

1 1 • 1 . 2 1 . e4 le4
.le4 e4 .1 . 0 1.2e3
<ctrl-D>

The result will be:

1 F:[l.] F:[l.2] F:[l.e4] F:[le4]
F:[.le4] e4 F:[.l] • 0 F:[l.2e3)

Context: Start Rules
Many tasks in lexical processing require the program to be aware of a token's context. lex lets you
make processing conditional upon previously processed input. This is done by using start
conditions.

TUTORIALS

218 lex Lexical Analyzer

Start conditions are named in the definitions section as follows:

%S namel name2

where namel and name2 are names of start conditions. These start conditions are then used by
prefixing a pattern with the start condition's name enclosed in angle brackets. For example:

<namel>

For example. you can use one start condition to control the scanning of comments in a Pascal-like
language. The start condition is set by the lex statement BEGIN when the beginning bracket of the
comment is found. The comment is scanned for strings that begin with $ to signal compiler
operation. To see how this works. type the following into the file comment.lex:

%S CMNT
%%
<CMNT>\$[ler]printf ("Option is %s.\n", yytext):
<CMNT>[A\}J
<CMNT>\} BEGIN O:
\{ BEGIN CMNT:

To compile. use the following commands:

lex comment.lex
cc lex.yy.c -11 -o comment

Now. invoke the program by typing comment; and test it by typing the following input:

{This is a comment}
{This comment has options $1 $e $r}
program
information
<ctrl-D>

The result will be:

Option is $1.
Option is $e.
Option is $r.

program
information

The context start condition is named following BEGIN in the action part of the rule. To return to the
normal condition, use 0 as the context name.

Separate Contexts
If you wish to perform context-dependent processing that is more complex than that shown in the
example above. you will find it convenient to use separate contexts.

The names of the contexts are defined in the definitions sections, after the definitions of any start
conditions: For example:

%C name name •••

The lex function yyswitch switches to a new context.

TUTORIALS

The body of the context's rules is preceded in the rules section by:

%C name

lex Lexical Analyzer 219

To see how this works, type the following into file pre.lex. It is part of a program that recognizes the
preprocessor statements in a C program:

%C PRE
%%
A# yyswitch (PRE):
[A#\n]+ printf ("[%s]", yytext):
%C PRE
include.+ I
define.+ {

.+

printf("{%s}", yytext);
yyswitch(O);
}
{
printf ("{??%s}", yytext);
yyswitch (O);
}

A # in column I signals the beginning of a preprocessor statement. Upon recognizing this
condition. this program uses yyswitch to activate the context PRE.

Within this separate context, individual rules recognize different preprocessor statements; this
example includes only two. Each of the rules prints the preprocessor line enclosed in braces { }. In
addition. the rules switch back to the original (and unnamed) context by the statement

yyswitch (O);

To compile and test this program, use the following commands:

lex pre.lex
cc lex.yy.c -11 -o pre
pre <lex.yy.c

This example uses the function yyswitch to return to the original context at the end of each rule in
the secondary context. Some applications require a return to the context that was previously in
force. To assist in this. yyswitch returns the value of the previous context.

To modify the example to switch to the previous context, add a statement to the definitions section
to declare a variable to hold the previous context:

int prev;

Then, when switching. save the current context:

prev = yyswitch (NEW);

To switch back. use:

yyswitch (prev);

To summarize. you can specify a match at the beginning and end of input lines. You may need a
following context for a match. Macros provide a means of abbreviating elements of patterns. lex
can qualify some patterns based on a start context, or process entirely separate contexts.

TUTORIALS

220 lex Lexical Analyzer

This section discusses predefined lex actions and how to use them. It also presents other lex
routines that are useful in writing actions.

ECHO
Many lex actions simply output the matched pattern:

[0-9]+printf ("%s", yytext);

This form has been used in the examples because many examples also output additional material.
such as enclosing braces, to illustrate the matched token.

lex provides a simpler way to echo the exact token matched:

[0-9]+ ECHO;

The following example echoes all strings of digits twice, and everything else once. Type it into file
double.lex:

%%
[0-9]+
[A0-9]+

{ECHO; ECHO;}
ECHO;

To compile the program, use the commands:

lex double.lex
cc lex.yy.c -11 -o double

To invoke the program, type double; and to test it, type the following text:

abcdef 123 1234
<ctrl-D>

double will reply:

abcdef 123123 12341234

Processing Overlapping Strings
The lex processing illustrated to this point has been restricted to programs whose rules recognize
distinct strings. That is, once any character of a string is matched by a regular expression, it
cannot be matched by another.

Some applications require that strings be matched by more than one rule; such multiply-matched
strings are called overlapping strings. The lex action word REJECT provides this capability. When
REJECT appears in a rule, other rules can also match the string. Remember, however, that lex
programs give precedence to the longest string that matches a regular expression.

The following example determines the number of letter pairs. or digrams, in its input. The input is
presumed to be lower-case letters. Enter the following into digram.lex:

TUTORIALS

lex Lexical Analyzer 221

int digram [128] [128];
%%
(a-z][a-z] {

\n

digram [yytext (OJ) [yytext [l]]++;
REJECT;
}

%%
yywrap ()
{

}

int il, i2;
for (il = 'a'; il <= 'z'; il++)

for (i2 ='a'; i2 <= 'z'; i2++)
if (digram [il] [i2] I= 0)

printf ("%d\t%c%c\n",
digram [il) [i2], il, i2);

To compile the program, type the commands:

lex digram.lex
cc lex.yy.c -11 -o digram

To invoke the program, type digram; and test it with the following text:

this is a test of digrams.
<ctrl-D>

The result will be:

1 am
1 di
1 es
1 gr
1 hi
1 ig
2 is
1 ms
1 of
1 ra
1 st
1 te
1 th

wiex
lex places the actions you provide for the rules in your lex program into a C routine named yylex.

If you add variable declarations in the definitions section before the first %%, yylex can access
them, as in the example digram.lex, shown above. You can also declare variables that are local to
yylex, if you place the declarations after the rules section delimiter and before the first rule. A tab
or space must precede the declaration.

TUTORIALS

222 lex Lexical Analyzer

The following program is a different version of digram.lex, called digram2.lex; it uses such a
declaration.

int digram [128] [128];

int to, tl;
[a-z][a-z] {

%%
yywrap ()
{

to = yytext [OJ;
t1 = yytext [1];
digram [tO] [tl]++;
REJECT;
}

int il, i2;
for (il = 'a'; il <= 'z'; il++)

for (i2 = 'a'; i2 <= 'z'; i2++)
if (digram [il] [i2] I= 0)

printf ("%d\t%c%c\n",
digram [il] [i2], il, i2);

}

Header Section
You can insert additional code at the beginning of the generated program by including such code in
the definitions section. An earlier example, count.lex, demonstrated how to do this:

int count;
%%
[A \t\n]+
[\t\n]+
%%
yywrap ()
{

count++;

printf ("Number of tokens:%d \n ",count);
return (l);

}

A tab or space character must precede the code you include.

If you wish to insert include or any other C preprocessor statement at the beginning of the program,
however, a different technique must be used. This stems from the fact that the preprocessor
statements must begin at the beginning of the line, and the blank or tab precludes this.

The alternative method to add code to the beginning is as follows:

%{
••. code .••
%}

where the % symbols are at the beginning of the line.

TUTORIALS

lex Lexical Analyzer 223

Additional Routines
If your version of yywrap or any of the rules that you write need other routines, you can include
code for them after a second%%. (This was where yywrap was shown in digram.lex.) If you wish to
provide your own version of input or output, you must define it there.

Although lex can handle many applications by itself, it is often used with the parser-generator yacc.
For example, programming-language compilers often have parts generated by both lex and yacc.

Like lex, yacc is a program generator. Its programs can recognize input that is structured
according to a grammar fed to the yacc program generator. In most instances, yacc-generated
programs require tokens as input, instead of individual characters. In the context of a programming
language. a token is a variable name or a special character (such as an operator). lex is often used
with yacc because lex is especially well suited for partitioning text input into tokens.

A yacc-generated program expects a token number as input from the routine yylex. yacc assigns a
unique number, or constant definition, to each unique type of token, and expects yylex to return
these numbers as input.

For your lex program to access these predefined constant definitions for token types, you must
include the generated lex source in the yacc specification.

The following examples process very simple input, to illustrate how to assemble lex- and yacc­
generated programs. To begin, type the following into the file yacclex.yy:

%token beginning midtok ending
%start simplistic
%%
simplistic

middle
middle
%%

beginning middle ending
{printf ("recognized"); };

midtok;
middle midtok;

When yacc processes this program, it produces the file y.tab.h that contains the token-name
definitions. The following lex source reads y.tab.h to learn of the constant definitions that yacc
generated; type it into file yacclex.lex:

%{
#include "y.tab.h"
%}
%%
" (" return (beginning);
") " return (ending) ;
[a-zA-ZJ return (midtok);

The symbolic definition of the token names are beginning, ending and midtok.

To compile the programs, type the following commands:

yacc yacclex.yy
lex yacclex.lex
cc y.tab.c lex.yy.c -ly -11 -o yacclex

TUTORIALS

224 lex Lexical Analyzer

Type yacclex to invoke the new program; and test by typing the following:

(abcdef)

The result will be:

recognized

lex is a utility that generates lexical analyzers according to a set of specifications that you write.
Lexical analysis means to read a mass of text, recognize strings within that mass, and react
appropriately when each type of string is discovered. With lex. you can write programs to perform
complex analysis of text simply by describing what analysis you want to perform. without worrying
about the messy details of how that analysis is actually performed; thus, lex is a fine example of
what is nowadays called a "fourth-generation language".

lex is especially well suited to work with the parser-generator yacc. By using them together, you
can efficiently build command processors and even entire computer languages.

TUTORIALS

Introduction to yacc

The first high-level programming language compiler took a very long time to write. Since then,
much has been learned about how to design languages and how to translate programs written in
high-level languages into machine instructions. With what is known today, the writing of a compiler
takes a fraction of the time it used to require.

Much of this improvement is due to the use of more powerful software development methods. In
addition, we know about the mathematical properties of computer programming languages.
Software tools that apply this mathematical knowledge have played a large part in this
improvement.

The COHERENT system provides two tools to simplify the generation of compilers. These tools are
the lexical analyzer generator lex and the parser generator yacc. The following introduces yacc,
and gives a basic course in its use.

Although initially intended for the development of compilers, lex and yacc have proven their utility
in other, simpler, tasks. Examples of very simple languages are included in this tutorial.

yacc accepts a free-form description of a programming language and its associated parsing, and
generates a C program that, when compiled, will parse a program written in the described language.
It uses a left-to-right, bottom-up technique, to detect errors in the input as soon as theoretically
possible. yacc generates parsers that handle certain grammatical ambiguities properly.

This manual presumes that you are familiar with computer-language parsing and formal methods of
description of languages. Because yacc generates its programs in C and uses many of C's syntactic
conventions, you should have a working knowledge of C. Related documents include Using the
COHERENT System and Introduction to lex.

The following presents a few small examples that you can experiment with to get a feel of how to use
yacc. Feel free to experiment with the examples to investigate new ideas.

Phrases and Parentheses
The first example describes a language we call slang, or simple language. slang consists of
sentences. A sentence, in turn, consists of strings of letters or groups of letters enclosed in
parentheses, terminated by a period. A group of letters can also include other groups of letters.

The simplest "sentence" in slang is:

a.

The following demonstrates a sentence that consists only of a group:

(ab).

As described above, a group can have another group inside it:

ab(cd(ef)).

225

226 yacc, Yet Another Compiler-Compiler

The following gives the yacc grammar for slang. Type it into the file slang.y. Note that the lexical­
analyzer routine yylex is included in the yacc input file. Note also that, as in C, comments are
strings placed between the characters /• and •I.

/* Tokens (terminals) are all caps */
%token LPAREN RPAREN OTHER PERIOD
%%
run sent /* Input can be a single */

run sent /* sentence or several */

sent phrase PERIOD
{printf ("sentence\n");}

group : LPAREN phrase RPAREN
{printf ("group\n");}

phrase /* empty */
others
group
others group

others OTHER /* letters and other chars */
others OTHER

%%

#include <stdio.h>
#include <ctype.h>
/* Called by the parser to get a token */
yylex ()
{

}

int c;
c = O;

return (PERIOD);
'(')return (LPAREN);
')') return (RPAREN);
EOF) return (EOF);

while (c == 0) {
c = getchar();
if (c == '.')
else if (c
else if (c
else if (c
else if (! isalpha(c)) c = O;

}

return (OTHER);

To generate and compile the parser described by this input. issue the commands

TUTORIALS

yacc slang.y
cc y.tab.c -ly -o slang

Now, invoke your new parser by typing

slang

and test it by typing the following input:

a
a.
abc(def).
aaa(bbb(ccc)).
(a).

slang will reply as follows:

sentence
group
sentence
group
group
sentence
group
sentence

yacc, Yet Another Compiler-Compiler 227

As you can see, slang recognized groups and sentences within the input you typed, and reacted by
printing an appropriate message on the screen.

Simple Expression Processing
The next example creates a small language that includes two types of statements. The first type of
statement resembles a procedure call, and the second is an expression. Procedure names are in
upper-case letters, whereas the variables in expressions are in lower-case letters. Both procedures
and expressions are terminated by a semicolon.

The following code generates a parser that identifies either the procedure being called or the
arithmetic expression being calculated. The lexical input routine is independently generated by lex.

Enter the following program into the file calc.y:

%token VARIABLE PROCEDURE
%%
prog

stmnt

stmnt
prog stmnt

stat
stat '\n'
error '\n'

TUTORIALS

228 yacc, Yet Another Compiler-Compiler

stat

expr

PROCEDURE ' ; '
{printf ("PROCEDURE is %c\n", $1);}

expr ';'
{printf ("Expression\n");}

expr •-• expr
{printf
("Subtract %c from %c giving E\n",
$3, $1);
$$ = 'E';
}

VARIABLE
{$$ = $1;}

Enter the lexical-analyzer part of the program into the file calc.lex:

%{
#include "y.tab.h"
%}
%%
[A-Z] {

yylval = yytext [0 l ;
return PROCEDURE;
}

[a-z] {
yylval = yytext [0 l ;
return VARIABLE;
}

\n return ('\n');
return (yytext [0 l) ;

Now, generate the programs and compile them by typing:

yacc calc.y
lex calc.lex
cc y.tab.c lex.yy.c -ly -11 -o calc

The following messages will appear on your console:

1 S/R conflict
y.tab.c:
lex.yy.c:

To invoke the newly generated program, type:

calc

To test it, type the following:

TUTORIALS

A;B;
C;
a-b-c;
a-b-c-d-e;
<ctrl-D>

calc will reply as follows:

PROCEDURE is A
PROCEDURE is B
PROCEDURE is C
Subtract c from b
Subtract E from a
Expression
Subtract e from d
Subtract E from c
Subtract E from b
Subtract E from a
Expression

,~, ~~, i,'' '~,' ;, ,,~

,'' /, ,I'',,

yacc, Yet Another Compiler-Compiler 229

giving E
giving E

giving E
giving E
giving E
giving E

Now that you have tried yacc, the following gives some background to it, and how the parsers that it
generates operate.

LR Parsing
yacc generates a "bottom up" parser. More specifically, yacc generates parsers that read LALR(l)
languages.

LR parsers scan the input in a left-to-right fashion. Unfortunately, LR parsers for interesting
languages are unpractically large. LALR(k) parsers, which are derived from LR parsers, use a "look
ahead" technique, in which the next k elements of the input stream are used to help determine
reductions. LALR(l) parsers are small enough to be practical. are easy to generate, and are fast.

Input Specification
To generate a language with yacc. you must specify its grammar in Backus-Naur Form (BNF). (For
a good introduction to BNF, see the section on parsing in Applied C.) The languages recognized by
yacc-generated parsers are rich and compare favorably with modern programming languages. The
time required to generate the parser from the input grammar is very small - less than the time
required to compile the generated parsers.

In addition to generating the parser to recognize the input language, yacc lets you include compiler
actions within the grammar rules that are executed as the constructs are recognized. This greatly
simplifies the entire task of writing your compiler. When used in combination with lex, yacc can
make the process of writing a recognizer for a simple language the task of an afternoon.

Parser Operation
yacc generates a compilable C program that consists of a routine named yyparse, and the
information about the grammar encoded into tables. Routines in the yacc library are also used.

TUTORIALS

230 yacc, Yet Another Compiler-Compiler

The basic data structure used by the parser is a stack, or push down list. At any time during the
parse. the stack contains information describing the state of the parse. The state of the parse is
related to parts of grammar rules already recognized in the input to the parser.

At each step of the parse, the parser can take one of four actions.

The first action is to shift. Information about the input symbol or nonterminal is pushed onto the
stack. along with the state of the parser.

The second type of action is to reduce. This occurs when a grammar rule is completely recognized.
Items describing the component parts of the rule are removed from the stack, and the new state is
pushed onto the stack. Thus. the stack is reduced, and the symbols corresponding to the grammar
rule are reduced to the left part of the rule.

Third, the parser can execute an error action. If the current input symbol is incorrect for the state
of the stack, it is not proper for the parser either to shift or reduce. As a minimum, this state will
result in an error message being issued, usually

Syntax error

yacc provides capabilities for using this error state to recover gracefully from errors in the input.

Finally. the parser can accept the input. This means that the start symbol, such as program. has
been properly recognized and that the entire input has been accepted.

Later sections discuss how you can have the parser describe its parsing actions step-by-step.

A yacc program can have up to three sections. Each section is marked by the symbol%%. The first
section contains declarations. The second section contains the rules of the grammar. User-written
routines that are to be part of the generated program can be included in the third section. The
outline of yacc specifications is as follows:

definitions
%%
rules
%%
user code

If there are no definitions or user code, the input can be abbreviated to

%%
rules

Rules
Your language's grammar rules must be entered in a variant of BNF. The two following rules
illustrate how to define an expression:

exp
exp

VARIABLE;
exp '-' exp;

Action statements that are enclosed in braces {} specify the semantics of the language, and are
embedded within the rules. More information about how rules are built is given below.

TUTORIALS

yacc, Yet Another Compiler-Compiler 231

Definitions
The first section in a yacc specification is the definitions section. This section includes information
about the elements used in the yacc specification. Additional items are user-defined C statements,
such as include statements, that are referenced by other statements in the generated program.

Each token, such as VARIABLE in example program calc, must be predefined in a token statement
in the definitions section:

%token VARIABLE

Tokens are also called terminals. Only nonterminals appear as the left part of a rule, and terminals
can appear only on the right side of a rule. This helps yacc distinguish terminals from
nonterminals. Other types of statements that assist in ambiguity resolution appear here, and will
be discussed in later sections.

Each grammar that yacc generates a parser for must have a start symbol. Once the start symbol
has been recognized by the parser, its input Is recognized and accepted. For a programming­
language grammar, this nonterminal represents the entire program.

The start symbol should be declared in the definitions section as:

%start program

If no start symbol is declared, it is taken to be the left side of the first rule in the rules section.

User Code
Action statements may require other routines, such as common code-generating routines. or symbol
table building routines. Such user code can be included in the generated parser after the rules
section and a%% delimiter.

The following sections discuss definitions and rules in detail.

Rules describe how programming-language constructs are put together. Any given language can be
described by many configurations of rules. This frees you to write the rules for clarity and
readability.

A rule consists of a left part and a right part. The left part is said to produce the right part; or, the
right part is said to reduce to the left part. A rule can also include the action the parser is to
perform once it (the rule) is reduced.

General Form of Rules
Blanks and tabs are ignored within rules (except in the action parts). Comments can be enclosed
between I• and •I. The left part of the rule is followed by a colon. Then come the elements of the
right part, followed by a semicolon.

Rules that have the same left part can be grouped together with the left part omitted and a vertical
bar signifying "or". For example, the grammar

exp
exp

can be written as:

VARIABLE;
exp '-' exp;

TUTORIALS

232 yacc, Yet Another Compiler-Compiler

exp VARIABLE
exp '-' exp;

Note that these are equivalent to the BNF:

<exp> : :=
<exp> : :=

VARIABLE
<exp> - <exp>

A rule can also contain C statements that are the compiler actions themselves. These actions are
enclosed in braces {and} and are executed by the generated parser when the grammar rule has
been recognized. More will be said about actions in the following section.

Suggested Style
Rules can be written completely free form for yacc. For example, the rules for the above rule can be
written:

exp:VARIABLEiexp'-'exp;

However. this form is much less readable.

Two styles of yacc grammar are in common use. The first of these is used throughout this manual.

First, start the left part at the beginning of the line; follow it with a tab; then a colon. The right part
should be on the same line, also preceded by a tab.

Second, group all rules with the same left part together, and use the vertical bar aligned under the
colon for all but the first rule in the group.

Third. place action items on a separate line following the associated rule, preceded by three tabs.

Finally, precede the terminating semicolon with a single tab, to align it with the colon and vertical
bar.

The outline of this style is:

left rightl right2
{actionl}

right3 right4
{action2}

This style is compact and works well for languages whose rules and actions together are simple.

For somewhat more extensive languages, or for additional flexibility in adding statements to the
action part, use the following modification of the style.

left

TUTORIALS

rightl right2 {
actionl
}

right3 right4 {
action2

yacc, Yet Another Compiler-Compiler 233

For specifications that have larger rules or more complex actions. another style is recommended.

As in the first style. group rules with the same left part. and use the vertical bar. Place the left part.
with its terminating colon. on a line by itself. Then indent the right parts of the rule one or more
tabs as necessary to make the rule and actions readable. Finally. the vertical bar and the semicolon
should be at the beginning of the line.

The outline for this style is as follows:

lefts
rightl right2 {

actionl
}

right3 right4 {
action2
}

Since the input to yacc can be entirely free form. there is no restriction on how to write your rules.
However, if you use a consistent style throughout. it will make your job easier.

In addition to generating a parser to recognize a specific language. yacc also lets you include
parsing action statements. With this feature, you can include C-language action statements that
will be performed when specified constructs are recognized.

Basic Action Statements
The example language slang, described above, the action statements simply print information on the
terminal as productions are recognized:

sent

group :

phrase PERIOD
{printf ("sentence\n");}

LPAREN phrase RPAREN
{printf ("group\n");}

Even if your actions will be more complex, using prlntf statements in this way can help verify your
grammar early in the development process.

Action Values
If the specification is for the grammar of a programming language. the actions will normally
interface to routines that access symbol tables or generate code.

yacc lets rules assume a value to help keep track of intermediate results within rules. These values
can contain symbol-table information, code-generation information. or other semantic information.

To set a value for a rule. simply use a statement of the form

$$ = <value>;

within an action statement. The symbol $$ is the value of the production. This value can be used
by other rules that use this rule as a non-terminal part.

TUTORIALS

234 yacc, Yet Another Compiler-Compiler

The example program calc, given above,' illustrates the use of the value of productions:

ex pr expr '-' expr {
printf

("Subtract %c from %c giving E\n",
$3, $1);

$$='E';
}

VARIABLE
{$$ = $1;}

The first rule's action statement sets the value of the production expr to 'E':

$$ = 'E';

The value of a rule is significant in that it can be used in productions including that rule as a
nonterminal part.

An example is given in the first rule above. The prlntf statement refers to the items $1 and $3.
yacc interprets these symbols to mean the value of elements one and three of the right side,
respectively: that is to say, $1 refers to the value of the first expr in the right side of the first rule,
and $3 refers to the second expr, as illustrated below:

ex pr ex pr
$1

,_,

$2
expr

$3

calc does not reference $2.

The value for the tokens is provided by the lexical analyzer. The second rule for expr uses this to
get the value of the token VARIABLE. The value represented by $1 is provided by the lexical
analyzer in the statement

yylval = yytext [OJ;

To give another example. here is a simple calculator language. called digit, which performs
arithemtic on one-digit numbers and prints the results. Type the following grammar into the file
dig:lt.y:

%token DIGIT
%%
session

cal en

TUTORIALS

1 cal en
session calcn

expr '\n' /* print results */
{printf ("%d\n", $1);}

yacc, Yet Another Compiler-Compiler 235

ex pr term '+' term
{$$ = $1 + $3;}

term '-' term
{$$ = $1 - $3;}

term DIGIT
{$$ $1;}

%%
#include <stdio.h>
yylex ()
{

}

int c;
c = O;

while (c == 0) { /* ignore control chars and space */
c = getchar();

}

if (c <= 0) return (c) /* could be EOF */;
if (c == '\n') return (c); /*set c to ignore*/

if ((c <= , 9,) && (c >= , 0,)) {
yylval = c - '0';
return (DIGIT) ;

}
if (c <= . , ,) c = 0;

return (c);

This creates the yacc specification file. To turn it into a program, type

yacc digit.y
cc y.tab.c -ly -o digit

To invoke the compiled progra, type:

digit

And to test it, type the following:

1+2
2+2
8+9

digit will reply:

3
4

17

TUTORIALS

236 yacc, Yet Another Compiler-Compiler

This program is essentially an interpreter - results are calculated as numbers are typed in. When
you type in

1+1

the parser recognizes the construct

term '+' term

and executes the statement that adds two numbers together. The two numbers each in tum came
from the construct

term DIGIT

and the value of the digit came from yylex. When the statement calcn is recognized, the value is
printed as the result. Thus, the calculations are performed at the time that the constructs are
recognized. If a compiler were being generated, the actions would likely build some form of
intermediate code, or expression tree. as in:

ex pr term '+' term
{$$=tree (plus, $1, $3);}

Structured Values
All the examples thus far have shown action values as simple int types. This is not sufficient for a
large interpreter or compiler, because at different points in the language a value can represent a
constant values, a pointer to code generation trees, or symbol table information.

To solve this problem, yacc allows you to define the values of$$ and $n as a union of several types.
This is done in the definitions section with the union statement. For example, to declare action
values as an integer, tree pointer. or a symbol-table pointer. you would use the following code:

%union {

}

int cval;
struct tree_t tree;
struct sytp_t sytp;

This says that action values can be a constant value cval. a code tree pointer tree, or a symbol-table
pointer sytp.

To ensure that the correct types are used in assignments and calculations in actions in the
generated C program, each token whose value will be used is declared with the appropriate type:

%token <tree> A B
%token <cval> CONST

In addition, the rules themselves can have a type declaration, as they also can pass action values.
Their type is declared in the %type statement:

%type <sytp> variable

This declares the nonterminal variable to reference the sytp field of the value union.

The values referenced in the action statements do not need to be qualified (unless they are
referencing a field of one of the union elements). yacc generates the necessary qualification for the
references, based upon the type information provided in the type and token statements.

TUTORIALS

yacc, Yet Another Compiler-Compiler 237

Keep in mind that productions that do not have explicit actions will default to an action of

$$ = $1

which might cause a type clash when compiling the generated parser. This is more likely to arise
during debugging. when you have defined the types but have not put in the actions.

The ideal grammar for a language is readable and unambiguous. If the grammar is readable, its
users will find it easy to use. If the language is unambiguous, the parser generator will parse the
programs correctly. However. many common programming language constructs are ambiguous.
Consider the following definition of an If statement:

statement

if statement 1

if statement
others
IF cond THEN statement
IF cond THEN statement ELSE statement

Consider a program that contains a statement

if a > b then if c < d then a = d else b = c;

The parser does not know by the grammar specification which lf_statement the else belongs with.
At the point of the else, the parser could correctly recognize it as part of the first If or the second If.
The indentations illustrate the interpretation of the ambiguity associating the else with the first If.

if a > b then

else

if c < d then
a = d;

b = c;

Associating it with the second If:

if a > b then
if c < d then

a = d;
else

b c• I

One solution to this ambiguity is to modify the language and rewrite the grammar. Some
programming languages (including the COHERENT shell) have a closing element to the If statement,
such as fl. The grammar for this approach is:

statement

if_statement 1

if _statement
others
IF cond THEN statement FI
IF cond THEN statement ELSE statement FI

Another ambiguity arises from a grammar for common binary arithmetic expressions. The following
sample specifies binary subtraction:

TUTORIALS

238 yacc, Yet Another Compiler-Compiler

exp TERM
exp

For the program fragment

a - b - c

,_, exp

the parser can correctly interpret the expression as

(a - b) - c

or as

a - (b - c)

While for the if example, the language can be reasonably modified to remove the ambiguity, it is
unreasonable in the case of expressions. The grammar can be rewritten for exp but it is less
convenient.

How yacc Reacts
Because some ambiguities, such as the ones detailed above, are common, yacc automatically
handles some of them.

The ambiguity exemplified by the if then else grammar is called a shift-reduce conflict. The parser
generator can either choose to shift, meaning to add more elements to the parse stack, or to reduce,
meaning to generate the smaller production. In the terms of if, the shift would match the else with
the first then. Alternatively, the reduce choice will match the else with the latest (rightmost)
unmatched then.

Unless otherwise specified, yacc resolves shift-reduce conflicts in favor of the shift. This means that
the if ambiguity will be resolved in favor of matching the else with the rightmost unmatched then.
Likewise, the expression

a - b - c

will be interpreted as

a - (b - c)

Additional Control
yacc provides tools to help resolve some of these ambiguities. When yacc detects shift-reduce
conflicts, it consults the precedence and associativity of the rule and the input symbol to make a
decision.

For the case of binary operators, you can define the associativity of each of the operators by use of
the defining words left and right. These appear in the definition section with token. Any symbol
appearing in left or right.

The usual interpretation of

a - b - c

is

(a - b) - c

TUTORIALS

yacc, Yet Another Compiler-Compiler 239

which is called left associative. However, the shift/reduce conflict inherent in

exp '-' exp

is resolved in favor of the reduce, or in a right-associative manner:

a - (b - c)

To signal yacc that you want the left-associative interpretation, enter the grammer as:

%left '+' '-'
%token TERM
%%
expr TERM

ex pr
expr

,_,

'+'
expr
ex pr

Some operators, such as assignment, require right associativity. The statement

a := b + c

is to be interpreted as

a := (b + c)

The %right keyword tells yacc that the following terminal is to right associate.

Precedence
Most arithmetic operators are left associative. For example, with the grammar

%right =
%left ,_, '+' '*' I/'
%%
ex pr ex pr ,_, expr

ex pr I*' expr
ex pr '+' expr
ex pr I I I expr
ex pr '=' expr

The expression

a = b + c * d - e

based on associativity alone will be evaluated

a= (((b + c) * d) - e)

which is not according to custom. We normally think of• as having higher precedence than + or -.
meaning that it is evaluated before other operators with the same associativity. The evaluation
preferred is

a = (b + (c * d) - e)

TUTORIALS

240 yacc, Yet Another Compiler-Compiler

To generate a parser with this evaluation, use several lines of left, one line for each level of
precedence. Each line containing %left describes tokens of the same precedence. The precedence
increases with each line. Thus, to get the common notion of arithmetic precedence, use a grammar
of

%right =
%left '-' '+'
%left '*' '/'
%%
ex pr expr

ex pr
expr
ex pr
ex pr

,_, expr
'*' ex pr
'+' expr
, /' expr
'=' expr

This method of %left and %right gives tokens a precedence and an associativity. This can eliminate
ambiguities where these operators are involved. But what about the precedence of rules or
nonterminals?

To specify the precedence of rules, the %prec keyword at the end of the rule sets the precedence of
the rule to the token following the keyword. To add unary minus to the grammar above, and to give
it the precedence of multiply, use %prec •at the end of the unary rule.

%right =

%left ,_, '+' '*, , /'
%%
ex pr ex pr ,_, expr

ex pr , *' ex pr
ex pr '+' expr
ex pr , /' expr
ex pr '=' expr
,_, ex pr %prec *

If associativity is not specified, yacc will report the number of shift/reduce conflicts. When
associativity is specified with %left, %right or %nonassoc, this is considered to reduce the number
of conflicts, and thus the number of conflicts reported will not include the count of these.

Parsers generated by yacc are designed to parse correct programs. If an input program contains
errors. the LALR(l) parser will detect the error as soon as is theoretically possible. The error is
identified, and the programmer can correct the error and recompile.

However. in most programming environments, it is unacceptable to stop compiling after the
detection of a single error. yacc parsers attempt to go on so that the programmer may find as many
errors as possible.

When an error is detected, the parser looks for a special token in the input grammar named error.
If none is found, the parser simply exits after issuing the message

Syntax error

If the special token error is present in the input grammar error recovery is modified. Upon

TUTORIALS

yacc, Yet Another Compiler-Compiler 241

detection of an error, the parser removes items from the stack until error is a legal input token and
processes any action associated with this rule. error is the lookahead token at this point.

Processing is resumed with the token causing the error as the lookahead token. However, the
parser attempts to resynchronize by reading and processing three more tokens before resuming
normal processing. If any of these three are in error, they are deleted and no error message is given.
Three tokens must be read without error before the parser leaves the error state.

A good place to put the error token is at a statement level. For example, the calc.y example in
chapter 2 defines a statement as

stmnt stat
stat '\n'
error '\n'

Thus, any error on a line will cause the rest of the line to be ignored.

There is still a chance for trouble, however. If the next line contains an error in the first two tokens,
they will be deleted with no error message and parsing will resume somewhere in the middle of the
line. To give a truly fresh start at the beginning of the line, the function yyerrok will cause the
parser to resume normal processing immediately. Thus, an improved grammar is

stmnt stat
stat '\n'
error '\n'

{yyerrok;}

will cause normal processing to begin with the start of the next line.

Error recovery is a complex issue. This section covers only what the parser can do in recovering
from syntax errors. Semantic error recovery, such as retracting emitted code, or correcting symbol
table entries, is even more complex, and is not discussed here.

yacc reserves a special token error to aid in resynchronizing the parse. After an error is detected,
the stack is readjusted, and processing cautiously resumes while three error-free tokens are
processed. yyerrok will cause normal processing to resume immediately. The token causing the
error is retained as the lookahead token unless YYCLEARIN is executed.

yacc is an efficient and easy-to-use program to help automate the input phase of programs that
benefit by strict checking of complex input. Such programs include compilers and interactive
command language processors.

yacc generates an LALR(l) parser, that implements the grammar specifying the structure of the
input. A simple lexical analyser routine can be hand-constructed to fit in among the rules, or you
can use the COHERENT command lex to generate a lexical analyzer that will fit with the parser.

As the structured input is analyzed and verified, you assign meaning to the input by writing
semantic actions as part of the gramatical rules describing the structure of the input.

yacc parsers are capable of handling certain ambiguities, such as that inherent in typical if then
else constructs. This simplifies the construction of many common grammars.

yacc provides a few simple tools to aid in error recovery. However, the area of error recovery is
complex and must be approached with caution.

TUTORIALS

242 yacc, Yet Another Compiler-Compiler

Helpful Hints
Until you have mastered yacc, the best way to build your program is to do it a piece at a time. For
example, if you are writing a Pascal compiler, you might start with the grammar

%token PROG BEG END OTHER
program PROG tokens BEG END','

tokens OTHER
tokens OTHER

and with a simple lexical analyzer of:

PROGRAM
BEGIN
END

return (PROG) ;
return (BEG);
return (END);
return (yytext [OJ);

With the generated program, you can easily test the grammar by feeding it simple programs. Then
add items to both the lexical analyzer and yacc grammar. With this approach, you can see the
parser working, and if it behaves differently than you expect, you can more easily pinpoint the
cause.

If you have difficulty understanding what actions your parser is taking. yacc will produce for you a
complete description of the generated parser. To use this, you should be familiar with the way
LALR(l) parsers work. To get this verbose output. specify the -v option on the command line. The
result will appear in the file y.output.

In addition, you can have the parser give you a token-by-token description of its actions while it
does them, by specifying the debug option -d. This also generates the file y .output. which is helpful
in reading the debug output. The debug code is generated when the -d option is used, but is not
activated unless the YYDEBUG identifier is defined. Include some code in the definitions section to
activate it:

%{
define YYDEBUG

%}

Your parser can turn on and off the debugging at execution time by setting the variable yydebug:
one for on. zero for off.

A frequent cause of grammar conflicts is the empty statement. You should use it with caution.
yacc generates empty statements when you specify actions in the middle of a rule rather than at the
end; for example:

def DEFINE {defstart();}
identifier {defid ($2);}

yacc generates an additional rule:

TUTORIALS

yacc, Yet Another Compiler-Compiler 243

$def

def

/* empty */
{defstart();}

DEFINE $def identifier {defid ($2);}

The resulting empty statement can cause parser conflicts if there are similar rules and the empty
statement is not sufficient to distinguish between them.

This tutorial closes with a larger example that incorporates most of the features of yacc discussed
here. You can type it as shown, and modify it to improve its operation.

This example, called nav, calculates the great circle path and bearing from one point on the globe to
another. Each pair of points is input on one line. The coordinates of the origin and destination are
preceeded, respectively. by the keywords FROM and TO, and can appear in either order. Longitude
and latitude are followed, respectively. by the letters E or W, and N and S. Lower-case may also be
used for these letters.

The numeric part of the coordinates may be entered in degrees, minutes. and optional seconds. or in
fractional degrees. You can use the symbols ", o, or d to specify degrees because the raised circle
customarily used for degrees is not available on most terminals. An apostrophe ' follows minutes.
and a quotation mark" follows seconds.

As an example of using nav. calculate the great circle distance and initial heading from
Charlestown, Indiana, to Charlestown, Australia:

from 38d27'n 85d40'w to 151d42'e 32d58's;

The result will be:

From lat 38.450 long 85.667 To lat -32.967 long -151.700
Distance 8030.623, Init course is 258.417

Here. the coordinates are echoed in decimal degrees. To exit the program. type <ctrl-D>.

To begin. type the following yacc specification file into the nav.y:

%{
#include "11.h"
#define YYTNAMES

%}

double fromlat, fromlon, tolat, tolon;
extern calcpath();

%union {
double dgs;
long dgsi;
struct 11 wh;
}

TUTORIALS

244 yacc, Yet Another Compiler-Compiler

%token NEWLINE FROM TO CIRCLE QUOTE DQUOTE SEP SEMI COMMA
%token NSYM SSYM WSYM ESYM
%token <dgs> FNUM
%token <dgsi> NUM
%type <dgs> degrees long lat deg
%type <wh> where from to
%%

prob single

single :

sing

from

TUTORIALS

prob single

sing {
calcpath();
}

error NEWLINE {
yyerrok; YYCLEARIN;
printf ("Enter line again.\n");
}

from SEP to SEMI NEWLINE {
fromlat = $1.lat;
fromlon = $1.lon;
to lat $3.lat;
tolon $3.lon;
}

to SEP from SEMI NEWLINE {
to lat = $1. lat;
tolon = $1. lon;
fromlat $3.lat;
fromlon = $3.lon;
}

to SEMI NEWLINE {
tolat $1.lat;
tolon = $1. lon;
}

FROM SEP where {
$$ = $3;
}

to

where I

lat

long

degrees

%%

yacc, Yet Another Compiler-Compiler 245

TO SEP where {
$$ = $3;
}

lat SEP long {
$$.lat
$$.lon =
}

long SEP lat {
$$.lon
$$.lat
}

degrees NSYM {
$$ = $1;
}

$1;
$3;

$1;
$3;

degrees SSYM {
$$ = - $1;
}

degrees WSYM {
$$ = $1;
}

degrees ESYM {
$$ = - $1;
}

FNUM /* e. g. 128.3 */ {
$$ = $1;
}

NUM CIRCLE NUM QUOTE /* deg min */ {
$$=$1 + $3/60.0;
}

NUM CIRCLE NUM QUOTE NUM DQUOTE
/* and seconds */ {
$$=$1 + $3/60.0 + $5/3600.0;
}

NUM CIRCLE NUM QUOTE FNUM DQUOTE {
$$=$1 + $3/60.0 + $5/3600.0;
}

TUTORIALS

246 yacc, Yet Another Compiler-Compiler

#include <stdio.h>
yyerror (s)

char *s;
{

}

struct yytname *p;
fprintf (stderr, "%s ", s);

for (P = yytnames; p -> tn_name != NULL; ++p)
if (p->tn_val == yychar) {

}

fprintf (stderr, "at %s", p->tn_name);
break;

fprintf (stderr, "\n");

Both the lexical analyzer and the parser need the following header file ll.h:

struct 11 {
double lat;
double lon;

} ;

To turn yacc file nav.y into a program. type

yacc -hdr nav.tab.h -d -v nav.y
mv y.tab.c nav.y.c

The grammar is straightforward. The types used in the actions require a union, because integer
degrees, floating-point degrees. and pairs of floating point degrees are used as action values. The
lexical analyzer recognizes integer and floating-point numbers. and passes the value through yylval.
The rule for degrees combines different degree representations to one double-precision number.

The N. S. E. and W symbols convert a location to a signed representation: Sand E result in negative
degrees, N and W as positive.

The rule for where converts the single-numbered latitude and longitude into a double number of
<Wh> type. Note that it can process the coordinates in either order.

The rule single handles the destination and origin in either order. It takes the pairs of coordinates
from from and to and stores them in the global variables that the calculation routine uses. The
error token will halt error recovery at the end of the line, so that in case of error the user can reenter
the correct line. If many great circles are being computed from the same origin. you need to enter
only the destination after the first time.

Once a set of coordinates has been recognized, the function calcpath calculates the great circle.

The error routine yyerror accepts an error message from the parser. and examines the table of
tokens to find the name of the token where the error is detected. If it is found. it is printed. To get
these token names in the program. the symbol YYTNAMES must be defined.

The following code gives the lexical analyzer. Type it into the file nav.l:

TUTORIALS

yacc, Yet Another Compiler-Compiler 247

%{
#include "11.h"
#include "nav.tab.h"
%}

int integer;
double real;

[nN]
[sS]
[eE]
[WW]
ol "A" Id
\"
\'
\n
from
FROM
to
TO

return
return
return
return
return
return
return
return
return
return
return
return

(NSYM);
(SSYM);
(ESYM);
(WSYM);
(CIRCLE);
(DQUOTE);
(QUOTE);
(NEWLINE);
(FROM);
(FROM);
(TO);
(TO);

[0-9]+ {
sscanf (yytext, "%d", &integer);
yylval.dgsi = (long) integer;
return (NUM);
}

[0-9]+"."([0-9]+)? {

\t]

sscanf (yytext, "%f", &real);
yylval.dgs = (double) real;
return (FNUM);
}
return (COMMA);
return (SEMI);
return (SEP);
{
printf ("Illegal character [%s]\n", yytext);
return (yytext [OJ);
}

The lexical analyzer partitions the input into the tokens expected by the parser. For the symbols in
the grammar, it returns the token type. It also recognizes integer and floating-point numbers. and
converts them to integers.

Note that the 11.h file is required even though there is no explicit reference to its contents. This is
needed because the %union in nav.y generates the header file nav.tab.h, referring to the 11
structure.

Turn lex file nav.l into program by typing:

TUTORIALS

248 yacc, Yet Another Compiler-Compiler

lex nav.l
mv lex.yy.c nav.l.c

Finally, you should type the following code into file navcalc.c. It is C code that calculates the great
circle route:

#include <stdio.h>
#include <math.h>
/*

* Given latitude and longitude of start and finish,
* calculate the great circle path.
*/

extern double fromlon, fromlat, tolon, tolat;

calcpath ()
{

}

double rad = PI I 180.0;
double initcourse, arg, dist, d60;
double rfromlat, rfromlon, rtolat, rtolon;

printf ("From lat %.3f long %,3f ",
fromlat, fromlon);

printf ("To lat %.3f long %.3f\n",
tolat, tolon);

rfromlat
rfromlon
rtolat

fromlat * rad;
fromlon * rad;

tolat * rad;
rtolon = tolon * rad;

d60 = acos (

) ;

sin (rfromlat) * sin (rtolat) +
cos (rfromlat) * cos (rtolat) *

cos (rfromlon - rtolon)

dist 60 * d60 I rad;

arg (sin (rtolat) - cos (d60) *sin (rfromlat))
I
(sin (d60) *cos (rfromlat));

initcourse = acos (arg) I rad;
if (sin (rfromlon - rtolon) < O)

initcourse = 360 - initcourse;

printf ("Distance %.3f, Init course is %.3f\n\n",
dist, initcourse);

And now compile all three programs together.

TUTORIALS

yacc, Yet Another Compiler-Compiler 249

cc nav.y.c nav.l.c navcalc.c -ly -lm -11 -f -o nav

The standard formula is used to calculate great circle path and bearing. Note that there are several
limitations that are not checked for here: For example, diametrically opposite points on the globe
have no unique great circle path between them. In addition, neither of the points should be at
either of the poles. These checks can be added if you wish to use nav program as a general rather
than a tutorial tool.

The Lexicon article for yacc summarizes its command syntax and features. The tutorial for lex. the
COHERENT lexical analyzer, describes how to combine lex with yacc to build applications simply.

TUTORIALS

250 yacc, Yet Another Compiler-Compiler

TUTORIALS

be Desk Calculator language

This tutorial introduces be, the calculator language for COHERENT. If you have not used be before,
this tutorial will introduce you to its features and functions. If you are familiar with be, you can use
it as a reference.

be is a language that can calculate to high precision. It automatically adjusts the number of digits
in a number to represent it correctly. It is like having a powerful calculator at your fingertips.

Entry and Exit
The be calculator for COHERENT is easy to use. Whenever you wish to invoke be, all you do is type
its name (be), followed by a stroke of the carriage return key. When you are finished using the
calculator and wish to exit, just type the word 'quit' or <etrl-D>. be exits and returns control to
COHERENT.

Example of Simple Use
be performs calculations on formulas that you type into it. The formulas are laid out as you would
naturally write them. For example, to invoke be, have it add 2+2, and then exit, type:

be
2 + 2

be replies:

4

Then, leave be by typing:

quit

be is an arbitrary precision calculator: the number of digits carried by be depends upon the
requirements of the calculation, and is automatically expanded by be. Thus, be will never overflow.
The number of digits it carries is limited only by the amount of available computer memory. For
example, try this calculation:

2A500

The carat •A• character signifies a superscript; thus, we are asking be to raise 2 to the 500th power.
After a moment, be will reply:

327339060789614187001318969682759915221664\
204604306478948329136809613379640467455488\
327009232590415715088668412756007100921725\
6545885393053328527589376

You have probably already noticed one nice thing about this calculator: you don't have to include a
print statement as part of your command, because be automatically prints the results onto your
terminal screen. When be sees any expression, like "2+2" or "3777", it prints the result.

be provides the common arithmetic operators for add, subtract, multiply, and divide, as illustrated
by the following commands:

251

252 be Desk Calculator

7 + 5
7 - 5
7 * 5
7 I 5

be also provides the remainder operator'%'. To get a sense of how it works, type:

7 % 5
5 % 7

Here, be prints the remainder of the first number divided by the second; in the case of the first
example, be prints 2. and in the second prints 5. As you saw above, be also includes the
exponentiation operator'"'.

With be, you can also enter numbers with fractional parts. Type the following to illustrate:

9.999 * 9.999

be replies:

99.980

You can save temporary calculations or repeated constants in variables. The following example
shows you first how to define variables, and second how to use them:

a = 1.1
b = 2.2
a
b

a * b

Variable names can be longer than one letter.

The basic calculations in the above examples show only part of what be can do. The following
section describes simple statements - the assignment of variables and abbreviations - that allow
you to perform complex calculations easily.

Although you can use be as a simple calculator for manipulating numbers, you can take advantage
of its greater power by using variables. Variables, as noted above, store parts of calculations or
constants that you will use repeatedly in calculations. Variable names are simply "words" that you
make up. Here are some examples of possible variable names:

a
b
totaltaxesdue
ratio

To use variables, simply give them a value, use them in a calculation in place of a number, or print
them out.

To see how a variable can save you repetitive typing, and protect you from possible errors. invoke be
and type the following:

TUTORIALS

x = 9.999
x
x * x
x = x * x
x

The following gives the example with be's replies In Italics:

x = 9.999
x
9.999
x * x
99.980
x = x * x
x
99.980

be Desk Calculator 253

be did not reply to the assignment statements x=9.999 and x=x*x. However. it did print the value
of x when requested, and the results of arithmetic using x.

Calculations executed with hand-held calculators, with programming languages like C. or with be
often use the following formula:

x = x + 1

To decrease the likelihood of error. be offers you a shorthand expression for this common phrase:

x += 1

What it means is. "add one to x". Type the following example into be to see how this expression
works:

x = 1

x * x
x += 1

x * x
x += 1

Likewise. be provides an abbreviation for:

x = x - 2

The form should now be familiar:

x -= 2

The number to the right of the -= or += operator can be replaced with a variable or even another
calculation. When you type:

i = 4
x = 48
x -= i
x

be in each case replies:

44

TUTORIALS

254 be Desk Calculator

Alternatively, if you type:

i = 4

x = 48

x -= i * i
x

then be replies:

32

Similar abbreviations are provided for multiplication, division, remainder, and exponentiation. Here
is a summary of this class of operation.

a += 2 /* replace a with a plus 2
b += a /* replace b with b plus a
b -= a I* replace b with b minus a
c *= b I* replace c with c multiplied by b
c I= a I* replace c with c divided by a
c %= b /* replace c with remainder of c divided by b
d A= 3 /* replace d with d raised to the 3rd power

be also has an operator that increases a variable by one: ·++'. When you type:

a = 1
++a

then be replies:

2

*I
*I
*/
*/
*/
*I
*I

To use this operator in an expression, combine it with a variable anywhere that a variable would
normally be used. For example, entering

b 1
a = 3
b ++a
a
b

yields:

4
4

The'++' operator can also be put after a name. The resulting value in the expression is the value of
the name before it is incremented. However, after the expression is evaluated, the name will have
an incremented value. The following example shows the use of·++' both before and after a name:

a = 1
b = 1
a++
++b
a
b

be replies:

TUTORIALS

be Desk Calculator 255

1
2
2
2

Operators are used in this manner:

a = 1
b 2
c = a++ + ++b

Similar to'++' is·--'. It behaves the same way. except that rather than adding one, it subtracts one.

Most of the examples presented earlier use whole numbers (integers). However. be can use numbers
with fractional parts. This section discusses the use of fractional numbers in be and their precision
under different operations.

The Scale of Numbers
The number of digits to the left of the decimal point carried by be depends upon the requirements of
the calculation. If you calculate a large number, as in:

2A500

the result will contain as many digits as needed to express the product.

The number of digits to the right of a decimal point is called the scale of the number. Scale depends
upon the operation that produces the number of digits, and a variable called scale that will be
described shortly.

To illustrate simple uses of numbers with fractions. invoke be and then type:

a = .01
b = o. 99
a+b

be replies:

1. 00

Addition and Subtraction
be will dynamically adjust the number of digits in the calculation. It deals similarly with fractional
numbers. To the following example

a = 0.01
b 0.001
a + b

be reply:

• 011

In addition and subtraction, the scale of the result is the larger of the scales of the two numbers
involved. Results are not truncated in addition or subtraction operations.

TUTORIALS

256 be Desk Calculator

Scale During Multiplication
Other arithmetic operations act differently with numbers that contain fractions. In the
multiplication of two numbers. the scale of the product will at least equal the larger of the scales of
the two numbers. For example. the input:

1.1 * 1.11

results in:

1.22

Setting the Scale of Results
To increase the number of fractional digits for higher accuracy. be provides the built-in variable
scale. The following example illustrates the scale variable:

scale = 3
1.1 * 1.11

The result from this example is:

1.221

Note, however, the scale of the product of a multiplication procedure never exceeds the sum of the
scales of the two numbers being multiplied. For example,

scale = 10
1.1 * 1.11

yields the result:

1.221

If the variable scale is less than the sum of the scales of the numbers being multiplied, then the
product will have a scale equal to that of the variable scale. For example,

scale = 4
1.11 * 2.222

yields:

2.4664

The scales of the operands are 2 and 3. The larger scale is 3. so the result of a multiplication will
have a scale of at least 3. no matter what scale is set to. Also. the sum of the scales is 5, so the
result will never have more than 5 digits to the right of the decimal point. In this example, scale
has been set to a number between 3 and 5. namely 4. Therefore, the result has a scale of 4.

Scale for Divisions
For division and remainder, the scale of the result is determined only by the value of the variable
scale. For example,

scale = 13
14 I 13
14 % 13

TUTORIALS

yields:

1.0769230769230
.0000000000010

be Desk Calculator 257

For non-whole numbers, as well as for integers, the definition of remainder is chosen so that the
relationship

dividend = (divisor * quotient) + remainder

is true.

Scale From Exponentiation
be sets the scale of a result of exponentiation as if repeated multiplications had been performed.
Thus, for

5.992 A 5

the scale is chosen as if you typed:

n = 5.992

n * n * n * n * n

That is, the default is the scale of the largest (or. in this case, the only) number being multiplied;
and scale cannot exceed the sum of the scales of the numbers being multiplied. Thus, the scale of
the product in this example has a default setting of 3, and can be reset up to 15.

What Is the Current Scale?
The variable scale is just like other variables: you can assign values to it, as above. Because it is
like regular variables, you can also use it in operations. as in this example:

scale += 1

You can also print its value:

scale

The value of the scale variable is zero until you explicitly change it.

The statements shown so far have been either assignment statements, giving a new value to a
variable; or an expression, which prints the resulting value. Several other kinds of statements are
available. These give you power to write programs that make decisions and perform iterative
computations.

Using the if Statement
To see the if statement in action, type the following example into be:

x = 3
if (x < 5) x
if (x > 5) -x

The reply is:

TUTORIALS

258 be Desk Calculator

3

If the input is:

x = 6
if (x < 5) x
if (x > 5) -x
<return>

be replies:

-6

The part of the if statement in parentheses, such as (x > 5), determines whether be executes the
statement that follows it. such as -x. If the expression is false, the following statement is not
executed. If the expression is true, the following statement is executed.

Comparisons
The decision expression in an if statement is enclosed in parentheses. The decision can be based
upon a comparison of two operands, or numbers. The kinds of comparisons that can be done are:

!=
<=
<
>=
>

First operand equal to second
First operand not equal to second
First operand less than or equal to second
First operand less than second
First operand greater than or equal to second
First operand greater than second

The if statement can include the sorts of the simple statements already shown. You can also
include an if statement. as well as the while, do, and for statements, which will be discussed
below. The following example illustrates the use of an if statement within an if statement:

a = 2
b = 6
if (a >= 2) if (b > a) a + b
<return>

be replies, simply:

8

Because both of the if conditions were true, be proceeded to add a and b.

Grouped Statements
You can place more than one statement after the expression part of the if statement by using
grouping braces '{' and '}'. This can be useful if you want to perform several calculations based on
the result of an if statement comparison. The following example prints the value of a and b if the
value of b is less than the value of a:

TUTORIALS

a "' 1
b "' .99
if (a > b) {

a

}

be replies:

1
.99

b

be Desk Calculator 259

Any statement may be enclosed within the group braces, as the following example shows:

a "' 1
b "' .99
if (a > b) {

a
b
if ((a+ b) >=- 2) a+ b

}

Many Statements Per Line
To this point. all of our examples typed each statement on its own line. This includes the group
braces '{'and '}', the latter of which must appear on a line by itself. You can, however, place several
statements on one line if you separate them with semicolons. If you do this, remember that the
semicolon rather than the carriage return separates the statements. For example, if you type:

a "' l;b "' 2;c "' 3
a;b;c

be replies:

1
2
3

You can use this in combination with the group braces:

a "' l;b "' 2;c "' 3
if ((a+ b) >=- c) {

a; b; c; a + b; }

The reply from be is:

1
2
3
3

This example can be compressed even further by putting all of the if statement on one line:

a "' l;b "' 2;c "' 3
if ((a + b) >=- c) { a; b; c; a + b; }

TUTORIALS

260 be Desk Calculator

You do not need to follow the '}' with a semicolon.

The while statement repeats calculations. This is useful in successive approximation calculations.
The following example of the while loop prints the numbers one through ten:

i = 1
while (i <= 10) {

i
i = i + 1

}

be replies:

1
2
3
4
5
6
7
8
9

10

The statement

i = i + 1

adds I to the variable i. The expression

(i <= 10)

compares i with 10. While i is less than or equal to IO. the while loop executes. When i is
increased to greater than 10, the loop stops executing.

be checks the comparison expression for the while loop before the loop is entered for the first time.
If the comparison fails, the loop is not executed at all; otherwise the processing repeats as long as
the comparison is true. For example, the following statements do not print anything:

i = 0
while (i > 1) i
quit

Abbreviations in the while Statement
If we recall the assignment statements from the previous section, we can shorten the while
counting-to-ten example to:

i = 1
while (i <= 10) {

i
i += 1

}

TUTORIALS

be Desk Calculator 261

The result remains the same - a list of numbers from one to ten.

Another abbreviation of the example uses the '++· operator. The variable i is incremented. then
tested in the while expression. which simplifies the entire example to:

i = 0
while (++i <= 10) i

Before the while is executed. i is set to zero. Then. the while expression increments the value of i
before it is used or compared, Thus. the first value compared. then printed. is one.

Finally. the example calculation can be shortened to one line. If a variable in be is used before it is
initialized. it will have the value of zero. For example:

zip

prints:

0

Using this in our counting-to-ten example yields:

while (++i <= 10) i

for is a statement that controls the execution of other be statements. You should use for to write a
formula to control the number of times a value is computed.

The previous section demonstrated how to print the numbers one to ten using a while statement.
The following does the same task with a for statement:

for (i=l; i <= 10; ++i) i

Three Parts of the for Statement
The for statement is more complex than the while statement; its controlling expressions have three
parts.

The first part, shown here in italics

for (l=l; i <= 10; ++i) i

sets up the initial condition. The second part

for (i=l; I<= 10; ++i) i

tests whether more iterations should be performed. be performs this test before it executes the
statements that are subordinate to the for statement. If the test fails, no more iterations are
performed.

The third part

for (i=l; i <= 10; ++I) i

is performed at the end of each iteration. In practically every instance. this part of the for statement
modifies the value of the variable that the second part tests.

TUTORIALS

262 be Desk Calculator

Taken together. these statements (1) set i to zero; (2) check whether i is less than or equal to ten; (3)
if i proves to be so, prints i. and then increases it by one.

The following example of the for statement adds the squares of the numbers one through ten. prints
each square, and then prints the sum of the squares at the end.

sum = 0
for (n=l; n <= 10; ++n) {

sq = n * n

}
sum

The result is:

1
4
9
16
25
36
49
64
81
100
385

sq
sum += sq

Similarities Between the for and while Statements
To illustrate the similarity between the for statement and the simpler while statement. the following
rewrites the above example, substituting the while for the for:

sum = 0
n = 1
while (n <= 10) {

sq = n * n
sq
sum += sq
++n

}
sum

You should notice one difference when you enter this example. In the while version of the example,
the

++n

prints out the new value ofn, whereas in the for example, the value is not printed.

TUTORIALS

be Desk Calculator 263

be allows you to name routines that you use repeatedly. You can then call them by name without
having to retype them; obviously, this can be a great time-saver. These named routines are called
functions. This section shows you how to define and use functions for your be calculations.

Example of Function Use
The following example defines a function that calculates the area of a circle from its radius.

scale = 5
pi = 3.14159
define area (radius) {

}

r2 = radius * radius
return (pi * r2);

area (1.00);
area (2.00);
area (56);

The results will be:

3.14159
12.56636
9852.02624

The define keyword tells be that you are defining a function. The name of the function follows.
Then, in parentheses, come the parameters of the function. In this example, the only parameter, or
argument, of the function is radius. Most functions have arguments, but they are not mandatory.

The return statement defines the value of the function. In the area example, the expression:

area (1. 00)

references the function area. be then performs the calculation described by your definition of the
function area. The number

1. 00

is substituted wherever the parameter radius is shown.

The statement

r2 = radius * radius

is then executed, yielding this result:

1.00

Then, the statement

return (pi * r2)

calculates the area and returns its value. The statement

area (1.00)

then has the value calculated in the return statement.

TUTORIALS

264 be Desk Calculator

Functions Using Other Functions
Functions in be perform calculations using the same expressions as the rest of the be program.
This includes the use of functions. The area program can be written using another function. sq. to
calculate the square of a number:

scale = 5
pi = 3.14159
define sq (number) {

return (number * number)
}

define area (radius) {
return (sq (radius) * pi)
}

area (1. 0 0) ;
area (2.00);
area (56);

Again, the results will be identical:

3 .14159
12.56636
9852.02624

Functions That Call Themselves
Not only can functions call other functions and perform regular calculations; a function can use
itself in calculations. An example of this is the Fibonacci calculation:

define fib (f) {

}

if (f==O) return (0)
if (f==l) return (1)
if (f > 1) return (fib (f-1) +fib (f-2))

fib (5)
fib (20)

Fibonacci numbers are defined in the following way: Fibonacci number zero is zero; similarly,
Fibonacci number one is one. Any other Fibonacci number is defined as the sum of the two
previous Fibonacci numbers. Fibonacci numbers are defined only for non-negative integers.

The defined function fib follows this definition by returning zero if the number requested is zero
and one if the argument is one. If the number is neither of these, then the function calls itself to
calculate the previous two numbers of the series and adds them together.

The auto Statement
Many functions that call other functions. including themselves, may require variables that are not
changeable by the rest of the program. This is signalled to be by the auto statement:

auto varl, var2

This declares varl and var2 as local to the function that contains them.

TUTORIALS

be Desk Calculator 265

To illustrate the use of auto, the following be program calculates the factorial of a number:

define factorial (number) {
auto value, i

}

value = 1
for (i = 1; i <= number; ++i) value *= i
return (value)

value = 3
factorial (value)
i = 99
factorial (20)
value
i

The result is:

6
2432902008176640000
3
99

The first number, 6, results from:

factorial (value)

The second number is from:

factorial (20)

The last two numbers are from value and i, and are included to demonstrate that the variables in
the function factorial appearing in this statement:

auto value, i

are separate from the variables of the same name in the rest of the program.

If the function calls itself, as the fib example does above, any variable names noted in the auto
statement are handled separately for each call of the function.

Because its programs can be quite complex, be lets you keep them in files. This lets you build a
library ofbc programs and functions that can be called up easily.

Using a Program From a File
To illustrate the use of programs stored in a file. type the following example into file fib.be using the
editor of your choice. The program defines the function fib:

define fib (f) {

}

if (f==O) return (0)
if (f==l) return (1)
if (f > 1) return (fib (f-1) +fib (f-2))

To use a be program that has been stored in a file. enter the file name on the be command line, like

TUTORIALS

266 be Desk Calculator

this:

be fib.be

The function definition will be read in by be and ready for your use. To use the function, simply
type the function name with parameters.

So, if you type:

be fib.be
fib (6)
quit

be will reply:

8

Using Libraries
You can enter several useful programs in their own files and call them into be at the same time.
The following example creates another function that calculates the sum of the squares of integers up
to a given number. Enter it into COHERENT, and name it sumsq.bc:

define sumsq (number) {
auto i, sum

}

sum = 0
for (i = number; i > O; --i) sum += i h 2
return (sum)

Now, you can use the sumsq function to print the sum of the squares for each number from one to
ten:

be sumsq.be
for (i = 1; i <= 10; ++i) sumsq (i)
quit

The result is:

1
5
14
30
55
91
140
204
285
385
quit

You can use the two functions stored in a file to print the difference between the sum of the squares
of numbers. and the Fibonacci number:

TUTORIALS

be fib.be sumsq.bc
for (i = 1; i <= 10; ++i) sumsq (i) - fib (i)
quit

The result of this questionable computation is:

0
4
12
27
so
83
127
183
251
330

The be Library

be Desk Calculator 267

COHERENT provides an extended library to go with be. It includes the following functions:

atan(z) arctangent of z
cos(z) cosine of z
exp(z) exponential function of z
j(n,z) nth order Bessel function of z
ln(z) natural logarithm of z
pi the value of pi to I 00 digits
sin(z) sine of z

The library is stored in file /usr/lib/lib.b. To use the library, invoke the be command with the -1
option.

To show how the library can be used in your work the following example computes the sine of an
angle of one-third radian with scale set to 20:

be -1
scale = 20
sin (1/3)
quit

The result is:

.32719469679615224418

The Lexicon entry for be summarizes its commands, features, and libraries. It will also refer you to
related commands and functions.

TUTORIALS

268 be Desk Calculator

TUTORIALS

Introduction to the m4 aero Processor

m4 is a macro processor for the COHERENT system. It is a powerful and flexible text processing
tool. You can tell it, with a great degree of generality. to search for macro names and replace them
with other strings. Macros can also take arguments.

m4 is useful as a front end for the COHERENT assembler as, which has no built-in macro facility.
It is also useful for higher-level languages like C, as well as for other applications that require
replacement of text.

m4 also has powerful facilities for manipulating files, making decisions conditionally, selecting
substrings. and performing arithmetic, so it is useful for processing forms.

The command

m4 [file ... I

invokes m4. m4 reads eachfile in the order given on the command line; if no file is given, m4 reads
from the standard input. Thefile '-'also indicates the standard input; this allows you to perform
interactive input while m4 is processing files. m4 reports any file that it cannot open, and
eliminates it from the input stream.

m4 writes its output to the standard output stream. As with other COHERENT commands, the
optional output redirection specification >ouiflle on the command line redirects the output into
ouiflle.

Definitions and Syntax
m4 reads text one line at a time from its input stream. When it reads a line of text, it scans the line
for a macro that you have defined. A legal macro name is a string of alphanumeric characters
(letters, digits, underscore'_'), the first of which is not a digit. m4 recognizes the macro name only if
it is surrounded by nonalphanumeric characters (i.e., spaces or newline characters) on both sides.

When m4 finds a macro, it removes it from the input stream and replaces it with its definition. It
then writes the resulting modified text (called replacement text), onto the input stream. m4 then
reads another line from the input stream, and continues processing.

Text that is contained within single quotation marks is quoted (i.e., is contained between a grave
mark ' on the left and an apostrophe ' on the right). All other text is unquoted. m4 searches only
unquoted text for macros.

A macro call can be either a macro or a macro immediately followed by a set of arguments:

rnacroname(argl, ••• , argn)

A set of arguments must start with a left parenthesis that follows the macro immediately (i.e., no
space can come between the macro and the left parenthesis). The entire argument set must be
enclosed by balanced, unquoted parentheses: parentheses may appear within the text of an
argument, but they must always come in balanced pairs. A single left or right parenthesis may be
passed by quoting it, e.g.'(' or')'.

Arguments are separated commas that are both not inside single quotes or inside an inner set of
unquoted parentheses. m4 strips from each argument all leading unquoted spaces, tabs, and
newlines. It processes the text of each argument in the same manner that it processes ordinary
text; that is, it removes, evaluates, and replaces any recognized macro calls before it stores the

269

270 m4 Macro Processor

argument text for possible use within the replacement text. If you wish to pass a macro name or an
entire macro call as an argument, it must be quoted. m4 stores the values of the first nine
arguments for possible use in the replacement text. It processes arguments after the ninth. but
throws away the results.

m4 does not search quoted text for macros. Instead, it removes the quotation marks and copies the
text to the standard output unchanged. Quotes can be nested; that is, quoted text can contain
other blocks of quoted text. m4 removes only the outermost level of quotation marks each time it
reads a piece of quoted text. This aids in delaying macro expansion in text until the second (or later)
time the text is read by m4.

m4 includes numerous predefined macros, which perform various functions. The remainder of this
document describes the predefined macros in detail. The final section is a summary, which
contains an alphabetized list and brief description of each predefined macro.

Defining Macros
The macro

define('name', 'definition')

defines a macro name and its replacement text definition. m4 replaces every subsequent unquoted
occurrence of name with definition, as described above. For example. the m4 input

define('her', 'COHERENT')
To know, know, know her
Is to love, love, love her

produces the output

To know, know, know COHERENT
Is to love, love, love COHERENT •••

name should usually be quoted. If it is not quoted and it is being redefined, m4 sees its old
definition as the first argument to define, which will not have the intended effect. Similarly,
definition should be quoted if the macro names that occur in it should not be replaced.

Any legal macro name may be the first argument of a define. If you redefine a predefined macro. its
original function is lost and cannot be recovered.

As noted above, m4 recognizes a macro name only if it is surrounded by non-alphanumeric
characters. For example,

define('her', 'COHERENT')
Coherent software is reliable software.

produces the output

Coherent software is reliable software.

m4 does not recognize the characters her in the word Coherent as a macro name.

The value of the define macro is the null or empty string (the string which contains no characters).
In other words, m4 puts nothing (the null string) back on its input stream when it processes a
define call.

Like predefined macros, user-defined macros may take arguments. m4 replaces the string $n in the
macro definition with the value of the nth argument, where n is a digit (l to 9). It replaces $0 with
the macro name. If the argument set contains fewer than n arguments, m4 replaces $n with the
null string. m4 uses functional notation to specify argument sets. Unlike a normal function.

TUTORIALS

m4 Macro Processor 271

however, an m4 macro does not require a fixed number of arguments. The same macro may be
called with or without an argument set, or with argument sets containing different numbers of
arguments.

The following macro concatenates its arguments:

define('cat', $1$2$3$4$5$6$7$8$9)

Then

cat(one, 'two', ''three'', 'four, four'
five(also,),,seven)

becomes

onetwo'three'four, four five(also,)seven

A more complex definition is:

define('comma', ''$0 (which looks like',')'')

This turns each subsequent unquoted occurrence of

comma

into

comma (which looks like-,')

Two sets of quotation marks around the replacement text are necessary. When m4 reads this call to
macro define, the resultant argument text is:

comma

for the name and

'$0 (which looks like-,')'

for the deflnttton. When m4 sees the text

comma that is not quoted

it evaluates and replaces the now-defined macro name comma to produce the text

'comma (which looks like-,')' that is not quoted

on the Input stream. Because comma appears inside a set of quotation marks, m4 does not treat it
as a macro name. For the same reason, the string',' also passes through unmodified. The final
output is:

comma (which looks like-,') that is not quoted

When the predefined macro dumpdef is used without arguments. it returns the names and
definitions of all defined macros. For each macro, it returns its quoted name, a tab character, and
then its quoted definition; no definition is given for a predefined macro. When used with arguments.

dumpdef(name)

returns the quoted definition of each macro name that is appears as an argument.

The predefined macro

undefine('name')

TUTORIALS

272 m4 Macro Processor

removes a macro definition. As noted for define above, the argument must be quoted to have the
desired effect. undefine ignores arguments which are not defined macro names. The value of the
undefine call is the null string. If a predefined macro is undefined, its original function cannot be
recovered.

Input Control
The predefined macro changequote changes the quote characters. For example:

changequote({, })

makes the quote characters the left and right braces. It also removes the effect of the previously
defined quotation characters. Missing arguments default to ' for open quotation and · for close
quotation. Thus, changequote without arguments restores the original quote characters ' and '. If
the arguments are identical. the nesting ability of quotation marks is temporarily lost. Instead, the
first instance of the new quote character turns on quoting and the next instance turns off quoting.
The value of the changequote call is the null string.

The predefined macro dnl (delete to newline) "eats" all characters from the input stream up to and
including the next newline and returns the null string. It is particularly useful in a string of define
macro calls. Although m4 replaces each define by the null string, newlines often separate macro
definitions. and m4 copies the newlines to the output stream unchanged. Two ways of using dnl
are:

define(this, that)dnl
define(something, else)dnl

dnl(define(this, that), define(something, else))

The first examples use dnl without arguments. The final example uses dnl with an argument set.
which m4 processes (performing each define) and subsequently ignores. The following section
describes an alternative (and generally preferable) method of eliminating extraneous newlines in a
sequence of define calls.

m4 includes two decision-making macros. The predefined macros with the form above, this call of
ifdef compares arg 1 and arg2, and returns arg3 if they are equal. Otherwise. it compares arg4 and
arg5. It returns arg6 if they are equal, arg7 otherwise. If more than seven arguments are present
and arg4 and arg5 are not equal. ifelse compares arg7 and arg8. It returns arg9 if they are equal
and the null string otherwise.

In addition to each.file specified in the command line, any other accessible file may be included in
the input stream with the predefined macro

include(file)

m4 replaces this macro call on the input stream with the entire contents of the specified.file. Ifjlle
cannot be accessed, include causes a fatal error; m4 prints an error message and exits. The
alternative predefined macro

sinclude(file)

functions exactly like include, except that it does not print an error message and stop processing if
file is inaccessible.

TUTORIALS

m4 Macro Processor 273

Output Control
m4 maintains ten output streams, numbered zero through nine. Stream O is the standard output,
where m4 normally directs its output. Streams 1 through 9 are temporary files. The predefined
macro

divert(n)

diverts output away from stream 0, appending it instead to stream n. Any n outside the range 0 to 9
causes output to be thrown away until the next divert call. divert without any arguments or with a
nonnumeric argument is equivalent to divert(O). The value of a divert call is the null string.

The preceding section described the use of dnl to eliminate extraneous newlines on the output
stream when processing a sequence of define calls. A more readable method of eliminating the
newlines is to precede the definitions with divert(-!) and follow them with divert. m4 then diverts
the extraneous newlines to the nonexistent stream -1.

The predefined macro

undivert(streams)

fetches text diverted to one or more temporary streams. It appends the text from the specified
streams in the given order to the current output stream. m4 does not allow diverted text to be
undiverted back to the same stream. undivert with no arguments undiverts all diversions in
numerical order. The value of undivert is the null string; undiverted text is not scanned for macro
calls, but is simply moved from one place to another. m4 automatically undiverts all diversions in
numerical order to the standard output (stream 0) at the end of processing.

The predefined macro divnum returns the current diversion number.

The predefined macro

errprint(message)

sends the given message to the standard error stream. The value of errprint is the null string.

String Manipulation
The predefined macro

substr(string, start, count)

returns a substring of a string of characters. The first argument string can be anything. The second
argument start is a number giving the starting position of the desired substring in string. Position 0
is the leftmost character of string, position l is the next character to the right, and so on. If start is
negative, the orientation switches to the right. Position -1 is the rightmost character of string.
position -2 is the character to its left, and so on. The third argument count specifies the length and
direction of the substring. Zero returns the null string. A positive count returns a substring
consisting of the character addressed by start and count- I characters to the right of it. A negative
number does the same thing. but to the left. If count is omitted, it is assumed to be of the same sign
as start and large enough to extend to the end of string in that direction. If start is omitted, it is
assumed to be 0 if count is positive or omitted, or -1 if count is negative. For example:

returns

define('alpha', 'abcdefghijklmnopqrstuvwxyz')
substr(alpha, ,)

TUTORIALS

274 m4 Macro Processor

abcdefghijklmnopqrstuvwxyz

Here both start and count are omitted and are therefore assumed to be 0 and 26, respectively.

substr(alpha, O, 6)
substr(alpha, , 6)

both return

abcdef

Similarly.

substr(alpha, , -6)
substr(alpha, 21,)

both return

Finally.

uvwxyz

substr(alpha, -6,)
substr(alpha, O, 21)

both return

abcdefghijklmnopqrstu

The predefined macro

translit(string, characters, replacements)

transliterates single characters within a string. It returns string with every occurrence of a
character specified in characters replaced with the corresponding character from replacements. If
there is no corresponding character, translit simply deletes the character. For example:

translit(alpha, aeiouy, *+-=/)

returns

*bcd+fgh-jklmn=pqrst/vwxz

Numeric Manipulation
m4 can simulate variables typical of most programming languages by using define as the
assignment operator. Whenever the defined macro name appears unquoted, m4 immediately
replaces it by its numeric value.

The predefined macros Iner and deer return their argument incremented or decremented by 1.
Thus,

returns

define('x', 1234)
incr(x)

1235

Iner and deer assume an argument which is omitted or not a valid number to be 0.

TUTORIALS

More generally. the predefined macro

eval(expresslon)

m4 Macro Processor 275

evaluates an integer-value arithmetic expression and returns the resulting value. The operators
available, in order of decreasing precedence, are:

()

+ -
" ..
•I%
+ -
> < >= <= == !=
!
&&&

11 I

Parentheses for grouping
Unary plus, negation
Exponentiation
Multiplication, division, modulus
Addition, subtraction
Comparisons
Logical negation
Logical and
Logical or

The comparisons and logical operators return either 0 (false) or 1 (true). eval performs all
arithmetic in long integers. eval reports an error if its argument is not a well-formed expression.

The predefined macro

len(strlng)

returns a numeric value corresponding to the length of string.

The predefined macro

index(string, pattern)

returns a numeric value corresponding to the first position where pattern appears in string. If it does
not appear, index returns -1. Both pattern and string may be arbitrary strings of any length.

The following example defines a macro repeat that repeats its first argument the number of times
specified by its second argument.

define('repeat',
'ifelse(eval($2<=0), 1,, 'repeat($1,decr($2)) '$1) ')

The definition is recursive; that is, repeat calls itself within its own definition. The entire definition
is quoted to defer the evaluation of ifelse from when m4 encounters the definition to when it
encounters a repeat macro call. Similarly, the recursive repeat call is quoted to defer its evaluation
within the ifelse. eval checks if the first argument is less than or equal to O; if so, it returns 1 (true)
and ifelse returns the null string. Otherwise, deer decrements the count, so each successive
recursive call has a smaller second argument, and each call appends a copy of the first argument to
the previous result. For example:

repeat('Ho! ',3)

produces

Ho! Ho! Ho!

TUTORIALS

276 m4 Macro Processor

The predefined macro

maketemp(string)

creates a unique file name for a temporary file. string is a six-character string that is normally
initialized to XXXXXX: mktemp replaces all of the Xs with a pattern of six numerals that form a
unique file name in the directory where temporary files are being written. It is the same as the C
library routine mktemp. It returns the null string if its argument is less than six characters long.

The predefined macro

syscmd(command)

performs the given COHERENT command and returns the null string. It is the same as the C library
routine system.

A common use of syscmd is to create a file which m4 subsequently reads with an include. For
example, to get the output from the COHERENT date command:

define('tempfile', maketemp(/tmp/m4XXXXXX))
define('get_date',

'syscmd(date >tempfile)''include(tempfile)')

In subsequent input, m4 replaces each occurrence of get_date with the system date information.
The definition of tempflle is unquoted, so m4 executes the maketemp call only once (when it
processes the define), and it creates only one temporary file. On the other hand, the definition of
getdate is quoted, so m4 executes syscmd and include to get the current time and date each time
it processes a getdate call. The temporary file should be removed with

syscmd(rm tempfile)

at the end of the m4 program.

The following example is more complex. It defines a macro save which appends a macro definition
to a file.

define('save','syscmd('cat>>$2 <<\#
define('$1','dumpdef('$1')')

') I)

The arguments to define are the name

save

and the definition

syscmd('cat >>$2 <<\#
define('$1','dumpdef('$1')')

I)

A typical call of this macro is:

save('sample','defs.m4')

which saves the macro definition of sample in a COHERENT file defS.m4 containing macro

TUTORIALS

m4 Macro Processor 277

definitions. When m4 processes this call, the argument of syscmd becomes

cat >>defs.m4 <<\#
define('sample',

followed by the definition of sample returned by dumpdef. followed by

)

Then syscmd executes the COHERENT cat command to append the here document delimited by #
to the macro definition file defs.m4. The leading # delimiter of the here document is quoted with \
to prevent interpretation by the COHERENT shell. Because save uses the character # to delimit the
here document. it does not work correctly for macro definitions containing#. For example,

save('save', 'defs.m4')

does not work as expected.

Errors
m4 reports all errors to the standard error stream. An error produces a line of the form

m4: line: message

where line is a decimal line number and message describes the error. For example, the error
message

m4: 7: illegal macro name: ab*c

indicates an attempt to define a macro with the illegal macro name ab•c in line 7 of the input
stream.

The following error messages may occur:

cannot open file
eval: invalid expression
eval: missing or unknown operator
eval: missing value
illegal macro name: name
out of space
/tmp open error
unexpected EOF

The file or name will be the file name or macro name which caused the error, or {NULL} if the
required argument is omitted.

m4 does not recognize (and therefore does not report) the most common of m4 errors, namely
invoking recursive macro definitions that never terminate. A simple example is the definition

define('recursive', 'recursive')

When m4 subsequently encounters a call of recursive in its input stream, it replaces it on the input
stream with its definition. Because the definition is another call to recursive, m4 replaces it in turn
with its definition; the process never terminates. More complicated examples may involve many
macro definitions and may be difficult to discover. If m4 enters an endless loop, you can terminate
it from the keyboard by typing the interrupt character (normally <ctrl-C>) or the kill character
(normally <ctrl-\>). If m4 enters an endless loop while being run in the background, you can
terminate it with the kill command.

TUTORIALS

278 m4 Macro Processor

The Lexicon entry for m4 gives a summary of its functions and options.

TUTORIALS

The make Programming DlsclpHne

make is a utility that relieves you of the drudgery of building a complex C program.

How Does make Work?
To understand how make works, it is first necessary to understand how a C program is built: how
COHERENT takes you from the C source code that you write to the executable program that you
can run on your computer.

The file of C source code that you write is called a source module. When COHERENT compiles a
source module, it uses the C code in the source module, plus the code in the header files that the
code calls to produce an object module. This object module is not executable by itself. To create an
executable file, the object module generated from your source module must be handed to a linker.
which links the code in the object module with the appropriate library routines that the object
module calls, and adds the appropriate C runtime startup routine.

For example, consider the following C program. called hello.c:

main()
{

printf ("Hello, world\n") ;
}

When COHERENT compiles the file that contains C code shown above, it generates an object
module called hello.o. This object module is not executable because it does not contain the code to
execute the function printf; that code is contained in a library. To create an executable program,
you must hand hello.o to the linker Id, which copies the code for printf from a library and into your
program. adds the appropriate C runtime startup routine, and writes the executable file called hello.
This third file, hello, is what you can execute on your computer.

The term dependency describes the relationship of executable file to object module to source
module. The executable program depends on the object module, the library, and the C runtime
startup. The object module, in turn, depends on the source module and its header files (if any).

A program like hello has a simple set of dependencies: the executable file is built from one object
module, which in turn is compiled from one source module. If you changed the source module
hello.c, creating an updated version of hello would be easy: you would simply compile hello.c to
create hello.o, which you would link with the library and the runtime startup to create hello.
COHERENT. in fact, does this for you automatically: all you need to do is type

cc hello.c

and COHERENT takes care of everything.

On the other hand, the dependencies of a large program can be very complex. For example, the
executable file for the MicroEMACS screen editor is built from several dozen object modules, each of
which is compiled from a source module plus one or more header files. Updating a program as large
as MicroEMACS, even when you change only one source module, can be quite difficult. To rebuild
its executable file by hand, you must remember the names of all of the source modules used.
compile them, and link them into the executable file. Needless to say, it is very inefficient to
recompile several dozen object modules to create an executable when you have changed only one of
them.

279

280 make Programming Discipline

make automatically rebuilds large programs for you. You prepare a file, called a makefile, that
describes your program's chain of dependencies. make then reads your makefile, checks to see
which source modules have been updated, recompiles only the ones that have been changed, and
then relinks all of the object modules to create a new executable file. make both saves you time,
because it recompiles only the source modules that have changed, and spares you the drudgery of
rebuilding your large program by hand.

Try make
The following example shows how easy it is to use make.

To see how make works, try compiling a program called factor. It is built from the following files:

atod.c
factor.c
makefile

All three are included with your copy of COHERENT.

Use the cd command to shift into directory /usr/src/sample.

Now, type make. make will begin by reading makefile, which describes all of factor's
dependencies. It will then use the makefile description to create factor. The following will appear
on your screen:

cc -c factor.c
cc -c atod.c
cc -f -o factor factor.o atod.o -lm

Each of these messages describes an action that make has performed. The first shows that make is
compiling factor.c, the second shows that it is compiling atod.c, and the third shows that it is
linking the compiled object modules atod.o and factor.o to create the executable me factor.

When make has finished, the COHERENT prompt will return. To see how your newly compiled
program works. type

factor 100

factor will calculate the prime factors of its argument 100, and print them on the screen.

To see what happens if you try to re-make your me. type make again. make will run quietly for a
moment, and then exit. make checked the dates and times of the object modules and their
corresponding source modules and saw that the object modules had a time later than that of the
source modules. Because no source module changed, there was no need to recompile an object
module or relink the executable file, so make quietly exited.

To see what happens when one of the source modules changes, try the following. Use the
MicroEMACS screen editor to open the file factor.c for editing. Insert the following line into the
comments at the top, immediately following the t•:

* This comment is for test purposes only.

Now exit. Type make once again. This time, you will see the following on your screen:

cc -0 -c factor.c
cc -o -f -o factor factor.o atod.o -lm

Because you altered the source module factor.c. its time was later than that of its corresponding
object module, factor.o. When make compared the times of factor.c and factor.o, it noted that

TUTORIALS

make Programming Discipline 281

factor.c had been altered. It then recompiled factor.c and relinked factor.o and atod.o to re-create
the executable file factor. make did not touch the source module atod.c because atod.c had not
been changed since the last time it was compiled.

As you can see, make greatly simplifies the construction of a C program that uses more than one
source module.

Although make is a powerful program, its basic features are easy to master. This section will show
you how to construct elementary make scripts.

The makefile
When you invoke make. it searches the directories named in the environmental variable PATii for a
file called makefile. As noted earlier. the makefile is a text file that describes a C program's
dependencies. It also describes the type of program you wish to build, and the commands for
building it.

A makefile has three basic parts.

First. the makefile describes the executable file's dependencies. That is. it lists the object modules
needed to create the executable file. The name of the executable file is always followed by a colon ':'
and then by the n~es of files from which the target file is generated.

For example, if the program feud is built from the object modules hatfleld.o and mccoy.o. you
would type:

feud: hatfield.o mccoy.o

If the files hatfleld.o and mccoy.o do not exist. make knows to create them from the source
modules hatfleld.c and mccoy.c.

Second. the makefile holds one or more command lines. The command line gives the command to
compile the program in question. The only difference between a makefile command line and an
ordinary cc command is that a makefile command line must begin with a space or a tab character.

For example. the makefile to generate the program feud must contain the following command line:

cc -o feud hatfield.o mccoy.o

For a detailed description of the cc command and its options. refer to the entry for cc in the
Lexicon.

Third, the makefile lists all of the header files that your program uses. These are given so that
make can check if they were modified since your program was last compiled. For example, if the
program hatfleld.c used the header file shotgun.hand mccoy.c used the header files rifle.hand
pistol.h. the makefile to generate feud would include the following lines:

hatfield.o: shotgun.h
mccoy.o: rifle.h pistol.h

Thus, the entire makefile to generate the program feud is as follows:

feud: hatfield.o mccoy.o
cc -o feud hatfield.o mccoy.o

hatfield.o: shotgun.h
mccoy.o: rifle.h pistol.h

TUTORIALS

282 make Programming Discipline

A makefile may also contain macro definitions and comments. These are described below'.

Building a Simple makefile
The program factor is built from two source modules, factor.c and atod.c. No header files are used.
The makefile contains the following two lines:

factor: factor.o atod.o
cc -f -o factor factor.o atod.o -lm

The first line describes the dependency for the executable file factor by naming the two object
modules needed to build it. The second line gives the command needed to build factor. The option
-Im at the end of the command line tells cc that this program needs the mathematics library llbm
when the program is linked. No header file dependencies are described because these programs use
no special header files. (Header files are described by the #include preprocessor instruction.)

Comments and Macros
You can embed comments within a makeffie. A comment is a line of text tpat is ignored; this lets
you "document .. the file, so that whoever reads it will now know what it is for. make ignores all
lines that begin with a pound sign '#'. For example, you may wish to include the following
information in your makeffie for factor:

#This makefile generates the program "factor".
"factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
"libm", but it requires no special header files.
"-f" lets you use printf for floating-point numbers.

factor: factor.o atod.o
cc -f -o factor factor.o atod.o -lm

Anyone who reads this file will know immediately what it is for by looking at the comments.

make also lets you define macros within your makefile. A macro is a symbol that represents a
string of text. Usually, a macro is defined at the beginning of the makeffie using a macro definition
statement. This statement uses the following syntax:

SYMBOL = string of text

Thereafter, when you use the symbol in your makefile, it must begin with a dollar sign'$' and be
enclosed within parentheses.

Macros eliminate the chore of retyping long strings of file names. For example. with the makefile
for the program factor, you may wish to use a macro to substitute for the names of the object
modules out of which it is built. This is done as follows:

#This makefile generates the program "factor".
"factor" consists of the source modules "factor.c" and
"atod.c", It uses the standard mathematics library
"libm", but it requires no special header files.
"-f" lets you use printf for floating-point numbers.

TUTORIALS

make Programming Discipline 283

OBJ = factor.o atod.o
factor: $ (OBJ)

cc -o factor $(OBJ) -lm

The macro OBJ is used in this makefile. If you use a macro that has not been defined. make
substitutes an empty string for it. The use of a macro makes sense when generating large files out
of a dozen or more source modules. You avoid retyping the source module names, and potential
errors are avoided.

Note that you can define macros in the makefile, in the environment, or as a command-line
argument. A macro defined as a command-line argument always overrides a definition of the same
macro in the environment or in the makefile. Normally. a definition in a makefile overrides a
definition of the same macro name in the environment; however, the -e option to make forces
definitions in the environment to override those in the makefile.

Setting the Time
As noted above, make checks to see which source modules have been modified before it regenerates
your C program. This is done to avoid wasteful recompiling of source modules that have not been
updated.

make determines that a source module has been altered by comparing its date against that of the
target program. For example, if the object module factor.a was generated on March 16, 1987,
10:52:47 A.M .. and the source module factor.c was modified on March 20, 1987, at 11:19:06 A.M ..
make will know that factor.c needs to be recompiled because it is younger than factor.a.

As shown earlier, make can ease the task of generating a large program. The following is the
makefile used to generate the screen editor MicroEMACS:

makefile for "MicroEMACS"

CFLAGS = -0
LFLAGS = /usr/lib/libterm.a
OBJ=ansi.o basic.o buffer.o display.o file.o \

fileio.o line.o main.o random.o region.o \
search.o spawn.o termio.o vt52.o window.o \
word.o tcap.o

me: $(OBJ)
cc -o me $(OBJ) $(LFLAGS)

$(OBJ): ed.h

The first line is commentary that describes the file.

The next five lines define macros that are used on the target and command line. The first macros
will be discussed in the following section. The second macro substitutes for the name of a special
library that is needed to create this program. The third macro, which is three lines long. stands for
the names of the source modules that produce MicroEMACS. A backslash '\' must be used to tell
make that the definition is carried over onto the next line.

The next line names the target file (me) and the files used to construct it, here represented by the
macro OBJ.

TUTORIALS

284 make Programming Discipline

Next comes the command line, which gives the compilation to be performed. This line must begin
with a space or a tab.

The last line lists the header file ed.h, which is required by all of the files used to generate
MicroEMACS.

Command Line Options
Although make is controlled by your makefile. you can also control make by using command line
options. These allow you to alter make's activity without having to edit your makefile.

Options must follow the command name on the command line and begin with a hyphen,·-·. using
the following format. The square brackets merely indicate that you can select any of these options;
do not type the brackets when you use the make command:

make [-deinpqrst J [-f filename J

Each option is described below.

-d (debug) make describes all of its decisions. You can use this to debug your makeme.

-e "Environment" option: force definitions in the environment to override those in the makefile.
For example, if the makeme defines

foo=makefoo

and the environment defines

foo=envfoo

then $(foo) expands to makefoo if you use the command make but expands to envfoo if you
use the command make -e.

-fjllename
(file) option tells make that its commands are in a file other than makefile. For example, the
command

make -f smith

tells make to use the file smith rather than makefile. If you do not use this option, make
searches the directories named in the environmental variable PATH. and then the current
directory for a file entitled makeme or Makefile to execute.

-i (ignore errors) make ignores error returns from commands and continues processing.
Normally, make exits if a command returns an error status.

-n (no execution) make tests dependencies and modification times but does not execute
commands. This option is especially helpful when constructing or debugging a makefile.

-p (print) make prints all macro definitions and target descriptions.

-q Return a zero exit status if the targets are up to date. Do not execute any commands.

-r (rules) make does not use the default macros and commands from /usr/lib/makemacros
and /usr/lib/makeactions. These files will be described below.

-s (silent) make does not print each command line as it is executed.

-t (touch) make changes the modification time of each executable file and object module to the
current time. This suppresses recreation of the executable file, and recompilation of the
object modules. Although this option is used typically after a purely cosmetic change to a
source module or after adding a definition to a header file, it must be used with great caution.

TUTORIALS

make Programming Discipline 285

Other Command Line Features
In addition to the options listed above, you may include other information on your command line.

First, you can define macros on the command line. A macro definition mustfollow any command
line options. Arguments. including spaces, must be surrounded by quotation marks, as spaces are
significant to the shell. For example, the command line

make -n -f smith "OPT=-DTEST"

tells make to run in the no execution mode, reading the file smith instead of makefile, and defining
the macro OPT to mean -DTEST.

The ability to define macros on the command line means that you can create a makefile using
macros that are not yet defined; this greatly increases make's flexibility and makes it even more
helpful in creating and debugging large programs. In the above example, you can define a command
line as follows:

cc $(OPT) example.c

When you define the macro OPT on the command line, then the program is compiled using the -
DTEST option, which defines the preprocessor variable TEST.

As noted above, a macro defined on the command line always overrides an identically named macro
defined either in the environment or in the makefile.

Another command-line feature is the ability to change the name of the target file on the command
line. Normally, the target file is the executable file that you wish to create, although. as will be seen,
it does not have to be. As will be discussed below, a makefile can name more than one target file.
make normally assumes that the target is the first target file named in makefile. However, the
command line may name one or more target files at the end of the line, after any options and any
macro definitions.

To see how this works, recall the program factor described above. factor is generated out of the
source modules factor.c and atod.c. The command

make atod.o

with the makefile outlined above would produce the following cc command line:

cc -c atod.c

if the object module atod.o does not exist or is outdated. Here, make compiles atod.c to create the
target specified in the make command line, that is, atod.o, but it does not create factor. This
feature allows you to apply your makefile to only a portion of your program.

The use of special, or alternative, target files is discussed below.

This section describes some of make's advanced features. For most of your work, you will not need
these features; however, if you create an extremely complex program, you will find them most
helpful.

TUTORIALS

286 make Programming Discipline

Default Rules
The operation of make is governed by a set of default rules. These rules were designed to simplify
the compilation of a typical program; however. unusual tasks may require that you bypass or alter
the default rules.

To begin. make uses information from the files /usr/llb/makemacros and /usr/llb/makeactions
to define default macros and compilation commands. make uses the commands in makemacros
and makeactions whenever the makefile specifies no explicit regeneration commands. The
command line option -r tells make not to use the macros and actions defined in makemacros and
makeactions.

As shown in earlier examples, make knows by default to generate the object module atod.o from the
source module atod.c with the command

cc -c atod.c

The macro .SUFFIXES defines the suffixes make knows about by default. Its definition in
makemacros includes both the .o and .c suffixes.

make's files makemacros and makeactions use pre-defined macros to increase their scope and
flexibility. These are as follows:

$< This stands for the name of the file or files that cause the action of a default rule. For
example. if you altered the file atod.c and then invoked make to rebuild the executable file
factor.$< would then stand for atod.c.

$• This stands for the name of the target of a default rule with its suff'tx removed. If it had been
used in the above example. $• would have stood for atod.

$<and$• work only with default rules; these macros will not work in a makefile.

$? This stands for the names of the files that cause the action and that are younger than the
target file.

$@ This stands for the target name.

You can use the macros $? and $@ in a makefile. For example, the following rule updates the
archive llbx.a with the objects defined by macro $(OBJ) that are out of date:

libx.a: $(OBJ)
ar rv libx.a $?

makemacros also contains default commands that describe how to build additional kinds of files:

AS and ASFLAGS call the assembler to assemble .o files out of source modules written in
assembly language rather than C.

YACC and YFLAGS call yacc to build .o or .c files from .y files.

LEX and LFLAGS call lex to build .o or .c files from .1 files.

You can change the default rules of make by changing them in makeactions and changing the
definition of any of the macros as given in makemacros.

TUTORIALS

make Programming Discipline 287

Source File Path
If a file is not specified with an absolute path name beginning with '/', make first looks for the file in
the current directory. If the file is not found in the current directory. make searches for it in the list
of directories specified by the macro $(SRCPATH). This allows you to compile a program in an object
directory separate from the source path.

For example

export SRCPATH=/usr/src/local/me
make

or alternatively

make SRCPATH=/usr/src/local/me

builds objects in the current directory as specified by the makefile from sources kept in directory
/usr/src/local/me. To test changes to a program built from several source files, copy only the files
you wish to change to the current directory: make will use the local sources and find the other other
sources on the $(SRCPATH).

Note that $(SRCPATH) can be a single directory, as in the above example. or a list of directories. In
the latter case, each entry in the list must be separated by a colon ':', as described in the Lexicon
entry for the function path().

Double-Colon Target Lines
An alternative form of target line simplifies the task of maintaining archives. This form uses the
double colon "::"instead of a single colon ':'to separate the name of the target from those of the files
on which it depends.

A target name can appear on only one single-colon target line, whereas it can appear on several
double-colon target lines. The advantage of using the double-colon target lines is that make will
remake the target by executing the commands (or its default commands) for the.first such target line
for which the target is older than a file on which it depends.

For example, for the program factor described earlier, assume that two versions of the source
modules factor.c and atod.c exist: factora.c plus atoda.c, and factorb.c plus atodb.c The
makefile would appear as follows:

OBJl factora.o atoda.o
OBJ2 = factorb.o atodb.o

factor:: $(0BJ1)
cc -c $(OBJ1) -lm

factor:: $ (OBJ2)
cc -c $(0BJ2) -lm

This makefile tells make to do the following: (l) Check if either factora.o or atoda.o is younger
than factor. (2) If either one is, regenerate factor using this version of these files. (3) If neither
factora.o nor atoda.o is younger than factor, then check to see if either factorb.o or atodb.o is
younger than factor. (4) If either of them is, then regenerate factor using the youngest version of
these files.

TUTORIALS

288 make Programming Discipline

This technique allows you to maintain multiple versions of source files in the same directory and
selectively recompile the most recently updated version without having to edit your makefile or
otherwise trick the system.

You cannot target a file in both a single-colon and a double-colon target line.

Alternative Uses
make is a program that helps you construct complex things from a number of simpler things.

make usually is used to build complex C programs: the executable file is made from object modules,
which are made from source modules and header files. However, make can be used to create any
type of file that is constructed from one or more source modules. For example, an accountant can
use make to generate monthly reports from daily inventories: all the accountant has to do is prepare
a makefile that describes the dependencies (that is, the name of the monthly report they wish to
create and the names of the daily inventories from which it is created), and the command required
to generate the monthly report. Thereafter, to recreate the report, all the accountant has to do to
generate a monthly report is type make.

In another example, the makefile can trigger program maintenance commands. For example, the
target name backup might define commands to copy source modules to another directory; typing
make backup saves a copy of the source modules. Similar uses include removing temporary files,
building archives, executing test suites, and printing listings. A makefile is a convenient place to
keep all the commands used to maintain a program.

The following example shows a makefile that defines two special target files, printall and printnew,
to be used with the source flies for the program factor.

#This makefile generates the program "factor",
"factor" consists of the source modules "factor.c" and
"atod.c". It uses the standard mathematics library
libm, but it requires no special header files.

OBJ = factor.o atod.o
SRC = factor.c atod.c

factor: $(OBJ)
cc -o factor $(OBJ) -lm

program to print all the updated source modules
used to generate the program "factor"

printall:
pr $ (SRC) I lpr
>printnew

printnew: $(SRC)
pr $? I lpr
>print new

In this instance, typing the command

make printall

forces make to generate the target printall rather than the target factor. which is the default as it
appears first in the makefile. The pr and lpr commands are then used to print a listing of all files
defined by SRC. The macro OBJ cannot be used with these commands because it would trigger the

TUTORIALS

make Programming Discipline 289

printing of the object files. which would not be of much use. It also creates an empty file prnew.
This new file serves only to record the time the listing is printed. This tactic is performed in order to
record the time that the listing was last generated so that make will know what files have been
updated when you next use printnew.

Typing the command

make printnew

forces make to generate the target printnew rather than the default target factor. printnew prints
only the files named in the macro SRC that have changed since any files were last printed.

Special Targets
A few target names have special meanings to make. The name of each special target begins with'.'
and contains upper-case letters.

The target name .DEFAULT defines the default commands make uses if it cannot find any other
way to build a target. The special target .IGNORE in a makeffie has the same effect as the -i
command line option. Similarly .. SILENT has the same effect as the -s command line option.

Errors
make prints "command exited with status n" and exits if an executed command returns an error
status. However. it ignores the error status and continues processing if the makeffie command line
begins with a hyphen '-'or if the make command line specifies the -i option.

make reports an error status and exits if the user interrupts it. It prints "can't openjlle" if it
cannot find the specificationjlle. It prints "Targetjlle is not defined" or "Don't know how to make
target" if it cannot find an appropriate file or commands to generate target. Other possible errors
include syntax errors in the specification file. macro definition errors. and running out of space.
The error messages make prints are generally self-explanatory; however. a table of error messages
and brief descriptions of them are given in a later section of this manual.

Exit Status
make normally returns a status of zero if it succeeds. and of one if an error occurs. With the -q
option (described above), make returns zero if all files are up to date and two if they are not up to
date.

The Lexicon article on make summarizes make's options and features. The source code included
with the COHERENT system, such as that for the MicroEMACS screen editor. includes makefiles.
Studying them will show you how make has been used to control the building of large. real-world
applications.

TUTORIALS

290 make Programming Discipline

TUTORIALS

nron, The Text-Formatting Language

nroff is the COHERENT system's text-formatting language. You provide both the text you want
formatted and commands to control the formatting; the commands are embedded within the lines of
text. nrotr will then process the text, following the commands that you embedded in the text. and
print the formatted text on the standard output.

This tutorial describes how to work with nrotr. It assumes you are familiar with the basic features of
the COHERENT system. In particular, you should know what a command is, what ajlle is, and how
to create and edit a file. If you are not familiar with these concepts, read Using the COHERENT
System before you read this tutorial. Relevant Lexicon articles include the one for nrotr, which
summarizes the material in this tutorial, and those for the related program trot!', printer (which
summarizes printer-related information), hpr, epson, and lpr.

What is nroff?
nrotr is the text processor for the COHERENT system. A text processor is a utility that accepts
commands and text, and uses the commands to format the text on a page. The commands may call
for simple formatting, such as indenting each new paragraph five spaces, to complex formatting of
columns and entire pages.

A file that contains text mixed with nrotr commands is called a script. For example, the following
nroff script

.nr Z 0 5

.nf
I tire of love,
.ti \n+Z
I sometimes tire of rhyme;
.ti \n-Z
But money makes me happy
.ti \n+Z
All the time!
.fi

produces the following printed text:

I tire of love,
I sometimes tire of rhyme;

But money makes me happy
All the time!

An nrotr script allows you to change your output very easily. For example, change the minus sign ·-·
in line 7 of the nroff to a plus sign '+',and the formatted text suddenly becomes:

I tire of love,
I sometimes tire of rhyme;

But money makes me happy
All the time!

As you can see, nrotr is a powerful and versatile formatter.

291

292 nroff Text-Formatting Language

In truth, however, nroff is both a text formatter and a text formatting language. With nroff, you
can write your own text-formatting commands to handle automatically the unique requirements of
whatever formatting you need.

nroff Input and Output
Input is what you give to nroff. Output is what nroff returns to you. If you simply type

nroff

then nroff accepts input from your keyboard, and prints its output on your screen. For example, if
you want nroff to process the contents of a file named script.r, type the command line

nroff script.r

nroff then takes the file script.r, processes it. and in a few moments it displays the formatted text
on your screen. Note that the suftlx .r is used by convention to indicate that a file contains an
unprocessed nroff script.

You can save nroft's output by redlrecttng it into another file. For example, you can redirect nroft's
processed output of the file script.r into the file named target by using the following command:

nroff script.r > target

Printing nroff Output
The COHERENT system's implementation of nroff currently can be used with any variety of printer.
COHERENT, however, fully supports three varieties of printer: Epson-compatible dot-matrix
printers, printers that use the Hewlett-Packard Page Control Language (PCL) (including the Hewlett­
Packard LaserJet and DeskJet families of printers), and any printer that has implemented the
PostScript page-control language. The following descriptions assume that you have plugged your
printer into a parallel port on your computer, and have installed COHERENT correctly so that it can
access your printer.

To print nroff output on an Epson-compatible printer, use the commands epson and lpr. For
example. to print the nroff output that you have directed into file text.out, use the following
command:

epson text.out I lpr

Or, you can pipe the output of nroff directly into epson, as follows:

nroff -ms text.r I epson I lpr

In the above example, text.r is your input, and -ms invokes the ms package of macros.

To print on a printer that uses PCL, use the commands hp and hpr. For example, to print the file
text.out on a PCL printer, use the command:

hp text.out I hpr -B

The option -B to hpr suppresses the printing of a banner page. If you wish, you can pipe the
output of nroff directly into hp, as follows:

nroff -ms text.r I hp I hpr -B

To access a printer that uses Postscript, use the command hpr, but do not use the command hp.
Also, you use must the -p switch to nroff, which tells it to generate Postscript output. For example,
the following command processes file text.r into Postscript output, and passes that output to a
PostScript printer:

TUTORIALS

nroff Text-Formatting Language 293

nroff -p -ms text.r I hpr -B

All of the above commands are described in their respective entries in the Lexicon. The Lexicon
article printer summarizes information about using printers with the COHERENT system.

nroff Limitations
Because nroff is a text-formatting language rather than a text-formatter per se, it makes no
assumptions about how you want to lay out your page. It does not automatically leave margins at
the top and bottom of pages; it does not automatically number pages; it does not automatically
format paragraphs. You must use or create a set of formatting commands, called macros, to
generate these features. This tutorial will teach you how to write macros that can solve nearly every
conceivable formatting problem. As you have seen, too, your copy of the COHERENT system comes
with a set of predefined macros, the -ms macro package.

The ms Macro Package
A macro package called -ms is included with your copy of nroff. It provides macros to format
paragraphs, produce headers and footers (the areas at the top and bottom of pages, respectively),
and perform most other page-formatting tasks. -ms is easy to use. The command

nroff -ms

tells nroff to accept input from your keyboard, process it using the -ms macro package, and print
the output on your screen. The command

nroff -ms script.r

tells nroff to process scrlpt.r with the -ms package and print the output on your terminal; while the
command

nroff -ms script.r >target

redirects the output of nroff into the file target; and

nroff -ms script.r I lpr

prints the output on the line printer.

Working with the -ms macro package is a good way to gain confidence in working with nroff
commands. Soon you will learn the correct way to encode nroff commands in your scripts.

Using this Tutorial
The only way to learn about nroff is to use it. You should type all the examples in this tutorial into
your computer and observe how they work. You should also alter the example and examine how
your changes affect what nroff produces. Don't hesitate to experiment! You can learn more from
analyzing why something unexpected happens than you can from simply copying an example that
works as you were told it would.

The first section describes how to use nroff with the -ms macro package. The second section
describes how to perform sophisticated formatting. For most users, this chapter contains all the
information they need to know.

The rest of the tutorial describes how nroff actually works with the input text to produce its output.
This will teach you how to write your own nroff macros for your special word processing needs.

TUTORIALS

294 nroff Text-Formatting Language

As explained above, nroff is the text formatter for the COHERENT system. You give nroff a script -
that is. text interspersed with commands that control its processing; nroff, in turn. formats your
text in the manner dictated by your commands.

nroffs most outstanding feature is its flexibility: you can control line length. page offset, page
length. paragraph format. beginning- and end-of-page format, and every other aspect of formatting
a document.

nroff has built into it a set of basic commands, called primitives, that are used to control formatting.
A basic formatting function might require several primitives. For example. formatting a new
paragraph requires one primitive to force the printing of the fragment of a line left at the end of the
previous paragraph; another primitive to skip a blank line; and a third primitive to indent the first
line of the new paragraph. If you were to type directly into your script all the primitives required to
control every feature of your document, formatting would be a very difficult task, and mistakes
would be common.

Fortunately, another feature of nroff makes it easier for you to prepare input: nroff allows you to
bundle together a group of primitives and give the bundle its own name. Such a bundle is called a
macro. Whenever you want all the commands in that bundle to be executed, you simply insert the
name of the macro into the text. For example, you might group the primitives needed to format a
paragraph, and call that bundle PP. Then, instead of retyping the primitives. all you need to do is
insert the command .PP before the start of a paragraph.

-ms is a package of macros that are ready for you to use. When you include the option -ms on the
nroff command line, nroff automatically uses the the macros that have been defined in the -ms
package. These macros will take care of setting line length and page length. numbering pages,
formatting paragraphs, and all other formatting tasks. You do not need to know how nroff's
primitives are used in the macros; you only need to know the names of the macros and what they
do, so that you can insert them correctly into your text.

Using the -ms package is a good way to become accustomed to preparing input for nroff, so that the
features of the primitives will not seem so alien when you eventually choose to work with them.
When you become familiar with nroff, you may wish to your own macro packages, to handle the
unique requirements of different types of documents. For now. however. you will find that the -ms
package will get you up and running with nroff.

Text and Commands
nroff input includes both text and commands. The commands control the processing of the text.
nroff distinguishes between text and commands by looking at the first character of each input line.
If that character is a period or an apostrophe. the line is a command; otherwise. it is text.

Earlier in this tutorial, you used the -ms package to format a text file that had already been
prepared for you. To become more accustomed to using nroff, try entering the following text into a
file that can be formatted later. Use a text editor (either ed or MicroEMACS) to create a file named
script2.r that contains the following text. It is important for this exercise that you break up the
lines as they are shown here:

TUTORIALS

nroff Text-Formatting Language 295

London. Michaelmas Term lately over,
and the Lord Chancellor sitting in
Lincoln's Inn Hall. Implacable November weather.
As much mud in the streets, as if the waters
had but newly retired from the face of the
earth, and it would not be wonderful to meet
a Megalosaurus, forty feet long or so, waddling
like an elephantine lizard up Holborn Hill.

Note that this file contains no commands; every line is a text line. Process the file with the
command;

nroff script.r I more

The output is piped to more so that it will not all rush past your screen. nroff will process the text,
and in a moment you will see the following:

London. Michaelmas Term lately over, and the Lord Chancellor sitting in
Lincoln's Inn Hall. Implacable November weather. As much mud in the
streets, as if the waters had but newly retired from the face of the
earth, and it would not be wonderful to meet a Megalosaurus, forty feet
long or so, waddling like an elephantine lizard up Holborn Hill.

When you see this example, the spacing will be different; the spacing for the examples in this
tutorial is adjusted to conform to the rest of the tutorial text. Notice that nroff automatically
adjusts the spacing between words to justify the right margin, even though the input text has a
ragged right margin. Each output line contains 65 characters, and each output page contains 66
lines.

Now try processing script.r again, this time with the -ms macro package. Type

nroff -ms script.r I more

As you can see, nroff again adjusted the spacing to keep a strict right margin. Each line was
indented with ten leading spaces, followed by 65 characters of text. The pages output by both the
nroff command and the nroff -ms command both contain 66 lines, but the page built with the -ms
package left blank lines at the top of the page and printed the page number in a blank space at the
bottom of the page. When nroff constructs its output. it assumes that your printer prints ten
characters per inch (Pica, or 10-pitch spacing) and six lines per inch. Given these assumptions,
each page of output from nroff -ms fits onto an 8.5 by 11 inch page, with an inch of blank space at
the top. at the bottom, and on each side.

As this example shows, nroff adjusts the spacing between words to keep a strict right margin.
When you type in the text, don't worry about the right margin. You must, however, keep a strict left
margin. because when nroff encounters a line of text that begins with blank spaces, it breaks the
line it was working on and begins a new, indented line.

Also, do not hyphenate words; if you do, nroff treats each part as a separate "word" (the first ending
with the hyphen character), rather than keeping them joined, as you want.

nroff normally interprets as a command every line that begins with a period or an apostrophe.
However, to include an initial apostrophe or period as a literal part of your document, you must
place the characters \lit before the period or apostrophe.

The remainder of this will show you how to use commands in input text to change the appearance
of the output. You can control many aspects of the printed document simply by including the
appropriate commands within your text.

TUTORIALS

296 nroff Text-Formatting Language

Command Names
The name of every nroff primitive consists of two lower-case letters. Some commands can also
include additional information. or arguments. For example, .sp is the command to leave vertical
space between output lines. The command line

.sp

leaves one space, whereas

.sp 2

leaves two spaces. The information that follows the command name on the command line is an
argument. Each macro defined in the -ms macro package is named with one or two upper-case
letters. For example • • PP is the name of the macro that begins a new paragraph.

Paragraphs
Every time you want to begin a new paragraph. enter the paragraph command .PP; that is, place the
command line .PP in the text. To test this macro, enter the following text under the name script3.r:

.PP
It is a truth universally acknowledged,
that a single man in possession of a good fortune,
must be in want of a wife •
• PP
However little known the feelings or views of such
a man may be on first entering a neighbourhood, the
truth is so well fixed in the minds of the surrounding
families, that he is considered as the rightful
property of some one or the other of their daughters.

When you process this text with the command

nroff -ms script3.r I more

the result resembles the following:

It is a truth universally acknowledged, that a single man in
possession of a good fortune, must be in want of a wife.

However little known the feelings or views of such a man may
be on first entering a neighbourhood, the truth is so well fixed in the
minds of the surrounding families, that he is considered as the rightful
property of some one or the other of their daughters.

As the output shows, the .PP command inserts a blank line before beginning a new paragraph. and
indents the first line of the new paragraph by half an inch.

The -ms package also provides another paragraph format: the .IP command. This macro creates an
indented paragraph. The .PP macro indents only the first line of each paragraph; however, .IP
indents every line except the first. For example,

TUTORIALS

.IP
This is an indented paragraph.
All the lines are indented by
the same amount •
• PP
This is a normal paragraph.
nroff indents the first line

nroff Text-Formatting Language 297

but does not indent the following lines.

gives the output

This is an indented paragraph. All the lines are indented by the
same amount.

This is a normal paragraph. nroff indents the first line but does
not indent the following lines.

Several options are available for the basic .IP macro. You can add two arguments to it. nroff
interprets the first argument after the .IP as a tag to the paragraph, and it interprets the second
argument as .the amount of indentation you want. For example,

.IP A. 8
This is the first line of text.
nroff indents the following lines by the same
amount as the first.
The indent is eight spaces.
The paragraph includes a tag in the indent.

produces

A. This is the first line of text. nroff indents the following lines
by the same amount as the first. The indent is eight spaces. The
paragraph includes a tag in the indent.

You must make sure the indent leaves enough spaces for the tag. If the tag contains blank spaces.
enclose it within quotation marks. To see how this works. enter the following script under the title
scrlpt4.r:

.IP "King Lear:" 16
Is man no more than this?
Consider him well.
Thou owest the worm no silk,
the beast no hide,
the sheep no wool,
the cat no perfume •.•
Unaccommodated man is no more
but such a poor, bare, forked
animal as thou art.

When processed with the command

nroff -ms script4.r >script4.p

you see:

TUTORIALS

298 nroff Text-Formatting Language

King Lear1 Is man no more than this? Consider him well. Thou owest
the worm no silk, the beast no hide, the sheep no wool, the
cat no perfume ••• Unaccommodated man is no more but such a
poor, bare, forked animal as thou art.

As this example shows, this form of the .IP macro can be used to format the script for a play.

If you do not want a tag, but merely wish to set the indentation to something other than the default
setting of five spaces, then use a pair of quotation marks with nothing between them for the first
field:

.IP 1111 8

If you forget the quotation marks, you will not get what you expect: nroff will interpret '8' as a tag
and use the normal indentation of five spaces.

Once you set the amount of indentation, the new indentation stays in effect until you change it
again. For example, if you format a paragraph with

• IP II II 8

and follow it with another paragraph that begins with .IP, nroff will also indent the second
paragraph by eight spaces. The indentation will remain in effect until you explicitly change it - for
example, by beginning a paragraph with

.IP Hit 6

which resets the indent to six spaces.

Normally, nroff measures the paragraph indentation from the left margin. Another variation of IP
allows you to measure the indentation of a new indented paragraph from the left-hand edge of a
previous indented paragraph, thus producing relative Indentation. To do this, enclose the new
paragraph between the macros RS and RE (for relative indent start and relative indent end). Copy
the following script into the file script5.r:

.IP
And it came to pass in an eveningtide,
that David arose from off his bed •••
and from the roof he saw a woman washing
herself; and the woman was very beautiful
to look upon. And David sent and enquired
after the woman. And one said,
.RS
.IP
Is not this Bathsheba, the daughter of Eliam,
the wife of Uriah the Hittite?
.RE
.IP
And David sent messengers and took her; and
she came in unto him, and he •••
and she returned unto her house.

When processed through nrofrwith the command

nroff -ms script5.r >script5.p

the output resembles the following:

TUTORIALS

nroff Text-Formatting Language 299

And it came to pass in an eveningtide, that David arose from off his bed
• • • and from the roof he saw a woman washing herself; and the woman was
very beautiful to look upon. And David sent and enquired after the woman.
And one said,

Is not this Bathsheba, the daughter of Eliam, the wife of Uriah
the Hittite?

And David sent messengers and took her; and she came in unto him, and he
••• and she returned unto her house.

You can include any number of indented paragraphs between .RS and .RE. Also. you can specify
tags and different indents just as for ordinary indented paragraphs. You can even nest .RS and .RE
pairs inside each other to produce multiple relative indents. Just remember that an .RS must
always be balanced by an .RE. Type the following into the file scrlpt6.r to see how nrofl' handles
nested flashbacks:

.IP
In England during World War II, a captain tells the
story of his Free French bomber squadron •
. RS
.IP
In the early days of the war, a French ship picks up
five men adrift in a small boat. One tells of their
life on Devil's Island •
• RS
.IP
A convict tells others of his past •
• RS
.IP
Publication of anti-Nazi material leads to arrest on
false charges •
• RE
.IP
The convicts escape to help France in the war •
• RE
.IP
When France surrenders, the crew overpowers pro-Vichy
officers and heads for England instead of Marseilles •
• RE
.IP
The captain concludes his story as the bombers return
from a mission.

When you process this file with the -ms package. the output file scrlpt6.p should resemble the
following:

In England during World War II, a captain tells the story of his Free
French bomber squadron.

In the early days of the war, a French ship picks up five men
adrift in a small boat. One tells of their life on Devil's Island.

TUTORIALS

300 nroff Text-Formatting Language

A convict tells others of his past.

Publication of anti-Nazi material leads to arrest
on false charges.

The convicts escape to help France in the war.

When France surrenders, the crew overpowers pro-Vichy officers
and heads for England instead of Marseilles.

The captain concludes his story as the bombers return from a mission.

As you can see, each .RE command peels away the current layer of indentation and moves you into
the previous one. To return to an even earlier level, you must input the appropriate number of .RE
commands before you begin a paragraph.

A third type of paragraph is the quoted paragraph. It produces a paragraph that is indented on both
on the right side and on the left side, in order to set off a quotation from the surrounding text. To
produce such a paragraph, precede it with the .QS macro and follow it with the .QE macro. To
break the quotation into different sections, insert a blank line in the text before each line that you
want to begin a new section. For example, type the following example as script7.r:

Form of Tender of Rescue from Strange Young Gentleman
to Strange Young Lady at a Fire •
• QS
Although through the fiat of a cruel fate, I have been
debarred the gracious privilege of your acquaintance,
permit me, Miss [here insert name, if known], the
inestimable honor of offering you the aid of a true
and loyal arm against the fiery doom which now
o'ershadows you with its crimson wing. [This form
to be memorized, and practiced in private.]
.QE
Should she accept, the young gentleman should offer
his arm - bowing, and observing "Permit me" -
and so escort her to the fire escape and deposit
her in it.

After processing with the -ms package. the output file script7.p should resemble the following:

Form of Tender of Rescue from Strange Young Gentleman to Strange Young
Lady at a Fire.

Although through the fiat of a cruel fate, I have been
debarred the gracious privilege of your acquaintance,
permit me, Miss [here insert name, if known], the
inestimable honor of offering you the aid of a true and
loyal arm against the fiery doom which now o'ershadows you
with its crimson wing. [This form to be memorized, and
practiced in private.]

Should she accept, the young gentleman should offer his arm - bowing, and
observing "Permit me" - and so escort her to the fire escape and deposit
her in it.

TUTORIALS

nroff Text-Formatting Language 301

Section Headings
The section heading macro .SH prints a heading or title. For example:

.SH
Section Headings

The heading may be more than one line long: consequently, you should follow a section heading
with a .PP or an .IP macro. nrotI leaves a blank line before the heading and prints the heading
flush with the left margin in boldface type. as described below in the section on Fonts.

The numbered heading macro .NH produces consecutively numbered section headings. For
example:

.NH
Guess What's Coming to Dinner?
.NH
Guess Why I Won't be There?

produces

1. Guess What's Coming to Dinner?

2. Guess Why I Won't Be There?

You can number subsection headings by entering a number from two to five to the .NH macro. The
number indicates the level of section headings; for example . • NH 2 numbers subsection headings •
. NH 3 numbers sub-subsection headings. For example:

.NH
Guess What's Coming to Dinner?
.NH 2
Guess What it Looks Like?
.NH 3
Teeth Like That Might Frighten the Children!
.NH 2
What Does it Eat?
.NH
Guess Why I Won't be There?

produces:

1. Guess What's Coming to Dinner?

1.1 Guess What it Looks Like?

1.1.1 Teeth Like That Might Frighten the Children!

1.2 What Does it Eat?

2. Guess Why I Won't be There?

The number on the .NH command line is not the number that appears before the heading; instead,
it controls how many "parts" appear in the number. For example, .NH 3 produces a three-part
number. such as 2.5.3, whereas .NH 4 produces a four-part number, such as 7.4.5.2.

TUTORIALS

302 nroff Text-Formatting Language

You can reset the entire numbering scheme by using the command NH O; for example,

.NH 0
Through The Mandelbrot Set With Rod and Gun

produces

1. Through The Mandelbrot Set With Rod and Gun

with numbering starting at one.

Title Page
If you want your output to begin with a title page, begin the input with the following .

• TL
Title of Document (may be more than one line)
.AU
Name(s) of Author(s) (may be more than one line)
.AI
Institution(s) of Author(s)
.AB
Abstract (line length 5,5 inches)
.AE

The .TL macro indicates the title, the .AU macro indicates the author, the .AI macro indicates the
author's institution, and the .AB macro precedes the abstract. The .AE macro, for abstract end,
marks the end of the abstract. If you do not want some of these headings to appear, simply omit the
relevant macros. Begin the body of the document immediately after the .AE macro. The body must
begin with a formatting command, such as .PP or .SH.

Note that the end abstract macro .AE also prints today's date automatically. To do so, nroff reads
the date as encoded in the COHERENT system. Before you use these macros, be sure that you have
set the correct date in the COHERENT system.

To see how these macros work, type the following script into file script8.r:

TUTORIALS

nroff Text-Formatting Language 303

.TL
Tickling in the Therapy of
von Muenchausen's syndrome
.AU
P. R. Sanserif
.AI
The Department of Parapsychology
The University of Southern North Dakota
at Hoople
.AB
Study of 150 subjects (75 men and 76 women)
indicated that hard tickling may prove beneficial
to patients with von Muenchausen's syndrome.
Applications for a seven-figure grant have been
made to continue research in this area •
• AE
.PP
Due to complications in our experiment, this paper
has now been withdrawn.

After processing with the -ms macro package, you will see that in the outputfile script8.p, nrof:!'
placed the text on the same page as the title information. You may or may not want this to happen.
If you do not, one solution is to insert two additional commands between the .AE macro and the
body of your text:

.PP

.bp

Headers and Footers
The header macro controls the format of the top of each page. It automatically skips one inch at the
top of the page. The footer macro controls the format of the bottom of each page. It stops printing
text one inch above the bottom of the page, and prints the page number.

It is easy to print either a page header or a page footer. Both the page header and the page footer
are three-part titles: nroff prints the first part on the left side of the page, the second part in the
middle, and the third part on the right side of the page. The parts of the header title are named:

LT: left, top
CT: center, top
RT: right. top

and the parts of the footer title are named:

LF: left, footer
CF: center, footer
RF: right. footer

These parts are called strings. A later section of this tutorial describes strings in detail. Normally,
these strings are undefined, except for CF, which prints the current page number; therefore, the
header macro normally prints nothing, and the footer macro prints only the page number in the
center of the block of space at the bottom of each page. However, you can set any portion of the
header or footer to print what you like. To set the left portion of the header, for example, type the

TUTORIALS

304 nroff Text-Formatting Language

following:

.ds LT "Walnuts in History"

Note that you do not type a period before the LT. After you define LT in this fashion, nroff will print

Walnuts in History

at the top of each page on the left-hand side. If you want the date to appear on the right~hand side
of the header, type:

• ds RT " \ * (Os"

The string Ds is automatically initialized to today's date, as set on your COHERENT system. A later
section of this tutorial will present strings in detail. For now, all you need to know is that whenever
you want nroff to insert today's date into your script automatically, just type the entry \ *(Ds. This
entry does not have to be at the beginning of a line to work.

Use the same procedure to define the strings in the footer title. If you want something other than
the page number to appear in the position allocated to CF, use the .ds primitive to redefine CF. If
you want nothing to appear there, type

.ds CF 1111

Wherever you want the current page number to appear in the header or footer, use the symbol'%'.
For example, if you want the page number to appear in the upper right-hand comer of each page.
type

.ds RT "Page %"

Be sure to type in all of the macros to define headers and footers before you begin to type in your
text. Otherwise, your headers and footers will not appear on the first page of the formatted output.

To see how this works, try editing the file scrlptl.r. At the top, insert the macro

.ds RT "*(Ds"

and reprocess the file using the -ms macro package. Each output page should have today's date
written in the upper right-hand comer.

Fonts
nroff normally prints ordinary, or "Roman", characters. In addition, nroff can print boldface and
italic characters. Each of the three styles of type- Roman, boldface, and italic - is called afont, in
keeping with typesetting terminology.

nroff prints each boldface and italic character by generating a special three-character output
sequence. It prints the boldface character c, for example, by printing a 'c', then the backspace
character <ctrl-H>. and then another 'c'. This sequence emaphasizes 'c' by forcing your printer to
print it twice. nroff represents an italic character c with the underscore character '_', followed by
the backspace character <ctrl-H>, followed by 'c'.

Because of these special representations, the appearance of nroff boldface and italic fonts depends
on the device on which you see the output. On your terminal, the <ctrl-H> backspaces the cursor,
and the third character of each sequence replaces the first; therefore, boldface and italic characters
appear the same as Roman characters. On a printer, the appearance depends on the characteristics
of the printer. The COHERENT system provides a.filter or a printer driver to print boldface and italic
character sequences appropriately on certain devices.

TUTORIALS

nroff Text-Formatting Language 305

The -ms macro package includes three commands for easy printing in specific fonts: the boldface
command .B, the italic command .I. and the Roman command .R. To print a single word in boldface,
do the following:

The last word is printed in
.B boldface.

Likewise for italics:

The last word is printed in
.I italics.

These example printed a word in a different font. You can print several words in a different font by
enclosing the words within quotation marks on the command line:

This sentence ends with
.B "three bold words".

You can also switch fonts by using one of the font commands with nothing after it on the command
line. For example,

or

.B
This entire sentence is printed in boldface •
• R

.I
This entire sentence is printed in italics •
• R

In these examples, the Roman font command .R is needed to return to the normal font after
completing the boldface or italic text.

On rare occasions, you might want different parts of one word to be in different fonts. You cannot
use the -ms macros to produce mixed-font words directly. A later section of this tutorial gives
additional information about nroff fonts. As explained there, the input

This manual describes \fBnroff\fR's powerful features.

produces the output:

This manual describes nroff's powerful features.

The word nroff is boldface but the following apostrophe and 's' are Roman.

Special Characters
A few characters have special meaning to nroff. You should be aware of these characters if you want
nroff to process your text properly.

As mentioned earlier, the period and the apostrophe introduce nroff command lines. Each is a
special character if it is the first non-space character on an input line. If you wish to use a period or
an apostrophe at the start of an input line simply as part of your text, you must precede it with a
backslash and ampersand"\&". For' example, the input

TUTORIALS

306 nroff Text-Formatting Language

The footnote command
.DS
\&.FT
.DE
generates footnotes for you automatically.

produces the output

The footnote command

.FT

generates footnotes for you automatically.

Neither the period nor the apostrophe is a special character unless it is the first non-space character
on a line.

The most important special character for nroff is the backslash'\'. It changes the meaning of the
following character or characters. If you simply want a backslash to appear as part of your text, you
must follow it with the letter 'e'; that is. use "\e" in your input to have '\'appear in your output.
Later sections of this tutorial describe other special uses for backslash.

Footnotes
You can place footnotes between the footnote start command .FS and the footnote end command
.FE, as in the following example:

.FS
*MicroKVETCH Electronic Nag is a
copyrighted trademark of Caveat Emptor
Software, Inc •
• FE

You should insert each footnote into your text where the reference to it occurs; nroff will see to it
that the footnote appears at the bottom of the correct page. Footnotes should be inserted as follows:

The notion that we have been visited
by visitors from outer space may seem
outlandish(l)
.FS
1. Raucus J, O'Hooligan R: "Viruses
from Venus?" \fIJ Earth Med Assoc\fR,
1985;36:412-414 •
• FE
but reason compels us to exclude no •••

The journal article cited in the footnote will appear at the bottom of the page. with the journal name
in italics.

Displays and Keeps
A display is a portion of text, such as a graph or a table. that should appear in the output exactly as
it is typed in the input. nrotI normally alters the spacings between elements in your text. which, of
course, would destroy the appearance of a display. Therefore. nroff has macros to tell it that a
portion of text is a display. and so not to alter spacings between elements or split it between two
pages. These macros are the display start macro .DS and the display end macro .DE. You should

TUTORIALS

nroff Text-Formatting Language 307

your display between these macros, as follows:

.DS
The text of the display goes here,
exactly
as
you
want
it
to appear in the output •
• DE

The .DS macro comes in three varieties. The display start centered macro .DSC centers every line
of your display. Because nrotT centers each line individually, both right and left margins are ragged.
The display start block-centered macro .DS B takes the entire display at once and centers it. You
can think of this as simply shifting the display to the right by an appropriate amount. The display
start Indented macro .DS I indents the entire display by half an inch.

If your display is longer than one page. do not use .DS or any of its variants. Instead, begin the
display with one of the following.

The centered display macro .CD centers each line of the display. The block-centered display macro
.BD considers the entire display as a block and centers it. The left display macro .LD performs no
indenting or centering. but simply begins each line at the left margin. Finally, the Indented display
macro .ID indents each line by half an inch. If you begin the display with one of these macros, do
not end it with .DE; rather, just type .PP or .SH or whatever other macro is needed at that point.

To see how displays work, type the following into the file script9.r and process it with the -ms
macro package:

.PP

.DS C
Tyger! Tyger! burning bright
In the forests of the night,
What inunortal hand or eye
Could frame thy fearful synunetry?
Burma Shave
.DE

When the output file script9.p is read, the results will appear as follows:

Tyger I Tyger I burning bright
In the forests of the night,

What inunortal hand or eye
Could frame thy fearful synunetry?

Burma Shave

You must remember one important fact when you use display macros: the normal length of output
lines is 6.5 inches, but if the display contains lines longer than this nroff simply prints them as
they are. If a line is too long to fit onto the page, what occurs afterwards depends upon the output
device. If you are displaying the output on the screen, the text will be displayed as far as possible to
the right, then the remainder will be wrapped around onto the next line, without indentation. On
most printers, however, the chunk of text that extends past the right margin will simply be lopped
off and thrown away. In any event, the effect is usually quite unsightly. The only restriction on
what you can safely put in a display, then, is that lines should be no longer than 6.5 inches. If you
are using an indented display, lines should be no longer than six inches.

TUTORIALS

308 nroff Text-Formatting Language

A keep is a display macro: you put text between the keep start macro .KS and the keep end macro
.KE when you want it all kept on the same page. If you put a block of text between these macros
that proves to be longer than one page. nroft' moves the excess text onto a new page.

The major difference between the keep and the display is that normal processing occurs in the keep:
nroft' adjusts spacings between words. hyphenates words. justifies lines, and performs all other
formatting tasks. just as it normally does.

Other Commands
Several of nroff's prii:nitives can be used with the -ms macro package. The primitive

.sp N

skips N lines on the output page; for example .. sp 4 skips four lines.

The begin page primitive .bp tells nroft' to begin a new page. no matter where it is on the current
page.

The remaining sections of this tutorial provide more information about these other nroff primitives .

. F~ :·:.:.;:;:·1ntro,tr(.icttfg:JIJ~q.ff~~;1!flmiflve~f 111 .. ;:;it1;~~·;~;1~.~l1·;1~;s:~J0~1.;m~:~~~
The rest of this tutorial describe nroff's basic commands - the commands that are "built into'"
nroft', and from which macros are assembled. These basic commands, or primitives, form nroff's
text formatting language. Once you have mastered the primitives, you will be able to write macros
to control automatically even the most difficult text formatting tasks.

The rest of this tutorial includes a number of exercises. You should type them into your system and
execute them as described in the tutorial; this will greatly increase the rate at which you master
nroff. None of the following examples should be processed with the -ms macro package; the
purpose of this portion of the tutorial is to teach you how to create you own text processing
routines, rather than how to use ones that have already been written.

Page Format
When deciding how to process text, you must first decide how to position the text on the printed
page. You must control line length, left and right margins. page offset (i.e., how far from the left
edge of the page each line begins). and page length. Controlling these functions is quite easy with
the appropriate nroft' commands.

The line length primitive .ll controls the line length; and the page offset command .po controls the
page offset. If you are writing an nroft' script, you should include these commands before the
beginning of your text, so that nroft' can put them into effect immediately. The following example
uses a line length of three inches and a page offset of two inches. Type this into your system under
the name exl.r. Note. by the way, that the text to the right of the characters · \ "' is a comment, and
there is no need for you to type it into your system:

TUTORIALS

nroff Text-Formatting Language 309

.11 3i \" set line length

.po 2i \" set page offset
Along outside of the front fence ran the country
road, dusty in the summertime, and a good place for
snakes -- they liked to lie in it and sun themselves;
when they were rattlesnakes or puff adders, we killed
them; when they were black snakes, or racers, or belonged
to the fabled "hoop" breed, we fled, without shame; when
they were "house snakes", or "garters", we carried them
home and put them in Aunt Patsy's work basket for a
surprise; for she was prejudiced against snakes, and
always when she took the basket in her lap and they
began to climb out of it it disordered her mind.

Process this script by typing the command

nroff exl.r >exl.p

From this point on, you should not use the -ms macro package with your nrofl' examples. When
you display the output stored in the file exl.p, you will see that the length of each line is three
inches, and each line begins two inches from the left-hand margin.

As you noticed, line length and page offset were set in inches. nrofl' output can be controlled using
a number of different units of measurements, including inches, number of characters. or lines, or
machine units. A following section discusses nrofl' units of measurement in detail.

As noted above, this example contains two comments. nrofl' ignores any text that appears on a line
after "\ "". You should use comments, for the benefit of anyone who must read your nrofl' script
(including yourselO. The above example used the comments

\" set line length
\" set page offset

to help you understand the .ll and .po commands. Judicious comments can make a complex script
much easier to understand.

Breaks
Before you look at the break primitive .br. it is helpful to examine how nrofl' constructs a finished
line of output. Suppose. for example, that you tell nrofl' that you want each output line to be five
inches long. nrofl' takes your input one word at a time, and attempts to squeeze that word into the
space that has not yet been taken up in the line. When nrofl' finally picks up a word that is to
large to fit into the amount of space left in the line, it either puts the word aside entirely, or
hyphenates the word and places the hyphenated portion into the line. nrofl' then inserts extra
blank spaces between the words to justify the line. The break primitive .br, however. tells nrofl' to
print whatever words have already been put into the line, even if they do not form a complete line,
and without performing right justification.

The idea of a break might seem strange at first, but you are familiar with a simple example: the end
of a paragraph. You do not want the start of a new paragraph to be on the same line as the end of
the previous paragraph: you want to print the end of the previous paragraph whether or not it fills a
complete line: and you want to begin the new paragraph on a new line. As you will learn later. some
nrofl' commands cause breaks automatically: you should be aware of this when you use them.

TUTORIALS

310 nroff Text-Formatting Language

Fill and Adjust Modes
Two terms describe how nroff processes your input to create its output: .filling. and adjusting or
justifying. Unless you order it not to, nroff operates in the .fill and adjust modes. The no:flll
primitive .nf tells nroff to stop using fill mode. The.fill primitive .ft tells it to resume using the fill
mode. In a similar way. the adjust primitive .ad tells nroff to use adjust mode, whereas the no
adjust primitive .na tells it to use no-adjust mode.

As mentioned above, nroff by default is in both fill mode and adjust mode, so you do not need to
begin your script with .fl and .ad if you want nroff to fill and adjust your text. However. if you tum
off filling and adjusting by using the .nf and .na commands. you must use the .fl and .ad
commands to turn filling and adjusting back on.

When you use .nf to tum off fill mode, nroff no longer tries to fill lines to a fixed line length. It
prints each line of input text exactly as received. However. a sufficiently long line of text would run
off the right-hand edge of the page if nroff were to print it as entered. If the input line cannot fit on
one line, nroff prints as much as it can fit on one line, then breaks the line and prints the rest on
the next line with no page offset.

In adjust mode, nroff inserts extra spaces between words to justify lines of text, as described above.
When nroff is in no-fill mode, it is automatically in no-adjust mode: with no fixed line length. there
is no need to insert extra spaces. Moral: you can fill without adjusting. but you cannot adjust
without filling.

If you request filling but not adjusting. nroff fills the output line as described earlier. but does not
insert extra spaces between words; that is, it does not try to keep an even right margin. Every
output line either is shorter than the line length you specified, or exactly as long.

The .ad primitive includes several options. If you use the command .ad without an argument. nroff
keeps strict left and right margins. The primitive .ad 1 justifies the left margin only; .ad r justifies
the right margin only; and .ad b justifies both margins (this, of course, is the default). Finally, .ad c
centers output lines while keeping their lengths less than or equal to the line length, as set with the
.n command.

Remember that nroff ignores adjustment requests if you are in no-fill mode. If nroff is in fill mode
and you request any variety of adjustment, it adjusts accordingly until you issue either a no-fill or a
no-adjust command. If you give a no-fill command, only a fill command restores adjustment; any
plea for a different kind of adjustment is ignored while nroff is in no-fill mode.

To see how this works, type the following script under the name ex2.r, and process it as above:

.11 3. 75 i

.sp \" space
When we were alone, I introduced the subject
of death, and endeavored to maintain that the fear
of it might be got over. I told [Johnson] that
David Hume said to me, he was no more uneasy to
think that he should not be after this life, than
that he had not been before he began to exist •
• sp
.na \"no adjust
JOHNSON: "Sir, if he really thinks so,
his perceptions are disturbed;
he is mad: if he does not think so, he
lies •••• When he dies, he at
least gives up all he has."
.sp

TUTORIALS

nroff Text-Formatting Language 311

.ad r \"right-adjust
BOSWELL: "Foote, sir, told me that
he was not afraid to die."
.sp
.nf \"no-fill
JOHNSON: "It is not true, sir.
Hold a pistol to Foote's
breast or to Hume's breast,
and threaten to kill them,
and you'll see how they behave."
.sp
.fi \"fill
BOSWELL: "But may we not fortify our minds for
the approach of death?"
.sp
JOHNSON: "No, sir, let it alone. It matters not
how a man
dies, but how he lives. The act of dying is not of
importance, it lasts so short a time A man
knows it must be so, and submits.
It will do him no good to whine."

When you process this input with nroff, your output should look like this:

When we were alone, I introduced the subject of death, and endeavored to
maintain that the fear of it might be got over. I told [Johnson] that
David Hume said to me, he was no more uneasy to think that he should not be
after this life, than that he had not been before he began to exist.

JOHNSON: "Sir, if he really thinks so, his perceptions are disturbed; he
is mad: if he does not think so, he lies •••• When he dies, he at least
gives up all he has."

BOSWELL: "Foote, sir, told me that he was not afraid to die."

JOHNSON: "It is not true, sir.
Hold a pistol to Foote's
breast or to Hume's breast,
and threaten to kill them,
and you'll see how they behave."

BOSWELL: "But may we not fortify our minds for the approach of death?"

JOHNSON: "No, sir, let it alone. It matters not how a man dies, but how
he lives. The act of dying is not of importance, it lasts so short a time

•••• A man knows it must be so, and submits. It wi 11 do him no good to
whine."

After the .na primitive, nroff fills but does not adjust the second paragraph. After .ad r, it fills and
right adjusts the third paragraph. After .nf, it neither fills nor adjusts the fourth paragraphs.
Finally. after .ft. it fills the fifth and sixth paragraphs and uses the .ad r adjust option that was in
effect previously.

Under certain extreme conditions, nroff cannot adjust a line even though it is in adjust mode. If.
for example, you specified a line length of one inch, a seven-letter or eight-letter word would then
take up most of a line. When such a word was then followed by a word that could not fit into the

TUTORIALS

312 nroff Text-Formatting Language

line after it, nrotr would begin a new line with the second word rather than violate the right margin
by inserting the into the line. When a line has only one word in it, nrotr obviously cannot adjust
the line by inserting extra spaces between words: therefore, the right margin is left uneven, as
though nrotrwere in no-adjust mode.

Defining Paragraphs
What happens if you copy text from several pages of a book into a file without adding any formatting
commands, and then process the file with nroff? There is no page offset, because nroff's default
page-offset setting is zero: and the processed lines are set to the default length of 6 .5 inches (65 Pica
characters).

More interesting things happen with paragraphs. Suppose you skip a line between paragraphs and
begin each paragraph by indenting five spaces. The blank line in the input text causes a break. and
forces nrotr to print a blank line. The last line of each paragraph is unadjusted, and a blank line
appears before the next paragraph. Initial blank spaces in a line of input also cause a break. In
this example, the breaks caused by initial blank spaces at the beginning of each paragraph do
nothing. because the preceding blank line forces out the last line of the preceding paragraph. nrotr
always considers initial blank spaces in a line to be significant, and preserves them in the output.

To see how blank lines and initial spaces affect nroft's output. copy the following example and run it
through nrotr:

Here is a little text so you can see
whether nroff will ignore the initial
indentation

in this very very long sentence.
Here is a little bit more text.

And here is something to mimic
the beginning of a new paragraph.

The output should look like this:

Here is a little text so you can see whether nroff will ignore the
initial indentation

in this very very long sentence. Here is a little bit more text.

And here is something to mimic the beginning of a new paragraph.

Instead of leaving a blank line in the text, you could use the space primitive .sp 1, which causes a
break and inserts one blank line into the output. In a similar way, .sp 5 causes a break and inserts
five blank lines in the output. Edit the example and replace the blank line with the command line:

.sp 1

You will see that it has the same effect. You can also use the form .sp; nroff assumes you want one
space if you omit the argument.

Most nrotr input consists of many paragraphs that contain text, and you probably want each
paragraph to have the same format in the output. Rather than formatting each paragraph explicitly.
as in this example. you can use the macro facility of nrotr to define a sequence of commands to
format a paragraph. Macros are described in detail later in this tutorial.

TUTORIALS

nroff Text-Formatting Language 313

Centering
The center primitive .ce centers one or more lines of text. For example, you can center a two-line
heading as follows:

.ce 2
Heading Printed
In Center of Page

If you use the .ce command with no argument. nroff assumes a default argument of one, and
centers only the next line of input. The command ce 0 cancels any earlier centering command that
is in operation.

Tabs
If your nroff input includes tables, you may find it convenient to use tabs to separate items in a line
of the table. nroff recognizes the <tab> character and expands it into spaces. If you use tabs to
format a table, remember to use no-fill mode; otherwise, nroff tries to fill and adjust your output
lines.

By default, nroff sets a tab stops after every eight characters. You can use the tab primitive .ta to
change the positions of the tab stops. For example .

. ta 10 20 30 40 50 60

sets tab stops ten characters apart rather than eight . . ta can also be used to fix tab stops in inches
rather than after a number of characters; for example .

• ta o.si 2.oi

sets tab stops after 0.8 inches and 2.0 inches on the output line. This is quite helpful when you are
designing a table.

You can use the tab character command .tc to change the character nroff prints between its current
position and the next tab stop. Enter the following text to see how this primitive works:

.ta 9 19 29 39

.tc *

.nf
<tab>l<tab>2<tab>3<tab>4

The output file. ex3.p. should appear as follows:

*********1*********2*********3*********4

Page Breaks
The begin page primitive .bp causes a break and forces nroff to the next output page. By default,
nroff assumes a page length of 11 inches (66 lines). You can change the page length with the page
length command .pl. For example .

• pl 2i

specifies a two-inch page length.

TUTORIALS

314 nroff Text-Formatting Language

At this point. the question arises about how nroll'top and bottom page margins. number pages, and
other and other aspects of page layout. The answer is that nroll' merely keeps track of the current
output page number and the current ·line number on the current output page: designing top and
bottom margins, page headers and footers, and other aspects of page layout is up to you.

Can nroll' execute a set of commands whenever it reaches a certain position on the page? This
would solve the problem of producing top and bottom margins. and you would not have to guess
where to insert the commands in your script. In fact, you can tell nroll' to do this, by using traps.
The next section of this tutorial describes macros and traps and how to use them to format a page.

This section presents nroll' macros: how to write them, how to tell nroll' to execute them at a give
point on every output page, and how to install a macro file under the COHERENT system

As with previous sections, this one uses a number of exercises. Working the exercises will help you
master nroff quickly. When you format the exercise scripts, do not use the -ms option. Also, it is
not necessary for you to copy the comments into your system; they are here to help you understand
what each nroll'command does, but they have no effect on how the script executes.

What Is a Macro?
To become familiar with the idea of a macro, consider the problem of formatting a paragraph.
Whenever you come to a new paragraph. you want nroll' to skip a line and indent the first line five
spaces. Because nroll' preserves blank lines and initial indentations. you could force nroll' to break
your text into paragraphs simply by inserting a blank line and spaces directly into your text. The
same effect, however, can be achieved by inserting following set of nroll' commands

.br

.sp

.ti 5

\" break
\" skip a line
\" indent next line 5 spaces

between the end of each paragraph and the start of the next paragraph. You should recognize the
first two commands: .br causes a break. so that nroll' prints the last line of the previous paragraph
even though it might not be a complete line; .sp skips a line before the next paragraph begins. The
third command is the temporary Indent command .ti, which tells nroll' to indent the next line; the
number indicates how many spaces to indent. The following exercise, ex4.r, demonstrates how this
works:

TUTORIALS

nroff Text-Formatting Language 315

.11 Ji \" line length

.po Ji \" page offset

.ti 5 \" indent next line
Adam was human--this explains it all. He did
not want the apple for the apple's sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent •
• br \" break
.sp \" skip a line
.ti 5 \" indent next line
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education .
• br
.sp
.ti 5
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

After you have processed this file, the output file ex4.p should resemble the following:

Adam was human--this explains it all. He did not want the
apple for the apple's sake, he wanted it because it was forbidden. The
mistake was in not forbidding the serpent; then he would have eaten the
serpent.

Training is everything. The peach was once a bitter almond;
cauliflower is nothing but cabbage with a college education.

Habit is habit, and not to be flung out of the window by any
man, but coaxed downstairs a step at a time.

Now, in a small file it would be easy to type all of the nroff primitives directly into your input text;
however, what if your file is very long, with hundreds of paragraphs? Every time you wanted to
begin a paragraph. you would have to include that set of commands within the text. You would
save considerable agony if you could bundle these commands together under a common name; then
you could simply put that name into your text whenever you wanted nroff to perform these
commands, rather than typing the commands themselves over and over again.

As you probably have guessed by now, you can do just that; the set of commands is called a macro.
The following shows the selections from Pudd'nhead Wilson's calendar set with a macro called .PP
that takes care of formatting each paragraph. The following exercise, ex5.r, shows how to bundle
together the nroff primitives for formatting paragraphs into the .PP macro:

TUTORIALS

316 nroff Text-Formatting Language

.de pp \" define the PP macro

.br \" break the line

.sp \" insert a blank line

.ti 5 \" indent next line 5 spaces
\" two periods ends the macro definition

• PP \" execute PP macro
Adam was human--this explains it all. He did
not want the apple for the apple's sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent •
• PP
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education •
• PP
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

As you can see, using a macro can save you a considerable amount of work when you prepare your
script.

Introducing Traps
Now, consider the problem of formatting the beginning and ending of each page of output. You
could define what are traditionally called header andfooter macros, which contain the commands
you want performed at the top and bottom of each page. However, how can you tell nrotl' when to
execute these macros? You cannot possibly know where to call these macros in the input text.
because you cannot know where any given text line will appear in the output until you have
processed it through nrotl'. This problem is solved by using traps.

nrotl' keeps track of its vertical position on each output page. You can set a trap that tells nrotl' to
execute a macro at a particular vertical position on every page. When a line of output reaches or
extends past the position that is specified in your trap, nrotl' then executes the commands named in
the trap command before processing any more input text.

You can set a trap by using the when command .wh. For example, if you want nrotl' to call your
header macro .HD at the very top of each page. the command

• wh O HD \" set header trap

sets a trap for the macro .HD at vertical position O (the very top of the page) of every output page.
The macro .HD will then be executed every time nrotl' begins a new page. To have your footer macro
.FO execute one inch from the bottom of each page. use the command

.wh -li FO \" set footer trap

The negative number tells nrotl' to measure distance from the bottom of the page rather than from
the top; the i is an abbreviation for inches. (nrotl' recognizes various units of measurement; this will
be described in more detail later.)

TUTORIALS

nroff Text-Formatting Language 317

Headers and Footers
Suppose you want to design the output page by defining the header and footer macros. A simple
header macro merely skips an inch of space at the top of each page; a simple footer macro forces
printing to stop an inch from the bottom of each page and prints the page number. nroff does not
print page numbers automatically. but it does automatically keep track of which output page it is
on. It stores the page number internally in a number register that you can access with the symbol
'%'. (A later section gives more information about number registers and how to use them.)

The following gives a simple footer macro that prints the page number:

.de FO \" define footer macro FO
'sp 4v \" skip four vertical lines (no break)
.tl - % - \" print hyphen, page number, hyphen
'bp \" jump to new page

\" end macro definition

There are several points of interest raised by this macro.

First, notice that some commands are preceded with an apostrophe rather than with a period. The
use of the apostrophe instead of the period tells nroff to suppress the break these commands
normally cause. You might run into problems if you define your header macro as follows:

.de HD

.sp 1i
\" header macro
\" skip an inch (break)

You want this to leave a blank space of one inch at the top of each page: however. the .sp command
causes a break, so that if a word were left over from the last line on the preceding page, nroff would
print it at the very top of the next page. The effect would be quite unsightly. However, if you use 'sp
instead of .sp in the macro, nroff suppresses the break and does not print the partial word until
after it performs the macro commands. The same is true for the footer macro: you do not want
anything unplanned to be printed in the blank space at the bottom of the page. You should always
be conscious of these considerations when you use commands that cause breaks.

Another new item in the above example is the title command .ti, which prints a three-part title. A
three-part title contains a left part (aligned to the left margin of the page), a center part (centered),
and a right part (aligned to the right margin). The command name .ti is followed by four
apostrophes: nroff prints the characters between the first two apostrophes as the left part of the
title line. those between the second and third apostrophes as the center part, and those between the
third and fourth apostrophes as the right part of the three-part title. If you do not want nroff to
print anything in one of these positions, simply put nothing between the appropriate pair of quotes.
In the above example, the .ti primitive tells nroff to print nothing in the left and right portions of the
footer title line, but to print the page number in the center. If you want an apostrophe to appear as
a part of the title, precede it with the backslash character'\'.

nroff considers the length of the title line to be independent of the length of normal output lines;
therefore, you must set it with the length of title primitive .It unless you want nroff to use the
default title length of 6.5 inches. For example, to set the length of the title to five inches, use the
command

.lt Si

In light of all you now know, you should give Pudd'nhead Wilson's calendar the treatment it
deserves:

TUTORIALS

318 nroff Text-Formatting Language

.11 3i \" set line length to 3 inches

.po 2i \" set page offset to 3 inches

.pl 9i \" set page length to 9 inches

.wh 0 HD \" set the header trap

.wh -li FO \" set the footer trap

.de HD \" define header macro HD
'sp 1i \" skip 1 inches of space

\" end macro definition
.de FO \" define footer macro
'sp 2 \" skip 2 lines
.tl ',_ % - \" define footer title
'bp \" begin new page

\" end macro definition
.de pp \" define paragraph macro
.sp 1 \" skip 1 line of space
.ti 5 \" indent the first line 5 characters

\" end macro definition
.PP
Adam was human--this explains it all. He did
not want the apple for the apple's sake, he
wanted it because it was forbidden. The mistake
was in not forbidding the serpent; then he would
have eaten the serpent .
• PP
Training is everything. The peach was once a bitter
almond; cauliflower is nothing but cabbage with a
college education .
• PP
Habit is habit, and not to be flung out of the window
by any man, but coaxed downstairs a step at a time.

As a point of technique, always set header and footer traps early in your input script; otherwise.
nroff may not print the header on the first page.

Macro Arguments
You can affect how macros function by passing them modifiers. called arguments. An ai;gument
may be a bit of text that is arranged in a special way by the macro, or it may be a number or other
parameter that dictates exactly what the macro does.

As an example of how a macro can handle arguments, consider a macro to format the list of
ingredients for a recipe. You wa:nt the ingredients to. be printed as follows:

3 cups of pumpkin
1 cup of milk
1 cup of sugar
1 tsp of ground ginger
1 tbl of cinnamon

TUTORIALS

nroff Text-Formatting Language 319

Each of these lines has the same format: the amount of ingredient. the unit of measurement. the
word "of'. and the name of the ingredient. You can create a macro (call it .RE. for recipe) that
encodes the format of these lines and contains three "slots": one slot for the amount. one for the
unit of measurement. and one for the name of the ingredient. Each time you use the macro, you
indicate what you want to go into each slot, and nroff substitutes it for you. The macro .RE can be
constructed as follows:

. de RE \" define macro RE
\\$1 \\$2 of \\$3\" set RE's arguments

\" end definition
Here is some text •
• nf \" don't fill the recipe
.RE 3 cups pumpkin
.RE 1 cup milk
.RE 1 cup sugar
.RE 1 tsp "ground ginger"
.RE 1 tbl cinnamon
• fi \" resume filling
Here is some more text .
. bp \" begin a new page, to force printing

When you call a macro that takes arguments. the arguments must appear on the same line as the
macro command itself. A macro may have up to nine arguments; they are denoted by \$1, through
\$9, respectively: the first field after the macro name is called \$1, the second \$2, and so on.

If you want to use as an argument a string of characters that includes blank spaces, you must
enclose the string within quotation marks, as with the words "ground ginger", in the example above.
If you forget to include the quotation marks, nroff regards each word in the string as a separate
argument, and treats them accordingly.

Note that macros that are called by traps cannot accept arguments.

Double vs. Single Backslashes
If you carefully examine the definition of RE. you will see that it identifies each argument with two
backslashes:

\\$1 \\$2 of \\$3

Whenever you identify an argument within a macro, always preface it with two backslashes, rather
than one. The reason is that nroff in effect processes a macro twice: when it first reads it. and later
when you call it within your text. Prefacing an argument with one backslash tells nroff that you
want to expand that argument when the macro is first read; prefacing it with two backslashes tells
nroff that you want to expand it when the macro is called in your text. In nearly every
circumstance. you want to expand the arguments in your text, so you should use two backslashes.
As you will see, this rule also applies to the use of strings and number registers within macros.

To see how this works. consider again the .RE macro:

TUTORIALS

320 nroff Text-Formatting Language

.de RE
\\$1 \\$2 of \\$3

Here is some text .
• nf
.RE 3 cups pumpkin
.RE 1 cup milk
.RE 1 cup sugar
.RE 1 tsp "ground ginger"
.RE 1 tbl cinnamon
.fi
Here is some more text •
• bp

Using two backslashes, as above, allows you to redefine what $1, $2, and $3 mean many times
throughout your text, to generate the following output:

Here is some text.
3 cups of pumpkin
1 cup of milk
1 cup of sugar
1 tsp of ground ginger
1 tbl of cinnamon
Here is some more text.

If you used only one backslash, however, your output would appear as follows:

Here is some text.
of
of
of
of
of

Here is some more text.

nroff could not expand the argument calls (\$1 etc.), because you had not yet defined them:
therefore, it threw them away; and because all of the argument calls had been thrown away, nroff
then threw all the arguments away. All that was left was word of.

Now that you have been shown how to write a macro, the next step is to design some macros and
install them. so you can call them over and over again.

The first step in designing a macro is to analyze the problem that you want to solve. Suppose that
in this instance you want to print a list of names. Each name will consist of a first name, a last
name, and the department with which he is associated, and the list will be printed in columns; for
example:

Firstname Last name Department

Moreover, you want to be able to switch the order in which the columns appear without having to
retype your list; for example:

TUTORIALS

nroff Text-Formatting Language 321

Last name Firstname Department

or

Department Last name Firstname

In effect, then, you want three macros: one for each of the three orders of columns shown above.

When you have finished designing your macros, they should look something the following. Type the
following into the file tmac.lst; note that the symbol <tab> represents a tab character, and should
not be entered literally:

,\" List macros. $1 represents first name,
.\" $2 last name, $3 department
.de LA
,nf
,ta 1.Si 2.75i
\\$1<tab>\\$2:<tab>\\$3
.Rt

.de LB

.nf
• ta 1. Si 2. 75i
\\$2,<tab>\\$1:<tab>\\$3
.Rt

.de LC

.nf

.ta 1.Si 2.75i
\\$3:<tab>\\$2,<tab>\\$1
.Rt

The first lines are comments, so that anyone who looks at these macros will know what they do. The
first command line, introduced with the .de command, names each macro. These names were
selected after checking the file tmac.s, which is where the -ms macro package is kept. to confirm
that they are not used elsewhere. Naturally. using the same macro name in two different places can
lead to a great deal of trouble.

The next command, .nf. turns off the nroff's normal right justification, which otherwise would
smear a table. The .ta command sets the tab characters at certain points on the page, measured
from the left margin.

The next line gives the order in which the arguments appear. The arguments are separated by tab
characters. and punctuation is inserted. The last command, .Rt, calls a macro in the file tmac.s;
this macro resets nroff to its normal fill mode and returns the tab settings to normal. Note that
these macros can be used only when you also use the -ms macro package.

After you have typed the macros into tmac.lst, carefully read over what you type to ensure that no
there are no errors; if you find any. be sure to correct them. The final step is to move tmac.lst into
the directory /usr/lib, which is where tmac.s is also kept.

To test your new macros, type the following text into the file ex6.r:

TUTORIALS

322 nroff Text-Formatting Language

The following lists give the personnel who are involved in
this project:
.sp
.LA Ivan Sanderson Engineering
.LA Marian Maddux ·Design
.LA George Sutcliffe Electrical
.LA Catherine Williams "Metal Shop"
.LA Fred Wilson Carpentry
.LA Anne Bilecki "Machine Shop"
.sp
.LB Ivan Sanderson Engineering
.LB Marian Maddux Design
.LB George Sutcliffe Electrical
.LB Catherine Williams "Metal Shop"
.LB Fred Wilson Carpentry
.LB Anne Bilecki "Machine Shop"
.sp
.LC Ivan Sanderson Engineering
.LC Marian Maddux Design
.LC George Sutcliffe Electrical
.LC Catherine Williams "Metal Shop"
,LC Fred Wilson Carpentry
.LC Anne Bilecki "Machine Shop"
.sp

We expect that they will receive your full cooperation.

The same set of names is used three times; the only difference is the macro call employed.

Now, process this file with the following command:

nroff -ms -mlst ex6.r >ex6.p

As you can see. when you installed tmac.llst into /usr/lib, you could invoke it in the same way
that you invoke tmac.s with -ms.

When you look at the output file ex6.p, you should see something that resembles the following:

The following lists give the personnel who are involved in this project:

Ivan Sanderson: Engineering
Marian Maddux: Design
George Sutcliffe: Electrical
Catherine Williams: Metal Shop
Fred Wilson: Carpentry
Anne Bilecki: Machine Shop

Sanderson, Ivan: Engineering
Maddux, Marian: Design
Sutcliffe, George: Electrical
Williams, Catherine: Metal Shop
Wilson, Fred: Carpentry
Bilecki, Anne: Machine Shop

Engineering: Sanderson, Ivan

TUTORIALS

nroff Text-Formatting Language 323

Design:
Electrical:
Metal Shop:
Carpentry:
Machine Shop:

Maddux,
Sutcliffe,
Williams,
Wilson,
Bilecki,

Marian
George
Catherine
Fred
Anne

We expect that they will receive your full cooperation.

As you grow proficient in writing nroff macros, you will probably find it most efficient to keep
special macros in their own files; this will save time by ensuring that nroff does not have to process
macros that are never called.

Suppose you are writing a script for nroff and. to relieve the tedium, decide to punctuate the text
occasionally with a rousing cry of "FOOD FIGHT!!". If you plan to interject this phrase more than a
few times in your script, you can take advantage of another labor-saving device, called a string. You
can use a string name as an abbreviation for a long string of characters you use frequently. Like a
macro. a string is a name that nroff associates with a definition that you supply. Wherever you put
the name in your text, nroff prints the definition. Although macros refer to sets of commands that
you define, strings refer to strings of characters that you define.

You define a string with the define string primitive .ds:

.ds FF "FOOD FIGHT!!"

The first field after the .ds gives the name of the sting, in this case FF. Like a macro name, a string
name may be either one or two characters. The second field after the .ds gives the definition of the
string. in this case

"FOOD FIGHT! ! "

As in this example, you must enclose the definition within quotation marks if it contains spaces.

Be careful whenever you define a macro or a string. If you already have a macro or a string named
X and you define a new macro or string named X, nroff forgets the previous meaning of X.

Once you have defined a string. you can refer to it anywhere in your text. The string itself appears
in the output text wherever a reference to it appears in the input text. You refer to the string FF in
the following fashion:

*(FF

Use the left parenthesis '(' only when the name of the string is two characters long. If the string
name is only a single character, such as S, refer to it as follows:

*S

As an example, type the following script into ex7.r, and process it through nroff; do not use the -ms
macro package:

TUTORIALS

324 nroff Text-Formatting Language

,ds FF "FOOD FIGHT!!"
. ds W "WHOOPEE! ! "
.ce
From Aristotle's "Poetics"
.br
.sp
A tragedy is the imitation of an action *(FF
that is serious and also, *W as having magnitude,
complete in itself, with incidents *(FF
arousing pity and fear, wherewith to accomplish *W
*(FF its purgation of such emotions *(FF *(FF •
• bp

nroff adjusts the spacings between words in a string but does not hyphenate any word that is
within a string. If you use a very short line length. such as two inches. and define a string that
includes a three-inch long word. that word would not be hyphenated but would extend past the
right-hand margin.

You cannot include a newline character in a string. However. you can spread the definition of a
string out over more than one line with the aid of concealed newlines (preceded by the backslash
character'\'). nroff ignores each concealed newline. For example, add the following string to the
previous example:

.ds PR "GO TEAM \
GO!!!"

As you can see, nroff ignores concealed newlines anywhere in its input.

Strings Within Strings
You can define a string that has embedded within it a reference to another string. Whenever you
refer to the bigger string in your text. nrotT substitutes the definition of the smaller string for any
reference to the smaller string. When you embed strings. though. you should use two backslashes
to refer to the embedded string. for the same reason that you should use two backslashes to refer to
an argument within a macro:

.ds S "This string *x has embedded *y strings"

To help understand this better. type following three scripts into your computer and format them
with nroff. The first script contains proper references to embedded strings (using double
backslashes): it works as expected:

.ds S "strings *X, strings *Y, strings *Z"

.ds X "here"

.ds Y "there"

.ds Z "everywhere"
*S

The next script contains embedded references that use only single backslashes. Because the
embedded strings are defined after the larger string. they are not available when nroff defines the
larger string, and so the references are ignored:

TUTORIALS

nroff Text-Formatting Language 325

.ds S "strings *X, strings *Y, strings *Z"

.ds X 11 here"

.ds Y "there"

.<ls Z "everywhere"
*S

The third script again contains embedded references using single backslashes. This time, the
embedded strings are defined before the larger string. and so are available when the larger string is
defined:

.ds X "here"

.ds Y "there"

.ds Z "everywhere"

.ds S "strings *X, strings *Y, strings *Z"
*S

To avoid unnecessary worry, you should always play it safe and use double backslashes to refer to
embedded strings.

You learned in previous sections that nrotJ keeps track of the output page number while it prints its
output. You made use of this fact when you created a footer macro that printed page numbers.
nroff also keeps track of other housekeeping information, such as the current line length. page
offset, page length. and vertical position of the last output line. It keeps this information in storage
locations called number registers.

You can use the name of a number register to refer to the number that is stored in it. When you
place a reference to a number register in your text, nrotr substitutes for the name whatever number
is currently in the register.

Number register names are one or two characters long. just like macro and string names. You can
have a number register with the same name as a string or a macro without confusing nrotJ. even
though you cannot give a macro and a string the same name. However, you might become
confused; nrotJ scripts usually are easier to understand if you keep all macro names, string names,
and register names distinct.

Another difference between number registers. macros, and strings is that nrotJ itself does not define
any macros or strings (although the -ms macro package does), but it does automatically define and
update quite a few number registers. You can use these predefined number registers in much the
same way that you use registers you define yourself, except that you cannot change their values.

To define a number register, you must specify the register name and the Initial value for the register.
The number register primitive .nr looks like this:

.nr X 5

Here X is the name of the register and 5 is the initial value to store in it. To refer to number register
X in your text, use \nX; if the name is two characters long (for example, XY), use \n(XY. This is
exactly like the way you refer to a string, except that you use the letter 'n' instead of an asterisk '*'.
When nrotJ sees a reference to number register X, it automatically substitutes the value stored in X.
As you will see shortly, nrotJ can do arithmetic, and learning to use number registers is an
important part of learning to take advantage of nrotJ's arithmetic abilities.

A reference to a number register can occur anywhere a number would normally occur. For example,
if you set register X to 5, as above, you can set the line length to five inches as follows:

TUTORIALS

326 nroff Text-Formatting Language

.11 \nXi

This command is essentially the same as

.11 Si

if the current value of register X is 5.

A familiar problem arises when you refer to a number register inside a macro or a string definition.
If you use just one backslash. nrotI substitutes the value in the register for the reference when it
first processes the macro or string. If you have not yet defined the number register in your script,
nrotI inserts 0 into the macro or string. Normally. you should use a a double backslash. such as
\ \nX or \ \n(XY, when referring to a number register within a macro or string. Using the double
backslash is particularly important if you change the value of the register throughout your script,
and want the current value to appear in the macro or string each time you call it.

Try typing the following examples into your computer, and processing them with nrotI. See if you
can describe why nrotI prints what it does in each case. The first example defines a string with a
register reference preceded by a single backslash .

. ds S "Here is a number \nX"

.nr X 55
*S
\nX

You should see the following output:

Here is number 0
55

nrotI printed what it did because number register X had not yet been defined when it was called in
string S; nrotI therefore erased the reference to X and substituted zero for it. Number register X
was then set to 55, which was printed when the register was specifically called later in the script.

The second example is similar, but now the number register is set before the string is called:

.nr Y 56

.ds T "Here is a number \nY"
*T
\nY

Now the output is

Here is a number 56
56

The third example uses a double backslash for the register reference.

.ds u "Here is a number

.nr z 57
*U
.nr z 58
*U

This script produces the following:

Here is a number 57
Here is a number 58

TUTORIALS

\\nZ"

nroff Text-Formatting Language 327

The final example uses a single backslash again.

.nr w 59

.ds v "Here is a number
*V
.nr w 60
*V

The following is produced:

Here is a number 59
Here is a number 59

\nW"

The last example illustrates the danger of using a single backslash to refer to a number register
within a string definition. You defined the number register W before you defined the string V, so the
value for W was available when nroff read the definition of V. nroff substituted the value when it
reads the definition; the reference to the number register W is no longer there. You then change the
value ofW. but as you see in the next call ofV. the change does not affect the number that appears
in V. In contrast to this, notice in the third example that the double backslash in the definition of U
allows the reference to number register Z to remain within the definition of string U. Whenever you
change the value of Z and then call U, nroff substitutes the new value of Z for the reference to Z
within U.

You can also use the .nr primitive to increase or decrease the value in a number register. For
example, suppose you initially store the value five in X:

.nr X 5

Incrementing and Decrementing
You can change the value of X to 9 by adding 4, as follows:

.nr X +4

You can then change the value of X to 7 by subtracting 2:

.nr X -2

A plus or minus sign before a number on the .nr command line tells nroff to add or subtract the
given amount to or from the value in the register. Because a negative number is always preceded by
a minus sign whereas a positive number usually is not preceded by a plus sign. you can use .nr to
set a register to a positive value in a way that cannot be imitated for negative values. For example,
suppose you again start out with number register X set to a value of 5:

.nr X 5

If you immediately follow this with

.nr X 7

then nroff replaces the value of 5 with 7. The second .nr does not increase the value of X by 7 to
produce 12; rather, it wipes out the previous value of 5 and replaces it by the value 7. The
command line to increase X by 7 is

.nr X +7

If you again start with a value of 5 in X and want to change the value to -4, you cannot use the
following command line:

TUTORIALS

328 nroff Text-Formatting Language

.nr X -4

nroff interprets this as a command to decrease the current value of X by 4, which is not what you
intended. This command places the value 1 in X. since 5-4= 1. If X initially has a value of 5 and
you want to change the value to -4, you could use the command

.nr X -9

You can also increase or decrease the value of a number register without using .nr. If number
register X currently has the value 10, the reference \n+X increases the value in X by l to 11 and
substitutes the new value for the reference. The value in X becomes 11; nrofl' replaces the next
reference \nX by 11. whereas another reference \n+X increments the value in X to 12 and replaces
the reference by 12. Similarly, if number register XY currently has the value 15, the reference
\n+(XY increases the value in XY to 16 and replaces the reference by 16.

You can also decrease a register's value. The reference \n-X decreases the current value in X by 1
and substitutes the new value for the reference. Likewise, the reference \n-(XY decreases the
current value in XY by 1 and substitutes the new value for the reference.

You can change the size of the increment or decrement by means of another option to the nr
command. If you define X with

.nr X 1 5

then nroff sets the value of X to l and sets the increment value for X to 5. The next reference \n+X
increments the value in X from 1 to 6 (the '+' now causes nrofl' to add 5 to the current value of X
rather than adding 1) and substitutes 6 for the reference. In the same manner, \n-X subtracts 5
from the current value of X and substitutes the new value for the reference. This is convenient if
you plan to repeatedly increment or decrement X by the same fixed amount. If you wish to change
the size of the increment, simply redefine X with another .nr that specifies the new initial and
increment values. If you define a number register but do not specify an increment value, nrofl'
assumes the increment value to be 1.

The following example of a macro illustrates a typical use of a number register and incrementing.

.nr W 1

.ds X "Here's Wrestler No. \\nW,"

.de B

.br
*X\\$1!!!
.nr b \\n+W

\"
\"
\"

\"
\"
\"

set W to 1, inc by 1
define string x
define macro B

define arg to macro B
increment w
end definition

.B "Alex 'Killer' Bovine" \" call B with arguments

.B "William 'Crusher' Risible"

.B "Vlad 'the Impaler' Acephalous"

.bp

to produce the following output:

\" force printing of page

Here's Wrestler No. 1, Alex 'Killer' Bovine!!!
Here's Wrestler No. 2, William 'Crusher' Risible!!!
Here's Wrestler No. 3, Vlad 'the Impaler' Acephalous!!!

A reference to a number register may appear any place a number can normally appear. For
example:

TUTORIALS

nroff Text-Formatting Language 329

.nr X \nY \nZ

sets register X to the value of register Y and sets the increment for X to the value of register z.
AB mentioned before. nroff performs arithmetic. It understands and evaluates properly formed
arithmetic expressions involving numbers. references to number registers. the arithmetic operators ·+·. ·-·. '*', • /'. '%', and parentheses. The first four operators represent addition. subtraction.
multiplication. and division. The '%' is the modulus or remainder operator: the value of 7%3 is l.
which is the remainder when 7 is divided by 3.

One word of caution: nrotl' evaluates expressions from left to right without any preference for
performing some operations before others. For example .

. nr X 5+4*3/9

stores 3 in X. nrotl' does not perform the multiplication and division before the addition, as you
might expect.

Another important fact is that number registers hold only integers. If you write

.nr X 3.6

nroff truncates the value 3.6 and stores 3 in X. Also. an assignment such as

.nr X 3.9*3.9

stores 9 in X; nrotl' truncates each factor before it performs the multiplication. The assignment

.nr X 0.4*8

stores 0 in X rather than 3: truncation occurs before nrotl' performs the multiplication rather than
after.

A final word of caution: when you use numbers with commands other than .nr, the results may not
be what you expect. nrotl' understands several different units of measurement and converts
between units automatically. The next section explains units and conversion in detail.

Units of Measurement
As mentioned above. nrotl' maintains many number registers during processing. For example. it
stores the current page length in the register .1 (Note that the period·: is actually part of the name
of this register.) If you set the line length to five inches with the command

.11 Si

nroff stores the length in register .1 automatically; however, if you print the value in register .1 by
entering \n(.l, you find the value is 600. What does this mean?

Many nrotl' commands require that you specify lengths or measurements as arguments. You are
already familiar with many of these commands: for example, .ll, .po, .pl, and .lt. nroff accepts
various units of measurement, but for purposes of calculation, it converts each into a basic unit
called a machine unit, which is abbreviated u. A machine unit is 1I120 of an inch long. Because
one inch is 120 machine units, the length of a five-inch line is 5 times 120. or 600 machine units.

The conversion table for units of measurement is as follows:

TUTORIALS

330 nroff Text-Formatting Language

inch:
vertical line space:
centimeter:
em:
en:
pica:
point:

Ii= 120u
lv = 20u
le= 47u
lm = 12u
ln = 6u
IP= 20u
lp = lu

Most of these are traditional typesetting terms.

As noted briefly earlier, nroff's output actually consists of a sequence of characters. It is useful,
though, to think of the output as being "printed" at ten characters per inch (Pica or 10-pitch
spacing) and six lines per inch. Many output devices use this spacing. With these assumptions, 51
is equivalent to five inches of printed output.

Every nroff command has a default unit of measurement. For example, the default unit for .ll is m,
whereas the default unit for .sp is v. If you type

.11 5

nroff interprets it not as five inches or five centimeters, but as Sm, which it converts to 5 times 12,
or 60 machine units (60u).

nroff always assumes a unit specification as part of each number and automatically converts each
number and its unit specification into machine units. If you append an explicit unit specification to
the number, nroff uses it; if you do not, nroff uses the default unit for the command.

For example, suppose you write the following commands:

.nr X 2i

.11 \nX

What line length results? The first command stores the number 2 times 120, or 240, in register X.
The second command is therefore equivalent to typing

.11 240

However, the default unit for .ll ism. Because lm equals 12u, nroff sets the line length to 12 times
240, or 2,880 machine units. If you wanted a line length of two inches to result from the above
commands. you will be unpleasantly surprised, because 21 equals only 240u. Instead. you should
write:

.nr X 2i

.11 \nXu

By including the u in the .ll primitive, you do not accidentally multiply your results by 12. as
happened earlier.

You should think of the unit specification as a part of a number. Because nroff accepts so many
different units of measurement, a number without a unit specification is ambiguous. What does '5'
mean? Five inches? Centimeters? Ems? nroff must know what unit of measurement you are
using. If you think of the unit specification as a part of the number, you will have less trouble with
potentially mystifying situations like the following. As mentioned, number registers store only
integers and nroff truncates each number in an arithmetic expression to an integer before
evaluating the expression. Therefore. the following stores 0 in register X:

.nr X 0.4*9

But now try the following:

TUTORIALS

nroff Text-Formatting Language 331

.nr X 0.4i
\nX

This does not store O in X like the previous command; it stores 0.4 times 120, or 48 in X. The 0.4 is
not truncated to 0 here! Truncation occurs after conversion to machine units, so nroff truncates
0.4u in the first example. But the number in the second example is given in inches i instead of
machine units u. nroff converts it to u before truncating to get an integer.

As another example, the following stores l in X:

.nr X 0. Oli

nroff converts 0.01 inches to 0.01 times 120, or l.2u. and then truncates 1.2 to l.

The following command illustrates that nroff understands each number in an arithmetic expression
to have an attached unit specification, whether you supply one or not .

• 11 2*8

Recall that nroff stores the current line length in the register .l; if you type

\n (.1

you will receive the number 2,304. nroff interprets the 2 as 2m and the 8 as 8m, because the
default unit for .ll is m. Then it converts each to machine units and multiplies to give the result:
(2*12)*(8*12), or 2,304.

Consider one final example that illustrates the unusual consequences of seemingly innocent
assignments. Suppose you set the page offset as follows:

.po 8/3

nroff stores the current page offset in register .o. To see what number it stores there. type

\n(.o

You see that the page offset is 2. Because the default unit for .po is m, the calculation is
(8*12)/(3*12)=8/3, which nroff truncates to 2. Two machine units is equivalent to only 1 /60 of an
inch. This is not a physically reasonable value for most typewriter-like devices, so a page offset of 0
characters results. On the other hand,

.po 8/3u

produces a page offset of approximately l I 4 of an inch.

Now that you have been introduced to number registers, you can use them in conjunction with
powerful conditional commands to create more elaborate nroff scripts.

To see how conditional statements help you construct an nroff script. consider again the problem of
creating header and footer macros. Earlier, you constructed macros that skipped space at the top of
the page and printed the page number at the bottom of each page.

Suppose, however, that you are formatting a paper that has a title. You want to print the page
number for page 1 at the bottom of the page. and to print the rest of the page numbers at the top of
the page. Both the header and the footer need some kind of conditional mechanism to perform
differently on the first page than on subsequent pages. On page 1. the header should skip to where
the title will be printed; on other pages, the header should print the page number. On page 1. the
footer should print the page number; on other pages, the footer should leave a block of blank space

TUTORIALS

332 nroff Text-Formatting Language

at the bottom of the page.

To execute commands conditionally. use the if/else commands .ie and .el. which are demonstrated
in the following example. Note that the formation ''. which is used with the .ti command.
represents two apostrophes, not a quotation mark.

.de HD \" define header

.ie \\n%=1 .A

.el .B \" else do B

.de A \" define macro A

.sp I 1.0i \" space down to 1 inches from top of page

.de B \" define macro B
'sp 2v \" skip 2 spaces
• tl - % - \" print page no •
'sp 11.oi \" skip to 1 inch from top of page

.de FO \" define footer

.ie \\n%=1 .c \" if page no. is 1 then do C

.el .D \" else do D

.de c \" define macro c
'sp l-4v \" move to 4 in. above bottom of page
. tl ',_ % - \" print page no •
'bp \" begin new page

.de D \" define macro D
'bp \" begin new page

As you can see. the .ie and .el commands always occur in pairs . • ie consists of three parts: the
command name .ie, then a condition that nroft' tests. followed by a command nroft' performs if the
condition is true. If the condition on the .ie command line is not true. nroft' performs the command
on the .el line instead.

In the example. each conditional invokes a macro on the command line. Actually, the conditional
can specify Input text rather than the command after the condition. If you want to execute several
commands or include several text lines conditionally. enclose the lines with the special sequences
'\{'and '\}'.

Note. too, that one other new element was introduced in the construction of these macros. Some of
the .sp commands have a vertical bar immediately in front of the measurement; for example .

• sp I 1.0i

Normally. when nroft' sees a command like .sp l.Oi, it moves down one inch on the output page.
The movement is relative to where nroft' happens to be on the output page when it received the
request. The vertical bar tells nroft' that the following measurement is an absolute measurement.
measuring either from the top of the page (if positive) or from the bottom of the page (if negative).
Therefore .

• sp I 1.0i

tells nroft' to move to one inch from the top of the page;

TUTORIALS

nroff Text-Formatting Language 333

.sp I (-4v)

tells it to move to four vertical spaces from the bottom of the page.

The .if primitive is formed exactly like .le. Unlike .le, which must always be used with .el, the .if
command may be used by itself. lf the condition on the .if line is true, nroft' performs the command
that follows the condition; ifthe condition is false, it ignores the command altogether.

This chapter ends with two substantial examples that incorporate most of what you have studied so
far. To illustrate the use of conditionals, the first example begins each even paragraph of output
with the phrase Even Paragraph: and begins each odd paragraph with the phrase Odd Paragraph:.
Type this into the file ex8.r, and process it through nroft' without using the -ms macro package, and
as before, there is no need to copy the comments:

.wh 0 HD \" set header trap

.wh -2i FO \" set footer trap

.nr EO 1 \" set EO register to 1

.po 2i \" page offset 2 inches

.pl 6i \" page length 6 inches

.lt 4i \" title length 4 inches

.11 4i \" line length 4 inches

.de HD \" define header
'sp I< u-1v> \" space down to 1 inch minus 1 line
.tl "*(WS" \" set ws macro in title
'sp I 1.Si \" space down to 1.5 inches

.de FO \" define footer
'sp I C3i+Jv> \" space down to 3 inches plus 3 lines
.tl , ,_ % _,, \" set page number in footer
'bp \" begin new page

.ds ws "From the Devil\'s Dictionary"
\" define string WS

.de pp \" define paragraph macro

.ie \\n(EO=O .EP \" if EO = 0 (even) then do EP

.el .OP \" else do OP

.de EP \" define EP (even paragraph)

.br

.nr EO 1 \" set register EO to 1

.sp Iv \" skip 1 line

.11 4i \" set line length to 4 inches

.lt 4i \" set title length to 4 inches
*E \ ''. insert string E

.ds E 11 Even Paragraph1"
\" define string E

.de OP \" define macro OP (odd paragraph)

.br

.nr EO 0 \" set register EO to 0

.sp lv

.11 3i \" set line length to 3 inches

.lt 3i \" set title length to 3 inches
*O \" insert string O

TUTORIALS

334 nroff Text-Formatting Language

.ds O "Odd Paragraph:"
\" define string o

.PP
Debt, n. An ingenious substitute for the whip
and chain of the slave-driver •
• PP
Bore, n. One who talks when you wish him to listen •
• PP
Brandy, n. A cordial composed of one part
thunder-and lightning, one part remorse, two parts
bloody murder, one part death-hell-and-the-grave,
and four parts clarified Satan •
• PP
Responsibility, n. A detachable burden easily
shifted onto the shoulders of God, Fate, Fortune,
Luck, or one's neighbor.

This example uses an "even/odd" regtster called EO to determine whether you are beginning an even
or an odd paragraph. To distinguish between even and odd paragraphs. it uses a line length of four
inches for even paragraphs and one of of three inches for odd paragraphs. It changes the title
length with each paragraph. so nroff centers the page number with respect to whichever kind of
paragraph happens to occur at the bottom of a page.

The fiilal example illustrates a loop constructed with the if/else commands. The first paragraph is
six inches long with no page offset; each succeeding paragraph is one inch shorter with a page offset
one inch longer. The line length of the sixth paragraph is one inch; the next paragraph renews the
cycle with a six-inch line length. Type this into file ex9.r. and process it as you did the above
example:

.nr PO 0 1

.de pp

.ie \\n(P0=6 .A

.el .B

.de A

.br

.nr PO O

.nr LL 6-\\n(PO

.11 \\n(LLi

.po \\n(POi

.nr PO \\n+(PO

.sp

.de

.br

.nr

.11

.po

.nr

.sp

.PP

B

LL 6-\\n(PO
\\n(LLi
\\n(POi
PO \\n+(PO

\"
\"
\"
\"

\"

\"
\"
\"
\"
\"
\"

\"

\"
\"
\"
\"
\"

set register PO to O, increment by 1
define paragraph macro
if register P0=6 then do A
else do B

define macro A

set register PO to 0
set register LL to 6 minus PO
set line length to LL inches
set page offset to PO inches
increment register PO
skip a space

define macro B

set LL to 6 minus PO
set line length to LL inches
set page offset to PO inches
increment register PO
skip a space

Future, n. That period of time in which our affairs prosper,
our friends are true, and our happiness is assured •
• PP
Gallows, n. A stage for the performance of miracle plays, in

TUTORIALS

nroff Text-Formatting Language 335

which the leading actor is translated into heaven •
• PP
Geneaology, n. An account of one's descent from an ancestor
who did not particularly care to trace his own .
• PP
Guillotine, n. A machine which makes a Frenchman shrug
his shoulders with good reason .
• PP
History, n. An account most false, of events
most unimportant, which are brought about by
rulers mostly knaves, and soldiers mostly fools •
• PP
Idiot, n. A member of a large and powerful tribe
whose influence in human affairs has always been
dominant and controlling .
. PP
Kiss, n. A word invented by the poets as a rhyme
for "bliss".

You should try this example to see verify that "loop" works as advertised.

,);nvironments ,and': Diversions<
Another aspect of nroff's power is the ability to shift from one environment to another.

The nroff environment is the overall manner in which nroff processes your input text. The
environment's definition includes such aspects as line length, fill and adjust modes, and
indentation.

nroff allows you to define three independent environments. called 0, l, and 2. In each, you can set
as you wish such parameters as line length. filling. adjustment, and indentation. You can call a
different environment with the .ev command; the parameters you define for the new environment
control text processing until you change them within the present environment or shift to another
environment.

Not all nroff parameters change when you switch to a new environment. For example, different
environments do not have independent page offsets; the .po command affects all environments.
Parameters that may be set to different values in different environments are environmental
parameters; parameters that cannot be switched according to environment, like page offset, are
global parameters. Macro and string definitions are global.

When you first call nroff, you are by default in environment 0. In all the examples used in this
tutorial thus far, everything happened in environment 0. The following example illustrates how to
switch back and forth between environments. Type in the following exlO.r and process it to see the
output as you go along.

TUTORIALS

336 nroff Text-Formatting Language

.po 1i

.11 4i

.de pp

.sp

.ti O.Si

.PP
The heart of the
but the mouth of
.br
.ev 1
.11 3i
.ls 2
.PP

\" set global page offset to 1 inch
\" set line length in ev 0 to 4 inches
\" define paragraph macro

\" indent first line 1/2 inch

righteous studieth to answer,
the wicked poureth out evil things.

\" switch to environment 1
\" set line length to 3 inches
\" line spacing now double space

A froward man soweth strife, and a whisperer
separateth chief friends •
• br
.ev \" return to previous ev (0)

.PP
It is naught, it is naught, sayeth the buyer;
but when he is gone his way, then he boasteth •
• br
.ev 1
.PP

\" switch to ev 1

Wealth maketh many friends; but the poor is separated
from his neighbors •
• br
.ev \" return to ev 0

The first .ll command sets a line length of four inches in environment 0. After defining the
paragraph macro .PP and an initial paragraph in environment 0, you switched to environment
with the command

.ev 1

You now enter a new environment. If you do not explicitly set environmental parameters. such as
line length. nroft' automatically uses default values for them. nroft' assigns the same default values
in environments 1 and 2 as it does in environment 0.

The line length in environment 1 is set to three inches with the output text double-spaced. The line
space primitive

.ls 2

leaves one blank line between each output line. Thus, paragraphs processed in environment O have
four-inch single-spaced lines, whereas paragraphs processed in environment 1 have three-inch
double-spaced lines.

The example used the command line

.ev

without an argument to leave environment 1. This leaves environment 1 and restores (or "pops")
the previous environment - in this case, environment 0. The next time you enter environment l,

TUTORIALS

nroff Text-Formatting Language 337

you will not need to set the line length to three inches again: the value stays in effect in environment
1 until you specifically change it. The same is true of all environmental parameters.

To understand how nroff switches between environments. imagine that you have a set of plates,
each marked with either a 0, al, or a 2. You have as many plates of each type as you wish. You
stack the plates on a table; the top plate represents your current environment. You begin with a ·o·
plate on the table, to represent the initial environment when you enter nroff.

Switching to environment 1 with the command .ev l corresponds to placing a 'l' plate on top of the
'O' plate. You can again change the stack of two plates either by placing a new plate on top of the
stack, or by removing the top plate from the stack: the former corresponds to calling a new
environment, whereas the latter corresponds to restoring the previous environment with the
command line .ev.

Because you can have as many plates of each type as you wish, you can call environment I, then
call environment 2, then restore environment I. then call environment 0, and so on. The command
.ev N, where N is 0, I, or 2. places (or "pushes") a plate onto the stack; the command .ev removes
(or "pops") the top plate from the stack.

To illustrate this, add the following text to the end of the previous example. Use a piece of paper
and pencil to keep track of how the .ev commands add or remove environments. Because the line
lengths are different in each environment, it should be easy to tell in which environment nroff has
processed each paragraph:

TUTORIALS

338 nroff Text-Formatting Language

.ev 2

.11 Si
\" introduce environment 2
\" set line length

.in li \" set indentation

.PP \" paragraph in ev 2
A poor man that oppresseth the poor is like
a sweeping rain which leaveth no food •
• br
.ev 0
.PP

\" push ev 0

As a roaring lion, and a ranging bear; so is
a wicked ruler over the poor people •
• br
.ev 1
.PP

\" push ev 1

Wrath is cruel, and anger is outrageous;
but who is able to stand before envy?
.br
.ev 2
.PP

\" push ev 2

A good name is rather to be chosen than
great riches; and loving favour rather than
silver and gold •
• br
.ev 0 \" push ev 0
.PP
Pride goeth before destruction, and an haughty
spirit before a fall •
• br
.ev
.ev
.PP

\" return to ev 2
\" return to ev 1

He that answereth a matter before he heareth it,
it is folly and shame unto him •
. br
.ev
.ev
.PP
A merry heart
broken spirit
.br

\" return to ev
\" return to ev

doeth good like a
drieth the bones.

0
2

medicine, but a

Earlier, it was shown that nrotr uses a buffer to assemble words from its input into output lines.
Actually, each environment has its own buffer. Switching to a new environment does not cause a
break. Suppose you are currently in environment I with an unfinished line in the buffer. When
you give the command .ev 2, the unfinished line remains undisturbed in the environment l buffer
until you return to environment I. Text you process in the meantime in environment 2 or in
environment 0 has no effect on the partial line in the environment l buffer, because nrotr assembles

TUTORIALS

nroff Text-Formatting Language 339

text processed in other environments in different buffers.

In the following example, you process some text in environment 0 and then switch to environment
2. Any partial line collected in environment 0 when you switch to environment 2 waits patiently in
the buffer until you return to environment O and issue the break command to flush the buffer. You
then return to environment 2 and flush any partially filled line left when you restored environment
0. Enter the following into the file exl l .rand process it through nro:ll':

.11 Ji \" set line length in ev O

.po 2i \" set page offset in ev O
This is environment O •
• ev 2 \" introduce ev 2
This is environment 2
.br \" flush ev 2 buffer
.ev \" return to ev O
.br \" flush ev 0 buffer

As you can see, the order of the two sentences is reversed from the way you entered them. If you
were to delete the .br commands after the texts in exlO.r, the output would be very badly affected.

Headers and Footers
A common use of environment switching is for the creation of header and footer macros. As the
following example demonstrates. the length of title set by the .It command is an environmental
parameter. The following constructs header and footer macros that print strings of asterisks in the
margins above and below the text; type it into your computer as exl2.r:

TUTORIALS

340 nroff Text-Formatting Language

.wh O HD \" set header trap
• wh I 2. Si FO \" set footer trap
.de HD \" define header macro
.ev 1 \" define ev 1
.lt Si \" set title length to S inches
'sp 3v \" move down three spaces
.tl '****' '****' \" define header title
'sp 2v
.ev

\" skip two more spaces
\" pop environment

,de FO \" define footer macro
'sp 2
.ev 1 \" push ev 1
.tl '****'%'****'\" define footer title
.ev
'bp

.11 4i

.pl 3i

.in 1i

.po 2i

.de PP

.sp 1

.ti O.Si

.PP

\" pop environment
\" begin new page

\" set line length in ev O
\" set page length
\" set indentation
\" set page offset
\" define paragraph macro

\" indent 1st line 1/2 inch

When in the course of human events •••

The following section explains why header and footer macros often use a different environment.

More About Fonts
As earlier described in some detail, nrofl' output includes representations for boldface and Italic
characters. in addition to the normal Roman characters. The visual appearance of boldface and
italic characters depends on the device you use to print your nrofl' output.

If you want a word or a phrase to appear in boldface, enclose the word or phrase between \m and
\fR:

The last word of this sentence appears in \fBboldface\fR.

The sequence \m tells nrofl' to print in boldface, whereas the sequence \fR tells nrofl' to return to
the Roman font. Italics are used in a similar manner:

An entire phrase \fiappears in italics\fR.

To print more than a few words in a different font. you should use thefont command .ft:

.ft I
Here is text you want to
appear in italics •
• ft R

The initial .ft I switches the print to italic font, and the concluding .ft R returns it to Roman font.

TUTORIALS

nroff Text-Formatting Language 341

As you might have suspected, the command .ft B switches to boldface.

You have two additional options when you use the .ft primitive. The command .ft P returns to the
previous font. You can use .ft P within a macro or a string to return to the previous output font,
even though you do not know which font was previously in effect. You can also use the sequence
\fP to return to the previous font. The .ft primitive without an argument tells nrot'f to return to the
Roman font.

In scripts that frequently change fonts, you should switch to a new environment for header and
footer macros, in order to protect their font settings.

Diversions
The diversion is a powerful feature that allows you to suspend outputting lines until nrot'f has
collected all of a block of text. For example, suppose you use nroff to format a chapter of a book.
The chapter includes footnotes at various places in the text; you want nrot'f to collect these
footnotes and print at the end of the chapter. To do this, nroff must store the processed footnote
text somewhere until the end of the chapter, when you want it printed. Where do you store the text
until the time comes for it to appear? To handle situations like this, nrot'f provides a diversion
mechanism: you can divert text into temporary storage within a macro.

Diversion normally involves passing to a new environment to process the footnote without causing a
break in the main environment. When the text of the diversion ends, nrot'f returns to the main
environment, again without causing a break, and continues processingjust as if the text of the note
had never been in the input.

However, before you attempt to write a footnote macro, type the following text into the file exl3.r,
and process it with nrot'f. This example illustrates the basic features of diversion. The example
exchanges two paragraphs of text, so that nrot'f prints the second before the first.

.di x \" divert the following to macro X

.sp
A soft answer turneth away wraths
but grievous words stir up anger •
• br \" send last line of paragraph to X
.di \" end diversion
.sp
He that is slow to anger is better than the
mighty; and he that ruleth his spirit than he
that taketh a city •
• br
.sp
.x \" print the paragraph diverted to X

The new command here is the divert primitive .di. The command .di X tells nrot'f to divert the text
that follows into macro X; the matching .di with no argument marks the end of the diversion.

The break is necessary before the end of the diversion because nrot'f diverts processed text into the
macro. Without the break, nrot'f would not divert any partially filled line in its buffer to X: the last
few words of diverted text might not form a complete line in the buffer, so nrot'f might not divert
them. However, if you break the input before you end the diversion, nrot'f will also divert those last
few words.

As you saw earlier, the .br command must be used to flush that environment's buffer before
switching environments.

TUTORIALS

342 nroff Text-Formatting Language

The next example. exl4.r, illustrates a similar point .

• br \" clear buffer
testword \" put 'testword' into buffer
.di X \" divert to X
Piracy, n. Commerce without its folly-swaddles,
just as God made it •
• br \" divert last line
.di \" end diversion
.X \" print text in X

Here nroff diverts testword into X along with the text between .di X and .di. Why did this happen?
The command .di X does not cause a break. Because you did not pass to a new environment in this
example before you diverted, nroff formed the diversion text in the same buffer in which it stored
testword. You did not break the input, so nroff appended the diverted text to testword.

To make sure nroff diverts only text between .di X and .di into X, do one of the following: If you
want to process the diverted text within the current environment, empty the buffer by inserting the
.br command before you start the diversion. If you switch to a new environment before starting the
diversion, flush the buffer for the new environment before you begin to process diverted text.

Diverting processed text into a macro that already holds material will erase whatever had already
been stored there. In some cases, such as the footnote example, you need to append information
into the same macro. The divert and append variation .da of the diversion construction allows you
to do so. The following example. exl5.r, demonstrates this command:

.11 3i \" set line length

.po 2i \" set page offset

.de pp \" define paragraph macro

.br

.sp 1

.ti O.Si \" indent first line 1/2 inch

.di x \" divert the following into X

.PP
Litigation, n. A machine which you go into as a pig
and come out of as a sausage •
• br
.di \" end diversion
.x \" print what is in X
.br
.da x \" divert and append material into X
.PP
Inventor, n. A person who makes an ingenious arrangement
of wheels, levers and springs, and believes it
civilization •
• br
.di \" end diversion
.x \" print what is now in X

In this example. you first diverted a single paragraph into the macro X. nroff stored in X the
processed paragraph; in other words, the command line .PP is not stored in X; its output is. When
you invoke X with the command line .X, nroff takes the processed text in X as input. To nroff,
there is no difference between processed text and unprocessed text as input: it processes the

TUTORIALS

nroff Text-Formatting Language 343

contents of X in the current environment. just like any other text. Therefore. nroff processes
diverted text twice: first when it stores the text within the macro. and again when you invoke the
macro.

The fact that nroff processes diverted text twice can cause problems if you are not careful.
Fortunately. nothing strange happens in the example above. You store a processed paragraph with
lines three inches long in X. When you invoke X. the line length is three inches. Because each line
in X is already exactly three inches long. nothing happens to it when reprocessed; the layout of the
output paragraph is unchanged.

But now, consider what happens in the following example, exl6.r:

.11 3i \" set line length

.po 2i \" set page offset

.de pp \" define PP macro

.sp 1

.ti o.si \" indent first line 1/2 inch

.di x \" divert following into x

.ev 2 \" push environment 2

.11 4i \" set line length to 4 inches

.PP
Justice, n. A commodity which in a more or less
adulterated condition, the State sells to the
citizen as a reward for his allegiance, taxes
and personal service .
• br
.ev
.di
.x

\" pop environment (return to ev 0)

\" end diversion

A pargraph processed in environment 0 in this example has three-inch lines; you want your diverted
paragraph to have four-inch lines. However, when you print the diverted paragraph with the
command line .X. what happened? nroff did not print four-inch lines. The four-line text lines set in
environment 2 were reprocessed into three-inch lines when the diversion macro is called in
environment 0.

There are two ways to prevent such disasters. First. if you wish to invoke X in the main
environment, use no-fill mode:

.nf

.x

.fi

\" begin no-fill mode

\" return to fill mode

In no-fill mode. nroff outputs lines of input exactly as it receives them, so it keeps four-inch lines
four inches long and does not change the format of the diverted text. The second strategy is to
return to environment 2 and then invoke X; again. the format of the diverted paragraph does not
change. because the line length in environment 2 is four inches.

.ev 2

.x

.ev

\" push environment 2

\" restore original environment

TUTORIALS

344 nroff Text-Formatting Language

A Footnote Macro
The footnote macro that follows does not print notes at the bottom of each page; rather, it prints
everything at the end of the chapter. In the processed text, number register Fn is used to keep
track of the footnote number; the footnote number will be printed in square brackets where the
footnote originally appeared in the text.

Type this macro into the file exl 7.r. If you wish to use it in your text processing, transfer it to the
directory /usr/lib under the name tmac.fn. Then, whenever you wish to use this macro, be sure to
include the option

-mfn

when you invoke nroff:

.de FN
[\\n+(Fn]
.ev 1
.da Z
.sp

\" define macro FN
\" print footnote no. in main text
\" push environment 1
\" divert and append following into Z

\\n(Fn. \\$2, \\fI\\$1\\fR,
\ \$3, \ \$4. \" format & print footnote in Z

.br \" flush diversion buffer

.di \" end diversion

.ev \" pop environment (return to ev 0)

Note that requests to change fonts are preceded by double backslashes, because they are within a
macro. The change to the italic font prints the first macro argument, which should be the title of
the work, in italics. Number register Fn contains the number of the last footnote; you should
initialize it with the command

.nr Fn O 1

As shown above, each footnote entry in your text should have four arguments. In your input text.
each footnote will look like this:

,FN "Personal narrative of a pilgrimage to\
El-Medinah and Mecca" "Richard F. Burton"\
London 1856.

When you print the diversion .Z at the end of the chapter, each footnote will be laid out as follows:

8. Richard F. Burton,
Personal narrative of a pilgrimage to
El_Medlnah and Mecca,
London, 1856.

In the previous sections, you learned how to control nroff by including commands in the input along
with the text. You can also supply information in another way: on the command line you type to
call nroff. Unlike the commands discussed above, this information is not part of the script you input
into nroff.

TUTORIALS

nroff Text-Formatting Language 345

You already know about some simple nroff command lines. For example, the command

nroff

forces nroff to accept input from the keyboard (sometimes called the standard Input) and print
output on the terminal (the standard output). Type <ctrl-D> (that is, hold down the ctrl key and
type D) to exit from nroff if it is reading input from your terminal.

The command line

nroff scriptl.r

forces nroff to take accept input from the file scriptl.r instead of from your terminal, while the
command

nroff -ms script.r

processes scriptl.r with the -ms macro package. You can also redirect nroff output to another file
target:

nroff -ms scriptl.r >target

The general form of the nrotT command line is:

nroff [option ... 1 [file ... 1

This means that the command line consists of the nroff command, followed by zero or more options,
followed by zero or more.files. nroff processes each named.file and prints the result on the standard
output (the terminal, unless redirected). If no file argument is given, as in the first example above,
nroff reads from the standard input.

Each option on the command line must begin with a hyphen '-' to distinguish it from a file
specification. Using nroff with the -ms macro package is one example of entering an option. In
general. the -m option takes the form

-mname

which means the option consists of the characters -m immediately followed by a name. This tells
nroff to process the macro package found in the COHERENT file

/usr /lib/tmac.name

For example, the ms macro package discussed in chapter 2 is in the file /usr/lib/tmac.s,
whereashe man macro package used for the man command and to process manual pages is in the
file /usr/lib/tmac.an.

Any macro packages that you customize for your own use should be stored in the directory /usr/lib
under such a name if you wish to use them with the -mname option.

The -i option tells nroff to read input from the standard input after processing each given.file. This
allows you to supply additional input interactively from your terminal.

The -x option tells nroff not to move to the bottom of the last output page when done. This is
especially useful if you want to see the output on the screen of a CRT terminal.

The -nN option sets the page number of the first output page to the number N, rather than starting
at page 1. This is useful for processing large documents with input text in several files which nroff
processes separately.

TUTORIALS

346 nroff Text-Formatting Language

The -rXN option sets the value of number register X to N. This option lets you initialize number
registers when you invoke nroff.

The COHERENT system provides many useful features which can be helpful while you are using
nroff. In particular, you can use a number of special characters. The stop-output and start-output
characters, usually <ctrl-S> and <ctrl-Q>, stop and restart output on your terminal. The Interrupt
character, usually <ctrl-C>., interrupts program execution; you can use it to stop an nroff command
if you typed the command line incorrectly. The kill character, usually <ctrl-\>, also terminates
program execution. Some COHERENT systems use different characters than those mentioned
above; consult Using the COHERENT System for details.

The Lexicon entry for nroff summarizes its primitives, dedicated number registers, escape
sequences, and command-line options. The related program troff also performs text formatting,
except that it produces proportionally spaced output that can be printed on printers that support
the Hewlett-Packard Page Control Language (including the LaserJet and DeskJet families of
printers) or on printers that support the Postscript page-control language. See the Lexicon entry for
troff for details on how to use this program.

The Lexicon also has entries for two macros packages that are included with the COHERENT
system: man, which produces manual pages similar to those that appear in the Lexicon; and ms.
which performs formatting somewhat similar to that seen in this tutorial. You will find that these
two packages already perform practically all of the formatting tasks that you will commonly need to
do.

The error messages generated by nroff are given in the appendix at the rear of this manual.

TUTORIALS

UUCP, Remote Communications Utility

UUCP is a set of programs that together let you communicate in an unattended manner with remote
COHERENT and UNIX sites. The term UUCP is an abbreviation for "UNIX to UNIX copy"; as its
name implies, UUCP was developed under the UNIX operating system. Mark Williams Company has
recreated UUCP for COHERENT.

UUCP allows your COHERENT system to talk to other computers that also run COHERENT or
UNIX. It can transmit files and mail to other systems and receive material from them, without
needing you to guide it by hand every step of the way. Moreover, you can instruct UUCP to
telephone other computers at the same time each day; this permits regular, orderly exchange of
mail, news, and files among computers, and allows you to take advantage of lower telephone rates
during off-peak periods. In a similar fashion, UUCP allows other systems to log into your system, to
exchange mail or other information, and otherwise perform useful tasks.

Numerous UUCP systems have linked together to create an informal network called the Usenet.
Many megabytes of source code, news, and technical information are available across the Usenet.
Anyone who is connected to the Usenet can exchange mail with anyone else who is also connected
to the Usenet. All that is required to hook into the Usenet is to obtain a UUCP connection to anyone
else who is connected to the Usenet.

You can use UUCP only if you have telephone access to another computer that runs UUCP, and if
your system and the remote system with which you wish to communicate have been described to
each other. UUCP is standard with COHERENT and UNIX, and can be purchased for MS-DOS. If
you wish to copy files from another system, you must arrange with the system administrator of that
system before you can begin to use UUCP. Likewise, if you want someone else to dial into your
system to upload or download files, you must first describe that system to your copy of UUCP.

Contents of This Tutorial
This tutorial describes UUCP and tells you how to set up and run your UUCP system.

The first section gives an overview of UUCP. Following sections show how to set up UUCP using the
command uuinstall; then give extended examples of how to set up your system to dial out to other
UUCP sites, and how to set it up to enable other UUCP sites to dial into to you.

The final sections discuss how to debug UUCP problems, and how to administer your UUCP system

Try as we might, there is no way to present all of UUCP in a brief tutorial. If you wish to explore the
heights and depths of UUCP. we urge you to acquire the following books:

O'Reilly, T.: !o/cfjj):: A Directory of Electronic Mail Addressing and Networks. Sebastapol, Calif,
O'Reilly & Associates Inc., 1989.

O'Reilly. T.; Todino, G.: Managing UUCP and Usenet. Sebastopol, Calif, O'Reilly & Associates
Inc .. 1987.

Seyer M.D.: RS-232 Made Easy: Connecting Computers, Printers, Terminals, and Modems.
Englewood Cliffs, NJ, Prentice-Hall Inc., 1984.

347

348 UUCP Remote Communication

UUCP is a set of programs that exchange files with other computers that run UUCP. You can set
aside files or mail messages to be transferred to another computer; UUCP regularly checks to see if
material has been set aside to be transferred, dials the remote system, and exchanges the files
without requiring your assistance.

This appears to be a simple function. but it can be extremely useful to you. Suppose, for example.
that you run a real-estate office that is a member of an organization with regional and national
offices. You can tell UUCP to call your regional office each night. to send a file of your new listings
and to accept a file of new listings in your district that had come from other local offices. Likewise.
your association's regional office can telephone the national office each night to receive new listings
in your region. which can then be passed on automatically to the appropriate neighborhood offices.
All of this information can be transferred at night, when telephone rates are lowest, and without
needing you to be at the console. When you come to work the next morning. you will have the latest
listings instantly available on your terminal.

In brief. what UUCP offers is the ability to join a network of computers. in which every user of every
computer can exchange information with every user on every other computer, automatically. What
computer networks can do is limited only by your need to exchange information with other
computer users. and by your imagination.

The Programs
UUCP consists of the following programs:

uucico

uucp

uudecode

uuencode

uuinstall

uulog

uumvlog

uuname

uutouch

uux

uuxqt

TUTORIALS

Call remote systems: log in to the remote system and transfer files.

The UUCP user interface. uucp copies files from one computer to another. Be sure
not to confuse the uucp command with the UUCP system. despite their similar
names.

Translate files encoded by uuencode back into object code.

Translate binary files into printable ASCII characters for transmission to another
system.

This program displays a template on your screen, and helps you describe a system
to UUCP relatively painlessly.

Read the UUCP logs. which record what UUCP does.

Copy the current UUCP log files into backup files. Throw away all log files older a
requested number of days. UUCP logs everything that it does; and since it does a
lot, its log files can grow very large very quickly. uumvlog ensures both that you
have enough information on your system to diagnose problems with UUCP. and
that the UUCP log files do not overwhelm your system.

List the systems that your computer can reach.

Create a file that triggers a call to a named remote system.

Execute a command on a remote system.

Check directory /usr/spool/uucp/sltename and execute all files therein that have
the prefix "X."

UUCP Remote Communication 349

Two other programs, while not part of UUCP per se, are used by it:

ttystat Check the status of your asynchronous ports. If UUCP is not receiving files from
other systems or not sending files to other systems, it may be because the
appropriate ports have not been enabled.

mail Send "electronic mail" to another person, either on your system or on another
system via UUCP.

Directories and Files
UUCP uses the following files and directories:

/bin/uulog
The uulog command.

I etc/ domain
This file lists the UUCP domain. It is read by mail.

I etc/modemcap
This file holds descriptions of modems that are understood by the COHERENT system.

I etc/uucpname
Holds the name of your system, as it is known to other UUCP sites.

/usr /bin/uucp
The uucp command. Copy a file to another system that runs UUCP.

/usr/bin/uuname
The uuname command.

/usr/bin/uudecode
The uudecode command.

/usr/bin/uuencode
The uuencode command.

/usr /lib/uucp
Contains UUCP commands and system data files.

/usr /lib/uucp/L-devices
Describe the outgoing lines. Note whether they are directly wired or modems; give the
protocol needed to manipulate them.

/usr/lib/uucp/L.sys
Gives login data for remote sites. It gives the way to call remote sites and the sites that only
call you.

/usr/lib/uucp/Permissions
For each site, list the programs that that site has permission to execute on your system.

/usr /lib/uucp/ttystat
The ttystat command.

/usr/lib/uucp/uucico
The uucico command.

/usr/lib/uucp/uumvlog
The uumvlog command.

TUTORIALS

350 UUCP Remote Communication

/usr/lib/uucp/uutouch
The uutouch command.

/usr/lib/uucp/uux:qt
The uux:qt command.

/usr/spool/logs/uucp
Log of UUCP activity.

/usr /spool/uucp/ .Log
Directory containing UUCP logfiles, as follows:

/usr /spool/uucp/ .Log/uuclco/ sltename
/usr/spool/uucp/.Log/uux:/sltename
I usr /spool/uucp/ .Log/uucp/ sltename
/usr/spool/uucp/.Log/uux:qt/sltename

/usr /spool/uucp/ sltename I c. •
Files that instruct the local system either to send or to receive files.

/usr /spool/uucp/ sltename /D.•
Work files for outgoing and incoming files.

/usr/spool/uucp/LCK.•
The "lock" files UUCP uses to coordinate its resources. When a UUCP program attempts to
access a remote site, it writes a "lock" file for that site. This is to prevent UUCP from
accidentally attempting to access the same site more than once simultaneously. When the
program that wrote the lock file exits successfully, it erases its lock files, and so makes that site
accessible to other UUCP programs.

/usr/spool/uucp/ .Sequence
This directory contains the sequence number of the last file handled by UUCP.

/usr/spool/uucp/TM•
Temporary files that uuclco generates while it receives files from remote sites.

/usr /spool/uucp/ sttename /X. •
Executed files. These files will be executed by the command uux:qt, and are generated by a
remote system.

/usr I spool/uucppublic
Public directory accessible by all remote UUCP systems.

UUCP can be used to network computers that are within the same office or the same building. It is
far more common, though, to use UUCP to connect computers that are far apart via modem. This
tutorial assumes that you will be using UUCP to exchange files via modem.

If you have not yet attached a modem to your computer, this section will give you some useful hints.
It is straightforward to attach a modem to your computer, but you must be careful.

First, read the documentation that comes with your modem, and look for the following: (I) the baud
rate at which the modem operates, and (2) the command protocol that your modem uses.

Second, check the plug on the back of your modem. The modem will connect to your computer via
a nine-pin or 25-pin D plug, also known as an RS-232 interface. Such a plug can be either male or
female: the male plug has nine or 25 small pins projecting from it. whereas the female does not.

TUTORIALS

UUCP Remote Communication 351

Due to what can only be termed extreme stupidity, IBM AT and AT-compuatible computers use RS-
2320 plugs for both serial and parallel ports. Be sure to plug your modem Into a serial port, not the
parallel port, or you can damage your computer and your modem!

Third, obtain a cable to connect one of the serial ports on your computer to the modem. The serial
ports on an IBM AT or AT compatible are almost always male. If your modem has a female plug,
you will need a male-to-female cable, whereas if your modem's plug is male (which is very rare), you
will need a female-to-female plug. Be sure to purchase a standard modem cable for an IBM AT;
practically all computer dealers carry them. The cable you purchase should support "full modem
control"; if it doesn't say on the package. be sure to ask your dealer before you buy it. If you are
handy with a soldering iron you may be able to solder up such a cable for yourself, but unless you
know precisely what you are doing it probably is not worth the trouble.

The Lexicon entry RS-232 contains pinouts for both nine- and 25-pin connectors. When you plug
in your cable, be sure to note whether you plugged it into port coml, com2, com3 or com4.

Fourth, reconfigure the serial port to suit your modem. This involves the following steps:

1. Log in as the superuser root.

2. Edit the file /etc/ttys. This file normally has several lines in it, one that describes the console
and one for each serial port. Each line has four fields: a one-character field that indicates
whether a login prompt should be displayed (used only for devices from which people will be
logging into your system); a one-character field that describes whether the device is local or
remote (a local would be a modem from which you wished to dial out, a remote device would be
a modem from which someone could dial in); a one-character field that describes the speed (or
baud rate) at which the device operates; and a field of indefinite length that names the device
being described.

If you have plugged into serial port coml a 1200-baud modem that will allow remote logins,
edit the line for coml to read as follows:

lricomlr

If you have plugged into serial port com2 a 2400-baud modem from which you are only going
to dial out, edit the line for com2 to read as follows:

01Lcom21

Note that the second and last character are a lower-case el. not a one. For more information,
see the Lexicon entries for com, getty and ttys.

3. When you have finished editing /etc/ttys. type the following command:

kill quit 1

This will force COHERENT to read /etc/ttys and set up its ports in the manner that you have
configured them.

Finally, test if you have connected your modem. Turn on your modem; then log in as the superuser
root and type the following command:

echo "FOO" >/dev/port

where port is the "local" version of the port, depending on which serial port you have plugged your
modem. If the systems are connected, the lights on your modem should blink briefly. For a more
sophisticated test, try to communicate with your modem by using the command kermit. If you are
not familiar with kermit, see its entry in the Lexicon for details.

TUTORIALS

352 UUCP Remote Communication

If you continue to have problems making connections with your modem, see the volume RS-232
Made Easy. referenced above. It describes in lavish detail how to connect all manner of devices via
the RS-232 interface. Also check the Lexicon articles modem and RS-232 for helpful information.

The first step to setting up UUCP is to select a site name for your system. The name must have
eight characters or fewer, and must be unique - or unique, at least, to the system into which you
will log in. Avoid names taken from popular culture. such as "calvin," "hobbes," or "arnold" - these
have already been used many times. The site name is written into file /etc/uucpname. See the
Lexicon entry uucpname for more details.

Next, select a domain name for your system. A domain is a set of UUCP system that together form
one group with a common name. Even if you do not belong to a domain, you must set a domain for
your system, because mail expects it. By convention, you can use your site name plus the suffix
.UUCP to create a domain. The domain name is written into file /etc/domain. See the Lexicon
entry domain for details.

If you wish to use uuinstall to set up UUCP, then that utility will show you how to install your site
and domain names. Otherwise, you must edit /etc/uucpname and /etc/domain to install them.

Installing UUCP means giving it the information it needs so it can dial out and make connection
with another system; and so another system can dial in and make connection with it.

You can edit the necessary UUCP files by hand, if you wish. Two sections later in this tutorial will
walk you through how to do that, should you be interested. COHERENT. however. comes with the
command uuinstall, which uses a series of interactive screens to walk you through the set-up
process. This section introduces you to uuinstall.

To begin. before you can use UUCP to log into a remote system, you must find a remote system that
will let you log in via UUCP. This section uses the Mark Williams bulletin board system mwcbbs as
an example. mwcbbs is available via UUCP to all users of COHERENT. Through mwcbbs you can
exchange mail with Mark Williams Technical Support, download source code for interesting and
amusing programs, and download the latest versions of COHERENT binaries that repair reported
bugs.

To begin. log in as the superuser root and type:

uuinstall

In a moment, the screen will clear and the following menu will appear:

H - Help for screens
s - Sitename
L - Lsys
D - Devices
p - Permissions

You should type H first. uuinstall will show you the keystrokes it expects to move from one field to
another. These keystrokes are the same as used by the MicroEMACS screen editor. If you're not
familiar with MicroEMACS, the keystrokes are easy enough to learn.

TUTORIALS

UUCP Remote Communication 353

Setting Up Your Local Site
If you are describing a system to UUCP for the first time, type S for site name. This will ask you for
your site name and your domain name. Type each in the space indicated.

When you have finished entering this information, type <ctrl-Z> to exit this screen and return to the
main menu.

Devices
The next step in setting up UUCP is to tell it what type of modem it will working with. If you are
working with UUCP for the first time, type D for devices. You will see the following template in the
right half of your screen:

H Help for screens
M Modify this entry
N Next entry
P Previous entry
A Add an entry
C add Comment
D Delete this entry
x exit [l

Press A to add a new device. As soon as you do so, uuinstall displays the following template in the
upper left half of your screen:

Type:
Line:
Remote:
Baudrate:
brand:

The first field, Type: can take one of two entries: DIR or ACU. The former indicates that the device is
directly wired into your computer, such as another computer in your office area: the latter is for
remote devices like modems. For purposes of this example, we assume that you are using a mode;
so type ACU. Now type <ctrl-N>, to move to the next field.

In the next field, Line:, enter the serial port into which you've plugged your modem: comll, com21.
etc. Then type <ctrl-N>.

The next field, Remote:, gives the name of the port into which a remote device is connected. Enter
the port into which you plugged your modem, followed by the letter 'r'. For example, if your modem
is plugged into port com21. enter com2r. Type <ctrl-N> to move to the next field.

The next field, Baudrate:, is the speed at which your modem operates, e.g .. 2400 or 9600. Enter it,
then type <ctrl-N>.

Finally, enter the type of modem that you are using. The COHERENT system's file /etc/modemcap
contains descriptions for a number of popular modems. to spare you the trouble of typing control
sequences for your modem. The following table gives the code name for each of the modems
described in I etc/modemcap, plus a description:

TUTORIALS

354 UUCP Remote Communication

ha yes
tbfast
xtb2400
avatex
pro modem
mkl2
dc300

Hayes Smartmodem 1200
Trailblazer, 9600 baud
Trailblazer. 2400 baud
Hayes clone, 2400 baud
Prometheus Promodem 1200
Signalman Mark XII
Radio Shack Direct-Connect 300

Enter the code name for the appropriate modem. One hint: if you have a Hayes or Hayes-compatible
modem that runs at 2400 baud, enter avatex instead of hayes - their modem descriptions are
virtually identical except for the baud rate.

Please note that the dialing commands in modemcap assume that you have a Touch-Tone
telephone. If you have a pulse telephone, you must modify your modem's entry in modemcap.
First, consult the documentation for your modem and find the correct command for dialing a pulse
telephone; on Hayes and Hayes-compatible modems, it is DP. Then open the file /etc/modemcap
and locate the description of your modem; then change the characters that follow the string ds= to
the command you just looked up. For example, to edit the avatex entry in modemcap so it will dial
a pulse telephone, change the string ds=DT to ds=DP.

Once you have described your modem correctly, there should be no need for you to do it again.
Type <ctrl-Z> to save your changes and return to the main menu.

Describing a Remote Site
The next step is to enter information about the site you will be contacting. When you have returned
to uuinstall's main menu, type L. for L.sys. L.sys is a file that hold a description of every system
with which you will exchange files. As soon as you type L, uuinstall displays the following template:

system
Line
baud rate
phone number
Day to call
[

[

[

[

[

[
[

expect
expect
expect
expect
expect
expect
expect
expect

Connected system list

Time From Time To
['
[

[

[

[

[
[

send
send
send
send
send
send
send
send

Brackets '[' indicate a point where you are to enter data.

TUTORIALS

UUCP Remote Communication 355

Type M, to modify this entry.

In the first entry, System, type the name of the system with which you will be connecting. Since
you will be contacting the Mark Williams Bulletin Board, type mwcbbs. Type <ctrl-N>, to move to
the next field.

The next field, Line, names the line to which you have connected your modem, either ACU or a port
from the aforementioned devices screen. This may seem redundant with the description in the
device file; however, it's not, because it's possible to connect to a remote system via more than one
route or device. fype the name of the port (e.g .. com21), then <ctrl-N>.

In the next field baud rate, type your modem's baud rate; then <ctrl-N>.

In the next field, phone number, enter the remote system's telephone number. For this example,
enter the telephone number for mwcbbs, which is 17085590412. (If you live in the 708 area, do not
include the "1708" area code.) Note that no hyphens are included. Now, type <ctrl-N>.

Day and Time To Call
The next of fields let you set the days of the week and times to call the remote system. Day to Call
recognizes the following values:

Wk Every weekday, i.e., Monday through Friday
Su Sunday
Mo Monday
Tu Tuesday
We Wednesday
Th Thursday
Fr Friday
Sa Saturday
Never Don't call remote system
Any Call at any time

Time From and Time To set a "window" during which UUCP will attempt to contact the remote
system. Both are set using a 2400-hour clock; for example, with the setting

We 2100 2300

UUCP will try to contact this remote system between 9:00 PM and 11 :00 PM. Likewise, with the
setting

We 2300 0200

UUCP will try to contact mwcbbs between 11:00 PM and 2:00 AM the following morning. If on the
first try UUCP fails to make connection with the remote system (the line is busy, say). it will try
again periodically until either it connects with the remote system or the time period for that system
and day has ended. (The following section will tell you how to set when UUCP checks for newly
queued files.) When the next ''window" opens up, UUCP will then try again.

If you do not set the time for a given day, then UUCP will attempt to contact the remote system as
soon as it discovers that a file for that system has been queued. The advantage of setting times is
that you can force UUCP to work in the evening and on weekends, when telephone rates are
cheaper, and you can spread UUCP's work around so it never overloads the system at any given
point. After all, if you need your modem yourself during the day, you don't want to wait for UUCP to
finish a call before you use it.

TUTORIALS

356 UUCP Remote Communication

As you can see, the template for days and times has seven rows. This lets you establish different
times for each day of the week; for weekdays and weekends; for weekdays alone; or weekends alone.
You do not have to dial a remote site every day! Depending upon the importance of the site,
weekdays or weekends alone may be sufficient. Consider the following set of entries:

Day to Call
Wk
Sat
Sun

Time From
2300
2300
1300

Time To
0200
0200
1500

This scheme dials the remote site between 11 PM and 2 AM Monday through Saturday, and between
1 PM and 3 PM on Sunday. This takes advantage of the fact that on Sundays, lower telephone rates
are in the afternoon rather than the evening; and it also takes advantage of the fact that like most
sensible people, you have better things to do on a Sunday afternoon besides work on your
computer.

The default setting. Any with no times, forces UUCP to transmit files as soon as the are queued. If
you wish to change this, do so. Type <ctrl-N> to move from field to field and from line to line.

If you are interacting with a number of remote sites, be sure to stagger the times during which
UUCP attempts to contact them. The more systems UUCP has to contact during a given time
period, the fewer attempts it will be able to make to contact any of them.

The Chat Script
The last eight fields on this template let you enter the "chat script". This script walks your UUCP
system through the prompts and responses by which you actually log into the remote system.

To understand the structure of the chat script, consider the process by which you log into the
system for International Widget. When you make the connection, the phrase

Welcome to the Wonderful World of Widgets!

appears on the screen. What you really wants to see, however, is the prompt

Login:

so you press the carriage return key to the system to get on with it. The remote system then
displays the Login: prompt, and you reply by typing your login ID. say frank. Finally, the system
displays the prompt

Password:

and your reply by typing your password, say "bahHumBug". All then proceeds accordingly.

The chat script mimics this sequence of events. It is constructed out of a set of Expect/Send pairs:
the Expect portion tells UUCP what to expect the remote system to send, and the Send portion tells
UUCP how to respond. Optionally, an entry may take the form

expect-subsend-subexpect send

where subsend is a possibly empty string, enclosed in hyphens, to be sent if the "expect" string is
not received. For example,

ogin:--ogin: nuucp

waits for ogin:; if this string is not received, a newline is sent and the system waits for ogf.n: again.
If ogf.n: is received either time, nuucp is sent followed by a newline.

TUTORIALS

UUCP Remote Communication 357

The first Expect/Send pair should hold the prompt that UUCP needs to log in - and how to
respond if it doesn't get it. In most cases, you should set the Expect field to "ogin:" and leave the
Send field as the pair of quotation marks. which sends a carriage return.

Type <ctrl-N> until the cursor is position in the first Expect field; then enter the first Expect/Send
pair as follows:

Expect "" Send \r\d\r

The empty quotation marks "" in the Expect field represent nothing or anything. Entering this first
lets you skip over any line noise or grandiose messages that may accompany the login prompt. The
sequence \r\d\r in the Send field means. "Send a carriage return, wait one second, then send
another carriage return." By sending carriage returns and delaying, your system has a fighting
chance of moving to the actual login prompt.

Note, by the way, that you can use the following escape sequences in your chat script:

Notation Meaning

""
\b
\C

\d
\n
\r
\s
\t

Expect a null string
Send backspace
If send string ends with \c,
suppress newline after send string
Delay one second while sending
Send a newline
Send a carriage return
Send a space
Send a tab

Press <Ctrl-N> to move to the next Expect/Send pair; then enter the following:

Expect ogin: Send nuucp

mwcbbs sends the login prompt Coherent login:. It is sufficient to look for the tail of that prompt.
or ogin:. Every user who logs into mwcbbs should use the login ID nuucp. so you should type that
into the the Send field, to send in response to the login prompt.

Next, you must enter the password. Type <ctrl-N> to enter the next Expect/Send pair, and enter:

Expect ssword: Send public

mwcbbs sends the prompt Password: to ask for the.password. Again, it is sufficient to include only
the tail of the prompt. The password for mwcbbs is always public. so that must go into the Send
portion of the Expect/Send pair.

Press <ctrl-N> to move to the next Expect/Send pair. Now, you must enter the BBS password.
which is serial number of your copy of COHERENT. The prompt is BBS access Password:: again,
the stub ssword: is sufficient. If your COHERENT serial number is 1234567, then this
Expect/Send pair should appear as follows:

Expect ssword: Send 1234567

When you have finished writing the chat script. your description of the remote system is complete.
Type <ctrl-Z> to indicate that you have finished editing. and then type X to exit from this screen
and return to the main menu. Then type P to enter the last template needed for installation: the
one that sets permissions on your system.

TUTORIALS

358 UUCP Remote Communication

Granting Permissions
The last task in describing a remote site is setting its permissions. Unless you grant the remote
system permissions, it can execute nothing on your system, not even the mail program to send you
a letter. When you grant permissions. you do the following:

Name the remote system in question.

Give the name by which the remote system knows you (if it is other than the name in
I etc/uucpname.

Name the programs it can execute on your system.

Name the directories into which it can write files, and the directories from which it can copy
files.

If permissions were not set rigidly. then every UUCP connection would be potentially a breach of
system security.

uuinstall's "permissions" appears as follows:

Items in all lists are separated by : (colon)

Remote site name
Provide an entry for that site calling in <yin>

LOG NAME [
Add an entry to letc/passwd <yin> [
Identify myself as [
Can the remote site request file transfers •.• <y/n/c>
Can this computer initiate file transfers •.• <yin> [

Corrunands which can be executed at this computer ••.

Read directory list
[

Exceptions to the read directory list
[

Write directory list
[

Exceptions to the write directory list
[

Note that an ellipsis · .. .' indicates that some text has been left out so this display will fit onto a
printed page. Also, a bracket'[' indicates a point where you should enter data.

The first slot in the template asks you to name the remote site. Enter the name of the site as you
entered it in the L.sys template; in this example, enter mwcbbs. uuinstall automatically uses this
entry to fill in the LOGNAME slot by default to the site name with the letter 'u' appended to the
beginning.

The second slot in the template asks if you want to provide an entry in /usr/lib/uucp/Permissions
for that site to call you. Enter 'y' only if that site will be dialing into your system; otherwise. enter
'n'. Since mwcbbs will never call you. enter 'n'.

TUTORIALS

UUCP Remote Communication 359

The next question

Add an entry to /etc/passwd <y/n> :

asks if you want uuinstall to update the file /etc/passwd automatically. If you answer 'y',
uuinstall adds a new entry for LOGNAME to file /etc/passwd when you exit from this screen.
Again, since mwcbbs will never call, it will never need to log in: so answer 'n'.

The next question

Identify myself as :

asks if you wish to identify yourself to the remote system as something other than your usual
system name - that is, if you wish to identify yourself by a name other than the one that is in the
file /etc/uuname. The Mark Williams Bulletin expects that you identify yourself as bbsuser, so type
that into this field.

The next two slots ask if the remote site can request files from your system and if you can, on your
own, upload files to the remote system. For this example, you will want to send files to mwcbbs,
and have it send files to you; so answer 'y' to both questions.

The last five fields are "long fields". When data are to be entered into a long field, uuinstall opens a
window at the top of the screen, which looks like this:

Data entry for potentially long field

Enter the long field's data into the window. Typing a carriage return at the beginning of a line ends
the long field. uuinstall then displays a convenient chunk of the long field on the main screen.

Typing <ctrl-P> or <ctrl-N> moves you to, respectively. the previous or next field on the screen.
Typing <ctl-Z> finishes the entire screen.

The first long field asks you to name the commands that the remote site can execute on your
computer. Enter rmail:rnews. The former will let mwcbbs send electronic mail to your system, and
mews will let it transfer news files to you. For other remote systems. you can add other commands
to this list; but remember that the shorter the list is, the less the chance an intruder will be able to
do mischief on your system.

In the next long field, enter the directories from which mwcbbs can copy files. Enter
/usr/spool/uucp/uucppublic:/tmp. For other remote systems, more directories may be
appropriate.

The third long field requests exceptions to the read list. When you enter a directory on the read list.
that directory plus all of its children become available for reading. If you wanted to place "off limits"
a subdirectory of any directory named in the previous slot, you would enter it here. For this
example, skip this field.

The next long field asks you to name the directories into which the remote system can write files.
Enter /usr/spool/uucp/uucppublic:/tmp.

In the last long field, enter the list of exceptions to the write list. Again, you can skip this field.

TUTORIALS

360 UUCP Remote Communication

Type <ctrl-Z> to end data entry and return to the main menu; then enter 'X' to exit. Type 'y' when
asked if you wish to save your changes into the system's files.

And that's all there is to it.

Every time you wish to make contact with a new system, you can use uuinstall as described above.

A UUCP description may need several revisions, as you attempt to make contact with the remote
system. Writing these descriptions is something of a black art. Be patient and persistant: once
contact is made, the connection should work without further maintenance being needed for months
to come.

Polling a Remote Site Automatically
The last step in setting up your UUCP system is to edit the file crontab. This file contains a
description of programs that are to be executed periodically. The program cron reads this file once
every minute, checks its contents against the system time, and executes the appropriate programs.
By inserting descriptions of the UUCP commands into crontab, you will ensure that UUCP will
execute regularly to poll the remote sites you have described to it. If you do not insert entries into
crontab, UUCP will connect with a remote system only if it has a file to upload to it.

Since each user has his own crontab file, you will need to need the crontab owned by user uucp.
Login in as uucp, then execute the following command:

crontab -1 >crontab.tmp

This copies uucp's current crontab file into crontab.tmp, where you can edit it.

The format of crontab is described in detail in the Lexicon entry for crontab. In brief, a crontab
entry has six fields:

1. The minute in the hour when a command is to be executed (0 through 59).

2. The hour of the day when the command is to be executed (0 through 23)

3. The day of the month (1 through 31).

4. The month of the year (1 through 12).

5. The day of the week (0 through 6, with 0 indicating Sunday).

6. The command to be executed.

Fields are separated by space characters. Note that a command can be executed more than once in
any given period; just separate the multiple entries with commas.

For example, if you wish to print the date and time on your terminal every 15 minutes around the
clock, insert the following entry into crontab:

0,15,30,45 * * * * date >/dev/console

An asterisk in a field indicates that every value of the field is to be used.

To enable polling of mwcbbs, edit crontab.tmp and insert the following entries:

30 * * * * /usr/lib/uucp/uucico -smwcbbs
0 22 * * * /usr/lib/uucp/uutouch mwcbbs
0 0 * * * su uucp sh /usr/lib/uucp/uumvlog 2

The first line invokes the program uucico every hour on the half hour around the clock. uucico
checks to see if there is a file to be sent to site mwcbbs, and dispatches it if need be. Note that the
file will be sent only if the current time is "legal" for contacting mwcbbs, as you established in the

TUTORIALS

UUCP Remote Communication 361

previous screen. Otherwise, uucico will wait until the next legal time comes around.

The second line invokes the program uutouch every night at 10 PM. uutouch to schedule a poll to
site mwcbbs to see if it has a file to send to you. The next time that uucico is invoked, it will then
call site mwcbbs. You may wish to change this command so you force a poll to mwcbbs only once a
week, rather than every night.

The third lines invokes the command uvmvlog to clean up your set of logfiles. uumvlog copies all
of UUCP's log files into backup files that are named by the date they were saved. This command
takes one argument, the number of days' worth of backup files to save. The above example tells
uumvlog to save the last two days' files; this is the number most users save. UUCP is designed to
log everything that it does; and since it does a great many things, the log files can grow very large,
very quickly. On a small system especially. you should be ruthless in purging your UUCP log files,
or you may find them overwhelming the available disk space on your system. For most users, two
days' worth of log files is sufficient.

Now that you have edited your temporary crontab file. you must install it. Type the command:

crontab -f crontab.tmp

This takes the newly edited crontab file and installs it as the crontab for user root. See the Lexicon
entries for cron and crontab for more information on how to use COHERENT"s crontab mechanism.

Where To Go Next
You have now used uuinstall to set up UUCP so it can contact mwcbbs. For many users. uuinstall
is sufficient for setting up UUCP to access a remote site.

The following two sections of this tutorial are extended examples of how to set up UUCP by hand.
They go into depth on UUCP's file structure. You should read them if you want to work with UUCP
in any depth.

To "set up" UUCP means instructing it on how to communicate with a remote site. "Communicate"
means, basically. to exchange files and execute tasks on each other's systems. Not everyone cares
to use uuinstall to set up UUCP. Also. you may wish to perform more complex installations than
can be done easily with that utility.

The best way to learn about UUCP tasks is to walk through setting up an installation by hand. The
following sections walk you through setting up your UUCP system so it can dial out to mwcbbs, the
Mark Williams bulletin board.

Site and Domain Names
If you have not done so yet, edit /etc/uucpname and /etc/domain to set your site's site and
domain names. This is described above; also. see the Lexicon articles uucpname and domain for
details.

Setting Up the Serial Port/Communications Device
The first step to setting up UUCP is telling it which serial device it is to use to communicate with the
remote site. To set up the serial device, you must answer the following questions:

1. Is this a direct connection to another computer via a data line?

TUTORIALS

362 UUCP Remote Communication

2. Is this a modem connection to another computer?

3. Which serial port is used (ie. coml)?

4. At what baud rate will communications take place?

5. Will this same modem/ serial port be used for remote logins?

The file that governs interaction to the serial port is /usr/llb/uucp/L-devices. In this file, we
describe the type of device to use, either asynchronous communications (ACU) or direct (DIR). An
asynchronous communications device would be a modem. A direct communications device would
be a data line between the two computers.

An entry in L-devices consists five fields, separated from each other by blank spaces or tabs. The
fields are as follows:

type

line

remote

baud

brand

The type of connection. Valid values are DIR (direct connect) or ACU (modem).

The device used for the UUCP link (e.g .. /dev/comll).

The device to disable before making the UUCP connection.

The baud rate used on the specified line.

Modem description from /etc/modemcap. or "direct" for direct connections.

Let's edit L-devices to use a 2400-baud modem to call mwcbbs. Because you will use a modem,
type ACU into the first field as the device type.

Before making the appropriate entries into the second and third fields. we must review some
information about the conventions of naming and using serial devices. A serial port can be
referenced as a local device or a remote device. When a local device is referenced, COHERENT
ignores certain modem control signals from the serial port; but when a remote device is referenced.
COHERENT uses the modem-control signals for internal functions.

When enabling a serial port with a modem attached to it, COHERENT uses the remote version (e.g ..
comlr) of the serial port. With the remote version of the port. COHERENT can "see" through
control signals when a call terminates, which lets it reset the port for the next login. The file
/etc/ttys contains entries for all enabled serial ports. For a specific description of the contents of
/etc/ttys. refer to its entry in the Lexicon.

When enabling a serial port for direct connection - that is. for a terminal directly plugged into a
serial port or for another computer connected via a NULL-modem cable - COHERENT uses the local
version of the port (e.g .. comll) because no modem is attached to the port that can generate signals
for COHERENT to interpret.

When dialing out on a serial port via a modem, use the local version of the port, because the modem
gives modem-control signals to COHERENT only for incoming calls, not outgoing.

In the second field, enter the name of the serial device to which the modem is connected. For
example. if the modem is attached to coml, enter comll. Remember, use the local version of the
serial device because the specified line is used for calling out.

Before making the appropriate entry in the third, or remote, field, look at the answer to the fifth
question asked earlier ("Will this modem be used for remote logins?"). If the answer to this question
is "yes", then this port must be disabled before you can make an outgoing call. The remote field
specifies the device to be disabled (if previously enabled for remote logins) before the outbound call
can be made. For example. if the enabled port is com I, then specify comlr. If the port is not
enabled for remote logins. then insert a'-' (hyphen) into this field. (If this is a direct connection to
another computer, then name the local device here, because the local device would have been
enabled for remote logins to begin with. Since mwcbbs is being used as the example, this will not

TUTORIALS

UUCP Remote Communication 363

be the case.)

Now for the fourth. or baud field. Enter 2400 as the baud rate.

The fifth field names the make of modem you are using. The name must come from the file
/etc/modemcap. (For information on /etc/modemcap, see its entry in the Lexicon.) This example
assumes that you have a Hayes-compatible modem. Enter avatex into the fifth field. Please note
that there are both Hayes and Avatex entries in /etc/modemcap. Both describe the information
UUCP needs to "talk" to Hayes-compatible modems. The only difference between them is that the
hayes entry describes a 1200/300 bps modem, whereas the avatex entry describes a 2400/ 1200
bps modem.

The following gives typical entries into L-devices:

type Line Remote Baud
ACU comll comlr 2400
DIR com21 9600

Brand
avatex
direct

The above ACU entry tells UUCP that it will find a Hayes-compatible modem on /dev/comll, but
that the port is enabled for remote logins to take place and must therefore disable /dev/comlr
before dialing out. The ACU entry also indicates that 2400-baud communications is supported.

The above DIR entry tells UUCP that a direct connection is possible at 9600 baud on device
/dev/com21. and that it is not necessary to disable the port (/dev/com2r) as it is not enabled for
remote logins.

If the L-devices entry just created resembles the above ACU entry, feel free to save the changes and
to move on to the next item to configure.

Now, where does L-devices come in to play? It tells UUCP where it can initiate communications -
but what reads the L-devices entries to tell UUCP which device to use? This is explained in the
next section, which describes the file /usr/spool/uucp/L.sys.

Configuring Lsys
The previous section described how to configure /usr/lib/uucp/L-devices, from which UUCP
receives the information it needs about devices used initiate a UUCP session. With L-devices
configured properly. the question remains about how to determine which device to use.

Before proceding any farther, it is necessary to know the following information in advance:

1. What is the name of the site?

2. When should this system be permitted to call the remote site?

3. Will this site be called via a direct connection or modem?

4. If a modem is used, what phone number is to be dialed?

5. What baud rate will be used between the two systems?

6. What information must be passed to the site being called to complete a successful login?

The file /usr/lib/uucp/L.sys not only tells UUCP the device to use to initiate a call: it also names
the other UUCP sites that can be called, valid times to call, telephone numbers to dial, and
information on how to log into the system being called.

An L.sys entry consists of the following fields, separated by spaces:

TUTORIALS

364 UUCP Remote Communication

1. Site name (name of the site being called).

2. Times to call the specified site.

3. Device to use when calling the specified site.

4. Baud rate to use.

5. Telephone number to dial.

6. "Chat script" - that is. the script to use when logging into the remote system.

To continue our example of setting up UUCP to contact mwcbbs, use an editor to edit file
/usr/lib/uucp/L.sys.

Completing the first field is obvious enough: enter mwcbbs as the site to call.

The second field requires the information from question 2 at the beginning of this section. There are
several possible combinations of valid times to allow the system to call mwcbbs. If you want to call
mwcbbs at any time, then enter Any. (Note the capital 'A'). If you want never to call mwcbbs is
never to be called by this system, enter Never. (Note the capital 'N'). These are easy choices to
make, but one can restrict the valid times even farther.

The following abbreviations can be used with military time format to further restrict valid calling
times:

Wk Every weekday (Monday through Friday)
Su Sunday
Mo Monday
Tu Tuesday
We Wednesday
Th Thursday
Fr Friday
Sa Saturday

To specify that it is valid to call mwcbbs between 1 AM and 2 AM every day. enter:

0100-0200

To further restrict this to Sunday only between 1 AM and 2 AM. use:

SuOl00-0200

Perhaps calling on Mondays and Fridays from 3 AM to 4 AM would be better:

MoFr0300-0400

To call on Saturdays only:

Sa

For more information on specifying valid times to call. refer to the Lexicon article for L.sys.

For this example, specifying the device to use in the third field is pretty straightforward. Enter:

ACU

When you call remote sites via a modem. this is the norm. This is where the information in
/usr/lib/uucp/L-devices is put to use. For direct connections to remote sites. however. do not
specify

TUTORIALS

UUCP Remote Communication 365

DIR

because of the direct connection; instead, the local reference to the serial port to be used (as defined
in /usr/lib/uucp/L-devices) is entered in this field. For example, if this system is directly
connected to site foo and the L-devices entry for DIR specifies the line to use as comll, then you
would enter comll into this field.

The fourth field in this L.sys entry is the baud rate that your system uses to "talk" to mwcbbs. For
purposes of this example, enter 2400 in this field.

The fifth field is the telephone number to use when dialing the remote site, mwcbbs. For 2400-baud
communications with mwcbbs, insert the telephone number 17085590412. If you live within the
708 area code, omit the area code. If this were a direct connection, then you would enter quotation
marks ("") in place of a telephone number.

The L.sys entry for mwcbbs should now look like this:

mwcbbs Any ACU 2400 17085590412

The Chat Script
The final portion of the L.sys entry is the chat script. The chat script tells UUCP what prompts to
expect from the site called, and how to respond to each prompt. Each pair of prompt-response is
called a expect-send string.

When your system calls mwcbbs, it should not expect the first prompt to appear immediately; it
should wait a few seconds first. Therefore, the first expect-send string should expect nothing, wait a
few seconds, and send out some carriage returns to ensure that mwcbbs returns a login prompt.
The following expect-send string encodes this behavior:

"" \r\d\r

The quotation marks("") tell UUCP to expect nothing. The \r sends a carriage return, and \dis our
delay. Other escape characters can be used; for a table of them, see the above section on the Chat
Script, or see the Lexicon entry for L.sys.

The L.sys entry for mwcbbs should now look like this:

mwcbbs Any ACU 2400 17085590412 "" \r\d\r

So far, so good; but the chat script is nowhere near finished. After a few seconds' delay, site
mwcbbs send the prompt:

Coherent login:

Your site should expect this login prompt. The appropriate response to the login prompt is

nuucp

Add the following to the chat script:

in:--in: nuucp

But wait a minute - aren't we expecting

Coherent login:

Actually, we're not. We're expecting the tail of

TUTORIALS

366 UUCP Remote Communication

Coherent login:

or in:. We have also added '--in:' as part of the expect message. This tells UUCP to expect 'in:', but
if it does not receive 'in:', send a carriage return and expect 'in:' again. The send portion of this
expect-send pair is what we expected in the previous paragraph.

The L.sys entry for mwcbbs should now look like this:

mwcbbs Any ACU 2400 17085590412 "" \r\d\r in:--in: nuucp

Like most systems, mwcbbs has passwords. Your site should now expect the password prompt.

Password:.

The password to send is

public

Add the following to the chat script:

word: public

Again, we have not expected the entire prompt sent from mwcbbs. It is not important to expect the
entire prompt. just enough for UUCP to know what it will respond to. Expecting

Password:

is the same as expecting

word:

The L.sys entry for mwcbbs should now look like this:

mwcbbs Any ACU 2400 17085590412 "" \r\d\r in:--in: nuucp \
word: public

Please note that the '\' has been added to the end of the first line of this chat script to show that
this script continues to the next line. We do this because since the entire script won't fit within the
formatted text width of this page.

The chat script doesn't end here. mwcbbs now sends yet another prompt:

BBS access Password:

The response to this prompt is the serial number you used to install COHERENT. If your serial
number were 1234567, you would add the following to the chat script:

word: 1234567

The entire chat script for site mwcbbs should now look like:

mwcbbs Any ACU 2400 17085590412 "" \r\d\r in:--in: nuucp \
word: public word: serial-number

Congratulations! Your system now knows how to call and log into mwcbbs.

However. configuring L-devices and L.sys alone do not constitute a complete configuration.

TUTORIALS

UUCP Remote Communication 367

With L-devices and L.sys configured properly (plus an appropriate directory in place, which we will
discuss later), you can call any UUCP site. However, you must now make some security decisions:
for each remote site, you must decide which directories it can access and which commands it can
execute on your system.

Obviously. you can't give a remote system carte blanche on your system; but permissions on each
directory and command can be tedious, and you probably will overlook something important.
Fortunately. UUCP contains an easy way to set these permissions for each remote system. The file
/usr/Ub/uucp/Pennissions lets you set the permissions for every remote system that can log into
your system. Pennissions names each remote site your system recognizes the name by which your
system identifies itself to the remote site (if other than the name in /etc/uucpname), and restricts
each remote system's access on your system.

We will now analyze a typical Permissions entry, using mwcbbs as the example. Your system's
Permissions entry for mwcbbs should resemble the following:

MACHINE=mwcbbs MYNAME=bbsuser \
COMMANDS=rmail:uucp \
READ=/usr/spool/uucppublic:/tmp \
WRITE=/usr/spool/uucppublic:/tmp \
SENDFILES=yes REQUEST=yes

The first line of this entry lists the remote sitename (LOGNAME=mwcbbs). It also tells UUCP that
after the host has logged into the remote system. it (the host computer) should identify itself to the
remote site as bbsuser rather than the name defined in /etc/uucpname. All sites that call mwcbbs
identify themselves as bbsuser unless arrangements have been made for mail accounts or other
purposes. Because the Pennissions entry continues to the next line, the first line ends with a '\ '.

Please note that after the host computer has completed the chat script in /usr/llb/uucp/L.sys for
the specified site, more transactions take place that are generally invisible. In one of the
transactions , the machines identifies themselves to each other. mwcbbs identifies itself with the
contents of the file /etc/uucpname, which is merely mwcbbs. Your system will does the same,
unless there is a MYNAME= statement in Pennissions. If a MYNAME= statement exists for the site
specified in the Permissions entry. the name specified by MYNAME= is used instead of the contents
of /etc/uucpname.

Site names under COHERENT are limited to seven characters. Any extra characters are ignored.
Other implementations of UUCP allow different number of characters. from as few as six to as many
as ten.

There is an optional LOGNAME= statement for the first line. This option specifies the entry in
/etc/passwd that another site must use to log into this system.

For example, the entry in mwcbbs's Pennissions file for sites that identify themselves as bbsuser
looks like:

MACHINE=bbsuser LOGNAME=nuucp \

Please note that if a remote system does specify LOGNAME, or if the host site does not use the
LOGNAME specified, the remote site will issue a set of default permissions that may severely limit
the host's access to the remote system.

The second line names the commands that the remote site can run on this host. Naming rmail and
mews is typical. Specifying rmail allows the host site to send and process mail. Specifying mews
allows the host site to transfer news files to the remote site if it can accept news feeds.

TUTORIALS

368 UUCP Remote Communication

The third and fourth lines are relatively straightforward: they name, respectively. the directories that
the remote site can write into or read. On mwcbbs, sites identifying themselves as bbsuser can read
files from /usr/spool/uucppublic and its subdirectories, and can only write to
/usr/spool/uucppublic/uploadsand its subdirectories.

The fifth line specifies that the remote site can request files from the directories specified by READ=
and that the remote site can write (or transfer files to) the directories specified by WRITE=.

More. optional information can be can be configured in /usr/lib/uucp/Permissions. For details,
refer to its Lexicon entry.

We have now configured L-devices, L.sys. and Permissions. The major configuration is now
completed, but there are still some items to check before you can request a file from mwcbbs.

Requesting Files From a Remote UUCP System
To request a file from a remote UUCP system, you must know where that file is on the remote
system. The file howto.start can be found in the directory /usr/spool/uucppublic/mwcnews on
mwcbbs. This file introduces mwcbbs, its features and intended uses. and how to request files from
it.

With this bit of knowledge, we can now request the file with the command uucp.

uucp is very simple. Invoked it with a specific site to call, and file to upload or download. For
example, the command:

uucp mwcbbs!/usr/spool/uucppublic/mwcnews/howto.start /tmp

tells your machine to call mwcbbs, download the file
/usr/spool/uucppublic/mwcnews/howto.start,and it into directory /tmp. The call will take place
seconds after you enter the command, unless you tell uucp to spool the request. For more
information on this and other arguments, see the Lexicon entry for uucp.

Please note that the entry for mwcbbs in /usr/lib/uucp/Permissions must specify that mwcbbs
can write to /tmp as part of the

WRITE=

statement.

To send a file to mwcbbs, use the command:

uucp FILENAME mwcbbs!/usr/spool/uucppublic/uploads/

This command uploads a copy of FILENAME to the directory /usr/spool/uucppublic/uploads on
mwcbbs. Again, the call takes place within seconds, unless you tell uucp to spool the request.

At this point. we have completed our uucp configuration to "talk" to mwcbbs, and we have
requested our first file. You can tell uucp to download other files from mwcbbs; only the file names
and path names will change.

Sending Files to a Remote UUCP System
Suppose, for example that site santa has been described to your UUCP system, and everyone has
permission to read from your current directory. Suppose, too, that you have permission to write
into directory /usr/spool/reports/parents. To send the files good.kids and bad.kids to santa.
type the following command:

TUTORIALS

UUCP Remote Communication 369

uucp good.kids bad.kids santa!/usr/spool/reports/parents

The uucp command compels UUCP to copy one or more files from your site to a remote site. UUCP
queues both files automatically and sends them at the next scheduled time.

Note, too, the use of the '!' in the above command. The '!' separates a site name from another site
name, from a directory name, or from a user JD. In the above example, the T indicates that
directory /usr/spool/reports/parents can be found at site santa. One feature of a UUCP network
is that any member can send files to any other member. That does not mean that every member
must have full permissions with every other member; rather, for the sake of efficiency it is possible
to route files through one or more intermediate computers. to allow batch transmissions of files.
For example, to send the file visibility to user blitzen via machines santa and reindeer. use the
following command:

uucp visibility santa!reindeer!blitzen!/usr/spool/weather/usa

In this example. the string santa!reindeer!blitzen!/usr/spool/weather indicates that directory
/usr/spool/weather can be contacted at site blitzen, which in turn can be contacted via site
reindeer, which in turn can be contacted via site santa. This scenario assumes that site reindeer
has permission to write into directory /usr/spool/weather on site blitzen. and that site santa has
permission to upload files to site reindeer. (And, of course, that you have permission to upload files
to site santa.) If any of these are not true, the transaction will fail.

With UUCP networks growing to international dimensions. such path names can become quite
complex. The command mail has an alias function that allows you to define a user's UUCP path
name under a simpler name that serves as that user's alias. mail reads the file
/usr/llb/mail/aliases for every user listed on its command line. If it finds a match, then it
substitutes the description in aliases for the user name. If the entry in aliases consists of two or
more fields separated by exclamation points, mail then invokes the uucp command to copy the mail
message to the named site. For example, if you regularly send mail to user joe at site widget, then
insert the following entry into /usr/llb/mail/allases:

joe: widget! joe

Make sure, first, that you have described site widget to UUCP or this will not work. Second. make
sure that your local system does not have a user named joe; if it does, his mail thereafter will be
shipped to the other joe at the remote site.

We began this chapter of the book by showing you how to set up your system to call another UUCP
site, using mwcbbs as our example. Now we will show you how to configure your system to accept a
call from another UUCP site. Since you should now be familiar with enabling a port for remote
access, much of the work is behind you.

Configuring /etc/ttys
File /etc/ttys is a text file that contains information about serial devices used for remote access to
your COHERENT system. By default, your COHERENT system was shipped with an /etc/ttys file
with the following contents:

llPconsole
OlPcomlr
01Pcom21

Only three devices are described in the default /etc/ttys: the console. serial port coml, and serial
port com2. An entry in I etc I ttys consists of four fields:

TUTORIALS

370 UUCP Remote Communication

Theflrstfleld is the first character in the ttys entry. It is either zero or one: zero indicates that
the device is not enabled for users to log in to the system, whereas one indicates that the device
is enabled. Notice that the console is enabled for people to log in, whereas serial ports coml
and com2 are not.

The secondfleld is the second character in /etc/ttys. It is either an I or r: r indicates that if
the indicated device is enabled for users to log in, the remote-access password is asked of users
logging in via that device, whereas I indicates that the remote-access password is not
requested. The remote-access entry is .in file /etc/passwd and does not have a password
assigned to it by default. To assign a remote-access password to the system, log in as root,
and run the following command:

passwd remacc

If there is no remote access password assigned to the system and the character r is specified in
the second field of the ttys entry. the system does not ask for a remote-access password when a
user attempts to log into the system.

The thtrdfleld is the third character of the ttys entry. The character in this field is usually an
upper-case letter or a number that indicates the baud rate of the port. Valid baud rates range
from 110 to 19,200 baud. See the Lexicon entry on ttys for specific information on which
characters represent which baud rates.

Thefourthfleld is the name of the serial device, which must be in directory I dev.

When editing /etc/ttys, take care not to leave any extra characters, such as trailing spaces at the
end of line. Extra characters can result in errors enabling a port for logins, disabling a port, or
running UUCP.

Now that we've reviewed the structure of a ttys entry, we will now edit one to suit your needs. We
assume for the sake of this tutorial that a Hayes-compatible 2400-baud modem will be used on
serial port com2.

Because a modem is in use, we want to enable serial port com2r. (For a discussion on why we
chose com2r rather than com21, see Lexicon entry for L-devices.) Edit the ttys file for port com2r.
The line should read:

01Pcom2r

Because most Hayes-compatible, 2400-baud modems support 1200 and 300 baud, we must make a
decision: do we want port com2r to change automatically among 2400/ 1200/300 baud? If so, set
the third field in ttys to '3' (see the Lexicon entry on ttys). To lock the port at 2400 baud (no
autobauding to slower baud rates), use the letter 'L' in the third field of our ttys entry (again, refer
to the Lexicon entry on ttys). For purposes of this tutorial, use a fixed rate of 2400 baud on your
port. Edit the ttys entry to reflect this decision. It should now look like this:

01Lcom2r

Our ttys entry is now complete, but we must still enable the port for users to log in. Before we do
this, we must discuss modem register settings, and touch upon direct connections to a terminal
versus using modems.

Setting Up a Modem for Logins
The next step to setting up your system to receive calls is telling your modem to answer the phone,
and setting up the modem's port to send a login prompt to anyone who dials in.

TUTORIALS

UUCP Remote Communication 371

After you configure /etc/ttys for the serial port to be enabled, but before you actually enable that
port for remote logins, it is necessary to properly set the modem's registers. Improper modem
register settings can cause unpredictable behavior and unnecessary processing overhead for the
COHERENT system.

For the purposes of this tutorial. we will assume that a 2400-baud, Hayes-compatible modem will be
used. It must be stressed, however, that this tutorial may refer to modem register settings that are
not supported by your modem; likewise, your modem may use different registers to perform the
same functions as the ones described here. We will, however, try to be as generic as possible. You
may wish to have your modem's manual on hand while reading this section of the tutorial, since it
is vital that you understand all of your modem's functions and capabilities.

Answering the Phone
First and foremost, the modem must be initialized to answer the telephone when someone tries to
dial in. The most common register associated with this is the SO register. It should be set to a non­
zero value.

Setting Echo and Result Codes
For remote accesses to function properly via modems, a modem must not return unexpected data to
the operating system. If this occurs, the modem and the operating system may enter an infinite
loop that can bring your system to its knees.

For example, while using ckermit under COHERENT, you may notice that when you give a modem
the command to dial a telephone number, it displays the command as you type it. This indicates
that the modem is in echo mode. You may also notice that when a modem connects to the desired
system, it returns a CONNECT message or some numeric value to indicate that a connection was
made. This indicates that the modem is returning result codes. A modem must not return result
codes or echo input when plugged into an enabled serial port. The reason is that when a port is
enabled, the COHERENT sends the prompt

Coherent Login:

to the serial port. When a modem is set to echo input, it echoes

Coherent Login:

back to the operating system. COHERENT then think that someone is attempting to log under the
name of

Coherent Login:

and so send a

Password:

prompt to the serial port. The modem echoes

Password:

to the operating system.

This process continues without end until the port is disabled, or the echo or result code registers
are set to be inactive. If this condition occurs on your system. the visible result is an immediate and
ceaseless increase in hard-drive activity, tying up your system and slowing down your system's
operation.

TUTORIALS

372 UUCP Remote Communication

The register commonly associated with echo is E. To turn off echoing, set the echo register to zero.
The register commonly associated with result codes is Q. To disable result codes, set this register to
one.

Some modems support an echoplex register that puts a modem back into echo mode when a
connection is made. This is typically called the F register, and should also be set to one to disable
this feature of the modem.

Modem Reinitialization
It is very important that you understand what your modem does when a call terminates. A modem
usually resets itself with some parameters that are specified somewhere in the register settings of
the modem. The most common method that modems use to reset themselves is to return to some
factory default setting. This is rarely the desired setting for remote logins.

When you have decided on your modem register settings, save them to the modem's non-volatile
RAM. This preserves your settings if the modem loses power. and, most importantly. makes them
available to reinitialize the modem to the desired settings every time a call terminates.

To make a modem reinitialize itself, find the registers that tell the modem how to reset itself when a
call terminates. In a typical Hayes-compatible (2400 baud) setting, two registers play a key role
here. They are the registers that govern DCD (carrier detect) and DTR (data terminal ready). Again,
different makes of modem have different settings. but the rules to follow are:

I. Carrier detect must be TRUE and never forced.

2. DTR must be TRUE, or DTR must follow DCD.

With your modem's registers configured to follow these rules, DTR will drop whenever a call
terminates (or DCD drops), which forces the modem to reset itself.

At this point. you must know which registers govern what the modem does when DTR drops. You
should configure the modem so that when DTR drops, it reinitializes itself with the values stored in
non-volatile memory.

Sometimes it is only necessary to configure two registers to accomplish these tasks. They are
usually known as &C and &D. In our experience, you should set &C to one and &D to 2 or, in some
cases, 3.

Modem Registers
We can not instruct you on how to set your modem registers. There are several possible methods.
If your modem supports data-compression and error-correction protocols, the settings may become
very involved. You may use /usr/bin/ckermit to help configure your modem.

Enabling a Serial Device for Remote Access
At this point, you have configured your I etc/ttys file for the proper serial port and baud rate to be
used on that port. You have also configured your modem so that it will act properly when the port
is enabled.

It is now time to enable the port. The suspense and tension build as your enter the command to
enable the port:

/etc/enable com2r

This command does two things: First, it changes the first field of the port's entry in /etc/ttys from
zero to one. Second, it spawns a getty process for the port, to enable people to log in. Please note
that it is not advisable to edit /etc/ttys to enable a port by changing the first field of a port from a

TUTORIALS

UUCP Remote Communication 373

zero to a one, or vice versa.

Now, telephone the system and see if the modem answers the telephone. If it does not, then the
modem is not properly configured for answering the telephone. Once you get a connection, see if
you get the prompt:

Coherent Login:

If you do not, check the following items:

I. First, redial the system and see if a login prompt is sent when the modem answers and carrier
is established. If you have an external modem, you can see this by watching the send/receive
indicators on the modem. If you have an internal modem, look for hard-drive activity to take
occur when a connection has been made. Press the <return> key several times on the system
from which you are dialing in to see if this triggers drive activity.

2. The system dialing must be set to eight word-bits, one stop-bit, and no parity bits. Improper
settings here could result in "garbage .. characters, or no characters, appearing your screen.

3. If none of these seem to be the problem. review the modem's register settings. If data
compression or error correcting protocols are supported on either end of the connection,
disable them. If variable-speed modems are involved, set them so that they talk to each other
at only one speed. Finally, check to see that a login process is enabled on the port by using the
command /bin/ps.

If none of these suggestions helps, call Mark Williams Technical Support.

If you are wiring a terminal to a serial port as a means of remote access. you must use a NULL­
modem cable, not the same cable that you use to connect a modem to your system. Because there
will be no modem registers to complicate matters. you merely need to set the baud rate in the file
/etc/ttys and use the local serial device. For the purposes of altering our example case for a
terminal. use port com2l. Be certain that your terminal's baud rate is set to the speed set in
/etc/ttys, and that its word bits and parity are those described above.

Giving a Remote UUCP Site a Login
At this point. you are now the systems administrator of your COHERENT system who must tell
someone else how to set up her UUCP to log into your system. We've shown you the flip side of this
by showing you how to access mwcbbs: now the job is yours.

When a UUCP site calls your system, it must log in as would any ordinary user would. Once it has
logged in, however. it runs the command /usr/llb/uucp/uucico rather than a shell, which a
normal user would run. This portion of what you must set up is configured in the file /etc/passwd.

You can create a UUCP login by running the command newusr; then edit the last field of the
/etc/passwd entry for the login you just established to run the command /usr/llb/uucp/uucico
instead of a /bin/sh or /usr/bin/ksh.

You could also create a UUCP login by manually editing /etc/passwd and copy the entry for user
uucp. but change the user name of uucp to something else.

You must also define the home directory if using newusr. Because this is a UUCP account, the
home directory appears under the directory /usr/spool/uucp. For example, if you wanted site
dalek to call you, you might establish an /etc/passwd entry that looks like:

TUTORIALS

374 UUCP Remote Communication

dalek:password:6:6:Coherent-Coherent \
copy:/usr/spool/uucp:/usr/lib/uucp/uucico

Please note that

password

in the entry for dalek represents the encrypted password you assigned to site dalek. Give the
password to the system administrator of site dalek so that she may properly configure her chat
script to log into your system.

If we were to stop right here. dalek could call your system, log in, and begin a UUCP session.
Unfortunately, since we've yet to configure the UUCP files themselves to know about dalek, your site
would quickly terminate the call when dalek identified itself to your system after completing its chat
script.

Configuring L.sys for Remote UUCP Access
For all UUCP sites that will call you, there must be an entry in the file /usr/llb/uucp/L.sys. MWC
supplies a dummy entry in L.sys that you can easily modify for site dalek. You should make an
entry that looks like this:

dalek Any ACU 1200 5551212 "" "" ogin:--ogin: uucp ssword: FATCHANCE

Configuring Permissions for Remote UUCP Access
As with L.sys, there must be an entry in the file /usr/lib/uucp/Permissions for each UUCP site
that will call your system. As with L.sys, we have shipped a dummy entry in Permissions that you
can modify for site dalek. You should make an entry which resembles this:

MACHINE=dalek LOGNAME=dalek \
COMMANDS=rmail:rnews:uucp \
READ=/usr/spool/uucppublic:/tmp \
WRITE=/usr/spool/uucppublic:/tmp \
SENDFILES=yes REQUEST=no

Configuring a Spooling Directory for Remote UUCP Access
Each UUCP site that calls your system must have a spooling directory in /usr/spool/uucp. While
logged in as root, go to the directory /usr/spool/uucp and run the command:

/usr/lib/uucp/uumkdir dalek

One Last, Loose Thread
With the spooling directory created, we are almost done. Run this command:

/usr/lib/uucp/uutouch dalek

It will place a dummy command in dalek's spooling directory. More important, it returns an error if
it finds some errors in the UUCP configuration for dalek.

Try it out!

TUTORIALS

UUCP Remote Communication 375

Unfortunately. we cannot give you a test system that will call your system to test your UUCP
configuration. You will have to use this section as a guide to configure for another UUCP site to call
yours.

For UUCP transactions to be processed properly, two very important items need to be discussed.

The first item regards the permissions on the serial port from which you will dial out. UUCP must
have permission to read and write to that port. The device specified by the line entry in
/usr/lib/uucp/L-devices should have permissions of 666 (see the Lexicon entry for the command
chmod).

The second item regards the spooling directory for the site calling in or being called. The spooling
directory temporarily stores data and command files for the site being contacted. The spool
directory resides under I usr I spool/ uucp and is named after the remote site.

For example. your system will use directory /usr/spool/uucp/mwcbbs to store files being
exchanged with mwcbbs. Likewise, mwcbbs has the directory /usr/spool/uucp/yoursystem. where
UUCP stores files to be exchanged with yoursystem.

uucp should own all of its spooling directories.

For more information on ownership of files or directories, please refer to the Lexicon entries for the
commands chown and chgrp.

We have just completed a basic tutorial on how to configure UUCP and call another UUCP site.

When you call site mwcbbs and experience problems, you must first check several items before you
pick up the telephone to call the Mark Williams Company.

What Is the Problem?
UUCP problems can take many forms. Statements like 'Tm having a problem using UUCP," or 'Tm
having a problem calling your (mwc)bbs," do not describe problems relating to UUCP. We need to
know exactly what is I is not happening when you try to connect with another site.

The rest of this section walks you through problems that can arise, and some solutions to them.
Please review it before you call Mark Williams Technical Support. If you do not, MWC will only ask
that you do review it and call back if you still cannot solve the problem.

UUCP Reports: Cannot Get Own Name
If invoking the command /usr/bin/uucp says it can not get its own name, then you give yourself a
UUCP site name of no more than seven characters in the file I etc/uucpname.

The command /bin/mail command may also return a similar message. The cure is the same.

The Modem Isn't Dialing
When you try to call a system via the commands /usr/bin/uucp or /usr/lib/uucp/uucico and the
modem does not dial out, look at file /usr/lib/uucp/L-devices. Check the permissions on the serial
port used to dial out on. as specified therein.

TUTORIALS

376 UUCP Remote Communication

If the send/receive lights flicker on the modem after you invoking the commands uucp or uucico,
but no call is made, a review of the modem's register settings may be necessary.

Sometimes a modem will dial out but no connection made. This is typically caused by plugging the
telephone line into the wrong port on the modem.

Check the log file for the site you are calling. It will usually give a message that indicates what the
problem really is. If calling mwcbbs, use the command:

uulog mwcbbs

The Modem Dials, Carrier is Established, Nothing Else Happens
The first suspect is the modem's register settings. The modem register settings that we discussed in
the section for configuring modems for remote logins, generally work well for uucp to dial out to
another system.

To get a good picture of what is or is not happening, run the command /usr/llb/uucp/uucico with
a level-3 debug. If calling mwcbbs, use the command:

/usr/lib/uucp/uucico -smwcbbs -x3 > debugfile

This tells your system to call mwcbbs and to write debugging information into file debugfile, which
you can review at your leisure. This is very useful in determining if there is a problem in a chat
script.

UULOG Shows Incorrect Response ...
This points to one of four problems:

I. Your site is sending an improper site name to the remote system (in other words, the remote
site doesn't know about your system).

2. The remote site does not have a spooling directory for your site.

3. Your site does not have a spooling directory for the remote site

4. /usr/llb/uucp/L.sys contains an error or incorrect chat script.

Files Refuse to be Sent
In the case of mwcbbs (or any other UUCP site), review the complete path list and file name you
specified to download. Another possibility - and one that is harder to track - is the read/write
path lists specified in file /usr/llb/uucp/Permissions.

Non-COHERENT UUCP Site Problems
It is important to understand that COHERENT's UUCP is designed to be compatible with other
flavors of UUCP, but does not use the same configuration files. Beyond the information supplied in
this section, it may not be easy to debug problems with other units calling your system, or vice
versa. We will supply whatever assistance we can, but if it is determined that the non-COHERENT
site is at least part of the problem, you must find out its configuration, possibly even telephone
involving MWC Technical Support, yourself, and the remote site's administrator.

TUTORIALS

UUCP Remote Communication 377

tlUCP•·'Admlf1i$t(atfon
Once you have written and debugged the descriptions of your devices, systems, and permissions.
administering UUCP consists mainly of reviewing the log files periodically to ensure that all
connections are being made. and all programs executed correctly. The command uulog will assist
you in this. When you type the command

uulog widget

uulog will open all of the log files associated with site widget, and display them for you. Given that
the log files for given site are kept in four different directories, this can be a great convenience.

Logfiles are organized as follows:

/usr/spool/uucp/ .Log/uucico/sltename
/usr /spool/uucp/. Log /uucp/sltename
/usr/spool/uucp/ .Log/uux/sltename
/usr/spool/uucp/ .Log/uuxqt/sltename

As you can see, one logfile for each site is kept in a directory named after a given UUCP command.
UUCP records every transaction; so by reading these files, you can see whether your UUCP
commands are succeeding.

If you are having trouble with your UUCP connections. send files through UUCP and observe how
they fail. You may need to use uuinstall a few times to tweak your description of the remote site. If
all else fails, contact Mark Williams Company.

If all is going well, you should run /usr/lib/uucp/uumvlog every day. This keeps the log files from
getting out of hand. The previous section on setting the polling time describes how to do this.

The main task of the UUCP administrator is to monitor the UUCP log files to see that hardware is
functioning correctly, and that files are transferred correctly. For example, failure to connect with a
remote site after several attempts may mean that the remote site is having problems with its
modem, or that it is scheduling outgoing calls for when you were scheduled to call in. Likewise,
failure to receive scheduled calls from several sites may indicate equipment failure on your end.
You must also monitor the alias file, to see to it that mail is routed to the correct recipient.

Finally, the UUCP administrator must monitor the use of disk space on the system. Old mail and
messages, multiple copies of files, and files automatically input by various subscription and network
services can eat up disk space rapidly; extraneous material must be pruned ruthlessly.

For further information, check the Lexicon entry for each UUCP command. as well as the UUCP
overview article.

TUTORIALS

378 UUCP Remote Communication

TUTORIALS

The Lexicon

The rest of this manual consists of the Lexicon. The Lexicon consists of several hundred articles,
each of which describes a function or command, defines a term. or otherwise gives you useful
information. The articles are organized in alphabetical order.

Internally. the Lexicon has a tree structure. The "root" entry is the one for Lexicon. It, in turn,
refers to a series of Overview entries. Each Overview entry introduces a group of entries. Each
entry cross-references other entries. These cross-references point up the documentation tree, to an
overview article and. ultimately, to the entry for Lexicon itself; down the tree to subordinate entries;
and across to entries on related subjects. For example. the entry for getchar cross-references
STDIO, which is its Overview article. plus putchar and getc, which are related entries of interest to
the user. The Lexicon is designed so that you can trace from any one entry to any other. simply by
following the chain of cross-references up and down the documentation tree.

For more information on how to use the Lexicon and how it is organized, see the entry in the
Lexicon on Lexicon.

379

380

TUTORIALS

example 381

Example

w:an;t.It·llidid~"""'""~"~~"""'~~~"''
Give an example of Mark Williams Lexicon format
#include <example.h>
char •example(foo, bar) intjoo; long bar;

This is an example of the Mark Williams Lexicon format of software documentation. At this point.
each entry has a brief narration that discusses the topic in detail.

The lines in boldface describe how to use the function being described. The first line, #include
<example.h>. indicates that this function requires the imaginary header file example.h. The
second line gives the syntax of the function. char •example means that the imaginary function
example returns a pointer to a char. Joo and bar are example's arguments:joo must be declared to
be an int, and bar must be declared to be a long.

Example
The following program gives an example of an example.

main()
{

printf("Many entries include examples\n");
}

See Also
Lexicon, all other related topics and functions

Notes
If a Lexicon entry uses a technical term that you do not understand, look it up in the Lexicon. In
this way, you will gain a secure understanding of how to use COHERENT.

LEXICON

382 #

to ,...

- Preprocessing Operator
String-ize operator

The preprocessing operator # can be used within the replacement list of a function-like macro. It
and its operand are replaced by a string literal, which names the sequence of preprocessing tokens
that replaces the operand throughout the macro.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

display(abs(-5));

it replaces it with the following:

show ((long) (abs (-5)) , "abs (-5) ") ;

Here, the preprocessor replaced #x with a string literal that gives the sequence of token that
replaces x.

The following rules apply to interpreting the # operator:

I. If a sequence of white-space characters occurs within the preprocessing tokens that replace the
argument, it is replaced with one space character.

2. All white-space characters that occur before the first preprocessing token and after the last
preprocessing token are deleted.

3. The original spelling of the preprocessing tokens is preserved. This means that you must take
care to preserve certain characters: a backslash '\' should be inserted before every quotation
mark '"' that marks a string literal, and before every backslash that introduces a character
constant.

Example
The following uses the operator# to display the result of several mathematics routines.

#include <errno.h>
#include <math.h>
#include <stdio.h>

void show(value, name)
double value, char *name;
{

}

if (errno)
perror(name);

else
printf("%10g %s\n", value, name);

errno = O;

#define display(x) show((double)(x), #x)

LEXICON

main ()
{

}

extern char *gets();
double x;
char string[64];

for(;;) {

}

printf("Enter a number:");
fflush(stdout);
if(gets(string) == NULL)

break;

x = atof(string);
display(x);
display(cos(x));
display(sin(x));
display(tan(x));
display(acos(cos(x)));

See Also
##,#define, C preprocessor

- Preprocessing Operator
Token-pasting operator

383

The preprocessing operator ## can be used in both object-like and function-like macros. When
used immediately before or immediately after an element in the macro's replacement list. ## joins
the corresponding preprocessor token with its neighbor. This is sometimes called "token pasting".

As an example of token pasting. consider the macro:

#define printvar(nurnber) printf("%s\n", variable## number)

When the preprocessor reads the following line

printvar(5);

it substitutes the following code for it:

printf("%s\n", variable5);

The preprocessor throws away all white space both before and after the ## operator. This gives you
an easy way to print any one of a set of strings.

must not be used as the first or last entry in a replacement list. All instances of the ## operator
are resolved before further macro replacement is performed.

For more information on object-like and function-like macros, see #define.

See Also
#, #define, C preprocessor

Notes
Token pasting has been performed by separating the tokens to be pasted with an empty comment.
but this is no longer necessary.

LEXICON

384 #define

The order of evaluation of multiple ## operators is unspecified.

&ii'Mif.•iG·1t.Ii4f1m111@;1+ •••••• lll!i._~~~~,~~~~'~''~~
Define an identifier as a macro

The preprocessing directive #define tells the C preprocessor to regard identifier as a macro.

#define can define two kinds of macros: object-like, andfunction-like.

An object-like macro has the syntax

#define identifier replacement-list

This type of macro is also called a manifest constant. The preprocessor searches for identifier
throughout the text of the translation unit. and replaces it with the elements of replacement-list,
which is then rescanned for further macro substitutions.

For example, consider the directive:

#define BUFFERSIZE 75

When the preprocessor reads the line

malloc(BUFFERSIZE);

it replaces it with:

malloc (75);

A given identifier is replaced only once by a given replacement-list. This is to prevent such code as

#define FOO FOO

or

#define FOO BAR
#define BAR FOO

from generating an infinite loop.

A function-like macro is more complex. It has the syntax:

#define identifier lparen identifier-listopt) replacement-list

The preprocessor looks for identifier, which is a macro that resembles a function in that it is
followed by a pair of parentheses that may enclose an identifier-list. It replaces identifier with the
contents of replacement-list, up to the first lparen '(' within replacement-list.

The preprocessor then examines identifier-list for further macros, which it expands. The modified
identifier-list is then replaced with the rest of replacement-list. Pairs of parentheses that are nested
between the lparen that begins replacement-list and the ')' that ends it are copied into identifier-list
as literal characters. The identifiers within identifier-list are preserved after it has been modified by
replacement-list. The only exceptions are identifiers that are prefixed by the preprocessing operators
or##; these are handled appropriately.

For example, the consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the following line

LEXICON

#elif - #else 385

display(abs(-5));

it replaces it with the following:

show((long) (abs(-5)), "abs (-5)");

When an argument to a function-like macro contains no preprocessing tokens, or when an
argument to a function-like macro contains a preprocessing token that is identical to a
preprocessing directive, the behavior is undefined.

Example
For an example of using a function-like macro in a program. see#.

See Also
#, ##, #undef, C preprocessor

Notes
A macro expansion always occupies exactly one line, no matter how many lines are spanned by the
definition or the actual parameters. If you have defined macros that span more than one line, you
must either redefine them to occupy one line, or somehow embed the newline character within the
macro itself; otherwise, the macro will not expand correctly.

A macro definition can extend over more than one line, provided that a backslash '\' appears before
the newline character that breaks the lines. The size of a #define directive is therefore limited by
the maximum size of a logical source line, which can be up to at least 509 characters long.

Some implementations allowed a user to re-define a macro with a new #define directive. The
Standard, however, allows only a "benign" redefinition; that is, the body of the new definition must
exactly match the old definition, including parameter names and white space.

#elif - Preprocessing Directive
Include code conditionally

The preprocessing directive #elif conditionally includes code within a program. It can be used after
any of the instructions #ff, #ifdef, or #ifndef.

If the conditional expression of the preceding #ff, #ffdef, or #ifndef directive is false (i.e., evalutates
to zero) and if the current condition is true (i.e., evaluates to a value other than zero), then group is
included within the program, up to the next #elif, #else, or #endif directive. An #ff, #ifdef, or
#ifndef directive may be followed by any number of #elif directives.

The constant-expression must be an integral expression, and it cannot include a sizeof operator. a
cast, or an enumeration constant. All macro substitutions are performed upon the constant­
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted
into characters before evaluation.

See Also
#else, #enfil, #if, #ifdef, #ffndef, C preprocessor, defined

#else - Preprocessing Directive
Include code conditionally

The preprocessing directive #else conditionally includes code within a program. It is preceded by
one of the directives #ff, #ifdef, or #ifndef, and may also be preceded by any number of #elif
directives. If the conditional expressions of all preceding directives evaluate to false (i.e., to zero),
then the code introduced by #else is included within the program, up to the #enfil directive.

LEXICON

386 #endif - #ifdef

A #if, #ifdef, or #ifndef directive can be followed by only one #else directive.

See Also
#elif, #endif, #if, #ifdef, #ifndef, C preprocessor

#endif- Preprocessing Directive
End conditional inclusion of code

The preprocessing directive #endif must follow any #if, #ifdef, or #ifndef directive. It may also be
preceded by any number of #elif directives and an #else directive. It marks the end of a sequence of
source-file statements that are included conditionally by the preprocessor.

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #if, #ifdef, #ifndef, C preprocessor

#if - Preprocessing Directive
Include code conditionally

The preprocessing directive #if tells the preprocessor that if constant-expression is true (i.e., that it
evalutes to a value other than zero), then include the following lines of code within the program
until it reads the next #elif, #else, or #endif directive.

The constant-expression must be an integral expression, and it cannot include a sizeof operator, a
cast, or an enumeration constant. All macro substitutions are performed upon the constant­
expression before it is evaluated. All integer constants are treated as long objects, and are then
evaluated. If constant-expression includes character constants, all escape sequences are converted
into characters before evaluation.

If constant-expression is an undefined symbol, the preprocessor treats it the same as it would a false
statement.

See Also
#elif, #else, #endif, #ifdef, #ifndef, C preprocessor, defined

#ifdef - Preprocessing Directive
Include code conditionally

The preprocessing directive #ifdef checks whether ldent!Jier has been defined as a macro name. If
ldent!Jier has been defined as a macro, then the preproc~ssor includes group within the program, up
to the next #elif, #else, or #endif directive. If ldent!Jier has not been defined, however, then group
is skipped.

An #ifdef directive can be followed by any number of #elif directives, by one #else directive, and
must be followed by an #endif directive.

Example
For an example of using this directive in a program, see assert.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor, defined

LEXICON

#ifndef - #line 387

#ifndef - Preprocessing Directive
Include code conditionally

The preprocessing directive #ifndef checks whether identifier has been defined as a macro name. If
identifier has not been defined as a macro, then the preprocessor includes group within the program,
up to the next #elif, #else, or #endif directive. If identifier has been defined, however, then group is
skipped.

An #ifndef directive can be followed by any number of #elif directives, by one #else directive, and
by one #elif directive.

See Also
#elif, #else, #endif, #if, #ifndef, C preprocessor, defined

#include - Preprocessing Directive
Read another file and include it
#include <:file>
#include "file"

The preprocessing directive #include tells the preprocessor to replace the directive with the contents
ofjile.

The directive can take one of two forms: either the name of the file is enclosed within angle brackets
(<header.h>), or it is enclosed within quotation marks ("header.h"). Angle brackets tell cpp to look
for flle.h in the directories named with the -I options to the cc command line, and then in the
standard directory. Quotation marks tell cpp to look for flle.h in the source file's directory, then in
directories named with the -I options, and then in the standard directory.

Most often, the file being included is a header, which is a file that contains function prototypes,
macro definitions, and other useful material; as its name implies, it most often appears at the head
of a program. The header name must be a string of characters, possibly followed by a period '.' and
a single letter, usually (but not always) 'h'. A header name may have up to 12 characters to the left
of the period, and names may be case sensitive.

#include directives may be nested up to at least eight deep. That is to say. a file included by an
#include directive may use an #include directive to include a third file; that third file may also use
a #include directive to include a fourth file; and so on, up to at least eight files.

Note, too, that a subordinate header file is sought relative to the original source file, rather than
relative to the header that calls it directly. For example. suppose that a file example.c resides in
directory /v/fred/src. If example.c contains the directive #include <headerl.h>. The operating
system will look for headerl.h in the standard directory, /usr/include. If headerl.h includes the
directive #include < •• /header2.h> then COHERENT looks for header2.h not in directory /usr, but
in directory /v /fred.

A #include directive may also take the form #include string, where string is a macro that expands
into either of the two forms described above.

See Also
header mes, c preprocessor

#line - Preprocessing Directive
Reset line number
#line number newline
#line number filename newline
#line macros newline

LEXICON

388 #pragma

#line is a preprocessing directive that resets the line number within a file. The ANSI Standard
defines the line number as being the number of newline characters read, plus one.

#line can take any of three forms. The first, #line number, resets the current line number in the
source file to number. The second, #line number .filename. resets the line number to number and
changes the name of the file to.filename. The third, #line macros, contains macros that have been
defined by earlier preprocessing directives. When the macros have been expanded by the
preprocessor, the #line instruction will then resemble one of the first two forms and be interpreted
appropriately.

See Also
C preprocessor

Notes
Most often, #line is used to ensure that error messages point to the correct line in the program's
source code. A program generator may use this directive to associate errors in generated C code
with the original sources. For example, the program generator yacc uses #line instructions to link
the C code it generates with the yacc code written by the programmer.

Di@•@®•1MQ4fi@ltJl@i@-I, - a""''~'~~~"''"'"''~"'~
Perform implementation-specific preprocessing

#pragma is the C preprocessing directive that triggers implementation-specific behavior. The ANSI
Standard demands that every conforming implementation of C document what #pragma does.

Under COHERENT 286, #pragma gives the warning message

#pragma ignored

and the C preprocessor ignores it.

COHERENT 386 recognizes one use of #pragma:

#pragma align [n]

This directive permits COHERENT 386 to conform to the Intel Binary Compatability Standard (BCS),
which specifies alignment requirements for structs.

The BCS requires that a struct be aligned consistently with the alignment of its most strictly aligned
member. For example, the structure

struct s {
short s_sl;
int s_i;
short s_s2;

} ;

must put member s_i at offset 4, not 2 (because int is dword-aligned). If you have an array of
struct s objects. the second will be at offset 12, not 10 (or 8), because struct s itself must also be
dword-aligned.

This, unfortunately, creates problems with existing compiled code, and with some standards. e.g ..
COFF. For example, a struct tllsys (a COHERENT file system, e.g .. on a floppy or hard disk) is
defined in <sys/filsys.h> as starting out just like the above:

LEXICON

390 FILE STDC

main()
{

}

printf("Date: %s\n", _DATE_);
printf("Time: %s\n", _TIME_);
printf("File: %s\n", _FILE_);
printf("Line No.: %d\n", _LINE_);
printf ("ANSI C? %s\n", _STDC_ ? "Yes"

See Also

"No");

FILE, _LINE_, _STDC_, _TIME_, C preprocessor

~"~''"~~---~"~'~ ---'-~~,"'&11---~--"'&11
Source file name

FILE is a preprocessor constant that is defined by the C preprocessor. It represents. as a string
constant, the name of the current source file being translated.

FILE may not be the subject of a #define or #undef preprocessing directive, but it may be
altered with the #line preprocessing directive.

Example
For an example of how to use _FILE_ in a program, see _DATE_.

See Also
DATE, _LINE_, _STDC_, _TIME_, C preprocessor

~~~~~~"~~~~"'~~"'~'"'-. ~'"'''''111 
Current line within a source file 

_LINE_ is a preprocessor constant that is defined by the C preprocessor. It represents the current 
line within the source file. The ANSI Standard defines the current line as being the number of 
newline characters read, plus one. 

_LINE_ may not be the subject of a #define or #undef preprocessing directive. 

Example 
For an example of how to use _LINE_ in a program, see _DATE_. 

See Also 
_DATE_, _FILE_, _STDC_, _TIME_, C preprocessor 

~---~,,. ~-.-----~~---lil'i~~~---lil'i~,. 
Mark a conforming translator 

_STDC_ is a preprocessor constant that is defined by the C preprocessor. If it is defined to be 
equal to one, then it indicates that the translator conforms to the ANSI Standard. 

The value of _STDC_ remains constant throughout the entire program, no matter how many 
source files it comprises. It may not be the subject of a #define or #undef preprocessing directive. 

Example 
For an example of using _STDC_ in a program, see _DATE_. 

LEXICON 



_TIME_ - _exit0 391 

See Also 
_DATE_, _FILE_, _LINE_, _TIME_, C preprocessor 

Notes 
_STDC_ is defined only under COHERENT 286. 

~lll~' 11111111111'!!!~~~~~~~-~~~~!lli'!~~~~"~~~"~~"~ 
Time source file is translated 

_TIME_ is a preprocessor constant that is defined by the C preprocessor. It represents the time 
that a source file is translated. It is a string literal of the form: 

"hh:nnniss" 

This is the same format used by the function asctime. 

The value of this preprocessor constant remains constant throughout the processing of the 
translation unit. It may not be the subject of a #define or #undef preprocessing directive. 

Example 
For an example of how to use _TIME_ in a program, see _DATE_. 

See Also 
_DATE_, _FILE_, _LINE_, _STDC_, C preprocessor 

Terminate a program 
void _exit(status) int status; 

_exit terminates a program directly. It returns status to the calling program, and exits. Unlike the 
library function exit, _exit does not perform extra termination cleanup, such as flushing buffered 
files and closing open files. 

_exit should be used only in situations where you do not want buffers flushed or files closed. For 
example, you may wish to call _exit if your program detects an irreparable error condition and you 
want to "bail out" to keep your data files from being corrupted. 

_exit should also be used with programs that do not use STDIO. Unlike exit, _exit does not use 
STDIO. This will help you create programs that are extremely small when compiled. 

See Also 
close(), exit(), general functions, wait() 

Notes 
If a program leaves main() by an error condition, contents of register AX becomes the exit code. 
Usually, these register contents are random. If you want to test a program's return code, you must 
exit or return from main(). 

LEXICON 



392 abortO - absO 

abort() terminates a process with a core dump. creating a file called core, and prints a message on 
the screen. It is normally invoked in situations that "should not happen". For example, malloc() 
invokes abort() if it discovers a corrupt storage arena. 

Where possible, abort() executes a machine instruction that causes the processor to trap. If the 
signal associated with the trap is caught or ignored, the dump will not be produced. 

See Also 
_exit(), core, exit(), general functions 

absO - General Function ~~~~,~~~"'"'''~'~"'~''~''~''''~-. 
Return the absolute value of an integer 
int abs(n) int n; 

abs() returns the absolute value. of integer n. The absolute value of a number is its distance from 
zero. This is n if n>=O, and -n otherwise. 

Example 
This example prompts for a number, and returns its absolute value. 

#include <ctype.h> 
#include <stdio.h> 

main() 
{ 

extern char *gets(); 
extern int atoi(); 
char string[64]; 
int counter; 
int input; 

printf ("Enter an integer: "); 
fflush(stdout); 
gets(string); 

for (counter=O; counter< strlen(string); counter++) { 
input= string[counter]; 

LEXICON 



} 

} 

if (!isascii(input)) { 
fprintf(stderr, 

} 

"%sis not ASCII\n", string); 
exit( 1); 

if (!isdigit(input)) 
if (input I= '-' I I counter != 0) { 

fprintf(stderr, 

} 

"%sis not a number\n", string); 
exit(l); 

input atoi(string); 
printf("abs(%d) is %d\n", input, abs(input)); 
exit(O); 

See Also 
fabs(), floor(), general functions, int 

Notes 
On two's complement machines, the abs() of the most negative integer is itself. 

ac 393 

-''~~,,~,,.. .,,_,,""'~''~''''""'''""'' ~""''' -
Summarize login accounting information 
ac [ -dp ] [ -w wfile ][ username ... ] 

One of the accounting mechanisms available on the COHERENT system is login accounting. which 
keeps track of the time each user spends logged into the system. Login accounting is enabled by 
creating the file /usr/adm/wtmp. Thereafter, the routines date, login. and init write raw 
accounting data to /usr/adm/wtmp to record the time, the name of the terminal, and the name of 
the user for each date change, login, logout, or system reboot. 

The command ac summarizes the raw accounting data. By default, ac prints the total connect time 
found in /usr/adm/wtmp. Any username restricts the summary to each specified user. 

The following options are available: 

-d Itemize the output into daily (midnight to midnight) periods. 

-p Print individual totals. 

-w Use wfile rather than /usr/adm/wtmp as the raw data file. 

Files 
/usr/adm/wtmp 

See Also 
commands, date, init, login, sa, utmp.h 

Notes 
The file /usr/adm/wtmp can become very large; therefore, it should be truncated periodically. 
Special care should be taken if login accounting is enabled on a COHERENT system with a small 
disk. 

LEXICON 



394 accesso 

accessO - System Call - -.~"'~~'''~~'' 
Check if a file can be accessed in a given mode 
#include <access.h> 
int access{fllename, mode) char ":filename; int mode: 

access() checks whether a file or directory can be accessed in the mode you wish. filename is the 
full path name of the file or directory you wish to check. mode is the mode in which you wish to 
accessjllename. as follows: 

ARE AD Read a file 
AEXISTS Check if a file exists 
ALIST List the contents of a directory 

AWRITE Write into a file 
ADEL Delete files from a directory 

AEXEC Execute a file 
ASRCH Search a directory 

AAPPND Append to a file 
ACREAT Create a file in a directory 

The header file access.h defines these values, which may be logically combined to produce the mode 
argument. 

If mode is AEXISTS, access() tests only whether filename exists, and whether you have permission 
to search all directories that lead to it. 

access() returns zero ifjllename can be accessed in the requested mode, and a nonzero value if it 
cannot. Note that the return value is the opposite of the intuitive value, i.e., zero means success 
rather than failure. 

access() uses the real user id and real group id (rather than the effective user id and effective group 
id), so set user id programs can use it. 

Example 
The following example checks if a file can be accessed in a particular manner. 

#include <access.h> 
#include <stdio.h> 

main(argc, argv) 
int argc; char *argv[]; 
{ 

int mode; 
extern int access(); 

if (argc I= 3) { 

} 

fprintf(stderr, "Usage: access filename mode\n"); 
exit(l); 

LEXICON 





396 acct.h 

The system call acct() enables or disables process accounting. If.file is not NULL. then accounting 
is turned on; if.file is NULL, however, then process accounting is turned off. 

It is usual, but not necessary, that file be /usr/adm/acct. file must exist. When enabled, the 
system appends a raw accounting data record in the format described by acct.h to file as each 
process terminates. 

acct() is restricted to the superuser. 

See Also 
ac, acct.h, accton, exit(), sa, system calls, times() 

Diagnostics 
Successful calls return zero. acct() returns -1 for errors, such as nonexistent.file or invocation by a 
user other than the superuser. 

Notes 
The system writes accounting records for a process only when the process exits. Processes that 
never terminate and processes running at the time of a system crash do not produce accounting 
information. 

Format for process-accounting file 
#include <acct.h> 

Process accounting is a feature of the COHERENT system that allows it record what processes each 
user executes and how long each process takes. These data can be used to track how much each 
user uses the system. 

The function acct turns process accounting off or on. When process accounting has been turned 
on, the COHERENT system writes raw process-accounting information into an accounting file as 
each process terminates. Each entry in the accounting file, normally /usr/adm/acct, has the 
following form, as defined in the header file acct.h: 

struct acct { 
char ac_conun[lOJ; 
comp_t ac_utime; 
comp_t ac_stime; 
comp_t ac _etime; 
time t ac_btime; 
short ac_uid; 
short ac_gid; 
short ac_mem; 
comp_ t ac _io; 
dev t ac_tty; 
char ac_flag; 

} ; 

/* Bits from ac_flag */ 
#define AFORK 01 
#define ASU 02 

/* has done fork, but not exec */ 
/* has used superuser privileges */ 

Every time a process performs an exec call, the contents of ac_comm are replaced with the first ten 
characters of the file name. The fields ac_utime and ac_stime represent the CPU time used in the 
user program and in the system, respectively. ac_etime represents the elapsed time since the 
process started running, whereas ac_btime is the time the process started. The effective user id 

LEXICON 





398 action.h - address 

{ 

} 

if (errno) 
perror (name) ; 

else 
printf("%10g %s\n", value, name); 

errno = O; 

main () 
{ 

extern char *gets(); 
double x; 
char string[64]; 

for ( ; ; ) { 

} 
} 

See Also 

printf("Enter number:"); 
if(gets(string) == NULL) 

break; 

x = atof(string); 
display(x); 
display(cos(x)); 
display(sin(x)); 
display(tan(x)); 
display(acos(cos(x))); 

display(asin(sin(x))); 
display(atan(tan(x))); 
display(atan2(sin(x),cos(x))); 
display(hypot(sin(x),cos(x))); 
display(cabs(sin(x),cos(x))); 

errno, errno.h, mathematics library, perror() 

action.h - Header File 
Describe parsing action and goto tables 
#include <action.h> 

action.his a header that defines structures and manifest constants used in parsing and goto tables. 

See Also 
header files 

rmmrwtll•fF11G1!1t·ll~~"'~~~----------------------­
An address is the location where an item of data is stored in memory. 

On the i8086, a physical address is a 20-bit number. The i8086 builds an address by left-shifting a 
16-bit segment address by four bits, and then adding it to a 16-bit offset address. The segment 
address points to a particular chunk of memory. The i8086 uses four segment registers, each of 
which governs a different portion of a program, as follows: 

LEXICON 



aha154x 399 

CS Address of code segment 
DS Address of data segment 
ES Address of "extra" segment 
SS Address of stack segment 

SMALL-model programs use only the offset address; hence, their pointers are only 16 bits long, 
equivalent to an int. LARGE-model programs use both segment and offset addresses. Their 
addresses are 20 bits long. which must be stored in a 32-bit pointer, equivalent to a long. 
COHERENT 286 currently supports SMALL model. 

On the i80386, addresses start as 32 bits. Segments registers are used to look up a segment 
descriptor. The descriptor's base then defines the address within a four-gigabyte virtual address 
space. The page tables are then used to translate this to a physical address. For details we suggest 
the Intel 386 Programmers Manual. 

On the M68000, an address is simply a 24-bit integer that is stored as a 32-bit integer. The upper 
eight bits are ignored; this is not true with the more advanced microprocessors in this family, such 
as the M68020. The M68000 uses no segmentation; memory is organized as a "flat address space," 
with no restrictions set on the size of code or data. 

On machines with memory-mapped I/0, such as the 68000, some addresses may be used to control 
or communicate with peripheral devices. 

Example 
The following printes the address and contents of a given byte of memory. 

#include <stdio.h> 

main () 
{ 

} 

char byte= 'a'; 
printf("Address == %x\tContents 

&byte, byte); 

See Also 
data formats, definitions, pointer 

\"%c\"\n", 

aha154x - Device Driver ~~~,~~~'~''~~~~,~-. 
Adaptec AHA- l 54x device driver 

The device driver aha154x lets you use SCSI interface devices attached to an Adaptec AHA-154x 
series host adapter. This driver has major number 13. It can be accessed either as a block-special 
device or as a character-special device. The minor number specifies the device and partition 
number for disk-type devices. letting you use up to eight SCSI-IDs. with up to four logical unit 
numbers (LUNs) per SCSI-ID and up to four partitions per LUN. 

The first open call on a SCSI disk device allocates memory for the partition table and reads it into 
memory. 

Controller Configuration 
Prior to installing the Adaptec host adapter in your system, you must configure the 1/0 base 
address, interrupt vector. and OMA channel as follows: 

LEXICON 



400 aha154x 

1/0 base address: 
DMA channel: 
Interrupt vector: 

Ox330 
5 
IRQll 

In addition, if you are using any synchronous SCSI peripherals, disable the synchronous transfer 
option on the Adaptec host adapter. 

After verifying that your controller works with COHERENT, you may select an alternate 1/0 base 
address or an alternate interrupt vector. Device-driver variables SDBASE_ and SDIRQ_ correspond 
to the 1/0 base address and interrupt vector, respectively. Variable SDDMA_ sets the number of the 
DMA channel being used. See Lexicon article hs for an example of how to configure a device driver. 

When processing BIOS 1/0 requests prior to booting COHERENT, the Adaptec host adapter uses 
translation mode drive parameters: number of heads, cylinders, and sectors per track. Most current 
versions of the AHA- l 54x use values of 64 heads and 32 sectors per track, and calculate the 
number of cylinders based upon drive capacity. Note that these numbers are called "translation­
mode" parameters because they have nothing to do with the geometry of the physical drive. Some 
early versions of the AHA-154x, and some versions distributed by Tandy, use 16 heads and 32 
sectors per track. Device driver variable SD_HDS_ is initialized to 64 as shipped; it should be 
patched to a value of 16 for adapters whose BIOS code uses 16-head translation mode. The 
translation-mode parameters used by the BIOS code present on your host adapter can be obtained 
using the info command from the tertiary boot in versions 3.2 .1 and later of COHERENT. (See the 
article on tboot for details.) Note that the BIOS code is executed by COHERENT only during initial 
bootstrap. After that, drive parameters are of no consequence since SCSI 1/0 requests are based 
upon logical block number, rather than on cylinder /head/sector addressing. 

The installation procedure for COHERENT versions 3.2.0 and later patches all necessary variables 
for the accompanying version of the ahal54x driver by executing the command: 

/etc/mkdev scsi 

Minor Device Numbers 
The minor device number is decoded as follows: 

Bit number: 
Meaning: 

7 6 5 4 3 2 1 0 
S I I I L L P P 

where S indicates the "special" bit, III indicates a three-bit field containing the SCSI-ID in the range 
of zero through seven, LL indicates a two-bit field containing a LUN in the range of zero through 
three, and PP indicates a two- bit field that contains either a partition number for disk- type devices 
or a set of special modes for devices other than disks. 

The "special" bit and the partition number interact as follows: 

Description S Bit pp Device Type 
partition a 0 00 /dev/sd?a disk 
partition b 0 01 /dev/sd?b disk 
partition c 0 10 /dev/sd?c disk 
partition d 0 11 /dev/sd?d disk 
partition table 1 00 /dev/sd?x disk 
no rewind 1 01 /dev/sd?n tape 
RESERVED 1 10 
rewind on close 1 11 /dev/sd? tape 

LEXICON 



alarmO - alarm20 401 

Loading the Driver 
The ahal54x loadable device driver must be loaded on a system that does not have a SCSI hard 
disk as the root device. To do so. use the command /etc/drvld, as follows: 

/etc/drvld -r /drv/aha154x 

Files 
I dev I sd• - block-special devices 
I dev I rsd• - character-special devices 

See Also 
device drivers, drvld, scsi, tboot 

Notes 
This release of the ahal54x device driver only supports disk-type devices. A future version of the 
driver will add support for tape-type and other devices. 

alarmO - System Call 
Set a timer 
alann(n) 
unsignedn; 

alarm() sets a timer associated with the requesting process to go off in n seconds. After n seconds, 
the system sends the signal SIGALARM to the process. An argument of zero turns off the alarm 
timer. 

By default, the receipt of the SIGALARM signal terminates the process. However, it may be caught 
or ignored by using signal(). Because of scheduling variation and the one second granularity, the 
action of alarm() is predictable only to within one second. 

alarm() is useful for such things as timeouts. For example, the login process on a dial-in port might 
hang up the line after a sufficient time has elapsed with no user response. 

alarm() returns the previous alarm value. which represents the time remaining from the previous 
call. Time remaining is superseded by the new alarm value. 

See Also 
alarm2(), signal(), sleep(), system calls 

Notes 
Each process can set only one alarm at a time. alarm() and alarm2() use the same mechanism for 
setting alarms. 

alarm20 - System Call 
Set an alarm 
long 
alarm2(n) 
long n; 

alarm2() sends signal SIGALARM to the requesting process after n clock ticks. The number of clock 
ticks per second is set by the manifest constant HZ, found in header file const.h. At present, this is 
set to 100 ticks per second. 

alann2() returns the number of ticks remaining before the previous request would have triggered an 
alarm, or zero if no alarm was previously set. 

By default, the receipt of the SIGALARM terminates the process. However, it may be caught or 
ignored by using signal(). 

LEXICON 



402 alias - aliases 

See Also 
alann(), signal(), sleep(), system calls 

Notes 
Each process can set only one alarm at a time. alann2() and alann() use the same mechanism for 
setting alarms. 

~"~~""''~~"''~"'~~,,~ ~~~"~'~'~ 
Set an alias 
alias [name[=value ... )] 

The command alias is used by the Korn shell ksh to set or display an alias. 

When called without an argument, alias lists all aliases that have been set so far. When called with 
a name argument alone, it lists alias of name, assuming one has been set. 

When called with one or more arguments of the form name=value. it established name as an alias 
for the command value. For example, the command 

alias FOO="echo bar" 

establishes the string FOO as an alias for the command echo bar. Thereafter, when you type FOO 
on the shell's command line, it will execute the command echo bar and so echo the string bar on 
your terminal. 

The Korn shell sets a number of aliases by default. See the Lexicon entry for ksh for a list of these 
aliases and their settings. 

See Also 
commands, ksh, unalias 

mmwt&Wifi'·'mMMifo·1-"',~"~~~~"'"'~''~~ 
File of users' aliases 
/usr/lib/mail/aliases 
$HOME/ .aliases 
$HOME/ .forward 

aliases is a file that holds aliases by which users on your system and other systems are known. An 
"alias", in effect, gives another name by which you can address a mail message to a user on either 
your or another system. It can serve as a mnemomic, a "mailing list", or to spare you the trouble of 
typing a complicated UUCP path name. 

The format of each alias is 

alias name: target 

where allas_name gives the alias to which you mail your message. and target is the place where 
small actually directs the message. target can be a login identifier on your local system; a mail 
address of a user on another system, or a cluster of users on your system, on remote systems, or 
both. 

small ignores differences in case when it compares a name with an alias. Lines that start with a 
white-space character continue from the previous line. small ignores strings within parentheses, as 
well as any text that appears after a pound sign '#'. 

Prior to delivering local mail, small checks file $HOME/ .forward for forwarding instructions. This 
feature can be used to forward inbound mail for a user to another machine or even a group of 
machines. 

LEXICON 



Examples 
The following gives an example form of aliases: 

# this whole line is a comment 

# "mail programmers" sends mail to local users joe, jack, and bill 
programmers: joe jack bill 

# same as above 
programmers: 

# same as above 
programmers 

# same as above 
programmers 

joe jack 
bill 

joe jack 
bill 

# Joe Smith 
# Jack Thomas 

joe 
jack 
bill # Bill Williams 

# and yet another way; note use of parentheses to comment text 
programmers joe (Joe Smith) jack (Jack Thomas) 

bill (Bill Williams) 

# send a message to someone on another system 
joe: boston!widget!js 

# send a message to 
programmers: 

users on both your 
boston!widget!js 
chicago!gadget!jt 
bill 

and another system 
# Joe Smith 
# Jack Thomas 
# Bill Williams 

# all members of "programmers" group work at site "widget" 
programmers!widget joe jack bill 

aliases 403 

Mailing lists are easily handled by two forms of file inclusion. The first form is the same as is 
supported by sendmall: 

fredlist :include:/usr/lib/mail/fredlist 

small adds each entry in /usr/lib/mail/fredlist to the alias for fredlist. 

The second form allows /usr/lib/mail/allasesto include other aliases files: 

:include:/usr/lib/mail/morealiases 

This adds the contents of /usr/lib/mail/moreallases to those of /usr/lib/mall/aliases as a 
regular alias file. 

All aliases are recursive, so you must be careful when defining them. For example, the entries 

bill: 
joe: 

joe 
bill 

causes an infinite loop. small attempts to prevent infinite loops, and to guess what you intended to 
do. The following example illustrates how an alias can be used to deliver mail to a remote user as 
well as to a local user having the same name as the alias being expanded. small expands the alias 

LEXICON 



404 alignment - allocaO 

mylogin: 

to 

mypc!mylogin mylogin 

mypc!mylogin mylogin 

even though the second occurrence of mylogin matches the alias name. 

Both forms of file inclusion are recursive. too. and may lead to infinite loops if handled carelessly. 

See Also 
mail, system maintenance 

alignment - Definition ~''~'~'''~~,~~~'''~~~~~ 
Alignment refers to the fact that some microprocessors require the address of a data entity to be 
aligned to a numeric boundary in memory so that address modulo number equals zero. For 
example, the M68000 and the PDP-11 require that an integer be aligned along an even address, i.e., 
address%2==0. 

Generally speaking, alignment is a problem only if you write programs in assembly language. For C 
programs. COHERENT ensures that data types are aligned properly under foreseeable conditions. 
You should, however, beware of copying structures and of casting a pointer to char to a pointer to a 
struct, for these could trigger alignment problems. 

Processors react differently to an alignment problem. On the VAX or the i8086, it causes a program 
to run more slowly, whereas on the M68000 it causes a bus error. 

See Also 
data types, definitions 

rmm,111mn1-~~~'''' 
Define the allocator 
#include <sys/ alloc.h> 

alloc.h defines manifest constants and structures that are used internally with memory allocation. 

See Also 
header mes 

allocaO - General Function ~~,~~~· 
Dynamically allocate space on the stack 
alloca(memory) 
int memory; 

The function alloca() allocates memory number of bytes dynamically on the stack. The allocated 
memory disappears automatically as soon as the program exits from the function within which the 
memory was allocated. 

For example, consider the function: 

LEXICON 



foo(some_string) 
char *some_string; 
{ 

} 

char *cp; 

cp = alloca(strlen(some_string) + l); 
strcpy(cp, some_string); 

ar 405 

Here, the call to alloca() allocates enough space upon the stack for some_strlng plus the 
terminating NUL character. When function foo() returns. the allocated memory vanishes. 

This routine is popular in Berkeley and GNU circles because it is much faster than malloc(), and 
the programmer does not need to call free() to de-allocate the memory. 

See Also 
calloc(), general functions, malloc(), realloc() 

Notes 
alloca() is available only with COHERENT 386. 

~~-..,-. -._-..,,~,...,,, ... ._~,~-..,-. 
The librarian/archiver 
ar option [modifler][posltlon] archive [member ... ] 

The librarian ar edits and examines libraries. It combines several files into a file called an archive or 
library. Archives reduce the size of directories and allow many files to be handled as a single unit. 
The principal use of archives is for libraries of object files. The linker Id understands the archive 
format, and can search libraries of object files to resolve undefined references in a program. 

Options and Modifiers 
The mandatory option argument consists of one of the following command keys: 

d Delete each given member from archive. The ranlib header is updated if present. 

m Move each given member within archive. If no modifier is given, move each member to the end. 
The ranlib header is modified if present. 

p Print each member. This is useful only with archives of texi files. 

q Quick append: append each member to the end of archive unconditionally. The ranlib header 
is not updated. 

r Replace each member of archive. If archive does not exist, create it. The optional modifier 
specifies how to perform the replacement, as described below. The ranlib header is modified if 
present. 

t Print a table of contents that lists each member specified. If none is given, list all in archive. 
The modifier v tells ar to give you additional information. 

x Exiract each given member and place it into the current directory. If none is specified, exiract 
all members. archive is not changed. 

The modifier may be one of the following. The modifiers a, b, i, and u may be used only with the m 
and r options. 

LEXICON 



406 ar.h 

a If member does not exist in archive, insert it after the member named by the given position. 

b If member does not exist in archive, insert it before the member named by the given position. 

c Suppress the message normally printed when ar creates an archive. 

i If member does not exist in archive, insert it before the member named by the given position. 
This is the same as the b modifier, described above. 

k Preserve the modify time of a file. This modifier is useful only with the r, q. and x options. 

s Modify an archive's ranlib header, or create it if it does not exist. This must be used for 
archives read by the linker Id. 

u Update archive only if member is newer than the version in the archive. 

v Generate verbose messages. 

ar reads the environmental variables ARHEAD and ARTAIL and appends them to, respectively, the 
beginning and end of its command line. For example, to ensure that ar is always executed with the 
c modifier, insert the following into your .profile: 

export ARHEAD=c 

Library Structure 
All archives are· written into a specialized file format. Each archive starts with a "magic string" 
called ARMAG, which identifies the file as an archive. The members of the archive follow the magic 
number; each is preceded by an ar_hdr structure. For information on this structure, see ar.h. The 
structure is followed the data of the file, which occupy the number of bytes specified by the variable 
ar_size. 

See Also 
ar .h, commands, Id, nm, ranllb 

Notes 
It is recommended that each object-file library you create with ar have a name that begins with the 
string lib and ends with the string .a. Using the prefix lib will allow you to call that library with the -
I option to the cc command. Id will not recognize an archive whose name does not end in .a. 

-,,~..._,~~,._,~~..._,,~,._~~..._,._,._,..,_,,,~'W 
Format for archive files 
#include <ar.h> 

An archive is a file that has been built from a number of files. Archives are maintained by the ar 
command. Usually, an archive is a library of object files used by the linker Id. 

The header ar.h describes the format of an archive. All archives start with a magic number 
ARMAG, which identifies the file as an archive. The members of the archive follow the magic 
number, each preceded by the structure ar_hdr: 

#define DIRSIZ 
#define ARMAG 

LEXICON 

14 
0177535 

/* from <dir.h> */ 
/* magic number */ 



arena - argv 407 

struct ar - hdr { 
char ar name[DIRSIZ]; /* member name */ -
time - t ar_date; /* time inserted */ 
short ar_gid; /* group owner */ 
short ar _uid; /* user owner */ 
short ar_mode; /* file mode */ 
size t ar size; /* file size */ -

} ; 

The structure at the head of each member is immediately followed by ar_size bytes, which are the 
data of the file. 

To enhance the performance of Id, the command ranllb provides a random library facility. ranllb 
produces archives that contain a special entry named _ _ .SYMDEF at the beginning. 

All integer members of the structure (everything but ar_name) are in canonical form to ease 
portability. See canon.h for more information. 

See Also 
ar, canon.h, header mes, Id, ranllb 

~"'"'~"'"'""'~~""'~''"'~'''~'~~~~wnwn~'"''1h"'"' 
An arena is the area of memory that is available for a program to allocate dynamically at run time. 
It is divided into allocated and unallocated blocks. The unallocated blocks together form the "free 
memory pool". 

Portions of the arena can be allocated using the functions malloc. calloc. or realloc; returned to the 
free memory pool with free; or checked to see if they are allocated or not with notmem. To check 
whether the arena has been corrupted or not, use the function memok. 

See Also 
calloc(), definitions, free(), malloc(), memok(), notmem(), realloc() 

~ "1wnwnwnwnwnnewnwnnenewnwnwnwnnenene"-wnwn~wnwnwnwnwnwnwn 
Argument passed to main() 
int argc; 

argc is an abbreviation for "argument count". It is the traditional name for the first argument to a C 
program's main routine. By convention, it holds the number of arguments that are passed to main 
in the argument vector argv. Because argv[O] is always the name of the command, the value of argc 
is always one greater than the number of command-line arguments that the user enters. 

Example 
For an example of how to use argc, see the entry for argv. 

See Also 
argv, C language, envp, main() 

argv - C Language '"~"'"'"-'"-~wnwn~~wnwnwnwnwnwn'~~~"'~~" 
Argument passed to main() 
char •argv[); 

argv is an abbreviation for "argument vector". It is the traditional name for a pointer to an array of 
string pointers passed to a C program's main function; by convention, it is the second argument 
passed to main. By convention, argv[O] always points to the name of the command itself. 

LEXICON 



408 ARHEAD - array 

Example 
This example demonstrates both argc and argv(]. to recreate the command echo. 

main(argc, argv) 
int argc; char *argv[]; 
{ 

} 

int i; 

for (i = 1; i < argc; ) { 
printf("%s", argv[i]); 
if (++i < argc) 

putchar(' '); 
} 

putchar( '\n'); 
exit(O); 

See Also 
argc, C language, envp, mainO 

GUUJ:M• •aM!i·!Hi'®i!Mr•ue 
Append options to beginning of ar command line 
export ARHEAD=optlons 

The COHERENT archiver ar reads the environmental variables ARHEAD and ARTAIL before it 
begins its work. You can set these variables to hold the default options that you want the archiver 
always to use. ar appends the options in ARHEAD to the beginning of its command line. 

See Also 
ar, ARTAIL, environmental variables 

mJm1SiG1Ji!e]lln••••••••••••illllllllllillllllllllilllllllllilllllllllBillllllllllillllllllllillllllllllillllllllllilllllllllilllllllllilllllllllilllllllllilllllllllilllllllllillllllllli1111111111111111111111111111111m 
An array is a concatenation of data elements, all of which are of the same type. All the elements of 
an array are stored consecutively in memory, and each element within the array can be addressed 
by the array name plus a subscript. 

For example, the array int foo[3) has three elements, each of which is an int. The three ints are 
stored consecutively in memory, and each can be addressed by the array name too plus a subscript 
that indicates its place within the array, as follows: foo[OJ, foo[l]. and foo[2). Note that the 
numbering of elements within an array always begins with ·o·. 
Arrays, like other data elements. may be automatic (auto), static. or external (extern). 

Arrays can be multi-dimensional: that is to say. each element in an array can itself be an array. To 
declare a multi-dimensional array, use more than one set of square brackets. For example, the 
multi-dimensional array foo[3)[10) is a two-dimensional array that has three elements, each of 
which is an array of ten elements. The second sub-script is always necessary in a multi­
dimensional array, whereas the first is not. For example, the form foo[J[lO] is acceptable, whereas 
foo[lO)[) is not. The first form is an indefinite number of ten-element arrays, which is correct C, 
whereas the second form is ten copies of an indefinite number of elements, which is illegal. 

You can initialize automatic arrays and structures, provided that you know the size of the array. or 
of any array contained within a structure. An automatic array is initialized in the same manner as 
aggregate, but initialization is performed on entry to the routine at run time, instead of at compile 
time. 

LEXICON 



ARTAIL 409 

Flexible Arrays 
A fiexible array is one whose length is not declared explicitly. Each has exactly one empty '[ ]' 
array-bound declaration. If the array is multidimensional, the flexible dimension of the array must 
be the.first array bound in the declaration; for example: 

int example1(][20]; /*RIGHT*/ 
int example2(20][]; /*WRONG*/ 

The C language allows you to declare an indefinite number of array elements of a set length. but not 
a set number of array elements of an indefinite length. 

Flexible arrays occur in only a few contexts; for example, as parameters: 

char *argv []; 
char p [ ] [ 8 ] ; 

as extern declarations: 

extern int end[]; 

or as a member of a structure - usually. though not necessarily, the last: 

struct nlist { 

} ; 

Example 

struct nlist *next; 
char name [ ] ; 

The following program initializes an automatic array. and prints its contents. 

main () 
{ 

} 

int foo(3] = { 1, 2, 3 }; 

printf("Here•s foo's contents: %d %d %d\n", 
foo [ 0], foo [ l], foo [ 2]) ; 

See Also 
definitions, initialization, struct 
The C Programming Language, pages 25, 83, 210 

CUilm •aM"'lii"M"mppgr:a."~''~~""~'"'~" ~""'~~~ ~ 
Append options to end of ar command line 
export ARTAIL=optlons 

The COHERENT archiver ar reads the environmental variables ARHEAD and ARTAIL before it 
begins its work. You can set these variables to hold the default options that you want the archiver 
always to use. 

ar appends the options in ARTAIL to the end of its command line. 

See Also 
ar, ARHEAD, environmental variables 

LEXICON 



410 as 286 

as 286 - Command 
i80286 assembler 
as [-glxl [ -o.flle I.file ... 

as is the Mark Williams assembler. It is a multipass assembler that turns files of assembly 
language into relocatable object modules similar to those produced by the compiler. as is designed 
for writing small assembly-language subroutines. Because it is not intended to be used for full­
scale assembly-language programming. it lacks many of the more elaborate facilities of full-fledged 
assemblers. For example. there are no facilities for conditional compilation or user-defined macros. 
However, it does optimize span-dependent instructions (for example, branches). 

Please note that as comes in two editions: one that comes with COHERENT 286 and one that comes 
with COHERENT 386. This article describes the former edition. The COHERENT 386 edition of as 
is is considerably expanded in its functionality over the COHERENT 286 edition. Programs written 
in the COHERENT-286 edition of as can be upgraded to the COHERENT-386 edition by using the 
command asfix. which is included with COHERENT 386. 

Features 
as includes the following features: 

It automatically compiles jump instructions into either regular (three-byte) jumps or short (two­
byte)jumps, whichever is required. There is no explicit short jump instruction. 

The assembler supports temporary labels. which conserves symbol table space and relieves you 
of having to invent many unique labels. 

Program modules are relocatable. They can be linked with each other and with C program 
modules produced by the COHERENT compiler. All assembled modules must be linked before 
they can be executed. 

The assembler does not support file inclusion, but multiple source files can be concatenated 
and assembled by including their names in the command line to run the assembler. 

The assembler generates SMALL model objects in the COHERENT I.out object format. 

Usage 
Normally. the assembler is invoked via the cc command, which will automatically assemble and link 
any file of source code that has the suffix .s. If you wish, however, you can invoke the assembler as 
a separate program, by using the following command line: 

as [-glxl [ -o.flle I.file ... 

The named.flies are concatenated and the resulting object code is written to the file specified by the 
-o option, or to file I.out if no -o option is given. 

The option -g causes all symbols that are undefined at the end of the first pass to be given the type 
undefined external, as though they had been declared with a .globl directive. 

The option -I tells the assembler to generate a listing. It writes the listing to the standard output, 
normally the terminal: it may be easily redirected to a file or printer using the> operator. 

The option -x strips from the symbol table of the object module all non-global symbols that begin 
with the character 'L'. This speeds up the loading of files by removing compiler-generated labels 
from the symbol table. 

Register Names 
The following lists the identifiers that represent the i8086 machine registers, which are predefined: 

LEXICON 



AX 
BX 
ex 
DX 

SP 
BP 
SI 
DI 

AL 

BL 
CL 
DL 

Lexical Conventions 

AH 
BH 
CH 
DH 

cs 
OS 
ES 
SS 

as 286 411 

Assembler tokens consist of identifiers (also known as "symbols" or "names"), constants, and 
operators. 

An identifier is a sequence of alphanumeric characters (including the period '. · and the underscore 
'_'). The first character must not be numeric. Only the first 16 characters of the name are 
significant; the assembler throws away the remainder. Upper case and lower case are different. The 
machine instructions, assembly directives, and built-in symbols that are used frequently are in 
lower case. 

Numeric constants are defined by the assembler by using the same syntax as the C compiler: a 
sequence of digits that begins with a zero 'O' is an octal constant; a sequence of digits with a leading 
'Ox' is a hexadecimal constant ('A' through 'F' have the decimal values 10 through 15 ); and any 
strings of digits that do not begin with 'O' are interpreted as decimal constants. 

A character constant consists of an apostrophe followed by an ASCII character. The constant's 
value is the ASCII code for the character, right-justified in the machine word. For example, an 
instruction to move the letter 'A' to the register al could be expressed in either of two equivalent 
ways: 

mov al, $0x41 
mov al,$ 'A 

The dollar sign indicates an immediate operand. 

A blank space can be represented either Ox20 (its ASCII value in hexadecimal), or as an apostrophe 
followed by a space (' ). which on paper looks like just an apostrophe alone. 

The following gives the multi-character escape sequences that can be used in a character constant 
to represent special characters: 

\b Backspace (0010) 
\f Formfeed (0014) 
\n Newline (0012) 
\r Carriage return (0015) 
\t Tab (0011) 
\v Vertical tab (0013) 
\nnn Octal value (Onnn) 

A blank space can be represented either as Ox20 (its ASCII value in hexadecimal). or as an 
apostrophe followed by a space (' ), which on the page would look like just an apostrophe. 

Blanks and Tabs 
Blanks and tab characters may be used freely between tokens, but not within identifiers. A blank 
or a tabulation character is required to separate adjacent tokens not otherwise separated, e.g .. 
between an instruction opcode and its first operand. 

Comments 
Comments are introduced by a slash (' /') and continue until the end of the line. All characters in 
comments are ignored by the assembler. 

LEXICON 



412 as 286 

Program Sections 
The assembler permits you to divide programs into sections, each corresponding (roughly) to a 
functional area of the address space. Each program section has its own location counter during 
assembly. There are eight program sections, subdivided into three groups containing code, data and 
tables: 

code: 

data: 

tables: 

shri 
bssi 
prvi 
prvd 
shrd 
bssd 
stm 
symt 

Shared instruction 
Uninitialized instruction 
Private instruction 
Private data 
Shared data 
Uninitialized data 
Strings 
Symbol table 

All Mark Williams assemblers use the same set of sections. This increases the portability of 
programs between operating systems. Not all the sections are distinct under COHERENT, however; 
the meanings of the sections under (including hints as to how the C compiler uses them) are as 
follows: 

shri (shared instruction) is the same as prvi (private instruction); the adjective shared refers to the 
sharing of physical memory between two or more concurrent processes. prvi is used for all code 
generated by the C compiler. 

Similarly, there is no distinction between shrd and prvd. The compiler uses the latter for all external 
and static data that are explicitly initialized in a C program. 

Uninitialized sections are actually initialized to zeros. The reason is that the C compiler uses the 
bssd (uninitialized data) section for external or static data that are not explicitly initialized: the C 
language guarantees that these data are in fact initialized to zeros. The bssi (uninitialized 
instruction) section is not used by the compiler. 

The stm (strings) section is actually a special part of the data section, used by the C compiler to 
store string constants. It is synonymous with pivd under COHERENT. 

The symt (symbol table) section contains the symbol table used by the linker. Both the C compiler 
and the assembler generate symbol tables that go in this section. 

In most cases, you need not worry about what all these program sections are, and can simply write 
code under the keyword .pivi or .shri, and write data under the keyword .prvd or .shrd. You are 
advised not to place items in the symt section, as this section is used for internal communication 
among the C compiler, the assembler, and the linker. 

At the end of assembly, the sections of a program are concatenated so that in the assembly listing 
the program looks like a monolithic block of code and data. All code sections are combined into the 
i8086 code segment, and all data sections into the i8086 data segment. The symbol table is not 
linked when the program is executed, and so is not assigned to any i8086 segment. 

The Current Location 
The special symbol'.' (period) is a counter that represents the current location. The current location 
can be changed by an assignment; for example: 

. =.+START 

The assignment must not cause the value to decrease, and it must not change the program section, 
i.e., the right-hand operand must be defined in the same section as the current section. 

LEXICON 



as 286 413 

Expressions 
An expresston is a sequence of symbols representing a value and a program section. Expressions 
are made up of identifiers, constants, operators, and brackets. All binary operators have equal 
precedence and are executed in a strict left-to-right order (unless altered by brackets). 

Notice that square brackets, '(' and ']', group expression elements, because parentheses are used for 
indexed register addressing. 

Types 
Every expression has a type determined by its operands. The simplest operands are symbols. The 
types of symbols are as follows: 

Undefined 

Absolute 

Register 

Relocatable 

A symbol is defined if it is a constant or a label. or when assigned a defined value; 
otherwise, it is undefined. A symbol may become undefined if it is assigned the 
value of an undefined expression. It is an error to assemble an undefined 
expression in pass 2. Pass 1 allows assembly of undefined expressions, but phase 
errors may be produced if undefined expressions are used in certain contexts. such 
as in a .blkw or .blkb. 

An absolute symbol is one defined ultimately from a constant or from the difference 
of two relocatable values. 

These are the machine registers. 

All other user symbols are relocatable symbols in some program section. Each 
program section is a different relocatable type. 

Each keyword in the assembler has a secret type that identifies it internally; however, all of these 
secret types are converted to absolute in expressions. Thus, any keyword may be used in an 
expression to obtain the basic value of the keyword. This is useful when employing the keywords 
that define machine instructions. The basic value of a machine operation is usually the opcode with 
any operand-specific bits set to zero. 

Notice that the type of an expression does not include such attributes as length (word or byte), so 
the assembler will not remember whether you defined a particular variable to be a word or a byte. 
Addresses and constants have different types, but the assembler does not treat a constant as an 
immediate value unless it is preceded by a dollar sign '$'. If you use a constant where an address is 
expected, as will treat the constant like an address (and vice versa). It is up to you to distinguish 
between variables and addresses or immediate values. 

Operators 
The following figure shows various characters interpreted as operators in expressions. 

+ Addition 

* 
Subtraction 
Multiplication 
Unary negation 
Unary complement 
Type transfer 
Segment construction 

You can group expressions by means of square brackets ('[' and ']'); parentheses are reserved for use 
in address mode descriptions. 

Type Propagation 
When operands are combined in expressions, the resulting type is a function of both the operator 
and the types of the operands. The operators '*', ·-·. and unary ·-· can only manipulate absolute 
operands and always yield an absolute result. 

LEXICON 



414 as 286 

The operator'+' signifies the addition of two absolute operands to yield an absolute result, and the 
addition of an absolute to a relocatable operand to yield a result with the same type as the 
relocatable operand. 

The binary operator'-' allows two operands of the same type, including relocatable, to be subtracted 
to yield an absolute result. lt also allows an absolute to be subtracted from a relocatable, to yield a 
result with the same type as the relocatable operand. 

The binary operator " yields a result with the value of its left operand and the type of its right 
operand. It may be used to create expressions (usually intended to be used in an assignment 
statement) with any desired type. 

Statements 
A program consists of a sequence of statements separated by newlines or by semicolons. There are 
four kinds of statements: null statements, assignment statements, keyword statements, and 
machine instructions. 

Labels 
You can precede any statement by any number of labels. There are two kinds of labels: name labels 
and temporary labels. 

A name label consists of an identifier followed by a colon (:). The program section and value of the 
label are set to that of the current location counter. It is an error for the value of a label to change 
during an assembly. This most often happens when an undefined symbol is used to control a 
location counter adjustment. 

A temporary label consists of a digit (0 to 9) followed by a colon (:). Such a label defines temporary 
symbols of the form xf and xb, where x is the digit of the label. References of the form xf refer to 
the first temporary label x: forward from the reference; those of the form xb refer to the first 
temporary label x: backward from the reference. Such labels conserve symbol table space in the 
assembler. 

Null Statements 
A null statement is an empty line, or a line containing only labels or a comment. Null statements 
can occur anywhere. They are ignored by the assembler, except that any labels are given the 
current value of the location counter. 

Assignment Statements 
An assignment statement consists of an identifier followed by an equal sign '=' and an expression. 
The value and program section of the identifier are set to that of the expression. Any symbol defined 
by an assignment statement may be redefined, either by another assignment statement or by a 
label. An assignment statement is equivalent to the equ keyword statement found in many 
assemblers. 

Assembler Directives 
Assembler directives give instructions to the assembler. Each directive keyword begins with a 
period, and in general they are followed by operands. 

The following directives change the current program section to the named section: 

LEXICON 



.bssd 

.bssi 

.prvd 

.prvi 

.shrd 

.shri 

.strn 

.symt 

as 286 415 

The current location counter is set to the highest previous value of the location counter for the 
selected section. 

The following describes the directives in detail. 

.ascii string 
The first non-white space character, typically a quotation mark, after the keyword is taken 
as a delimiter. as assembles successive characters from the string into successive bytes 
until it encounters the next instance of this delimiter. To include a quotation mark in a 
string, use some other character for the delimiter. 

It is an error for a newline to be encountered before reaching the final delimiter. You can 
use a multi-character constant in the string to represent newlines and other special 
characters . 

. blkb expression 
Assemble a block of bytes that are filled with zeroes. The block is expression bytes long . 

• blkwexpresslon 
Assemble a block of words that are filled with zeroes. The block is expression words long . 

. byte expression [, expression ) 
The expressions in the list are truncated to byte size and assembled into successive bytes. 
Expressions in the list are separated by commas . 

. even Force alignment by inserting a null byte of data, if necessary, to set the location counter to 
the next even location . 

. odd Force alignment by inserting a null byte of data, if necessary, to set the location counter to 
the next odd location . 

. globl Identifier [, identifier ) 
The identifiers in the comma-separated list are marked as global. If they are defined in the 
current assembly, they may be referenced by other object modules; if they are undefined, 
they must be resolved by the linker before execution . 

. page Force the printed listing of your assembly-language program to skip to the top of a new page 
by inserting a form-feed character into the file. The title is printed at the top of the page . 

. title string 
Print string at the top of every page in the listing. This directive also causes the listing to 
skip to a new page . 

. word expression [, expression) 
Truncate expressions to word length and assemble the resulting data into successive words. 
Expressions in the list are separated by commas. 

Address Descriptors 
The following syntax is used for general source and destination address descriptors. The symbol 'r' 

LEXICON 



416 as 286 

refers to a register and the symbol 'e' to an expression. Please refer to the following figure. 

Syntax Addressing Mode Example 

r Register mov ax.ex 
e Direct address mov ax,0800 
(r) Indexing. no displacement mov ax, (bx) 
e(r) Indexing with displacement mov ax, 2(bx) 
(r,r) Double indexing. no displacement mov ax, (bx, si) 
e(r,r) Double indexing with displacement mov ax. 2(bx, si) 
$e Immediate mov ax,$0800 

Note that the dollar sign is always used to indicate an immediate value, even if the expression is a 
constant. 

A direct address is interpreted as either a direct address or a PC-relative displacement. depending 
on the requirements of the instruction. 

If an address descriptor indicates an indexing mode and the base expression is of type absolute, the 
assembler uses the shortest displacement length (zero, one, or two bytes) that can hold the 
expression's value. Relocatable base expressions, whose values cannot be completely determined 
until the program is loaded, are always assigned two-byte displacements. 

Any address descriptor may be modified by a segment escape prefix. A segment escape prefix 
consists of a segment register name followed by a colon ':'. The escape causes the assembler to 
produce a segment override prefix that uses the specified segment register as an operand. The 
assembler does not produce segment override prefixes unless explicitly required by an instruction. 

8086 Instructions 
The following machine instructions are defined. The examples illustrate the general syntax of the 
operands. Combinations that are syntactically valid may be forbidden for semantic reasons. 

The examples use the following references: 

a General address 
al AL register 
ax AX register 
cl CL register 
d Direct address 
dx DX register 
e Expression 
$e Immediate expression 
m Memory address (not an immediate) 
p Port address 

as treats as ordinary one-byte machine operations some operations that the Intel assembler ASM86 
handles with special syntax; these include the lock and repeat prefixes. as makes no attempt to 
prevent the generation of incorrect sequences of these prefix bytes. 

Although every machine operation has a type and value associated with it, in most cases the value 
was chosen to help as format the machine instructions. 

For more information on these instructions, see the Intel ASM86 Assembly Language Reference 
Manual. 

aaa 
aad 
aam 

LEXICON 

ASCII adjust AL after addition 
ASCII adjust AX before division 
ASCII adjust AX after multiply 



as 286 417 

aas ASCII adjust AL after subtraction 
adcb r, a Add with carry, byte 
adc r, a Add with carry, word 
a deb a, r Add with carry, byte 
adc a, r Add with carry, word 
a deb a, $e Add with carry, byte 
adc a, $e Add with carry, word 
ad db r, a Add, byte 
add r, a Add, word 
ad db a, r Add, byte 
add a, r Add, word 
ad db a,$e Add, byte 
add a, $e Add, word 
an db r, a Logical and, byte 
and r, a Logical and, word 
an db a, r Logical and. byte 
and a, r Logical and, word 
an db a, $e Logical and, byte 
and a, $e Logical and. word 
call d Near call, PC-relative 
cbw Convert byte into word 
clc Clear carry flag 
cld Clear direction flag 
ell Clear interrupt flag 
cmc Complement carry flag 
cmpb r, a Compare two operands, byte 
cmp r, a Compare two operands. word 
cmpb a, r Compare two operands, byte 
cmp a, r Compare two operands, word 
cmpb a,$e Compare two operands, byte 
cmp a, $e Compare two operands, word 
cmps Compare string operands, bytes 
cmpsb Compare string operands, bytes 
cmpsw Compare string operands. words 
cwd Convert word to double 
daa Decimal adjust AL after addition 
das Decimal adjust AL after subtraction 
decb a Decrement by one, byte 
dee a Decrement by one, word 
di vb m Unsigned divide, byte 
div m Unsigned divide, word 
esc a EscapeOxD8 
hit Halt 
icall a Near call, absolute offset at EA word 
idivb m Signed divide, byte 
idiv m Signed divide, word 
ijmp a Jump short, absolute offset at EA word 
imulb m Signed multiply, byte 
imul m Signed multiply, word 
inb al,p Input, byte 
in ax,p Input. word 
inb al, d.x Input, byte 
in ax, d.x Input, word 
incb a Increment by one, byte 

LEXICON 



418 as286 

inc a Increment by one, word 
int e Call to interrupt 
into Call to interrupt, overflow 
iret Interrupt return 
ja d Jump short if greater 
jae d Jump short if greater or equal 
jb d Jump short if less 
jbe d Jump short if less or equal 
jc d Jump short if carry 
jcxz d Jump short if CX equals zero 
je d Jump short if equal to 
jg d Jump short if greater 
jge d Jump short if greater or equal 
jl d Jump short if less 
jle d Jump short if less or equal 
jmp d Jump short, PC-relative word offset 
jmpb d Jump short, PC-relative byte offset 
jmpl d Jump long 
jna d Jump short if not above 
jnae d Jump short if not above or equal 
jnb d Jump short if not below 
jnbe d Jump short if not below or equal 
jnc d Jump short if not carry 
jne d Jump short if not equal 
jng d Jump short if not greater 
jnge d Jump short if not greater or equal 
jnl d Jump short if not less 
jnle d Jump short if not less or equal 
jno d Jump short if not overflow 
jnp d Jump short if not parity 
jns d Jump short if not sign 
jnz d Jump short if not zero 
jo d Jump short if overflow 
jp d Jump short if parity 
jpe d Jump short if parity even 
jpo d Jump short if parity odd 
js d Jump short if sign 
jz d Jump short if zero 
lahf Load flags into AH register 
Ids r, a Load double pointer into DS 
lea r, a Load effective address offset 
les r, a Load double pointer into ES 
lock Assert BUS LOCK signal 
lodsb Load byte into AL 
lods Load byte into AL 
lodsw Load byte into AL 
loop d Loop; decrement CX, jump short 

if ex less than zero 
loope d Loop; decrement CX, jump short 

if CZ not zero and equal 
loopne d Loop; decrement CX, jump short 

if ex not zero and not equal 
loopnz d Loop; decrement CX, jump short 

if CZ not zero and ZF equals zero 

LEXICON 



as 286 419 

loopz d Loop; decrement CX. jump short 
if CX not zero and zero 

movb r, a Move, byte 
mov r, a Move, word 
movb a, r Move, byte 
mov a, r Move. word 
movb a, $e Move, byte 
mov a,$e Move, word 
movb a,s Move, byte 
mov a,s Move. word 
movb s, a Move, byte 
mov s,a Move, word 
movsb Move string byte-by-byte 
mo vs Move string word-by-word 
movsw Move string word-by-word 
mulb m Multiply. byte 
mul m Multiply, word 
negb a Two's complement negation, byte 
neg a Two's complement negation, word 
nop No operation 
notb a One's complement negation, byte 
not a One's complement negation, word 
orb r, a Logical inclusive OR. byte 
or r, a Logical inclusive OR, word 
orb a, r Logical inclusive OR, byte 
or a, r Logical inclusive OR. word 
orb a, $e Logical inclusive OR. byte 
or a, $e Logical inclusive OR, word 
outb p,al Output to port, byte 
out p,ax Output to port, word 
outb dx, al Output to port. byte 
out dx,ax Output to port, word 
pop m Pop a word from the stack 
pop s Pop a word from the stack 
po pf Pop from stack into flags register 
push m Push a word onto the stack 
push s Push a word onto the stack 
pus hf Push flags register onto the stack 
re lb a, $1 Rotate left $1 times. byte 
re lb a, cl Rotate left CL times, byte 
rel a, $1 Rotate left $1 times, word 
rel a,cl Rotate left CL times, word 
rerb a, $1 Rotate right $1 times, byte 
rerb a,cl Rotate right CL times, byte 
rer a, $1 Rotate right $1 times, word 
rer a, cl Rotate right CL times, word 
rep Repeat following string operation 
repe Find nonmatching bytes 
repne Repeat, not equal 
repnz Repeat, not equal 
repz Repeat, equal 
ret Return from procedure 
rolb a,$1 Rotate left, byte 
rolb a, cl Rotate left, byte 

LEXICON 



420 as286 

rol a, $1 Rotate left, word 
rol a, cl Rotate left. word 
rorb a, $1 Rotate right, byte 
rorb a, cl Rotate right. byte 
ror a,$1 Rotate right, word 
ror a, cl Rotate right. word 
sahf Store AH into flags 
salb a,$1 Shift left, byte 
salb a,cl Shift left, byte 
sal a,$1 Shift left, word 
sal a,cl Shift left, word 
sarb a,$1 Shift right, byte 
sarb a, cl Shift right. byte 
sar a, $1 Shift right, word 
sar a, cl Shift right, word 
sbbb T, a Integer subtract with borrow, byte 
sbb T, a Integer subtract with borrow, word 
sbbb a, T Integer subtract with borrow, byte 
sbb a, T Integer subtract with borrow, word 
sbbb a, $e Integer subtract with borrow, byte 
sbb a, $e Integer subtract with borrow, word 
scasb Compare string data, byte 
seas Compare string data, word 
shlb a,$1 Shift left, byte 
shlb a, cl Shift left, byte 
shl a,$1 Shift left, word 
shl a, cl Shift left, word 
shrb a, $1 Shift right. byte 
shrb a,cl Shift right, byte 
shr a,$1 Shift right, word 
shr a, cl Shift right, word 
stc Set carry flag 
std Set direction flag 
stf Set interrupt enable flag 
stosb Store string data, byte 
stos Store string data, byte or word 
stosw Store string data, word 
subb T, a Integer subtraction, byte 
sub T, a Integer subtraction, word 
subb a, T Integer subtraction, byte 
sub a, T Integer subtraction, word 
subb a, $e Integer subtraction. byte 
sub a,$e Integer subtraction, word 
testb T, a Logical compare, byte 
test T, a Logical compare, word 
testb a, T Logical compare, byte 
test a, T Logical compare, word 
testb a,$e Logical compare, byte 
test a, $e Logical compare, word 
wait Wait until BUSY pin is inactive 
xcall d,d Far call, immediate four-byte address 
xchgb T, a Exchange memory, byte 
xchg T, a Exchange memory, word 
xi call Far call, address at EA double word 

LEXICON 



xijmp 
xjmp d,d 
xlat 
xorb r, a 
xor r, a 
xorb a, r 
xor a, r 
xorb a, $e 
xor a, $e 
xret 

80286 Instructions 

Jump far, address at memory double word 
Jump far, immediate four-byte address 
Table look-up translation 
Logical exclusive OR, byte 
Logical exclusive OR. word 
Logical exclusive OR, byte 
Logical exclusive OR, word 
Logical exclusive OR. byte 
Logical exclusive OR. word 
Return. intersegment 

as 286 421 

The following instructions implement 80286-specific actions. Programs that use them cannot be 
run on 8086-based machines. 

pus ha Push all general registers 
po pa Pop all general registers 

insb Input byte from port DX to ES:(DI) 
ins Input word from port DX to ES:(DI) 
outsb Output byte from port DX from ES:(DI) 
outs Output word from port DX from ES:(DI) 

enter $e, $e Make stack frame for procedure 
leave Tear down stack frame for procedure 

bound r, e Check array index against bounds 

sldt a Store Local Descriptor Table Register 
str a Store Task Register 
lldt a Load Local Descriptor Table Register 
ltr a Load Task Register 
verr a Verify a segment for reading 
verw a Verify a segment for writing 

sgdt m Store Global Descriptor Table register 
sidt m Store Interrupt Descriptor Table register 
Igdt m Load Global Descriptor Table register 
lidt m Load Interrupt Descriptor Table register 
smsw a Store Machine Status Word 
lmsw a Load Machine Status Word 

lar r,a Load access rights byte 
Isl r,a Load segment limit 

cits Clear Task Switched Flag 
arpl Adjust RPL field of Selector 

push $e Push sign extended byte 
Also the $1 forms become $e on rol, rolb, ror, rorb, sal, salb, shrb, shr, and shrb. This is because 
8086 task of shifting and rotating by an immediate value could only take an immediate value of 1; 
however, on the 80286 the immediate value may be up to 31. 

C Compiler Conventions 
as is often used to write small functions that perform tasks not easily or efficiently done in C. Such 
functions are intended to be called from a C program. As long as the assembly language source 
code follows compiler conventions, the assembler routine will be fully compatible with C functions. 
These conventions are (1) the names of external variables and (2) calling functions. 

LEXICON 



422 as 286 

Naming Conventions 
The C compiler appends an underline character • ' to the end of every external declared in a C 
source file. When referring to any external variable or function declared in a C source file, append 
an underscore to the name. In a similar manner, when defining a function or variable in an 
assembly language source file that is to be accessed from a C source file, append an underline 
character. 

Function-Calling Conventions 
Function-calling conventions deal with how arguments are passed to functions, how values are 
returned, and which registers are used for special purposes and must be protected. 

Arguments 
Function arguments are passed on the stack. They are pushed by the calling function, which also 
removes them when the called function returns. Looking at the declaration of the function, the 
order in which they are pushed onto the stack is from right to left; that is, the C compiler pushes 
the argument list in reverse order of declaration. The instruction call to jump to the function also 
pushes the return address, so that when the called routine gains control the first argument is found 
at offset 2 from the stack pointer. 

Integer and pointer arguments are word size, and are simply pushed with a push instruction. 
Characters, although byte size, are not passed as bytes. The C language requires that char 
variables be promoted to the type int before being passed. The promotion is signed or unsigned, 
depending on the type of the char variable. longs are pushed one word at a time; the higher­
address word is pushed first. This ensures that the words of the long are in the correct order on the 
stack, because the stack grows toward low-addressed memory. 

Passing floats, doubles, or structure arguments is more involved. C requires floats to be promoted 
to and passed as doubles, so this conversion must be performed first. doubles and structures are 
passed so that as they sit on the stack, all bytes are in the correct order; this is analogous to the 
passing of longs. This means, for example, that doubles may be pushed with four push word 
instructions, beginning with the highest addressed word in the 64-bit double, and ending with the 
lowest addressed word. 

If in doubt about how to apply any of this, try writing a simple C program that uses what you need, 
and compile it with the -VASM option to the cc command. This produces an assembly-language 
version of the C program, which can be studied to see exactly what the compiler does, and mimicked 
to good effect. 

Return Values 

Functions return values in various registers according to their type. ints and pointers are returned 
in the ax register. chars are returned by first promoting them to ints and returning the result in 
the ax register; effectively, this means that chars are returned in the al register. longs are returned 
in the dx:ax register pair, with the most significant word (also the high-address word) in the dx 
register, and the least significant word in the ax register. 

floats, doubles, and structures are returned in a more complex fashion. C requires floats be 
returned as doubles, so they are converted. doubles are returned in a special eight-byte array 
named _fpac (of course, in assembly language the name is _fpac_). This array is defined by the 
compiler. In the event that a function returns a structure, the contents of the structure are saved in 
memory, and the function returns a pointer to that structure in the ax register. The calling function 
then moves the bytes into the actual destination. 

Again, if in doubt about how to do this in assembly language, try compiling a function with 
assembly language output to see how the compiler does it. 

LEXICON 



as 286 423 

Important Registers 
Every function must preserve the value of the bp register. which is the caller's stack frame pointer. 
Also. the compiler uses the si and di registers for register variables, so they must be preserved. 

Example of an Assembly Language Program 
The following assembly language file, strchar.s defines a function strchar that returns the number 
of occurrences of a character in a string. 

FILE: strchar.s 

I 
I 
I Count and return the occurrences 
I of a character in a string. 
I 
I int 
I strchar(s, c) 
I char *s; 
I int c; 
I 
I 

• globl strchar I Make the name known externally . 

strchar 
push 
push 
push 
mov 

mov 
mov 
sub 
sub 

0: movb 
jcxz 
cmpb 
jnz 
inc 

1: inc 
jmp 

2: pop 
pop 
pop 
ret 

si 
di 
bp 
bp, 

si, 
bx, 
ax, 
ex, 

cl, 
2f 
bl, 
lf 
ax 

si 
Ob 

bp 
di 
si 

I 
I 
I 

sp I 

S(bp) I 
lO(bp) I 
ax I 
ex I 

(si) I 
I 

cl I 
I 
I 

I 
I 

I 
I 
I 
I 

Standard C function 
linkage. Save the 
si, di, and bp registers 
and set up new frame pointer. 

String ptr -> si. 
Char -> bx (actually bl). 
Clear ax (count register). 
Clear ex. 

Get character from string. 
End of string? 
No. Do chars match? 
No. 
Yes. Increment count. 

Bump string pointer 
and loop again. 

Standard c return 
linkage. Restore 
saved registers and 
go home. 

The following C program, main.c uses strchar The assembly language listing that follows, main.s 
was produced from main.c by the -VASM option in cc. The listing has been edited, and comments 
added, to illustrate what is happening. 

LEXICON 



424 as 286 

FILE: main.c 

main() 
{ 

int n; 
n = strchar("aardvark", 'a'); 

} 

FILE: main.s 

• shri 

.globl main -

main 

• strn 

L2: .byte Ox61 
.byte Ox61 
.byte Ox72 
.byte Ox64 
.byte Ox76 
.byte Ox61 
.byte Ox72 
.byte Ox6B 
.byte OxOO 

.shri 

push si 
push di 
push bp 
mov bp, sp 
sub sp, $0x02 

mov ax, $0x61 
push ax 
mov ax, $L2 
push ax 
call strchar 
add sp, $0x04 
mov -Ox02(bp), 

mov sp, bp 
pop bp 
pop di 
pop si 
ret 

Diagnostics 

ax 

I ''code'' program section . 

I ''string'' program section . 

I This is the string 
I ' 'aardvark' ' 

I Back to ''code'' 

I Standard c function 
I linkage. Save registers, 
I set up new frame pointer (bp), 
I and make room on stack 
I for the auto int, ''n'' 

I Push the 
I character 'a' • 
I Push the address 
I of the string ''aardvark'' 
I Function call. 
I Remove args from stack. 
I Assign result to auto 'n'. 

I Standard c return 
I linkage. Adjust stack 
I pointer, then restore 
I registers and 
I go home. 

All errors detected by the assembler are reported on the screen as an error message that is tagged 
with a line number. If a symbol is associated with the error message (for example, if a symbol is 
undefined), then the symbol's name is also given. If more than one input file appears on the 
command line, error messages are tagged with the name of the source file. 

LEXICON 



as 386 425 

If a listing is generated, errors are reported on the listing in the same format. with the error flags at 
the left margin. The total number of errors is displayed on the screen at the end of the assembly. 

For a full listing of as error messages, see the tutorial for the C compiler, which appears earlier in 
this manual. 

See Also 
calling conventions, cc, commands 

Eti!:t·lli·l,,1,,m.t.1.._,~,"~~~'"''"~'~'"'''~~'"''"''""'""''~ 
i80386 assembler 
as [-o oulflle] [-bfglnpwxX] injlle 

The 80386 version of as, the COHERENT assembler, assembles programs written in any of several 
different dialects of assembly language into object modules in COFF format. which can be linked 
with objects written by the COHERENT C compiler. This version of as contains numerous features 
not available with the 80286 version: 

It serves as a flexible base for writing programs in native 80386 assembly language. 

It assembles programs written in older flavors of COHERENT assembly language. 

It assembles programs written in UNIX assembly language. 

Unlike the old COHERENT assembler and the UNIX assembler. 80386 as comes with full macro 
faculities. 

It is also designed to detect many of the commoner errors made by assembly-language 
programmers. 

The COHERENT system also includes the command asfix, which updates files written in the 80286 
version of COHERENT assembly language. asfix changes local and character symbols to the new 
format. 

Invoking the Assembler 
as permits file names and options to be interspersed upon the command line. It recognizes the 
following command-line options: 

-b Reverse bracket sense; that is. use() for expressions and(] for code. For example: 

movl 
movl 

$[2 * 5], (%eax) 

$ ( 2 * 5) , [ %eax] 

I without -b 
I with -b 

-f Reverse the order of the operands. from UNIX-assembler form to that of the Intel 
documentation or the 80286 version of as. 

-g Make undefined symbols .globl. 

-1 Generate an output listing. 

-n This option turns off the as mechanism for handling bugs in the 80386 chip. as tries to 
cope with known 80386 bugs by changing code at appropriate points in its output. If these 
changes create problems with your code, you can turn off the as bug-handler mechanism by 
using the -n option to as. 

-o oulflle.o 
Write the output into oulflle.o. Note that the suffix .o must appear in the output file's 
name. or the assembler will exit with an error message. The default output file is injile.o. 

LEXICON 



426 as 386 

-p Don't use'%' on register names; e.g .• use ax. not %ax. 

-w Disable warning messages. 

-x Remove all non-global symbols from the common symbol output. 

-X Remove all non-global symbols starting with .L from the common symbol output. 

as reads the environmental variables ASHEAD and ASTAIL and appends them to, respectively, the 
beginning and the end of its command line. By setting these variables, you can ensure that as 
always executes with the switches that you want. For example, to ensure that as always executes 
with the -g switch set, insert the following into your .profile: 

export ASHEAD=-g 

Lexicography 
A symbol consists of from one to 256 characters. The assembler defines a character as being an 
alphabetic character, question mark. period, percent sign. or underscore. Xyz, .20, and hi_there 
are legal symbols; whereas 851 is not. 

Like C, the as assembly language is case sensitive. 

Local symbols begin with a question mark. These are recognizable (or visible) only between nonlocal 
symbols. For example: 

I ?loop invisible here 
abc mov $10, %ex 
?loop add $1, %bx I ?loop visible here 

jcxz xyz 
jmp ?loop 

xyz: 
I ?loop invisible here 

An octal number is defined just as in the C language: it consists of an initial 0 plus two other 
numerals between 0 and 7. For example. 077 is a legal octal number. 

A hexadecimal number consists of an initial Ox or OX plus two other numerals, which may come 
between 0 and 9, a and f, or A and F. For example, OxOF and 0Xa3 are legal hexadecimal numbers. 

A binary number consists of an intial Ob or OB followed by an indefinite number O's and l's. For 
example, Ob01001010 is a legal binary number. 

A decimal number begins with a numeral other than 0, followed by an indefinite number of 
numerals between 0 and 9. For example, 109 is a legal decimal number. 

A floating-point number begins is a string of numerals, 0 through 9, with a period ore within or at 
the end of it. It is like a C floating-point number, except that it cannot begin with a period because 
a symbol may begin with a period. For example, 123.456, 123456 .. and l 7e26 are legal floating­
point numbers. but .123456 is not. 

A character constant is enclosed between apostrophes, as in C. as recognizes the same escape 
sequences as C. See the Lexicon article C language for a table of these constants. 

String constants are enclosed between quotation marks, as in the C language. and use the same 
escape sequences as C. See the Lexicon article C language for a table of these sequences. 

Pseudo-Opcodes 
as recognizes a rich set of pseudo-opcodes. These are not true assembly-language opcodes, but are 
interpreted by the assembler; they are designed to help make your life easier. The following briefly 
summarizes the pseudo-opcodes. 

LEXICON 



.16 

.32 

.align 

.blkb 

.bss 

.bssd 

.byte 

.comm 

.data 

.def 

.define 

.dim 

.double 

.eject 

.else 

.endef 

.endi 

.endm 

.endw 

.equ 

.even 

.fail 

.file 

.float 

.globl 

.ident 

.if 

.include 

.lcomm 

.line 

.list 

.llen 

.In 

.long 

.macro 

.mexit 

.mllst 

.nollst 

.no page 

.number 

.org 

.page 

.plen 

.prvd 

.prvi 

.sci 

.set 

.shift 

.shrd 

.shri 

.size 

.string 

.strn 

.tag 

16-bit mode 
32-bit mode 
increment location counter to 2, or 4 byte aligned spot 
Set up tag in .data 
Set up tag in .bss 
Set up tag in .bss 
Make byte variables 
Set label as common 
Change segment to .data 
Reserved to set auxiliary symbol entries in a later release 
Define string constant 
Reserved to set auxiliary symbol entries in a later release 
Make double variables 
Force a page break 
Connected to .if 
Reserved to set auxiliary symbol entries in a later release 
End .if 
End .macro definition 
End .while 
Define numeric constant 
Increment location counter to byte-aligned spot 
Print error message 
Reserved to set auxiliary symbol entries in a later release 
Make float variables 
Declare names as visable to linker 
.ident string 
Compile-time conditional 
Include a file 
Set name up as common 
Reserved to set auxiliary symbol entries in a later release 
Turn on listing (assumes -1 option) 
Set print line length 
Reserved to set auxiliary symbol entries in a later release 
Make long variables 
Define macro name 
Exit current macro expansion 
Turn macro expansion listing on\ off 
Turn off linstin (assumes -1 option) 
Turn off page breaks and titles 
Convert a string to a number. 
Change location counter 
Turn on page breaks and titles 
Set page length 
Change segment to .data 
Change segment to .text 
Reserved to set auxiliary symbol entries in a later release 
Makes name equal to expr 
Shift macro parms 
Shange segment to .data 
Change segment to .text 
Reserved to set auxiliary symbol entries in a later release 
Convert a floating-point expression to a string 
Change segment to .data 
Reserved to set auxiliary symbol entries in a later release 

as 386 427 

LEXICON 



428 as 386 

.text 

.ttl 

.type 

.undef 

.val 

.value 

.version 

.warn 

.while 

.word 

Change segment to .text 
Set page titles 
Reserved to set auxiliary symbol entries in a later release 
Free string or numeric constant 
Reserved to set auxiliary symbol entries in a later release 
Make short variables 
Comment string 
Print a warning message 
Compile-time loop control 
Make short variables 

Each pseudo-opcode is described in the following sections. 

Input Format 
An assembly-language program consists of a series of lines with the following format: 

[#][label] [opcode] [operands] [/ comment] 

The optional '#' at the beginning of the line tells as not to replace any .define symbols within the 
line. (These are described below.) Normally. the assembler replaces all .define symbols in a line 
before it parses that line. Without this option, a series of .defines could lead to awkward results. 

For example, the code 

#%ecx .define xx 

#xx • define ( %ecx) 

mov $3, %ecx 

results in: 

mov $3, ( %ecx) 

Like the C compiler, as will not go into an infinite loop if two .define statements mirror each other. 

A comment begins with a slash • /' and may include the entire line. Blank lines are also legal. 

Extra operands are not assumed to be comments. This is to tighten up error checking for the 
convenience of new and part-time assembly-language programmers. 

Expression Format 
The 80386 macro assembler has mostly the same operators and precedence as the C preprocessor. 
The exceptions are?:,&&, 11. and',' (which are missing).'/' (which is spelled .div), and'%' (which 
is spelled .rem). 

In addition, the macro assembler includes the following directives: .defined, .sizeof, .segment, 
.parmct, .location, .string, .number, and .float. 

Expression bracketing is normally done by [ ], because () is used by the operand format. This may be 
reversed by the -b option, described above. 

The unary operators have the following priority: 

.float .number .string Conversion 

.defined .sizeof 

.location .segment 

LEXICON 

Inquiry 
Negation 
Logical negation 



as 386 429 

The binary operators have the following priority: 

[) 
•.div .rem 
+ -
>> << 
< > <= >= == != 
& 

Multiply, divide, remainder 
Add. subtract. 
Left shift . right shift 
Comparison 
And 
Exclusive or 
Or 

You can use an expression wherever you can use a number. This includes address displacements, 
constants. and .if and .while statements. Integers are internally 32 bits. floats are internally C 
doubles. 

Like C, comparison operators return one for true and zero for false. 

In addition, the 80386 edition of as provides string operators. Like C, the first element of a string is 
indexed as zero. Unlike C. however, attempts to access past the end of a string gives all zeroes. The 
following summarizes the as suite of string operators: 

string + string 
Concatenate two strings. For example. "12" + "34" yields "1234". 

string [ expr 1, expr2 I 
Address a substring from exprl to expr2. For example, "1234567"[1,3) yields "234"; and 
"123"[1,lO]yields "23". 

string [ expr I 
Address a substring from expr to the end of the string. For example "1234567"[5) yields 
"67" . 

• string expr 
Convert a numeric expression to a string. For example, .string 123 gives "123" . 

. stringfloat 
Convert a floating-point expression to a string. For example, .string 0.5 "3 gives "1.5" 

.float string 
Convert a string to a floating-point number. 

.fioatexpr 
Convert a numeric expression to a floating-point number. 

.number string 
Convert a string to a number . 

. number float 
Convert a floating-point number to a number . 

. string ( expr ) 
Return character at position expr as a number. For example. "123"(1) gives two. 

string 1 @ string2 
Return the position at which string2 begins within stringl. For example, "12345" @ "23" 
returns one; and "123"@ "Jj" gives -1 (because "jj" does not appear within "123"). 

LEXICON 



430 as 386 

Macros and Conditional Compilation 
The as directive .macro lets you declare a macro that you can use through a program. The directive 
.endm marks the end of a macro declaration. 

A macro has the following form: 

name .macro params 
body of macro 
.endm 

The following example creates and uses the macro store: 

store .macro xy ,xz 
movl xy,%ecx 
movl %ecx, ( %eax) 
movl 
movl 
.endm 

xz,%ecx 
%ecx,4(%eax) 

store 5, 10 

I declare "store" with two parms: xy and xz 

I end of macro 

I moves 5 and 10 to where %eax points. 

Macros can contain .if statements, and can even define other macros. For example: 

def .macro .name, to 
name .macro 

movl from, to 
.endm 
.endm 

def 
frog 

frog, %eax, %ebx 

I macro for defining other macros 

I define the macro frog 
I movel%eax, %ebx 

as increments a count every time you expand any macro, and associates that number with the 
macro. When the keyword .macno is used within a macro, as translates it into that number. Thus . 
. macno is a unique number within each macro expansion. This allows the generation of unique 
labels internal to macros. For example: 

stradd .macro str 
.data 

L\.macno .byte str, 0 
.text 
movl 
.endm 

L\.macno, %eax 

I create a data item 

I put its address into %eax 

L\.macno becomes something like LSI. Note that a'\' before any defined symbol or macro name 
vanishes in the expansion pass. 

To permit macros with indefinite parameter counts, the assembler offers the reserved word .parmct 
and the command .shift. The former holds the number of parameters passed to a macro, and the 
latter shifts the parameters one position to the left. For example: 

LEXICON 



kall .macro fun, parm 
.while .parmct > 1 
push parm 

as 386 431 

I while more than one parm remains 

.shift I parm 3 becomes parm 2, parm 4 parm 3 etc 
call fun 
.endm 

The operators .if .• else. and .endi allow a program to implement compile-time decisions. These may 
be inside or outside of macros. When a macro exits. the assembler automatically closes all .if 
statments that had been started within it. For example: 

defy 

y 

.macro 

.if .defined y 

.mexit 

.else 

.equ 1 I define y as 1 
UNIX compatibility I For 

I .set y, 1 
produces the same result I 

.endm 

I if y has been defined true 
I exits closing any if statements 

When used with a label. the operator .defined is true if that label had been defined in this pass. If 
the label is defined later, .defined can still be used with it, but causes a phase error. as occurs in 
some assemblers. 

The operator .fail permits the flagging of errors. For example: 

.if ! .defined y 

.faily is not defined 

.endi 

The operator .include permits the inclusion of files. For example: 

.include "somefile.h" 

Addressing Modes 
as recognizes two modes of addressing: 16-blt mode and 32-bit nwde. In 16-bit mode. the address 
type and operand mode default to 16 bits; in 32-bit mode they default to 32 bits. For example: 

.16 
movw %ax, (%si) # Is generated without escapes. 
movl %eax, (%esi) # Has two escapes, address and operand 
.32 
movw %ax, (%si) # Has two escapes, address and operand 
movl %eax, (%esi) # Is generated without escapes. 

In 16-bit mode, the 16-bit addressing forms in table 17-2 of the Intel 386 Programmer's Manual are 
generated where they fit; otherwise, an address escape is built and the 32-bit forms in tables 17-3 
and 17-4 are used. In 32 bit mode. this is reversed. 

Data-Definition Operators 
The following describes the data-definition operators that as supports . 

• byteexpr 
Define expr as an array of single bytes. expr can take any number of forms, as shown by 
the following examples: 

LEXICON 



432 as 386 

.wordexpr 

.byte 5, 2 

.byte "Hello World", 0 

.byte 10 # 1 

I defines 2 bytes Ox05 and Ox02 
I a zero-terminated Hello World 
I 10 repetitions of OxOl 

Define expr as a word, that is. as a two-byte integer. For example: 

.word .sizeof xx 

.word 50 * 50 
I For UNIX compatability 
I .value 50 * 10 
I produces the same result • 

. long expr 

I a short the size of xx 
I a short of 100 

Define expr as a long (four-byte) integer. For example: 

• long 10 I a long of 10 

.comm name, length 
Define a common variable named name, that is length bytes long. (See the entry for 
.lcomm, below, for a discussion of what segment the variable is stored.) If name is linked 
with another module that also declares name but sets it to another length. the linker 
creates one such variable and gives it the greater length of the two. 

The linker deduces the alignment of a common variable from its length: if the length of a 
common is divisible by four. it is aligned on a four-byte boundary; if it is divisible by two, it 
is aligned on a two-byte boundary. Otherwise, it is assumed to be unaligned. The linker 
supports only three classes of alignment: four-byte, two-byte, and unaligned. 

A common variable is aligned according to its most strongly aligned contributor. For 
example, if one module contributes a common variable named xyz whose length is four 
bytes. and another contributes an xyz whose length is five bytes, the resulting xyz is given 
a length of eight bytes to satisfy the length requirement (at least five) and the alignment 
requirement (four-byte boundary). 

After the first linker pass, all common variables are placed at the end of the .bss segment: 
first the four-byte-aligned variables, then the 2-byte-aligned, then the unaligned . 

• Icomm label, length 
Same as comm. described above. 

Please note that on a COFF-based system, it is not possible to put common data into the 
.data section, even though the UNIX assembler documentation claims that .comm does 
this. Both .comm and .lcomm place data into the .bss. 

The problem is that COFF format for common variables leaves no place for information 
about alignment or segment. This creates two problems. First, the lack of information 
about alignment forces COFF to adopt the complex strategy of deducing alignment from 
length. Second, the lack of information about segment compels COFF to store all common 
variables in one segment, .bss being chosen . 

• noatexpr 
Define expr as a single-precision floating-point number. For example: 

.float 1.5 I a float of 1.5 

LEXICON 



as 386 433 

.double expr 
Define expr as a double-precision floating-point number. For example: 

.double 3.0 * 0.5 I a double of 1.5 

Reseting the Location Counter 
The instructions .org and .align reset the location counter. For example: 

.org .+5 I Location counter to here plus 5 

.org 

.align 2 
I Location counter to top of current section 
I Up to nearest two-byte boundary 

The instructions .text, .data, and .bss reset the location counter to the corresponding sections. 
Instructions are placed in the .text section, initialized data in the .data section, and the .bss is 
reserved for unitialized data. Placing information into the .bss results in an error. 

Dynamic Linking 
The Intel Binary Compatibility Standard dictates the way that the 80386 edition of as computes 
addresses, to permit dynamic linking of objects. 

In object files, all .data addresses must follow all .text addresses, and all .bss address must follow 
all .data addresses. This allows dynamic linking of object files, in which the object file is mapped, 
not read in in pieces. 

In the as 386 assembly language . . data and .text addresses are started from 0 for each module. At 
the end of assembly, during the output phase, as fixes these addresses to make .data follow .text. 
and so on. 

For example. if you have a conditional like 

.if some data address > Ox300 

as calculates the address for the .if statement from the beginning of its segment; and the address is 
only corrected in the final output. Such statements may appear to be working incorrectly. 

Listing Commands 
The 80386 assembler prints a listing if you use its -1 option. The following commands modify the 
form of this listing . 

. ttl string 
Print string as the title to the command page. For example: 

.ttl This is a page title 

If you do not use this command, the assembler uses the file name for the title. The first .ttl 
encountered in the assembly pass 0 is used to set the first title. Subsequent .ttl commands 
reset the title before printing . 

. nopage 
Turn off page breaks and titles . 

. page Turn on page breaks and titles . 

. eject Force a page break . 

. nolist Turn off the listing . 

. list Turn the listing back on. 

LEXICON 



434 as 386 

.mllst off 
Turn off the listing of macro expansions . 

. mllston 
Turn on the listing of macro expansions. 

Addressing Modes 
The 80386 version of as supports the full addressing modes of 16- and 32-bit arithmetic. These are 
shown in tables 1 7-2, 1 7-3, and 17-4 of Intel 386 Programmers Manual. We show these in the 
following grammar: 

Eight-bit registers: 
r8 : %al I %cl I %dl %bl %ah %ch %dh 

16-bit registers: 
r16 : %ax I %ex %dx %bx %sp %bp %si 

32-bit registers: 
r32 : %eax I %ecx I %edx I %ebx I %esp I %ebp 

Segment registers: 
sreg 1 %es I %cs I %ss %ds I %fs I %gs; 

Control registers: 
ctlreg : %cr0 I %cr2 I %cr3; 

Debug registers: 
dbreg : %dr0 I %drl I %dr2 %dr3 I %dr6 I %dr7; 

Test registers: 
testreg : %tr6 I %tr7; 

ml6-type addresses may have a segment prefix: 
m16 : ml6b I sreg ':' m16b; 

m32-type addresses may have a segment prefix: 
m32 : m32b I sreg ':' m32b; 

%bh; 

%di; 

%esi I %edi; 

rml6-type addresses may have a segment prefix or may be rl6: 
rm16 : rml6b I sreg ':' rm16b; 

rm32-type addresses may have a segment prefix or may be r32: 
rm32 : r32 I rm32b I sreg ':' rm32b; 

rm8 addresses may be rm32 or rml6 addresses or r8: 
rmS : rs I rm16b I sreg ':' rm16b I rm32b I sreg ':' rm32b; 

rml6b: 
displacement I (vx, vy) I displacement(vx, vy) I displacement(vw) I (vz); 
vx %bx I %si; 
vy %si I %di; 
vz %si I %di I %bx; 

LEXICON 



rm32b: 
(va) I displacement(vb) I (, vb, scale) I (vb, scale) 

I displacement(vb, scale) I (vb, vb, scale) I displacement(vb, 
va 1 %eax I %ecx I %edx I %ebx I %esi 
Vb I %eax I %ecx I %edx I %ebx I %ebp 
vb %eax I %ecx I %edx I %ebx I %ebp 
scale 1 0 I 1 I 2 I 4 I 8· , 

mem32 1 /* a 32 bit memory address */ 
mem16 1 /* a 16 bit memory address */ 

I %edi; 

I %esi I %edi; 

I %esp I %esi I %edi; 

reli 1 /* expand to 8, 16 or 32 bit relative addresses */ 
rel8 : /* 8 bit relative addresses */ 
rel16 1 /* 16 or 32 bit relative addresses */ 

Instructions 

as 386 435 

vb, scale); 

In matching instructions, as first looks up the name of the instruction. A number of actual 
instructions will match that name. For example, btsw matches Oxab and OxOfab /5, and bts 
matches anything that matches btsw and btsl. 

as attempts to match operands to the instruction until a form is found that will accept all the 
operands. If no form matches all the operands, as prints the error message Opcode matches no 
fornt. The assembler at that point cannot say which operand is wrong because of the nature of the 
80386 instruction set. 

as first attempts to match opcodes that do not require an operand-mode escape: that is, in 80386 
mode it attempts to match long-mode instructions first. then short-mode instructions. 

Register Usage 
The 386 version of the COHERENT C compiler uses the following save/restore sequence for a 
function, to set the frame pointer when the function contains no automatic variables: 

push %ebp 
movl %ebp, %esp 

If n bytes of autos are required, then it uses the following sequence: 

enter $n, $0 

It then executes the code 

push %esi 
push %edi 
push %ebx 

to preserve register variables as required: they are not saved/restored if the function does not touch 
them. (This is why they are saved after the frame adjust, not before). To restore register variables, it 
executes 

pop %ebx 
pop %edi 
pop %esi 

as required, followed by 

LEXICON 



436 as 386 

leave 
ret 

Routines written in assembly language must preserve regtsters ebp, esi, edi, and ebx: they may 
overwrite eax, ecx. and edx. 

Absolute Symbols 
The 80386 edition of as can create what COFF calls "absolute symbols.'' For example 

x 
.globl 
.equ 10 

x 

x .equ x * x I The last value of x in the module 

leaves on the symbol table an absolute symbol for x of 100. For internal reason, the .globl must 
preceed any .equ. 

Opcodes 
The following gtves a table of the opcodes recognized by as. Note that the opcode is sometimes 
followed by a slash and a number, or a letter. For example, 

DO /4 salb conl, rm8 

means opcode is OxDO place 4 in the regtster /opcode field of the modr/m byte. 

58 +r popl r32 

means add the register number to Ox58. 

Opcode Instruction Operands 

37 
D50A 
D40A 
3F 

14 
15 
15 
80 /2 
83 /2 
83 /2 
81 /2 
81 /2 
10 /r 
11 /r 
11 /r 
12 /r 
13 /r 
13 /r 

04 
05 
05 
80 /0 
83 /0 
83 /0 

LEXICON 

aaa 
aad 
aam 
aas 

adc 
adcb 
adcw 
ad cl 
adcb 
ad cw 
ad cl 
adcw 
adcl 
adcb 
a dew 
adcl 
adcb 
adcw 
ad cl 

add 
ad db 
addw 
addl 
ad db 
addw 
addl 

lmm8,al 
lmml6,ax 
tmm32,eax 
tmm8,rm8 
tmm8,rml6 
tmm8,rm32 
lmml6,rml6 
tmm32,rm32 
r8,rm8 
rl6,rml6 
r32,rm32 
rm8,r8 
rml6,rl6 
rm32,r32 

tmm8,al 
tmml6,ax 
tmm32,eax 
lmm8,rm8 
tmm8,rml6 
tmm8,rm32 

Description 

Adjust after addition 
Adjust AX before division 
Adjust AX after multiply 
Adjust AL after subtraction 

Add with carry 

Add 



as 386 437 

81 /0 addw tmml6,rml6 
81 /0 add.I imm32,rm32 
00 /r ad db r8,rm8 
01 /r addw rl6,rml6 
01 /r add.I r32,rm32 
02 /r ad db rm8,r8 
03 /r addw rml6,rl6 
03 /r add.I rm32,r32 

and Logical AND 
24 an db tmm8,al 
25 andw imml6,ax 
25 and.I imm32,eax 
80 /4 an db imm8,rm8 
83 /4 andw tmm8,rml6 
83 /4 and.I imm8,rm32 
81 /4 andw tmml6,rml6 
81 /4 and.I imm32,rm32 
20 /r an db r8,rm8 
21 /r andw rl6,rml6 
21 /r and.I r32,rm32 
22 /r an db rm8,r8 
23 /r andw rml6,rl6 
23 /r and.I rm32,r32 

63 /r arpl rl6,rm16 Adjust RPL field of selector 

bound Check if register ts within bounds 
62 /r boundw ml6,rl6 
62 /r bound.I m32,r32 

bsf Bit scanforward 
OFBC bsfw rml6,rl6 
OFBC bsfl rm32,r32 

bsr Bit scan reverse 
OFBD bsrw rml6,rl6 
OFBD bsrl rm32,r32 

bt Save bit in carry flag 
OFA3 btw rl6,rml6 
OFA3 btl r32,rm32 
OFBA /4 btw imm8,rml6 
OFBA /4 btl imm8,rm32 

btc Bit test and complement 
OFBB btcw rl6,rml6 
OFBB btcl r32,rm32 
OF BA /7 btcw imm8,rml6 
OF BA /7 btcl imm8,rm32 

btr Bit test and reset 
OFB3 btrw rl6,rml6 
OFB3 btrl r32,rm32 
OFBA /6 btrw tmm8,rml6 
OFBA /6 btrl tmm8,rm32 

bts Bit test and set 

LEXICON 



438 as 386 

OFAB btsw rl6,rm16 
OFAB btsl r32,rm32 
OFBA /5 btsw lmm8,rm16 
OFBA /5 btsl lmm8,rm32 

98 cbtw Sign extend AL 
98 cbw Sign extend AL 
99 cdq Double word to quad word 
F8 clc Clear carry 
FC cld Clear direction Flag 
FA ell Clear interrupt Flag 
99 cltd Double word to quad word 
OF06 cits Clear task-switched flag in CRO 
F5 cmc Complement carry flag 

cmp Compare 
3C cmpb lmm8,al 
3D cmpw lmml6,ax 
3D cm pl lmm32,eax 
8017 cmpb lmm8,rm8 
83 /7 cmpw lmm8,rm16 
83 /7 cm pl lmm8,rm32 
81 /7 cmpw lmml6,rm16 
81 /7 cm pl imm32,rm32 
38 /r cmpb r8,rm8 
39 /r cmpw rl6,rm16 
39 /r cm pl r32,rm32 
3A /r cmpb rm8,r8 
3B /r cmpw rml6,r16 
3B /r cm pl rm32,r32 

A6 cmpsb Compare bytes 
A7 cmpsl Compare long 
A7 cmpsw Compare words 
99 cwd Word to double word 
98 cw de Sign extend AX 
99 cwtd Word to double word 
98 cwtl Sign extend AX 
27 daa Decimal adjust after addition 
2F das Decimal adjust after subtraction 

dee Decrement by 1 
48 +r de cw r16 
48 +r decl r32 
FE /1 decb rm8 
FF /1 de cw rm16 
FF /1 decl rm32 

div Unsigned divide 
F6 /6 di vb rm8,al 
F7 /6 divw rml6,ax 
F7 /6 divl rm32,eax 

CB enter lmml6,lmm8 Make stack frame for procedure 
9B fwait Wait 
F4 hit Halt 
FF /2 icall m32 Call indirect 

LEXICON 



as 386 439 

idiv Signed divide 
F6 /7 idivb rm8,al 
F7 /7 idivw rm16,ax 
F7 /7 idivl rm32,eax 

FF /4 ijmp m32 Jump indirect 
FF /3 ilcall m32 Long call indirect 
FF /5 iljmp m32 Long jump indirect 

imul Signed multiply 
F6 /5 imulb rm8,al 
F7 /5 imulw rml6,ax 
F7 /5 imull rm32,eax 
OF AF /r imulw rm16,r16 
OF AF /r imull rm32,r32 
68 imulw lmm8,rml6,r16 
68 imull lmm8,rm32,r32 
68 /r imulw lmm8,r16 
68 /r imull lmm8,r32 
69 imulw lmml6,rml6,r16 
69 imull lmm32,rm32,r32 
69 /r imulw lmml6,r16 
69 /r imull lmm32,r32 

in Input from port 
E4 inb lmmB 
E5 inw lmmB 
E5 inl lmmB 
EC inb atdx 
ED inw atdx 
ED inl atdx 

inc Increment by one 
40 +r in cw rl6 
40 +r incl r32 
FE /0 inch rmB 
FF /0 in cw rml6 
FF /0 incl rm32 

6C insb Input byte from port into ES:(E)Dl 
6D insl Input long from port into ES:(E)Dl 
6D insw Input word from port into ES:(E)DI 
cc int con3 Interrupt 3 
CD int lmmB Interrupt 
CE into Int 4 if overflow is 1 
CF iret Interrupt return 
CF iretd Different mode different opcode ? 
07 ja rell Jump if above 
03 jae rell Jump if above or equal 
02 jb rell Jump if below 
06 jbe rell Jump if below or equal 
02 jc rell Jump if carry 
04 je rell Jump if equal 
04 jz rell Jump if zero 
OF jg rell Jump if greater 
OD jge rell Jump if greater or equal 

LEXICON 



440 as 386 

oc jl reli Jump if less 
OE jle reli Jump if less or equal 
06 jna reli Jump if not above 
02 jnae rell Jump if not above or equal 
03 jnb reli Jump if not below 
07 jnbe reli Jump if not below or equal 
03 jnc reli Jump if no carry 
OS jne reli Jump if not equal 
OE jng reli Jump if not greater 
oc jnge rell Jump if not greater or equal 
OD jnl rell Jump if not less 
OF jnle reli Jump if not less or equal 
01 jno rell Jump if not overflow 
OB jnp rell Jump if not parity 
09 jns reli Jump if not sign 
OS jnz rell Jump if not zero 
00 jo reli Jump if overflow 
OA jp rell Jump if parity 
OA jpe reli Jump if parity even 
OB jpo rell Jump if parity odd 
08 js rell Jump if sign 
04 jz rell Jump if zero 
E9 jmp reli Jump absolute 
EB call reli Call procedure 
E3 jcxz rel8 Jump if ex is zero 
E3 jecxz rel8 Jump ifCX is zero 

9F lahf Load flags into AH register 

lar Load access rights byte 
OF 02 /r larw rml6,r16 
OF 02 /r larl rm32,r32 

9A lcall imml6,imm32x Long call 

Ids loadfull pointer DS:rl 6 
CS /r ldsw ml6,r16 
CS /r ldsl m32,r32 

lea Load elf ectlve address 
BD Ir leaw ml6,r16 
BD /r leal m32,r32 

C9 leave High level procedure exit 

les Loadfullpolnter ES:r16 
C4 /r lesw ml6,r16 
C4 /r lesl m32,r32 

Ifs Load full pointer FS:r 16 
OF B4 /r lfsw ml6,r16 
OFB4 /r lfsl m32,r32 

lgdt Load m Into DGTR 
OF 01 /2 lgdtw m16 
OF 01 /2 lgdtl m32 

lgs Load full pointer GS:r 16 

LEXICON 



as 386 441 

OFB5 /r lgsw ml6,r16 
OFB5 /r lgsl m32,r32 

lidt Load m Into IDTR 
OF 01 /3 lgdtw m16 
OF 01 /3 lgdtl m32 

EA ijmp lmml 6,imm32x Long jump 
OF 00 /2 lldt rm16 Load local descriptor table register 
OF 01 /6 lmsw rm16 Load machine status word 
FO lock Assert lock signal for next instruction 
AC lodsb Load string operand byte 
AD lodsl Load string operand long 
AD lodsw Load string operand word 
E2 loop rel8 Dec count jmp if count <> 0 
El loope rel8 Dec count jmp if count <> 0 and ZF = 1 
EO loopne re/8 Dec count jmp if count <> O and ZF = 0 
EO loopnz re/8 Dec count jmp if count <> 0 and ZF = 0 
El loopz rel8 Dec count jmp if count <> 0 and ZF = 1 
CB lret Far return 
CA lret imm16 Far return pop imml6 bytes of parms 

Isl Load segment limit 
OF 03 /r lslw rml6,r16 
OF 03 /r lsll rm32,r32 

lss Loadjull pointer SS:r16 
OFB2 /r lssw ml6,r16 
OF B2 /r Issi m32,r32 

OF 00 /3 ltr rm16 Load task register 

mov Move data 
AO movb mojfs,al 
Al movw mo.Ifs.ax 
Al movl mo.ffs,eax 
A2 movb al, mo.Ifs 
A3 movw ax, mo.Ifs 
A3 movl eax,mo.ffs 
88 /r movb r8,rm8 
89 /r movw r16,rm16 
89 /r movl r32,rm32 
BA Ir movb rm8,r8 
SB /r movw rml6,r16 
SB /r movl rm32,r32 
SC /r movw sreg,rm16 
SE /r movw rml6,sreg 
BO +r movb tmm8,r8 
BS +r movw tmml6,r16 
BS +r movl tmm32,r32 
C6 movb lmm8,rm8 
C7 movw lmml6,rm16 
C7 movl lmm32,rm32 
OF20 Ir movl ctlreg,r32 
OF22 /r movl r32,ctlreg 
OF 21 /r movl dbreg,r32 
OF23 /r movl r32,dbreg 

LEXICON 



442 as 386 

OF 24 Ir movl treg,r32 
OF 26 Ir movl r32,treg 

A4 movsb Move bytes 
AS movsl Move longs 
AS movsw Move words 

movsx Move with sign extend 
OF BE Ir movsx rm8,rl6 
OF BE Ir movsx rm8,r32 
OF BF Ir movsx rml6,r32 

movzx Move with zero extend 
OF B6 Ir movzx rm8,rl6 
OF B6 Ir movzx rm8,r32 
OF B7 Ir movzx rml6,r32 

mul Unsigned multiply 
F6 14 mulb rm8,al 
F7 14 mulw rml6,ax 
F7 14 mull rm32,eax 

neg Negate 
F6 13 negh rm8 
F7 13 negw rml6 
F7 13 negl rm32 

90 nop No operation 

not Invert bits 
F6 12 notb rm8 
F7 12 notw rml6 
F7 12 notl rm32 

or Logical Inclusive OR 
oc orb lmm8,al 
OD orw lmml6,ax 
OD orl lmm32,eax 
80 /1 orb lmm8,rm8 
83 /1 orw lmm8,rml6 
83 /1 orl lmm8,rm32 
81 /1 orw lmml6,rml6 
81 /1 orl lmm32,rm32 
08 Ir orb r8,rm8 
09 Ir orw rl6,rml6 
09 Ir orl r32,rm32 
OA Ir orb rm8,r8 
OB Ir orw rm16,rl6 
OB Ir orl rm32,r32 

out Output from port 
E6 outb lmm8 
E7 outw lmm8 
E7 outl lmm8 
EE outb atdx 
EF outw atdx 
EF outl atdx 

LEXICON 



as 386 443 

6E outsb Output byte to port into ES:(E)Dl 
6F outsl Output long to port into ES:(E)DI 
6F outsw Output word to port into ES:(E)DI 

pop Pop a wordfrom the stack 
5S +r popw r16 
5S +r po pl r32 
lF popw ds 
07 popw es 
17 popw SS 
OF Al popw f s 
OFA9 popw gs 
SF /0 popw ml6 
SF /0 po pl m32 

po pa Pop all 
61 po paw 
61 po pal 

po pf Pop stack Into flags 
90 popfw 
9D popfi 

push Push a word on the stack 
50 +r pushw r16 
50 +r pushl r32 
6A pushb lmm8 
6S pushw lmm16 
6S pushl lmm32 
OE pushw cs 
lE pushw ds 
06 pushw es 
16 pushw SS 

OFAO pushw f s 
OFAS pushw gs 
FF /6 pushw m16 
FF /6 pushl m32 

pus ha Push all 
60 pushaw 
60 pushal 

pus hf Push.flags 
9C pushfw 
9C pushfi 

rel Rotate carry left 
D0/2 rclb conl,rm8 
02 /2 rclb cl,rm8 
co /2 rclb lmm8,rm8 
Dl /2 rclw conl,rm16 
D3 /2 rclw cl,rm16 
Cl /2 rclw lmm8,rm16 
Dl /2 rcll conl,rm32 
D3 /2 rcll cl,rm32 
Cl /2 rcll lmm8,rm32 

rcr Rotate carry right 

LEXICON 



444 as 386 

DO /3 rcrb conl,rmB 
D2 /3 rcrb cl,rmB 
co /3 rcrb lmm8,rm8 
Dl/3 rcrw conl,rm16 
D3 /3 rcrw cl,rml6 
Cl /3 rcrw lmm8,rm16 
Dl/3 rcrl conl,rm32 
D3 /3 rcrl cl,rm32 
Cl /3 rcrl lmm8,rm32 

F3 rep rep following instruction ex times 
F3 repe repe following instruction CX times or eq 
F2 repne repne following instruction CX times or ne 
C3 ret Return 
C2 ret lmm16 Return pop imml 6 bytes of parms 

rol Rotate left 
DO/O rolb conl,rmB 
D2 /0 rolb cl,rmB 
co /0 rolb lmm8,rm8 
Dl/O rolw conl,rm16 
D3 /0 rolw cl,rm16 
Cl /0 rolw lmm8,rm16 
Dl/O roll conl,rm32 
D3 /0 roll cl,rm32 
Cl /0 roll lmm8,rm32 

ror Rotate right 
DO /1 rorb conl,rmB 
D2 /1 rorb cl,rmB 
co /1 rorb lmm8,rm8 
Dl /1 rorw conl,rml6 
D3 /1 rorw cl,rm16 
Cl /1 rorw lmm8,rm16 
Dl /1 rorl conl,rm32 
D3 /1 rorl cl,rm32 
Cl /1 rorl lmm8,rm32 

sal Shift arithmetic left 
D0/4 salb conl,rmB 
D2 /4 salb cl,rmB 
co /4 salb lmm8,rm8 
Dl /4 salw conl,rm16 
D3 /4 salw cl,rm16 
Cl /4 salw lmm8,rm16 
Dl /4 Sall conl,rm32 
D3 /4 Sall cl,rm32 
Cl /4 Sall lmm8,rm32 

sar Shift arithmetic right 
DO /7 sarb conl,rmB 
D2 /7 sarb cl,rmB 
co /7 sarb lmm8,rm8 
Dl /7 sarw conl,rm16 
D3 /7 sarw cl,rm16 
Cl /7 sarw lmm8,rml6 

LEXICON 



as 386 445 

DI /7 sari conl,rm32 
03 /7 sari cl,rm32 
Cl /7 sari lmm8,rm32 

sbb Subtract with borrow 
IC sbbb lmm8,al 
ID sbbw lmml6,ax 
ID sbbl lmm32,eax 
80 /3 sbbb lmm8,rm8 
83 /3 sbbw lmm8,rm16 
83 /3 sbbl lmm8,rm32 
81 /3 sbbw lmm16,rm16 
81 /3 sbbl lmm32,rm32 
18 /r sbbb r8,rm8 
19 /r sbbw rl6,rml6 
19 Ir sbbl r32,rm32 
IA /r sbbb rm8,r8 
lB /r sbbw rml6,r16 
IB /r sbbl rm32,r32 

AE scasb Compare string bytes 
AF seas I Compare string longs 
AF scasw Compare string words 

OF97 seta rm8 Set byte if above 
OF93 setae rm8 Set byte if above or equal 
OF92 setb rm8 Set byte if below 
OF96 set be rm8 Set byte if below or equal 
OF92 setc rm8 Set byte if carry 
OF94 sete rm8 Set byte if equal 
OF9F setg rm8 Set byte if greater 
OF9D setge rm8 Set byte if greater or equal 
OF9C setl rm8 Set byte if less 
OF9E setle rm8 Set byte if less or equal 
OF96 setna rm8 Set byte if not above 
OF92 setnae rm8 Set byte if not above or equal 
OF93 setnb rm8 Set byte if not below 
OF97 setnbe rm8 Set byte if not below or equal 
OF93 setnc rm8 Set byte if no carry 
OF95 setne rm8 Set byte if not equal 
OF9E setng rm8 Set byte if not greater 
OF9C setnge rm8 Set byte if not greater or equal 
OF9D setnl rm8 Set byte if not less 
OF9F setnle rm8 Set byte if not less or equal 
OF91 setno rm8 Set byte if not overflow 
OF9B setnp rm8 Set byte if not parity 
OF99 setns rm8 Set byte if not sign 
OF95 setnz rm8 Set byte if not zero 
OF90 seto rm8 Set byte if overflow 
OF9A setp rm8 Set byte if parity 
OF9A setpe rm8 Set byte if parity even 
OF9B set po rm8 Set byte if parity odd 
OF98 sets rm8 Set byte if sign 
OF94 setz rm8 Set byte if zero 
OF94 setz rm8 Set byte if zero 

LEXICON 



446 as 386 

OF 01 /0 sgdt mem32 Store gdtr 

shl Shift arithmetic left 
DO /4 shlb conl,rm8 
D2 /4 shlb cl,rm8 
co /4 shlb lmm8,nn8 
DI /4 shlw conl,rm16 
D3 /4 shlw cl,rm16 
Cl /4 shlw imm8,nn16 
DI /4 shll conl,rm32 
D3 /4 shll cl,rm32 
Cl /4 shll lmm8,rm32 

shld Shift double precision left 
OFA4 shldw lmm8,rl 6,rml 6 
OFA4 shldl lmm8,r32,rm32 
OFA5 shldw cl,rl6,rm16 
OFA5 shldl cl,r32,rm32 

shr Shift right 
DO /5 shrb conl,rm8 
D2 /5 shrb cl,rm8 
co /5 shrb imm8,nn8 
DI /5 shrw conl,rm16 
D3 /5 shrw cl,rm16 
Cl /5 shrw imm8,nn16 
DI /5 shrl conl,rm32 
D3 /5 shrl cl,rm32 
Cl /5 shrl imm8,nn32 

shrd Shift double precision right 
OFAC shrdw lmm8,r 16,rml 6 
OFAC shrdl imm8,r32,rm32 
OFAD shrdw cl,rl6,rml6 
OFAD shrdl cl,r l 6,rm32 
OFAD shrdw rl6,rm16 
OFAD shrdl rl6,rm32 

OF 01 /1 sidt mem32 Store idtr 
OFOO /0 sldt rm16 Store ldtr to EA word 
OF 01 /4 smsw rm16 Store machine status to EA word 
F9 stc Set carry flag 
FD std Clear direction flag 
FB sti Set interrupt flag 
AA stosb Store string byte 
AB stosl Store string long 
AB stosw Store string word 
OF 00 /1 str Store task register 

sub Subtract 
2C subb imm8,al 
2D subw imml6,ax 
2D subl imm32,eax 
80 /5 subb imm8,nn8 
83 /5 subw imm8,nnl6 
83 /5 subl imm8,nn32 
81 /5 subw lmml6,rm16 

LEXICON 



as 386 447 

81 15 subl tmm32,rm32 
28 Ir subb r8,rm8 
29 Ir subw rl6,rml6 
29 Ir subl r32,rm32 
2A Ir subb rm8,r8 
2B Ir subw rml6,rl6 
2B Ir subl rm32,r32 

test Logical compare 
A8 testb tmm8,al 
A9 testw tmml6,ax 
A9 testl lmm32,eax 
F6 10 testb lmm8,rm8 
F7 IO testw lmml6,rml6 
F7 10 testl lmm32,rm32 
84 Ir testb r8,rm8 
85 Ir testw rl6,rml6 
85 Ir testl r32,rm32 

OF 00 14 verr rml6 Verify segment for read 
OF 00 15 verw rml6 Verify segment for write 
9B wait Wait 

xchg Exchange register 
90+r xchgw rl6,ax 
90 +r xchgw ax,rl6 
90 +r xchgl r32,eax 
90 +r xchgl eax,r32 
86 Ir xchgb r8,rm8 
87 Ir xchgw rl6,rml6 
87 Ir xchgl r32,rm32 
86 Ir xchgb rm8,r8 
87 Ir xchgw rml6,rl6 
87 Ir xchgl rm32,r32 

07 xlat Table lookup translation 
07 xlatb Table lookup translation 

xor Logical exclusive OR 
34 xorb lmm8,al 
35 xorw tmml6,ax 
35 xorl lmm32,eax 
80 16 xorb lmm8,rm8 
83 16 xorw lmm8,rm16 
83 16 xorl lmm8,rm32 
81 16 xorw lmml6,rm16 
81 16 xorl lmm32,rm32 
30 Ir xorb r8,rm8 
31 Ir xorw rl6,rml6 
31 Ir xorl r32,rm32 
32 Ir xorb rm8,r8 
33 Ir xorw rml6,r16 
33 Ir xorl rm32,r32 

See Also 
asflx, calling conventions, cc, commands 
Intel Corporation: 386 DX Programmer's Reference Manual. Santa Clara, CA: Intel Corporation, 

LEXICON 



448 ASCII 

1990. Highly recommended. 

Notes 
We have designed as to ease porting of programs written in other dialects of UNIX 386 assembly 
language, as well as to be a powerful tool for development of new progams. We think you will find 
the features and documentation of our assembler considerably more complete than are available 
anywhere else. However, we have chosen rwt to duplicate behavior of other assemblers that leads to 
inefficient or incorrect output, or that generates code without warning when given questionable 
input. We have also chosen to support operator precedence rather than perpetuating antiquated 
left-to-right evaluation schemes seen elsewhere. Caveat utllltor. 

ASCII - Technical Information 
ASCII is an acronym for the American Standard Code for Information Interchange. It is a table of 
seven-bit binary numbers that encode the letters of the alphabet, numerals, punctuation, and the 
most commonly used control sequences for printers and terminals. ASCII codes are used on all 
microcomputers sold in the United States. 

The following table gives the ASCII characters in octal, decimal. and hexadecimal numbers, their 
definitions, and expands abbreviations where necessary. 

000 0 OxOO NUL <Ctrl-@> Null character 
001 1 OxOl SOH <ctrl-A> Start of header 
002 2 Ox02 STX <ctrl-B> Start of text 
003 3 Ox03 ETX <ctrl-C> End of text 
004 4 Ox04 EOT <ctrl-D> End of transmission 
005 5 Ox05 ENQ <ctrl-E> Enquiry 
006 6 Ox06 ACK <ctrl-F> Positive acknowledgement 
007 7 Ox07 BEL <ctrl-G> Bell 
010 8 Ox08 BS <Ctrl-H> Backspace 
011 9 Ox09 HT <ctrl-1> Horizontal tab 
012 10 OxOA LF <Ctrl-J> Line feed 
013 11 OxOB VT <ctrl-K> Vertical tab 
014 12 OxOC FF <Ctrl-L> Form feed 
015 13 OxOD CR <ctrl-M> Carriage return 
016 14 OxOE so <Ctrl-N> Shift out 
017 15 OxOF SI <Ctrl-0> Shift in 
020 16 OxlO DLE <Ctrl-P> Data link escape 
021 17 Oxll DCl <ctrl-Q> Device control 1 (XON) 
022 18 Oxl2 DC2 <ctrl-R> Device control 2 (tape on) 
023 19 Oxl3 DC3 <ctrl-S> Device control 3 (XOFF) 
024 20 Oxl4 DC4 <ctrl-T> Device control 4 (tape off) 
025 21 Oxl5 NAK <ctrl-U> Negative acknowledgement 
026 22 Oxl6 SYN <ctrl-V> Synchronize 
027 23 Oxl7 ETB <Ctrl-W> End of transmission block 
030 24 Oxl8 CAN <ctrl-X> Cancel 
031 25 Oxl9 EM <ctrl-Y> End of medium 
032 26 OxlA SUB <ctrl-Z> Substitute 
033 27 OxlB ESC <ctrl-[> Escape 
034 28 OxlC FS <ctrl-\> Form separator 
035 29 OxlD GS <ctrl-]> Group separator 
036 30 OxlE RS <ctrl-"> Record separator 
037 31 OxlF us <ctrl-_> Unit separator 
040 32 Ox20 SP Space 
041 33 Ox21 Exclamation point 
042 34 Ox22 Quotation mark 

LEXICON 



ASCII 449 

043 35 Ox23 # Pound sign (sharp) 
044 36 Ox24 $ Dollar sign 
045 37 Ox25 % Percent sign 
046 38 Ox26 & Ampersand 
047 39 Ox27 Apostrophe 
050 40 Ox28 Left parenthesis 
051 41 Ox29 Right parenthesis 
052 42 Ox2A • Asterisk 
053 43 Ox2B + Plus sign 
054 44 Ox2C Comma 
055 45 Ox2D Hyphen (minus sign) 
056 46 Ox2E Period 
057 47 Ox2F I Virgule (slash) 
060 48 Ox30 0 
061 49 Ox31 1 
062 50 Ox32 2 
063 51 Ox33 3 
064 52 Ox34 4 
065 53 Ox35 5 
066 54 Ox36 6 
067 55 Ox37 7 
070 56 Ox38 8 
071 57 Ox39 9 
072 58 Ox3A Colon 
073 59 Ox3B Semicolon 
074 60 Ox3C < Less-than symbol (left angle bracket) 
075 61 Ox3D Equal sign 
076 62 Ox3E > Greater-than symbol (right angle bracket) 
077 63 Ox3F ? Question mark 
0100 64 Ox40 @ At sign 
0101 65 Ox41 A 
0102 66 Ox42 B 
0103 67 Ox43 c 
0104 68 Ox44 D 
0105 69 Ox45 E 
0106 70 Ox46 F 
0107 71 Ox47 G 
OllO 72 Ox48 H 
Olll 73 Ox49 I 
Oll2 74 Ox4A J 
Oll3 75 Ox4B K 
Oll4 76 Ox4C L 
0115 77 Ox4D M 
0116 78 Ox4E N 
Oll7 79 Ox4F 0 
0120 80 Ox50 p 
0121 81 Ox51 Q 
0122 82 Ox52 R 
0123 83 Ox53 s 
0124 84 Ox54 T 
0125 85 Ox55 u 
0126 86 Ox56 v 
0127 87 Ox57 w 
0130 88 Ox58 x 

LEXICON 



450 ascii.h 

0131 89 
0132 90 
0133 91 
0134 92 
0135 93 
0136 94 
0137 95 
0140 96 
0141 97 
0142 98 
0143 99 
0144 100 
0145 101 
0146 102 
0147 103 
0150 104 
0151 105 
0152 106 
0153 107 
0154 108 
0155 109 
0156 110 
0157 111 
0160 112 
0161 113 
0162 114 
0163 115 
0164 116 
0165 117 
0166 118 
0167 119 
0170 120 
0171 121 
0172 122 
0173 123 
0174 124 
0175 125 
0176 126 
0177 127 

Files 
I usr I pub I ascii 

See Also 

Ox59 
Ox5A 
Ox5B 
Ox5C 
Ox5D 
Ox5E 
Ox5F 
Ox60 
Ox61 
Ox62 
Ox63 
Ox64 
Ox65 
Ox66 
Ox67 
Ox68 
Ox69 
Ox6A 
Ox6B 
Ox6C 
Ox6D 
Ox6E 
Ox6F 
Ox70 
Ox71 
Ox72 
Ox73 
Ox74 
Ox75 
Ox76 
Ox77 
Ox78 
Ox79 
Ox7A 
Ox7B 
Ox7C 
Ox7D 
Ox7E 
Ox7F 

y 
z 
[ 

\ 
I 

;-

a 
b 
c 
d 
e 
f 
g 
h 

j 
k 
I 
m 
n 
0 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
{ 

I 
} 

DEL 

string, technical information 

Left bracket (left square bracket) 
Backslash 
Right bracket (right square bracket) 
Circumflex 
Underscore 
Grave 

Left brace (left curly bracket) 
Vertical bar 
Right brace (right curly bracket) 
Tilde 
Delete 

-~ ~'"'-""'~ an 
Define non-printable ASCII characters 
#include <ascii.h> 

ascii.h defines a set of manifest constants that describe the non-printable ASCII characters. 

See Also 
ASCII, header files 

LEXICON 



asctimeO - asfix 451 

asctimeO - Time Function (libc) .._~'''''~ ~~ 
Convert time structure to ASCII string 
#include <time.h> 
#include <sys/types.h> 
char •asctime(tmp) struct tm •tmp; 

asctime takes the data found in tmp. and turns it into an ASCII string. tmp is of the type tm. which 
is a structure defined in the header file time.h. This structure must first be initialized by either 
gmtime or localtime before it can be used by asctime. For a further discussion of tm. see the entry 
for time. 

asctime returns a pointer to where it writes the text string it creates. 

Example 
The following example demonstrates the functions asctime, ctime, gmtime, localtime, and time, 
and shows the effect of the environmental variable TIMEZONE. For a discussion of the variable 
time_t, see the entry for time. 

#include <time.h> 
#include <sys/types.h> 
main() 
{ 

} 

time t timenumber; 
struct tm *timestruct; 

/* read system time, print using ctime */ 
time(&timenumber); 
printf("%s", ctime(&timenumber)); 

/* use gmtime to fill tm, print with asctime */ 
timestruct = gmtime(&timenumber); 
printf("%s", asctime(timestruct)); 

/* use localtime to fill tm, print with asctime */ 
timestruct = localtime(&timenumber); 
printf("%s", asctime(timestruct)); 

See Also 
time 

Notes 
asctime returns a pointer to a statically allocated data area that is overwritten by successive calls. 

~''~~''~""'-. ._~~ --~~'''""'~~~~ 
Convert assembly-language programs into as 80386 format 
astlx < oldfile > newfile 

astlx converts programs written in the 80286 flavor of the COHERENT assembly language into a 
form that can be assembled by the 80386 edition of as, the COHERENT assembler. 

astlx reads the standard input and writes to the standard output. It changes DEC-form local 
symbols to the form of 80386 as, changes character constants from the form •x to the form 'x', and 
changes local symbols from the COHERENT-286 form to the COHERENT-386 form. 

LEXICON 



452 ASHEAD- assertO 

See Also 
as, commands 

GWi'%'•11a.+"·MMi!mr•mr ~"~,~~~ - ~ ~--~~,"'~ 
Append options to beginning of as command line 
export ASHEAD=options 

The COHERENT assembler as reads the environmental variables ASHEAD and ASTAIL before it 
begins its work. You can set these variables to hold the default options that you want the assembler 
always to use. 

as appends the options in ASHEAD to the beginning of its command line. 

See Also 
as, ASTAIL, environmental variables 

Calculate inverse sine 
#include <math.h> 
double asin(arg) double arg: 

asin() calculates the inverse sin of arg, which must be in the range (-1., l.]. The result will be in the 
range [-:n:/2, :n:/2]. 

Example 
For an example of this function, see the entry for acos(). 

See Also 
mathematics library 

Diagnostics 
Out-of-range arguments set errno to EDOM and return zero. 

ASKCC - Environmental Variable 
Force prompting for CC names 
ASKCC=YES/NO 

The environmental variable ASKCC directs the program mail to prompt for carbon-copy names. A 
carbon-copy (or CC) name gives another person to whom a mail message should be sent. To turn on 
prompting, use the command: 

export ASKCC=YES 

See Also 
environmental variables, mail 

assertO- Macro Diagnostics (assert.h) 
Check assertion at run time 
#include <assert.h> 
void assert(expression) int expression; 

assert() checks the value of expression. If expression is false (zero), assert() sends a message into the 
standard-error stream and calls exit(). It is useful for verifying that a necessary condition is true. 

The error message includes the text of the assertion that failed, the name of the source file. and the 
line within the source file that holds the expression in question. These last two elements consist, 
respectively, of the values of the preprocessor macros __ FILE __ and __ LINE __ . 

LEXICON 



assert.h - asy 453 

assert() calls exit(). which never returns. 

To turn off assert(), define the macro NDEBUG prior to including the header assert.h. This forces 
assert() to be redefined as 

#define assert(ignore) 

See Also 
exit(), assert.h, C preprocessor 

Notes 
The ANSI Standard requires that assert() be implemented as a macro, not a library function. If a 
program suppresses the macro definition in favor of a function call. its behavior is undefined. 

Turning off assert() with the macro NDEBUG will affect the behavior of a program if the expression 
being evaluated normally generates side effects. 

assert() is useful for debugging. and for testing boundary conditions for which more graceful error 
recovery has not yet been implemented. 

FUi§llilllt:tmbi!•~"'"'"~'~"""'~"''""'""~"~"'W -
Define assert() 
#include <assert.h> 

assert.h is the header file that defines the macro assert. 

See Also 
assert(), header mes 

ASTAIL- Environmental Variable ~"'~~,.,,.. n>,_"~'~~'""'~~~"''"'""'U 
Append options to end of as command line 
export ASTAIL=optlons 

The COHERENT assembler as reads the environmental variables ASHEAD and ASTAIL before it 
begins its work. You can set these variables to hold the default options that you want the assembler 
always to use. 

as appends the options in ASTAIL to the end of its command line. 

See Also 
as, ASHEAD, environmental variables 

~'~'~'WS ._''"""''~'''''~"~'''''"'a '"'-. @1l ~ @1l 
Device driver for asynchronous serial lines 

The device driver asy supports from 1 to 32 serial ports. It allows any mixture of 8250, 82508. 
16450. 16550. 16550A, and equivalent devices, including nearly all conventional coml through 
com4 serial cards. and most non-intelligent multiport add-in cards. It automatically recognizes. 
and uses, on-chip FIFO, and it can specify groups of ports that share a single interrupt status. 

Types of Port Configuration 
Each port that asy serves has a base name. e.g., coml. Different configurations of the port are 
selected by using different suffixes, as follows: 

1 (Local) "Local mode'· means that the line will have a terminal plugged into it, or is connected 
to a modem running in command mode. Local mode uses the minor device with the 
modem-control bit (bit 7) set. 

LEXICON 



454 asy 

r (Remote) "Modem control" means that the line will have a modem plugged into it. Modem 
control is enabled on a serial line by resetting the modem control bit (bit 7) in the minor 
number for the device. This allows the system to generate a hangup signal when the 
modem indicates loss of carrier by dropping DCD (Data Carrier Detect). A modem line 
should always have its DSR, DCD and CTS pins connected. If left hanging, spurious 
transitions can cause severe system thrashing. An open to a modem-control line will block 
until a carrier is detected (DCD goes true). 

p (Polled mode) "Polled mode" means that the port cannot generate an interrupt, but must be 
checked (or polled) constantly by the COHERENT system to see if activity has occurred on 
it. Such polling takes a significant toll on system performance. The main reason for 
supporting polled devices is that older style com equipment will not allow both coml and 
com3 to use interrupts at the same time, nor will it allow both com2 and com4 to use 
interrupts at the same time. If you use a port in polled mode, you will get better 
performance using one of the newer FIFO parts, such as the 16550A. 

f (Flow control) A device with hardware flow control. Here, signal CTS must be active for the 
driver to send data out the port, and signal RTS will be set active by the driver whenever it 
is ready for input. Some high-speed modems, and some serial printers, are capable of using 
these conventions. If your equipment does not support RTS/CTS handshaking, there is 
absolutely no benefit to using this option. 

Due to limitations in the design of the ports, you can enable interrupts on either COM 1 or COM3 (or 
on COM2 or COM4), but not both. If you wish to use both ports simultaneously, one must be run 
in polled mode. For example, if you wish to open all four serial lines, you can open two of the lines 
in interrupt mode: you can open either COMl or COM3 in interrupt mode, and you can open either 
COM2 or COM4 in interrupt mode. The other two lines must be opened in polled mode. 

Opening a device in polled mode consumes many CPU cycles, based upon the speed of the highest 
baud rate requested. For example, on a 20 MHz 80386-based machine, polling at 9600-baud was 
found to consume about 15% of the CPU time. As only one device can use the interrupt line at any 
given time, the best approach is to make the high-speed line of the pair interrupt driven and open 
the low-speed or less-frequently used line in polled mode. However, if you enable a polled line for 
logins, the port is open and will be polled as long as the port remains open (enabled). Thus, even if 
a port is not in use, the fact that it has a getty on it consumes CPU cycles. As a rule of thumb, try 
to open a port in interrupt mode. If you cannot, use the polled version. 

If you intend to use a modem on your serial port, you must insure that the DCD signal from the 
modem actually follows the state of carrier detect. Some modems allow the user to "strap" or set the 
DCD signal so that it is always asserted (true). This incorrect setup will cause COHERENT to think 
that the modem is "connected" to a remote modem, even when there is no such connection. 

There are eight possible configurations, and eight valid suffixes. In the example of the port whose 
base name is coml, the configurations would be found in the directory /dev as /dev/comll, 
/dev/comlr, /dev/comlpl, /dev/comlpr, /dev/comlfi, /dev/comlfr, /dev/comlfpl, and 
I dev I comlfpr. 

Driver Configuration 
asy is usually configured - and proper names are created in directory I dev - when you install 
COHERENT. The following explains how to configure asy, in case you must modify the original 
installation. 

There are several steps to configuring asy: 

1. Edit /etc/default/asyncto match your system. 

LEXICON 



asy 455 

2. Run /conf/asypatch to modify file /coherent according to step 1. 

3. Run I conf/ asymkdev to make device names in I dev according to step 1. 

4. Reboot. using the new version of /coherent. 

Editing /etc/default/async 
The first step in reconfiguring asy is to edit /etc/default/async. This file holds the description of 
how the asy driver is to be configured. 

Blank lines, and lines beginning with a pound sign '#', are allowed as comments and will be ignored. 
Each port that is not in a group must have a line beginning with the letter 'P', followed by six 
numbers, specified in decimal notation, except as noted: 

The hexadecimal base address for the port. 

The irq number used by the port (use zero if no interrupt line is needed). 

The hexadecimal value used for control lines OUTl and OUT2 when the port is open. 
Permissible values are 0, 4, 8, and C. Use 4 if OUTl must be asserted, 8 if OUT2 must be 
asserted, and C if both signals are needed. The most common value needed in this field is 8. 

One if the port needs exclusive use of its interrupt line (true for conventional coml I com4 
equipment), zero otherwise. 

Default baud rate for the port. 

Channel number for the port (0-31 ). 

Many multiport boards support a separate I/O address that can be read to determine which port 
requires service. Each group of up to eight ports must have a line beginning with the letter 'G', 
followed by a separate line describing each port in the group. There are three different group types: 

1. Bits in the status port are one when the corresponding port needs service, zero otherwise. 

2. Bits in the status port are zero when the corresponding port needs service. one otherwise. 

3. The low three bits in the status port give the slot number on the card for the port needing 
service. 

The 'G' line requires the following fields. All are in decimal, except as noted: 

The hexadecimal address for the group-status port. 

The irq number used by the group. Use zero if no interrupt line is needed. 

The hexadecimal value used for control lines OUTl and OUT2 when the port is open (usually 
eight). 

The type number of the group - one, two, or three, as described above. 

The number of ports in the group. 1 through 8. 

Each group line is followed by a separate 'M' line for each member of the group. Fields required on 
the 'M' line (in decimal. except as noted) are: 

The hexadecimal base address for the port. 

Default baud rate for the port. 

The slot number of the port within the group 0 through 7. For group types 1 and 2, slot 0 
corresponds to the least-order bit in the status port, slot 7 to the highest order bit. 

LEXICON 



456 asy 

Channel number for the port (0-31 ). 

The following gives the async file for a system with standard COMI through COM4 ports as 
channels 0 through 3, a Comtrol Hostess 550/ 16 as channels 4 through 19, and finally an Arnet 
Multiport as channels 20 through 27. 

# /etc/default/async spec for standard coml-com4 
#Record formats: 
#P Port Irq OUT[ 12] Exel Speed Channel 
#G Port Irq OUT[ 12] Type Number-of-Slots 
#M Port Speed Slot Channel 

# coml/2/3/4 
p 3f8 4 8 1 9600 0 
p 2f8 3 8 1 9600 1 
p 3e8 4 8 1 9600 2 
p 2e8 3 8 1 9600 3 

# Hostess 550 16 - two groups of 8 ports, using irq 12 
G 507 12 8 1 8 
M 500 9600 0 4 
M 508 9600 1 5 
M 510 9600 2 6 
M 518 9600 3 7 
M 520 9600 4 8 
M 528 9600 5 9 
M 530 9600 6 10 
M 538 9600 7 11 

G 547 12 8 1 8 
M 540 9600 0 12 
M 548 9600 1 13 
M 550 9600 2 14 
M 558 9600 3 15 
M 560 9600 4 16 
M 568 9600 5 17 
M 570 9600 6 18 
M 578 9600 7 19 

# Arnet Multiport - one group of 8 ports, using irq 7 
G 272 7 0 2 8 
M 280 9600 0 20 
M 288 9600 1 21 
M 290 9600 2 22 
M 298 9600 3 23 
M 2AO 9600 4 24 
M 2A8 9600 5 25 
M 2BO 9600 6 26 
M 2B8 9600 7 27 

Patching the Kernel 
Now that you have described how you want asy to be configured, the next step is to patch the 
kernel. Use the program /conf/asypatch. The invocation is: 

LEXICON 



/conf/asypatch [-v] /coherent < /etc/default/async 

The -v option gives verbose diagnostic output. 

Make Device Names 

at 457 

The next step is to create the device names. Use the program /conf/asymkdev. The invocation is: 

/conf/asymkdev /etc/default/async > /trnp/rnake_nodes 

Inspect the script produced in /tmp if you like, then run it with the command: 

sh /trnp/rnake_nodes 

Running the New Kernel 
To run the modified kernel. do the usual sequence of shutdown, sync. and reboot, then reboot your 
system with the new version of /coherent. For more information on this, see the Lexicon entry for 
the command shutdown, or see the section on shutting down the system in the tutorial Using the 
COHERENT System. at the front of this manual. 

See Also 
device drivers 

Notes 
asy is available only under COHERENT 386. 

asy uses major number 5. This number was selected as asy replaces coml/com3 (major number 
5), com2/4 (major number 6), and hs (major number 7). 

~~ ~~'""~~~""'' ~'~''~'~""""~'~''~ '''~ 
Drivers for hard-disk partitions 

/dev/at• are the COHERENT system's AT devices for the hard-disk's partitions. Each device is 
assigned major-device number 11. and may be accessed as a block- or character-special device. 

The at hard-disk driver handles two drives with up to four partitions each. Minor devices O through 
3 identify the partitions on drive 0. Minor devices 4 through 7 identify the partitions on drive 1. 
Minor device 128 allows access to all of drive 0. Minor device 129 allows access to all of drive 1. To 
modify the offsets and sizes of the partitions, use the command fdisk on the special device for each 
drive (minor devices 128 and 129). 

To access a disk partition through COHERENT, directory /dev must contain a device file that has 
the appropriate type, major and minor device numbers, and permissions. To create a special file for 
this device, invoke the command mknod as follows: 

/etc/rnknod /dev/atoa b 11 0 drive 0, partition 0 
/etc/rnknod /dev/atOb b 11 1 drive o, partition 1 
/etc/rnknod /dev/atOc b 11 2 drive o, partition 2 
/etc/rnknod /dev/atOd b 11 3 drive o, partition 3 
/etc/rnknod /dev/atox b 11 128 drive o, partition table 

Kernel Variables 
Please note that the COHERENT 286 kernel references variables with a trailing underscore 
character; for example, atparm_. The COHERENT 386 kernel. however, does not use a trailing 
underscore; for example, atparm. 

The following descriptions apply to both COHERENT 286 and COHERENT 386, but the notation will 
be in the COHERENT-386 form. 

LEXICON 



458 at 

Drive Characteristics 
When processing BIOS 1/0 requests prior to booting COHERENT, many IDE drives use "translation­
mode" drive parameters: number of heads. cylinders. and sectors per track. These numbers are 
called translation-mode parameters because they do not reflect true physical drive geometry. The 
translation-mode parameters used by the BIOS code present on your host adapter can be obtained 
using the info command from tboot. It is often necessary to patch the at driver with BIOS values of 
translation-mode parameters in order to boot COHERENT on IDE hard drives. In COHERENT 
versions 3.1.0 and later. drive parameters are stored in table atparm in the driver. For the first 
hard drive. number of cylinders is a short (two-byte) value at atpann+O, number of heads is a single 
byte at atpann+2, and number of sectors per track is a single byte at atparm+l4. For the second 
hard drive. number of cylinders is a short value at atparm+l6. number of heads is a single byte at 
atpann+l8, and number of sectors per track is a single byte at atparm+30. For example. if testcoh 
is a kernel linked with the at driver and you want to patch it for a second hard drive with 829 
cylinders. 10 heads. and 26 sectors per track. you can do: 

/conf/patch testcoh atparrn+16=829:s atparm+lS=lO:c atparm+30=26:c 

To read the characteristics of a hard disk once the at driver is running. use the call to ioctl of the 
following form: 

#include <sys/hdioctl.h> 
hdparrn_t hdparms; 

ioctl(fd, HDGETA, (char *)&hdparms); 

wherefd is a file descriptor for the hard disk device and hdparms receives the disk characteristics. 

Non-Standard and Unsupported Types of Drives 
Prior releases of the the COHERENT at hard-disk driver would not support disk drives whose 
geometry was not supported by the BIOS disk parameter tables. COHERENT adds support for these 
drives during installation by "patching" the disk parameters into the bootstrap and the /coherent 
image on the hard disk. 

Files 
I dev I at• - Block-special files 
I dev /rat• - Character-special files 

See Also 
device drivers, fdisk 

Notes 
You can patch integer variable ATSREG to specify normal or alternate polling. Use Ox3F6 for 
normal polling. which works with most newer drives. Use OxlF7 for alternate polling, which is 
necessary for Perstor controllers and some other older equipment. The driver is shipped with a 
default value of Ox3F6; patching is usually done during installation as needed. Setting this variable 
improperly causes frequent controller timeouts and bad-track messages. 

Integer variable ATSECS specifies the number of seconds to wait for a response from the drive after 
an 1/0 request. The default value is six. Some IDE drives occasionally become unresponsive for 
long intervals (several seconds) while control firmware makes adjustments to drive operation. 

LEXICON 



at 459 

at- Command -.,_,,"',-.,_,-.,_~~-.,_~~~,~~~~ 
Execute commands at given time 
at [ -v I [ -c command I time [ [ day I week I [file I 
at [ -v ) [ -c command I time month day [file I 

at executes commands at a given time in the future. 

If the -c option is used, at executes the following command. If file is named, at reads the commands 
from it. If neither is given. at reads the standard input for commands. 

If time is a one-digit or two-digit number, at interprets it as specifying an hour. If time is a three­
digit or four-digit number, at interprets it as specifying an hour and minutes. If time is followed by 
a, p. n. or m, at assumes AM. PM, noon. or midnight. respectively; otherwise, it assumes that time 
indicates a 24-hour clock. 

For example, the command 

at -c "time I msg henry" 1450 

set the time command to be executed at 2:50 PM. and pipe time's output to the msg command, 
which will pass it to the terminal of user henry. Note that argument to the -c option had to be 
enclosed in quotation marks because it contains spaces and special characters; if this were not 
done, at would not be able to tell when the argument ended, and so would generate an error 
message. Also note that if you wish pass information to a user's terminal with the at command, you 
must tell at to whom to send the information. The command 

at 250p commandfile 

will set the file commandfile to be read and executed at 2:50 PM. Note that it is not necessary to 
use the file's full path name. Also, if the suffix p were not appended to the time, the file would be 
set to be read at 2:50 AM. 

The time set in at's command line is not the exact time that the command is executed. Rather, the 
daemon cron wakes up the file /usr/lib/atrun periodically to see if any commands have been 
scheduled commands to be executed at or before that time. The frequency with which cron 
executes atrun determines the "granularity" of at execution times; it may be changed by editing the 
file /usr/lib/crontab. For example. the entry 

0,5,10,15,20,25,30,35,40,45,50,55 * * * * /usr/lib/atrun 

sets /usr/lib/atrun to be executed every five minutes. Thus, the at command that is set, for 
example, to 2:53 PM will actually be executed at 2:55 PM. atrun executes specified commands 
when it discovers that the given time is past; therefore, at commands are executed even if the 
system is down at the specified time or if the system's time is changed. 

The at command has two forms, as shown above. In the first form, the option day names a day of 
the week (lower case, spelled out). If week is specified, at interprets the given time and day as 
meaning that time and day the following week. For example, the command 

at -c "time J msg henry" 1450 friday week 

executes time and sends its output to henry's terminal one week from Friday at 2:50 PM. 

In the second form given above, month specifies a month name (lower case. spelled out) and the 
number day specifies a day of the month. For example, the command 

at 1450 july 4 commandfile 

LEXICON 



460 atanO 

set the file commandflle to be read at 2:50 PM on July 4. 

If the -v flag is given, at prints the time when the commands will be executed, giving you enough 
information to plan for the execution of the command. For example, if it is now August 13, 1990, at 
2:30 PM, and you type the command 

at -v -c "/usr/games/fortune I msg henry" 1435 

at will reply: 

Tue Aug 13 14:35:00 

indicating that the command will be executed five minutes from now. However, if you type 

at -v -c "/usr/games/fortune I msg henry" 1435 august 10 

at will reply 

Sun Aug 10 14:35:00 1991 

which indicates that on Sunday, August 10 of next year, at 2:35 PM, the COHERENT system will 
print a fortune onto your terminal. 

Should you create such a long-distance at file by accident, you can correct the error by simply 
deleting the file that encodes it from the directory /usr/spool/at. The file will be named after the 
time that it is set to execute, plus a unique two-character suffix, should more than one command be 
scheduled to run at the same time. For example, the file for the above command would be named 
9108101435.aa. 

Finally, note that the current working directory, exported shell variables, file creation mask, user id, 
and group id are restored when the given command is executed. 

Files 
/bin/pwd - To find current directory 
/usr/llb/atrun- Execute scheduled commands 
/usr/spool/at- Scheduled activity directory 
/usr/spool/at/ yymmddhhmm.xx- Commands scheduled at given time 

See Also 
at,commands,cron 

atanO - Mathematics Function (libm) 
Calculate inverse tangent 
#include <math.h> 
double atan(arg) double arg; 

atan() calculates the inverse tangent of arg, which may be any real number. The result will be in 
the range [-it/2, it/2]. 

Example 
For an example of this function, see the entry for acos(). 

See Also 
errno, mathematics library 

LEXICON 



atan20 - atofO 461 

MWilll®®@M@li'iitM·liiln•"~~'"~'''flSOll''"''~"''flSI ... ,, ... 
Calculate inverse tangent 
double atan2(num, den) double num, den; 

atan2() calculates the inverse tangent of the quotient of its arguments num/den. num and den may 
be any real numbers. The result will be in the range [-rt, rt). The sign of the result will have the 
same sign as num, and the cosine will have the same sign as den. 

Example 
For an example of this function. see the entry for acos(). 

See Also 
ermo, mathematics library 

GH1W't ll+J•i1m@m~res'""rtS011'""~rtS011"rtS011resresoaoaresot1oaot1oaoaot1ot1oaam 
Read or set the AT realtime clock 
I etc/ ATclock [yy[mm[dd[hh[mm[.ss]]]]]] 

ATclock reads or sets the system realtime clock in an IBM PC-AT system. With no argument, it 
reads the realtime clock and returns a string in the format expected by the command date. With an 
argument, it sets the realtime clock to the given date. 

The system startup files I etc/brc and I etc/re typically contain a command of the form 

date -s '/etc/ATclock' 

to reset the time properly when the COHERENT system starts up. The AT realtime clock typically 
contains the current local standard time (not adjusted for daylight savings time). 

See Also 
commands, date, re 

atofO - General Function (libc) ~~"""~~,flSOll~ OllOll~,~~flSOll""'flSI 
Convert ASCII strings to floating point 
double atof(strlng) char• string; 

atof converts string into the binary representation of a double-precision floating point number. 
string must be the ASCII representation of a floating-point number. It can contain a leading sign, 
any number of decimal digits, and a decimal point. It can be terminated with an exponent, which 
consists of the letter 'e' or 'E' followed by an optional leading sign and any number of decimal 
digits. For example, 

123e-2 

is a string that can be converted by atof. 

atof ignores leading blanks and tabs: it stops scanning when it encounters any unrecognized 
character. 

Example 
For an example of this function, see the entry for acos. 

See Also 
atoi(), atol(), tloat, general functions, long, printf(), scanf() 

Notes 
atof does not check to see if the value represented by string fits into a double. It returns zero if you 
hand it a string that it cannot interpret. 

LEXICON 



462 atoiO - ato/Q 

atoiO - General Function (libc) 
Convert ASCII strings to integers 
int atoi(strlng) char •string; 

atoi converts string into the binary representation of an integer. string may contain a leading sign 
and any number of decimal digits. atoi ignores leading blanks and tabs; it stops scanning when it 
encounters any non-numeral other than the leading sign. and returns the resulting int. 

Example 
The following demonstrates atoi. It takes a string typed at the terminal, turns it into an integer, 
then prints that integer on the screen. To exit, type <ctrl-C>. 

main() 
{ 

} 

extern char *gets(); 
extern int atoi(); 
char string[64]; 

for(;;) { 

} 

printf ("Enter numeric string: ") ; 
if (gets (string) ) 

printf("%d\n", atoi(string)); 
else 

break; 

See Also 
atof(), atol(), general functions, int, printf(), scanf() 

Notes 
atoi does not check to see if the number represented by string fits into an int. It returns zero if you 
hand it a string that it cannot interpret. 

--~~"'U.W.W.W~'""~ -._,~,,~,'~""~ 

Convert ASCII strings to long integers 
long atol(string) char •string; 

atol() converts the argument string to a binary representation of a long. string may contain a leading 
sign (but no trailing sign) and any number of decimal digits. atol() ignores leading blanks and tabs; 
it stops scanning when it encounters any non-numeral other than the leading sign, and returns the 
resulting long. 

Example 

main() 
{ 

extern char *gets(); 
extern long atol(); 
char string[64]; 

LEXICON 



atrun - awk 463 

for(;;) { 

} 
} 

See Also 

printf ("Enter numeric string: ") ; 
if(gets(string)) 

printf("%ld\n", atol(string)); 
else 

break; 

atof(), atoi(), float, long, print!(), scanf() 

Notes 
No overflow checks are performed. atol() returns zero if it receives a string it cannot interpret. 

Execute commands at a preset time 

atrun is a program that executes programs at a time set by the command at. 

When user steve types 

at 1230 /v/steve/lunchtirne 

the command at creates a shell script in directory /usr/spool/at that contains the information 
needed to execute command /v/steve/lunchtime at a later time - in this instance, 12:30. The 
spooled file sits in /usr/spool/at until /usr/llb/atrun sees that the specified time has been 
reached, then it executes the spooled command and removes the entry from /usr/spool/at. 

atrun is not a daemon; that is. it is invoked by another program. does its work and exits. Thus, it is 
typically run periodically from an entry in the file /usr/llb/crontab. See the article on at for more 
details. 

See Also 
at, system maintenance 

Notes 
Although atrun technically is a command, is never invoked directly by a user. 

mrmll'WM!l·m• 
Note an automatic variable 

auto is an abbreviation for an automatic variable. This is a variable that applies only to the function 
that invokes it. and vanishes when the functions exits. The word auto is a C keyword, and must 
not be used to name any function. macro. or variable. 

See Also 
C keywords, extern, static, storage class 

~""'~~~'~'9L~~"'-'9L'-~~~,,~,~~''"'~~'~ -
Pattern-scanning language 
awk [-y][-Fc ][-f progfile][prog ][file ... ] 

awk is a general-purpose language designed for processing input data. Its features allow you to 
write programs that scan for patterns. produce reports, and filter relevant information from a mass 
of input data. It acts on each inputjile following the commands you write into an awk program. 

LEXICON 



464 awk 

awk reads the standard input if no file is specified, which allows it to act as a filter in a pipeline; the 
file name ·-· means the standard input. 

You can specify the program either as an argument prog (usually enclosed in quotation marks to 
prevent interpretation by the shell sh) or in the form -f progflle, where progflle contains the awk 
program. If no -f option appears, the first non-option argumentis the awk program prog. 

The option flag -y specifies that any lower-case alphabetic character in a regular expression pattern 
should match both itself and the corresponding upper-case letter. This is identical to the matching 
found in the pattern-matching program grep with the -y option. 

awk views its input as a sequence of records, each consisting of zero or more fields. By default, 
newlines separate records and white space (spaces or tabs) separates fields. The option -Fe changes 
the input field separator characters to the characters in the string c. An awk program can also 
change the field and record separators. The program can access the values of each field and the 
entire record through built-in variables. 

For details on the construction of awk programs, consult the tutorial to awk that appears in this 
manual. Briefly, an awk program consists of one or more lines, each containing a pattern or an 
action, or both. A pattern determines whether awk performs the associated action. It may consist of 
regular expressions, line ranges, boolean combinations of variables, and beginning and end of input­
text predicates. If no pattern is specified, awk executes the action (the pattern matches by default). 

An action is enclosed in braces. The syntax of actions is C-like, and consists of simple and 
compound statements constructed from constants (numbers, strings), input fields, built-in and 
user-defined variables, and built-in functions. If an action is missing, awk prints the entire input 
record (line). 

Unlike lex or yacc, awk does not compile programs into an executable image. but interprets them 
directly. Thus, awk is ideal for quickly-implemented, one-shot efforts. 

Examples 
The following examples illustrate the economy of expression of awk programs. 

The first example prints all lines containing the string "COHERENT" (identical to grep COHERENT): 

/COHERENT/ 

The built-in variable NR is the number of the current input record, so the following program prints 
the number of records (lines) in the input stream. 

END { print NR } 

The built-in variable $3 gives the value of the third field of the current record, so the following 
program sums the elements in column three of an input table and prints the total: 

{ sum += $3 } 
END { print sum } 

See Also 
commands, grep, lex, sed, yacc 
Introduction to the awk Language 

Notes 
There is no way to have a null field, such as is necessary to describe the colon-separated fields in 
/etc/passwd. 

awk converts between strings and numbers automatically. Adding zero to a string forces awk to 
treat it as a number; concatenating 1111 to a number forces awk to treat it as a string. 

LEXICON 



bad - badscan 465 

bad - Command '~'~"~~,~~~~ 
Maintain list of bad blocks 
bad optionfllesystem [ block ... ] 

A hard disk or floppy disk may have bad blocks on it: a "bad block'" is a portion of disk that is 
flawed, and so cannot be used reliably because read or write errors occur on them. Bad blocks can 
result from microscopic flaws in the disk surface, and it is the unusual disk that is free of them. 
The COHERENT system keeps a list of bad blocks so it can avoid using them. 

The command bad maintains the bad-block list for the givenfllesystem, which must be a block­
special file. option must be exactly one of the characters acdl, which tell bad to do one of the 
following: 

a Add each given block to the bad-block list 
c Clear the bad-block list 
d Delete each given block from the bad-block list 
l List all blocks on the bad-block list 

bad does not deallocate any i-node associated with" a block when adding it to the bad-block list. You 
should run the command icheck with the -s option immediately after bad to correct the problem, or 
run the command fsck. 

fllesystem should be unmounted if possible. The user who invokes bad must have appropriate 
permissions for the given file system. For many file systems, only the superuser may use bad to 
change the bad-block list. Use the command badscan to create a prototype file. 

When the mkfs command creates a file system, the prototype specification may include a bad block 
list for the new file system. 

See Also 
badscan, commands, icheck, mkfs, umount 

badscan - Command 
Build bad block list 
/etc/badscan [ -v I [ -o proto I [ -b boot] device size 
/etc/badscan [ -v I [ -o proto I [ -b boot I device xdevice 

badscan scans a floppy disk or a partition of the hard disk for bad blocks. It writes onto the 
standard output a prototype file that lists all bad blocks on the disk. 

badscan recognizes the following options: 

-v Print an estimate of time needed to finish examining the device. 

LEXICON 



466 banner - basename 

-o proto Redirect output into file proto. 

-b boot Insert a given boot into the proto file as the bootstrap. The default is /conf/boot. 

device names the special device to scan. 

The command line for badscan comes in two forms, as shown at the top of this article. The first 
version is for a floppy disk; size gives the size of the device, in blocks. The second version is for a 
hard-disk partition; xdevice specifies devices /dev/atOx or /dev/atlx. which uses the partition­
table information in the master boot block of the drive to find the size of the device. Use /dev/atOx 
when examining a partition on hard-disk drive 0, and /dev/atlx when examining a partition on 
hard-disk drive 1. 

Examples 
The first example uses badscan to find all bad blocks on a high-density, 3.5-inch floppy disk in 
drive 1 (i.e., drive BJ. and writes its output into file proto: 

/etc/badscan -v -o proto /dev/rfval 2880 

See the article floppy disks for a table that gtves the device name and number of sectors to be found 
on the various types of floppy disk that COHERENT recognizes. 

The second example uses badscan to prepare a list of bad blocks for partition 2 on hard-drive 0, 
which is an IDE drive accessed via COHERENT's at driver. Again, the output is written into file 
proto: 

/etc/badscan -v -o /conf/proto.atOc /dev/ratOc /dev/atOx 

See Also 
at, bad, commands, tloppy disks, mkfs 

Notes 
Because SCSI hard-disk drives maintain their own map of bad blocks, badscan is not required for 
SCSI drives, and should not be used with them. 

banner - Command 
Print large letters 
banner [ argument ... l 

banner prints large (seven-character by five-character) letters on the standard output. Each 
argument produces one large text output line. If there is no argument, each line from the standard 
input produces one line oflarge-text output. 

See Also 
commands, llbmisc, lpr, pr 

basename - Command -.~~,, ... -.._,,,,~-.------"'"''' .. '''~~~~~ 
Strip path information from a file name 
basenameflle [ sl!:[fix l 

basename strips its argument jlle of any leading directory prefixes. If the result contains the 
optional sl!:[fix, basename also strips it. basename prints the result on the standard output. 

For example, the command 

basename /usr/fred/source.c 

returns 

LEXICON 



be 467 

source.c 

basename is most useful when it is used with other shell commands. For example. the command 

for i in *.c 
do 

cp $i 'basename $i .c'.backup 
done 

copies every file that has the suffix .c into an identically named file that has the suffix .backup. 

See Also 
commands, ksh, sh 

~~"~~,~~""'~ 8''-"-''"~'~~~"~~~' 
Interactive calculator with arbitrary precision 
be I -11 [file ... I 

be is a language that performs calculations on numbers with an arbitrary number of digits. be is 
most commonly used as an interactive calculator. where the user types arithmetic expressions in a 
syntax reminiscent of C. If be is invoked with no file arguments on its command line, it reads the 
standard input. For example: 

Input 
be 
(1000+23)*42 
k = 2A10 
16 * k 
2 A 100 

Output 

42966 

16384 
1267650600228229401496703205376 

be may also be invoked with one or morefile arguments. After be reads eachjlle, it reads the 
standard input. This provides a convenient way to access programs in files. A library of 
mathematical functions is available. obtained by using the -1 option. 

The following summarizes briefly the facilities provided by be. More information is available in the 
tutorial to be that is included with this manual. 

Comments are enclosed between the delimiters '/*' and '* /'. Names of variables or functions must 
begin with a lower-case letter, and may have any number of subsequent letters or digits. Names 
may not begin with an upper-case letter because numbers with a base greater than ten may need 
upper-case letters for their notation. The three built-in variables obase, ibase, and scale represent 
the number base for printing numbers (default, ten), the number base for reading numbers (default, 
ten), and the number of digits after the decimal (radix) point (default, zero), respectively. Variables 
may be simple variables or arrays. and need not be pre-declared, with the exception of variables 
internal to functions. Some examples of variables and array elements are x25, array[IO], and 
number. 

Numbers are any string of digits, and may have one decimal point. Digits are taken from the 
ordinary digits (0-9) and then the upper-case letters (A-F). in that order. 

Certain names are reserved for use as key words. The key words recognized by be include the 
following: 

if, for, do, while 
Test conditions and define loops, with syntax identical to C 

LEXICON 



468 be 

break, continue 
Alter control flow within for and while loops. 

quit Tell be to exit immediately 

definefunctton (arg, ... , arg) 
Define a be function by a compound statement. as in C. 

auto var, ... , var 
Define variables that are local to a function, rather than having global scope. 

return (value) 
Return a value from a function. 

scale (value) 
Return the number of digits to the right of the decimal point in value. 

sqrt (value) 
Return the square root of value 

length (value) 
Return the number of decimal digits in value. 

The following operators are recognized: 

+ * 
+= 
I= 

I 

< 

% 

*= 
<= 

I= 
> 

++ 
%= 
>= 

These operators are similar to those in C, with the exception of A and A=, which are exponentiation 
operators. Expressions can be grouped with parentheses. Statements are separated with 
semicolons or newlines, and may be made into compound statements with braces. be prints the 
value of any statement that is an expression but is not an assignment. 

As in the editor ed, an '!' at the beginning of a line causes that line to be sent as a command to the 
COHERENT shell sh. 

The built-in mathematics library contains the following functions and variables: 

atan(z) Arctangent of z 
cos(z) Cosine of z 
exp(z) Exponential function of z 
j(n,z) nth order Bessel function of z 
ln(z) Natural logarithm of z 
pi Value of pi to 100 digits 
sin(z) Sine of z 

Examples 
The first example calculates the factorial of its positive integer argument by recursion. 

/* 
* Factorial function implemented by recursion. 
*/ 

define fact(n) { 

} 

if (n <= 1) return (n); 
return (n * fact(n-1)); 

LEXICON 



bind 469 

The second example also calculates the factorial of its positive integer argument, this time by 
iteration. 

/* 
* Factorial function implemented by iteration. 
*/ 

define fact(n) { 
auto result; 

} 

Files 

result = 1; 
for (i=l; i<=n; i++) result *= i; 
return (result); 

/usr/lib/lib.b - Source code for the library 

See Also 
commands, conv, de, multi-precision arithmetic 
be Desk Calculator Language, tutorial 

Notes 
Line numbers do not accompany error messages in source files. 

~~~~"~''~~''''~~,~~ ·~~""~"~'''~~ 
Bind key sequence to editing command
bind [-m] [string[= command])

The command bind is used by the Korn shell ksh to bind one of its command-line editing
commands to a given key sequence. The editing commands are used by ksh to perform its
MicroEMACS-style command-line editing.

When bind is invoked without arguments, it lists on the standard output all current bindings.

When invoked with the syntax strtng=command, it binds the key-sequence string to the command.
For example. the command

bind A[X=end-of-line

binds the editing command end-of-line (which moves the cursor to the end of the command line)
with the key sequence <esc>X. Note that <esc> is written "(- that is, a literal carat'"' followed by
'['.

When invoked with the syntax -m strtng=commands, string is bound to commands, which contains
one or more editing commands. This form of the bind command lets you build keyboard macros
that combine several editing commands into one keystroke sequence.

For the list of editing commands, their default bindings. and other details of using MicroEMACS­
style command-line editing. see the Lexicon entry for ksh.

See Also
commands, ksh

LEXICON

470 bit - bit-fields

~,~,,~,,~~ ~~~_~,-. ~~ ..,_,,.
bit is an abbreviation for "binary digit". It is the basic unit of data processing. A bit can have a
value of either zero or one. Bits can be concatenated to form bytes.

A bit can be used either as a placeholder to construct a number with an absolute value, or as a flag
whose value has a particular meaning under specially defined circumstances. In the former use, a
string of bits builds an integer. In the latter use, a string of bits forms a map, in which each bit has
a meaning other than its numeric value.

See Also
bit map, byte, definitions, nybble

t1nmw•·m~,,,,-. ~~ ~~,, --~~
A bit:fteld is a member of a structure or union that is defined to be a cluster of bits. It provides a
way to represent data compactly. For example. in the following structure

struct example {
int memberl;
long member2;
unsigned int member3 :5;

}

member3 is declared to be a bit-field that consists of five bits. A colon ':' precedes the integral
constant that indicates the width, or the number of bits in the bit-field. Also, the bit-field declarator
must include a type, which must be one of int, signed int, or unsigned int.

A bit-field that is not given a name may not be accessed. Such an object is useful as "padding"
within an object so that it conforms to a template designed elsewhere.

A bit-field that is unnamed and has a length of zero can be used to force adjacent bit-fields into
separate objects. For example, in the following structure

struct example {

} ;

int memberl;
int member2 :5;
int :O;
int member3 :5;

the zero-length bit-field forces member.a and member3 to be written into separate objects.

Finally. it is illegal to take the address of a bit-field.

See Also
bit, bit map, byte, definitions

Notes
Because bit-fields have many implementation-specific properties, they are not considered to be
highly portable. Bit-fields use minimal amounts of storage, but the amount of computation needed
to manipulate and access them may negate this benefit. Bit-fields must be kept in integral-sized
objects because many machines cannot directly access a quantity of storage smaller than a "word"
(a word is generally used to store an int).

LEXICON

bit map - boot 471

bit map - Definition "''~~~~,,~~~""'"''~~~'~"
A bit map is a string of bits in which each bit has a symbolic, rather than numeric, value.

See Also
bit, byte, definitions
The C Programming Language, page 136

Notes
C permits the manipulation of bits within a byte through the use of bit-field routines. These
generate code rather than calls to routines. Bit fields are generally less efficient than masking
because they always generate masking and shifting.

block- Technical Information '''~'~''"'~'""''~''~''~~'~' A block is a mass of data that is read at one time. Blocks are different lengths under different
operating systems; COHERENT defines a block as being BSIZE bytes long.

Information is read in blocks from block-special devices, such as the hard disk or floppy disks. This
is done to increase the speed with which data are read from these devices; reading characters one at
a time, such as is done with character-special devices such as terminals or modems, would be too
slow.

See Also
technical information

~"~""''"'"~'""~~''""~~' Boot block for hard-disk partition/nine-sector diskette

Several different programs are used to load COHERENT from a floppy or hard disk into memory.
This process is called bootstrapping (from the old expression about pulling one's self up by one's
bootstraps) or booting for short. The program used depends upon whether one is loading
COHERENT from a hard-disk partition, from a 5.25-inch floppy disk, or from a 3.5-inch floppy disk.
All of these programs are installed onto your computer during normal installation.

mboot is the master boot program. This is code that resides in the first 446 bytes of the first sector
on the hard disk. Because this sector also contains the partition table for the hard disk. mboot is
normally written to the hard drive only during installation and only by the fdisk utility.

boot, boot.tha. and boot.tva are variations of the same program. boot occupies the first sector of
any bootable hard-drive partition. boot.tha occupies the first sector of a 5.25-inch, high-density
floppy disk. boot.tva occupies the first sector of a 3.5-lnch. high-density floppy disk.

boot is normally copied to the root partition automatically during installation by a command such
as:

/bin/dd if=/conf /boot of=/dev/atOa count=l

In another example, the following commands format and create a file system on a high-density.
5.25-inch floppy disk:

/etc/fdformat -v /dev/fhaO
/etc/mkfs /dev/fhaO 2400
/bin/cp /conf/boot.fha /dev/fhaO

When invoked, boot loads for the tertiary boot program tboot. This, in turn. searches the root
directory'/' for file autoboot, which is the COHERENT kernel. If it finds this kernel. boot loads and
invokes it. Otherwise, it gives the prompt?, and you must type the name of the operating-system
kernel to load (typically, "coherent"). If boot cannot find the requested kernel or if an error occurs.

LEXICON

472 boot.fha - booting

boot does not print an error message. but re-prompts with '?'.

Files
/cont/boot - Boot for AT partitions
/cont/boot.at- Boot for AT partitions (linked to /conf/boot)
/cont/boot.atx-AT master boot (linked to /cont/mboot)
/cont/boot.ma - Boot for single-density, nine-sector, 5.25-inch floppy disk
/cont/boot.fh.a- Boot for 15-sector, 5.25-inch floppy disk
/cont/boot.fqa- Boot for quad-density, nine-sector, 3.5-inch floppy disk
/cont/boot.fva- Boot for 18-sector, 3.5-inch floppy disk
/cont/mboot -AT master boot

See Also
device drivers, fdisk, mboot, mkfs, tboot

r.:.:.11ne•t'Mlfl•''t®-"'"''""'~""~~""'"~~'"""~
Boot block for floppy disk

To be bootable, a COHERENT file system must contain a boot block (either boot or boot.fha). In
addition, all hard disks must contain the master boot block mboot or an equivalent.

boot.fh.a is a boot block for a hard disk partition or a 15-sector floppy. It must be installed as the
first sector of the partition or diskette, as follows:

/etc/fdforrnat -a /dev/fhaO
/etc/badscan -v -o protol /dev/fhaO 2400
/etc/rnkfs /dev/fhaO protol
rm protol
cp /conf/boot.fha /dev/fhaO

boot.fh.a searches its root directory '/' for file autoboot. If it finds this kernel, boot.fh.a loads and
runs it. Otherwise, it gives the prompt?, to which the user must type the name of the operating­
system kernel to load (typically, coherent). If boot.fha cannot find the requested kernel or if an
error occurs, boot.fha repeats the prompt and the user must type another name.

Files
/cont/boot.fh.a - Partition or 15-sector 96tpi floppy boot block

See Also
badscan, boot, device drivers, fdisk, mboot, mkfs

r.:,1.1n,t·ll me1mt.11 • .fi!1~"""""""'"""''~~'"""''~
How booting works

Booting is the method by which COHERENT is loaded from a hard disk or floppy disk and set into
action. The term comes from the old expression about pulling one's self up by one's bootstraps.

This article discusses the events that take place while booting the COHERENT system. You do not
need to read this article to know how to boot COHERENT, as all booting details are handled by
COHERENT automatically. However. if you are interested in the details, or want to tailor the system
to your needs, it will help.

Two 1/0 devices are involved in booting. The first device is called the boot device; it contains the
program necessary to invoke the COHERENT system and start it running. The second device is
called the root device; it contains the root file system after the system is running. In most cases,
these two devices are the same physical device.

LEXICON

booting 473

Kernel Variables
Please note that the COHERENT 286 kernel references variables with a trailing underscore
character; for example, atpann_. The COHERENT 386 kernel, however, does not use a trailing
underscore; for example, atpann.

The following descriptions apply to both COHERENT 286 and COHERENT 386, but the notation will
be in the COHERENT-386 form.

Initial Startup
When you boot from a hard disk, your computer's BIOS loads the master boot from the first sector
of your hard disk into memory. The master boot then loads the secondary boot from the first sector
of your boot partition. When you boot from a floppy disk, however, the BIOS loads the secondary
boot directly.

This program, called the bootstrap or secondary boot, is very small (only 512 bytes), so it cannot do
very much. Therefore, its main purpose is to read in a larger, more complex program called the
tertiary boot, or /tboot. It is /tboot that actually performs the work of loading the COHERENT
system into memory.

If the secondary boot does not find a file called /tboot, it print a'?' to prompt for the boot image you
want it to load. This indicates a severe error because it means that the tertiary boot can not be
found.

If the secondary boot finds /tboot, it loads it into memory and lets it take over booting. The first
thing /tboot does is search for a file called /autoboot in the root directory of the device being
booted. If /tboot finds /autoboot, it first pauses for five seconds, so you can abort the process and
boot another kernel if you wish. If you do not abort booting within five seconds, /tboot then loads
/autoboot into memory and runs it. If. however, /tboot cannot find /autoboot, it prompts you to
type the name of the COHERENT image to boot, usually I coherent. You can type the commands dir
or Is if you do not remember the name of the image you wish to boot. Note that /autoboot is
usually a link to I coherent.

If you need to find the file name of the kernel you are now running (usually /coherent), use the
program fifo(), which is kept in library llbmisc. See the Lexicon entry Ubmisc for details.

After it loads the system image coherent from the root device, the system initializes all devices, as
well as starting the idle process and program /etc/init. The idle process uses any leftover computer
time.

init controls the operation of the system from this point on. It first executes the command /etc/brc
(i.e., "boot run commands"), which can run commands like fsck. brc can request a reboot, remain
in single-user mode, or enter multi-user mode automatically. init then calls the shell to handle
commands from the system console. The shell responds by prompting with#, and expects regular
commands. At this point, the system is in single-user mode, which means that no other users can
log in to the system. The shell is running in superuser mode and only the console's user is logged
in.

At this point. you can enter commands to the system in a normal fashion. One difference from
normal. multi-user operation is that the system is in single-user mode, to allow special processing
to take place before other users log in. Being in single-user mode gives you the opportunity to run
fsck to check the file system and perform other administrative tasks before other users log into the
system.

When administrative activities are finished, you should type <ctrl-D>. This terminates single-user
operation; init then opens the system to other users.

The file /etc/re contains shell commands that the system executes just before making the system
available to other users. This file typically includes commands to delete temporary files and mount

LEXICON

474 booting

standard devices. It also performs any installation-specific commands you require. As system
administrator, you maintain this file. You must be sure that it is properly updated and never
removed.

One command that must be included in /etc/re is /etc/update. which periodically calls sync() to
update buffered data to the disk.

init also maintains the file /etc/utmp. which notes users' login and logout.

Features of the Master Bootstrap
The COHERENT master bootstrap allows you to boot different operating systems from different
partitions of any hard drive. It is more powerful than similar programs of other operating systems,
and we strongly recommend that you use it. If you do not use the MWC bootstrap. you may have to
use floppy disks to boot up MS-DOS and COHERENT. If you have two hard drives and you are
placing COHERENT on the second drive, you must use the MWC bootstrap.

The bootstrap can be configured in three ways:

1. No active partition. With this configuration, you have the greatest degree of flexibility. When
you boot your system, the following prompt appears on the screen:

Select Partition 0-7

TWs means that you must press the number key that corresponds to the partition that holds
the root partition of the operating system you wish to boot. (For example. if you wish to boot
COHERENT and its root partition is on partition 2. then press the '2' key in response to tWs
prompt.) If you have one hard drive, only partitions 0 through 3 are relevant to you. The
bootstrap waits indefinitely until you tell it what to boot.

2. COHERENT is active partition. Under this configuration. the system will automatically boot
COHERENT unless you press the number key that represents the root partition of another
operating system (e.g .. MS-DOS) while the A-drive light is on.

3. MS-DOS (or another operating system) is active partition. Under this configuration, the system
automatically boots MS-DOS unless you hit the number key that represents the root partition
of another operating system (e.g .. COHERENT) while the A-drive light is on.

Under some hardware configurations, particularly faster 80386 machines, having an active partition
can cause difficulties when you try to boot a non-active partition. It often is difficult to press the
appropriate number key at the right time, and the right time itself can vary. For this reason, the
default setting of the master bootstrap is to have no active partition. If at any time you wish to
reconfigure the bootstrap, you need only to run the fdisk utility under COHERENT and access
option 1 (Change active partition) of the option menu. Make the desired change and then save the
updated partition table.

Files Used During Startup
The following files are used when the system is in single-user mode:

/etc/drvld

/etc/init

/etc/brc

/etc/checklist

/bin/sh

/bin/ksh

Load device drivers.

Initiate a process on each terminal line, call login when appropriate.

Shell commands for booting.

List of partitions for fsck to check.

Bourne shell.

Korn shell.

The following files are needed after the system has entered multi-user mode:

LEXICON

/bin/login

/etc/getty

/etc/logmsg

/etc/motd

/etc/mount.all

/etc/re

/etc/ttys

/etc/utmp

booting 475

This file holds the program that controls logging in.

This file holds the executable program that permits a user to log in on a port.

This file holds the text of the login prompt.

This file holds the message of the day.

Shell script to mount partitions.

This file holds a series of shell commands that coherent executes when it enters
multi-user startup.

This file is holds information about terminals. Its contents are read by getty to
ensure that it sets the port to the correct baud rate and terminal type.

This file holds information about who is logged in right now. It is read by the
command who.

Building a Bootable Floppy Disk
Building a bootable floppy disk for COHERENT requires a few more steps than are required to build
a bootable floppy for MS-DOS. The task is not particularly painful. it simply requires a little more
attention to detail.

The following details the steps required to build a version of COHERENT that can be booted off a
floppy disk.

I. Format the Floppy Disk
To begin, format the floppy disk with the command /etc/fdformat. After you format the
floppy disk, use the command /etc/mkfs command to write a blank file system onto it.

2. Write a Bootstrap to the Floppy Disk
To make the floppy disk bootable, you must copy a special program. or bootstrap, to the first
sector (or boot block) of the floppy disk. (This is the same program that is called the
secondary boot in the above sections.) The boot block is the first sector of the floppy disk
read when a computer boots. If a floppy disk is to be bootable, a set of instructions must be
present in the boot block that tell the system the name of the kernel - that is, the file on
the floppy disk to be loaded and executed.

To write the bootstrap to the floppy disk, you must copy it to the device that the floppy disk
is in. This ensures that the bootstrap is copied to the first sector. or boot block, of the
floppy disk. For example, to copy the bootstrap for a 1.2-megabyte floppy disk in floppy
drive 0 (or A). type the command:

cp /conf/boot.fha /dev/fhaO

To copy the bootstrap for a 1.44-megabyte floppy disk to floppy drive 0, type the command:

cp /conf/boot.fva /dev/fvaO

After you have copied the boot sector, you must mount the floppy device and copy /tboot to
it. To mount a 1.44-megabyte floppy disk to floppy drive 0, type the command:

/etc/mount /dev/fvaO /fO

Copy /tboot with the following command:

cp /tboot /fO

Warning: Never mount the floppy disk before you copy the bootstrap to it!

See the Lexicon article on Qoppy disks for the table of floppy disk devices to use with the

LEXICON

476 booting

above commands.

For COHERENT. the bootstrap to be written to the floppy disk tell your computer to look for
/tboot. If this file does not exist, the prompt

AT boot ?

appears; in response, you must type the name of the kernel for booting to continue. Note
that you may not be able to load a kernel bigger than 128 kilobytes in this case.

Note that unlike the routine of booting from the hard-disk drive, booting from the floppy­
disk drive involves only three steps. not four: the master bootstrap program is skipped, but
everything else is the same.

The directory /conf contains the bootstraps necessary for all sizes of floppy disks. for hard­
drive partitions. and for the master-boot block of a hard drive. Choose the proper bootstrap
for your disk and copy it to the floppy disk.

3. Copy the Necessary Files
Once the bootstrap is properly written to the floppy disk, it is now time to mount the floppy
disk and copy the essential files to it.

The following files must be present on the bootable floppy disk, in the directories indicated:

/tboot
/coherent
/bin/sh
/bin/sync

/etc/init
/etc/brc
/etc/drvld .all
/conf/kbd/*

/etc/drvld
/drv/*

You must copy directory /drv to the boot floppy only if you wish to use loadable drivers
from the boot floppy. The command /etc/drvld must be present only if you will use
loadable drivers from the boot floppy. Directory /dev must also be present on the boot
floppy. Use the command cpdir to copy it from the hard drive - not the command cp.

Note that the files /etc/brc and /etc/drvld.all are scripts that you must modify to suit
your needs. The file /etc/brc is a key file in the booting process. so be prepared to modify
its contents. The significance of this will be reviewed in depth in the next section.

Warning: Be sure to execute the command umount to unmount the floppy-disk device after
you have copied all files to it!

4. The Boot Sequence, Modifications To Make the Disk Work
When the computer system powers up and accesses the floppy disk. it reads the boot sector
of the disk. which in turn looks for the file /tboot and executes it. /tboot looks for the
kernel named /autoboot, reads it, and executes it. If /tboot cannot find /autoboot, it
prompts you to type the name of the kernel to boot.

The kernel loads and invokes /etc/init which, in part. looks for and executes the
statements in /etc/brc, which. in turn. typically loads loadable drivers and runs /etc/fsck
to check the file systems. If you wish to run fsck on the floppy disk, you must copy it from
the hard drive.

What is truly important is the exit status of /etc/brc. If its exit status is not zero, the
system remains in single-user mode. If its exit status is zero, the system attempts to enter
multiuser mode.

The above-listed files are the bare minimum for a single-user floppy disk. To build a floppy
disk with the minimum files needed, your /etc/brc file should look like this:

LEXICON

/etc/drvld .all
exit 1

boottime 477

This forces an exit status of one and causes COHERENT to spawn a single-user shell,
/bin/sh.

From the shell prompt, you can do whatever you wish, but you are limited to the commands
and functions copied to the floppy disk.

/etc/brc is not the only file that may need modification. The kernel (/coherent or
/autoboot) must have the values rootdev and pipedev patched for the floppy disk's major
and minor device numbers. This patching can be done with the commands /bin/db or
I conf /patch.

To patch the kernel on the floppy disk mounted on /fO for a 5.25-inch. high-density disk as
the root and pipe device, type:

/conf/patch /fO/coherent rootdev=makedev\(4,14\)
/conf/patch /fO/coherent pipedev=makedev\(4,14\)

For a 3.5-inch, high-density disk, type:

/conf/patch /fO/coherent rootdev=makedev\(4,15\)
/conf/patch /fO/coherent pipedev=makedev\(4,15\)

Uses of a Bootable Floppy Disk
A bootable floppy disk can be a lifesaver should something occur to corrupt the COHERENT file
system on the hard drive. A properly prepared floppy can be used to recover a damaged file system
by running /etc/fsck. You can also use it to copy files from the hard drive should you decide to re­
install COHERENT on the hard drive.

Multiuser-mode floppy disks can also be built for the fun of seeing such a system run from a floppy
disk. The capacity of such a system is limited, of course, but it can be done.

See Also
boot, libmisc, technical information, tboot

boottime - System Maintenance .,~~~~~~~~
File that holds time system was last booted

/etc/boottime is an empty file maintained by the init process and the date command. The
modification time of boottime, as displayed by the command ls -1, is the time that the system was
last booted. You can read the time shown by boottime with ls -1. or with the system calls stat or
fstat.

Files
/etc/boottime

See Also
date, init, mount, system maintenance

Notes
Commands that depend upon /etc/boottime may malfunction if the system's date is not set
correctly. For instance, the mount command depends on the relative modification times of
/etc/boottime and /etc/mtab to detect whether the mount table has been invalidated by a system
boot. If the date is set sufficiently far into the past, the mount table may appear to be valid when in
fact it is not.

LEXICON

478 brc - brkO

~taA••HMMm@n--------------------------­
Perform maintenance chores, single-user mode
/etc/brc

The shell script /etc/brc is executed by the init process when the COHERENT system enters
single-user mode. The commands in brc do such things as set system clock, set the local time zone,
and call fsck to scan and (if necessary) fix all file systems on your machine.

See Also
init, re, system maintenance

~llllllllll!lllllllllllll!IS!!IS!!IS!!!S!!IS!!IS!!IS!ll!lllll!IS!M!IS!ll!lllll!IS!!IS!!IS!!IS!~
Exit from shell construct
break[n I

The command break is used with the shell to control how it performs loops. It is analogous to the
break keyword in C.

When it is used without an argument, break forces the shell to exit from the innermost current for,
until, or while loop. If used with an argument, break exits from n levels of for, until, or while
loops.

The shell executes break directly.

See Also
commands, continue, for, ksh, sh, until, while

..... a..
Exit from loop or switch statement

break is a C statement that causes an immediate exit from a switch sequence, or from a while, for,
or do loop.

See Also
Ckeywords

mJl§®i§uH!I
Change size of data area
brk(addr)
char•addr;

The break is the lowest address above the data area of a process. brkO sets the break to the given
addr, possibly rounding up by some machine-dependent factor. It returns zero on success. -1 on
failure.

See Also
end, exec, malloc(), sbrk(), system calls

Diagnostics
brk() sets errno to ENOMEM if the request fails.

LEXICON

t.}!fft&m•§@F!iillifii!·J.llnit41
Search an array
#include <stdllb.h>
char 41>search(key, array, number, size, comparison)
char •key, •array;
size t number, size;
Int c•comparlson)();

bsearchO 479

bsearch() searches a sorted array for a gtven item. Item points to the object sought. array points to
the base of the array; it has number elements, each of which is size bytes long. Its elements must
be sorted into ascending order before it is searched by bsearch().

comparison points to the function that compares array elements. comparison must return zero if its
arguments match, a number greater than zero if the element pointed to by arg 1 is greater than the
element pointed to by arg2, and a number less than zero if the element pointed to by argl is less
than the element pointed to by arg2.

bsearch() returns a pointer to the array element that matches Item. If no element matches item, then
bsearch() returns NULL. If more than one element within array matches Item, which element is
matched is unspecified.

Example
This example uses bsearch to translate English into "bureaucrat-ese".

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct syntab {
char *english, *bureaucratic;

} cdtab[J = {
/* The left column is in alphabetical order */

"affect",
"after",
"broke",
"building",
"call",
"do",

"false",
"finish",
"first",
"full",
"help",

"impact",
"subsequent to",
"revenue shortfall",
"physical facility",
"refer to as",
"implement",

"inoperative",
"finalize",
"initial",
"in-depth",
"facilitate",

LEXICON

480 bsearchO

};

int

11 idiot 11 I

"kill",
H lie" f

"order",
"talk",
"then",
11 use 11 ,

"elected representative",
"terminate with extreme prejudice",
"inoperative statement",
"prioritize",
"interpersonal communication",
"at that point in time",
"utilize"

comparator(key, item)
char *key;
struct syntab *item;
{

return(strcmp(key, item->english));
}

main()
{

struct syntab *ans;
char buf[BO];

for (;;) {
printf("Enter an English word:");
fflush(stdout);

if(gets(buf) 11 !strcmp(buf, "quit")
break;

NULL)

if((ans = bsearch(buf, (char *)cdtab,
sizeof(cdtab)/ sizeof(struct syntab),
sizeof(struct syntab),

}
}

See Also

else

comparator)) ==NULL)
printf("%s not found\n");

printf("Don't say \"%s\"; say \"%s\"!\n",
ans->english, ans->bureaucratic);

general functions, qsort(), stdlib.h

Notes
The name bsearch implies that this function performs a binary search. A binary search looks at the
midpoint of the array, and compares it with the element being sought. If that element matches,
then the work is done. If it does not, then bsearch checks the midpoint of either the upper half of
the array or of the lower half, depending upon whether the midpoint of the array is larger or smaller
than the item being sought. bsearch bisects smaller and smaller regions of the array until it either
finds a match or can bisect no further.

It is important that the input array be sorted, or bsearch will not function correctly.

LEXICON

m!Dll@t·•i!I
Buffer header
#include <sys/buf.h>

buf.h defines the structure used to hold buffers.

See Also
header mes

buf.h - buffer 481

~~·lf1l·Ei01!Dlll'~liD''l-~11~1111111111~~~llllllllilllllllllil~~llllllllilllllllllilllllllllil~llllllllilllllllllil~llllllllilllllllllilllllllllilllllllllil~llllllllilllllllllilllllllllilllll!llll
A buJler is a portion of memory set aside to hold data read from or to be written to another process
or device. Often, although not always, this involves setting aside a portion of the arena with malloc
or its related functions.

Buffering. and problems therewith, are encountered most often when using the standard input and
output (STDIO) routines. Many operating systems (including COHERENT) automatically place data
from a peripheral device into a buffer. Buffers normally can be cleared with mush, by pressing the
carriage return key on routines that perform input, or by sending a newline character on routines
that perform output. The function fclose, which closes a file stream, flushes all buffers associated
with that stream. exit calls fclose.

Combining unbuffered and buffered 1/0 functions on the same file or device within one program will
produce results that are at best unpredictable.

Example
The following example demonstrates what does and does not happen when you use mush with the
output buffer.

#include <stdio.h>
main()
{

}

extern char *malloc();
char *buffer;

/*use malloc() to create a 120-char buffer*/
if ((buffer= malloc(120)) ==NULL) {

}

/* if malloc() fails, bail out */
fprintf (stderr, "malloc failed\n");
exit(l);

printf ("Type your name: ");
fflush(stdout);
gets (buffer) ;
printf("Your name is %s\n", buffer);

See Also
arena, array, close, definitions, exit, mush, malloc, STDIO

LEXICON

482 build - byte ordering

build - Command -._-.._~"'~~~~'"'"''~~~ M&"-"'-''''''"''"-~"a
Install COHERENT onto a hard disk
/etc/build

build installs COHERENT onto your hard disk. COHERENT runs /etc/build to install itself onto
your hard disk. After installation, you should never have an occasion to run build.

See Also
commands

~'"'~"''~~~'~''~'""~'""~'~ @

Execute a command as a built-in command
builtin command [arg ... I

The command ksh is used by the Korn shell ksh to establish command as a built-in command.

See Also
commands, ksh

~'~"'~~..._~~~~"'''~""''""'~..._~,"W
A byte is a group of bits that encodes a character or a small-integer quantity. A byte, like a dollar,
consists of eight bits.

The ANSI Standard defines the data type char as being equal to one byte. It defines all other data
types as multiples of char.

See Also
bit, char, data formats, definitions, nybble

byte ordering- Technical information
Machine-dependent ordering of bytes

Byte ordering is the order in which a given machine stores successive bytes of a multibyte data
item. Different machines order bytes differently.

The following example displays a few simple examples of byte ordering:

main ()
{

}

union
{

} u;

char b[4];
int i [2] ;
long l;

u.l = Ox12345678L;

printf("%x %x %x %x\n",
u.b[O], u.b[l], u.b[2], u.b[3]);

printf("%x %x\n", u.i[O], u.i[l]);
printf("%lx\n", u.l);

When run on "big-endian" machines, such as the M68000 or the Z8000, the program gives the
following results:

LEXICON

byte ordering 483

12 34 56 78
1234 5678
12345678

As you can see, the order of bytes and words from low to high memory is the same as is represented
on the screen.

However, when this program is run on "little-endian" machines, such as the PDP-1 l. you see these
results:

34 12 78 56
1234 5678
12345678

As you can see, the PDP-11 inverts the order of bytes within words in memory.

Finally, when the program is run on the i8086 you see these results:

78 56 34 12
5678 1234
12345678

The i8086 inverts both words and long words.

See Also
C language, canon.h, data formats, technical information

LEXICON

484 c- cabsO

..~,~~"-~----------~~~""'~'""' ~"''~~ Print multi-column output
c [-IN I [-wN I [-012 I

c reads lines from the standard input and writes them in columns on the standard output. The
longest input line and the width of the page determine how many columns will fit across the page.

c recognizes the following options:

-IN Set the length of the page to N lines. c columnizes its output by pages when this option is
used with mode 1 or mode 2.

-wN Set the width of the page to N characters. The default is 80.

-0 Multi-column mode 0. Order the fields horizontally across the page.

-1 Multi-column mode 1 (default mode). Order the fields vertically down each column; the last
column may be short.

-2 Multi-column mode 2. Order the fields similarly to mode I. but place blank fields in the
last output line rather than the last column.

Options may also be given in the environmental variable C, separated by white space. Command
line options override options in the environment. For example,

export C="-156 -w72 -2"
c -wBO <filel

has the same effect as

c -156 -w72 -2 -wso <f ilel

This command sets the page width to 80 rather than to 72.

See Also
commands, export, pr

Diagnostics
c prints "out of memory" and returns an exit status of one if it cannot allocate enough memory to
process its input.

cabsO - Mathematics Function (libm)
Complex absolute value function
#include <math.h>
double cabs(z) struct {doubler, I;} z;

LEXICON

cal - calendar 485

cabs() computes the absolute value. or modulus. of its complex argument z. The absolute value of a
complex number is the length of the hypotenuse of a right triangle whose sides are given by the real
part r and the imaginary part I. The result is the square root of the sum of the squares of the parts.

Example
For an example of this function. see the entry for acos().

See Also
hypot(), mathematics library

Blfi•IU!uijhf.!
Print a calendar
cal [month I [year I

cal prints a calendar for the specified year (by default, the current year), or for the given month if
one is specified. If neither is specified, a calendar of the current month is printed. year must be
between 1 and 9999. month may be either the month name (lower case, spelled out or first three
letters) or a number between 1 and 12.

For example. try:

cal september 1752

See Also
commands

Notes
cal assumes that the Gregorian calendar was adopted on September 3, 1752, which is the date of its
adoption throughout the British empire.

@.t·ki •+1·1,.1 . .em.• ~'"~'"""~ ... ~~""~'"'""""'''"'''''''''~
Reminder service
calendar [-a] [-:fflle] ••• [-d[date]] [-w[date]] [-m[month]]

calendar is the COHERENT system's "reminder service". It reads a calendar file, which should
contain information organized by date; if an event is scheduled to happen today or tomorrow,
calendar prints the entry on the standard output. Thus. you can use calendar to remind you of
both one-time events (such as appointments) and yearly events (such as anniversaries).

calendar recognizes the following command-line options:

-a

-:fflle

-d[date]

-w[date]

-m[month)

Search the calendars of all users and send mail. Default is to search only your
calendar.

Search each "file" in order given. Default is $HOME/ .calendar.

Print all entries for "date". Default date is today.

Print all entries for the week beginning with "date". Default is to print entries for
today and tomorrow, with "tomorrow" encompassing the following Monday should
"today" be a Friday.

Print entries for the given "month".

The following gives an example of a calendar file. Note that calendar understands different formats
of dates:

LEXICON

486 calling conventions

Apr 16
7/6
Sep 26
Jun 30
10/4
Jul 31
Mar 16

Dave's birthday
Dad's birthday
Mom's birthday
Barry's birthday
Marianne's birthday
Anniversary!
Pot luck luncheon

Each user can run calendar by embedding the command

calendar

in his .profile.

If you wish, you can run calendar automatically for all users on your system, by inserting it into file
/usr/lib/crontab. In this case, calendar should be used with its -a option, to force calendar to
search every user's $HOME directory for a .calendar file and mail the appointments it finds to that
user.

See Also
commands

Notes
calendar's notion of tomorrow understands weekends but not holidays. Thus, if you invoke
calendar on a Friday, it returns the events for that day and the following Saturday, Sunday, and
Monday. If Monday is a holiday, however, you will not receive appointments for Tuesday.

fftillllU·«i·M@mt.t.f llil1Mlmt.!iuij!!!.J,t - ~~~~~
The following presents the calling conventions for COHERENT. Note that COHERENT 286 and
COHERENT 386 use different calling conventions, because of differences in the microprocessors for
which they were implemented.

COHERENT 386 Calling Conventions
The calling conventions of C take into account machine architecture and the fact that the number of
arguments passed to a function may vary. as in the functions printf() and scant().

For example, consider the following C program, called foo.c:

short a;
long b;
char c;

foo()

{

}
example(a, b, c);

Compiling this program with the command

cc -s foo.c

generates the assembly-language code (with added comments):

.comm

.comm

.comm

LEXICON

a,
b,
c,

2

4
1

I a, b, and c are commons in the .bss

calling conventions 487

foo1
push
movl

movsxb
push
push
movsx
push
call
addl

leave
ret

%ebp
%ebp, %esp

%eax, c
%eax
b
%eax, a
%eax
example
%esp, $12

Note the following points:

I prologue code for foo

I move c to %eax with sign extend
I pass c
I pass b
I move a to %eax with sign extend
I pass a

I reset the stack

I epilog code for foo

Parameters are pushed in reverse order. You should not depend on this feature. as the ANSI
standard says that parameters may be calculated and pushed in any order.

The stack is reset by the caller. not the callee. Only the caller knows the number of parameters
pushed.

All parameters become int or double when passed under Kernighan & Ritchie C. This changes
under ANSI C.

Now consider the module example.c, which gives the receiving end:

double
example(x, y, z)
short x;
long y;
char z;
{

int tmp;

tmp = x * y;
return (tmp + z);

}

When compiled with the command

cc -s example.c
Generates the code:

example1
enter

movl
imull
movl
addl
call

$4, $0

%eax, 12(%ebp)
8(%ebp)
-4 (%ebp) , %eax
%eax, 16 (%ebp)
dicvt

I 4 bytes of local variables

I x * y
I 8 == 4 + sizeof(int)
I save into tmp
I tmp + z
I %eax into double

LEXICON

488 calling conventions

leave
ret

I leave with result in %eax:%edx

After the prologue code, the stack always looks like

========================= ~ High addresses
I passed parameters
========================= 4(%ebp)
I return address I
========================= ~ %ebp
I saved %ebp I
========================= -4(%ebp)
I local variables

I other saved registers
I may include %esi,
I %edi and %ebx
========================= ~ %esp

Notice that parameters start at

[4 + first parm size] (%ebp)

and go to higher addresses, whereas local variables start at

-4(%ebp)

and go to lower addresses. Therefore, if you have a local array and overwrite it in the forward
direction, you clobber your caller's %ebp; if you overwrite it in the backward direction, you clobber
your caller's register variables (although if the caller has no register variable, it's harmless).

On the 80386, the stack starts at Ox80000000 and grows down being expanded by the system as it
is needed. Reasonable programs should never have stack-overflow problems as they did under
COHERENT 286.

COHERENT 286 Calling Conventions
The design of the calling conventions had to take into account the fact that C does not require that
the number of arguments passed to a function be the same as the number of arguments specified in
the function's declaration. Routines with a variable number of arguments are not uncommon; for
example, printf and scanf can take a variable number of arguments. Another consideration was the
availability of register variables.

Therefore, COHERENT uses the following calling sequence. The function arguments are pushed
onto the stack from the first, or rightmost, through the last, or leftmost. longs are pushed high-half
first; this makes the word order compatible with the dd instruction. The function is then called with
a near call. An add instruction after the call removes the arguments from the stack.

For example, the function call

int a;
long b;
char c;

LEXICON

calling conventions 489

foo()
{

}
example(a, b, c);

generates the code

mo vb al,c
cbw
push ax
push b+2
push b
push a
call example_
add sp,8

Note that an underbar character ·_· has been appended to the function name. This serves two
purposes. First, it makes it harder to accidentally call routines written in other languages. Second,
it means that two routines with the same name can be called from C and another language in
identical fashions.

The parameters and local variables in the called function are referenced as offsets from the hp
register. The arguments begin at offset 8 and continue toward higher addresses, whereas the local
variables begin at offset -2 and continue toward lower addresses.

The sp register points the local variable with the lowest address. Thus, when example_ is reached
in the above model. the stack frame resembles the following:

..___ High
I c (widened to a word) I
1=======================1
I high half of b I
1=======================1
I low half of b I
l=======================I
I a I

..___ Low

Functions return ints in the ax register. longs in the dx:ax register pair, pointers in the ax register
and doubles in fpac_.

The following program

example(a, b, c)
int a, b, c;
{

return (a* b - c);
}

when compiled with the -VASM option, produces the following assembly-language code:

.shri

.globl example_

LEXICON

490 calling conventions

example_1
push si
push di
push bp
mov bp, sp
mov ax, lO(bp)
imul 8(bp)
sub ax, 12(bp)
pop bp
pop di
pop si
ret

The runtime startup initializes the registers cs, ds, es. and ss. and the segment registers remain
unchanged. Other registers may be overwritten.

COHERENT pushes function arguments as follows.

char Widened to int, then pushed
int Pushed in machine word order
long
float
double
struct
union

Pushed high order word, then low-order word
Widened to double. then pushed
Pushed high order. then low order
Pushed in memory order
Pushed in memory order

Functions return values as follows:

char In al
int In ax
long In dx:ax
float Same as double
double In fpac_
struct Pointer in ax
union Pointer in ax
pointer In ax

A function that returns a struct or union actually returns a pointer; the code generated for the
function call block-moves the result to its destination. Functions that return a float or double
return it in the global double fpac_.

For example, consider the call

example(i, 1, c, cp);

where i is an int, 1 is a long, c is a char, cp is a pointer to a char, and example declares two
automatic ints. After execution of the call and the prologue of example. the stack contains the
following 11 words:

LEXICON

-=================== ~ High
cp I

==================!
c I

==================!
high word of 1 I

==================!
low word of 1 I

==================!
i I

==================!
return address I

==================!
saved SI I

==================!
saved DI I

==================!
saved BP I

==================!
space for auto 1 I

==================!
space for auto 2 I

==================== ~ Low

The following example performs a simple function call:

main()
{

example(!, 2); /*call sample routine*/
}

example(pl, p2)
{

int a, b• ,
a= 3• ,
b = 4· ,

}

calling conventions 491

When the function example is about to return. the stack appears as follows:

LEXICON

492 ca/loco

I 2 I
1================1
I 1 I
1================1
I Return Address I
1================1
I main's SI I
1================1
I main's DI I
1================1
I main's BP I
1================1
I 3 I
1================1
I 4 I

See Also
C language, technical lnfonnation

lmtllllffii§ijl'il!IA!t.Ji'
ocate dynamic memory

..- High

..- parm 2

..- parm 1

.-a

._SP b

..- Low

char •calloc(count, size) unsigned count, size;

lO(bp)

8(bp)

6(bp)

4(bp)

2(bp)

(bp)

-2(bp)

-4(bp)

calloc() is one of a set of routines that helps manage a program's arena. calloc() calls malloc() to
obtain a block large enough to contain count items of size bytes each; it then initializes the block to
zeroes. When this memory is no longer needed, you can return it to the free pool by using the
function free().

calloc() returns the address of the chunk of memory it has allocated, or NULL if it could not allocate
memory.

Example
This example attempts to calloc() a small portion of memory; it then reallocates it to demonstrate
realloc().

#include <stdio.h>

main()
{

register char *ptr, *ptr2;
extern char *calloc(), *realloc();
unsigned count, size;

count = 4;
size= sizeof(char *);

LEXICON

candaddrO - caninoO 493

}

if ((ptr = calloc(count, size)) !=NULL)
printf("%u blocks of size %u calloced\n",

count, size);
else

printf("Insuff. memory for %u blocks of size %u\n",
count, size);

if ((ptr2 = realloc(ptr,(count*size) + 1)) !=NULL)
printf("l block of size %u realloced\n",

(count*size)+l);

See Also
alloca(), arena, free(), general functions, malloc(), memok(), realloc(), setbuf()

Notes
The function alloca() (which is available with COHERENT 386) allocates space on the stack. The
space so allocated does not need to be freed when the function that allocated the space exits.

candaddrO - General Function ~~'~'~~~~~~~~~,,~,
Convert a daddr t to canonical format
#include <canon.h>
#include <sys/types.h>
void candaddr(s)
daddr_t s;

candaddr() performs canonical conversion upon a daddr_t. It returns nothing, and it is its own
inverse. For details on canonical conversion, see canon.h.

Example
For an example of this function, see canon.h.

See Also
canon.h, general functions

candevO - General Function ~'~"~''~~~~ ;ne •
Convert a dev t to canonical format
#include <caiion.h>
#include <sys/types.h>
void candev(s)
dev_ts;

candev() performs canonical conversion upon a dev_t. It returns nothing. and it is its own inverse.
For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

®'i"i®ll§1t@ij!ljil@l!1]i1~,~,~~~~~~~"~'~'~~,~~''"'Wll
Convert an ino t to canonical format
#include <canon.h>
#include <sys/types.h>
void canino(s)
ino_t s;

LEXICON

494 canintO - canon.h

canino() performs canonical conversion upon a ino_t. It returns nothing. and it is its own inverse.
For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

(ili'itnm•W@fll@ii@IM ~~'~""~~~~~~~ ,,'W ,,~
Convert an int to canonical format
#include <Canon.h>
#include <sys/types.h>
void canint(s)
ints;

canint() performs canonical conversion upon a int. It returns nothing, and it is its own inverse. For
more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

f:lUi@rr•Ullffi!l§f!lijl!,Mlrm'I.,,~~~~""'"~'"''~""''''"'''"~
Convert a long to canonical format
#include <canon.h>
#include <sys/types.h>
void canlong(s)
longs:

canlong() performs canonical conversion upon a long. It returns nothing. and it is its own inverse.
For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

canon.h - Header file
~'''"'~ '"~"'''"'~""'~~'"'' ... Portable layout of binary data

#include <canon.h>
#include <sys/ types.h>

The layout of binary data varies among machines. For example, the byte order of a 16-bit word on
the PDP-11 is low-byte.high-byte, whereas on the Z8000 it is high-byte.low-byte.

To ensure that file systems can be ported among machines with differing byte orders, COHERENT
uses a canonical layout of binary data. (The word "canonical" in this context means, "of or
conforming to a general rule".) Data not in primary memory (e.g .. on disk or communications line)
must conform to COHERENT's canonical layout.

To insulate programs from the details of the difference between the 'natural' and canonical layouts.
the COHERENT system provides a set of procedures to convert from one layout to another. They are
as follows:

LEXICON

canshort() .
canint() . ..
canlong() . .
canvadd.r() .
cansize() ..
candadd.r() .
cantime() . .
candev() ..
canino() ..

. Convert a short

. Convert an int

. Convert a long

. Convert vadd.r_t

. Convert fsize_t

. Convert dadd.r_t

. Convert time_t

. Convert dev _t

. Convert ino_t

canon.h 495

Each procedure takes an lvalue of the indicated type, converts it in place, and returns nothing. The
argument should not have side-effects. Each procedure is its own inverse. Several procedures are
designed for elements of file systems.

The file formats that contain canonical binary data and the commands that deal with them are as
follows:

Format
ar.h
dir.h
l.out.h

Commands
ar, Id, ranlib
ls, tar
as, cc, db, Id, nm, size, strip

Any program that manipulates binary data within files must perform canonical conversion
immediately upon input and immediately before output. The following fragment of the source code
to the command df should be instructive:

#include <stdio.h>
#include <canon.h>
#include <filsys.h>
char superb[BSIZE];

df(fs)
char *fs;
{

register struct filsys *sbp
FILE *fp;
daddr t nfree;

if ((fp = fopen(fs, "r"))
perror(fs);
return (1);

}

fseek(fp, (long)BSIZE, O);

&superb;

NULL) {

if (fread(superb, sizeof superb, 1, fp) != 1) {
fprintf(stderr, "%s: read error\n", fs);
return (1);

}

LEXICON

496 canshortO - cansizeO

}

Files

candaddr(sbp->s_tfree);
candaddr(sbp->s_fsize);
canshort(sbp->s_isize);
nfree = sbp->s_tfree;

if (nfree > sbp->s_fsize-sbp->s_isize / / nfree < 0) {
fprintf(stderr, "%s: bad free count\n", fs);
return (1);

}

printf("%s: %ld\n", fs, nfree);
fclose(fp);
return (O);

<canon.h>

See Also
ar.h, byte ordering, candaddr(), candev(), canino(), canint(), canlong(), canshort(), cansize(),
cantime(), canvaddr(), dir.h, l.out.h, header files

®"H®n•fu@iiiH!iiG![.]•' ~"'~ ~''"~ ~"''"'~'~~~'''
Convert a short to canonical format
#include <canon.h>
#include <sys/ types.h>
void canshort(s)
shorts;

canshort() performs canonical conversion upon a short. It returns nothing, and it is its own inverse.
For more information on canonical conversion, see canon.h.

Example
For an example of this function, see canon.h.

See Also
canon.h, general fwictions

ff@i@ll'ffi•@EiiiiliG!•,"'"' ~"'~"'~' ._~~~~,,~~"""
Convert an fsize t to canonical format
#include <canon.h>
#include <sys/types.h>
void cansize(s)
size_t s;

cansize() performs canonical conversion upon a size_t. It returns nothing, and it is its own inverse.
For more information on canonical conversion, see canon.h.

See Also
canon.h, general fwictions

LEXICON

Gilcliih@llffi@Flli'bfi!M
Convert a time t to canonical format
#include <canon.h>
#include <sys/types.h>
void cantime(s)
time_ts;

cantimeO - case 497

cantime() performs canonical conversion upon a time_t. It returns nothing. and it is its own
inverse. For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

canvaddrO - General Function -.,'81 IM!i.'81ns~

Convert a vaddr t to canonical format
#include <canon.h>
#include <sys/types.h>
void canvaddr(s)
vaddr_ts;

canvaddr() performs canonical conversion upon a vaddr_t. It returns nothing. and it is its own
inverse. For more information on canonical conversion, see canon.h.

See Also
canon.h, general functions

Q/.1(.}ttfl·lli·iulu6!.!·~'~'81e-••••l\l'll~~~---·~--------­
convert termcap data to terminfo form
captoinfo Ifllename)

The command captoinfo converts a file of terminal information that is in the termcap format into
terminfo source format.

captoinfo reads filename; if no file is named on the command line, it reads the standard input. It
writes its product to the standard output.

The input to captoinfo must be in correct termcap format. captoinfo complains about all
constructs that it cannot interpret.

See Also
commands, termcap, terminfo, tic

Notes
The original code for captoinfo was written by Robert Viduya of the Georgia Institute of Technology.
and was adapted for COHERENT by Mark Williams Company.

terminfo and its related programs are used only under COHERENT 386.

-,. IM!i..,,._,.,,._,.. ~""""""""'~'''.._.,,._.,,._,.,,._~,~~-.- -
Execute commands conditionally according to pattern
case token in (pattern [I pattern) ...) sequence ;;) ... esac

case is a construct that used by the shell. It tells the shell to execute commands conditionally,
according to a pattern. It tests the given token successively against each pattern. in the order given.
It then executes the commands in the sequence corresponding to the first matching pattern.
Optional · 1 • clauses specify additional patterns corresponding to a single sequence. If no pattern

LEXICON

498 case - cast

matches the token, the case construct executes no commands.

Each pattern can include text characters (which match themselves), special characters '?' (which
matches any character except newline) and '*' (which matches any sequence of non-newline
characters), and character classes enclosed in brackets'()'; ranges of characters within a class may
be separated by·-·. In particular, the last pattern in a case construct is often '*', which will match
any token.

The shell executes case directly.

Example
The following example prints a string in response to a command-line option:

case $1 in

esac

See Also

FOO) echo "This is option FOO";;
BAR) echo "This is option BAR";;
BAZ) echo "This is option BAZ" ; ;
*) echo "An asterisk marks the default option"; ;

commands, ksh, sh

~~~,~~~'~'~'~~~~~~~''' 
Introduce entry in switch statement 

The C keyword case is a label within a switch statement. For example: 

while ((int= getchar()) != EOF) 
switch ( foo) { 
case , q, : 

case 'Q': 
exit(O); 

case , , : 
n++; 

default: 
break; 

} 

case labels each of the three possibilities recognized by the switch statement: a space, 'q', and 'Q'. 
The statements that follow a case statement behave as if they were enclosed within braces. 

Note that a case statement is simply a label: it sets a point to which the switch statement jumps, 
and execution continues from that point. Once a switch statement jumps to the point marked by a 
given case label. execution continues until an exit, break, or return is read, or the closing brace of 
the switch statement is encountered. 

See Also 
break, C keywords, switch 

~'""~~~~~~~~~,,~~~~~""~~~~'~'''''~~~,,.. 
The cast operation "coerces" a variable from one data type to another. 

There are two reasons to cast a variable. The first is to convert a variable's data into a form 
acceptable to a given function. For example, the function hypot takes two doubles. If the variables 
leg_x and leg_y are floats. the rules of C require that they be cast automatically to double. If the 

LEXICON 



cat- cc 499 

compiler did not do not do this, hypot would grab a double's worth of memory: the four bytes of 
your float, plus four bytes of whatever happens to be sitting on the stack. The leads to results that 
are less than totally accurate. 

The other reason to cast a variable is when you cast one type of pointer to another. For example, 

char *foo; 
int *bar; 
bar = (int *)foo; 

Although foo and bar are of the same length, you would cast foo in this instance to stop the C 
compiler from complaining about a type mismatch. 

See Also 
data formats, data types, definitions 

cat copies eachjlle arguments to the standard output. A ·-· tells cat to read the standard input. If 
nojlle is specified, cat reads the standard input. 

The -u option makes the output unbuffered. Otherwise, cat buffers the output in units of the 
machine's disk block size (e.g., 512 bytes). 

See Also 
commands 

Notes 
If you redirect cat's the output to one of its input files, it will loop forever, reading from the file the 
text that it has just written into it: in effect, cat will chase its own tail endlessly. 

ffl@111t@(,] ll•Affiti!!.111 •"'~,,~~""'''''"""''~~~~ 
Latin (sort oO: "Let the user beware." 

See Also 
definitions ...... '"~"~~-. .. ,,,,~ .. --~'"'"'''~'~~~~~~ 
C compiler 
cc [complier options]jlle .... [linker options] 

cc is the program that compiles C programs. It guides files of source and object code through each 
phase of compilation and linking. cc has many options to assist in the compilation of C programs; 
in essence, however, all you need to do to produce an executable file from your C program is type cc 
followed by the name of the file or files that hold your program. cc checks whether the file names 
you give it are reasonable, selects the right phase for each file, and performs other tasks that ease 
the compilation of your programs. 

How cc Works 
cc normally works as follows: 

If a file ends in .c, cc assumes that it contains C code, and tries to compile it. Under 
COHERENT286, this involves invoking the phases of the compiler, each in turn: cpp, ccO, eel, 
and cc2. Each compiler phase writes it output to a temporary. which cc then passes to the 
subsequent phase. cc ensures that all temporary files are deleted properly after they are used. 
Note that with COHERENT 286, you can speed compilation by making sure that your /tmp 

LEXICON 



500 cc 

directory is mounted on a RAM disk. See the Lexicon entry ram for details. 

Under COHERENT 386, the compiler is one large executable program. cc invokes it with the 
name of your source file. 

In either case, the result is a relocatable object module with the suffix .o. 

If the file has the suffix .s, cc assumes that it is a file of assembly language. and invokes the 
assembler as to assemble it. The assembler produces a relocatable object module with the 
suffix .o. 

cc assumes that all files with the suffix .o are relocatable object modules. It also assumes that 
all files with the suffix .a are libraries of object modules. It passes both directly to the linker Id. 
Additional libraries can also be invoked by using the -1 option cc, described below. 

Once all files of C code and assembly language have been compiled or assembled, cc then 
invokes the linker Id to link the newly created object files with arty objects and libraries you 
named on cc command line. It also automatically includes the C runtime startup routine and 
the standard C library, so you do not have to name these on your cc command line. 

cc also cleans up after itself. It removes all of its temporary files automatically. If only one 
object file is created during compilation, cc deletes it after linking; however, if more than one 
object file is created, or if an object file of the same name existed before you began to compile. 
then the object file or files are not deleted. 

Assuming that no error occurs along the way, cc leaves the linked result in fileflle. It is now ready 
to be executed. 

Options 
The following lists all of cc's command-line options. cc passes some options through to the linker 
Id unchanged, and correctly interprets for it the options -o and -u. 

A number of the options are esoteric and normally are not used when compiling a C program. The 
following are the most commonly used options: 

-c 
-f 
-lname 
-o name 
-V 

Compile only; do not link 
Include floating-point printf 
Pass library llbname.a to linker 
Call output file name 
Print verbose listing of cc's action 

-A MicroEMACS option. If an error occurs during compilation, cc automatically invokes the 
Micro EMACS screen editor. The error or errors are displayed in one window and the source 
code file in the other. with the cursor set to the line number indicated by the first error 
message. Typing <ctrl-X>> moves to the next error, <ctrl-X>< moves to the previous error. 
To recompile, close the edited file with <Ctrl-Z>. Compilation will continue either until the 
program compiles without error, or until you exit from the editor by typing <ctrl-U> followed 
by <ctrl-X><ctrl-C>. 

-B[strlng) 
Backup option. Use alternate versions of the compiler for ccO. eel, cc2, and cc3. If string is 
supplied, cc appends it to the beginning of the name of each phase of the compiler to form 
the path names where these are found. Otherwise, cc appends the name of the current 
directory. If a -t option was previously given, only the parts of the compiler specified by it are 
affected. Any number of -B and -t options may be used, with each -t option specifying the 
passes affected by the subsequent -B option. For example, the command 

cc -tp2 -Bnew hello.c 

LEXICON 



cc 501 

compiles hello.c using newcc2 in place of the ordinarily used /lib/ cc2, and using newcpp in 
place of the ordinarily used /lib/cpp. 

-c Compile option. Suppress linking and the removal of the object files. 

-Dname[=value] 
Define name to the preprocessor, as if set by a #define directive. If value is present, it is used 
to initialize the definition. 

-E Expand option. Run the C preprocessor cpp and write its output onto the standard output. 

-f Floating point option. Include library routines that perform floating-point arithmetic. 
Because the floating-point routines require approximately five kilobytes of memory, the 
standard C library does not include them; the -f option tells the compiler to include them. If 
a program is compiled without the -f option but attempts to print a floating point number 
during execution by using the e, f, or g format specifications to printf, the message 

You must compile with -f option for floating point 

will be printed and the program will exit. 

-I name 
Include option. Specify a directory the preprocessor should search for files given in #include 
directives, using the following criteria: If the #include statement reads 

#include "file.h" 

cc searches for file.h first in the source directory, then in the directory named in the -lname 
option, and finally in the system's default directories. If the #include statement reads 

#include <file.h> 

cc searches for file.h first in the directories named in the -Iname option, and then in the 
system's default directories. Multiple -lname options are executed in the order of their of 
appearance. 

-K Keep option. Do not erase the intermediate files generated during compilation. Temporary 
files will be written into the current directory. 

-Ldtrectory 
Tell the linker Id to search directory for its libraries before it searches the directories named 
in the environmental variable LIBPAm. 

-I name 
library option. Pass the name of a library to the linker. cc expands -lname into 
/lib/libname.a. If an alternative library prefix has been specified by the -ti and -Bstrlng 
options, then -lname expands to strlnglibname.a. Note that this is a linker option, and so 
must appear at the end of the cc command line, or it will not be processed correctly. 

-M string 
Machine option. Use an alternate version of ccO, eel, ccla, cclb, cc2, cc3, as, Ub•.a, and 
crtsO.o, named by fixing string between the directory name and the pass and file names. 

-n Instruct the linker Id to bind the output with separate shared and private segments, and 
which each starting on a separate hardware-segment boundary. This allows several 
processes to simultaneously use one copy of the shared segment. Note that programs linked 
with this option will run a little more slowly than if they were not so linked; however, if a 
program forks (e.g., kermit) or will be used by more than one user at a time (e.g., 
Micro EMACS), this slightly slower time will be more than offset by the program's being spared 
having to read an entire copy of itself from the disk. 

LEXICON 



502 cc 

-N[p0123sdlrt)strlng 
Name option. Rename a specified pass to string. The letters p0123sdlrt refer, respectively. to 
cpp. ccO, eel, cc2, cc3, the assembler, the linker, the libraries, the run-time start-up. and 
the temporary files. 

-o name 
Output option. Rename the executable file from the default to name. If this option is not 
used, the executable will be named after the first .c or .o file on the command line. If you 
want cc to conform to the UNIX standard of writing executables into a.out by default, set the 
option -o a.out into the environmental variable CCHEAD. This is described below. 

-0 Optimize option. Run the code generated by the C compiler through the peephole optimizer. 
The optimizer pass is mandatory for the i8086, Z8000, and M68000 compilers, and need not 
be requested. It is optional for the PDPl 1 compiler. but is recommended for all files except 
those that consist entirely of initialized tables of data. 

-q[p0123sJ 
Quit option. Terminate compilation after running the specified pass. The letters p0123s 
refer. respectively. to cpp. ccO, eel, cc2. cc3, and the assembler. For example, to terminate 
compilation after running the parser ccO, type -qO. 

-Q Quiet option. Suppress all messages. 

-S Suppress the object-writing and link phases, and invoke the disassembler cc3. This option 

-Tsize 

produces an assembly-language version of a C program for examination, for example if a 
compiler problem is suspected. The assembly-language output file name replaces the .c 
suffix with .s. This is equivalent to the -VASM option. 

Under COHERENT 386, cc writes its temporary data into two 64-kilobytes buffers that grow 
as needed. The -T option tells cc to use buffers of size bytes each. Setting these to a larger 
size may help large files compile faster. Setting size to zero forces cc to use temporary files 
written onto the disk. This option applies only to COHERENT 386. 

-t[p0lab23sdlrtJ 
Take option. Use alternate versions of the compiler phases and other files specified in the 
following string. If no following string is given, the cc uses alternate version of every phase of 
the compiler, except the preprocessor. If the -t option is followed by a -B option, cc prepends 
the prefix string named in the -B option to the phases and files named in the -t option; 
otherwise, it looks for the alternate forms in the current directory. 

-Uname 
Undefine symbol name. Use this option to undefine symbols that the preprocessor defines 
implicitly, such as the name of the native system or machine. 

-V Verbose option. cc prints onto the standard output a step-by-step description of each action 
it takes. 

-Vstrtng 
Variant option. Toggle (i.e .. turn on or off) the variant string during the compilation. Variants 
that are marked on are turned on by default. Options marked Strict: generate messages that 
warn of the conditions in question. cc recognizes the following variants: 

-VASM 
Output assembly-language code. Identical to -S option, above. Default is oft'. 

-VCOMM 
Permit .com-style data items. Default is on. 

LEXICON 



cc 503 

-VFLOAT 
Include floating point printf routines. Same as -f option, above. 

-VPROF 
Generate code to profile functions calls. Programs compiled with this option can be run 
with the prof command to print a summary of how much time the program spends in 
each subroutine. to help you optimize your programs. You must use this option to 
profile compile each module whose functions you wish to examine; and you must also 
use this option on the cc command line with which you link the program, to ensure that 
the appropriate library routines are linked into your executable. 

-VPSTR 
"Pure" strings: Place all string literals in the .text segment rather than in .data. 

-VQUIET 
Suppress all messages. Identical to -Q option. Default is off. 

-VSBOOK 
Strict: note deviations from The C Programming Language. ed. 1. Default is off. 

-VSCCON 
Strict: note constant conditional. Default is off. 

-VSINU 
Implement struct-in-union rules instead of Berkeley-member resolution rules. Default is 
off, i.e .. Berkeley rules are the default. 

-VSLCON 
Strict: int constant promoted to long because value is too big. Default is on. 

-VSMEMB 
Strict: check use of structure/union members for adherence to standard rules of C. 
Default is on. 

-VSNREG 
Strict: register declaration reduced to auto. Default is on. 

-VSPVAL 
Strict: pointer value truncated. Default is off. 

-VSR'IVC 
Strict: risky types in truth contexts. Default is off. 

-VS TAT 
Give statistics on optimization. 

-VS Turn on all strict checking. Default is on. 

-VSUREG 
Strict: note unused registers. Default is off. 

-VSUVAR 
Strict: note unused variables. Default is on. 

-V3GRAPH 
Translate ANSI trigraphs. Default is off. 

cc reads the environmental variables CCHEAD and CCTAIL and appends their contents to. 
respectively. the beginning and the end of the cc command. For example. if you insert the following 
entries into your .profile 

LEXICON 



504 ccO 

export CCHEAD='-f -o a.out' 
export CCTAIL=-lm 

then cc will always use the floating-point version of prlntf(), always write its executable into file 
a.out, and always link in the mathematics library llbm. In effect, it turns the command 

cc hello.c 

into: 

cc -f -o a.out hello.c -lm 

If you set a command option in CCHEAD or CCTAIL. you can always override it for specific cc 
commands. For example, if you have set -o a.out in CCHEAD. typing the command 

cc -o hello hello.c 

generates the command: 

cc -o a.out -o hello hello.c 

The latter -o option is the one used, and in effect cancels the effect of the CCHEAD entry. Thus, 
setting CCHEAD and CCTAIL give you a flexible way to set cc's default behavior. 

Linking Objects 
The linker Id does not know about paths: it links exactly what you tell it to link via the cc command 
line. cc looks for compiler phases and for runtime startoff and library by searching the directories 
named in the environmental variable LIBPATH. If you do not define LIBPATH in your environment, 
it searches the default LIBPATH as defined in /usr/include/path.h. If you define LIBPATH. cc 
searches the directories in the order you specify. For example, a typical definition is: 

export LIBPATH=1/lib:/usr/lib 

This searches the current directory'.', then /lib, then /usr/llb. 

See Also 
as, C language, ccO, eel, cc2, cc3, commands, cpp, ld, llbpath 
The C Language, tutorial 

Notes 
If you see the message 

Out of memory 

when compiling, this probably means that your program has exhausted the buffer space available to 
it. Use the option -TO to force cc to write its temporary files on the disk. 

~""~~'~'~~"""~"""""""""'""""~~'~'"""~' ccO is the COHERENT parser. It parses C programs using the method of recursive descent and 
translates the program into a logical tree format. 

See Also 
cc,ccl,cc2,cc3,cpp,definitions 

Notes 
Under COHERENT 286, ccO exists as a separate executable program. Under COHERENT 386, ccO 
exists as an aspect of a single, large executable program. 

LEXICON 



cc1 - CCHEAD 505 

~~,,~,,,~~~'~'~~'-'9 ,,~,'9~~'"-'-"9 
eel is the COHERENT code generator. This phase generates code from the trees created by the 
parser, ccO. The code generation is table driven, with entries for each operator and addressing 
mode. 

See Also 
cc, ccO, cc2, cc3, cpp, definitions 

Notes 
Under COHERENT 286, eel exists as a separate executable program. Under COHERENT 386, eel 
exists as an aspect of a single, large executable program. 

~~~~~~~~~~~~Ba! 
cc2 is the optimizer I object generator phase of COHERENT. It optimizes the code generated by eel,
and writes the object code. COHERENT uses multiple optimization algorithms. One optimizes jump
sequences: it eliminates common code, optimizes span-dependent jumps, and removes jumps to
jumps. The other function scans the generated code repeatedly to eliminate unnecessary
instructions.

See Also
cc,ccO,ccl,cc3,cpp,definitions

Notes
Under COHERENT 286, cc2 exists as a separate executable program. Under COHERENT 386, cc2
exists as an aspect of a single, large executable program.

~ .. ,~~~~~~~~~~~~~~~~~~
cc3 is the output phase of COHERENT. It writes a file of assembly language rather than a
relocatable object module. This phase is optional; it allows you to examine the code generated by
the compiler. To produce an assembly-language output of a C program, use the -S option on the cc
command line. For example,

cc -s foo.c

tells cc to produce a file of assembly language called foo.s, instead of an object module.

See Also
cc, ccO, eel, cc2, cpp, definitions

Notes
Under COHERENT 286, cc3 exists as a separate executable program. Under COHERENT 386, cc3
exists as an aspect of a single, large executable program.

r;;mm•ll#M!i.lril@i!MltMS~"'~ .. ~~~~"''-'9~"'9"~'~'~'
Append options to beginning of cc command line
export CCHEAD=optlons

The COHERENT compiler cc reads the environmental variables CCHEAD and CCTAIL before it
begins its work. You can set these variables to hold the default options that you want the compiler
always to use.

cc appends the options in CCHEAD to the beginning of its command line.

See Also
cc, CCTAIL, environmental variables

LEXICON

506 CCTAIL - cdmp

Wi&!l 11§.Wli·J.hi@.!MPMgh"""~---···
Append options to end of cc command line
export CCTAIL=opttons

The COHERENT compiler cc reads the environmental variables CCHEAD and CCTAIL before it
begins its work. You can set these variables to hold the default options that you want the compiler
always to use.

cc appends the options in CCTAIL to the end of its command line.

See Also
cc, CCHEAD, environmental variables

cd-Command ··~~"~"~"~'""'"""~''~~------·
Change directory
cd directory

The shell keeps track of the directory in which the user is currently working. If a command is not
specified by a complete path name beginning with '/', the shell prefixes it with the name of the
current working directory. cd changes the current working directory to directory. If no directory is
specified, the directory named in the $HOME environmental variable becomes the current working
directory.

See Also
commands, ksh, pwd, sh

cdmp - Command ~~,~~"'~''~~~ .""~~,-.--­
Dump COFF files into a readable form
cdmp (-adlrs]jllename

cdmp dumps a file in COFF format into its most readable format. Its default is to dump all
information; but as this can produce a very large output file, cdmp lets you use the following
switches to mix-and-match its output:

-a Suppress auxiliary symbol entries.

-d Suppress data dumps

-1 Suppress line numbers.

-r Suppress relocation entries.

-s Suppress symbol entries.

Note that under COHERENT 386, cc and as do not produce line numbers and auxiliary-symbol
entries, and Id does not preserve them.

cdmp writes its dump into the "vertical hexadecimal format," like that produced by the function
xdump(). For example, the vertical hexadecimal dump of the string "hello world. \n" is:

0 hell o wo rld ••
6666.6276.7662.0
85CC.F07F.2C4E.A

The hexadecimal value of 'h' is Ox68, which appears vertically under the 'h'. The dump is broken
into groups of four bytes; every unprintable character appears as·:.

For details on xdump(), see the Lexicon entry for libmisc.

LEXICON

ceilO 507

See Also
as 368, asf:lx, commands, Id, libmisc

Notes
Because COHERENT 286 does not use the COFF file format, cdmp is included only with
COHERENT 386.

cei/O - Mathematics Function (libm)
Set numeric ceiling
#include <math.h>
double ceil(z) double z;

cell() returns a double-precision floating-point number whose value is the smallest integer greater
than or equal to z.

Example
The following example demonstrates how to use cell():

#include <math.h>
#include <stdio.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

}

if (errno)
perror (name) ;

else
printf("%10g %s\n", value, name);

errno = O;

main()
{

}

extern char *gets();
double x;
char string[64];

for (;;) {

}

printf ("Enter number: ") ;
if (gets(string) == NULL)

break;
x = atof(string);

display(x);
display(ceil(x));
display(floor(x));
display(fabs(x));
display(sqrt(x));

putchar('\n');

LEXICON

508 cgrep

See Also
abs(), fabs(), floor(), frexp(), mathematics library

~,_""~~~"---- -
Pattern search for C source programs
cgrep [-clnsA] (-r new] expresslonjile ...

cgrep is a string-search utility. It resembles its cousins grep and egrep, except that it is specially
designed to be used with C source files. It checks all C identifiers against expression and prints all
lines in which it finds a match. cgrep allows you to search for a variable named 'i' without finding
every 'if and 'int' in your program. cgrep defines an "identifier" to be any variable name or C
keyword. expression can be a regular expression; if it includes wildcard characters or' I's, you must
"quote it" to protect it against being modified by the shell. For details on the expressions that cgrep
can recognize. see the Lexicon entry for egrep.

cgrep tests names that include the '.' and '->' operators against expression. Thus. to look for ptr­
>val, type:

cgrep "ptr->val" x.c

This finds ptr->val even if it contains spaces, comments, or is spread across lines. If it is spread
across lines, it will be reported on the line that contains the last token. The only exception is if you
include the -A option. in which case it will be reported on the line which contains the first token.
This is to simplify MicroEMACS macros, as will be described below.

To find structure.member. type:

cgrep "structure\.member"

because·.· in a regular expression matches any character.

Do not include spaces in any pattern. Only identifiers and'.' or'->' between identifiers are included
in the tokens checked for pattern-matching.

Command-line Options
cgrep recognizes the following command-line options:

-A Write all lines in which expression is found into a temporary file. Then, call MicroEMACS with
its error option to process the source file. with the contents of the temporary file serving as an
"error" list. This option resembles the -A option to the cc command, and lets you build a
MicroEMACS script to make systematic changes to the source file. To exit MicroEMACS and
prevent cgrep from searching further. <ctrl-U> <ctrl-X> <ctrl-C>.

-c Print all comments in each file. This form takes no expression.

-1 List only the names of the files in which expression is found.

-n Prefix each line in which expression is found with its line number in the file.

-r Replace all expression matches with new. This option may not be used with any others, and it
can only match simple tokens, not items like ptr->val. When -r is used and the input is stdin,
a new file will always be created as stdout.

-s Print all strings in eachfile. This form takes no expression.

Examples
The command

cgrep tmp *.c

LEXICON

char - chase 509

will find the variable name tmp, but not tmpname. or any occurrence of tmp in a string or
comment.

The script

cgrep -c < myfile.c I we -1

count the lines of comments in myfile.c.

The command

cgrep "xjabcjd" *.c

will find x. ab, or d. Note this is a regular expressions with a surrounding'"()$"which is applied to
every identifier. Thus. reg* will not match register. but reg.• will.

See Also
commands, egrep, grep, me

~'''~'''~~~"~"~~'"~~"'~'"''""'~~~
Data type

char is a C data type. It is the smallest addressable unit of data. According to the ANSI Standard, a
char consists of exactly one byte of storage; a byte. in turn. must be composed of at least eight bits.
sizeof(char) returns one by definition, with all other data types defined as multiples thereof. All
Mark Williams compilers sign-extend char when it is cast to a larger data type.

Under COHERENT. a char by default is signed.

See Also
byte, C keywords, data formats, unsigned

®&lfJilll®!tl!M•"''"'''"""""'~"'~~,~~"'""'"'""~~ ,~,~
Character definitions
#include <sys/ chars.h>

chars.h defines manifest constants for some commonly used characters.

See Also
header files

mmmllfi•Ji,juijj,\•I
Highly amusing video game
/usr/games/chase[-c I [speed]

chase is a COHERENT version of a popular video game. It runs on the console of an IBM AT
COHERENT system with input from the console keyboard. chase assumes that the system console
is a monochrome display adapter unless you select the -c color-display option.

To accomodate different computer system speeds and different levels of skill. chase prompts the
user to type a speed when the game begins. Press <return> to try out the game with the default
speed of ten; typing a higher number makes the game slower. a lower number makes it faster. If
you can play at speed zero on a fast computer system, you play too many video games. If you know
the speed you want, you can enter it as a command-line argument. If you see the boss coming. quit
by pressing <ctrl-C>.

LEXICON

51 O chdirO - check

The Rules
The player (represented by a blinking shaded rectangle) attempts to evade four "ghosts" (represented
by shaded rectangles with arrows) while erasing dots from the playing-board maze.

At the beginning of a game, the four ghosts are in the ghost box above the center of the maze and
the player is below it. The maze is filled with dots, including four blinking diamonds called power
pellets. The ghosts emerge from the ghost box and chase the player. The console arrow keys move
the player left, right, up, or down through the maze. Typing 'O' stops the player. The player
continues to move in the same direction until a wall of the maze stops him, you type a 'O'. or you
type another arrow key.

When the player eats a power pellet, he acquires super power and can chase the ghosts briefly; the
ghosts change color while the player has super power. If the player catches a ghost, he scores a
bonus and the ghost returns to the ghost box temporarily. Once a player eats all the dots on the
board, the game continues at the next level.

The upper left corner of the screen displays a score and the current board level. Each dot the player
eats scores ten points. The first ghost a player eats while he has super power scores 200 points, the
second 400, the third 800, and the fourth 1.600. At certain times during the game, a bonus letter
appears below the ghost box; the player scores 100 points for eating the bonus letter on level 'A',
300 on level 'B', 500 on level 'C', and so on.

The lower left corner of the screen displays the number of extra players remaining in the current
game (initally two). Another bonus player appears every 10,000 points. to a maximum of three extra
players. The game ends when the ghosts eat the last player.

See Also
commands

-~--~-~~~~~~~~"~'~'~''~~ Change working directory
chdir(dlrectory) char *directory;

The working directory (or current directory) is the directory from which the search for a file name
begins if a path name does not begin with'/'. By convention, the working directory has the name'.'.
chdir() changes the working directory to the directory pointed to by directory. This change is in
effect until the program exits or calls chdir() again.

See Also
cd, chmod(), chroot(), directory, system calls

Diagnostics
chdir() returns zero if successful. It returns -1 if an error occurred, e.g .. that directory does not
exist. is not a directory. or is not searchable.

ri·1 11foEl.t·~,,~·-·········~----~"~''' .._,"~
Check file system
check [-s]fllesystem ...

check uses the commands icheck and dcheck to check the consistency of a file system. It acts on
each argumentfllesystem in turn: it calls first icheck and then dcheck on each to detect problems.

If -s is specified, check attempts to repair any errors automatically. You should first unmount the
file system, if possible. If the root device is involved, you should be in single-user mode and then
reboot the system immediately (without typing sync).

LEXICON

checklist - chmod 511

See Also
clri,com:rnands,icheck,ncheck,sync,untount

Notes
Certain errors, such as duplicated blocks, cannot be fixed automatically. Decisions must be made
by a human.

In earlier releases of COHERENT, check acted upon a default file system if none was specified.

This command has largely been superceded by fsck.

checklist - System Maintenance -.,~~,~~'~''~ ·~·~'"""'~~ ~
File systems to check when booting COHERENT
I etc I checklist

The file /etc/checklist names all COHERENT partitions on your hard disk. COHERENT executes
fsck for each file named in this file. This ensures that the file-system of each partition is checked
and cleaned before it is mounted.

When you add a new COHERENT partition to your system, you should insert its name (that is, the
name of its raw device) into I etc/ checklist to ensure that its file system is checked at boot time.

See Also
mount.all, system 11Ulintenance

-'~ .. ~~,·~~·~~
Change the group owner of a file
chgrp group .file ...

chgrp changes the group owner of eachjile to group. The group may be specified by a valid group
name or a valid numerical group identifier.

Only the superuser may use chgrp.

Files
/etc/group-Convert group name to group identifier

See Also
chmod, chmog, chown, commands

chmod - Command .. ~~~···~~~~~·~,~~~~''"~"''~···~·~ Change the modes of a file
chmod +modes file
chmod -modes .file

The COHERENT system assigns a mode to every file, to govern how users access the file. The mode
grants or denies permission to read, write, or execute a file.

The mode grants permission separately to the owner of a me, to users from the owner's group, and
to all other users. For a directory, execute permission grants or denies the right to search the
directory, whereas write permission grants or denies the right to create and remove files.

In addition. the mode contains three bits that perform special tasks: the set-user-id bit, the set­
group-id bit, and the save-text or "sticky" bit. See the Lexicon entry for the COHERENT system call
chmod for more information on how to use these bits.

The command chmod changes the permissions of each specifiedjile according to the given mode
argument. mode may be either an octal number or a symbolic mode. Only the owner of a.file or the
superuser may change a file's mode. Only the superuser may set the sticky bit.

LEXICON

512 chmod

A symbolic mode may have the following form. No spaces should separate the fields in the actual
mode specification.

[which] how perm ... [, .. .]

which specifies the permissions that are affected by the command. It may consist of one or more of
the following:

a All permissions, equivalent to gou
g Group permissions
o Other permissions
u User permissions

If no which is given, a is assumed and chmod uses the file creation mask, as described in umask.

how specifies how the permissions will be changed. It can be

= Set permissions
+ Add permissions

Take away permissions

perm specifies which permissions are changed. It may consist of one or more of the following:

g Current group permissions
o Current other permissions
r Read permission
s Setuid upon execution
t Save text (sticky bit)
u Current user permissions
w Write permission
x Execute permission

Multiple how/perm pairs have the same which applied to them. One or more specifications
separated by commas tell chmod to apply each specification to the file successively.

The octal modes (see stat) are as follows:

04000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

Set user id upon execution
Set group id upon execution
Sticky bit (save text)
Owner read permission
Owner write permission
Owner execute permission
Group read permission
Group write permission
Group execute permission
Others read permission
Others write permission
Others execute permission

An octal mode argument to chmod is obtained by oring the desired mode bits together.

Examples
The first example below sets the owner's permissions to read + write + execute, and the group and
other permissions to read+ execute. The second example adds execute permission for everyone.

LEXICON

chmodO - chmog 513

chrnod u=rwx,go=rx file
chrnod +x file

See Also
chgrp, chmog, chown, commands, ls, stat, umask

chmodO - System Call .,_~,,~~~,~~,~~~'~'~~,rn+~'~'~rn+~rn+''~rn+rn+rn+srn
Change file-protection modes
#include <sys/stat.h>
chmod(flle, mode)
char "jlle; int mode;

chmod() sets the mode bits for file. The mode bits include protection bits. the set-user-id bit, and
the sticky bit.

mode is constructed from the logical OR of the following, which are defined symbolically in the
header file stat.h:

04000
02000
01000
00400
00200
00100
00040
00020
00010
00004
00002
00001

Set user identifier
Set group identifier
Save file on swap device ("sticky bit")
Read permission for owner
Write permission for owner
Execute permission for owner
Read permission for members of owner's group
Write permission for members of owner's group
Execute permission for members of owner's group
Read permission for other users
Write permission for other users
Execute permission for other users

For directories, some protection bits have a different meaning: write permission means files may be
created and removed. whereas execute permission means that the directory may be searched.

The save-text bit (or "sticky bit") is a flag to the system when it executes a shared for of a load
module. After the system runs the program, it leaves shared segments on the swap device to speed
subsequent reinvocation of the program. Setting this bit is restricted to the superuser (to control
depletion of swap space which might result from overuse).

Only the owner of a file or the superuser may change its mode.

See Also
creat(), system calls

Diagnostics
chmod() returns -1 for errors. such asjlle being nonexistent or the invoker being neither the owner
nor the superuser.

chmog - Command ~'~~~,~~''rn+~,~~~rn+~'rn+rn+rn+rn+~~rn+~~'~rn+-rn+
Change mode. owner, and group simultaneously
chmog mod own grp file ...

chmog combines the functionality of the commands chmod, chown, and chgrp into one command.
This lets you fine-tune the permissions on flies without having to type three separate commands.

LEXICON

514 chown - chroot

The arguments mode, own, and grp give, respectively, the mode, owner, and group to which chmog
setsjtle. Setting any of these three arguments·-· means that that feature ofjtle is not changed. For
example, the command

chmog - bin bin file_name

changes the owner and group of file ftle_name to bin and does not alter ftle_name's permissions.

For details on how to set mode, own, and grp. see the Lexicon entries for, respectively. chmod,
chown. and chgrp.

See Also
chgrp, chmod, chown, commands,

GiN~1·•ri·!,,1,,mr1.~"~~~'W••••11111~~~~~~~'~"''"UL"'"'~~
Change the owner of files
chown owner file ...

chown changes the owner of eachjlle to owner. The owner may be specified by valid user name or a
valid numerical user id.

Only the superuser may use chown.

Files
/etc/passwd-To convert user name to user id

See Also
chgrp,chmod,chmog,commands

chownO - System Call -~~~
Change ownership of a file
chown(flle, uid, gid)
char ":file;
short uld, gid;

chown() changes the owner ofjlle to user id uid and group id gid.

To change only the user id without changing the group id, use stat() to determine the value of gid to
pass to chown().

chown() is restricted to the superuser, because granting the ordinary user the ability to change the
ownership of files might circumvent file space quotas or accounting based upon file ownership.

chown() returns -1 for errors, such as nonexistentjlle or the caller not being the superuser.

See Also
chmod(), passwd, stat(), system calls

mrr.z.111fi·!,,1,,5j,(.a ,"'"~~~'W11111-------~"-. ~'"UL'"UL'~'~
Change root directory
chroot directory program ...

The command chroot runs program program with root directory directory.

See Also
commands

LEXICON

chrootO - ckermit 515

Notes
Only the superuser root can use chroot.

rgnt.:.m11;12@11WI~"'~ ----~'"Er .. ,~~~~"'~~,-.
Change the root directory
int chroot(path)
char •path;

The COHERENT system call chroot() changes the current process's root directory to that specified
by path. Once the chroot() system call completes, all references to absolute directories (i.e., ones
starting with •I') will actually refer to directory pointed to by path. It does not change the current
directory.

chroot() is often used to add extra security to special or public login accounts.

See Also
chroot, system calls

Notes
The process that invokes chroot() must be running as the superuser root, and path must name a
valid directory.

A@ilf" lli•l11!i1MH·~' --'"'~''~''~"''.. ~"'''~"'''"''"~
Interactive inter-system communication and file transfer
ckermit [-abcdefghiklpqrstwx] [file ... I

ckermit implements the kermit communications protocol. It lets you communicate with other
systems via modem or network, and to exchange files with other systems that have also
implemented the kermit protocol. Unlike the kermit command also included with the COHERENT
system, ckermit uses an interactive shell to remove some of the pain from the process of
exchanging files. The name ckermit relects the fact that this command is written in the C
language, and so has been ported to many different machines and operating systems.

You can run ckermit in either interactive mode or command mode. Simply typing the command

ckermit

invokes ckermit in interactive mode: ckermit displays a prompt, waits for your command, executes,
then prompts you for its next command. Typing the command line plus one or more arguments
invokes ckermit in command mode: ckermit then reads the arguments from the command line and
executes them. After execution of the commands, ckermit returns to interactive mode.

ckermtt•s command-line options name either actions or settings. An action option tells ckermit to
send a file, receive a file, or connect to a remote system. The command line may contain no more
than one action option. A settings option changes one or more of the internal values that control
how ckermit operates; for example, one setting option lets you set the baud rate of the serial port
that ckermit will be using. A command line can contain any number of settings options.

Command-Line Options
ckermit recognizes the following command-line options:

-ajilename Give an alternate name to a file being transferred. For example, the command

ckermit -s foo -a bar

transmits the file foo to a remote system, but tells the remote system that the file is
named bar. Likewise, the command

LEXICON

516 ckermit

ckermit -ra baz

stores the first incoming file under the name baz.

If more than one file arrives or is sent. only the first file is affected by the -a option.

-b baudrate Set the baud rate of the device to baudrate.

-c

-d

-en

-f

-gflle

-h

-i

-k

-ldevlce

-n

-px

-q

-r

-sflle

LEXICON

Connect to serial port, and pass all subsequent typing to that port To resume talking to
your local system, type the escape character followed by the letter 'c'. The escape
character is set by default to <ctrl-\>, although you can change it if you wish.

Debug mode - record debugging information in the file debug.log in the current
directory.

Set the length of the packet to n where n is a number between ten and about 1.000.
Lengths of 95 or greater require that the implementation of kermit on the remote
system support the long-packet extension to the kermit protocol.

Send a "finish" command to a remote server.

Ask a remote system to send.file or files. The file name must use the remote system's
own syntax; you must quote all characters normally expanded by the COHERENT shell,
e.g.:

ckermit -g x*,\?

Help - display a brief synopsis of the command-line options.

The "image" option: specify that the file being transmitted or received is an eight-bit
binary file, and therefore no conversion should be performed upon the data being
received.

Passively receive file or files, copying them to standard output.

Name the serial device to be used. For example

ckermit -1 /dev/com2

tells ckermit to use device /dev/com2.

Like -c, but used after a protocol transaction has occurred. You can use both -c and -n
in the same command.

Set parity. where x is one of e. o, m. s. or n (respectively. even. odd, mark, space, or
none). If parity is other than none, then ckermit uses the eighth-bit prefixing
mechanism to transfer binary data, provided the impementation of kermit on the
remote system agrees. The default parity is none.

Quiet - suppress screen update during file transfer; for example. this lets you transfer
a file in the background.

Receive a file or files. Wait passively for files to arrive.

Send the specified.file or.files. Iffn is ·-·then ckermit sends from standard input, which
may come from a file:

ckermit -s - < foo.bar

or come from a parallel process:

ls -1 I ckermit -s -

ckermit 517

You cannot use this mechanism to send text typed from the keyboard. To send a file
named'-'. precede it with a path name. e.g.:

-t

-w

ckermit -s ./-

Specify half duplex, line turnaround with XON as the handshake character.

Write-Protect- avoid file-name collisions for incoming files.

-x Begin server operation. This option can be used in either local or remote mode.

If ckermit is in local mode, shows the progress of the file transfer. A dot is printed for every four
data packets; other packets are shown by type (e.g .. 'S' for Send-Init); 'T' is printed when there's a
timeout; and'%' is printed for each retransmission.

During file transfer, you can type the following "interrupt" commands:

<ctrl-F>

<ctrl-B>

<ctrl-R>

<ctrl-A>

Interrupt the current file and go on to the next. if any.

Interrupt the entire batch of files and terminate the transaction.

Resend the current packet.

Display a status report for the current transaction.

These interrupt characters differ from the ones used in other implementations of ckermit to avoid
conflict with the COHERENT shell's interrupt characters.

Interactive Operation
When you invoke ckermit in interactive mode, it displays the following prompt.

C-Kermit>

Type any valid ckermit command; the set of valid commands is described below. ckermit executes
the command and then prompts you for another. The process continues until you tell it to quit.

Commands begin with a keyword, normally an English verb, such as send. You can abbreviate any
keyword, as long as you type enough characters to distinguish it from all other keywords. Certain
commonly used keywords (e.g .. send, receive, connect) have special non-unique abbreviations
(respectively, 's', 'r', and 'c').

Certain characters have special functions in interactive commands:

? Print a message that explains what is possible or expected at the current point within a
command. Depending upon the context. the message may be a brief phrase, a menu of
keywords. or a list of files.

<esc> Request completion of the current keyword or file name, or insertion of a default value.
ckermit will beep if the requested operation fails. <tab> does the same thing.

 Delete the previous character from the command. <backspace> does the same thing.

<ctrl-W> Erase the rightmost word from the command line.

<ctrl-U> Erase the entire command.

<ctrl-R> Redisplay the current command.

<space> Delimit fields (keywords, filenames, numbers) within a command.

<return> Execute the command.

LEXICON

518 ckermit

\ Insert any of the above characters into the command, literally. To enter a literal
backslash. type two backslashes in a row (\ \). Typing one backslash immediately
<return> lets you continue the command on the next line.

ckennit recognizes the following interactive commands:

! command
Execute a shell command. A space must follow the!.

% A comment. ckennit ignores everything that follows the %.

bye Terminate and log out a remote kennit server.

close Close a log file.

connect
Connect to the remote system.

cwd directory
Change the working directory to directory.

dial Dial a telephone number.

directory
Display a directory listing.

echo Display arguments literally. Useful in take-command files.

exit Exit from the program, closing any open logs.

finish Instruct a remote kennit server to exit, but not log out.

get Get files from a remote kennit server.

hangup
Hang up the telephone.

help Display a help message for a given command.

log Open a log file - debugging, packet, session, transaction.

quit Same as exit.

receive Passively wait for files to arrive.

remote Issue file-management commands to a remote kennit server.

script Execute a login script with a remote system.

sendflle
Sendflle to the remote kennit server.

server Begin server operation.

set Set various internal parameters.

show Display values of parameters. program version, etc.

space Display current disk space usage.

statistics
Display statistics about most recent transaction.

LEXICON

ckermit 519

take Execute commands from a file.

Interactive ckennit accepts commands from files as well as from the keyboard. Upon startup,
ckennit looks for the file .kennrc first in directory $HOME and then in the current directory; if it
finds the file, it executes all commands it finds therein. These commands must be in interactive
format. Command files may be nested to any reasonable depth.

The set Command
As noted above, the set command lets you set the internal parameters by which ckennit operates.
The set command recognizes the following arguments:

block-check

delay

duplex

Level of packet error detection.

Time to wait before sending first packet.

Specify which side echoes during connect mode.

escape-character
Character to prefix escape commands during connect mode.

file Set various file parameters.

flow-control
Communication line full-duplex flow control.

handshake Communication line half-duplex turnaround character.

line Communication-line device name.

modem-dialer

parity

prompt

receive

retry

send

Type of modem-dialer on communication line.

Communication line character parity.

Change the ckennit program's prompt.

Set various parameters for inbound packets.

Set the packet retransmission limit.

Set various parameters for outbound packets.

speed Communication line speed.

Remote Commands
ckennit also has a suite of commands that are sent to the remote system for execution. They are
as follows:

cwd Change remote working directory (also, remote cd).

delete Delete remote files.

directory Display a listing of remote file names.

help Request help from a remote server.

host Issue a command to the remote host in its own command language.

space Display current disk space usage on remote system.

type Display a remote file on your screen.

LEXICON

520 C keywords - C language

who Display the users logged in to the remote system, or get information about a user.

Files
.kennrc - ckennit initialization commands

See Also
co111111ands,kennit,uucp

Notes
The kennit protocol was developed at the Columbia University Center for Computing Activities.
ckennit is copyright © by the Trustees of Columbia University.

Please note that ckennit is provided in binary form per the licensing terms set forth by its copyright
holders. It is distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat utllitor.

C keywords - Overview ,~,~~~,~~"~"'~"'~~~~,,~~~~"'"'~"'~-.
A keyword is a word that is reserved within C, and must not be used to name variables, functions,
or macros. COHERENT recognizes the following C keywords:

alien extern signed
auto float sizeof
break for static
case goto struct
char if switch
con st int typedef
continue long union
default readonly unsigned
do register void
double return volatile
else short while
enUin

In conformity with the ANSI standard, the keyword entry is no longer recognized. The keywords
const and volatile are now recognized, but not implemented.

See Also
C language

tf&tit.l!Q!f.ll•fuWij+.""""'''~~,,~,'~''""''""~"'''~''""""~
COHERENT includes a C compiler that fully implements the Kernighan and Ritchie standard of C,
with extensions taken from the ANSI Standard. The implementation of C under COHERENT 286
differs from that under COHERENT 386, due to differences between the architectures of the Intel
80286 and 80386 chips. The following sections summarize the implementation of C for each
implementation of COHERENT.

Please note that in the following discussion, word indicates an object 16 bits long; dword, an object
32 bits long; and qword, an object 64 bits long.

COHERENT 286 Implementation of C

LEXICON

C language 521

Identifiers
Characters allowed: A-Z, a-z, _. 0-9
Case sensitive.
Number of significant characters in a variable name:

at compile time: 127
at link time: 16

C appends ·_· to end of external identifiers

Escape Sequences
The COHERENT C compiler recognizes the following escape sequences:

ASCII Ctr!
\a BEL <ctrl-G>
\b BS <ctrl-H>
\f FF <ctrl-L>
\n LF <ctrl-J>
\r CR <ctrl-M>
\t HT <ctrl-1>
\v VT <ctrl-K>
\xhhhh
\Ooooo

Reserved Identifiers (Keywords)
See C keywords, above.

Data Formats (In bits)
char 8
unsigned char 8
double 64
en um 16
float 32
int 16
unsigned int 16
long 32
unsigned long 32
pointer 16
short 16
unsigned short 16

Floating-Point Formats
DECV AX floating point format:

1 sign bit
8-bit exponent

Hex Description
Ox07 audible tone (bell)
Ox08 backspace
Oxl2 formfeed
OxOA linefeed (newline)
OxOD carriage return
Ox09 horizontal tab
OxOB vertical tab
Oxhhhh hex (one to four hex digits [0-9a-fA-F])

octal (one to four octal digits [0-7])

24-bit normalized fraction with hidden bit
Bias of 129

DECVAX double format:
Same as float, but with 56 bits of fraction

Reserved values:
+- infinity. -0

All floating-point operations are done as doubles

LEXICON

522 C language

Limits
Maximum bitfield size: 16 bits
Maximum number of cases in a switch: no formal limit
Maximum block nesting depth: no formal limit
Maximum parentheses nesting depth: no formal limit
Maximum structure size: 64 kilobytes
Maximum array size: 64 kilobytes

Preprocessor Instructions
#define #if def

#ifndef
#include
#line
#undef

#else
#ellf
#endif
#if

Structure Name-Spaces
Supports both Berkeley and Kernighan-Ritchie conventions for structure in union.

Register Variables
Two available for ints
Two available for ints or pointers

Function Linkage
Return values for ints: AX
Return values for longs: DX:AX
Return values for pointers: AX
Return values for doubles in DX:AX
Parameters pushed on stack in reverse order:

chars. shorts. and pointers pushed as words
structures copied onto the stack

Caller must clear parameters off stack
Stack frame linkage is done through SP register

COHERENT 386 Implementation of C

Identifiers
Characters allowed: A-Z, a-z. _. 0-9
Case sensitive
Number of significant characters in a variable name: 255

LEXICON

C language 523

Escape Sequences
The COHERENT C compiler recognizes the following escape sequences:

ASCII Ctrl
\a BEL <ctrl-G>
\b BS <Ctrl-H>
\f FF <ctrl-L>
\n LF <ctrl-J>
\r CR <ctrl-M>
\t HT <ctrl-1>
\v VT <ctrl-K>
\xhhhh
\Ooooo

Reserved Identifiers (Keywords)
See C keywords, above.

Data Formats (In bits)
char 8
unsigned char 8
double 64
en um 8116132
float 32
int 32
unsigned int 32
long 32
unsigned long 32
pointer 32
short 16
unsigned short 16

Floating-Point Formats
IEEE floating point format:

1 sign bit
8-bit exponent

Hex Description
Ox07 audible tone (bell)
Ox08 backspace
Oxl2 formfeed
OxOA linefeed (newline)
OxOD carriage return
Ox09 horizontal tab
OxOB vertical tab
Oxhhhh hex (one to four hex digits [0-9a-fA-F])

octal (one to four octal digits [0- 7])

24-bit normalized fraction with hidden bit
Bias of 127

IEEE double format:
1 sign bit
11-bit exponent
53-bit fraction
Bias of l,023

Reserved values:
+- infinity, -0

All floating-point operations are done as doubles

LEXICON

524 C language

Limits
Maximum bitfield size: 32 bits
Maximum number of cases in a switch: no formal limit
Maximum block nesting depth: no formal limit
Maximum parentheses nesting depth: no formal limit
Maximum structure size: no formal limit
Maximum array size: no formal limit

Preprocessor Instructions
#define #if def

#ifndef
#include
#line
#undef

#else
#elif
#endif
#if
#pragma

Structure Name-Spaces
Supports both Berkeley and Kernighan-Ritchie conventions for structure in union.

Function Linkage
Return values in EAX
Return values for doubles: global variable fpac_
Parameters pushed on stack in reverse order:

chars. shorts, and pointers pushed as dwords
structures copied onto the stack

Caller must clear parameters off stack
Stack frame linkage is done through SP register

Structures and Alignment
Structure members are aligned according to the most strictly aligned
type within the structure.
For example, a structure is word-aligned if it contains only shorts,
but on dword if it contains an int or long.
#pragma align n can override this feature.

Registers
Registers EBX. EDI. and ESI are available for register variables
Only 32-bit objects go into registers

Special Features and Optimizations
Both implementations of C perform the following optimizations:

Branch optimization is performed: this uses the smallest branch instruction for the required
range.

Unreached code is eliminated.

Duplicate instruction sequences are removed.

Jumps to jumps are eliminated.

Multiplication and division by constant powers of two are changed to shifts when the results
are the same.

LEXICON

clear - closeO 525

Sequences that can be resolved at compile time are identified and resolved.

See Also
argc, argv, C keywords, C preprocessor, header files, initialization, Lexicon, libraries, llnker­
deflned symbols, main()

clear - Command
Clear the screen
clear

The command clear reads the termcap description of your terminal and uses the information
therein to clear your terminal's screen. The environmental variable TERM must define your
terminal's type.

See Also
commands, TERM, termcap

clearerrO- STDIO Macro (stdio.h)
Present stream status
#include <stdio.h>
clearerrifp) FILE *jp;

clearerr() resets the error flag of the argumentfp. If an error condition is detected by the related
macro ferror, clearerr() can be called to clear it.

Example
For an example of this function, see the entry for ferror().

See Also
ferror(), STDIO

close() closes the file identified by the file descriptor fd, which was returned by creat(), dup(),
open(). or pipe(). close() also frees the associated file descriptor.

Because each program can have only a limited number of files open at any given time, programs
that process many files should close() files whenever possible. The function exit() automatically
calls fclose() for all open files; however, the system call _exit() does not.

Example
For an example of this function, see the entry for open().

See Also
creat(), open(), system calls

Diagnostics
close() returns -1 if an error occurs. such as its being handed a bad file descriptor; otherwise, it
returns zero.

LEXICON

526 closedirO - cmp

®·ti¥'"' •m.tw11111.e11.u
Close a directory stream
int closedir(dlrp)
DIR *dlrp;

The COHERENT function closedir() is one of a set of COHERENT routines that manipulate
directories in a device-independent manner. It closes the directory stream pointed to by dtrp.

closedir() returns zero if no error occurs. If something goes wrong. it returns -1 and sets errno to
an appropriate value.

Example
For an example of this system call. see the Lexicon entry for opendir().

See Also
dirent.h, general functions, getdents(), opendir(), readdir(), rewfnddir(), seekdir(), telldir()

Notes
This function is available only under COHERENT 386.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

l!lilli•mlu6hl•'
Clear i-node
/etc/clrljllesystem tnumber ...

..

clrl zeroes out each i-node with a given tnumber onjllesystem . .fllesystem is almost always a device­
special file that corresponds to a disk device. The raw device should be used.

The user must have read and write permission on the.fllesystem. If the tnumber corresponds to an
open file, the clrl has a very high probability of being ineffective: the system maintains in core
memory a copy of all active i-nodes, and this copy will eventually be written out to disk, undoing the
effects of clrl. To counter this problem, unmount the file system before running clrl. If the i-node is
for the root file system, you must reboot the system immediately after running clrl.

See Also
commands, dcheck, fsck, icheck, 1-node, umount

mmllri·"'l"ij!H·'
Compare bytes of two files
cmp [-lsJ.flleljlle2 [sklpl sktp2J

cmp is a command that is included with COHERENT. It compares .fllel and jlle2 character by
character for equality. lfjllel is'-', cmp reads the standard input.

Normally, cmp notes the first difference and prints the line and character position. relative to any
skips. If it encounters EOF on one file but not on the other, it prints the message "EOF on filen".
The following are the options that can be used with cmp:

-1 Note each differing byte by printing the positions and octal values of the bytes of each file.

-s Print nothing, but return the exit status.

If the skip counts are present. cmp reads sktpl bytes onjllel and sktp2 bytes onjlle2 before it
begins to compare the two files.

LEXICON

coff.h 527

See Also
commands, cliff, sh

Diagnostics
The exit status is zero for identical files. one for non-identical files. and two for errors. e.g .. bad
command usage or inaccessible file.

~''~ oem oem.~~,~~~ a._"'''"""'~~-..
Format for COHERENT 386 objects
#include <cotr.h>

cotr.h describes the Common Object File Format (COFF). which is the object format used by
COHERENT 386.

What Is COFF?
In brief. COFF is the UNIX System V standard for file formats. It defines the formats for relocatable
object modules. for executable flies. and for archives.

ACOFF file is built around three sections. or segments:

text

data

bss

This holds executable machine code. It is write protected - the operating system is
forbidden to overwrite it. (This is why operating systems that use COFF or similar formats
are said to run in "protected mode.")

This holds initialized data. that is, the data that the program finds when it begins execution.
The program can read and write into this segment.

This segment holds unitialized data. It is simply a mass of space that is initialized to
zeroes. It is contiguous with the data segment. The term bss from the old IBM mainframe
days. and stands for "block started by symbol''.

Not all segments have to be included in every COFF file. Further, some implementations of COFF
define their own segments that manipulate special features of the operating system or hardware.

The following describes the structure of a COFF file. The areas within the file are described in the
order in which they appear.

1. file header
This holds information set when the file was created, such as the date and time it was
created. the number of segments in the file. a pointer to the symbol table, and status flags.

2. optional header
This gives information set at run-time, such as the address of the program entry point. and
the size of the code and data segments.

3. segment headers
The next area holds a header for each segment in the file. Each header describes its
segment's characteristics and contains pointers to the segment's contents, relocation
information, line-number information. and other useful addresses.

4. segment contents
The next area holds the contents of the segments used in this file.

5. relocation information
The fifth area gives relocation information, one set of information for each segment in the
file. The linker ld uses this information to generate the executable file at link time.

6. line-number information
This area holds debug information. one set of information for each segment. This area is
optional.

LEXICON

528 COHERENT

7. symbol table
This area holds information used by both the linker and the debugger.

8. string table
This table holds very long names of variables.

Most of this information is irrelevant to the average user, or even the average developer of software.
To the average user, COFF is "a machine that would go of itself'; you can run or compile programs
without worrying what the linker puts where, or why. These details. however. can be very important
if you are writing tools that manipulate the internals of files, such as archivers or debuggers. If you
need detailed information on COFF and how to manipulate it. see Understanding and Using COFF,
by Gintaras R. Gircys (Sebastopol. Calif. O'Reilly & Associates, Inc .. 1988).

For more information on how the COFF format affects COHERENT's language tools. see the Lexicon
articles for ar. as 386, cc, db, and Id.

See Also
ar, as 386, cc, file formats, header files, Id
Gircys, G.R.: Understanding and Using COFF. Sebastopol, Calif, O'Reilly & Associates, Inc .. 1988.

Notes
For details on the object format for COHERENT 286, see l.out.h.

COHERENT- Technical Information
Principles of the COHERENT System

COHERENT is a multiuser. multitasking operating system. Multiuser means that with COHERENT,
more than one person can use your computer at any given time. Multitasking means that with
COHERENT. any user can run more than one program at any given time. The design of COHERENT
employs a few elegant concepts to give you a powerful and flexible system that is easy to use.

What is an Operating System?
An operating system is the master program that controls the operation of all other programs. It
loads programs into memory. controls their execution, and controls a program's access to peripheral
devices, such as printers, modems, and terminals.

Some operating systems permit only one user to use the computer at a time; and that user can run
only one program at a time. For example. MS-DOS, the operating system most commonly used on
the IBM PC and its clones, can run only one program at a time. However, you may well want your
computer to support more than one user at a time, and run more than one program at a time.
Sharing not only yields many economies (such as allowing a group of users to share one printer),
but also allows the users to communicate with each other and so work together more efficiently.

Any multitasking operating system must be able to do the following tasks efficiently:

Schedule computer time

Control mass-storage devices (disks and tape drives)

Organize disk-storage space

Protect programs from conflict

Protect stored information from destruction

Ease cooperation among users

Today's operating systems also provide tools. These are programs that are bundled with the
operating system, and that are designed to help you do your work more efficiently. For example,
you need editors, compilers. debuggers, and assemblers to develop and test programs. Text

LEXICON

COHERENT 529

formatters and spelling checkers help you write memoranda, manuals, or books. Command
processors (also called shells) help you run the computer easily. Status checkers tell you what
programs are being run, who is using the system, and how much space is left on your disk.

The combination of operating system and its tools transforms a boxful of wires and circuits into a
useful machine.

COHERENT's Design Philosophy
The COHERENT system combines a multitasking operating system with a full set of tools. But the
quality and quantity of the features provided by the COHERENT operating system distinguishes it
from other, similar operating systems.

All but a very small part of the operating system software is written in C, a high-level language,
rather than assembly language. The result is a reliable operating system, with no observable loss in
execution speed. The choice of a high-level language also provides portability. The C language has
been implemented on practically every computer, from mainframe to micro.

An important guiding principle in the design and implementation of the COHERENT operating
system is that good performance is the direct result of dedication to careful design and
implementation of algorithms and systems, rather than coding tricks.

A computer system is not an end in itself; rather, it is a "bench" for constructing tools to solve
specific problems. If the operating system is too specialized or limited, the range of problems it can
help you solve will be narrow. On the other hand, if the operating system is too detailed, then it
becomes complex, idiosyncratic, and potentially unreliable.

The following quotation from John Conway summarizes well the philosophy that underlies the
design of the COHERENT system:

The engineer who wants a machine for some specific purpose will normally approve the simplest
machine that does the job. He will not usually prefer a multiplicity of parts with the same effect, nor
will he countenance the insertion of components with no junction.

The COHERENT system follows this approach throughout. For example, consider device­
independent 1/0. COHERENT does not distinguish between a program, a device (such as a terminal
or floppy disk), or a file. Programs can move data among devices and files without knowing any of
the physical characteristics of the device. This device independence comes from designing the 1/0
system using a consistent view of files, devices, and programs. Each appears like a stream of bytes,
so each can communicate directly with all others. If an application requires a more complex file
structure, it can be added at a higher level. This approach makes COHERENT simple and easy to
maintain, yet powerful.

You may wonder whether this design compromises the performance of the system. On the contrary,
the speed at which the COHERENT system transfers data between files on a disk is very nearly the
hardware speed of disk-to-disk transfers. This is achieved through the use of simple but ingenious
algorithms.

Throughout, the COHERENT system uses this principle of using a few primitive operators to provide
easy communication among programs, files, and devices. With these, any user of the COHERENT
system can construct the tools to solve nearly all of his computing problems.

COHERENT Properties
The COHERENT file system uses a tree-structured directory. This means that directories hold files,
which in turn may be data files or other directories. The fact that a directory can contain more
directories is a significant help in managing large numbers of files.

The COHERENT operating system is modularly designed, using certain mathematical concepts.
This results in an efficient design for the system. Using this simple but elegant approach, features
are designed to fit well together. This means that COHERENT does not repeatedly reinvent the

LEXICON

530 col

wheel - each feature is carefully designed to function well by itself and work readily with other
features. COHERENT avoids the "creeping feature" syndrome common to usual operating systems.

In brief. COHERENT is what UNIX used to be: an efficient system of selected tools and well-designed
utilities. that brings out the best in modest computer systems.

See Also
MS-DOS, technical information

Notes
For information on how COHERENT compares with MS-DOS. see the Lexicon article on MS-DOS.

mi•mm@(.I
Remove reverse and half-line motions
col [-bdfx][-pn I

The command col reads the standard input and writes to the standard output. It removes reverse
and half-line motions from the output of nrotr for the benefit of output devices that cannot perform
them. It maintains an image of the page in memory and performs these motions virtually so they do
not appear on the output.

col understands four escape sequences: <esc> 7 for reverse line feed, <esc> 8 for half reverse line
feed. <esc> 9 for half forward line feed. and <esc> B for a forward line feed. It removes <esc> (ASCII
033) from the input stream if it is followed by any other character.

Eight control characters besides <esc> are interpreted by col. Newline. return, space, backspace,
and tab carry their usual meaning. VT (013) is an alternate form of reverse line feed. The
characters SO (017) and SI (016) signal the start and end of text in an alternate character set. col
remembers the character set for each character and uses SO and SI to distinguish them on the
output. col removes all other control characters from the input stream.

col recognizes the following options:

-b The output device cannot backspace. Only the last of a set of characters destined for a given
position will appear.

-d. Double-space the output. This doubles the length of a document but preserves relative
vertical spacing. The -f option has precedence.

-f The output device can perform half-forward line feeds. Full lines appear single spaced with
half lines between them. This is the only situation in which half forward line feeds appear in
the output of col - reverse line motions never appear.

-x Suppress the default conversion of white space to tabs on output.

-p n Set the internal page buffer size ton full lines (default, 128).

If neither -f nor -d is chosen, col moves non-empty half lines to the next lower full line and pushes
all later lines down one line. This can distort the appearance of the document.

See Also
ASCII, commands, nroff

Notes
Backing up past the start of a document or of the page buffer loses characters.

LEXICON

com 531

mmll~tMIH1Jhij
Device drivers for asynchronous serial lines

The COHERENT system has drivers for four asynchronous serial lines, coml through com4.

A serial line can be opened into any of four different "flavors", as follows:

com?l
com?r
com?pl
com?pr

Interrupt driven, local mode (no modem control)
Interrupt driven, remote mode (modem control)
Polled, local mode (no modem control)
Polled, remote mode (modem control)

"Local mode" means that the line will have a terminal plugged into it, to directly access the
computer. "Modem control" means that the line will have a modem plugged into it. Modem control
is enabled on a serial line by resetting the modem control bit (bit 7) in the minor number for the
device. This allows the system to generate a hangup signal when the modem indicates loss of
carrier by dropping DCD (Data Carrier Detect). A modem line should always have its DSR, DCD and
CTS pins connected. If left hanging, spurious transitions can cause severe system thrashing. To
disable modem control on a given serial line, use the minor device which has the modem control bit
set (bit 7). An open to a modem-control line will block until a carrier is detected (DCD goes true).

"Interrupt mode" means that the port can generate an interrupt to attract the attention of the
COHERENT system: "polled mode" means that the port cannot generate an interrupt, but must be
checked (or "polled") constantly by the COHERENT system to see if activity has occurred on it.

The COHERENT system uses two device drivers to manage serial lines: alO manages COMl and
COM3, and all manages COM2 and COM4. Due to limitations in the design of the ports, you can
enable interrupts on either COMI or COM3 (or on COM2 or COM4), but not both. If you wish to
use both ports simultaneously, one must be run in polled mode. For example, if you wish to open
all four serial lines, you can open two of the lines in interrupt mode: you can open either COMl or
COM3 in interrupt mode, and you can open either COM2 or COM4 in interrupt mode. The other
two lines must be opened in polled mode.

Opening a device in polled mode consumes many CPU cycles. based upon the speed of the highest
baud rate requested. For example, on a 20 MHz 80386-based machine, polling at 9600-baud was
found to consume about 15% of the CPU time. As only one device can use the interrupt line at any
given time, the best approach is to make the high-speed line of the pair interrupt driven and open
the low-speed or less-frequently used line in polled mode. However, if you enable a polled line for
logins, the port is open and will be polled as long as the port remains open (enabled). Thus, even if
a port is not in use, the fact that it has a getty on it consumes CPU cycles. As a rule of thumb, try
and open a port in interrupt mode. If you cannot, use the polled version. Also note that use of any
of the four serial ports in polled mode prevents other polled serial device drivers. such as the hs
generic multi-port polled serial driver, from being used at the same time.

If you intend to use a modem on your serial port, you must insure that the DCD signal from the
modem actually follows the state of carrier detect. Some modems allow the user to "strap" or set the
DCD signal so that it is always asserted (true). This incorrect setup will cause COHERENT to think
that the modem is "connected" to a remote modem, even when there is no such connection.

In addition, if you wish to allow remote logins to your COHERENT system via your modem, you
must insure that the modem does not echo any commands or status information. Failure to do so
will result in severe system thrashing due to the getty or login processes endlessly "talking" to your
modem.

Changing Default Port Speeds
Serial lines coml through com4 default to 9600 baud when opened. This default speed can be
permanently changed on a "per port" basis by changing the value of driver variables ClBAUD,

LEXICON

532 com

C2BAUD. C3BAUD or C4BAUD. The list of acceptible values can be found in header file <sgtty.h>
and range from l. corresponding to 50 baud, up to 17. which corresponds to 19.200 baud. For a
table of legal baud rates, see the Lexicon entry for sgtty.h.

To change the default value for a port. you must use the /conf/patch command. For example. to
change the default speed for port com2 to 2400 baud, enter the following command while running
as the superuser:

/conf/patch /drv/all C2BAUD_=12

The change will not take effect until the next time that you boot your system.

Loading a Driver
COHERENT version 3.2 and later implements all COM drivers as loadable drivers. This was done to
save space within the kernel. and to let you configure your system as you prefer. The rest of this
section does not apply to any release of COHERENT prior to version 3.2.

To load a COM driver. you must use the command drvld to load the appropriate al device. As noted
above, drivers coml and com3 are controlled by device alO, and drivers com2 and com4 by all.
For example, to load alO use the command:

/etc/drvld /drv/alO

To remove a COM driver. first type the command

ps -d

and note the process identifier of the COM driver you want to remove. Then, become the superuser
root and type the command

kill -9 xxxx

where xx.xx is the process identifier for the COM driver.

Note that alO is in directory /drv, not /dev.

If you are going to load certain drivers regularly. be sure to write the appropriate drvld command
into system file /etc/drvld.all.

See Also
coml, com2, com3, com4, device drivers, drvld

Diagnostics
An attempt to open a non-existent device will generate error messages. This can occur if hardware
is absent or not turned on.

Notes
The com family of devices apply only to COHERENT 286. To access a serial port under COHERENT
386, use the driver asy. which is described in its own Lexicon entry.

The com• series of devices are not compatible with the ioctl() parameters defined in header file
<tennio.h>. Be sure to include header file <sgtty.h> if you wish to perform terminal specific ioctl()
calls.

In the current version of these drivers, the following sequence of steps results in a panic:

LEXICON

enable com4pl
enable com3pl
disable com4pl
kill kill <all driver process id>

com1 - com2 533

The key is that the driver containing the polling routine cannot be unloaded if the other driver is
still polling.

Note, too, that if any com device driver is used in polling mode. the hs driver cannot be used. and
vice versa.

com1 - Device Driver ~"'~'~~"'~"''~"'~~'~''~
Device driver for asynchronous serial line COMl

/dev/coml is the COHERENT system's standard interface to asynchronous serial line COMl. The
interface is assigned major device 5. and is accessed as a character-special device. The 1/0 address
for the corresponding 8250 SlO is Ox3F8 (COM 1). coml generates interrupt IRQ4.

Four versions of device coml are in directory /dev. as follows:

Device Name Major Minor 1/0 Type
/dev/comll 5 128 Interrupts
/dev/comlr 5 0 Interrupts
/dev/comlpl 5 192 Polled
/dev/comlpr 5 64 Polled

For details on how these versions differ, see the entry for com.

Files
/dev/comll- Interrupt-driven. non-modem (local) line
/dev/comlr- Interrupt-driven. modem (non-local) line
/dev/comlpl- Polled, non-modem (local) line
/dev/comlpr- Polled. modem (non-local) line

See Also
com, com3, stty

Notes

Modem
Control?

No
Yes
No
Yes

The com family of devices apply only to COHERENT 286. To access a serial port under COHERENT
386, use the driver asy, which is described in its own Lexicon entry.

com2 - Device Driver ·~'~'~~~"'~~~""~~~~~""-.
Device driver for asynchronous serial line COM2

/dev/com2 is the COHERENT system's standard interface to asynchronous serial line COM2. The
interface is assigned major device 6, and is accessed as a character-special device. The 1/0 address
for the corresponding 8250 SIO is Ox2F8 (COM2). com2 generates interrupt IRQ3.

Four versions of device com2 are in directory /dev, as follows:

LEXICON

534 com3

Device Name Major Mirror
/dev/com21 6 128
/dev/com2r 6 0
I dev I com2pl 6 192
/dev/com2pr 6 64

For details on how these differ, see the entry for com.

Files
/dev/com21- Interrupt-driven, non-modem (local) line
/dev/com2r- Interrupt-driven, modem (non-local) line
/dev/com2pl- Polled, non-modem (local) line
/dev/com2pr- Polled, modem (non-local) line

See Also
com, com4, stty

Notes

Modem
1/0 Type Control?
Interrupts No
Interrupts Yes

Polled No
Polled Yes

The com family of devices apply only to COHERENT 286. To access a serial port under COHERENT
386, use the driver asy, which is described in its own Lexicon entry.

-~,~~~~~----&lll~~,,~~,,~'UL~'UL'UL~~
Device driver for asynchronous serial line COM3

/dev/com3 is the COHERENT system's standard interface to asynchronous serial line COM3. The
interface is assigned major device 5, and is accessed as a character-special device. The 1/0 address
for the corresponding 8250 SIO is Ox3E8 (COM3). com3 generates interrupt IRQ4.

Four versions of device com3 are in directory /dev, as follows:

Device Name Major Mirror
/dev/com31 5 129
/dev/com3r 5 1
I dev I com3pl 5 193
I dev I com3pr 5 65

For details on how these differ. see the entry for com.

Files
/dev/com31- Interrupt-driven, non-modem (local) line
/dev/com3r- Interrupt-driven, modem (non-local) line
/dev/com3pl- Polled, non-modem (local) line
/dev/com3pr- Polled, modem (non-local) line

See Also
com, coml, stty

Notes

1/0 Type
Interrupts
Interrupts

Polled
Polled

Modem
Control?

No
Yes
No
Yes

The com family of devices apply only to COHERENT 286. To access a serial port under COHERENT
386, use the driver asy, which is described in its own Lexicon entry.

LEXICON

com4 - commands 535

/dev/com4 is the COHERENT system's standard interface to asynchronous serial line COM4. The
interface is assigned major device 6, and is accessed as a character-special device. The I/0 address
for the corresponding 8250 SIO is Ox2E8 (COM4). com4 generates interrupt IRQ3.

Four versions of device com4 are in directory /dev, as follows:

Device Name Major Mlrwr
/dev/com41 6 129
/dev/com4r 6 1
I dev I com4pl 6 193
I dev I com4pr 6 65

For details on how these differ, see the entry for com.

Files
/dev I com41- Interrupt-driven, non-modem (local) line
/dev/com4r- Interrupt-driven, modem (non-local) line
/dev/com4pl-Polled, non-modem (local) line
/dev/com4pr- Polled, modem (non-local) line

See Also
com, com2, stty

Notes

1/0 Type
Interrupts
Interrupts

Polled
Polled

Modem
Control?

No
Yes
No
Yes

The com family of devices apply only to COHERENT 286. To access a serial port under COHERENT
386, use the driver asy, which is described in its own Lexicon entry.

m:mmlli•lim@U·I
Print common lines
comm [-123 Jjlleljlle2

The command comm prints the lines unique to jlle 1 in the first column. the lines unique to jlle2 in
the second column, and the lines common to both in the third. Bothjllel andjlle2 should be sorted
in ASCII order. Any or all columns may be suppressed by indicating the column or columns to
suppress in the optional flag. The file ·-· means standard input.

See Also
cmp, commands, diff', sort, uniq

commands - Overview
The following lists the commands included with COHERENT. The command name is given on the
left and a description on the right.

Communications
The following commands let you exchange information with other users and other systems.

ckermit . Interactive inter-system communication and file transfer
kermit . . Communication and file transfer (COHERENT 286 only)
mail. . Send/read electronic mail
mesg . Permit/deny messages from other users
msg . . Send a brief message to other users
msgs . Read messages intended for all COHERENT users

LEXICON

536

uucico
uucp
wall . .
write .

commands

Device Handling

. Connect to a remote system

. Copy a file to or from a remote system

. Send a message to all logged in users

. Converse with another user

The following commands help you run peripheral devices. especially printers. For commands that
drive communications devices, e.g .. modems, see the section on Communications, above.

epson . . Print a file on an Epson printer
fnkey. . Set/print function keys for the console
hp Prepare files for HP LaserJet-compatible printer
hpr . . . Send to LaserJet printer spooler
hpskip . Abort/restart current listing on LaserJet
lpr. . . . Send to line printer spooler
lpskip. . Terminate I restart current line printer listing
stty . . . Set/ print terminal modes
tty. . . . Print the user's terminal name
ttystat . . Get terminal status

Directory and File Handling
The following commands let you create. remove, and otherwise manipulate files and directories.

cat .. .
cd .. .
chgrp.
chmod
chmog
chown .
cmp ...
compress
cp ..
cpdir .
dd ...
dos ..
doscat
doscp.
doscpdir.
dosdir . ..
dosdel ..
dosformat.
doslabel .
dosls ...
dosmkdir
dosrm .. .
dosrmdir.
fdisk
file.
find.
1 .
le
If.
In
Ir.
ls
Ix

LEXICON

. Concatenate I print files

. Change directory

. Change the group owner of a file

. Change the modes of a file

. Change mode, ownership, and group of a file

. Change ownership of a file

. Compare bytes of two files

. Compress a file

. Copy a file
Copy directory hierarchy
File conversion
Manipulate files on MS-DOS file systems
Concatenate a file on an MS-DOS file system

. Copy files to/from an MS-DOS file system

. Copy directories to/from an MS-DOS file system

. List the contents of an MS-DOS directory

. Delete a file from an MS-DOS file system

. Build MS-DOS file system on a floppy disk

. Label an MS-DOS floppy disk

. List files on an MS-DOS file system

. Create a directory in an MS-DOS file system

. Remove a file from an MS-DOS file system

. Remove a directory from an MS-DOS file system

. View /change hard-disk partitioning

. Name a file's type

. Search for files satisfying a pattern

. List directory's contents in long format

. List directory's contents in columnar format

. List directory's contents in columnar format

. Create a link to a file
List subdirectorys' contents in columnar format
List directory's contents
List directory's contents in columnar format

commands 537

mkdlr ..
mv ...
mvdlr ..
pwd ...
qflnd ..
nn ...
nndir ..
touch ..
uncompress .
whereis.
which ..
zcat ...

Editors

. Create a directory

. Rename files or directories

. Rename a directory (COHERENT 386 only)

. Print the name of the current directory

. Quickly find all files with a given name

. Remove files

. Remove directories

. Update modification time of a file

. Uncompress a file

. Locate source, binary. and manual files

. Locate executable files

. Concatenate a compressed file

COHERENT includes a number of text editors. to suit a variety of tastes.

ed ..
elvis.
ex.
me.
sed
vi .

Games

. Interactive line editor

. Berkeley-style screen editor

. Berkeley-style line editor

. MicroEMACS screen editor

. Stream editor

. Berkeley-style screen editor

The following commands are just for fun.

banner . . Print large sized letters
cal. Print a calendar
chase . . . Highly amusing video game
fortune. . Print randomly selected, hopefully humorous, text
guess . . . Extraordinarily amusing guessing game
lines . . Highly amusing board game
moo. . . Greatly amusing numeric guessing game
rubik . . Play Rubik's cube
ttt. . . . Three-dimensional tic-tac-toe

Languages and Programming Tools
The COHERENT system comes with a number of languages, and tools for debugging and
maintaining your programs .

as ..
asflx
awk.
cc ..
cdmp ..
conv
cpp .. .
db
flxstack
Id ..
lex
m4 .. .
make.
nm.
od ..
prof.

. Mark Williams assembler

. Convert file to 80386 as form (COHERENT 386 only)

. Report generation, pattern scanning. and processing language

. C-language compiler

. Dump COFF files into a readable form (COHERENT 386 only)

. Numeric base converter

. Cpreprocessor

. Assembler-level symbolic debugger

. Alter size of a program's stack (COHERENT 286 only)

. Link relocatable object files

. Lexical analyzer generator

. Macro processor

. Program building discipline

. Print a program's symbol table

. Print an octal dump of a file .

. Print execution profile of a C program

LEXICON

538 commands

ref. Display a C function header
srcpath. . Find source files
size . . Print size of an object file
strip . . . Strip symbol tables from executable file
yacc. . . . Parser generator

Libraries and Archives
The following commands help you create and read libraries and archives. These can be used as
libraries (such as the libraries used when linking a C program). or to back up files.

ar The object librarian/archiver
cpio. Archiving/backup utility
dump File-system backup utility
dumpdate . Print dump dates
dumpdir . . Print the directory of a dump
pax . . . Portable archive interchange
ranllb . . Create index for object library
restor. . Restore file system
tar. . . V7 tape archive manager
ustar . Tape archive utility

Mail
COHERENT comes with with a full-featured. UNIX-style mail facility. This is described in the
overview article mail. The following commands perform mail-related work. Note that some are also
listed in other sections of this article. Note, too, that the descriptions for small and rmail are only
for those users who wish to manipulate UUCP mailing on a low level; for most users, the
descriptions under the command mail are more than sufficient.

hnail
mail
mkfnames.
nptx ..
rmail
small

Shell Commands

. Deliver local mail

. Send/read electronic mail

. Generate data base of user names

. Generate permutations of users' full names

. Receive UUCP mail

. Send UUCP mail

COHERENT comes with two command interpreters. or shells: ksh, the Korn shell, and sh, the
Bourne shell. The following commands are used either by the Korn shell, by the Bourne shell, or by
both. Please note that commands used only by the Korn shell are marked by a dagger 't', whereas
commands used only by the Bourne shell are marked by an asterisk '*'.

allast ...
basename
bindt ..
break ..
builtint.
case .. .
cd
continue.
dirs*.
echo
eval.
exec.
exit.
export
expr ..

LEXICON

. Set an alias

. Strip path information from a file name
Bind key sequence to editing command
Exit from shell construct
Execute a command as a built-in command
Execute commands conditionally according to pattern

. Change directory

. Terminate current iteration of shell construct
Print contents of directory stack

. Repeat an argument

. Evaluate arguments

. Execute command directly

. Exit from a shell

. Add a shell variable to the environment

. Compute a command line expression

false.
fct ..
for ..
from
getoptst
hasht.
If ...
Jobst .
let ...
nohup
popd•.
prep ..
printt.
pushd*.
read ...
readonly.
set ..
shift.
sleep
tee ..
test.
times.
trap ..
true ..
typesett
umask .
unallast
unW ..
wait ...
whencet.
while ...

String Processing

. Unconditional failure

. Edit and re-execute one or more previous commands

. Execute commands for tokens in list

. Generate list of numbers, for use in loop

. Parse command-line options

. Add a command to the shell's hash table

. Execute a command conditionally

. Print information about jobs

. Evaluate an expression

. Run a command while ignoring hangup signals

. Pop an item from the directory stack

. Produce a word list

. Echo text onto the standard output

. Push an item onto the directory stack

. Assign values to shell variables

. Mark a shell variable as read only

. Set shell option flags and positional parameters

. Shift positional parameters

. Stop executing for a specified time

. Branch pipe output
Evaluate conditional expression
Print total user and system times
Execute command on receipt of signal
Unconditional success

. Set/list variables and their attributes

. Set the file-creation mask

. Remove an alias

. Execute commands repeatedly

. Await completion of background process
List a command's type

. Execute commands repeatedly

commands 539

Some of the most useful commands are those that process strings. COHERENT has. many
commands that search for strings, manipulate strings, sort strings, and otherwise perform useful
manipulations on strings .

c
cgrep.
comm.
cut ..
detab.
ditl' ..
diff3 ..
egrep.
grep.
head
join.
look.
more
paste.
rev .
scat.
sort.
split.

·.

. Print multi-column output

. Pattern search for C programs

. Print common lines

. Select portions of each line of a file

. Replace tab characters with spaces

. Summarize differences between two files

. Summarize differences among three files

. Extended pattern search

. Pattern search

. Print the beginning of a file

. Join two data bases

. Find matching lines in a sorted file

. Display text one screenful at a time

. Merge lines of files

. Print text backwards

. Print text files one screenful at a time

. Sort lines of text

. Split a text file into smaller files

LEXICON

540 commands

strings.
tail .
tr ..
tsort
uniq.
view.
we ..

System Accounting

. Print all character strings from a file

. Print the end of a file

. Translate characters

. Topological sort

. Remove/count repeated lines in a sorted file

. Berkeley-style text viewer

. Count words, lines, and characters in text files

The following commands help you to keep track of how your COHERENT system is working.

ac Summarize login accounting information
accton . . Enable/disable process accounting
df . . . Measure free space on disk
du . . . Summarize disk usage
ps . . . Print process status
sa . . . Print a summary of process accounting
quot. . Summarize file-system usage
time. . Time the execution of a command
times . . . Print total user and system times
uulog . . . Examine UUCP operations

System Maintenance
These commands help you to maintain your COHERENT system .

at
bad .. .
badscan
build ..
check ..
c1rl ...
crontab.
date ...
dcheck.
drvld . .
fdformat.
fsck ..
icheck
man ..
mkfs .
mknod.
mount.
ncheck.
newgrp.
newusr.
reboot .
shutdown
sync
umount .
unmkfs . .
uucheck.

terminfo

. Execute commands at given time

. Maintain list of bad blocks

. Examine a device for bad blocks

. Install COHERENT onto a hard disk

. Check file system

. Clear i-node

. Copy a command file into the crontab directory

. Print/ set the date and time

. Check directory consistency

. Load loadable drivers into memory

. Low-level format a floppy disk

. Check and repair file systems interactively

. i-node consistency check

. Print Lexicon entries

. Make a new file system

. Make a special file or named pipe

. Mount a file system

. Print file names corresponding to i-node

. Change to a new group

. Add new user to COHERENT system

. Reboot the COHERENT system

. Shut down the COHERENT system

. Flush system buffers

. Unmount a file system

. Create a prototype file system

. Sanity-check the UUCP system

COHERENT 386 supports an implementation of terminfo, the terminal-description utility used
under UNIX System V. (It also supports termcap, should you prefer to use that venerable, but still
useful. system.) The following commands help support terminfo:

LEXICON

commands 541

captolnfo
lnfocmp .
tic

Text Processors

. Convert termcap data to terminfo form (COHERENT 386 only)

. De-compile a terminfo binary file (COHERENT 386 only)

. Compile a terminfo description (COHERENT 386 only)

These commands help you to create orderly, attractive printed text. For information on how to print
the output of these commands, see the commands listed under Device Handling. above.

col. . . . Remove reverse and half line motions
deroff. . . Remove text formatting control information
nroff . . . Text-formattinglanguage
fwtable . . Build a font-width table from PCL or Postscript font
pr . . . Paginate and print files
prps. . Paginate and print files on Postscript printers
spell. . Find spelling errors
troff. . Extended text-formatting language
typo. . Detect possible typographical and spelling errors

UUCP
The UUCP commands lets you form a network with other COHERENT or UNIX systems. Members of
the network can grant each other permission to exchange mail and execute commands on each
others' systems remotely and automatically, without having to be directed by a human being. The
overview article UUCP describes the COHERENT UUCP facility in some detail. The following
commands perform UUCP-related work; note that some of the commands listed here also are also
listed in other sections of this article .

uucheck.
uucico ..
uucp ...
uudecode
uuencode
uuinstall.
uulog . ..
uumvlog.
uuname .
uurmlock
uutouch.
uux
uuxqt .. .

Miscellaneous

. Sanity-check the UUCP system

. Connect to a remote system

. Copy a file to or from a remote system

. Decode a transmitted UUCP file

. Encode a UUCP file for tranmission

. Configure UUCP control files

. Examine UUCP operations

. Archive UUCP log files

. Print names of recognized systems

. Remove UUCP lock files

. Force polling of a remote site
Execute a command on a remote system

. Execute file as requested by remote system

The following commands do not fit neatly into any of the above categories. These include some of
the more interesting and useful COHERENT commands, and are worth your attention.

ATclock . . Read/set the AT realtime clock
be Interactive calculator with arbitrary precision
calendar . . Electronic reminder service
chroot . Change root directory
clear . . Clear your terminal's screen
crypt . . Encrypt/ decrypt text
de Desk calculator
disable . . Disable a port
enable . Enable a port
env . . . Execute a command in an environment
factor. . Factor a number
help. . . Print concise description of command

LEXICON

542 compress

install
kill .
ksh ..
login .
passwd.
phone.
sh ..
SU •••

sum ..
uname
units
who ..
yes ..

Install a software update onto COHERENT
Signal a process
Invoke the Korn shell
Log in or change user name

. Set/change login password

. Print numbers and addresses from phone directory

. Invoke the Bourne shell

. Substitute user id. become superuser

. Print checksum of a file

. Print information about the system

. Convert measurements

. Print who is logged in

. Print infinitely many responses

For more information on any of these commands, see its entry within the Lexicon.

See Also
Lexicon

compress - Command
Compress a file
compress [-dfvc) [-bnum) [-w tmpflle) [.file ...) (COHERENT286)
compress [-dfvc] [-bnum] [.file ...) (COHERENT 386)

compress compresses a file using the Lempel-Ziv algorithm. With text files and archives, it often
can achieve 50% rate of compression.

If one or more .files are specified on the command, compress compresses them and appends the
suffix .z onto the end of each compressed file's name. If no .file is specified on the command line,
compress compresses text from the standard input and writes the compressed text to the standard
output.

compress recognizes the following options:

-b The "bits" option. compress uses the compression level set via the num argument.
Previous releases of compress would only allow values of num up to 12, with 12 being the
default value if the -b option was not specified. The version of compress introduced with
COHERENT version 3.1 handles values up to 16, with 12 being the default.

-c Send output to stdout.

-d Decompress rather than compress.

-f Force an output file to be generated even if no space is saved by compression.

-v Verbose mode: force compress to write statistics about its performance.

-w The "workfile" option. compress uses tmpflle to write its temporary file. By default
compress uses RAM device /dev/raml for temporary storage. For this reason, it is
strongly advised that you not use /dev/raml as a RAM disk. This option is available only
under COHERENT 286.

If you wish to ensure backwards compatibility with previous releases of COHERENT, do not use
compress with a num value greater than 12.

See Also
commands, ram, uncompress, zcat

LEXICON

con.h - console 543

~~,,~,,~,~~,~~~~~,~~~'~'
Configure device drivers
#include <sys/con.h>

The header file con.h gives the configuration for each device driver included with the COHERENT
system. Each driver is defined using the structure CON, which is declared in <sys/con.h>.

See Also
header mes, sload()

/dev/console is the device driver for the console of a COHERENT system on the IBM AT. It is
assigned major device number 2 and minor device number 0.

/dev/console interprets escape sequences in console output to control output on the console
monitor. These escape sequences are compatible with ANSI X3.25. Thus, they are similar to those
used by the DEC VT-100 and VT-220 terminals.

The special sequences include the following:

<eSC>>= Enter alternate keypad mode.

<esc>> Exit alternate keypad mode.

<esc>n Print the corresponding special graphics character.

<esc>7 Save the current cursor position.

<esc>8 Restore the previously saved cursor position.

<esc>c Reset to power-up configuration

<esc>D Move the cursor down one line without changing the column position. This
command moves the scrolling region text up and inserts blank lines if required.

<esc>E Move the cursor to the first column of the next line. This command move the
scrolling region down and inserts blank line if required.

<esc>M Move the cursor up one line without changing column position

<esc>[A Cursor up; stop at top of page.

<esc>[B Cursor down; stop at bottom edge of scrolling region.

<esc>[C Cursor right. Stop at right bottom corner of scrolling region.

<esc>[D Cursor left.

<esc>[E Cursor next line. Move scrolling region up and insert a blank line if required.

<esc>[F Move scrolling region text down and insert a blank line if required.

<esc>[n G Move the cursor to the nth column of the current line.

<esc>[n;m H Move the cursor to position m n. Position is relative to the scrolling region.

<esc>[I Move the cursor position to the next horizontal tabulation stop.

LEXICON

544 console

<esc>[n J

<esc>[n K

<esc>[L

<eSC>[M

<esc>[n 0

<esc>[S

<esc>[T

<esc>[Z

<esc>[n •

<esc>[n a

<esc>[n d

<esc>[ne

<esc>[mm f
<esc>[n;m g

<esc>[nm

LEXICON

Erase display:

0 Erase from cursor to end of screen.
1 Erase from beginning of screen to cursor.
2 Erase the entire screen.

Erase line:

0 Erase from cursor to end of line.
1 Erase from beginning of line to cursor.
2 Erase entire line.

Insert a line.

Delete a line.

Erase scrolling region:

0 Erase from cursor to end of scrolling region.
1 Erase from beginning of scrolling region to cursor.
2 Erase entire scrolling region. Reposition cursor at

top left corner of scrolling region.

Scroll the characters in the scrolling region up one line. The bottom of the scrolling
region is cleared to blanks.

Scroll the characters in the scrolling region down one line. The top line of the
scrolling region is cleared to blanks.

Move the cursor backwards to the last tabulation stop.

Move the cursor to column n of the current line.

Move the cursor forward n columns in the current line.

Move the cursor to row n of the display.

Move the cursor down n rows.

Move the cursor to column m of row n in the display.

Position cursor to column m of line n. Positioning is relative to the scrolling region.

Select graphics rendition:

0 All attributes off.
1 Bold intensity.
4 Underscore on.
5 Blink on.
7 Reverse video.
30 Black foreground.
31 Red foreground.
32 Green foreground.
33 Brown foreground.
34 Blue foreground.
35 Magenta foreground.
36 Cyan foreground.
37 White foreground.
40 Black background.
41 Red background.

<esc>[n;m r

<esc>[n v

<eSC>("?4h

<eSC>("?41

<eSC>("?7h

<eSC>("?71

<esc>'

<esc>b

<eSC>t

<eSC>U

42 Green background.
43 Brown background.
44 Blue background.
45 Magenta background.
46 Cyan background.
47 White background.
50 Black border.
51 Red border.
52 Green border.
53 Brown border.
54 Blue border.
55 Magenta border.
56 Cyan border.
57 White border.

Display lines n through m become the scrolling region.

Select cursor rendition:

0 Cursor visible.
1 Cursor invisible.

console 545

Enable smooth scrolling. This eliminates snow at the expense of speed.

Disable smooth scrolling (default).

Enable wraparound. Typing past column 80 moves the cursor to the first column
of the next line. scrolling if necessary.

Disable wraparound. The cursor will not move past column 80. This is useful if
the screen is being used as a block mode interface.

Disable manual input. Terminal "beeps" (outputs <ctrl-G>) when a key is typed on
the keyboard. Interrupt and quit signals are still passed to the terminal process.
Input may be renabled via <esc>c (power up reset) or <esc>b (enable manual
input).

Enable keyboard input that has been disabled by <esc>' (disable manual input).

Enter keypad-shifted mode.

Exit keypad-shifted mode.

The console keyboard sends the expected ASCII characters for the usual alphabetic, numeric, and
punctuation keys. The numeric keypad normally sends editing escape sequences, as described
below. When shifted or in num-lock mode, it sends 'O' to '9' and'.' instead. In num-lock mode (i.e.,
when the <num-lock> key is depressed, <shift> restores the normal escape sequences. In alternate­
keypad mode, the numeric keypad sends "<esc>"? p" to "<esc>"? y" for 'O' to '9' and "<esc>"? n" for'.'.

<home>

<Up>

<pg up>

<left>

<right>

Send "cursor home" (<esc>[H).

Send "cursor up" (<esc>[A).

Send (<esc>[V).

Send "cursor left" (<esc>[D).

Send "cursor right" (<esc>[C).

LEXICON

546 canst

<end> Send cursor to bottom left of screen (<esc>[24 H).

<down> Send "cursor down" (<esc>[BJ.

<pg dn> Move cursor to previous page (<esc>[U).

<ins> Toggle insert mode (<esc>(@).

 Delete the character at the cursor (<esc>[P).

The effects of the remaining keys are described below:

Fl-FIO Send <esc>[I x ..• <esc>(9 x, <esc>[Ox.

<alt>Fl-FIO Send <esc>[I y .•• <esc>[9 y, <esc>[0 y.

<esc> Mark the beginning of an escape sequence; <esc><esc> sends ASCII ESC.

<tab> Send ASCII HT.

<ctrl> When combined with 'A' through '_', send the corresponding ASCII control
character; when combined with <return>, send ASCII LF; when combined with
<backspace> send ASCII DEL; when combined with <alt> and , issue system
reset. <ctrl-X> cancels an escape sequence.

<Shift> Change alphabetic keys from lower case to upper case, or from upper case to lower
case in "caps lock" mode.

<alt> When combined with <ctrl-alt-del>, issue a system reset.

<backspace> Send ASCII BS: when combined with <ctrl>, send ASCII DEL.

<return> Send ASCII CR: when combined with <ctrl>, send ASCII LF.

• Send ASCII '*'.

<caps lock> Toggle "caps lock" mode.

<num lock> Toggle the interpretation of the numeric keypad, as described above.

<scroll lock> Toggle console output. like <ctrl-S> and <ctrl-Q>.

Send·-·.

+ Send'+'.

Files
I dev I console

See Also
ASCII, device drivers, signal()

-~"'~"'~'~~ .. ,~ ---~""~""'~~"''~
Qualify an identifier as not modifiable

The type qualifier const marks an object as being unmodifiable. An object declared as being const
cannot be used on the left side of an assignment (an lvalue), or have its value modified in any way.
Because of these restrictions, an implementation may place objects declared to be const into a read­
only region of storage.

See Also
C keywords, volatile

LEXICON

const.h - conv 547

Notes
Mark Williams C recognizes this keyword. but its semantics are not yet implemented. Thus. storage
declared with the const qualifier will not be treated as unmodifiable by the compiler, and no
warnings will be generated.

tfl,11fif•llJl®'Gr:tliJ•• •'-"'"''"'rno'~"'''rnorno~nonono"'~'~'~
Declare machine-dependent constants
#include <sys/const.h>

The header file const.h declares most machine-dependent constants. These are constants that
change among the various machines for which the COHERENT system is available; an example is
the clock speed of the processor.

See Also
header mes, times()

continue - Command nononononono-nonono_._"'''rno~nononornono •nornornono•"'rno_._nono
Terminate current iteration of shell construct
continue [n]

The command continue helps to control the flow of commands given to the shell. When it is used
without an argument. continue terminates the execution of the current iteration of the innermost
for. until. or while shell construct; that is, it acts like a branch to the enclosing done. after which
loop execution may continue or terminate. If an argument is given, continue terminates the
current iteration of the nth enclosing for, until. or while loop.

The shell executes continue directly.

See Also
break, commands, for, ksh, sh, until, while

MJ,@IJt.ll~'1.t;'~4a'J•1:ilj4~·]1i1i~·l1-••••••••-~"'rno~••no•••rno~rnonononono."'_._~
Force next iteration of a loop

continue forces the next iteration of a for. while, or do loop. For example,

while ((foo = getchar()) != EOF) {
if ((foo < 'a') I I (foo > ' z '))

continue;
/* do something */

forces the while loop to throw away everything except lower-case alphabetic characters.

See Also
C keywords, for, while

conv - Command rnornonono"''''_._, .. ,,,,,-.._ .. _._ .. _._,rnornorno.no"''~rnornonono~
Numeric base converter
conv [number]

conv converts number to hexadecimal. decimal. octal, binary, and ASCII characters, and prints the
results on the standard output. If no number is given, conv reads one number per line from the
standard input until you type the end-of-file character <ctrl-D>.

number may be in hexadecimal. decimal. octal. binary. or character format, as shown below. Each
example represents the decimal number 97.

LEXICON

548 core

Base
hexadecimal
hexadecimal
decimal
octal
binary
character

Representation
Ox61
#61
97
0141
$1100001
'a'

conv represents an ASCII control character in its output by preceding the character by a carat w.

For example. it prints <ctrl-X> as •Ax•. conv prints "bad digit" if anything is wrong with the input.

See Also
be, commands, conv, dd, od, units

Notes
conv represents the input number internally as a long integer. If number does not fit in a long,
conv silently truncates it.

core - File Format ~~'~"'~~~~~,~~'~"~~ ...
Core dump file format
#include <sys/uproc.h>

When a process terminates abnormally because of a process fault or because it receives an
asynchronous signal from another process. COHERENT tries to write a memory dump of the process
into a file called core. This file contains an image of the process code, data segments, the system
description segment for the aborted process. The following lists the segment types and the symbolic
names of their locations in the file:

SIUSERP
SISTACK
SIS TEXT
SIPTEXT
SISDATA
SIPDATA

User process description segment
User stack segment
Shared text segment
Private text segment
Shared data segment
Private data segment

Not every dump necessarily contains all of the above segments. Neither shared text nor shared data
segments are dumped. They are write-protected in memory, and the load module that was running
when the dump occurred contains shared segment data.

The best way for a program (such as a debugger) to read the core file is to first read the user process
description segment, which is always at the front and has a fixed size. It should be read into an
area UPASIZE bytes long. but referenced with structured type UPROC (somewhat smaller than
UPASIZE because of the system stack, which contains the user registers and other information in
fixed places).

The u_segl member of the UPROC structure is a list of segment reference descriptors that contain
the virtual address and length of each segment, which correspond exactly to its size in the dump.
NUSEG segments are possible; the flag SRFDUMP in the field sr_flag indicates that a segment was
dumped. By using the above method, you can use the entire file to reference program data and code
at the time of the dump.

Other information found in the user process structure may be pertinent; the header file
sys/uproc.h contains more information.

LEXICON

cosO - coshO 549

See Also
db, file formats, kill, l.out.h, signal{), wait{)

Diagnostics
COHERENT will not write core if it already exists as a non-ordinary file or if there is more than one
link to it. The 0200 bit in the status returned to the parent process by wait indicates a successful
dump.

Calculate cosine
#include <math.h>
double cos(radian) double radian;

cos{) calculates the cosine of its argument radian, which must be in radian measure.

Example
For an example of this function, see the entry for acos{).

See Also
mathematics library

coshO - Mathematics Function (libm)
Calculate hyperbolic cosine
#include <math.h>
double cosh(radian) double radian;

cosh() calculates the hyperbolic cosine of radian, which is in radian measure.

Example
The following program prompts you for a number; it then uses cosh{). sinh(). and tanh() to
generate, respectively, the hyperbolic cosine, sine, and tangent of a number.

#include <math.h>
#include <stdio.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

}

if (errno)
perror (name) ;

else
printf("%10g %s\n", value, name);

errno = O;

main()
{

extern char *gets();
double x;
char string[64];

LEXICON

550 cp

for(;;) {

}
}

printf ("Enter number: ");
if(gets(string) == NULL)

break;
x = atof(string);

display(x);
display(cosh(x));
display(sinh(x));
display(tanh(x));

See Also
mathematics library

Diagnostics
When overflow occurs, cosh() returns a huge value that has the same sign as the actual result.

~""~ ~~~~-~~~~~~~~~~~~~~~-~
Copy a file
cp [-d] oldname newname
cp [-d] fllel ... flleN directory

cp copies files. In its first form. cp copies the contents of oldname to newname. which it creates if
necessary. If newname is a directory, cp copies oldname to a file of the same name in directory
new.file.

In its second form, cp copies each.file. fromjllel through.flleN, into directory.

With the -d option, cp preserves the date (modification time) of the source file or files on the target
file or files. By default, target files get the current time.

A file cannot be copied to itself.

See Also
commands, ksh, mv, sh, wildcards

Notes
If you use cp to copy a flle into another, existing file, the newly copied file takes on the permissions
of the file into which the text was copied. For example, consider the files foo and bar, whose
permissions are as follows:

-rw-r--r-- 1 f red
-rw-r----- 1 f red

user
user

40 Tue Apr 14 18:19 bar
1816 Tue Apr 14 20:53 foo

If you use cp to copy foo into bar, then typing ls -1 shows the following:

-rw-r--r-- 1 f red
-rw-r----- 1 fred

user
user

1816 Tue Apr 14 21:37 bar
1816 Tue Apr 14 20:53 foo

bar now has exactly the same contents as foo but retains its old set of permissions.

LEXICON

cpdir - cpio 551

~·~·~"''"''~~~···~~~,,~~ ·~~~""~~~
Copy directory hierarchy
cpdir [option ... I dir 1 dir2

cpdir copies source directory hierarchy dirl to target hierarchy dir2, which is created if necessary.
Either hierarchy may straddle device boundaries.

cpdir preserves as much as possible of the source structure. Files under dirl go to identically
named files under dir2. Links between source files are preserved as links between corresponding
target files. Preserved source file attributes include mode, subject to the user's file creation mask. If
the user is not the superuser, cpdir cannot preserve the owner, group, and sticky bits in the mode,
and the invoking user owns all new files; under the superuser it preserves these as well. In
addition, the superuser may "copy" special nodes and pipe nodes; cpdir copies only the facility, not
the contents. It also preserves real major and minor device numbers of special nodes.

If the target file corresponding to a source file exists and is not a directory, cpdir unlinks it before
copying. This differs from the action of cp.

cpdir recognizes the following options:

-a Give a verbose account on one line of the files copied.

-d Preserve the last-modified date instead of using the present date.

-e Print error message and continue execution after an error. The default action is to exit on
any error.

-r [n] Descend no more than n levels in the source hierarchy. Contents of dirl are at level 1. If
missing. n defaults to 1.

-s name
Suppress the copy of file name, which should be the pathname of the file relative to dir 1.

-t Test only, make no changes. With this option, cpdir prints a report of all errors (-e is
implied), all unlinked target files, and other useful information, including a summary of all
external links into the target hierarchy that would have been broken had the unlinking
actions been executed.

-u Update regular files. Copy the source only if it was created or altered more recently than
the target file, or if the target does not exist.

-v Print a verbose account of its activities. cp prints a file-by-file account of its actions, in
addition to the information listed under -t.

See Also
cp, commands, link(), umask(), unlink()

~,~,·~·~""~~~""~''~ ""~~~~~·~~
Archiving/backup utility
cpio -o[Bacv]
cpio -i[Bcd.fmrtuv] (pattern ... J
cpio -p[adlmruv] directory

cpio is an archiving utility that reads and writes files in the format specified by the cpio
Archive/Interchange File Format specified in IEEE standard l 003.1-1988.

Options
cpio recognizes the following command-line options:

LEXICON

552 cpio

-a Reset the access times of input files after they have been copied. When the -1 option is also
specified, the linked files do not have their access times reset. Can be used only with the -o
or -i options.

-B Change the size of a block. Input/output is to be blocked 5,120 bytes to the record. This
option can be used only with the -o or -i options, for data directed to or from character­
special files.

-c Write header information in ASCII characters for portability. Can be used only with the -i or
-o options.

-d Creates directories as needed. Can be used only with the -i or -p options.

-f Copy all files except those in whose names match a pattern. Can be used only with the -i
option.

-i In. Read the standard input, which it assumes to be an archive that had been created with
the -o option to cpio. Copy all files within the archive whose names match a pattern into the
current directory (default, all files).

-1 Whenever possible, link files rather than copying them. Can be used only with the -p
option.

-m Retain previous modification times. This option is ineffective on directories that are being
copied. Use with the -i, -o, or -p options. If the archive was built without the -m, using it
with the -o option does nothing.

-o Out. Copy all files whose names match a pattern (default, all files) into an archive written to
standard output.

-p Pass mode. This option causes cpio to read standard input for a list of file names to copy to
destination directory. This mode of operation is similar in functionality to command cpdir,
with the added ability to specify individual file names via standard input.

-r Interactively rename files. Before it copies a file, cpio asks you to rename the file. If you
type just <return>, cpio skips the file. Should be used only with the -i or -o options.

-t Print a table of contents of an existing archive; do not copy files from the archive. Can be
used only with the -i option.

-u Copy files unconditionally. Usually an older file will not replace a new file with the same
name. Can be used only with the -i or -p options.

-v Verbose option; print the names of all affected files. Can be used only with the -i option.
Provides a detailed listing when used with the -t option.

Operands
The following operands are available:

pattern This names the files to be manipulated by cpio. This can be a simple regular expression.

directory
The destination directory.

cpio and Floppy Disks
cpio can write its output to a variety of devices, including tape drives and floppy-disk drives. Most
users, however. will write their backups to floppy disks. This section describes how to use cpio with
floppy disks.

To begin, you must redirect cpio's output to the the "raw" (or character-special) floppy device in
which you have placed the floppy disk. The Lexicon entry for floppy disks includes a table that

LEXICON

cpio 553

shows the floppy-disk device associated with each type and size of floppy-disk drive.

All floppy disks must be preformatted. See the Lexicon entry for fdformat for information on how to
format a floppy disk. cpio does rwt work through COHERENT file systems: if a floppy disk has
COHERENT file systems on it, cpio simply overwrites it. Obviously, since cpio does not work
through the COHERENT file system, there is no need to mount a floppy disk before you use it with
cpio: just pop it into the drive, close the gate, and type the cpio command.

cpio lets you back up more than one floppy disk's worth of data at one time. If a cpio archive
exceeds the size of one floppy disk, cpio issues a prompt of the form:

Ready for volume 2
Type "device/name" when ready to proceed,,,

Just remove the first disk and insert the next; then type the name of the floppy device you are
using, e.g. /dev/rfhaO or /dev/rfval, and press <Enter>. As mentioned above, you must use the
raw floppy-disk device and pre-formatted floppy disks.

Examples
The following command copies all files and directories listed by the command find and copies them
into the archive newfile.cpio:

find. -print I cpio -oc > .. /newfile.cpio

The following command reads the cpio archive newfile.cpio and extracts all files whose names
match the patterns memo/al or memo/b*:

cpio -icdv "memo/al" "memo/b*" < •• /newfile.cpio

Note that the -d option forces cpio to create the sub-directory memo and write the files into it.
Otherwise, the files would have been written into the current directory. Option -v causes cpio to
display each file name as it is extracted from the archive.

The following commands perform a multi-volume backup of all files on mounted filesystem /v to the
character-special (i.e., "raw") floppy device /dev /rthaO:

su root
cd Iv
find . -print cpio -ocv >/dev/rfhaO

If the cpio archive exceeds one diskette, you will be prompted to insert another formatted diskette.

See Also
commands,dump,pax,tar,ustar

Notes
cpio has the following restrictions:

Path names are restricted to 256 characters.

You must have appropriate privileges to copy special files.

Blocks are reported in 512-byte quantities.

cpio was developed by Mark H. Colburn and sponsored by The USENIX Association. Copyright ©
1989 by Mark H. Colburn (mark@jhereg.MN.ORG). All rights reserved. See the compressed tar
archive /usr/src/alien/pax.tar.Zfor full descriptions of copyright. restrictions, and licensing terms.

cpio is provided in binary form per the licensing terms set forth by the author. It is distributed as a
service to COHERENT customers, as is. It is not supported by Mark Williams Company. Caveat
utilitor.

LEXICON

554 cpp - C preprocessor

~'"~~~ ~""" .._ ... ~'""'"""""'~
Cpreprocessor
/llb/cpp [option ...] Iflle ...]

The command cpp calls the C preprocessor to perform C preprocessing. It performs the operations
described in section 3.8 of the ANSI Standard; these include file inclusion, conditional code
selection, constant definition, and macro definition. See the entry on preprocessing for a full
description of C's preprocessing language.

Normally, cpp is used to preprocess C programs, but it can be used as a simple macro processor for
other types of files as well. cpp reads each input.file, processes directives. and writes its product on
stdout. If the option -E is not used, cpp also writes into its output statements of the form #linen
filename, so the parser can connect its error messages and debugger output with the original line
numbers in your source files.

Options
cpp recognizes the following options:

-DVARIABLE
Define VARIABLE for the preprocessor at compilation time. For example, the command

cc -DLIMIT=20 foo.c

tells the preprocessor to define the variable LIMIT to be 20. The compiled program acts as
though the directive #define LIMIT 20 were included before its first line.

-E Strip all comments and line numbers from the source code. This option is used to
preprocess assembly-language files or other sources, and should not be used with the other
compiler phases.

-I directory
C allows two types of #include directives in a C program, i.e., #include "file.h" and
#include <file.h>. The -I option tells cpp to search a specific directory for the files you have
named in your #include directives, in addition to the directories that it searches by default.
You can have more than one -1 option on your cc command line.

-ofile Write output into file. If this option is missing. cpp writes its output onto stdout, which
may be redirected.

-UVARIABLE
Undefine VARIABLE. as if an #undef directive were included in the source program. This is
used to undefine the variables that cpp defines by default.

See Also
C preprocessor, cc, commands

Notes
Under COHERENT 286. cpp exists as a separate executable program. Under COHERENT 386, cpp
exists as an aspect of a single, large executable program. Under either edition of COHERENT, you
can still invoke cpp under the compiler command cc by using cc's option -E.

C preprocessor - Overview ~''~~~~~ ~~ ~~~ ~""'""''""'~~
Preprocessing encompasses all tasks that logically precede the translation of a program. The
preprocessor processes headers, expands macros, and conditionally includes or excludes source
code.

LEXICON

Directives
The C preprocessor recognizes the following directives:

#if ..
#elif . .
#else .
#end.if

Include code if a condition is true
Include code if directive is true
Include code if preceding directives fail
End of code to be included conditionally

#ifdef Include code if a given macro is defined
#ifndef Include code if a given macro is not defined

#define.
#undef.
#include
#line ..

• Define a macro
• • Undefine a macro
• • Read another file and include it
•• Reset current line number

C preprocessor 555

The COHERENT 386 preprocessor also recognizes the directive #pragma, which performs
implementation-specific tasks. See the Lexicon entry on #pragma for details.

A preprocessing directive is always introduced by the '#' character. The '#' must be the first non­
white space character on a line, but it may be preceded by white space and it may be separated from
the directive name that follows it by one or more white space characters.

Preprocessing Operators
The Standard defines two operators that are recognized by the preprocessor: the "stringize" operator
#, and the "token-paste" operator##. It also defines a new keyword associated with preprocessor
statements: defined.

The operator # indicates that the following argument is to be replaced by a string literal; this literal
names the preprocessing token that replaces the argument. For example, consider the macro:

#define display(x) show((long)(x), #x)

When the preprocessor reads the line

display(abs(-5));

it replaces it with the following:

show ((long) (abs (-5)) , "abs (-5) ") ;

The## operator performs "token pasting'' - that is, it joins two tokens together. to create a single
token. For example, consider the macro:

#define printvar(x) printf("%d\n", variable## x)

When the preprocessor reads the line

printvar(3);

it translates it into:

printf("%d\n", variable3);

In the past, token pasting had been performed by inserting a comment between the tokens to be
pasted. This no longer works.

Predefined Macros
The ANSI Standard describes the following macros that must be recognized by the preprocessor:

LEXICON

556 Cpreprocessor

DATE
FILE
LINE
STDC
TIME

Date of translation
Source-file name
Current line within source file
Conforming translator and level
Time of translation

For more information on any one of these macros, see its entry.

Conditional Inclusion
The preprocessor will conditionally include lines of code within a program. The directives that
include code conditionally are defined in such a way that you can construct a chain of inclusion
directives to include exactly the material you want.

The preprocessor keyword defined determines whether a symbol is defined to the #if preprocessor
directive. For example,

#if defined(SYMBOL)

or

#if defined SYMBOL

is equivalent to

#ifdef SYMBOL

except that it can be used in more complex expressions, such as

#if defined FOO && defined BAR && FOO==lO

defined is recognized only in lines beginning with #if or #elif.

Note that defined is a preprocessor keyword, not a preprocessor directive or a C keyword. You
could, for example, write a function called defined() without any complaint from the C compiler.

The COHERENT 286 preprocessor implicitly defines the macros _DECVAX. IAPX286, MWC, and
COHERENT. The COHERENT 386 preprocessor implicitly defines the macros _IEEE. _1386, MWC,
and COHERENT.

These can be used to include conditionally code that applies to a specific edition of COHERENT. For
example, COHERENT 286 uses the DECVAX form of floating-point number, whereas COHERENT
386 uses IEEE; if you were writing code that intensively used floating-point numbers and you
wanted to compile the code under both editions of COHERENT, you could write code of the form:

#ifdef DECVAX

#elif IEEE

#end if

The C preprocessor under each edition of COHERENT would ensure that the correct code was
included for compilation.

Macro Definition and Replacement
The preprocessor performs simple types of macro replacement. To define a macro, use the
preprocessor directive #define Identifier value. The preprocessor scans the translation unit for
preprocessor tokens that match Identifier; when one is found, the preprocessor substitutes value for
it.

LEXICON

creatO - cron 557

cpp
Under COHERENT. C preprocessing is done by the program cpp. The cc command runs cpp as the
first step in compiling a C program. cpp can also be run by itself.

cpp reads each inputfile; it processes directives, and writes its product on stdout.

If its -E option is not used, cpp also writes into its output statements of the form #line nfilename.
so that the parser ccO can connect its error messages and debugger output with the original line
numbers in your source files.

See the Lexicon entry on cpp for more information.

See Also
Clanguage,cc,cpp,detlned

Ellll§t1@11W1!1
Create/truncate a file
int creat(file, mode) char ":file; int mode;

creat() creates a new file or truncates an existingfile. It returns a file descriptor that identifies file
for subsequent system calls. If file already exists, its contents are erased. In this case, creat()
ignores the specified mode; the mode of the file remains unchanged. lffile did not exist previously,
creat() uses the mode argument to determine the mode of the new file. For a full definition of file
modes, see chmod() or the header file stat.h. creat() masks the mode argument with the current
umask, so it is common practice to create files with the maximal mode desirable.

Example
For an example of how to use this routine. see the entry for open().

See Also
chmod(), fopen(), open(), stat.h, STDIO, system calls

Diagnostics
If the call is successful, creat() returns a file descriptor. It returns -1 if it could not create the file,
typically because of insufficient system resources or protection violations.

cron - System Maintenance ·~~~~'~"-~···~"-~ Execute commands periodically
/etc/cron&

cron is a daemon that executes commands at preset times.

Once each minute cron searches for commands to execute. cron first looks for file
/usr/llb/crontab. If it exists. then cron reads it for commands to execute. If /usr/llb/crontab
does not exist, however, cron searches /usr/spool/cron/crontabs for command files. Each user
can have her own command file in that directory. See the Lexicon entry for crontab for information
how to write and load a command file.

For each entry in each command file, cron compares the current time with the scheduled execution
time and executes the command if the times match. When it finishes the search, cron sleeps until
the next minute. Because it never exits, cron should be executed only once (customarily by
/etc/re).

cron is designed for commands that must be executed regularly. Temporal commands that need to
be executed only once should be handled with the command at.

LEXICON

558 cron

Permissions
cron performs some interesting manipulations with permissions. This is necessary to allow cron to
run a wide variety of programs untended without creating loopholes in the system's security.
Occasionally. this can create difficulties for users who do not grasp what cron does or why. The
following describes how cron manipulates permissions on the programs you ask it to run.

To begin, when cron executes a user's crontab file, it changes the effective user ID to the ID of that
user whose crontab file is being executed, cd's to the user's HOME directory. When, however. cron
runs an entry from a /usr/lib/crontab, it uses the user ID and group ID of user daemon. This
prevents security holes involving entries in a crontable file.

For example, the following crontab entry contains redirection:

* * * * * echo hello world >/dev/console 2>&1

If cron finds this entry in /usr/lib/crontab, it tries to execute the command as user daemon. The
command will not execute it if user daemon lacks permission to write to I dev I console. Note that
using /usr/lib/crontab is not recommended.

If however, it finds the entry in user henry's crontab file. it tries to execute the command under the
effective user ID of henry. The command will fail if henry lacks permission to write to
/dev /console, and will succeed if he does.

When the shell executes a command in the background. it reads its standard input from /dev/null
(unless redirected) and writes its standard output to the controlling tty. If cron is invoked with
/etc/cron& from /etc/re. there is no controlling tty, so the standard output goes to /dev/null.
Thus,

* * * * * echo hello world

typically writes hello world to /dev/null.

When a user logs in, /bin/login grabs the tty and runs chown and chmod on it. It is owned by the
user with default permissions 700. If the user who has logged in on the console types the command

chmod /dev/console a+w

to allow all users to write to it, then the crontab entry

* * * * * echo hello world >/dev/console 2>/tmp/cron.err

will indeed echo to the console every minute.

cron should be executed only once, at boot time. It uses /usr/lib/cron/FIFO as a lock file to
prevent the execution more than one cron daemon.

If mail options are enabled, which is the default. cron sends mail to the owner of a crontab about
all commands in that file that failed.

To allow cron to remove lock file /usr/lib/cron, do not send signal KILL to cron. Instead, use
signal TERM. cron ignores signals INT, HUP, and PIPE. cron uses the signal ALRM internally.

Files and Directories

/usr/spool/cron/crontabs
Main cron directory. It holds each user's command file. Permissions: 700 root root.

/usr /lib/ cron/FIFO
Lock file (named pipe). Created by cron; removed by cron/rc.

LEXICON

crontab 559

/usr/lib/cron/cron.allow
List of allowed users. Permissions: 600 root root.

/usr/lib/cron/cron.deny
List of denied users. Permissions: 600 root root.

/usr/lib/crontab
Global crontab file, used by previous COHERENT cron mechanism. /usr/spool/cron
Spool directory parent. Permissions: 700 root root.

/usr/spool/cron/crontabs
Spool directory. Permissions: 700 root root.

See Also
com11UU1ds,crontab

Notes
cron does not presently write into log file. The size of the hostname + domain must not exceed
1.000 characters.

cron looks for /usr/lib/crontab to remain compatible with the COHERENT 286 version of cron. If,
however. you continue to keep all cron commands in file /usr/lib/crontab. it will not be possible to
run setuid cron tasks for logins that have a password. It is strongly recommended that you do not
use /usr/lib/crontab. and instead create individual crontab files.

f:it.mm.11•w.r . .pi.1.~"'"'~ ~'~'''~''''~"''''"""
Copy a command file into the crontab directory
/usr/bin/crontab [-11 [-r) [-fjllename) [-m[edll [-w.tser)

The command crontab copies a command file into directory /usr/spool/cron/crontabs. This
directory holds the command files for all users. This mechanism permits each user to have her own
file of commands to be executed periodically. If the file name is '-',then crontab reads the standard
input.

crontab recognizes the following options.

-!filename
Replace your crontab file withjllename.

-1 List your crontab file.

-m[ed) Enable/disable the sending of mail to a user about any command in her crontab file that
fails.

-r Remove your crontab file.

-u user Specify user. Only the superuser root can specify any user other than herself.

Format of a crontab File
A crontab command file consists of lines separated by newlines. Each line consists of six fields
separated by white space (tabs or blanks). The first five fields describe the scheduled execution time
of the command. Respectively, they represent the minute (0-59), hour (0-23), day of the month (1-
31), month of the year (1-12), and day of the week (0-6, 0 indicates Sunday). Each field can contain
a single integer in the appropriate range, a pair of integers separated by a hyphen '-' (meaning all
integers between the two, inclusive), an asterisk'*' (meaning all legal values), or a comma-separated
list of the above forms. The remainder of the line gives the command to be executed at the given
time.

For example, the crontab entry

LEXICON

560 crontab

29 * * 7 O msg henry Succotash!

means that every hour on the half-hour during each Sunday in July. cron will invoke the command
msg, and the user named henry will have the message

daemon: Succotash!

written on his terminal's screen (if he is logged in).

crond recognizes three special characters and escape sequences in a crontab file. If a command
contains the percent character '%', crond executes only the portion up to the first '%' as a
command, then passes the remainder to the command as its standard input. crond translates any
percent characters'%' in the remainder to newlines. To prevent the special interpretation of a '%',
precede it with a backslash.'\%'. Finally. crond removes the sequence \<newline> from the text
before it passes the text to the shell sh; this can be used to make an entry in the crontab more
legible.

You must pay special attention to permissions when you write a crontab command file. For
information on how the crontab daemon crond manipulates permissions, see the entry for crond in
the Lexicon.

Directories and Files
/usr I spool/ cron/ crontabs

Main cron directory. It holds each user's command file. Permissions: 700 root root.

/usr/lib/cron/FIFO
Lock file (named pipe). Created by cron; removed by crond/rc.

/usr/lib/cron/cron.allow
List of allowed users. Permissions: 600 root root.

/usr/lib/cron/cron.deny
List of denied users. Permissions: 600 root root.

/usr/lib/crontab
Global crontab file, used by previous COHERENT cron mechanism. /usr/spool/cron
Spool directory parent. Permissions: 700 root root.

I usr I spool/ cron/ crontabs
Spool directory. Permissions: 700 root root.

See Also
commands, crond

Notes
COHERENT crontab is superset of the command of the same name included with UNIX System V.
release 3 (SVR3). The main differences are as follows:

COHERENT crontab prints the usage when no options have been chosen, whereas SVR3
crontab reads stdin and can just remove the user's crontab file.

SVR3 crontab does not include option -fjtle _name.

SVR3 crontab does not include option -u user. Under SVR3 crontab, you must su to another
user (e.g .. uucp) before you can maintain her crontab file.

LEXICON

crypt - cryptO 561

-~~~
Encrypt I decrypt text
crypt (password)

The command crypt encrypts data. It emulates a rotor-encryption machine. such as the Enigma or
Hagelin C-48 cipher machines. Unlike these machines. crypt uses only one rotor, with a 256-
character alphabet and a keying sequence of period 2 '32.

crypt reads text from standard input and writes the encrypted text to standard output. password is
used to construct the model of the machine and to start the keying sequence. If no password is
given, crypt prompts for a password on the terminal and disables echo while it is being typed in.
The password may be up to ten characters long. but must not be empty; all characters past the first
ten are ignored. All characters are legal, although it may not be possible to input certain characters
from the terminal.

crypt uses the same password for both encryption and decryption. For example, the commands

crypt COHERENT <filel >f ile2
crypt COHERENT <file2 >f ile3

leavejlle3 identical tojllel.

'Encrypted files produced by ed with its -x option may be read by crypt, and vice versa, as ed uses
crypt to perform its encryption.

Security of a cryptosystem depends on several factors:

1. Brute-force attempts to break the system should be infeasible. Passwords should be at least
five characters long; although the construction of the machine model from the password takes
a substantial fraction of a second, it is still plausible that encrypted files could be read by a
brute-force search of a portion of the password space (say, all passwords less than four
characters long).

2. Cryptanalysis of the basic encryption scheme should be very hard. Analysis of rotor machines
is understood. but it is difficult and in most cases probably not worth the trouble.

3. Passwords must be kept secret. crypt erases password as soon as it can, to avoid the
possibility that it could appear in the output of ps.

4. Privileged access to the system must be guarded. Under COHERENT. the security of crypt can
be no better than the security governing access to superuser status, because the superuser can
do practically anything. This is probably crypt's most vulnerable point.

Files
I dev I tty - Typed passwords

See Also
commands
Kahn D: The Code Breakers. New York. Macmillan. 1967.
Morris R: The Hagelin cipher machine (M-209). Cryptologia, July 1978.

cryptO - General Function ~~~"~"~~
Encryption using rotor algorithm
char •crypt(key, extra); char "'key, •extra;

crypt() implements a version of rotor encryption. It produces encrypted passwords that are verified
by comparing the encrypted clear text against an original encryption.

LEXICON

562 ct - ctags

key is an ASCII string that contains the user's password. extra is a string of two additional
characters, stored in the password file with the encrypted password. Each character must come
from an alphabet of 64 symbols, which consists of the upper-case and lower-case letters, digits, the
period',', and the slash·/'.

crypt() returns a string built from the 64-character alphabet described above; the first two
characters returned are the extra argument, and the rest contain the encrypted password.

See Also
ASCII, general functions

-~~,-..~~ .-..~-..~-..~,~~~~'""'~'
Controlling terminal driver

For each process, the controlling terminal driver /dev/tty is an interface to the appropriate terminal
driver. COHERENT passes any input-output call (e.g. close, ioctl, open, read, or write) on this
special file directly to the controlling terminal device for the requesting process.

Normally, the controlling terminal is the default standard input. output, and error device. This is
not the case for daemon processes started by the initial process.

Files
/dev/tty

See Also
device drivers, init

Diagnostics
When a call finds no valid controlling terminal for a process, it returns a value of -1 and sets errno
to ENXIO.

ctags - Command ~-..-..~-.~~,~-.~~-..~-.v °"'~~~~~
Generate tags and refs files for vi editor
ctags [-r)jiles ...

ctags generates the files tags and refs from a group of C-source files. tags is used by the elvis
editor's :tag command, <ctrl-]> command, and -t option. refs is used by the command ref.

Each C-source file is scanned for #define statements and global function definitions. The name of
the macro or function becomes the name of a tag. For each tag, a line is added to tags, which
contains the following:

• the name of the tag
• a tab character
• the name of the file containing the tag
• a tab character
• a way to find the particular line within the file

refs is used by the command ref. which can be invoked via elvis's K command. When ctags finds a
global function definition, it copies the function header into refs. The first line is flush against the
right margin. but the argument definitions are indented. The command ref can search refs much
faster than it could search all C-source files. The file-names list will typically include the names of
all C-source files in the current directory, in the following format:

ctags -r *.[ch]

LEXICON

ctimeO 563

The -r to ctags tells it to generate both tags and refs. Without -r, it generates only tags.

See Also
commands, elvis, ref

Notes
This version of ctags does not parse ANSI source code very well. It has trouble recognizing the ANSI
function definitions.

ctags is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda),assisted by numerous volunteers.
It is freely redistributable. subject to the restrictions noted in included documentation. Source code
for ctags is available through the Mark Williams bulletin board. USENET. and numerous other
outlets.

Please note that this program is offered as a service to COHERENT users, but is not supported by
Mark Williams Company. Caveat utllltor.

ctimeO - Time Function ~~~~
Convert system time to an ASCII string
#include <time.h>
#include <sys/types.h>
char •ctime(tlmep) time_t •ttmep;

ctime() converts the system's internal time into a string that can be read by humans. It takes a
pointer to the internal time type time_t. which is defined in the header file time.h, and returns a
fixed-length string of the form:

Thu Mar 7 11:12:14 1989\n

time_t is defined in the header types.h.

ctime() is implemented as a call to localtime() followed by a call to asctime().

Example
For another example of this function, see the entry for asctime().

#include <time.h>
#include <sys/types.h>

main()
{

}

time_t t;

time(&t);
printf(ctime(&t));

See Also
time, time.h

Notes
ctime() returns a pointer to a statically allocated data area that is overwritten by successive calls.

LEXICON

564 ctype

~~~-..~ ---~~ ~~~-..~'~'"'~ 
#include <ctype.h> 
The ctype macros and functions test a character's type. and can transform some characters into 
others. They are as follows: 

isalnum() 
is alpha() 
isascil() 
iscntrl() 
isdigit() 
!slower() 
!sprint() 
ispunct() 
isspace() 
is upper() 
_tolower() 
_toupper() 

Test if alphanumeric character 
Test if alphabetic character 
Test if ASCII character 
Test if a control character 
Test if a numeric digit 
Test if lower-case character 
Test if printable character 
Test if punctuation mark 
Test if a tab, space, or return 
Test if upper-case character 
Change to lower-case character 
Change to upper-case character 

These are defined in the header file ctype.h. and each is described further in its own Lexicon entry. 

Example 
The following example demonstrates the macros isalnum, isalpha, isascil. iscntrl. isdigit. !slower. 
!sprint. ispunct, and isspace. It prints information about the type of characters it contains. 

#include <ctype.h> 
#include <stdio.h> 

main () 
{ 

FILE *fp; 
char fname[20]; 
int ch; 
int alnum O• 

' 
int alpha O· 

' int allow O; 
int control = O; 
int printable = 0. 

' int punctuation O• 
' int space = O• 

' 
printf("Enter name of text file to examine: "); 
fflush(stdout); 
gets(fname); 

if ((fp = fopen(fname, "r")) !=NULL) { 
while ((ch= fgetc(fp)) != EOF) { 

LEXICON 



} 

if ( isascii (ch)) { 
if ( isalnum( ch)) 

alnum++; 
if (is alpha (ch)) 

alpha++; 
if (is lower( ch)) 

allow++; 
if (iscntrl(ch)) 

control++; 
if (isprint(ch)) 

printable++; 
if ( ispunct (ch) ) 

punctuation++; 
if (is space (ch)) 

space++; 

} else { 
printf("%s is not ASCII.\n", 

fname); 
exit(l); 

} 
} 

printf("%s has the following:\n", fname); 
printf("%d alphanumeric characters\n", alnum); 
printf("%d alphabetic characters\n", alpha); 
printf("%d alphabetic lower-case characters\n", 

allow); 
printf("%d control characters\n", control); 
printf("%d printable characters\n", printable); 
printf("%d punctuation marks\n", punctuation); 
printf("%d white space characters\n", space); 
exit(O); 

} else { 

} 

printf("Cannot open \"%s\".\n", fname); 
exit(2); 

See Also 
ctype.h, libraries 

ctype.h 565 

W2WlilliMU·r:tli~~'~"~~'~"~'"~''''~""~------~ 
Header ftle for data tests 
#include <ctype.h> 

ctype.h is a header file that holds the texts of the macros described in the overview entry ctype. 

See Also 
ctype,headerfiles 

LEXICON 



566 curses 

~'~~~"'~~~~~~,~~"~~~~,~~~~~'-"W 
Library of screen-handling functions 

curses is a library of routines that allow you to manipulate the screen in a device-independent 
manner. With curses, you can perform rudimentary graphics, even on dumb terminals: the range of 
routines includes mapping portions of the screen, drawing pop-up windows, creating forms with 
fields for data entry. and highlighting portions of text. 

Implementations of curses 
COHERENT 286 and COHERENT 386 each has its own implementation of curses. 

The COHERENT 286 version of curses reads the termcap data base. It uses seven-bit chars, which 
limits the character set available for display to those in the lower 127 characters of the ASCII table. 
Its routines are kept in the library libcurses, whereas the routines for reading the termcap data 
base are kept in library libterm. Thus, to compile and link program curses_ex.c under COHERENT 
286, you must use the following command line: 

cc curses ex.c -lcurses -lterm 

COHERENT 386 uses the Cornell edition of curses. This implementation of curses reads the 
terminfo data base. It uses eight-bit characters; thus. the COHERENT 386 edition of curses can 
display characters with accents and diacritical marks. The COHERENT 386 edition of the library 
libcurses contains the functions needed to read terminfo capability codes; thus, to compile the 
program curses_ex.c. use the following command line: 

cc curses_ex.c -!curses 

If you have special terminal descriptions under termcap, the command captoinfo converts a 
termcap description into its terminfo analogue. See the articles on termcap and terminfo for 
more information on how these forms of terminal description differ. 

Most of the material in this article applies to both implementations of curses. However, the 
implementations do differ somewhat in the suite of macros and functions that they support. 
Material that applies just to COHERENT 286 or COHERENT 386 will be marked as such. 

How curses Works 
curses organizes the screen into a two-dimensional array of cells. one cell for every character that 
the device can display. It maintains in memory an image of the screen, called the curscr. A second 
image, called the stdcur. is manipulated by the user; when the user has finished a given 
manipulation, curses copies the changes from the stdcur to the curscr, which results in their being 
displayed on the physical screen. This act of copying from the stdscr to the curscr is called 
refreshing the screen. curses keeps track of where all changes have begun and ended between one 
refresh and the next: this lets it rewrite only the portions of the curscr that the user has changed, 
and so speed up rewriting of the screen. 

curses records the position of a "logical cursor", which points to the position in the stdscr that is 
being manipulated by the user. and also records the position of the physical cursor. Note that the 
two are not necessarily identical: it is possible to manipulate the logical cursor without repositioning 
the physical cursor. and vice versa, depending on the task you wish to perform. 

Most curses routines work by manipulating WINDOW object. WINDOW is defined in the header 
curses.h. The COHERENT 286 implementation of curses defines WINDOW as follows: 

LEXICON 



curses 567 

#define WINDOW win st 
struct win st { 

short 
short 
short 
short 
short 
short 
bool 
bool 
bool 
bool 
bool 
char 
short 
short 

cury, _curx; 
_maxy, _maxx; 
_begy, _begx; 
_flags; 
_attrs; 
_ch_off; 
_clear; 

leave; 
scroll; 

_use_keypad; 
_nodelay 
**_y; 
*_firstch; 

struct win st 
* lastch; 
*_nextp, *_orig; 

} ; 

The COHERENT 386 implementation of curses defines WINDOW as follows: 

#define WINDOW win st 
struct win st { 

} ; 

short 
short 
short 
short 
ch type 
bool 
bool 
bool 
bool 
bool 
bool 
bool 
ch type 
short 
short 
short 
short 
short 

_cury, _curx; 
_maxy, _maxx; 
_begy, _begx; 
_flags; 
_attrs; 
_clear; 

leave; 
_scroll; 
_idlok; 
_use_keypad;/* O=no, l=yes, 2=yes/timeout */ 
_use_meta;/* T=use the meta key */ 
_nodelay;/* T=don't wait for tty input */ 
**_line; 
_firstchar;/* First changed character in the line */ 
*_lastchar;/* Last changed character in the line */ 
*_numchngd;/* Number of changes made in the line */ 
_regtop;/* Top and bottom of scrolling region */ 
_regbottom; 

Type bool is defined in curses.h; an object of this type can hold the value of true (nonzero) or false 
(zero). 

The following describes selected WINDOW fields in detail. 

_cury,_curx Give the Y and X positions of the logical cursor. The upper left corner of the 
window is, by definition, position 0,0. Note that curses by convention gives 
positions as Y IX (column/row) rather than X/Y, as is usual elsewhere. 

LEXICON 



568 curses 

_maxy, _maxx Width and height of the window. 

_begy, _begx 

_flags 

_ch_off 

_clear 

_leave 

_scroll 

J 

_firstch 

_lastch 

_nextp 

_orig 

Position of the upper left corner of the window relative to the upper left corner of 
the physical screen. For example, if the window's upper left corner is five rows from 
the top of the screen and ten columns from the left, then _begy and _begx will be 
set to ten and five, respectively. 

One or more of the following flags, logically OR'd together: 

_SUBWIN - Window is a sub-window 
_ENDLINE - Right edge of window touches edge of the screen 
_FULLWIN - Window fills the physical screen 
_SCROLLWIN - Window touches lower right corner of physical screen 
_FULLINE - Window extends across entire physical screen 
_STANDOUT- Write text in reverse video 
_INSL - Line has been inserted into window 
_DELL - Line has been deleted from window 

Character offset. 

Clear the physical screen before next refresh of the screen. 

Do not move the physical cursor after refreshing the screen. 

Enable scrolling for this window. 

Pointer to an array of pointers to the character arrays that hold the window's text. 

Pointer to an array of integers. one for each line in the window, whose value is the 
first character in the line to have been altered by the user. If a line has not been 
changed, then its corresponding entry in the array is set to _NOCHANGE. 

Same as _firstch. except that it indicates the last character to have been changed 
on the line. 

Point to next window. 

Point to parent window. 

When curses is first invoked. it defines the entire screen as being one large window. The 
programmer has the choice of subdividing an existing window or creating new windows; when a 
window is subdivided, it shares the same curscr as its parent window, whereas a new window has 
its own stdscr. 

Multiple Terminals 
Some applications need to display text on more than one terminal, controlled by the same process. 
The COHERENT 386 implementation of curses can handle this. even if the terminals are of different 
types. The rest of this section applies only to the COHERENT 386 implementation of curses. 

All information about the current terminal is kept in a global variable struct screen *SP. Although 
the screen structure is hidden from the user. the C compiler will accept declarations of variables 
which are pointers. The user program should declare one screen pointer variable for each terminal 
it wishes to handle. 

The function newterm() sets up a new terminal of the given terminal type that is accessed via file­
descriptorfp. To use more than one terminal. call newterm() for each terminal and save the value 
returned as a reference to that terminal. 

To switch to a different terminal. call set_term(). It returns the current contents of SP. Do not 
assign directly to SP because certain other global variables must also be changed. 

LEXICON 



curses 569 

All curses routines always affect the current terminal. To handle several terminals, switch to each 
one in turn with set_ term(), and then access it. Each terminal must first be set up with newterm(), 
and closed down with endwin(). 

Video Attributes 
The COHERENT 386 implementation of curses lets you display any combination of video attributes 
on any terminal. The rest of this section applies only to the COHERENT 386 implementation of 
curses. 

Each character position on the screen has 16 bits of information associated with it. Seven bits are 
the character to be displayed, leaving bits for nine video attributes. These bits are used for the 
following modes respectively: standout, underline, reverse video, blink, dim, bold. blank, protect, 
and alternate-character set. Standout is whatever highlighting works best on the terminal, and 
should be used by any program that does not need specific or combined attributes. Underlining, 
reverse video, blink. dim, and bold are the usual video attributes. Blank means that the character 
is displayed as a space, for security reasons. Protected and alternate character set depend on the 
terminal. The use of these last three bits is subject to change and not recommended. 

The routines to use these attributes include attron(), attroff(). attrset(), standend(). standout(), 
wattroff(). wattron(), wattrset(), wstandend(). and wstandout(). All are described below. 

Attributes, if given, can be any combination of A_STANDOUT, A_UNDERLINE, A_REVERSE, 
A_BLINK. A_DIM. A_BOLD. A_INVIS, A_PROTECT, and A_ALTCHARSET, OR'd together. These 
constants are defined in curses.h. If the particular terminal does not have the particular attribute or 
combination requested, curses will attempt to use some other attribute in its place. If the terminal 
has no highlighting, all attributes are ignored. 

Function Keys 
Many terminals have special keys. such as arrow keys. keys to erase the screen. insert or delete text, 
and keys intended for user functions. The particular sequences these terminals send differs from 
terminal to terminal. The COHERENT 386 implementation of curses lets you handle these keys. 
The rest of this section applies only to the COHERENT 386 implementation of curses. 

A program using function keys should turn on the keypad by calling keypad() at initialization. This 
causes special characters to be passed through to the program by the function getch(). These keys 
have constants that are defined in curses.h. They have values starting at 0401. so they should not 
be stored in a char variable, as significant bits will be lost. 

A program that uses function keys should avoid using the <esc> key: most sequences start with 
<esc>, so an ambiguity will occur. curses sets a one-second alarm to deal with this ambiguity, 
which will cause delayed response to the <esc> key. It is a good idea to avoid <esc> in any case. 
because there is eventually pressure for nearly any screen-oriented program to accept arrow-key 
input. 

Scrolling Region 
Most terminals have a .user-accessible scrolling region. Normally, this is set to the entire window, 
but the calls setscrreg() and wsetscrreg() set the scrolling region for stdscr or the given window to 
any combination of top and bottom margins. If scrolling has been enabled with scrollok(). scrolling 
takes place only within that window. 

TTY Mode Functions 
In addition to the save/restore routines savetty() and resetty(). the COHERENT 386 
implementation of curses contains routines for going into and out of normal tty mode. The rest of 
this section applies only to the COHERENT 386 implementation of curses. 

The normal routines are resetterm(), which puts the terminal back in the mode it was in when 

LEXICON 



570 curses 

curses was started, and fixterm(), which undoes the effects of resetterm(), that is, restores the 
"current curses mode". endwin() automatically calls resetterm(). These routines are also available 
at the terminfo level. 

No-Delay Mode 
The COHERENT 386 implementation of curses offers the call nodelay(), which puts the terminal 
into "no-delay mode". The rest of this section applies only to the COHERENT 386 implementation of 
curses. 

While in no-delay mode, any call to getch() returns -1 if nothing is waiting to be read. This is useful 
for programs that require real-time behavior. where the user watches action on the screen and 
presses a key when he wants something to happen. For example, the cursor can be moving across 
the screen, and the user can press an arrow key to change direction. This mode is especially useful 
for games. 

Portability 
The COHERENT 386 implementation of curses contains Several routines that portability. Although 
they do not directly relate to terminal handling, their implementation is different from system to 
system, and the differences can be isolated from the user program by including them in curses. The 
rest of this section applies only to the COHERENT 386 implementation of curses. 

Functions erasechar() and killchar() return the characters that, respectively, erase one character 
and kill the entire input line. The function baudrate() returns the current baud rate, as an integer. 
(For example, at 9600 baud, baudrate() returns the integer 9600, not the value B9600 from 
<sgtty.h>.) The routine fiushinp() throws away all typeahead. call resetterm() to restore the tty 
modes. After the shell escape. fixterm() can be called to set the tty modes back to their internal 
settings. These calls are now required, because they perform system-dependent processing. 

Library-level Differences 
The COHERENT 386 implementation of curses reads terminfo descriptions. Under this 
implementation, the library /usr/lib/llbcurses.a contains all routines for reading a terminfo 
descsription. Programs that wish to read such a description but not use the below-described curses 
routines (e.g., MicroEMACS or vi) must link in library libcurses.a. 

The COHERENT 286 implementation of curses. on the other hand, reads termcap descriptions. 
The library /usr/llb/libcurses.a does not contain routines for reading a termcap description; 
instead, these are kept in the library /usr/lib/libterm.a. Programs that wish to read termcap 
descriptions must link in this library. 

Under COHERENT 286, programs that wish to use curses must link in both llbcurses and llbterm 
(in that order). Under COHERENT 386, programs that wish to use curses must not link in both 
llbcurses and llbterm; doing so will cause collisions among library routines. Rather, these 
programs must link in only llbcurses. 

See the Lexicon entries for termcap and terminfo for more information on this rather confusing 
topic. 

curses Routines 
The following table summarizes the functions and macros that comprise the curses library. These 
routines are declared and defined in the header file curses.h. 

addch(ch) char ch; 
Insert a character into stdscr. 

addstr(str) char •str; 
Insert a string into stdscr. 

LEXICON 



curses 571 

attroff(at) int at: 
Turn off video attributes on stdscr. (COHERENT 386 only.) 

attron(at) int at: 
Turn on video attributes on stdscr. (COHERENT 386 only.) 

attrset(at) int at: 
Set video attributes on stdscr. (COHERENT 386 only.) 

baudrate() 
Return the baud rate of the current terminal. (COHERENT 386 only.) 

beep() Sound the audible bell. (COHERENT 386 only.) 

box(wln, vert, hor) WINDOW •wtn; char vert, hor; 
Draw a box. vert is the character used to draw the vertical lines. and hor is used to draw 
the horizontal lines. For example 

box(win, 'I','-'); 

draws a box around window win, using · 1 • to draw the vertical lines and ·-· to draw the 
horizontal lines. Do not use non-ASCII characters unless you are very sure of the output 
terminars identity. 

cbreak() 
Turn on cbreak mode. (COHERENT 386 only.) 

clear() Clear the stdscr. 

clearok(wln,b.J) WINDOW •win; bool bf; 
Set the clear flag for window win. This will clear the screen at the next refresh, but not reset 
the window. 

clrtobot() 
Clear from the position of the logical cursor to the bottom of the window. 

clrtoeol() 
Clear from the logical cursor to the end of the line. 

crmode() 
Turn on control-character mode; i.e .. force terminal to receive cooked input. 

delch() Delete a character from stdscr; shift the rest of the characters on the line one position to the 
left. 

deleteln() 
Delete all of the current line; shift up the rest of the lines in the window. 

delwin(wln) WINDOW •wtn; 
Delete window win. 

doupdate() 
Update the physical screen. (COHERENT 386 only.) 

echo() Turn on both physical and logical echoing; i.e .. character are automatically inserted into the 
current window and onto the physical screen. 

endwin() 
Terminate text processing with curses. 

LEXICON 



572 curses 

erase() Erase a window; do not clear the screen. 

char •erasechar() 
Return the erase character of the current terminal. (COHERENT 386 only.) 

flash() Execute the visual bell. (COHERENT 386 only.) 

flushinp() 
Flush input from the current terminal. (COHERENT 386 only.) 

getch() Read a character from the terminal. 

getstr(str) char •str; 
Read a string from the terminal. 

getyx(wln,y,x) WINDOW •wtn; short y,x; 
Read the position of the logical cursor in win and store it in y,x. Note that this is a macro, 
and due to its construction the variables y and x must be integers, not pointers to integers. 

idlok(wln,jlag) WINDOW *win; int.flag; 
Enable insert/delete line operations for window win. flag must contain the OR'd operations 
you desire. (COHERENT 386 only.) 

inch() Read the character pointed to by the stdscr·s logical cursor. 

WINDOW *initscr() 
Initialize curses. 

insch(ch) char ch; 
Insert character ch into the stdscr. 

insertln() 
Insert a blank line into stdscr, above the current line. 

keypad(wlnJlag) WINDOW •wtn; int.flag; 
Enable keypad-sequence mapping. (COHERENT 386 only.) 

char •killchar() 
Return the kill character for the current terminal. (COHERENT 386 only.) 

leaveok(wln,bj) WINDOW •wtn; bool bf; 
Set win-> _leave to bf. If set to TRUE. refresh will leave the cursor after the last character 
changed by refresh. This makes sense if you want to minimize the commands sent to the 
screen and it does not matter where the cursor is. 

char *longname(termbu.f. name) char •termbuf, •name; 
Copy the long name for the terminal from termbufinto name. 

meta(wtn,jlag) WINDOW •wtn; int.flag; 
Enable use of the meta key. (COHERENT 386 only.) 

move(y,x) short y,x; 
Move logical cursor to position y,x in stdscr. 

mvaddbytes(y,x,da,count) int y,x; char *da; int count; 
Move to position y,x and print count bytes from the string pointed to by da. (COHERENT 
286 only.) 

mvaddch(y,x,ch) short y,x; char ch; 
Move the logical cursor to position y,x and insert character ch. (COHERENT 286 only.) 

LEXICON 



curses 573 

mvaddstr(y,x,str) short y,x; char •str; 
Move the logical cursor to position y,x and insert string str. (COHERENT 286 only.) 

mvcur(y cur,x cur,y new,x new) int y cur, x cur, y new, x new; 
M:ove cursor-from position y_clir,x_curto position y_new,x_new. 

mvdelch(y,x) short y,x; 
Move to position y,x and delete the character found there. (COHERENT 286 only.) 

mvgetch(y,x) short y,x; 
Move to position y,x and get a character through stdscr. (COHERENT 286 only.) 

mvgetstr(y,x,str) short y,x; char •str; 
Move to position y,x. get a string through stdscr, and copy it into string. (COHERENT 286 
only.) 

mvinch(y,x) short y,x; 
Move to position y,x and get the character found there. (COHERENT 286 only.) 

mvinsch(y,x,ch) short y,x; char ch; 
Move to position y,x and insert a character into stdscr. (COHERENT286 only.) 

mvwaddbytes(win,y,x,da,count) WINDOW "'win; int y,x; char "'da; int count; 
Move to position y,x and print count bytes from the string pointed to by da into window win. 
(COHERENT 286 only.) 

mvwaddch(win,y,x,ch) WINDOW "'win; int y.x; char ch; 
Move to position y,x and insert character ch into window win. (COHERENT 286 only.) 

mvwaddstr(win,y,x,str) WINDOW "'win; short y,x; char •str; 
Move to position y,x and insert character ch. (COHERENT 286 only.) 

mvwdelch(win,y,x) WINDOW "'win; int y,x; 
Move to position y,x and delete character ch from window win. (COHERENT 286 only.) 

mvwgetch(win,y,x) WINDOW "'win; short y,x; 
Move to position y,x and get a character. (COHERENT 286 only.) 

mvwgetstr(win,y,x,str) WINDOW "'win; short y,x; char •str; 
Move to position y,x, get a string. and write it into str. (COHERENT 286 only.) 

mvwin(win,y,x) WINDOW "'win; int y.x; 
Move window win to position y,x. (COHERENT286 only.) 

mvwinch(win,y,x) WINDOW "'win; short y,x; 
Move to position y,x and get character found there. (COHERENT 286 only.) 

mvwinsch(win,y,x,ch) WINDOW "'win; short y,x; char ch; 
Move to position y,x and insert character ch there. (COHERENT 286 only.) 

struct Initialize the new terminal type. which is accessed via tlle-descriptorfd. (COHERENT 
386 only.) 

WINDOW •newwin(lines, cols, yl, xl) int lines, cols, yl. xl; 
Create a new window. The new window is lines lines high. cols columns wide, with the 
upper-left corner at position y l ,xl. 

nl() Turn on newline mode; i.e .. force terminal to output <newline> after <linefeed>. 

nocbreak() 
Turn off cbreak mode. (COHERENT 386 only.) 

LEXICON 



574 curses 

nocrmodeQ 
Turn off control-character mode; i.e .. force terminal to accept raw input. 

nodelay(wln,jlag) WINDOW •win; fntjlag; 
Make getchO non-blocking. (COHERENT 386 only.) 

noechoO 
Turn off echo mode. 

nonl() Turn off newline mode. 

norawo 
Turn off raw mode. 

overlay(wlnl,wln2) WINDOW •wlnl, wln2; 
Copy all characters, except spaces, from their current positions in wlnl to identical 
positions in wln2. 

overwrite(wlnl,wln2) WINDOW •wlnl, wln2; 
Copy all characters, including spaces, from wlnl to their identical positions in wln2. 

printw{f ormat{,arg l , .. . argNJ) char "jormat; [data type) arg 1 , .. argN; 
Print formatted text on the standard screen. 

rawQ Turn on raw mode; i.e., kernel does not process what is typed at the keyboard, but passes it 
directly to curses. In normal (or cooked) mode, the kernel intercepts and processes the 
control characters <ctrl-C>, <ctrl-S>, <ctrl-Q>, and <ctrl-Y>. See the entry for stty for more 
information. 

refreshO 
Copy the contents of stdscr to the physical screen. 

resetty() 
Reset the terminal flags to values stored by earlier call to savetty. 

savetermQ 
Save the current state of the terminal. (COHERENT 386 only.) 

savettyQ 
Save the current terminal settings. 

scanw{format[,arg l, ... argNJ) char "format; [data type] arg l , .. argN; 
Read the standard input; translate what is read into the appropriate data type. 

scroll(wln) WINDOW •win; 
Scroll win up by one line. 

scrollok(wln,bj) WINDOW •win; bool l?f; 
Permit or forbid scrolling of window win, depending upon whether bf is set to true or false. 

setscrreg(top, bottom) int top, bottom: 
Set the scrolling region on stdscr. (COHERENT 386 only.) 

setterm(name) char •name: 
Set term variables for name. (COHERENT 386 only.) 

struct screen •set_tenn(new) struct screen •new; 
Switch output to terminal new. It returns a pointer to the previously used terminal. 
(COHERENT 386 only.) 

LEXICON 



curses 575 

standend() 
Turn off standout mode. 

standout() 
Turn on standout mode for text. Usually. this means that text will be displayed in reverse 
video. 

WINDOW •subwin(wln.llnes,co!s,y l ,xl) int wln,ltnes,cols,y l ,xl; 
Create a sub-window in window win. New sub-window is lines lines high, cols columns 
wide, and is fixed at position yl ,xl. Note that the position is relative to the upper-left corner 
of the physical screen. 

touchwin(win) WINDOW •win; 
Copy all characters in window win to the screen. 

traceoff() 
Turn off debugging output. (COHERENT 386 only.) 

traceon() 
Turn on debugging output (COHERENT 386 only.) 

unctrl(ch) char ch; 
Output a printable version of the control-character ch. (COHERENT 386 only.) 

waddch(wln,ch) WINDOW •win; char ch; 
Add character ch to window win. 

waddstr(wln,str) WINDOW •win; char •str; 
Add the string pointed to by str to window win. 

wattroff(wln,at) 
Turn oft"video attributes att for the window pointed to by win. (COHERENT 386 only.) 

wattron(wln,at) 
Turn on video attributes att for the window pointed to by win. (COHERENT 386 only.) 

wattrset(wln,at) WINDOW •win; int att; 
Set the video attributes att for the window pointed to by win. (COHERENT 386 only.) 

wclear(wln) WINDOW •win; 
Clear window win. Move cursor to position 0,0 and set the screen's clear flag. 

wclrtobot(win) WINDOW *win; 
Clear window win from current position to the bottom. 

wclrtoeol(wln) WINDOW *win; 
Clear window win from the current position to the end of the line. 

wdelch(win) WINDOW •wtn; 
Delete the character at the current position in window win; shift all remaining characters to 
the right of the current position one position left. 

wdeleteln(wln) WINDOW •win; 
Delete the current line and shift all lines below it one line up. 

werase(wln) WINDOW •wtn; 
Clear window win. Move the cursor to position 0,0 but do not set the screen's clear flag. 

wgetch(wln) WINDOW *win; 
Read one character from the standard input. 

LEXICON 



576 curses 

wgetstr(wln,str) WINDOW •wtn; char •str; 
Read a string from the standard input; write it in the area pointed to by str. 

winch(wln) WINDOW •win; 
Force the next call to refresh() to rewrite the entire screen. 

winsch(wln,ch) WINDOW •win; char ch; 
Insert character ch into window win at the current position. Shift all existing characters 
one position to the right. 

winsertln(wln) WINDOW •win; 
Insert a blank line into window win at the current position. Move all lines down by one 
position. 

wmove(wln,y,x) WINDOW *win; int y, x; 
Move current position in the window win to position y,x. 

wnoutrefresh(win) WINDOW •win; 
Copy the window pointed to by win to the virtual screen; do not refresh the real screen. 
(COHERENT 386 only.) 

wprintw(wlnJormat[,argl , ... argN]J WINDOW •win; char ":format; [data type] argl, •• argN; 
Format text and print it to the current position in window win. 

wrefresh(wln) WINDOW •win; 
Refresh a window. 

wscanw(wlnJormat[,arg l , ... argN]J WINDOW •win; char ":format; [data type) arg l , .. argN; 
Read standard input from the current position in window win, format it, and store it in the 
indicated places. 

wstandend(wln) WINDOW *win; 
Turn off standout (reverse video) mode for window win. 

wstandout(win) WINDOW *win; 
Turn on standout (reverse video) mode for window win. 

wsetscrreg(wln,top,bottom)WINDOW •wtn; int top, bottom; 
Set the scrolling region on the window pointed to by win. (COHERENT 386 only.) 

Structure of a curses Program 
To use the curses routines, a program must include the header file curses.h, which declares and 
defines the functions and macros that comprise the curses library. 

Before a program can perform any screen operations, it must call the function initscr() to initialize 
the curses environment. 

As noted above, curses manipulates text in a copy of the screen that it maintains in memory. After 
a program has manipulated text, it must call refresh() to copy these alterations from memory to the 
physical screen. (This is done because writing to the screen is slow; this scheme permits mass 
alterations to be made to copy in memory, then written to the screen in a batch.) 

Finally, when the program has finished working with curses, it must call the function endwin(). 
This frees memory allocated by curses, and generally closes down the curses environment 
gracefully. 

Example 
The following program, called curexample.c, gives a simple example of programming with curses. 
When this program is run, it clears the screen, then waits for you to type a Y coordinate, a space, 
and then an X coordinate. Note that these do not echo on the screen. It moves the cursor to the 

LEXICON 



curses 577 

requested coordinates, and there display any non-numeric string that you type. If you type 
numerals, curexample will assume that you wish to move the cursor to a new location. To exit, 
type <ctrl-C>. 

#include <ascii.h> 
#include <ctype.h> 
#include <curses.h> 

#define NORMAL O 
#define INY 1 
#define INX 2 

main() 
{ 

int c, y, x, state; 

initscr(); /*initialize curses */ 
noecho(); 
raw(); 

clear(); 
move(O, 0); 

for(state =NORMAL;;) { 
refresh(); 
c = getch(); 
if(isdigit(c)) { 

switch (state) { 
case NORMAL: 

y = x O; 
state = INY; 

case INY: 
y *= 10; 
y += c - '0'; 
break; 

case INX: 
x *= 10; 
x += c - '0'; 

} 
} else { 

if (c == A_ETX) { /* ctl-c */ 
noraw(); 
echo(); 
endwin(); 
exit(O); 

} 

LEXICON 



578 curses.h - cut 

} 
} 

} 

See Also 

switch (state) { 
case INX: 

state = NORMAL; 
move(y, x); 

case NORMAL: 
addch(c); 
break; 

case INY: 
state = INX; 

} 

libraries, termcap, terminfo 
Strang J: Programming with curses. Sebastopol, Calif, O'Reilly & Associates Inc., 1986. 

Notes 
The COHERENT 386 implementation of curses was written by Pavel Curtis of Cornell University. It 
was ported to COHERENT by Udo Monk. 

t;!ttiiiill=••@~"~~ ~""''"~~~"'"'"'"""~~ 
Define functions and macros in curses library 
#include <curses.h> 

curses.h defines the macros and declares the functions that comprise the curses library. 

See Also 
curses, header files, termcap, terminfo 

~~~"'~~~~~'~ .. "'~~"~--­
Select portions of each line of its input
cut -cllst (file ...)
cut -flist [-s) [-d char] (file ...]

cut selects portions of each line of its input and writes them to the standard output. list specifies
the portions to select. cut reads its input from.file, or the standard input by default.

list is a comma-separated set of numbers or number ranges. Number ranges consist of a number, a
hyphen ('-'), and a second number, and select the fields or columns from the first number to the
second, inclusive. Preceding a number or number range by a hyphen selects all fields or columns
from one to the first number. Following a number or number range by a hyphen selects all fields or
columns from the last number to the end of the line. Numbers and number ranges may be
repeated, overlap, and appear in any order. It is not an error to select a field or column not present
in the input line.

cut recognizes the following command-line options:

-clist list specifies character positions.

-flist list specifies fields, delimited in the input by one <tab> character. Output fields are separated
by one <tab> character.

LEXICON

CWD 579

-dchar
Use char as the field delimiter instead of the <tab> character.

-s Suppress lines with no field-delimiter characters. Unless specified, cut passes through
unmodified all lines with no delimiters.

cut returns zero on success. one if an error occurred.

Examples
The following example displays all serial port device names found in file /etc/ttys.

cut -c4- /etc/ttys

The following example displays the login name and home directory fields from the /etc/passwd
password file. Note that fields in the password file are delimited by the colon character.

cut -d: -fl,6 /etc/passwd

See Also
awk, commands, paste, sed

Notes
cut is copyright© 1988.1990 by The Regents of the University of California. All rights reserved.

cut is distributed as a service to COHERENT customers. as is. It is not supported by Mark Williams
Company. Caveat utilitor.

CWD - Environmental Variable
Current working directory

The Korn shell uses the environmental variable CWD to hold the current working directory.

See Also
environmental variables, ksh

LEXICON

580 daemon - data formats

f!Mpm.1.1111m1MQt.i.J. ~~ ..
A daemon is a program that runs continually on your computer. It waits quietly for some condition
to occur; then it awakens and performs some action (such as redirecting the file to a printer).

For example, when you submit a program to be printed with hpr. your file is copied into directory
/usr/spool/hpd. When a file appears in that directory, then the printer daemon /usr/bin/hpd
notices that there is a file to print. The advantage is that the user program hpr need not compete
with other user programs for access to the printer; /usr/bin/hpd handles all access to the printer,
and ensures that only one file is printed on the printer at a time.

Another example of a daemon in /etc/cron. Every five minutes. it wakes up and reads all crontab
files. If a file contains a command to be executed at this time, then cron executes it.

As a general rule, anything that does not interact directly with users can be classified as a daemon.
Daemons do not generally generate output to a user's terminal.

Any time you have a resource, like a printer or data base, to which access should be controlled, you
can use a daemon.

See Also
definitions, libmisc

Notes
The function bedaemon(), which is included in llbmisc, makes a program a daemon. See the article
on llbmisc for details.

A daemon may be killed accidentally, or through an error condition. When that occurs, a user may
summon the daemon from the misty deep, but it does not come. The superuser root can reinvoke a
daemon like any other program.

data formats - Technical Information
Mark Williams Company has written C compilers for a number of different computers. Each has a
unique architecture and defines data formats in its own way.

The following table gives the sizes, in chars, of the data types as they are defined by various
microprocessors.

LEXICON

data types 581

18086 18086
Type 180386 SMALL LARGE Z8001 Z8002 68000 PDPll VAX
char I I I I I I
double 8 8 8 8 8 8 8 8
noat 4 4 4 4 4 4 4 4
Int 4 2 2 2 2 2 2 4
long 4 4 4 4 4 4 4 4
pointer 4 2 4 4 2 4 2 4
short 2 2 2 2 2 2 2 2

COHERENT places some alignment restrictions on data, which conform to all restrictions set by the
microprocessor. Byte ordering is set by the microprocessor; see the Lexicon entry on byte ordering
for more information.

See Also
byte ordering, C language, data types, double, noat, memory allocation, technical Information

Notes
The COHERENT system supports Intel SMALL model only.

The terms long and long Int, as are the terms short and short int, double and long noat,
unsigned short Int and unsigned short, and unsigned long int and unsigned long. The type
unsigned char was added to the language by the ANSI Standard; because COHERENT uses signed
chars by default, you must declare a char to be unsigned if you want it to be so. If this type is used
in arithmetic expressions, it is automatically cast to unsigned Int.

See Also
c language, char, data fonnats, double, noat, Int, long, pointer, short, technical Information,
unsigned

LEXICON

582 date-db

~-. ~"~~~..._
Print/set the date and time
date [-s] [-u] [[yymmdd]hhmm[.ssJJ

date prints the time of day and the current date. including the time zone. If an argument is given.
the system's current time and date is changed, as follows:

yy Year (00-99)
mm Month (01-12)
dd Day (01-31)
hh Hour (00-23)
mm Minute (00-59)
SS Seconds (00-59)

The seconds fields are optional. For example, typing

date 860512141233

sets the date to May 12. 1986. and the time to 2:12:33 P.M. At least hh and mm must be specified
- the rest are optional.

The date may be changed only by the superuser.

If option -s is specified. date suppresses daylight savings time conversion when setting the time.

If option -u is specified. dates are set and printed in Greenwich Mean Time (GMT) rather than in
local time.

The library time conversion routines used by date look for the environmental variable TIMEZONE.
which specifies local time zone and daylight saving time information in the format described in
ctime.

See Also
ATclock, commands, ctime(), time, TIMEZONE

Notes
Note that the COHERENT version of the date command differs from the UNIX version in that the
last two fields of its output are reversed. For example. the UNIX output of date reads

sun Jan 13 12:02:09 CST 1991

where the COHERENT output reads:

Sun Jan 13 12:02:09 1991 CST

This may be important when importing UNIX shell commands into COHERENT.

~~,,. .,_~ !ill ~-. ~~""'~~~"~''~~''""~
Assembler-level symbolic debugger
db [-cdefort] [mapflle) (program)

db is an assembly-language-level debugger. It allows you to run object files and executable
programs under trace control (see the Lexicon entry for ptrace), run programs with embedded
breakpoints. and dump and patch files in a variety of forms. You can use it to debug assembly­
language programs that have been assembled by as. the Mark Williams assembler, and programs
that have been compiled with the Mark Williams C compiler.

LEXICON

db 583

What is db?
db is a symbolic debugger, which means that it works with the symbol tables that the compiler
builds into the object files it generates. Because db works on the level of assembly language, you
need a working knowledge of i80286 /i80386 assembly language and microprocessor architecture.

Invoking db
To invoke db, type its name, plus the options you want (if any) and the name of the files with which
you will be working. mapjlle is an object file that supplies a symbol table. program is the
executable program to be debugged. If both names are given, the options default to -c. If only one
name is given, it is the program; in this case the options default to -o. If both names are omitted,
mapjlle defaults to I.out and program defaults to core. If possible. db accesses program with write
permission.

The following options to the db command specify the format of program:

-c program is a core file produced by a user core dump. db checks the name of the command that
invoked the process that produced the core, against the name of the mapjlle, if given. Pure
segments are read from the mapjlle.

-d program is a system dump. If the command line names only one file, mapjlle defaults to
/coherent.

-e The next argument is an object file: db executes it as a child process and passes it the rest of
the command line.

-f Map program as a straight array of bytes (file).

-o program is an object file. If mapjlle is given, it is another object file that provides the symbol
table.

-r Only read the file, even though you have write permission for it. Use this to give a file
additional protection.

-t Perform input and output for db via /dev/tty. Permit the debugging of processes whose
standard input or output have been redirected.

Commands and Addresses
db executes commands that you give it from the standard input. A command usually consists of an
address, which tells db where in the program to execute the command; and then the command
name and its options, if any.

An address is represented by an expression, which can be built out of one or more of the following
elements:

The',', which represents the current address. When you enter an address, db sets the current
address to that location. To advance the current address, type the <Enter> key.

The name of a register. db recognizes the following register names:

PDP-11
rO through r7, sp, and pc.

Z-8001, Z-8002
rO through rl5 and pc.

M68000, M68020
dO through d7, aO through a7, pc, and sp.

18086, 180286, 180386
ax, ah, al, bx, bh, bl, ex, ch, cl, dx, dh, di, sf, di, bp, sp, pc, cs, ds, es, and ss. Typing
the name of a register displays its contents. db uses the usual numeric base (octal on

LEXICON

584 db

the PDP-11, hexadecimal on all other machines) to display register contents and stack
tracebacks, regardless of the current default radix.

The symbols d, i, and u, which represent location 0 in, respectively, the data space, the
instruction space, and the u-area.

The names of global symbols and symbolic addresses can be used in place of the addresses
where they occur. This is useful when setting a breakpoint at the beginning of a subroutine.

An integer constant, which can be used in the same manner as a global symbol. The default is
hexadecimal; a leading 0 indicates octal and Ox indicates hexadecimal.

You can use the following binary operators:

+ Addition

•
I

Subtraction
Multiplication
Integer division

All arithmetic is done in longs.

You can use the following unary operators:

Complementation
Negation

• Indirection

All operators are supported with their normal level of precedence. You can use parentheses '()'
for binding.

Every symbol refers to a segment: the data segment, the instruction segment, or the u-area. This
segment, in turn, dictates the format in which db displays by default what it finds at that address.
The format used by an expression is that of its leftmost operand. The symbols d, i, and u name
specific segments in the absence of other symbols.

Displaying Information
To display information about program, use an expression of the form address[,count]?[format]. This
displays format for count iterations, starting at address. The symbol '.' represents the address,
which defaults to the current display address if omitted. count defaults to one. The format string
consists of one or more of the following characters:

LEXICON

db 585

Reset display address to'.'
+ Increment display address

Decrement display address
b Byte
c char; control and non-chars escaped
C Like 'c' except '\O' not displayed
d Decimal
f float
F double
I Machine instruction, disassembled
1 long
n Output '\n'
0 octal
p Symbolic address
s String terminated by '\0', with escapes
S String terminated by '\O', no escapes
u unsigned
W word
x Hexadecimal
Y time (as in i-node, etc.)

The format characters d, o, u, and x, specify a numeric base. Each of these can be followed by b, 1,
or w, which specify a datum size, to describe a single datum for display. A format item may also be
preceded by a count that specifies how many times the item is to be applied. Note that format
defaults to the previously set format for the segment (initially o for data and u-area, and i for
instructions). Except where otherwise noted, db increments the display address by the size of the
datum displayed after each format item.

Execution Commands
In the following commands, address defaults to the address where execution stopped, unless
otherwise specified; count and expr default to one. commands is an arbitrary string of db
commands, terminated by a newline. A newline may be included by preceding it with a backslash
'\ '.

[address]=
Print address (offset) in hexadecimal. address defaults to'.'.

[address[,count]J=value[,value[,value] ...]
Patch value into the program, beginning at point address. The address defaults to'.'. You
can list up to ten values. The command = assigns values to sequential locations in the
traced process. db determines the size of the assigned value from the last display format
used. You can set and display the registers of the traced process, just like any other
address in the traced process.

? Print a verbose version of last error message.

[address] :a
Print address symbolically. address defaults to'.'.

[address]:b{commands]
Set a breakpoint at address; execute commands when the breakpoint is encountered.
commands defaults to i+.:a\ni+.?i\n:x\n.

LEXICON

586 db

:br [commands]
Set breakpoint at return from current routine. The defaults are the same as for :b, above.

[address] :c
Continue execution from address.

[address] :d[r)[s)
Delete the breakpoint previously set at address. If the optional r or s is specified, delete
return or single-step breakpoint. address defaults to '.'.

[address]:e[commandline]
Begin traced execution of the object file at address (default, entry point). db parses
commandline and passes it to the traced process. argv[O) must be typed directly after :e if
supplied. For example, :eprogname foo bar baz sets argv[O] to progname, argv[l] to foo,
argv[2] to bar, and argv[3) to baz. Quotation marks, apostrophes, and redirection are
parsed as by the shell, but special characters '?*[]' and shell punctuation '(){}I ;'are not. For
complete shell command line parsing use the -e option.

Note that you must use the :e command to start the program prior to using the single-step,
trace-back, or display-register commands. For example, the following COHERENT-286
command sequence sets a breakpoint at main. begins execution, and single-steps through
the program after having reached the breakpoint. For COHERENT 386, omit the trailing
underscore character:

main :b
:e
:s

:f Print type of fault that caused a core dump or stopped the traced process.

:m Display segmentation map.

[expr] :n
Set default numeric display base to expr: 8, 10, and 16 indicate, respectively. octal.
decimal, and hexadecimal.

:p Display all breakpoints.

[expr] :q
If expr is nonzero, quit the current level of command input (see :x). expr defaults to one.
End-of-file is equivalent to :q.

:r Display the contents of all registers.

[address],[count]:s[c][commands]
Single-step execution starting at address, for count steps. executing commands at each step.
commands defaults to i+.?i.

After a single-step command, <Enter> is equivalent to .,l:s[c). The option c tells db to turn
off single-stepping at a subroutine call and turn it on again upon return.

[depth] :t

[expr] :x

Print a call traceback to depth levels. If depth is zero (default), unwind the whole stack.

If expr is nonzero, read and execute commands from the standard input up to end of file or
to receiving the command :q. expr defaults to one.

Note that the :c, :s. :t, and :r commands cannot be executed before a program is started. If you are
debugging the program hello, do the following first:

LEXICON

db hello
main:b
:e

db 587

This invokes the debugger for hello and advances it to main. Now you can use the full set of
commands.

Examples of Debugging
Consider the following simple program, which will be compiled and debugged using the COHERENT
286 version of db:

char version[]= "Ver. 1.2-beta"; /* a global string */

main(argc, argv, envp)
int argc; /* argument count from runtime startup */
char *argv[]; /*argument vector" *I
char *envp[]; /*environment pointer */
{

}

while (*++argv)
display(*argv);

exit(O);

I*
* Display an argument.
*/

display(arg)
char *arg;
{

printf("Got a %s\n", arg);
}

The following paragraphs walk through a sample compilation and debugging session, using the
above program.

1. Compile the Program
To compile the program, type the following command:

cc -0 myprog.c

2. Invoke the Debugger
To invoke the debugger for the sample program, type:

db myprog

3. Set a Breakpoint
Now that you are working with db, you can set a breakpoint at the beginning of main() by
typing:

main:b

4. Begin Execution
Now that the breakpoint is set, execute the sample program from within the debugger,
specifying the arguments that are. passed to the program:

:emyprog foo bar baz

LEXICON

588 db

The program executes until it encounters the breakpoint set in step 3; db prints the following
to show that it has reached the breakpoint:

main
main push si

Note that the second line of the above display is a disassembly of the first instruction of main().

5. Display Traceback
Now that the program has run to the breakpoint, you can display a call (stack) traceback of
function names and parameter values that were passed to the functions:

:t

db displays the following in response:

133A 0020 rnain_(4, 1348, 1352)

Note that db displays all function arguments as Int-sized hexadecimal entries. In the case of
main(), the three arguments correspond to argc (the argument count), argv (the argument
vector), and envp (the environment vector).

6. Display Memory Contents
Now, display the contents of five consecutive words of memory, starting at the address specified
by the argv parameter passed to main() when the program is invoked:

d+l348,S?x

The x argument tells db to print its output in hexadecimal. db replies as follows:

brk +590 1364 136B 136F 1373 0000

db attempts to display addresses in symbolic form, whenever possible. Note well that
ambiguities in the symbol table may cause db's choice of symbols not to correspond to the
symbol that you entered.

7. Display Argument Strings
Now, display the character strings pointed to by the individual elements of the argv vector.
First, type:

d+1364?s

This displays the first argument, as shown by the addresses given in example 6, above. db
replies to this command as follows:

brk +SAC rnyprog

The first argument to main() is always the name of the program itself. Now, press <Enter> to
display the next memory item in the same format; this will show the next argument to main(),
as follows:

brk +5B3 foo

Press <Enter> again; you then see:

brk +5B7 bar

Press <Enter> one more time, to show the last argument:

brk +SBB baz

LEXICON

db 589

8. Set a Second Breakpoint
To explore breakpoints further, press another breakpoint at the beginning of function display():

display:b

9. Show All Breakpoints
Since you have set more than one breakpoint, display all the breakpoints you have set so far,
by typing:

:p

db replies:

0020 (main_) i+.:a\ni+.?i\n:x\n
0047 (display_) i+.:a\ni+.?i\n:x\n

10. Continue Execution
Type:

:c

This continues program execution from the last breakpoint to the next one; in this case, from
breakpoint set at main() to the breakpoint set at function display(). db replies:

display_
display_

11. Call Traceback

push si

Again. type the command

:t

to display a call traceback that shows the arguments passed so far. db replies:

1330 0047 display_(l36B)
133A 0036 main_(4, 134A, 1352)

12. Display Argument
Again type the command

d+136b?s
to display as a string the argument passed to function display(). db replies:

brk +5B3 foo

13. Continue Execution
Now, type

:c

again, to continue execution to the next breakpoint- in this case, to the next call to display().
db replies:

Got a foo
display_
display_ push si

The string "Got a foo" is output from function printf().

14. Display Traceback
Again, type

LEXICON

590 db

:t

to display a call traceback that shows all arguments passed to functions. db replies:

1330
133A

0047
0036

15. Display Argument

display_(136F)
main_(4, 134C, 1352)

Again, type the command

d+136f?s

to display() as a string the argument passed to display(). This time, db replies:

brk +5B7 bar

16. Continue Execution
Again, type

:c

to continue execution until the next breakpoint is reached. db replies:

Got a bar
display_
display_ push si

Again, the string "Got a bar" is output from printf().

17. Call Traceback
Once again, type

:t

to display a call traceback. db replies:

1330 0047 display_(1373)
133A 0036 main_(4, 134E, 1352)

18. Display Argument
Again, typing

d+1373?s

displays as a string the argument passed to display(). db replies:

brk +5BB baz

19. Continue Execution
Type

:c

to again continue execution until the next breakpoint is reached. db replies:

Got a baz
Child process terminated (0)

Note that this was the final call to display(), so the program completes execution and exits with
an exit status of zero, as indicated by the zero in parentheses.

Although you have run myprog to completion, the db session can continue.

LEXICON

20. Display Global Variable
Now, type

version?s

to display as a string the value of global character array version. db replies:

version Ver. 1.2-beta

21. Display Symbol Offset
To display the offset of symbol version within the data space, type:

version=

db replies:

22

22. Display Individual Characters

db 591

The next command displays as characters the first 14 bytes of memory pointed to by symbol
version:

version,#14?c

db replies:

version V e r . 1 • 2 - b e t a \0

Note that the length specified includes the NUL character that terminates the string.

23. Display Global Variable
Next. type

errno?d

to display the value of global variable errno as a decimal number. db replies:

lac 0+2 0

Because no error occurred during the execution of this program, errno is set to zero.

24. Exit
To terminate the debugging session, type:

:q

The next example "patches" the value of an integer variable in an existing executable. Consider the
following code:

int foo = 5;

main ()
{

printf("foo is %d\n", foo);
}

The following steps show the compilation, execution, patching, and re-execution of the patched
executable:

I. Compile Program
To compile the program, type:

LEXICON

592 db

cc -0 sample2.c

2. Run the Program
To run the program, type:

sample2
The program outputs the following:

foo is 5

3. Invoke the Debugger
To invoke the debugger for program sample2, type:

db sample2

4. Display Variable
Now, display the value of variable foo by typing:

foo?d

db replies:

foo 5

5. Patch the Program
Now. type:

=#69

This patches the value of the last displayed variable (in this case, foo) to 69. With this
command. the value of foo in the executable has been changed from 5 to 69.

6. Exit and Test
Type

:q

to exit from db. Now. type

sample2

to re-run sample2. The program prints the following:

foo is 69

As you can see. your patching has changed how sample executes.

The third sample db session demonstrates how to patch an integer variable in the data segment of
an executing device driver. This process is extremely risky and should only be attempted by
experienced users of the COHERENT Device Driver Kit. Caveat Utilltor!

For this example. we assume the existence of a piece of code in the user's device driver that checks
the value of variable mydebug on a periodic basis, possibly at interrupt time. If the variable is zero,
nothing happens. However. if the variable is non-zero, the device driver issues a status (debugging)
message to the console device.

The following assumes that:

You are running as the superuser.

LEXICON

I coherent is the currently executing system.

A user-supplied. loadable device driver named driver exists in the current directory.

It has not been linked into the COHERENT kernel.

The current directory is not /tmp.

The global integer variable in the device driver is named mydebug.

Load the device driver and invoke db as follows:

I etc I drvld driver
db -f /tmp/driver /dev/kmem

To display the current value of driver variable mydebug in decimal. type:

mydebug?d

To set mydebug to value 100 decimal and exit the debugger, type:

mydebug=#lOO
:q

See Also
commands, core, l.out.h, od, ptrace()

de- Command
Desk calculator
de Iflle]

de 593

de is an arbitrary prec1s10n desk calculator. It simulates a stacking calculator with ancillary
registers. Input must be entered in reverse Polish notation. de maintains the expected number of
decimal places during addition, subtraction, and multiplication, but the user must make an explicit
request to maintain any places at all during division.

de reads input from file if specified. and then from the standard input. de accepts an arbitrary
number of commands per line; moreover. spaces need not be left between them.

The scale factor of a number is the number of places to the right of its decimal point. The scale
factor register controls decimal places in calculations. The scale factor does not affect addition or
subtraction. It affects multiplication only if the sum of the scale factors of the two operands is
greater than it. The result of every division command has as many decimal places as it specifies. It
affects exponentiation in that multiplication is performed as many times as the integer part of the
exponent indicates; any fractional part of the exponent is ignored.

de recognizes the following commands and constructions:

number
Stack the value of number. A number is a string of symbols taken from the digits ·o· through
'9'. and the capital letters 'A' through 'F' (usual hexadecimal notation), with an optional
decimal point. An underscore ·_· as a prefix indicates a negative number. The letters retain
values ten through 15, respectively, regardless of the base chosen by the user.

+-/*%"'
The arithmetic operations: addition(+), subtraction(-),
remainder(%). and exponentiation("'). de pops the two top
desired operation by calling the multiprecision routine
arithmetic), and stacks the result.

division(I), multiplication(*),
stack elements, performs the
desired (see multiprecision

LEXICON

594 de

c Clear the stack.

d Duplicate the top of the stack (so that it occupies the top two positions of the stack).

f Print the contents of the stack and the values of all registers.

i Remove the top of the stack and use its integer part as the assumed input base (default.
ten). The new input base must be greater than one and less than 1 7.

I Stack the current assumed input base.

k Remove the top of the stack and put it in the internal scale factor register.

K Put the value of the internal scale register (which the k command sets) on the top of the
stack.

1 x Load the value of register x to the top of the stack. The value of register x is unaltered. x
may be any character.

o Remove the top of the stack and use its integer part as the assumed output base (default,
ten). The specified base may be any positive integer.

0 Stack the current assumed output base.

p Print the top of the stack. The value remains on the stack.

q Quit the program; control returns to the shell sh.

s x Remove the top of the stack and store it in register x. The previous contents of x are
overwritten. x may be any character.

v Replace the top of the stack by its square root.

x Remove the top of the stack, interpret it as a string containing a sequence of de commands,
and execute it.

X Replace the top of the stack by its scale factor (i.e .. the number of decimal places it has).

z Place the number of occupied levels of the stack on top of the stack.

[••.] Place the bracketed character string on top of the stack. The string may be executed
subsequently with the x command.

<X >x =x !<X !>x !=x
Remove the top two elements of the stack and compare them. If there is no '!' sign before
the relation, execute register x if the two elements obey the relation. If a '!' sign is present,
execute register x if the elements do not obey the relation.

Interpret the rest of the line as a command to the shell sh. Control returns to de after
command execution terminates.

Example
The following example program prints the first 20 Fibbonacci numbers. The characters I and 1 are
printed in boldface to help you tell them apart.

lsalsblsc
[lalbdsa+psblcl +dsc2 l <y] sy
lyx

See Also
be, commands

LEXICON

dcheck - dd 595

Notes
For most purposes the infix notation of be is more convenient than the Polish notation of de.

rwwa:11@·1,,1,,e11t.hw ~''""'"''""'"~~~''"~'"''~'"""
Check directory consistency
dcheck [-s) [-i !number ...)jilesystem ...

dcheck checks the consistency of eachfilesystem. It scans all the directories in eachjilesystem and
counts all i-nodes referenced. It then compares its counts against the link counts maintained in the
i-nodes. dcheck notes any discrepancies, and notes allocated !-nodes with a link count of zero.

The -i argument tells dcheck to compare each /number in the list against those in each directory. It
reports matches by printing the i-number, the !-number of the parent directory, and the name of the
entry. The -s argument tells dcheck to correct the link count of errant i-nodes to the entry count.

Because dcheck is uses two passes to check afilesystem, the file system should be unmounted. If -
s is used on the root file system, the system should be rebooted immediately (without performing a
sync). The raw device should be used.

See Also
check, commands, dir.h, icheck, ncheck, sync, umount

Diagnostics
If the link count is zero and there are entries, the file system must be mounted and all entries
removed immediately. If the link count is nonzero and the entry count is larger, the -s option must
be used to make the counts agree. In all other cases there may be wasted disk space but there is no
danger of losing file data.

Notes
In earlier releases of COHERENT, dcheck acted upon a default file system if none was specified.

This command has largely been replaced by fsck.

~~~"'""'""''"""~""'"'~"~ File conversion 
dd [optlon=value) ... 

dd copies an input file to an output file, while performing requested conversions. Options include 
case and character set conversions, byte swapping conversion for other machines, and different 
input and output buffer sizes. dd can be used with raw disk files or raw tape files to do efficient 
copies with large block (record) sizes. Read and write requests can be changed with the bs option 
described below. 

The following list gives each available option. Any numbers which specify block sizes or seek 
positions may be written in several ways. A number followed by w, b, or k is multiplied by two (for 
words), 512 (for blocks), or 1.024 (for kilobytes), respectively, to obtain the size in bytes. A pair of 
such numbers separated by x is multiplied together to produce the size. All buffer sizes default to 
512 bytes if not specified. 

bs=n Set the size of the buffer for both input and output to n bytes. 

cbs=n Set the conversion buffer size to n bytes (used only with character set conversions 
between ASCII and EBCDIC). 

conv=llst Perform conversions specified by the comma-separated list, which may include the 
following: 

ascii 
ebcdic 

Convert EBCDIC to ASCII 
Convert ASCII to EBCDIC 

LEXICON 



596 decvax_dO 

ibm 
lease 
noerror 
swab 
sync 
ucase 

Convert ASCII to EBCDIC, IBM flavor 
Convert upper case to lower 
Continue processing on 1/0 errors 
Swap every pair of bytes before output 
Pad input buffers with 0 bytes to size of ibs 
Convert lower case to upper 

count=n Copy a maximum of n input records. 

files=n Copy a maximum of n input files (useful for multifile tapes). 

ibs=n Set the input buffer size ton (normally used if input and output blocking sizes are to be 
different). 

if=flle Openjile for input; the standard input is used when no if= option is given. 

obs=n Set the output buffer size ton. 

of=Jlle Openjlle for output; the standard output is used when no of= option is given. 

seek=n Seek to position n bytes into the output before copying (does not work on stream data 
such as tapes, communications devices, and pipes). 

skip=n Read and discard the first n input records. 

Examples 
The first example copies the entire contents of a 1.44-megabyte, 3.5-inch diskette from drive 0 to file 
disk.dd: 

dd if=/dev/fvaO of=disk.dd bs=36b count=BO 

The second example writes the contents of the previously stored 5.25-inch file backup.dd to a 1.2-
megabyte, 5.25-inch floppy disk in drive 1: 

dd if=backup.dd of=/dev/fhal bs=30b count=BO 

See Also 
ASCII, commands, conv, cp, tape, tr 

Diagnostics 
The command reports the number of full and partial buffers read and written upon completion. 

Notes 
Because of differing interpretations of EBCDIC, especially for certain more exotic graphic characters 
such as braces and backslash, no one conversion table will be adequate for all applications. The 
ebcdic table is the American Standard of the Business Equipment Manufacturers Association. The 
ibm table seems to be more practical for line printer codes at many IBM installations. 

decvax_dO- General Function ._~ -._~~~~,~~,~~~"'"'~ 
Convert a double from IEEE to DECVAX format 
int 
decvax_d(ddp, ldp) 
double *ddp, *ldp; 

decvax_d() converts a double from IEEE format to DECVAX format. ldp points to the IEEE-format 
double to convert. ddp points to a destination for the converted DECVAX value; ddp may be 
identical to ldp for in-place conversion. 

decvax_d() returns zero on success, -1 on underflow, or one on overflow. 

LEXICON 



decvax _ fO - defined 597 

For a description of the IEEE and DECVAX formats for floating-point numbers, see the Lexicon 
article for noat. 

See Also 
decvax_f(), float, general functions, ieee_d(), ieee_f() 

@Sfklfl.§§d§fll@ii@lr;tl-nnnaan~~'~~ -._~~~,~~,~~~ 
Convert a float from IEEE to DECVAX format 
int 
decvax_f(dfp, ifp) 
noat *dfp, •ifp: 

decvax_f() converts a fioat from IEEE format to DECVAX format. ifp points to the IEEE-format 
fioat to convert. dfp points to a destination for the converted DECVAX value; dfp may be identical 
to ifp for in-place conversion. 

decvax_f() returns zero on success, -1 on underflow, or one on overflow. 

For a description of the IEEE and DECVAX formats for floating-point numbers, see the Lexicon 
article for noat. 

See Also 
decvax_d(), noat, general functions, ieee_d(), ieee_f() 

ml.1@¥4.U.I ---.~~'~''~~ -._~ ~''~'~'"'~~,~~ ~~ 
Default label in switch statement 

default is a prefix used in switch statement. If none of the case labels match the parameter in the 
switch statement, then the default label is used. A switch is not required to have a default case, 
but it is good programming practice to use one. 

See Also 
C keywords, case, switch 

Wt.M llii§·!lefa§W·1'•'·®fl•~,,_ 
Perform an action if a macro is defined 

The preprocessor directive defined determines whether a symbol is defined to the #if preprocessor 
directive. For example, 

#if defined(SYMBOL) 

or 

#if defined SYMBOL 

is equivalent to 

#if def SYMBOL 

except that it can be used in more complex expressions, such as 

#if defined FOO && defined BAR && FOO==lO 

defined is recognized only in lines beginning with #if or #elif. 

See Also 
#elif, #if, #ifdef, cpp, C preprocessor 

LEXICON 



598 definitions - deroff 

Notes 
Note that defined is a preprocessor operator, not a preprocessor directive or a C keyword. The 
difference lies in the fact that you could write a function called defined() without any complaint 
from the C compiler; and if defined does not appear within an #ff or #ellf directive, the 
preprocessor ignores it. 

•a·ntm•MMH@+ ~~ ~-··••••11m~ 
The Lexicon contains the following articles that define aspects of COHERENT: 

address alignment arena 
array bit bit map 
buffer byte cast 
caveat utilltor ccO eel 
cc2 cc3 daemon 
directory executable file field 
file FILE file descriptor 
filter function GMT 
I-node interrupt lvalue 
macro manifest constant modulus 
named pipe NUL NULL 
nybble object format operator 
pattern pipe port 
process pun random access 
root rvalue stack 
standard error standard input standard output 
stderr stdin stdout 
sticky bit stream structure 
superuser wildcards 

See Also 
Lexicon 

G'®'l·ll'®'·Ai!•~,~~~~~~~~~---···· 
Define default tty settings 
#include <sys/ deftty.h> 

deftty.h defines the default tty settings. 

See Also 
header files 

~~,~~~~~ ---~------~~-.--~---~----~ Remove text formatting control information 
deroff [-w] [-x] Ifile ... ] 

deroff removes text formatting control information from each input textjlle. or from the standard 
input if no file is specified. It regards all lines that begin with '.' or "' as being nroff or troff 
commands and deletes them. deroff also recognizes some additional control lines. It deletes eqn 
information (between .EQ and .EN lines), tbl information (between .TS and .TE lines), and macro 
definitions. It also deletes embedded .eqn requests. It expands source file inclusion with .so and 
.nx requests, with the proviso that no input file is read twice. It also deletes some troff escape 
sequences. such as those for font and size change. 

When the -x flag is present. deroff uses some additional knowledge about the nroff -ms macro 
package. 

LEXICON 



detab - device drivers 599 

When the -w flag is present, derotI divides the remaining text into words and prints them to the 
standard output, one per line. A word comprises a sequence of letters, digits, and apostrophes that 
commences with a letter. deroff strips apostrophes from the output. All other characters between 
words are not printed. The spelling checking programs spell and typo use this option. 

See Also 
commands, nrotI, spell, trotI, typo 

~ '~~'''''''m@SmBJ~''''~~~~ ~~ 
Replace tab characters with spaces 
detab [-ttabsize] 

detab reads the standard input, replaces every tab character with spaces, and writes the result to 
the standard output. If you do not specify the -t option, detab uses the standard value of eight. 
tabsize can range in value from two to 256, inclusive. 

See Also 
commands 

device drivers - Overview ~~'~''~~,~~~~~,,~,~ 
A device driver is a program that controls the action of one of the physical devices attached to your 
computer system. 

The following table lists the device drivers included with this edition of the COHERENT system. The 
first field gives the device's major device number; the second gives its name; and the third describes 
it. When a major device number has no driver associated with it, that device is available for a driver 
yet to be written. 

0: 
1: 
2: 
3: 
4: 
5: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 

•mem 
tty 
nkb/kb/mm 
Ip 
fl 
asy 
alO 
all 
hs 
rm 
pty 

at 

scsi 

sem 
shm 
msg 

Interface to memory and null device 
Controlling terminal device 
Keyboard and video 
Parallel line printer 
Floppy drive 
Serial driver (COHERENT 386 only) 
Serial line 0 (COMl and COM3) (COHERENT 286 only) 
Serial line 1 (COM2 and COM4) (COHERENT 286 only) 
Generic polled multi-port serial card (COHERENT 286 only) 
Dual RAM disk 
Pseudoterminals (COHERENT 386 only) 

AT hard disk 

SCSI device drivers: ahal54x. ss 

System V compatible semaphores 
System V subset shared memory 
System V compatible messaging 

LEXICON 



600 df 

26: 
27: 
28: 
29: 
30: 
31: 

Also included are drivers for the following devices: 

console 
ct 
null 

Console driver 
Controlling terminal driver 
The "bit bucket" 

Major and Minor Numbers 
COHERENT uses a system of major and minor device numbers to manage devices and drivers. In 
theory. COHERENT assigns a unique major number to each type of device, and a unique minor 
number to each instance of that type. In practice, however, a major number describes a device 
driver (rather than a device per se ). The individual devices serviced by that driver are identified by a 
minor number. Sometimes, certain parts of the minor number specify configuration. For example, 
bits 0 through 6 of the minor number for COHERENT RAM disks indicate the size of the allocated 
device. 

In COHERENT 286, devices using different IRQ's may have different major numbers, even if the 
devices are of the same general type. For example, devices coml •and coma• have major number 5, 
while com2• and com4• have major number 6. 

Serial Ports 
The two implementations of COHERENT come with different drivers for serial ports. 

COHERENT 286 comes with two sets of drivers. alO and all support ordinary serial lines. alO 
supports ports COMl and COM3, and has major number 5. all supports ports COM2 and COM4, 
and has major number 6. The driver hs, on the other hand, supports generic polled multi-port 
serial cards. 

COHERENT 386 replaces these drivers with one driver, asy. It has major number 5, like alO, but it 
supports all four COM ports, and a variety of generic multi-port cards. The configuration of ports 
that asy supports is set when you install COHERENT; however, you can reconfigure asy should you 
wish to add more hardware to your system. See its Lexicon article for details. 

See Also 
asy, at, boot, com, console, ct, drvld, Lexicon, lp, mboot, mem, msg, null, psy, sem, sgtty, 
shm, tape 

Notes 
See the Release Notes for your release of COHERENT for a list of supported devices and device 
drivers. 

Under COHERENT 286, the devices msg, sem. shm, alO, and all are loadable drivers; you can load 
them into memory by using the command drvld. Under COHERENT 386, these devices are built 
into the kernel. See their respective entries in the COHERENT Lexicon for more information. 

~'~~~~~~~,~~-. ~~~~~~'~,,~~~,,,.. 
Measure free space on disk 
df [-ait] device 

df measures the amount of free space left on a floppy disk, on a logical device on a hard disk, or on 
a RAM disk. device is the name of the device you wish to check. For example, to check the amount 
of space left on filesystem x, type: 

LEXICON 



diff 601 

df Ix 

The default device is the one you are currently using. df displays three numbers: the total number 
of disk blocks in the device, the number of disk blocks being used, and the percent of total disk 
blocks that are free. Note that a disk block is 512 bytes (l /2 kilobyte). 

df recognizes the following options: 

-a Prints the amount of space left on all devices. 

-i Show the number and percentage of i-nodes available. 

-t Show the total number of blocks on the device. This number is based upon the number given 
to /etc/mkfs when the file system was created. The output of df is as follows: 

$ df 
/dev/atla 23815/ 75197 = 31.6% 

(device) 
#of free blocks---1 1----max data blocks on this device 

Adding option -t yields: 

$ df -t 
/dev/atla 23814/ 75197 = 31.6%, 76799 

size of partition in blocks----A 

Note that unless you also specify the -a option, you will see information about the only file 
system that you are currently using (i.e., the only which contains the directory that you are in). 

See Also 
commands 

~~-..'~""''~''~~'~ ~-..,~~~''''Wm&"-"-~~'"''~ 
Summarize differences between two files 
diff [-bdeth] [-c symbol]flle 1 flle2 

diff comparesfllel withjlle2, and prints a summary of the changes needed to turnfllel intoflle2. 

Two options involve input file specification. First, the standard input may be specified in place of a 
file by entering a hyphen'-' in place offllel orflle2. Second. iffllel is a directory. diff looks within 
that directory for a file that has the same name as flle2, then comparesfl1e2 with the file of the 
same name in directory file 1 . 

The default output script has lines in the following format: 

1,2 c 3,4 

The numbers 1,2 refer to line ranges infllel, and 3,4 to ranges infile2. The range is abbreviated to a 
single number if the first number is the same as the second. The command c was chosen from 
among theed commands 'a', 'c', and 'd'. diff then prints the text from each of the two files. Text 
associated withfllel is preceded by'<·. whereas text associated withj11e2 is preceded by'>'. 

The following summarizes cliffs options. 

-b Ignore trailing blanks and treat more than one blank in an input line as a single blank. Spaces 
and tabs are considered to be blanks for this comparison. 

-c symbol 
Produce output suitable for the C preprocessor cpp; the output contains #ifdef, #ifndef, #else. 
and #endif lines. symbol is the string used to build the #ifdef statements. If you define 

LEXICON 



602 diff3 

symbol to the C preprocessor cpp. it will produceflle2 as its output; otherwise, it will produce 
fllel. This option does not work for files that already contain #ifdef, #ifndef, #else, and #endif 
statements. 

-e Create an ed script that will convertjllel intojlle2. 

-f Produce a script in the same manner as the -e option, but with line numbers taken directly 
from the two input files. This will work properly only if applied from end to beginning; it 
cannot be used directly by ed. 

-h Compare large files that have a minimal number of differences. This option uses an algorithm 
that is not limited by file length, but may not discover all differences. 

-d Select the -h algorithm only for files larger than 25,000 bytes; otherwise, use the normal 
algorithm. 

See Also 
ed, egrep, commands 

Diagnostics 
diff's exit status is zero when the files are identical. one when they are different, and two if a 
problem was encountered (e.g .. could not open a file), 

Notes 
diff cannot handle files with more than 32,000 lines. Handing diff a file that exceeds that limit will 
cause it to fail, with unpredictable side effects. 

~''~''~''"'~~~~ ~~~~~~~~~~~ ~ 
Summarize differences among three files 
di:tr3 [-ex3)f!le 1 j1le2 jlle3 

di:tr3 summarizes the differences among three text files. Each difference encountered is headed by 
one of the following separators, which categorizes how many of the three input files differ in a given 
range. The headers are as follows 

All of the files are different. 

====n 
Only the nth file differs, where n may be 1. 2, or 3. 

For each set of changes marked as above, the actual change is indicated for each file using a 
notation similar to commands to ed. For eachjllen the following is printed: 

n: la Text is to be appended after line l injllen. 

n: l,mc The text from line l to line m is to be changed for filen. The original text fromjllen follows 
this line. If this text is identical for two of the files, only the latter (higher numbered) of the 
two is printed. 

Options are available to print a script of commands to ed. With the -e option, a script that will make 
all changes betweenjlle2 andjl!e3 tojllel is produced. This script is based upon all changes flagged 
with ==== or ====3 separators, as described above. 

The -x option prints only those changes where all three files differ, i.e., those flagged with====· 

The -3 option requests only those changes wherejlle3 differs. 

LEXICON 



dir.h - directory 603 

Example 
The following command sequence produces a script. applies it to file 1, and sends the result to the 
standard output. 

(diff3 -e filel file2 file3; echo '1,$p') I ed - filel 

Files 
/tmp/d3• 
I usr I lib I difl3 

See Also 
commands, diff, ed 

Diagnostics 
An exit status of zero indicates all three files were identical, one indicates differences, and two 
indicates some other failure. 

dir.h - Header File 
Directory format 
#include <dir .h> 

A COHERENT directory is exactly like an ordinary file, except that a user's process may write on it 
only through system calls such as creat, link, mknod, or unlink. The system distinguishes 
directories from other types of files by the mode word S_IFDIR in the i-node. (For more information 
on i-nodes, see stat). 

Every directory is an array of entries of the following structure, as defined in the header file dir.h: 

#define 

struct direct { 
ino_t d_ino; 
char d_name[DIRSIZ]; 

}; 

DIRSIZ 14 

/* i-number */ 
/* name */ 

Any entry in which d_ino has a value of zero is unused. 

The command mkdir creates a directory, with the convention that its first two entries are'.' and ' . .'. 
The name '.' is self-referential - a link to the directory itself. The name ' . .' is a link to the parent 
directory. Because the root directory has no parent, its ·.:is a link to itself. 

The d_ino entry of the directory structure is stored in the file system in canonical form, as described 
incanon.h. 

See Also 
canon.h, header files, mkdir, stat() 

pOQfU,Jil ••rnmttm ™ 
A directory is a table that maps names to files; in other words, it associates the names of a file with 
their locations on the mass storage device. Under some operating systems, directories are also files, 
and can be handled like a file. 

Directories allow files to be organized on a mass storage device in a rational manner, by function or 
owner. 

See Also 
definitions, file 

LEXICON 



604 dirent.h - divO 

Define dirent 
#include <dirent.h> 

dirent.h defines the manifest constant dirent. 

See Also 
closedir(), getdents(), header files, opendir(), readdir(), rewinddir(), telldir() 

~'~~~~~~lU!llU!llU!llU!llU!llU!llU!llU!llU!llU!llU!llU!llU!llU!llU!ll!I@!~~ 
Print the contents of the directory stack 
di rs 

The COHERENT shell sh maintains an internal "directory stack", which is a stack of names of 
directories. You can manipulate this stack should you. for any reason, wish to traverse a number of 
directories quickly and efficiently. 

The command dirs prints the current contents of the directory stack. 

See Also 
co111111ands,popd,pushd,sh 

disable - Command 
Disable a port 
/etc/disable port. .. 

disable tells the COHERENT system not to create a login process for each given asynchronous port. 
For example, the command 

/etc/disable comlr 

disables port /dev /co111lr. disable changes the entry for each given port in the terminal 
characteristics file /etc/ttys, and signals init to rescan the ttys file. 

The command enable enables a port. The command ttystat checks whether a port is enabled or 
disabled. 

Files 
/etc/ttys - Terminal characteristics file 

See Also 
co111, co111111ands, enable, login, ttys, ttystat 

Diagnostics 
disable normally returns one if it disables the port successfully and zero if not. If more than one 
port is specified, disable returns the success or failure status of the last port it finds. It returns -1 if 
it cannot find any given port. An exit status of -2 indicates an error. 

-~~ .._,~ ~'iii!~~~,~~~,_ ~ 
Perform integer division 
#include <stdlib.h> 
div_t div(numerator, denominator) 
int numerator, denominator; 

div() divides numerator by denominator. It returns a structure of the type div_t, which is structured 
as follows: 

LEXICON 



do - domain 605 

typedef struct { 
int quot; 
int rem; 

} div_t; 

div() writes the quotient into quot and the remainder into rem. 

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the 
signs of the arguments differ. The sign of the remainder is the same as the sign of the numerator. 

If the remainder is non-zero, the magnitude of the quotient is the largest integer less than the 
magnitude of the algebraic quotient. This is not guaranteed by the operators I and%, which merely 
do what the machine implements for divide. 

See Also 
general functions, ldiv 

Notes 
The ANSI Standard includes this function to permit a useful feature found in most versions of 
FORTRAN. where the sign of the remainder will be the same as the sign of the numerator. Also, on 
most machines, division produces a remainder. This allows a quotient and remainder to be 
returned from one machine-divide operation. 

If the result of division cannot be represented (e.g .• because derwmlnator is set to zero), the behavior 
of div() is undefined. Caveat uttlttor. 

~'''''~"'~"' ~'~ -._~~'~''~''''Wm\1 ~'"'''''~~ 
Introduce a loop 

do is a C control statement that introduces a loop. Unlike for and while loops. the condition in a 
do loop is evaluated after the operation is performed. do always works in tandem with while; for 
example 

do { 
puts("Next entry?"); 
fflush(stdout); 

} while(getchar() != EOF); 

prints a prompt on the screen and waits for the user to reply. The do loop is convenient in this 
instance because the prompt must appear at least once on the screen before the user replies. 

See Also 
break, C keywords, continue, while 

domain - System Maintenance 
Set your system's mail domain 
I etc I domain 

The file /etc/domain sets the domain that the COHERENT mail system uses to create your fully 
qualified domain name. Your fully qualified domain name is created by appending the contents of 
/etc/domain to the contents of /etc/uucpname, with an intervening '.'. Unless you have a 
registered domain name, the contents of this file should be UUCP. 

For information on registering in the United States catch-all domain .us. send mail to: 

us-domain-request@venera.isi.edu 

LEXICON 



606 dos 

UUNET Communications Services of Falls Church, Virginia, will help you set up your own domain 
for a modest fee. Contact info@uunet.uu.net for more information; or telephone them at 703-876-
5050. 

See Also 
mail, paths, system maintenance, uucpname 

~'~"-"1 ·~~,,. 
Manipulate files on MS-DOS file systems 
dos [-JdFlrtx[flags] [device) [file ... ] 

The command dos allows the COHERENT user to manipulate an MS-DOS file system, which may be 
either a hard-disk partition or a floppy disk. It can build an empty MS-DOS file system, label it, list 
the files in it, transfer files between it and COHERENT. or delete files from it. 

The given device must be a special file that specifies an MS-DOS file system, such as floppy-disk 
drive /dev/thaO or hard-disk partition /dev/atOa. The default device is /dev/dos. which the 
system administrator should link to the most commonly used device name. 

dos converts between the differing file-name conventions of COHERENT and MS-DOS. An MS-DOS 
.file argument may be specified in lower or upper case, using'/' as the path-name separator. When 
transferring files from MS-DOS to COHERENT, dos converts an MS-DOS file name to a COHERENT 
file name in lower case only. If the MS-DOS file name contains no extension, the COHERENT file 
name contains no '.'. When transferring files from COHERENT to MS-DOS, dos converts all 
alphabetic characters in a COHERENT file name to upper case; if a period '.' appears at the 
beginning or end of a file name, dos converts it to ·_·. dos truncates the part of the file name before 
the last · .' to a maximum of eight characters and truncates the extension to a maximum of three 
characters. 

The command line must specify exactly one of the following.functions. 

d Delete eachftle from the MS-DOS file system. This option also allows the user to delete 
empty directories. 

F Create an empty MS-DOS file system on a formatted diskette. This option is analogous to 
the COHERENT command /etc/mkfs. The COHERENT commands /etc/fdformat and 
/etc/mkfs initialize a COHERENT diskette in two steps. The MS-DOS command format 
initializes an MS-DOS diskette by performing both the physical and logical formatting 
operations with one command. To initialize an MS-DOS diskette under COHERENT, use 
the command /etc/fdformat -v devlcename, followed by the command dos F devlcename. 
If.file is named, dos copies it to the boot block of the file system. The dos command cannot 
build a file system on a hard-disk partition. 

l Label the MS-DOS file system. The command line must specify exactly one.file argument, 
which gives the label. 

r Replace each.file on the MS-DOS file system with the COHERENT file of the same name. If 
a given .file argument specifies a COHERENT directory, dos replaces its subdirectories 
recursively to the MS-DOS file system unless the s flag is used. If no.file is specified, dos 
copies all files in the current directory to the MS-DOS file system. 

t List the files on the MS-DOS file system. If no .file argument is given, dos lists the entire 
MS-DOS file system; otherwise, it lists each.file. If a.file argument specifies an MS-DOS 
subdirectory. dos lists its contents. dos lists directories first in alphabetical order, then 
ordinary files in alphabetical order. 

LEXICON 



dos 607 

x Extract each.file from the MS-DOS file system to a COHERENT file of the same name. If a 
given.file argument specifies an MS-DOS subdirectory, dos extracts its contents recursively 
unless the s flag is used. If no file is given, dos extracts all files from the MS-DOS file 
system to the current COHERENT directory. 

The following.flags are available. 

a Perform ASCII newline conversion on file transfer. When moving files from COHERENT to 
MS-DOS, this option converts each COHERENT newline character '\n' (ASCII LF) to an MS­
DOS end-of-line (ASCII CR and LF); when moving files from MS-DOS to COHERENT, it does 
the opposite. By default, dos performs binary file transfer, without newline conversion. 

k Keep the file modification time (mtime) on extract and replace operations. By default, dos 
gives extracted or replaced files the current time. With this option, dos gives the extracted 
or replaced file the same time as the original file. 

n List files in order of creation (newest file last) rather than in alphabetical order. This option 
applies only to the table-of-contents function. dos always lists directories before files, with 
or without the n option. 

p Perform a piped extract or replace (for use in pipelines). The command line must specify 
exactly one.file argument. For extract, dos reads the given.file and writes it to the standard 
output. For replace. dos reads the standard input and writes it to the given.file. 

s Suppress extraction or replacement of subdirectories. By default, dos extracts or replaces 
subdirectories recursively. 

v Verbose option. Provide additional information about each function performed. 

[1-9) A digit specifies a logical drive number on an extended MS-DOS partition. For example. dos 
tv2 /dev/atOc lists the directory of the second logical drive on extended MS-DOS partition 
/dev/atOc. 

Examples 
The first example copies all files located in directories sources and include, as well as any 
subdirectories, from floppy drive /dev/fval to correspondingly named subdirectories in the current 
COHERENT directory: 

dos xavk /dev/fval sources include 

Note that fval is a high-density. 3.5-inch floppy disk in floppy-disk drive 1 (a.k.a .. drive B:). The 
files will be copied with ASCII newline conversion and will retain the time and date that they had 
under MS-DOS. 

The next example copies a file from an MS-DOS partition on your hard disk. Suppose that C: is the 
primary MS-DOS partition on your first hard drive. The following command copies file 
C: \AUTO EXEC.BAT to I autoexec.bat in your COHERENT root partition: 

dos xa /dev/atOa /autoexec.bat 

You will want to use the a switch any time you are transferring a text file. 

Suppose that the second partition on your first hard drive (COHERENT device /dev/atOb) is an 
extended MS-DOS partition with two logical drives. D: and E:. To copy a COHERENT text file 
/tmp/foo to D:\TMP\FOO, use the command 

dos ral /dev/atOb /tmp/foo 

To copy non-text file frotz in the current COHERENT directory to MS-DOS file E:\DBF\AX\FROTZ. 
use the command 

LEXICON 



608 doscat~doscp 

dos rp2 /dev/atOb dbf/ax/frotz < frotz 

See Also 
commands, doscat, doscp, doscpdir, dosdel, dosdir, dosformat, doslabel, dosls, dosmkdir, 
dosrm, dosrmdir, fdformat, mkfs, MS-DOS 

Notes 
dos is an obsolete command. It has been retained for compatibility with earlier versions of 
COHERENT. We urge you to use the other members in the dos family of commands, which have a 
cleaner syntax and are much easier to use. 

dos does not check for unusual characters in a COHERENT file name or for file names that differ 
from other file names only in case. 

The dos family of commands now support large file systems, such as those created by MS-DOS 
versions 4.0 and 5.0. 

HM®'llri•mli•fi!iir' -········-···········~~"'""~ Concatenate a file on an MS-DOS file system 
doscat device:[/ directory I lflle 

doscat concatenates.file that is in directory on an MS-DOS file system. device names the floppy­
disk or hard-disk device that holds the file system to be modified, e.g .. /dev/fhaO. You can also 
build a file of aliases so that you can access the drives as a:, b:, etc. For details. see the Lexicon 
entry for doscp. which explains how to set up defaults for the dos family of commands. 

file can name either a single file. or can contain a wildcard character to name more than one file. 
For example. the command 

doscat a:foo,c 

concatenates file foo.c which is on the file system contained in device whose alias is a: (as defined in 
file /etc/default/msdos). Likewise, the command 

doscat 'c:/dirname/*.txt' 

concatenates all files with the suffix .txt in directory dirname. which, in turn, is on the file system 
contained in device whose alias is c: (as defined in file /etc/default/msdos). In this form of the 
command, doscat concatenates the files in the alphabetical order of their names. Note that the tail 
of the command must be enclosed within apostrophes. or the shell will expand the ·•· before it is 
read by doscat. 

Files 
/etc/default/msdos- Setup file 

See Also 
commands, dos, doscp, doscpdir, dosdel, dosdir, dosformat, doslabel, dosls, dosmkdir, dosrm, 
dosrmdir, fdformat, mkfs 

~~""'"'""'""~--------------~~~~ --­Copy files to/from an MS-DOS file system 
doscp [-abkmrv] src dest 

doscp copies files between MS-DOS and COHERENT file systems. The MS-DOS file system can 
reside either on a floppy disk, or on an MS-DOS partition of a hard disk. 

src names the file being copied and the file system where it resides; dest names the file system and 
directory into which the file is copied. The operating system that owns the src file is implied by the 

LEXICON 



doscp 609 

name of the file system on which it resides. An MS-DOS file system must be named using the 
device that holds it, such as floppy-disk drive /dev/thaO or hard-disk partition /dev/atOa. You can 
also build a file of aliases so that you can access the drives as a, b, etc. For details, see the section 
entitled Configuring the dos Commands. below. 

doscp converts a file's name from one operating system's conventions to the other's. An MS-DOS 
file argument may be specified in lower or upper case, using'/' as the path-name separator. When 
transferring files from MS-DOS to COHERENT. doscp converts an MS-DOS file name to a 
COHERENT file name in lower case only. If the MS-DOS file name contains no extension, the 
COHERENT file name contains no'.'. When transferring files from COHERENT to MS-DOS, doscp 
converts all alphabetic characters in a COHERENT file name to upper case; if a period'.' appears at 
the beginning or end of a file name, doscp converts it to '_'. doscp truncates the portion of the file 
name to the left of the · .' to a maximum of eight characters and portion to the right of the • .' to a 
maximum of three characters. 

doscp recognizes the following options; 

a Perform ASCII newline conversion on file transfer. When moving files from COHERENT to 
MS-DOS, this option converts each COHERENT newline character '\n' (ASCII LF) to an MS­
DOS end-of-line (ASCII CR and LF). When moving files from MS-DOS to COHERENT. it 
does the opposite. By default. doscp performs ASCII conversion on files that have an ASCII 
extention. See Setup, below. 

b Do not perform any newline conversion on file transfers. 

k Keep; give the copied file the same time stamp as its original. By default. doscp gives 
copied files the current time. 

m Same as a, described above 

r Same as b, described above. 

v Verbose. Provide additional information about each action performed. 

Configuring the dos Commands 
The dos family commands read the file /etc/default/msdos before they begin to interpret 
arguments. By modifying this file, you can establish defaults that let COHERENT's dos commands 
resembles their counterparts under MS-DOS. You can set up two classes of defaults: device 
defaults andjlle defaults. 

A device default lets you declare an alias for a device that holds an MS-DOS file system. This device 
can be a floppy-disk drive, a partition on a hard disk. or an extended partition on a hard disk. The 
alias must consist of one or two letters. No letter can serve as an alias for more than one device. 
For example, the following declaration: 

c=/dev/atOa 

specifies that the hard-disk partition accessed via device /dev/atOa is a "Primary MS-DOS" 
partition, and that its alias is c. Hereafter. the dos commands will interpret c as being equivalent to 
/dev/atOa. 

The declaration 

d=/dev/atOb;l 

specifies the first "Extended MS-DOS" partition on the partition accessed via device /dev/atOb. 
Bumping the number from 1 to 2 would specify the second extended MS-DOS partition within 
partition I dev I atOb, as in: 

LEXICON 



610 doscp 

e=/dev/at0b;2 

Notice how the device names (c, d, and e) can correspond to the same drive names as under MS­
DOS, whether or not they are primary or extended partitions. 

File declarations,. on the other hand, simply declare that all files with a given suffix are text files and 
should always have their newline characters converted from COHERENT to MS-DOS format (or vice 
versa). For example, placing the line 

.c 

in /etc/default/msdos tells all of the dos commands that all files with the suftlx .c are text files 
and should have their newline characters converted by default. You can have any number of file 
defaults in /etc/default/msdos. 

Examples 
The first example copies all C source files from floppy drive /dev/fval to correspondingly named 
files in the current COHERENT directory, preserves the time stamp, and performs newline 
conversion upon them: 

doscp -akv /dev/fval:source/\*.c 

Note that you must quote wildcard characters with a backslash to keep the shell from interpreting 
them. Also note that /dev/fval is a high-density, 3.5-inch floppy disk in floppy-disk drive I. So, if 
your default file contained the entry 

b=/dev/fval 
.c 

you could also have typed: 

doscp -kv b:source/\*.c 

The next example copies a file from an MS-DOS partition on your hard disk to a COHERENT file 
system. Suppose that C is the primary MS-DOS partition on your first hard drive. The following 
command copies file C:\AUTOEXEC.BATto /tmp/autoexec.batin your COHERENT partition: 

doscp /dev/atOa:autoexec.bat /tmp 

If your /etc/default file contains the entry 

c=/dev/atOa 

then you can also type: 

doscp c:autoexec.bat /tmp 

Files 
/etc/default/msdos- Setup file 

See Also 
commands, dos, doscat, doscpdir, dosdel, dosdir, dosformat, doslabel, dosls, dosmkdir, dosrm, 
dosrmdir, fdformat, mkfs 

Notes 
doscp does not check for unusual characters in a COHERENT file name or for file names that differ 
from other file names only in case. 

LEXICON 



doscpdir 611 

ttc.tfe.t.O lli·foh.fi!it·k~~-w ~~"'-w'~''~-w,~-w'~"''~"W - • 
Copy a directory to/from an MS-DOS file system 
doscpdir [-akmv) src dest 

doscpdir copies a directory and its contents between an MS-DOS file system and a COHERENT file 
system. The MS-DOS file system can reside either on a floppy disk, or on the MS-DOS segment of a 
hard disk on your system. 

src names the directory being copied and the file system where it resides; dest names the file system 
and directory into which the file is copied. The operating system that owns the src file is implied by 
the name of the file system on which it resides. An MS-DOS file system must be named using the 
device that holds it, such as floppy-disk drive /dev/fhaO or hard-disk partition /dev /atOa. You can 
also build a file of aliases so that you can access the drives as a, b, etc. For details, see the Lexicon 
entry for doscp, which explains how to set up defaults for the dos family of commands. 

doscpdirconverts a file's name from one operating system's conventions to the other's. An MS-DOS 
file argument may be specified in lower or upper case, using'/' as the path-name separator. When 
transferring files from MS-DOS to COHERENT, doscpd.ir converts an MS-DOS file name to a 
COHERENT file name in lower case only. If the MS-DOS file name contains no extension, the 
COHERENT file name contains no '.'. When transferring files from COHERENT to MS-DOS, 
doscpdir converts all alphabetic characters in a COHERENT file name to upper case; if a period '.' 
appears at the beginning or end of a file name, doscpd.ir converts it to ·_·. doscpdir truncates the 
part of the file name before the last'.' to a maximum of eight characters and truncates the extension 
to a maximum of three characters. 

doscpdir recognizes the following options: 

a Perform ASCII newline conversion on file transfer. When moving files from COHERENT to 
MS-DOS, this option converts each COHERENT newline character '\n' (ASCII LF) to an MS­
DOS end-of-line (ASCII CR and LF). When moving files from MS-DOS to COHERENT. it 
does the opposite. By default, doscpdir performs ASCII conversion on files that have an 
ASCII extention. 

k Keep: give the copied file the same time stamp as its original. By default, doscpdir gives 
copied files the current time. 

m Same as a, described above 

v Verbose. Provide additional information about each action performed. 

Example 
The following command copies COHERENT directory /usr/src to directory /mydir on the MS-DOS 
file system. It assumes that you have set c as a default for a hard-disk device: 

doscpdir -va /usr/src c:/mydir 

Files 
/etc/default/msdos- Setup file 

See Also 
commands, dos, doscat, doscp, dosdel, dosd.ir, dosformat, doslabel, dosls, dosmkd.ir, dosrm, 
dosrmd.ir, fdformat, mkfs 

Notes 
doscpdir does not check for unusual characters in a COHERENT file name or for file names that 
differ from other file names only in case. 

LEXICON 



612 dosdel - dosdir 

~~~~~~~~~~~~~~~~~~­
Delete a file from an MS-DOS file system
dosdel [-v] devlce:/dlr/.flle

dosdel deletes file that lives on MS-DOS file-system device. The MS-DOS file system can reside
either on a floppy disk, or on the MS-DOS segment of a hard disk on your system. The MS-DOS file
system must be named using the device that holds it, such as floppy-disk drive /dev/fhaO or hard­
disk partition /dev /atOa. You can also build a file of aliases so that you can access the drives as a,
b, etc. For details, see the Lexicon entry for doscp. which explains how to set up defaults for the
dos family of commands.

dosdel takes one option. v, which provide additional information about each action it performs.

Example
The following command deletes mytlle. It assumes that you have defined c to be a default for a
device upon which you have set an MS-DOS file system:

dosdel c:/mydir/myfile

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdir, dosformat, doslabel, dosls, dosmkdir, dosrm,
dosrmdir, fdformat, mkfs

-~~~~
List contents of an MS-DOS directory
dosdir [-nv] devlce:[dlr/][file)

dosdir lists the contents of a directory that lives on an MS-DOS file system. The MS-DOS file
system can reside either on a floppy disk. or on the MS-DOS segment of a hard disk on your system.
The MS-DOS file system must be named using the device that holds it, such as floppy-disk drive
/dev/fhaO or hard-disk partition /dev/atOa. You can also build a file of aliases so that you can
access the drives as a, b, etc. For details, see the Lexicon entry for doscp, which explains how to set
up defaults for the dos family of commands.

dosdir recognizes the following options:

n Newest: List the files in the order in which they were last modified, from newest to oldest.
By default, dosdir lists files in alphabetical order.

v Verbose. Provide additional information about each action performed.

Example
The following command lists the contents of mydir. It assumes that you have defined c as a default
for a device on which is set an MS-DOS file system:

dosdir c:/mydir

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdel, dosformat, doslabel, dosls, dosmkdir,
dosrmdir, dosrm, fdformat, mkfs

LEXICON

dosformat - Command
Format a floppy disk
dosfonnat [-v) device

dosformat- doslabel 613

dosfonnat builds an MS-DOS file system on a floppy disk. The floppy disk must first have been
formatted with the command fdfonnat -v. device names the floppy-disk drive that holds the disk to
receive the file system, such as /dev/fhaO. See the Lexicon entry floppy disks for a table of the
COHERENT floppy-disk devices. You can also build a file of aliases so that you can access the
drives as a, b, etc. For details, see the Lexicon entry for doscp. which explains how to set up
defaults for the dos family of commands.

The option -v. tells dosfonnat to provide additional information about each action it performs.

Example
The following example formats a disk. It assumes that you have defined a as a default for a device
upon which is set an MS-DOS file system:

dosformat a:

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdel, dosdir, doslabel, dosls, dosmkdir, dosnn,
dosnndir, fdfonnat, mkfs

Notes
To create a double-sided, double-density formatted floppy disk in drive 0 (drive A), use /dev/fqaO
for 3.5-inch disks. or /dev/19a0 for 5.25-inch disks.

tt®ttrt®lli·1i.U@it·'- ·~~'"' ... ~····"'"''~" ··~· ... ~·~··~·~"'
Label an MS-DOS floppy disk
doslabel [-v) device: label

doslabel puts label onto an MS-DOS floppy disk. device names the floppy-disk drive that holds the
disk to be labelled, such as /dev/fhaO. See the Lexicon entry floppy disks for a table of the
COHERENT floppy-disk devices. You can also build a file of aliases so that you can access the
drives as a, b, etc. For details, see the Lexicon entry for doscp, which explains how to set up
defaults for the dos family of commands.

The option -v, tells doslabel to provide additional information about each action it performs.

Example
The following command labels an MS-DOS floppy disk with the string mydisk. It assumes that you
have defined a as a default for a device that holds an MS-DOS file system:

doslabel a: mydisk

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdel, dosdir, dosfonnat, dosls, dosmkdir, dosnn,
dosnndir, fdfonnat, mkfs

LEXICON

614 dosls - dosrm

~-. iW --~--. ·~ - iWI iWI --·~~
List files on an MS-DOS file system
dosls [-v] device:[/directory/][file]

dosls lists all files in directory on an MS-DOS file system. device names the floppy-disk or hard-disk
device that holds the file system to be modified, e.g., /dev/fhaO. You can also build a file of aliases
so that you can access the drives as a, b, etc. For details, see the Lexicon entry for doscp, which
explains how to set up defaults for the dos family of commands.

The option -v tells dosls to print its output in a long format. analogous to what the command ls -1
prints.

Example
The following displays the contents of directory src. It assumes that you have defined c as a default
for a device on which you have set an MS-DOS file system:

dosls -v c:/src

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdel, dosdir, dosformat, doslabel, dosmkdir,
dosrm, dosrmdir, fdformat, mkfs

dosmkdir - Command --~~~''""'~~ ~,.._~,~,·~~~~-..-.
Create a directory in an MS-DOS file system
dosmkdir device:directory

dosmkdir makes directory in an MS-DOS file system. device names the floppy-disk or hard-disk
device that holds the file system to be modified, e.g., /dev/fhaO. You can also build a file of aliases
so that you can access the drives as a, b, etc. For details, see the Lexicon entry for doscp, which
explains how to set up defaults for the dos family of commands.

Example
The following command creates directory mydir. It assumes that you have defined a to be a device
in which is set an MS-DOS file system:

dosmkdir a:/mydir

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdel, dosdir, dosformat, doslabel, dosls, dosrm,
dosrmdir, fdformat, mkfs

dosrm - Command -.._~~~~--. ·~~,·~~'~' .,_,,. ~·~~-.._-..-.
Remove a file from an MS-DOS file system
dosrm device:[/ directory /)file

dosrm removes.file from directory on an MS-DOS file system. device names the floppy-disk or hard­
disk device that holds the file system to be modified, e.g .. /dev/fhaO. You can also build a file of
aliases so that you can access the drives as a, b, etc. For details, see the Lexicon entry for doscp,
which explains how to set up defaults for the dos family of commands.

LEXICON

dosrmdir - drvld 615

Example
The following deletes all .c files on an MS-DOS disk. It assumes that you have defined b to be a
device on which you have set an MS-DOS file system:

dosrm 'b:*.c'

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdel, dosdir, dosfonnat, doslabel, dosls, dosmkdir,
dosnndir,fdfonnat,mkfs

nc.in,n,n lli·1i1!i@iI·k~~""'~~ ooe.""''''~"''"'"'"'~"~"''~"
Remove a directory from an MS-DOS file system
dosrmdir devlce:dlrectory

dosrmdir removes directory from an MS-DOS file system. device names the floppy-disk or hard-disk
device that holds the file system to be modified. e.g .. /dev/fhaO. You can also build a file of aliases
so that you can access the drives as a, b, etc. For details, see the Lexicon entry for doscp, which
explains how to set up defaults for the dos family of commands.

Example
The following command removes directory foo. It assumes that you have defined a to be a device in
which you have set a disk with an MS-DOS file system:

dosrmdir c:/foo

Files
/etc/default/msdos- Setup file

See Also
commands, dos, doscat, doscp, doscpdir, dosdel, dosdir, dosfonnat, dosls, dosmkdir, dosnn,
fdformat, mkfs

double - C Keyword
Data type

A double is the data type that encodes a double-precision floating-point number. On most
machines. sizeof(double) is defined as four machine words, or eight chars. If you wish your code to
be portable. do not use routines that depend on a double being 64 bits long.

Different formats are used to encode doubles on various machines. These formats include IEEE.
DECVAX. and BCD (binary coded decimal), as described in the entry for float.

See Also
C keywords, data formats, float, portability

drvld - Command "''"'"'"'~~"ooe.ooe.~~~"'"""'~
Load a loadable driver into memory
I etc I drvld options driver

drvld loads a loadable driver into memory. driver names a loadable driver. Only the superuser root
can run drvld.

A loadable driver is one that is not linked into the kernel when it was built. The current suite of
loadable drivers include multi-port serial cards, various SCSI host adapters. and a variety of add-on
cards. The COHERENT drivers for shared memory, semaphores, and message passing are also

LEXICON

616 drvld.all

implemented as loadable drivers, to help make the COHERENT kernel more efficient.

drvld recognizes the following options:

-k kernel
By default, drvld assumes that file /coherent holds the symbol table for the in-core copy of
COHERENT. The -k option tells drvld to load the driver using a version of COHERENT
other than the default. You must use this option if you are running an alternate copy of
COHERENT (e.g .. a version based on the floppy disk drive).

-r Su press generation of a debugging symbol table.

-o ouiflle

Files

By default, drvld writes the driver's debugging symbol table into a file that has the same
name as the driver but is located in directory /tmp. The -o options tells drvld to output the
symbol table to ouifile rather than the default.

/drv- Directory that contains loadable drivers
/etc/drvld.all- File that names drivers to be loaded at boot-time

See Also
commands, device drivers, drvld.all, sload()

Notes
COHERENT supports user-written, loadable device drivers generated with the COHERENT device­
driver kit. By convention, loadable drivers that have been tested thoroughly and released for
production reside in directory /drv, not in /dev.

If you see a message of the form "loadable drivers disabled", you have attempted to use drvld on a
kernel other than /coherent without specifying the -k option.

tt®'®'•®M••'M®M1fi! 1M+.,~"'"~ ~~,~~~~'"""'"-.
Load loadable drivers at boot time
/etc/drvld.all

The file /etc/drvld.all holds commands to load loadable drivers into memory when you boot the
COHERENT system. It is read from the script /etc/brc, which is executed whenever the
COHERENT system is rebooted into single-user mode.

The following gives the contents of a typical version of drvld.all for a COHERENT-286 system:

: Configure US keyboard.
/conf/kbd/us
: Add driver for coml
/etc/drvld -r /drv/alO

The command /conf/kbd/us loads the U.S. keyboard interpreter into memory, for use with the nkb
keyboard driver. See the Lexicon article on keyboard tables for details on keyboard tables and their
use.

The command /etc/drvld /drv/alO invokes the command drvld to load the loadable driver
/drv/alO into memory. This is the driver for COM port 0, local mode. See the article COM for
details on COHERENT's COM-port drivers, and the article drvld for details on how to load loadable
drivers.

See Also
brc, drvld, keyboard tables, system maintenance,

LEXICON

du-dump 617

Notes
COHERENT 386 version 4.0 does not implement loadable device drivers. This version of
COHERENT still uses drvld.all, however, to load the keyboard table and perform other useful work.

~~,~~,~~~~~~~~''' - ·~'-US .,~-
~~~ge 
du [-a] [-s) [directory ... ) 

du prints the total number of disk blocks used by each named directory. If no directory is specified, 
du prints the disk usage of the current directory. 

The -a (all) option causes du to print a line for every file and directory in the substructure. Normally 
it prints a line only for each directory. 

The -s (summary) option prints only the line for the top level directory. 

du understands links; it adds a file with more than one link to it into the total only once. 

See Also 
commands, df, find 

Notes 
du does not count file-system overhead such as indirect blocks, so occasionally a directory does not 
fit on a file system which appears to contain enough room for it. 

~,,,,,,~,,~,,~~~'~'~~~~~' 
File-system backup utility 
dump [options] [argument ... ] 

dump dumps either all or a portion of file system argument to magnetic tape or floppy disks. File­
system dumps are in a format that permits you to restore all or some of the files to the original file 
system, and to select files either by name or by i-number. 

A file-system dump includes all files changed since the dump since date, plus each file's full path 
name (for the benefit of dumpdir). 

options specifies both the dump-since date and the processing options. It is made up of characters 
from the set 0123456789bdfsSuv, which have the following meanings. 

0-9 The digit gives the level number of the dump. The dump-since date is the most recent date in 
the dump-date file /etc/ddate that is (l) associated with this file system and (2) has a level 
number less than the current dump level. For example, if you request a level-3 dump, dump 
will back up all files not backed up since the last level-2 dump. A level-0 dump by definition 
backs up all files in the file system. 

b The next argument gives the output tape's blocking factor. The blocking factor is the number 
of dumpdata structures in each tape block. The default blocking factor is 20. 

d The next argument gives the density of the output tape in bytes per inch. The default density 
is 1600 bytes per inch (bpi). dump uses the density to compute the quantity of tape needed. 

f The next argument gives the path name of the output file. If no f option is given, I dev I dump 
is assumed. 

s The next argument gives the length of the dump tape in feet. dump keeps a running total of 
the quantity of tape it has written, and it asks for a new reel if it appears that the end of the 
reel is near. The default length is 2,300 feet. 

LEXICON 



618 dumpdate 

S The next argument gives the size of the dump output device, in blocks. This is used only if 
you are backing up the file system to floppy disks or streaming cartridge tape rather than to 
nine-track magnetic tape. 

u If the dump completes without error, update the record of successful dumps kept in file 
/etc/ddate. There is an entry in this file for every file system and every dump level. 

v Inform the user of the 'dump since' date and the length of tape used in feet. The length is 
useful for computing the quantity of tape remaining if multiple dumps are written onto a 
single reel of tape. 

If no level number is given, dump assumes the options 9u. 

Files 
/dev/dump-Default dump device 
/etc/ddate- Dump date file 

See Also 
badscan,co1nD1ands,dumpdate,dumpdir,restor 

Diagnostics 
Most errors are fatal, caused by a table overflowing or a read or write error on the input or output 
device. 

dump requires that its output be written to disks that are free of bad sectors. If you write a dump 
to a disk with bad sectors, you will not be able to restore files from that disk. 

When formatting disks to be used with dump, use the command 

/etc/fdformat -v device 

This forces fdformat to verify the format. It takes twice as long. but it ensures that the disk is good 
at least at a first level of testing. Reject any disks that have any defects - or save them for use with 
COHERENT file systems, which can map out bad sectors. 

Notes 
Please note that dump is now regarded as being obsolete. We strongly encourage users to use cpio 
instead. 

m11r;1,:.rm·11i·''rl'M"·~~'~"~ ~'""'""'"'''''""'~~"''~"'' 
Print dump dates 
dumpdate [fllesystem ... ) 

dumpdate reads through the dump date file /etc/ddate and displays the dump date records 
associated with each specifiedfilesystem. 

If nojilesystem is specified, the records for all file systems are displayed. 

Files 
/etc/ddate - Dump date file 

See Also 
commands, dump, dumpdir, restor 

LEXICON 



dumpdir - dupO 619 

WflM·l·ll mri•]11h1@i•k"' ~'~''""'""''""~ ~"-''~~'"' 
Print the directory of a dump 
dumpdir [af [argument ... ) ] 

dumpdir reads through a file-system dump created by the dump command, gathers up its directory 
blocks, and displays the names and i-numbers of all files on the dump. 

The a option causes dumpdir to display the directory entries for '.' and · .. ·, which are normally 
suppressed. 

The f option causes the next argument to be taken as the pathname of the dump device, which is 
otherwise assumed to be I dev I dump. 

If no options are specified, dumpdir reads from the default dump device /dev/dump and 
suppresses the printing of'.' and' . .' entries. 

Files 
I dev I dump - Default dump device 
/tmp/ddXXXXXX -To hold directory blocks 

See Also 
commands, dump 

Diagnostics 
The dump/restore format puts a header at the beginning of the dump that includes all the 
information about what lives where in the dump. dumpdir reads this header to discover what files 
are in the dump. If the header is too large to fit onto one disk, dumpdir will then prompt you to 
insert the additional disk or disks; if this happens. insert the requested disk and then type 
<return>. 

Notes 
dump requires that its output be written to disks that are free of bad sectors. If you write a dump 
to a disk with bad sectors, you will not be able to restore files from that disk. For details on using 
disks with dump, see its Lexicon entry. 

tt1111mw.a;111mrnjj1 - ~'-~""' ~'"' --~'~'"""~'' 
Define data structures used on dump tapes 
#include <dumptape.h> 

dumptape.h defines the data structures used on dump tapes. A dump tape begins with a header 
record. This contains the attributes of the tape. The remainder of the tape is filled with arrays of 
dumpdata records. The map comes first, then all the directories, then all the files. 

See Also 
dump,headerfiles 

~------~,----~"'--­Duplicate a file descriptor 
int dup(fd) intfd; 

dup() duplicates the existing file descriptorfd, and returns the new descriptor. The returned value 
is the smallest file descriptor that is not already in use by the calling process. 

See Also 
dup2(), fopen(), fdopen(), STDIO, system calls 

LEXICON 



620 dup20 

Diagnostics 
dup() returns a number less than zero when an error occurs, such as a bad file descriptor or no file 
descriptor available. 

dup20 - General Function 
Duplicate a file descriptor 
int dup2(fd, newjd) intfd, newfd; 

dup2() duplicates the file descriptorfd. Unlike its cousin dup(), dup2() allows you to specify a new 
file descriptor newfd, rather than having the system select one. If newfd is already open, the system 
closes it before assigning it to the new file. dup2() returns the duplicate descriptor. 

See Also 
dup(), general functions, STDIO 

Diagnostics 
dup2() returns a number less than zero when an error occurs, such as a bad file descriptor or no file 
descriptor available. 

LEXICON 



ebcdic.h - echo 621 

ebcdic.h- Header File ..,_~,~,~-.. .._~,,~,,,~~~"W 
Define constants for non-printable EBCDIC characters 
#include <ebcdic.h> 

ebcdic.h defines manifest constants for non-printable characters used in the EBCDIC character set. 
The constants correspond to those defined in the header file ascii.h. 

See Also 
ASCII, ascii.h, header files -,,.. .._,,,,~~,~~,~~~''' -
Repeat/ expand an argument 
echo [-n] [argument ... ] 

echo prints each argument on the standard output. placing a space between each argument. It 
appends a newline to the end of the output unless the -n flag is present. 

echo recognizes the following special character sequences. For each occurrence of the sequence, it 
substitutes the correspondingASCII character. 

\b 
\c 
\f 
\n 
\r 
\t 
\v 
\\ 
\Onnn 
\nnn 

Backspace 
Print line without a newline (like -n option) 
Formfeed 
Newline 
Carriage return 
Tab 
Vertical tab 
Backslash 
nnn is octal value of character (sh only) 
nnn is the octal value of character (ksh only) 

For example. if you are running the Bourne shell and type 

echo 'Please enter your name: \007\c' 

or if you are running the Korn shell and type: 

echo 'Please enter your name: \0007\c' 

the shell rings the bell and prints 

Please enter your name: 

on your screen. Note that the \007 sequence causes the terminal bell to sound. and that since the 
\c sequence was specified, the cursor will be left positioned after the colon. 

LEXICON 



622 ed 

See Also 
commands, ksh, sh 

Notes 
Under the Korn shell, echo is an alias for its built-in command print. 

Please note that echo converts characters to spaces. If you wish to preseve tab characters in an 
echoed string. you must enclose it within quotation marks. For example. the command 

echo $RECORD 

displays: 

7 5 175 875 

whereas the command 

echo "$RECORD" 

displays: 

7 5 175 875 

This is important when you use with echo with programs for which the tab character is significant, 
such as /rob. 

m!'lli·lnl11ijh(,I 
Interactive line editor 
ed [-) [+cmopsv] (flle] 

ed is the COHERENT system's interactive line editor. 

ed is a line-oriented interactive text editor. With it, you can locate and replace text patterns. move 
or copy blocks of text, and print parts of the text. ed can read text from input files and can write all 
or part of the edited text to other files. 

ed reads commands from the standard input, usually one command per line. Normally. ed does not 
prompt for commands. If the optional.file argument is given, ed edits the given file, as if the.file 
were read with thee command described below. 

ed manipulates a copy of the text in memory rather than with the file itself. No changes to a file 
occur until the user writes edited text with the w command. Large files can be divided with split or 
edited with the stream editor sed. 

ed remembers some information to simplify its commands. The current line is typically the line most 
recently edited or printed. When ed reads in a file, the last line read becomes the current line. The 
current.file name is the last file name specified in an e or f command. The current search pattern is 
the last pattern specified in a search specification. 

ed identifies text lines by integer line numbers. beginning with one for the first line. Several special 
forms identify a line or a range of lines, as follows: 

n A decimal number n specifies the nth line of the text. 

A period · .' specifies the current line. 

$ A dollar sign '$' specifies the last line of the text. 

+,- Simple arithmetic may be performed on line numbers. 

LEXICON 



ed 623 

/pattern/ 
Search forward from the current line for the next occurrence of the pattern. If ed finds no 
occurrence before the end of the text, the search wraps to the beginning of the text. 
Patterns. also called regular expressions, are described in detail below. 

?pattern? 
Search backwards from the current line to the previous occurrence of the pattern. If ed finds 
no occurrence before the beginning of the text. the search wraps to the end of the text. 

'x Lines marked with the kx command described below are identified by 'x. The x may be any 
lower-case letter. 

n,m Line specifiers separated by a comma ·: specify the range of lines between the two given 
lines, inclusive. 

n;m Line specifiers separated by a semicolon ';' specify the range of lines between the two given 
lines. inclusive. Normally. ed updates the current line after it executes each command. If a 
semicolon';' rather than a comma separates two line specifiers, ed updates the current line 
before reading the second. 

• An asterisk'*' specifies all lines; it is equivalent to 1,$. 

Commands 
ed commands consist of a single letter. which may be preceded by one or two specifiers that give the 
line or lines to which the command is to be applied. The following command summary uses the 
notations [n) and [n[.m]J to refer to an optional line specifier and an optional range. respectively. 
These default to the current line when omitted, except where otherwise noted. A semicolon';' may 
be used instead of a comma'.' to separate two line specifiers. 

Print the current line. Also, a line containing only a period '.' marks the end of appended. 
changed, or inserted text. 

[n) Print given line. If no line number is given (i.e., the command line consists only of a 
newline character). print the line that follows the current line. 

[n)= Print the specified line number (default: last line number). 

[n)& Print a screen of23 lines; equivalent to n,n+22p. 

! line Pass the given line to the shell sh for execution. ed prompts with an exclamation point '!' 
when execution is completed. 

? Print a brief description of the most recent error. 

[n)a Append new text after line n. Terminate new text with line that contains only a period · .'. 

[n[,m])c 
Change specified lines to new text. Terminate new text with a line that contains only a 
period'.'. 

[n[,m)]d[p) 

e (file) 

E (file) 

Delete specified lines. If p follows, print new current line. 

Edit the specified file (default: current file name). An error occurs if there are unsaved 
changes. Reissuing the command after the error message forces ed to edit thejlle. 

Edit the specified file (default: current file name). No error occurs if there are unsaved 
changes. 

LEXICON 



624 ed 

f Iflle] 
Change the current file name to file and print it. If .file is omitted. print the current file 
name. 

[n[,m]]g/[pattern]/commands 
Globally execute commands for each line in the specified range (default: all lines) that 
contains the pattern (default: current search pattern). The commands may extend over 
several lines. with all but the last terminated by '\ ·. 

[n)i Insert text before linen. Terminate new text with a line that contains only a period·:. 

[n[,mJU[p] 

[n]kx 

[n[,mlJI 

Join specified lines into one line. If m is not specified, use range n,n+l. If no range is 
specified, join the current line with the next line. With optional p. print resulting line. 

Mark given line with lower-case letter x. 

List selected lines. interpreting non-graphic characters. 

[n[,mlJm[d] 
Move selected lines to follow lined (default: current line). 

o options 
Change the given options. The options may consist of an optional sign '+'or'-', followed by 
one or more of the letters 'cmopsv'. Options are explained below. 

[n[,m]J[p] 
Print selected lines. The p is optional. 

q Quit editing and exit. An error occurs if there are unsaved changes. Reissuing the 
command after the error message forces ed to exit. 

Q Quit editing and exit. No error occurs if there are unsaved changes. 

[n]r Iflle] 
Read.file into current text after gtven line (default: last line). 

[n[,mlJs[k]/(patternl )/pattern2 / [g)[p] 
Search for patternl (default, remembered search pattern) and substitute pattern2 for kth 
occurrence (default, first) on each line of the given range. If g follows. substitute every 
occurrence on each line. If p follows. print the resulting current line. 

[n[,mlJt[d) 

(n]u[p] 

Transfer (copy) selected lines to follow lined (default. current line). 

Undo effect of last substitute command. If optional p specified, print undone line. The 
specified line must be the last substituted line. 

[n[,m]]v/(pattern]/commands 
Globally execute commands for each line in the specified range (default: all lines) not 
containing the pattern (default: current search pattern). The commands may extend over 
several lines, with all but the last terminated by'\'. The v command is like the g command, 
except the sense of the search is reversed. 

[n[,mlJw (file) 
Write selected lines (default, all lines) to file (default, current file name). The previous 
contents offlle. if any, are lost. 

LEXICON 



ed 625 

[n[,m]]W Ifile) 
Write specified lines (default, all lines) to the end ofjile (default, current file name). Like w. 
but appends tojile instead of truncating it. 

Patterns 
Substitution commands and search specifications may include patterns. also called regular 
expressions. A non-special character in a pattern matches itself. Special characters include the 
following. 

$ 

• 

[chars] 

Match beginning of line, unless it appears immediately after '(' (see below). 

Match end of line. 

Matches zero or more repetitions of preceding character . 

Matches any character except newline. 

Matches any one of the enclosed chars. Ranges of letters or digits may be indicated using·-·. 

["chars] 
Matches any character except one of the enclosed chars. Ranges of letters or digits may be 
indicated using • -•. 

\c Disregard special meaning of character c. 

\(pattern\) 
Delimit substringpattern for use with \d, described below. 

The replacement part pattern2 of the substitute command may also use the following: 

II: Insert characters matched by patternl . 

\d Insert substring delimited by dth occurrence of delimiters'\(' and'\)', where dis a digit. 

Options 
The user may specify ed options on the command line. in the environment. or with the o command. 
The available options are as follows: 

c Print character counts one. r. and w commands. 

m Allow multiple commands per line. 

o Print line counts instead of character counts on e. r. and w commands. 

p Prompt with an ·•· for each command. 

s Match lower-case letters in a pattern to both upper-case and lower-case text characters. 

v Print verbose versions of error messages. 

The c option is normally set, and all others are normally reset. Options may be set on the command 
line with a leading·+· sign. The·-· command line option resets the c option. 

Options may be set in the environment with an assignment, such as 

export ED=+cv 

Options may be set with the·+· prefix or reset with the·-· prefix. 

See Also 
commands, elvis, ex, me, sed, vi 
Introduction to ed 

LEXICON 



626 EDITOR - egrep 

Diagnostics 
ed usually prints only the diagnostic'?' on any error. When the verbose option vis specified. the'?' 
is followed by a brief description of the nature of the error. 

'ff•P<•Jilla.Wliel.!11@@Pf@IQ' - ~ ~~,~~~"~~,.·---~ 
Name editor to use by default 
EDITOR=edltor 

The environmental variable EDITOR names the default editor that you wish to use. For example. 
mall invokes editor when you conclude a mail message by typing a question mark '?' at the 
beginning of a line followed by <return>. The screen pager more invokes editor when you enter the 
command v while displaying a file. 

See Also 
environmental variables, mall, more 

~~'~',.. -- --~,~~'~''"'"~'~'''"''-. 
Extended pattern search 
egrep [option ... ] (pattern] (/lie ... ] 

egrep is an extended and faster version of grep. It searches each.file for occurrences of pattern (also 
called a regular expression). If no .file is specified. it searches the standard input. Normally, it 
prints each line matching the pattern. 

Wild cards 
The simplest patterns accepted by egrep are ordinary alphanumeric strings. Like ed, egrep can also 
process patterns that include the following wildcard characters: 

Match beginning of line, unless it appears immediately after '[' (see below). 

$ Match end of line. 

• Match zero or more repetitions of preceding character . 

Match any character except newline. 

[chars] 
Match any one of the enclosed chars. Ranges of letters or digits may be indicated using ' -'. 

["chars] 
Match any character except one of the enclosed chars. Ranges of letters or digits may be 
indicated using·-·. 

\c Disregard special meaning of character c. 

Metacharacters 
In addition. egrep accepts the following additional metacharacters: 

Match the preceding pattern or the following pattern. For example, the pattern cat I dog 
matches either cat or dog. A newline within the pattern has the same meaning as ' I '. 

+ Match one or more occurrences of the immediately preceding pattern element; it works like ·•·, 
except it matches at least one occurrence instead of zero or more occurrences. 

? Match zero or one occurrence of the preceding element of the pattern. 

( ... ) Parentheses may be used to group patterns. For example. (Ivan)+ matches a sequence of one 
or more occurrences of the four letters 'I' 'v' ·a· or 'n'. 

LEXICON 



egrep 627 

Because the metacharacters •••, '?', '$', '(', ')', '[', ']', and 'I' are also special to the shell, patterns that 
contain those literal characters must be quoted by enclosingpattern within apostrophes. 

Options 
The following lists the available options: 

-A Write all lines in which expression is found into a temporary file. Then, call MicroEMACS with 
its error option to process the source file, with the contents of the temporary file serving as an 
"error" list. This option resembles the -A option to the cc command, and lets you build a 
MicroEMACS script to make systematic changes to the source file. To exit MicroEMACS and 
prevent egrep from searching further, <ctrl-U> <ctrl-X> <ctrl-C>. 

Unlike cgrep, egrep only matches patterns that are on a single line. Some systems have a 
context grep cgrep) that works like egrep but displays lines found in context. The COHERENT 
egrep -A not only displays lines in context, via MicroEMACS, it lets you edit them. 

-b With each output line, print the block number in which the line started (used to search file 
systems). 

-c Print how many lines match. rather than the lines themselves. 

-e The next argument is pattern (useful ifthe pattern starts with'-'). 

-f The next argument is a file that contains a list of patterns separated by newlines; there is no 
pattern argument. 

-h When more than oneflle is specified, output lines are normally accompanied by the file name; -
h suppresses this. 

-1 Print the name of each file that contains the string, rather than the lines themselves. This is 
useful when you are constructing a batch file. 

-n When a line is printed, also print its number within the file. 

-s Suppress all output, just return exit status. 

-v Print a line only if the pattern is not found in the line. 

-y Lower-case letters in the pattern match lower-case and upper-case letters on the input lines. A 
letter escaped with 0<2 '\' in the pattern must be matched in exactly that case. 

See Also 
awk, cgrep, commands, ed, expr, grep, lex, sed 

Diagnostics 
egrep returns an exit status of zero for success, one for no matches, and two for error. 

Notes 
For matching patterns in C programs, the command cgrep is preferred, because it is optimized to 
recognize C-style expressions. 

Besides the difference in the range of patterns allowed, egrep uses a deterministic finite automaton 
(DFA) for the search. It builds the DFA dynamically, so it begins doing useful work immediately. 
This means that egrep is is much faster than grep, often by more than an order of magnitude, and 
is considerably faster than earlier pattern-searching commands, on almost any length of file. 

LEXICON 



628 else - elvis 

else - C Keyword ~~~~~~~-~~~~~~~~-~~~-~~.,. ~ ~ 
Introduce a conditional statement 

else is the flip side of an if statement: if the condition described in the if statement fails. then the 
statements introduced by the else statement are executed. For example. 

if (getchar() == EOF) 
exit(O); 

else 
dosomething(); 

exits if the user types EOF. but does something if the user types anything else. 

See Also 
C keywords, if 

~"~~~~~~~~~~~~~~~~~~m.,_~~~~~~~~~~~~"'~ 
Clone of Berkeley-standard screen editor 
elvis [options] ( +cmd) [fllel ... flle27 I 

elvis is a clone of vi and ex. the standard UNIX screen editors. 

Unlike MicroEMACS, the COHERENT system's other screen editor, elvis is a modal editor whose 
command structure resembles theed line editor. Modal means that a keystroke assumes a different 
meaning. depending upon the mode that the editor is in. elvis uses three modes: visual-command 
mode, colon-command mode, and Input mode. The following sections summarize the commands 
associated with each mode. 

Visual-Command Mode 
Visual-command mode closely resembles text-input mode. One quick way to tell the modes apart is 
to press the <esc> key. If elvis beeps. then you are in visual-command mode. If it does not beep. 
then you were in input mode, but pressing <esc> switched you to visual-command mode. 

Most visual-mode commands are one keystroke long. The commands are in two groups: movement 
commands and edit commands. The former group moves the cursor through the file being edited. 
and the latter group alters text. 

The following sections summarize the command set for elvis's visual-command mode. 

Visual-Mode Movement Commands 
The following summarizes the visual mode's movement commands. count indicates that the 
command can be optionally prefaced by an argument that tells elvis how often to execute the 
command. move indicates that the command can be followed by a movement command, after which 
the command is executed on the text that lies between the point where the command was first typed 
and the point to which the cursor was moved. Typing the command a second time executes the 
command for the entire line upon which the cursor is positioned. key means that the command 
must be followed by an argument. The following describes 

<ctrl-B> Move up by one screenful. 

[count] <ctrl-D> 

[count] <ctrl-E> 

<ctrl-F> 

LEXICON 

Scroll down count lines (default. one-halfscreenful). 

Scroll up count lines. 

Move down by one screenful. 



<ctrl-G> 

[count} <ctrl-H> 

[count} <ctrl-J> 

<ctrl-L> 

[count} <ctrl-M> 

[count} <ctrl-N> 

[count} <ctrl-P> 

<Ctrl-R> 

[count] <ctrl-U> 

[count} <ctrl-Y> 

<ctrl-J> 

<Ctrl-"> 

[count} <space> 

I [move} 

.. key 

$ 

% 

'key 

[count) ( 

[count]) 

• 
[count}+ 

[count}, 

[count}­

[count]. 

I text 

0 

[count}; 

? text 

@key 

[count}B 

[count}E 

Show file status and the current line line. 

Move one character to the left. 

Move down count lines. 

Redraw the screen. 

Move to the beginning of the next line. 

Move down count lines (default. one). 

Move up count lines (default, one). 

Redraw the screen. 

Scroll up count lines (default, one-halfscreenful). 

Scroll down count lines. 

If the cursor is on a tag name, go to that tag. 

Switch to the previous file. 

Move right count spaces (default. one). 

Run the selected text through an external filter program. 

Select which cut buffer to use next. 

Move to the end of the current line. 

Move to the matching(){}{) character. 

Move to a marked line. 

Move backward count sentences (default, one). 

Move forward count sentences (default, one). 

Go to the next error in the error list . 

Move to the beginning of the next line. 

e/vis 629 

Repeat the previous for t command, but move in the opposite direction. 

Move to the beginning of the preceding line. 

Repeat the previous edit command. 

Search forward for text, which can be a regular expression. 

If not part of a count, move to the first character of this line. 

Switch to colon-command mode to execute one command. 

Repeat the previous for t command. 

Search backwards for text, which can be a regular expression. 

Execute the contents of a cut-buffer as vi commands. 

Move backwards count words (default, one). 

Move forwards count words (default, one). 

LEXICON 



630 elvis 

[count] F key 

[count]G 

[count]H 

K 

[count]L 

M 

N 

p 

Q 
[count] T key 

u 
[count]U 

[count]Y 

zz 
[ [ 

11 

'key 

[count]b 

[count] e 

[count] f key 

[count]h 

[count]j 

[count] k 

[count]l 

mkey 

n 

p 

[count] t key 

u 

[count]w 

ymove 

LEXICON 

Move left to the count'th occurrence of the given character (default, first). 

Move to to the count'th line in the file (default, last). 

Move to the top of the screen. 

Look up a keyword. 

Move to the bottom of the screen. 

Move to the middle of the screen. 

Repeat the last search, but in the opposite direction. 

Paste text before the cursor. 

Shift to colon-command mode. 

Move left almost to the given character. 

Undo all recent changes to the current line. 

Move forward count words (default, one). 

Copy (or "yank") count lines into a cut buffer (default, one). 

Save the file and exit. 

Move back one section. 

Move forward one section. 

Move to the beginning of the current line, but after indent. 

Move to the key character. 

Move back count words. 

Move forward to the end of the count'th word. 

Move rightward to the count'th occurrence of the given character. 

Move left count characters (default, one). 

Move down count characters (default. one). 

Move up count characters (default, one). 

Move right count characters (default, one). 

Mark a line or character. 

Repeat the previous search. 

Paste text after the cursor. 

Move rightward almost to the count'th occurrence of the given character 
(default, one). 

Undo the previous edit command. 

Move forward count words (default, one). 

Copy (or ''yank") text into a cut buffer. 



elvis 631 

zkey Scroll the screen, repositioning the current line as follows: + indicates top of the 
screen, - indicates the bottom, • indicates the middle. 

[count/{ 

[count/ I 
[count/} 

Move back count paragraphs (default, one). 

Move to the count'th column on the screen (leftmost, one). 

Move forward count paragraphs (default, one). 

Visual-Mode Edit Commands 
The following describes the visual mode's editing commands. 

[count/# Increment a number by count (default, one). 

[count/ lie 

<move 

>move 

[count/ A input 

C input 

D 

[count/ I input 

[count/J 

[count/ 0 input 

R input 

[count/ S input 

[count/X 

[count/ a input 

cmove 

dmove 

[count/ i input 

[count/ o input 

[count/ r key 

[count/ s input 

/count/x 

[count/ .... 

Repeat the previous :s/ I command. 

Shift the enclosed text left. 

Shift the enclosed text right. 

Append input at end of the line. 

Change text from the cursor through the end of the line. 

Delete text from the cursor through the end of the line. 

Insert text at the beginning of the line (after indentations). 

Join lines the current with the following line. 

Open a new: line above the current line. 

Overtype. 

Change lines, like cc. 

Delete count characters from the left of the cursor (default. one). 

Insert text after the cursor. 

Change text. 

Delete text. 

Insert text at the cursor. 

Open a new line below the current line. 

Replace count characters with text you type (default, one). 

Replace count characters with text you type (default, one). 

Delete the character at which the cursor is positioned. 

Toggle a character between upper case and lower case. 

Colon-Mode Commands 
The following summarizes the set of colon-mode commands. It is no accident that these commands 
closely resemble those for the ed line editor: they come, in fact, from ex, the editor upon which both 
vi (the UNIX visual editor) and ed derive. For that reason, colon-command mode is sometimes 
called ex mode. 

line indicates whether the command can be executed on one or more lines. line can be a regular 
expression. Some commands can be used with an optional exclamation point; if done so, the editor 

LEXICON 



632 elvis 

assumes you know what you are doing and suppresses the warnings and prompts it would normally 
issue for these commands. Please note, finally, that most commands can be invoked simply by 
typing the first one or two letters of their names. 

abbr [wordfullJormJ 

[line] append 

args [file 1 ..• flleNJ 

cc (files] 

cd [directory] 

Define word as an abbreviation forjullJorm. 

Insert text after the current line. 

With no arguments, print the files list on elvis's command line. With one or 
more arguments, change the name of the current file. 

Invoke the C compiler to compile.files, and redirects all error messages into file 
errlist. After the compiler exits, scan the contents of errlist for error messages; 
if one is found, jump to the line and file indicated on the error line, and display 
the error message on the status line. 

Switch the current working directory. With no argument, switch to the $HOME 
directory. 

[llne][,llne] change ["x] 
Replace the range of lines with the contents of cut-buffer x. 

chdir [directory] Same as the cd command. 

{line][,llne] copy targetline 
Copy the range of lines to after the targetline. 

[llne][,llne] delete ["x] 
Move the range of lines into cut buffer x. 

digraph[!] [XX [Y]] Set XX as a digraph for Y. With no arguments, display all currently defined 
digraphs. With one argument, undefme the argument as a digraph. 

edit{!] [file] 

errlist{!J [errllst] 

me (file] 

Edit a file not named on the elvis command line. 

Find the next error message in file errlist, as generated through elvis's cc or 
make commands. 

With an argument, change the output file to .file. Without an argument, print 
information about the current output file. 

[llne][,llne] global /regexp/ command 

[line] insert 

[llne][,llne] join 

[line][,llne] list 

make [target] 

Search the range of lines for all lines that contain the regular expression 
regexp, and execute command upon each. 

Insert text before the current line. 

Concatenate the range of lines into one line. 

Display the requested range of lines, making all embedded control characters 
explicit. 

Same as the cc command, except that make is executed. 

map{!] key mapped_to 

LEXICON 

Remap key to mapped_to. Normally. remapping applies just to visual-command 
mode; '!' tells elvis to remap the key under all modes. With no arguments, 
show all current key mappings. 



elvis 633 

Set a mark on lin£, and name it x. {liM} mark X 

mkexrc Save current configuration Into file ./ .exrc. which will be read next time you 
invoke elvis. 

[liM][,line] move targetllne 
Move the range of lines to after targetltne. 

next[!] {files] Switch to the next file on the elvis command line. 

Next[!] Switch to the preceeding file on the elvis command line. 

[liM][,line] number Display the range of lines, with line numbers. 

previous{!] Switch to the preceedingfile on the elvis command line. 

[liM][,line] print Display the specified range of lines. 

[line] put ["x] Copy text from cut buffer x after the current line. 

quit[!] Quit elvis, and return to the shell. 

[line] readjlle Read the contents ofjlle and insert them after line (default, the last line). 

rewind[!] Switch to the first file on the elvis command line. 

set [options] Set an elvis option. With no arguments, list current settings for all options. 

shell Invoke a shell. 

sourcejlle Read a set of colon-mode commands fromjlle, and execute them. 

[liM][,liM] substitute I regexp I replacement/ [p][g][c] 
For the range of lines, replace the first instance of regexp with replacement. p 
tells elvis to print the last line upon which a substitution was performed. g 
means perform a global substitution, i.e., replace all instances of regexp on 
each line with replacement. c tells elvls to ask for confirmation before 
performing each substitution. 

tal!J!J tagname Find tagname in file tags, which records information about all tags. If found, 
jump to the file and line upon which the tag is set. 

[line][,line] to targetltne 

unabbrword 

undo 

unmapf!J key 

version 

Copy the range of lines to after the targetline. 

Unabbreviate word. 

Undo the last editing command. 

Unmapkey. 

Display the current version of elvis. 

[lin£][,lin£] vglobal / regexp / command 

visual 

wq 

Search the range of lines for all lines that do not contain the regular expression 
regexp, and execute command upon each. 

Enter visual-command mode. 

Save the changed file, and exit. 

[line][,line] write{!] [[»]file] 
Write the file being edited into file. With the » argument, append the edited 
text onto the end ofjlle. 

LEXICON 



634 elvis 

xit{I] Same as the wq command, described above. except that it does not write files 
that have not changed. 

[line][,line] yank ["x] Copy the range of lines into cut buffer x. 

[line][,line] I command 

[line][,line] < 

[line][,line] = 

[line][,line] > 

[line][ ,line J lk 

@x 

Execute command under a subshell, then return. 

Shift the range of lines left by one tabwidth. 

With no range of lines specified. print the number of the current line. With line 
arguments, print the endpoints of the lines in question, and the number of 
lines that lie between them. (Remember, line can be a regular expression as 
well as a number.) 

Shift the range of lines right by one tabwidth. 

Repeat the last substitution command. 

Read the contents of cut-buffer x as a set of colon-mode commands, and 
execute them. 

Input-Mode Commands 
Most keystrokes are interpreted as being text and inserted directly into the text; however, some 
keystrokes are still interpreted as commands. Thus, you can perform an entire session of simple 
editing directly within input mode without switching to either of the command modes. 

The following summarizes the commands that can be executed directly within input mode: 

<Ctrl-A> Insert a copy of the last input text. 

<Ctrl-D> 

<ctrl-H> 

<ctrl-L> 

<ctrl~M> 

<Ctrl-P> 

<ctrl-R> 

<ctrl-T> 

<ctrl-U> 

<ctrl-V> 

<ctrl-W> 

<Ctrl-Z><ctrl-Z> 

<eSC> 

<deb 

Delete one indent character. 

Erase the character before the cursor. 

Redraw the screen. 

Insert a newline. 

Insert the contents of the cut buffer. 

Redraw the screen, like <ctrl-L>. 

Insert an indent character. 

Move to the beginning of the line. 

Insert the following keystroke, even if special. 

Backspace to the beginning of the current word. 

Write the file and exit elvis. 

Shift from input mode to visual-command mode. 

Delete the current character. 

Command-line Options 
elvis lets you name up to 27 files on the command line, thus allowing you to edit up to 27 files 
simultaneously. The "next file" and "previous file" commands described above allow you to shift 
from one file to another during the same editing session; in this way, for example, you can cut text 
from one file and paste it into another. 

LEXICON 





636 endgrentO - endpwentO 

enables port /dev/comlr. 

enable changes the entry for each given port in the terminal characteristics file /etc/ttys. The baud 
rate specified in /etc/ttys must be the appropriate baud rate for the terminal or modem connected 
to the port. See the Lexicon entry for ttys for more information. 

The command disable disables a port. The command ttystat checks whether a port is enabled or 
disabled. 

Files 
/etc/ttys- Terminal characteristics file 
/dev/com• - Devices serial ports 

See Also 
com, commands, disable, getty, login, ttys, ttystat 

Diagnostics 
enable normally returns one if it enables the port successfully and zero if not. If more than one port 
is specified, enable returns the success or failure status of the last port it finds. It returns -1 if it 
cannot find any given port. An exit status of -2 indicates an error. 

Notes 
It is not recommended that you attempt to enable a port that is already enabled. To make sure, run 
/etc/disable before running /etc/enable. 

f:iml·@'m•fuME''i!l.AU·"' 
Close group file 
#include <grp.h> 
endgrent() 

endgrent() closes the file /etc/group. It returns NULL if an error occurs. 

Files 
/etc/group 
<grp.h> 

See Also 
general functions, group 

t:*·MtMnmm@k!H•1.1;u.u1--------------------------
Close password file 
#include <pwd.h> 
endpwent() 

The COHERENT system has five routines that search the file /etc/passwd, which contains 
information about every user of the system. endpwent() closes the password file. Please note that 
this function does not return a meaningful value. 

Example 
For an example of this function, see the entry for getpwent(). 

Files 
I etc/passwd 
pwd.h 

LEXICON 



enum - env 637 

See Also 
general functions, getpwent(), getpwnam(), getpwuid(), pwd.h, setpwent() 

mmmlll•@MH 
~type and identifiers 

An enum declaration is a data type whose syntax resembles those of the struct and union 
declarations. It lets you enumerate the legal value for a given variable. For example. 

enum opinion {yes, maybe, no} GUESS; 

declares type opinion can have one of three values: yes, no, and maybe. It also declares the 
variable GUESS to be of type opinion. 

As with a struct or union declaration, the tag (opinion in this example) is optional; if present. it 
may be used in subsequent declarations. For example. the statement 

register enum opinion *op; 

declares a register pointer to an object of type opinion. 

All enumerated identifiers must be distinct from all other identifiers in the program. The identifiers 
act as constants and be used wherever constants are appropriate. 

COHERENT assigns values to the identifiers from left to right. normally beginning with zero and 
increasing by one. In the above example, the values of yes. no, and maybe are set, respectively, to 
one, two, and three. The values often are ints, although if the range of values is small enough, the 
enum will be an unsigned char. If an identifier in the declaration is followed by an equal sign and a 
constant, the identifier is assigned the given value, and subsequent values increase by one from that 
value; for example, 

enum opinion {yes=50, no, maybe} guess; 

sets the values of the identifiers yes, no, and maybe to 50, 51, and 52. respectively. 

See Also 
Ckeywords 

mill8'Ml'·M·@Hm•m@ma 
File read to set environment 

The Korn shell reads the environmental variable ENV to determine what file to read after it executes 
the contents of profile and .profile. This file is usually used to set aliases and variables. 

See Also 
environmental variables, ksh 

-if·mlufiiH•' 
Execute a command in an environment 
env [-] [VARIABLE=value ... )[command args) 

The command env executes command with args, modifying the existing environment by performing 
the requested assignments. 

The'-' option tells env to replace the environment with the arguments of the form VARIABLE=value; 
otherwise the assignments are added to the environment. 

If command is omitted, the resulting environment is printed. 

LEXICON 



638 environ - environmental variables 

See Also 
commands 

environ - Technical Information 
Process environment 

extern char ••environ; 

environ is an array of strings. called the environment of a process. By convention, each string has 
the form 

name=value 

Normally, each process inherits the environment of its parent process. The shell sh and various 
forms of exec can change the environment. The shell adds the name and value of each shell 
variable marked for export to the environment of subsequent commands. The shell adds 
assignments given on the same line as a command to the environment of the command, without 
affecting subsequent commands. 

See Also 
exec, getenv(), sh, technical information 

environmental variables - Overview ~' ~~,,~~~~~~~~~~~'~ 
The environment is a set of information that is read by all programs that run on your system. It 
consists of one or more environmental variables that you set. For example, when you set the 
environmental variable PATH. you tell COHERENT that you wish to pass this information to all 
programs on your system, including COHERENT itself. 

By changing the environment. you can change the way a command works without rewriting any 
commands that you may have embedded in batch files. scripts. or makefiles. 

Your programs may request environmental variables of their own definition. COHERENT uses the 
following environmental variables to set its environment. Note that the variables marked with an 
asterisk are used only by the Korn shell ksh. 

ASKCC. 
CWD* .. 
EDITOR 
ENV* .. 
FCEDIT*. 
IFS .... 
HOME .. 
KSH_ VERSION*. 
LASTERROR*. 
LIBPATH. 
MAIL .. 
PAGER. 
PATH. 
PSI .. . 
PS2 .. . 
SECONDS*. 
SHELL .. . 
TERM ... . 
TIMEZONE. 
TMPDIR 
USER .... 

LEXICON 

Have mail prompt for CC names 
Current working directory 
Editor used by default by mail 
File read to set environment 
Editor used by the fc command 
Characters recognized as white space 
User's home directory 
List current version of Korn shell 
Program that last generated an error 
Directories that hold compiler phases and libraries 
File that holds user's mail messages 
User's preferred output filter 
Directories that hold executable files 
User's default prompt 
Prompt when unbalanced quotation marks span a line 
Number of seconds since current shell started 
Name the default shell 
Name the default terminal type 
User's current time zone 
Directory that holds temporary files 
Name user's identifier 



envp - EOF 639 

You can also set the following environmental variables to control the default settings of the 
COHERENT assembler as, the C compiler cc, and the linker ld: 

ARHEAD . . Append options to beginning of ar command line 
ARTAIL . .. Append options to end of ar command line 
ASHEAD . . Append options to beginning of as command line 
ASTAIL . .. Append options to end of as command line 
CCHEAD . . Append options to beginning of cc command line 
CCTAIL . .. Append options to end of cc command line 
LDHEAD . . Append options to beginning of ld command line 
LDTAIL . .. Append options to end ofld command line 

See Also 
get_env(), Lexicon 

~~~~"'~~!illTil!illTil!illTil!illTil!illTil!lllTil!illTil!lllTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTil!illTI!ll!I!& 
Argument passed to main()
char *envp[];

envp is an abbreviation for environmental parameter. It is the traditional name for a pointer to an
array of string pointers passed to a C program's main function. and is by convention the third
argument passed to main.

Example
The following example demonstrates envp, argc, and argv.

#include <stdio.h>

main(argc, argv, envp)
int argc;
char *argv[];
char *envp [] ;
{

int a;

/* Number of args */
/* Argument ptr array */
/* Environment ptr array */

printf("The command name (argv[O]) is %s\n", argv[OJ);
printf("There are %d arguments:\n", argc-1);

}

for (a=l; a<argc; a++)
printf("\targument %2d:\t%s\n", a, argv[a]);

printf("The environment is as follows:\n");
a = O;
while (envp[a] != NULL)

printf("\t%s\n", envp[a++J);

See Also
argc, argv, C language, environ, main()

Indicate end of a file
#include <stdio.h>

EOF is an indicator that is returned by several STDIO functions to indicate that the current file
position is the end of the file.

LEXICON

640 epson

Many STDIO functions, when they read EOF, set the end-of-file indicator that is associated with the
stream being read. Before more data can be read from the stream, its end-of-file indicator must be
cleared. Resetting the file-position indicator with the functions fseek, fsetpos, or ftell will clear the
indicator, as will returning a character to the stream with the function ungetc.

See Also
me, stream, STDIO, stdio.h

~~~~ 
Print files on Epson printer 
epson [ -cdfrw8 I [ -b head I [ -i n I [ -o ojlle I [ -s n I [file ... I 

epson prints eachjlle, or the standard input if none, on an Epson MX-80 printer or compatible. 
epson normally sends its output directly to the line printer /dev/lp. It recognizes the nroft' output 
sequences for boldface and italics and normally converts them to emphasized print and italics. 

epson recognizes the following options: 

-b head 
Print the given head as a double-width banner at the top of the first output page. 

-c Use compressed printing mode. 

-d Print boldface as double strikes. Normally, epson recognizes the sequence "c\bc" as 
boldface and prints c in emphasized printing mode. -d is useful in conjunction with -c. 

-f Do not print a formfeed character at the end of each file. 

-in Indent n spaces at the start of each output line. 

-o ojlle 
Send output to ojlle instead of /dev/lp. 

-r Print all characters in Roman; do not use italics. Normally, epson recognizes the sequence 
"_\be" as italic and prints c in its italic character set. 

-sn Print n newlines at the end of each line. n must be 1. 2, or 3; the default is 1. 

-w Use double width printing mode. 

-8 Print lines with vertical spacing of eight lines per inch instead of the default six lines per 
inch. 

Files 
/dev/lp- Line printer 

See Also 
commands, lpr, nroft', pr, printer 

Diagnostics 
epson prints appropriate messages on the standard error if it cannot open ajlle or if an argument is 
incorrect. 

LEXICON 



errno - errno.h 641 

errno - Technical Information 
External integer for return of error status 
extern int ermo; 

ermo is an external integer that COHERENT links into every program. COHERENT sets ermo to 
the negative value of any error status returned by COHERENT to the functions that perform 
COHERENT system calls. 

Mathematical functions use ermo to indicate classifications of errors on return. ermo is defined 
within the header file ermo.h. Because not every function uses ermo, it should be polled only in 
connection with those functions that document its use and the meaning of the various status 
values. For the names of the error codes (as defined in ermo.h, their value, and the message 
returned by the function perror. see ermo.h. 

Example 
For an example of using ermo in a mathematics program, see the entry for acos. 

See Also 
ermo.h, mathematics library, perror(), signal(), technical information 

t§H.C.l·•=mt1iJI •'"'''''a•••!%•,,~ ~'"''''''''"'"'~'"-. 
Error numbers used by errno() 
#include <ermo.h> 

ermo.h is a header that defines and describes the error numbers returned in the external variable 
ermo. The following lists the the error numbers defined in ermo.h: 

EPERM: Not super user 
You are not the superuser root, and attempted an operation that requires root privileges. 

ENOENT: No such file or directory 
A program could not find a required file or directory. 

ESRCH: Process not found 
A program attempt to communicate with a process that did not exist. 

EINTR: Interrupted system call 
A COHERENT system call failed due to a signal being received or an alarm expiring. 

EIO: I/0 error 
A physical I/0 error occurred on a device driver. This could be a tape error, a CRC error on 
a disk, or a framing error on a synchronous HDLC link. 

ENXIO: no such device or address 
A specified minor device is invalid or the unit is powered off. This error might also indicate 
that a block number given to a minor device is out of range. suload returns this error code 
if the driver was not loaded. 

E2BIG: argument list too long 
The number of bytes of arguments passed in an exec is too large. 

ENOEXEC: exec format error 
The file given to exec or load is not a valid load module (probably because it does not have 
the magic number at the beginning). even though its mode indicates that it is executable. 

EBADF: bad file descriptor 
A file descriptor passed to a system call is not open or is inappropriate to the call. For 
example, a file descriptor opened only for reading may not be accessed for writing. 

LEXICON 



642 errno.h 

ECHILD: no children 
A process issued a wait call when it had no outstanding children. 

EAGAIN: no more processes 
The system cannot create any more processes, either because it is out of table space or 
because the invoking process has reached its process quota. 

ENOMEM: not enough memory 
The system cannot accomodate the memory size requested (by exec or brk, for example). 

EACCES: permission denied 
The user is denied access to a file. 

EFAULT: bad address 
An address in a system call does not lie in the address space. Normally. this generates a 
SIGSYS signal, which terminates the process. 

ENOTBLK: block device required 
The mount and umount calls require block devices as arguments. 

EBUSY: mount device busy 
The special file passed to mount is already mounted, or the file system given to umount 
has open files or active working directories. 

EEXIST: file exists 
An attempt was made to link to a file that already exists. 

EXDEV: cross-device link 
A link to a file must be on the same logical device as the file. 

ENODEV: no such device 
An unsuitable 1/0 call was made to a device; for example, an attempts to read a line printer. 

ENOTDIR: not a directory 
A component in a path name exists but is not a directory, or a chdir or chroot argument is 
not a directory. 

EISDIR: is a directory 
Directories cannot be opened for writing. 

EINV AL: invalid argument 
An argument to a system call is out of range, e.g .. a bad signal number to kill or umount of 
a device that is not mounted. 

ENFILE: file table overflow 
A table inside the COHERENT system has run out of space, preventing further open calls 
and related requests. 

EMFILE: too many open files 
A process is limited to 20 open files at any time. 

ENOTTY: not a tty 
An ioctl call was made to a file which is not a terminal device. 

ETXTBSY: text file busy 
The text segment of a shared load module is unwritable. Therefore, an attempt to execute it 
while it is being written or an attempt to open it for writing while it is being executed will 
fail. 

LEXICON 



eval 643 

EFBIG: file too large 
The block mapping algorithm for files fails above 1.082,201.088 bytes. 

ENOSPC: no space left on device 
Indicates an attempt to write on a file when no free blocks remain on the associated device. 
This error may also indicate that a device is out ofi-nodes, so a file cannot be created. 

ESPIPE: illegal seek 
It is illegal to lseek on a pipe. 

EROFS: read-only file system 
Indicates an attempt to write on a file system mounted read-only (e.g., with creat or 
unlink). 

EMLINK: too many links 
A new link to a file cannot be created, because the link count would exceed 32, 76 7. 

EPIPE: broken pipe 
A write occurred on a pipe for which there are no readers. This condition is accompanied by 
the signal SIGPIPE, so the error will only be seen if the signal is ignored or caught. 

EDOM: mathematics library domain error 
An argument to a mathematical routine falls outside the domain of the function. 

ERANGE: mathematics library result too large 
The result of a mathematical function is too large to be represented. 

EKSPACE: out of kernel space 
No more space is available for tables inside the COHERENT system. Table space is 
dynamically allocated from a fixed area of memory: it may be possible to increase the size of 
the area by reconfiguring the system. 

ENOLOAD: driver not loaded 
Not used. 

EBADFMT: bad exec format 
An attempt was made to exec a file on the wrong type of processor. 

EDATTN: device needs attention 
The device being referenced needs operator attention. For example, a line printer might 
need paper. 

EDBUSY: device busy 
The indicated device is busy. For load, this implies that the given major device number is 
already in use. 

See Also 
errno, header files, perror(), signal() 

Elli•l!!l!!fil"·'· 
Evaluate arguments 
eval [token ... ) 

The shell normally evaluates each token of an input line before executing it. During evaluation, the 
shell performs parameter, command, and file-name pattern substitution. The shell does not 
interpret special characters after performing substitution. 

eval is useful when an additional level of evaluation is required. It evaluates its arguments and 
treats the result as shell input. For example, 

LEXICON 



644 ex 

A='>file' 
echo a b c $A 

simply prints the output 

a b c >file 

because'>' has no special meaning after substitution, but 

A='>file' 
eval echo a b c $A 

redirects the output 

a b c 

to file. Similarly, 

A='$B' 
B='string' 
echo $A 

prints 

eval echo $A 

$B 
string 

In the first echo the shell performs substitution only once. 

The shell executes eval directly. 

See Also 
commands, ksh, sh 

~''~'~ B."W!lm!lm!lm~"W 
Berkeley-style line editor 
ex [ options ] [ +cmd I [file 1 ... flle2 7 I 

ex is a link to elvis, which is a clone of the UNIX vi/ex set of editors. Invoking elvis through this 
link forces it to operate solely in colon-command mode, just as the UNIX ex editor operates. 

For information on how to use this version of ex. see the Lexicon page for elvis. 

See Also 
commands, ed, elvis, me, vi, view 

Notes 
elvis is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall 
(kirkenda@lcs.pdx.edu or ... u unet!tektronix!psueea!eecs!kirkenda). assisted by numerous volunteers. 
It is freely redistributable. subject to the restrictions noted in included documentation. Source code 
for elvis is available through the Mark Williams bulletin board, USENET, and numerous other 
outlets. 

Please note that elvis is distributed as a service to COHERENT customers. as is. It is not supported 
by Mark Williams Company. Caveat utilttor. 

LEXICON 



exec - execlpO 645 

~ ~''~~-.._~,,~~'"'''~''~~~''""~ 
Execute command directly 
exec [command] 

The shell normally executes commands with a fork system call, which creates a new process. The 
shell command exec directly executes the given command with an exec system call instead. 
Normally, this terminates execution of the current shell. 

If the command consists only of redirection specifications, exec redirects the input or output of the 
current shell accordingly without terminating it. If the command is omitted, exec has no effect. 

See Also 
commands, fork(), ksh, sh 

execlO - General Function (libc) 
Execute a load module 
execliflle, argO, argl, ... , argn, NULL) 
char ":file, •argO, •argl, ... , •argn; 

The function execl() calls the COHERENT system call execve() to execute a program. It specifies 
arguments individually, as a NULL-terminated list of arg parameters. For more information on file 
execution, see execution. 

See Also 
execution, execve(), general functions, getuid() 

Diagnostics 
execl() does not return if successful. It returns -1 for errors. such asflle being nonexistent, not 
accessible with execute permission, having a bad format, or too large to fit in memory. 

N:t4W1'115MMM'i''itff'r·11•e~'~"'~"""'"'""'~'~~~~~' 
Execute a load module 
execle(file, argO, argl, ... , argn, NULL, env) 
char ":file, •argO, *arg l, ... , •argn, char •env[J; 

The function execle() calls the COHERENT system call execve() to execute a program. It first 
initializes the new stack of the process to contain a list of strings that are command arguments. It 
specifies arguments individually, as a NULL-terminated list of arg parameters. The argument envp 
points to an array of pointers to strings that define file's environment. For more information on 
program execution and environments. see execution. 

See Also 
environ, execution, execve(), general functions 

Diagnostics 
execle() does not return if successful. It returns -1 for errors. such as file being nonexistent, not 
accessible with execute permission, having a bad format, or being too large to fit into memory. 

execlpO- General Function (libc) 
Execute a load module 
execlp(file, argO, argl, ... , argn, NULL) 
char ":file, •argO, *argl, ... , •argn; 

The function execlp() calls the COHERENT system call execve() to execute a program. It initializes 
the new stack of the process to contain a list of strings that are command arguments. It specifies 
arguments individually, as a NULL-terminated list of arg parameters. Unlike the related function 

LEXICON 



646 executable file - execution 

execl(), execlp() searches for file in all directories named in the environmental variable PATH. For 
more information on program execution, see execution. 

See Also 
environ, execution, execve(), general functions 

Diagnostics 
execlp() does not return if successful. It returns -1 for errors, such as file not existing in the 
directories named in PATH, not accessible with execute permission, having a bad format, or too 
large to fit in memory. 

t§.M'IMWJMm1D'll·ld111-* ~,~-. ~"'''',. 
An executable file is one that can be loaded directly by the operating system and executed. 
Normally, an executable file is one that has both been compiled, where it is rendered into machine 
language, and linked, where the compiled program has received all operating system-specific 
information and library functions. 

See Also 
definitions, file, object format 

t\ffii!@•• GfMimt.U,,fo!M ~~~ ~"'',. ~""~,. 
Program execution under COHERENT is governed by the various forms of the COHERENT system 
call exec. This call allows a process to execute another executablefile (or load module). This is 
described in l.out.h under COHERENT 286 or cotf.h under COHERENT 386. 

The code, data and stack ofjlle replace those of the requesting process. The new stack contains the 
command arguments and its environment. in the format given below. Execution starts at the entry 
point of file. 

During a successful exec, the system deactivates profiling, and resets any caught signals to 
SIG_DFL. 

Every process has a real-user id, an effective-user id, a real-group id, and an effective-group id, as 
described in getuid. For most load modules, exec does not change any of these. However, if the file 
is marked with the set user id or set group id bit (see stat), exec sets the effective-user id (effective­
group id) of the process to the user id (group id) of the file owner. In effect, this changes the file 
access privilege level from that of the real id to that of the effective id. The owner of file should be 
careful to limit its abilities, to avoid compromising file security. 

exec initializes the new stack of the process to contain a list of strings which are command 
arguments. execl, execle, and execlp specify arguments individually, as a NULL-terminated list of 
arg parameters. execv, execve, and execvp specify arguments as a single NULL-terminated array 
argv of parameters. 

The main routine of a C program is invoked in the following way: 

main(argc, argv, envp) 
int argc; 
char *argv[], *envp[J; 

argc is the number of command arguments passed through exec, and argv is an array of the actual 
argument strings. envp is an array of strings that comprise the process environment. By 
convention, these strings are of the form varlable=value, as described in the Lexicon entry environ. 
Typically, each variable is an exported shell variable with the given value. 

execl and execv simply pass the old environment. referenced by the external pointer environ. 
execle and execve pass a new environment env explicitly. execlp and execvp search for file in 
each of the directories indicated by the shell variable $PATH, in the same way that the shell 

LEXICON 



execvo - execveo 647 

searches for a command. These calls will execute a shell commandflle. 

Files 
/bin/sh-To execute command files 

See Also 
environ, exec(), execl(), execle(), execlp(), execv(), execve(), execvp(), fork(), ioctl(), signal(), 
stat(), technical information 

Diagnostics 
None of the exec routines returns if successful. Each returns -1 for errors, such as if file is 
nonexistent, not accessible with execute permission, has a bad format, or is too large to fit in 
memory. 

umw•m@h'•e•11r;11.111e~''""~~'""'"'"'"'''"''"''"'"''"'9&" 
Execute a load module 
execv(flle, argv) 
char "file, •argv[]; 

The function execv() calls the COHERENT system call execve() to execute a program. It specifies 
arguments as a single. NULL-terminated array of parameters, called argv. execv() passes the 
environment of the calling program to the called program. For more information on program 
execution. see execution. 

See Also 
environ, execution, execve(), general functions 

Diagnostics 
execv() does not return if successful. It returns -1 for errors, such as file being nonexistent. not 
accessible with execute permission, having a bad format, or too large to fit in memory. 

amw•tmm1.m11s. - ~'" --~ --~ 
Execute a load module 
execve(flle, argv, env) 
char "file, •argv[], •env[]; 

The function execve() executes a program. It specifies arguments as a single, NULL-terminated 
array of parameters, called argv. The argument env is the address of an array of pointers to strings 
that define file's environment. This allows execve() to pass a new environment to the program being 
executed. For more information on program execution. see execution. 

Example 
The following example demonstrates execve(), as well as tmpnam(), getenv(). and path(). It finds all 
lines with more than LIMIT characters and call MicroEMACS to edit them. 

#include <stdio.h> 
#include <path.h> 
#include <sys/stat.h> 

#define LIMIT 70 

extern char *getenv(), **environ, *tempnam(); 

LEXICON 



648 execvpO 

main(argc, argv) 
char *argv[ J; 
{ 

/* me 
char *cmda[5] = { NULL, 
FILE *ifp, *tmp; 
char line[256]; 
int ct, len; 

-e tmp file */ 
"-e", NULL, NULL, NULL } ; 

if ((NULL== (cmda[3] = argv[l])) JI 

} 

(NULL== (ifp = fopen(argv[l], "r")))) { 
fprintf(stderr, "Cannot open %s\n", argv[l]); 
exit(l); 

if ((cmda[O] = path(getenv("PATH"), "me", AEXEC)) 
fprintf(stderr, "Cannot locate me\n"); 
exit(l); 

} 

NULL) { 

if (NULL== (tmp = fopen((cmda[2] = tempnam(NULL, "lng")), "w"))) { 
fprintf(stderr, "Cannot open tmpfile\n"); 

} 

exit(l); 
} 

for (ct= 1; NULL != fgets(line, sizeof(line), ifp); ct++) 
if (((len = strlen(line)) >LIMIT) I J 

('\n' != line[len -1])) 
fprintf ( tmp, "%d: %d characters long\n", ct, len); 

fclose ( tmp) ; 
fclose ( ifp) ; 

if (execve(cmda[O], cmda, environ) < 0) { 
fprintf(stderr, "cannot execute me\n"); 
exit(l); 

} 
/* We never reach here */ 

See Also 
environ, execution, general functions 

Diagnostics 
execve() does not return if successful. It returns -1 for errors, such as file being nonexistent, not 
accessible with execute permission, having a bad format, or too large to fit in memory. 

LEXICON 



exit - expO 649 

The function execvp() calls the COHERENT system call execve() to execute a program. It specifies 
arguments as a single, NULL-terminated array of parameters, called argv. Unlike the related call 
execv(), execvp() searches for file in all of the directories named in the environmental variable 
PATH. For more information on program execution, see execution. 

See Also 
environ, execution, execve(), general functions 

Diagnostics 
execvp() does not return if successful. It returns -1 for errors, such as file being nonexistent, not 
accessible with execute permission, having a bad format, or too large to fit in memoiy. 

~~'""'~'~~'~'~~~~~""~''~~'~ 
Exit from a shell 
exit [status] 

exit terminates a shell. If the optional status is specified, the shell returns it; otherwise, the 
previous status is unchanged. From an interactive shell, exit sets the status if specified, but does 
not terminate the shell. The shell executes exit directly. 

See Also 
conu:nands,ksh,sh 

exitO - System Call ""~,,~,,~~~'~''~~~''""'~~'~'* 
Terminate a program gracefully 
void exit(status) int status; 

exit() is the normal method to terminate a program directly. status information is passed to the 
parent process. By convention, an exit status of zero indicates success, whereas an exit status 
greater than zero indicates failure. If the parent process issued a wait() call, it is notified of the 
termination and is passed the least significant eight bits of status. As exit() never returns, it is 
always successful. Unlike the related function _exit(), exit() does extra cleanup, such as flushing 
buffered files and closing open files. 

Example 
For an example of this function. see the entiy for fopen(). 

See Also 
_exit(), close(), system call, wait() 

Notes 
If a program leaves main() by an error condition, contents of register AX becomes the exit code. 
Usually, these register contents are random. If you want to test a program's return code, you must 
to exit or return from main(). 

Compute exponent 
#include <math.h> 
double exp(z) double z; 

exp() returns the exponential of z, or e A z. 

Example 
The following program prompts you for a number, then prints the value for it as returned by exp(). 
pow(). log(). and logIO(). 

LEXICON 



650 export 

#include <math.h> 
#include <stdio.h> 
#define display(x) dodisplay((double)(x), #x) 

dodisplay(value, name) 
double value; char *name; 
{ 

} 

if (errno) 
perror(name); 

else 
printf("%10g %s\n", value, name); 

errno = O; 

main () 
{ 

} 

extern char *gets(); 
double x; 
char string[64]; 

for ( ; ; ) { 

} 

printf("Enter number: "); 
if(gets(string) == NULL) 

break; 
x = atof(string); 

display(x); 
display(exp(x)); 
display(pow(lO.O,x)); 
display(log(exp(x))); 
display(loglO(pow(lO.O,x))); 

See Also 
errno, mathematics library 

Diagnostics 
exp() indicates overflow by an errno of ERANGE and a huge returned value. 

export - Command .,_~~~~~~~~~~~~~~M~~~~~~~M~ 
Add a shell variable to the environment 
export [name ... ] 
export [name=value] 

When the shell executes a command. it passes the command an environment. By convention. the 
environment consists of assignments, each of the form name=value. For example, typing 

export TERM=vtlOO 

sets the environmental variable TERM to equal the string vtlOO. 

A command may look for information in the environment or may simply ignore it. In the above 
example, a program that reads the variable TERM (such as MicroEMACS) will assume that you are 

LEXICON 



expr 651 

working on a DEC VT-100 terminal or one that emulates it. 

The shell places the name and the value of each shell variable that appears in an export command 
into the environment of subsequently executed commands. It does not place a shell variable into 
the environment until it appears in an export command. 

With no arguments, export prints the name and the value of each shell variable currently marked 
for export. 

The shell executes export directly. 

See Also 
commands, environ, exec, ksh, sh 

~~-----·._"-~~,,. 08,_~~~"'~~~,~~'~ 
Compute a command-line expression 
expr argument ... 

The arguments to expr form an expression. expr evaluates the expression and writes the result on 
the standard output. Among other uses, expr lets the user perform arithmetic in shell command 
files. 

Each argument is a separate token in the expression. An argument has a logical value 'false' if it is 
a null string or has numerical value zero, 'true' otherwise. Integer arguments consist of an optional 
sign followed by a string of decimal digits. The range of valid integers is that of signed long integers. 
No check is made for overflow or illegal arithmetic operations. Floating point numbers are not 
supported. 

The following list gives each expr operator and its meaning. The list is in order of increasing 
operator precedence; operators of the same precedence are grouped together. All operators associate 
left to right except the unary operators '!', '-', and 'len', which associate right to left. The spaces 
shown are significant - they separate the tokens of the expression. 

{ exprl, expr2, expr3} 
Return expr2 if exprl is logically true, and expr3 otherwise. Alternatively, { exprl , expr2} is 
equivalent to { expr 1 , expr2 , 0 }. 

expr 1 I expr2 
Return exprl if it is true, expr2 otherwise. 

expr 1 & expr2 
Return expr 1 if both are true. zero otherwise. 

expr 1 relation expr2 
Where relation is one of <. <=. >. >=, ==. or !=. return one if the relation is true, zero 
otherwise. The comparison is numeric if both arguments can be interpreted as numbers, 
lexicographic otherwise. The lexicographic comparison is the same as strcmp (see string). 

exprl + expr2 

exprl - expr2 
Add or subtract the integer arguments. The expression is invalid if either expr is not a 
number. 

expr 1 • expr2 

expr 1 I expr2 

LEXICON 



652 extern 

expr 1 % expr2 
Multiply. divide, or take remainder of the arguments. The expression is invalid if either expr 
is not numeric. 

expr 1 : expr2 
Match patterns (regular expressions). expr2 specifies a pattern in the syntax used by ed. It 
is compared to exprl. which may be any string. If the \( ... \)pattern occurs in the regular 
expression the matching operator returns the matched field from the string; if there is more 
than one \( ... \) pattern the extracted fields are concatenated in the result. Otherwise. the 
matching operator returns the number of characters matched. 

len expr 
Return the length of expr. It behaves like strlen (see string). len is a reserved word in expr. 

!expr Perform logical negation: return zero if expr is true, one otherwise. 

-expr Unary minus: return the negative of its integer argument. If the argument is non-numeric 
the expression is invalid. 

(expr) 
Return the expr. The parentheses allow grouping expressions in any desired way. 

The following operators have special meanings to the shell sh, and must be quoted to be interpreted 
correctly: {} ( ) < > & I •. 
See Also 
commands, ed, ksh, sh, test 

Notes 
expr returns zero if the expression is true, one if false, and two if an error occurs. In the latter case 
an error message is also printed. 

~~,,~~~~~~~~ --'"-"'~' --~~~ 
Declare storage class 

extern indicates that a C element belongs to the external storage class. Both variables and 
functions may be declared to be extern. Use of this keyword tells the C compiler that the variable or 
function is defined outside of the present file of source code. All functions and variables defined 
outside of functions are implicitly extern unless declared static. 

When a source file references data that are defined in another file, it must declare the data to be 
extern, or the linker will return an error message of the form: 

undefined symbol name 

For example, the following declares the array tzname: 

extern char tzname[2][32]; 

When a function calls a function that is defined in another source file or in a library, it should 
declare the function to be extern. In the absence of a declaration, extern functions are assumed to 
return ints, which may cause serious problems if the function actually returns a 32-bit pointer 
(such as on the 68000 or i8086 LARGE model), a long, or a double. 

For example, the function malloc appears in a library and returns a pointer: therefore, it should be 
declared as follows: 

extern char *malloc(); 

LEXICON 



extern 653 

If you do not do so, the compiler assumes that malloc returns an int, and generate the error 
message 

integer pointer pun 

when you attempt to use malloc in your program. 

See Also 
auto, C keywords, pun, register, static, storage class 

LEXICON 



654 fabsO - fblk.h 

Bllll®EtmDD.t!:iD11E6D!!ldlil'mlll'!El~i·l11lt~inDifMDlil-•••••••••••••••~,._ 1111 -
Compute absolute value 
#include <math.h> 
double fabs(z) double z; 

fabs() implements the absolute value function. It returns z if z is zero or positive, or -z if z is 
negative. 

Example 
For an example of this function. see the entry for ceil(). 

See Also 
abs(), ceil(), Door(), frexp(), mathematics library 

factor - Command 
Factor a number 
factor [ number .. . I 

factor computes and prints the prime factorials for each of a list of given numbers. If no numbers 
are given on the command line, factor reads numbers from the standard input. 

See Also 
commands 

~~11111111!111!1111!.~ 
Unconditional failure 
false 

false does nothing. It is guaranteed to fail. It can be useful in shell scripts, to force certain 
situations to occur. 

See Also 
commands, ksh, sh, true 

Notes 
Under the Korn shell, false is an alias for its built-in command let. 

fblk.h - Header File 
.._,._-----------~-----------~~"11111 Define the disk-free block 

#include <sys/fblk.h> 

fblk.h defines the disk-free block fblk. 

LEXICON 



See Also 
header mes 

fc - fcloseO 655 

~~~~--~---------~~~"'~~~-~~ -~-~---~-~ Edit and re-execute one or more previous commands 
fc [-In] Iflrst [last]]
fc -s [old:new] [command]"

fc, the "fix command", is a command built into the Korn shell ksh. It permits you to edit and re­
execute one or more commands that have been executed previously.

fc has two forms, as shown above. The first version selects commandsjlrst through last and inserts
them into a text editor. You can edit the commands in the editor; exiting from the editor re-executes
the edited commands.

flrst and last can be addressed either by the command's number (the first command issued to the
shell is number one, the second is number two, and so on), or by a string that matches the
beginning of the command. The editor used is the one set in the environmental variable FCEDIT
(default, ed).

When called without a last variable, the command selects justjlrst. Option -1 prints the commands
on the standard output rather than buffering the commands for editing and re-execution. Option -n
suppresses the default command numbers.

The second form of the fc command substitutes string new for string old within command, then re­
executes it. command can be addressed either by its number or by a string that matches its
beginning. If no command is specified, it re-executes the previous command.

See Also
commands, FCEDIT, ksh

FCEDIT - Environmental Variable
Editor used by fc command

The Korn shell's command fc reads the environmental variable FCEDIT to see which editor it should
use to edit commands.

See Also
environmental variables, ksh

@·l#l.§l•U•li11r01[.Ji1Elm!\\W•••••••••••••••••••••••••~
Close a stream
#include <stdio.h>
int fclose(fp) FILE *Jp;

fclose() closes the stream fp. It calls mush() on the givenfp. closes the associated file, and releases
any allocated buffer. The function exit() calls fclose() for open streams.

Example
For examples of how to use this function. see the entries for fopen() and fseek().

See Also
STDIO

Diagnostics
fclose() returns EOF if an error occurs.

LEXICON

656 fcnt/0 - fd

-"~~ Control open files
#include <sys/ fcntl.h>
int fcntl(fd, command, arg)
intfd, cmd;

The COHERENT system call fcntl() permits manipulation of an open file. fd is the file descriptor:
this description must have been obtained from a call to creat(). dup(). fcntl(). open(). or pipe().

command identifies the task that you want fcntl() to perform. The value fcntl() returns varies,
depending on what command you ask it to perform. arg is an argument specific to the given
command.

fcntl() recognizes the following commands:

F_DUPFD
Duplicate file descriptor fd onto the first available file descriptor greater than or equal to
arg. fcntl() returns the new file descriptor.

F_GETFL
Get the file flags for the file specified byfd. With this option. fcntl() returns the file flags.

F_SETFL
Set file flags for file descriptorfd to the value specified by arg. Here. fcntl() returns the new
file flags.

See Also
creat(), dup(), fcntl.h, file, file descriptor, open(), pipe(), system calls - -._~~~~~~~"'~~~'"~'''"'~''~~
Manifest constants for file-handling functions
#include <sys/ fcntl.h>

fcntl.h declares manifest constants that are used by the file-handling functions open and fcntl.

See Also
header mes

~"'""'~'~""'~"'"~'"~"''"'~"''"''"'~ Floppy disk driver

The files /dev/f'I' are entries for the diskette drives of COHERENT on the IBM AT. Each entry is
assigned major device number 4, is accessed as a block-special device, and has a corresponding
character-special device entry.

The device entries are linked to a driver that handles up to four 5.25 inch disk drives. each in one of
several formats. The least-significant four bits of an entry's minor device number identify the type of
drive. The next least-significant two bits identify the drive. The following table summarizes the
name. minor device number. sectors per track. partition sector size, characteristics. and addressing
method for each device entry of floppy disk drive 0.

9 sectors I track
19d0 4
fqaO 13
19a0 12

LEXICON

9
9
9

720
1440
720

DSDD
DSQD
DSDD

surface (5.25 inch - 360K)
cylinder (3 .25 inch - 720K)
cylinder (5.25 inch - 360K)

fd.h - fdformat 657

15 sectors I track
fhaO 14 15 2400 DSHD cylinder (5.25 inch - l.2MB)

18 sectors I track
fvaO 15 18 2880 DSHD cylinder (3.5 inch - l.44MB

Prefixing an r to a name given above gives the name of the corresponding character-device entry.
Corresponding device entries for drives 1, 2. and 3 have minor numbers with offsets of 16. 32. and
48 from the minor numbers given above and have 1. 2, or 3 in place of 0 in the names given above.

For device entries whose minor number's fourth least-significant bit is zero (minor numbers 0
through 7 for drive 0), the driver uses surface addressing rather than cylinder addressing. This
means that it increments tracks before heads when computing sector addresses and the first
surface is used completely before the second surface is accessed. For devices whose minor
number's fourth least significant bit is 1 (minor numbers 8 through 15 for drive 0). the driver uses
cylinder addressing.

For a diskette to be accessible from the COHERENT system, a device file must be present in
directory /dev with the appropriate type, major and minor device numbers. and permissions. The
command mknod creates a special file for a device.

Files
<fdioctl.h> - Driver command header file
/dev/fd• - Block-special files
/dev/rfd• - Character special files

See Also
device drivers, fdformat, mkfs, mknod,

Diagnostics
The driver reports any error status received from the controller and retries the operation several
times before it reports an error to the program that initiated an operation.

Notes
The driver assumes that the disk is formatted with eight. nine, 15, or 18 sectors of 512 bytes each
per track, depending upon the /dev entry. Cylinder addressing is the norm for COHERENT.

Programs that use the raw device interface must read whole sectors into buffers that do not straddle
DMA boundaries.

fd.h - Header File
Declare file-descriptor structure
#include <sys/fd.h>

fd.h declares the file-descriptor structure fd, plus associated constants and the function fdget.

See Also
header files

mu.m;e1 m+t·11,1 •• m11.-,,""~'"'~'"'"~'""'~"'"'""'~~'Wl
Low-level format a floppy disk
/etc/fdformat [option ... I special

fdformat formats a floppy disk. The given special should be the name of the special file that
correspond to the floppy disk drive.

fdformat recognizes the following options:

LEXICON

658 fdioctl.h

-a Print information on the standard output device during format. As it formats a cylinder, it
will print a line of the form

hd=O cyl=25

on your screen.

-i number
Use number (0 through 7) as the interleave factor in formatting. Note that the default
interleave is six.

-o number
Use number (default, 0) as the skew factor for sector numbering.

-v Verify formatting and verify data written with the -w option.

-w .file Format the floppy disk and then copy file to it track by track. The raw device should be
used.

The command mkfs builds a COHERENT file system on a formatted floppy disk. The command
dosfonnat builds a DOS file system on a formatted floppy disk. The command mount mounts a
floppy disk containing a file system to allow access to it through the COHERENT directory structure.
The command umount unmounts a floppy disk.

Examples
The following command formats a 2400-block (1.2-megabyte), 5.25-inch floppy disk in drive 0
(otherwise known known as drive A):

/etc/fdformat -v /dev/fhaO

The following command formats a 1440-block (720-kilobyte), 3.5-inch floppy disk in drive 1
(otherwise known as drive B):

/etc/fdformat -v /dev/fqal

See Also
commands, dosformat, fd, mkfs, mount, umount

Diagnostics
When errors occur on floppy-disk devices, the driver prints on the system console an error message
that describes the error.

Notes
fdformat formats a track at a time. fdformat can be interrupted between tracks. which may result
in a partially formatted floppy disk.

JM@l&lll@Mljlh"'"'~~~~~~~···~~~~''~'~"''"'"'~
Control floppy-disk 1/0
#include <sys/fdioctl.h>

fdioctl.h declares constants and structures used to control floppy-disk 1/0.

See Also
header mes

LEXICON

fdisk 659

fdisk - Command ~''~~~"'~~~''
Hard-disk partitioning utility
/etc/fdisk [-r] [-c) [-b mboot] xdev ...

The COHERENT version of the command fdisk supports flexible hard-disk partitioning among four
operating systems, i.e. MS-DOS, CP /M. COHERENT. and XENIX. This capability means that with
the COHERENT fdisk, you can support COHERENT plus any combination of MS-DOS, CP /M, or
XENIX on one hard disk.

fdisk recognizes the following flags:

-r Read-only access to partitioning information.

-b Use the first 446 bytes of mboot as master boot code to replace that in xdev.

-c Allow the specification of disk geometry (i.e., number of cylinders, heads, sectors) for disk
drives that are not supported by the system BIOS.

fdisk accesses the first block from the special device xdev (e.g .. /dev/atox) for the partitioning
information. fdisk then queries the user for changes. These changes are written to xdev only if the
user requests the changes to be saved. If omitted, xdev defaults to /dev/atOx and /dev/atlx. SCSI
disk device users will need to specify xdev as I dev I sdnx where n is a digit corresponding to the
SCSI ID for the disk device (e.g .. /dev/sdOx).

Files
<fdisk.h>

See Also
commands

Notes
If the partition table is changed, the system should be rebooted; most device drivers will not
recognize the revised partition information until a reboot occurs.

As the -r and -b options are contradictory. attempting to use them together generates an error
message.

Please note that some versions of fdisk for other operating systems can rearrange the order of
entries in the partition table. If this happens, you may lose the ability to run COHERENT until the
table is restored to its previous order. A sign of this problem is getting the prompt AT boot? when
trying to start COHERENT after running any fdisk program, and not being able to get past it.

Computer systems that use older BIOS releases may report incorrect disk parameters. Users of
such systems should change the CMOS setup values if possible, but the BIOS on some older
systems will not allow you to specify arbitrary values for disk parameters. Users with such systems
can use the fdisk -c option instead.

If you plan to install and run COHERENT and MS-DOS on the same hard disk, note the following:

If you wish to install COHERENT and MS-DOS on the same hard drive, you must run the MS­
DOS fdisk first!

If you plan on running both operating systems, you must install MS-DOS first and leave some
free cylinders on the disk for COHERENT as well as a free partition. You can have both
primary as well as extended MS-DOS partitions on the same drive as COHERENT, but
COHERENT cannot use a sub-partition of the MS-DOS extended partition. COHERENT must
have one of the four real partitions.

Failure to observe these rules will result in loss of data

LEXICON

660 fdisk.h - fdopenO

mu111mrn;' -~~~~~~~-.,~----.._~---·-
Fixed-disk constants and structures
#include <sys/fdisk.h>

fdisk.h declares structures and constants used to manipulate the fixed disk.

See Also
header mes

rm.1.rym11-111nt1@•iit!ii·h•WS1 ~~~~!f&!f&!f&l\ll!!-.._,~~ WI • WI II

Open a stream for standard 1/0
#include <stdio.h>
FILE •fdopen(fd, type) intfd; char •type;

fdopen() allocates and returns a FILE structure, or stream, for the file descriptor fd, as obtained
from open(), creat(), dup(), or pipe(). type is the manner in which you wantfd to be opened, as
follows:

r Read a file
w Write into a file
a Append onto a file

Example
The following example obtains a file descriptor with open(), and then uses fdopen() to build a
pointer to the FILE structure.

#include <ctype.h>
#include <stdio.h>

void adios(message)
char *message;
{

}

fprintf(stderr, "%s\n", message);
exit(l);

main(argc, argv)
int argc; char *argv[];
{

extern FILE *fdopen();
FILE *fp;
int fd;
int holder;

if (--argc != 1)
adios("Usage: example filename");

if ((fd = open(argv[l], 0)) == -1)
adios ("open failed. ") ;

if ((fp = fdopen(fd, "r")) == NULL)
adios("fdopen failed.");

LEXICON

feofO - ferrorO 661

while ((holder= fgetc(fp)) != EOF) {

}
}

See Also

if ((holder> '\177') I I (holder< ' '))
switch(holder) {
case •\t':
case '\n• 1

break;
default:

}

fprintf(stderr, "Seeing char %d\n", holder);
exit(l);

fputc(holder, stdout);

creat(), dup(), fopen(), open(), STDIO

Diagnostics
fdopen() returns NULL if it cannot allocate a FILE structure. Currently. only 20 FILE structures
can be allocated per program. including stdin, stdout. and stderr.

feofO - STDIO Macro (stdio.h)
Discover stream status
#include <stdio.h>
int feof(fp) FILE ~p;

feof() is a macro that tests the status of the argument streamfp. It returns a number other than
zero ifjp has reached the end of file. and zero if it has not. One use of feof() is to distinguish a
value of -1 returned by getw() from an EOF.

Example
For an example of how to use this function, see the entry for fopen().

See Also
EOF, STDIO

ferrorO - STDIO Macro (stdio.h)
Discover stream status
#include <stdio.h>
int ferrorifp) FILE ~p;

ferror() is a macro that tests the status of the file streamfp. It returns a number other than zero if
an error has occurred on fp. Any error condition that is discovered will persist either until the
stream is closed or until clearerr() is used to clear it. For write routines that employ buffers.
mush() should be called before ferror(). in case an error occurs on the last block written.

Example
This example reads a word from one file and writes it into another.

#include <stdio.h>

LEXICON

662 terrorO

main ()
{

}

FILE *fpin, *fpout;
int inerr = O;
int outerr = O;
int word;
char infile[20), outfile[20];

printf("Name data file you wish to copy:\n");
gets (in file);
printf("Name new file:\n");
gets(outfile);

if ((fpin = fopen(infile, "r")) != NULL) {
if ((fpout = fopen(outfile, "w")) != NULL) {

for (; ;) {

}

word= fgetw(fpin);
if (ferror(fpin)) {

clearerr(fpin);
inerr++;

}

if (feof(fpin))
break;

fputw(word, fpout);
if (ferror(fpout)) {

clearerr(fpout);
outerr++;

}

} else {
printf

}

("Cannot open output file %s\n",
outfile);

exit(l);

} else {

}

printf("Cannot open input file %s\n", infile);
exit(l);

printf("%d - read error(s) %d - write error(s)\n",
inerr, outerr);

exit (O);

See Also
STDIO

LEXICON

ff/ush() - STDIO Function (libc)
Flush output stream's buffer
#include <Stdio.h>
int mush(fp) FILE "'fp;

ff/ushO 663

mush() flushes any buffered output data associated with the file streamfp. The file stream stays
open after mush() is called. fclose() calls mush(), so there is no need for you to call it when
normally closing a file or buffer.

Example
This example demonstrates mush(). When run, you will see the following:

Line 1

Line 1

Line 1
Line 2

The call

fprintf(fp, "Line 2\n");

goes to a buffer and is not in the file when file foo is listed. However if you redirect the output of
this program to a file and list the file, you will see:

Line 1
Line 1
Line 1
Line 2

because the line

printf("-----\n");

goes into a buffer and is not printed until the program is over and all buffers are flushed by exit().

Although the COHERENT screen drivers print all output immediately, not all operating systems
work this way, so when in doubt, mush().

#include <stdio.h>

main()
{

FILE *fp;

if (NULL== (fp = fopen("foo", "w")))

exit(l);
fprintf (fp, "Line 1\n");
fflush (fp) ;
system ("cat foo"); /*print Line 1 */

LEXICON

664 fgetcO

}

printf("-----\n");
fprintf(fp, "Line 2\n");
system("cat foo"); /*print Line 1 */
printf("-----\n");

fflush (fp) ;
system("cat foo"); /*print Line 1 Line 2 */
printf("-----\n");

See Also
fclose(), setbuf(), STDIO, write()

Diagnostics
mush() returns EOF if it cannot flush the contents of the buffers; otherwise it returns a
meaningless value.

Note, also, that all STDIO routines are buffered. mush should be used to flush the output buffer if
you follow a STDIO routine with an unbuffered routine.

fgetcO- STDIO Function (libc)
Read character from stream
#include <stdio.h>
int fgetc{fp) FILE otjp ;

fgetc() reads characters from the input streamjp. In general, it behaves the same as the macro
getc(): it runs more slowly than getc(), but yields a smaller object module when compiled.

Example
This example counts the number of lines and "sentences" in a file.

#include <stdio.h>

main()
{

FILE *fp;
int filename[20];
int ch;
int nlines = O;
int nsents = O;

printf("Enter file to test: ");
gets(filename);

if ((fp = fopen(filename,"r")) ==NULL) {
printf("Cannot open file %s.\n", filename);
exit(l);

}

while ((ch= fgetc(fp)) I= EOF) {
if (ch == '\n')

++nlines;

LEXICON

}

}

else if (ch== •.• I I ch== '!' I I ch
if ((ch= fgetc(fp)) != '.')

++nsents;

else
while((ch=fgetc (fp)) '. ')

ungetc(ch, fp);
}

printf("%d line(s), %d sentence(s).\n",
nlines, nsents);

See Also
getc(), STDIO

Diagnostics
fgetc() returns EOF at end of file or on error.

Read line from stream
#include <stdio.h>
char 41'gets(s, n,fp) char •s; int n; FILE ..rp;

fgetsO 665

• ? ') {

fgets() reads characters from the streamfp into strings until either n-1 characters have been read,
or a newline or EOF is encountered. It retains the newline, if any. and appends a null character at
the end of of the string. fgets() returns the argument s if any characters were read, and NULL if
none were read.

Example
This example looks for the pattern given by argv[l) in standard input or in file argv[2). It
demonstrates the functions pnmatch(), fgets(), and freopen().

#include <stdio.h>
#define MAXLINE 128
char buf[MAXLINE];

void fatal(s) char *s;
{

}

fprintf(stderr, "pnmatch: %s\n", s);
exit (1);

main(argc, argv)
int argc; char *argv[];
{

if (argc != 2 && argc != 3)
fatal("Usage: pnmatch pattern [file]");

if (argc==3 && freopen(argv[2], "r", stdin)==NULL)
fatal("cannot open input file");

LEXICON

666 fgetwO - file

}

while (fgets(buf, MAXLINE, stdin) !=NULL) {
if (pnmatch(buf, argv[l], 1))

printf("%s", buf);
}

if (!feof(stdin))
fatal("read error");

exit(O);

See Also
fgetc(), gets(), STDIO

Diagnostics
fgets() returns NULL if an error occurs, or ifEOF is seen before any characters are read.

fgetwO - STDIO Function (libc)
Read integer from stream
#include <stdio.h>
int fgetwifp) FILE ":fp;

fgetw() reads an integer from the streamjp.

Example
For an example of this function. see the entry for terror().

See Also
fputw(), STDIO

Notes
fgetw() returns EOF on errors. A call to feof() or terror() may be necessary to distinguish this value
from a genuine end-of-file signal.

field - Definition ~~~"'~'~~'"'"''~~~~~~-..~'-W
A field is an area that is set apart from whatever surrounds it, and that is defined as containing a
particular type of data. In the context of C programming, a field is either an element of a structure,
or a set of adjacent bits within an int.

See Also
bit map, data formats, definitions, structure

~~'""' ~~""~~~'"""~""'"'"~~
A file is a mass of bits that has been given a name and is stored on a nonvolatile medium. These
bits may form ASCII characters or machine-executable data. Under the COHERENT system and
related operating systems. external devices can mimic files. in that they can be opened, closed, read,
and written to in a manner identical to that of files.

To manipulate the contents of a file, you must first open it. This can be done with the COHERENT
system call open, or with the function fopen. You can then read the file. write material to it, or
append material onto it with the COHERENT system calls read and write, or with the functions
tread and fwrlte. See the entries on system calls and entry STDIO for more information on
manipulating material within a file.

LEXICON

file - FILE 667

See Also
close(), definitions, executable file, fopen(), fclose(), FILE, open()

mmli·lh!i1ijlij,I
Guess a file's type
file.file ...

file examines each file and takes an educated guess as to its type. file recognizes the following
classes of text files: files of commands to the shell; files containing the source for a C program; files
containing yacc or lex source; files containing assembly language source; files containing
unformatted documents that can be passed to nroff; and plain text files that fit into none of the
above categories.

file recognizes the following classes of non-text or binary data files: the various forms of archives,
object files, and link modules for various machines. and miscellaneous binary data files.

See Also
commands, ls, size

Notes
Because file only reads a set amount of data to determine the class of a text file, mistakes can
happen.

~~ !mk~,,~~~~~~~~'~'~ ~"%@1119111911191!(1--~
Descriptor for a file stream
#include <stdio.h>

FILE describes a.file stream which can be either a file on disk or a peripheral device through which
data flow. lt is defined in the header file stdio.h.

A pointer to FILE is returned by fopen, freopen, fdopen, and related functions.

The FILE structure is as follows:

typedef struct FILE
{

}

unsigned char *_cp,
*_dp,
*_bp;

int _cc;
int (*_gt) (),

(*_pt) ();
int _ff;
char _fd;
int _uc;

FILE;

_cp points to the current character in the file. _dp points to the start of the data within the buffer.
_hp points to the file buffer. _cc is the number of unprocessed characters in the buffer. __gt and _pt
point. respectively. to the functions getc and putc. _ff is a bit map that holds the various file flags.
as follows:

LEXICON

668 file descriptor - file formats

_FINUSE OxOl Unused
_FSTBUF Ox02 Used by macro setbuf
_FUNGOT Ox04 Used by ungetc
_FEOF Ox08 Tested by macro feof
_FERR OxlO Tested by macro ferror

_fd is the file descriptor, which is used by low-level routines like open; it is also used by reopen.
Finally. _uc is the character that has been "ungotten" by ungetc. should it be used.

See Also
definitions, fopen(), freopen(), stdio.h, stream

""*Mfli1·1N m•rn®!!r.111~,,~'W 'W,~,'W~'aL'W'~~''W&'W''W&'"U'W''W~'W'''~'~
A file descriptor is an integer between 1 and 20 that indexes an area in the operating system's list
of internal file descriptors. It is used by routines like open, close. and lseek to work with files. A
file descriptor is not the same as a FILE stream, which is used by routines like fopen, fclose, or
fread.

See Also
definitions, rue, FILE, system calls

file formats - Overview ._,~'''~~~~ a~~~'W"W'W~,~~'~'~"'~
The COHERENT system uses a number of different file formats. Each format is designed to order
most efficiently the information that that file holds. This manual describes the following special file
formats:

core ..
group.
L-dev.
L.sys .
passwd.
Permissions.
tenn
ttys

. Core dump file format
Format for file /etc/group

. Describe devices used by UUCP

. Describe remote sites to UUCP

. Format for file /etc/passwd

. Format of UUCP permissions file

. Format of compiled tenninfo file

. Active terminal ports

The following header files also hold information on file formats:

acct.h. . . Format for process-accounting file
ar.h Format for archive files
canon.h . Portable layout of binary data
coff.h . Define format of COHERENT 386 objects
dir.h . . . Directory format
l.out.h . . Define format of COHERENT 286 objects
mtab.h . . Currently mounted file systems
utmp.h . . Login accounting information

For a fuller description of each file and its contents. see its entry in the Lexicon.

See Also
header rues, Lexicon

LEXICON

filenoO - STDIO Function
Get file descriptor
#include <stdio.h>
int fileno(fp) FILE ":fp;

filenoO - filter 669

fileno() returns the file descriptor associated with the file streamfp. The file descriptor is the integer
returned by open() or creat(). It is used by routines such as fopen() to create a FILE stream.

Example
This example reads a file descriptor and prints it on the screen.

#include <stdio.h>

main(argc,argv)
int argc; char *argv[];
{

}

FILE *fp;
int fd;

if (argc ! =2) {

}

printf("Usage: fd_from_fp filename\n");
exit(O);

if ((fp = fopen (argv [1] , "r")) == NULL) {
printf("Cannot open input file\n");
exit(O);

}

fd fileno(fp);
printf("The file descriptor for %s is %d\n",

argv[l], fd);

See Also
FILE, file descriptor, STDIO

ldi.i¢Ji•=••i!~''~"''~''~ ~~'''~'"'~~~
Structures and constants for super block
#include <sys/filsys.h>

filsys.h declares structures and constants used to by functions that manipulate the super block.

See Also
header files

~~"''""'''''''""'''""'"'"'"'"'~~~'""'~'~~'"'1C ~'' Ajllter is a program that reads a stream of input. transforms it in a precisely defined manner, and
writes it to another stream. Two or more filters can be coupled with pipes to perform a complex
transformation on a stream of input.

See Also
definitions, pipe

LEXICON

670 find

fll!llli·nd .. fii.t.1
Search for files satisfying a pattern
find directory ... [expression ...]

find traverses each given directory, testing each file or subdirectory found with the expression part
of the command line. The test can be the basis for deciding whether to process the file with a given
command.

If the command line specifies no expression or specifies no execution or printing (-print, -exec, or -
ok), by default find prints the pathnames of the files found.

In the following. jlle means any file: directory, special file, ordinary file, and so on. Numbers
represented by n may be optionally prefixed by a'+' or·-· sign to signify values greater than nor less
than n. respectively.

find recognizes the following expression primitives:

-atiJne n

-cthne n

Match ifthe file was accessed in the last n days.

Match if the i-node associated with the file was changed in the last n days, as by
chmod.

-exec command
Match if command executes successfully (has a zero exit status). The command consists
of the following arguments to find. terminated by a semicolon':' (escaped to get past the
shell). find substitutes the current pathname being tested for any argument of the
form'{}'.

-group name
Match if the file is owned by group name. If name is a number. the owner must have
that group number.

-inum n Match if the file is associated with i-number n.

-links n Match if the number of links to the file is n.

-mtime n Match if the most recent modification to the file was n days ago.

-name pattern
Match if the file name corresponds to pattern, which may include the special characters
'*', '?', and '(...)' recognized by the shell sh. The pattern matches only the part of the file
name after any slash('/') characters.

-newerjlle Match if the file is newer thanjlle.

-nop Always match; does nothing.

-okcommand
Same as -exec above, except prompt interactively and only executes command if the
user types response •y•.

-perm octal Match if owner. group, and other permissions of the file are the octal bit pattern, as
described in chmod. When octal begins with a•-• character, more of the permission bits
(setuid. setgid, and sticky bit) become significant.

-print Always match: print the file name.

-size n Match if the file is n blocks in length: a block is 512 bytes long.

LEXICON

fixstack 671

-typec Match if the type of the file is c, chosen from the set bcdfmp (for block special,
character special, directory, ordinary file, multiplexed file. or pipe, respectively).

-user name Match if the file is owned by user name. If name is a number. the owner must have that
user number.

expl exp2 Match if both expressions match. find evaluates exp2 only if expl matches.

expl -aexp2
Match if both expressions match. as above.

expl -o exp2
Match if either expression matches. find evaluates exp2 only if expl does not match.

! exp Match if the expression does rwt match.

(exp) Parentheses are available for expression grouping.

Examples
A find command to print the names of all files and directories in user fred's directory is:

find /usr/fred

The following. more complicated find command prints out information on all core and object (.o)
files that have not been changed for a day. Because some characters are special both to find and
sh, they must be escaped with'\' to avoid interpretation by the shell.

find I \(-name core -o -name *.o \) -mtime +1 \
-exec ls -1 {} \;

Finally. the following example a simple tool for keeping files on two COHERENT systems in synch
with each other. find reads directory src and passes to uucp the names of all files that are newer
than file last_upload. It then uses the command touch to update the date on last_upload, to use it
as a marker of when the last upload was performed.

find $HOME/src -type f -newer last_upload I while read filename
do

uucp -r -nyou $filename yoursystem!-/
echo Queued file $filename to yoursystem

done I mail somebodyorother
touch last_upload

See Also
chmod, commands, Is, sh, srcpath, test

r•:111il·l"~"Z11mh~"l'·D'l-······························1111\! Change stack allocation
flxstack +-value [filename I

flxstack alters the stack size of a COHERENT-286 executable file. It enlarges or shrinks the stack
by value bytes. value is assumed to be a hexadecimal number, and must be preceded by + or -.

If.filename is not given, flxstack by default alters the stack size of file I.out.

See Also
cc, commands, size

LEXICON

672 fixtermO - float

Notes
This command applies only to COHERENT286.

t¢itgmu11 @iirnilliJi"•'i'M•4'~~~~~·
Set the terminal into program mode
#include <curses.h>
flxtenn()

COHERENT 386 comes with a set of functions that let you use tenninfo descriptions to manipulate
a terminal. flxtenn() restores the terminal to its internal conditions. as set by the curses/tenninfo
library. Your program should call flxtenn() after it returns from a shell escape.

See Also
curses.h, resettenn(), tenninfo

~,,,,~-...-...,.~~~- - ~~ .,,~,,~~~''''"'9
Data type

Floating point numbers are a subset of the real numbers. Each has a built-in radix point (or
"decimal point") that shifts. or "floats". as the value of the number changes. It consists of the
following: one sign bit. which indicates whether the number is positive or negative; bits that encode
the number's exponent; and bits that encode the number'sjractlon, or the number upon which the
exponent works. In general, the magnitude of the number encoded depends upon the number of
bits in the exponent, whereas its precision depends upon the number of bits in the fraction.

The exponent often uses a bias. This is a value that is subtracted from the exponent to yield the
power of two by which the fraction will be increased.

Floating point numbers come in two levels of precision: single precision, called fioats; and double
precision. called doubles. With most microprocessors, sizeof(fioat) returns four. which indicates
that it is four chars (bytes) long. and sizeof(double) returns eight.

Several formats are used to encode fioats. including IEEE, DECVAX. and BCD (binary coded
decimal).

The following describes DECVAX. IEEE. and BCD formats, for your information.

DECVAX Format
The 32 bits in a fioat consist of one sign bit. an eight-bit exponent. and a 24-bit fraction, as follows.
Note that in this diagram, 's' indicates "sign", 'e' indicates "exponent", and 'f indicates "fraction":

I seee eeee I Byte 4
1===========1
I efff ff ff I Byte 3
1===========1
I ff ff ff ff I Byte 2
1===========1
I ffff ffff I Byte 1

The exponent has a bias of 129.

If the sign bit is set to one, the number is negative; if it is set to zero. then the number is positive. If
the number is all zeroes. then it equals zero; an exponent and fraction of zero plus a sign of one
("negative zero") is by definition not a number. All other forms are numeric values.

LEXICON

float 673

The most significant bit in the fraction is always set to one and is not stored. It is usually called the
"hidden bit".

The format for doubles simply adds another 32 fraction bits to the end of the float representation.
as follows:

J seee eeee I Byte 8
===========[
efff ffff I Byte 7

===========!
ffff ff ff I Byte 6

===========!
ffff ffff I Byte 5

===========[
ffff ffff I Byte 4

===========!
ff ff ffff I Byte 3

===========!
ffff ffff I Byte 2

l===========l
I ffff ffff I Byte 1

IEEE Format
The IEEE encoding of a float is the same as that in the DECVAX format. Note, however. that the
exponent has a bias of 127, rather than 129.

Unlike the DECVAX format, IEEE format assigns special values to several floating point numbers.
Note that in the following description, a tiny exponent is one that is all zeroes, and a huge exponent
is one that is all ones:

A tiny exponent with a fraction of zero equals zero, regardless of the setting of the sign bit.

A huge exponent with a fraction of zero equals infinity, regardless of the setting of the sign bit.

A tiny exponent with a fraction greater than zero is a denormalized number, i.e .. a number that
is less than the least normalized number.

A huge exponent with a fraction greater than zero is, by definition. not a number. These values
can be used to handle special conditions.

An IEEE double, unlike DECVAX format, increases the number of exponent bits. It consists of a
sign bit, an 11-bit exponent. and a 53-bit fraction, as follows:

LEXICON

674 float

I seee eeee I Byte8
1===========1
I eeee ffff I Byte 7
1===========1
I tttt tttt I Byte6
1===========1
I tttt tttt I Byte 5
1===========1
I fftt tttt I Byte4
1===========1
I tttt fftt I Byte 3
1===========1
I tttt tttt I Byte2
1===========1
I tttt tttt I Byte 1

The exponent has a bias of 1.023. The rules of encoding are the same as for floats.

BCD Format
The BCD format ("binary coded decimal". also called "packed decimal") is used to eliminate rounding
errors that alter the worth of an account by a fraction of a cent. It consists of a sign, an exponent,
and a chain of four- bit numbers. each of which is defined to hold the values zero through nine.

A BCD fioat has a sign bit. seven bits of exponent. and six four-bit digits. In the following diagrams,
'd' indicates "digit":

I seee eeee I Byte 4
1===========1
I ctctctct ctctctct I Byte 3
1===========1
I dddct dctctct I Byte2
1===========1
I dddd dctctct I Byte 1

A BCD double has a sign bit, 11 bits of exponent, and 13 four-bit digits, as follows:

LEXICON

I seee eeee I Byte 8
1===========1
I eeee dddd I Byte 7
1===========1
I dddd dddd I Byte 6
1===========1
I dddd dddd I Byte 5
1===========1
I dddd dddd I Byte4
1===========1
I dddd dddd I Byte 3
1===========1
I dddd dddd I Byte2
1===========1
I dddd dddd I Byte 1

Passing the hexadecimal numbers A through Fin a digit yields unpredictable results.

The following rules apply when handling BCD numbers:

A tiny exponent with a fraction of zero equals zero.

A tiny exponent with a fraction of non-zero indicates a denormalized number.

A huge exponent with a fraction of zero indicates infinity.

float 675

A huge exponent with a fraction of non-zero is, by definition, not a number; these non­
numbers are used to indicate errors.

COHERENT Floating Point
COHERENT 286 uses DECVAX floating-point format, and will continue to do so.

COHERENT 386 uses IEEE floating-point format. Please note that this does not mean that the
COHERENT 386 floating-point software fully implements the IEEE standard; for example, it does
not support denormals.

To allow you to convert binary data from one floating-point format to another, COHERENT comes
with four functions with which you can convert DECVAX-format floating-point numbers to IEEE
format, and vice versa. They are as follows:

decvax_d() Convert an IEEE double to DECVAX format.

decvax_f() Convert an IEEE tloat to DECVAX format.

ieee_d() Convert a DECVAX double to IEEE format.

ieee_f() Convert a DECVAX tloat to IEEE format.

For details, see their respective entries in the Lexicon.

See Also
C keywords, data formats, decvax_d, decvax_f, double, ieee_d, ieee_f
The Art of Computer Programming, vol. 2. page 18Q[f

LEXICON

676 floorO - floppy disks

Notes
The COHERENT 386 preprocessor implicitly defines the macro _IEEE. whereas the COHERENT 286
preprocessor implicitly defines the macro _DECVAX. These can be used to conditionally include
code that applies to a specific edition of COHERENT. If you were writing code that intensively used
floating-point numbers and you want to compile the code under both editions of COHERENT. you
can write code of the form:

#ifdef DECVAX

#elif IEEE

#end if

The C preprocessor under each edition of COHERENT will ensure that the correct code is included
for compilation.

EllMfTI@•rfl'9i1'!A!!·n1tnm;n
Set a numeric floor
#include <math.h>
double floor(z) double z;

floor() sets a numeric floor. It returns a double-precision floating point number whose value is the
largest integer less than or equal to z.

Example
For an example of this function. see the entry for ceil().

See Also
abs(), cell(), fabs(), frexp(), mathematics library

floppy disks - Technical Information ~-..~~,~~~~,~~,~~~~,-..-.
The COHERENT system lets you read or write to floppy disks. using a variety of different formats.
You can choose the format that best suits the task at hand.

Disks Supported
COHERENT lets you use either 3.5-inch or 5.25-inch disks, in either high or low density; what you
use depends upon the type of hardware that you have. The following table gives some commonly
used diskette device names and formats:

Device name Sectors/ Track Heads Sectors Bytes Format
/dev/f9a0 9 2 720 360 KB 5 .25"
/dev/f9al 9 2 720 360 KB 5 .25"
/dev/fqaO 9 2 1440 720 KB 3 .5"
/dev/fqal 9 2 1440 720 KB 3 .5"
/dev/fhaO 15 2 2400 1.2 MB 5 .25"
/dev/fhal 15 2 2400 1.2 MB 5 .25"
/dev/fvaO 18 2 2880 1.44 MB 3. 5"
/dev/fval 18 2 2880 1.44 MB 3 .5"

Device names ending in 'O' indicate drive A:, names ending in 'l' indicate drive B:. For a fuller
description of COHERENT's floppy-disk devices, see the Lexicon entry for fd.

MS-DOS Format
COHERENT lets you read or write to floppy disks that contain MS-DOS file systems. Both tasks use
the commands doscp or doscpdir. These commands are discussed in full in their respective Lexicon

LEXICON

floppy disks 677

entries.

To read files from an MS-DOS disk. use doscp with the name of the appropriate for the floppy-disk
device that you will be using (as given in the above table). For example, to copy binary file fred.exe
to the current directory from a low-density. 5.25-inch MS-DOS floppy disk in drive A, use the
following command:

doscp /dev/f9aO:fred.exe •

The following command copies to the current directory all files on a high-density. 5.25-inch MS-DOS
floppy disk in drive B:

doscp /dev/fhal:* •

To write a file to a preformatted MS-DOS floppy disk, again use the doscp command. but invert the
order of the arguments. For example. to write file fred.ms, which contains text. to a low-density.
5.25-inch MS-DOS floppy disk in drive A. use the following command:

doscp -a fred.ms /dev/f9a0:

Note that the 'a' flag in the command line tells COHERENT to convert linefeeds to the
linefeed/carriage return combination. as used by MS-DOS. You will want to use this flag only when
transferring text files to or from an MS-DOS floppy disk.

The following command copies all files in the current directory to a high-density. 3.5-inch MS-DOS
floppy disk in drive B:

doscpdir • /dev/fval:

Note that when you copy a file to an MS-DOS floppy disk, COHERENT observes the MS-DOS file­
name conventions: it permits only eight characters to the left of the period, and only three
characters to the right of it.

(It should be noted in passing that you can use the doscp or doscpdir to read files from or write
files to an MS-DOS partition on your hard disk. All that is necessary is to replace the name of
floppy-disk device with that of the hard-disk device for the partition in question. See the Lexicon
entry for at for a list of hard-disk devices; see the entry for fdisk for information on how to read the
layout of your hard disk; and see the entries for doscp and doscpdir for details of how to use these
commands.)

Finally. COHERENT lets you format a floppy disk and create an MS-DOS file system on it. To do so.
you must use the commands fdformat and dosformat. fdformat is described in detail in its Lexicon
article.

To format a high-density, 5.25-inch floppy disk in drive B and write an MS-DOS file system onto it.
use the following commands:

/etc/fdformat -av /dev/fhal
dosformat /dev/fhal:

COHERENT Format
If you wish, you can create a COHERENT file system on a floppy disk. mount it, and manipulate the
files on it with standard COHERENT commands. This is a good illustration of the fact that to
COHERENT a file system is a file system. whether it resides on a hard, a floppy disk, or any other
mass-storage device. You can use such mountable floppy disks as an easy method of backing up
files, or as a flexible extension to any other file system that you have currently mounted.

To create a COHERENT file system on a floppy disk, you must use the commands fdformat,
badscan. and mkfs. Each is described in detail in its own Lexicon article. The following example
creates a COHERENT file system on a high-density, 3.5-inch floppy disk placed in drive B:

LEXICON

678 floppy disks

/etc/fdformat -a /dev/fval
/etc/badscan -v -o proto /dev/fval 2880
/etc/mkfs /dev/fval proto
rm proto

In this example, command Cd.format formatted the disk. badscan then scanned the disk for any
bad blocks, and wrote its results into file proto. Finally. command mkfs reads proto and used its
contents to create a COHERENT file system on the disk.

Now that the file system is created on the disk. you must mount it. While it is customary to mount
file systems under directory 'I', you are not required to do it. For example, if your login identifier is
fred and your home directory is /usr/fred, you can mount the floppy disk's file system onto a
subdirectory of /usr/fred and so make the floppy disk. in effect, an extension of your home
directory. The following command does this for the 3.5-inch disk we formatted in the above
example:

/etc/mount /dev/fval /usr/fred/temp

Now, all files you copy into directory /usr/fred/temp using the cp command will be written directly
onto the floppy disk. Note that you may need to log in as the superuser root and use the command
chown to ensure that fred owns the file system on that floppy disk. For details on chown, see its
entry in the Lexicon. For details on shorthand notations for mount, see its entry in the Lexicon.

One important point about mounting file systems: before you remove a COHERENT-formatted floppy
disk from its drive, you must first use the command /etc/umount to unmount its file system. If
you do not, all data that COHERENT has stored in its buffers will not be written to the disk, and
may be lost. Worse, if you remove one COHERENT disk and insert another without unmounting the
old disk and mounting the new one, COHERENT will write all data in its buffers onto the new disk
without regard for what that disk contains; in all likelihood, this will trash the file system on the
new disk and render its data unreadable. So, the lesson is: always unmount ajloppy disk before
you remove it!. To unmount the floppy disk we used in our previous example, use the command:

/etc/umount /dev/fval

By the way, that's not a misprint: the command is umount, not "unmount".

Finally. please note that you can mount only a COHERENT file system. You cannot mount a file
system created with MS-DOS, XENIX. or any other operating system.

You can, however import a set of files - including their directory structure - from UNIX, XENIX, or
any other UNIX-like operating system by using the cpio utility. cpio uses a standard backup
algorithm that is implemented on many operating systems. To import files from another operating
system. go to the machine that holds the files you want and use its version of cpio to back up the
files or directories to a set of floppy disks. Then bring the floppy disks back to your COHERENT
system and use COHERENT's implementation of cpio to read the back-up disks. The following
section gives directions on how to do this; or see the Lexicon entry for cpio for more information.

Raw Format
Finally. COHERENT lets you use floppy disks in their raw form as a backup medium, much as you
would use magnetic tape on a larger computer. You must first use the command Cd.format with the
-v option to format the floppy disks you will be using; it is also wise to label and number the disks
so you can keep them in some reasonable order. Then you can use any of COHERENT's archiving
utilities, such as ustar, cpio, or dump to archive directories or entire file systems onto the disks. It
is recommended that you format a generous supply of floppy disks before you begin; if you run
short of disks while archiving your files, you will have to abort, format more disks, and begin again.
For details on how to use the archiving programs. see their respective entries in the Lexicon.

LEXICON

fnkey - fopenO 679

See Also
badscan, cpio, doscp, doscpdir, dosConnat, dump, Cd, Cdformat, mids, mount, technical
information, umount, ustar

~-.~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Set/print function keys for the console
Cnkey [n [string I I

The console keyboard of an AT COHERENT system includes ten programmable function keys,
labeled Fl through FlO. Initially, these are programmed to send the escape sequences set by the
nkb keyboard driver.

Cnkey with a numeric argument programs function key Fn to send the given string, where n is a
number from one through ten. If no string is given, fnkey resets Fn to send nothing.

With no argument, Cnkey prints the current string for each programmed function key.

Cnkey also lets you change the default bindings for other special or function keys. See Lexicon
articles keyboard tables and nkb for details.

Example
To set function key F2 to execute the COHERENT command date, use the following command:

fnkey 2 'date

Note that this command sets F2 to the string date\n. If you type Cnkey without any arguments, it
displays the binding of all function keys including the following:

F2: date\n

Files
I dev I console

See Also
commands, keyboard tables, nkb

Diagnostics
Cnkey prints "cannot open /dev/console" if you lack permission to open /dev/console.

fopenO- STDIO Function (libc)
Open a stream for standard 1/0
#include <stdio.h>
FILE •Copen (name, type) char •name, •type;

Copen() allocates and initializes a FILE structure, or stream; opens or creates the file name; and
returns a pointer to the structure for use by other STDIO routines. name refers to the file to be
opened.

type is a string that consists of one or more of the characters "rwa", to indicate the mode of the
string. as follows:

r Read; error if file not found
w Write; truncate if found, create if not found

a Append to end of file; no truncation, create if not found
r+ Read and write; no truncation, error if not found

LEXICON

680 fopenO

w+ Write and read; truncate if found. create if not found
a+ Append and read; no truncation, create if not found

The modes that contain ·a· set the seek pointer to point at the end of the file; all other modes set it to
point at the beginning of the file. Modes that contain ·+·both read and write; however, a program
must call fseek or rewind before it switches from reading to writing or vice versa.

Example
This example copies argv[I) to argv[2) using STDIO routines. It demonstrates the functions fopen().
fread(). fwrlte(). fclose(). and feof().

#include <stdio.h>
/* BUFSIZ is defined in stdio.h */
char buf[BUFSIZ);

void fatal(message)
char *message;
{

}

fprintf(stderr, "copy: %s\n", message);
exit(l);

main(argc, argv)
int argc; char *argv[];
{

}

register FILE *ifp, *ofp;
register unsigned int n;

if (argc != 3)
fatal("Usage: copy source destination");

if ((ifp = fopen (argv[l], "r")) == NULL)
fatal("cannot open input file");

if ((ofp = fopen(argv[2], "w")) ==NULL)
fatal("cannot open output file");

while ((n = fread(buf, 1, BUFSIZ, ifp)) != 0) {
if (fwrite(buf, 1, n, ofp) != n)

fatal("write error");
}

if (!feof(ifp))
fatal("read error");

if (fclose(ifp) == EOF \ \ fclose(ofp) EOF)
fatal("cannot close");

exit(O);

See Also
fclose(), fdopen(), freopen(), STDIO

Diagnostics
fopen() returns NULL if it cannot allocate a FILE structure. if the type string is nonsense, or if the
call to open() or creat() fails. Currently, only 20 FILE structures can be allocated per program.

LEXICON

including stdin, stdout, and stderr.

Notes

for- for 681

Many operating systems recognize a 'b' modifier to the type argument; this indicates that the file
contains binary information, and lets the operating system handle "funny characters" correctly.
COHERENT has no need of such a modifier, so if you append 'b' to type, it will be ignored. This
modifier, however, is recognized by numerous other operating systems, including MS-DOS, OS/2,
and GEMDOS. If you expect to port developed code to any of these operating systems, files should
append the 'b' to type.

~''~'''~'''''~ .._,. '~~'
Execute commands for tokens in list
for name [in token ...) do sequence done

The shell command for controls a loop. It assigns to the variable name each successive token in the
list, and then executes the commands in the given sequence. If the in clause is omitted, for
successively assigns name the value of each positional parameter to the current script ('$@').
Because the shell recognizes a reserved word only as the unquoted first word of a command, both
do and done must either occur unquoted at the start of a command or be preceded by '".

The shell commands break and continue may be used to alter control flow within a for loop.

The shell executes for directly.

See Also
break,colllJllands,continue,ksh,sh

for - C Keyword
Control a loop
for(lnltlalizatlon; endcondltlon; modification)

for is a C keyword that introduces a loop. It takes three arguments. which are separated by
semicolons';'. Initialization is executed before the loop begins. endcondltlon describes the condition
that ends the loop. modljlcatlon is a statement that modifies variable to control the number of
iterations of the loop. For example,

for (i=O; i<lO; i++)

first sets the variable i to zero; then it declares that the loop will continue as long as i remains less
than ten; and finally, increments i by one after every iteration of the loop. This ensures that the
loop will iterate exactly ten times (from i==O through i==9). The statement

for(;;)

will loop until its execution is interrupted by a break, goto, or return statement. Also, either or
both of Initialization and modljlcatlon may consist of multiple statements that are separated by
commas. For example,

for (i=O, j=O; i<lO; i++, j++)

initializes both I and), and increments both with each iteration of the loop.

See Also
break, C keywords, continue, while

LEXICON

682 forkO - fortune

forkO - System Call
Create a new process
fork()

In the COHERENT system, many processes may be active simultaneously. fork() creates a new
process: the new process is a duplicate of the requesting process. In practice, the new process often
issues a call to execute yet another new program.

The process that issues the fork() call is termed the parent process, and the newly forked process is
termed the child process. fork() returns the process id of the newly created child to the parent
process, and returns zero to the child process. The parent may call wait() to suspend itself until the
child terminates.

The following parts of the environment of a process are exactly duplicated by a fork() call:

Open files and their seek positions

Current working and root directories

The file creation mask

The values of all signals

The alarm clock setting

Code, data, and stack segments

The system normally makes a fresh copy of the code, data, and stack segments for the child process.
One advantage of shared text processes is that they do not need to copy the code segment. It is
write protected, and therefore may be shared.

Example
For examples of how to use this call, see pipe() and signal().

See Also
alarm(), execl(), exit(), sh, system calls, umask(), wait()

Diagnostics
fork() returns -1 on failure, which usually involves insufficient system resources. On successful
calls, fork() returns zero to the child and the process id of the child to the parent.

fortune - Command ~~"~~~~~~~~~~~~-~
Print randomly selected, hopefully humorous, text
/usr/games/fortune [file I

fortune prints a message that is randomly selected from the contents of a text file. fortune reads
file if it is named on the command line: otherwise, it reads the default file
/usr I games/ lib/fortunes.

Files
/usr I games/lib/fortunes- Default fortunes

See Also
commands

LEXICON

fperr.h - fputcO 683

-~,,~~'''''~~~~,,~~~,,~~
Constants used with floating-point exception codes
#include <fperr.h>

fperr.h declares constants used by routines that handle floating-point exceptions. It also defines
the error messages they use.

See Also
header mes

Mmll:Ji1][•~~~~
Print formatted output into file stream
int fprintf(fp.jormat, [argl, argN])
FILE ":fp; char ":format;
[data type) argl, ... argN;

fprlntf() formats and prints a string. It resembles the function prlntf(), except that it writes its
output into the stream pointed to byfp, instead of to the standard output.

fprlntf() uses the format to specify an output format for arg 1 through argN.

See printf() for a description of fprintf()'s formatting codes.

Example
For an example of this routine, see the entry for fscanf().

See Also
printf(), sprlntf(), STDIO

Notes
Because C does not perform type checking, it is essential that an argument match its specification.
For example, if the argument is a long and the specification is for an int, fprlntf() will peel off the
first word of that long and present it as an int.

At present, fprintf() does not return a meaningful value.

-~~~"'"~~~
Write character into file stream
#include <stdio.h>
int fputc(c,fp) charc; FILE ":fp;

fputc() writes the character c into the file stream pointed to by fp. It returns c if c was written
successfully.

Example
The following example uses fputc to write the contents of one file into another.

#include <stdio.h>

void fatal(message)
char *message;
{

}

fprintf(stderr, "%s\n", message);
exit (1);

LEXICON

684 fputsO - fputwO

main()
{

}

FILE *fp, *fout;
int ch;
int infile[20];
int outfile[20];

printf("Enter name to copy: ");
gets(infile);
printf("Enter name of new file: ");
gets(outfile);

if ((fp = fopen(infile, "r")) == NULL)
fatal("Cannot write input file");

if ((fout = fopen(outfile, "w")) != NULL)
fatal("Cannot write output file");

while ((ch= fgetc(fp)) I= EOF)
fputc (ch, fout) ;

See Also
STDIO

Diagnostics
fputc() returns EOF when a write error occurs. e.g .. when a disk runs out of space.

-""~ Write string into file stream
#Include <stdlo.h>
Int fputs(strlng,fp} char •string; FILE *fp;

fputs() writes string into the file stream pointed to byfp. Unlike its cousin puts(}, it does not append
a newline character to the end of string.

fputs() returns a nonnegative value on success and EOF if a write error occurs.

Example
For an example of this function. see the entry for freopen().

See Also
puts(), STDIO

~""~ ~~~~~~~~~~~~-~~~~~--­
Write an integer into a stream
#Include <stdlo.h>
Int fputw(word,fp) Int word; FILE *fp;

fputw() writes word into the file stream pointed to byfp, and returns the value written.

Example
For an example of this function, see the entry for fgetw().

LEXICON

freadO - freopenO 685

See Also
fgetw(), STDIO

Diagnostics
fputw() returns EOF when an error occurs. A call to terror() or feof() may be needed to distinguish
this value from a valid end-of-file signal.

freadO - STDIO Function (libc)
Read data from file stream
#include <stdio.h>
int fread(bu.[fer, size, n,fp)
char •buffer; unsigned size, n; FILE ":.fp;

tread() reads n items. each being size bytes long. from file streamjp into buffer.

Example
For an example of how to use this function, see the entry for Copen().

See Also
fwrite(), STDIO

Diagnostics
tread() returns zero upon reading EOF or on error; otherwise, it returns the number of items read.

freeO - General Function (libc) -.~~,~-.~~~~'''~
Return dynamic memory to free memory pool
void free(ptr) char •ptr;

free() helps you manage the arena. It returns to the free memory pool memory that had previously
been allocated by malloc(). calloc(), or realloc(). free() marks the block indicated by ptr as unused,
so the malloc() search can coalesce it with contiguous free blocks. ptr must have been obtained
from malloc(). calloc(). or realloc().

Example
For an example of how to use this routine, see the entry for malloc().

See Also
arena, calloc(), general functions, malloc(), realloc(), setbuf()

Diagnostics
free() prints a message and calls abort if it discovers that the arena has been corrupted. This most
often occurs by storing data beyond the bounds of an allocated block.

freopen() reinitializes the file stream fp. It closes the file currently associated with it, opens or
creates the file name, and returns a pointer to the structure for use by other STDIO routines. name
names a file.

type is a string that consists of one or more of the characters "rwa" (for. respectively, read, write,
and append) to indicate the mode of the stream. For further discussion of the type variable, see the
entry for fopen(). freopen() differs from Copen() only in thatfp specifies the stream to be used. Any
stream previously associated withfp is closed by fclose(). freopen() is usually used to change the

LEXICON

686 frexpO

meaning of stdin, stdout, or stderr.

Example
This example, called match.c, looks in argv[2] for the pattern given by argv[l]. If the pattern is
found, the line that contains the pattern is written into the file argv[3] or to stdout.

#include <stdio.h>
#define MAXLINE 128
char buffer[MAXLINE];

void fatal(message)
char *message;
{

}

fprintf(stderr, "match: %s\n", message);
exit(l);

main(argc,argv)
int argc; char *argv[];
{

}

FILE *fpin, *fpout;

if (argc != 3 && argc != 4)
fatal("Usage: match pattern infile (outfile]");

if ((fpin = fopen(argv[2], "r")) ==NULL)
fatal("Cannot open input file");

fpout = stdout;
if (argc == 4)

if ((fpout = freopen(argv[3], "w", stdout))
fatal("Cannot open output file");

while (fgets(buffer, MAXLINE, fpin) !=NULL) {
if (pnmatch(buffer, argv[l], 1))

fputs(buffer, stdout);
}
exit(O);

See Also
fopen(), STDIO

Diagnostics

NULL)

!reopen() returns NULL if the type string is nonsense or if the file cannot be opened. Currently.
only 20 FILE structures can be allocated per program, including stdin, stdout, and stderr.

• ·~ ·~~~~~~ ·~ ilRL~"-'"~''~~-. hl
Separate fraction and exponent
double frexp(rea1, ep) double real; int •ep;

frexp() breaks double-precision floating point numbers into fraction and exponent. It returns the
fraction m of its real argument. such that 0.5 <= m < I or m=O, and stores the binary exponent e in
the location pointed to by ep. These numbers satisfy the equation real= m • 2e.

LEXICON

from 687

Example
This example prompts for a number. then uses frexp() to break it into its fraction and exponent.

#include <stdio.h>

main()
{

}

extern char *gets();
extern double frexp(), atof();
double real, fraction;
int ep;

char string[64];

for (; ;) {

}

printf("Enter number: ");
if (gets(string) ==NULL)

break;

fraction= frexp(real, &ep);
printf("%lf is the fraction of %lf\n",

fraction, real);
printf("%d is the binary exponent of %lf\n",

ep, real);

putchar ('\n') ;

See Also
atof(), ceil(), fabs(), floor(), general functions, ldexp(), modf()

~'~ ... lmh,,,-.; ~~~~'''~~~''''~'~
Generate list of numbers. for use in loop
from start to stop [by Iner]

from prints a list of integers on the standard output. one per line. It prints beginning with start,
and then prints successive numbers incrementing by Iner (default, one) the previous number. It
continues until the generated value matches or exceeds stop. Each of start, stop, and optional Iner is
a decimal integer with an optional leading·-· sign.

Typical uses of from include generating a file of numbers and generating a loop index for the shell.
The following example creates special files for eight terminal ports:

for i in 'from 0 to 7'
do

/etc/mknod /dev/hs0$i c 7 $i
done

See Also
commands, ksh, sh

Diagnostics
from prints an error message if the generated list is empty.

LEXICON

688 fscanfO

fscanf() reads the file stream pointed to by fp, and uses the stringformat to format the arguments
argl through argN, each of which must point to a variable of the appropriate data type.

fscanf() returns either the number of arguments matched, or EOF if no arguments matched.

For more information on fscanf()'s conversion codes, see scanf().

Example
The following example uses fprintf() to write some data into a file. and then reads it back using
fscanf().

#include <stdio.h>

main ()
{

}

FILE *fp;
char let[4];

/* open file into write/read mode */
if ((fp = fopen("tmpfile", "wr")) ==NULL) {

printf("Cannot open 'tmpfile'\n");
exit (1);

}

/* write a string of chars into file */
fprintf(fp, "1234");

/* move file pointer back to beginning of file */
rewind (fp) ;

/* read and print data from file */
fscanf(fp, "%c %c %c %c",

&let[O], &let[l], &let[2], &let[3]);
printf("%c %c %c %c\n",

let[3], let[2], let[l], let[O]);

See Also
scanf(), sscanf(), STDIO

Notes
Because C does not perform type checking. it is essential that an argument match its specification.
For that reason, fscanf() is best used only to process data that you are certain are in the correct
data format, such as data previously written out with fprintf().

LEXICON

fsck 689

~~31.m1.m.1m.n·E~·1m11!·'~""W\\l!W\\I! ~ ~ ~
Check and repair file systems interactively
/etc/fsck [-fnqsSy] [-t tempfile I [jilesystem ... I

fsck checks and interactively repairs file systems. If all is well, fsck merely prints the number of
files used, the number of blocks used, and the number of blocks that are free. If the file system is
found to be inconsistent in one of the aspects outlined below, fsck asks whether it should fix the
inconsistency and waits for you to reply yes or no.

The following file system aspects are checked for consistency by fsck:

If a block is claimed by more than one I-node, by an I-node and the free list, or more than once
in the free list.

Whether an I-node or the free list claims blocks beyond the file system's range.

Link counts that are incorrect.

Whether the directory size is not aligned for 16 bytes.

Whether the I-node format is correct.

Whether any blocks are not accounted for.

Whether a file points to an unallocated I-node.

Whether a file's I-node number is out of range.

Whether the super block refers to more than 65,536 I-nodes.

Whether the super block assigned more blocks to the I-nodes than the system contains.

Whether the format of the free block list is correct.

Whether the counts of the total free blocks and the free I-nodes are correct.

fsck prints a warning message when a file name is null, has an embedded slash '/', is not null­
padded, or if'.' or' . .' files do not have the correct I-node numbers.

When fsck repairs a file system, any file that is orphaned (that is, allocated but not referenced) is
deleted if it is empty, or copied to a directory called lost+found, with its I-node number as its name.
The directory lost+found must exist in the root of the file system being checked before fsck is
executed, and it must have room for new entries without requiring that new blocks be allocated.

fsck recognizes the following options:

-f Fast check. fsck only checks whether a block has been claimed by more than one I-node, by
an I-node and the free list, or more than once in the free list. If necessary, fsck will reconstruct
the free list.

-n No option: a default reply of no is given to all of fsck's questions.

-q Quiet option: run quietly. fsck automatically removes all unreferenced pipes, and
automatically fixes list counts in the super block and the free list. File-name warning
messages are suppressed, but fsck still prints the number of files used, the number of blocks
used, and the number of blocks that remain free.

-s Sort the free lists, both free blocks and free I-nodes, based on the interleave number. This is
useful in reducing fragmentation of a file system. This option ignores mounted file systems.

LEXICON

690 fseekO

-S Same as -s. except that it also works on mounted file systems. Not recommended for the faint
of heart.

-t Specify temporary file option. On COHERENT 286, fsck uses RAM device /dev/rraml for
temporary storage when checking filesystems larger than approximately 35 megabytes. This
option allows the user to specify temporary storage other than the RAM device.

-y Yes option: a default reply of yes is given to all offsck's questions.

If you do not name a file system in fsck's command line, fsck checks the file systems named in the
file /etc/checklist.

Under COHERENT 286, invoking fsck to check a file system larger than approximately 35
megabytes, forces it to use the RAM device /dev/rraml for temporary storage. For this reason, it is
strongly advised that you not use /dev/rraml as a RAM disk. Under COHERENT 386, fsck has no
such limitations.

Files
I etc I checklist

See Also
chi, commands, icheck, ncheck, ram, sync, umount

Notes
The correction of file systems almost always involves the destruction of data.

You should run fsck only when the COHERENT system is in single-user mode.

Previous editions of fsck could check no partition larger than 35 megabytes. This restriction has
been lifted.

fseekO - STDIO Function
Seek on file stream
#include <stdio.h>
int fseek{fp, where, how)
FILE ":fp; long where; int how;

fseek() changes where the next read or write operation will occur within the file stream fp. It
handles any effects the seek routine might have had on the internal buffering strategies of the
system. The arguments where and how specify the desired seek position. where indicates the new
seek position in the file. It is measured from the start of the file if how equals SEEK_SET (zero).
from the current seek position if how equals SEEK_ CUR (one). and from the end of the file if how
equals two SEEK_END (two).

fseek() differs from its cousin lseek() in that lseek() is a COHERENT system call and takes a file
number, whereas fseek() is a STDIO function and takes a FILE pointer.

Example
This example opens file argv[l] and prints its last argv[2] characters (default, 100). It demonstrates
the functions fseek(), ftell(), and fclose().

#include <stdio.h>
extern long atol();

LEXICON

void fatal(message)
char *message;
{

}

fprintf(stderr, "tail: %s\n", message);
exit(l);

main(argc, argv)
int argc; char *argv[];
{

}

register FILE *ifp;
register int c;
long nchars, size;

if (argc < 2 I I argc > 3)
fatal("Usage: tail file [nchars]");

nchars = (argc == 3) ? atol(argv[2]) : lOOL;

if ((ifp = fopen (argv [1 J , "r")) == NULL)
fatal("cannot open input file");

/* Seek to end */
if (fseek(ifp, OL, 2) == -1)

fatal("seek error");

/* Find current size */
size= ftell(ifp);
size = (size < nchars) ? OL size - nchars;

/* Seek to point */
if (fseek(ifp, size, 0) == -1)

fatal("seek error");
while ((c = getc(ifp)) != EOF)

/* Copy rest to stdout */
putchar(c);

if (fclose(ifp) == EOF)
fatal("cannot close");

exit(O);

See Also
ftell(), lseek(), STDIO

Diagnostics

fstatO 691

For any diagnostic error. fseek() returns -1; otherwise. it returns zero. If fseek() goes beyond the
end of the file, it will not return an error message until the corresponding read or write is performed.

fstatO - System Call
Find file attributes
#include <sys/stat.h>
fstat(descrlptor, statptr) int descriptor; struct stat •statptr;

fstat() returns a structure that contains the attributes of a file including protection information. file
type, and file size. descriptor is the file descriptor for the open file, and statptr points to a structure

LEXICON

692 fstatO

of the type stat, which is defined in the header file stat.h.

The following summarizes the structure stat and defines the permission and file type bits.

struct stat {
dev_t st_dev;
ino_t st_ino;
unsigned short st mode;
short st_nlink;
short st_uid;
short st_gid;
dev t st_rdev;
size_t st_size;
time t st_atime;
time t st_mtime;
time t st_ctime;

} ;

#define S IFMT 0170000
#define S IFREG 0100000
#define S IFDIR 0040000
#define S IFCHR 0020000
#define S IFBLK 0060000
#define S ISUID 0004000
#define S ISGID 0002000
#define S ISVTX 0001000
#define S IREAD 0000400
#define S IWRITE 000200
#define S IEXEC 0000100

/* file types */
/* ordinary file */
I* directory */
/* character special */
I* block special */
/* set user id */
/* set group id */
/* save text bit */
/* owner read permission */
/* owner write permission */
/* owner execute permission */

The entries st_dev and st_ino together form a unique description of the file. The former is the
deVice on which the file and its i-node reside, whereas the latter is the index number of the file. The
entry st_mode gives the permission bits, as outlined above. The entry st_nlink gives the number of
links to the file. The user id and group id of the owner are st_uid and st_gid, respectively. The
entry st_rdev. valid only for special files. holds the major and minor numbers for the file.

The entry st_size gives the size of the file, in bytes. For a pipe, the size is the number of bytes
waiting to be read from the pipe.

Three entries for each file give the last occurrences of various events in the file's history. st_atime
gives time the file was last read or written to. st_mtime gives the time of the last modification, write
for files, create or delete entry for directories. st_ctime gives the last change to the attributes, not
including times and size.

Example
For an example of how to use this function, see the entry for pipe().

Files
<sys/stat.h>

See Also
chmod(), chown(), ls, open(), stat(), system calls

LEXICON

fstatfsO - ftellO 693

Notes
fstat() differs from the related function stat mainly in that it accesses the file through its descriptor,
which was returned by a successful call to open(). whereas stat takes the file's path name and
opens it itself before checking its status.

Diagnostics
fstat() returns -1 if the file is not found or if statptr is invalid.

rem@•@@i1ill' .,_,,~""'~'""~~'''''~"'"''"''~'"'~~~
Get information about a file system
#include <sys/ types.h>
#include <sys/statfs.h>
int fstatfs (flledes, buffer, length,fstype)
intjlledes;
struct statfs •buffer;
intlength,fstype;

The COHERENT system call fstatfs() returns information about a file system, either mounted or
unmounted.

buffer points to a structure of type statfs, which contains the following members:

short f _fstyp; /* type of the file system */
short f_bsize; /* block size */
short f _frsize; /* fragment size */
long f_blocks; /* number of blocks in the file system */
long f_bfree; /* number of free blocks */
long f_files; /* number of file nodes */
long f _ffree; /* number of free file nodes */
char f _fname[6 J; /* name of the volume */
char f _fpack[6]; /* name of the pack */

length is the length of the area into which fstatfs() can write its output. Always set this to
sizeof(struct statfs).

jlledes andfstype identify the file system. If the file system is unmounted, thenfiledes should give
the file descriptor for the device by which the file system is accessed, as returned by a call to creat(),
dup(). open(), or pipe(); and fstype contains the type of the file system. If the file system is
mounted, then jlledes should give the file descriptor of a file on the file system in question, and
fstype must be set to zero.

fstatfs() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an
appropriate value.

See Also
mkfs, statfs(), system calls, ustat()

Notes
fstatfs() is available only under COHERENT 386.

ftellO - STDIO Function (libc) ~ ~'" ~''""'~ - ._'""'~''"'""~"'~
Return current position of file pointer
#include <stdio.h>
long ftell(f p) FILE *Jp;

LEXICON

694 ftimeO - fwriteO

ftell() returns the current position of the seek pointer. Like its cousin fseek(), ftell() takes into
account any buffering that is associated with the streamjp.

Example
For an example of how to use this function, see the entry for fseek().

See Also
fseek(), lseek(), rewind(), STDIO

~~~'~ ~~~~~~~~~~~--.~ ~~~~ 
Get the current time from the operating system 
#include <sys/timeb.h> 
ftime(tbp) struct timeb •tbp; 

ftime() fills the structure timeb, which is pointed to tbp, with COHERENT's representation of the 
current time. timeb is defined in the header file timeb.h, as follows: 

struct timeb { 

} 

time_t time; 
unsigned short millitm; 
short timezone; 
short dstflag; 

The member time is the number of seconds since January l, 1970, OhOOmOOs GMT. millitm is a 
count of milliseconds. timezone and dsttlag are obsolete; they have been replaced by the 
environmental variable TIMEZONE. 

See Also 
date, system calls, time, TIMEZONE, types.h 

Notes 
ftime() is found only under COHERENT 286. Users of COHERENT 386 should use time() instead. 
See its Lexicon entry for details. 

The ANSI standard eliminates this function from the set of standard time functions. Users are well 
advised to modify their time routines to eliminate ftime(). 

function - Definition 
A function is the C term for a portion of code that is named, can be invoked by name, and that 
performs a task. Many functions can accept data in the form of arguments, modify the data, and 
return a value to the statement that invoked it. 

See Also 
data types, definitions, executable file, library, portability 

fwriteO - STDIO Function (libc) 
Write into file stream 
#include <Stdio.h> 
int fwrite(btiffer, size, n,jp) 
char •buffer; unsigned size, n; FILE ":fp; 

fwrite() writes n items, each of size bytes, from buffer into the file stream pointed to byfp. 

LEXICON 



fwtable 695 

Example 
For an example of how to use this function, see the entry for fopen(). 

See Also 
tread(), STDIO 

Diagnostics 
fwrite() normally returns the number of items written. If an error occurs, the returned value will 
not be the same as n. 

r1mm.mi•fol116M.·~"'"'''"~ 
Build font-width table 
fwtable [ -pv ) [ lnflle I ouifile I I 

fwtable builds a binary font-width table for use by troff. It understands PCL (Printer Control 
Language) bitmap fonts for the Hewlett-Packard LaserJet family of printers (plus compatibles), and 
AFM (Adobe Font Metric) descriptions of Postscript fonts. 

For the typesetting program troff to use a font. it must know the width of each character in the font 
and how to tell the printer to select the font. troff contains built-in information about a few 
standard fonts, but to use any other font you must use the troff directive .If to load a binary font­
width table that contains information about the font. The command fwtable normally reads a PCL 
bitmap font for an HP-compatible laser printer from inflle (or the standard input) and writes a font­
width table for the font to ouifile (or the standard output). 

Loading a PCL troff font-width table with an .If directive provides troff with character-width 
information about the font and tells it the PCL command (escape sequence) required to select the 
font. However. it does not download the font to the printer. You must download each required font 
to the printer with the hpr command (using its -f option) before you print the troff output; if the 
fonts are not available in the printer, the output will not be what you expect. 

With option -p, fwtable reads an AFM (Adobe Font Metric) description for a Postscript font from 
inflle and writes a font-width table to ouifile. 

With option -v. fwtable prints a brieffont description to the standard error file. 

Files 
/usr/lib/roff/troff_pcl/fwt/ - Directory for PCL font-width tables 
/usr /lib/roff/troff_ps/fwt/ - Directory for Postscript font-width tables 

See Also 
commands, hpr, troff 

Notes 
fwtable does not understand Intellifont scalable fonts. 

LEXICON 



696 gcdO - general functions 

gcdO - Multiple-Precision Mathematics 
Set variable to greatest common divisor 
#include <mprec.h> 
void gcd(a, b, c) 
mint •a, *b, •c; 

The COHERENT system includes a suite of routines that allow you to perform multiple-precision 
mathematics. gcd sets c to the greatest common divisor of a and b. 

See Also 
multiple-precision mathematics 

fiN,(:lbtli!ii@il·1rt••kl§PJ@* ~'W ~~~ ~''''~'",. ~ 
The library libc includes a number of functions that perform useful, general tasks: 

_exit(). 
abort() . 
abs() . .. 
alloca(). 
assert(). 
atof() 
atoi() .. 
atol() .. 
bsearch(). 
calloc() . . 
candaddr(). 
candev() 
canino() . 
canint() . . 
canlong(). 
canshort(). 
cansize() .. 
cantime() .. 
canvaddr(). 
closedir() . . 
crypt() ... 
decvax_d(). 
decvax_f() 
div() . .. 
dup2() .. 
ieee_d(). 
ieee_f() . 
endgrent(). 

LEXICON 

. Terminate a process 

. End program immediately 

. Return the absolute value of an integer 

. Dynamically allocate space on the stack (COHERENT 386 only) 

. Check assertion at run time 

. Convert ASCII strings to floating point 

. Convert ASCII strings to integers 

. Convert ASCII strings to long integers 

. Search an array 

. Allocate dynamic memory 

. Convert a daddr t to canonical format 

. Convert a dev t to canonical format 

. Convert a ino -t to canonical format 

. Convert a int to canonical format 

. Convert a long to canonical format 

. Convert a short to canonical format 

. Convert an fsize_t to canonical format 

. Convert a time t to canonical format 

. Convert a vad~_t to canonical format 

. Close a directory stream (COHERENT 386 only) 

. Encryption using rotor algorithm 

. Convert a double from IEEE to DECVAX format 

. Convert a tloat from IEEE to DECVAX format 

. Perform integer division 

. Duplicate a file descriptor 

. Convert a double from DECVAX to IEEE format 

. Convert a tloat from DECVAX to IEEE format 

. Close group file 



endpwent() 
execl() . 
execle(). 
execlp(). 
execv(). 
execvp() 
free() .. 
frexp() . 
getenv() 
getgrent() 
getgrgid(). 
getgrnam(). 
getlogin(). 
getopt() . . 
getpass(). 
getpw() . . 
getpwent(). 
getpwnam() 
getpwuid(). 
getwd(). 
gtty() .. 
isatty(). 
13tol() . . 
ldexp() . 
ldiv() .. 
longjmp(). 
ltol3() . .. 
malloc() . 
mktemp() 
modf() . 
mtype() . . 
nlist() . .. 
opendir(). 
path() . . 
perror(). 
qsort() . 
rand() . . 
readdir() 
realloc() 
rewinddir(). 
sbrk() . .. 
seekdir(). 
semctl() 
semget() . 
semop() . . 
setgrent() 
setjmp() . 
setpwent() . 
shellsort() 
shmctl() . 
shmget(). 
sleep() . 
srand() . 
strtod(). 

general functions 697 

Close password file 
Execute a load module 
Execute a load module 
Execute a load module 
Execute a load module 
Execute a load module 
Return dynamic memory to free memory pool 

. Separate fraction and exponent 

. Read environmental variable 

. Get group file information 

. Get group file information, by group id 

. Get group file information. by group name 

. Get login name 

. Get a command-line option 

. Get password with prompting 

. Search password file 

. Get password file information 
Get password file information, by name 
Get password file information, by id 
Get current working directory name 
Terminal initialization 
Check if a device is a terminal 

. Convert file system block number to long integer 

. Combine fraction and exponent 

. Perform long integer division 

. Return from a non-local goto 

. Convert long integer to file system block number 

. Allocate dynamic memory 

. Generate a temporary file name 

. Separate integral part and fraction 

. Return symbolic machine type 

. Symbol table lookup 

. Open a directory stream (COHERENT 386 only) 

. Build a path name for a file 

. System call error messages 

. Sort arrays in memory 

. Generate pseudo-random numbers 
Read a directory stream (COHERENT 386 only) 
Reallocate dynamic memory 
Rewind a directory stream (COHERENT 386 only) 
Increase a program·s data space 

. Reset the position within a directory stream (COHERENT 386 only) 

. Control semaphore operations 

. Get a set of semaphores 

. Perform semaphore operations 
Rewind group file 

. Perform non-local goto 

. Rewind password file 

. Sort arrays in memory 

. Control shared-memory operations 

. Get the shared-memory segment 

. Suspend execution 

. Seed random number generator 

. Convert string to floating-point number 

LEXICON 



698 getcO 

strtol() . 
strtoul() 
swab() .. 
system() 
telldir(). 
ttyname() 
ttyslot() . 

See Also 
libraries, system calls 

. Convert string to long integer 

. Convert string to unsigned long integer 

. Swap a pair of bytes 

. Pass a command to the shell for execution 

. Return position within a directory stream (COHERENT 386 only) 

. Identify a terminal 

. Return a terminal's line number 

getcO - STDIO Macro (stdio.h) 
Read character from file stream 
#include <Stdio.h> 
int getc{fp) FILE "fp; 

getc() is a macro that reads a character from the file streamjp. and returns an int. 

Example 
The following example creates a simple copy utility. It opens the first file named on the command 
line and copies its contents into the second file named on the command line. 

#include <stdio.h> 

void fatal(string) 
char *string; 
{ 

} 

printf("%s\n", string); 
exit (l); 

main(argc, argv) 
int argc; char *argv[]; 
{ 

} 

int foo; 
FILE *source, *dest; 

if (--argc != 2) 
fatal("Usage: copy (source][destination]"); 

if ((source= fopen(argv[l], "r")) ==NULL) 
fatal("Cannot open source file"); 

if ((dest = fopen(argv[2], "w")) ==NULL) 
fatal("Cannot open destination file"); 

while ((foo = getc(source)) != EOF) 
putc(foo, dest); 

See Also 
fgetc(), getchar(), putc(), STDIO 

Diagnostics 
getc() returns EOF at end of file or on read fatal. 

LEXICON 







geteuidO - getgidO 701 

#include <stdio.h> 

main() 
{ 

char *env; 
extern char *getenv(); 

} 

if ( (env = getenv( "PATH")) == NULL) { 
printf("Sorry, cannot find PATH\n"); 
exit(l); 

} 
printf ("PATH %s\n", env); 

See Also 
environmental variables, envp, exec, sh 

Diagnostics 
When VARIABLE is not found or has no value, getenv() returns NULL. 

Every process has two different versions of its user Id. called the real user id and the effective user 
id. The user ids determine eligibility to access files or employ system privileges. Normally. these 
two ids are identical. However, for a set user id load module (see exec), the real user id is that of the 
user, whereas the effective user id is that of the load module owner. This distinction allows system 
programs to use files which are protected from the user who invokes the program. 

geteuid() returns the effective user identifier 

Example 
For an example of this call. see the entry for getpwent(). 

See Also 
access(), exec, getegid(), getgid(), getuid(), login, setuid(), system calls 

rmvntUlll§t1@11N!i..._,"''',.,_,,.,_,,~ ._"'~""'~'~~'~'~'"'~ --~ ~ WI 

Get real group identifier 
getgid() 

Every process has two different versions of its user Id, called the real user id and the eff ectlve user 
id. The user ids determine eligibility to access files or employ system privileges. Normally. these 
two ids are identical. However, for a set user Id load module (see exec), the real user id is that of the 
user, whereas the effective user id is that of the load module owner. This distinction allows system 
programs to use files which are protected from the user who invokes the program. 

getgid() returns the real group id. 

See Also 
access(), exec, getegid(), geteuid(), getuid(), login, setuid(), system calls 

LEXICON 



702 getgrentO - getgrnamO 

getgrent() returns the next entry from file /etc/group. It returns NULL if an error occurs or if the 
end of file is encountered. 

Files 
/etc/group 
<grp.h> 

See Also 
general functions, group 

Notes 
All structures and information returned are in a static area internal to getgrent(). Therefore, 
information from a previous call is overwritten by each subsequent call. 

l'&Ji!WU!llll@it@IHl!dijl!.1119 • ~~ • ~ 
Get group file information, by group id 
#include <grp.h> 
struct group •getgrgid(gld); 
int gid; 

getgrgid() searches file I etc/ group for the first entry with a numerical group id of gtd. It returns a 
pointer to the entry if found; it returns NULL if an error occurs or if the end of file is encountered. 

Files 
/etc/group 
<grp.h> 

See Also 
general functions, group 

Notes 
All structures and information returned are in a static area internal to getgrgid(). Therefore, 
information from a previous call is overwritten by each subsequent call. 

getgrnam() searches file /etc/group for the first entry with a group name of gname. It returns a 
pointer to the entry for gname if it is found; it returns NULL for any error or if the end of the file is 
encountered. 

Files 
/etc/group 
<grp.h> 

See Also 
general functions, group 

LEXICON 



getloginO - getoptO 703 

Notes 
All structures and information returned are in a static area internal to getgrnam(). Therefore. 
information from a previous call is overwritten by each subsequent call. 

getloginO - General Function (libc) 
Get login name 
char •getlogin() 

The name corresponding to the current user id is not always the same as the name under which a 
user logged into the COHERENT system. For example. the user may have issued a su command, or 
there may be several login names associated with a user id. getlogin() returns the login name found 
In the file /etc/utmp. 

In cases where getlogin() fails to produce a result, getpwuid() (described in getpwent()) is normally 
used to determine the user name for a process. 

Files 
/etc/utmp login names 

See Also 
general functions, getpwent(), getuid(), su, ttyname(), utmp.h, who 

Diagnostics 
getlogin() returns NULL if the login name cannot be determined. 

Notes 
getlogin() stores the returned name in a static area that is destroyed by subsequent calls. 

getoptO- General Function 
Get option letter from argv 
int getopt(argc, argv, optstrlng) 
int argc; 
char ••argv; 
char •optstrlng; 
extern char •optarg; 
extern int optlnd; 

getopt() returns the next option letter in argv that matches a letter in optstrlng. optstrlng is a string 
of recognized option letters. If a letter is followed by a colon, the option must have an argument, 
which may or may not be separated from it by white space. optarg points to the start of the option 
argument on return from getopt(). 

getopt() writes into optlnd the argv index of the next argument to be processed. Because optind is 
external. it is normally initialized to one automatically before the first call to getopt(). 

When all options have been processed (i.e .. up to the first non-option argument), getopt() returns 
EOF. The special option "--" may be used to delimit the end of the options: getopt() returns EOF 
and skip .. __ ... 

See Also 
general functions 

Diagnostics 
getopt() prints an error message and returns a question mark when it encounters an option letter 
not included in optstrlng. 

LEXICON 



704 getopts 

Notes 
It is not obvious how ·-· standing alone should be treated. This version treats it as a non-option 
argument. which is not always right. 

Option arguments are allowed to begin with ·-·. This is reasonable, but reduces the amount of error 
checking possible. 

getopt() returns the parsed letter option in the external int optopt. which is overwritten by each 
call to getopt(). When getopt() returns'?', it can be helpful to examine the contents of this variable. 

®®Jf mi·"'"'E"'·k~·-···~-.---···---... ·--~~~'~ • 
Parse command-line options 
getopts optstrlng name [opt] 

The command getopts is available under the Korn ksh to parse a command's options and check 
their legality. optstrlng must contain the options letters that the command using getopts will 
recognize. If a letter is followed by a colon ':'. that option must have an argument that is separated 
from it by whitespace. 

Each time it is invoked, getopts places the next option into the shell variable name and the index of 
the next argument to be processed into the shell variable OPTIND, which is initialized by default to 
one. When an option requires an argument. getopts copies it into the shell variable OPTARG. If 
getopts encounters an error. it initializes variable name to ? . 

When 1t encounters the end of the options, getopts exits with non-zero status. The special option"­
_ .. can be used to delineate the end of options. 

Example 
The following example processes a command that takes options a, b. and o; the last option requires 
an argument: 

while getopts abo: c 
do 

case $c in 
alb) FLAGS=$FLAGS$c;; 
o) OARG=$0PTARG;; 
\?) echo $USAGE 1>&2 

exit 2;; 
esac 

done 
shift OPTIND-1 

This code will accept any of the following as equivalent: 

cmd -a -b -o "xxx z yy" file 
cmd -a -b -o "xxx z yy" -- file 
cmd -ab -o "xxx z yy" file 
cmd -ab -o "xxx z yy" -- file 

See Also 
commands, getopt(), ksh 

LEXICON 



getpassO - getpwO 705 

getpass() first prints the prompt. Then it disables echoing of input characters on the terminal device 
(either the file /dev/tty or the standard input), reads a password from it, and restores echoing on 
the terminal. It returns the given password. 

Files 
/dev/tty 

See Also 
crypt(), general functions, login, passwd, su 

Notes 
The password is stored in a static location that is overwritten by successive calls. This static buffer 
is 50 characters long; any password longer than that can cause problems of one sort or another. 

getpgrpO - System Call 
Get process group number 
getpgrp() 

getpgrp() gets and returns the process group number for the requesting process. 

See Also 
system calls, setpgrp() 

getpidO - System Call 
Get process identifier 
getpid() 

Every process has a unique number, called its process Id. fork() returns the process id of a created 
child process to the parent process. 

getpid() returns the process id of the requesting process. Typically a process uses getpid() to pass 
its process id to another process which wants to send it a signal. or to generate a unique temporary 
file name. 

Example 
For an example of using this system call in a C program, see signal(). 

See Also 
fork(), kill, mktemp, system calls 

getpwO- General Function 
Search password file 
getpw(uid, line) 
short uid; 
char *line; 

getpw() searches the password file /etc/passwd for the first entry with numerical user id uid. If 
found, line receives the corresponding line from the password file. 

LEXICON 



706 getpwentO 

Files 
/etc/passwd 

See Also 
general functions, getpwent(), getuid(), passwd 

Diagnostics 
getpw() returns a nonzero value on error. 

The COHERENT system has five routines that search the file /etc/passwd, which contains 
information about every user of the system. The returned structure passwd is defined in the header 
file pwd.h. For a description of this structure, see pwd.h. 

getpwent() returns the next entry from /etc/passwd. 

Example 
The following example demonstrates getpwent(), getpwnam(), getpwuid(). setpwent(), and 
endpwent(). 

#include 
#include 

<pwd.h> 
<stdio.h> 

main () 
{ 

int euid, 
ruid; 

struct passwd *pstp; 
int i; 

/* Effective user id */ 
/* Real user id */ 

/* Print out all users and home directories */ 
i = O; 
setpwent(); /*Rewind file /etc/passwd */ 
while ((pstp = getpwent()) !=NULL) 

printf("%d: user name is %s, home directory is %s.\n", 
++i, pstp->pw_name, pstp->pw_dir); 

/* Find real user name. 
* NOTE: functions getpwuid and getpwnam rewind /etc/passwd 
*by calling setpwent(). 
*/ 

ruid = getuid(); 
if ((pstp = getpwuid(ruid)) ==NULL) { 

} else 

/* If this message appears, something's wrong */ 
fprintf(stderr, "Cannot find user with id number %d\n", pstp); 
exit (1); 

printf("User's real name is %s\n", pstp->pw_name); 

LEXICON 



getpwnamO 707 

/* Find the user id for superuser root */ 
( (pstp = getpwnam( "root")) == NULL) ? 

fprintf(stderr, "Do you have user root on your system?\n") 
printf("root id is %d\n", pstp->pw_uid); 

/* Check if the effective process id is the superuser id. 

* 
* NOTE1 if you wish to see how to enable the root 
* privileges, you can run this command: 
* cc pwfun.c 
* su root chown root pwfun 
* su root chmod 4511 pwfun 
*/ 

euid = geteuid(); 
printf("Process "); 

/* Get effective user id. */ 

(euid == pstp->pw_uid)? printf("has ") : printf("doesn't have"); 
printf("the root privileges\n"); 

} 

Files 

exit(O); 

I etc /passwd 
pwd.h 

See Also 
endpwent(), general functions, getpwnam(), getpwuid(), pwd.h, setpwent() 

Diagnostics 
getpwent() returns NULL for any error or on end of file. 

Notes 
All structures and information returned are in static areas internal to getpwent(). Therefore. 
information from a previous call is overwritten by each subsequent call. 

f!W·111i@itl.$9MFl'i''IM'•~""'~~~~"'"'~~ 
Get password file information, by name 
#include <pwd.h> 
struct passwd •getpwnam(uname) 
char *uname; 

The COHERENT system has five routines that search the file /etc/passwd, which contains 
information about every user of the system. The returned structure passwd is defined in the header 
file pwd.h. For a description of this structure, see pwd.h. 

getpwnam() attempts to find the first entry with a name of uname. 

Example 
For an example of this function, see the entry for getpwent(). 

Files 
/etc/passwd 
pwd.h 

LEXICON 



708 getpwuidO - getsO 

See Also 
endpwent(), general functions, getpwent(), getpwuid(), pwd.h, setpwent() 

Diagnostics 
getpwnam() returns NULL for any error or on end of file. 

Notes 
All structures and information returned are in static areas internal to getpwnam(). Therefore. 
information from a previous call is overwritten by each subsequent call. 

W·''"'®•fMMfl'i'"'i'[.1,+!JGii-.~ 
Get password file information, by id 
#include <pwd.h> 
struct passwd •getpwuid(uld) 
int uld; 

The COHERENT system has five routines that search the file /etc/passwd, which contains 
information about every user of the system. The returned structure passwd is defined in the header 
file pwd.h. For more information on this structure, see pwd.h. 

getpwuid() attempts to find the first entry with a numerical user id of uld. 

Example 
For an example of this function, see the entry for getpwent(). 

Files 
I etc/passwd 
pwd.h 

See Also 
endpwent(), general functions, getpwent(), getpwnam(), pwd.h, setpwent() 

Diagnostics 
getpwuid() returns NULL for any error or on end of file. 

Notes 
All structures and information returned are in static areas internal to getpwuid(). Therefore, 
information from a previous call is overwritten by each subsequent call. 

getsO - STDIO Function (libc) 
Read string from standard input 
#include <stdio.h> 
char •gets(b!!{fer) char •buffer; 

gets() reads characters from the standard input into a buffer pointed at by buffer. It stops reading 
as soon as it detects a newline character or EOF. gets() discards the newline or EOF, appends NUL 
onto the string it has built, and returns another copy of buffer. 

Example 
The following example uses gets() to get a string from the console; the string is echoed twice to 
demonstrate what gets() returns. 

LEXICON 



#include <stdio.h> 

main () 
{ 

} 

char buffer[BOJ; 

printf("Type something: "); 

/* 
* because of the way COHERENT's teletype 
* driver works, the following fflush has 
* no effect. It should be included for 
* portability to other operating systems. 
*/ 

fflush(stdout); 
printf("%s\n%s\n", gets(buffer), buffer); 

See Also 
buffer, fgets(), getc(), STDIO 

Diagnostics 

getty 709 

gets() returns NULL if an error occurs or if EOF is seen before any characters are read. 

Notes 
gets() stops reading the input string as soon as it detects a newline character. If a previous input 
routine left a newline character in the standard input buffer, gets() will read it and immediately stop 
accepting characters; to the user. it will appear as if gets() is not working at all. 

For example. if getchar() is followed by gets(), the first character gets() will receive is the newline 
character left behind by getchar(). A simple statement will remedy this: 

while (getchar() != '\n') 

This throws away the newline character left behind by getchar(); gets() will now work correctly. 

getty - System Maintenance 
Terminal initialization 
/etc/getty type 

The initialization process init invokes getty for each terminal indicated in the file /etc/ttys. getty 
tries to read a user name from the terminal which is the standard input, adapting its mode settings 
accordingly. Then getty invokes login with the name read. This process may set delays, mapping 
of upper to lower case, speed, and whether the terminal normally uses carriage return or linefeed to 
terminate input. 

If the terminal baud rate is wrong. the login message printed by getty will appear garbled. If the 
specified type indicates variable speeds, as described below, hitting BREAK will try the next speed. 

init passes the third character in a line of the file /etc/ttys as the type argument to getty. type 
conveys information about the terminal port. An upper-case letter in the range A to S specifies a 
hard-wired baud rate. as indicated in the header file <sgtty.h>. Other characters specify a range of 
speeds suitable to a dial-in modem. The following variable-speed settings are recognized: 

LEXICON 



710 getuidO 

0 Cycles through speeds 300. 1200, 150, and 110 baud. in that order. This is a good default 
setting for dial-in ports. 

Teletype model 33, fixed at 110 baud. 

1 Teletype model 37, fixed at 150 baud. 

2 9600 baud with delays (e.g., Tektronix 4104). 

3 Cycles between 2400, 1200, and 300 baud. This is used with 2400-bps modems. 

4 DECwriter (LA36) with delays. 

5 Like 3, but starts at 300 baud. 

getty recognizes the following fixed-speed settings. for hard-wired terminals: 

A 50baud 
B 75 baud 
C 110 baud 
D 134 baud 
E 150 baud 
F 200 baud 
G 300baud 
H 600baud 
I 1200 baud 
J 1800 baud 
K 2000baud 
L 2400 baud 
M 3600baud 
N 4800 baud 
0 7200 baud 
P 9600 baud 
Q 19200 baud 
R EXT 
S EXT 

Files 
/etc/tty 
<sgtty.h> 

See Also 
lnit, ioctlQ, login, sgtty.h, system maintenance, stty, ttys 

@l1ttilllJ.i'f1§11illl.'W - ~~-. ~"'""aBBBlfill~~'-"~~~'-"~"'WS 
Get real user identifier 
getuid() 

Every process has two different versions of its user Id. called the real user id and the effective user 
id. The user ids determine eligibility to access files or employ system privileges. Normally, these 
two ids are identical. However, for a set user Id load module (see exec()), the real user id is that of 
the user, whereas the effective user id is that of the load module owner. This distinction allows 
system programs to use files which are protected from the user who invokes the program. 

getuid() returns the real user id. 

Example 
For an example of this call, see the entry for getpwent(). 

LEXICON 



getwO - GMT 711 

See Also 
access(), exec, getegid(), geteuid(), getgid(), login, setuid(), system calls 

getw() - STDIO Function (libc) 
Read word from file stream 
#include <stdio.h> 
int getw(fp) FILE *jp; 

getw() reads a word (an int) from the file streamjp. 

getw() differs from getc() in that getw() gets and returns an int, whereas getc() returns either a char 
promoted to an int, or EOF. To detect EOF while using getw(), you must use feof(). 

See Also 
canon, getc(), STDIO 

Notes 
getw() returns EOF on errors. 

getw() assumes that the bytes of the word it receives are in the natural byte ordering of the 
machine. This means that such files might not be portable between machines. 

ntirtZ"lllll~§~~m1!GmE~-IOID@n1m11m1;n1~~~nllmU1!9m.111J~,wrwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrwrnunu~nununu 
Get current working directory name 
char •getwd(pathname) 
char •pathname 

The current working directory is the directory from which file name searches commence when a path 
name does not begin with '/'. getwd() returns the name of the current working directory. It is 
useful for processes like spoolers and daemons. which must generate full path names for files. 

If you do not have permission to search all levels of the directory hierarchy above the current 
directory, getwd() cannot obtain the directory name for you. 

See Also 
chdir(), general functions, pwd 

Diagnostics 
getwd() returns NULL and writes an error message into pathname if an error occurs, e.g., if the 
current directory cannot be found or if any other error occurs. 

Notes 
getwd() fails if the current directory name is longer than MAXPATHLEN characters ( 1,024 characters 
as defined in header file <sys/param.h>). The chunk of memory pointed to by pathname must be 
big enough to hold MAXPATHLEN characters plus a trailing NUL. 

If getwd() fails, the working directory cannot be restored to its initial value. 

~nunu~'nue>,_nu''''nu~~"nu."nu."nu.nu~-nunununuwr.nu~ 
GMT is an abbreviation of Greenwich Mean Time, the time recorded at the Greenwich Observatory 
in England, where by international convention the Earth"s zero meridian is fixed. 

By definition, COHERENT fixes system time in GMT. It calculates local time as an offset of GMT; for 
example, the time zone for Chicago is six hours (360 minutes) behind Greenwich, so the local time 
for Chicago is calculated by subtracting 360 minutes from GMT. 

LEXICON 



112 gmtimeO - goto 

See Also 
definitions, gmtime(), localtime, time, time.h, TIMEZONE 

Notes 
The ANSI Standard replaces GMT with UTC (universe! temps coordonne, or universal coordinated 
time) for C programming. The change is mainly one of terminology rather than substance, as some 
signatories to international conventions object to naming the standard for global time after a village 
in England. 

Under international convention, there are two UTC standards: UTCI is based on solar time and is 
identical to current GMT, whereas UTC2 uses atomic clocks that are corrected by comparison with 
pulsars. These standards drift apart as the earth's rotation slows; thus, "leap seconds" are inserted 
periodically into UTC 1 to bridge the difference. 

gmtimeO - Time Function (libc) •""-"-'"''"'"'''~'W .. ""'""""""~~ lmt."-"'~~ 
Convert system time to calendar structure 
#include <time.h> 
#include <sys/ types.h> 
tm •gmtime(tlmep) time_t •ttmep; 

gmtime() converts the internal time from seconds since midnight January I. 1970 GMT. into fields 
that give integer years since 1900, the month, day of the month. the hour, the minute, the second, 
the day of the week, and yearday. It returns a pointer to the structure tm. which defines these 
fields. and which is itself defined in the header file time.h. Unlike its cousin, localtime(), gmtime() 
returns Greenwich Mean Time (GMT). 

Example 
For an example of how to use this function. see asctime(). 

See Also 
GMT, localtime(), time, TIMEZONE 

Notes 
gmtime() returns a pointer to a statically allocated data area that is overwritten by successive calls. 

~""""''"'"'''""'"'~"'"'"'"'"'"'"'"'"'"~"""'~~'"'"'""-. Unconditionally jump within a function 

A goto command jumps to the area of the program introduced by a label. A program can goto only 
within a function; to jump across function boundaries, you must use the functions setjmp and 
longjmp. 

In the context of C programming, the most common use for goto is to exit from a control block or go 
to the top of a control block. It is used most often to write "ripcord" routines, i.e., routines that are 
executed when an major error occurs too deeply within a function for the program to disentangle 
itself correctly. Note that in most instances, goto is a bad solution to a problem that can be better 
solved by structured programming. 

Example 
The following example demonstrates how to use goto. 

#include <stdio.h> 

main () 
{ 

char line[BOJ; 

LEXICON 



getline1 
printf("Enter line1 "); 
fflush(stdout); 
gets ( line) ; 

/* a series of tests often is best done with goto's */ 
if (*line== 'x') { 

printf ("Bad line\n"); 
goto getline; 

} else if (*line== 'y') { 
printf ("Try again \n") ; 
goto getline; 

} else if (*line == 'q') 
goto goodbye; 

else 
goto get line; 

goodbye: 

} 

printf ("Goodbye. \n") ; 
exit(O); 

See Also 
Ckeywords 

Notes 
The C Programming Language describes goto as "infinitely-abusable": caveat utilitor. 

grep 713 

~~ -.'~""''""'''~""'""~~ .._,""~"''"'~""'"~"'~ 
Pattern search 
grep [option ... ] (pattern] [file ... ] 

grep searches eachflle for occurrences of the pattern (sometimes called a regular expression). If no 
file is specified, grep searches the standard input. The pattern is given in the same manner as to 
ed. Normally, grep prints each line matching the pattern. 

The following options are available. 

-b With each output line. print the block number in which the line started (used to search file 
systems). 

-c Print the count of matching lines rather than the lines. 

-e The next argument is pattern (useful ifthe pattern starts with·-·). 

-f The next argument is a file containing a list of patterns separated by newlines; there is no 
pattern argument. 

-h When more than oneflle is specified, output lines are normally accompanied by the file name; 
-h suppresses this. 

-1 Print the name of each file containing matching lines rather than the lines. 

LEXICON 



714 group 

-n The line number in the file accompanies each line printed. 

-s Suppress all output, just return status. 

-v Print a line if the pattern is not found in the line. 

-x Print the line only if it is exactly the same as the pattern; treat wildcards in the pattern as 
plain text. 

-y Lower-case letters in the pattern match lower-case and upper-case letters on the input lines. 

See Also 
awk, cgrep, commands, ed, egrep, expr, lex, sed 

Diagnostics 
grep returns an exit status of zero for success, one for no matches, two for error. 

Notes 
cgrep is a version of grep that is optimized for handling C-style expressions. 

egrep is an extended and faster version of grep. 

~~~"''~~'''""''''""'"~~~~ Group file format 

The group file /etc/group describes the user groups that have been defined on your COHERENT
system. This allows users to control the access that members of their group have to certain files.
/etc/group contains the information to map any ASCII group name to the corresponding numerical
group identifier, and vice versa. It also contains, in ASCII, the names of the members of each group.
This information is used by, among others, the command newgrp.

Each group has an entry in the file I etc/ group one line per entry. Each line consists of four colon­
separated ASCII fields, as follows:

group_name: password: group_number: member[,member ...]

Passwords are encrypted with crypt, so the group file is generally readable.

The COHERENT system has five system calls that manipulate I etc/ group, as follows:

endgrent Close /etc/group.

getgrent Return the next entry from /etc/group.

getgrnam Return the first entry with a given group name.

getgrgid Return the first entry with a given group identifier.

setgrent Rewind /etc/group, so that searches can begin again from the beginning of the file.

The calls getgrent, getgrid, and getgrnam each return a pointer to structure group, which is
defined in the header file grp.h as follows:

struct group {
char *gr_name; /* Group name */
char *gr_passwd; /* Group password */
int gr_gid; /* Numeric group id */
char **gr_mem; /* Group members */

} ;

LEXICON

Files
/etc/group

See Also

grp.h - guess 715

chgrp(), crypt(), endgrent(), file formats, getgrent(), getgrgid(), getgmam(), grp.h, newgrp,
passwd, setgrend()

Notes
At present the group password field cannot be set directly (no command similar to passwd exists for
groups). One alternative is to set the password in the /etc/passwd file for a user with the passwd
command, and then transcribe the password into the group file manually.

grp.h - Header File -.~,eac~,eac~,~~''''~"-'eac'eaceac~'eac'eaceac eac
Declare group structure
#include <grp.h>

The header file grp.h declares the structure group, which is composed as follows:

struct group (
char *gr_name; /* group name */
char *gr_passwd; /* group password */
int gr_gid; /* numeric group id */
char **gr_mem; /* group members */

} ;

This structure holds information about the group to which a given user belongs. It is used by the
functions endgrent, getgrent, getgrgid, getgmam, and setgrent.

See Also
header files

gttyO - General Function (libc)
Device-dependent control
#include <sgtty.h>
int gtty(f d, sgp)
intfd;
struct sgttyb •sgp:

gtty() gets attributes of a terminal. It is shorthand notation for ioctl calls with a command
argument of TIOCGETP.

Example
For examples of this system call. see pipe() and stty().

Files
<sgtty.h>

See Also
exec, exec(), general functions, ioctl(), open(), read(), stty(), write()

~'''"'~'~~''eaceaceac~~~~~~-._~,,eac"-~~~­
Extraordinarily amusing guessing game
/usr/games/guess

The COHERENT game guess plays a guessing game with you. When you first invoke it, it will ask
you to think of an object. As you go through the guessing game. it will ask you for questions by

LEXICON

716 guess

which that object can be distinguished from other objects. guess gets "smarter" over time
(assuming you don't lie to it), so it over time develops a fighting chance of actually guessing
something.

See Also
commands

Notes
guess is not for the impatient.

LEXICON

hard disk 717

hard disk- Technical Information ~'~'~''~~~,.._~,,.._~'~'''~~''
The hard disk is the primary means of storing and accessing data under the COHERENT system.
This article introduces some aspects of the COHERENT system that affect the care and feeding of
your hard disk.

Device Drivers
The COHERENT system comes with two sets of drivers for hard disks: the at drivers, for AT-style
hard disks; and the scsi drivers, for the SCSI family of hard disks. See their respective articles in
the Lexicon for details.

Partitioning
The COHERENT command fdisk displays information about how your hard disk is currently
configured. You can also use it to repartition your hard disk and reassign partitions from MS-DOS
to COHERENT, or vice versa.

Note that this is an extremely powerful command. with which you can create much mayhem on
your system. Like any powerful tool. it should be treated carefully and with respect. See the article
on fdisk in the Lexicon for details on how to use this command.

Partitioning your hard drive can be an uncomplicated procedure. We offer these guidelines in an
effort to make it as simple as possible. Before attempting any partitioning you should first back-up
all the data currently on your hard drive. If you do not do this you risk losing data permanently.
You should also know the correct physical parameters of your hard drive. This information can be
obtained from your machine documentation or from the drive manufacturer. It is best not to rely on
the parameters given in the BIOS: these may be translation parameters.

If your drive is formatted for MS-DOS, it is advisable to run MS-DOS fdisk before you start to install
COHERENT. If the whole drive is taken up by DOS partitions, you must use MS-DOS fdisk to
create a non-DOS area on the drive. It is not sufficient to have an empty MS-DOS logical drive set
aside for COHERENT. COHERENT does not recognise MS-DOS logical drives, it only sees the whole
partition. The following diagram shows the way the MS-DOS fdisk sees your drive:

LEXICON

718 hard disk

I DOS Root Partition I
!=========================!
I DOS Extended Partition I

Logical Drive 1

Logical Drive 2

Logical Drive 3

And the following diagram shows the way the COHERENT fdisk sees your drive:

I DOS Root Partition I
!=========================!
I I
I I
I DOS Extended Partition I
I I
I I

If you use COHERENT fdisk to repartition MS-DOS space. you risk causing MS-DOS fdisk to hang.
One further word of warning. If you have an automated disk formatting and partitioning utility on
your MS-DOS partition such as Disk Manager or Speedstor, you should operate it in "manual"
mode, not in "automatic".

Some hard drives have more than 1,024 cylinders. COHERENT can only recognise a drive up to this
limit. You may have a utility such as Speedstor that allows you to place MS-DOS partitions beyond
that boundary. COHERENT will not see those partitions. but you can still access them as usual
through MS-DOS.

When partitioning a drive with more than 1.024 cylinders. be sure to run the partitioning utility
before you start to install COHERENT. You should create a non-DOS partition that falls completely
within the 1.022-cylinder boundary. Your next MS-DOS partition should start no sooner than the
I.026th cylinder.

Adding a COHERENT Partition
The following describes how to add a new COHERENT partition on your hard disk.

During your initial installation of COHERENT, the installation program handled the details of
preparing your hard disk for COHERENT. Adding a partition after the system is installed is not
difficult, but it requires that you understand the operation of the following commands: badscan.
chmod, chown. fdisk. fsck. mkfs and mount. See the Lexicon articles for each of these commands
for further information before attempting to add a partition.

LEXICON

hard disk 719

In general, the following steps are required when creating a partition for use by COHERENT. Please
note that you must not change the size of your existing root partition, or you may no longer be able
to boot COHERENT from the hard disk.

1. Completely back up all partitions on your hard disk. Be sure to back up the COHERENT
partitions, as well as any non-COHERENT partitions (e.g .• those for MS-DOS or OS/2). Verify
that your backups are readable and correct.

2. Log in as the superuser root. Make sure all other users are off the system; then invoke the
command /etc/shutdown. This shuts down COHERENT and returns the system to single-user
mode. Type the command sync to flush all buffers.

3. Invoke the COHERENT command fdisk and add the COHERENT partition to your disk, as
described above. Be sure to write down the device name associated with your new partition
(e.g .• /dev/atOc) and its size.

4. The command badscan checks the device for bad blocks. If your partition resides on a non­
SCSI device (e.g .• MFM. RLL. ESDI. or IDE), run the command badscan as follows:

/etc/badscan -v -o /conf/proto.device raw_device xdevice

where device specifies the four-character block-special device name for the partition (e.g .• atOc).
raw device is the full device path name for the character-special device associated with the
partition (e.g .. /dev/ratOc), and xdevice specifies the partition-table device for the disk drive
(e.g .. /dev/atOx).

5. Invoke the command mkfs to create a COHERENT file system on the new partition, as follows:

/etc/mkfs /dev/device /conf/proto.devlce

This invocation will cause mkfs to use the contents of the "proto" file that badscan created
when it built the bad_block list for the new partition.

6. If need be, use command mkdir to create a directory to use as a mount point for the newly
created file system. The mount point is the directory onto which this directory's file system will
be appended. Usually. this .directory is located under '/', also called the root directory. You
can, however, mount a file system onto any directory that already exists. If you create a new
directory (e.g .• /w or /.mydir), use the commands chown and chmod to set an appropriate
ownership and mode for for the directory.

7. Edit the file /etc/ mount.all and add a line of the following form:

/etc/mount device /mount_polnt

where device is the full path name of the device that specifies your new partition (e.g .•
I dev I atOc), and mount_point is the name of the directory that you created in the earlier step.

8. Finally. edit the file /.etc/checklist and add the character special device name (e.g ..
/dev/ratOc) of the new COHERENT partition to it. This will ensure that COHERENT will
automatically run fsck on that partition's file system whenever you boot the system. This can
be vital in recovering from a system crash.

Adding Another Hard Disk
If you wish to add another hard disk to your system, you may have to run some low-level routines
that are hardware specific. See the documentation that accompanies your hardware for details.

In brief, when you install the hard disk. you must partition it, as you did your original hard disk
when you first installed COHERENT. If you wish to add non-COHERENT operating systems to one
or more partitions, do so first; then add COHERENT to the remaining partitions. as described above.

LEXICON

720 hash - head

Changing the Size of the Root Partition
Changing the size of your root file system requires that you reinstall COHERENT. It is strongly
advised that you back up all partitions of your system before you attempt to do this. In addition, to
reduce the time involved in restoring your data files, make an additional backup of all directories
and files that have changed form your original MWC installation. The command find will help you
locate all such files; see its Lexicon entry for details.

You should then follow the directions given in the release notes for installing COHERENT. Note that
when you attempt to install COHERENT over an existing COHERENT partition, COHERENT will ask
you if you are sure you know what you're doing before the installation procedure creates a new file
system on the partition. Be sure to request that a new file system be created, or the installation will
fail.

After installing the COHERENT distribution onto your new root partition, restore any data files and
directories from the second set of backups that you performed.

See Also
at, badscan, chmod, chown, fdisk, fsck, technical information, mkfs, mount, scsi

~'~ - ''~---m@·~·~~~~·''"'""'~'"'~
Add a command to the shell's hash table
hash [-r] [command ...)

The command hash lets you manipulate the Korn shell's hashing facility. A hashed command can
be accessed instantly by the shell, without the delay of searching the directories in the PATH
environmental variable.

When called with an argument, hash prints all hashed commands. When called with one or more
command arguments, it adds command to its hash table. The option -r removes command from the
hash table.

Note that before you can use hashing, you must use the set command to turn it on. For more
information on the Korn shell's hashing feature, see the Lexicon entry for ksh.

See Also
commands,ksh

Utt®itl!·•l'IMl·D·~r:tllii!D!I•••••••~~~,~-----~- .._,~'""'' -
Control hard-disk 1/0
#include <sys/hdioctl.h>

hdioctl.h declares constants and structures used to control hard-disk 1/0.

See Also
header files

head - Command '"''""'~~ .._.,,_~--~"'-"'---~~,~~""'~- """''~""'~
Print the beginning of a file
head [+n[bcl]J [file]
head [-n[bcl]J [file]

head copies the first part ofjlle, or of the standard input if none is named, to the standard output.

The given number tells head where to begin to copy the data. Numbers of the form +number
measure the starting point from the beginning of the file; those of the form -number measure from
the end of the file.

LEXICON

header files 721

A specifier of blocks, characters, or lines (b. c, or l, respectively) may follow the number: the default
is lines. If no number is specified, a default of +4 is assumed.

See Also
commands, dd, egrep, sed, tail

Notes
Because head buffers data measured from the end of the file, large counts may not work.

A header e is a file of C code that contains definitions, declarations, and structures commonly
used in a given situation. By tradition, a header file always has the sufllx ".h". Header files are
invoked within a C program by the command #Include, which is read by cpp, the C preprocessor:
for this reason, they are also called "include files".

Header files are one of the most useful tools available to a C programmer. They allow you to put
into one place all of the information that the different modules of your program share. Proper use of
header files will make your programs easier to maintain and to port to other environments.

COHERENT includes the following header files:

access.h.
acct.h
actlon.h ..
sys/ alloc.h
ar.h ...
ascll.h ..
assert.h .
sys/buf.h
canon.h .
sys/chars.h.
coff.h
sys/con.h ..
sys/const.h.
ctype.h
curses.h .. .
sys/deftty.h.
sys/dlr.h .. .
dlrent.h .. .
dumptape.h.
ebcdlc.h ..
errno.h ...
sys/fblk.h .
sys/fcntl.h
sys/fd.h ..
sys/fdloctl.h
sys/fdlsk.h .
sys/ftlsys.h .
fperr.h
grp.h
sys/hdloctl.h.
sys/lno.h ...
sys/lnode.h ..
sys/lo.h .
sys/lpc.h ... ·.

. Check accessibility

. Format for process-accountingfile

. Describe parsing action and goto tables
Define the allocator

. Format for archive files

. Define non-printable ASCII characters

. Define assert()

. Buffer header

. Portable layout of binary data

. Character definitions

. Format for COHERENT 386 objects

. Configure device drivers

. Declare machine-dependent constants

. Header file for data tests

. Declare/define curses routines

. Default tty settings

. Directory format

. Define constant dlrent

. Define data structures for dump tapes

. Define constants for non-printable EBCDIC characters

. Error numbers used by errno()

. Define disk-free block

. Manifest constants for file-handling functions"

. Declare file-descriptor structure

. Control floppy-disk 1/0

. Fixed-disk constants and structures

. Structures and constants for super block

. Constants used with floating-point exception codes

. Declare group structure

. Control hard-disk 1/0

. Constants and structures for i-nodes

. Constants and structures for memory-resident i-nodes

. Constants and structures used by 1/0

. Declarations for process communications

LEXICON

722 header files

l.out.h
limits.h .. .
sys /lpioctl.h
sys/machine.h . .
sys/malloc.h .
math.h
sys/mdata.h
mnttab.h .. .
mon.h
sys/mount.h
mprec.h ..
sys/msg.h ..
sys/msig.h .
mtab.h
sys/mtioctl.h.
mtype.h .. .
n.out.h
ncurses.h ..
sys/param.h
path.h ...
sys/poll.h ..
sys/proc.h . .
pwd.h
sys/sched.h.
sys/seg.h .
sys/sem.h.
setjmp.h ..
sgtty.h . ..
sys/shm.h.
signal.h ..
sys/stat.h.
stdarg.h
stddef.h
stdio.h.
stdlib.h.
sys/stream.h .
string.h .. .
termio.h .. .
time.h
sys/timeb.h.
timef.h
sys/timeout.h
sys/times.h.
sys/tty.h . ..
sys/types.h .
sys/uproc.h.
utmp.h
sys /utsname.h .

See Also

. Format for COHERENT 286 objects

. Define numerical limits

. Definitions for line-printer 1/0 control

. Machine-dependent definitions

. Definitions for memory-allocation functions

. Declare mathematics functions

. Define machine-specific magic numbers

. Structure for mount table

. Read profile output files

. Define the mount table

. Multiple-precision arithmetic

. Definitions for message facility

. Machine-dependent signals

. Currently mounted file systems

. Magnetic-tape 1/0 control

. List processor code numbers

. Define n.out file structure

. Declare/define ncurses routines

. Define machine-specific parameters

. Defme I declare constants and functions used with path

. Define structures/constants used with polling devices

. Define structures/constants used with processes

. Declare password structure

. Define constants used with scheduling

. Definitions used with segmentation

. Defmitions used by semaphore facility

. Define setjmp() and longjmp()

. Definitions used to control terminal 1/0

. Defmitions used with shared memory

. Declare signals

. Defmitions and declarations used to obtain file status

. Declare/define routines for variable arguments

. Declare I define standard defmitions

. Declarations and defmitions for 1/0

. Declare I define general functions

. Definitions for message facility"

. Declare string functions

. Definitions used with terminal input and output

. Give time-description structure

. Declare timeb structure

. Definitions for user-level timed functions

. Define the timer queue

. Definitions used with times() system call

. Define flags used with tty processing

. Declare system-specific data types

. Definitions used with user processes

. Login accounting information

. Define utsname structure

#include, C language, portability

LEXICON

r&mm•·11rii16"t.I
Print concise description of command
help command

help-hp 723

help prints a concise description of the options available for each specifed command. If the
command is omitted, help prints a simple description of itself, followed by information about the
command given by $LASTERROR, which is the last command returning a nonzero exit status.

help provides more information than the usage message printed by a command, but less than the
detailed description gtven by the man command. The primary purpose of help is to refresh your
memory if you have forgotten an option to command.

help looks in /etc/help:tlle for system information and the file named in environmental variable
$HELP for user-specific information. Information about a command begins with a line

#command

and ends with the next line beginning with'#' in /etc/helpflle or $HELP. help constructs the index
file /etc/helplndex to make subsequent searches of /etc/help:tlle faster.

Files
/etc/helpfile-Additional system information
/etc/helpindex- Index for helpfile
$HELP - User information
$LASTERROR - Default command help

See Also
commands, man

BllaM!i•m11M•lm•MI
User's home directory
HOME=home directory

The environmental variable HOME name's the user's home directory. Some commands use this
name by default if they require the name of a directory and none is supplied. For example, if you
type the change directory command cd without an argument, it will change the current directory to
the one named by the HOME.

See Also
environmental variables

-~·m"'6"'·' Prepare lles for Hewlett-Packard LaserJet printer
hp [-acflr I [-imarg I [-ttop I [-plines I [file ... I

The command hp translates nroff font specifications into the correct escape sequences for an HP
LaserJet compatible printer. It also allows the user to set indentation, page length, landscape mode,
and so on. Because some LaserJet printers stack pages in reverse order as they are printed, hp can
put pages out in reverse order.

hp recognizes the following options:

-f

-imarg

Print pages in the normal order. This is the default.

Set the page indentation to marg.

LEXICON

724 hpd-hpr

-1 Print pages in landscape mode.

-pltnes Set the page length to lines.

-r

-ttop

Example

Print pages in reverse order (for LaserJet 1).

Set the top margin to top.

To generate listings of all C programs in the current directory, enter the command

pr *,c I hp I hpr -B

See Also
commands, hpd, printer

r&1m§!AhHMG1@•6"'9·
Hewlett-Packard LaserJet printer spooler daemon
/usr/lib/hpd

hpd is a daemon program that runs in the background and prints listings queued by the hpr
command. hpd is run automatically by hpr. If there is no printing to do, or if another daemon is
already running (indicated by the dpid file), hpd exits immediately. Otherwise, it searches the spool
directory for control files of listings to print. These control files contain the names of files to print,
the user name, banner pages, and files to be removed upon completion.

hpd does not print listings in any particular order. There is no prioritization of printing, either by
size or by requester.

Files
I dev I rhp - Raw device for LaserJet printer
/usr/spool/hpd- Spool directory
/usr/spool/hpd/cf"- Control files
/usr/spool/hpd/df"- Data files
/usr/spool/hpd/dpid- Lock and process id

See Also
hpr, hpsldp, init, lpd, printer, system maintenance

mmi•nm.ijhi·'
Send file to Hewlett-Packard LaserJet printer spooler
hpr [-Bcemnr) [-b banner) [-fjontnum] [file ...]

hpr lets you print each specified.file on the Hewlett-Packard LaserJet printer, without conflicting
with printing by other users. If no .file is specified, hpr prints the standard input on the LaserJet
printer.

hpr recognizes the following options:

-B Suppress printing of a banner page. Note that hpr outputs its banner in plain text;
therefore, if you have a Postscript printer, you must use this option. If you do not, your
printer will hang.

-b The next argument is the banner.

-c Copy the files (allowing changes to be made before the printing completes).

-e Erase all "soft fonts" from the printer's memory.

LEXICON

hpskip - hs 725

-fjontnumjllel ... flleN
Load the Hewlett-Packard "soft fonts" stored in filesfllel throughjlleN into the printer"s
memory; set the font identifiers to begin atfontnum.

-m Send a message when the printing completes.

-n Do not send a message (default).

-r Remove the files when they have been spooled.

hpskip terminates or restarts the current listing. hp converts nroff output into forms usable by the
LaserJet; it is also used to describe the format of the printing.

Examples
To print the file foo on the LaserJet, type:

hpr -B f oo

The following example loads the soft fonts in files foo, bar, and baz into the printer's memory, and
sets their font identifiers to begin at 15:

hpr -f 15 foo bar baz

Files
/dev/rhp- Raw device for LaserJet printer
/usr/lib/hpd- Line-printer daemon for LaserJet printer
/usr/spool/hpd- Spool directory for LaserJet printer
/usr/spool/hpd/dpid- Daemon lockfile

See Also
commands, hp, hpd, hpskip, lpr, pr, printer

WW.V·•+J•mH@n•'
Abort/restart current listing on Hewlett-Packard LaserJet
hpskip [-r]

hpskip gives some control over printing with the LaserJet printer spooler. When invoked without
the -r option, hpskip terminates the current listing with a message. When invoked with the -r
option, hpskip restarts the current listing.

hpr spools files to the LaserJet printer.

Files
/usr/lib/hpd- LaserJet printer daemon
/usr/spool/hpd- Spool directory
/usr/spool/hpd/dpid- Daemon lockfile

See Also
commands, hpd, hpr, lpskip, pr

The COHERENT-286 driver hs adds support for up to eight serial lines: /dev/hsOO through
/dev/hs07. Serial lines controlled via hs can be opened into either of two ways, as follows:

/dev/hs??
Polled, local mode (no modem control).

LEXICON

726 hs

/dev/hs??r
Polled, remote mode (modem control).

Any port used with hs will be polled, i.e., interrupt operation is not used. Please refer to the Lexicon
article com for explanations of "local" vs "remote" and "polled" vs "interrupt-driven".

To use hs, first configure it to match your equipment (see below). then load the driver using the
following command while running as the superuser root:

/etc/drvld -r /drv/hs

To unload the driver without rebooting COHERENT. first use the ps command with the -d option to
get the process identifier for hs process, then unload the driver process by using the kill command.
Note that the hs driver process will not unload until all opened ports have been closed. For example
(user input shown in bold):

$ ps-d
TTY PIO

$ kill kill 38

O <idle>
38 <hs>

The present version of COHERENT limits "polled" operation to one device driver at a time.
Therefore. if any of the com family of devices is used in polled mode, hs devices cannot be used.
Conversely. I dev I comlpl through I dev /com4pl and I dev /comlpr through I dev I com4pr cannot
be used if the hs driver is in use. Both drivers can be present at the same time, but polled devices
may not be open under both drivers at the same time. Note that enabling a port via /etc/enable
keeps it open continuously.

Port Configuration
The default configuration for the hs driver is for four ports, at hexadecimal addresses Ox3F8, Ox2F8.
Ox3E8. and Ox2E8. at a speed of 9600 baud. The driver is configured by setting the following
parameters:

1. The number of ports.

2. The 1/0 address for each port.

3. The default speed of each port.

All steps in the configuration must be done as the superuser root. Patch the number of ports into
driver variable HSNUM. For example. if you wish to support three ports, enter:

/conf/patch /drv/hs HSNUM_=3

Address and speed information are stored sequentially starting at variable HS_PORTS_. The speed
for each port is indicated by the corresponding value found in <sgtty .h>. from one. corresponding to
50 baud, to 16, corresponding to 9600 baud. If the three ports in the example above are at
hexadecimal adresses of Ox2AO. Ox2BO. and Ox2CO, with speeds of 2400, 2400, and 9600 baud,
respectively. then the following three patches must be performed:

/conf/patch /drv/hs HS_PORTS_=Ox2AO HS_PORTS_+2=12
/conf/patch /drv/hs HS_PORTS_+4=0x2BO HS_PORTS_+6=12
/conf/patch /drv/hs HS_PORTS_+8=0x2CO HS_PORTS_+10=16

Finally, nodes must be created for each port using the mknod command. The major device number
is 7; the minor number will range from 0 through 7 for ports /dev/hsOO through /dev/hs07,
respectively. with 128 added to the device minor number if modem control is desired. The following

LEXICON

hypotO 121

commands will make nodes in /dev for local and remote versions of the three ports in the example:

/etc/mknod -f /dev/hsOO c 7 0
/etc/mknod -f /dev/hsOl c 7 1
/etc/mknod -f /dev/hs02 c 7 2
/etc/mknod -f /dev/hsOOr c 7 128
/etc/mknod -f /dev/hsOlr c 7 129
/etc/mknod -f /dev/hs02r c 7 130

See Also
com, device drivers, drvld

Diagnostics
An attempt to open a non-existent device will generate error messages. This can occur if hardware
is absent or not turned on.

Notes
hs is used only under COHERENT 286. To access serial devices under COHERENT 386, use the
driver asy, which is described in its own Lexicon entry.

Note that if any com device driver is used in polling mode, you cannot use hs, and vice versa.

wU lll®i@11fo!tljll@j[•nlin®l
Compute hypotenuse of right triangle
#include <math.h>
double hypot(x, y) double x, y;

hypot() computes the hypotenuse, or distance from the origin, of its arguments x and y. The result
is the square root of the sum of the squares of x and y.

Example
For an example of this function, see the entry for acos().

See Also
cabs(), mathematics library

LEXICON

728 i-node - icheck

~~
COHERENT system file identifier

Each file on a COHERENT file system is identified by a unique number, called an I-node number or 1-
number. Each i-node contains information about a file: its mode, link count, user identifier, group
identifier, size, location on the file system, access time, modify time, and creation time.

The user refers to a file by a file name, stored in a directory; the directory entry identifies the file by
its i-node number. A device and i-node number together uniquely specify a file. The headers ino.h
and i-node.h define, respectively, disk i-nodes and memory i-nodes.

See Also
definitions

Mtlli·Ji.luGlii·~ ."'~"~•••••••11•~~11lW ~''''""''~"'""'""""'""'-""
i-node consistency check
icheck [-s] [-b N ...] [-v].ftlesystem ...

Each block in a file system must be either free (i.e., in the free list) or allocated (i.e., associated with
exactly one i-node). icheck examines each specified.ftlesystem, printing block numbers that are
claimed by more than one i-node, or claimed by both an i-node and the free list. It also checks for
blocks that appear more than once in the block list of an i-node or in the free list.

The option -v (verbose) causes icheck to print a summary of block usage in the .ftlesystem. The
option -s causes icheck to ignore the free list, to note which blocks are claimed by i-nodes, and to
rebuild the free list with the remainder. A list of block numbers may be submitted with the -b flag;
icheck prints the data structure associated with each block as the file system is scanned.

The raw device should be used, and the.ftlesystem should be unmounted if possible. If this is not
possible (e.g., on the root file system) and the -s option is used, the system must be rebooted
immediately to expunge the obsolete superblock.

The exit status bits for a bad return are as follows:

OxOI
Ox02
Ox04
Ox08
Ox IO
Ox20

Miscellaneous error (e.g. out of space)
Too hard to fix without human intervention
Bad free block
Missing blocks
Duplicates in free list
Bad block in free list

See Also
clrl,co111111ands,dcheck,fsck,ncheck,sync,untount

LEXICON

ieee_dO - if 729

Diagnostics
The message "dups in free" indicates a block is in the free list more than once. "bad freelist"
indicates the presence of bad blocks on the free list. A "bad" block is one that lies outside the
bounds of the file system. A "dup" (duplicated) block is one associated with the free list and an i­
node, or with more than one i-node. All the errors above must be corrected before the file system is
mounted. "bad ifree" means allocated i-nodes are on the free i-node list; this is inconsequential.

This command has largely been replaced by fsck.

lw•nll!f§t@il'ii!iA!t1M11••11111111111•••111111111111111111111111111111111mmmm••••••••­
convert a double from DECVAX to IEEE format
int
ieee_d(ldp, ddp)
double •tdp, •ddp;

ieee_d() converts a double from DECVAX format to IEEE format. ddp points to a DECVAX-format
double to convert. ldp points to a destination for the converted IEEE value. ldp may be identical to
ddp for in-place conversion. The DECVAX significand is truncated, not rounded.

ieee_d() always returns zero, because the conversion always succeeds.

For a description of the IEEE and DECVAX formats for floating-point numbers, see the Lexicon
article for noat.

See Also
decvax_d(), decvax_f(), noat, general functions, ieee_f()

rgt1•@"Md"i!l•AM•••••••11111111111•••11111111111•••••111111111111111111111111111111111••11111111111•••11•
Convert a float from DECVAX to IEEE format
int
ieee_f(ifp, dfp)
noat •ifp. •dfp:

ieee_f() converts a noat from DECVAX format to IEEE format. dfp points to a DECVAX-format noat
to convert. ifp points to a destination for the converted IEEE value. ifp may be identical to dfp for
in-place conversion. The DECVAX significand is truncated. not rounded.

ieee_f() always returns zero. because the conversion always succeeds.

For a description of the IEEE and DECVAX formats for floating-point numbers. see the Lexicon
article for noat.

See Also
decvax_d(), decvax_f(), noat, general functions, ieee_d()

.ri.lu!Hf!IH
Execute a command conditionally
if sequencel then sequence2 [ellf sequence3 then sequence4] ••. [else sequence5] fl

The shell construct if executes commands conditionally, depending on the exit status of the
execution of other commands.

First, if executes the commands in sequence 1. If the exit status is zero, it executes the commands in
sequence2 and terminates. Otherwise, it executes the optional sequence3 if given, and executes
sequence4 if the exit status is zero. It executes additional ellf clauses similarly. If the exit status of
each tested command sequence is nonzero, it executes the optional else part sequence5.

Because the shell recognizes a reserved word only as the unquoted first word of a command, each

LEXICON

730 if - indexO

then. ellf. else, and fl must either occur unquoted at the start of a line or be preceded by';'.

The shell executes If directly.

Example
For an example of this command, see the entry for trap.

See Also
commands, ksh, sh, test

•'*'M·li" Introduce a conditional statement

If is a C keyword that introduces a conditional statement. For example.

if (i==lO)
dosomething();

will dosomething only if i equals ten.

If statements can be used with the statements else If and else to create a chain of conditional
statements. Such a chain can include any number of else If statements, but only one else
statement.

See Also
c keywords, else

rDl#•@(.]1!11@.!Ml'k!lff!Q'
Characters recognized as white space

The environmental variable IFS lists the characters that the shell recognizes as white space.

See Also
environmental variables, ksh, sh

WflftD ll§ii!U.'i!l.Al!.]fl
Find a character in a string
char •index(string, c) char •string: char c:

index() scans the given string for the first occurrence of the character c. If c is found, index() returns
a pointer to it. If it is not found, index() returns NULL.

Note that having index() search for a NUL character will always produce a pointer to the end of a
string. For example.

char *string;
assert(index(string, O)==string+strlen(string));

will never fail.

Example
For an example of this function. see the entry for stmcpy().

See Also
pnmatch(), rindex(), string fUnctions

Notes
This function is identical to the function strchr(), which is described in the ANSI standard.
COHERENT includes strchr() in its libraries. It is recommended that it be used instead of index()

LEXICON

infocmp - init 731

so that programs more closely approach strict conformity with the ANSI standard.

rnn,u.n. •~Hl·m"~"~"1&11.n1.0•1m------------------------------!lll De-compile a terminfo file
infocmp Iflle . . . I

infocmp rea:ds a set of compiled terminal information, and decodes its contents. It does its best to
recreate the terminfo source from which the set of information had been compiled .

.file must hold compiled terminfo information. If no .file is named on the command line, infocmp
reads the standard input.

In case of emergency, the output of infocmp can be piped to the terminfo compiler tic.

See Also
commands, term, tic, terminfo

Notes
infocomp was written by Pavel Curtis of Cornell University. It was ported to COHERENT by Udo
Munk, with additional changes by Mark Williams Company.

terminfo and its related programs are used only under COHERENT 386.

rmll®M•HGM@"i·'
System initialization
/etc/init

The COHERENT boot procedure executes init as process 1 to perform initialization. init opens the
console terminal /dev/console and invokes the shell script /etc/brc if it exists. If it does not, init
invokes a shell sh on it with HOME set to /etc. The shell executes /etc/profile and /etc/ .profile if
present. The system then runs in single-user mode and accepts commands from the console.

When the console terminates the shell, normally by typing <ctrl-D>, init brings up the system in
multiuser mode. It executes the shell command file /etc/re, which performs standard bookkeeping
and maintenance chores. Typically it mounts standard file systems, removes temporary files, and
invokes cron and update. If desired, it may load device drivers, enable swapping with swap, and
enable process accounting with accton.

Next, init opens terminals as specified in the file /etc/ttys. It invokes getty to read a user name
and perform a login on each terminal._

When a user shell terminates, init updates the system accounting information in /etc/utmp and
/usr/adm/wtmp. Then it reopens the appropriate terminal and invokes getty, as above.

init rescans the file /etc/ttys for terminal changes if it receives the signal SIGQUIT. The command
kill quit 1 sends SIGQUIT to the init process. init then invokes getty as necessary.

init returns the system to single user mode if it receives the signal SIGHUP. The command kill -1 1
sends SIGHUP to the init process.

Files
I dev I console - Console terminal
/dev/tty?'? -Terminal devices
/etc/brc- Boot command file
/etc/re - initialization command file
/etc/ttys-Active terminals
/etc/utmp- Logged in users
/usr I adm/wtmp - Login accounting data
/usr/spool/uucp/LCK •• •-Terminal locks

LEXICON

732 initialization

See Also
getty, kill, login, sh, system maintenance, ttys

tlitlltQUJU*tilll~·lf11·Diotilml'l~llil'j..111~1111111111111111111~111~111111111111~111•
The term tnltlallzatton refers to setting a variable to its first, or initial, value.

Rules of Initialization
Initializers follow the same rules for type and conversion as do assignment statements.

If a static object with a scalar type is not explicitly initialized, it is initialized to zero by default.
Likewise, if a static pointer is not explicitly initialized. it is initialized to NULL by default. If an
object with automatic storage duration is not explicitly initialized, its contents are indeterminate.

Initializers on static objects must be constant expressions; greater flexibility is allowed for
initializers of automatic variables. These latter initializers can be arbitrary expressions. not just
constant expressions. For example,

double dsin = sin{30.0);

is a valid initializer. where dsln is declared inside a function.

To initialize an object, use the assignment operator '='. The following sections describe how to
initialize different classes of objects.

Scalars
To initialize a scalar object, assign it the value of a expression. The expression may be enclosed
within braces; doing so does not affect the value of the assignment. For example, the expressions

int example = 7+12;

and

int example = { 7+12 };

are equivalent.

Unions and Structures
The initialization of a union by definition fills only its first member.

To initialize a union, use an expression that is enclosed within braces:

union example_u {
int memberl;
long member2;
float member3;

} = { 5 };

This initializes member! to five. That is to say, the union is filled with an int-sized object whose
value is five.

To initialize a structure, use a list of constants or expressions that are enclosed within braces. For
example:

LEXICON

initialization 733

struct example_s {
int memberl;
long member2;
union example_u member3;

} ;

struct example_s testl = { 5, 3, 15 };

This initializes memberl to five. initializes member2 to three. and initializes theflrst member of
member3 to 15.

Strings and Wide Characters
To initialize a string pointer or an array of wide characters. use a string literal.

The following initializes a string:

char string[)= "This is a string";

The length of the character array is 17 characters: one for every character in the given string literal
plus one for the null character that marks the end of the string.

If you wish. you can fix the length of a character array. In this case, the null character is appended
to the end of the string only if there is room in the array. For example, the following

char string[l6] ="This is a string";

writes the text into the array string. but does not include the concluding null character because
there is not enough room for it.

A pointer to char can also be initialized when the pointer is declared. For example:

char *strptr = "This is a string";

initializes strptr to point to the first character in This is a string. This declaration automatically
allocates exactly enough storage to hold the given string literal. plus the terminating null character.

Arrays
To initialize an array. use a list of expressions that is enclosed within braces. For example, the
expression

int array[] = { 1, 2, 3 };

initializes array. Because array does not have a declared number of elements. the initialization fixes
its number of elements at three. The elements of the array are initialized in the order in which the
elements of the initialization list appear. For example, array[O) is initialized to one, array[l) to two,
and array[2) to three.

If an array has a fixed length and the initialization list does not contain enough initializers to
initialize every element. then the remaining elements are initialized in the default manner: static
variables are initialized to zero, and other variables to whatever happens to be in memory. For
example. the following:

int array[3) = { 1, 2 };

initializes array[O) to one. array[l) to two. and array[2) to zero.

The initialization of a multi-dimensional array is something of a science in itself. The ANSI
Standard defines that the ranks in an array are filled from right to left. For example, consider the
array:

LEXICON

734 initialization

int example[2][3][4J;

This array contains two groups of three elements. each of which consists of four elements.
Initialization of this array will proceed from example[OJ[O][O] through example[0)[0)[3]: then from
example[O)[l)[O] through example[O)[l)[3]; and so on. untll the array is filled.

It is easy to check initialization when there is one initializer for each "slot" in the array; e.g.,

int example[2][3] = {
1, 2, 3, 4, 5, 6

};

or:

int example[2][3] = {
{ 1, 2, 3 }, { 4, 5, 6 }

} ;

The situation becomes more difficult when an array is only partially initialized; e.g .•

int example[2][3] = {
{ 1 }, { 2, 3 }

} ;

which is equivalent to:

int example[2][3] {
{ 1, o, 0 }, { 2, 3, 0 }

};

As can be seen. braces mark the end of initialization for a "cluster" of elements within an array. For
example, the following:

int example[2][3][4] = {
5, { 1, 2 }, { 5, 2, 4, 3 }, { 9, 9, 5 },
{ 2, 3, 7 } };

is equivalent to entering:

int example [2 J [3 J [4 J {
{ 5, o, o, 0 },
{ 1, 2, o, 0 } '
{ 5, 2, 4, 3 } '
{ 9, 9, 5, 0 } '
{ 2, 3, 7, 0 } '
{ o, o, o, 0 }

};

The braces end the initialization of one cluster of elements: the next cluster is then initialized. Any
elements within a cluster that have not yet been initialized when the brace is read are initialized in
the default manner.

See Also
array, C language, definitions, struct, union

LEXICON

ino.h - install 735

inode.h declares structures and constants that are used to describe i-nodes.

See Also
i-node, header files

n;t.1.a;m:mmn;•,,~,,,,,,,,~~~~~~,,~~,,~,,~~''''''711
Constants and structures for memory-resident i-nodes
#include <sys/ inode.h>

inode.h declares structures and constants for memory-resident i-nodes.

See Also
header mes, i-node

install - Command ~'~~'~'''-. .._,,~~~~~,~~"'711 .._~,~,~~""''
Install a software update onto COHERENT
/etc/install Id device ndlsks

The command install installs an update of the COHERENT system onto your hard disk. Id
identifies the update to be installed. device is the device from which the update disks will be read.
ndlsks is the number of disks that comprise the update.

Third-Party Software
install also provides a standard mechanism by which software developers can install their software
onto systems that run COHERENT. The rest of this article discusses how to prepare a software
release so that it can be installed using install.

For install to be able to install a software distribution, the distribution must consist of a set of
mountable floppy disks, each holding a COHERENT file system created by mkfs. This keeps the
disks independent of each other and also lets the user to insert the disks in any order. install
records the fact that it has read a given disk from the distribution. thus preventing the user from
attempting to read a given disk more than once during an installation session.

Floppy disks should be built using mkfs. with possible input being generated by the command
unmkfs. Each disk in the distribution must hold in its root directory a file whose name is of the
form:

/Id.sequence

Here. Id identifies the release, as described above. Note that Id must be formed from the set of
upper- and lower-case letters. digits. the period·:. and the underscore character'_'. and not exceed
nine characters in length. sequence indicates which disk in the distribution this disk is. from one
through the total number of disks.

install uses the command cpdir to copy each of the distribution disks to directory I on the current
system. Therefore. all disks should be "root based" (i.e .. full path names should be used). Because
install is run by the superuser, cpdir preserves the date and time for each file. and preserves
ownership and modes. To keep file ownership consistent with COHERENT conventions, make files
that are neither setuld nor setgld owned by user bin and group bin. Directories found on the
distribution disks will be created on the target file system. as needed. Be careful when choosing the
ownership and mode of directories because you could inadvertently compromise the security of your
users' systems.

LEXICON

736 install

Postprocessing
After all disks in a distribution have been successfully copied by the user, install checks for the
existence of a file of the form

/conf/ld.post

where Id matches the id field found on the install command line. If found, install executes this file
to allow special "postprocessing," such as installing manual pages into directory /usr/man or
executing installation-specific commands.

Before an installation procedure completes its postprocessing, it should remove any id files of the
following form from the target system:

/conf/ld.post
I Id.sequence

Adding Manual-Page Entries
As part of building a distribution, you usually must generate pre-processed or "cooked" manual­
page entries for distribution with your upgrade or add-on package. These should be inserted into
the subdirectories of /usr/man. with the name of the subdirectory being specific to your product.
This naming convention avoids name-space collisions, should multiple applications use the same
name for a manual-page entry.

If you install new or additional manual pages, you must update the index file used by the man
command to locate manual entries. File /usr/man/man.index on the target file system contains
index entries for all manual pages on the system. As part of postprocessing. you must append index
information for your manual pages to the end of the existing index file. In addition, file
/usr/man/man.help contains the man command's help message. This includes a list of valid
topics and some explanatory text. You should also append to this file a brief list of the manual page
entries that you have added. For further information on manual pages, see the Lexicon entry for the
command man.

Logging
install logs all partial as well as completed installations in file /etc/install.log. This information
includes date/time stamps and the command-line arguments to install.

Example
The following installs COHERENT update coh.301, which consists of one disk. from a high-density
5.25-inch floppy drive:

/etc/install coh.301 /dev/fhaO 1

Uninstalling the Mark Williams Bootstrap
The following describes how to remove the Mark Williams bootstrap program. You must do this if
you are un-installing COHERENT from your system.

To remove the Mark Williams master boot program, you must overwrite the master boot-block on
hard drive 0 with another boot program. Usually, this is the MS-DOS master boot program. The
MS-DOS edition of fdisk writes a new master boot program if no valid signature appears at the end
of the current contents of the master-boot block. So, to remove the COHERENT master bootstrap
program, all you have to do is modify the last two bytes of the master-boot block, then run the MS­
DOS fdisk.

WARNING: See the note below about MS-DOS fdisk - back up your hard drive is backed up before
you try this!

Several ways are available to invalidate the signature at the end of the master-boot block. One way
is to copy any sort of garbage into the master-boot block. You can (1) reformat cylinder O of your

LEXICON

install 737

hard drive - for example, using the DIAGNOSTICS menu of the AMI BIOS - or (2) use COHERENT
to overwrite the block, e.g., with the command:

dd if=/coherent of=/dev/atOx count=l

The master-boot block is the first physical sector of the hard drive, i.e., cylinder 0, head 0, sector 1.
(Note that numbering of sectors begins with l, not 0.) The MWC master bootstrap is part of the
initial program load, and does not belong to any operating system because it runs before an
operating system is loaded.

Please read the following carefully before you attempt erase the master-boot block:

Mark Williams Company can make no promises or guarantees concerning the behavior of any given
version of the MS-DOS fdisk. Every versions of the MS-DOS fdisk that we have tested does not
recognize partitions allocated for other operating systems: MS-DOS cannot delete, or even display,
such partitions. Certain configurations of empty partitions cause MS-DOS fdisk to hang.

Worst of all, don't expect any data on your hard drive to be available after MS-DOS fdisk rewrites an
invalid master-boot block. Our experience is that MS-DOS fdisk erases all data in all partitions.
even if previously existing MS-DOS partitions are re-allocated with identical cylinder ranges as at
the time of their initial creation.

How To Remove COHERENT
To remove COHERENT from your system, do the following:

1. Log in as the superuser root.

2. Invoke the COHERENT version of fdisk.

3. Choose the option to change all logical partitions. Don't change any parameters of any MS-
DOS partitions.

4. Change all COHERENT partitions to type Unused with a size of 0, starting and ending at 0.

5. Exit fdisk and update the partition table.

6. Reboot the computer and run the DOS fdisk utility to create a new MS-DOS partition table.
Turn the unused space (formerly the COHERENT partitions) into an MS-DOS-EXT partition.
If you already have an MS-DOS-EXT partition, change its parameters so that it incorporates
the unused space.

7. Create one or more logical drives in the MS-DOS-EXT partition.

8. Format the new logical drives using the MS-DOS fonnat command.

Repeated tests with MS-DOS have shown that the above directions work. However, given the many
flavors and releases of MS-DOS in circulation, Mark Williams Company cannot guarantee that the
above steps with MS-DOS will work. If they do not, consult your MS-DOS manual for creating a
DOS partition table and file system on a new hard drive. If that information is not available,
telephone Microsoft Technical Support at (206)454-2030.

Files
/etc/install.log

See Also
commands, man, mkfs, unmkfs

LEXICON

738 int - ioct/0

--"-'1 "''""'""" '''~~~"~"~"-'1 ·~ ~"'""'"'"' Data type

An int is the most commonly used numeric data type, and is normally used to encode integers.
With COHERENT, sizeof int equals 2, that is, two chars (15 bits plus a sign bit); therefore. an int
can contain values from -32768 to +32767. An int normally is sign extended when cast to a larger
data type; an unsigned int, however, will be zero extended.

See Also
C keywords, data formats, data types, long

interrupt- Definition '",._ """"~"'~ "'''""'"-'1 """~""'"'""''"" An interrupt is an interruption of the sequential flow of a program. It can be generated by the
hardware, from within the program itself, or from the operating system.

See Also
definitions, signal()

~'~~'~"~'""'~""'"'""~'''~'""~"''"'"" Constants and structures used by 1/0
#include <sys/io.h>

io.h declares constants and structures used by various 1/0 routines.

See Also
header files

ioctlO - System Call ~'~""'""''~""'~-..""'~~~~~~
Device-dependent control
ioctl{fd, command, info)
intfd, command;
char •tnfo;

ioctl() provides direct interaction with a device driver. Possible uses include setting or retrieving
parameters for devices (line printers, communications lines, terminals) and non-standard spacing
operations for tape drives.

ioctl() acts upon a block special file or a character special file associated with the already open file
descriptor fd. command points to the specific request. A system header file defines symbolic
command parameters for each device type. For example, sgtty.h defines commands for terminals
and mtioctl.h defines commands for magnetic tape drives. Using the symbolic command
definitions from the header files promotes device independence within each device type. The entry
for device drivers names other sections that detail specific devices.

irifo passes a buffer of information (defined by structures in the appropriate header files) to the
driver. For any command not needing additional information, this argument should be NULL.

Some ioctl() requests work on all files, and are not passed to any driver.

Files
<sgtty.h>
<lpioctl.h>
<mtioctl.h>

LEXICON

ipc.h - isalphaO 739

See Also
exec, getty, open(), read(), sgtty, stty, system calls, write()

Diagnostics
ioctl() returns -1 on errors, such as a bad file descriptor. Because the call is device dependent,
almost any other error could be returned.

Notes
The type of the info argument to ioctl() is declared as char• mainly for portability reasons. In most
cases, the actual argument type will be something like struct sgttyb •, depending on the particular
device and command. The actual argument should be cast to type char• to ensure cross-machine
portability.

~- --~,~~~'~''~----~~---!Im Definitions for process communications
#include <sys/ipc.h>

ipc.h defines constants and structures used by functions that perform inter-process
communications.

See Also
header mes

isalnumO - ctype Macro (ctype.h) ---,~~~~'~'"''~~,~~ ~~~~~---~
Check if a character is a number or letter
#include <ctype.h>
int isalnum(c) int c:

isalnum() tests whether the argument c is alphanumeric (0-9, A-Z, or a-z). It returns a number
other than zero if c is of the desired type, and zero if it is not. isalnum() assumes that c is an ASCII
character or EOF.

Example
For an example of how to use this macro. see the entry for ctype.

See Also
ASCII, ctype

isalphaO - ctype Macro (ctype.h)
Check if a character is a letter
#include <ctype.h>
int isalpha(c) int c;

isalpha() tests whether the argument c is a letter (A-Z or a-z). It returns a number other than zero if
c is an alphabetic character, and zero if it is not. isalpha() assumes that c is an ASCII character or
EOF.

Example
For an example of this macro. see the entry for ctype.

See Also
ASCII, ctype

LEXICON

740 isasciiO - isdigitO

isascil() tests whether the argument c is an ASCII character (0 <= c <= 0177). It returns a number
other than zero if c is an ASCII character, and zero if it is not. Many other ctype macros will fail if
passed a non-ASCII value other than EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

f@U®llffi@fohiid@·lii~"'"'"''"'''"''W ~"'""~ ~'""'"'"''W Ml
Check if a device is a terminal
int isatty(fd) intfd;

isatty() checks to see if a device is a terminal. It returns one if the file descriptor fd describes a
terminal, and zero otherwise.

Files
I dev t • - Terminal special files
/etc/ttys - Login terminals

See Also
general functions, ioctl(), tty, ttyname(), ttyslot()

iscntrlO- ctype Macro (ctype.h) ~"'"'"'""~ .,~'"""""'"''""""""""'""''~ Check if a character is a control character
#include <ctype.h>
int iscntrl(c) int c;

iscntrl() tests whether the argument c is a control character (including a newline character) or a
delete character. It returns a number other than zero if c is a control character, and zero if it is not.
iscntrl() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ctype

isdigitO - ctype Macro (ctype.h)
Check if a character is a numeral
#include <ctype.h>
int isdigit(c) int c;

isdigit() tests whether the argument c is a numeral (0-9). It returns a number other than zero if c is
a numeral, and zero if it is not. isdigit() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro. see the entry for ctype.

LEXICON

See Also
ASCII, ctype

islowerO - ctype Macro (ctype.h)
Check if a character is a lower-case letter
#include <ctype.h>
int islower(c) int c;

islowerO - ispunctO 741

islower() tests whether the argument c is a lower-case letter (a-z). It returns a number other than
zero if c is is a lower-case letter, and zero if it is not. !slower() assumes that c is an ASCII character
or EOF.

Example
For an example of how to use this macro. see the entry for ctype.

See Also
ASCII, ctype

W.t.H1.•®®llit:I!MM®$ti@i@!~,~"~~"''~""""'"""'"~
Return if variable is positive or negative
#include <mprec.h>
int ispos(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. ispos() returns true (nonzero) if a is not negative, false (zero) if a is negative.

See Also
multiple-precision mathematics

isprintO - ctype Macro (ctype.h)
Check if a character is printable
#include <ctype.h>
int isprint(c) int c;

isprint() is a macro that tests if c is printable, i.e. if it is neither a delete nor a control character. It
returns a number other than zero if c is a printable character, and zero if it is not. isprlnt()
assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

ispunct() tests whether the argument c is a punctuation mark, i.e., neither an alphanumeric
character nor a control character. It returns a number other than zero if the character tested is a
punctuation mark. and zero if it is not. ispunct() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

LEXICON

742 isspaceO - itomO

See Also
ASCII, ctype

l•fillll9N•d®Md'•'G0·€HI cecfr a character prints white space
#include <ctype.h>
int isspace(c) int c;

isspace() tests whether the argument c is a space, tab, newline, carriage return. or form-feed
character. It returns a number other than zero if c is a white-space character, and zero if it is not.
isspace() assumes that c is an ASCII character or EOF.

Example
For an example of how to use this macro, see the entry for ctype.

See Also
ASCII, ctype

isupper() tests whether the argument c is an upper-case letter (A-Z). It returns a number other
than zero if c is an upper-case letter, and zero if it is not. isupper() assumes that c is an ASCII
character or EOF.

Example
For an example of how to use this macro. see the entry for ctype.

See Also
ASCII, ctype

rmmriJl®ml@tf!iM9MM•Hmi@1@IP
Create a multiple-precision integer
#include <mprec.h>
mint *itom(n)
int n;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. itom() creates a new multiple-precision integer (or mint), initializes it to the signed
integer value n. and returns a pointer to it. You can use the function mintfr() to reclaim the storage
used by the mint created by itom().

See Also
multiple-precision mathematics

LEXICON

jO() - Mathematics Function (libm)
Compute Bessel function
#include <math.h>
doubleJO(z) double z;

JOO computes the Bessel function of the first kind for order 0 for its argument z.

Example

jOO 743

This example, called bessel.c, demonstrates the Bessel functions JO(), Jl(), and Jn(). Compile it with
the following command line

cc -f bessel.c -lm

to include floating-point functions and the mathematics library.

#include <math.h>
#include <stdio.h>
#define display(x) dodisplay((double)(x), #x)

dodisplay(value, name)
double value; char *name;
{

}

if (errno)
perror (name) ;

else
printf("%10g %s\n", value, name);

errno = O;

main ()
{

extern char *gets();
double x;
char string[64];

for(;;) {
printf("Enter number: ");
if(gets(string) == NULL)

break;
x = atof(string);

LEXICON

744 j1 O - jobs

}

display(x);
display(jO(x));
display(jl(x));
display(jn(O,x));

display(jn(l,x));
display(jn(2,x));
display(jn(3,x));

putchar('\n');
}

See Also
jl(),jn(), mathematics library

j1 O - Mathematics Function (libm)
Compute Bessel function
#include <math.h>
doublejl(z) double z;

jl() takes z and computes the Bessel function of the first kind for order 1.

Example
For an example of this function, see the entry for JO().

See Also
JO(), jn(), mathematics library

jnO - Mathematics Function (libm)
Compute Bessel function
#include <math.h>
doublejn(n, z) int n; double z;

Jn() takes z and computes the Bessel function of the first kind for order n.

Example
For an example of this function, see the entry for JO().

See Also
JO(),jl(), mathematics library

~~~~~,,~- -~~~~~- -~~'""'~'"- -
Print information about jobs 
jobs 

The command jobs is used with the Korn shell's job-control feature. It prints information about all 
background jobs. The information printed is in the following format: 

%num [+-] pid status command 

num indicates the job number. + indicates that the job is the "current job"; - indicates that it is the 
"previous job". pid gives the process identifier of the job. status indicates the status of the job. 
command gives the job's command line. 

For details about job control. see the Lexicon entry for ksh. 

LEXICON 



join 745 

See Also 
commands, k.sh 

~~~~~~~~"""~'""'"~'~'~~~~"'~' 
Join two data bases
join [-a [n)] [-e string] [-j[n) ke!lfl [-o n.m ...) [-tc]jlle 1 jlle2

join processes the text files.fl/el andjlle2. each of which contains a relational data base. If either
file name is·-·. the standard input is used for that file.

For the purposes of join. a data base file contains a set of records, one per input line. Each record
contains a number ofjlelds. One field is differentiated as key field for each file. Each file must be
sorted by key field. for example with sort.

By default, the key field is the first field in each record. The -j option changes the key field number
to key{ for the desired file. In this and other options below, the optional file number n must be 1 to
indicate.fl/el or 2 to indicatejlle2. If non is given. both.fl/el andjlle2 are assumed.

Normally, fields are separated by any amount of white space (blanks or tabs). Leading blanks or
tabs are not considered part of the fields. With the -t option, the separator character is c. With this
option zero-length fields are possible; every occurrence of the separator ends the previous field and
starts a new one.

Output consists only of records for which the key field occurs in both files. As a consequence of the
sorted order of the input, the output is also sorted by the key field. Each output record has first the
key field, then each field from thejllel record but the key field, and then each field from thejlle2
record but the key field. Fields are separated in the output with the specified field character, or with
a space character if no -t option was given. Output records are always terminated with a newline.
Under the -e option, string is printed for each empty field.

The -a option enables printing of records found in only file n. If n is missing, unpaired records are
printed from both input files. To output only certain fields, the -o option precedes a list of desired
fields to print. Each element is of the form n.m where n is the file number and m is the field
number.

For example,

join -t: -jl 3 -o 1.3 2.4 1.4 1.1 2.2 filea fileb

joins mea and meb which have fields separated by the colon(':') character. The join field number is
3 for fllea and I (by default) for ff.leb. The selected five fields are produced in the output.

See Also
awk, comm, commands, sort, uniq

LEXICON

746 kermit

~~~~~""~~~"~~~~~~~~~~~~~~~~~~~~llllli 
Inter-system communication and file transfer 
kermit c[belL baud esc line] 
kermit r[bdthilLt baud line] 
kermit s[abdthilLmtx baud line ]file ... 

kermit allows the user to communicate with a remote computer system and to transfer files 
between the local and remote systems. kennit can transfer ASCII or binary files of any length in 
either direction. The two computers must be able to contact each other. such as through a serial 
line or by modem over a telephone line, and both systems must have kermit available. The user 
must have login privileges on both systems and appropriate permissions in directories used for file 
transfer. 

The kermit command line specifies a mode, followed without intervening spaces by optional.flags, 
perhaps followed by additional arguments and.files. The three possible modes are as follows: 

c Connect the two systems so they can communicate 
r Receive files from the other system 
s Send each.file to the other system. 

kermit normally uses a default communication line at a default baud rate; the defaults vary from 
system to system. kermit normally strips leading directory information from the path name of each 

.file it sends and converts the name to upper case; it converts the file name to lower case when 
receiving. 

The following.flags modify kermit's normal behavior. 

a 

bbaud 

d 

eesc 

LEXICON 

Specify complete path names for sending and receiving files. Used only with s mode. 
This flag requires file names in pairs: first gives the file to be sent. the second the 
receiving file. For example, the command 

kermit sa /usr/joe/stuff.c /usr/tom/src/thing.c 

sends the file /usr/joe/stuff.c but specifies its name as /usr/tom/src/thing.c for the 
receiving system. The target directory must exist on the receiving system. The a flag 
implies the use of the f and x flags described below. 

Set the baud rate of the port to baud. 

Debug mode. Tell kermit to print messages that describe its actions. Message appear 
on the standard output. not the standard error. 

Change the escape character from the default "'' to esc; used only with c mode. The 
escape character marks commands to kennit c while it is running, as described below. 



kermit 747 

f Suppress conversion of the case of file names. 

h Host mode. Tell kermit to use the same line for file transfer and for communication: 
used with either r ors mode on the remote system only. When invoked with the h flag, 
kermit resets the line modes properly when it completes a file transfer. If you do not 
use the h flag, kermit will probably leave the remote system line in raw, no-echo mode. 

i Image mode. Tell kermit to send a full eight-bit byte for each character: this is 
necessary to transfer binary (non-ASCII) files. If you use i flag when sending, also use it 
on the receiving system. 

I line Use line. For example, the command 

L 

m 

t 

x 

kermit clb /dev/ttySO 1200 

tells kermit to use line tty50 at 1200 baud instead of the default line and baud rate. 

Log all kermit commands into file Log. 

Macintosh mode. Necessary when sending files to an Apple Macintosh; used only with 
s mode. 

Tymnet mode. Allows Tymnet to keep up with file transmission. 

Allows the specification of a complete pathname for the receiving file: used only with s 
mode. For example, the command 

kermit sx mydir/stuff 

sends the file mydir I stuft' to mydir I stuft' on the receiving system. The target directory 
must exist on the receiving system and the user must have write permission in it. 

kermit c recognizes two escape sequences. The default escape character'"" can be changed with 
the e flag, as noted above. 

"c 

"s 

Exit from kermit and break the connection between the two systems. This notation 
does not mean <ctrl-C>: rather, you must literally type the escape character (by default, 
a carat'"') and then the letter 'c'. 

Suspend kermit on the host system but do not hang up the line. 

Unlike some file transfer protocols, kermit requires that you invoke it on both the sending and 
receiving systems to transfer a file. As shown in the example below, you normally use kermit c to 
connect to the remote system, invoke kermit with the h flag in either send or receive mode on the 
remote system only, type ""s" to suspend the local kermit c, and finally invoke kermit in receive or 
send mode on the local system. 

The following example demonstrates the use of kermit. The example assumes the user is already 
logged in on the local system. The communication line is /dev/com2 and runs at 2400 baud. The 
user wants to transfer locme to the remote system and remfile from the remote system. System 
names are in Italics on the left, user input is in Roman, system responses are in bold, and remarks 
are in parentheses. 

local 
local 

remote 
remote 
remote 
remote 

kermit clb I dev I com2 2400 
kermit: connected ••• 

Coherent login: 
kermit shi remfile 
)SN_@X#T 
"s 

(connect to remote system) 
(type a carriage return) 

(perform login procedure) 
(send from remote) 
(part of protocol. ignore) 
(suspend local kermit) 

LEXICON 



748 kermit 

local kermit: suspended. 
local kermit rilb I dev I com2 2400 (receive on local) 
local kermit: Receiving REMFILE as remftle 
local kermit: done. 
local kermit clb /dev/com2 2400 (connect again) 

remote 
remote 

local 
local 
local 
local 
local 

remote 
remote 
remote 

kermit rhi 
"s 

kermit: suspended. 
kermit silb /dev/com2 2400 locfile 
kermit: Sending locftle as LOCFILE 
kermit: done. 
kermit clb I dev I com2 2400 

<ctrl-D> 
Coherent login: 
"c 

local kermit: disconnected. 

Problems Connecting to the Modem 

(receive on remote) 
(suspend local kermit) 

(send from local) 

(connect again) 

(log off the remote system) 

(disconnect local kermit) 

Some users occasionally experience problems in having kermit talk to their modems. The kermit 
utility requires that the serial port it uses for communications not be enabled for logins. If you wish 
to use kermit on your modem line, you must perform the following steps. Note that comments are 
shown in italic. 

who 
/etc/disable port 
kermit options 

(disconnect via kermlt) 
/etc/enable port 

See Also 
commands, UUCP 

(make sure nobody Is logged In on the modem) 
(where ''port" Is the modem port) 
(Invoke kermlt as needed) 

(re-enable modem port for logins) 

Kermit: A file-transfer protocol for universities, BYTE, June 1984 pp. 255.ff, July 1984 pp. 143.ff 

Diagnostics 
kermit may print the following error messages: 

Aborting with following error from remote host 
Problem appeared on receiving system. 

Bad line speed 
Transmission was attempted at an illegal baud rate. 

Cannot create name 
The receiving system cannot create name. Confirm that you have write permission on the 
receiving system. 

Cannot open file name 
The sending system cannot open name. Either you do not have read permission on the 
sending system, or the file is not present in the named directory. 

LEXICON 



keyboard tables 749 

Cannot open line 
An incorrect line number was specified. 

No line specified for connection 
The line argument missing after the -1 option. 

Receive failed 
The file being sent was not received; this could be due to any one of a number of reasons. 
Check that everything is functioning normally. and then try to send the file again. 

Send failed 
The requested file was not sent. 

Speed setting not implemented 
An unimplemented baud rate was selected for the -b option. 

Yes, I'm still here 
The connect command was repeated. 

Notes 
kennit is included only with COHERENT 286. To use the kennit protocol under COHERENT 386, 
use the command ckennit. 

If you type kennit c and get the message kennit connected but the remote system does not 
respond, check the line that connects the two systems and the ability of the remote system to accept 
a login on the line. 

The file transfer protocol uses small (96-character) checksummed packets, with ACK/NAK responses 
from the receiving system. The timeout period is five seconds, and kennit does ten retries before it 
abandons an attempted file transfer. 

The kennit protocol was developed at the Columbia University Center for Computing Activities. 
Tymnet is a trademark of Tymshare, Inc. 

rm·1w1.1mm111m11~11~u11t:m.111~mm[~.1m11a11m111m1---···················-
How to write a keyboard table 

The COHERENT device-driver nkb supports industry-standard 83-, 101-. and 102-key AT-protocol 
keyboards attached as the computer console. 

nkb lets you define both the layout of the keyboard and the values returned by function keys. You 
can change layout and function-key bindings by using the special keyboard mapping programs kept 
in directory I conf/ kbd. This directory contains the C source code for the mapping tables, as well as 
a Makefile that helps you rebuild the mapping programs. 

Before you begin to write or modify an existing keyboard table, be sure to read throroughly this 
article and the Lexicon article on nkb. If you do not, you may foul up the keyboard so thoroughly 
that it will not work well enough for you to undo your mistake! 

Operational Overview 
The device driver nkb provides the system's portion of .the interface to the console keyboard. It 
handles hardware-specific details. such as initializing the keyboard and internal state. handling 
keyboard interrupts. processing key scan codes. and queueing characters. 

The user half of the keyboard interface is provided by a set of stand-alone utilities. With these, you 
can program the nkb driver via specialized ioctl() calls. These utilities differ from each other only in 
the keyboard binding or mapping tables each uses. You can re-construct the interface to the nkb 
driver by modifying a keyboard-mapping file and then using a support module to link that file to the 
driver. 

LEXICON 



750 keyboard tables 

The keyboard-mapping file is a C program that consists of initialized tables and strings. In addition, 
several header files provide the scan codes and other constants required for the key tables. This 
format makes the file easy to edit, and also lets you enter characters in several different formats. 

The support module, in turn, performs several tasks. These include scanning the keyboard­
mapping file for errors, reformatting the table for use by the device driver, and passing the 
reformatted table to the driver. 

Key Mapping Files 
By convention, directory /conf/kbd contains the keyboard-mapping files, executables, and a 
Makefile that you use to construct the executables from the corresponding source files. 

A keyboard-mapping source file consists primarily of three data structures that you must modify to 
support a given keyboard mapping. The first, and simplest, of the structures is tbl_name. This is a 
character string that describes the keyboard. For example, the stock 101-key US AT keyboard 
mapping file /conf/kbd/us.c initializes this string to: 

"U.S. AT keyboard table" 

The second data structure, kbtbl. is an array of key-mapping entries. It has one entry (or row) for 
each possible key location. Each entry in this structure consists of 11 fields, which hold, 
respectively, the key number, nine possible mapping values, and a mode field. The following 
example is for physical key location 3 from key-mapping source file /conf/kbd/belgian.c: 

{ K_3, Ox82, '2', none, none, Ox82, '2', '-', none, '-', OIT }, 

Field I contains the scan code set 3 code value for the desired key. Header file <sys/kbscan.h> 
contains symbolic constants of the form K_nnn that map the AT keyboard's physical key number 
nnn to the corresponding scan code set 3 value generated by the keyboard. In the above example, 
K_3 corresponds to key location three. 

Fields 2 through 10 contain the key mappings corresponding to the following shift states, as follows: 

2 base or unshifted 
3 SHIFT 
4 CONTROL 
5 CONTROL+SHIFT 
6 ALT 
7 ALT+SHIFT 
8 AL T+CONTROL 
9 ALT+CONTROL+SHIFT 

10 AL T_GRAPHIC 

For "regular" keys, the values for these nine fields are eight-bit characters; for "function" or "shift" 
keys, they are special values. The symbolic constant none indicates that you want no output when 
the key is pressed in the specified shift state. 

In the case of a function key, the value specified is the number of the desired function key. Header 
file <sys/kb.h> defines a set of symbolic constants of the form fn, where n is the desired function 
key number. You should use these constants; they will improve the readability of your code, and 
they will protect your keyboard mapping source files from any future changes in the structure of the 
keyboard driver. 

In the case of a "shift" key, all nine entries must be identical and must consist of one of the 
following symbolic constants: scroll, num, caps, lalt, ralt, lshift, rshift, lctrl, rctrl, or altgr. These 
are defined in the <sys/kb.h> header file. Note that 83-key XT-layout keyboards only have one 
"control" and "alt" key, so not all shift-key combinations may be possible on your target keyboard. 

LEXICON 



keyboard tables 751 

The last (11th) field in the key entry is the "mode" field. The following symbolic constants specify 
the mode of the current key: 

C The caps lock key affects this key. 

F The specified key is a "function" or special key. The value of all mapping entries 
must name function keys. See header file <kb.h> for a list of predefined function 
keys. 

M Make: use this mode with keys that do not repeat. Note that accidentally using this 
mode with "shift" keys will stop you from being able to "unshift" upon releasing the 
key! 

MB Make/Break: use this mode with "shift" keys. 

N The nwn lock key affects this key. 

0 The specified key is "regular" and requires no special processing. 

S The specified key is a "shift" or "lock" key. Note that all mapping entries for a given 
key must be identical for a "shift" or "lock" key to work correctly. 

T Typematic: this type is usually associated with a "regular" key. 

TMB Typematic/Make/Break. 

The above example specifies a mode field of 0 IT, which corresponds to a "regular" key with 
Typematic repeat, and no special handling of the "lock" keys. 

The last data structure, funkey, consists of an array of function-key initializers, one per function 
key. The initializers are simple quoted character strings delimited by either hexadecimal value 
OxFF, octal value \377, or symbolic constant DELIM. Note that any other value can be used as part 
of a function-key binding. Function keys are numbered starting at zero. By convention, function 
key 0, when enabled, reboots your computer. For traditional reasons, this function key is usually 
bound to the key sequence <ctrl><alt><del>. 

Function keys are useful not only in the classic sense of the programmable function keys on the 
keyboard, but also as a general purpose mechanism for binding arbitrary length character 
sequences to a given key. For example, physical key location 16 is usually associated with the 
<tab> and <back tab> on the AT keyboard; and /conf/kbd/us.c sets the key mapping table entry 
for key 16 as follows: 

{ K_l6, f42, f43, none, none, f42, f43, none, none, none, FIT }, 

For traditional reasons, the <back tab> key outputs the sequence <esc>[Z whereas the <tab> key 
simply outputs the horizontal-tab character <ctrl-1>. Because at least one of the mapping values for 
this key is more than one character long, the key must be defined as a "function" key and all entries 
for the the key must correspond to function-key numbers. In this example, function key number 42 
was chosen for <tab>, and function key number 43 was chosen for <back tab>. The constant none 
indicates that you want no output when the key is pressed in the specified shift state. The 
corresponding funkey initialization entries for function keys f42 and f43 are as follows: 

/* 42 */ 
/* 43 */ 

"\t\377", 
"\033[Z\377", 

/* Tab */ 
/* Back Tab */ 

We strongly recommend that you comment your function-key bindings. 

You can also change function-key bindings via the command fnkey. This command lets you 
temporarily alter one or more function-key mappings without changing your key-mapping sources. 

LEXICON 



752 keyboard tables 

Building New Binaries 
After you have modified an existing keyboard-mapping table, use the following commands to rebuild 
the corresponding executables: 

cd /conf/kbd 
su root 
make 

If you have created a new keyboard mapping table, you must edit /conf/kbd/Makeme. Duplicate 
an existing entry from the Makeme. and change the duplicated name to match the name of your 
new keyboard-mapping table. After you have finished your editing. build an executable from your 
source file by simply executing the above series of commands. 

To load your new keyboard table, simply type the name of the executable that corresponds to your 
keyboard-mapping file. For example, if you just built executable trench from source file french.c, 
type the following command: 

/conf/kbd/french 

If the keyboard-support module finds an error, it will print an appropriate message. If it finds no 
errors. it will update the internal tables of the nkb keyboard driver, reprogram the keyboard, and 
print a message of the form: 

Loaded French AT keyboard table 

Examples 
Prior to the release of the 101- and 102-key, enhanced-layout AT keyboards, the <ctrl> key was 
positioned to the left of 'A' key. Most terminals also locate the <ctrl> key there. The first example 
shows how to swap the left <ctrl> key and the <caps-lock> key on a 101- and 102-key keyboard. 
The <caps-lock> key is physical key 30, whereas the left <ctrl> key is physical key 58. Their 
respective entries in file /conf/kbd/us.c source file are as follows: 

{ K_30, caps, caps, caps, caps, caps, caps, caps, caps, caps, SIM}, 
{ K_58, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, SjMB }, 

Note that the <caps-lock> key is defined with mode M as it is a "lock" key. The keyboard will 
interrupt only on key depressions, because releasing a "lock" key has no effect. The left <Ctrl> key 
is defined with mode MB as it is a "shift" key. The keyboard generates an interrupt on both key 
depression and key release, because the driver must track the state of this key. 

To swap the aforementioned keys, simply change all occurrences of caps to lctrl and vice-versa, as 
well as swapping the mode fields. After making the changes, the entries now appear as: 

{ K_30, lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl,lctrl, SjMB }, 
{ K_58, caps, caps, caps, caps, caps, caps, caps, caps, caps, SIM }, 

The second example converts a 101- or 102-key keyboard table to support an XT-style 83-key 
keyboard layout. The following section summarizes the "typical" differences found when comparing 
the two keyboard layouts. Needless to say, given the extreme variety in keyboard designs, your 
mileage may vary. 

LEXICON 



Location 101I102 Value 83-key Value 
14 none Various 
30 caps lctrl 
58 lctrl lalt 
64 rctrl caps 
65 none F2 
66 none F4 
67 none F6 
68 none F8 
69 none FIO 
70 none Fl 
71 none F3 
72 none F5 
73 none F7 
74 none F9 
90 num Esc 
95 I num 
100 • scroll 
105 none 
106 + .. 
107 none 
108 <Enter> + 
110 esc none 

112-123 Fl-Fl2 none 
124 none none 
125 scroll none 
126 none none 

See Also 
device drivers, fnkey, nkb 

Notes 
Key 14, if used, varies considerably among keyboard models. 

Comments 
Keyboard-specific 

Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 
Function Key 

kill 753 

<SysReq> not used 

Not on XT layout 
Not on XT layout 
<PrtScr> not used 
Not on XT layout 
<Pause> not used 

The location of the key that contains characters '\' and ' I ' varies among 101-key US-layout 
keyboards. 

When designing keyboard tables for keyboards that use the ALT_ GRAPHIC shift key, for reasons of 
backwards compatibility you should allow the use of combination shift ALT+CTRL as a synonym for 
ALT_ GRAPHIC. 

~''~~,,~~'~"''~'"''~~~~~,~~"'' 
Signal a process 
kill [- signal ] pid ... 

COHERENT assigns each active process a unique process id, or pid, and uses the pid to identify the 
process. kill sends signal to each pid. signal must be one of the numbers described in the header 
<signal.h> or <sys/msig.h>. The signal can be given by number or by name, as defined in these 
header files. By default, signal is SIGTERM. which terminates a given process. 

If pid is zero, kill signals each process started by the user from the same tty. 

The shell prints the process id of a process if the command is detached. The command ps prints a 

LEXICON 



754 ki/10 - ksh 

list of all active processes, with process ids and command line arguments. 

A user can kill only the processes he owns; the superuser, however, can kill anything. A process 
cannot ignore or catch SIGKILL. 

See the Lexicon article for signal for a table of the signals and what each means. 

Files 
<sys/msig.h> - Machine-dependent signal numbers 
<signal.h> - Machine invariant signal numbers 

See Also 
commands, getpid(), init, kill(), ksh, ps, sh, signal() 

~~ -~'~~-----­Kill a system process 
#include <signal.h> 
kill(pld, slg) 
int ptd, stg; 

kill() is the COHERENT system call that sends a signal to a process. ptd is the process identifier of 
the process to be signalled. and slg identifies the signal to be sent, as set in the header file signal.h. 
This system call is most often used to kill processes, hence its name. 

See the Lexicon article for signal for a table of the signals and what each means. 

Example 
For an example of using this system call in a C program, see signal(). 

See Also 
signal(), signal.h, system calls 

~~~- . ._,~~------~~~ _,,,~~~~--~-­
The Korn shell
ksh token ...

The COHERENT system offers two command interpreters: sh, the Bourne shell; and ksh, the Korn
shell. sh is the default COHERENT command interpreter. The shell tutorial included in this
manual describes the Bourne shell in detail.

This article describes ksh, the Korn shell. ksh is a superset of the Bourne shell, and contains many
features that you may well find useful. These include MicroEMACS-style editing of command lines;
command hashing; a full-featured aliasing feature; and a job-control facility.

Invoking ksh
To invoke ksh from within the Bourne shell, simply type ksh at the command-line prompt. To use
ksh as your default shell, instead of sh, append the command /usr/bin/ksh to the end of your
entry in the file /etc/passwd. (See the Lexicon entry for passwd for more information on this file.)

You can invoke ksh with one or more built-in options; these are described below.

Commands
A command consists of one or more tokens. A token is a string of text characters (i.e., one or more
alphabetic characters, punctuation marks, and numerals) delineated by spaces, tabs, or newlines.

A simple command consists of the command's name, followed by zero or more tokens that represent
arguments to the command, names of files, or shell operators. A complex command will use shell
constructs to execute one or more commands conditionally. In effect, a complex command is a
mini-program that is written in the shell's programming language and interpreted by ksh.

LEXICON

ksh 755

Shell Operators
The shell includes a number of operators that form pipes, redirect input and output to commands,
and let you define conditions under which commands are executed.

command I command
The pipe operator: let the output of one command serve as the input to a second. You can
combine commands with 'I' to form pipelines. A pipeline passes the standard output of the
first (leftmost) command to the standard input of the second command. For example, in the
pipeline

sort customers I uniq I more

ksh invokes sort to sort the contents of file customers. It pipes the output of sort to the
command uniq, which outputs one unique copy of the text that is input into it. ksh then
pipes the output of uniq to the command more, which displays it on your terminal one
screenful at a time. Note that under COHERENT, unlike MS-DOS, pipes are executed
concurrently: that is, sort does not have to finish its work before uniq and more can begin
to receive input and get to work.

command : command
Execute commands on a command line sequentially. The command to the left of the ';'
executes to completion; then the command to the right of it executes. For example, in the
command line

a I b ; c I <l

first execute the pipeline a I b then, when a and b complete, execute the pipeline c I d.

command&
Execute a command in the background. This operator must follow the command. not
precede it. It prints the process identifier of the command on the standard output, so you
can use the kill command to kill that process should something go wrong. This operator
lets you execute more than one command simultaneously. For example. the command

/etc/fdformat -v /dev/fhaO &

formats a high-density, 5.25-inch floppy disk in drive 0 (that is, drive A); but while the disk
is being formatted, ksh returns the command line prompt so you can immediately enter
another command and begin to ·work. If you did not use the '&' in this command. you
would have to wait until formatting was finished before you could enter another command.

ksh also prints a message on your terminal when a command that you are running in the
background finishes processing. It does not check these "child" processes very often,
however. so a command may have finished some time before ksh informs you of the fact.
See the Lexicon article for the command ps for information on all processes; also see the
description of the built-in command jobs, below.

command && command
Execute a command upon success. ksh executes the command that follows the token '&&'
only if the command that precedes it returns a zero exit status, which signifies success. For
example. the command

cd /etc
fdforrnat -v /dev/fhaO && badscan -o proto /dev/fhaO 2400

formats a floppy disk, as described above. If the format was successful, it then invokes the
command badscan to scan the disk for bad blocks; if it was not successful, however, it does
nothing.

LEXICON

756 ksh

command 11 command
Execute a command upon failure. This is identical to operator '&&'. except that the second
command is executed if the first returns a non-zero status, which signifies failure. For
example, the command

/etc/fdformat -v /dev/fhaO I I echo "Format failed!"

formats a floppy disk. If formatting failed, it echoes the message Format failed! on your
terminal; however, if formatting succeeds, it does nothing.

Note that the tokens newline, ';' and '&' bind less tightly than '&&' and 'I I'. ksh parses
command lines from left to right if separators bind equally.

>:file Redirect standard output. The standard Input, standard output, and standard error streams
are normally connected to the terminal. A pipeline attaches the output of one command to
the input of another command. In addition, ksh includes a set of operators that redirect
input and output into files rather than other commands.

The operator'>' redirects output into a file. For example, the command

sort customers >customers.sort

sorts file customers and writes the sorted output into me customers.sort. It creates
customers.sort if it does not exist. and destroys its previous contents if it does exist.

>>jlle Redirect output into a file, and append. If the file does not exist, this operator creates it;
however. if the me already exists. this operator appends the output to that file's contents
rather than destroying those contents. For example, the command

sort customers.now I uniq >>customers.all

sorts file customers.now. pipes its output to command uniq, which throws away duplicate
lines of input, and appends the results to file customers.all.

<iflle Redirect standard input. Here, ksh reads the contents of a file and processes them as if you
had typed them from your keyboard. For example, the command

ed textfile <edit.script

invokes the line-editor ed to edit textflle; however, instead of reading editing commands
from your keyboard. the shell passes ed the contents of edit.script. This command would
let you prepare an editing script that you could execute repeatedly upon files rather than
having to type the same commands over and over.

<<token
Prepare a "here document". This operator tells ksh to accept standard input from the shell
input until it reads a line that contains only token. For example, the command

cat >FOO<<\!
Here is some text.

redirects all text between '«\!' and '!' to the cat command. The '>' in turn redirects the
output of cat into file FOO. ksh performs parameter substitution on the here document
unless the leading token is quoted; parameter substitution and quoting are described below.

command 2> jlle
Redirect the standard error stream into a file. For example, the command

LEXICON

ksh 757

nroff -ms textfile >textfile.p 2>textfile.err

invokes the command nroff to format the contents of textffie. It redirects the output of
nroff (i.e .. the standard output) into textme.p; it also redirects any error messages that
nroff may generate into file textme.err.

Note in passing that a command may use up to 20 streams. By default, stream 0 is the
standard input: stream 1 is the standard output; and stream 2 is the standard error. ksh
lets you redirect any of these streams individually into files, or combine streams into each
other.

<l!m ksh can redirect the standard input and output to duplicate other file descriptors. (See the
Lexicon article me descriptor for details on what these are.) This operator duplicates the
standard input from file descriptor n.

>&n Duplicate the standard output from file descriptor n. For example,

2>&1

redirects file descriptor 2 (the standard error) to file descriptor 1 (the standard output).

Note that each command executed as a foreground process inherits the file descriptors and signal
traps (described below) of the invoking shell, modified by any specified redirection. Background
processes take input from the null device /dev/null (unless redirected), and ignore interrupt and
quit signals.

Fite-Name Patterns
The shell interprets an input token that contain any of the special characters '?', '*', or '(' as a file
name pattern.

? Match any single character except newline. For example, the command

..

ls name?

will print the name of any file that consists of the string name plus any one character. If name
is followed by no characters. or is followed by two or more characters. it will not be printed.

Match a string of non-newline characters of any length (including zero) .

ls name*

prints the name of any file that begins with the string name, regardless of whether it is
followed by any other characters. Likewise, the command

ls name?*

prints the name of any file that consists of the string name followed by at least one character.
Unlike name*, the token name?* must be followed by at least one character before it will be
printed.

~name

Replace the name of user name with his $HOME directory. For example, the command

ls -1 -norm/src

lists the contents of the src subdirectory located under the $HOME directory for user norm.
This spares you from having to know where a given user's HOME directory is located.

[!xyz)
Exclude characters xyz from the string search. For example, the command

LEXICON

758 ksh

[C-c]

ls [!abc]*

prints all files in the current directory except those that begin with a, b, or c.

Enclose alternatives to match a single character. A hyphen'-' indicates a range of characters.
For example, the command

ls name(ABC]

will print the names of files nameA, nameB, and nameC (assuming. of course, that those files
exist in the current directory). The command

ls name(A-K]

prints the names of files nameA through nameK (again, assuming that they exist in the
current directory).

When ksh reads a token that contains one of the above characters, it replaces the token in the
command line with an alphabetized list of file names that match the pattern. If it finds no matches,
it passes the token unchanged to the command. For example, when you enter the command

ls name(ABCJ

ksh replaces the token name[ABC] with nameA, nameB, and nameC (again, if they exist in the
current directory), so the command now reads:

ls nameA nameB nameC

It then passes this second, transformed version of the command line to the command ls.

Note that the slash'/' and leading period'.' must be matched explicitly in a pattern. The slash, of
course. separates the elements of a path name; while a period at the begin of a file name usually
(but not always) indicates that that file has special significance.

Quoting Text
From time to time, you will want to "turn off' the special meaning of characters. For example, you
may wish to pass a token that contains a literal asterisk to a command; to do so, you need a way to
tell ksh not to expand the token into a list of file names. Therefore. ksh includes the quotation
operators'\','"', and"'; these "turn off' (or quote) the special meaning of operators.

The backslash'\' quotes the following character. For example. the command

ls name*

lists a file named name•, and no other.

The shell ignores a backslash immediately followed by a newline, called a concealed newline. This
lets you give more arguments to a command than will fit on one line. For example, the command

cc -o output filel.c file2.c file3,c \
file4.c fileS.c file19.c

invokes the C compiler cc to compile a set of C source files, the names of which extend over more
than one line of input. You will find this to be extremely helpful, especially when you write scripts
and makefiles, to help you write neat, easily read commands.

A pair of apostrophes ' ' prevents interpretation of any enclosed special characters. For example, the
command

LEXICON

ksh 759

find . -name '*.c' -print

finds and prints the name of any C-source file in the current directory and any subdirectory. The
command find interprets the ••• internally; therefore, you want to suppress the shell's expansion of
that operator. which is accomplished by enclosing that token between apostrophes.

A pair of quotation marks"" has the same effect. Unlike apostrophes, however. ksh will perform
parameter substitution and command-output substitution (described below) within quotation
marks. Note that everything between quotation marks will be a single argument. even if there are
spaces between the tokens. For example, the command

grep "x y" *.c

calls the string-search command grep to look for the string x<space>y.

Scripts
Shell commands can be stored in a file, or script. The command

ksh script [parameter...]

executes the commands in script with a new subshell ksh. Each parameter is a value for a positional
parameter, as described below.

If you have used the command chmod to make script executable, then it is executed under the
Bourne shell sh, without requiring the ksh command. Because all executable scripts are executed
by the Bourne shell by default, not the Korn shell, you should avoid constructions that are unique
to the Korn shell.

Parameters of the form '$n' represent command-line arguments within a script. n can range from
zero through nine; $0 always gives the name of the script. These parameters are also called
positional parameters.

If no corresponding parameter is given on the command line, the shell substitutes the null string for
that parameter. For example, if the script fonnat contains the following line:

nroff -ms $1 >$1.out

then invoking fonnat with the command line:

format mytext

invokes the command nroff to format the contents of mytext, and writes the output into file
mytex:t.out. If. however, you invoke this command with the command line

format mytext yourtext

the script will format mytext but ignore yourtext altogether.

Reference $• represents all command-line arguments. If, for example, we change the contents of
script fonnat to read

nroff -ms $* >$1.out

then the command

format mytext yourtext

will invoke nroff to format the contents of mytex:t and yourtext, and write the output into file
mytex:t.out.

Commands in a script can also be executed with the . (dot) command. It resembles the ksh
command, but the current shell executes the script commands without creating a new subshell or a

LEXICON

760 ksh

new environment; therefore, you cannot use command-line arguments.

Variables
Shell variables are names that can be assigned string values on a command line, in the form

name=value

The name must begin with a letter, and can contain letters, digits, and underscores·_·. Note that no
white space can appear around the'=', or the assignment will not work.

In shell input. '$name' or '${name}' represents the value of the variable. For example:

TEXT=mytext

nroff -ms $TEXT >$TEXT.out

Here, ksh expands $TEXT before it executes the nrotI command. This technique is very useful in
large. complex scripts: by using variables, you can change the behavior of the script by editing one
line, rather than having to edit numerous variables throughout the script.

Note that if an assignment precedes a command on the same command line, the effect of the
assignment is local to that command; otherwise, the effect is permanent. For example,

kp=one testproc

assigns variable kp the value one only for the execution of the script testproc.

ksh sets the following variables by default:

@

•

The number of actual positional parameters given to the current command.

The list of positional parameters "$1 $2 ... ".

The list of positional parameters "$1" "$2" ... (the same as '$@'unless some parameters are
quoted).

Options set in the invocation of the shell or by the set command.

? The exit status returned by the last command.

The process number of the last command invoked with '&'.

$ The process number of the current shell.

Environmental Variables
ksh references the following environmental variables:

ENV If this variable is set at start-up, after all profile files have been executed, the expanded
value is used as the shelrs start-up file. It typically defines functions and aliases.

FCEDIT
This sets the editor used by the command fc.

HOME Initial working directory; usually specified in the password file /etc/passwd.

IFS Delimiters for tokens; by default space, tab, and newline.

KSH_ VERSION
The current version of the Korn shell that you are using.

MAIL Checked at intervals specified by environmental variable MAILCHECK. If file specified by
this variable is new since last checked, the shell prints "You have mail." on the user's
terminal. If the file has increased in size since the last check, the shell prints "You have
new mail." on the user's terminal.

LEXICON

ksh 761

MAILCHECK
Specifies the number of seconds between checking for new mail. If not specified,
MAILCHECK defaults to 60 seconds.

PATH Colon-separated list of directories searched for commands.

PSI First prompt string, usually'$'. Note that in this variable and PS2, ksh expands the symbol
I into the current number of the command line. For example, the prompt ksh !> prints the
prompt ksh NN> with every command. where NN is the number of the current command.
This is useful when you have enabled the history feature, as described below.

To print a prompt that includes your local site name, include the variable $PWD (described
below) in the definition of PSI. For example.

PS 1=' $PWD>'

prints the current directory as your prompt. just like MS-DOS does. To include your
system's name, read the contents of file /etc/uucpname. as follows:

SITE='cat /etc/uucpname'
PS1='$SITE!!$PWD>'

This form of the prompt is quite useful when you are working on networked machines and
may not always be sure just what system you are working on. Note that two exclamation
points are necessary; as noted above, ksh expands one '!' into the number of the current
command.

Finally. to include the command number with site name and current directory, do the
following:

SITE='cat /etc/uucpname'
PS1='$SITE!!$PWD !>'

This will give you a very long prompt. but one with much information in it.

PS2 Second prompt string. usually '>'. ksh prints it when it expects more input. such as when
an open quotation-mark has been typed but a close quotation-mark has not been typed, or
within a shell construct.

PWD The present working directory, i.e., the directory within which you are now working.

SECONDS
The number of seconds since the current shell was started.

SHELL The full path name of the shell that you are now executing.

TERM The name of the type of terminal you are now using. as used by various programs for
reading the file I etc I termcap.

TIMEZONE
The current timezone you are located in, as set in your .profile. This is an interesting and
powerful variable; see its entry in the Lexicon for details.

USER The login-identifier of the user, i.e., you.

The following special forms substitute parameters conditionally:

${name-token}
Substitite name if it is set; if it is not, substitute token.

LEXICON

762 ksh

${name=token}
Substitute name if it is set; if it is not set, substitute token and set name to equal token.

${name+ token}
Substitute token if name is set.

${name? token}
Substitute name if it is set; if it is not, print token and exit from the shell.

Command Output Substitution
ksh can use the output of a command as shell input (as command arguments, for example) by
enclosing the command in grave characters ' '. For example, to list the contents of the directories
named in file dirs, use the command

ls -1 'cat dirs'

Constructs
ksh lets you control the execution of programs through the following constructs. It recognizes a
construct only if it occurs unquoted as the first token of a command. This implies that a separator
must precede each reserved word in the following constructs; for example, newline or ';' must
precede do in the for construct.

breakfnJ
Exit from for, until, or while. If n is given, exit from n levels.

case token in [pattern [I pattern J ...) sequence;;] .•• esac
Check token against each pattern, and execute sequence associated with the first matching
pattern.

continue [n]
Branch to the end of the nth enclosing for, until, or while construct.

for name [in token ... J do sequence done
Execute sequence once for each token. On each iteration, name takes the value of the next
token. If the in clause is omitted,$@ is assumed. For example, to list all files ending with
.c:

for i in *.c
do

cat $i
done

if seql then seq2 [elif seq3 then seq4] ... [else seq5] tl
Execute seql. If the exit status is zero, execute seq2; if not, execute the optional seq3 if
given. If the exit status of seq3 is zero, then execute seq4, and so on. If the exit status of
all tested sequences is nonzero, execute seq5.

time sequence
Time how long it takes sequence to execute. When sequence has finished executing. the
time is displayed on the standard output.

while sequencel [do sequence2 J done
Execute sequence2 as long as the execution of sequencel results in an exit status of zero.

(sequence)
Execute sequence within a subshell. This allows sequence to change the current directory,
for example, and not affect the enclosing environment.

LEXICON

ksh 763

{sequence}
Braces simply enclose a sequence.

Built-in Commands
ksh executes most commands via the fork system call, which creates a new process. See the
Lexicon articles on fork() and exec for details on these calls. ksh also has the following commands
built into itself .

• script Read and execute commands from script. Positional parameters are not allowed. ksh
searches the directories named in the environmental variable PATii to find the given script.

: [token ...]
A colon':' indicates a "partial comment". ksh normally ignores all commands on a line that
begins with a colon, except for redirection and such symbols as$, {,?. etc.

A complete comment: if# is the first character on a line, ksh ignores all text that follows on
that line.

alias [name=value ...]
When called without arguments. alias prints all aliases and their values. When called with
a name but no associated value, then it prints the value of name. When called with a name
and value combination, it associated value with name.

For example, the command

alias logout='exit'

binds the token logout to the command exit: hereafter, whenever you type logout, it will be
as if you typed the exit command.

Note that when you define an alias, you should be careful not to write one that is self­
referring, or ksh will go into an infinite loop when it tries to expand the alias. For example,
the definition:

DO NOT DO THIS!
alias ls='ls -CF'

will send ksh into an infinite loop, as it tries infinitely to replace ls with ls. Rather. use the
definition:

or

THIS IS CORRECT
alias ls='/bin/ls -CF'

THIS TOO IS CORRECT
alias ls=' ls -CF'

In the latter example, note the spaces between the first grave character and the. ls.

ksh has a number of aliases set by default. See the section Aliases, below, for details.

bind [-m] [key_sequence=blndtng_name ...]
When called without arguments, list the current set of key bindings for MicroEMACS-style
editing of command lines. When called with arguments, bind the key_sequence to
btndtng_name.

For example, the command

bind 'A[AH'=delete-word-backward

LEXICON

764 ksh

binds the editing command delete-word-backward to the key sequence <esc><backspace>.
Note that the carat characters in this command are literally that. not the shell's
representation of a literal <esc> or <backspace> character.

When called with the -m option. bind more than one binding_ name to a given key_ sequence.
This lets you build keyboard macros. to perform complex editing tasks with one or two
keystrokes.

See the section on Command-line Editing. below. for details.

bulltin command
Execute command as a built-in command.

cd dlr Change the working directory to dlr. If no argument is given. change to the home directory
as set by the environmental variable HOME. When invoked. it also changes the
environmental variables PWD and OLDPWD.

Using a hyphen·-· as the argument causes ksh to change to the previous directory. i.e .. the
one indicated by shell variable OLDPWD. In effect. this swaps OLDPWD and PWD. thus
allowing you to flop back and forth easily between two directories.

echo token ...
Echo token onto the standard output. ksh replaces the command echo with the alias
echo='print'.

eval [token ...]
Evaluate each token and treat the result as shell input.

exec [command]
Execute command directly rather than as a subprocess. This terminates the current shell.

exit [status]
Set the exit status to status, if given. then terminate; otherwise. the previous status is used.

export [name ...]
ksh executes each command in an environment. which is essentially a set of shell variable
names and corresponding string values. It inherits an environment when invoked, and
normally it passes the same environment to each command it invokes. export specifies
that the shell should pass the modified value of each given name to the environment of
subsequent commands. When no name is given. ksh prints the name of each variable
marked for export.

export V ARIABLE=value
This form of the export command sets VARIABLE to value. and exports it. Thus. the
command

export FOO=bar

is equivalent to the commands:

FOO= bar
export FOO

re [-IJ [-n] {first [last]]
Draw the previously executed commands first through last back for manipulation and
possible execution. first and last can be referenced either by their history numbers. or by a
string with which the command in question begins. Normally. the commands are pulled
into an editor for manipulation before they are executed; the editor is defined by the
environmental variable FCEDIT (default, ed). The commands in question are executed as
soon as you exit from the editor. Option -1 lists the command(s) on stdout. and so

LEXICON

suppresses the editing feature. Option -n inhibits the default history numbers.

fc -s [old=new] [command]
Re-execute command after substituting string new for old.

functionjuncname {script}

ksh 765

Define function fwicname for the shell to execute. For example the following defines
function get_name for the shell:

function get_name {

}

echo -n Please enter your name •..
read name
return 0

When ksh encounters get_name, it runs the above-defined function. rather than trying to
find get_name on the disk. Note that the return status can be any valid status and can be
checked in the code that called get_name by reading the shell variable $? (described above),
or by using the function as the argument to an if statement. This allows you to build
constructs like the following:

if get_name; then
do_something

else
do_something else

fi

To list all defined functions. type the alias functions. To receive detailed information on a
defined function, use the command type name where name is the name of the function in
which you are interested.

getopts optstrlng name [arg ...]
Parse the args to command. See the Lexicon entry for getopts for details.

hash [-r] [name ...]
When called without arguments. hash lists the path names of all hashed commands. When
called with name hash check to see if it is an executable command, and if so adds it to the
shell's hash list. The -r option removes name from the hash list.

kill [-lJ [signal] process ...
Send signal to process. The default signal is TERM. which terminates the process. signal
may either be a number or a mnemonic as #defined in header file <signal.h>. When called
with the -1 option, it lists all known types of signals. See the Lexicon entry for kill for
details.

let [expression]
Evaluate each expression. This command returns zero if expression evaluates to non-zero
(i.e., fails). and returns non-zero if it evalutes to zero (i.e .. succeeds). This is useful for
evaluating expressions before actually executing them.

print [-nreunJ [argument ...]
Print each argument on the standard output. separated by spaces and terminated with a
newline. Option -n suppresses printing of the newline. Option -un redirects output from
the standard output to file descriptor n.

Note that each argument can contain the following standard C escape characters: \b. \f, \n,
\r. \v, and \###. See the Lexicon article on C Language for details each character's
meaning. The option -r inhibits this feature, and the -e option re-enables it.

LEXICON

766 ksh

read name ...
Read a line from the standard input and assign each token of the input to the
corresponding shell variable name. If the input contains fewer tokens than the name list.
assign the null string to extra variables. If the input contains more tokens. assign the last
name the remainder of the input.

readonly [name .. .]
Mark each shell variable name as a read-only variable. Subsequent assignments to read­
only va;iables will not be permitted. With no arguments, print the name and value of each
read-only variable.

return [status]
Return status to the parent process.

set [-aethkmnuvx [-o keyword] [name ...] J

shift

Set listed flag. The -o option sets keyword, where keyword is a shell option.

When used with one or more names, this command sets shell variables name to values of
positional parameters beginning with $1.

For example, the command

set -h -o emacs ignoreeof

performs the following: turns on hashing for all commands, turns on MicroEMACS-style
command-line editing, and turns off exiting upon EOF (that is, you must type exit to exit
from the shell). set commands are especially useful when embedded in your .profile, where
they can customize ksh to your preferences.

For details of this command, see its Lexicon entry.

Rename positional parameter 1 to current value of $2, and so on.

test [option] [expression]
Check expression for condition option. This is a useful and complex command, with more
options than can be listed here. See its Lexicon entry for details.

times Print on the standard output a summary of processing time used by the current shell and
all of its child processes.

trap [command] [n ...]
Execute command if ksh receives signal n. If command is omitted, reset traps to original
values. To ignore a signal, pass null string as command. With n zero, execute command
when the shell exits. With no arguments, print the current trap settings.

typeset [-firx] [+tlrx] [name [=value] ...]
When called without an argument, this command lists all variables and their attributes.

When called with an option but without a name, it lists all variables that have the specified
attribute; - tells typeset to list the value of each variable and + tells it not to.

When called with one or more names, it gives name to the listed attribute. If name is
associated with a value, typeset also assigns the value to it.

typeset recognizes the following attributes:

-i Store variable's value as an integer
-f List function instead of variable
-r Make the variable read-only
-x Export variable to the environment

LEXICON

ksh 767

umask [nnn]
Set user file creation mask to nnn. If no argument is given, print the current file creation
mask.

unalias name ...
Remove the alias for each name.

wait[pld]
Hold execution of further commands until process pld terminates. If pld is omitted, wait for
all child processes. If no children are active, this command finishes immediately.

whence f-vJ name ...
List the type of command for each name. When called with the -v option, also list functions
and aliases.

Aliases
ksh implements as aliases a number of commands that sh calls as separate executable programs.
The echo alias, for instance, does everything that /bin/echo does, but ksh does not have to fork()
and exec() simply to echo a token. Other aliases, like pwd, work by printing the contents of shell
variables. The command /bin/pwd still works should you prefer it, but you must request it by its
full path name should you not wish to use the much faster alias version.

ksh sets the following aliases by default. If you wish, you can use the built-in command unalias to
make one or all of them go away.

echo=print
false=let
functions=typeset -f
history=fc -1
integer=typeset -1
login=exec login
newgrp=exec newgrp
pwd=prlnt -r $PWD
r=fc -s
true=:
type=whence -v

The alias history is especially useful when you are using the Korn shell's history feature. When
invoked with no argument, it prints the last 13 commands you typed. When invoked with one
numeric argument, it lists the command that corresponds to that argument: for example

history 106

prints the I 06th command you entered (assuming that you've entered that many). When used with
two numeric arguments, it prints the range of commands between the two arguments: for example

history 10 99

prints the tenth through the 99th commands you entered.

Job Control
ksh lets you manipulate and monitor background jobs via its job control commands.

The following commands manipulate background jobs:

jobs Display information about all controlled jobs. Information is in the following format:

%num [+-] pld status command

where num indicates the job number, '+'indicates the current job,·-· indicates the previous

LEXICON

768 ksh

job, pid is the job's process identifier, status shows the status of the job (e.g .• Running.
Done, Killed), and command is the command description. Note that ksh only checks for
changes in job status when waiting for a command to complete.

kill [-signal] pid ...
Described above.

waitfpldJ
Hold execution of further commands until process pid terminates. See its Lexicon entry for
details.

The following '%' syntax can be used with the above commands:

%+ Select the current job.

%- Select the previous job.

%num Select the job with job number num.

%string Select the most recently invoked job whose command begins with string.

%?string
Select the most recently invoked job whose command contains string.

Command-line Editing
One of the most useful features of ksh is its ability to remember commands that you have typed
previously. You can interactively edit previously issued commands and re-issue them with just a
few keystrokes.

You can recall commands and edit them using the re command, described above. ksh, however.
also has built into it a MicroEMACS editing feature that lets you recall and edit commands using
MicroEMACS-style editing commands. When you have finished editing, simply typing <enter>
dispatches the command for re-execution.

To turn on MicroEMACS editing. use the command

set -o emacs

The following table gives each editing command and its default keybinding. Note that you can
replace any of the following keybindings by using the bind command. described above. Note, too,
that not every command has a default keybinding. Those that do not have one are marked "None".

abort (<ctrl-G>)
Abort the current input line or function.

auto-insert
Insert text into the command line. This is the default for almost every key.

backward-char (<ctrl-B>)
Move the cursor one character to the left.

backward-word (<esc>B)
Move the cursor one word to the left. A word is defined as any cluster of characters
delineated by any of the characters named in the environmental variable IFS: by default,
<space>, <tab>, and <newline>.

beginning-of-line (<ctrl-A>)
Move the cursor to the leftmost position (i.e., the beginning) of the line.

co111plete(<esc><esc>)
Complete as much as is unique of the hashed command name or file name in which the
cursor is positioned. If no unique command or file name is found. ksh beeps. Note that

LEXICON

ksh 769

this command does nothing unless you have used the set command to turn on hashing.

complete-command (<ctrl-X><esc>)
Automatically complete as much as is unique of the hashed command name. Like the
complete command, above, except that file names are not expanded.

complete-file (<ctrl-X><ctrl-X> l
Automatically complete as much as is unique of the file name. Like the complete
command, above, except that commands are not expanded.

delete-char-backward (<ctrl-H>)
Delete the character to the left of the cursor. Shift text to the left to fill the gap left by the
deleted character.

delete-char-forward (<ctrl-D>)
Delete the character upon which the cursor is positioned. Shift text to the left to fill the gap
left by the deleted character.

delete-word-backward (<ctrl-W>)
Delete the word to the left of the cursor. Shift text to the left to fill the gap left by the
deleted word.

delete-word-forward (<esc>DJ
Delete the word to the right of the cursor. Shift text to the left to fill the gap left by the
deleted word.

down-history (<ctrl-N>)
Scroll to the next command in the history buffer, if any.

end-of-line (<ctrl-E>l
Move the cursor to the rightmost position (i.e .. the end) of the line.

eot (<ctrl-_>)
Send an EQT (end of transmission) signal to the shell. Normally. this is sent by <ctrl-D>.
but MicroEMACS mode binds this keystroke to an editing command.

forward-char (<ctrl-F>)
Move the cursor one character to the right.

forward-word (<esc>F)
Move the cursor one word to the right.

kill-line (<ctrl-U>l
Delete (i.e .. erase) this entire input line.

ldll-to-eol (<ctrl-K>)
Kill the input line from where the cursor is positioned to the end of the line.

Ust(<esc>?)
Display a sorted listed of all hashed commands and file names that have been entered so
far, and so lists the tokens that can be expanded with the complete commands, described
above.

list-command (<ctrl-X>?l
List all hashed commands.

Ust-ftle (none)
List all files used in hashed commands so far.

LEXICON

770 ksh

newline (<ctrl-J> or <ctrl-M>)
Dispatch the current line to the shell for execution. The cursor need not be at the
beginning or end of the line for this command to work correctly.

prefix-I (<esc>)
Introduce a two-character command sequence.

preflx-2 (<ctrl-X> J
Introduce a two-character command sequence.

quote (<ctrl-A>)
Read the following character literally, rather than as an editing command.

redraw (<ctrl-L>l
Redisplay the prompt and the current command line. This is useful if the line is garbled
due to, say, line noise when you are using a modem.

search-character (<ctrl-]>)
Search forward in the current command line for the next character typed.

search-history (<ctrl-R>)
Enter incremental-search mode and search backwards through the history buffer. abort
aborts search and returns you to the line from which you began the search; <esc> ends
searching and leaves you in the current line.

stuft' (none)
Take a character that is bound to an editing command and "stuff' it back into the terminal
input, so it can receive special treatment by the terminal handler.

stuft'-reset (none)
"Stuffs" a character, then aborts input.

transpose-chars (<Ctrl-T>)
Swap the character the cursor in on, with the character to its left.

up-history (<ctrl-P>)
Move to the previous line in the history buffer (if any).

yank (<ctrl-Y> J
Insert the most recently killed text back into the command string. at the point where the
cursor is positioned.

yank-pop (<esc> Y)
Yank a string. then replace it within the "yank" buffer with the next most previously killed
string.

Please note that when you turn on the MicroEMACS-style editing with the command set -o emacs,
you can no longer log out by typing <ctrl-D>: the shell grabs this keystroke to edit the material in
its input buffer. To log out. you must use the command exit, or type the command set +o emacs
before typing <ctrl-D> to log out.

Command Completion
ksh supports command completion. This feature permits you to invoke a command by typing only a
fraction of it; ksh will flesh out the command, based on what commands you have already entered.

To invoke command completion, set the following in .profile or .kshrc:

set -h -o emacs

This turns on MicroEMACS-style command-line editing. as well as hashing and tracking.

LEXICON

As an example, say that you type the following commands:

compress foo.tar
ps alx
df -a

If you type <ctrl-X>?, you then see the commands you typed in alphabetical order:

compress df ps

ksh 771

If you want to re-invoke the compress command without having to type all of it, you can use either
type <ctrl-R> followed by 'c' to use the shell's reverse-search capabilities; or you can type 'c' followed
by <esc><esc> to have the shell's command-completion facility complete the command.

If you use the reverse-incremental search, you get the entire command line as you had typed it.
Additional uses of <Ctrl-R> while already in search mode tell ksh to search further back in its
history list of commands.

If. however. you use the command completion, you get only the command. So, to continue the
example, if you type the letter 'c' followed by <esc><esc> ksh displays the word compress, followed
by a <space>. and awaits more input.

In general, the reverse-search is better if you wish to re-execute an entire command; but command
completion is better if you want just the command name.

File-Name Completion
ksh also lets you "complete" file names and directory names, just like you complete command
names.

If you are entering a file name and have specified enough of the name in order to specify a unique
file, typing <esc><esc> completes the file name or directory name. If you have not typed enough.
ksh remains silent; type more characters of the file name, then try <e&C><esc> again. If you enter a
bogus file name or directory name, ksh beeps to indicate that it cannot complete the given name.
When ksh completes a file name, it then prints a space character. This indicates that the string
names a file (rather than a directory); the space character lets you begin immediately to type the
next argument. When ksh completes a directory name, it appends a slash('/') instead of a space
character, and waits for you to type the next part of the path name.

For example. if you type

ls -1 /usr/spool/uucp

followed by <esc><esc>. nothing happens because of the ambiguity between directory names
/usr/spool/uucp/ and /usr/spool/uucppublic/.

If you then type the letter 'p'. the command now appears:

ls -1 /usr/spool/uucpp

Typing <e&C><esc> now expands it out to

ls -1 /usr/spool/uucppublic/

which is the name you desire. Note that ksh appends the trailing slash and waits for more.

A file-name completion example is:

more /usr/lib/uucp/P

LEXICON

772 ksh

followed by <esc><esc>; this yields:

more /usr/lib/uucp/Permissions

which saves you eight keystrokes.

Example
The following C code creates a program called splurt.c. It demonstrates numbered redirection of
ksh, by writing to five streams without opening them. Compile it with the command:

cc -o splurt splurt.c

To call it from the command line, you could type a command of the form:

splurt 3> splurt3 4> splurt4 5> splurt5 6> splurt6 7> splurt7

This will redirect the splurt's output into files splurt3 through splurt7.

#include <stdio.h>
main ()
{

int i;
char buf[50];

for(i = 3; i < 8; i++) {
sprintf(buf, "For fd %d\n", i);
write(i, buf, strlen(buf));

}
}

Files
/etc/profile - System-wide initial commands
$HOME/ .profile- User-specific initial commands
I dev I null - For background input

See Also
bind, commands, dup(), environ, exec, fork(), getopts, jobs, kill, login, newgrp, set, sh, signal(),
test, wait

For a list of commands associated with ksh, see the Shell Commands section of the Commands
Lexicon article.

Introduction to sh, the Bourne Shell, tutorial

Notes
Note that the queue of previously issued commands is stored in memory. not on disk.

This version of ksh offers a subset of the features of the Korn shell shipped with UNIX System V.2.
It does not offer the following features:

vi-style command-line editing.

Command fc -e.

Variables RANDOM and PPID.

Variable arrays.

LEXICON

KSH VERSION 773

Variable attributes other than integers.

The Mark Williams version of ksh is based on the public-domain version of the Korn shell, which in
turn is based on the public-domain version of the seventh edition Bourne shell written by Charles
Forsyth and modified by Eric Gisin, Ron Natalie, Arnold Robbins, Doug Gwyn, and Erik Baalbergen.

t3.itlU#d"tt•U m#Mit.l.Ui@hffllW@!Gfj
List current version of Korn shell

The Korn shell stores its current version in environmental variable KSH_VERSION.

See Also
environmental variables, ksh

LEXICON

l.out.h 775

5.Modem
Field 5 must correctly name your modem using an entry from I etc/modemcap.

The file /etc/modemcap contains descriptions for a number of popular modems. to spare you the
trouble of typing control sequences for your modem. For a list of the modems described in this file,
as well as available speeds, see the Lexicon entry for modemcap.

Example
The following entry in file L-devices specifies a 1200-baud Hayes (or Hayes-compatible) modem
attached to serial port COM2:

ACU com21

See Also
me formats, UUCP

com2r 1200

llMIBl@i·fli'
~COHERENT 286 objects
#Include <l.out.h>

ha yes

The header file l.out.h describes the format for the output of compilers, assemblers, and the linker
under COHERENT 286.

The assembler outputs an unlinked object module, which must be bound with any required libraries
(leaving no unresolved symbols) to produce an executable file, or load module. A call to one of the
exec routines can then execute the load module directly.

The link module begins with a header, which gives global and size information about each segment.
Segments of the indicated size follow the header in a fixed order. The header file l.out.h defines the
header structure as follows:

struct ldheader {
short l_magic1
short 1 _flag1
short l_machine1

#pragma align 2
vaddr_t l_entry1
size t l_ssize[NLSEG] 1

#pragma align
}1

l_magic is the magic number that identifies a link module: it always contains L_MAGIC. l_flag
contains flags indicating the type of the object. l_machlne is the processor identifier, as defined in
the header file mtype.h. l_tbase is the start of the text segment. l_entry contains the machine
address where execution of the module commences. l_ssize gives the size of each segment.

Files
I.out - Default load module name
<l.out.h> - Define format of COHERENT 286 objects
<mtype.h> - Machine identifiers

See Also
as, cc, core, exec, Id, mtype, nm, system calls

LEXICON

776 L.sys

Notes
COHERENT 386 uses the common object file format (COFFJ for its executables. See the Lexicon
entry for cofY.h for information on this format.

~'~~~~~-. - ~""~""~~~"""''""''~
Format for UUCP site descriptions
/usr/llb/uucp/L.sys

The file L.sys holds descriptions of remote sites that are accessed via UUCP. UUCP utilities read
from this file the description of any system that you ask them to access. The superuser root can
read and edit the contents of this file, both to update its contents and to add new descriptions.

Each line in L.sys is either a comment or a site descriptor. If a line begins with a pound sign ('#'). it
is a comment; otherwise. it is treated as a site descriptor. Each site description consists of five or
more fields, each field being demarcated by one or more white-space characters.

Site Description
The first five fields of a site description identify the site and how to contact it. These fields are as
follows:

1. Remote system name
This names the remote system. In COHERENT versions 3.0.0 and 3.1.0. only the first seven
characters are significant.

2. Legal call times
This entry specifies when the remote site may be called. There are several possible formats:

Never
day_list
day_and_time_llst

Never means never call the remote site: use it only for sites that will only be calling you.
day_list may be any of the following: Any (that is, call as soon as a file is queued for
sending). Wk (for Monday through Friday). or one or more of Su, Mo, Tu, We. Th. Fr. or Sa,
separated by commas (be sure not to use spaces here). A day_and_time_list is identical to a
day list but appends a time field to one or more of the days specified. The time field
consists of two four-digit 24-hour times separated by a hyphen. The legal call time is any
time at or after the first time and at or before the second time. If the first time is greater
than the second time, then the valid calling times will be from midnight to the second time
and from the first time through midnight. Omitting the time field permits calling at any
time on the specified day. For example:

3. Device

never dial the site
Never
dial the site whenever a file is queued
Any
dial on Sunday, Monday and Tuesday, 2-5 AM
SuMoTu0200-0500
Weekdays between 1-7 PM and all day on Saturday
Wkl300-1900,Sa
Midnight Sunday through 2 AM and 11 PM through midnight
Su2300-0200

This indicates the device on your computer via which UUCP is to contact the remote site.
For sites accessed via a modem, use the entry ACU. For sites directly connected via a serial

LEXICON

L.sys 777

port, use the name of the port. e.g.. com31.

4.Speed
This gives the the baud rate at which UUCP is to call the remote system, e.g .. 1200, 2400,
or 9600. This speed must be valid according to the file /etc/modemcap for at least one
modem described in the file L-devices.

5. Telephone number
This gives the string that UUCP is to send to the modem in order to call the remote site.
This string may include special characters for your modem (e.g .. some modems accept a
comma if a pause is needed during dialing). but will usually be simply the number to dial,
e.g. "17085590412". The string that is actually sent to the modem consists of the cs and
ds strings from the modem's entry in /etc/modemcap. the telephone number, and finally
the de and ce strings from /etc/modemcap.

Chat Script
The remaining fields in a descriptor form the "chat script", that is, the dialogue that your UUCP
system must perform in order to log on to the remote computer. The chat script consists of strings
of characters to be exchanged between the remote computer and your UUCP system: first comes an
expect_strlng (the string that your system expects), followed by a send_strlng (the string to send in
response to the expect_strlng). When calling a remote site, your computer waits for a carrier from
the remote modem, then waits for the first expect_ string. after which it sends the first send_strlng,
etc.

Consider. for example, the remote system bazooka, which has a login prompt of Coherent login::
assume that your login is howard, the remote system prompts for passwords with password:, and
your password is r56d92. The chat script for bazooka will read as follows:

ogin: howard word: r56d92

As you can see from the above example, an expect_strlng need contain only the last five characters
of what the remote system sends.

An expect_strlng may be compound or simple. A slmple_expect_strlng is either a sequence of
characters (not including spaces, tabs, or hyphens) or a pair of quotation marks"". An empty pair
of quotation marks tells UUCP not to wait for any incoming prompt, but go ahead and send the next
send_strlng (i.e .. expect a null string). A compound_expect_strlng is a sequence of fields separated by
hyphens, in the format:

slmple_expect_string-send_strlng-simple_expect_string-send_string ...

A compound_expect_string has no spaces or tabs. If the first simple_expect_string is not received
within 25 seconds, the first send_string after the hyphen is sent and the system waits for the second
simple_expect_string; if the second simple_expect_string is not received after 25 seconds, the second
send_string is sent. and so on. This syntax allows UUCP to use any number of alternate
expect/send exchanges, rather than failing if it does not receive the first expect_string.

A send_strlng is the character sequence that UUCP sents to the remote site. Unless otherwise
specified, UUCP sends a newline at the end of any send_strlng. As a special case of this, an empty
alternate send_string tells UUCP to send a single newline to the remote site if the preceding
expect_ string is not received. For example

ogin:--ogin:

is a compound expect_string that tells UUCP to wait for the string ogin: from the remote site. If
UUCP does not receive this string within the specified time limit, it sends a newline and again waits
for ogln: from the remote site.

A send_strlng that consists of only two quotation marks• " ' sends a carriage return and nothing

LEXICON

778 13tolO

else. Otherwise. it sends the text specified followed by a carriage return. You can embed the
following escape sequences into a send_string to send special characters:

Limitations

Notation Meaning

\EOT
\BREAK

\b
\c

\d
\K
\n
\N
\p
\r
\s
\t
\\

\XXX

Send an EQT character (\ 004)
Send a break signal on the line
Send a backspace
Suppress the carriage return normally sent
(can occur anywhere in send string)
Delay for two seconds
Send a break signal on the line
Send a newline
Send a NUL character (\000)
Delay for one second
Send a carriage return
Send a space character
Send a tab character
Send a backslash character
Send the octal character specified

L.sys has the following limitations:

Site descriptors may not continue beyond one line.

Line length cannot exceed 511 characters.

No line may have more than 27 composite-expect/send pairs.

In the COHERENT versions 3.0.0 and 3.1.0, there is no way to send a break signal to the
remote modem. This feature will be added in a future release.

Example

The following L.sys entries are used to dial into the MWC UUCP BBS. The first entry corresponds to
2400 b.p.s. access and the second to 9600 b.p.s via a Telebit Trailblazer modem. Please note that in
the example below, entries are continued over multiple lines: in the actual file, each entry must be
on a single line, but the line may exceed 80 characters in length.

mwcbbs Any ACU 2400 17085590412 \
"" \r\d\r in:--in: nuucp word: public word: SERIALNUM

#mwcbbs Any ACU 9600 17085590445 \
FAST \r\d\r in1--in1 nuucp word: public word: SERIALNUM

For further details on accessing the MWC BBS. refer to the COHERENT Release Notes.

See Also
me formats, L-devices, modemcap, Permissions, UUCP

&1111$'®6"i''"SU·l·ilnmu
Convert file system block number to long integer
l3tol(lp, l3p, n)
long *lp;
char *l3p;
unsignedn;

LEXICON

LASTERROR - le 779

To conserve space inside i-nodes in COHERENT file systems, the system stores block addresses in
three bytes. Programs that reference or maintain file systems use the functions 13tol() and ltol3()
routines to convert between the three-byte representation and long numbers.

13tol() converts n three-byte block addresses at location 13p to an array of long integers at location
Ip.

See Also
canon.h, general functions, ltol3()

'If 1•w1;t•2;11a•Nl'·M•·M'm••amn
Program that last generated an error
LASTERROR=program name

The environmental variable LASTERROR names the last program to have returned an error to the
shell. For example, if you had used the command set with an incorrect number of arguments, it
would have failed to run and would have exited with an error condition, and LASTERROR would
read LASTERROR=set.

The command help reads LASTERROR to determine what the last program was for which you
needed help. Thus, if you type help without an argument, it will return information about the
program named in LASTERROR.

See Also
environmental variables

•H·lu!u@U.I
List directory's contents in columnar format
le [-labcdfp I [directory ...]

le lists the names of the files in each directory, or the current directory if no directory is named. The
files are categorized by type (files, directories, and so on) and listed in columns within each category.

The following options modify the output.

-1 List only one file name per line (do not print in columns).

-a List all file names, including'.' and' . .'.

-b List block-special files only.

-c List character-special files only.

-d List directories only.

-f List regular files only.

-p List pipe files only.

See Also
commands, ls

Notes
le -If is useful for producing a list of regular files. For example,

cp 'le -lf' mydir

copies all regular files to directory mydir.

LEXICON

780 Id

.!I.Jl,ili@h·'
Link relocatable object modules
Id [option .. .]file ...

A compiler translates a file of source code into a relocatable object. This relocatable object cannot be
executed by itself, for calls to routines stored in libraries have not yet been resolved. Id combines,
or links, relocatable object files with routines stored in libraries produced by the archiver ar to
construct an executable file. For this reason, Id is sometimes called a linker. a link editor. or a
loader.

Id scans its arguments in order and interprets each option as described below. Each non-option
argument is either a relocatable object file. produced by cc, as. or Id, or a library archive produced
by ar. It rejects all other arguments and prints a diagnostic message.

Each relocatable file argument is bound into the output file if its machine type matches the machine
type of the first file so bound; if it does not, Id prints a diagnostic message. The symbol table of the
file is merged into the output symbol table and the list of defined and undefined symbols updated
appropriately. If the file redefines a symbol defined in an earlier bound module, the redefinition is
reported and the link continues. The last such redefinition determines the value that the symbol
will have in the output file, which may be acceptable but is probably an error.

Each library archive argument is searched only to resolve undefined references, i.e .. if there are no
undefined symbols, the linker goes to the next argument immediately. The library is searched from
first module to last and any module that resolves one or more undefined symbols is bound into the
output exactly as an explicitly named relocatable file is bound. The library is searched repeatedly
until an entire scan adds nothing to the executable file.

The order of modules in a library is important in two respects: it will affect the time required to
search the library, and, if more than one module resolves an undefined symbol. it can alter the set
of library modules bound into the output.

A library will link faster if the undefined symbols in any given library module are resolved by a
library module that comes later in the library. Thus, the low-level library modules, those with no
undefined symbols. should come at the end of the library, whereas the higher-level modules, those
with many undefined symbols. should come at the beginning. The library module ranlib.sym,
which is maintained by the ar s modifier. provides Id with a compressed index to the symbols
defined in the library. But even with the index, the library will link much faster if the modules
occur in top-down rather than bottom-up order.

A library can be constructed to provide a type of "conditional" linking if alternate resolutions of
undefined symbols are archived in a carefully thought-out order. For instance, libc.a contains the
modules

flnlt.o
exlt.o
_finlsh.o

in precisely the order given, though some other modules may intervene. flnlt.o contains most of the
internals of the SIDIO library, exlt.o contains the exitQ function, and _flnlsh.o contains an empty
version of _finish(), the function that exitO calls to close STDIO streams before process termination.
If a program uses any STDIO routines, macros, or data, then ftnit.o will be bound into the output
with its version of flnlshQ. If a program uses no SIDIO. then the "dummy" _flnish.o will be bound
into the output because it is the first module that defines _finish() that the linker encounters after
exit.o adds the undefined reference. This saves approximately 3.000 bytes. To set the order of
routines within a library, use the archiver ar.

LEXICON

Id 781

COFF Linking
COHERENT 386 uses the Common Object File Format (COFF). This format renders many
advantages, but it also places special demands upon the linker. The following discussing some of
the complexities that arise for linking into the COFF format.

Under COFF. common variables are kept aligned according to their most strongly aligned
contributor. If name is linked with another module that also declares name but sets it to another
length, the linker creates one such variable and gives it the greater length of the two. Id deduces
the alignment of a common variable by its length: if the length of a common is divisible by four, it is
aligned on a four-byte boundary; if it is divisible by two, it is aligned on a two-byte boundary.
Otherwise, it is assumed to be unaligned. The linker supports only three classes of alignment: four­
byte, two-byte. and unaligned. It then aligns a common variable according to its most strongly
aligned contributor.

For example, if one assembly-language module contributes a .comm (common) variable named xyz
whose length is four bytes, and another contributes another xyz whose length is five bytes. Id gives
the resulting xyz a length of eight bytes to satisfy the length requirement (at least five) and the
alignment requirement (four-byte boundary).

Or in another example. if you declare a C variable char x; x is a common variable, with a length of
one byte. If another C module declares long x; the two x's will share a length of four bytes.
However, in the first module sizeof(x) == 1 and in the second sizeof(x) == 4. These will cause
warning messages to appear. which you can turn off by using the -q option.

After Id has made its first pass, it places all common variables at the end of the .bss segment: first
the four-byte-aligned variables. then the two-byte-aligned, then the unaligned.

Options
Id recognizes the following options. Note that if an option labelled "COHERENT 386 only" is used
under COHERENT 286. Id silently ignores it.

-d Define common regions even if relocation information is retained. By default, Id leaves
common areas undefined if there are undefined symbols or if the -r option is specified.
COHERENT 286 only.

-e entry
Specify the entry point of the output module, either as a symbol or as an absolute octal
address.

-f (Force) Force link even if there are errors. Results may be undefined.

-i This option is obsolete, but is kept for compatibility purposes. If you include it in a
makefile, Id will silently ignore it.

-K (COHERENT 386 only)
Link a kernel segment.

-Ldtrectory
Search directory for libraries and objects before searching the directories named in
LIBPATH. Note that you can have more than one -L option in a Id command line. For
example, if LIBPATH is set to /lib;/usr/lib, then the command line

ld -L/search/First -L/search/Next a.o -lxyz

tells Id to search for libraries libxyz.a and libc.a along the path:

/search/First;/search/Next;/lib;/usr/lib

LEXICON

782 Id

-1 name An abbreviation for the library /llb/libname.a or /usr/llb/libname.a if the first is not
found.

-ojlle Write output tojlle. Under COHERENT 286, the default is I.out; under COHERENT 386. the
default is a.out.

-q (Quiet) Suppress all warning messages.

-r Retain relocation information in the output, and issue no diagnostic message for undefined
symbols. This option builds a .o file that appears as if its pieces had been compiled
together.

-s Strip the symbol table from the output. The same effect may be obtained by using the
command strip. The -s and -r options are mutually exclusive.

-usymbol
Add symbol to the symbol table as a global reference, usually to force the linking of a
particular library module.

-X Discard local compiler-generated symbols beginning .L.

-x Discard all local symbols.

Id reads the environmental variables LDHEAD and LDTAIL and appends them to, respectively, the
beginning and end of its command line. For example, to ensure that Id is always executed with the
option -d. insert the following into your .prome:

export LDHEAD=-d

Likewise, to ensure that Id always includes the mathematics library libm when it links, insert the
following into your .profile:

export LDTAIL=-lm

LIBPATH
Except when used with its -I option, Id does not know about paths: it links exactly what you tell it
to link via the cc command line. cc looks for libraries by searching the directories named in the
environmental variable LIBPATH. If you do not define LIBPATH in your environment, it searches
the default LIBPATH as defined in /usr/include/path.h. If you define LIBPATH. cc searches the
directories in the order you specify. For example, a typical definition is:

export LIBPATH=:/lib:/usr/lib

This searches the current directory'.', then /lib, then /usr/lib.

Files
a.out - Default output, COHERENT 386
I.out - Default output, COHERENT 286
/coherent for -k option
/llb/llb*.a - Libraries
/usr /llb/llb*.a - More libraries

See Also
ar, ar.h, as, cc, coff.h, commands, l.out.h, LIBPATH, linker-defined symbols, strip

Notes
By default, COHERENT 286 allocates two kilobytes of stack to a process. This is sufficient for most
processes. To change the amount of stack used by a given executable program, use the command
tlxstack. See its Lexicon entry for details. COHERENT 386 uses the dynamic-stack allocation
feature of the 80386, so inadequate stack should never be a problem.

LEXICON

ldexpO - ldivO 783

The errors messages produced by the COHERENT 286 edition of Id differ significantly from those
produced by the COHERENT 386 edition. Be sure to check the appropriate section in the table of
error messages.

If you are linking a program by hand (that is, running Id independently from the cc command), be
sure to include the appropriate run-time start-up routine with the Id command line; otherwise, the
program will not link correctly.

Id for COHERENT 286 recognizes a limit of 16 significant characters in a variable name. Id for
COHERENT 386 has no formal limit.

ldexpO - General Function (libc)
Combine fraction and exponent
double ldexpif, e) double]; int e;

ldexp() combines the fraction] with the binary exponent e to return a floating-point value real that
satisfies the equation real=m*2Ae.

See Also
atof(), cell(), fabs(), floor(), frexp(), general functions, modf()

J!•Wtt•ll!M"'lil"®"mMWE! 8'~"11••••~"11 ., •••••••••
Append options to beginning of ld command line
export LDHEAD=options

The COHERENT linker Id reads the environmental variables LDHEAD and LDTAIL before it begins
its work. You can set these variables to hold the default options that you want the linker always to
use.

Id appends the options in LDHEAD to the beginning of its command line.

See Also
environmental variables, Id, LDTAIL

ldivO - General Function (libc)
Perform long integer division
#include <stdllb.h>
ldiv_t ldiv(numerator, denominator)
long numerator, denominator;

ldiv() divides numerator by denominator. It returns a structure of the type ldiv_t, which is
structured as follows:

typedef struct
long quot;
long rem;

} ldiv_t;

ldiv() writes the quotient into quot and the remainder into rem.

The sign of the quotient is positive if the signs of the arguments are the same; it is negative if the
signs of the arguments differ. The sign of the remainder is the same as the sign of the numerator.

If the remainder is non-zero, the magnitude of the quotient is the ·largest integer less than the
magnitude of the algebraic quotient. This is not guaranteed by the operators I and %, which merely
do what the machine implements for divide.

LEXICON

784 LDTAIL - lex

See Also
div(), general functions

Notes
The ANSI Standard includes this function to permit a useful feature found in most versions of
FORTRAN, where the sign of the remainder will be the same as the sign of the numerator. Also, on
most machines, division produces a remainder. This allows a quotient and remainder to be
returned from one machine-divide operation.

If the result of division cannot be represented (e.g., because denominator is set to zero), the behavior
of ldiv() is undefined. Caveat utilltor.

LDTAIL - Environmental Variable --~'"~~~~~,~~~~'~'~
Append options to end of Id command line
export LDTAIL=optlons

The COHERENT linker Id reads the environmental variables LDHEAD and LDTAIL before it begins
its work. You can set these variables to hold the default options that you want the linker always to
use.

Id appends the options in LDTAIL to the end of its command line.

See Also
environmental variables, Id, LDHEAD

~~'~''~"~~"""~ ..._~ ·~~~~~~~"""
Evaluate an expression
let [expression]

The command let is built into the Korn shell ksh. It evalutes expression; it returns zero if expression
evaluates to non-zero status, and non-zero ifit evaluates to zero status.

See Also
commands, ksh

~,~,,~~~~~~~,~~~~~
Lexical analyzer generator
lex [-t][-v]Iflle)
cc lex.yy.c -11

Many programs, e.g., compilers, process highly structured input according to rules. Two of the most
complicated parts of such programs are lexical analysts and parsing (also called syntax analysis).
The COHERENT system includes two powerful tools called lex and yacc to help you construct these
parts of a program. lex converts a set of lexical rules into a lexical analyzer, and yacc converts a set
of parsing rules into a parser.

The output of lex may be used directly, or may be used by a parser generated by yacc.

lex reads a specification from the givenfile (or from the standard input if none), and generates a C
function called yylex(). lex writes the generated function in the file lex.yy.c, or on standard output
if you use the -t option. The -v option prints some statistics about the generated tables.

The tutorial on lex that appear in this manual describes lex in detail. In brief, the generated
function yylex() matches portions of its input to one pattern (sometimes called a regular expression)
from a set of rules, or context, and executes associated C commands. Unmatched portions of the
input are copied to the output stream. yylex() returns EOF when input has been exhausted.

LEXICON

lex 785

lex uses the following macros that you may replace with the preprocessor directive #undef if you
wish: input() (read the standard input stream), and output(c) (write the character c to the standard
output stream). You may also replace the following functions if you wish: main() (main function),
error(...) (print error messages; takes same arguments as prlntf), and yywrap() (handle events at
the end of a file). If an action is desired on end of file. such as arranging for more input, yywrap()
should perform it, returning zero to keep going.

A full lex specification has the following format:

Macro definitions, of the form:
name pattern

Start condition declarations:
%S NAME, ••

Context declarations:

%C NAME.,.

Code to be included in the header section:

%{
anything
%}
<tab or space> anything

Rules section delimiter (must always be present):

%%

Code to appear at the start of yylex():

<tab or space> anything

Rules for initial context, in any of the forms:

rule
rule
rule

action;
I (means use next action)
{

<tab or space>
<tab or space>

action;
}

For each additional context:

%C NAME
... rules for this context ...

End of rules section delimiter:

%%

Code to be copied verbatim, such as user provided input(), output(), yywrap(), or other.

lex matches the longest string possible: if two rules match the same length string, the rule specified
first takes precedence. lex puts the matched string, or token, in the char array yytext[J, and sets
the variable yyleng to its length.

Actions may use the following:

LEXICON

786 lex

ECHO
REJECT
BEGIN NAME
BEGINO
yyswitch(NAME)
yyswitch(O)
yynext()
yyback(c)
yyless(n)
yymore()
yylook()

Output the token
Perform action for lower precedence match
Set start condition to NAME
Clear start condition
Switch to context NAME. return current
Switch to initial context
Steal next character from input
Put character c back into input
Reduce token length to n, put rest back
Append next token to this one
Returns number of chars in input buffer

lex rules are contiguous strings of the form

[<NAME, ... >]["] token [I lookahead][$]

where brackets '()' indicate optional items.

<NAME, ... >

$
token
/lookahead

Match only under given start conditions
Match the beginning of a line
Match the end of a line
Pattern that a given token is to match
Pattern that given trailing text is to match

Pattern elements:

a
\a

[abx-z]
("abx-z]
abc
{name}
(exp)

The character a
The character a, even if special
Any character except newline
Any of a, b, or x through z
Any except a, b, or x through z
The string abc, even if any are special
The macro definition name
The pattern exp (grouping operator)

Optional operators on elements:

e?
e•
e+
e{n}
e{m,n}

Zero or one occurrence of e
Zero or more consecutive es
One or more consecutive es
n (a decimal number) consecutive es
m through n consecutive es

Patterns may be of the form:

ele2 Matches the sequence el e2
e 1 I e2 Matches either e 1 or e2

lex recognizes the standard C escapes: \n, \t. \r, \b, \f, and \ooo (octal representation). The
special characters

\ () < > { } % * + ? [- l A I $ • I
must be prefixed with \ or enclosed within quotation marks (excepting " and \) to be normal.
Within classes, only the characters . " - \ and] are special.

LEXICON

Files
/usr/lib/libl.a
/usr /src/libl/* - library source code

See Also
commands, yacc
Introduction to lex, the Lexical Analyzer

Lexicon 787

rmm-n•mte;1Jt11i' ~''''""'~''~""''''''''-. ..,_,,,"'''~' ~"'"''"'
The Mark Williams Lexicon is a new approach to documentation of computer software. The Lexicon
is designed to improve documentation and eliminate some limitations found in more conventional
documentation.

How to Use the Lexicon
The Lexicon consists of one large document that contains entries for every aspect of COHERENT.
You will not have to search through a number of different manuals to find the entry you are looking
for.

Every entry in the Lexicon has the same structure. The first line gives the name of the topic being
discussed. followed by its type (e.g .. Command).

The next lines briefly describe the item. then give the item's usage. where applicable. These are
followed by a brief discussion of the item, and an example.

Cross-references follow. These can be to other entries or to other texts. Diagnostics and notes,
where applicable, conclude each entry.

Internally. the Lexicon has a tree structure. The "root" entry is the present entry, for Lexicon.
Below this entry comes the set of Overview entries. Each Overview entry introduces a group of
entries; for example, the Overview entry for string introduces all of the string functions and macros,
lists them, and gives a lengthy example of how to use them.

Each entry cross-references other entries. These cross-references point up the documentation tree.
toward an overview article and, ultimately, to the entry for Lexicon itself. They also point down the
tree to subordinate entries. and across to entries on related subjects. For example, the entry for
getchar cross-references STDIO. which is its Overview article. plus putchar and getc, which are
related entries of interest to the user. The Lexicon is designed so that you can trace from any one
entry to any other. simply by following the chain of cross-references up and down the
documentation tree.

Use the Lexicon
If. while reading an entry. you encounter a technical term that you do not understand, look it up in
the Lexicon. You should find an entry for it. For example, if a function is said to return a data type
float and you do not know exactly what a float is, look it up. You will find it described in full. In
this way. you should increase your understanding of COHERENT, and make your programming
easier and more productive.

Overview Articles
The Lexicon includes the following overview articles. Look at the appropriate overview article for
information on the subject in which you are interested. The overview article will give you an
overview of the topic, and tell you which Lexicon articles you should read to find detailed
information.

C language
This article summarizes COHERENT's implementation of the C lanaguage. It introduces
subordinate articles, such as those that describe each C keyword.

LEXICON

788 If - libmisc

commands
This article briefly summarizes each COHERENT system command.

definitions
The Lexicon includes a number of articles that define technical terms that are used through
it. This overview article lists the definition articles included in the Lexicon.

device drivers
This article introduces COHERENT's suite of device drivers, and points to subordinate
articles that describe each driver in details.

environmental variables
This article lists the commonly used environmental variables that are described in the
Lexicon.

file formats
The COHERENT system has a number of special files that contain information presented in
a special format. Some files are meant to be read mechanically. such as executable files or
relocatable objects: others you can edit to change the behavior of one or another
COHERENT system. This overview article introduces the subordinate articles that describe
the formats of these special files.

libraries
This introduces the libraries included with the COHERENT system, for use with the
COHERENTC compiler, and the families of functions in each.

system maintenance
Certain files and commands are used only to help you maintain your COHERENT system
and help it run smoothly. This article introduces the subordinate articles that describe the
COHERENT system's tools for to help you perform system maintenance.

technical information
Finally. the Lexicon contains a set of articles that do not easily fit into any other category.
These give broad technical information, both to help you decypher other articles within the
Lexicon, and to provide you with a "cookbook" with which you can solve common problems.
The article names should be self-explanatory, e.g .. terminal, printer, and RS-232. If you're
trying to tackle a new problem and don't have a clue as to where to begin, check this
overview article first. You may well find that it lists a subordinate article that is helpful.

-~,~~~~"'~~""'''' .. -
List directory's contents in columnar format
If (/lie ...]

If is a link to the command ls -CF. It prints file in columnar format, like the command le. If,
however. combines files and directories into one listing. with directories being indicated by a slash
after the file name and executable being indicated by an asterisk. If a file is a directory, 1 lists its
contents. If no file is named, If lists the contents of the current directory by default.

See Also
commands, 1, le, Ir, ls, Ix

libmisc - Technical Information
Library of miscellaneous functions

libmisc is a collection of library routines. These routines are useful for handling such programming
tasks as allocation of memory, copying of strings, displaying variables from C with COBOL-like
"picture" descriptions, and supporting virtual arrays via secondary storage.

LEXICON

libmisc 789

Source code for the library Is kept in the compressed tar archive file /usr/src/misc.tar.Z. To
extract the files Into a new subdirectory called misc. use the command:

zcat /usr/src/misc.tar.z I tar xvf -

To build the library. type the following:

cd misc
make

file.

Functions
following header file: misc.tar.Z contains the header file misc.h. which define and declare the

functions. global variables. and macros used by the various functions In libmisc.a.

The following summarizes the functions in libmisc.a:

char • alloc(n) unsigned n;
malloc() n bytes and initialize them to zero. Abort on failure.

int approx(a, b) double a, b;
If a and b are within epsilon. return one; otherwise. return zero. epsilon is a visable double.

char •ask(reply, msg, •••)char •reply, •msg;
Print a message and retrieve the user's reply. This function the message, using msg as a
prlntf()-style format string and including text pointed to by any trailing arguments. It then
reads a line from stdio, stores it in the place pointed to by reply, and returns its address.
reply must point to enough space to hold the user's reply.

For example,

scanf(ask(buff, "%d numbers", 3), &a, &b, &c);

prints the message

Enter: 3 numbers

retrieves the user's reply in bufl', and hands it to sscanf().

void banner(word, pad) char •word; int pad;
Print word on stdout as a banner, preceded by pad spaces. Each letter of the banner
consists of many occurrences of itself.

bedaemon()
bedaemon() turns the calling program into a daemon. A daemon is a process that executes
in the background, without the usual connections to standard 1/0 streams and terminals.
Examples are cron and uuxqt. To ensure proper operation in connection with other system
software, any program that is intended to run as a daemon should call bedaemon() as its
first step. This call takes care of closing inherited open file descriptors, detaching from
inherited process group and controlling terminal. and setting current directory to "I" and
umask to zero. For further information on daemon processes, see Unix Network
Programming by W. Richard Stevens (Englewood Cliffs. NJ, Prentice-Hall Inc, 1990), section
2.6.

unsigned short crc16(p) char •p;
Compute the 16-bit cyclic redundency check (crcl6) of the string pointed to by p. and
return it. This function is very useful for building hash tables or checking differences
between strings.

LEXICON

790 libmisc

void fatal(msg, ••.) char •msg;
Print an error message and call e:xit(l). msg is a printf()-style format string; trailing
arguments must to point to data.

char •getline(ifp, linerw) FILE •ifp; int *linerw;
Get a line from the input file pointed to by ifp. Returns the address of the line, or NULL to
indicate the end of file. getline() calls malloc() to acquire space for the line. and allows
lines to be continued with a \-whitespace. It also implements lineno.

getline() recognizes the following escape sequences:

to end of line is passed
\ whitespace through end of line is passed
\n newline
\p #
\a alarm
\b backspace
\r carrage return
\f form feed
\t tab
\ \ backslash
\ddd octal number

All other \ sequences are errors and reported on stderr.

tm_t •jday_to_tmLJd) jday_tjd;
Turn a Julian date to tm (time) structure. The Julian date is the number of days since the
beginning of the Julian calendar, January 1. 4713 B.C.; it is a good way to store dates in a
system-independent manner, such as in a data base. The structure jday_t is defined in
misc.h.

time_tjday_to_timeUd) jday_tjd;
Turn Julian date structure to COHERENT time.

void splitter(ofp, line, limit) FILE •ofp; char *line; int limit;
Write line into file ofp. splitting it into chunks less than limit bytes long. splitter() inserts a
\ between chunks, and attempts to do this on white-space boundaries. splitter() produces
a long line rather than split on non-whitespace. If line does not end in a newline, splitter()
adds one. This is the inverse of getline().

int is_fs(speclal) char •special;
Check whether special names a well-formed file system. Users should never put file
systems on /dev/raml. but for multi-system software, like compress, it is smart to test.

is_fs() returns -1 if special is not a device, or if open(), read(), or seek() fails. It returns zero
if no file system was found, or one if special names a legal file system.

char •Icase(st) char •str;
Convert every character instr to lower case. Note that this works only with the U.S. dialect
of English; it does not work with German or other languages that use characters in the
upper half of the ASCII table.

char •match(strlng, pattern,fln) char •string, •pattern, *":fin;
match() resembles pnmatch(), except that it returns the address of the pattern matched.
fin is aimed past the end of the pattern found; that is, match() finds a pattern and tells you
where it is.

LEXICON

libmisc 791

char •metaphone(word) char •word;
Translate word into a short phonetic equivalent for easy lookup. It resembles Knuth's
soundex method, except that it uses a superior algorithm.

char •newcpy(str) char •str;
Create a NUL-terminated copy of strand return its address. Call fatal() if there is no space.

char •pathn(name, envpath, dejlpath, access)
char •name, •envpath, •dejlpath, •access;
pathn() looks for file name. It searches the directories named in the environmental variable
envpath. If the user has not set envpath. or if it is NULL. pathn() searches the default path
dejlpath. name must have access permission. pathn() returns the full path to the file
found. For example:

pathn("helpfile", "LIBPATH", "/lib", "r")

searches the directories named in LIBPATH for file helpffie, for which the user must have
read permission. If LIBPATH is not set, pathn searches /lib for helpffie.

#include <regexp.h>
regexp •regcomp(exp) char •exp;
int regexec(prog, string) regexp •prog; char •string;
regsub(prog, source, dest) regexp •prog; char •source; char *dest;
regerror(msg) char •msg;
These functions implement a way of parsing regular expressions. regcomp() turns a regular
expression into a structure of type regexp and returns a pointer to it. regexec() matches
string against the regular expression in prog. It returns one if string matches exp, and zero
if it does not. regsub() copies source to dest, and makes substitutions according to the
most recent regexec() performed using prog. regerror() is called whenever an error is
detected in regcomp(). regexec(), or regsub(). See regexp.doc for details.

longrandl()
Return a long random number uniformly distributed between l and 2,147.483,562. This
comes from Communications of the ACM. volume 31, number 6. See srandl(), below.

char •replace(sl, pat, s3, all, matcher)
char •sl, •pat, •s3, (matcher)();
Replace one or all occurrences of pat in string sl by s3, and return the result. The
definition of match is set by matcher. This calls the user-defined function

matcher(sw, pat, &.fin).

The matcher must return the address of the pattern match and its end in &.fin. match() is a
valid example of matcher. It replaces the first occurrence. or all occurrences of the pattern,
and returns the new pattern. The new pattern has been alloc()'d.

showflag(data,jlags, output) long data; char *flags, •output;
Turn the bits in data to the flags in.flags or'-' in the string output, which must be as Jong as
flags.

char •skip(sl, matcher,fin) char •sl, •*jln; int (*matcher)();
Skip all initial characters in string sl that fail when examined matcher. matcher is usually a
character function. e.g .. isdigit(). It returns the first character skipped. skip() points fin at
the character after the skip.

char •span(sl, matcher,fin) char •sJ, •*jln; int (*matcher)();
Span all initial characters in string sl that match when examined by matcher. matcher is
usually a character function. e.g .. isdigit(). It returns the first character spanned. span()
points fin at the character after the span.

LEXICON

792 libmisc

srand.l(seedl, seed2) long seedl, seed2;
randl() needs two seeds; srandl() sets them. Use it only if you need to repeat a random­
number sequence.

strchtr(from, to, c, de_n
char ":from, •to; int c, def;
Look up the character c in the stringfrom. Return the corresponding character in the string
to if it is found; otherwise, return the default character def.

For example, consider the call:

strchtr("ab", "xy", c, d);

If variable c equals 'a', then strchtr() returns 'x'; ifc equals 'b', then it returns 'y'; otherwise,
it returns the value of d

strcmpl(sl, s2)
Case-insensitive string comparison. Resembles strcmp().

jday_t time_toJday(tlme) time_t time:
Turn COHERENT time to Julian date structure. The Julian date is the number of days
since the beginning of the Julian calendar, January I. 4713 B.C. The structurejday_t is
defined in misc.h.

jday_t tm_toJday(tm) tm_t •tm:
Turn the time structure tm date into Julian date structure.

char •trim(s) char •s:
Remove trailing whitespace from strings.

ucase(s) char •s:
Convert a string to upper case.

usage(s) char •s;
Print strings and call exit(l).

xdump(p, length) char •p:
Print on stdout a vertical hexadecimal dump of stringp.

A vertical hexadecimal dump prints as three lines. The top line is the display character, or
'.' if the character cannot be displayed cleanly. The next two lines are the hexadecimal
numerals. The data are blocked into groups of four bytes.

xopen(filename, acs) char ":filename, •acs;
Like fopen(), but call fatal() if the open fails.

yn(question, ••.) char •question;
Ask a question and retrieve a 'Y' or 'N' answer. question is a printf()-style format string; any
trailing parameters should point to data used in question. yn() returns one if the user
answers ·y· or 'y', and returns zero if she answers 'N' or 'n'.

The following are part of a virtual memory system for COHERENT 286. Occasionally, users port
programs like compress to COHERENT 286 that use a small number of very large arrays. Because
COHERENT 286 is a SMALL-model operating system, changes must be made. The following
functions are intended to expedite these changes.

void vinit(filename, ram) char ":filename; unsigned ram;
Initialize the virtual-memory system, using filename for work. filename may be a raw
device, such as I dev I rraml . ram is the amount of buffer space to give the system - the
more, the better.

LEXICON

libmisc 793

void vshutdown()
Shut the virtual-memory system, and make it restartable.

unsigned vopen(amt) unsigned long amt;
Set up a virtual-memory object. For example, if you want to emulate having a 100,000-byte
array and a 50,000-byte array, use the call

vidl = vopen(lOOOOOL); vid2 = vopen(SOOOOL);

This does some checking and tells the system that any reference to vtd2 will be between
100,000 and 150,000 in the virtual file.

char ~d(vld, disp, dirty) unsigned vid, dirty; unsigned long disp;
Find a character in the virtual system, mark the block's dirty bit if the access is to write.
Given the example in vopen(). if you want to find the l ,OOOth byte in vdil, use the call:

c = *(vfind(vdil, lOOOL, O));

To change the 2000th byte in vid2 d, use the call

*(vfind(vid2, 2000L, 1)) = d;

Note that the dirty indicator tells the system of the change so that the block will be written
back before it is read over. Blocks are 512 bytes long, so int's or long's can be read or
written without multiple accesses to vfind().

File Locking
llbmisc holds a number of routines with which you can lock and unlock files and devices. It is
adapted from the mechanism used by the COHERENT implementation of UUCP.

Lock files are created in $SPOOLDIR. A lock file is given the name LCK .. resource. The lock file
contains a decimal representation of the process identifier of the process that created the lock.

It is possible to provide an alternate pid by using one of the "n" routines. The unlocking routines
regard a pid of zero as an override - they remove the lock regardless of which process created the
lock.

For a tty device. the resource is a string that consists of a decimal representation of its major
number, a decimal point, and the lower five bits of its minor number.

Each routine takes a string that names a resource to be locked or unlocked. The tty routines want
the base name of the tty to be locked (without the "I dev /" part).

All lock routines all return zero on failure and one on success.

lockit(resource) char *resource;
Use a resource string to lock a tty.

lockexist(resource) char *resource;
Check whether a lock file exists for the tty with resource.

locknrm(resource, pld) char *resource; int pld;
Remove a lock file for a tty owned by process pld.

lockntty(tty, pld) char •tty; int pid;
Lock a tty for process pid.

lockrm(resource) char *resource;
Remove a lock file for tty with resource.

LEXICON

794 libmisc

locktty(tty) char •tty;
Lock a tty.

lockttyexist(tty) char •tty;
Check whether a given tty is locked.

unlockntty(tty, pid) char •tty; int pld;
Unlock a tty for process pid. Unlocking always succeeds.

unlocktty(tty) char •tty;
Unlock a tty that the current process owns.

unlockit(resource, pid) char •resource; int pld;
Unlock something for process pld.

Templates and Pictures
libmisc includes a function, picture(), for formatting numeric strings.

double picture(dble,format, output) double dble; char *format, •output;
picture() performs numeric formatting under C. It resembles masking functions built into
COBOL and BASIC. but is superior to either. dble gives the number to format:format gives
the format mask; and output points to the area into which the formatted number is written.
output must be at least as large as format. If dble overflows the picture, picture() returns the
overflow.

The following summarizes the values that can appear in the format string. Note that
throughout, the symbol <Sp> indicates a space character, not the literal string "<sp>".

9 Provide a slot for a number. Passing 5.000 through a mask of 999 CR gives "005".
Passing -5.000 through a mask of 999 CR yields "005 CR". Note that picture() does
not recognize the characters 'C' and 'R' as being special. Trailing non-special
characters print only if the number is negative.

Z Provide a slot for a number, but suppress leading zeroes. For example, passing
l 034.000 through a mask of ZZZ,ZZZ gives "<sp><sp> l ,034". Note that picture() does
not recognize a comma as being a special character. picture() prints embedded non­
special characters only if they are preceeded by significant digits.

J Provide a slot for a number, but shrink out leading zeros. For example, passing
1034.000 through a mask of JJJ,JJJ yields "l ,034".

K Provide a slot for a number. but shrink out any zeros. For example, passing
70884.000 through a mask of K9/K9/K9 yields "7 /8/84".

$ Float a dollar sign to the left of the displayed number. For example, passing 105.000
through a mask of $ZZZ,ZZZ yields "<sp><sp><sp><sp>$105".

Separate the number between decimal and integer portions. For example, passing
l 05.670 through a mask of Z,ZZZ.999 yields "<sp><sp> 105.6 70".

T Provide a slot for a number. but suppress trailing zeroes. For example, passing
105.670 through a mask of Z,ZZ9.9TTyields "<sp><Sp>l05.67<sp>".

S Provide a slot for a number, but shrink out trailing zeroes. For example. passing
105.670 through a mask of Z,ZZ9.9SS yields "<sp><sp> 105.6 7".

LEXICON

Float a negative sign in front of negitive numbers. For example, passing 105.000
through a mask of -Z,ZZZ yields "<sp><sp><sp<l05", whereas passing -105.000
through a mask of-Z,ZZZ yields "<sp><sp>-105".

+

•

Files

LIBPA TH - libraries 795

Acts like-. but prints a parenthesis. For example, passing 105.000 through a mask of
(ZZZ) yields "<sp> 105<sp>". whereas passing -5.000 through a mask of (ZZZ) yields
"<Sp> <Sp>(5)".

Float a+ or - in front of the number. depending on its sign. For example. pasing 5.000
through a mask of +ZZZ yields "<sp><sp>+5", whereas passing -5.000 through a mask
of +zzz yields "<sp><sp>-5".

Fill all spaces to right with asterisks. For example. passing 104. l 00 through a mask of
•zzz,ZZZ.99 yields "•••••104.10": whereas passing 104.100 through a mask of
•$ZZZ,ZZZ.99 yields "*****$104.10". picture() returns any overflow as a double. For
example. passing -1234.000 through a mask of (ZZZ) yields "(234)" with an overflow of
-1.0; passing 123.400 through a mask of 99 yields "23" with an overflow of 1.0; and
passing 1200.000 through a mask of ZZ yields "00" with an overflow of 12.0.

/usr/src/misc.tar.Z- Compressed tar archive of sources

See Also
tar, technical information, zcat

Notes
The misc library is provided on an as-ls basis only. Caveat utllttor!

LIBPATH - Environmental Variable -.,~,~~~,~~~,~~,~~~
Directories that hold compiler phases and libraries

LIBPATH names the directories that hold the phases of the COHERENT C compiler. the run-time
start-up modules, and libraries. cc searches these directories as it orchestrates the compiling and
linking of a program written in C or assembly-language.

A typical definition is:

export LIBPATH=:/lib:/usr/lib

This searches the current directory'.", then /lib, then /usr/lib.

If you have not set LIBPATH in your .profile, cc uses the default LIBPATH that is set in header file
path.h. This definition is adequate for all standard installations of COHERENT.

See Also
cc, environmental variables, Id - ~ ~~,,~,~~~~ '~'''~'' '''~~~~
A library is an archive file of commonly used functions that have been compiled, tested, and stored
for inclusion in a program at link time.

The COHERENT system stores its libraries in two directories, /usr/lib and /lib. The following
libraries are kept in /usr/lib:

libcurses.a
libl.a
libmp.a
libterm.a
liby.a
lib.b

curses library
lex library
Multi-precision arithmetic library
Functions to read termcap or terminfo data
yacc library
bc's function library (in be source)

LEXICON

796 limits.h

The following libraries are kept in /lib:

libc.a General functions and system calls
libm.a Mathematics routines

In addition, COHERENT comes with a library of miscellaneous routines, called libmisc. See the
Lexicon article libmisc for information on how to prepare this library for use.

Library Functions
The following Lexicon articles introduce the library functions included with the COHERENT system:

ctype macros
curses
general functions
mathematics library
multiple-precision mathematics
ncurses
STDIO
string functions
system calls
termcap
time
variable arguments

See Also
ar, c language

limits.h - Header File
Define numerical limits
#include <limits.h>

The header file limits.h defines macros that set the numerical limits for the translation
environment. It is described in sections 2.2.4.2 and 4.1.4 of the ANSI Standard.

The following table gives the macros defined in limits.h. Each value given is the macro's minimum
maximum: a conforming implementation of C must meet these limits, and may exceed them.

CHAR BIT
- Number of bits in a char. This must be at least eight.

CHAR_MAX
Largest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MAX; otherwise, it is equal
to the value of the macro UCHAR_MAX.

CHAR_MIN
Smallest value representable in an object of type char. If the implementation defines a char
to be signed, then it is equal to the value of the macro SCHAR_MIN; otherwise, it is zero.

INT_MAX
Largest value representable in an object of type int; it must be at least 32, 767 (Ox7FFF).

INT_MIN
Smallest value representable in an object of type int: it must be at most -32,767 (Ox8000).

LEXICON

lines 797

LONG MAX
- Largest value representable in an object of type long Int; it must be at least 2 .14 7,483,64 7

(Ox7FFFFFFFL).

LONG_MIN
Smallest value representable in an object of type long Int; it must be at most
-2,147,483,647(0x80000000L).

MB LEN MAX
- Largest number of bytes in any multibyte character, for any locale; it must be at least one.

SCHAR_MAX
Largest value representable in an object of type signed char; it must be at least 127.

SCHAR_MIN
Smallest value representable in an object of type signed char; it must be at most -127.

SHRT_MAX
Largest value representable in an object of type short Int; it must be at least 32,767
((short)Ox7FFF).

SHRT_MIN
Smallest value representable in an object of type short Int; it must be at most -32,767
((short)Ox8000).

UCHAR MAX
Largest value representable in an object of type unsigned char: it must be at least 255.

UINT_MAX
Largest value representable in an object of type unsigned Int; it must be at least 65,535
((unsigned lnt)OxFFFF).

ULONG_MAX
Largest value representable in an object of type unsigned long Int; it must be at least
4,294,967,295 ((unsigned long)OxFFFFFFFFL).

USHRT_MAX
Largest value representable in an object of type unsigned short Int; it must be at least
65,535 ((unsigned short)OxFFFF).

See Also
header mes

m&mi•mmijhl·'
Highly amusing board game
/usr/glll1les/llnes

lines is an interactive COHERENT version of a two-player board game by Claude Soucie called Lines
of Action. The screen displays the game board with "X" and "O" characters marking the positions of
the pieces. To see the rules of the game, type "r" and then press <Enter>. To see the available
interactive commands, type "h" and press <Enter>.

Two players can use lines to keep track of a game between them by moving with the "M" command.
Alternatively. one player can play against the computer by moving with the "m" command. The
program uses a tree-search technique to consider possible moves; the player can vary the speed of
the program's replies with commands that change the tree search width and depth.

For a more detailed description of Lines of Action, see A Gamut of Games by Sid Sackson (New York,
Random House, 1969).

LEXICON

798 linkO - linker-defined symbols

See Also
commands

rmml!\l@"I"' ~
llnk(old, new)
char •old, •new;

A link to a file is another name for the file. All attributes of the file appear identical among all links.

linkO creates a link called new to an existing file named old.

For administrative reasons, it is an error for users other than the superuser to create a link to a
directory. Such links can make the file system no longer tree structured unless carefully controlled,
posing problems for commands such as find.

Example
This example, called lock.c, demonstrates how link() can be used to perform intertask locking.
With this technique, a program can start a process in the background and stop any other user from
starting the identical process ..

main()
{

if(link("lock.c", "lockfile")
printf ("Cannot link\n");
exit(l);

}

-1) {

sleep(SO); /*do nothing for 50 seconds*/
unlink("lockfile");
printf("done\n");
exit(O);

}

See Also
find, Jn, system calls, unlink()

Diagnostics
link() returns zero when successful. It returns -1 on errors, e.g., old does not exist, new already
exists, attempt to link across file systems. or no permission to create new in the target directory.

Notes
Because each mounted file system is a self-contained entity, links between different mounted file
systems fail.

rtnt.f4i·Mmf:I.ti@t®ll•*MHM1
The COHERENT linker Id defines its own set of symbols within an executable program. Because
COHERENT 286 and COHERENT 386 use different formats for executable programs, their respective
implementations of Id set different suites of symbols.

The COHERENT 286 edition of Id sets the following symbols:

edata Location after shared and private data
end Location after uninitialized data segment
etext Location after text segments

LEXICON

In - localtimeO 799

The COHERENT 386 edition of Id sets the following symbols:

end text
end data
_end_bss
_end

End of the .text segment
End of the .data segment
End of the .bss segment
End of the highest segment

Note that if you have a segment named .xyz. then Id will allow you to use _end_xyz.

See Also
C language, Id

fl&llll~ril·l1·~"111mem"m~1·~---········•Rm~,~---~~~~~~~~~~
Create a link to a file
In I-fl oldjlle newftle
In [-f) oldjlle ... directory

The COHERENT system knows a file by its i-node number. Each file is also linked to one or more
file names. each name being stored in a directory. This system means that the same file can be
known by multiple names in multiple directories. The command In lets you create a new link to a
file.

In its first form. In links the name newftle to the file that is already named oldjlle, provided that
newjlle does not already exist.

In the second form. In links oldjlle with an identical name in another directory. In effect, one file will
"live" in two directories.

If newjlle already exists. -f forces In to unlink it and assign its name to oldjlle.

Links to directories or across file systems are impossible. For example, if your COHERENT system
has two file systems, one mounted on /f and the other mounted on /usr. you cannot use In to link
a file in /v to one in /usr.

See Also
commands, cp, ls, mv, nn

U·®tU/d®ll iibij@i!@IN, ••••••••••••••••• ~~'~''~~~'''lllilllll!
Convert system time to calendar structure
#Include <tlme.h>
#Include <sys/ types.h>
tm •Iocaltlme(tlmep) tlme_t •tlmep:

localtlmeO converts the COHERENT internal time into the form described in the structure tm.

tlmep points to the system time. It is of type tlme_t, which is defined in the header file types.h.

localtlme() returns a pointer to the structure tm. which is also defined in tlme.h. The function
asctlme() turns tm into an ASCII string.

Unlike its cousin gmtlme(), localtlme() returns the local time, including conversion to daylight
saving time, if applicable. The daylight saving time flag indicates whether daylight saving time is
now in effect, not whether it is in effect during some part of the year. Note, too, that the time zone is
set by localtlme() every time the value returned by

getenv ("TIMEZONE")

LEXICON

soo localtimeO

changes. See the Lexicon entry for TIMEZONE for more information on how COHERENT handles
time zone settings.

Example
The following example recreates the function asctime(). It builds a string somewhat different from
that returned by asctime() to demonstrate how to manipulate the tm structure.

#include <time.h>
#include <sys/types.h>

char *month[] = {

} ;

"January", "February", "March", "April",
11 May 11

, "June", "July", "August", "September",
"October", "November", "December"

char *weekday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

main()
{

char buf[20];
time_t tnum;
struct tm *ts;
int hour = O;

time(&tnum); /* get time from system */

/* convert time to tm struct */
ts=localtime(&tnum);

if (ts->tm_hour == 0)

else

sprintf(buf,"12:%02d:%02d A.M.",
ts->tm_min, ts->tm_sec);

if(ts->tm_hour>=12) {
hour=ts->tm_hour-12;
if (hour==O)

hour=12;
sprintf(buf,"%02d:%02d:%02d P.M.",

hour, ts->tm_min,ts->tm_sec);

} else
sprintf(buf,"%02d:%02d:%02d A.M.", ts->tm_hour,

ts->tm_min,ts->tm_sec);

printf("\n%s %d %s 19%d %s\n",
weekday[ts->tm_wday], ts->tm_mday,
month[ts->tm_mon], ts->tm_year, buf);

LEXICON

}

printf("Today is the %d day of 19%d\n",
ts->tm_yday, ts->tm_year);

printf("Daylight Saving Time %sin effect\n",
ts->tm isdst ? "is" : "is not") ;

See Also
gmtime(), time, TIMEZONE

Notes

logO - login so1

localtime() returns a pointer to a statically allocated data area that is overwritten by successive
calls.

Compute natural logarithm
#include <math.h>
double log(z) double z;

log() returns the natural (base e) logarithm of its argument z.

Example
For an example of this function, see the entry for exp().

See Also
loglO(), mathematics library

Diagnostics
A domain error in log() (z is less than or equal to zero) sets errno to EDOM and returns zero.

log100 - Mathematics Function (libm)
Compute common logarithm
#include <math.h>
double loglO(z) double z;

loglO() returns the common (base 10) logarithm of its argument z.

Example
For an example of this function, see the entry for exp().

See Also
log(), mathematics library

Diagnostics
A domain error in loglO() (z is less than or equal to zero) sets errno to EDOM and returns zero.

~~~~'~"''~~"'~~~"'~~~~"'' 
Log in or change user name 
login [username] 

The COHERENT system normally invokes login as part of the log in sequence on an unused 
terminal. The user may also invoke login directly from the shell sh, usually to change to a different 
user name. If username is not present, login prompts the user. If the account has a password, 
login asks for it. 

If the user logs in successfully. login then reads the file /etc/motd (which holds the "message of 

LEXICON 



802 logmsg - long 

the day") and prints its contents on the screen, then notifies the user if mail is waiting to be read. 
It then sets the working directory to the user's base directory and sets the user id and group id, 
transfers ownership of the tty to the user. and updates the login accounting file. Finally. if a 
program is specified in /etc/passwd, login reads /etc/profile for lines beginning "export", inserts 
the remainder of the line into the environment. then executes the specified program. If the program 
field is blank, login executes sh, which executes the contents of $HOME/ .profile if it is present. 

From the shell. a user may log in by typing login or by typing an end of file (normally <ctrl-D>l to 
terminate the previous shell. 

When the superuser root logs in, login sets HOME to 'I' and reads the file /.profile should one 
exist. 

Files 
/etc/logmsg- Login message (default, "Coherent login:") 
/etc/passwd- User information 
/etc/profile - System profile 
/etc/motd- Message of the day 
/etc/utmp - Users currently using system 
/usr/adm/wtmp- Login accounting history 
/usr/adm/failed- Log of failed login attempts 
$HOME/ .profile- User profile 

See Also 
ac, commands, getty, sh, su, utmp.h 

Notes 
Under the Korn shell. login is an alias for the expression exec login. 

logmsg - System Maintenance 
Hold COHERENT Login Message 
/etc/logmsg 

The file /etc/logmsg holds the message that COHERENT displays to prompt the user to log in. The 
superuser bin can use ed or MicroEMACS to change the message to whatever she prefers. 

See Also 
system maintenance 

Notes 
The default message consists of the bell character <ctrl-G> followed by the text Coherent login:. If 
the bell annoys you, simply delete the <ctrl-G> from /etc/logmsg. 

long - C Keyword 
Data type 

A long is a numeric data type. By definition, a long is the largest integer data type. It cannot be 
smaller than an int, although on some machines an int and a long will be the same size. Under 
COHERENT. sizeoflong equals two machine words, or four chars (31 data bits plus a sign bit). 

See Also 
C keywords, data formats, int 

LEXICON 



longjmpO - look 803 

longjmpO- General Function 
Return from a non-local goto 
#include <setjmp.h> 
int longjmp(env, rval) jmp _buf env: int rval: 

The function call is the only mechanism that C provides to transfer control between functions. This 
mechanism is inadequate for some purposes, such as handling unexpected errors or interrupts at 
lower levels of a program. To answer this need, longjmp provides a non-local goto. 

longjmp() restores an environment that had been saved by a previous call to the function setjmp(). 
It returns the value rval to the caller of setjmp(), just as if the setjmp() call had just returned. Note 
that longjmp() must not restore the environment of a routine that has already returned. The type 
declaration for jmp_buf is in the header file setjmp.h. The environment saved includes the program 
counter, stack pointer, and stack frame. These routines do not restore register variables in the 
environment returned. 

Example 
For an example of this function, see the entry for longjmp(). 

See Also 
general functions, setjmp() 

Notes 
Programmers should note that many user-level routines cannot be interrupted and reentered safely. 
For that reason, improper use of longjmp() and setjmp() can result in the creation of mysterious 
and irreproducible bugs. Do not attempt to use longjmp() within an exception handler. 

-'8>,_~'8>,_'8>,_~mmmxaxaxa,_,~xaxa~'xa -~xaxaxa'-'xa.~xa 
Find matching lines in a sorted file 
look [-df] string [file] 

The command look scans the sorted file and prints each line that begins with string. 

The following options specify the order of the search: 

-d Use dictionary order: the only characters tested are alphanumerics and blanks. 

-f Convert all alphabetic characters to upper case. 

If no file is specified, look uses /usr/dict/words with the -df option. 

Example 
For an example of how to use this command, see the entry for spell. 

Files 
/usr I diet/words - File of words (sorted with sort -df). 

See Also 
commands, sort 

Notes 
Because the file /usr/dict/words is quite large, you may not have installed it or uncompressed it 
when you installed your COHERENT system. If this is the case, look will not work correctly. 

LEXICON 



804 Ip 

~ ~~~~~~~~~~~~~~~~~ ~ ~~ 
Line printer driver 

Files /dev/Ip• access the line-printer's device drivers for IBM AT COHERENT. The drivers are 
assigned major device number 3. 

The COHERENT system supports three printers, in both cooked and raw modes. The following gives 
the device name, minor device, and 1/0 port: 

/dev/lptl 0 Ox3BC (/etc/mknod /dev/lptl c3 OJ 
/dev/lpt2 1 Ox378 (/etc/mknod /dev/lpt2 c3 1) 
/dev/lpt3 2 Ox278 (/etc/mknod /dev/lpt3 c 3 2) 
/dev/rlptl 128 Ox3BC (/etc/mknod /dev/rlptl c 3 128) 
/dev/rlpt2 129 Ox378 (/etc/mknod /dev/rlpt2 c 3 129) 
/dev/rlpt3 130 Ox278 (/etc/mknod /dev/rlpt3 c 3 130) 

"Cooked" processing processes the special characters BS (backspace), HT (horizontal tab), LF (line 
feed), FF (form feed), and CR (carriage return) appropriately; raw processing simply passes them on 
to the printer. 

Kernel Variables 
Please note that the COHERENT 286 kernel references variables with a trailing underscore 
character; for example. atpann_. The COHERENT 386 kernel, however. does not use a trailing 
underscore; for example, atpann. 

The following descriptions apply to both COHERENT286 and COHERENT 386, but the notation will 
be in the COHERENT-386 form. 

Discipline 
The driver uses a hybrid busy-wait/timeout discipline to support printers efficiently that have 
varying buffer sizes in a multi-tasking environment. 

The kernel variable LPWAIT sets the time for which the processor waits for the printer to accept the 
next character. If the printer is not ready within the LPWAIT period, the processor then resumes 
normal processing for the number of ticks set by by the kernel variable LPTIME. Thus, setting 
LPWAIT to an extremely number (e.g .. 1.000) and LPTIME to a very small number (e.g .. one) results 
in a fast printer, but leaves very few CPU cycles available for anything else. Conversely, setting 
LPWAIT to a small number (e.g .. 50) and LPTIME to a large number (e.g .. five) result in efficient 
multi-tasking but also results in a slow printer unless the printer itself contains a buffer (as is 
normal with all but the least expensive printers). By default, LPWAIT is set to 400 and LPTIME to 
four. 

We recommend that you set LPWAIT to no less than 50 and no more than 1,000, and LPTIME to no 
less than one. To change the values of LPWAIT to 500 and LPTIME to one, use the following 
command: 

/conf/patch -k /coherent LPWAIT=SOO LPTIME=l 

The kernel variable LPTEST determines whether the device driver checks to see if the printer is in 
an "on-line" condition before it uses the device. If your printer does not support this signal. you 
must set LPTESTto zero. 

Files 
/dev/Ip•- "Cooked" printer interfaces 
/dev/rlp• - Raw printer interfaces 

LEXICON 



/pd- /pr 805 

See Also 
ascil, db, device drivers, epson, lpr 

/pd - System Maintenance 
Line printer spooler daemon 
/usr/llb/lpd 

lpd is a daemon program that runs in the background and prints listings queued by the command 
lpr. It is run automatically by lpr. If there is no printing to do, or if another daemon is already 
running (indicated by the file dpid), lpd exits immediately. Otherwise, it searches the spool 
directory for control files of listings to print. These control files contain the names of files to print, 
the user name, banners. and files to be removed upon completion. 

lpd does not print listings in any particular order. Priority is not given to any file, either by size or 
by requester. 

The command lpskip command terminates or restarts the current line printer listing. 

Files 
/dev/lp- Printer 
/usr/spool/lpd-Spool directory 
/usr/spool/lpd/cf"'- Control files 
/usr/spool/lpd/df"'- Data files 
/usr/spool/lpd/dpid- Lock and process id 

See Also 
init, lpr, lpskip, system maintenance 

lpioctl.h - Header File '~~~,~~'~'~~'~''~ ,,,,,~,~~~'' 
Definitions for line-printer I I 0 control 
#include <sys I lpioctl.h> 

lpioctl.h defines constants used by routines that control 1/0 on the line printer. 

See Also 
header files 

/pr - Command ~~~~,,~,~~'~'~~~ 
Send to line printer spooler 
lpr [-cmnr] [-b banner] [file ... ] 

lpr lets a user print each specified.file on the line printer. without conflicting with printing by other 
users. If no.file is specified, lpr prints the standard input on the line printer. 

lpr recognizes the following options: 

-B Suppress printing of a banner. Note that if you are printing to a Postscript printer, you 
must use this option or your printer will hang. 

-b banner 
Print banner at the beginning of the file. The default banner is the user's login name. 

-c Copy the files (allowing changes to be made before the printing completes). 

-m Send a message when the printing completes. 

-n Do not send a message (default). 

LEXICON 



806 lpskip - Is 

-r Remove the files when they have been spooled. 

The command lpskip aborts or restarts the current listing. 

Files 
/dev/lp- Line printer 
/usr /lib/lpd - Line printer daemon 
/usr I spool/lpd - Spool directory 
/usr/spool/lpd/dpid- Daemon lockfile 

See Also 
commands, lpd, lpskip, pr, printer 

~"-""-. RWL~~'-"-"-~~ ~"'- - .._,,~""~~~~ 
Terminate I restart current line printer listing 
lpskip [-r) 

The command lpskip aborts or restarts the printing of a file. By default, lpskip aborts the current 
listing and prints a diagnostic message. When invoked with the -r option, it restarts the current 
listing. This is useful when a printing is spoiled due to, say, a paper jam. 

lpskip works only with files that have been spooled to the line printer via the command lpr. 

Files 
/usr/lib/lpd- Line printer daemon 
/usr/spool/lpd-Spool directory 
/usr I spool/lpd/ dpid Daemon lockfile 

See Also 
commands, lpd, pr 

_.._,~~~~""""'~'~'~~'~''~""''...._""~~~~~~~ 
List subdirectories' contents in columnar format 
Ir Iflle ... ) 

Ir is a link to the command ls -CR. It prints each.file in columnar format, like the command le. If a 
file is a directory, Ir also prints its contents and that of each of its subdirectories. If no file is 
named, it lists the contents of the current directory by default. 

See Also 
commands, 1, le, If, ls, Ix 

-~~~~ ~-.. ~ ~~~~~~~""~'~'""~""~"'~ 
List directory's contents 
ls [-abCcdFfgilmnopqRrstux] ifile ... I 

The command ls prints information about each.file. Normally. ls sorts its output by file name and 
prints only the name of each.file. If a directory name is given as an argument, ls sorts and lists its 
contents, not including·.· and · .. ·. If no.file is named, ls lists the contents of the current directory. 

The following options control how ls sorts and displays its output: 

-a Print all directory entries, including',',' . .', any hidden files, and volume lD's. 

-b Print non-graphic characters in octal. 

LEXICON 



/s 807 

-C Print the output in multi-column format. sorted down the columns. 

-c Print the time the files' attributes were last changed. 

-d Treat directories as if they were files. 

-F Print a·/' after the name of each directory, and print an·•· after each executable file. 

-f Force each argument to be treated as a directory. This disables the -lrst options and 
sorting. and enables the -a option. 

-1 Print the i-number of each file. 

-1 Print information in long format. The fields give mode bits, link count. owner uid, owner 
gid, size in bytes, date. and file name. For special files, major and minor device numbers 
replace the size field. 

-m "Stream" the output horizontally across the screen. with each file name separated by a 
comma. 

-n Same as -1. except the group identifiers and user identifiers are numbers rather than 
names. 

-o Same as -1. except that the group id is not printed. 

-p Print a '/' after the each directory name. 

-q Print non-graphics characters as'?'. 

-r Reverse the sense of the sort. 

-R Recursively print directories. 

-s Print the size in blocks of each file. 

-t Sort by time, newest first. 

-u Sort by the access time. 

-x Print multicolumn output. sorted across the columns. This resembles the output of the 
command le. 

The date ls prints with the -1 and -t options is the modification time, unless the -c or -u option is 
used as well. 

The mode field in the long list format consists of ten characters. The first character will be one of 
the following: 

Regular file 
b Block special file 
c Character special file 
d Directory 
p Pipe 
x Bad entry (remove it immediately!) 

The remaining nine characters are permission bits, in three sets of three characters each. The first 
set pertains to the owner of the file, the second to users from the owner's group, and the third to 
users from other groups. Each set may contain three characters from the following. 

LEXICON 



808 /seekO 

Links 

r The file can be read 
s Set effective user ID or group ID on execution 
t Shared text is sticky 
w The file can be written 
x The file is executable 

No permission is given 

COHERENT includes several commands that are links to ls and its options, to make it easier for you 
to use the various features of ls. The following table gives each command and the form of ls to which 
it is linked: 

1 ls -1 
lf ls-CF 
lr ls-CR 
Ix ls -x 

See Also 
chmod, commands, 1, le, lf, lr, lx, stat 

-~,~~~~'~'~~,·---­Set read/write position 
long lseek(fd, where, how) 
intfd, how; long where; 

lseek() changes the seek position, or tlie point within a file where the next read or write operation is 
performed. fd is the file's file descriptor, which is returned by open(). 

where and how describe the new seek position. where gives the number of bytes that you wish to 
move the seek position. It is measured from the beginning of the file if how equals SEEK_SET 
(zero), from the current seek position if how equals SEEK_ CUR (one), and from the end of the file if 
how equals two SEEK_END (two). A successful call to lseek() returns the new seek position. For 
example 

position= lseek(fd, lOOL, O); 

moves the seek position 100 bytes past the beginning of the file; whereas 

position= lseek(fd, OL, l); 

merely returns the current seek position, and does not change the seek position at all. 

Sparse files may be created by seeking beyond the current size of the file and writing. The "hole" 
between the end of the file and where the write occurs is read as zero and will occupy no disk space. 
For example, if you lseek() 10,000 bytes past the current end of file and write a string, the data will 
be written 10,000 bytes past the old end of file and all intervening matter will be considered part of 
the file. 

lseek() differs from its cousin fseek() in that lseek() is a system call and uses a file descriptor, 
whereas fseek() is a C function and uses a FILE pointer. 

See Also 
STDIO, system calls 

Diagnostics 
lseek() returns -IL on an error, such as seeking to a negative position. If no error occurs, it returns 
the new seek position. 

LEXICON 



lto/30 - /value 809 

Notes 
lseek() is permitted on character-special files. but drivers do not generally implement it. As a result. 
seeking a terminal will not generate an error but will have no discernible effect. 

lto/30 - General Function ~~~~'~'~~,,~~~,~~'' 
Convert long integer to file system block number 
ltol3(l3p, lp, n) 
char *l3p; 
long •Ip; 
unsignedn; 

To conserve space inside i-nodes in COHERENT file systems. the system stores block addresses in 
three bytes. Programs that reference or maintain file systems use the functions 13tol() and ltol3() to 
convert between the three byte representation and long numbers. 

ltol3() converts n long integers at address Ip to the more compact form at address l3p. 

See Also 
canon.h, general functions, 13tol() 

/value - Definition ~~"~~~~~~~~'"~'~~~~-. 
An lvalue is an expression that designates a region of storage. The name comes from the 
assignment expression el=e2;, in which the left operand must be an lvalue. 

An identifier has both an /value (its address) and an rvalue (its contents). Some C operators require 
lvalue operands; for example. the left operand of an assignment statement must be an lvalue. Some 
operators give lvalue results; for example. if e is a pointer expression, *e is an lvalue that designates 
the object to which e points. 

A variable can be used as an lvalue, whereas a constant cannot. For example, you cannot say 

6 = ( foo+bar); 

A pointer is a variable, and can be manipulated within limits. An array name, however, is a 
constant and cannot be altered legally. Thus, the code 

int foo[ 10]; 
int *bar; 
foo = bar; 

will generate an error message when you attempt to compile it, whereas 

int foo[ 10]; 

int *bar; 
bar = foo; 

will not. 

The following example shows the use of both an lvalue and a rvalue: 

int i, *ip; 

ip = &i; 
i = 3; 
*ip = 4; 

/* ip is an lvalue, i and &i are rvalues */ 
/* i is an lvalue, 3 is an rvalue */ 
/* *ip is an lvalue, 4 is an rvalue */ 

LEXICON 



810 Ix 

See Also 
definitions, rvalue 

~~~lllHlllHlllHlllHlllHlllHlllHlllHlllH~lllH!m\1 
List directory's contents in columnar format
Ix [file ...]

Ix is a link to the command ls -x. It prints eachjlle in columnar format, like the command le, except
that directories and file names are printed together in one listing. If ajlle is a directory. Ix lists its
contents. If nojlle is named, Ix lists the contents of the current directory by default.

See Also
commands, l, le, If, Ir, ls

LEXICON

m4 811

~
Macro processor
m4 [file ...]

The command m4 processes macros. It allows you to define strings for which m4 is to search, and
strings to replace them; m4 then opens file, reads its contents, replaces each macro with its
specified replacement string, and writes the results into the standard output stream.

m4 can also perform file manipulation, conditional decision making. substring selection, and
arithmetic. The Introduction to the m4 Macro Processor describes m4 in detail.

The files are read in the order given; if no file is named, then m4 reads the standard input stream.
The file name'-' indicates the standard input.

m4 copies input to output until it finds a potential macro. A macro is a string of alphanumerics
(letters. digits, or underscores) that begins with a non-digit character and is surrounded by non­
alphanumerics. If m4 does not recognize the macro, it simply copies it to the output and continues
processing. If m4 recognizes the macro and the next character is a left parenthesis '(', an argument
set follows:

macro(argl, ..• , argn)

The arguments are collected by processing them in the same manner as other text (thus, an
arguments may itself be another macro), and resulting output text is diverted into storage. m4
stores up to nine arguments; any more will be processed but not saved. An argument set consists
of strings of text separated by commas (commas inside quotation marks or parentheses do not
terminate an argument), and must contain balanced parentheses that are free of quotation marks
(i.e., that are unquoted). m4 strips arguments of unquoted leading space (blanks, tabs, newline
characters).

m4 then removes the macro and its optional argument set from the input stream. processes them,
and replaces them in the input stream with the resulting value. The value becomes the next piece of
text to be read.

Quotation marks, of the form·', inhibit the recognition of macro. m4 strips off one level of quotation
marks when it encounters them (quotation marks are nestable). Thus, 'macro' is not processed, but
is changed to macro and passed on.

m4 determines the value of a user-defined macro by taking the text that constitutes the macro's
definition and replacing any occurrence within that text of '$n' (where n is 'O' through '9') with the
text of the nth argument. Argument 0 is the macro itself.

m4 recognizes the following predefined macros:

LEXICON

812 m4

changequote[([openquote),[closequote)))
Changes the quotation characters. Missing arguments default to · for open or ' for close.
Quotation characters will not nest if they are defined to be the same character. Value is
null.

decr[(number))
Decrement number (default, 0) by one and returns resulting value.

define(macro ,definition)
Define or redefine macro. If a predefined macro is redefined, its original definition is
irrecoverably lost. Value is null.

divert[(n)]
Redirects output to output stream n (default is OJ. The standard output is 0, and 1 through
9 are maintained as temporary files. Any other n results in output being thrown away until
the next divert macro. Value is null.

divnum
Value is current output stream number.

dnl Delete to newline: removes all characters from the input stream up to and including the
next newline. Value is null.

dumpdef[(macros))
Value is quoted definitions of all macros specified, or names and definitions of all defined
macros if no arguments.

errprlnt(text)
Print text on standard error file. Value is null.

eval(expression)
Value is a number that is the value of evaluated expression. It recognizes. in order of
decreasing precedence: parentheses,••, unary+ -, • I %, binary+ -, relations, and logicals.
Arithmetic is performed in longs.

ifdef(macro,defvalue, undefvalue)
Return def value if macro is defined, and undefvalue if not.

ifelse(arg l ,arg2,arg3 .. .)
Compares argl and arg2. If they are the same, returns arg3. If not, and arg4 is the last
argument, return arg4. Otherwise, the process repeats, comparing arg4 and arg5, and so
on. Like other m4 macros, this takes a maximum of nine arguments.

include(flle)
Value is the entire contents of the file argument. If file is not accessible, a fatal error
results.

incr[(number))
Increments given number (default, zero) by one and returns resulting value.

index(text,pattem)

len(text)

Value is a number corresponding to position of pattern in text. If pattern does not occur in
text. value is -1.

Value is a number that corresponds to length of text.

maketemp(fllenameXXXXXX)
Value is.filename with last six characters, usually XXXXXX. replaced with current process
id and a single letter. Same as system call mktemp.

LEXICON

machine.h - macro 813

sinclude(flle)
Value is the entire contents of file. If file is not accessible. return null and continue
processing.

substr(text[,start[,count]])
Value is a substring of text. start may be left-oriented (nonnegative) or right-oriented
(negative). count specifies how many characters to the right (if positive) or to the left (if
negative) to return. If absent, it is assumed to be large and of the same sign as start. If start
is omitted. it is assumed to be zero if count is positive or omitted, or -1 if count is negative.

syscmd(command)
Pass command to the shell sh for execution. Value is null. Same as system call system.

translit(text,characters[,replacements])
Replaces characters in text with the corresponding characters from replacements. If the
replacements is absent or too short, replace characters with a null character. Value is text
with specified replacements.

undefine(macro)
Remove macro definition. Value is null. If a predefined macro is redefined, its original
definition is irrecoverably lost.

undivert[(stream[, ••.])]
Dumps each specified stream into the current output stream. With no arguments. undivert
dumps all output streams in numeric order. m4 will not dump any output stream into
itself. At the end of processing. m4 automatically dumps all diverted text to standard
output in numeric order. Value is null.

See Also
commands,mktemp,system
Introduction to the m4 Macro Processor

r;1nm•·11=mrnm1- ._"'~''""''~'~'"'~~~~,,
Machine-dependent definitions
#include <sys/ machine.h>

machine.h defines macros, constants. and structures that are specific to the machine upon which
COHERENT is being run.

See Also
header mes

~'"'~~'~'~~~~~~
A macro is a body of text that is given a name. When the name is used in a program, it is replaced
with the text to which it refers; this is called macro expansion. For example. getchar is a macro that
consists of the function call getc(stdin).

Because macros may employ an argument n times, any arguments that have side effects will have
the side effect repeated n times as well, which may be undesirable.

See Also
#define, definitions, function, m4

LEXICON

814 madd0 - mail

WMMll®mttmdil§9MMll®m11@11fi!!~~---··············~
Add multiple-precision integers
#include <mprec.h>
void madd(a, b, c)
mint •a, *b, •c;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. madd() sets the multiple-precision integer (or mints) pointed to by c to the sum of
the the mints pointed to by a and b.

See Also
multiple-precision mathematics

~.... ._~~~~~~~~-~~~~~~~~~~~~~~~~~
Electronic mail system

The COHERENT system includes a full-featured, UNIX-style mail system. It consists of a number of
commands and files through which you can describe potential recipients of mail. either on your
system or other systems, and send mail to them either directly or via UUCP. This article describes
the design of the COHERENT mail system, and introduces the commands and files that compose it.

Structure of the COHERENT Mail System
The COHERENT mail system has three major components: the user agent (i.e .. mail); the routing
agent (the commands small and rmail): and the delivery agents (the commands lmail and uux).

The user agent collects messages from the user and reads messages from a user's mailbox. It hands
to the routing agent for delivery any messages it receives from the user.

The routing agents decode addresses and decide how to deliver a message. They are the only
components of the mail system that must run setuid to assume the privilege of the superuser root.

The delivery agents move messages to their destination.

The local delivery agent, lmail. places messages into users' mailboxes. To discourage mail forging.
lmail does not use setuid. It must be run by a privileged user (generally root) to write into all mail
boxes. As a rule, lmail is invoked only by a routing agent.

The UUCP delivery agent, uux, queues messages for transmission to remote systems. It uses setuid
to assume the identity of user uucp in order to write into the necessary spool directories. It has
long been trivial to forge messages to remote systems with uux; keep this in mind if you plan to use
electronic mail for any kind of authorization system.

small looks up each user in file /usr/lib/mail/aliases. If it finds a match, it uses the matched
name in place of user. If user is of the form

sys I user

or

sys! ••• !user

or

user@sys[.domaln]

it is treated as a remote destination. small then invokes command uux to pass the message to sys,
whose responsibility it becomes to pass the message to user.

If small finds no match in /usr/lib/mail/aliases, or $HOME/ .aliases, however, it attempts to look

LEXICON

mail 815

up each user in file /etc/passwd, to see if this is a local user. If it does not find user in this file,
smail mails an error message back to the sender. If, however, it does find user in this file, small
checks file $HOME/ .forward for any possible forwarding instructions. If this file is absent, small
passes the message to lmail. lmail writes the message into the file /usr/spool/mail/user. This file
is called the user's "mailbox". Note that user owns this file, and can therefore permit or deny access
to her mail by other users.

Note that before you can send mail, either locally or to a remote site, you must run the program
uufnstall and use its 'S' option to set the name of your local site and domain. Your local system
must, of course, also have permission to log into any remote site to which you wish to send mail.
See the tutorial and Lexicon articles on UUCP for details on using UUCP to exchange mail and files
with remote sites.

Mailing a File
To mail a file to another user, use the shell's redirection operator'<'. For example, the command

mail stephen <bug.report

mails file bug.report to user stephen. The file will be prefixed with your address, and suffixed with
your mail "signature", should you have one.

Files
$HOME/ .aliases- Personal mail alias file for outgoing mail
$HOME/ .forward- Forwarding instructions for inbound mail
$HOME/ .sig.mail- Personal signature
$HOME/dead.letter- Message that mail could not send
I etc/ domain - Name of your system's domain
/etc/passwd- User identities
/etc/uucpname- Name of your system
/tmp/mail• - Temporary and lock files
/usr/lib/mail/aliases-Aliases of users
/usr/lib/mail/fullnames-Short full name aliases of users
/usr/lib/mail/paths- Mail routing control file
/usr/spool/mail- Mailbox directory, filed by user name

See Also
aliases, commands, mail, mkfnames, msg, nptx, paths, rmail, smaiL uux

Notes
The Lexicon entry on mail is more than sufficient for most users. The Lexicon entries for rmail and
smail are only for those who wish to work with electronic mail in a very detailed manner.

mlli·""'·h"'·'
Computer mail
mail [-mpqrv) [-f_file) [user ...)

mail allows you to exchange electronic mail with other COHERENT system users, either on your
own system or on other systems via UUCP. Depending upon its form. this command can be used
either to send mail to other users or to read the mail that other users have sent to you.

Sending Mail
If you name one or more users, mail assumes that you wish to send a mail message to each user.
mail first prints the prompt

Subject:

LEXICON

816 mail

on the screen, requesting that you give the message a title.

mail then reads what you type on the standard input. A message is terminated by <ctrl-D>, by a
line that contains only the character'.', or by a line that contains only the character'?'. Ending with
a question mark prompts mail to feed the message into an editor for further editing. The editor
used is the one named in the environmental variable EDITOR. If this variable is not defined, mail
uses ed.

If you have defined environmental variable ASKCC to YES, mail asks you, after a message is ended,
for a list of users to whom you wish to send a copy of the message.

Finally, mail prepends the date and the sender's name, and sends the result to each user named
either on the command line or on the carbon-copy list with the rmail command.

Each user who has received mail is greeted by the message "You have mail.'' when she logs in. mail
normally changes the contents of the mailbox as the user works with them; however, mail has
options that allow the contents of the mailbox to remain unchanged if the user desires.

Reading Mail
If no user is named on its command line, mail reads and displays the user's mail, message by
message. If environmental variable PAGER is defined, mail will "pipe" each message through the
command it names. For example, the .profile command line:

export PAGER="exec /bin/scat -1"

invokes /bin/scat for each mail message with the command-line argument -1 (the digit one).

While reading mail, the user can use any of the following commands to save, delete, or send each
message to another user interactively.

d Delete the current message and print the next message.

m [user ...)
Mail the current message to each user given (default: yourselO.

p Print the current message again.

q Quit, and update mailbox file to reflect changes.

r Reverse the direction in which the mailbox is being scanned.

s [file ...)
Save the current mail message with the usual header in each.file (default: $HOME/mbox).

t [user ...)
Send a message read from the standard input, terminated by an end-of-file character or by
a line containing only',' or'?', to each user (default: yourselO.

w [file ...)
Write the current message without the usual header in each.file (default: $HOME/mbox).

x Exit without updating the mailbox file.

<newline>
Print the next message.

Print the previous message.

EOF Quit, updating mailbox; same as q.

LEXICON

? Print a summary of available commands.

!command
Pass command to the shell for execution.

The following command line options control the sending and reading of mail.

-!file Read mail fromjlle instead of from the default, /usr/spool/mail/user.

mainO 817

-m Send a message to the terminal of user if he is logged into the system when mail is sent.

-p Print all mail without interaction.

-q Quit without changing the mailbox if an interrupt character is typed. Normally, an
interrupt character stops printing of the current message.

-r Reverse the order of printing messages. Normally. mail prints messages in the order in
which they were received.

-v Verbose mode. Show the version number of the mail program. and display expanded
aliases.

If you wish, you can create a signature file .• slg.mail, in your home directory. mail appends the
contents of the signature file to the end of every mail message you send, as a signature. A signature
can be your system's path name (for uucp messages), your telephone number, an amusing bon mot,
or what you will.

Files
$HOME/ dead.letter- Message that mail could not send
$HOME/mbox - Default saved mail
$HOME/ .sig.mail- Signature file
/etc/domain-Name of your system's domain
/etc/uucpname- Name of your system
/tmp/mail• - Temporary and lock files
/usr/spool/mail- Mailbox directory. filed by user name

See Also
aliases. ASKCC, commands, EDITOR, mkfnames, msg, nptx, PAGER, paths. rmail, small, uux

Notes
Note that before you can send mail. either locally or to a remote site, you must run the program
uuinstall and use its 'S' option to set the name of your local site and domain. Your local system
must, of course. also have permission to log into any remote site to which you wish to send mail.
See the tutorial and Lexicon articles on UUCP for details on using UUCP to exchange mail and files
with remote sites.

&111 1hI·L!W!i
Introduce program's main function

A C program consists of a set of functions. one of which must be called main(). This function is
called from the runtime startup routine after the runtime environment has been initialized.

Programs can terminate in one of two ways. The easiest is simply to have the main() routine
return(). Control returns to the runtime startup; it closes all open file streams and otherwise cleans
up, and then returns control to the operating system. passing it the value returned by main() as exit
status.

In some situations (errors, for example), it may be necessary to stop a program. and you may not
want to return to main(). Here, you can use exit(); it cleans up the debris left by the broken
program and returns control directly to the operating system.

LEXICON

818 major number - make

A second exit routine, called _exit(), quickly returns control to the operating system without
performing any cleanup. This routine should be used with care. because bypassing the cleanup will
leave files open and buffers of data in memory.

Programs compiled by COHERENT return to the program that called them; if they return from
main() with a value or call exit() with a value, that value is returned to their caller. Programs that
invoke other programs through the function system() check the returned value to see if these
secondary programs terminated successfully.

See Also
_exit(), argc, argv, C language, envp, exit()

major number - Definition
Device numbering

A major number specifies the device driver associated with a given device name found in the
directory /dev. COHERENT uses a device's the major number as an index into an internal table of
device-driver pointers.

Every COHERENT device has a device number associated with it. This device number is of type
dev_t. as defined in <sys/types.h>. The macro major() in <sys/stat.h> extracts the major number
from a given device number.

See Also
device drivers, minor number, stat.h

~ ---~~~,~~~
Program building discipline
make [option ...) [argument ...) [target ...]

make helps you build programs that consist of more than one file of source code.

Complex programs often consist of several object modules, each of which is the product of compiling
a source.file. A source file may refer to one or more include files, which can also be changed. Some
programs may be generated from specifications given to program generators. such as yacc.
Recompiling and relinking complicated programs can be difficult and tedious.

make regenerates programs automatically. It follows a specification of the structure of the program
that you write into a file called makefile. make also checks the date and time that COHERENT has
recorded for each source file and its corresponding object module; to avoid unnecessary
recompilation, make will recompile a source file only if it has been altered since its object module
was last compiled.

The Makefile
A makefile consists of three types of instructions: macro definitions, dependency definitions, and
commands.

A macro definition simply defines a macro for use throughout the makefile; for example, the macro
definition

FILES=filel.o file2.o file3.o

Note the use of the equal sign '='.

A dependency definition names the object modules used to build the target program, and source
files used to build each object module . It consists of the target name, or name of the program to be
created, followed by a colon':' and the names of the object modules that build it. For example, the

LEXICON

make 819

statement

example1 $(FILES)

uses the macro FILES to name the object modules used to build the program example. Likewise,
the dependency definition

filel.01 filel.c macros.h

defines the object module mel.o as consisting of the source file filel.c and the header file
macros.h.

Finally, a command line details an action that make must perform to build the target program.
Each command line must begin with a space or tab character. For example, the command line

cc -o example $(FILES)

gives the cc command needed to build the program example. The cc command lists the object
modules to be used, not the source files.

Note that if you prefix an action with a hyphen ·-·. make will ignore errors in the action. If the
action is prefixed by '@', it tells make to be silent about the action - that is, do not echo the
command to the standard output.

Finally. you can embed comments within a makefile. make recognizes any line that begins with a
pound sign '#' as being a comment, and ignores it.

make searches for makeme first in directories named in the environmental variable PATH. and
then in the current directory.

Dependencies
The makeme specifies which files depend upon other files, and how to recreate the dependent files.
For example. if the target file test depends upon the object module test.a, the dependency is as
follows:

test1 test.o
cc -o test test.o

make knows about common dependencies, e.g .. that .o files depend upon .c files with the same
base name. The target .SUFFIXES contains the suffixes that make recognizes.

make also has a set of rules to regenerate dependent files. For example, for a source file with suffix
.c and a dependent file with the suffix .o. the target .c.o gives the regeneration rule:

.c.01
cc -c $<

The -c option to the cc commands tells cc not to link or erase the compiled object module. $< is a
macro that make defines; it stands for the name of the file that causes the current action. The
default suffixes and rules are kept in the files /usr/lib/makemacrosand /usr/lib/makeactlons.

Macros
To simplify the writing of complex dependencies. make provides a macro facility. To define a macro,
write

NAME = string

string is terminated by the end-of-line character. so it can contain blanks. To refer to the value of
the macro, use a dollar sign'$' followed by the macro name enclosed in parentheses:

LEXICON

820 make

$(NAME)

If the macro name is one character, parentheses are not necessary. make uses macros in the
definition of default rules:

.c.o:
$(CC) $(CFLAGS) -c $<

where the macros are defined as

CC=cc
CFLAGS=-V

The other built-in macros are:

$• Target name, minus suffix
$@ Full target name
$< List of referred files
$? Referred files newer than target

Each command line argument should be a macro definition of the form

OBJECT=a.o b.o

Arguments that include spaces must be surrounded by quotation marks, because blanks are
significant to the shell sh.

You can specify macro definitions in the makefile, in the environment. or as a command-line
argument. A macro defined as a command-line argument always overrides a definition of the same
macro name in the environment or in the makefile. Normally. a definition in a makefile overrides a
definition of the same macro name in the environment; however. with the -e option (described
below), a definition in the environment overrides a definition in the makefile.

Options
The following lists the options that can be passed to make on its command line.

-d (Debug) Give verbose printout of all decisions and information going into decisions.

-e Force macro definitions in environment to override those in the makefile.

-Cflle file contains the make specification. If this option does not appear, make uses the file
makefile, which is sought first in the directories named in the PATH environmental
variable, and then in the current directory. lfj11e is'-', make uses the standard input; note,
however, that the standard input can be used only if it is piped.

-i Ignore all errors from commands, and continue processing. Normally, make exits if a
command returns an error.

-n Test only; suppresses actual execution of commands.

-p Print all macro definitions and target descriptions.

-q Return a zero exit status if the targets are up to date. Do not execute any commands.

-r Do not use the built-in rules that describe dependencies.

-s Do not print command lines when executing them. Commands preceded by '@' are not
printed, except under the -n option.

LEXICON

ma/loco 821

-t (Touch option) Force the dates of targets to be the current time, and bypass actual
regeneration.

Source File Path
If a file is not specified with an absolute path name beginning with '/', make first looks for the file in
the current directory. If the file is not found in the current directory, make searches for it in the list
of directories specified by macro $(SRCPATH). This allows you to compile a program in an object
directory separate from the source directory. For example

export SRCPATH=/usr/src/local/me
make

or alteratively

make SRCPATH=/usr/src/local/me

builds objects in the current directory as specified by the makefile and sources in
/usr/src/local/me. To test changes to a program built from several source files, copy only the files
you wish to change to the current directory; make will use the local sources and find the other
sources on the $(SRCPATH).

Note that $(SRCPATH) can be a single directory, as in the above example, or a ':'-separated list of
directories, as described in the Lexicon entry for the function path().

Files
makefile
Makefile - List of dependencies and commands
/usr/lib/makeactions- Default actions
/usr/lib/makemacros- Default macros

See Also
as, cc, commands, Id, srcpath, touch
The make Programming Discipline, tutorial

Diagnostics
make reports its exit status if it is interrupted or if an executed command returns error status. It
replies "Target name not defined" or "Don't know how to make target name" if it cannot find
appropriate rules.

Notes
The order of items in makemacros/ .SUFFIXES is significant. The consequent of a default rule (e.g ..
• o) must precede the antecedent (e.g ... c) in the entry .SUFFIXES. Otherwise, make will not work
properly.

ma/loco - General Function (libc)
Allocate dynamic memory
char *malloc(slze) unsigned size;

malloc() helps to manage a program's free-space arenas. It uses a circular, first-fit algorithm to
select an unused block of at least size bytes, marks the portion it uses, and returns a pointer to it.
The function free returns allocated memory to the free memory pool.

Each area allocated by malloc() is rounded up to the nearest even number and preceded by an
unsigned int that contains the true length. Thus, if you ask for three bytes you get four. and the
unsigned that precedes the newly allocated area is set to four.

When an area is freed, its low order bit is turned on; consolidation occurs when malloc() passes
over an area as it searches for space. The end of each arena contains a block with a length of zero,

LEXICON

822 ma/loco

followed by a pointer to the next arena. Arenas point in a circle.

The most common problem with malloc() occurs when a program modifies more space than it
allocates with malloc(). This can cause later malloc()s to crash with a message that indicates that
the arena has been corrupted. You can use the function memok() to isolate these problems.

Example
This example reads from the standard input up to NITEMS items. each of which is up to MAXLEN
long, sorts them, and writes the sorted list onto the standard output. It demonstrates the functions
qsort(), malloc(). free(). exit(). and strcmp().

#include <stdio.h>
#define NITEMS 512
#define MAXLEN 256
char *data[NITEMS];
char string[MAXLEN];

main ()
{

register char **cpp;
register int count;
extern int compare();
extern char *malloc();
extern char *gets();

for (cpp = &data[O]; cpp < &data[NITEMS]; cpp++) {
if (gets(string) == NULL)

}

}

break;
if ((*cpp = malloc(strlen(string) + 1))

exit (1);
strcpy(*cpp, string);

count= cpp - &data[O);
qsort(data, count, sizeof(char *), compare);

for (cpp = &data[O]; cpp < &data[count]; cpp++)
printf("%s\n", *cpp);
free (*cpp) ;

exit(O);

compare(pl, p2)
register char **pl, **p2;
{

}

extern int strcmp();
return(strcmp(*pl, *p2));

See Also

NULL)

alloca(), arena, calloc(), free(), general functions, malloc.h, memok(), realloc(), setbuf()

LEXICON

malloc.h - man 823

Diagnostics
mallocQ returns NULL if insufficient memory is available.

Notes
The commonest error associated with mallocQ is failing to declare it properly. You should always
declare mallocQ as returning a pointer to char.

The function allocaQ (which is available with COHERENT 386) allocates space on the stack. The
space so allocated does not need to be freed when the function that allocated the space exits.

hi@r·Mim1=r.;@1·'11•Jir:tl11il11i'p•~~-~---••••••••••••••••••••m
Definitions for memory-allocation functions
#include <sys/malloc.h>

malloc.h defines constants, structures, and macros used with COHERENT's memory-allocation
functions. Note that this header does not declare the library's memory-allocation functions.

See Also
header mes

mmd•m®!im(,Ji,,fu!!,J.i
Manual macro package
nroff -m.anjlle ...

The nroff macro package man formats manual pages in the style of the Lexicon. It includes the
following macros:

.B Boldface font .
• Bl Bold/italic alternating fonts .
• BR Bold/Roman alternating fonts .
• CO COHERENT .
• DE Display end .
• DS Display start .
• DT Default tabs .
• BE Help end .
• HP Hanging paragraph .
• HS Help start .
• I Italic font .
. m Italic/bold alternating fonts .
• IP Indented paragraph .
• JR Italic/Roman alternating fonts .
• LP Paragraph. flush left .
• PD Paragraph distance .
• PP Paragraph, indented .
• RB Roman/bold alternating fonts .
• RE Relative indent end .
• RI Roman/italic alternating fonts .
• RS Relative indent start .
• SH Subheader .
• SM Smaller size .
• TH Define header .
• TP Tagged paragraph.

Files
/usr/lib/tmac.an- Macro package

LEXICON

824 man

See Also
ms, nroff, technical lnfonnation, troff'
nroff, The Text Processing Language. tutorial

mllri•111!11ijhir1

Print Lexicon entries
man [-w) [topic ...]

man prints the COHERENT lexicon entries for each specified topic on the standard output. It uses
scat to display text (with the -s option to suppress blank lines). With no arguments, man prints a
list of each available topic.

When used with the -w option, it prints the path name of the file instead of printing the document
itself.

If environmental variable PAGER is defined, man pipes its output through the command specified in
PAGER. For example. the .profile command line:

export PAGER="exec /bin/scat -1"

invokes /bin./ scat with the command-line argument -1 (the digit one).

Manual-Page Control Files
man uses two control files when processing manual-page requests. File /usr/man/man.help
contains the man's help message. This includes a list of valid topics and some explanatory text.
The second control file, /usr/man/man.index, contains index entries for all manual pages on the
system. Lines in this text file are of the form:

relative-path-name topic

where relative-path-name gives the subdirectory and file in /usr/man that hold the manual-page
entry, and topic gives a manual-page topic associated with this file. For example, entries

COHERENT/ascii ascii
COHERENT/ascii ASCII
local/chess chess

associate system manual-page /usr/man/COHERENT/ascii with either upper- or lower-case
spellings of topic ascii. Likewise. rules for a user-written chess game are found in file
/usr/man/local/chessand are retrieved using topic chess.

Adding Manual-Page Entries
When writing new manual-page entries for COHERENT, we recommend that you place them in
subdirectories of /usr/man. These subdirectories should be uniquely named to avoid possible
name-space collisions. A good rule of thumb is to name the subdirectory after the application with
which it is associated. This also allows them to be updated easily. as all manual-pages associated
with a given application reside in a specific subdirectory.

When you add manual-page entries to the system. you should also append a list of topics to
/usr/man/man.help. In addition. you must append a line to the end of file /usr/man/man.index
for each newly added topic.

Files
/usr/man/• - Directories that hold manual pages

See Also
commands, help, install, more, PAGER, scat

LEXICON

manifest constant - mathematics library 825

manifest constant - Definition -._~~~~~-._,,~~'''~
A manifest constant is a numeric constant that is given a name so it can be defined differently
under different computing environments. An example is EOF. the end-of-file marker, which has
wildly different representations under different operating systems. Note, too, that numerals are
manifest constants by definition.

The use of manifest constants in programs helps to ensure that code is portable by isolating the
definition of these elements in a single header file, where they need to be changed only once.

See Also
#define, definitions, NULL, portability

math.h- Header File '''''~~~'''~~,,~,,,~~'~
Declare mathematics functions
#include <math.h>

math.h is the header file to be included with programs that use any of COHERENT's mathematics
routines. It includes the following: definitions for mathematical functions: error return values, as
used by the errno function; definitions of mathematical constants, e.g., HUGE_ VAL; the definition of
structure cpx, which describes complex variables; definitions of internal compiler functions; and,
finally, declarations of all mathematical functions.

See Also
header mes, mathematics library

t@ll1NllMlffJU.JMkll•iM@"'~~""~'~''' ~~''''''' ''~"" -
The COHERENT mathematics library llbm contains the following useful mathematics functions:

acos().
asin() ..
atan() ..
atan2().
cabs().
ceil() .
cos() ..
cosh().
exp() .
fabs() .
floor().
hypot().
JO()
jl() .
jn() .
log().
loglO()
pow() .
sin() ..
sinh() .
sqrt() .
tan() ..
tanh().

See Also

. Calculate inverse cosine

. Calculate inverse sine
Calculate inverse tangent

. Calculate inverse tangent of quotient

. Calculate complex absolute value

. Set numeric ceiling
Calculate cosine
Calculate hyperbolic cosine
Calculate exponent
Calculate absolute value function
Calculate floor function
Calculate hypotenuse
Calculate Bessel function, order 0
Calculate Bessel function, order 1
Calculate Bessel function, order n
Calculate natural logarithm
Calculate common logarithm
Calculate power
Calculate sine
Calculate hyperbolic sine
Calculate square root
Calculate tangent
Calculate hyperbolic tangent

Lexicon, libraries, math.h

LEXICON

826 mboot - mcmpO

Hart, J.F .. et al.: Computer Approximations. New York: John Wiley & Sons, 1968.

Press, W.H .. Flannery, B.P .. Teukolsky. S.A .. Vetterling. W.T.: Numerical Recipes In C. New York:
Cambridge University Press, 1988. Highly recommended.

Notes
When programs that contain mathematics routines are compiled, the mathematics libraries must be
called specifically on the cc command line. For example, to compile the example presented under
the entry for acos, use the following cc command line:

cc -f acos.c -lm

The -f option links in the floating point routines for printf, while the -Im option links in the
mathematics libraries. Note that the -Im option must come last on the cc command line, or the
library will not be searched properly.

-'''"'~~,~~,~~~~~'~ ---~ . -.._-.
Master boot block for hard disk

To be bootable, a COHERENT file system must contain a boot block (either boot or mboot). In
addition, all hard disks must contain the master boot block mboot or an equivalent.

mboot is the master boot block for a hard-disk drive. It is compatible with, and therefore can
replace, the IBM master boot block installed by the MS-DOS command FDISK. It must be installed
in the first sector of the hard disk, as follows:

/etc/fdisk -b /conf/mboot /dev/atOx
/bin/sync

mboot searches its internal partition table (updated by the command fd.isk) for an active partition.
You can select an alternate partition by pressing O through 7 before the system selects the active
partition. If the selected partition is of non-zero size with a valid partition boot block, COHERENT
executes that partition's boot block. Otherwise, the prompt

Select partition [0-7]

appear, and the system waits for you to select the partition you want.

Files
/conf/mboot- Hard-disk master boot block

See Also
boot, device drivers, fd.isk, mkfs

mcmpO - Multiple-Precision Mathematics
Compare multiple-precision integers
#include <mprec.h>
int mcmp(a, b)
mint *a, *b;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. mcmp() compares the multiple-precision integers (or mints) pointed to by a and b. It
returns a signed integer less than, equal to, or greater than zero according to whether the value
pointed to by a is less than, equal to, or greater than that pointed to by b.

See Also
multiple-precision mathematics

LEXICON

mcopyO - me 827

hi&.JU2t•lm!@ijijl§l@®HM!t@n@@lmmmmmmlilllllllllillllllllmmmmmmmmmm•••••
Copy a multiple-precision integer
#include <mprec.h>
void mcopy(a, b)
mint •a, •b;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mcopy() sets the multiple-precision integer (or mint) pointed to by b to
the value pointed to by a.

See Also
multiple-precision mathematics

nnunlilllllilit¥'fia·1•ir:1'111ji11Wt!!~----------------------------lllllllil
Define machine-specific magic numbers
#include <sys/mdata.h>

mdata.h defines the "magic numbers" for the machine upon which COHERENT is being run.

See Also
header mes

Bmlm!@@ii¥9$$H$@uM!tlilllllllllillllllllm•••••••••lillllllll•lilllllllllilllllllllilllllllllilllllllllilllllllllillllllll•lillllllll•~
Divide multiple-precision integers
#include <mprec.h>
void mdiv(a, b, q, r)
mint •a, •b, •q, •r;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mdiv() divides the multiple-precision integer (or mint) pointed to by a
with that pointed to by b. It writes the quotient and remainder into, respectively. q and r. b must not
be zero. The results of the operation are defined by the following conditions:

1. a=q*b+r

2. The sign of r equals the sign of q

3. The absolute value of r is greater than the absolute value of b.

See Also
multiple-precision mathematics

a&mi•mln@lrl
MicroEMACS screen editor
me [-e errorflle] [-f bind.file] [texljlle ... J

me is the command for MicroEMACS, the screen editor for COHERENT. With MicroEMACS, you
can insert text, delete text, move text, search for a string and replace it, and perform many other
editing tasks. MicroEMACS reads text from files and writes edited text to files; it can edit several
files simultaneously, while displaying the contents of each file in its own screen window.

Screen Layout
Before you can use MicroEMACS, you must set the environmental variable TERM in your
environment. If you do not set this variable explicitly in your .prome file, COHERENT sets it by
default to ansipc. See the Lexicon entry TERM for details.

LEXICON

828 me

If the command me is used without arguments, MicroEMACS opens an empty buffer. If used with
one or more file name arguments, MicroEMACS will open each of the files named, and display its
contents in a window. If a file cannot be found, MicroEMACS will assume that you are creating it
for the first time, and create an appropriately named buffer and file descriptor for it.

The last line of the screen is used to print messages and inquiries. The rest of the screen is
portioned into one or more windows in which text is displayed. The last line of each window shows
whether the text has been changed, the name of the buffer, and the name of the file associated with
the window.

MicroEMACS notes its current position. It is important to remember that the current position is
always to the left of the cursor, and lies between two letters. rather than at one letter or another.
For example, if the cursor is positioned at the letter 'k' of the phrase "Mark Williams", then the
current position lies between the letters 'r' and 'k'.

Commands and Text
The printable ASCII characters. from · ' to ·-·. can be inserted at the current position. Control
characters and escape sequences are recognized as commands, described below. A control character
can be inserted into the text by prefixing it with <ctrl-Q> (that is, hold down the <control> key and
type the letter 'Q').

There are two types of commands to remove text. Delete commands remove text and throw it away,
whereas kill commands remove text but save it in the kill buffer. Successive kill commands append
text to the previous kill buffer. Moving the cursor before you kill a line will empty the kill buffer,
and write the line just killed into it.

Search commands prompt for a search string terminated by <return> and then search for it. Case
sensitivity for searching can be toggled with the command <esc>@. Typing <return> instead of a
search string tells MicroEMACS to use the previous search string.

Some commands manipulate words rather than characters. MicroEMACS defines a word as
consisting of all alphabetic characters. plus ·_·and '$'. Usually. a character command is a control
character and the corresponding word command is an escape sequence. For example. <ctrl-F>
moves forward one character and <esc>F moves forward one word.

MicroEMACS can handle blocks of text as well as individual characters, words, and lines.
MicroEMACS defines a block of text as all the text that lies between the mark and the current
position of the cursor. For example, typing <ctrl-W> kills all text from the mark to the current
position of the cursor; this is useful when moving text from one file to another. When you invoke
MicroEMACS, the mark is set at the beginning of the file; you can reset the mark to the cursor's
current position by typing <ctrl-@>.

Using MicroEMACS with the Compiler
MicroEMACS can be invoked automatically by the compiler command cc to help you repair all
errors that occur during compilation. The -A option to cc causes MicroEMACS to be invoked
automatically when an error occurs. The compiler error messages are displayed in one window, the
source code in the other, and the cursor is at the line on which the first error occurred. You can
correct the errors one by one. To move to the next error in the list, type <ctrl-X>>: to move the
previous error, type <ctrl-X><.

When have finished making corrections, exit from MicroEMACS by typing <ctrl-Z>. as usual; the
compiler will automatically be re-invoked to re-compile the corrected source code. If more errors are
found, MicroEMACS will be re-invoked with the new list of errors. This cycle will continue either
until the file compiles without error, or until you break the cycle by typing <ctrl-U> <ctrl-X> <ctrl­
C>.

The option -e to the me command allows you to invoke the error buffer by hand. For example, the

LEXICON

commands

cc myprogram.c 2>errorfile
me -e errorfile myprogram.c

me 829

divert the compiler's error messages into errorftle, and then invokes MicroEMACS to let you correct
them interactively.

The MicroEMACS Help Facility
MicroEMACS has a built-in help facility. With it, you can ask for information either for a word that
you type in, or for a word over which the cursor is positioned. The MicroEMACS help file contains
the bindings for all library functions and macros included with COHERENT.

For example, consider that you are preparing a C program and want more information about the
function fopen. Type <ctrl-X>?. At the bottom of the screen will appear the prompt

Topic1

Type fopen. MicroEMACS will search its help file, find its entry for fopen. then open a window and
print the following:

Open a stream for standard I/O
#include <stdio.h>
FILE *fopen (name, type) char *name, *type;

If you wish, you can kill the information in the help window and copy it into your program, to
ensure that you prepare the function call correctly.

Consider, however, that you are checking a program written earlier, and you wish to check the call
for a call to fopen. Simply move the cursor until it is positioned over one of the letters in fopen,
then type <esc>?. MicroEMACS will open its help window, and show the same information it did
above.

To erase the help window. type <ctrl-X> 1.

Options
The following list gives the MicroEMACS commands. They are grouped by function, e.g .. Moving the
cursor. Some commands can take an argument, which specifies how often the command is to be
executed. The default argument is I. The command <ctrl-U> introduces an argument. By default.
it sets the argument to four. Typing <ctrl-U> followed by a number sets the argument to that
number. Typing <ctrl-U> followed by one or more <ctrl-U>s multiplies the argument by four.

Moving the Cursor

<ctrl-A>

<Ctrl-B>

<esc>B

<ctrl-E>

<ctrl-F>

<eSC>F

<esc>G

<ctrl-N>

Move to start of line.

(Back) Move backward by characters.

Move backward by words.

(End) Move to end of line.

(Forward) Move forward by characters.

(Forward) Move forward by words.

Go to an absolute line number in a file. Same as <ctrl-X>G.

(Next) Move to next line.

LEXICON

830 me

<Ctrl-P> (Previous) Move to previous line.

<ctrl-V> Move forward by pages.

<esc>V Move backward by pages.

<ctrl-X>= Print the current position.

<ctrl-X>G Go to an absolute line number in a file. Can be used with an argument: otherwise, it
will prompt for a line number. Same as <esc>G.

<Ctrl-X>[Go to matching C delimiter. For example, if the cursor is positioned under the
character 'f, then typing <ctrl-X>[moves the cursor to the next '}'. Likewise, if the
cursor is positioned under the character}. then typing <ctrl-X>[moves the cursor to
the first preceding 'f. MicroEMACS recognizes the delimiters[,), {. }. (,), /•,and• I.

<Ctrl-X>] Toggle reverse-video display of matching C delimiters. For example, if reverse-video
displaying is toggled on, then whenever the cursor is positioned under a '}'
MicroEMACS displays the first preceding '{' in reverse video (should it be on the
screen). MicroEMACS recognizes the delimiters[,), {, }, (,), /*,and• I.

<e&C>I Move the current line to the line within the window given by argument; the position is
in lines from the top if positive, in lines from the bottom if negative, and the center of
the window if zero.

<esc>< Move to the beginning of the current buffer.

<e&C>> Move to the end of the current buffer.

Killing and Deleting

<Ctrl-D>

<eSC>D

<ctrl-H>

<Ctrl-K>

(Delete) Delete next character.

Kill the next word.

If no argument, delete previous character. Otherwise, kill argument previous
characters.

(Kill) With no argument, kill from current position to end of line; if at the end, kill the
newline. With argument set to one, kill from beginning of line to current position.
Otherwise, kill argument lines forward (if positive) or backward (if negative).

<ctrl-W> Kill text from current position to mark.

<ctrl-X><ctrl-0>

<Ctrl-Y>

Kill blank lines at current position.

(Yank back) Copy the kill buffer into text at the current position; set current position to
the end of the new text.

<eSC><Ctrl-H>
Kill the previous word.

<eSC>
Kill the previous word.

 If no argument, delete the previous character. Otherwise, kill argument previous
characters.

Windows

LEXICON

me 831

<ctrl-X>l Display only the current window.

<ctrl-X>2 Split the current window into two windows. This command is usually followed by
<ctrl-X>B or <ctrl-X><ctrl-V>.

<ctrl-X>N (Next) Move to next window.

<ctrl-X>P (Previous) Move to previous window.

<ctrl-X>Z Enlarge the current window by argument lines.

<ctrl-X><ctrl-N>
Move text in current window down by argument lines.

<ctrl-X><ctrl-P>
Move text in current window up by argument lines.

<ctrl-X><Ctrl-Z>
Shrink current window by argument lines.

Buffers

<ctrl-X>B (Buffer) Prompt for a buffer name, and display the buffer in the current window.

<ctrl-X>K (Kill) Prompt for a buffer name and delete it.

<ctrl-X><ctrl-B>
Display a window showing the change flag, size, buffer name, and file name of each
buffer.

<ctrl-X><ctrl-F>
(File name) Prompt for a file name for current buffer.

<ctrl-X><ctrl-R>
(Read) Prompt for a file name, delete current buffer, and read the file.

<ctrl-X><ctrl-V>
(Visit) Prompt for a file name and display the file in the current window.

Saving Text and Exiting

<ctrl-X><ctrl-C>
Exit without saving text.

<ctrl-X><ctrl-S>
(Save) Save current buffer to the associated file.

<ctrl-X><ctrl-W>
(Write) Prompt for a file name and write the current buffer to it.

<ctrl-Z> Save current buffer to associated file and exit.

Compilation Error Handling

<ctrl-X>> Move to next error.

<ctrl-X>< Move to previous error.

Search and Replace

<ctrl-R> (Reverse) Incremental search backward: a pattern is sought as each character is typed.

LEXICON

832

<esc>R

<Ctrl-S>

<esc>S

<esc>%

<esc>/

<esc>@

me

(Reverse) Search toward the beginning of the file. Waits for entire pattern before search
begins.

(Search) Incremental search forward; a pattern is sought as each character is typed.

(Search) Search toward the end of the file. Waits for entire pattern before search
begins.

Search and replace. Prompt for two strings; then search for the first string and replace
it with the second.

Search for next occurrence of a string entered with the <esc>S or <esc>R commands;
this remembers whether the previous search had been forward or backward.

Toggle case sensitivity for searches. By default, searches are case insensitive.

Keyboard Macros

<ctrl-X>(Begin a macro definition. MicroEMACS collects everything typed until the next <Ctrl-
X>) for subsequent repeated execution. <ctrl-G> breaks the definition.

<ctrl-X>) End a macro definition.

<Ctrl-X>E (Execute) Execute the keyboard macro.

<ctrl-X>M Bind a newly created keyboard macro to a given keystroke or set of keystrokes.

Flexible Key Bindings

<Ctrl-X>R Replace one binding with another.

<Ctrl-X>X Rebind the prefix (meta) keys, and the multiple-execution key <ctrl-U>.

<ctrl-X>S Prompt for a file name. and write all flexible keybindings and macros into it.

<ctrl-X>L Prompt for a file name, and read all flexible keybindings and macros from it.

<ctrl-X>I Rebind current macro to the initialization macro.

By default. MicroEMACS checks for the existence of file $HOME/ .emacs.re and executes it if found.
The -f option lets you specify an alternate file of keybindings macros from the me command line.
After loading the file. MicroEMACS then executes the initialization macro, if one exists. For
example. to load the keybindings file bindings and edit file textrue, use the command:

me -f bindings textfile

Change Case of Text

<esc>C (Capitalize) Capitalize the next word.

<ctrl-X><ctrl-L>
(Lower) Convert all text from current position to mark into lower case.

<esc>L (Lower) Convert the next word to lower case.

<Ctrl-X><Ctrl-U>
(Upper) Convert all text from current position to mark into upper case.

<esc>U (Upper) Convert the next word to upper case.

White Space

LEXICON

<Ctrl-1>

<ctrl-J>

<ctrl-M>

<Ctrl-0>

me 833

Insert a tab. Default behavior is to move the cursor to the nearest S's boundary; for
example, if the cursor is in the 62nd column on the screen, pressing <ctrl-1> moves it
to column 64.

When used with a positive argument, change the behavior of the tab key. For example,
<Ctrl-U>4<ctrl-I> commands MicroEMACS to insert enough spaces for a tab key to
reach a four's boundary.

When used with a negative argument, change the behavior of the tab character. For
example, <ctrl-U>-4<ctrl-I> says that a tab character on a file will take you to the
nearest 4's boundary. Thus, if you have a file with tabs in it and you use '-4', the
appearance of the file on the screen will change; but if you use '4' the appearance of
the file on the screen will not change.

Exporting the shell variable TABSIZ=4 will also change the behavior of MicroEMACS
this way.

Insert a new line and indent to current level. This is often used in C programs to
preserve the current level of indentation.

(Return) If the following line is not empty, insert a new line; if empty, move to next line.

Open a blank line; that is, insert newline after the current position.

<tab> With argument, set tab fields at every argument characters. An argument of zero
restores the default of eight characters. Setting the tab to any character other than
eight causes space characters to be set in your file instead of tab characters.

Send Commands to Operating System
<ctrl-C> Suspend MicroEMACS and execute a subshell. Typing <ctrl-D> returns you to

MicroEMACS and allows you to resume editing.

<ctrl-X>! Prompt for a shell command and execute it.

These commands recognize the shell variable SHELL to determine the shell to which it should pass
the command.

Setting the Mark

<ctrl-@>

<eSC>.

Set mark at current position.

Set mark at current position.

<ctrl><space>
Set mark at current position.

Help Window
<ctrl-X>'? Prompt for word for which information is needed.

<esc>'? Search for word over which cursor is positioned.

<esc>2 Erase help window.

Miscellaneous

<ctrl-G>

<ctrl-L>

Abort a command.

Redraw the screen.

LEXICON

834 mem

<ctrl-Q> (Quote) Insert the next character into text; used to insert control characters.

<esc>Q Quote a character by numeric value. When you type this command, MicroEMACS
prompts you for a numeric value, in decimal. It then inserts into your text the
character whose value you type. This command is useful when you wish to enter
characters with the high bit set.

<Ctrl-T> Transpose the characters before and after the current position.

<Ctrl-U> Specify a numeric argument, as described above.

<ctrl-U> <ctrl-X> <Ctrl-C>
Abort editing and re-compilation. Use this command to abort editing and return to
COHERENT when you are using the -A option to the cc command.

<Ctrl-X>H Use word-wrap on a region.

<Ctrl-X>F Set word wrap to argument column. If argument is one, set word wrap to cursor's
current position.

<ctrl-X><ctrl-X>

Diagnostics

Mark the current position, then jump to the previous setting of the mark. This is
useful when moving text from one place in a file to another.

MicroEMACS prints error messages on the bottom line of the screen. It prints informational
messages (enclosed in square brackets '[' and ']' to distinguish them from error messages) in the
same place.

MicroEMACS manipulates text in memory rather than in a file. The file on disk is not changed until
you save the edited text. MicroEMACS prints a warning and prompts you whenever a command
would cause it to lose changed text.

See Also
commands, ed, elvis, ex, sed, TERM, vi

Notes
Because MicroEMACS keeps text in memory, it does not work for extremely large files. It prints an
error message if a file is too large to edit. If this happens when you first invoke a file, you should
exit from the editor immediately. Otherwise, your file on disk will be truncated. If this happens in
the middle of an editing session, however, delete text until the message disappears, then save your
file and exit. Due to the way MicroEMACS works, saving a file after this error message has appeared
will take more time than usual.

The source code for MicroEMACS is included with COHERENT, and is kept in directory
/usr/src/local. You are invited to experiment with source code, to modify existing features or add
new ones for your own use.

MicroEMACS is based upon the public domain editor by David G. Conroy.

-~"'~~,,~,,~~,~~,~~~~-.._-.._,-.._,~~~'"''
Physical memory file

The special file I dev /mem allows the physical memory of the host computer to be read and written
just like an ordinary file. The location where 1/0 will occur can be positioned to any valid byte
address by a call to lseek(). Note that ps and related commands use /dev/kmem, which
manipulates the kernel's data space.

Commands may examine or change addresses in physical memory. Addresses to use when
changing the system itself normally are obtained from the system load module (/coherent) name

LEXICON

memccpyO - memchrO 835

list, so that they always reflect the currently running version of the system.

Files
/dev/mem

See Also
core, device drivers, lseek, ps

Diagnostics
On an error. such as nonexistent memory location, mem returns -1.

mMmwa1.m11m.u1m91rQiku •••••
Copy a region of memory up to a set character
#include <strlng.h>
char •memccpy(dest, src, c, n)
char •dest, •src; unsigned int c, n;

memccpy() copies characters from src to dest. stopping when either it finds the first occurrence of
character c or it has copied n characters. Unlike the routines strcpy() and strncpy(). memcpy()
copies from one region to another. Therefore, it will not halt automatically when it encounters NUL.

memccpy() returns a pointer to the first location after character c in dest. or NULL if character c
was not found.

See Also
memcpy(), strcpy(), strncpy(), string functions, strlng.h

Notes
memccpy() is not part of the ANSI C Standard. Use of this library routine may restrict portability.

If dest and src overlap, the behavior of memccpy() is undefined. dest should point to enough
reserved memory to hold n bytes of data; otherwise. data corruption may result.

memchrO - String Function .,,_~"''"'"''~ .~.._._.._._.._._,"'~~~"'~~.._._~

Search a region of memory for a character
#include <strlng.h>
char •memchr(reglon, character, n)
char •region; int character; unsigned int n;

memchr() searches the first n characters in region for character. It returns the address of character
if it is found, or NULL if it is not.

Unlike the string-search function strchr(). memchr() searches a region of memory. Therefore. it
does not stop when it encounters a null character.

Example
The following example deals a random hand of cards from a standard deck of 52. The command line
takes one argument. which indicates the size of the hand you want dealt. It uses an algorithm
published by Bob Floyd in the September 1987 Communications of the ACM.

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DECK 52

LEXICON

836 memchrO

main(int argc, char *argv[])
{

}

char deck[DECKJ, *fp;
int deckp, n, j, t;

if (argc ! = 2 I I

}

52 < (n = atoi(argv[l])) I I
1 > n) {

printf("usage: memchr n #where 0 < n < 53\n");
exit(EXIT_FAILURE);

/*exercise rand() to make it more random*/
srand((unsigned int)time(NULL));
for(j = O; j < 100; j++)

rand();

deckp = O;

/* Bob Floyd's algorithm */
for(j = DECK - n; j < DECK; j++) {

t =rand() % (j + l);

}

if((fp = memchr(deck, t, deckp)) !=NULL)
*fp = (char)j;

deck[deckp++J = (char)t;

for(t = j = O; j < deckp; j++) {
div_t card;

}

card= div(deck[j], 13);
t += printf("%c%c

/* note useful string addressing */
"A23456789TJQK"[card.rem],
"HCDS"[card.quot]);

if(t > 50) {

}

t = O;
putchar('\n');

putchar('\n');
return(EXIT_SUCCESS);

See Also
strchr(), string functions, string.h

LEXICON

memcmpO - memcpyO 837

ll@d@dN1.•Dlm111n~.1111!!Dn!11Dl®'I•·----------- ~...._"",...._""''""~,,...._,~~"W
Compare two regions
#include <strlng.h>
Int memcmp(reglonl, reglon2, count)
char •reglonl; char •reglon2; unsigned int count;

memcmp() compares reglonl with reglon2 character by character for count characters.

If every character in reglonl is identical to its corresponding character in reglon2, then memcmp()
returns zero. If it finds that a character in reglonl has a numeric value greater than that of the
corresponding character in reglon2. then it returns a number greater than zero. If it finds that a
character in reglonl has a numeric value less than less that of the corresponding character in
reglon2. then it returns a number less than zero.

For example. consider the following code:

char regionl[l3], region2[13];
strcpy(regionl, "Hello, world");
strcpy(region2, "Hello, World");
memcmp(regionl, region2, 12);

memcmp() scans through the two regions of memory. comparingregionl[O] with region2[0]. and so
on, until it finds two corresponding "slots" in the arrays whose contents differ. In the above
example, this will occur when it compares region1[7] (which contains 'w') with region2[7] (which
contains 'W). It then compares the two letters to see which stands first in the character table used
in this implementation. and returns the appropriate value.

memcmp() differs from the string comparison routine strcmp() in a number of ways. First.
memcmp() compares regions of memory rather than strings; therefore. it does not stop when it
encounters a NUL.

Also, memcmp() can be used to compare an int array with a char array is permissible because
memcmp() simply compares areas of data.

See Also
strcmp(), string functions, string.h

fU@U@Jflll§lihf,i@ihGU.111 -•••.._~,,~"W~~,~'91 ~~~~
Copy one region of memory into another
#include <strlng.h>
char •memcpy(reglonl. reglon2, n)
char •reglonl; char •reglon2; unsigned int n;

memcpy() copies n characters from reglon2 into reglonl. Unlike the routines strcpy() and stmcpy().
memcpy() copies from one region to another. Therefore. it will not halt automatically when it
encounters NUL.

memcpy() returns reglonl .

See Also
strcpy(), string functions, string.h

Notes
If reglonl and reglon2 overlap. the behavior of memcpy() is undefined. reglonl should point to
enough reserved memory to hold n bytes of data; otherwise. code or data will be overwritten.

LEXICON

838 memmoveo - memory a/location

b@•@f.lWllJ-ill,A!M•••••••••••••••~~-··•••••m
Copy region of memory into area it overlaps
#include <string.h>
char •memmove(reglonl, region2, count)
char •regionl, char •region2, unsigned int count;

memmove() copies count characters from reglon2 into reglonl. Unlike memcpy(). memmove()
correctly copies the region pointed to by reglon2 into that pointed by regionl even if they overlap. To
"correctly copy" means that the overlap does not propagate. not that the moved data stay intact.
Unlike the string-copying routines strcpy() and stmcpy(). memmove() continues to copy even if it
encounters a NUL.

memmove() returns reglonl .

See Also
string functions, string.h

Notes
reglonl should point to enough reserved memory to hold the contents of region2. Otherwise, code or
data will be overwritten.

memokO - General Function (libc)
Test if the arena is corrupted
int
memok();

The library function memok() checks to see if the area has been corrupted. It returns one if the
arena is sound. and zero if it has been corrupted.

Example
The following example purposely corrupts the arena, to demonstrate memok(). Please note that this
is not a recommended programming practice.

extern char *malloc();
main()
{

char *p;

p = malloc(2); /* get 2 bytes of memory */
printf("Arena is %s\n", memok() ? "OK" : "bad");
strcpy(p, "too long"); /* clobber memory */
printf("Arena is %s\n", memok() ? "OK" : "bad");

}

See Also
arena, calloc(), general functions, malloc(), realloc()

fii@it.Jif1fl,fftl@•m@fm(eJiuijli2 mM mnMMMMMMMMMMM!i\R
The following diagram shows how COHERENT 286 allocates memory.

Data Segment (maximum size 64 kilobytes)

LEXICON

I ARENA AND I
I FREE MEMORY I
!=====================! ~ SP starts here
I STACK I
!=====================!
I UNITIALIZED DATA I
I (bssd) I
!=====================!
I PRIVATE DATA (prvd) I
!=====================!
I SHARED DATA (shrd) I
======================= ~ DS ES SS point here

Code Segment (maximum size 64 kilobytes)

I CODE I
!=====================!
I RUNTIME STARTUP I
======================= ~ CS points here

memsetO 839

Note that COHERENT can relocate the code and data segments at its own convenience and merely
repoint the required segment registers.

The stack descends from the highest address in its space toward the static data area; new
arguments are placed on the stack in its lowest address. Everything from the top of the stack space
to the end of the data segment is free to accept dynamically allocated data.

Under COHERENT 286, The size of the stack cannot be altered while a program is running. By
default, the runtime startup sets the stack size to four kilobytes (4,096 bytes). Note, however, that a
highly recursive function may cause the stack to grow larger than four kilobytes so that it overwrites
other data areas. This will cause your program to work incorrectly. To reset the amount of stack
allocated to a COHERENT-286 program, use the command ftx:stack.

See Also
data formats, ftx:stack, technical information

m(:liitfl& •:mm·H•HSU.mt..
Fill an area with a character
#include <string.h>
char •memset(buffer, character, n)
char •buffer; int character; unsigned int n;

memset() fills the first n bytes of the area pointed to by buffer with copies of character. It casts
character to an unsigned char before filling buff er with copies of it.

memset() returns the pointer buffer.

See Also
string functions, string.h

LEXICON

840 mesg - minitO

Dllllif•nnu€1d·'
Permit/deny messages from other users
mesg[ny)

Normally, a user can communicate with other users by using the commands msg and write.

In certain situations, it is useful to suppress messages from other users. Therefore, COHERENT
supplies the command mesg, which, lets you permit or suppress messages from other users. The
argument y allows messages, whereas argument n disallows messages. With no argument, mesg
tells you whether you can receive messages (as yes or no) without changing the message state.

Files
/dev/•

See Also
commands, msg, write

Notes
The owner-execute mode bit of the user's tty indicates whether messages are allowed.

minO - Multiple-Precision Mathematics
Read multiple-precision integer from stdin
#include <mprec.h>
void min(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function min() reads a multiple-precision integer (or mint) from the standard
input and writes it at the address held by a. The base of the mint is indicated by the value held in
the external variable ibase.

min() accepts leading blanks and an optional leading minus sign; the number is terminated by the
ftrst non-legal digit.

See Also
multiple-precision mathematics

-..~mrtmff!iHHmmmrmrW11fi!!A_~,~~~ ..._,,~,~
Condition global or auto multiple-precision integer
#include <mprec.h>
void minit(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function minit() helps to create a multiple-precision integer (or mint). If a new
mint is declared to be global or automatic, you must call minit() before using the variable. This
prevents garbage values in the newly created mint structure from causing chaos. A mint
conditioned by minit() has no value; however, it may be used to receive the result of an operation.

See Also
multiple-precision mathematics

LEXICON

minor number - mkdir 841

minor number - Definition
Device numbering

A mlrwr number specifies the device or type of device to use. COHERENT uses the minor number of
a given device in a driver-specific manner. For example, a hard-disk driver may use the minor
number to select a disk drive and partition.

Every COHERENT device has a device number associated with it. It is of type dev_t, as defined in
<sys/types.h>. The macro minor() in <sys/stat.h> extracts the minor number from a given device
number.

See Also
device drivers, major number, stat.h

GjUj!@•~®®'li€BMM1H®@11fo!!',
Free a multiple-precision integer
#include <mprec.h>
void mintfr(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mintfr() frees the memory used by a mint.

See Also
multiple-precision mathematics

mnt.11m11mmnmawmaam®®M'.fo'"
Reinitialize a multiple-precision integer
#include <mprec.h>
void mitom(n, a)
mint •a; int n;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mitom() reinitializes the existing multiple-precision integer (or mint)
pointed to by a ton.

See Also
multiple-precision mathematics

mkdir - Command
Create a directory
mkdir [-r] directory

mkdir creates directory. Files or directories with the same name as directory must not already exist.
directory will be empty except for the entries '.', the directory's link to itself. and '..', its link to its
parent directory. The option -r creates directories recursively. For example, the command

mkdir -r /foo/bar/baz

creates directory foo in I; then creates directory bar in the newly created directory foo; and finally
creates directorybaz in the newly created directory bar.

See Also
commands, rm, rmdir

LEXICON

842 mkdirO - mkfnames

Diagnostics
mkdir fails and prints an error message if you do not have permission to write into directory in
which you are attempting to create a new directory, or if the directory in which you attempted to
create a new directory does not exist.

nnttmt1m®®"""
Create a directory
#include <sys/types.h>
#include <sys/stat.h>
int mkdir(path, mode)
char •path;
int mode;

The COHERENT system call mkdirO creates the directory specified by path and gives it the file mode
specified by mode. If path is relative (that is, it doesn't begin with a'/' character), mkdir() creates
the directory relates to the current directory of the process that calls mkdir(). If path is absolute
(i.e., begins with a'/'), path specifies a directory to be created relative to the root directory for this
process. See Lexicon article chroot for further details. If path specifies more than one directory
level. all parent names specified must exist, must be accessible by the calling process, and actually
must be directories.

Argument mode is formed by logically OR'ing permissions constants found in header file
<sys/stat.h>. These constants begin with s_ and determine the permissions for the directory. See
lexicon article stat for details.

If the directory is successfully created, mkdir() returns zero. If an error occurs, mkdir() returns -1
and sets errno to an appropriate value.

See Also
mkdir, rmdir, rmdir(), system calls

Notes
mkdir() is available only with COHERENT 386.

• • ~~~~B!IB!IB!IB!IB!IB!IB!IB!IB!IB!IB!l~B!l~B!IB!l~~B!llllllllll

Generate data base of user names
mkfnames [name.file ...)

mkfnames reads the contents of name.file and writes to the standard output a sorted data base that
the command mail can use as its data base of full users' names. The command nptx defines the
format of an input line.

If no name.files are named on the command line, mkfnames reads the file /etc/passwd, and
attempts to parse its contents into the form required by nptx.

mkfnames is usually used to generate /usr/lib/mail/fullnames. If more than one login account
has the same part of a name (i.e., the same last name), the lexicographically first login name will be
used.

See Also
commands, mail, nptx

LEXICON

mkfs 843

mm+.m111p1rt.1

Make a new file system
/etc/mkfs [-b boot) [-di [-f name) [-1 lnodes) [-m arg) [-n arg) [-p pack)jllesystem proto

mkfs makes a new file system. jllesystem names the file (normally a block special file) where the
new file system will reside. The contents of the newly created file system are described in proto.
proto can be either a number or a file name.

If proto is a number, mkfs creates an empty file system (containing only a root directory) of the size
in blocks given by proto. The number of i-nodes is calculated as a percentage of this number. The
command

/etc/mkfs /dev/fhaO 2400

creates a file system on a high-density, 5.25-inch diskette in drive 0. If the disk is a high-density,
3.5-inch diskette, use the command:

/etc/mkfs /dev/fvaO 2880

If proto is a file name, however, the contents of that file will be used as a prototype for modeling the
new file system. This prototype file must be laid out in the following manner:

bootstrap .file_ name file_ system_ name device name
no._of_blocks no._of_l-nodes n m
%bXXXXXX

directory_ name
directory_ name mode user _Id group_ Id contents

Each line is described below.

The first line has three fields. Field 1. bootstrap.Jlle_name, contains the name of a file that holds
the boot strap, which must fit into block 0 of the disk. Field 2,flle_system_name, gives the name of
the file system: and field 3, devlce_name, gives the name of file system's physical device (for
example, /dev/hdl). Only the first six characters in field 2 and the first 11 in field 3 are
significant: all characte~s after them are ignored.

The second line contains four fields. Field 1. no._of_blocks, gives the size of the file system in
blocks: field 2. no_of_l-nodes, gives the number of i-nodes in the file system. Because each file or
directory requires one i-node, this number represents the limit on the number of files that may be
created in the file system. A ratio of seven blocks per i-node generally works well.

Fields 3 and 4 control free list interleaving on your disk. n is the size of a ''virtual cylinder": fsck
allocates all the blocks on one virtual cylinder before it advances to the next virtual cylinder. The
value of n must be less than or equal to 255, and should evenly divide the actual size of a cylinder
on the device. m tells the system how many blocks to skip each time it increments a free list block
number, i.e., the free list "interleave": n mod m must be zero. Choosing an optimal interleave value
may improve system performance for the device. The optimal values for n and m are hardware­
specific and can be determined by experimentation.

Next, the third line and following begin with %b. These list the bad blocks on your storage device.
One or more block numbers may appear on each line, separated by white space. These blocks are
allocated to the bad block file (i-node 1).

LEXICON

844 mkfs

The remaining lines in the proto file define the names, modes, and contents of the directories and
files in the file system. These lines are divided into fields separated by white space (blanks or tabs)
as follows:

The first field names the file or directory to be created. This field is missing on the first line,
which describes the root directory of the file system.

The second field describes the mode of the file, which is six characters long. The first character
gives the file type, that is, whether the file is ordinary('-'), directory ('d'), block special ('b'), or
character special ('c'). The second character is 'u' for set user id on execution, and ·-·
otherwise. The third character is 'g' for set group id on execution, and ·-· otherwise.
Characters 4 through 6 specify permissions in octal; for example, 644 specifies read and write
permission for the owner, read permission for other users from the same group, and read
permission for users from other groups.
If the above file type were a directory. subsequent files are recursively defined under that
directory, until the current level of directory is terminated by a line containing a'$' character.

The next two fields specify the owner's numerical user id and group id.

The last field describes file contents. For a directory. it is not needed. For an ordinary file, it is
the name of a COHERENT file that will be copied into the newly created file. For block or
character-special files, there are two fields that specify the numbers of the major and minor
devices.

Finally, each directory's description and the entire proto file must terminate with dollar signs'$'.

The proto file need not contain all of the above fields. However, it must contain the name of the boot
block (line 1), the number of blocks and the number of i-nodes (line 2), the list of bad blocks. the
name of at least one directory, and the dollar sign that ends the file.

Command-line Options
mk.fs recognizes the following command-line options:

-b boot
Specifies the file to use as the "bootstrap" for the file system.

-d Preserve file dates and times on the new file system.

-fname
Label the file system with the given name. name must be less than seven characters in length.

-i inodes
Use inodes as the number of inodes for the file system.

-marg
Set the number of blocks to skip when incrementing virtual block number. This is the same as
the m option as set on line 2 of the prototype file. You can use this option if you choose not to
use a prototype file.

-narg
Set the size of a "virtual cylinder". This is the same as the n option as set on line 2 of the
prototype file. You can use this option if you choose not to use a prototype file.

-ppack
Set the file system "pack name" to pack. pack must be less than seven characters in length.

Example
The following example specifies a proto file for a high-density, 5.25-inch floppy disk; note that this
floppy disk is faulty and contains a number of bad blocks:

LEXICON

/conf/boot. fha
2400 100
%b 55
%b 185 86
d--755 3 1

coherent ---644 3 1 /coherent
tmp d--777 3 1
$
bin d--755 3 1

mail -u-755 O 1 /bin/mail
$
dev d--755 3 1

tty30 c--644 0 1 3 0
tty35 c--644 0 1 3 5
mtO b--600 0 1 12 0

$
$

mknod 845

You can use the command badscan to draw up the list of bad blocks on your disk and create a
skeletonproto file.

See Also
badscan, chmod, commands, fsck, mount, restor, unmkfs

Diagnostics
Diagnostic message are generated for badly constructed proto files or for I/0 errors on the file
system.

®NIM •i·li.n,5m.~~,.··•••••••••••••••••••··~--,,~"1!1
Make a special file or named pipe
/etc/mknod [-f].filename type major minor
/etc/mknod [-f].filename p

In the first form, mknod creates a special.file, which provides access to a device by the.filename
specified. Special files are conventionally stored in the /dev directory.

type can be either 'b' (for block-special file) or 'c' (for character-special file). Block-special files tend
to be devices such as disks or magnetic tape, upon which COHERENT uses an elaborate buffering
strategy. Character-special files are unstructured (character at a time) devices such as terminals,
line printers. or communications devices. Character-special files may also be random-access
devices; this circumvents system buffering, allowing transfers of arbitrary size directly between the
user and the hardware.

The major device number uniquely identifies a device driver to COHERENT. The minor device
number is a parameter interpreted by the driver; it might specify the channel of a multiplexor or the
unit number of a drive.

The caller must be the superuser.

In the second form. mknod creates a named pipe with the given.filename. Named pipes can be used
for communication between processes.

The -f option to mknod forces the creation of a new node, even if one of the same name already
exists.

LEXICON

846 mknodO - mnegO

Files
/dev/•

See Also
commands, mount

®3iC.:.& ll§t@11ittgi1
Create a special file
#include <sys/ino.h>
#include <sys/stat.h>
mknod(name, mode, addr)
char •name; int mode, addr;

mknodO is the COHERENT system call that creates a special file. A special file is one through
which a device is accessed, or a named pipe.

mode gives the type of special file to be created. It can be set to IFBLK, for a block-special device,
such as a disk driver; to IFCHR, for a character-special device, such as a serial-port driver; to
IFDIR, for a directory; or to IFPIPE. for a named pipe.

address is a parameter interpreted by the driver; it might specify the channel of a multiplexor or the
unit number of a drive. Note that this is not used with named pipes.

See Also
named pipe, pipe(), system calls

Notes
Only the superuser root can use mknod(). This is a security feature.

mktemp() generates a unique file name. It can be used, for example, to name intermediate data
files. pattern must consist of a string with six X's at the end. mktemp replaces these X's with the
five-digit process id of the requesting process and a letter that is changed for each subsequent call.
mktemp returns pattern. For example, the call mktemp("/tmp/sortXXXXXX"); might return the
name /tmp/sort01234a. It is normal practice to place temporary files in the directory /tmp. The
start of the file name identifies the originator of the file.

See Also
general functions, getpid(), tempnam(), tmpnam()

tlllftg.Il.llM®®'liM@mmmi@UEilP ~~~--------------~'" Negate multiple-precision integer
#include <mprec.h>
void mneg(a, b)
mint •a, •b;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mneg() negates the value of the multiple-precision integer (or mint)
pointed to by a, and writes the result into the mint pointed to by b.

See Also
multiple-precision mathematics

LEXICON

mnttab.h - modem 847

mmtmoom11mm1.D·~•lillll-••••••••••••••·-._~ "
Structure for mount table
#include <mnttab.h>

mnttab.h defines the structure for the mount table maintained by the functions /etc/mount and
/etc/umount.

See Also
header mes, mount, umount

rm+m.111 m••mM1n@m
The word modem is an abbreviation for "modulation/demodulation device". With the COHERENT
system, you can attach a modem to your computer either to dial out for remote communication, to
let others dial into your COHERENT system. or both. With your modem, too, you can use
COHERENTs UUCP commands to exchange mail and files with remote sites automatically. and to
download news and files from the USENET.

This article gives a summary of how to connect your modem to your computer, describe it to the
COHERENT system. and set it up for UUCP connections. It also discusses some problems that may
crop up when you attempt to use your modem.

Internal vs. External Modems
You can use internal and external modems with COHERENT. An internal modem is, however, more
difficult to diagnose problems because there are typically no status lights to indicate operation.

Hooking up a Modem
A modem must be hooked up to a serial port on your computer. To plug your modem into the
computer, simply take a normal serial-port cable, one with an RS-232 plug of the appropriate
gender at each end, plug one end into your modem and the other into the serial port you wish to
use. The Lexicon article RS-232 describes the wiring of the RS-232 plug in detail; but if you are not
skilled with a soldering iron, you are well advised simply to purchase a cable from your local
electronics store and be done with it.

Serial Ports
The COHERENT system supports up to four serial ports; the devices for these are named
/dev/comlr through /dev/com4r. If you are not sure which port you have plugged your modem
into, perform the following test: First, tum on the modem. Then, type the following command:

echo FOO >/dev/comll

If the "TX" light on the modem blinks, then you know the modem is plugged into coml. If it does
not, try the command again for /dev/com21, and so on through com41 until you find the
appropriate port. If no command works, check the wiring on your cable and make sure that the
plugs are securely inserted.

Once you have established which port your modem is plugged into, link the device /dev/modem to
it, using the following command:

ln -f /dev/com?l /dev/modem

where? gives the number of the port, 1 through 4.

Edit /etc/ttys
If you intend to use your modem with UUCP, you must edit file /etc/ttys to tell COHERENT how
you want it to handle that serial port handled. You must know (1) whether you want the port
enabled or disabled; (2) the baud rate of the port (as set by your modem); and (3) the name of the
port (which you just determined).

LEXICON

848 modem

If a port is enabled, remote users can log into the system. either via a terminal directly plugged into
the port or via a modem. COHERENT sends a login prompt to every enabled port. The COHERENT
system also restricts permissions on all enabled serial ports. so that only the superuser root can
read and write to the port. This prevents other users who may be using the system from accessing
the serial port. If a port is disabled, you can dial out or use a direct-connect UUCP connection via
that disabled port. To dial out on an enabled port. you must first use the command disable to
disable the port. When you have finished dialing out. run the command enable to re-enable the
port. (Note that UUCP automatically disables and re-enables a port when it dials out to poll a
remote system.) Before you can use these commands with a port. the port must first be described in
the file /etc/ttys.

See the Lexicon article on ttys for details on how to edit this file. Note that a modem is a remote
device, and must be so described in /etc/ttys. or it will not work correctly.

After you have made your changes, type the command

kill quit 1

to make COHERENT re-read /etc/ttys and implement your changes.

Remote-Access Password
If you intend to let people dial into your computer, you are well advised to set the remote-access
password. This will require that people who dial in know a special password in addition to whatever
password their personal account may have.

To set this password, log in as the superuser root: then enter the command

passwd remacc

COHERENT then walks you through setting a password for user remacc. which is the remote­
access account.

Edit /etc/modemcap
Once you have edited file /etc/ttys and have set the remote-access password, you must check the
file /etc/modemcap and see if it holds a description that matches your modem. modemcap is
used by a number of programs to control access to modems. and it comes with descriptions for
many commonly used modems. You find, however, that you must edit an existing entry to match
your modem's features exactly: for example, the existing entry may assume that you have a Touch­
Tone telephone whereas you actually have a pulse telephone. The Lexicon entry on modemcap will
walk you through this process.

When you have completed editing this entry, write it down, for you will need to insert it elsewhere.

Edit /usr/bin/modeminit
Once you have found or created the modemcap entry for your modem. check the file
/usr/bin/modeminit. Programs that manipulate the modem execute this script to re-initialize the
modem. You must decide how you want the modem to be re-initialized. Basically. if you wish to
have people dial into your system, you turn on the modem's auto-answer feature: and you must
turn off echoing and the printing of result codes. The commands to use will vary from modem to
modem: see the documentation that comes with your modem for details. See below for details on
modifying this script.

Edit L-devices
If you intend to use your modem with UUCP, you must now insert an entry for it into your the file
/usr /lib/uucp/L-devices. See the Lexicon entry L-devices for details.

LEXICON

modem 849

Modem Maladies
The rest of this article discusses problems that have arisen with remote login via modem, as
diagnosed by the technical support staff of Mark Williams Company.

Difficulty in logging in from a remote site via modem can be the result of problems in one or more of
the following: cabling; enabling/disabling the port; flaws in the contents of file /etc/ttys; incorrect
configuration of the modem; and setting the port to an incorrect state. See Lexicon articles
terminal and UUCP for additional information. The following paragraphs discuss the above-named
items in detail.

RS-232 Cabling
When attaching an external modem to your computer, it is important to use a modem cable
that supports "full modem control". COHERENT relies on modem-control signals when
operating a modem for remote access purposes. When attaching a terminal directly to a
serial port, a "null modem" cable must be used. When attaching a modem, a "straight
through" cable must be used. See Lexicon articles RS-232 and tenninal for further details
on cabling.

Enabled vs. Disabled Ports
A serial port can be either enabled or disabled for remote access. Enabling a port allows a
user on a remote terminal or modem to log into your COHERENT system. Disabling a port
permits a user to dial out or use a direct connect UUCP connection via that disabled port.

If a port is enabled for remote logins and you will use it to call out, you must use the
command disable to disable the port before you access the port. UUCP automatically
disables and re-enables a port.

The port name supplied to an enable or disable command must exactly match the last part
of a line in the /etc/ttys file (see below). For example, for the command enable com2pr to
work, there must be an entry in the file /etc/ttys which ends with com2pr.

When a port is enabled, the first character for the port in file /etc/ttys is set to a 'l' (one).
the permissions for the port are changed so that only the superuser root can read and write
to the port (to prevent other users on the system from accessing the port while a remote
session is in progress), and a login prompt is sent to the port.

/etc/ttys Problems
This file should have permissions of 644 (-rw-r--r--) and belong to owner and group root.
Review the Lexicon entry for ttys to ensure that the format of your version qf /etc/ttys Is
correct.

Leaving blanks at the end of a line tn /etc/ttys usually results In error messages stating
that a device could not be found.

You do not need to edit the Initial 'O' or 'l' In entries In /etc/ttys; this digit ts updated by the
commands enable and disable. See the Lexicon entries for enable and disable for more
Inf ormatlon.

Constant Flickering
Another problem is a constant flickering of send/receive LEDs and an unexplained
continual access of the hard drive. This occurs when the port is enabled and the modem is
set in echo mode: COHERENT sends the login prompt to the modem, the modem echoes it
back to COHERENT, COHERENT then thinks the modem is trying to talk to it and sends
the password prompt, and so on ad Infinitum.

To fix this problem, place the modem into no-echo mode. and turn off the display of result
codes. The following section discusses this in more detail.

LEXICON

850 modem

Modem Configuration
A modem that fails to answer an incoming call. hangs up before locking onto the remote carrier.
becomes stuck in a loop echoing characters sent to it from the computer. or fails to operate at the
expected baud rate probably is configured improperly. To remedy this situation, send the
appropriate control string to the modem.

We offer some guidelines here for modem settings. Be warned, however. that modems from different
manufacturers usually behave differently, regardless of claims of Hayes compatibility. and that you
will need to check the manual for your particular modem.

Echo should be OFF (usually by setting "EO").

Result codes should be OFF (usually by setting "Ql ").

Modem status "DCD" should follow true carrier detect status. rather than being always on
(usually by setting "&Cl").

Auto answer should be ON (usually obtained by setting register SO to a nonzero value equal to
the number of rings before answer).

The delay value for "Wait for Carrier /Dial Tone" (usually register S 7) should not be too short.

The scripts below show typical initialization for "Hayes-compatible" and Trailblazer modems. They
are only examples; your modem may need something different. Please note that the commands
sleep and stty are necessary in the first example so that the command string will be sent to the
modem at 2400 baud; otherwise. the string is sent at the default port speed, which is 9600 baud.

initialize 2400-baud Hayes-compatible modem
disable com3r
sleep 3 > /dev/com31 &
stty 2400 > /dev/com31
echo 'AT EO Ql VO SO=l &Cl M3' > /dev/com31
sleep 3
enable com3r

initialize 9600 baud internal Trailblazer on com2
/etc/disable com2r
cat > /dev/com21 << EOF
at
at eO t vO x3 hO
at sO=l s7=60 s48=1 s51=252 s52=0 s54=3 s58=2
at
EOF
/etc/enable com2r

You can edit the file /usr/bin/modeminit to suit your modem. To ensure that your modem is
initialized every time you start COHERENT. you should add a line saying

/usr/bin/modeminit

to your copy of the file /etc/re. Note that if are going to run a modem initialization script from with
/etc/re, do not invoke the enable or disable commands from within the initialization script.

See Also
modemcap, modem control, modeminit, RS-232, technical information, terminal

LEXICON

modemcap 851

Notes
One final bit of hard-won wisdom: once you have something working. write down what you did, and
store it in a place where you won't lose it. It makes life easier just knowing that you're looking for a
female-to-female cable instead of male-to-female or male-to-male.

modemcap - System Maintenance
Modem-description language
I etc I modemcap

modemcap is a language for describing modems to your system. It resembles the termcap
language in its syntax, although the two are by no means identical. With modemcap, you can
describe your modem to any program that automatically dials out on your modem: this should
spare you the tedium of continually describing your modem to one program after another.

The copy of /etc/modemcap included with your release of COHERENT already contains
descriptions of many popular modems; the chances are good that yours has already been described
for you.

Each modemcap command is one of three types:jlag. string. or number. A.flag command signals
that your modem is performs a particular action or has a particular feature. A string command
gives the command that your modem recognizes to perform a particular action. For example, many
modems recognize that the string at means that you want to gain its attention. Finally, a number
command sets a value or parameter for your modem, such as the highest baud rate it recognizes.

The following table describes each modemcap command:

Name Type

ad number
as flag
at string

bd number
bl number
ce string
cl string
co string
cs string
de string
di flag
ds string
id number
is string

he flag
hu string
tt flag

Meaning

Delay after as
Numbers are in ASCII, not binary
Attention string, forces model into command mode
from online mode
Highest online baud rate
Alternate lower baud rate
Command end string (required if CS is present)
String from modem on remote connection at BL baud rate
String from modem on remote connection at BO baud rate
Command start string
End dial command string (required if OS is present)
Modem has a dialer
Start dial command string
Delay after IS
Initialization string, resets modem to offline,
ready to dial
Modem hangs up when DTR drops
Hangup command
Modem dials touchtone by default (or OS is set
that way)

All commands, such as ds (dial command) and hu (hang up) will be prefixed by cs and ended with
ce. If there is a common prefix and suffix, use this feature. Otherwise, each command will have to
have the entire string built in.

Example Entry
The following gives the entry in /etc/modemcap for the Hayes Smartmodem 1200:

LEXICON

852 modemcap

hylhayes!Hayes Smartmodem 1200:\
:as:at=+++:ad#3:bd#1200:bl#300:cs=AT:ce=\r:co=CONNECT:\
:cl=CONNECT:di:ds=DT :de=:is=ATQO Vl El\r:id#2:\
:hc:hu=HO VO EO Ql:tt:

Each field is separated by a colon. A backslash '\' character at the end of each line but the last lets
the description extend over more than one line.

The three fields gives three versions of the modem's name, separated by vertical bars 'I'. The first
version of the name is a two-character mnemonic; this must be unique. The other two versions give
fuller versions of the name; these are optional.

The following explains each field in detail:

as

at=+++

ad#3

bd#l200

bl#300

cs=AT

ce=\r

co=CONNECT

cl:CONNECT

di

ds=DT

de=

is=ATQO

id#2

he

hu=HO

Numbers are in binary mode.

To gain the attention of the modem, type+++.

Delay three milliseconds after a number.

Maximum baud rate is 1200.

Minimum baud rate is 300.

To initiate a command string, type AT.

A command string is ended by a carriage-return character.

Modem returns the string CONNECT when it makes a connection at 1200
baud.

Modem returns the string CONNECT when it makes a connection at 300
baud.

The modem can dial a telephone number.

Begin dialing. touch-tone mode.

No special string is needed to end the dial string.

To initialize the modem, type ATQO VI El<return>.

Delay two seconds after entering the initialization string.

The modem hangs up when DTR drops (i.e., it hangs up when the program
requests a hangup).

To hang up, type HO VO EO QI.

tt The modem dials touch-tone by default.

Currently Recognized Modems
The file /etc/modemcap includes descriptions of the following modems:

LEXICON

modem control - modeminit 853

tbfast
xtb2400
ha yes
avatex
promodem
mk12
dc300

See Also

Trailblazer, 9600 baud
Trailblazer, 2400 baud
Hayes Smartmodem 1200
Avatex 2400 (clone of Hayes Smartmodem 2400)
Prometheus Promodem 1200
Signalman Mark XII
Radio Shack Direct-Connect 300 Modem

system maintenance, termcap

modem control- Technical Information ~-. __._'"''"'--. ~"''"'-"-"W •"'"-. -
This article documents COHERENT's modem control protocol. Modem control describes how
COHERENT handles RS-232 signals other than Receive Data and Transmit Data. The behavior of
COHERENT's suite of device drivers for serial devices is evolving; changes will be documented in
further revisions to this manual.

Many processes can have a device open at the same time. First open occurs if a process opens a
device when no process has opened the device. Last close occurs when a process closes the port
and no other remaining process has the port open.

al[01] Drivers (Devices com[1-4}*)
On first open, RTS and DTR are asserted by the computer, regardless of whether the specified device
used modem control. If modem control is used (the high-order bit in minor number set to zero),
open() does not complete until CD is true. Once an al[Ol) device has been opened with modem
control. loss of CD to that port causes SIGHUP to be sent to all processes in the group keeping the
port open.

hs Driver (Devices hs0[0-7]{r})
Unfortunately, in this driver the meaning of the high-order bit in minor device numbers is reversed
from that of the al[Ol] drivers: a one in this bit position indicates modem control Is used.

Setting the speed of an hs device to a nonzero value causes assertion of RTS and DTR. regardless of
whether the device has modem control; this happens whenever the device is opened, and at other
times. Setting the speed to zero deasserts RTS and DTR.

If modem control is used (high-order bit in minor number is set to one), open() completes regardless
of other modem signals, but attempts to read or write the device fail until DSR from the modem is
true. with errno set to EIO. Transition to false of DSR causes SIGHUP to be sent to the process
group using the device. In addition, when modem control is used, the computer halts transmission
to the port whenever CTS from the modem goes false.

See Also
modem, RS-232, technical information

modeminit - System Maintenance
Initialize a modem
/usr/bin/modeminit

The script /usr/bin/modeminit can be used to initialize a modem. Jn its default form, this script
sets a Hayes-compatible modem into no-echo mode, turns off command responses, and turns on
auto-answering.

You can edit the file re to have it call this script. This will ensure that your modem is properly
initialized when you boot COHERENT.

LEXICON

854 modfO - modulus

See Also
modem, system maintenance

Separate integral part and fraction
double modf(real, Ip) double real, *Ip;

modf() is the floating-point modulus function. It returns the fractional part of its argument real,
which is a valuef in the range 0 <=f < 1. It also stores the integral part in the double location
referenced by Ip. These numbers satisfy the equation real =f +*Ip.

Example
This example prompts for a number from the keyboard, then uses modf() to calculate the number's
fractional portion.

#include <stdio.h>

main ()
{

}

extern char *gets();
extern double modf(), atof();
double real, fp, ip;
char string[64];

for (;;) {

}

printf ("Enter number: ") ;
if (gets(string) == 0)

break;

real= atof(string);
fp = modf(real, &ip);
printf (" %lf is the integral part of %lf\n",

ip, real);
printf("%lf is the fractional part of %lf\n",

fp, real);

See Also
atof{), ceil(), fabs(), Door(), frexp(), general function, ldexp()

blr·1·@!fll•lF1~~"'"~~~~~~~~~~~~~~~~~~~~~~
Modulus is the operation that returns the remainder of a division operation. For example. 12
modulus four equals zero, because when 12 is divided by four it leaves no remainder. The term
"modulo" also refers to the product of a modulus operation; in the above example, the modulo is
zero. In C, the modulus operation is indicated with a percent sign '%'; therefore, 12 modulus 4 is
written 12%4.

The modulus operation often is used to trim numbers to a preset range. For example, if you wanted
to create a list of single-digit random numbers, you would use the command:

rand()%10

This is demonstrated by the following example.

LEXICON

mon.h - moo 855

Example
This example prints a list of 20 single-digit random numbers. The random-number table is seeded
with a portion of the current system time.

main()
{

}

long nowhere;
int counter;

/* place to put unused data */

srand((int)time(&nowhere));
for (counter = O; counter <20; counter++)

printf("%d\n", rand()%10);

See Also
definitions, operator

Notes
The implementation of C defines how a modulus operator behaves when it operates upon numbers
with different signs. On the i8086,

10 % -4

yields -2. This is not mathematical modulus, which is +2.

-''~~~'~
Read profile output files
#include <mon.h>

mon.h is used with programs that read the profile output files.

See Also
header mes

~""''""'""'~~~ -Greatly amusing numeric guessing game
/usr/games/moo[numdlglts]

/usr/games/moo is a guessing game of numbers, typically four digits. all different.

The game randomly selects a number that consists of numdtgtts unique digits. Obviously, numdtglts
cannot exceed ten; the default is four. moo then prompts you to guess the number it has selected.
When you type your guess, moo responds with one of two possible answers. If you guess the
number correctly, i.e., win, moo responds with "Right!". If any of the digits that you guessed were
correct digits, but in the wrong place, you get a "cow." If you guess a digit correctly and in the
correct place, you get a "bull." If the number of "bulls" is the same as the number of digits in the
guess, you win. moo typically responds with a count of"bulls" and "cows," as in:

2 bulls, 1 cow.

See Also
commands

Notes
The game of moo is sometimes also called mastermind.

It will never replace "Defender."

LEXICON

856 more

~~ --~~~ ~~~'~''~~ ~""'"'''
Display text one page at a time
more [-cdflsu) [-window_ size I [+line_ number I [+/pattern I [file ... I [- I

more is a filter for paging through text one screenful at a time. file is a text file; the operator - tells
more to read and display the standard input.

Options
more reads options from the command line and from the environmental variable MORE. In case of a
conflict, the options given on the command line take precedence. Every cluster of options must be
preceded with a hyphen ' -', even if passed via the environmental variable MORE.

more recognizes the following options:

-c Paint the screen from the top line down. more normally repaints the screen by scrolling from
the bottom of the screen.

-d Prompt the user at the end of each screen with the message:

[Press space to continue, 'q' to quit.]

The default is to not issue a prompt.

-f Count actual lines from the input file rather than screen lines. This option is useful when the
input contains escape sequences that more does not recognize.

-1 Do not treat the formfeed character <ctrl-L> as special. By default, more pauses at each
formfeed character, as if a full screen had been displayed.

-s Squeeze consecutive blank lines into one blank line. This is useful for looking at nrotr output.
such as manual pages.

-u Display backspaces as control characters and leave the carriage return-linefeed (CR-LF) pair
alone. By default, more displays backspaces that appear adjacent to an underscore character
as underlined text; backspaces that appear between two identical characters as emboldened
text; and compresses CR-LF sequences.

+/pattern
Search for pattern before displaying a file. pattern is a regular expression. as recognized by
commands ed or egrep. pattern should be escaped to avoid being processed by the shell.

-window size
Set the size of the window that more displays to window_ size, which is a decimal integer less
than or equal to the number of lines on your terminal. The default window size is read from
the termcap description for your terminal.

+line number
Make llne_number the beginning line to display in file. llne_number is a decimal integer less
than the number of lines inflle.

Commands
The following describes more's interactive commands. These commands are based on those for the
UNIX editor vi. Some commands may optionally be preceded by a decimal number. If you enter an
invalid command, more will beep at you.

h
? Help: display a summary of these commands.

LEXICON

more 857

fNJ<space>

[NJz

Display the next N lines of text (default, one screenful).

If N is not specified, display the next screenful. Otherwise, display N lines and set the default
scrolling size to N for all subsequent <space> and z commands.

fNJ<ctrl-F>
[N]f

Scroll forward N screenfuls (default, one screenful). If N is more than the screen size, only the
final screenful is displayed.

[NJ<ctrl-B>
[N]b

[N]s

Scroll backward N screenfuls (default, one screenful). If N is more than the screen size, only
the final screenful is displayed.

Skip forward N lines (default, one line) and display one screenful.

fNJ<return>
fNJ<enter>

Scroll forward N lines (default, one). Display all N lines, even if N is more than the screen size.

[NJ<ctrl-D>
[N]d

Scroll forward N lines (default, one half of the screen size). If N is specified, it becomes the new
default for subsequent d and <ctrl-D> commands.

<ctrl-L>
Redraw the screen.

(Apostrophe) Return to the position in the current file where the previous search command
started, or to the beginning of the file if no search commands have occurred. This information
is lost when a new file is examined.

[NJ I pattern
Search forward for the N-th line that contains pattern (default, one). pattern is a regular
expression, as recognized by ed or egrep. The search starts at the second line displayed.

n Repeat previous search.

:f Display the name of the current file with the current line number.

[NJ:n

[N]:p

Examine the N-th file after the current file, as given in the command line (default. the next file).

Examine the N-th file previous to the current file, as given in the command line (default, the
previous file).

! command
:! command

Pass command to the shell specified by environment variable SHELL for execution. The default
shell is /bin/sh.

v Invoke an editor to edit the current file. The editor is set by the environment variables VISUAL
and EDITOR, in that order. If these variables are not set, use vi.

LEXICON

858 motd - mountO

= Display the current line number.

q
:q
Q
:Q Quit.

Environment
more uses the following environment variables:

EDITOR Specify default editor.

MORE Set default options for more

SHELL Specify the shell being used (normally set at login time).

TERM Specify the type of terminal you are using. more uses this variable to read from
/etc/termcap the terminal characteristics needed to manipulate the screen.

VISUAL Specify default visual editor.

See Also
commands,egrep,scat,vi

Author
This software is derived from software contributed to Berkeley by Mark Nudleman. more is
copyright © 1988, 1990 by The Regents of the University of California. Copyright © 1988 by Mark
Nudleman. All rights reserved.

more is distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat utilitor.

The file motd holds the message of the day. Its contents are displayed on every user's screen
whenever he logs in.

Only the superuser can alter the contents of this file.

See Also
login, system maintenance

rm.11t.1011:1110;,m1-~ ~
Mount a file system
#include <sys/mount.h>
#include <sys/filsys.h>
mount (special, nameJiag)
char •special, •name; int.flag;

mount() is the COHERENT system call that mounts a file system. special names the physical device
that through which the file system is accessed. name names the root directory of the newly
mounted file system. flag controls the manner in which the file system is mounted, as set in header
file sys/mount.h.

See Also
fd, system calls

LEXICON

mount.all - mount 859

1m.mac1a~1mm1,,1•~mmmm1~mm·m&mu~t3m·11~, ---------------~~~~~~
Mount file systems at boot time
/etc/mount.all

The file /etc/mount.all holds a set of mount commands to mount all COHERENT file systems on
hard disk. It is invoked by the script /etc/re, which COHERENT reads and executes at boot-time.

When you add a new COHERENT partition to your system, you should insert an appropriate entry
into this file, to ensure that the new partition is mounted whenever you reboot your system.

See Also
checklist, mount, re, system maintenance

-~~,,~,.
Mount a file system
/etc/mount [special directory [-ru 11

mount mounts a file system from the block special file special onto directory in the system's
directory hierarchy. This operation makes the root directory of the mounted file system accessible
using the specified directory name.

If the -r option is specified, the file system is read-only. This is useful for preventing inadvertent
changes to precious file systems. The system will not update information such as access times if
the -r option is used.

The -u option causes mount to write an entry into the mount table file /etc/mtab without actually
performing the mount. This is used to note the file system.

When invoked with no arguments, mount summarizes the mounted file systems and where they
attach.

The command umount unmounts a previously mounted file system.

The script /bin/mount calls /etc/mount, and provides convenient abbreviations for commonly
used devices. For example,

mount fO

executes the command:

/etc/mount /dev/fhaO /fO

The system administrator should edit this script to reflect the devices used on your system.

Files
/etc/mtab- Mount table
/etc/mnttab- Mount table
/bin/mount - Shell script that calls I etc/mount

See Also
commands, fsck, mkfs, mknod, umount

Diagnostics
Errors can occur if special or directory does not exist or if the user has no permissions on special.

The message

/etc/mtab older than /etc/boottime

LEXICON

860 mount.h - ms

indicates that /etc/mtab has probably been invalidated by booting the system.

Attempting to mount a block-special file which does not contain a COHERENT file system may have
disastrous consequences. mkfs must be used to create a file system on a blank disk before it is
mounted.

. ...
Define the mount table
#include <sys/mount.h>

mount.h defines the structures and constants that constitute the COHERENT system's mount
table. It also declares functions that are used internally by routines that manipulate the mount
table.

See Also
header files

Write multiple-precision integer to stdout
#include <mprec.h>
void mout(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mout() writes the multiple-precision integer (or mint) pointed to by a
onto the standard output. The base of the output is set by the value of the external variable obase.

See Also
multiple-precision mathematics

The header file mprec.h declares a set of routines used to perform multiple-precision arithmetic. It
also declares the structure mint. which holds multiple-precision integers.

See Also
header files, multiple-precision arithmetic

ms - Technical Information
Manuscript macro package
nroff-msjlle ...

The nroff macro package ms formats manuscripts. The tutorial on nroff describes the ms macros
in detail.

ms includes the following macros:

.AB Begin the abstract portion of a document's title page .

. AE End the abstract

.AI Indicate author's institution on a document's title page .

. AU Name the author on the title page of a document.

LEXICON

ms 861

.B Boldface font: set the following argument in boldface. If the argument is longer than one
word. it must be enclosed in quotation marks. Anything on the line after the argument is
thrown away .

. BD Block-centered display. Take a portion of text; do not adjust it or break it between two
lines, but center it as a whole .

. BT Bottom title. This controls the printing of the footer title, should you want one. It uses
three strings. all or any of which can be defined by the user: LF. for left-hand portion; CF,
for center portion; and RF. for right-hand portion. CF has the default definition of printing
the page number; the other two strings are undefined .

. CD Centered display. Center individually every line within a display .

. DA Set the date .

. DE Mark the end of a display. Do not use after the macros .LD .. CD. or .RD .

. DS Mark the beginning of a display. Do not use for displays longer than one page .

. FE Mark the end of a footnote entry .

. FS Mark the beginning of a footenote entry .

. I Italic font. Used like .B. above .

. ID Indent a display l /2 inch before printing .

. IP Indent a paragraph of text before printing. This macro can take two arguments: argument 1
is used as a tag that is printed to the left of the first line of the paragraph; argument 2
indicates how far to indent the paragraph, in characters (the default is five characters, or
l /2 inch) .

. KE Indicate the end of a keep. or a portion of text that must not be broken between two pages .

. KF Start floating keep .

. KS Indicate the beginning of a keep .

. LD Set a display flush left; used with displays that are longer than one page .

. NH Set a numbered heading. This macro takes one argument: the depth of numbering. For
example, a '4' here would yield a number of the format "1.1.1.1". No number higher than
five is accepted here. The following line gives the text of the heading .

. PP Begin a new paragraph .

. QE Mark the end of a quoted paragraph .

. QP Quoted paragraph. Used like .IP. above .

. gs Mark the beginning of quoted text; text is indented by five characters (l /2 inch) .

. R Roman font. Used like .B. above .

. RE Mark the end of a relative indentation .

. RS Mark the beginning of a relative indentation. A relative indentation is a block of text that is
indented five characters (l /2 inch) more than the text before it .

. SH Subheading. One line of space is inserted, and the following line of text is set boldface and
flush left.

LEXICON

862 MS-DOS

.TA Set tabs, in characters .

. TL Title: format the title entry on the cover page of a document.

Files
/usr /lib/tmac.s

See Also
man, nroff, technical information, troff
Introduction to nroff, Text Processing Language. tutorial

Mf>J•r•J:llQhhl!fllmi•li11fil![.j,t
That other operating system

MS-DOS is the native operating system of the IBM-AT and compatible computers. As such, it needs
no introduction to most users. Many customers have asked, however, how MS-DOS and
COHERENT compare in terms of their capabilities; and many have also asked for a chart that maps
familiar MS-DOS commands to their COHERENT equivalents. This article attempts to fulfill these
requests.

MS-DOS vs. COHERENT
MS-DOS differs significantly from COHERENT in practically every aspect of its design. For example,
its file system is incompatible with COHERENT: its shell command.com differs significantly from
COHERENT's suite of shells; the manner in which it loads and executes a program differs
completely from COHERENT's.

The most noticeable difference in design, however. is that MS-DOS is a single-user, single-process
operating system, whereas COHERENT is a multi-user, multi-tasking operating system.

Single-user means that only one user can use MS-DOS at any given time: whoever sits at the
keyboard "owns" the machine and all its facilities. Multi-user means. of course, that more than one
user can use COHERENT at any given time, via terminals or modems plugged into the computer's
serial ports. The number of users who can use your COHERENT system at once is limited only by
your computer's speed, available memory, and by the number of serial ports that can be plugged
into your computer.

Single-tasking means that MS-DOS can do only one task at a time: it loads a program into memory,
runs it to completion, then awaits your request to execute another program. Multi-tasking means
that COHERENT can execute more than one program at a time.

To grasp how multi-tasking can simplify some work, consider the task of formatting floppy disks.
Under MS-DOS, you pop the floppy disk into the drive, invoke the MS-DOS program form.at, answer
its queries, then go get a cup of coffee while the machine grinds away. Formatting a box of high­
density floppy disks ties up your machine for the better part of an hour, which is largely wasted
time for you. Under COHERENT. however, you can format a floppy disk in the background - that
is, you can tell COHERENT to execute the disk-format program unsupervised, and let you work with
another program. For example, if you wish to low-level format a 5.25-inch, high-density floppy disk
in drive 0 (that is, drive A), use the following command:

/etc/fdformat -v /dev/fhaO &

Try it. You'll notice that the COHERENT prompt returns immediately: while COHERENT is
formatting your disk for you, you can edit a file, play a video game, dial out to a remote system, or
even format a second disk in your machine's B drive (should you have one).

Multi-tasking also means that you can program COHERENT to execute programs untended, even
while you are away from your machine. The UUCP system is a good example of this feature. UUCP
lets you exchange mail and files with remote systems via modem: once the system is set up. it runs

LEXICON

MS-DOS 863

automatically, without requiring that you sit at the keyboard to run it.

This discussion only gives you a taste of the advantages COHERENT enjoys over an obsolete system
like MS-DOS. The following documents contain information that MS-DOS users will find helpful:

The tutorial Using the COHERENT System introduces COHERENT to new users. If you are new
to COHERENT and have not yet read this tutorial, you should do so before you continue any
farther.

The Lexicon articles floppy disks and hard disk discuss the in's and out's of using mass­
storage device with COHERENT. The article floppy disks in particular discusses in detail all
the steps required to format and manipulate MS-DOS-style floppy disks under COHERENT.

The Lexicon articles modem. printer, and terminal discussion how to connect these devices to
COHERENT, and introduce the set of commands with which you can manipulate them under
COHERENT.

The Lexicon article execution describes in detail how COHERENT loads and executes a
program. This article is aimed at the technically knowledgeable, but neophytes may find parts
of it helpful.

The Lexicon article commands summarizes all commands available under the COHERENT
system. This article will help you grasp the scope of COHERENT's suite of commands, and will
help you explore them systematically.

The following Lexicon articles describe COHERENT commands for manipulating MS-DOS files
and disks:

doscp Copy files to/from an MS-DOS file system.

doscat Concatenate a file on an MS-DOS file system.

doscp Copy a file to/from an MS-DOS file system.

doscpdir Copy directories to/from an MS-DOS file system.

dosdel Delete files from an MS-DOS file system.

dosdir Show the contents of an MS-DOS directory.

dosfonnat Write an MS-DOS file system onto a floppy disk.

doslabel Label an MS-DOS floppy disk. The MS-DOS file system can reside on a floppy disk
or an MS-DOS portion ofa hard disk.

dosls List contents of an MS-DOS file system.

dosmkdir Create a directory on an MS-DOS file system.

dosnn Remove a file on an MS-DOS file system.

dosnndir Remove a directory from an MS-DOS file system.

COHERENT Equivalents to MS-DOS Commands
The following table lists the most commonly used MS-DOS commands, and gives COHERENT
equivalents.

Note that often there is no single COHERENT command that equates to a given MS-DOS command.
COHERENT often offers several alternatives, and you can select the one that best suits your needs.
Every COHERENT command has its own article in the COHERENT Lexicon; look there first for
details on how to use the command.

LEXICON

864 MS-DOS

BACKUP

BREAK

This command copies a directory's files to a formatted floppy disk to back them up. To do
so under COHERENT. use the command:

find • -print I cpio -ocm > /dev/rfhaO

Note that cpio requires a formatted, defect free floppy disk, however you do not need to
create a filesystem on the floppy disk prior to using cpio.

Note that if you want COHERENT to prompt you before it backs up a file, use the command:

find • -print I cpio -ocmr > /dev/rfhaO

See the article on the archiving command cpio for details on this command - especially
important if you expect to retrieve your backed-up files.

Note, too, that the device /dev/rthaO corresponds to a 5.25-inch, high-density floppy disk
in drive 0 (drive A). See the article floppy disks for a list of the devices that correspond to
different sizes and configuration of floppy disks.

Abort a command. Aborting a command under COHERENT varies, depending upon
whether the command is running in the foreground or the background. The keystroke

<ctrl-c>

aborts most commands that are running in the foreground. To abort a command that is
running in the background, you must use the kill command. See its Lexicon entry for
details on how to use it.

CHDIRor CD
Change to another directory. To do so under COHERENT, use the command

cd dlr

where dlr is the directory to which you wish to go. The directories '.' and ' . .' are used by
both COHERENT and MS-DOS; since MS-DOS "borrowed" its directory structure from UNIX
(of which COHERENT is an implementation), the similarity should not be surprising.

Note that MS-DOS requires that before you can change to directory on another physical
device or partition, you must first switch to that device by typing its name before you use
the chdir command. COHERENT has no such restriction.

CHKDSK
Check the integrity of a file system. Under COHERENT, use the command:

/etc/fsck [option] r.filesystem]

Read the Lexicon entry on fsck before you attempt to run It!

COMP Compare the contents of two files. To do so under COHERENT, use the following command
to compare two binary files:

cmp [option] jlleljlle2

cmp displays the bytes which differ between the files.

To compare the contents of two text files, use the command:

diff [option] jlleljlle2

LEXICON

MS-DOS 865

COPY Copy the contents of one file into another; create the target file if it does not already exist.
Under COHERENT, say:

cp oldjllename newjllename

To copy a set of files into a directory without changing their names, use the following form
of the command:

cp jllel ... jlleN directory

DATE Reset the current date and time. Under COHERENT. use the command:

date yymmddhhmm.ss

Only the superuser can reset the system's date and time. When date is used without an
argument, it prints the date and time on the standard output.

DIR Type the contents of a directory. Under COHERENT. use the command:

ls -1

DIR/W List a directory's contents in columnar form. Under COHERENT. use either the command:

le

or the command:

ls -c
DISKCOPY

Copy one floppy disk track-by-track to another floppy disk. COHERENT has no exact
equivalent to this command; however, you can copy the contents of one disk to another by
using the following set of commands.

First, place a write-protect tab on your source disk; insert the disk into drive 0 (drive AJ.
then type the following command:

dd if=/dev/fhaO of=/tmp/filename

This copies the contents of the 5.25-inch, high-density floppy disk in drive 0 into file
/tmp/mename. For a table of devices that correspond to other sizes and configurations of
floppy disks, see the Lexicon article fioppy disks.

Second, insert formatted destination diskette into drive 0, and then type the command:

dd if=/tmp/filename of=/dev/fhaO

This command copies the files in directory /tmp/filename onto the target floppy disk. Note
that the target disk must be formatted before it can receive files; see the Lexicon article
ftoppy disks for information on how to do this.

EDLIN Perform simple-minded editing of text files. Under COHERENT, theed editor performs line
editing. but is much more sophisticated than edlin. COHERENT also includes the vi and
MicroEMACS screen editors. which are more useful still.

ERASE or DEL
Remove a file or a directory. To erase a file, use the command:

rm file 1 [• • • jlleN]

To erase a directory, use the command:

LEXICON

866 MS-DOS

rmdir directory

To erase a directory and all files and directories below it, use the command:

rm -r directory

FIND Find a pattern within a text file. Under COHERENT, use the command:

egrep [option] pattern r.flle ••• J

egrep is an extremely useful command; see its Lexicon entry for details on how to use it.

MEM Find how much space is left free on your hard disk. Under COHERENT, say:

df [options J

See the Lexicon entry on df for details.

MKDIR Create a new directory. Under COHERENT:

mkdir directory •••

MODE Set parameters for terminals and ports. Under COHERENT. use the command stty. This
command comes with many options; see its Lexicon entry for details. The default speeds of
all ports and terminals reside in file /etc/ttys. The superuser can use a text editor to edit
this file to change any or all default settings.

MORE Display text a screenful at a time. Under COHERENT, use the commands more or scat.

PRINT Print files via a serial port. To print a file on a dot-matrix printer, use the command:

lpr .file 1 [• • • jlleN J

To print a file on a Hewlett-Packard LaserJet printer. use the command

hpr .file 1 [• • • jlleN]

Note that before these commands can be used, the appropriate devices must be linked to
your system. See the Lexicon article on printer for details.

Note, too, that COHERENT uses a spooling system to manage the printing of files; thus,
attempting to print a non-existent file will not hang the system.

PROMPT
Change the command.com prompt. The COHERENT shells store the prompt format within
the environmental variable PSI. This variable is usually defined in each user's .profile file;
this file holds commands that are executed whenever the user logs in. To change the
definition of your prompt. edit .prome to define PSI to suit your preference, then log in
again.

Note that the information that can be embedded within the prompt varies between the
Bourne and Korn shells. See the Lexicon articles sh and ksh for details on those shells and
their prompts.

RENAME
Rename a file. Under COHERENT. use the command:

mv olc:iflle new.file

mv can also be used to move files from one directory or file system to another.

LEXICON

msg 867

RESTORE
Restore a file saved with the BACKUP command. Under COHERENT, insert the floppy disk
upon which the cpio utility saved its backup archive; then type the command:

cpio -icv < /dev/rfhaO

Note that this command assumes you are using /dev/rfhaO, which describes a 5.25-inch,
high-density floppy disk in drive 0 (drive A). For a table of devices that correspond to other
sizes and configurations of floppy disks, see the Lexicon article fioppy disks.

TREE List all directories on a file system. Under COHERENT, use the command:

find I -type d I more

To list all files and directories that are subordinate to the current directory, use the
command:

find • I more

The COHERENT command ls -IR also lists a directory tree, in a somewhat different output
format.

See Also
COHERENT, doscat, doscp, doscpdir, dosdel, dosdir, dosformat, doslabeL dosls, dosmkdir,
dosrm.dir, fioppy disks, hard disk, modem, printer, terminal, technical information

The file I dev I msg is an interface to the message device driver. It is assigned major device 25 (minor
device 0) and can be accessed as a character-special device.

All messaging operations are performed through the COHERENT system call ioctl(). Each of the
operations msgctl(), msgget(), msgsnd(), and msgrcv() is performed with an integer array as its
parameter. The first element of the array is reserved for the return value (default, -1). Subsequent
elements represent arguments. The call to ioctl() passes MSGCTL, MSGGET, MSGSND, or
MSGRCV as the second argument, and an array of parameters as the third argument. The first
argument is an open file descriptor to I dev /msg.

Access
If entry /dev/msg does not exist, you must created it, as follows:

/etc/mknod /dev/msg c 25 O
/bin/chmod 444 /dev/msg

Files
/usr/include/sys/ipc.h
/usr /include/ sys/msg.h
/dev/msg

See Also
device drivers, drvld, msgctl(), msgget(), msgop(), ps

Notes
The space allocated for message text is set by the kernel variables NMSG and NMSC. These set,
respective, the number of message queues and the number of messages. Under COHERENT 286,
the total space allocated (NMSG • NMSC) must be less than 64 kilobytes; under COHERENT 386,
there is no formal limit to this space.

LEXICON

IPC_STAT

IPC_SET

IPC_RMID

msgctlO 869

Place the current value of each member of the data structure associated with msqld
into the structure pointed to by brif.
Set the value of the following members of the data structure associated with msqid
to the corresponding value found in the structure pointed to by brif:
msg_perm.uid
msg_perm.gid
msg_perm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that has an effective-user identifier
equal to either that of superuser or to the value of msg_penn.uid in the data
structure associated with msqld. Only superuser can raise the value of msg_qbytes.

Remove the system identifier specified by msqld from the system and destroy the
message queue and data structure associated with it. This cmd can only be
executed by a process that has an effective-user identifier equal to either that of
superuser or to the value of msg_perm.uid in the data structure associated with
msqld.

msgctlQ fails if any of the following are true:

msqtd is not a valid message queue identifier. msgctlQ sets the global variable errno to
EINVAL.

cmd is not a valid command (EINVAL).

cmd is equal to IPC_STAT and operation permission is denied to the calling process (EACCES).

cmd is equal to IPC_RMID or IPC_SET, and the effective-user identifier of the calling process is
not equal to that of superuser and it is not equal to the value of msg_penn.uid in the data
structure associated with msqld (EPERMJ.

cmd is equal to IPC_SET. an attempt is being made to increase to the value ofmsg_qbytes, and
the effective-user identifier of the calling process is not equal to that of super user (EPERM).

brif points to an illegal address (EFAULT).

Return Value
Upon successful completion, msgctl() returns zero. If a problem occurs, it returns -1 and sets
errno to an appropriate value.

Files
/usr /include/ sys/ipc.h
/usr /include/ sys/msg.h
/dev/msg

See Also
msg, msgget(), msgrcv(), msgsnd(), system calls

Notes
COHERENT 286 implements the msg functions as a device driver rather than as an actual system
call.

LEXICON

870 msggetO

iiiH.JWl•!•l~Wl•l•illl. !-ID'I-••••••••••••••••••••••••••••
Get message queue
#Include <sys/msg.h>
msgget(key, msgftg)
key_t key; int msgflg;

msgget() returns the message queue identifier associated with key, should it exist. If key has no
message queue associated with it, msgget() checks whether (msgflg & IPC_CREAT) is true; if it is,
then msgget() creates a message queue identifier and associated message queue and data structure
for key.

Upon creation, the data structure associated with the new message queue identifier is initialized as
follows:

msg_perm.cuid, msg_perm.uid, msg_perm.cgld, and msg_penn.gld are set to, respectively,
the effective user identifier and effective group identifier of the calling process.

The low-order nine bits of msg_perm.mode are set to the low-order nine bits of msgftg. These
nine bits define access permissions: the top three bits specify the owner's access permissions
(read, write, execute), the middle three bits specify the owning group's access permissions, and
the low three bits specify access permissions for others.

msg_ctime is set to the current time.

msg_qbytes is set equal to the system limit, as defined by the kernel variable NMSQB.

msgget() fails if any of the following is true. The term within parentheses gives the value to which
msgget() sets errno, as defined in the header file errno.h:

A message queue identifier exists for key but operation permission as specified by the low-order
nine bits of msgflg would not be granted (EACCES).

A message queue identifier does not exist for key and (msgftg & IPC_CREAT) is false
(ENOENT).

A message queue identifier is to be created but the number of message queue identifiers
system-wide exceeds the system limit as specified in the kernel variable NMSQID (ENOSPC).

A message queue identifier exists for key, but ((msgflg & IPC_CREAT) &lit (msgflg &
IPC_EXCL)) is true (EEXIST).

Return Value
Upon successful completion, msggetO returns the message-queue identifier, which is always a non­
negative integer. Otherwise, it returns -1 and sets errno to an appropriate value.

Files
/usr/include/sys/ipc.h
/usr/include/sys/msg.h
/dev/msg

See Also
msg, msgctl(), msgrcv(), msgsnd(), system calls

Notes
COHERENT 286 implements the msg functions as a device driver rather than as an actual system
call.

LEXICON

msgrcvO 871

lri?"t./AM"m~@IBAl11l*ill·l'll•••••••••••••••·~----~~---
Receive a message
#include <sys/msg.h>
msgrcv(msqld, msgp, msgsz, msgtyp, msgflg)
int msqld, msgsz, msgflg; struct msgbuf•msgp; long msgtyp;

msgrcvO reads a message from the queue associated with the queue identifier msqtd and writes it in
the structure pointed to by msgp. This structure consists of the following members:

long mtype;
char mtext[];

/* message type */
/* message text */

mtype is the received message's type. as specified by the sending process. mtext is the text of the
message. msgsz gives the size of mtext, in bytes. The received message is truncated to msgsz bytes
if it is larger than msgsz and (msg/lg & MSG_NOERROR) is true. The truncated portion of the
message is lost, with no indication given to the calling process.

msgtyp specifies the type of message requested, as follows:

If msgtyp equals OL. the first message on the queue is received.

If msgtyp is greater than OL. the first message of type msgtyp is received.

If msgtyp is less than OL. the first message of the lowest type that is less than or equal to the
absolute value of msgtyp is received.

msgflg specifies the action taken if a message of the desired type is not on the queue, as follows:

If (msg/lg & IPC_NOWAIT) is true, the calling process immediately returns -1 and sets errno to
EAGAIN.

If (msg/lg & IPC_NOWAIT) is false, the calling process suspends execution until one of the
following occurs:

1. A message of the desired type is placed on the queue.

2. msqtd is removed from the system. When this occurs. msgrcv sets errno to EDOM

3. The calling process receives a signal that is to be caught. In this case, a message is not
received and the calling process resumes execution in the manner prescribed in signal().

msgrcvO fails and no message is received if any of the following is true:

msqld is not a valid message queue identifier. msgrcv errno to EINVAL.

Operation permission is denied to the calling process (EACCES).

msgsz is less than zero (EINVAL).

mtext is greater than msgsz and (msg/lg & MSG_NOERROR) is false (E2BIG).

The queue does not contain a message of the desired type and (msgtyp & IPC_NOWAIT) is true
(EAGAIN).

msgp points to an illegal address (EFAULT).

Upon successful completion. the following actions are taken with respect to the data structure
associated with msqld:

msg_qnwn is decremented by one.

LEXICON

872 msgs

msg_lrpid is set equal to the process identifier of the calling process.

msg_rtime is set equal to the current time.

Return Values
If msgrcv() returns due to the receipt of a signal. it returns -1 and sets errno to EINTR. If it returns
due to the removal of msqld from the system. it returns -1 and sets errno to EDOM. Upon
successful completion. msgrcv() returns a value equal to the number of bytes written into mtext.
Otherwise, it returns -1 and sets errno to an appropriate value.

Files
/usr /include/ sys/ipc.h
/usr /include/ sys /msg.h
/dev/msg

See Also
msg, msgctl(), msgget(), msgsnd(), system calls

Notes
COHERENT 286 implements the msg functions as a device driver rather than as actual system
calls.

msgs selects and displays messages that are intended to be read by all COHERENT users.
Messages are mailed to the login msgs. They should contain information meant to be read once by
most users of the system.

The command msgs normally is in a user's .profile. so that it is executed every time he logs in.
When invoked. it prompts the user with the identifier of the user who sent the message and the
message's size. msgs then asks the user if he wishes to see the rest of the message. The user
should reply with one of the following:

y
<return>
n

q
number

Display the message.
Display the message.
Skip this message and go to the next one.
Redisplay the last message.
Quit msgs.
Display message number; then continue.

If environmental variable PAGER is defined. msgs will "pipe" each message through the command
specified in PAGER. For example, the .profile command line:

export PAGER="exec /bin/scat -1"

would invoke /bin/scat for each message with the command line argument -1 (the digit one).

msgs writes into the file $(HOME)/ .msgsrc the number of the next message the user will see when
he invokes msgs. msgs keeps all messages in the directory /usr/msgs; each message is named
with a sequential number, which indicates its message number. The file /usr/msgs/bounds
contains the low and high numbers of the messages in the directory; msgs determines whether a
user has not read a message by comparing the information in $(HOME)/ .msgsrc with that in
/usr/msgs/bounds. If the contents of /usr/msgs/bounds are incorrect. the problem can be fixed
by removing that file; msgs will create a new bounds file the next time it is run.

LEXICON

msgsndO 873

When the contents of a message are no longer needed, simply remove that message. Avoid removing
the bounds file and the highest numbered message at the same time.

msgs accepts the following command-line options:

-q Query whether there are messages; print "There are new messages" if there are, and "No
new messages" if not. The command msgs -q is often used in profile scripts.

number Start at message number rather than at the message recorded in $(HOME)/ .msgsrc. If
number is greater than zero, then start with that message: if number is less than zero, then
begin number messages before the one recorded in $(HOME)/ .msgsrc.

Files
/usr/spool/mail/msgs- Mail messages file
/usr/msgs/(1-9]• - Data base
/usr/msgs/bounds- File that contains message number bounds
$(HOME)/ .msgsrc- Number of next message to be presented

See Also
commands, mail, PAGER, scat

fiifi·N&&ll®M'·"'~~'~'~'"''~"'~'~"''"'"''"'"'~''W Send a message
#include <sys/msg.h>
msgsnd(msqld, msgp, msgsz, msgjlg)
int msqld, msgsz, msgjlg; struct msgbuf•msgp;

The COHERENT system call msgsnd() sends a message to the queue associated with the message
queue identifier msqld. msgp points to a structure that contains the message. This structure
consists of the following members:

long
char

mtype;
mtext [];

/* message type */
/* message text */

mtype is a positive long integer that the receiving process uses to select messages. mtext is a string
that is msgsz bytes long. msgsz can range from zero to a system-imposed limit as specified in the
kernel variable NMSC.

msgjlg specifies the action to be taken if one or more of the following are true:

The number of bytes already on the queue is equal to msg_qbytes.

The number of messages on all queues system-wide equals the system limit specified in the
kernel variable NMSG.

msgjlg can specify any of the following actions:

If (msgjlg & IPC_NOWAIT) is true, the message is not sent and the calling process returns
immediately.

If (msgjlg & IPC_NOWAIT) is false, the calling process suspends execution until one of the
following occurs:

1. The condition responsible for the suspension no longer exists, in which case the message
is sent.

2. msqld is removed from the system. When this occurs, msgsnd sets errno to EDOM and
returns -1.

LEXICON

874 msig.h

3. The calling process receives a signal that is to be caught. In this case, the message is not
sent and the calling process resumes execution in the manner prescribed in signal().

msgsnd() fails and no message is sent if one or more of the following are true:

msqld is not a valid message queue identifier. msgsnd() sets errno to EINVAL.

Operation permission is denied to the calling process (EACCES).

mtype is less than one (EINVAL).

The message cannot be sent for one of the reasons cited above and (msgflg & IPC_NOWAIT) is
true (EAGAIN).

msgsz is less than zero or greater than the system-imposed limit (EINVAL).

msgp points to an illegal address (EFAULT).

Upon successful completion, the following actions are taken with respect to the data structure
associated with msqld.

msg_qnum is incremented by one.

msg_lspid is set equal to the process ID of the calling process.

msg_stime is set equal to the current time.

Return Values
If msgsnd() return because it has received a signal. it returns -1 and sets errno to EINTR. If it
returns because msqld was removed from the system, it returns -1 and sets errno to EDOM.

Upon successful completion, msgsnd() returns zero. Otherwise, it returns -1 and sets errno to an
appropriate value.

Files
/usr /include/ sys/ipc.h
/usr /include/ sys /msg.h
/dev/msg

See Also
msg, msgctl(), msgget(), msgrcv(), system calls

Notes
COHERENT 386 implements the msg functions a device driver rather than as actual system calls.

mae;m;:~mm.~·~tnlii'~tm· 1-~----------------------~''"'~'~
Machine-dependent signals
#include <signal.h>

The header file msig.h defines the machine-dependent signals that the COHERENT system uses to
communicate with its processes. The header file signal.h declares constants for the machine­
independent signals, and includes msig.h.

See Also
header mes, signal.h

LEXICON

WMUHll®mlliM@l·hH®@"fo!i
Compute square root of multiple-precision integer
#include <mprec.h>
void msqrt(a, b, r)
mint •a, *b, •r;

msqrtO - mtab.h 875

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function msqrt() sets the multiple-precision integer (or mint) pointed to by b to
the integral portion of the positive square root of the mint pointed to by a. It sets the mint pointed
to by r to the remainder. The value pointed to by a must not be negative. The result of the
operation is defined by the condition

a= b • b + r.

See Also
multiple-precision mathematics

tii@lmllftmlrF!i@9AP®AH@11@tlmmm11111111111mmmm11111111111•••••••••••••111111111111!
Subtract multiple-precision integers
#include <mprec.h>
void msub(a, b, c)
mint •a, *b, •c;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function msub() subtracts the multiple-precision integer (or mint) pointed to by
a from the mint pointed to by b, and writes the result into the mint pointed to by c.

See Also
multiple-precision mathematics

@M@lll@Mll!ij
Currently mounted file systems
#include <mtab.h>

The file /etc/mtab contains an entry for each file system mounted by the mount command. This
does not include the root file system, which is already mounted when the system boots.

Both the mount and umount commands use the following structure, defined in mtab.h. It contains
the name of each special file mounted, the directory upon which it is mounted, and any flags passed
to mount (such as read only).

#define MNAMSIZ 32
struct mtab {

char mt_name[MNAMSIZJ:
char mt_special[MNAMSIZ]:
int mt_flag:

} :
Files
/etc/mtab
<mtab.h>

See Also
headertnes,mount,umount

LEXICON

mtype.h - multiple-precision mathematics 877

Diagnostics
mtype() returns NULL to indicate that it doesn't recognize the type of machine requested.

®'2·M•lliWDM1 ~~~~~~~"~~,. • --------~
List processor code numbers
#include <mtype.h>

The header file mtype.h assigns a code number to each of the processors supported by Mark
Williams C compilers and operating systems. These include the Intel i8086, i8088, i80l86, i80286,
and i80386; the Zilog Z8001 and Z8002; the DEC PDP-11 and VAX; the IBM 370, and the Motorola
68000.

See Also
header me

m'ill®mldiAYHMill@i@i@ld
Multiply multiple-precision integers
#include <mprec.h>
void mult(a, b, c)
mint *a, *b, *c;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mult() multiplies the multiple-precision integers (or mints) pointed to
by a and b, and writes the product into the mint pointed to by c.

See Also
multiple-precision mathematics

multiple-precision mathematics - Overview 11%1>.'-'-'~~~''''"'''~'''~~
The COHERENT system includes the library libmp, whose routines allow you to perform multiple
precision arithmetic. These functions manipulate a data structure called a mint, or "multiple­
precision integer," which the header file mprec.h defines as follows:

typedef struct {
unsigned len;
char *val;

} mint;

You should not depend on the details of this structure, because on some machines a different
representation may be more efficient. Using the listed functions is always safe.

The following gives the multiple-precision routines:

gcd(). .
ispos() .
itom() ..
madd().
mcmp().
mcopy()
mdiv().
min() ..
minit() .
mintfr().
mi tom()
mneg()
mout() .

. Set variable to greatest common divisor

. Return if variable is positive or negative

. Create a multiple-precision integer

. Add multiple-precision integers

. Compare multiple-precision integers

. Copy a multiple-precision integer

. Divide multiple-precision integers
Read multiple-precision integer from stdin

. Condition global or auto multiple-precision integer

. Free a multiple-precision integer

. Reinitialize a multiple-precision integer

. Negate multiple-precision integer

. Write multiple-precision integer to stdout

LEXICON

878 multiple-precision mathematics

msqrt().
msub()
mtoi() . .
mtos() ..
mult() ..
mvfree()
pow().
rpow() ..
sdiv() ..
smult().
spow().
xgcd() . .
zerop() .

. Compute square root of multiple-precision integer

. Subtract multiple-precision integers

. Convert multiple-precision integer to integer

. Convert multiple-precision integer to string

. Multiple multiple-precision integers

. Free multiple-precision integer

. Raise multiple-precision integer to power

. Raise multiple-precision integer to power
Divide multiple-precision integers
Multiply multiple-precision integers
Raise multiple-precision integer to power
Extended greatest-common-divisor function

. Indicate if multi-precision integer is zero

itom() creates a new mint, initializes it to the signed integer value n, and returns a pointer to it.
Storage used by a mint created with itom may be reclaimed using mintfr().

A mint that already exists may be reinitialized by mitom(), which sets a to the value n. If the mint
was declared as a global or automatic variable, it must be conditioned before first use by minit(),
which prevents garbage values in the mint structure from causing chaos. A mint conditioned by
minit() has no value; however, it may be used to receive the result of an operation. For mints
automatic to a function, mvfree() should be used before the function is exited to free the storage
used by the val field of the mint structure. Otherwise, this storage will never be reclaimed.

madd(), msub(), and mult() set c to the sum, difference, or product of a and b. mdiv divides a by b
and writes the quotient and remainder in q and r. b must not be zero. The results of the operation
are defined by the following conditions:

I. a=q*b+r

2. The sign of r equals the sign of q

3. The absolute value of r < the absolute value of b.

smult() is like mult(), except the second argument is an integer in the range 0 <= n <= 127. sdiv() is
like mdiv(), except the second argument is an integer in the range l <= n <= 128, and the remainder
argument points to an int instead of a mint().

pow() sets c to a raised to the b power reduced modulo m. rpow() sets c to a raised to the b power.
spow() is like rpow(), except the exponent is an integer. In no case may the exponent be negative.

mcopy() sets b equal to a. mneg() sets b equal to negative a.

msqrt() sets b to the integral portion of the positive square root of a; r is set to the remainder. a
must not be negative. The result of the operation is defined by the condition

a=b*b+r

gcd() sets c to the greatest common divisor of a and b. xgcd() is an extended gcd routine that sets g
to the greatest common divisor of a and b, and sets r ands so the relation

g=a*r+b•s

holds. For xgcd(), r, sand g must all be distinct.

mints may be compared with mcmp(), which returns a signed integer less than, equal to, or greater
than zero according to whether a is less than, equal to, or greater than b. ispos() returns true
(nonzero) if a is not negative, false (zero) if a is negative. zerop returns true if a is zero. false
otherwise.

LEXICON

multiple-precision mathematics 879

mtoiO returns an integer equal to the value of a. a should be in the allowable range for a signed
integer.

The external integers ibase and obase govern the l/O and ASCII conversion routines. Allowable
bases run from two to 16. Permissible digits are O through 9 and A through F (lower-case letters are
not allowed). min reads a mint in base lbase from the standard input and sets a to that value.
Leading blanks and an optional leading minus sign are allowed; the number is terminated by the
first non-legal digit. mout() outputs a on the standard output in base obase. mtos() performs the
same conversion as mout(). but the result is placed in a character string instead of being output; a
pointer to the string is returned. The string is actually allocated by malloc(). and may be freed by
free().

mzero() and mone() point to mints with values zero and one. mminint() and mmaxint() point to
mints containing the minimum and maximum values that will fit in a signed integer. These
constants should never be used as the result of an operation.

All the necessary declarations for these constants and for the library functions are contained in the
header file mprec.h. They need not be repeated.

To link mp modules with an executable object, use the argument -Imp with the cc or Id commands.

Example
The following example converts a string into a multi-precision integer.

#include <stdio.h>
#include <mprec.h>
#include <ctype.h>

/*
* "ibase" is an int which contains the input base used by "stom".
* It should be between 2 and 16.
*/

int ibase = 10;

/*
* stom() reads in a number in base ibase from string 'a' and returns
* pointer to multiple-precision integer.
*/

mint *stom(s)
register char *s;
{

char cval;
mint c = {1, &cval};
register int ch;
char mifl = O; /* leading minus flag */
static mint number;

mcopy(mzero, &number);
if ((ch= *s) == '-') {

mifl = 1;
ch = *++s;

}

/* set number to zero */
/* skip leading '-' */

LEXICON

880 mv

}

/*scan thru string 's', building result in "number" */
while (isascii(ch) && isdigit(ch)) {

}

cval = (isdigit(ch) ? ch - '0': ch - 'A');
smult(&number, ibase, &number);
madd(&number, &c, &number);
ch = *++s;

if (mifl) /* adjust sign of a "number" */
mneg(&number, &number);

return(&number);

/* simple test for "stom" */
main()
{

}

Files

char buffer[SO];

printf("Input string? ");
gets(buffer);
mout(stom(buffer)); /*Print in stdout multiple-precision int*/

<mprec.h>
/usr /lib/libmp.a

See Also
be, de, libraries, malloc(), mprec.h

Diagnostics
On any error. such as division by zero, running out of space or taking the square root of a negative
number, an appropriate message is printed on the standard error stream and the program exits with
a nonzero status.

~~ WI --~~"-'-~~~~~"-"'~~'-~"-~~~"-~
Rename files or directories
mv [-f] oldfile [newjlle]
mv [-f]jlle ... directory

mv renames files. In the first form above. it changes the name of oldflle to newjlle. If newjlle already
exists, mv replaces it with the file being moved; if not. mv creates it. If newjlle is a directory, mv
places oldflle under that directory.

In the second form. mv moves eachjlle so that it resides under directory. If a file with the new name
exists but is unwritable. mv will not delete it unless the -r option is specified.

mv will not copy directories between devices and will not remove directories that occupy the
destination of the command.

Normally. mv creates a link to the old file with the new file and then removes the old file. If it
cannot create the link (e.g .. because the new file is on a different file system than the old), mv
performs a copy and then removes the old file.

LEXICON

mvdir - mvfreeO 881

See Also
commands, cp, In, mvdir

Notes
mv tests the validity of directory moves by means of search permission. The superuser always has
search permission and thus can use mv incorrectly.

~~'~'~~,~~~li\al~~-~~~~~~~~~~~~
Rename a directory
/etc/mvdirolddlr newdir

The COHERENT command mvdir renames directory olddlr to newdlr. Both can be path names.

For obvious reasons, olddlr cannot be a subset of newdir. Both olddlr and newdtr must reside on the
same file system.

See Also
commands, mv

Notes
mvdir is available only under COHERENT 386.

mvdir is a link to mv.

r;;111@lll®m!Jfi1t:1i@AM®®1M11Mlm.,,"'''~~~''''""''''~'~''"~~
Free multiple-precision integer
#include <mprec.h>
void mvfree(a)
mint •a;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function mvfree() frees the space allocated to an automatic multiple-precision
integer (or mint). You should call mvfree() before exiting the function that uses the mint. or the
storage used by the val field of the mint structure will never be reclaimed.

See Also
multiple-precision mathematics

LEXICON

882 n.out.h - named pipe

HM!llilll@i·tli!•,"· ~~ .. -~ ~'"'~ -"'''"'~'~
Define n.out file structure
#include <n.out.h>

n.out.h defines then.out file structure. This file structure is used to encode executable files; it is
the same as the standard COHERENT form I.out. except that it uses 32-bit addressing. This file
structure is used internally in COHERENT. but is not available under the COHERENT C compiler or
assembler.

See Also
header mes, I.out

tiE"iMIW.t-ll•E~,,""""''"'"'"''""~~~ -""'~
A named pipe is a special file created with the command /etc/mknod. Unlike the block- and
character-special files created by mknod, a named pipe is not a device.

A named pipe acts like a conventional pipe set up between related processes. It differs in that it has
a visible name that can be seen in a file system. It also differs in that it has permissions (since it's a
file and has a name) associated with it just like any other file. This allows a named pipe to be
accessed by processes that are rwt related to each other, and can even be used for processes that are
running on behalf of difference users.

The following illustrates how one process can write data into a named pipe and an unrelated
process can read from it:

/etc/mknod my_pipe p # create the named pipe
chmod 644 my_pipe
ls -lR I > my_pipe & # pump data into pipe in background
mail fred < my_pipe # read from the pipe and process

This script creates a named pipe called my_pipe and makes sure that it is readable; it then pumps a
mass of data into the pipe (in the background), and then has a process read data from the named
pipe and perform some action on them (in this case. mail the data to use fred). In this example, the
mail process could be running from some other login and could either be in the foreground or
background.

See Also
definitions, mknod, pipe

LEXICON

ttMSi ll+J•111!uijht1L,.
Print file names corresponding to i-node
ncheck [-1 number ... I [-as Jfllesystem ...

ncheck - newusr 883

An I-number identifies an i-node. ncheck generates a list of file names by i-number for each
fllesystem, which should be the name of a device special file that contains a proper COHERENT file
system. Using the raw device generally decreases the time ncheck requires to do its work.

The output is in the unsorted traversal order of the file system hierarchy. ncheck distinguishes
directories from files by suffixing· I.' to directory names.

Under the -1 option. ncheck prints the file name corresponding to each i-number number in the
given list. Under the -a option, ncheck prints only the names of special files and set user-ID mode
files; this option allows the system administrator to ascertain quickly whether these files represent
possible security breaches.

See Also
commands, I-node

Diagnostics
ncheck appends '??'to the generated file name if it cannot find the proper parent structure while
retrieving the file-name information. It represents any loops detected in the file name by the
characters '. . .'. Extremely addled file systems may generate other reasonably self-explanatory
diagnostics.

f@@U·lli•n,jufild·l.""''"m ."''"'~""'''''"''"me m1 ~"'~"'"'"'''"''"''WI
Change to a new group
newgrp group

newgrp changes the user's group identification to the specified group. if access is permitted. The file
/etc/group determines group access. Group access may be unrestricted, or open to all users with
specific exceptions, or restricted to certain users via a password.

The shell executes newgrp directly.

Files
/etc/group- Give group access

See Also
commands, group, ksh, sh

Diagnostics
If newgrp succeeds, no diagnostic is printed.

Notes
Interruption of newgrp can result in the user being logged off.

Under the Korn shell, newgrp is an alias for exec newgrp.

t.NWM ll~iD·111~i1~1imemom1·m·~~~---------fillm-···············§lll
Add new user to COHERENT system
/etc/newusr!ogln "User Name" parentdtr [shell)

newusr adds a new user to the system. It automatically adds an entry to the file /etc/passwd,
creates a home directory for the user, installs the user in the mail system, and otherwise performs
the myriad tasks required to add a new user to your COHERENT system.

LEXICON

884 nkb

login is the login idenifier of the new user. This is a single word in lower case. by which that user is
identified. Note that each user must have a unique login identifier. Identifiers are usually the
user's first name. initials. or a nickname. parentdlr is the directory or (more usually) the file system
in which newusr will create the new user's home directory. User Name is the name of the human
for whom login is being created. shell names the shell to be used; the default is the Bourne shell
/bin/sh.

For example, the command

/etc/newusr batman "Bruce Wayne" Iv /usr/bin/ksh

creates new user Bruce Wayne, with login batman, home directory /v /batman. and default shell
/usr/bin/ksh.

Files
/etc/group- User groups
/etc/passwd- User passwords
/ parentdlr I user - User home directory
/usr/spool/mail/user- User mailbox

See Also
commands, passwd

Diagnostics
newusr complains if an entry for user already exists in the password file.

Notes
Only the superuser can add new users to the system with newusr.

~"'"'~~~~- - ---~~~~~- - -
Device driver for console keyboard

The COHERENT device-driver nkb supports industry-standard 83-. 101-. and 102-key AT-protocol
keyboards attached as the computer console. Unlike kb. the other COHERENT keyboard driver.
nkb lets you define both the layout of the keyboard and the values returned by function keys. It
also lets you change layout and function-key bindings by using the special keyboard mapping
programs kept in directory /conf/kbd. This directory contains the C source code for the mapping
tables, as well as a Makefile that helps you rebuild the mapping programs. See the Lexicon article
keyboard tables for details.

Kernel Variables
Please note that the COHERENT 286 kernel references variables with a trailing underscore
character; for example. atparm_. The COHERENT 386 kernel. however, does not use a trailing
underscore; for example, atparm.

The following descriptions apply to both COHERENT 286 and COHERENT 386, but the notation will
be in the COHERENT-386 form.

Internal Structure
The following paragraphs describe the internal structure of the nkb driver. This information is of
interest mainly to persons who wish to study the design of device drivers.

nkb understands the following "shift" and "lock" keys:

LEXICON

scroll
num
caps
lalt
ralt
!shift
rshift
lctrl
rctrl
altgr

Scroll lock
Keypad NUM lock
Shift or CAPS lock
Left ALT key
Right ALT key
Left SHIFT key
Right SHIFT key
Left CTRL key
Right CTRL key
ALT Graphic key (non~us keyboards)

nkb 885

nkb records an internal shift state, as defined by the current positions of the shift and lock keys.
The shift state is a logical combination of internal states SHIFT, CTRL, ALT. and ALT_GR. The
!shift and rshift keys combine to form the current SHIFT state for non-alphabetic keys. Alphabetic
keys generally use the current state of the caps lock key in addition to !shift and rshift. Numeric
keys found on the keypad generally use the state of the num lock key combined with !shift and
rshift. The two "control" keys, lctrl and rctrl, form the internal CTRL state. In a similar manner,
the two "alt" keys, lalt and ralt, form the internal ALT state. Note that 102-key keyboards generally
replace the ralt key with the altgr key, to allow access to the alternate graphics characters found on
some keyboards.

nkb lets you configure or read the internal mapping tables via the following ioctl() requests. as
defined in header file <sgtty.h>:

TIOCGETF
TIOCSETF
TIOCGETKBT
TIOCSETKBT

Get function key bindings
Set function key bindings
Get keyboard table bindings
Set keyboard table bindings

Requests TIOCGETF and TIOCSETF reference a data structure of type FNKEY, which is a typedef
defined in header file <sys/kb.h>. Structure member k_fnval is a character array that contains a
series of contiguous function key/value bindings; the end of the bindings is marked by manifest
constant DELIM. You can use any value other than DELIM as part of a function-key binding.
Structure member k_nfkeys indicates how many function keys have associated entries in k_fnval.
Function keys are numbered from zero through k_nfkeys-1.

By convention, function-key 0, when enabled, causes the computer system to reboot. This function
key is usually bound to the key sequence <ctrl><alt>. but you can disable it by setting the
value of driver-variable KBBOOT to zero. To do so, use the following command:

/conf /patch /coherent KBBOOT=O

Requests TIOCGETKBT and TIOCSETKBT reference an array that contains MAX_KEYS
occurrences of data structure KBTBL, which is a typedef defined in header file <sys/kb.h>.
Structure member k_key contains the scan code set three code value for the desired key. Header
file <sys/kbscan.h> contains manifest (symbolic) constants of the form K_nnn, which map AT
keyboard physical key number nnn to the corresponding scan-code set-three value generated by the
keyboard. Note that the nkb driver disables the scan-code translation that the keyboard controller
normally performs, as well as setting the keyboard to scan code set three.

Structure member k_val is a nine-element array that contains the key mappings that correspond to
the following index values and shift states:

LEXICON

886 nkb

0 BASE
1 SHIFT
2 CTRL
3 CTRL_SHIFT
4 ALT
5 ALT_SHIFT
6 ALT_CTRL
7 ALT_CTRL_SHIFT
8 ALT_GR

Structure member k_tlags contains mode information for the given key. One field in k_ftags
indicates the class of key. This sub-field lets you specify whether a key is a "shift" key (as defined
above), a special or programmable "function" key, or a "regular" key. The following symbolic
constants specify the class of key:

S The specified key is a "shift" or "lock" key. Note that all entries in array k_val must be
identical for a "shift" or "lock" key to work correctly.

F The specified key is a "function" or special key. The value of all elements of array k_val
must specify a function key number. See header file <kb.h> for a list of predefined function
keys.

0 The specified key is "regular" and requires no special processing.

The next sub-field of k_tlags specifies the type of key. as specified in the AT keyboard technical
reference. The type sub-field specifies under what conditions a given key will generate an interrupt.
The possible choices are:

M Make: generate an interrupt only upon key "make" (i.e .. when the key is depressed). This
mode is useful for keys which do not repeat. Note that using this mode with "shift" keys
stops you from unshifting upon release of the key!

T Typematic: generate an interrupt when the key is depressed, and generate subsequent key­
depression interrupts while the key is depressed. The rate at which interrupts are
generated is specified by the typematic rate of the keyboard. This type is usually associated
with a "regular" key.

MB Make/Break: generate an interrupt when the key is depressed, and when it is released. No
additional interrupts are generated no matter how long the key is depressed. This mode is
used for "shift" keys.

TMB Typematic/Make/Break: generate an interrupt when the key is first depressed; generate
subsequent key depression interrupts while the key remains depressed; and generate an
interrupt when the key is released.

The last sub-field of k_tlags specifies the lock keys. if any. that affect the specified key:

C The caps lock key that affects this key. If the specified key is depressed while caps lock is
active, it is equivalent to having used either of the SHIFT keys with this key. When caps
lock is in effect, use of either of the SHIFT keys temporarily toggles the state of the caps
lock.

N The nwn lock key affects this key. If the specified key is depressed while nwn lock is
active. it is equivalent to having used either of the SHIFT keys in conjunction with the
specified key. When nwn lock is in effect. use of either of the SHIFT keys temporarily
toggles the state of the nwn lock.

LEXICON

See Also
device drivers, fnkey, keyboard tables

Technical Reference for the IBM Personal Computer AT. IBM Corporation, 1984.

Multi-Function Keyboards: Layouts, Cherry Electrical Products Corp.

Notes

nlistO 887

With release 3.2 of COHERENT, nkb became the standard keyboard driver, replacing the kb driver
used in earlier releases. Please note that either nkb or kb can be linked into the COHERENT kernel.
like most other COHERENT device drivers. Neither driver is found in directory /drv; this directory
is reserved for loadable device drivers, such as those for the COM ports or for the shared-memory
driver. The COHERENT Device Driver Kit contains tools and information to rebuild the COHERENT
kernel. which is necessary if you wish to switch keyboard drivers.

The main difference between nkb and kb is that nkb uses a "supplemental" process to interpret
keystrokes. This permits COHERENT users to switch among flavors of international keyboards with
a minimum of difficulty. As noted above, the source code for these supplemental programs is kept
in directory /conf/kbd. See the Lexicon article on keyboard tables for details on how to modify,
compile, and load one of these keyboard-interpretation programs.

Please note, finally. that if you attempt to use a keyboard interpreter with kb, it will fail with an
error message.

nlistO - General Function (libc)
Symbol table lookup
#include <l.out.h>
int nlist{file, nip)
char >ljlle;
struct nlist •nip;

nlist searches the name list (symbol table) of the load module file for each symbol in the array
pointed to by nip. For example, the command ps uses this routine on the system load module
(/coherent) to obtain the addresses of system tables in memory (/ dev / mem).

nip points to an array of nlist structures, terminated by a structure with a null string as its n_name
member. The header file l.out.h defines nlist as follows:

#define NCPLN16

struct nlist {
char n_name[NCPLN];
int n_type;
unsignedn_value;

};

The caller should set the entry n_name; nlist will fill in the other entries. nlist sets both n_type
and n_value to zero if the symbol is not found.

Files
Lout.h

See Also
general functions, l.out.h, nm, strip

Diagnostics
Iffile is not a load module or has had its symbol table stripped, all returned n_type and n_value
entries will be zero.

LEXICON

888 nm

~~~~~~~­
Print a program's symbol table 
nm I -adgnopru I.file ... 

The command nm prints the symbol table of each file. It can read binary files produced by the 
compiler. assembler. or linker. 

When a C source file is compiled with the -c switch to the cc command. or when a file of assembly 
language is assembled, the result is an object module, which is signified by the suffix .o. 

The linker Id links multiple object modules to form an executable program. Frequently used object 
modules often are grouped by the archiver ar into a library, which is signified by the suffix .a. nm 
can read all three kinds of files: .o .. a. and fully linked executables. 

Options 
nm recognizes the following options: 

-a (COHERENT 286 only) 
Print all symbols. Normally. nm prints names that are in C-style format and ignores symbols 
with names inaccessible from C programs. 

-d Print only defined symbol. 

-g Print only global symbols. 

-n Sort numerically rather than alphabetically. nm uses unsigned compares when sorting 
symbols with this option. 

-o Append the file name to the beginning of each output line. 

-p Print symbols in the order in which they appear within the symbol table. 

-r Sort in reverse-alphabetical order. 

-u Print only undefined symbols. 

COHERENT 286 Output 
Because COHERENT 286 and COHERENT 386 use different object-file formats, the output of nm 
differs between the editions of COHERENT. 

Under COHERENT 286. the output of nm is a series of lines of the form: 

addr type symbol 

For example, 

0020 SI main 

If the input file is a library. symbols are listed separately for each member of the library. preceded by 
a header line that names the library element. For example. if foo.a contains elements fool.o and 
foo2.o, then the output of nm is something like this: 

LEXICON 



nm 889 

#nm foo.a 
fool.01 

u exl 
0002 c ex2 
0024 PD ex3 
0000 SI fnl 

foo2.o: 
0022 PD exl 

u ex2 
u fnl 

0015 SI fn3 
0000 SI main 

The addr field gives the value of the symbol in hexadecimal. If the symbol belongs to the instruction 
or data segment of a program, then the value of the symbol is the offset within that segment. If the 
value is unknown, this field is left blank. 

The type field is one of the following (symbol types PI and SD are relatively obscure and are available 
only through the assembler): 

SI Shared instruction 
Pl Private instruction 
Bl Uninitialized instruction 
SD Shared data 
PD Private data 
BD Uninitialized data 
D Debug tables 
A Absolute symbol 
C Reference 
U Undefined 

Please note that the type field is printed in lower case (e.g .. si instead of SI) if the symbol is local 
rather than global. By default, the C compiler strips local symbols from the object modules files it 
creates. 

COHERENT 386 Output 
Under COHERENT 386, the output of nm is a series of lines of the form: 

segment address symbol 

segment gives the segment in which the symbol appears, or UNDEF for undefined symbols. address 
is either the address in hexadecimal. or the length of a common variable. symbol names the 
symbol. 

For example, if foo.o is a relocatable object module, the output of the command nm -o foo.o would 
appears as follows: 

LEXICON 



890 notmemO 

#nm foo.o 
UN DEF 00000000 canl -
UN DEF 00000000 stderr -
.text 0000077C a comp 
.text 00000034 acomp_old 
UNDEF 00000000 alloc 
.text OOOOOF28 archive 
.comm 00000004 asw 
.text 000003CC csymbol 
.comm 00000004 dsw 

See Also 
cc, commands, Id, size, strip 

notmemO - General Function (libc) 
Check if memory is allocated 
int notmem(ptr); 
char •ptr; 

notmem() checks if a memory block has been allocated by calloc(), malloc(), or realloc().ptr points 
to the block to be checked. 

notmem() searches the arena for ptr. It returns one if ptr is not a memory block obtained from 
malloc(), calloc(), or realloc(), and zero if it is. 

Example 
The following example prints a string. and frees it if it was malloc'd. 

#include <sys/malloc.h> 

pfree(s) 
char *s; 
{ 

} 

printf("%s\n", s); 
if ( ! notmem ( s ) ) 

free(s); 

main () 
{ 

} 

char *mallocked_string; 
char notmallocked_string[SO]; 

if ((mallocked_string = malloc(SO)) ==NULL) 
exit ( 1); 

strcpy(mallocked_string, "This is a malloc'd string"); 
strcpy(notmallocked_string, "This is not a malloc'd string"); 

pfree(mallocked_string); 
pfree(notmallocked_string); 

LEXICON 



nptx - nroff 891 

See Also 
arena, calloc(), free(), general functions, malloc(), memok(), realloc(), setbuf() 

D1:zt:llliil·D"l"Z"lfmnm~m•1-1111111111~1111111111~~~1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111m~~meammemem._"""~"'~~ 
Generate permutations of users' full names 
nptx 

The command nptx reads an address/name pair (that is, an address and a user's full name), and 
prints on the standard output as many permutations of the user's name as it can think of, each 
linked to the given address. A set of such permutations helps to relieve a user of needing to know 
the exact form of another user's name when she wishes to send mail to that user. 

When a set of users' names are filtered through nptx, its output can be used as a "full-name data 
base" that can be used by the COHERENT mail system. 

The format of an input line is: 

address name 

address can contain any address. It is terminated by a <tab> character. name consists of white­
space-separated names or initials, with an optional nickname given in parentheses, terminated by 
either a newline character or a comma. 

nptx prints all permutations of the first names and initials, with the last name appearing in each 
permutation. Permutations are not necesarily unique. 

Example 
Given the address/name pair 

chicago!widget!lc LaMonte Cranston(Shadow) 

nptx produces the following set of permutations: 

Cranston 
L.Cranston 
LaMonte.Cranston 
s.cranston 
Shadow.Cranston 

See Also 

chicagolwidgetllc 
chicagolwidgetllc 
chicago!widget!lc 
chicagolwidget!lc 
chicagolwidgetllc 

commands, mail, mkfnames, paths 

Notes 
The command mkfnames can read a file of names and massage them into the form expected by 
nptx. 

nptx assumes European-style names, i.e., that the family name comes last (unlike Oriental names, 
in which the family name comes first). 

IDZ!lllll~il·mu;.1~,,mu~1r11.g11-1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111~mme1111111111111111111111111111111111111111111111111111111111111111111111~""""'"""~""""""""~~""""'~~ 
Text-formatting language 
nrofl'[optlon ... ) (file ... ) 

nroff is the COHERENT text-formatter and text-formatting language. By embedding commands 
within files of text, you can instruct nroff to format text, create paragraphs, subheadings, headers, 
footers, and in general perform all tasks required to format text for the printed page or for screen 
display. 

LEXICON 



892 nroff 

nroff is designed to be used with character-display terminals or monospace printers. The related 
program troff performs typeset-quality formatting, suitable for printing on the Hewlett-Packard 
LaserJet printer or any printer for which the Postscript language has been implemented. tro:trs 
formatting language is a superset of that used by nroft'. Text that you have encoded for formatting 
by nroft' will work with troft', but the reverse is not always true. See the Lexicon entry on troft' for, 
information that applies to troff alone. 

nroff Input 
nroff processes each.file, or the standard input if none is specified, and prints the formatted result 
on the standard output. The input must contain formatting instructions as well as the text to be 
processed. 

Basic nroft' commands provide for such things as setting line length, page length, and page offset, 
generating vertical and horizontal motions, indentation, filling and adjusting output lines, and 
centering. The great flexibility of nroft' lies in its acceptance of user-defined macros to control 
almost all formatting. For example, the formation of paragraphs, header and footer areas, and 
footnotes must all be implemented by the user via macros. 

The following summarizes the commands and options that can be used with nroft'. Four types of 
commands and options are described: (1) command line options; (2) nrotJ's basic commands (also 
called primitives); (3) escape sequences that can be used with nroft'; and (4) nrotJ's dedicated 
number registers, and what information each one keeps. 

Command-line Options 
Command-line options may be listed in any order on the command line. They are as follows: 

-d Debug: print each request before execution. This options is extremely useful when you are 
writing new macros. 

-fname 
Write the temporary file in file name. 

-k Keep: do not erase the temporary file. 

-i Read from the standard input after reading the given.files. 

-mname 
Include the macro file /usr/llb/tmac.name in the input stream. 

-nN Number the first page of output N. 

-raN Set number register a to the value N. 

-rabN Set number register ab to value N. For obvious reasons. ab cannot contain a digit. 

-x Do not eject to the bottom of the last page when text ends. Use this option when you wish 
to use nroff interactively. It, too, is useful when debugging macros. 

nroff appends the contents of the environmental variable NROFF to the beginning of the list of 
command-line arguments. This let you set commonly used options once in the environment, rather 
than retype them for each invocation of nroft'. 

Primitives 
The following gives the basic commands, or primitives, that are built into nroft'. These primitives 
can be assembled into macros. or can be written directly into the text of your document. 
Commands may begin either with a period'.' or with an apostrophe; the former causes a break (see 
.br, below), the latter does not. 

LEXICON 



nroff 893 

.ab msg 
Abort: print msg on the standard error and abort processing . 

• ad (bclr] 
Enter adjust mode: that is. insert white space between words to create right-justified 
output. b adjusts for both margins: this is the default. c adjusts and centers on the line. 1 
adjusts, flush with the left margin. r adjusts, flush with the right margin . 

. af R X Assign format X to number register R. The assigned format may be one of the following: 

1 Arabic numerals (default) 
I Lower-case Roman numerals 
I Upper-case Roman numerals 
a Lower-case alphabetic characters 
A Upper-case alphabetic characters 

.am XX Append the following to macro XX. Used like .de, below . 

. as XX Append the following to string XX. Used like .ds. below . 

. bp Begin a new page . 

. br Break: print any fraction of a line of text that is in the input buffer before reading new text . 

• c2 c Set the no-break control character to c. With no argument, reset it to the default 
apostrophe . 

. cc c Set the normal control character to c. With no argument, reset it to the default period . 

. ce N Center N lines of text (default, one) . 

• chXXN 
Change the location of the trap for macro XX to vertical position Non the page. Used like 
command .wh. below . 

• coendmark 
Copy input directly to the output until endmark is seen. If no endmark is given, copy until 
another .co is seen . 

• cu Underline continuously . 

. da X Divert and append the following text into macro X. A diversion is ended by a .da command 
that has no argument . 

. de X Define macro X. The macro definition is ended by a line that contains only two periods " .. " . 

. di X Divert the following text into macro X. Diversion is ended by a .di command that has no 
argument . 

• dsXvalue 
Define strtngX to have the given value . 

. ec c Set the escape characer to c. With no argument, reset it to the default backslash character 
'\" 

.el action 
Execute action when the test in an .le command fails. This command must be used with an 
.le command . 

. em XX Execute macro XX when processing is completed. 

LEXICON 



894 nroff 

.eo Escape off: turn off special handling of all escape sequences . 

• ev N Change the environment. When followed by 0, 1. 2, the command pushes that 
environment; when used without an argument, the command pops the present environment 
and returns to the previous environment . 

• ex Exit from nroff without further ado . 

. fl Enter fill mode . 

. n Flush; same as .br . 

• ft X Change the current font to X. nrotI recognizes R, B. and I. for Roman, bold, and italic, 
respectively . 

• ie condition action 
This command tests to see if condition is true; if true. it then executes action; otherwise. it 
performs the action introduced by an .el primitive. This command must be used with the 
.el command . 

• if condition action 

• igX 

This command tests to see if condition is true; if so. then action is executed; otherwise, 
action is ignored. The command .if o applies if the page number is odd, and the command 
.if e applies if the page number is even. The command .if n applies if the text is processed 
by nrotI, and the command .if t applies if the text is processed by trotI. The command .if 1 
applies in landscape mode. The command .if p applies to trotI Postscript mode. Note that 
the last two conditions are unique to the COHERENT implementation of nrotI, and may not 
be portable to other implementations . 

Ignore all input until macro .X is called; if no argument is given, ignore input until two 
periods" .. " . 

. in NX Change the normal indentation to N units of X scale. X can be u or i, for machine units or 
inches, respectively. If N is used without X. nrotI assumes the indentation to be given in 
number of character-widths (in picas, or tenths of an inch). Default indentation is zero . 

• itN XX 
Set an input trap to execute macro XX after N input lines (not counting request lines) . 

• le c Set the leader dot character to c. When nrotI sees the escape sequence \a, it fills space to 
the next tab stop with the leader dot character. le with no argument tells nrotI to use 
spaces to fill leaders . 

. ll NX Set the line length. Used like the .in command, above . 

• ls X Leave spaces; insert X vertical spaces after each line of text. Default is zero . 

• It NX Length of title. Used like the .in command, above . 

• na Enter no-adjust mode. Line lengths are not changed . 

• ne NX Confirm that at least N portions of X units of measure of vertical space are needed before 
the next trap. If this amount of space is not available, then move the text to the top of the 
next page. X can be i or v, for inches or vertical spaces, respectively. This command is 
used in display macros and in paragraph macros to help prevent widows and orphans . 

• nf Enter no-fill mode; no right justification is performed, although line lengths are changed to 
approximate uniform line length . 

. nh Turn off hyphenation. nrotI hyphenates according to built-in algorithms that are correct 
most of the time. but not always. 

LEXICON 



nroff 895' 

.nrX Nl N2 
Set number register X to value Nl; set its default increment/ decrement to N2. For example, 
.nr X 2 3 sets number register X to 2. and sets its default increment to 3. 

The basic unit of measurement for nroff 1I120th of an inch; this is also called the machine 
unit. It is indicated by the sumx u to a measurement. Unless otherwise stated. all number 
registers that information about a page holds that information in nroff machine units. 

Other units of measure convert into nroff units as follows: 

inch: 
vertical line space: 
centimeter: 
em: 
en: 
pica: 
point: 

.ns No-space mode . 

U = 120u 
lv = 20u 
le= 47u 
lm = 12u 
ln = 12u 
IP= 20u 
lp = lu 

• rue.file Terminate processing of the current input file and begin processingflle instead . 

• pl NX Set the page length to N. The unit of measure X can be V or i, for vertical spaces (sixths of 
an inch) or inches, respectively. The default unit of measure is vertical spaces . 

• pn N Set the page number to N . 

• po NX Set the default page offset to N. The unit of measure X can be set to i. for inches. The 
default unit of measure is number of characters . 

• rbjtle Read binary: read the given.file and copy it directly to the output without processing . 

. rd prompt 
Read an insertion from the standard input after issuing the given prompt . 

• rfXXYY 
Rename font XX as YY . 

. rm XX Remove macro or string XX . 

• mXXYY 
Change the name of a macro or string from XX to YY . 

• rr X Remove register X . 

• rs Restore normal space mode . 

• sojtle Openjlle, read its contents, and process them. When the end of .file is reached, resume 
processing the contents of the present file . 

• sp !IJNX 
Space down N. The unit of measure X can be i, for inches, with the default unit of measure 
being vertical spaces, or sixths of an inch. The optional vertical bar' I' indicates that N is an 
absolute value: for example, .sp I 1.51 means to move to 1.5 inches below the top of the 
page. whereas .sp 1.51 means to move to 1.5 inches below the present position . 

• taNX ... 
Set the tab to N. The unit of measure X can be set to i. for inches: the default unit of 
measure is number of characters. or tenths of an inch. A tab setting. of course, is for an 
absolute, not a relative, value. If more than one tab setting is defined, the first defines the 
first tabulation character on a text line, the second defines the second tabulation character, 

LEXICON 



896 nroff 

etc. Any undefined tabulations are thrown away . 

• tc X N Fill any unused space within a tabulation field with the character X. If the optional N is 
present. it specifies a width for the character; for example, .tc • • 11 fills tabs with dots 
spaced one-tenth of an inch apart . 

. ti NX Temporary indent; indent only the next line. Used like the .in command, above . 

. ti 'left'center'right' 
Set a three-part title, with left being set flush left, center being centered on the line, and 
right being set flush right. Note the use of the apostrophes to separate the fields; the 
apostrophes for an undefined field must still be present, or a syntax error will be generated . 

. tmmessage 
Print message on the standard error device. This is often used with .if or .le commands to 
indicate an error condition . 

. tr xy Translate character x to y on output . 

. ul N Underline the next N lines . 

. vs Np Reset the normal vertical spacing to N points p. One point equals I /72 of an inch: the 
default setting is 12 points, or 1 /6 of an inch . 

. wh NX action 
Set a trap to perform action when point N is reached on every formatted page. If N is 
negative, it is measured up from the bottom of the page. The unit of measure X may be i or 
v, for inches or number of vertical lines, respectively; the default unit of measure is v. 

Escape Sequences 
The following lists nrotl's escape sequences, or commands that suspend or work around the normal 
operation of nrotl'. All escape sequences are introduced by the escape character. normally the 
backslash character'\'. 

\(xx Print special character xx, as defined by a .de request. nrotl'reads default special character 
definitions from file /usr/llb/rotl'/nrotl'/specials.r. For example, the escape sequence \(<= 
prints the less-than-or-equal-to symbol :s. 

\. Print a literal period. 

\' Print a literal apostrophe. This should be used in text that will be manipulated by the \ w 
escape sequence or the .ti primitive. 

\ \ Delay interpretation of a backslash character. This normally is used to defer the 
interpretation of a macro or string from the time it is processed to the time that it is called. 

\- Print a minus sign. 

\&: Ignore what is normally a command string. 

\$N Call macro argument N. 

\" Introduce a comment within your text. All text to the right of this escape sequence will be 
ignored by nrotl'. This sequence must read . \" when used at the beginning of a line. 

\ •s Call string s. 
\*(ST Call string ST. 

\a Fill the space to the next tab stop with leader dots (normally'.'). 

LEXICON 



nroff 897 

\d Move down by one-half em (troff) or one-half line (nroff). Normally used to do crude 
subscripting. or to undo the effect of the \ u escape sequence. 

\e Print the escape character in the output text - normally. a backslash. 

\fX Set font to X: this can be either R. I. B. or P. for Roman. Italic, bold, or previous font. 
respectively. 

\h'll )NX' 
Move horizontally by N units of X. If N is positive, move to the right: if negative. move to the 
left. The unit of measure X may be l, for inches; the default unit of measure is character­
widths. When the optional vertical bar' I' is used, move to an absolute position on the line. 
For example \h' I 1.51' moves to 1.5 inches to the right of the left margin, whereas \h'l.51' 
moves 1.5 inches to the right of the current position. 

\kx Record the current vertical position into register x. 

\l'NX' Draw a horizontal line N units of X long. The unit of measure X may be l, for inches: the 
default unit of measure is character-widths. 

\L'NX' Draw a vertical line: used like \1, above. 

\nX Read the value of number register X. 

\n(XY Read the value of number register XY. 

\o'chars' 
Overstrike the given chars, centered on the widest. 

\sN Change the current size of the type to N points. 

\srN Increment/decrementthe current point size by N points. 

\ t Print a tab. 

\u Move up by one-half em (troff) or one-half line (nroff). Normally used to do crude 
superscripting, or to reverse the effect of the \d escape sequence. 

\v'NX' Vertical motion; move N units of X vertically. If N is positive, move down; if negative, move 
up. The unit of measure X may be l or v, for inches or vertical spaces (sixths of an inch), 
respectively. The default unit of measure is v. 

\w'argument' 
Measure the width of argument. For example 

\w'stuff and nonsense' 

measures the width of the phrase stuff and nonsense: or 

\w'\$1' 

measures the width of the first argument passed to a macro, whatever that argument might 
happen to be. Therefore, the command .in \w'\$1' will indent a line by the width of 
argument 1. 

\Xdd Output the character with hexadecimal value dd, where dd are two hexadecimal digits. 
This escape sequence is unique to the COHERENT implementation of troff. Code that uses 
it will behave differently when ported to other implementations. 

\zc Print character c with zero width. 

LEXICON 



898 nroff 

\<newline> 
Ignore this <newline> character. 

\{ Begin conditional commands; used after an .if. an .le. or an .el command. 

\{\ Begin conditional commands. and ignore the following carriage retu~n. 

\} End conditional commands. "-, 

Dedicated Number Registers 
The following lists the number registers that are predefined in nroff. You can read or reset these 
registers to suit the need of any special formats that you wish to devise . 

• $ Number of arguments passed to a macro. 

% Present page number . 

. c Number of lines read from the current input file. This can be used to help set an input-line 
trap . 

. d Current vertical position in the current diversion. If no diversion is opened, this register's 
contents equal those of the nl register, described below. 

di Maximum width of last completed diversion. 

dn Height of last completed diversion. 

dw Day of the week (one through seven; one indicates Sunday). 

dy Day of the month. as set by COHERENT . 

. F Name of input file being read. This is very useful for printing error messages. This register 
applies only the COHERENT implementation of nroff. Code that uses it is not portable to 
other implementations . 

. h Vertical position of the current line's base-line. This number register gives you the best idea 
of your current vertical position on the page. 

hp Horizontal position on current input line . 

. i Present amount of indentation . 

. j Current type and mode of text adjustment . 

. I Present line length. 

In Current line number in the output. 

mo Month, as set by COHERENT . 

. n Width of the text portion of the previously printed line. Useful for underlining. shading. or 
otherwise modifying the previous line of text. For example 

\l'\n(.nu' 

draws a line under the previously printed line of text. 

nl Vertical position of the base-line of the last printed line of text . 

. o Present page offset . 

. p Page length. 

LEXICON 



NUL 899 

.s Size of the type currently being printed, in points. 

sb Depth to which a string hangs below its base line. This is generated by the width function. 

st Height to which a string extends above its base line. This is generated by the width function . 

. t Distance to the next trap. Check this register to see if the object you wish to print on a page 
will fit . 

• v Size of a line. in points. This is set by the vs primitive. 

yr Last two digits of the year, as set by COHERENT . 

. z Name of the current diversion. 

Printer Configuration 
nroff reads several files in directory /usr/lib/roff/nroff to find printer-specific information. It 
reads special character definitions from file specials.r. If file fonts.r exists, nroff reads font 
information from it; nroff understands only Roman. bold and italic fonts, but .rt requests may 
define alternative font names. If file .pre exists, nroff copies it at the beginning of the output. If file 
.post exists, nroff copies it at the end of the output. In landscape mode, nroff looks for files 
.pre_land and .post_land instead. You can change these files as desired to include printer-specific 
commands in nroff output. 

Miscellaneous 
The -ms macro package is kept in file /usr/lib/tmac.s. The macros in this package are more than 
sufficient for most ordinary text processing. Beginners should work through this macro package 
rather than trying to deal at once with the basic program. 

The tutorial to nroff, which is included with this manual, provides a detailed introduction to nroff. 
Error messages for nroff appear in the appendix to this manual. 

Files 
/tmp/rof'I' -Temporary files 
/usr/lib/tmac.• - Standard macro packages 
/usr/lib/roff/nroff/ - Support files directory 
/usr/lib/roff/nroff/ .pre- Output prefix 
/usr/lib/roff/nroff/ .pre_land- Output prefix, landscape mode 
/usr/lib/roff/nroff/ .post- Output suffix 
/usr/lib/roff/nroff/ .post_land- Output suffix, landscape mode 
/usr/lib/roff/nroff/fonts.r-Alternative font name definitions 
/usr/lib/roff/nroff/specials.r- Special character definitions 

See Also 
col, commands, deroff, man, ms, troff 
nroff. The Text-Formatting Language, tutorial 

Notes 
You should avoid using characters with values OxOl through OxlF. and those with values Ox80 
through Ox9F. These are reserved for internal use by nroff and troff. and using them in your input 
will cause errors. 

~~"~' - ~'''~~~'~""~~-.u 
NUL is the ASCII null character' '. Do not confuse it with the null pointer NULL or with the empty 
string"". AC-language string is always terminated with a NUL. The empty string'"' is an array of 
chars with only one element, namely a NUL. 

LEXICON 



900 NULL - nybble 

See Also 
ASCII, definitions, NULL 

rlm!ll•Sl"·li' ~""""''"'1 
NULL is defined in the header file stddef.h. It is the null pointer (char •JO, which is a pointer 
initialized to zero. Numerous routines return this value to indicate failure; it is useful as a return 
value because it points nowhere. and so removes the possibility of accidentally destroying a section 
of memory after failure. 

See Also 
definitions, NUL, pointer, stdio.h 

~'~-------._""'""~ - ._"""'~""'""'''"""'""' The 'bit bucket' 

All data written to the special file /dev/null is thrown away (sent to the "bit bucket"). This is 
useful. for example. to test a program's side effects while ignoring its output. 

A read from file /dev/null returns end of file (zero bytes of data). The shell sh uses /dev/null as 
input to background processes. 

Files 
/dev/null 

See Also 
device drivers, sh 

~"-"a -."'""'~ mB'! ._""'"'"'~-.­
A nybble is four bits. or half of an eight-bit byte. The term is generally used to refer to the low four 
bits or the high four bits of a byte. Thus. a byte may be said to have a "low nybble" and a "high 
nybble". One nybble encodes one hexadecimal digit. 

See Also 
bit, byte, definitions 

LEXICON 



object format - openO 901 

@1@1t.m1n111·m~~ • ._'"'''~ ~~,~~~ ~~"' 
An object format describes the form of compiled program that still contains relocation information. 
The linker Id reads file in object format to create executable files. 

COHERENT creates object modules that are in the format I.out. 

See Also 
definitions, I.out, Id 

m!llri·foh@ii·' 
Print an octal dump of a file 
od [-bcdox] [file] [ [+) offset[.)[b) I 

od prints the specifiedji!e as a sequence of octal numbers. or machine words. If no file is specified, 
od dumps the standard input. 

The following options set the format of od's output: 

-b Bytes in default base 
-c Bytes in ASCII characters 
-d Words in decimal 
-o Words in octal 
-x Words in hexadecimal 

The default base is octal on the PDP-11 and hexadecimal on the i80286, Z-8001, and M68000 
families of microprocessors. 

Dumping can start at position offset into the file. The specified offset is octal unless the '.'suffix is 
present to signify decimal. offset is in bytes unless the b suffix is present to signify 512-byte blocks. 

See Also 
ASCII, commands, conv, db, scat, strings - - --~"'"'"''~~~~~~--"~ 
Open a file 
#include <sys/fcntl.h> 
int open(fi!e, type[, mode]) 
char ...rtle; int type; [int mode;) 

open() opens aji!e to receive data, or to have its data read. When it opensji!e, open() returns a file 
descriptor. which is a small. positive integer that identifies the openji!e for subsequent calls to 
read(). write(). close(), dup(). dup2(). or lseek(). Afterji!e is opened. reading or writing begins at byte 
0. 

The second argument, type. determines how the file is opened. It must take one of the following 

LEXICON 



902 openO 

values: 

O_RDONLY 
O_WRONLY 
O_RDWR 

Read only 
Write only 
Read and write 

Under the COHERENT 386 version of openQ. you can also OR any combination of the following 
values into type, to elaborate how file is to be manipulated: 

0 CREAT 
- If.file does not exist, create it. If this flag is set the third argument, mode, sets the mode on 

the file. Note that this mode will be masked by umask(). See the Lexicon article on the 
command chmod for details. 

0 APPEND 
- All writes will be preceeded by an automatic seek to end of.file. 

0 SYNC 
- All writes to file will by synchronous to disk. This means that write() will not return until 

the data have been physically written to disk. 

O_NOCTTY 
If.file names a terminal device, do not set it to be the controlling terminal for the process. 

O_TRUNC 
If.file exists, truncate it to zero length. You must have write permissions on.file to use this 
flag. 

O_EXCL 
Exclusive open: if file is already opened (even by another process), then fail. Once an 
exclusive open succeeds, no other process can open.file until it is closed. If O_CREAT and 
O_EXCL are both set and the file exists, the open fails. 

Example 
This example copies the file named in argv[l) to the one named in argv[2) by using system calls. It 
demonstrates the COHERENT-286 version of open(), plus the system calls close(), read(), write(), 
and creat(). 

#include <stdio.h> 
#include <sys/fcntl.h> 
#define BUFSIZE (20*512) 
char buf[BUFSIZE]; 

void fatal(s) 
char *s; 
{ 

} 

fprintf(stderr, "copy: %s\n", s); 
exit(l); 

main(argc, argv) 
int argc; char *argv[]; 
{ 

register int ifd, ofd; 
register unsigned int n; 

LEXICON 



} 

if (argc I= 3) 
fatal("Usage: copy source destination"); 

if ((ifd = open(argv[l), O_RDONLY)) == -1) 
fatal("cannot open input file"); 

if ((ofd = creat(argv[2], 0666)) == -1) 
fatal("cannot open output file"); 

while ((n = read(ifd, buf, BUFSIZE)) I= 0) { 
if (n == -1) 

} 

fatal("read error"); 
if (write(ofd, buf, n) I= n) 

fatal("write error"); 

if (close(ifd) == -1 I I close(ofd) -1) 
fatal("cannot close"); 

exit(O); 

See Also 
fopen(), system calls 

Diagnostics 

opendirO 903 

open() returns -1 if the file does not exist, if the caller lacks permission, or if a system resource is 
exhausted. 

Notes 
open() is a low-level call that passes data directly to COHERENT. It should not be mixed with high­
level calls. such as fread(), fwrlte(). or fopen(). 

tiiW.C.®•~fil:im•mSmEE·'D'Dil'm'·mMm•~l·~J.11~, ---------------~----------~" Open a directory stream 
#include <sys/types.h> 
#include <dirent.h> 
DIR •opendir (dlrname) 
char *dirname; 

The COHERENT function opendir() is one of a set of COHERENT routines that manipulate 
directories in a device-independent manner. It opens a directory stream and connects the directory 
dirname with it. 

opendir() returns a pointer to the directory stream it has created. It returns NULL if it cannot 
access dirname. if dlrname is not a directory. or if it cannot create the directory stream (perhaps due 
to insufficient memory). 

If an error occurs, opendir() exits and sets errno to an appropriate value. 

Example 
The following example searches the current working directory for entry FOO: 

#include <sys/types.h> 
#include <dirent.h> 

LEXICON 



904 operator 

main() 
{ 

} 

See Also 

DIR *dirp 
struct dirent *dp; 

dirp = opendir( "." ) ; 

while ( (dp = readdir( dirp )) I= NULL ) 

} 

if ( strcmp( dp->d_name, "FOO" ) == O ) { 
printf ("Found FOO\n"); 
(void) closedir(dirp); 
return FOUND; 

} 

(void) closedir( dirp ); 
printf("FOO not found\n"); 
return NOT_FOUND; 

closedir(), dirent.h, general functions, getdents(), readdir(), rewinddir(), seekdir(), telldir() 

Notes 
The dirent routines buffer directories; and because directory entries can appear and disappear as 
other users manipulate the directory. your application should continually rescan a directory to keep 
an accurate picture of its active entries. 

opendir() is available only under COHERENT 386. 

The COHERENT implementation of the dirent routines was written by D. Gwynn. 

operator - Definition 
An operator is a function that is built into the C language. It usually relates one operand to 
another. For example, the statement 

1+2 

relates the operands 1 and 2 through the operation of addition; on the other hand, the statement 

A>B 

relates the operands A and B logically, by asserting that the former is greater than the latter; 
whereas 

A=B 

relates the operands A and B by assigning the value of the latter to the former. The following is a 
table of the C operators: 

• Multiplication 
I Division 
% Remainder 
+ Addition 

Subtraction 

< Less than 

LEXICON 



<= 
> 
>= 

&& 
!= 
! 

I I 
& 

<< 
>> 

= 
+= 
-= 
·= 
I= 
%= 
++ 

&= 

I= 
<<= 
>>= 

• 
& 
() 
[) 

-> 

?: 

sizeof 

Precedence 

Less than or equal to 
Greater than 
Greater than or equal to 

Logical AND 
Inequality 
Logical negation 
logical OR 

Bitwise AND 
Bitwise exclusive OR 
Bitwise complement 
Bitwise inclusive OR 
Bitwise shift left 
Bitwise shift right 

Assign 
Increment and assign 
Decrement and assign 
Multiply and assign 
Divide and assign 
Modulus and assign 
Increment 
Decrement 
Equivalence 
Bitwise AND and assign 
Bitwise exclusive OR and assign 
Bitwise inclusive OR and assign 
Bitwise shift left and assign 
Bitwise shift right and assign 

Indirection 
Render an address 
Function indicator 
Array indicator 
Structure pointer 
Structure member 
Conditional expression 

size of an object 

operator 905 

Precedence refers to the order in which C executes operators. The C languages assigns a level of 
precedence to each operator. Operators are executed in the order of their precedence level. from 
highest to lowest. 

The following table summarizes the precedence of C operators. The are listed in descending order of 
precedence: those listed higher in the table are executed before those lower in the table. Operators 
listed on the same line have the same level of precedence, and the implementation determines the 
order in which they are executed. If you use two or more such operators in the same expression, 
you would be wise to use parentheses to indicate exactly the order in which you want the operators 
executed. 

LEXICON 



906 operator 

Operator 

() [I 

++ 

* I % 

+ 

<< >> 

< <= > 

!= 

& 

&& 

11 

? : 

+= 

-> 

(type) 

>= 

*= I= %= 

* & sizeof 

Associativity 

Left to right 

Right to left 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Left to right 

Right to left 

Right to left 

Left to right 

You can always determine precedence in an expression by enclosing sub-expressions within 
parentheses: the expression enclosed within the innermost parentheses is always executed first. 

See Also 
definitions, sizeof 

LEXICON 



@W#ill§M!UM11M•IM''i"MGI 
Specify Output Filter 
PAGER="command options" 

PAGER - passwd 907 

The environmental variable PAGER directs programs such as msgs, mail and others to "pipe" their 
output into the command specified as the value of PAGER. For example, the following sets up 
/bin/scat as the desired output filter and passes a command line option to it to specify that the 
output screen has 20 lines. 

export PAGER="exec /bin/scat -120" 

See Also 
scat, environmental variables, mail, msgs 

f@ftiiiillltJtir:tijl•~ 1m1mmmmm~m~~mmmmmmm~'1i -.""'~ 
Define machine-specific parameters 
#include <sys/param.h> 

param.h defines machine-specific parameters. These parameters set limits on the operation of the 
COHERENT system; e.g .. the number of files that can be open at any one time. 

See Also 
header files 

f•$?fi,2·111111i+Jl•l11lrl~11mFm!.m1.m1~mmmmmmmm"'mmmmmmmmmmmmmmmmm1m1~'~ 
Set/change login password 
passwd (user] 

passwd sets or changes the password for the specified user. If user is not specified, passwd changes 
the password of the caller. 

passwd requests that the old password (if any) be typed, to ensure the caller is who he claims to be. 
Next it requests a new password, and then requests it again in case of typing errors. passwd will 
ask for a longer password if the one given is too short or not unusual enough. 

Files 
/etc/passwd- Encrypted passwords 

See Also 
commands, crypt(), login 

Notes 
One good way to construct a password is to concatenate two common words plus a punctuation 
mark. For example, "dog@collar" or "hamlet&horatio" are passwords that are both easy to 
remember and difficult to guess. 

LEXICON 



908 passwd - paste 

f.IU1'1·•@1i·lh@~~---··········-~---····--~~--­Password file format 

The file /etc/passwd holds information about each user who has permission to use the COHERENT 
system. This information is read by the commands login and passwd whenever a user attempts to 
log in. to ensure that that user is really himself and not an impostor. 

/etc/passwd holds one record for each user; each record, in turn. consists of seven colon-separated 
fields. as follows: 

name:password:user_id:group_id:conunents:home_dir:shell 

name is the user's login name. password is his encrypted password. user _Id is a unique number 
that is also used to identify the user. group_ld identifies the group to which the user belongs. if any. 
comments holds miscellaneous data. such as names, telephone numbers, or office numbers. 
home_dir gives the user's home directory. Finally, shell gives the program that is first executed 
when the user logs on; in most instances. this is an interactive shell (default. /bin/sh). 

/etc/passwd includes a special entry for remacc. This entry controls access to the system by 
remote devices (for example. by a modem). If an entry in file /etc/ttys indicates that a serial line is 
remote (as set by placing an 'r' as the second character in its entry). COHERENT prompts 

Remote access password: 

when a user attempts to log in on that line. 

To set the password for remacc. enter the following command while running as the superuser. 

passwd remacc 

See Also 
me formats, passwd (command) 

Notes 
/etc/passwd can be read by anyone: if access to it were refused to a user. he could not log on. 
Thus. the passwords encrypted within it can be read and copied by anyone. and so may be 
vulnerable to brute-force decryption. For this reason. close attention should be paid to passwords: 
they should not be common words or names. preferably mix cases or use unique spellings. and be 
at least six characters long. 

paste - Command 
Merge lines of files 
paste [-s] [-d llst].file ... 

paste merges corresponding lines from multiple input files. By default. paste uses the <tab> 
character to delineate texts from different files. paste writes the the merged text to standard output; 
thus. paste can be used at the head of a shell pipeline. 

If paste reads EOF from any of the input files while other files still contain data, it substitutes blank 
lines as input from the file that has ended. 

Options 
paste recognizes the following command-line options: 

-d list 
Use the characters in list to separate the output fields. The characters in list are taken in 
sequence and used circularly. i.e., taken in order until the end of list is reached, then 
returning to the first character in list. Normally. paste uses the <tab> character to delineate 

LEXICON 



paste 909 

the output fields. The following character sequences have special meaning when encountered 
in list: 

\ \ Output a single backslash character 
\t Output a <tab> character 
\n Output a <newline> character 
\0 Output a null string (i.e., no separator between output fields) 

-s Output successive lines from each inputjlle across the page, with each input line separated 
from the next by a <tab> character. After all input lines from a given file have been 
concatenated, terminate the output line with a <newline> character and repeat the process 
on the next input file. 

Example 
The following two files will be used for subsequent examples. Filel contains: 

Filel Linel 
Filel_Line2 
Filel_Line3 
Filel_Line4 

Flle2 contains: 

File2 Linel 
File2_Line2 
File2_Line3 
File2_Line4 

The command 

paste Filel File2 

generates the following output: 

Filel_Linel 
Filel Line2 
Filel_Line3 
Filel_Line4 

File2 Linel 
File2 Line2 
File2 Line3 
File2 Line4 

Adding the option -s yields the output: 

Filel Linel 
File2_Linel 

See Also 
awk, commands, cut, sed 

Notes 

Filel Line2 
File2_Line2 

Filel Line3 
File2 Line3 

Filel_Line4 
File2 Line4 

paste is copyright © 1989 by The Regents of the University of California. All rights reserved. 

paste is distributed as a service to COHERENT customers, as is. It is not supported by Mark 
Williams Company. Caveat utllitor. 

LEXICON 



910 patch 

rmma.1H111fi1H.1 

Modify portions of an executable 
/conf/patch [-k] Image symbol=value .•• 

The command patch alters the value of datum symbol to value in executable Image. In general, you 
should use patch to alter configuration data (constants) in programs, in device drivers. and in the 
COHERENT kernel. For patch to work with a symbolic constant, image must have a symbol table 
that includes information about symbol. Therefore, executables that have been processed by the 
command strip cannot be patched. 

Option -k patches the kernel memory of the running COHERENT system via device I dev /kmem, as 
well as the image. Only the superuser root can access kernel memocy from the patch command. 

Both symbol and value may consist of numeric constants or a symbol from the symbol table of 
Image. 

Please note that the COHERENT 286 kernel references variables with a trailing underscore 
character; for example, atpann_. The COHERENT 386 kernel, however, does rwt use a trailing 
underscore; for example, atpann. The following descriptions apply to both COHERENT 286 and 
COHERENT 386, but the notation will be in the COHERENT-386 form. 

symbol and value expressions may include an optional numeric offset. In addition. the value field 
may optionally be composed of the construct makedev(major,mlrwr), where major and mlrwr are the 
"major" and "minor" device numbers, respectively, resulting in a dev_t-sized device type. 

Numeric constants default to decimal, but may be specifyed with a leading 0 prefix to specify an 
octal number or a Ox prefix to specify a hexadecimal number. 

The size of the altered symbol field is, by default, sizeof(int). patch recognizes the following explicit 
size overrides: 

:c The size of the altered field is sizeof(char). 

:1 The size of the altered field is sizeof(int). 

:1 The size of the altered field is sizeof(long). 

:s The size of the altered field is slzeof(short). 

Examples 
The following example patches the value of kernel variable KBBOOT in the nkb keyboard device 
driver to disallow rebooting of the system via the traditional <ctrl><alt><del> key sequence. See 
Lexicon article nkb for details. Note that this command changes /coherent on the boot device, not 
the copy of /coherent that is now running in memocy. 

/conf/patch /coherent KBBOOT=O 

The second example patches the value of character variable myvar in user-supplied program 
myprog to hexadecimal value 12: 

/conf/patch myprog myvar=Ox12:c 

The final example modifies the default "root" and "pipe" devices for COHERENT-386 kernel /testcoh 
to be AT/IDE hard-disk partition /dev/atOb. 

/conf/patch /testcoh 'rootdev=makedev(ll,l):s' 'pipedev=makedev(ll,l):s' 

Note that in this last example, the arguments to patch must be quoted to avoid interpretation by 
the shell. 

LEXICON 



path0 911 

See Also 
commands, device drivers 

Notes 
No spaces can appear around the equal sign in the symbol=constant construct. 

Using patch to modify the kernal data area of a running system is extremely dangerous. It should 
only be done by experienced writers of device drivers. Caveat utllttor! 

.. ,H§ijllj!it@![.jd 
Path name or a file 
#Include <path.h> 
#Include <stdio.h> 
char •path(path,jllename, mode); 
char •path, -:filename; 
Int mode; 

The function path() builds a path name for a file. 

path points to the list of directories to be searched for the file. You can use the function getenv() to 
obtain the current definition of the environmental variable PATH, or use the default setting of PATH 
found in the header file path.h. or, you can define path by hand. 

jllename is the name of the file for which path is to search. mode is the mode in which you wish to 
access the file, as follows: 

1 Execute the file 
2 Write to the file 
4 Read the file 

path() calls the function access() to check the access status ofjllename. If path() finds the file you 
requested and the file is available in the mode that you requested, it returns a pointer to a static 
area in which it has built the appropriate path name. It returns NULL if either path orjllename are 
NULL, if the search failed, or if the requested file is not available in the correct mode. 

Example 
This example accepts a file name and a search mode. It then tries to find the file in one of the 
directories named in the PATH environmental variable. 

#include <path.h> 
#include <stdio.h> 
#include <stdlib.h> 

void 
fatal(message) 
char *message; 
{ 

} 

fprintf(stderr, "%s\n", message); 
exit(l); 

LEXICON 



912 PATH-paths 

main(argc, argv) 
int argc1 char *argv[]J 
{ 

} 

char *env, *pathname1 
int mode1 

if (argc I= 3) 
fatal("Usage: findpath filename mode")1 

if( ( (mode=atoi(argv[2)) )>4) 11 (mode==3) 11 (mode<l)) 
fatal ( "modes: l=execute, 2=wri te, 3=read" ) 1 

env = getenv ( "PATH" ) 1 

if ((pathname= path(env, argv[l), mode)) I= NULL) { 
printf("PATH = %s\n", env)1 
printf("pathname = %s\n", pathname)J 
returni 

} else 
fatal("search failed")1 

See Also 
accessQ, access.h, general functions, PATH, path.h 

Elliiri'"R!H)·"Pi'M9! 
Directories that ol executable fies 

PATH names a default set of directories that are searched by COHERENT when it seeks an 
executable file. You can set PATH with the command PATH. For example, typing 

PATH=/bin:/usr/bin 

tells COHERENT to search for executable files first in /bin. and then in /usr/bin. Note the use of 
the colon ':'to separate directory names. 

See Also 
environmental variables, path.h 

rmm=mrnm= 
Define/declare constants and functions used with path 
#include <path.h> 

path.h declares constants used to handle the path environmental variable. Thes.e include, among 
others, the default path, the path separator, and the list separator. path.h also declares the 
function path. 

See Also 
header mes, path(), PATH 

nmzm~nu+11mi.1mpm.J,t 
~ta ase for mail 
/usr/llb/mail/paths 

File /usr/llb/mail/paths holds the data base used by the COHERENT mail system to route mail. 
Each line gtves routing information to a host, and has the following format: 

LEXICON 



pattern 913 

host route [cost] 

host names a UUCP host. Because smail uses a binary-search algorithm when searching the data 
base for a given host name, the lines in paths must be sorted into ascending order. (See the 
Lexicon entry for bsearoh for details on binary searches.) smail ignores case when it searches 
paths, so you should convert each host name to lower case before you sort paths. 

The route field details the route by which mail can travel from your system to host. Note that it 
includes a printf-style format string. 

The optional field cost is used by the COHERENT mail system to decide whether to queue outbound 
UUCP mail, or to invoke uuclco to deliver the mail immediately. If the cost is at or below smail's 
"queueing threshold", then small will attempt to deliver it immediately. This speeds mail delivery 
between hosts that enjoy an inexpensive UUCP link, such as a hard-wired line, and batches mail 
that must be sent over expensive media, such as long-distance telephone. If the cost field is absent. 
small gives this host a cost value above that of its queueing threshold. 

Example 
The following gives a sample paths file for a COHERENT system that its owner has named lepanto. 

friend friend!%s 300 
hubsys hubsys I %s 95 
lepanto %s O 
lepanto.ampr.org %s 0 
smart-host hubsys I %s 95 
widget hubsys!widget!%s 95 

As this file shows, lepanto is linked to systems hubsys and friend. The cost of 95 associated with 
hubsys is low, and is appropriate to a low-cost link. such as a hard-wired link; On the other hand. 
the cost of 300 associated with friend is high. which indicates that the connection with friend is 
high-cost, such as a long-distance telephone connection. If cost is 100 or greater, mail will be 
queued for later delivery. A cost below 100 tells small to attempt immediate delivery. 

In this example, machine lepanto is registered in the ampr.org Amateur Packet Radio domain. 
Note that machine name lepanto appears in both conventional and domain forms in order to help 
resolve addressing. 

In order to avoid having to maintain a huge data base, the owner of lepanto uses hubsys as a smart 
host. The smart-host designation in the paths data base signals small to forward any mail that it 
doesn't know how to deliver onto site hubsys. 

Finally, lepanto can use hubsys to pass mail on to widget. Thus. when rmail receives mail for 
system widget, it will transmit it to hubsys for forwarding. Note that hubsys's administrator must 
have given lepanto permission to use it as a mail relay. or this would not work. 

See Also 
mail, technical information 

Olillf:M.1l@!!!•Jd11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

A pattern is any combination of ASCII characters and wildcard characters that can be interpreted 
by a command. Patterns are also known as "regular expressions". 

The function pnmatch compares two patterns and signals if they match. 

See Also 
deflnltions, egrep, pnmatch(), wlldcards 

LEXICON 



914 pauseO - pcloseO 

1.swm11=1@""'"' 
Wait for signal 
int pause() 

pauseO suspends execution until the process receives a signal. The awaited signal could come from 
kill(), Blann(), or the controlling terminal. 

See Also 
alannQ, killQ, signal(), sleep(), system calls 

-··],jj@lii·' 
Portable archive interchange 

pax is an archiving utility that reads and writes tar and cpio formats, both the traditional ones and 
the extended formats specified in IEEE document 1003.1. It handles multi-volume archives and 
automatically determines the format of an archive while reading it. 

pax supports three user interfaces: tar, cpio, and pax. The pax interface was designed by IEEE 
1003.2 as a compromise in the chronic controversy over which of tar or cpio interfaces is superior. 

See Also 
commands, cpio, tar, ustar 

Notes 
To avoid confusion with the traditional COHERENT tar command, the tar command distributed 
with pax is renamed ustar. 

See the compressed tar archive /usr/src/alien/pax.tar.Z for full documentation on pax, cpio, and 
ustar. 

pax was developed by Mark H. Colburn and sponsored by The USENIX Association. It is provided in 
binary form per the licensing terms set forth by the author. See file /usr/src/alien/pax.tar.Z for 
licensing terms. Copyright© 1989 by Mark H. Colburn. All rights reserved. 

pax is provided in binary form per the licensing terms set forth by the author. It is distributed as a 
service to COHERENT customers, as is. It is not supported by Mark Williams Company. Caveat 
uttlltor. 

r:m·am11:a11a11411.5n.J.11n11 
Close a pipe 
#include <stdio.h> 
int pclose(fp) 
FILE ..rp: 
pclose() closes the pipe pointed to byfp, which must have been opened by the function popenQ. 

pclose() awaits the completion of the child process and performs other cleanup. It returns the value 
from a WAIT done on the child process. This value includes information in addition to the "simple" 
exit value of the child process. 

Files 
<Stdio.h> 

See Also 
fclose(), fopen(), pipe(), popen(), sh, STDIO, system(), wait() 

LEXICON 



Permissions 915 

Diagnostics 
pclose() returns -1 iffp had not been created by a call to popen(). Otherwise, pclose() returns the 
exit status of the command, in the format described in the entry for wait(): exit status in the high 
byte, signal information in the low byte. 

'iil"''®'·lcf •i•mn=·liiB·IZh~·E~·'l'~-----11111111111--llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
Format ol'UUCP permissions file 
/usr /lib/uucp/Permissions 

The file Permissions describes the remote sites that can communicate via UUCP with your 
COHERENT system, and lists the programs that each site can execute on your system. Before a 
remote site can communicate with your COHERENT system, that site must have an entry in 
Permissions. 

When the command uucico attempts to execute a file transfer to or from a remote site, it checks to 
see that there is an entry for the site in Permissions. If your Permissions entries are not written 
correctly, you risk a breach of system security. 

Each entry in Permissions takes one of two forms: 

• LOGNAME entries detail the permissions granted to an individual user when he calls your 
system from a remote site. 

MACIONE entries detail the permissions for the remote sites that you call. 

You can combine the two types of entries into one entry if the permissions are the same in both 
entries. 

An entry in Permissions consists of pairs of entries of the form OPTION=value, each separated by 
one or more white-space characters. The OPTION side must be in upper-case characters. and the 
value side in lower-case characters. At the end of each line (except the last), you must include a 
backslash character ('\ ') to continue the current line onto the next one. Blank lines between entries 
are ignored. 

For the READ. NOREAD. WRITE, and NOWRITE fields, described below. the value specified is a 
sequence of one or more directories on your computer, separated only by colons (i.e., no white space 
allowed). 

An entry in Permissions can have up to ten fields: 

1.MACIDNE 
This field names the remote system that you wish to communicate with. It is limited to 
seven characters. (Future releases of COHERENT will increase this limit.) 

2.LOGNAME 
This field specifies the login name that the remote system will use when it calls your 
system. Please note that if the remote site attempts to log into your system with a login 
name other than the one specified by this field, uucico will terminate the call for security 
reasons. There must be a valid entry in file /etc/passwd for the name specified in this 
field. 

3.READ 
This entry names the directories on your system that the UUCP commands can access. You 
must give the full path name of the directory. The default is /usr/spool/uucppublic. 

4.NOREAD 
When a directory is entered in the READ field, all of its sub-directories become available for 
reading. If you wish to make any of its sub-directories unreadable by the remote site, name 
it here. You must give the full path name of the directory. The default is NULL. 

LEXICON 



916 Permissions 

5. WRITE 
Here, . name the directories on your system into which the command uucico can deposit 
files. You must give the full path name of the directory. The default is 
/usr/spool/uucppublic. 

6.NOWRITE 
When a directory is entered in the WRITE field, the remote system can write into all of its 
sub-directories. If you wish to make any of its sub-directories unwriteable by the remote 
site. enter it here. You must give the full path name of the directory. The default is NULL. 

7.COMMANDS 
Here, name the commands that the remote system can execute on your computer. The two 
most basic commands to put in this entry are rmall and uucp. This lets the remote site 
send electronic mall to you and to use uucp to transfer files. You may add other 
commands, but the shorter the list, the greater your level of system security. The default is 
rmail. 

8.REQUEST 
This entry asks if the remote site can request to transfer files from your system. Respond 
yes if security is not an issue. If the value is no, only your system can request that files be 
transfered to the remote system. The default is no. 

9. SENDFILES 
This entry asks if your system can initiate file transfers to the remote site. Your response 
can be yes, no. or call. The default is call, which allows files to be sent only when your 
system calls the remote site. A value of yes allows your system to transfer files to the 
remote system regardless of which system originated the conversation. A value of no 
prohibits any file transfers from your system to the remote system. 

10.MYNAME 
This field contains the site name that you have been assigned by the system administrator 
of the remote site. It must contain no more than seven characters. If MYNAME is defined, 
its value is used as your site name rather than the value in /etc/uucpname. This is useful 
in situations where your site name is already used by an existing account on the remote site 
you wish to call, or when the remote site does not support "anonymous" UUCP access. 

When writing your Permissions file, keep these considerations in mind: 

White space is not allowed before or after the '=' sign. 

Each line corresponds to one entry. You may continue to the next line by ending the line with a 
backslash charcter ('\'). 

If a field has more than one value, use a colon to separate them. 

Example 
The following example gives an entry in Permissions to set up a connection with the Mark Williams 
Company's UUCP BBS: 

MACHINE=mwcbbs MYNAME=bbsuser \ 
REQUEST=yes SENDFILES=yes \ 
COMMANDS=nnail1uucp \ 
READ=/usr/spool/uucppublic:/tmp \ 
WRITE=/usr/spool/uucppublic1/tmp 

See Also 
me formats, UUCP 

LEXICON 



t@tt.m•m@F1•i•Ht4u.1.11n;s1 
System call error messages 
#Include <ermo.h> 
perror(s trlng) 
char •string: extern Int sys_nerr; extern char •sys_errllst(); 

perrorO - pipe 917 

perror() prints an error message on the standard error device. The message consists of the 
argument string, followed by a brief description of the last system call that failed. The external 
variable ermo contains the last error number. Normally, string is the perror of the command that 
failed or a file perror. 

The external array sys_errlist gives the list of messages used by perrorQ. The external sys_nerr 
gives the number of messages in the list. 

See Also 
ermo, ermo.h, general functions 

rmmm.lli•nnnFM·I 
Print numbers and addresses from phone directory 
phone person ... 

The command phone searches a number of telephone directory files for each person argument that 
is given. Any lines that matches any of the person arguments is printed. Typically. such lines 
contain the telephone number. name. and address of a person or organization. Lower-case letters in 
person can be matched by both the same letter and the corresponding upper-case letter in the 
phone directory. 

The user may supply his own phone directory by setting the (exported) shell variable PHONEBOOK, 
to the name of that file. If given. this file is searched first. Then, the system-wide phone book is 
always searched. 

Files 
$PHONEBOOK- User-supplied phonebook (searched first) 
/usr/pub/phonebook- System-wide phone directory 

See Also 
commands 

Diagnostics 
phone exits with non-zero status if a call fails. A diagnostic message is written to stderr if no 
matching entries are found. 

r:ztm1Sdj11!!1hl 
A pipe directs the output stream of one program into the input stream of another program, thus 
coupling the programs together. With pipes, two or more programs (or filters) can be coupled 
together to perform complex transforms on streams of data. For example, in the following command 

cat DATAFILEl DATAFILE2 I sort I uniq -d 

the filter cat opens two files and prints their contents. Its output is piped to the filter sort, which 
sorts it. The output of sort is piped, in turn, to the filter uniq, which (with the -d option) prints a 
single copy of each line that is duplicated within the file. Thus, with this simple set of commands 
and pipes, a user can quickly print a list of all lines that appear in both files. 

LEXICON 



918 pipeO 

See Also 
definitions, mter, named pipe 

m11@·1111• 
Open a pipe 
Int plpe(fd) 
lntfd[2]; 

A pipe is an interprocess communication mechanism. pipe() creates a pipe, typically to construct 
pipelines in the shell sh. 

pipe() fills infd[O] andfd[l) with read and write file descriptors, respectively. The file descriptors 
allow the transfer of data from one or more writers to one or more readers. Pipes are buffered to 
5, 120 bytes. If more than 5.120 bytes are written into the pipe, the write() call will not return until 
the reader has removed sufficient data for the write() to complete. If a read() occurs on an empty 
pipe, its completion awaits the writing of data. 

When all writing processe close their write file descriptors, the reader receives an end of file 
indication. A write on a pipe with no remaining readers generates a SIGPIPE signal to the caller. 

pipe() is generally called just before fork(). Once the parent and child processes are created, the 
unused file descriptors should be closed in each process. 

Example 
The following example prints the word Waiting until a line of data is entered. It illustrates how to 
use pipe(), fstat(), and fork(). 

#include <stdio.h> 
#include <sys/stat.h> 
#include <sgtty.h> 

/* for stat */ 
/* for stty/gtty functions */ 

static int fd[2]; 

main() 

/* pipe array */ 

{ 
printf("This prints 'Waiting' every second until a 'q' is hit.\n"); 

I* 
* Pipe may also be constructed by /etc/mknod 
* If it is desired to have tasks communicate where 
* they are not parent and child. In this case make 
* sure the constructed pipe has the correct owner and 
* permissions. Such pipe may be used exactly like this 
*but open()ed on each side. 
*/ 

if (-1 == pipe(fd)) { 

} 

fprintf(stderr, "Cannot open pipe\n"); 
exit ( 1); 

LEXICON 



} 

if (fork()) 
parentProcess(); 

else 
childProcess(); 

exit(O); 

parentProcess() 
{ 

} 

struct stat s; 
char buff; 

for (buff= ' '; 'q' I= buff;) { 

} 

fstat(fd[O], &s); /*get status of pipe*/ 
if (s.st_size) { /* char in the pipe */ 

} 

read(fd[O], &buff, sizeof(buff)); 
printf("Got a '%c'\n", buff); 
continue; 

/* 
*This can be any process, it can use system() 
* or exec() 
*/ 

printf ( "Waiting\n"); 
sleep(l); 

childProcess() 
{ 

struct 
char buff; 

sgttyb os, ns; 

gtty(fileno(stdin), &os); /*save old state*/ 
ns = os; /* get base of new state */ 

plpeO 919 

ns.sg_flags I= RAW; /* process each character as entered */ 

} 

ns.sg_flags &= -(ECHOICRMOD); /*no echo for now ••• */ 
stty(fileno(stdin), &ns); /*set mode*/ 

do { 
buff= getchar(); /*wait for the keyboard*/ 
write(fd[l], &buff, sizeof(buff)); 

} while ( 'q' I= buff); 

stty(fileno(stdin), &os); /*reset mode*/ 

See Also 
close(), mknodQ, read(), sh, signal(), system calls, write() 

LEXICON 



920 pnmatchO - pointer 

Diagnostics 
pipeQ returns zero on successful calls, or -1 if it could not create the pipe. 

If it is necessary to create a pipe between tasks that are not parent and child, use /etc/mknod. to 
create a named pipe. These named pipes can be opened and used by different programs for 
communication. Remember to give them the correct owner and permissions. 

r.nmmem11M•i!ll·"!ll!ff!Ml'··------------------------­Match string pattern 
int pnmatch(strlng, pattern,flag) 
char •string, •pattern: int.flag; 

pnmatch() matches string with pattern. which is a regular expression. The shell sh uses patterns 
for file name expansion and case statement expressions. 

pnmatchO returns one if pattern matches string, and zero if it does not. Each character in pattern 
must exactly match a character in string; however. the wildcards '*', '?','['and')', and'[!' and')' can 
be used in pattern to expand the range of matching. 

flag must be either zero or one: zero means that pattern must match string exactly, whereas one 
means that pattern can match any part of string. In the latter case, the wildcards "and'$' can also 
be used in pattern. 

Example 
For an example of this function, see the entry for fgets(). 

See Also 
egrep, general functions, grep, sh 

Notes 
flag must be zero or one for pnmatchQ to yield predictable results. 

pnmatch() is a more powerful version of the ANSI functions strstr() and strcmp(). 

For an egrep-style version of pnmatch(), see the function regexp(). It is described in the Lexicon 
article libmisc. 

@ii@ ••Mm•Wi 
A pointer is an object whose value is the address of another object. The name "pointer" derives from 
the fact that its contents "point to" another object. A pointer may point to any type. complete or 
incomplete, including another pointer. It may also point to a function. or to nowhere. 

The term pointer type refers to the object of a pointer. The object to which a pointer points is called 
the referenced type. For example, an int • ("pointer to Int") is a pointer type: the referenced type is 
int. Constructing a pointer type from a referenced type is called pointer type derivation. 

The Null Pointer 
A pointer that points to nowhere is a null pointer. The macro NULL, which is defined in the header 
stdio.h, defines the null pointer. The null pointer is an integer constant with the value zero. It 
compares unequal to a pointer to any object or function. 

Declaring a Pointer 
To declare a pointer. use the indirection operator'*'. For example, the declaration 

int *pointer; 

declares that the variable pointer holds the address of an int-length object. Likewise, the 
declaration 

LEXICON 



pointer 921 

int **pointer; 

declares that pointer holds the address of a pointer whose contents, in turn, point to an int-length 
object. 

Failure to declare a function that returns a pointer will result in that function being implicitly 
declared as an int. This will not cause an error on microprocessors in which an int and a pointer 
have the same size; however, transporting this code to a microprocessor in which an int consists of 
16 bits and a pointer consists of 32 bits will result in the pointers being truncated to 16 bits and the 
program probably failing. 

C allows pointers and integers to be compared or converted to each other without restriction. The 
COHERENT C compiler flags such conversions with the strict message 

integer pointer pun 

and comparisons with the strict message 

integer pointer comparison 

These problems should be corrected if you want your code to be portable to other computing 
environments. 

See for more information. 

Wild Pointers 
Pointers are omnipresent in C. C also allows you to use a pointer to read or write the object to 
which the pointer points; this is called pointer dereferencing. Because a pointer can point to any 
place within memory, it is possible to write C code that generates unpredictable results, corrupts 
itself, or even obliterates the operating system if running in unprotected mode. A pointer that aims 
where it ought not is called a wild pointer. 

When a program declares a pointer, space is set aside in memory for it. However, this space has not 
yet been filled with the address of an object. To fill a pointer with the address of the object you wish 
to access is called Initializing it. A wild pointer, as often as not, is one that is not properly initialized. 

Normally, to initialize a pointer means to fill it with a meaningful address. For example, the 
following initializes a pointer: 

int number; 
int *pointer; 

pointer = &number; 

The address operator'&' specifies that you want the address of an object rather than its contents. 
Thus, pointer is filled with the address of number, and it can now be used to access the contents of 
number. 

The initialization of a string is somewhat different than the initialization of a pointer to an integer 
object. For example, 

char *string= "This is a string." 

declares that string is a pointer to a char. It then stores the string literal This is a string in memory 
and fills string with the address of its first character. string can then be passed to functions to 
access the string, or you can step through the string by incrementing string until its contents point 
to the null character at the end of the string. 

Another way to initialize a pointer is to fill it with a value returned by a function that returns a 
pointer. For example, the code 

LEXICON 



922 pointer 

extern char *malloc(size_t variable); 
char *example; 

example= malloc(SO); 

uses the function malloc to allocate 50 bytes of dynamic memory and then initializes example to 
the address that malloc returns. 

Reading What a Pointer Points To 
The indirection operator·•· can be used to read the object to which a pointer points. For example, 

int number; 
int *pointer; 

pointer = &number; 

printf("%d\n", *pointer); 

uses pointer to access the contents of nwnber. 

When a pointer points to a structure, the elements within the structure can be read by using the 
structure offset operator'->'. See the entry for operators for more information. 

Pointers to Functions 
A pointer can also contain the address of a function. For example, 

char *(*example)(); 

declares example to be a pointer to a function that returns a pointer to a char. 

This declaration is quite different from: 

char **different(); 

The latter declares that different is a function that returns a pointer to a pointer to a char. 

The following demonstrates how to call a function via a pointer: 

(*example) (argl, arg2) i 

Here, the••• takes the contents of the pointer, which in this case is the address of the function. and 
uses that address to pass to a function its list of arguments. 

A pointer to a function can be passed as an argument to another function. The functions bsearch 
and qsort both take function pointers as arguments. A program may also use of arrays of pointers 
to functions. 

Pointer Conversion 
One type of pointer may be converted, or cast, to another. For example, a pointer to a char may be 
cast to a pointer to an int, and vice versa. 

Pointers to different data types are compatible in expressions, but only if they are cast appropriately. 
Using them without casting produces a pointer-type mismatch. 

Pointer Arithmetic 
Arithmetic may be performed on all pointers to scalar types, i.e .. pointers to chars or int. Pointer 
arithmetic is quite limited and consists of the following: 

LEXICON 



po/10 923 

I. One pointer may be subtracted from another. 

2. An int or a long, either variable or constant, may be added to a pointer or subtracted from it. 

3. The operators ++ or -- may be used to increment or decrement a pointer. 

No other pointer arithmetic is permitted. No arithmetic can be performed on pointers to non-scalar 
objects, e.g., pointers to functions. 

When an int or long is added to a pointer, it is first multiplied by the length of what the pointer is 
declared as pointing to. Thus, if a pointer to an int is incremented by two, it points down two more 
ints, not two more characters. The following program demonstrates this feature: 

char *pc = "Welcome"; 
int array[5] = { 1, 2, 3, 4, 5 }; 
int *pi = array; 

main() 
{ 

} 

pc += 2; 
pi += 2; 

iBOB6 Pointers 

/* pc points to 'l' */ 
/* pi points to 3 */ 

Intel designed the i8086 to use a segmented architecture. This means that the i8086 divides 
memory into 64-kilobyte segments. To program the i8086 requires that you use a specific memory 
model, which describes how the segments of memory are to be organized. 

See Also 
C language, data formats, operators, portability 

rmDl§!@h@l1 
Query several I/O devices 
#include <poll.h> 
int poll(fds, nfds, timeout) 
struct pollfdfds[]; 
unsigned long nfds; 
int timeout; 

The COHERENT system call poll() polls one or more file streams for one or more polling conditions. 
fds gives the address of an array of structs of type pollfd, which has the following structure: 

struct pollfd { 
int fd; /* file descriptor */ 
shortevents; /* requested events */ 
shortrevents; /* returned events */ 

}; 

Field fd gives the file descriptor for a file stream, as returned by a call to open(), or creat(). Fields 
events and revents give, respectively, the polling conditions that interest you, and those that have 
occurred. The legal conditions, as defined in header file poll.h, are as follows: 

POLLIN 
Input, or a non-priority or file-descriptor passing message, is available for reading. In 
revents, this bit is mutually exclusive with POLLPRI. 

LEXICON 



924 poll.h - popd 

POLLPRI 
A priority message is available for reading. In revents, this bit is mutually exclusive with 
POLLIN. 

POLLO UT 
Output may be performed; the output queue is not full. 

POLLERR 
An error message has arrived. This field is used only in revents, and is ignored in events. 

POLLHUP 
A hangup has occurred. This field is used only in revents, and is ignored in events. 

POLLNVAL 
The specified fd value does not belong to an open I/O stream. This field is used only in 
revents, and is ignored in events. 

rifds gives the number of entries infds. 

For each array elementjds[i], pollQ examines the file descriptor fds[i].fd for the events specified by 
bits set infds[i].events, and places the resulting status intojds[l].revents. If the fd value is less 
than zero. revents for that entry is set to zero. Event flags POLLIN, POLLPRI. and POLLOUT are 
set in revents only if the same bits are set in events and the corresponding condition holds. Event 
flags POLLHUP, POLLERR, and POLLNVALare always set in revents ifthe corresponding condition 
holds, regardless of the contents of events. 

If none of the defined events for any of the file descriptors has occurred, poll() waits for timeout 
milliseconds. Because the system clock runs at 100 hertz, the value used for timeout is the next 
higher multiple of ten milliseconds. If timeout is zero. poll() returns immediately. If timeout is -1, 
poll() blocks until a requested event occurs or a signal interrupts the call. 

pollO returns the number of file descriptors for which revents is nonzero. It returns zero if it timed 
out with no matching events. If the call failed, it returns -1 and sets errno to an appropriate value. 

See Also 
system calls 

Notes 
pollQ is available only under COHERENT 386. 

r:mlm'®'·tli' 
Define structures I constants used with polling devices 
#include <sys/poll.h> 

poll.h defines structures and constants used by routines that poll devices. 

See Also 
header mes 

r:zD!ll+·lnlnb!d·' 
Pop an item from the directory stack 
popd [Item ... ] 

The COHERENT shell sh maintains an internal "directory stack". which is a stack of names of 
directories. You can manipulate this stack should you, for any reason, wish to traverse a number of 
directories quickly and efficiently. 

The command popd pops an item from the directory stack. If called without an argument, it pops 
the last item. Otherwise, it pops the given stack Items in the order requested, where each Item is a 

LEXICON 



positive integer and zero is the top of the stack. 

See Also 
co1Dl1UlJlds,dlrs,pushd,sh 

r1w.r~11t1••u•11m3n.111e1 
Open a pipe 
#include <stdio.h> 
FILE *popen(command, how) 
char •command, •how; 

popenO - portability 925 

popen() opens a pipe. It resembles the function fopen(), except that the opened object is a 
command line to the shell sh rather than a file. 

The caller can read the standard output of command when how is r. or write to the standard input 
of command when how is w. popen() returns a pointer to a FILE structure that may be read or 
written. 

Files 
<StdJO.h> 

See Also 
fclose(), fopen(), pclose(), pipe(), sh, STDIO, system(), wait() 

Diagnostics 
popen() returns NULL if the link to command could not be established. 

rDll•m@ll!·J.• 
A port passes data to and receives data from a remote device. 

See Also 
definitions, FILE, stream 

f ,t.J;mwm • m@@ilmi.!H.6!!1·]ff 
Portability means that code can be recompiled and run under different computing environments 
without modification. Although true portability is an ideal that is difficult to realize, you can take a 
number of practical steps to ensure that your code is portable: 

Do not assume that an integer and a pointer have the same size. Remember that undeclared 
functions are assumed to return an int. If a function returns a pointer, declare it so. 

Do not write routines that depend on a particular order of code evaluation, particular byte 
ordering. or particular length of data types. 

Do not write routines that play tricks with a machine's "magic characters": for example, writing 
a routine that depends on a file's ending with <Ctrl-Z> instead of EOF ensures that that code 
can run only under operating systems that recognize this magic character. 

Always use manifest constants, such as EOF, and make full use of #define statements. 

Use header files to hold all machine-dependent declarations and definitions. 

Declare everything explicitly. In particular, be sure to declare functions as void if they do not 
return a value: this avoids unforeseen problems with undefined return values. 

Do not assume that integers and pointers have the same size or even the same kind of 
structure. Do not assume that pointers are all the same or can point anywhere. On the i8086, 
in SMALL model a pointer to a function addresses relative to the code segment, whereas a 
pointer to data addresses relative to the data segment. On some machines, character pointers 

LEXICON 



926 powO-pr 

are of a different size or structure than word pointers. 

The constant NULL is defined as being different from any valid pointer. Use it and nothing else 
for that purpose. 

Keep test scripts. preferably at the function level. That is. follow each function with an 

#ifdef TEST 

section that will exercise that function. Running these can rapidly isolate portability problems. 

Place plenty of 

#assert 

statements in your programs. These can often pick up portability problems. 

See Also 
header me, pointer, technical lnfonnation, void 

rmllftm!fAtfli§i@l·hHfDt§HEll®' 
Raise multiple-precision integer to power 
#Include <mprec.h> 
void pow(a. b, m, c) 
mint •a, *b, •m, •c; 

The COHERENT system includes a suite of routines that allow you to perform multiple-precision 
mathematics. The function powQ sets the multiple-precision integer (or mint) pointed to by c to the 
value pointed to by a raised to the power of the value pointed to by b. reduced modulo of the value 
pointed to by m. 

See Also 
multiple-precision mathematics 

rmi.ml®r#"fo!!li.ii''@n.1111na 
Compute a power of a number 
#Include <math.h> 
double pow(z, x) double z, x; 

pow() returns z raised to the power of x. or z"x. 

Example 
For an example of this function, see the entry for exp(). 

See Also 
mathematics library 

Diagnostics 
pow() indicates overflow by an ermo of ERANGE and a huge returned value. 

mllri·l..l,,ij!d·' 
Paginate and print files 
pr [ options I [file ... ] 

pr paginates each named.file and sends it to the standard output. The file name·-· means standard 
input. If no file is named, pr reads the standard input. 

Each page has a header that gives the date, me name, and page and line numbers. pr may be used 
with the following options. 

LEXICON 



prep 927 

+ skip Skip the first skip pages of each input file. 

-N Print the text in N columns. This is used to print out material that was typed in one or 
more columns. 

-hheader 
Use header in place of the text name in the title. If header is more than one word long, it 
must be enclosed in quotation marks. 

-IN Set the page length to N lines (default, 66). 

-m Print the texts simultaneously, in separate columns. Each text will be assigned an equal 
amount of width on the page, and any lines longer than that width will be truncated. This 
is used to print several similar texts or listings simultaneously. 

-n Number each line as it is printed. 

·SC Separate each column by the character c. You can separate columns with a letter of the 
alphabet, a period, or an asterisk. Normally, each column is left justified in a fixed-width 
field. 

-t Suppress the printing of the header on each page, and the header and footer space. 

-wN Set the page width to N columns (default, 80). Text lines are truncated to fit the column 
width. The maximum width is 254 columns. 

See Also 
cat, commands, nroff, prps 

Diagnostics 
Messages are written on the standard error. 

mllllri·lrlhir£·' 
Produce a word · t 
prep I -dfp J I -i ljlle I I -o oflle I [file ... I 

The command prep prepares a word list that is useful for statistical processing from the textual data 
found in each inputjlle. If no file is given. prep reads the standard input for text. 

For the purposes of prep. a word consists of a string of alphabetic letters and apostrophes. Words 
are written, one per line, to the standard output. Hyphenated words are treated as two words. 
However, any word hyphenated between two lines is rejoined as one word. 

prep recognizes the following options: 

-d Print a sequence number (of words in the input text) before each output word. 

-f Fold upper-case letters into lower case. This is sometimes useful for producing unique lists 
of words. 

-i ljlle Ignore words found in ljlle. ljlle has words one per line that are matched again each input 
word independent of case. 

-o ojlle Print only words found in ojlle. Only one of -i or -o may be specified. 

-p In addition to printing words, also print each punctuation character (printable, non-
numeric characters that separate words), one per line. These lines are not counted for -d. 

See Also 
commands, deroff, ksh, sh, sort, spell, typo, we 

LEXICON 



928 print - printer 

Notes 
What constitutes a word is different in deroff, prep, and we. 

~ ------~"'"'~~~"'"'"'~"'~...._,,""'""''~ 
Echo text onto the standard output 
print [-enrun] [argument ... ] 

The command print is built into the Korn shell ksh. It echoes each argument onto the standard 
output. Arguments are separated from each other by whitespace, and the list of arguments is 
terminated by a newline character. 

print recognizes and substitutes for the following C-style escape sequences: 

\b 
\f 
\n 
\r 
\t 
\v 
\Onnn 

Backspace 
Formfeed 
Newline 
Carriage return 
Tab 
Vertical tab 
nnn is the octal value of the desired character 

print recognizes the following options: 

-e Re-enable expansion of C escape sequences. 

-n Suppress printing of a newline at the end of the list of arguments. 

-r Suppress expansion ofC escape sequences. 

-un Redirect output from the standard output to shell file descriptor n. 

See Also 
conilllllJlds,echo,ksh 

@UN• m@®11mi.m.fo!~,~~''""""'"'""''~~ ~""'""'~'''"-. ~'WI 
The printer is the device that transfers human-readable data to paper. It can be plugged into either 
a parallel or a serial port, depending upon how your printer is designed. The former is faster, 
whereas the latter permits the printer to be positioned farther away from the computer. The 
following descriptions assume that you have your printer plugged into a parallel port. 

COHERENT permits you to have up to three parallel ports on your computer. Devices /dev/lptl, 
/dev/lpt2, and /dev/lpt3 control, respectively. parallel ports 1. 2, and 3 in cooked mode. The 
device I dev /Ip is normally linked to the above device that you wish to use by default as your line 
printer. See the Lexicon article Ip for more details on these devices. 

COHERENT can print text on all "dumb" printers that have no special text-formatting features. It 
also supports text formatting on three varieties of printers: Epson-compatible dot-matrix printers; 
laser printers compatible with the Hewlett-Packard LaserJet family of printers that implement the 
Hewlett-Packard Page Control Language (PCL); and all printers that have implemented the 
Postscript language. 

Dumb Printers 
To print on a "dumb" printer plugged into the parallel port. use the command lpr. This command 
performs some formatting on a file, and invokes the line-printer daemon lpd to spool the file for 
printing. Using the line-printer daemon is necessary in a multi-user environment to ensure that 
print requests from different users do not arrive at the printer at the same time, causing the printer 
to output a jumbled mess (if it prints anything at all). 

LEXICON 



printer 929 

For example. if FOO is a text file, the command 

lpr FOO 

prints it on your dumb printer. You should use the lpr command to print "simple" text (such as 
program listings) on any variety of dot-matrix printer. To print listings or other simple text on a 
laser printer. see below. 

The output of the text-formatting command nroff can also be printed, with some success. on dumb 
printers. To represent an italicized character, it prints the character, followed by a backspace. 
followed by an underscore character; to represent a bold-face character, it output the character, 
followed by a backspace, followed by the character again (in the hope, perhaps naive. that 
presenting the same text twice will make it appear bolder). 

Epson-Compatible Printers 
The command epson massages text into a form that uses some of the text-formatting features of the 
Epson MX-80 printer and clones thereof. It is especially to be used with text that has been 
formatted with nroff, as described above; there, it turns the "character /backspace/character" 
sequence into the Epson escape sequences for emphasized text and italics. It then directs its output 
to the line-printer device I dev /Ip. which it assumes has an Epson-style printer plugged into it. 

The following example uses nroff to format file FOO and prints the output on an Epson-style 
printer: 

nroff -ms FOO epson 

LaserJet-style Printers 
COHERENT includes a large suite of ccmmands to support the Hewlett-Packard LaserJet family of 
printers. as well as clones that run Hewlett-Packard's PCL. 

To begin. these commands use the HP devices /dev/hp and /dev/rhp. When you installed 
COHERENT on your system, you may have created these devices; if you did not, however, you 
should create them by simply using the command In to link /dev/lp to /dev/hp and to link 
/dev/rlp to /dev/rhp. as follows: 

ln /dev/lp /dev/hp 
ln /dev/rlp /dev/rhp 

You must log in as the superuser root to execute these commands. 

The daemon hpd spools files to be printed on your laser printer. It works like the line-printer 
daemon lpd. as described above. 

The command hp prepares files to be printed on a laser printer. You should use it to prepare 
"simple" text. such as program listings. for printing on your laser printer. Like the command epson. 
hp also massages the output of nroff into PCL-style escape sequences; unlike epson, however, it 
does not automatically spool the file for printing. 

The command hpr spools files to be printed on a laser printer. It works like the command lpr. 
except that it includes a number of special features; for example. you can use it to download 
LaserJet "soft fonts" into your printer. 

The following command uses nroff to format file FOO, then prints on a Hewlett-Packard style laser 
printer: 

nroff -ms FOO I hp I hpr -B 

Note that the -B option to hpr suppresses the printing of a banner page. 

LEXICON 



930 printer 

The text-formatting command troff can create proportionally spaced text to be printed on either a 
PCL or Postscript printer. In PCL mode, troff can make full use of all "soft fonts" that you have 
loaded onto your printer. For example, this manual was printed by COHERENT troff in PCL mode 
driving a Hewlett-Packard LaserJet III with soft fonts. See the Lexicon for details on how to use 
troff with laser printers. 

Postscript Printers 
COHERENT includes two commands that can drive Postscript style printers, such as the Apple 
LaserWriter. 

The command prps is a Postscript version of the COHERENT command pr. It paginates text. and 
supplies each page with a simple header. See its Lexicon entry for details. 

As noted above, troff, the COHERENT text formatter, can create proportionally space text for either 
PCL or Postscript printers. In Postscript mode, troff can handle all 35 fonts available with most 
PostScript cartridges; it supports full font scaling and features such as outlining and shadowing. It 
also permits you to embed "raw" Postscript within your file, to create effects not already available 
with the troff text-formatting language. For details on using troff with Postscript printers, see its 
entry in the Lexicon. 

Note that if you have a Postscript printer, you must use the -B option to the commands hpr and lpr. 
If you do not, these commands will attempt to print a banner page in ordinary text on your printer, 
and your printer will hang. 

Printer Problems 
The following paragraphs describes the problems most commonly encountered with printers, and 
suggests some solutions. 

If you are trying to access your parallel interface printer via special files /dev/lp or /dev/lptl and 
receive an error message of the form 

cannot open device /dev/lp 

this means that your printer is not attached to the device that COHERENT associates with 
/dev/lptl. Your printer is at either attached to /dev/lpt2 or to /dev/lpt3. To discover which one, 
log in as the superuser root and use cd to enter directory /dev. Make sure that your printer is 
plugged in, turned on, and on-line; then enter the command: 

cat file > lpt2 

file can be any readable file that you specify (e.g., /etc/passwd). If your printer does not print file, 
then repeat the command for device /dev/lpt3: 

cat file > lpt3 

The command that works indicates the device into which your printer is plugged. 

The final step is to "link" the actual location of the printer to devices /dev/lp and /dev/rlp, so that 
the COHERENT utilities know how to print a file. Enter the appropriate commands: 

ln -f lpt2 lp 
ln -f rlpt2 rlp 

if your printer is attached to /dev/lpt2, or 

ln -f lpt3 lp 
ln -f rlpt3 rlp 

LEXICON 



printfO 931 

if your printer was attached to /dev/lpt3. 

If you have an Hewlett-Packard LaserJet or compatible printer, perform the above "link" operation 
again but substitute hp for Ip and rhp for rip. This allows the command hpr to find your printer. 

If you are using a serial printer. note that flow control via CTS (clear-to-send) is not supported in the 
coml through com4 family of devices, but is available in devices hsOOr through hs07r. See Lexicon 
articles com, hs, and terminal for details. 

See Also 
epson, hp, hpd, hpr, Ip, lpd, lpr, prps, technical information, troll' 

rmmmlf.jl1][tljil@lm ~~"~~'11 "'~"'"""'~"''""''"~'WS 
Print formatted text 
int printfif ormat [,arg l, .... argN]) 
char ":format; [data type] argl, ... argN; 

printf() prints formatted text. It uses the format string to specify an output format for each arg, 
which it then writes on the standard output. 

printf() reads characters fromjormat one at a time; any character other than a percent sign'%' or a 
string that is introduced with a percent sign is copied directly to the output. A'%' tells printf() that 
what follows specifies how the corresponding arg is to be formatted; the characters that follow'%' 
can set the output width and the type of conversion desired. The following modifiers, in this order, 
may precede the conversion type: 

1. A minus sign '-' left-justifies the output field, instead of the default right justify. 

2. A string of digits gives the width of the output field. Normally, printf() pads the field with 
spaces to the field width; it is padded on the left unless left justification is specified with a'-'. If 
the field width begins with ·o·. the field is padded with ·o· characters instead of spaces; the 'O' 
does not cause the field width to be taken as an octal number. If the width specification is an 
asterisk '*', the routine uses the next arg as an integer that gives the width of the field. 

3. A period ·: followed by one or more digits gives the precision. For floating point (e, f, and gJ 
conversions, the precision sets the number of digits printed after the decimal point. For string 
(s) conversions, the precision sets the maximum number of characters that can be used from 
the string. If the precision specification is given as an asterisk '*', the routine uses the next 
arg as an integer that gives the precision. 

4. The letter 'l' before any integer conversion (d, o, x, or u) indicates that the argument is a long 
rather than an int. Capitalizing the conversion type has the same effect; note, however, that 
capitalized conversion types are not compatible with all C compiler libraries, or with the ANSI 
standard. This feature will not be supported in future editions of COHERENT. 

The following format conversions are recognized: 

% Print a'%' character. No arguments are processed. 

c Print the int argument as a character. 

d Print the int argument as signed decimal numerals. 

D Print the long argument as signed decimal numerals. 

e Print the float or double argument in exponential form. The format is d.ddddddesdd, where 
there is always one digit before the decimal point and as many as the precision digits after it 
(default, six). The exponent signs may be either'+' or·-·. 

LEXICON 



932 printfO 

f Print the tloat or double argument as a string with an optional leading minus sign·-·. at least 
one decimal digit, a decimal point (' .'), and optional decimal digits after the decimal point. The 
number of digits after the decimal point is the precision (default, six). 

g Print the tloat or double argument as whichever of the formats d, e, or f loses no significant 
precision and takes the least space. 

o Print the int argument in unsigned octal numerals. 

0 Print the long argument in unsigned octal numerals. 

r The next argument points to an array of new arguments that may be used recursively. The 
first argument of the list is a char • that contains a new format string. When the list is 
exhausted, the routine continues from where it left off in the original format string. 

s Print the string to which the char • argument points. Reaching either the end of the string, 
indicated by a null character, or the specified precision, will terminate output. If no precision is 
given, only the end of the string will terminate. 

u Print the int argument in unsigned decimal numerals. 

U Print the long argument in unsigned decimal numerals. 

x Print the int argument in unsigned hexadecimal numerals. 

X Print the long argument in unsigned hexadecimal numerals. 

Example 
The following example demonstrates many printf() statements. 

main() 
{ 

} 

extern void demo_r(); 
int precision = 1; 
int integer = 10; 
float decimal = 2.75; 
double bigdec = 27590.21; 
char letter= 'K'; 
char buffer[20]; 

strcpy (buffer, "This is a string.\n"); 

printf("This is an int: %d\n", integer); 
printf("This is a float: %f\n", decimal); 
printf("Another float: %3.*f\n", precision, decimal); 
printf("This is a double: %lf\n", bigdec); 
printf("This is a char: %c\n", letter); 
printf("%s", buffer); 
printf("%s\n", "This is also a string."); 

demo_r("Print everything: %d %f %lf %c", 
integer, decimal, bigdec, letter); 

exit(O); 

LEXICON 



proc.h - prof 933 

void demo_r(string) 
char *string; 
{ 

printf("%r\n", (char **)&string); 
} 

See Also 
fprintf(), putc(), puts(), scant'(), sprintf(), STDIO 

Notes 
Because C does not perform type checking, it is essential that each argument match its counterpart 
in the format string. 

The use of upper-case format characters to specify long arguments is not standard, and will be 
phased out to conform with the ANSI standard. You should use the 'I' modifier to indicate a long. 

At present, printf() does not return a meaningful value. 

proc.h - Header File •eueuB!l..._~,~~~,~~,~~~''eu~,,~-. 
Define structures/constants used with processes 
#include <sys/proc.h> 

proc.h defines structures and constants used by routines that manipulate processes. 

See Also 
header mes 

process - Definition 
A process is a program in the state of execution. 

See Also 
daemon, definitions, me 

~~~~'-.e ~~eueueueueueueueueueueueueueueueueueueueueueu~ 
Print execution profile of a C program
prof (-abcs)[progfile [monflle I I

prof interprets the profile file produced by an execution of a C program and reports the execution
frequencies of each routine. It also reports the percentage of execution time spent in each routine.

prof normally reports times and frequencies spent for regions of programs between externally
defined names. progfile is the executable program; if omitted, I.out is assumed. monjlle is the
monitor file produced during execution of the program; if omitted, mon.out is assumed.

To produce mon.out, a program must be compiled with the -VPROF option to cc. To profile all
modules, each module must be compiled with this option.

The following options are available.

-a Profile all symbols, not just externals.

-b Print all bin information.

-c Print all call information.

-s Report stack usage high-water mark.

LEXICON

934 profile - .profile

Files
I.out - Program file (with name list intact)
mon.out - Raw execution profile

See Also
cc, commands, Id, nm

profile - System Maintenance
Set user's environment at login
I etc/ profile

File /etc/protlle holds a set of commands that the shell reads and executes when a user logs in.

If /etc/passwd specifies a program in the login-shell slot, then /etc/protlle is read by /bin/sh.
Those lines that begin with the command export are recognized as global environments, and the
remainder of the line is inserted into the environment.

Please note that if /bin/sh or /bin/ksh is not the shell, any constructions other than

export foo=value

are not likely to work.

See Also
ksh, .protlle, sh, system maintenance

The shell reads file $HOME/ .profile whenever a user logs in. This file is owned by user. She can
edit its contents to set up her environment however she prefers, and to execute programs routinely
upon login.

The following gives one user's .profile:

MAIL=/usr/spool/mail/sally
PATH=/usr/bin:/bin:/v/sally/bin:.
EDITOR=me
PSl="Sally(!) "
PS2="MORE(!)>"
PAGER=scat
set -h
set -o emacs
echo "CALENDAR: "
calendar
echo nu

/usr/games/fortune

The first six entries set environmental variables; note that these are in addition to the variables set
in /etc/protlle.

The next two entries

set -h
set -o emacs

LEXICON

prps 935

set two features of the Korn shell, which is used by the person. The first turns on its hashing
feature, and the second turns on MicroEMACS-style editing of the command line.

The last four entries

echo "CALENDAR: "
calendar
echo ""
/usr/games/fortune

execute two programs upon login. The two echo commands print. respectively, the word
CALENDAR and a blank line on the screen. The command calendar reads the user's personal
calendar and prints all entries the relate to today (or to the weekend, should today be a Friday). The
command fortune prints a randomly selected (and, we hope, amusing) select from file
/usr I games/lib/fortunes.

This example is relatively simple. A user's .proffie can be turned into a complex shell program if
you wish.

See Also
ksh, profile, sh, system maintenance

~''"'''"'~'"'~~"'~~~'~'~"'"'~ ~~"'''"'~''~~
Prepare files for Postscript-compatible printer
prps [options) Iflle ... I

prps invokes a driver for a Postscript-compatible device, typically a printer such as an Apple
LaserWriter or a Hewlett-Packard LaserJet with a Postscript cartridge. It generates a Postscript
program listing each input.file and writes it to the standard output. If noflle is given, prps reads
the standard input.

The Postscript output program generates a sequence of standard 8.5 by 11-inch pages, each
containing a header line (filename, current time and date, and page number) and a box that
encloses the text of.file. The default output typeface is ten-point Courier.

The most common use ofprps is to print output via /dev/hp. For example, the command

prps file.c file.doc [hpr -B

pipes the output from prps into hpr (the print spooler for I dev /hp) to generate a listing of ffie.c and
me.doc.

prps recognizes the following options:

-b Suppress the box around the page text. If the box is present, Postscript clips text that
would extend beyond its right border.

-h Suppress the header line.

-in Indent the left margin by an additional n characters.

-1 Generate "landscape"-format output. prps normally generates output pages in "portrait"
format (upright 8.5 by 11 inches). The -1 option generates output pages in landscape format
(11 by 8.5) instead. This option is useful for files with long lines; by default, it prints 46
lines per page.

-12 Generate landscape-format output pages that each contain two side-by-side "pages" of text.
This format is useful for saving paper, especially when used with a small size of type. As it
prints in a small size of type. it prints 66 lines per page.

LEXICON

936 prps

-nname Use name in place of the file name in the header line.

-tN Set tab stops at every N characters. The default tab setting is eight.

-ptsize Change the size of type to ptsize points. By default. prps sets its output in ten-point type.
This yields 64 lines per normal output page. 46 lines in landscape format. and 52 lines per
half page in -12 format. (Note that a "point" is one twelfth of a pica. which in turn is one
sixth of an inch; thus. there are 72 points in an inch.) By specifying the ptsize on its
command line. you can tell prps to use a different size of type. For example. -8 tells prps to
use eight-point type.

-pN Print N lines of text on each output page (or half page). Note that the point size determines
how many lines fit on a page. and lines per page determine point size. If you specify both,
prps will use the given values unless the lines do not fit at the given point size.

+N Skip the first N output pages.

Setting Fonts
prps recognizes the standard nroff font specification sequences and translates them into Postscript
font specifications. The default font is Courier. Because the naming conventions for PostScipt fonts
are anything but uniform. prps appends a suffix to the fontname to designate a Roman, boldface
and italic font variety. The default suffix is·· for Roman. "-Bold" for bold and "-Oblique" for italic.
These give the standard Postscript names for the Courier family. "Courier", "Courier-Bold", and
"Courier-Oblique".

Option -ffontname specifies an alternativejontname. Option -FsXsujflx specifies an alternative font
suffix. where X is one of the three characters RBI (for Roman. Bold or Italic) and sujflx is the
desired suffix. For example. the option

-fTimes -FsR-Roman -FsI-Italic

generates the usual Postscript font names for the Times family. namely "Times-Roman", "Times­
Bold", and "Times-Italic".

To spare you some of this grief, a few fonts have built-in abbreviations. Option -FX. where Xis one
of the characters ABHNPST, specifies a Postscript fontname as follows:

-FA AvantGarde
-FB Bookman
-FH Helvetica
-FN Helvetica-Narrow
-FP Palatino
-FS New Century Schoolbook
-FT Times

These options also set each suffix appropriately for the desired font. However. font naming
conventions may differ on various Postscript devices; examine the prps output and your device
documentation if problems occur.

Examples
prps is especially useful as a way of printing the output of nroff. including manual pages. For
example,

man prps I prps I hpr -B

or

LEXICON

ps 937

man prps I prps -12 I hpr -B

prints this Lexicon article in. respectively. portrait mode or two-page landscape mode. It looks nicer
if you center the output with an indent:

man prps I prps -iB I hpr -B

or

man prps I prps -12 -i4 I hpr -B

See Also
commands, hp, hpr, pr, nroff, printer

~""'~~~~,~~~~"'"'~''"'~'~~'"'~~~~,~~"~"WIW
Print process status
ps [-afglmnrtwx] [-c sys] [-k mem I

ps prints information about a process or processes. It prints the information in fields. followed by
the command name and arguments. The fields include the following:

T1Y

PID

GROUP

PPID

UID

K

F

s

The controlling terminal of the command. printed in short form. "tty44:" means
/dev/tty44. Dashes means there is no controlling terminal.

Process id; necessary to know when the process is to be killed.

PID of the group leader of the process; the shell started up when the user logs in.

PID of the parent of the process; very often a shell.

User id or name of the owner.

Size of the process in kilobytes.

Process flag bits, as follows:

PFCORE 00001 Process is in core
PFLOCK 00002 Process is locked in core
PFSWIO 00004 Swap I/O in progress
PFSWAP 00010 Process is swapped out
PFWAIT 00020 Process is stopped (not waited)
PFSTOP 00040 Process is stopped (waited on)
PFTRAC 00100 Process is being traced
PF KERN 00200 Kernel process
PFAUXM 00400 Auxiliary segments in memory
PFDISP 01000 Dispatch at earliest convenience
PFNDMP 02000 Command mode forbids dump
PFWAKE 04000 Wakeup requested

State of the process, as follows:

R Ready to run (waiting for CPU time)
S Stopped for other reasons (I/O completion. pause, etc.)
T Being traced by another process
W Waiting for an existent child
Z Zombie (dead. but parent not waiting)

LEXICON

938 ps

EVENT The condition which the process is anticipating; not applicable if the process is ready to
run. The following gives the legal symbolic names of events. If a driver does not
support symbolic event names. ps prints a unique hexadecimal number instead:

System Sleeps:
bpwait
bufneed
bwrite
ioreq
pause
pipe data
poll
ptrace
ptret
pwrite
swap
wait
waitq

Driver Sleeps

Wait for a buffer to become valid
Wait for a free buffer to become available
Wait for a buffer write to finish

This process is in the pause() system call
Wait for data to appear in a pipe
Wake for polled event. poll timeout. or signal
Send a ptrace command to a traced child
Wait for signal processing in a traced child to complete
Wait for a pipe to empty enough for a write
Wait for a process to get swapped in
Wait for a child to terminate
Wait for more character queues to become available

aha:ccb AHA- l 54x driver is waiting for a SCSI command to complete
nkbcmd
nkbcmd ...
nkbcmd2
nkbcmd2... nkb is waiting for a command to complete
ptycd Pseudoterminal driver is waiting for carrier
ptyread Pseudoterminal driver is waiting for a read
ptywrite Pseudoterminal driver is waiting for a write
ttydrain Line discipline is waiting for a tty to drain
ttyiodrn ioctl() asked line discipline to let tty output drain
ttyoq Line discipline is waiting for an output queue to drain
ttywait Line discipline is waiting for more data

CVAL SVAL IVAL RVAL

UTIME

STIME

Scheduling information; bigger is better.

Time consumed while running in the program (in seconds).

Time consumed while running in the system (in seconds).

Normally, ps displays the TTY and PID fields of each active process started on the caller's terminal.
as well as the command name and arguments. The following flags can alter this behavior.

a Display information about processes started from all terminals.

c sys The argument sys gives the system executable image (default, I coherent).

d Print information about status of loadable drivers.

r Blank fields have·-· place-holders. This enables field-oriented commands like sort and awk
to process the output.

g Print the group leader field GROUP if the I option is given.

LEXICON

940 ptraceO

ptrace() provides a parent process with primitives to monitor and alter the execution of a child
process. These primitives typically are used by a debugger such as db, which needs to examine and
change memory. plant breakpoints, and single-step the child process being debugged.

Once a child process indicates it wishes to be traced, its parent issues various commands to control
the child. pld identifies the affected process. The parent may issue a command only when the child
process is in a stopped state, which occurs when the child encounters a signal. A special return
value of 0177 from wait() informs the parent that the child has entered the stopped state. The
parent may then examine or change the child process memory space or restart the process at any
point.

When the child process issues an exec(), the child stops with signal SIGTRAP to enable the parent
to plant breakpoints. The set user id and set group id modes are ineffective when a traced process
performs an exec().

The following list describes each available command. A command ignores any arguments not
mentioned.

0 This is the only command the child process may issue. It tells the system that the child
wishes to be traced. Parent and child must agree that tracing should occur to achieve the
desired effect. Only the command argument is significant.

1,2 The int at location is the return value. Command 1 signifies that location is in the
instruction space, whereas command 2 signifies data space. Often these two spaces are
equivalent.

3 The return value is the int of the process description, as defined in sys/uproc.h. This call
may be used to obtain values such as hardware register contents and segment allocation
information.

4,5 Modify the child process's memory by changing the int at location to value. Command 4
means instruction space and command 5 means data space. Shared segments may be
written only if no other executing process is using them.

6 Modify the int at location in the process description area, as with command 3. The
permissible values for location are restricted to such things as hardware registers and bits of
machine status registers that the user may safely change.

7 This command restarts the stopped child process after it encounters a signal. The process
resumes execution at location, or from where the process was stopped if location is (int *)I.
value gives a signal number that the process receives as it restarts. This is normally the
number of the signal that caused the process to stop. fetched from the process description
area by a 3 command. If value is zero, the effect of the signal is ignored.

8 Force the child process to exit.

9 Like command 7, except that the child stops again with signal SIGTRAP as soon as
practicable after the execution of at least one instruction. The actual hardware method
used to implement this command varies from machine to machine, explaining the imprecise
nature of its definition. This call may provide part of the basis for breakpoints.

Files
<signal.h>
<sys/ uproc.h>

See Also
db, exec, signal(), system calls, wait()

LEXICON

pty 941

Diagnostics
ptrace() returns -1 if pld is not the process id of an eligible child process or if some other argument
is invalid or out of bounds. Some commands may return an arbitrary data value, in which case
errno should be checked to distinguish a return value of -1 from an error return.

Notes
There is no way to specify which signals should not stop the process.

pty - Device Driver
Device driver for pseudoterminals

The COHERENT device driver pty lets your system support up to 128 pairs of pseudoterminals. A
pseudoterminal is a means of letting a process masquerade as a terminal. for example, a windowing
terminal describes each window as a pseudoterminal; text written to the pseudoterminal appears in
the window that "owns" that pseudoterminal.

Each pseudoterminal consists of a pair of devices: a master device and a slave device. The purpose
of these pairs is to allow COHERENT to insert line-discipline processing into a chain of processes
whose inputs and outputs are interconnected. Line-discipline processing refers to such tasks as
handling backspacing. watching out for special interrupt characters (such as <ctrl-C>), and
converting line-feed characters into carriage-return-line-feed character pairs. Here is a picture of
the flow of data:

app
using

master
pty shunt

line
disc.

slave
pty

app
using

master device module device slave
\ I

pty driver

Within the driver, input to the master device becomes output from the slave, and vice versa.
Typically. the slave device is connected to a process that expects input from a keyboard device - the
command shells sh and ksh are examples of such processes. The master device is connected to a
process that handles raw data, such as "script"-type utilities (programs that transcribe both sides of
a login session to a file) and multisession or windowing managers.

Only one process at a time can open a master device; the device is opened as soon as requested.
Several processes can open a slave device, but will block until the matching master device has been
open. When blocked in this way, the slave is said to be "waiting for pseudocarrier."

Attempts to read a master device when no input is available, or to write to a master device when the
slave cannot accept data, will block unless nonblocking 1/0 has been specifically requested, in
which case the read or write system call will fail and errno will be set to EAGAlN.

The system call ioctl() may be used on slave devices with all valid line discipline commands,
including TCGETA. TCSETA. TCSETAW. TCSETAF. and TCFLSH. There are no valid ioctl()
commands for master devices.

The system call poll() is allowed with both master and slave pty devices. However priority polls
(POLLPRI) are not supported.

Master devices are named I dev /pty[p-w][O-f]. Corresponding slaves are /dev /tty[p-w][O-f]. Like any
other device, each pty has a major and minor number. The major number is 9 (PTY_MAJOR in
system header file <sys/devices.h>). For slave devices, minor numbers are assigned according to
the scheme shown:

LEXICON

942 pun - pushd

device name major number minor number

/dev/ttypO 9 0
/dev/ttypl 9 1

/dev/ttyp9 9 9
/dev/ttypa 9 10
/dev/ttypb 9 11

/dev/ttypf 9 15
/dev/ttyqO 9 16

/dev/ttywO 9 112

/dev/ttywf 9 127

For master devices, use pty instead of tty in the device name. and add 128 to the minor number.

The kernel variable NUPTY gives the number of pty pairs that may be used. The default is currently
eight. If you want more than this, patch your copy of the kernel using /conf/patch, shutdown as
usual, and reboot.

See Also
device drivers

~,,,~,,~,~~~ ---~~~~'~"'' '''~"~'~'-. ~
In the context of C. a pun occurs when a programmer uses one data form interchangeably with
another. A pun most often occurs unintentionally when the programmer fails to declare a function
as returning a pointer; by default. what the function returns is assumed to be an int, and is
handled as such. No trouble will arise if the program is run on a machine that defines an int and a
pointer to have the same length (e.g., i8086 SMALL model); however. such code cannot be
transported to an environment in which this is not the case (e.g .. i8086 LARGE model).

See Also
definitions, pointer, portability

~~'''~~'"'~~~~'~ ._,'1k"-"9 --~~~"'"~'"~
Push an item onto the directory stack
pushd [dlrectoryO ... dlrectoryNJ

The COHERENT shell sh maintains an internal "directory stack". which is a stack of names of
directories. You can manipulate this stack should you, for any reason, wish to traverse a number of
directories quickly and efficiently.

The command pushd pushes directory 1 through directoryN onto the directory stack, and changes
the current directory to the last directory pushed. If called without an argument. it transposes the
last two directories on the directory stack.

See Also
commands, dirs, popd, sh

LEXICON

putcO - putcharO 943

putc() - STDIO (stdio.h) --~''""~~~~-.,_~~ ... --~------ml
Write character into stream
#include <stdio.h>
int putc(c ,fp) char c; FILE *_fp;

putc() is a macro that writes a character c into the file stream pointed to by fp. It returns c upon
success.

Example
The following example demonstrates putc(). It opens an ASCII file and prints its contents on the
screen. For another example ofputc(), see the entry for getc().

#include <stdio.h>
main ()
{

}

FILE *fp;
int ch;
int filename[20];

printf ("Enter file name: ");
gets(filename);

if ((fp = fopen(filename,"r")) !=NULL)
while ((ch= fgetc(fp)) != EOF)

putc(ch, stdout);
} else

printf("Cannot open %s.\n", filename);
fclose(fp);

See Also
fputc(), getc(), putchar(), STDIO

Diagnostics
putc() returns EOF when a write error occurs.

Notes
Because putc() is a macro, arguments with side effects may not work as expected.

M@®Pll:Ji•1l•IEG!tt'ID~ ,~~~~""'~'''~''"'~'''~'''•
Write a character onto the standard output
#include <stdio.h>
int putchar(c) char c;

putchar() is a macro that expands to putc(c, stdout). It writes a character onto the standard
output.

Example
For an example of this routine, see the entry for getchar().

See Also
fputc(), putc(), STDIO

LEXICON

944 putpO - putwO

Diagnostics
putchar() returns EOF when a write error occurs.

Notes
Because putchar() is a macro, arguments with side effects may not work as expected.

putpO - terminfo Function
Write a string into the standard window
#include <curses.h>
putp(strlng)
char •string;

COHERENT 386 comes with a set of functions that let you use terminfo descriptions to manipulate
a terminal. putp() writes the string into the standard window. It is equivalent to tputs(strlng, 1,
putchar);.

See Also

curses.h, terminfo, tputs()

~~~~~~~..._ 
Write string onto standard output 
#include <Stdio.h> 
int puts(strlng) char •string 

puts() appends a newline character to the string pointed to by string, and writes the result onto the 
standard output. puts() returns a nonnegative value on success and EOF if a write error occurs. 

Example 
The following uses puts to write a string on the screen. 

#include <stdio.h> 

main() 
{ 

puts("This is a string."); 
} 

See Also 
fputs(), STDIO 

Notes 
For historical reasons, fputs() outputs the string unchanged. whereas puts() appends a newline 
character. 

putwO - STDIO (stdio.h) 
Write word into stream 
#include <stdio.h> 
int putw(word,fp) int word; FILE ":fp; 

The macro putw() writes word into the file stream pointed to byfp. It returns the value written. 

putw() differs from the related macro putc() in that putw() writes an int, whereas putc() writes a 
char that is promoted to an int. 

LEXICON 



See Also 
ferror(), STDIO 

Diagnostics 

pwd - pwd.h 945 

putw() returns EOF when an error occurs. You may need to call ferror() to distinguish this value 
from a genuine end-of-file flag. 

Notes 
Because putw() is a macro, arguments with side effects may not work as expected. The bytes of 
word are written in the natural byte order of the machine. 

~~~~'~ ._~~''''''''',.._,,~~'""'''"'-'''111 
Print the name of the current directory
pwd

pwd prints the name of the directory that you are in.

See Also
cd, commands, ksh, sh

Notes
Under the Korn shell, pwd is an alias for the expression print -r $PWD.

-'''''''~~'''-.._'''''''""-.._''~'''''~~'''""'~ Declare password structure
#include <pwd.h>

The header file pwd.h declares the structure passwd, which is used to build COHERENT's password
file. passwd is defined as follows:

struct passwd {
char *pw_name; /* login user name */
char *pw_passwd; /* login password */
int pw_uid; /* login user id */
int pw_gid; /* login group id */
int pw_quota; /* file quota (unused) */
char *pw_comment; /* comments (unused) */
char *pw_gecos; /* (unused) */
char *pw_dir; /* working directory */
char *pw_shell; /* initial program */

} ;

For detailed descriptions of the above fields, see the entry for passwd.

See Also
endpwent(), getpwent(), getpwnam(), getpwuid(), header files, setpwent()

LEXICON

946 qfind - qsortO

~~-. -.,_,,,~~~,~---·"'-~~"'''~"'~~
Quickly find all files with a given name
qfind [-adp] name •••
qfind [-bl

qfind prints the full path name of each file with a given name. When invoked with the -b option, it
builds a data base in file /usr/adm/qftlles; this data base names every file and directory in the
system. When invoked without the -b option, qfind reads this data base to find file names fairly
quickly.

Normally, qfind prints the full path name of each file in the COHERENT system that ends with the
given name (as they were at the time you last executed qfind -b.) With the -d option, qfind prints
matching directories instead of files. With the -a option, qfind prints both matching files and
matching directories.

Option -p specifies partial name matching. For example, qfind -p foo matches files /src/foo.c and
/doc/foo.r as well as file /usr/bin/foo.

Files
/usr I adm/ qftlles

See Also
commands, cron, find, whereis, which

Notes
Building the qfind data base with the -b option is slow, but it speeds finding files. You may find it
convenient to use cron to execute qfind -b to rebuild the data base at night, or some other time
when the machine is otherwise idle. The superuser root must run qfind -b if you want all files to
appear in the data base.

qsortO - General Function (libc)
Sort arrays in memory
void qsort(data, n, size, comp) char •data; int n, size; int (*comp)();

qsort() is a generalized algorithm for sorting arrays of data in memory, using C. A. R. Hoare's
"quicksort" algorithm. qsort() works with a sequential array of memory called data, which is divided
into n parts of size bytes each. In practice, data is usually an array of pointers or structures. and
size is the sizeof the pointer or structure. Each routine compares pairs of items and exchanges
them as required. The user-supplied routine to which comp points performs the comparison. It is
called repeatedly. as follows:

(*comp) (pl, p2)
char *pl, *p2;

LEXICON

quot 947

Here. pl and p2 each point to a block of size bytes in the data array. In practice. they are usually
pointers to pointers or pointers to structures. The comparison routine must return a negative. zero,
or positive result. depending on whether pl is logically less than, equal to, or greater than p2,
respectively.

Example
For an example of this function, see the entry for malloc().

See Also
general functions, shellsort(), strcmp(), stmcmp()
The Art of Computer Programming, vol. 3

Notes
The COHERENT library also includes the sorting function shellsort(). These functions use different
algorithms for sorting items: each algorithm has its strengths and weaknesses. In general. the
quicksort algorithm is faster than the shellsort algorithm for large arrays, whereas the shellsort
algorithm is faster for small arrays (say, 50 items or fewer). The quicksort algorithm also performs
poorly on arrays with a small number of keys. e.g .. an array of l.000 items whose keys are all '7'
and'8'.

To get around these limitations. the COHERENT implementation of qsort() has an adaptive
algorithm that recognizes when the quicksort algorithm is performing badly, and calls shellsort() in
its place.

~"'~'~'"''~'"'"''''~"'-. .. ,~~~~"'~'~''~''-. -.~
Summarize file-system usage
quot [-c I [-f I [-n I [-t]fllesystem

quot produces several different summaries about the ownership of files for each fllesystem
argument given. When no options are specified, quot produces a two-column listing that gives the
amount of space used by each user. sorted in decreasing order of file space used: the first column
gives the number of blocks used and the second gives the use name. Space is always given in
blocks.

Options are available to modify the normal output or specify a completely different action.

quot recognizes the following options:

-c Give a three-column breakdown of files by size. The first column contains all file sizes, in
increasing order. The second column gives the number of files of the size indicated in the first.
The third gives a cumulative sum of the sizes of all files less than or equal to the current size.

-f Add an initial column that contains the number of files to the front of the normal output.

-n Takes as input a list of i-numbers and file names, one per line and sorted in ascending order by
i-number; ignore all lines not in this form. The output is in two columns: the first gives the
owner and the second contains the file name for each entry in the output. This conforms to
usage with the following pipeline:

ncheck filesystem I sort +On I quot -n filesystem

-t To the normal output. add a line that contains totals.

quot runs much faster with a raw device forjllesystem.

Only the superuser root can run quot.

LEXICON

948 quot

Files
I etc/passwd

See Also
ac,conunands,ncheck,sort

Notes
Sparse files are recorded as if they had all of their blocks allocated.

LEXICON

ram 949

rm&ll•ll'l•D@li ~
Driver for manipulating RAM

The COHERENT ram devices let you allocate and use the random access memory (RAM) of the
computer system directly. A typical use is for a RAM disk. which is a COHERENT file system kept
in memory rather than on a floppy disk or hard disk.

The COHERENT RAM device driver has major number 8. It can be accessed either as a block­
special device or as a character-special device. The high-order bit of the minor number gives a RAM
device number (0 or 1), which lets you use up to two RAM devices simultaneously. The low-order
seven bits specify the device size in 64-kilobyte increments. The first open call on a RAM device
with nonzero size (1 to 127) allocates memory for the device; the system call open fails if sufficient
memory is not available. Accessing a RAM device with a minor number specifying size zero frees the
allocated memory. provided all earlier open calls have been closed.

Initially. COHERENT includes two block-special devices for RAM disks: the 512-kilobyte device
/dev/ramO (8, 8) and the 192-kilobyte device /dev/raml (8, 131). It also includes the devices
/dev/ramOclose (8, 0) and /dev/ramlclose (8, 128). You should change the RAM devices to sizes
appropriate for the amount of memory available on your system.

Examples
The following example formats and mounts a 512-kilobyte RAM disk on directory /fast.

mkdir /fast
/etc/mkfs /dev/ramO 1024
/etc/mount /dev/ramO /fast

When the RAM disk is no longer needed, its allocated memory can be freed as follows:

/etc/umount /dev/ramO
cat /dev/null >/dev/rramOclose

The next example replaces the default /dev/ramO with a one-megabyte device containing a
COHERENT file system. The new minor number 16 specifies RAM device 0 and size 16 times 64
kilobytes (i.e., one megabyte). The new RAM device contains 2,048 blocks of 512 bytes each.

rm /dev/ramO
/etc/mknod /dev/ramO b 8 136
/etc/mknod /dev/rramO c 8 136
/etc/mkfs /dev/ramO 2048
chmod ugo=rw /dev/ramO
chmod ugo=rw /dev/rramO

LEXICON

950 ramdisk

The chmod command is necessary to make the new RAM drive accessible.

Files
/dev/ram*

See Also
compress, device drivers, fsck, mkfs, mount, ramdisk, umount, uncompress, zcat

Notes
Moving frequently used commands or files to a RAM disk can improve system performance
substantially. However, the contents of a RAM device are lost if the system loses power. reboots, or
crashes, files kept on a RAM disk should frequently be copied the hard disk or floppy disk.

If a RAM device uses most but not all available system memory, its open call will succeed but
subsequent commands may fail because insufficient memory remains for the system.

The COHERENT installation program /etc/build uses RAM device /dev/raml as a RAM disk
during installation. Commands compress. uncompress. zcat. and fsck sometimes use /dev/raml
as a temporary storage device. Users should avoid using /dev/raml as a RAM disk because of
these programs. In addition. users of compress. uncompress. and zcat may have to change the
size of /dev/raml from the default size of 192 to 512 kilobytes. to handle files compressed to 16
bits. The following script makes this change; note that it must be run by the superuser root:

cat /dev/null >/dev/rramlclose
rm /dev/raml /dev/rraml
mknod /dev/raml b 8 136
mknod /dev/rraml c 8 136

Please note that increasing the size of /dev/raml to 512 kilobytes requires a system with at least
one megabyte of RAM.

r;n;c.u m=nMhH®i1Mm!d•,,,"',,"'"''~' ~"'''""'"'~~,~ -
Script to create a RAM-disk
/usr/bin/ramdisk

ramdisk is a script that creates a 500-kilobyte RAM disk that is accessed via device /dev/ramO.

To use ramdisk to create a RAM disk for you at boot-time. do the following:

1. Log in as the superuser root.

2. Edit file /etc/re. and remove the colon':' in front of the entry /usr/bin/ramdisk.

3. Use the command mkdir to create the directory /ramdisk.

4. Edit /usr/bin/ramdisk to copy your most-frequently used commands into the RAM disk.

5. Type /usr/bin/ramdisk .o execute it.

6. Return to being yourself; then edit the PATH environmental variable in your .profile so that
/ramdisk appears first. This means that the shell will search the RAM disk first for any
commands you issue.

7. Log in again to reset your environment.

That's all. From now on, whenever you reboot your system a RAM disk will be created and your
commonly used utilities loaded into it.

LEXICON

randO - random access 951

See Also
ram, re, system maintenance

Notes
This script only works in machines that have sufficient memory.

randO - General Function , __ ,"' __ ,,~'~'"''~-' _,_"-~-'"~''''
Generate pseudo-random numbers
int rand()

rand() generates a set of pseudo-random numbers. It returns integers in the range 0 to 32,767, and
purportedly has a period of 232. rand() will always return the same series of random numbers
unless you first call the function srand() to change rand()'s seed, or beginning-point.

Example
This example demonstrates the functions rand() and srand(). It uses a threshold level that is passed
in argv[I) (default, MAXVAL/2), the number of trials passed in argv[2) (default. 1.000), and a seed
passed in argv[3) (default, no seeding).

#define MAXVAL 32767 /* range of rand: [0,2A15-l] */

main(argc, argv)
int argc; char *argv[];
{

}

register int i, hits, threshold, ntrials;

hits = O;
threshold= (argc > 1) ? atoi(argv[l]) : MAXVAL/2;
ntrials = (argc > 2) ? atoi(argv[2]) 1000;
if (argc > 3)

srand(atoi(argv[3]));

for (i = 1; i <= ntrials; i++)
if (rand() >threshold)

++hits;

printf("%d values above %din %d trials (%0%%).\n",
hits, threshold, ntrials, (lOOL*hits)/ntrials);

See Also
general functions, srand()
The Art of Computer Programming, vol. 2

'Elcc•c•wf@f ll•f51~,"1 ~- ~~ .._ raa raa
In the context of computing, random access means that an entity, such as memory, can be
accessed at any point. not just at the beginning. This means that all points within memory can be
accessed equally quickly. This contrasts with sequential access, in which entities must be accessed
in a particular order, so that some entities take longer to access than do others.

A tape drive is an example of a sequential access device, i.e., the order in which data are read is
dictated by the order in which they stream past the tape head. Random-access memory (RAM) is an
example of random access. Hard disks and floppy disks combine elements of random access and
sequential access.

RAM. which usually consists of semiconductor integrated circuits, is also strictly random access. In

LEXICON

952 ranlib - read

this regard, the term "RAM" is slightly misleading; a more accurate name would be "read/write
memory", to contrast RAM with read-only memory (ROM), which is also random access memory.

See Also
definitions, read-only memory

~'"'~~~,~~'"'"~~,~~~'-'a '"~'''''
Create index for object library
ranllb library ...

The ranllb is a "directory" that appears at the beginning of each library. It contains the name of
each global symbol (i.e., function name) that appears within the library, and a pointer to the module
in which that symbol is defined. Thus. the ranlib eliminates the need for the linker to search the
entire library sequentially to find a given global symbol. which speeds up linking noticeably.

If the date on the library file is later than that in the ranlib header, the linker will ignore the ranlib
and perform a sequential search through the library; the linker will also send the warning message

Outdated ranlib

to the standard error device. This is done to prevent the accidental use of an outdated ranlib, which
could be disastrous.

The COHERENT command ranllb creates a ranlib header for an archive. If the header already
exists. ranlib updates it.

Files
_.SYMDEF- Index module

See Also
ar, ar.h, commands, Id

Diagnostics
ranllb issues appropriate messages for 1/0 errors or bad format files. It does not rewrite a library
until the last possible moment, so the library is usually unchanged in case of error. ranlib
processes each library independently. The exit status is the number of libraries in which errors
were encountered.

Under COHERENT 386, ranlib exists as a link to the archiver ar.

~~,,~~,,. ·~~'~'~~~~,,,. ._"a
Perform standard maintenance chores
/etc/re

The shell script /etc/re is executed by the init process when the COHERENT system enters multi­
user mode. The commands in re do such things as set the local time zone and initialize file
/usr/adm/wtmp. which holds records of user logins.

See Also
bre, init, system maintenance

~'~ --~'"''' ---~~,~~~"'~~,,~~"'~
Assign values to shell variables
read name ...

read reads a line from the standard input. It assigns each token of the input to the corresponding
shell variable name. If the input contains fewer tokens than the number of names specified, read
assigns the null string to each extra variable. If the input contains more tokens than the number of

LEXICON

names specified, read assigns the last name in the list the remainder of the input.

The shell executes read directly.

Example
The command

read foo bar baz
hello how are you

readO 953

parses the line "hello how are you" and assigns the tokens to, respectively, the shell variables foo,
bar, and baz. If you further type

echo $foo
echo $bar
echo $baz

you will see:

hello
how
are you

See Also
commands, ksh, sh

Diagnostics
read normally returns an exit status of zero. If it encounters end of file or is interrupted while
reading the standard input, it then returns one.

~~, .. -.,~,~---@!"_._,~~~""'~'~''~'~
Read from a file
int read(fd, buffer, n) intfd; char •buffer; int n;

readO reads up ton bytes of data from the file descriptorfd and writes them into buffer. The amount
of data actually read may be less than that requested if read() detects EOF. The data are read
beginning at the current seek position in the file, which was set by the most recently executed read()
or lseek() routine. read() advances the seek pointer by the number of characters read.

Example
For an example of how to use this function, see the entry for open().

See Also
STDIO, system calls

Diagnostics
With a successful call, read() returns the number of bytes read; thus, zero bytes signals the end of
the file. It returns -1 if an error occurs, such as bad file descriptor, bad buffer address, or physical
read error.

Notes
read() is a low-level call that passes data directly to COHERENT. It should not be intermixed with
high-level calls, such as fread(), hvrite(). or fopen().

LEXICON

954 readdirO - readonly

readdirO - General Function
Read a directory stream
#include <sys/ types.h>
#include <d.irent.h>
struct d.irent *readd.ir(dlrp)
DIR *dlrp;

The COHERENT function readd.ir() is one of a set of COHERENT routines that manipulate
directories in a device-independent manner. It reads the directory stream pointed to by dlrp and
returns information about the next active entry within the stream. It does not report on inactive
entries.

readdir() returns a pointer to a structure of type dirent, which contains information about the next
active entry within the stream. The internal structure may be overwritten by another operation on
the same directory stream. The amount of memory needed to hold a copy of the internal structure
is given by the value of a macro, DIRENTSIZ(strlen(direntp->d_name)),not by sizeof(struct d.irent)
as one might expect.

readdir() returns NULL if it has reached the end of the directory. has detected an invalid location
within the directory, or if an error occurs while it is reading the directory. If an error occurs,
readdir() exits and sets errno to an appropriate value.

Example
For an example of this function, see the Lexicon entry for opend.ir().

See Also
closedir(), dirent.h, general functions, getdents(), opend.ir(), rewindd.ir(), seekd.ir(), telldir()

Notes
The d.irent routines buffer directories; and because directory entries can appear and disappear as
other users manipulate the directory, your application should continually rescan a directory to keep
an accurate picture of its active entries.

readdir() is available only under COHERENT 386.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

tUt·MU'•i·i;,11.m11.1 ~~"~~~"~"~"~""~"'''"® ~"''~~'
Mark a shell variable as read only
readonly

Mark each variable as a read-only shell variable. The shell will not permit subsequent assignments
to a readonly variable. With no arguments, readonly prints the name and value of each read-only
variable.

See Also
commands, ksh, sh

tt:lit·®U'll'ti#fi'l·li·~~"~~~ ~"'"'"'""'"''''''~""""~''11
Storage class

readonly is a C keyword that modifies data declarations. As its name implies, the readonly
modifier declares that data are to be read only; this helps protect key data against casual
modification by the user or another programmer.

LEXICON

read-only memory - ref 955

See Also
C keywords, keyword

Notes
The ANSI standard for the C language eliminates this keyword.

read-only memory- Definition
As its name suggests. read-only memory, or ROM. is memory that can be read but not overwritten.
It most often is used to store material that is used frequently or in key situations. such as a
language interpreter or a boot routine.

See Also
definitions, random access

real/ocO - General Function (libc)
Reallocate dynamic memory
char •realloc(ptr, size) char •ptr; unsigned size;

realloc() helps you manage a program's arena. It returns a block of size bytes that holds the
contents of the old block, up to the smaller of the old and new sizes. realloc() tries to return the
same block, truncated or extended; if size is smaller than the size of the old block, realloc() will
return the same ptr.

Ifptr is set to NULL, realloc() behaves like malloc().

Example
For an example of this function, see the entry for calloc().

See Also
alloca(), arena, calloc(), free(), general functions, malloc(), memok(), setbuf()

Diagnostics
realloc() returns NULL if insufficient memory is available. It prints a message and calls abort if it
discovers that the arena has been corrupted. which most often occurs by storing past the bounds of
an allocated block. realloc() will behave unpredictably if handed an incorrect ptr.

m.t,i.111ri·'··'··M"·L,_,,~~'~''~~~"W!.'''""~ •"W!."-"91.'~'''''"''-. ._...,_~
Reboot the COHERENT system
/etc/reboot [-p I

reboot reboots the COHERENT system. The option -p prompts the user if she really wishes to
reboot before executing the reboot.

reboot can be run only by the superuser.

The COHERENT system should be rebooted only while in single-user mode. Failure to return to
single-user mode before rebooting could damage the COHERENT file system and destroy data.

See Also
commands, shutdown

~"WI.~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~
Display a C function header
ref function

ref looks up the function header of function in any of a series of reference files built by the command
ctags. It is used by the elvis editor's <shift-K> command. This command checks the file refs in the

LEXICON

956 register - rename

current directory.

See Also
commands, ctags, elvis

Notes
ref is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda),assisted by numerous volunteers.
It is freely redistributable, subject to the restrictions noted in included documentation. Source code
for ref is available through the Mark Williams bulletin board, USENET, and numerous other
outlets.

Please note that ref is included as a service to COHERENT users, but is not supported by Mark
Williams Company. Caveat uttlttor.

W¥#§ ••@ii·U.t.,"'
Storage class

register is a C keyword that declares a class of data storage. A variable so declared may be stored
in a register, which may increase the speed with which it is read by a program.

See also
auto, C keywords, extern, register variable, static

tzWMN•@1EtfJl.ll•E®Dl·l1~"'"'"'''~'"~~''""'''~'~''"'~'"® ~~'~'W
register is a C storage class. A register declaration tells the compiler to try to keep the defined
local data item in a machine register. Under the COHERENT C compiler, the int foo can be
declared to be a register variable with the following statement:

register int foo;

COHERENT places the first two register variables declared in a function into registers SI and DI if
the variable type is appropriate, i.e., int or SMALL-model pointer. Subsequent register declarations
are ignored, because no registers are left to hold them. Note because of this fact, declaring more
than two register variables may slow processing rather than speed it.

By definition of the C language, registers have no addresses, so you cannot pass the address of
register variable as an argument to a function. For example, the following code will generate an
error message when compiled:

register int i;

dosomething(&i); /* WRONG */

This rule applies whether or not the variable is actually kept in a register.

Placing heavily-used local variables into registers often improves performance, but in some cases
declaring register variables can degrade performance somewhat.

See Also
auto, definitions, extern, static, storage class

if:l@lll-• l'FA@®!lm{.]iu@~------~~'W ~"®EEEMEMMMM•
How to rename a file

The COHERENT system has no "rename" procedure per se. On the shell level. you can use the mv
command to rename a file. To rename a file from within a C program, you must use the COHERENT
system calls link and unlink.

LEXICON

resettermO - restor 957

Example
The following program demonstrates how to use link and unlink to rename a file.

#include <stdio.h>
main(argc, argv) int argc; char *argv[];
{

}

register char *old, *new;

if (argc I= 3) {

}

fprintf(stderr, "Usages rename old new\n");
exit(l);

old = argv[l];
new= argv[2];

if (link(old, new) == -1) {
fprintf(stderr, "rename: link(%s, %s) failed\n", old, new);
exit(l);

} else if (unlink(old) == -1) {

}

fprintf(stderr, "renames unlink(%s) failed\n", old);
exit(l);

exit(O);

See Also
mv, technical infonnation

RWN@lim•@iliilrlfli!i.A!!·Ji!
Reset the terminal to its previous settings
#include <curses.h>
resettermO

COHERENT 386 comes with a set of functions that let you use terminfo descriptions to manipulate
a terminal. resettenn() restores the terminal to the condition it was in when before the current
program began to manipulate its settings. Your program should call resetterm() before it calls
system() or exit().

See Also
curses.h, fixterm(), terminfo

tzmm!f•llnu6ht•'
Restore file system
restorcommand [dump_devlce] [fllesystem] [file ...)

restor copies to the hard disk one or more files from floppy disks or tapes written by the command
dump.

restor recognizes the following commands:

r Mass restore both full and incremental dump disks/tapes into thefllesystem. The target file
system must have enough data blocks and i-nodes to hold the dump.

The mass restoration is performed in three phases. In phase I, restor clears all i-nodes that
were either clear at dump time or are going to be restored. Any allocated blocks are released.

LEXICON

958 restor

Second, it restores all files on the disk. The i-numbering is preserved; however. data blocks are
allocated in the standard fashion. Third, a pass is made over the i-nodes and the list of free i­
nodes in the superblock is updated.

Restoration begins immediately. using the currently mounted disk or tape.

R Like the r command, except that it pauses to ask for numbers of disks or reels.

t Read the header from the dump. Display the date the dump was written and the "dump since"
date that produced the dump.

x Extract eachjlle from the dump and restore it to the hard disk. All file names are absolute
path names starting at the root of the dump (the first directory dumped, which is always the
root directory of the file system). A numeric file name is taken to be an i-number on the
dumped file system, permitting restore by i-number.

restor looks up each argument file in the directories of the dumped file system and prints out
each name and associated i-number. restor extracts the files from the currently mounted
dump disk or tape, and writes the extracted files into the current directory. Extracted files are
named after their i-numbers.

X Like command x. except that before it begins, it asks you for the number of the disk (or the reel
number of the dump tape). It continues asking for dump disks until all files have been
extracted or you types <ctrl-D>.

Each of the above commands can be modified either or both of the following modifiers:

f Tell restor to take the next argument as the path name of the dump device (floppy-disk drive or
tape drive). If the !modifier is not specified, restor uses the device /dev/dump.

v Verbose output. Tell restor to print a step-by-step trace of its actions when restoring an entire
file system. This is for discovering what went wrong when a mass restore runs into trouble.

Restoring from a Damaged Medium
As noted below, dump requires that its output be written to disks or tapes that are free of defects.
Restoring a file system from a damaged medium is difficult and is not associated with a high
probability of success; if, however, you must try to do so, the following directions will give you a
fighting chance of restoring your data.

1. Use the command fdfonnat to format a blank disk. Use the command badscan to examine it
for bad sectors; if it does have bad sectors. put it aside and try another.

2. Use the command dd to copy the bad disk to directory /tmpfool dd should die at the bad
sector in the disk.

3. dd again to directory /tmp/foo2 using that command's skip=n to skip past the bad sector (or
sectors).

4. Repeat step 3 (if it died too) until the end of the disk is reached. Now you have a set of
directories named /tmp/foo[l...n] that contain parts of the bad disk.

5. Use the command

dd if=/tmp/fool of=/dev/fhaO

with the new. defect-free disk.

6. Now. use the command

dd if=/tmp/foo2 of=/dev/fhaO seek=whatever

to placefoo2 into the right place on the new disk.

LEXICON

7. Repeat 6 for each directoryfoo3 throughfooN.

8. Create a 512-byte file that contain the string

GARBAGE\n

repeated 64 times. Use dd to copy it into new disk where the bad sectors were.

return 959

Now, you should have a disk that is a mirror image of the old, damaged dump disk. Each bad
sectors will have been replaced by 64 iterations of the string GARBAGE\n. As noted, there is no
guarantee that this scheme will work in every instance (the chances of error are quite high). but it
will give you a fighting chance to save your data.

Files
I dev I dump - Dump device
/etc/d.date- Dump date file

See Also
commands, dump, dumpdir

Diagnostics
Most of the diagnostics produced by restor are self-explanatory, and are caused by internal table
overflows or 1/0 errors on the dump medium or file system.

If the dump spans multiple disks or reels, restor asks you to mount the next disk at the appropriate
time. Type a newline when the disk has been mounted. restor verifies that this is the correct disk,
and gives you another chance if the disk number in the dump header is incorrect.

Notes
You cannot perform a mass restore onto a live root partition. Instead, boot a stand-alone version of
COHERENT on a floppy-disk drive, or boot from an alternative COHERENT file system on another
hard-disk partition before you attempt to do a mass restoration.

The handling of tapes with multiple dumps on them (created by dumping to the no rewind special
files) is not very general. Basically. restor assumes that tapes holding multiple dumps and tapes
holding dumps that span multiple reels are mutually exclusive. You can restore from any file on a
reel by positioning the tape and then restoring with the x or r commands, which do not reposition
the tape. It is (almost) impossible to use the X or R commands, as the position of the dump tape
will be lost when restor closes it.

dump requires that its output be written to disks that are free of bad sectors. lf you write a dump
to a disk with bad sectors. you will not be able to restore files from that disk. See dump for
directions on processing disks to ensure that they are free of bad sectors.

mmal•ifM•m'
Return a value and control to calling function

return is a C statement that returns a value from a function to the function that called it. return
can be used without a value, to return control of the program to the calling function: also, the
calling function is free to ignore the value return hands it. Note that it is good programming
practice to declare functions that return nothing to be of type void.

A function can return only one value to the function that called it. Most often, this value is used to
signal whether the function performed successfully or not.

See Also
Ckeywords

LEXICON

960 rev - rewinddirO

-··llih&!.t.'
Print text backwards
rev [flle ..•)

rev reverses the order of the characters in each line of each inputjlle and writes the result to the
standard output. If noflle is specified, the standard input is used instead.

Example
The following allows you to give a command like Mandrake the Magician

rev
Rocks break down wall!
<ctrl-D>

which displays:

lllaw nwod kaerb skcoR

on your screen.

See Also
commands

®'M®llSlllU•lil!.fii[.]• lm•••••••••••••••••••••••••­
Reset file pointer
#include <stdio.h>
int rewind{fp) FILE ..rp;

rewindQ resets the file pointer to the beginning of streamfp. It is a synonym for fseek{fp, OL, 0).

Example
For an example of this routine. see the entry for fscanf().

See Also
fseek(), ftell(), lseek(), STDIO

Diagnostics
rewind() returns EOF if an error occurs; otherwise, it returns zero.

it§Wa llfl§.t§ijll@iiifil!•JI'
Rewind a directory stream
void rewinddir(dl1p)
DIR •dtrp;

The COHERENT function rewinddirQ is one of a set of COHERENT routines that manipulate
directories in a device-independent manner. It resets the current position within the directory
stream pointed to by dt1p to the beginning of the directory.

rewinddir() discards all buffered data for its data stream. This ensures that your program knows
about all modifications to the directory that occurred since the last time the directory stream was
opened or rewound.

If an error occurs, rewinddirQ exits and sets errno to an appropriate value.

See Also
closedirQ, dirent.h, general functions, getdentsQ, opendir(), readdirQ, seekdir(), telldir()

LEXICON

rindexO - rm 961

Notes
Because directory entries can dynamically appear and disappear, and because directory contents
are buffered by these routines, an application may need to continually rescan a directory to
maintain an accurate picture of its active entries.

rewinddirQ is available only under COHERENT 386.

The COHERENT implementation of the dfrent routines was written by D. Gwynn.

'"'P •M"iil·""·Hu·ld
Fin a character in a string
char *rlndex(strlng, c) char •string; charc;

rlndex() scans string for the last occurrence of character c. If c is found, rlndex() returns a pointer
to it. If it is not found, rlndex() returns NULL.

Example
This example uses rlndex() to help strip a sample file name of the path information.

#include <stdio.h>
#define PATHSEP '/' /* path name separator */

extern char *rindex();
extern char *basename();

main()
{

char *testpath = "/foo/bar/baz";

printf ("Before massaging: %s\n", testpath);
printf("After massaging: %s\n", basename(testpath));

}

char *basename(path)
char *path;
{

}

char *cp;
return (((cp rindex(path, PATHSEP))

? path 1 ++cp);

See Also
indexQ, string functions

Notes

NULL)

This function is identical to the function strrchr(), which is described in the ANSI standard.

COHERENT includes strrchrO in its libraries. It is recommended that it be used instead of rlndex()
so that programs more closely conform to the ANSI standard.

•H·lh!H61H·'
Remove files
nn I -:ftrtv]file ...

nn removes eachjlle. Ifno other links exist, rm frees the data blocks associated with the file.

To remove a file, a user must have write and execute permission on the directory in which the file

LEXICON

962 rmail

resides, and must also have write permission on the file itself. The force option -f forces the file to
be removed if the user does not have write permission on the file itself. It suppresses all error
messages and prompts.

The interactive option -1 tells rm to prompt for permission to delete each.file.

The recursive removal option -r causes rm to descend into every directory, search for and delete
files, and descend further into subdirectories. Directories are removed if the directory is empty, is
not the current directory, and is not the root directory.

The test option -t performs all access testing but removes no files.

The verbose option -v tells rm to print each file rm and the action taken. In conjunction with the -t
option, this allows the extent of possible damage to be previewed.

See Also
commands, In, nndJr

Notes
Absence of delete permission in parent directories is reported with the message ':file: permission
denied". Write protection is not inherited by subdirectories; they must be protected individually.

Note that unlike the similarly named command under MS-DOS, COHERENT's version of rm will not
prompt you if you request a mass deletion. Thus, the command

rm *
will silently and immediately delete all files in the current directory. Caveat utllltor!

mll'·hilhfihl·'
Receive UUCP mail
rmail [-LIRr) -q num -u uuxflags address ...

rmail receives mail from UUCP~ It reads and interprets the address on the mail and either delivers
it on the local machine (if this is where it is address to), or passes it on to the next machine named
in the message's UUCP path.

Options
The command uux can pass options to nnail to control its behavior. Because rmail and small are
links to the same executable, rmail may be passed any option that you can type into small; in all
likelihood, however, the range of options it will see is much narrower. The following gives the
options likeliest to be passed to rmail:

-L Send all addresses to the local mailer for processing, including UUCP paths.

-1 Send a domain address to the local mailer for processing. Normally, only local addresses go to
the local mailer.

-q number
Set the queuing threshold to number. When routing mail to a given host, rmail checks the
"cost" of contacting the host; this cost is given in /usr/lib/mail/paths. If the cost is less the
queueing threshold, then rmail sends the mail immediately; otherwise, it queues the mail for
later shipment. Under COHERENT, default queueing threshold is 100.

-R Reroute UUCP paths, trying successively larger righthand substrings of a path until a
component is recognized.

-r Route the first component of a UUCP path (host!address) in addition to routing domain
addresses (user@domain).

LEXICON

rmdir - rmdirO 963

-u uuxjlags
Pass uuxjlags to uux for remote mail. This overrides any of the default values and other
queueing strategies.

-1 causes rmail to send all domain addresses through the local mailer. to process addresses for
non-UUCP domains. -L causes rmail to send even explicit UUCP paths through the local mailer.
presumably to make use of other transport mechanisms. In both cases. nnail small gets hold it.

Files
/usr/lib/mail/aliases-Alias data base
/usr/lib/mail/paths- Path data base
/usr/spool/uucp/ .Log/mail/mail- Log of mail
/bin/lmail - Local mailer
/bin/mail - Mail user agent

See Also
aliases, mail, paths, small

Notes
small and rmail are links to the same program.

For information on how nnail parses addresses and constructs headers, see the Lexicon entry for
small.

rmdir - Command
Remove directories
rmd.ir [-f) directory ...

nnd.ir removes each directory. This will not be allowed if a directory is the current working directory
or is not empty. The force option -f allows the superuser to override these restrictions. nnd.ir
removes the·: and' . .' entries automatically. Note that using the -f option on a directory that is not
empty will damage the file system, and require that it be fixed with fsck.

See Also
commands, mkd.ir, rm

Notes
nnd.ir -f does not remove files from a nonempty directory; it simply orphans them. To remove a
nonempty directory and its contents. use nn -r instead.

The COHERENT system call nnd.ir() removes the directory specified by argument path. To remove
the directory, the following conditions must apply:

path must exist and be accessible, it must be empty (i.e., contain only entries for'.' and'..').

You must have permission to remove the directory.

The file system that contains path must not be mounted "read only".

The directory must not be the current directory for any process.

The directory must not be a mount point for another file system.

If the directory is successfully removed, nnd.ir() returns zero. If an error occurs, it returns -1 and

LEXICON

964 root - RS-232

sets errno to an appropriate value.

See Also
mkdir, mkdir(), rmdir, system calls, unlink()

Notes
rmdir() is available only under COHERENT 386.

~ ~~-------------------!ill root is the login name for the superuser.

See Also
definitions, superuser

am®mM1t:1i(:SQM®®'®11fi!!h
Raise multiple-precision integer to power
#include <mprec.h>
void rpow(a, b, c)
mint *a, *b, *c;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. The function rpow() sets the multiple-precision integer (or mint) pointed to by c to
the value pointed to by a raised to power of the value pointed to by b.

See Also
multiple-precision mathematics

Uf>fH. l1MIG\(1lii1@®'-mmmmmmmmmmmu~-..m•mn._~ ~ ~''~
COM port wiring

This article details the connections (pinouts) of EIA standard RS-232C. This connect consists of a
D-shaped plug with 25 pins in two rows: 13 pins in the upper row and 12 in the lower. This
interface is commonly used by devices that require a serial interface to a computer; these devices
include modems, terminals, serial printers, and such specialized devices as bar-code scanners. In
addition, this articles gives the pinouts of the nine-pin DB-9P connector, which is a nine-pin version
of the RS-232 that is commonly used in AT and AT-compatible computers.

RS-232 Pinout
The following table gives the 25-pin EIA standard RS-232C pinouts. It also gives:

Nine-pin DB-9P convention
Common abbreviations of signal names
Abbreviations of RS-232 signal names
Equivalent CCITT signal-number designations
Signal direction (as appropriate)
Signal description

Please note that in this table, DTE stands for "data terminal equipment" and refers to terminal-type
equipment such as a PC or a terminal, whereas DCE stands for "data communications equipment"
and refers to modems and modem-type equipment.

DB-25 DB-9
Pin #

1
2
3

Pin#

3
2

LEXICON

Common
Name

FG
TD
RD

EIA CCITT DTE-DCE
AA 101
BA 103
BB 104 ...-

Description
Frame ground
Transmitted data
Received data

rubik 965

4 7 RTS CA 105 -5 8 CTS CB 106 -6 6 DSR cc 107 -7 5 SG AB 102
8 1 DCD CF 109 -9
10
11 QM -12 SDCD SCF 122 -13 SCTS SCB 121 -14 STD SBA 118 -15 TC DB 114 -16 SRO SBB 119 -17 RC DD 115 -18 OCR -19 SRTS SCA 120 -20 4 DTR CD 108.2 -21 SQ CG 110 -22 9 RI CE 125 -23 CH 111 -24 TC DA 113 -25

Files
/usr/pub/rs232 - On-line version of above table

See Also
modem control, technical information, terminal

Request to send
Clear to send
Data set ready
Signal ground
Data carrier detect
Positive DC test voltage
Negative DC test voltage
Equalizer mode
Secondary carrier detect
Secondary clear to send
Secondary transmitted data
Transmitter clock
Secondary receiver clock
Receiver clock
Divided clock receiver
Secondary request to send
Data terminal ready
Signal quality
Ring indicator
Data rate selector
Transmitted clock

Seyer, M.D.: RS-232 Made Easy: Connecting Computers, Printers, Terminals, and Modems.
Englewood Cliffs, NJ, Prentice-Hall Inc., 1984.

Notes
Serial ports on the back of the PC use either a 25-pin male (DB-25P) or a nine-pin male (DB-9P)
connector. Due to what can only be considered as extreme stupidity, the 25-pin female (DB-255)
connector was chosen for the parallel printer port. rather than using the usual 36-pin parallel
connector. Do not confuse these ports when wiring custom cable assemblies, as you can damage
your equipment!

IZ!1111Ht.J.!1,,€"'·'
Play Rubik's cube
/usr/g&llles/rubik

The COHERENT command rubik lets you fiddle with an electronic version of Rubik's cube. By
issuing commands, you can "rotate" the segments of the virtual cube and, with some agony. align
all the "colors".

rubik is written in m4. and is a good example of extended programming in this utility.

See Also
commands, m4

LEXICON

966 rvalue

ll!m•fjilj[,j,
An rvalue is the value of an expression. The name comes from the assignment expression el=e2;.
in which the right operand is an rvalue.

Unlike an lvalue. an rvalue can be either a variable or a constant.

See Also
definitions, lvalue

LEXICON

.i.lui@lh·'
Print a summary of process accounting
sa [-abcjlmnrstu] [-v NJ [file]

sa 967

One of the accounting mechanisms available on the COHERENT system is process accounting (also
called shell accounting), which records the commands executed by each user. The command accton
enables or disables shell accounting.

The command sa scans the accounting information in.file and prints a summary. If.file is omitted,
it reads the file /usr/adm/acct by default. For each command executed, sa prints the number of
calls made, the total CPU time (user and system), and the total real time. The output is ordered by
decreasing CPU time.

sa recognizes the following options:

a Place commands executed only once and command names with unprintable characters in the
category "•••other".

b Sort by average CPU time per call.

c Also print CPU time as a percentage of all CPU time used.

j Print average times per call rather than totals.

1 Separate user and system time.

m Accumulate information for each user rather for each command.

n Sort by number of calls.

r Reverse the order of the sort.

s After scanning. condense the accounting file and merge it into the summary files.

t Also print the CPU time as a percentage of real time.

u Print the user and command for each accounting record: this option overrides all others.

v N For commands called no more than N times, where N is a digit, sa asks whether to place the
command in the category "**junk**".

sa uses the summary files /usr/adm/savacct and /usr/adm/usracct to lessen disk usage.

Files
/usr /adm/ acct - Default account data
/usr /adm/ savacct- Summary
/usr/adm/usracct-Summary

LEXICON

968 sbrkO - scanfO

See Also
ac, acct(), acct.h, accton, commands

Notes
The file /usr/adm/acct can become very large: therefore. you should truncate it periodically.
Special care should be taken if process accounting is enabled on a COHERENT system with limited
disk space.

sbrkO - General Function (libc)
Increase a program's data space
char •sbrk(lncrement) unsigned int Increment;

sbrk() increases a program's data space by Increment bytes. It increments the variable _end; this
variable is set by the C runtime startup routine. and points to the end of the program's data space.
malloc() calls sbrk() should you attempt to allocate more space than is available in the program's
data space.

sbrk() returns a pointer to the previous setting of _end if the requested memory is available, or - l if
it is not.

See Also
brk(), general functions, malloc(),

Notes
sbrk() will not increase the size of the program data area if the physical memory requested exceeds
the physical memory allocated by COHERENT. or if the requested memory exceeds the limit set in
the user-defined variable maxmem. sbrk() does not keep track of how space is used; therefore.
memory seized with sbrk() cannot be freed. Caveat utllltor.

scanfO - STDIO (libc)
Accept and format input
#include <stdio.h>
int scanf[format, arg 1, ... argN)
char ":format; [data type] •argl. ... •argN;

scanf() reads the standard input, and uses the stringformat to specify a format for each argl
through argN. each of which must be a pointer.

scanf() reads one character at a time fromformat; white space characters are ignored. The percent
sign character '%' marks the beginning of a conversion specification. '%' may be followed by
characters that indicate the width of the input field and the type of conversion to be done.

scanf() reads the standard input until the return key is pressed. Inappropriate characters are
thrown away; e.g .. it will not try to write an alphabetic character into an int.

The following modifiers can be used within the conversion string:

1. The asterisk '*'. which indicates that the next input field should be skipped rather than
assigned to the next arg.

2. A string of decimal digits. which specifies a maximum field width.

3. An 1. which specifies that the next input item is a long object rather than an int object.
Capitalizing the conversion character has the same effect.

The following conversion specifiers are recognized:

LEXICON

scanfO 969

c Assign the next input character to the next arg, which should be of type char•.

d Assign the decimal integer from the next input field to the next arg, which should be of type int
•.

D Assign the decimal integer from the next input field to the next arg, which should be of type
long•.

e Assign the floating point number from the next input field to the next arg, which should be of
type float•.

E Assign the floating point number from the next input field to the next arg, which should be of
type double •.

t Same as e.

F Same as E.

o Assign the octal integer from the next input field to the next arg. which should be of type int •.

0 Assign the octal integer from the next input field to the next arg. which should be of type long
•.

r The next argument points to an array of new arguments that may be used recursively. The
first argument of the list is a char • that contains a new format string. When the list is
exhausted, the routine continues from where it left off in the original format string.

s Assign the string from the next input field to the next arg. which should be of type char•. The
array to which the char • points should be long enough to accept the string and a terminating
null character.

x Assign the hexadecimal integer from the next input field to the next arg, which should be of
type int•.

X Assign the hexadecimal integer from the next input field to the next arg, which should be of
type long•.

It is important to remember that scant reads up. but not through. the newline character: the
newline remains in the standard input device's buffer until you dispose of it somehow.
Programmers have been known to forget to empty the buffer before calling scant() a second time.
which leads to unexpected results.

Example
The following example uses scant in a brief dialogue with the user.

#include <stdio.h>

main()
{

int left, right;

printf("No. of fingers on your left hand: ");
/* force message to appear on screen */
fflush(stdout);
scanf("%d", &left);

/* eat newline char */
while(getchar() != '\n')

LEXICON

970 scat

}

printf("No. of fingers on your right hand: ");
fflush(stdout);
scanf("%d", &right);

/* again, eat newline */
while(getchar() != '\n')

printf("You've %d left fingers, %d right, & %d total\n",
left, right, left+right);

See Also
fscanfQ, sscanf(), sm10
Diagnostics
scanf() returns the number of arguments filled. It returns EOF if no arguments can be filled or if an
error occurs.

Notes
Because C does not perform type checking, it is essential that an argument match its specification.
For that reason, scanf() is best used to process only data that you are certain are in the correct data
format. The use of upper-case format characters to specify long arguments is not standard: use the
'I' modifier for portability.

scanf() is difficult to use correctly, and its misuse can be associated with intermittent and
dangerous bugs. Rather than use scanf() to obtain a string from the keyboard: it is recommended
that you use gets() to obtain the string, and use strtok() or sscanf() to parse it.

Elli·liii"Eli"'
Print text files one screenful at a time
scat [[option .. . 1 [flle ••• 11 •••
scat prints each.file on the standard output, one screenful (24 lines) at a time if the output is a
screen. scat reads and prints the standard inputifnojlle is named.

The text is processed to allow convenient viewing on a screen: the options described below select the
nature of the processing. Options begin with'-' and may be interspersed with file names.

scat scans two argument lists. The first is in the environmental SCAT. It should consist of
arguments separated by white space (space, tab, or newline characters), with no quoting or shell
metacharacters. This string is a useful place to set terminal-dependent parameters (such as page
width and length) and to place invocation lists (see below). The second argument list is supplied on
the command line. ·

scat recognizes the following options:

-1 Do not stop at EOF if exactly one file was specified on the command line.

-bn Begin output at input line n.

-c Represent all control characters unambiguously. With this option, scat prints control
characters in the range 0-037 as a character in the range 0100-0137 prefixed by a carat"":
for example, SOH appears as ""A" and DEL as ""?"It prints mark-parity characters (in the
range of 0200-0377) with ·-·: for example, mark-parity 'A' and SOH appear as "-A" and
"-"A", respectively. It also prefixes the characters '"', '-', and '\' with a '\'. This option
overrides the option -t.

LEXICON

scat 971

-cs Like -c. but map space ' ' to underscore·_· and prefix underscore·_· with '\ '.

-ct Like -c. but map tabs to spaces. not'"'!''.

-in Shift the display window right n columns into the text field. This is useful for viewing long
lines.

-ln Set the display window length ton lines. The default is 24 normally. 34 for the Tek 4012.

-n Number input lines: wrapped lines are not numbered.

-r Remote; the output is not paged.

-s Skip empty lines.

-Sn Seek n bytes into input before processing.

-t Truncate long lines. Normally. scat wraps each long line, with the interrupted portion
delimited by a'\'.

-wn Set the display window width to n columns. The default is 80 normally. 72 for the Tek
4012.

-x Expand tabs.

-. su.fftx Invoke options by file-name sutfJX. If a file name ends with .sulfix, then scat scans the
argument sublist starting immediately after the invocation flag. New options will apply to
the invoking file only. A sublist is terminated by the end of the argument list, by a file
name, by the .. __ .. flag, or by another"-." (invocation lists do not nest).

Terminate a sublist (see previous option).

Numbers may begin with 0 to indicate octal, and may end in b or k to be scaled by 512 or 1.024.
respectively.

If the output is being paged, scat waits for a user response, which may be one of the following:

newline Display next page
I Display next half-page
space Display next line
f Print current file name and line number
n scat next file
q Quit

Example
The following shows how to use the environment argument list, invocation lists, and sublists:

SCAT="-124 -.c -n -.s -b5"
export SCAT
scat *.c *.s

After processing the SCAT argument list. scat processes the command line argument list "• .c • .s"
with the page length at 24 lines. If a file is a C source ("• .c") the invoke option in the SCAT
argument list numbers the output lines. If a file is an assembly source ("•.s") scat skips the first
four lines.

See Also
cat. commands. pr

LEXICON

972 sched.h - sdivO

mw•=s1.a11
Define constants used with scheduling
#include <sys/sched.h>

sched.h defines constants and structures that are used by routines that perform scheduling.

See Also
header mes

The COHERENT SCSI series of device drivers lets you use SCSI-interface devices attached to host
adapters from several vendors.

All COHERENT SCSI device drivers use major number 13, thus allowing all SCSI devices to be
accessed via standard device-naming conventions. Peripherals can be accessed as either block- or
character-special devices. The minor number specifies the device and partition number for disk­
type devices; this allows the use of up to eight SCSI identifiers (SCSI-ID's), with up to four logical
unit numbers (LUNs) per SCSI-ID and up to four partitions per LUN. Tape and other special devices
decode the minor number to perform special operations such as "rewind on close" or "no rewind on
close".

The first open call on a SCSI disk device allocates memory for the partition table and reads it into
memory.

See the release notes for further information regarding supported host adapters and peripherals.

Files
/dev/sd• - block-special devices
I dev I rsd• - character-special devices

See Also
ahal54x, device drivers, drvld, ss

Notes
The Mark Williams Company's bulletin board makes available loadable device drivers for various
SCSI host adapters, as well as device driver updates. See the release notes for further information.

mmftml!fi1t:1il§Ml·hHfi11@11E!IM•••••••••••••••••••••••
Divide multiple-precision integers
#include <mprec.h>
void sdiv(a, n, q, Ip)
mint •a, •q; int n, •tp;

The COHERENT system includes a suite of routines that allow you to perform multiple-precision
mathematics. sdiv() divides the multiple-precision integer (or mint) pointed to by a with the integer
n, which is in the range I <= n <= 128. It writes the quotient into the mint pointed to by q and the
remainder into the integer pointed to by Ip.

See Also
multiple-precision mathematics

LEXICON

SECONDS - security 973

SECONDS - Environmental Variable -~·~~~'''''~~·~~·~.,. m
Number of seconds since current shell started

The Korn shell stores in environmental variable SECONDS the number of seconds since the current
shell was started.

See Also
environmental variables, ksh

security- Technical Information ~~"'~"'·~~~"'~·~~··~~~··••"W
Because COHERENT is a multi-user, multi-tasking operating system which can support users from
remote terminals, steps must be taken to ensure that the system is secure. Sensitive information
that is stored on the system must be protected from being read or copied by unauthorized persons;
files must be protected against vandalization by intruders. Unless a reasonable degree can be
guaranteed, no multi-user operating system can be trusted to archive important information.

In one sense, it is easy to achieve perfect security in a computer system. As Grampp and Morris
have noted, "It is easy to run a secure computer system. You merely disconnect all dial-up
connections, put the machine and its terminals in a shielded room, and post a guard at the door."
For practical uses, however, security means balancing ease of access against restrictiveness: users
should have easy access to what is properly theirs. and should be barred from system facilities that
do not belong to them.

The COHERENT system has the following tools to assist with security.

Passwords

Permissions

Encryption

Every user account can be "locked" with a password. Each user can assign her
own password, and the system administrator can set passwords for the superusers
root and bin.

Passwords should be changed frequently. A password should have at least six
characters. should not be a common name or word, and preferably should include a
mixture of upper- and lower-case letters. to prevent decryption by brute-force
methods.

Passwords should be guarded jealously. In particular, the password for the
superuser root should be kept secret. as she can read every file and execute every
program throughout the system.

Execution of system-level programs. such as mount, is restricted to the superuser
root. This prevents intruders from seizing superuser permissions through
unauthorized manipulation of system services. Ordinary users are also restricted
from directly access system devices, for the same reason.

The command crypt performs rotary encryption. similar to that used by the
German Enigma machine. Files of sensitive information should be encrypted. to
protect them against being read by unauthorized persons. Note that encryption is
the only true defense against unauthorized reading: not even the superuser can
read an encrypted file unless she has the encryption key.

Many COHERENT systems have only one user and are not networked; for such installations, the
normal level of security may be an annoyance. Passwords can be turned off by using the command
passwd to set the password to <return>. The command chmod can be used to widen access to
devices and system-level utilities; see the Lexicon entry for chmod for more information on file
access.

Security ultimately is a system-wide responsibility. To quote Grampp and Morris. "By far. the
greatest security hazard for a system ... is the set of people who use it. If the people who use a

LEXICON

974 sed

machine are naive about security issues, the machine will be vulnerable regardless of what is done
by the local management. This applies particularly to the system's administrators, but ordinary
users should also take heed."

See Also
chmod, crypt, passwd, technical information

Grampp. F.T .. Morris, R.H.: UNIX operating system security. AT&T Bell Lab Tech J 1984:8:1649-
1672.

~~
Stream editor
sed I -n) [-e command) [-f script] ... file ...

sed is a non-interactive text editor. It reads input from eachjlle, or from the standard input if no
file is named. It edits the input according to commands given in the commands argument and the
script files. It then writes the edited text onto the standard output.

sed resembles the interactive editor ed. but its operation is fundamentally different. sed normally
edits one line at a time, so it may be used to edit very large files. After it constructs a list of
commands from its commands and script arguments, sed reads the input one line at a time into a
work area. Then sed executes each command that applies to the line, as explained below. Finally. it
copies the work area to the standard output (unless the -n option is specified), erases the work area,
and reads the next input line.

Line Identifiers
sed identifies input lines by integer line numbers, beginning with one for the first line of the firstflle
and continuing through each successive file. The following special forms identify lines:

n A decimal number n addresses the nth line of the input.

A period '.' addresses the current input line.

$ A dollar sign '$' addresses the last line of input.

/pattern/
A pattern enclosed within slashes addresses the next input line that contains pattern.
Patterns, also called regular expressions, are described in detail below.

Commands
Each command must be on a separate line. Most commands may be optionally preceded by a line
identifier (abbreviated as [n] in the command summary below) or by two-line identifiers separated by
a comma (abbreviated as [n[,mJJ). If no line identifier precedes a command, sed applies the command
to every input line. If one line identifier precedes a command, sed applies the command to each
input line selected by the identifier. If two-line identifiers precede a command, sed begins to apply
the command when an input line is selected by the first, and continues applying it through an input
line selected by the second.

sed recognizes the following commands:

[n]= Output the current input line number.

[n[,m]Jlcommand
Apply command to each line not identified by [n[,mJJ.

[n[,m]J{command ... }
Execute each enclosed command on the given lines.

LEXICON

sed 975

:label Define label for use in branch or test command.

[n]a \ Append new text after given line. New text is terminated by any line not ending in '\ ·.

b [label]
Branch to label, which must be defined in a':' command. If label is omitted, branch to end
of command script.

[n[,m])c\
Change specified lines to new text and proceed with next input line. New text is terminated
by any line not ending in'\'.

[n[,m]]d Delete specified lines and proceed with next input line.

[n[,m)]D Delete first line in work area and proceed with next input line.

[n[,m]]g Copy secondary work area to work area, destroying previous contents.

[n[,m]]G Append secondary work area to work area.

[n[,m]]h Copy work area to secondary work area, destroying previous contents.

[n[,m])H Append work area to secondary work area.

[n)i\ Insert new text before given line. New text is terminated by any line not ending in'\'.

[n[,m]]l Print selected lines, interpreting non-graphic characters.

[n[,m]]n Print the work area and replace it with the next input line.

[n[,m]]N Append next input line preceded by a newline to work area.

[n[,m]Jp Print work area.

[n[,m]]P Print first line of work area.

[n]q Quit without reading any more input.

[n]rflle Copy file to output.

[n[,m]]s[kl/ patternl /pattern2 I [g][p)[wjlleJ
Search for patternl and substitute pattern2 for kth occurrence (default, first). If optional g
is given, substitute all occurrences. If optional p is given, print the resulting line. If
optional w is given, append the resulting line to file. Patterns are described in detail below.

[n[,m])t[label]
Test if substitutions have been made. If so, branch to label, which must be defined in a':'
command. If label is omitted, branch to end of command script.

[n[,m]]wflle
Append lines to file.

[n[,m]] x
Exchange the work area and the secondary work area.

[n[,m]]y I chars I replacements/
Translate characters in chars to the corresponding characters in replacements.

Patterns
Substitution commands and search specifications may include patterns, also called regular
expressions. Pattern specifications are identical to those of ed, except that the special characters '\n'
match a newline character in the input.

LEXICON

976 seekdirO

A non-special character in a pattern matches itself. Special characters include the following:

Match beginning of line, unless it appears immediately after '[' (see below).

$ Match end of line.

\n Match the newline character.

Match any character except newline.

• Match zero or more repetitions of preceding character .

(chars] Match any one of the enclosed chars. Ranges of letters or digits may be indicated using·-·.

("chars]
Match any character except one of the enclosed chars. Ranges of letters or digits may be
indicated using·-·.

\c Disregard special meaning of character c.

\(pattern\)
Delimit substringpattern; for use with \d, described below.

In addition, the replacement part pattern2 of the substitute command may also use the following:

& Insert characters matched by patternl.

\d Insert substring delimited by dth occurrence of delimiters'\(' and'\)', where dis a digit.

Options
sed recognizes the following options:

-e Next argument gives a sed command. sed's command line can have more than one -e
option.

-f Next argument gives file name of command script.

-n Output lines only when explicit p or P commands are given.

See Also
commands, ed, elvis, ex, me, vi

fW.fi®ll$•M'Hi1iiA'~~ -
Reset the position within a directory stream
void seekdir (dlrp, toe)
DIR *dirp;
otr_t loc;

The function seekdir() is one of a set of COHERENT routines that manipulate directories in a device­
independent manner. It resets the current position within the directory stream pointed to by dirp to
toe. toe must be a position indicator returned by a previous call to telldir().

If an error occurs. seekdir() exits and sets errno to an appropriate value.

See Also
closedir(), dirent.h, general functions, getdents(), opendir(), readdir(), rewinddir(), telldir()

Notes
telldir() and seekdir() are unreliable when the directory stream has been closed and reopened. It is
best to avoid using telldir() and seekdir() altogether.

LEXICON

seg.h - sem 977

Because directory entries can dynamically appear and disappear, and because directory contents
are buffered by these routines, an application may need to continually rescan a directory to
maintain an accurate picture of its active entries.

seekdir() is available only under COHERENT 386.

The COHERENT implementation of the dirent routines was written by D. Gwynn.

~,~,,~~~~,~~~~'~lli&1ililli&1ililli&1ililli&1ililli&1ililli&1ililli&1ililli&1ililli&1ililli&1ililli&1ililli&1ililli&1iliSlli&1ili~~
Definitions used with segmentation
#include <seg.h>

seg.h defines structures and constants used by routines that handle memory segmentation.

See Also
header mes

sem - Device Driver ~~~~'''''~~~,..._~~~,,~,..._,,,,~,,,. ·~~-.

Semaphore device driver

/dev/sem is an interface to the semaphore device driver. It is assigned major device 23 (minor
device 0) and can be accessed as a character-special device.

All semaphore operations are performed through the COHERENT system call ioctl(). The operations
semctl(), semget(), and semop() are performed with an integer parameter array. The first element of
the array is reserved for the return value (default -1). Subsequent elements represent arguments.
The call to ioctl() passes SEMCTL. SEMGET. or SEMOP as the second argument, and the
parameter array as the third argument. The first argument is an open file descriptor to /dev/sem.

Access
If entry /dev/sem does not exist, you must created it, as follows:

/etc/rnknod /dev/sern c 23 0
chrnod 666 /dev/sern

Files
<sys/ipc.h>
<sys/sem.h>
I dev I sem - Device
I drv I sem - Loadable device driver

See Also
device drivers, drvld, ps, semctl(), semget(), semop()

Notes
Under COHERENT 286, allocation of too many semaphore ids (NSEMID) or semaphores per
identifier (NSEM) can exhaust kernel data space. which will stop the system in its tracks. You can
use the command /conf/patch to change either of these variables. Please note that you must patch
the driver I drv I sem, not the kernel itself. Be sure to exercise extreme care when attempting to
patch a driver!

Private semaphore sets are not supported. Semaphore ids must be removed manually when no
longer required. To remove all semaphore identifiers. use the following code:

LEXICON

978 sem.h - semct/0

#include <sys/sem.h>
#define NSEMID 16

semget (O, O) ; /* must do first */

for (id=O; id < NSEMID; ++id)
semctl(id, o, IPC_RMID, 0);

COHERENT 286 implements sem as a loadable device driver. To load it into memory, use the
command drvld.

sem.h - Header File ~~~~~M._~~~~M~~~~~~~~~~~~M~
Definitions used by semaphore facility
#include <sys I sem.h>

sem.h defines constants and structures used by the COHERENT semaphore facility.

See Also
header mes

semct/O - General Function
Control semaphore operations
#include <sys/sem.h>
semctl(semld, semnum, cmd, arg)
int semtd, cmd, semnum;
union semun {

int val;
struct semid_ds •buf;
unsigned short array[):

} arg;

semctl() controls a variety of semaphore operations. cmd sets the operation to be performed; the
following cmds are executed with respect to the semaphore specified by semid and semnum:

GETVAL Return the value of semval (READ).

SETVAL

GETPID

GETNCNT

GETZCNT

Set the value ofsemval to arg.val (ALTER).

Return the value of sempid (READ).

Return the value of semncnt (READ).

Return the value of semzcnt (READ).

The following cmds return and set, respectively. every semval in the set of semaphores.

GET ALL

SET ALL

Place semvals into array pointed to by arg.array (READ).

Set semvals according to the array pointed to by arg.array (ALTER).

The following cmds are also available:

IPC_STAT

IPC_SET

LEXICON

Place the current value of each member of the data structure associated with semid
into the structure pointed to by arg.buf (READ).

Set the value of the following members of the data structure associated with semld
to the corresponding value found in the structure pointed to by arg.buf:

sem_perm.uid
sem__perm.gid
sem__perm.mode /* only low 9 bits */

semct/0 979

This command can only be executed by a process that has an effective user
identifier equal to either that of superuser or to the value of sem_perm.uid in the
data structure associated with semld.

IPC_RMID Remove the system identifier specified by semid from the system and destroy the set
of semaphores and data structure associated with it. This cmd can only be
executed by a process that has an effective user identifier equal to either that of
super user or to the value of sem_perm.uid in the data structure associated with
semid.

semctl() will fail if one or more of the following are true:

semtd is not a valid semaphore identifier [EINVALJ.

semnum is less than zero or greater than sem_nsems [EINVALJ.

cmd is not a valid command [EINVAL].

Operation permission is denied to the calling process. [EACCESJ

cmd is SETVAL or SETALL and the value to which semval is to be set is greater than the
system imposed maximum [ERANGEJ.

cmd is equal to IPC_RMID or IPC_SET and the effective user identifier of the calling process is
not equal to that of superuser and it is not equal to the value of sem_perm.uid in the data
structure associated with semld [EPERMJ.

arg.buf points to an illegal address [EFAULTJ.

Return Value
Upon successful completion, the value returned depends on cmd as follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
Zero

Otherwise, semctl() returns -1 and sets errno to an appropriate value.

Files
/usr/include/sys/ipc.h
/usr I include/ sys I sem.h
/dev/sem
/drv/sem

See Also
general functions, sem, semget(), semop()

Notes
To improve portability, the COHERENT system implements the semaphore functions as a device
driver rather than as an actual system call.

LEXICON

980 semgetO

H@t.tau•m.mm•1•1na1r.n
Get a set of semaphores
#include <sys/sem.h>
semget(key, nsems, semjlg)
key_t key; int nsems, semjlg;

semget() returns the semaphore identifier associated with key. It creates a semaphore identifier and
associated data structure and set that contains nsems semaphores for key should one of the
following be true:

key equals IPC_PRIVATE.

key does not have a semaphore identifier associated with it, and (semjlg & IPC_CREAT) is true.

When semget() creates a data structure for a new semaphore identifier, it initializes the structure as
follows:

It sets the fields sem_perm.cuid, sem_perm.uid, sem_perm.cgid, and sem_perm.gid equal to
the effective user identifier, the calling process's identifier, and the effective group identifier,
respectively.

It sets the low-order nine bits of sem_perm.mode equal to the low-order nine bits of se"!flg.
These nine bits define access permissions: the top three bits specify the owner's access
permissions (read, write, execute), the middle three bits the owning group's access permissions,
and the low three bits access permissions for others.

sem,_nsems is set equal to the value of nsems.

sem_:.otime is set to zero and sem_ctime to the current time.

semget() rans if any of the following are true:

nsems is either less than or equal to zero, or greater than the system imposed limit. It sets
errno to EINV AL.

A semaphore identifier exists for key but operation permission as specified by the low-order
nine bits of semjlg would not be granted (EACCES).

A semaphore identifier exists for key but the number of semaphores in the set associated with
it is less than nsems and nsems is not equal to zero (EINVAL).

A semaphore identifier does not exist for key and (semjlg & IPC_CREAT) is false (ENOENT).

The number of semaphore identifiers allowed system-wide would be exceeded (ENOSPC).

The number of semaphores allowed system-wide would be exceeded (ENOSPC).

A semaphore identifier exists for key but ((semjlg & IPC_CREAT) && (semjlg & IPC_EXCL)) is
true (EEXIST).

Return Value
Upon successful completion, semget() returns a non-negative integer, namely a semaphore
identifier. Otherwise, it returns - I and sets errno to an appropriate value.

Files
/usr /include/ sys/ipc.h
/usr /include/ sys I sem.h
/dev/sem
/drv/sem

LEXICON

semopO 981

See Also
general functions, sem, semctl(), semop()

Notes
To improve portability. the COHERENT system implements the semaphore functions as a device
driver rather than as an actual system call.

HWi(.JiJ1,llffiMi''i''.S''·1,~"~"~"~~ 2~~"'~'~~'''"~'~
Perform semaphore operations
#include <sys/sem.h>
semop(semld, sops, nsops)
int semld, nsops; struct sembuf(sops)[];

semop() can atomically perform a number of operations on the set of semaphores associated with
the semaphore identifier semld. sops pointer to the array of semaphore-operation structures. nsops
is the number of such structures in the array. Each structure includes the following members:

short
short
short

sem_num;
sem_op;
sem_flg;

/* semaphore number */
/* semaphore operation */
/* operation flags */

Each semaphore operation specified by sem_op is performed on the semaphore specified by semld
andsem num.

sem _op specifies one of three semaphore operations, as follows:

If sem_op is negative. one of the following occurs:

1. If semval is greater than or equal to the absolute value of sem_op. the absolute value of
sem_op is subtracted from semval.

2. If semval is less than the absolute value of sem_op and (sem.Jlg & IPC_NOWAIT) is true,
semop() sets errno to EGAIN and returns - I.

3. If semval is less than the absolute value of sem_op and (semJlg & IPC_NOWAIT) is false,
semop() increments the semncnt associated with the specified semaphore and suspend
execution of the calling process until one of the following occurs:

a. semval becomes greater than or equal to the absolute value of sem_op. When this
occurs. the value of semncnt associated with the specified semaphore is
decremented. and the absolute value of sem_op is subtracted from semval.

b. The semtd for which the calling process is awaiting action is removed from the
system.

c. The calling process receives a signal. When this occurs. the value of semncnt
associated with the specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal().

If sem_op is positive. the value of sem_op is added to semval.

If sem _op is zero, one of the following occurs:

1. If semval is zero, semop() returns immediately.

2. If semval does not equal zero and (semJlg & IPC_NOWAIT) is true, semop() immediately
returns -1, with errno set to EGAIN.

LEXICON

982 semopO

3. If semval is not equal to zero and (sem_jl,g & IPC_NOWAIT) is false, semop() increments
the semzcnt associated with the specified semaphore and suspends execution of the
calling process until one of the following occurs:

a. semval becomes zero, at which time the value of semzcnt associated with the
specified semaphore is decremented.

b. The semid for which the calling process is awaiting action is removed from the
system.

c. The calling process receives a signal. When this occurs. the value of semzcnt
associated with the specified semaphore is decremented, and the calling process
resumes execution in the manner prescribed in signal.

semop() fails if one or more of the following are true for any of the semaphore operations specified
by sops:

semid is not a valid semaphore identifier. semop() sets errno to EINV AL

sem_num is less than zero or greater than or equal to the number of semaphores in the set
associated with semld (EFBIG).

nsops is greater than the system imposed maximum (E2BIG).

Operation permission is denied to the calling process (EACCES).

The operation would result in suspension of the calling process but (sem.Jl.g & IPC_NOWAIT) is
true (EAGAIN).

An operation would cause a semval to overflow the system imposed limit (ERANGE).

sops points to an illegal address (EFAULT).

Upon successful completion, the value of sempid for each semaphore specified in the array pointed
to by sops is set equal to the process identifier of the calling process.

Return Value
If semop() returns due to the receipt of a signal, it returns -1 to the calling process and sets errno to
EINTR. If it returns due to the removal of a semtd from the system, it returns -1 and sets errno to
EDOM.

Upon successful completion, semop() returns the value of semval at the time of the call for the last
operation in the array pointed to by sops. Otherwise, it returns -1 and sets errno to an appropriate
value.

Files
/usr /include/ sys/ipc.h
/usr /include/ sys /sem.h
/dev/sem
/drv/sem

See Also
general functions, sem, semctl(), semget()

Notes
The flag SEM_UNDO is not supported. This flag would allow semaphore operations to be undone
upon the termination of the process which performed the operations.

To improve portability, the COHERENT system implements semaphore operations as a device driver
rather than as an actual system call.

LEXICON

set 983

~ ~~'''~''~'''~~~~'~'~''"'''"~'~~'~"'
Set shell option flags and positional parameters
set [-ceiknstuvx [name ...] J (Bourne shell)
set [[+-]aethkmnuvx] [[+-Jo name] (Korn shell)

set changes the options of the current shell and optionally sets the values of positional parameters.
This command is used implemented by both the Bourne and Korn shells; however, its syntax and
options vary from one shell to the other.

Bourne Shell
The shell variable '$-' contains the currently set shell flags. If the optional name list is given, set
assigns the positional parameters $1, $2 ... to the given shell variables.

set recognizes the following options:

-c string
Read shell commands from string.

-e Exit on any error (command not found or command returning nonzero status) if the shell is
not interactive.

-1 The shell is interactive, even if the terminal is not attached to it; print prompt strings. For a
shell reading a script. ignore signals SIGTERM and SIGINT.

-k Place all keyword arguments into the environment. Normally, the shell places only
assignments to variables preceding the command into the environment.

-n Read commands but do not execute them.

-s Read commands from the standard input and write shell output to the standard error.

-t Read and execute one command rather than the entire file.

-u If the actual value of a shell variable is blank. report an error rather than substituting the
null string.

-v Print each line as it is read.

-x Print each command and its arguments as it is executed.

Cancel the -x -v options.

The shell executes set directly.

Korn Shell
set recognizes the following options. Preceding an option with ·-·turns on the option; preceding it
with'+' turns it off.

-a allexport: Automatically export all new variables.

-e errexit: Exit from the shell when non-zero status is received.

-f noglob: Do not expand file names. This globally turns off the special meaning of characters ·•·
and'?'.

-h trackall: Automatically add all commands to the shell's hash table.

-k keyword: Recognize variable assignments anywhere in a command.

-m monitor: Enable job control. See the Lexicon article on ksh for details on job control and how
to use it.

LEXICON

984 setbufO

-n noexec: Compile an input command, but do not execute it.

-o option
Set option. set recognizes the following options:

allexport Same as -a option, above.

emacs Turn on MicroEMACS-style editing of command lines.

errexit Same as -e option, above.

ignoreeof Tell the shell not to exit when reading EOF: must use exit command to exit from
the shell.

keyword Same as -k option, above.

monitor Same as -m option, above.

noexec Same as -n option, above.

no glob Same as -f option, above.

trackall Same as -h option, above.

nounset Same as -u option, below.

verbose Same as -v option, below.

xtrace Same as -x option, below.

-u nounset: Treat dollar-sign expansion of an unset variable as an error.

-v verbose: When compiling a command, echo its compiled (i.e., expanded) version on the
standard output before executing it.

-x xtrace: Echo simple commands while executing.

The shells execute set directly.

See Also
commands, ksh, sh

The standard 1/0 library STDIO automatically buffers all data read and written in streams, with the
exception of streams to terminal devices. STDIO normally uses malloc() to allocate the buffer,
which is a char array BUFSIZ characters long; BUFSIZ is defined in the header file stdio.h.

setbuf()'s arguments are the file streamfp and the buffer to be associated with the stream. The call
should be issued after the stream has been opened, but before any input or output request has been
issued. If buffer is NULL, the stream will be unbuffered. If buffer is not NULL, the area of memory it
points to must contain at least BUFSIZ bytes.

setbuf() returns nothing.

See Also
fopen(), malloc(), STDIO

LEXICON

setgidO - setjmpO 985

®®"'•™@·"'~'' Set group id and user id
int setgid(ld) int Id;

setgid() sets the group id. This calls can be used to set group id privileges. (For more information
on group id, see exec().)

The call is allowed if the real id of the calling process matches Id or is the superuser.

See Also
exec(), getuid(), login, setuid(), system calls

Diagnostics
setgid() returns zero on success, or -1 on failure.

setgrent() rewinds the file /etc/group. It returns NULL ifan error occurs.

Files
/etc/group
<grp.h>

See Also
general functions, group

setjmpO - General Function
Perform non-local goto
#include <setjmp.h>
int setjmp(env) jmp_buf env;

The function call is the only mechanism that C provides to transfer control between functions. This
mechanism, however, is inadequate for some purposes, such as handling unexpected errors or
interrupts at lower levels of a program. To answer this need, setjmp helps to provide a non-local
goto facility. setjmp() saves a stack context in env, and returns value zero. The stack context can
be restored with the function longJmp(). The type declaration for jmp_buf is in the header file
setjmp.h. The context saved includes the program counter, stack pointer, and stack frame.

Example
The following gives a simple example of setjmp() and longJmp().

#include <setjmp.h>

jmp_buf env;

main ()
{

int re;

/* place for setjmp to store its environment */

LEXICON

986 setjmp.h - setpgrpO

if(rc = setjmp(env)) { /*we come here on return*/
printf("First char was %c\n", re);
exit(O);

}
subfun(); /*this never returns*/

}

subfun()
{

char buf[BO];

do {
printf("Enter some data\n");
gets(buf); /*get data*/

} while(!buf(O]); /*retry on null line*/

longjmp(env, buf[O]); /* buf(O] must be non zero */
}

See Also
general functions, getenv(), longjmp()

Notes
Programmers should note that many user-level routines cannot be interrupted and reentered safely.
For that reason, improper use of setjmp() and longjmp() can create mysterious and irreproducible
bugs. The use of longjmp() to exit interrupt exception or signal handlers is particularly hazardous.

•·1·11=mn;•,"~~"""~"~~~~~ ~~ -
Define setjmp() and longjmp()
#include <setjmp.h>

setjmp.h defines the structurejmp_buffor a setjmp environment.

See Also
header me, longjmp, setjmp

WM@l•@@11H!~,"~~~~---BTu~~--BTu
Set process group number
int setpgrp()

setpgrp() sets the group number of the requesting process to its process ID number. It is used to
detach a process from its parent group. The requesting process becomes leader of its own
processing group. If the requesting process was not already a process group leader, it is detached
from its controlling terminal.

setpgrp() returns the new process group number.

See Also
getpgrp(), system calls

LEXICON

setpwentO - setuidO 987

W1·1@Mn111.wm1111.tgn.1.1m
Rewind password file
#include <pwd.h>
setpwent()

The COHERENT system has five routines that search the file /etc/passwd, which contains
information about every user of the system. setpwent() rewinds the password file, which allows
searches to begin from the beginning of the file. Please note that this function does not return a
meaningful value.

Example
For an example of this function. see the entry for getpwent().

Files
/etc/passwd
pwd.h

See Also
endpwent(), general functions, getpwent(), getpwnam(), getpwuid(), pwd.h

.. ll11tj@i!Hyn.J.1 ••••••••••••••••••••••••• 11111111111•11111111111•

Set local time zone
#include <time.h>
#include <sys/types.h>
voidsettz()
extem long timezone; char •tzname[2][16];

settz() is one of the suite of COHERENT functions that control and display the system's time. It
searches for the environmental parameter TIMEZONE, which gives information on the local time
zone. For more information on TIMEZONE, see its Lexicon entry.

If TIMEZONE is set, settz() initializes the external variables timezone and tzname. timezone
contains the number of seconds to be subtracted from GMT to obtain local standard time.
tzname[O) and tzname[l] are character arrays that hold, respectively, the names of the local
standard time zone and the local daylight saving time zone. If TIMEZONE is not set, timezone
defaults to zero, tzname[O] to GMT, and tzname[l] to the empty string.

See Also
date, f'time(), time, TIMEZONE .,,.@11@1!'
Set user i
int setuid(ld) int Id;

setuid() sets the real user id and the user id of the calling process to Id. (For more information on
the user id, see exec).

The call is allowed if the real id of the calling process matches Id or is the superuser.

See Also
exec, getuid(), login, setgid(), system calls

Diagnostics
setuid() returns zero on success, or -1 on failure.

LEXICON

988 setuptermO - sgtty

COHERENT 386 comes with a set of functions that let you use terminfo descriptions to manipulate
a terminal. setuptennO initializes terminal capabilities for terminal type term. which is accessed via
file-descriptor fd. It inhales all capabilities at once, and performs all other system-dependent
initialization - which is one reason why tenninfo is much faster than termcap.

If term is initialized to NULL. setuptennQ uses the contents of the environmental variable TERM as
a default.

errret points to an integer into which setuptermO writes the terminal's status: zero if there is no
such terminal type, one if all went well, or -1 if something has gone wrong. If erret is NULL.
setuptennQ prints an error message and exits if the terminal cannot be found.

See Also
terminfo

COHERENT uses two method for controlling terminals: sgtty and tennlo. Programmers who use
COHERENT 286 must use sgtty. Programmers who use COHERENT 386 may use sgtty or tennlo.
whichever they prefer.

To use sgtty, simply include the statement #Include <sgtty.h> in your sources. To use tennio,
include the statement #Include <termio.h>.

The rest of this article discusses the sgtty method of controlling terminals.

When a terminal file is opened, it normally causes the process to wait until a connection is
established. In practice, users' programs seldom open these files; they are opened by the program
getty and become a user's standard input, output. and error files. The very first terminal file opened
by the process group leader of a terminal file not already associated with a process group becomes
the controlling terminal for that process group. The controlling terminal plays a special role in
handling quit and Interrupt signals, as discussed below. The controlling terminal is inherited by a
child process during a call to fork. A process can break this association by changing its process
group using setpgrp.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters can
be typed at any time, even while output is occurring. and are only lost when the system's input
buffers become completely full, which is rare, or when the user has accumulated the maximum
allowed number of input characters that have not yet been read by some program. Currently. this
limit is 256 characters. When the input limit is reached. the sytems throws away all the saved
characters without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a newline character
(ASCII LF) or an end-of-file character (ASCII EQT). Unless otherwise directed, a program attempting
to read will be suspended until an entire line has been typed. Also. no matter how many characters
are requested in the read call, at most one line will be returned. It is not, however, necessary to
read a whole line at once; any number of characters may be requested in a read, even one. without
losing information.

LEXICON

sgtty 989

During input. the system normally processes erase and kill characters. By default. the backspace
character erases the last character typed. except that it will not erase beyond the beginning of the
line. By default, the <ctrl-U> kills (deletes) the entire input line, and optionally outputs a newline
character. Both these characters operate on a keystroke-by-keystroke basis. independently of any
backspacing or tabbing which may have been done. Both the erase and kill characters may be
entered literally by preceding them with the escape character(\). In this case, the escape character
is not read. You may change the erase and kill characters via command stty.

Certain characters have special functions on input. These functions and their default character
values are summarized as follows:

INTR

QUIT

ERASE

KILL

EOF

NL

STOP

START

(<ctrl-C> or ASCII ETXJ generates an Interrupt signal that is sent to all processes
associated with the controlling terminal. Normally. each such process is forced to
terminate, but arrangements may be made either to ignore the signal or to receive a
trap to an agreed-upon location; see the Lexicon entry for signal.

(Control-\ or ASCII ES) generates a quit signal. Its treatment is identical to that of
the interrupt signal except that. unless a receiving process has made other
arrangements. it will not only be terminated but a core image file (called core) will
be created in the current working directory.

(<backspace> or ASCII BS) erases the preceding character. It will not erase beyond
the start of a line, as delimited by a newline or EOF character.

(<ctrl-U> or ASCII NAK) deletes the entire line, as delimited by a newline or EOF
character.

(<ctrl-D> or ASCII EQT) generates an end-of-file character from a terminal. When
received, all the characters waiting to be read are immediately passed to the
program without waiting for a newline. and the EOF is discarded. Thus, if no
characters are waiting. which is to say the EOF occurred at the beginning of a line.
zero characters will be passed back, which is the standard end-of-file indication.

(ASCII LF) is the normal line delimiter. It cannot be changed or escaped.

(<ctrl-S> or ASCII DC3) can be used to suspend output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. While output
is suspended, STOP characters are ignored and not read.

(<ctrl-Q> or ASCII DCI) resumes output that has been suspended by a STOP
character. While output is not suspended, START characters are ignored and not
read. The start/stop characters can be changed via command stty. or via special
ioctl() calls described below.

The character values for INTR, QUIT, ERASE, EOF, and KILL may be changed to suit individual
tastes. The ERASE. KILL, and EOF character may be escaped by a preceding \ character. in which
case the system ignores its special meaning. See the Lexicon article on stty for information on how
to change these settings dynamically.

When using a "modem control" serial line, loss of carrier from the data-set (modem) causes a
hangup signal to be sent to all processes that have this terminal as the controlling terminal. Unless
other arrangements have been made, this signal causes the process to terminate. If the hangup
signal is ignored, any subsequent read returns with an end-of-file indication. Thus programs that
read a terminal and test for end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as previously
written characters have finished typing. Input characters are echoed by putting them into the
output queue as they arrive. If a process produces characters more rapidly than they can be
printed, it will be suspended when its output queue exceeds some limit, known as the "high water

LEXICON

990 sgtty

mark". When the queue has "drained" down to some threshold. the program resumes.

The header file <sgtty.h> declares structures and manifest constants to control the sgtty interface.
Of interest to users are the constants that define baud rates for terminal ports; these are as follows.
Note that rates marked with an asterisk are unavailable under COHERENT 386; those marked with
a dagger t are unavailable under COHERENT 286.

B50 50baud
B75 75 baud

BllO 110 baud
Bl34 134 baud
Bl50 150 baud
B200 200 baud
B300 300 baud
B600 600 baud

Bl200 1200 baud
Bl800 1800 baud
B2000 2000 baud •
B2400 2400 baud
B3600 3600 baud •
B4800 4800 baud
B7200 7200 baud *
B9600 9600 baud

Bl9200 19.200 baud
B38400 38,400 baud t

Terminal ioct/O Functions
Header file <sgtty.h> defines the following data structures used by the various device drivers to
convey terminal specific information. These structures are used in conjunction with special
terminal or device driver symbolic constants as part of ioctl() requests.

The sgttyb structure contains information related to line discipline, such as serial line speed, if
appropriate, the "erase" and "kill" characters, and a series of flags which set the mode of the line.

/*
* Structure for TIOCSETP/TIOCGETP
*/

struct sgttyb {
char sg_ispeedi /* Input speed */
char sg_ospeedi /* Output speed */
char sg_erasei /* Character erase */
char sg_killi /* Line kill character
int sg_flagsi /* Flags */

}1

*/

The following symbolic constants are used to access bit positions of member sg_Oags in data
structure sgttyb:

CB RE AK

CRMOD

CRT

LEXICON

Each input character causes wakeup (i.e., forces a return from a read() system
call).

Map the carriage return characters '\r' to the newline character '\n'.

Use CRT-style character erase.

ECHO

EVENP

LC ASE

ODDP

RAW

RAWIN

RAWOUT

TANDEM

XTABS

sgtty 991

Echo input characters.

Select even parity. If used in conjunction with ODDP, allow either parity.

Lowercase mapping on input.

Select odd parity. If used in conjunction with EVENP, allow either parity.

Raw mode. Same as RAWIN plus RAWOUT.

Input is treated as 8-bit characters and not interpreted.

Output is treated as 8-bit characters and not interpreted.

Use X-ON /X-OFF flow control protocol to remote device.

Expand tabs to spaces.

Data structure tchars specifies additional special terminal characters such as the "interrupt" and
"quit" characters, the "start" and "stop" characters used for flow control, and the "end-of-file"
character.

/*
* Structure for TIOCSETC/TIOCGETC
*/

struct tchars {
char t_intrc; /* Interrupt */
char t_quitc; /* Quit */
char t _startc; /* Start output */
char t_stopc; /* Stop output */
char t_eofc; /* End of file */
char t_brkc; /* Input delimiter */

};

The following symbolic constants are used to access various device functions via ioctl() calls, as
defined in header file <sgtty.h>. Note that not all functions are appropriate for all classes of devices.

TIOCCBRK

TIOCCDTR

TIOCCHPCL

TIOCCRTS

TIOCEXCL

TIOCFLUSH

TIOCGETC

Clear a BREAK condition on a serial line (i.e., "mark" the line). This request
cancels a previously issued TIOCSBRK request.

Clear modem control signal Data Terminal Ready (DTR) on a serial line.

Do not force a hangup on "last close" on a modem line. The normal mode of
operation for serial lines is to drop modem signal Data Terminal Ready (DTR)
when the last close() operation is performed, thus requesting the attached
modem to drop the connection.

Clear the Request To Send CRTS) signal on a serial line. Modem control signal
RTS is often used for hardware flow control.

Set device access as exclusive use. This request requires the process to have
root privileges.

Flush the input queue, discarding any pending input characters, and wait for
the output queue to "drain".

Get current values of the special terminal characters, as defined by data
structure tchars.

LEXICON

992 sgtty

TIOCGETF

TIOCGETKBT

TIOCGETP

TIOCGETTF

TIOCHPCL

TIOCRMSR

TIOCNXCL

TIOCQUERY

TIOCSBRK

TIOCSDTR

TIOCSETC

TIOCSETF

TIOCSETKBT

TIOCSETN

TIOCSETP

TIOCSRTS

Examples

Get current console keyboard function key bindings. This request is specific to
the nkb console keyboard device driver. See Lexicon article nkb for further
details.

Get current console keyboard key mapping table. This request is specific to the
nkb console keyboard device driver. See Lexicon article nkb for further details.

Get current terminal line settings, as defined by data structure sgttyb.

Get current value of the terminal flags, as defined by field t_Dags in the T1Y
structure.

Set hangup on "last close". See TIOCCHPCL for further details.

Get the current value of the Modem Status Register (MSR) for the specified serial
line. This request is device driver specific and is currently supported only in the
al device driver. Symbolic constants MSRCTS, MSRDSR, MSRRI, and
MSRRLSD correspond to the Clear To Send, Data Set Ready, Ring Indicator and
Receive Line Status Detect (i.e. Carrier Detect) signals, respectively, in the MSR.

Set this device or port as non-exclusive use. See TIOCEXCL for further details.

Query the number of characters currently waiting in the input queue.

Assert BREAK (i.e., "space the line") on the given serial port. This is often used
during login to signal a remote system to "hunt" to the next baud rate in a
sequence. See TIOCCBRK for further details.

Assert modem control signal Data Terminal Ready (DTR) on a serial line.

Wait for output to "drain", then set the terminal control characters for this
device, as specified by data structure tchars.

Set console keyboard function key mapping. This request is specific to the nkb
console keyboard device driver. See Lexicon article nkb for further details.

Set console keyboard key mapping table. This request is specific to the nkb
console keyboard device driver. See Lexicon article nkb for further details.

Set terminal line settings, as defined by data structure sgttyb. Do not flush the
input queue prior to using the new settings.

Same as request TIOCSETN. but also flush the input queue.

Assert the Request To Send (RTS) signal on a serial line. Modem control signal
RTS is often used for hardware flow control.

The following code fragment gets the current terminal settings and turns off echo.

LEXICON

sgtty.h - sh 993

#include <sgtty.h>
static struct sgttyb new, orig;

/*
* Get the existing terminal parameters for the terminal
*device associated with file descriptor 0 (stdin),
* turn off echo, turn on CBREAK (break on every input character)
* and set the new parameters.
*/

ioctl(O, TIOCGETP, &orig);
new = orig;
new.sg_flags &= -ECHO;
new.sg_flags I= CBREAK;
ioctl(O, TIOCSETN, &new);

/* Turn off echo */
/* Turn on CBREAK mode */

The following line uses the previously saved terminal mode to return the terminal mode to its prior
state:

ioctl(O, TIOCSETN, &orig);

See Also
device drivers, gtty(), ioctl(), sgtty.h, stty(), stty, tenninal, tennio

®U!'ll'®'S'M•~ -"'~"'"'~''"'~~"'"'~''' ._._~~'"'''''~'' ~-.
Definitions used to control terminal 1/0
#include <sgtty.h>

sgtty.h defines structures. constants, and macros used by routines that control terminal 1/0.

See Also
header mes, sgtty

Notes
Programs that perform terminal control under COHERENT 286 must use sgtty.h. With COHERENT
386, the programmer may choose between sgtty.h and tennio.h terminal control.

~''~'"""'"'"'~ -~ --~~"'''~'"'~'''''~'~'''-.; -The Bourne shell
sh [-ceiknstuvx) token ...

The COHERENT system offers two command interpreters: ksh, the Korn shell; and sh. the Bourne
shell. sh is the default COHERENT command interpreter. The tutorial included in this manual
describes the Bourne shell in detail.

AB you will see from the following description, a shell is both a command interpreter and a
programming language in its own right. Taking some time to learn the rudiments of your shell's
programming language will pay great benefits in taking command of your COHERENT system.

Commands
A command consists of one or more tokens. A token is a string of text characters (i.e., one or more
alphabetic characters, punctuation marks, and numerals) delineated by spaces. tabs, or newlines.

A simple command consists of the command's name, followed by zero or more tokens that represent
represent arguments to the command, names of files, or shell operators. A complex command will
use shell constructs to execute one or more commands conditionally. In effect. a complex command

LEXICON

994 sh

is a mini-program that is written inthe shell's programming language and interpreted by sh.

Shell Operators
The shell includes a number of operators that form pipes, redirect input and output to commands,
and let you define conditions under which commands are executed.

command I command
The pipe operator: let the output of one command serve as the input to a second. You can
combine commands with 'I' to form pipelines. A pipeline passes the standard output of the
first (leftmost) command to the standard input of the second command. For example, in the
pipeline

sort customers I uniq I more

sh invokes sortB to sort the contents of file customers. It pipes the output of sort to the
command uniq, which outputs one unique copy of the text that is input into it. sh then
pipes the output of uniq to the command more, which displays it on your terminal one
screenful at a time. Note that under COHERENT, unlike MS-DOS, pipes are executed
concurrently: that is, sort does not have to finish its work before uniq and more can begin
to receive input and get to to work.

command ; command
Execute commands on a command line sequentially. The command to the left of the ';'
executes to completion; then the command to the right of it executes. For example, in the
command line

a I b ; c I d

first executes the pipeline a I b then, when a and b are finished, executes the pipeline c I d.

command &: command
Execute a command in the background. This operator must follow the command, not
precede it. It prints the process identifier of the command on the standard output, so you
can use the kill command to kill that process should something go wrong. This operator
lets you execute more than one command simultaneously. For example, the command

fdformat -v /dev/fhaO &

formats a high-density, 5.25-inch floppy disk in drive 0 (that is, drive A); but while the disk
is being formatted, sh returns the command line prompt so you can immediately enter
another command and begin to work. If you did not use the '&' in this command, you
would have to wait until formatting was finished before you could enter another command.

command &:& command
Execute a command upon success. sh executes the command that follows the token '&&'
only if the commands that precedes it returns a zero exit status, which signifies success.
For example, the command

cd /etc
fdformat -v /dev/fhaO && badscan -o proto /dev/fhaO 2400

formats a floppy disk, as described above. If the format was successful, it then invokes the
command badscan to scan the disk for bad blocks; if it was not successful. however, it does
nothing.

command 11 command
Execute a command upon failure. This is identical to operator '&&', except that the second
command is executed if the first returns a non-zero status, which signifies failure. For
example, the command

LEXICON

sh 995

/etc/fdformat -v /dev/fhaO I I echo "Format failed!"

formats a floppy disk. If formatting failed, it echoes the message Format failed! on your
terminal; however, if formatting succeeds, it does nothing.

Note that the tokens newline, ';' and '&' bind less tightly than '&&' and 'I I'. sh parses
command lines from left to right if separators bind equally.

>file Redirect output. The standard input, standard output, and standard error streams are
normally connected to the terminal. A pipeline attaches the output of one command to the
input of another command. In addition, sh includes a set of operators that redirect input
and output into files rather than other commands.

The operator'>' redirects output into a file. For example, the command

sort customers >customers.sort

sorts file customers and writes the sorted output into file customers.sort. It creates
customers.sort if it does not exist. and destroys its previous contents if it does exist.

>>file Redirect output into a file. and append. If the file does not exist, this operator creates it;
however. if the file already exists, this operator appends the output to that file's contents
rather than destroying those contents. For example. the command

sort customers.now I uniq >>customers.all

sorts file customers.now, pipes its output to command uniq, which throws away duplicate
lines of input, and appends the results to file customers.all.

<ifile Redirect input. Here, sh reads the contents of a file and processes them as if you had typed
them from your keyboard. For example, the command

ed textfile <edit.script

invokes the line-editor ed to edit textflle; however, instead of reading editing commands
from your keyboard, the shell passes ed the contents of edit.script. This command would
let you prepare an editing script that you could execute repeatedly upon files rather than
having to type the same commands over and over.

<<token
Prepare a "here document". This operator tells sh to accept standard input from the shell
input until it reads the next line that contains only token. For example, the command

cat >FOO<<\!
Here is some text.

redirects all text between '<<\!' and '!' to the cat command. The '>' in turn redirects the
output of cat into file FOO. sh performs parameter substitution on the here document
unless the leading token is quoted; parameter substitution and quoting are described below.

command 2>flle
Redirect the standard error stream into a file. For example, the command

nroff -ms textfile >textfile.p 2>textfile.err

invokes the command nroff to format the contents of textfile. It redirects the output of
nroff (i.e .. the standard output) into textfile.p; it also redirects any error messages that
nroff may generate into file textfile.err.

Note in passing that a command may use up to 20 streams. By default, stream 0 is the

LEXICON

996 sh

standard input; stream I is the standard output; and stream 2 is the standard error. sh
lets you redirect any of these streams individually into files, or combine streams into each
other.

dim sh can redirect the standard input and output to duplicate other file descriptors. (See the
Lexicon article me descriptor for details on what these are.) This operator duplicates the
standard input from file descriptor n.

>&n Duplicate the standard output from file descriptor n. For example,

2>&1

redirects file descriptor 2 (the standard error) to file descriptor I (the standard output).

<&- Close the standard input.

>&- Close the standard output.

Note that each command executed as a foreground process inherits the file descriptors and signal
traps (described below) of the invoking shell, modified by any specified redirection. Background
processes take input from the null device /dev/null (unless redirected), and ignore interrupt and
quit signals.

File Name Patterns
The shell interprets an input token that contain any of the special characters '?', '*', or '[' as a file
name pattern.

? Match any single character except newline. For example, the command

ls name?

•

will print the name of any file that consists of the string name plus any one character. If name
is followed by no characters, or is followed by two or more characters, it will not be printed.

Match a string of non-newline characters of any length (including zero) .

ls name*

will print the name of any file that begins with the string name, regardless of whether it is
followed by any other characters. Likewise, the command

ls name?*

will print the name of any file that consists of the string name followed by at least one
character. Unlike name•, the token name?• insists that be followed by at least one character
before it will be printed.

[!xyz]

[C-c)

Exclude characters xyz from the string search. For example, the command

ls [!abc]*

prints all files in the current directory except those that begin with a, b, or c.

Enclose alternatives to match a single character. A hyphen·-· indicates a range of characters.
For example. the command

ls name[ABC]

will print the names of files nameA, nameB, and nameC (assuming, of course, that those files
exist in the current directory). The command

LEXICON

sh 997

ls name[A-K]

prints the names of files nameA through nameK (again, assuming that they exist in the
current directory).

When sh reads a token that contains one of the above characters, it replaces the token in the
command line with an alphabetized list of file names that match the pattern. If it finds no matches,
it passes the token unchanged to the command. For example, when you enter the command

ls name[ABC]

sh replaces the token name[ABC] with nameA, nameB, and nameC (again, if they exist in the
current directory), so the command now reads:

ls nameA nameB nameC

It then passes this second, transformed version of the command line to the command ls.

Note that the slash · /' and leading period '.' must be matched explicitly in a pattern. The slash, of
course, separates the elements of a path name; while a period at the begin of a file name usually
(but not always) indicates that that file has special significance.

Quoting Text
From time to time, you will want to "turn off' the special meaning of characters. For example, you
may wish to pass a token that contains a literal asterisk to a command; to do so, you need a way to
tell sh not to expand the token into a list of file names. Therefore, sh includes the quotation
operators'\',"'', and'"; these "turn off' (or quote) the special meaning of operators.

The backslash'\' quotes the following character. For example, the command

ls name*

lists a file named name•, and no other.

The shell ignores a backslash immediately followed by a newline, called a concealed newline. This
lets you give more arguments to a command than will fit on one line. For example, the command

cc -o output filel.c file2.c file3.c \
file4.c file5.c file19.c

invokes the C compiler cc to compile a set of C source files, the names of which extend over more
than one line of input. You will find this to be extremely helpful. especially when you write scripts
and makefiles, to help you write neat, easily read commands.

A pair of apostrophes ' ' prevents interpretation of any enclosed special characters. For example, the
command

find . -name '*.c' -print

finds and prints the name of any C-source file in the current directory and any subdirectory. The
command find interprets the '*' internally; therefore, you want to suppress the shell's expansion of
that operator, which is accomplished by enclosing that token between apostrophes.

A pair of quotation marks 11 11 has the same effect. Unlike apostrophes, however, sh will perform
parameter substitution and command-output substitution (described below) within quotation
marks.

Scripts
Shell commands can be stored in a file, or script. The command

LEXICON

998 sh

sh script [parameter ... J

executes the commands in script with a new subshell sh. Each parameter is a value for a positional
parameter, as described below. If you have used the command chmod to make script executable,
you may omit the sh command.

Parameters of the form '$n' represent command-line arguments within a script. n can range from
zero through nine; $0 always gives the name of the script. These parameters are also called
positional parameters.

If no corresponding parameter is given on the command line, the shell substitutes the null string for
that parameter. For example, if the script format contains the following line:

nroff -ms $1 >$1.out

then invoking format with the command line:

format mytext

invokes the command nroff to format the contents of mytext, and writes the output into file
mytext.out. If, however, you invoke this command with the command line

format mytext yourtext

the script will format mytext but ignore yourtext altogether.

Reference $* represents all command-line arguments. If. for example, we change the contents of
script format to read

nroff -ms $* >$1.out

then the command

format mytext yourtext

will invoke nroff to format the contents of mytext and yourtext. and write the output into file
mytext.out.

Commands in a script can also be executed with the . (dot) command. It resembles the sh
command, but the current shell executes the script commands without creating a new subshell or a
new environment; therefore, you cannot use command-line arguments.

Variables
Shell variables are names that can be assigned string values on a command line. in the form

name=value

The name must begin with a letter. and can contain letters. digits. and underscores ·_·. In shell
input, '$name' or '${name}' represents the value of the variable. For example:

TEXT=mytext

nroff -ms $TEXT >$TEXT.out

Here. sh expands $TEXT before it executes the nroff command. This technique is very useful in
large. complex scripts: by using variables. you can change the behavior of the script by editing one
line. rather than having to edit numerous variables throughout the script.

Note that if an assignment precedes a command on the same command line. the effect of the
assignment is local to that command; otherwise. the effect is permanent. For example.

LEXICON

kp=one testproc

assigns variable kp the value one only for the execution of the script testproc.

sh sets the following variables by default:

@

*

The number of actual positional parameters given to the current command.

The list of positional parameters "$1 $2 ... ".

The list of positional parameters "$1" "$2" ... (the same as '$@'unless quoted).

Options set in the invocation of the shell or by the set command.

? The exit status returned by the last command.

The process number of the last command invoked with '&'.

$ The process number of the current shell.

sh also references the following variables:

sh 999

CWD Current working directory: this is the name of the directory in which you are now
working.

HOME

IFS

Initial working directory; usually specified in the password file /etc/passwd.

Delimiters for tokens; usually space, tab and newline.

LASTERROR

MAIL

PATH

PSI

PS2

Name of last command returning nonzero exit status.

Checked at the end of each command. If file specified in this variable is new since last
command. the shell prints "You have mail." on the user's terminal.

Colon-separated list of directories searched for commands.

First prompt string, usually'$'.

Second prompt string, usually '>'. sh prints it when it expects more input, such as
when an open quotation-mark has been typed but a close quotation-mark has not been
typed, or within a shell construct.

The special forms '${nameCtoken}' perform conditional parameter substition: C is one of the
characters '-', '=', '+', or '?'. sh replaces the form '${name-token}' by the value of name if it is set, and
by token otherwise. It handles the'=' form in the same way, but also sets the value of name to token
if it was not set previously. sh replaces the'+' form by token if the given name is set. It replaces the
'?' form by the value of name if set, and otherwise prints token and exits from the shell.

Command Output Substitution
sh can use the output of a command as shell input (as command arguments, for example) by
enclosing the command in grave characters ' '. For example, to list the contents of the directories
named in file dirs, use the command

ls -1 'cat dirs'

Constructs
sh lets you control execution of commands by the constructs break, case, continue, for, if, until,
and while. It recognizes each reserved word only if it occurs unquoted as the first token of a
command. This implies that a separator must precede each reserved word in the following
constructs; for example, newline or';' must precede do in the for construct.

LEXICON

1000 sh

breakfnJ
Exit from for, until, or while. If n is given, exit from n levels.

case token in [pattern [I pattern] ...) sequence;; I ... esac
Check token against each pattern. and execute sequence associated with the first matching
pattern.

continue fnJ
Branch to the end of the nth enclosing for. until. or while construct.

for name [in token ... J do sequence done
Execute sequence once for each token. On each iteration. name takes the value of the next
token. If the in clause is omitted.$@ is assumed. For example. to list all files ending with
.c:

for i in * .c
do

cat $i
done

if seq 1 then seq2 [elif seq3 then seq4 J ... [else seq5 J tl
Execute seql. If the exit status is zero, execute seq2; if not, execute the optional seq3 if
given. If the exit status of seq3 is zero. then execute seq4. and so on. If the exit status of
all tested sequences is nonzero. execute seq5.

until sequence] [do sequence2] done
Execute sequence2 until the execution of sequence I results in an exit status of zero.

while sequence] [do sequence2] done
Execute sequence2 as long as the execution of sequence 1 results in an exit status of zero.

(sequence
)
Execute sequence within a subshell. This allows sequence to change the current directory.
for example. and not affect the enclosing environment. Note that the closing ')' must appear
on the line that follows sequence.

{sequence
}
Braces simply enclose a sequence. Note that the closing '}' must appear on the line that
follows sequence.

Special Commands
sh usually executes commands with the fork system call. which creates another process. However.
sh executes the commands in this section either directly or with an exec system call. See the
Lexicon articles on fork() and exec for details on these calls .

• script Read and execute commands from script. Positional parameters are not allowed. sh
searches the directories named in the environmental variable PATH to find the given script.

: [token ...]
A colon ':' indicates a "partial comment''. sh normally ignores all commands on a line that
begins with a colon. except for redirection and such symbols as$.{.'?. etc.

A complete comment: if# is the first character on a line. sh ignores all text that follows on
that line.

LEXICON

sh 1001

cd dlr Change the working directory to dlr. If no argument is given, change to the home directory.

dirs sh lets you maintain a "directory stack", or stack of names of directories. You can push.
pop, and otherwise manipulate the contents of this stack. which you can use for any
purpose for which you need to access a number of directory names quickly. The command
dirs prints the contents of the directory stack. The commands pushd and popd also
manipulate the directory stack.

eval [token ...]
Evaluate each token and treat the result as shell input.

exec [command]
Execute command directly rather than performing fork. This terminates the current shell.

exit [status]
Set the exit status to status, if given; otherwise, the previous status is unchanged. If the
shell is not interactive. terminate it.

export [name ...]
sh executes each command in an environment, which is essentially a set of shell variable
names and corresponding string values. It inherits an environment when invoked, and
normally it passes the same environment to each command it invokes. export specifies
that the shell should pass the modified value of each given name to the environment of
subsequent commands. When no name is given, sh prints the name and value of each
variable marked for export.

popd[N ...]
Pop the directory stack. When used without an argument, it pops the stack once. When
used with one or more numeric arguments, popd pops the specified items from the stack;
item 0 is the top of the stack. (For information on the directory stack, see the entry for the
command dirs, above.)

pushd [dlrO ... dlrN]
Push dlrO through dlrN onto the directory stack, and change the current directory to the
last directory pushed onto the stack. When called without an argument. pushd exchanges
the two top stack elements. (For information on the directory stack, see the entry for the
command dirs, above.)

read name ...
Read a line from the standard input and assign each token of the input to the
corresponding shell variable name. If the input contains fewer tokens than the name list.
assign the null string to extra variables. If the input contains more tokens, assign the last
name the remainder of the input.

readonly [name .. .]
Mark each shell variable name as a read only variable. Subsequent assignments to read
only variables will not be permitted. With no arguments, print the name and value of each
read only variable.

set [-ceiknstuvx [name ...]]
Set listed flag. If name list is provided, set shell variables name to values of positional
parameters beginning with $1.

shift Rename positional parameter 1 to current value of $2, and so on.

times Print the total user and system times for all executed processes.

trap [command] [n ...]
Execute command if sh receives signal n. If command is omitted, reset traps to original
values. To ignore a signal, pass null string as command. With n zero, execute command

LEXICON

1002 sh

when the shell exits. With no arguments, print the current trap settings.

umask[nnn]
Set user file creation mask to nnn. If no argument is given, print the current file creation
mask.

wait[pid]
Hold execution of further commands until process pid terminates. If pid is omitted, wait for
all child processes. If no children are active, this command finishes immediately.

Command-line Options

-c string
Read shell commands from string.

-e Exit on any error (command not found or command returning nonzero status) if the shell is
not interactive.

-1 The shell is interactive, even if the terminal is not attached to it; print prompt strings. For a
shell reading a script, ignore the signals SIGTERM and SIGINT.

-k Place all keyword arguments into the environment. Normally, sh places only assignments to
variables preceding the command into the environment.

-n Read commands but do not execute them.

-s Read commands from the standard input and write shell output to the standard error.

-t Read and execute one command rather than the entire file.

-u If the actual value of a shell variable is blank, report an error rather than substituting the
null string.

-v Print each line as it is read.

-x Print each command and its arguments as it is executed.

Cancel the -x and -v options.

If the first character of argument 0 is '-', sh reads and executes the scripts /etc/profile and
$HOME/ .profile before reading the standard input. /etc/profile is a convenient place for
initializing system-wide variables, such as TIMEZONE.

Files
/etc/profile - System-wide initial commands
$HOME/ .profile- User-specific initial commands
/dev/null- For background input
/tmp/sh"' - Temporary files

See Also
commands, dup(), environ, exec, fork(), ksh, logf.n, newgrp, set, signal(), test

For a list of all commands associated with sh, see the section Shell Commands in the commands
Lexicon article.

Introduction to sh, the Bourne Shell, tutorial

Diagnostics
sh notes on the standard error all syntax errors in commands, and all commands which it cannot
find. Syntax errors cause a noninteractive shell to exit. It gives error messages if 1/0 redirection is
incorrect. sh returns the exit status of the last command executed or the status specified by an exit
command.

LEXICON

SHELL - Environmental Variable
Name the default shell
SHELL:shel!

SHELL - shift 1003

The environmental variable SHELL names the shell that COHERENT invokes when you log in. The
default is SHELL=/bin/sh. which invokes the Bourne shell.

See Also
environmental variables, sh

(.!@ilfli&llffi'®E''i''·tffl[.jil.""''""'"~''"''""'"""''"'"'~"~"""'"'". Sort arrays in memory
void shellsort(data, n, size, comp)
char •data; int n, size; int (*comp)();

shellsort() is a generalized algorithm for sorting arrays of data in memory. using D. L. Shell's sorting
method. shellsort() works with a sequential array of memory called data, which is divided into n
parts of size bytes each. In practice. data is usually an array of pointers or structures. and size is
the sizeofthe pointer or structure.

Each routine compares pairs of items and exchanges them as required. The user-supplied routine
to which comp points performs the comparison. It is called repeatedly, as follows:

(*comp) (pl, p2)
char *pl, *p2;

Here. pl and p2 each point to a block of size bytes in the data array. In practice, they are usually
pointers to pointers or pointers to structures. The comparison routine must return a negative, zero.
or positive result, depending on whether pl is less than, equal to, or greater thanp2. respectively.

Example
For an example of how to use this routine. see the entry for string.

See Also
ctype, general functions, qsort()
The Art of Computer Programming, vol. 3, pp. 84ff, l 14ff

Notes
For a discussion of how the shellsort algorithm differs from that used by qsort(), see the Lexicon
entry for qsort(). - ~'~'''~'~"'"'~"'~"'~~,_~'"'"''~"·
Shift positional parameters
shift

Commands to the shell can be stored in a file, or script. Positional parameters pass command-line
variables to a script.

shift changes the values of positional parameters. The old parameter values $2, $3, . .. become the
new parameter values $1. $2 shift also reduces the value of$#. which gives the number of
positional parameters, by one.

The shell executes shift directly.

See Also
commands, ksh, sh

LEXICON

1004 shm

~~ ~~"'-..i -
Shared memory device driver

The device I dev I shm is an interface to the shared memory device driver. It is assigned major device
24 (minor device 0) and can be accessed as a character-special device.

Shared memory access operations are performed by seeks, reads, and writes through the interface
/dev/shm. The desired seek location is (shmid « 16L) +offset.

Shared memory control operations are performed through the system call ioctl(). The operations
shmctl() and shmget() are performed with an integer parameter array. The first element of the
array is reserved for the return value (default, -1). Subsequent elements represent arguments.
ioctl() passes SHMCTL. SHMGET. SHMAT. or SHMDT as the second argument, and the parameter
array as the third argument. The first argument is an open file descriptor to /dev/shm. Seeks.
reads, and writes on shared memory can be performed through the file descriptor shmfd.

Access
To access shared memory, do the following:

1. If it does not yet exist, create /dev/shm as a special-character file with major number 24,
minor number 0, and broad enough permissions. The command

/etc/mknod /dev/shm c 24 0

will create I dev I shm if it does not yet exist.

2. Become the superuser root. Execute the command

/etc/drvld /drv/shm

to load the driver.

3. Use the COHERENT system call shmget() to create a shared-memory segment and obtain the
shmid value for it.

4. Use the COHERENT system call lseek() to position for read or write of a shared-memory
segment. The first argument to lseek() is shmfd, which is an external declared in
<sys/shm.h>. The second argument to lseek() is a long whose high word is the segment
identifier shmid and whose low word is the offset within the shared-memory segment. The
third argument to lseek() is zero.

5. Use the COHERENT system calls read() and write() to access the segment. Again, use shmfd
as the file descriptor.

6. When you are finished using shared memory. use the call

shmctl(shmid, IPC_RMID, 0)

to remove segments when you are finished.

7. Finally, use ps -d to obtain the process identifier of the shared-memory driver. To unload the
shm driver. first type the command

ps -d

and note the process identifier of the driver. Then, become the superuser root and type the
command

kill -kill xxxx

where xxxx is the process identifier for the shm driver.

LEXICON

shm.h - shmct/0 1005

Note that this manner of preceeding is not entirely in the spirit of System V lPC shared memory:
COHERENT does not support functions shmat() and shmdt().

Files
/usr/include/sys/ipc.h
/usr/include/sys/shm.h
/dev/shm
/drv/shm

See Also
device drivers, drvld, lseek(), ps, shmctl(), shmget()

Notes
If you allocate too many shared memory identifiers, you will exhaust kernel data space, and thus
halt the system in its tracks.

Creating many large shared memory segments can exhaust main memory, as shared-memory
segments do not currently support swapping.

Private shared memory is not supported. Shared memory segments must be removed manually
when no longer required. To remove all shared memory segments use the following C code:

#include <sys/shm.h>

#define NSHMID 16

shmget(O, O, 0); /* must do first */

for (id=O; id < NSHMID; ++id)
shmctl(id, IPC_RMID, 0);

COHERENT 286 implements shm as a loadable device driver. To load it into memory, use the
command drvld.

~~~"Wk"'"Wk~'~'''''~'~'~'''~"'~"'~ ~'~ 
Definitions used with shared memory 
#include <sys/shm.h> 

shm.h defines constants and macros used by routines that implement the COHERENT shared­
memory facility. 

See Also 
header mes 

(.!Jitii@011§1i@6lljil1A!r.tf'I- ~''"'""~ ~'""~'""""""~~"""'''~~ 
Control shared-memory operations 
#include <sys/shm.h> 
shmctl(shmld, cmd, bu}) 
int shmtd, cmd; struct shmid_ds •buj; 

shmctl() provides controls the COHERENT system's shared-memory facility. cmd specifies the 
operation to perform, as follows: 

IPC_STAT Place the current value of each member of the data structure associated with shmid 
into the structure pointed to by btif. 

LEXICON 



1006 shmgetO 

IPC_SET Set the value of the following members of the data structure associated with shmld 
to the corresponding value found in the structure pointed to by buj: 

IPC_RMID 

shm_perm.uid 
shm_perm.gid 
shm_perm.mode /* only low 9 bits */ 

This cmd can be executed only by a process whose effective user ID equals either 
that of the superuser or shm_penn.uid in the data structure associated with 
shmid. 

Remove the system identifier specified by shmid from the system and destroy the 
shared memory segment and data structure associated with it. This cmd can be 
executed only by a process whose effective user ID equals either that of the 
superuser or shm_penn.uid in the data structure associated with shmid. 

shmctl() fails if any of the following is true: 

shmid is not a valid shared memory identifier shmget() sets errno to EINVAL. 

cmd is not a valid command (EINVAL). 

cmd equals IPC_STAT and operation permission is denied to the calling process (EACCES). 

cmd equals IPC_RMID or IPC_SET and the effective user identifier of the calling process does 
equals neither that of the superuser nor shm_penn.uid in the data structure associated with 
shmid CEPERM). 

bujpoints to an illegal address (EFAULT). 

Return Value 
Upon successful completion. shmctl() returns zero; otherwise, it returns -1 and sets errno to an 
appropriate value. 

Files 
/usr /include/ sys/ipc.h 
/usr /include/ sys I shm.h 
/dev/shm 
/drv/shm 

See Also 
general functions, Jseek(), shm, shmget() 

Notes 
COHERENT 286 implements its shared-memory functions as a device driver instead of as an actual 
system call. 

r.111m.zwmm@E"i""IU·h-"'~··•••••!h11 
Get shared-memory segment 
#include <sys/shm.h> 
shmget(key, size, shmjlg) 
key_t key; int size, shmjlg; 

shmget() returns the shared-memory identifier associated with key. 

A shared-memory identifier and associated data structure and shared memory segment of size size 
bytes is created for key if key does not already have a shared-memory identifier associated with it. 
and (shmjlg & IPC_CREAT) is true. 

LEXICON 



shmgetO 1007 

Upon creation, the data structure associated with the new shared memory identifier is initialized as 
follows: 

shm_perm.cuid, shm_perm.uid, shm_penn.cgid, and shm_perm.gid are set equal to the 
effective user ID and effective group ID. respectively, of the calling process. 

The low-order nine bits of shm_penn.mode are set equal to the low-order nine bits of shmflg. 
These nine bits define access permissions: the top three bits give the owner's access 
permissions (read, write, execute), the middle three bits the owning group's access permissions, 
and the low three bits access permissions for others. 

shm_segsz is set equal to the value of size. 

shm_lpid, shm_nattch, shm_atime, and shm_dtime are set equal to zero. shm_ctime is set 
equal to the current time. 

shmget() fails if any of the following is true: 

size is less than the system-imposed minimum or greater than the system-imposed maximum. 
shmget() sets errno to EINV AL. 

A shared-memory identifier exists for key but operation permission as specified by the low­
order nine bits of shmflg would not be granted (EACCES). 

A shared-memory identifier exists for key but the size of the segment associated with it is less 
than size and size is not equal to zero (EINVAL). 

A shared-memory identifier does not exist for key and (shmflg & IPC_CREAT) is false 
(ENO ENT). 

A shared-memory identifier is to be created but the system-imposed limit on the maximum 
number of allowed shared memory identifiers system-wide would be exceeded (ENOSPC). 

A shared-memory identifier and associated shared-memory segment are to be created, but the 
amount of available physical memory is not sufficient to fill the request (ENOMEM). 

A shared-memory identifier exists for key but ( (shmflg & IPC_CREAT) && (shrriflg & 
IPC_EXCL)) is true (EEXISTJ. 

Return Value 
Upon successful completion, shmget() returns a shared-memory identifier, which is always a non­
negative integer. Otherwise, it returns -1 and sets errno to an appropriate value. 

Files 
/usr/include/sys/ipc.h 
/usr /include/ sys/shm.h 
/dev/shm 
/drv/shm 

See Also 
general functions, lseek(), shm, shmctl(), 

Notes 
COHERENT 286 implements its shared-memory functions as a device driver rather than actual 
system calls. 

LEXICON 



1008 short - signalO 

~----------------------------~ Data type 

short is a numeric data type. By definition, it cannot be longer than an int. Under COHERENT, an 
int is equal to an short; that is, both sizeofint and sizeofshort equals two chars, or 15 bits plus a 
sign. A short normally is sign extended when cast to a larger data type; however, an unsigned 
short will be zero extended when cast. 

See Also 
C keywords, data format, data type 

P®ttMMlli·lim1EHI·t."~ ~''"~---·~----~~ .,_,~~~"'"'~ Shut down the COHERENT system 
/etc/shutdown 

shutdown shuts down the COHERENT system. It is a shell script that leads you through each step 
of system shutdown. Only the superuser root can run shutdown. When shut down has been 
completed, the COHERENT system is in single-user mode. At this point, the user can safely run 
fsck, reboot the system, or turn the computer off. 

Failure to shut down the system before rebooting or shutting off the computer could damage the 
COHERENT file system and destroy data. 

See Also 
commands, reboot 

signalO - System Call --"'~"~ 
Specify disposition of a signal 
#include <signal.h> 
int (*signal(signum, action))() 
int signum, (*action)(); 

A process can receive a signal, or interrupt, from a hardware exception, terminal input, or a kill() 
call made by another process. A hardware exception might be caused by an illegal instruction code 
or a bad machine address, caught by the segmentation hardware. A terminal interrupt character, 
described in detail in tty, generates a process interrupt (and in one case a core dump file for 
debugging purposes). 

When a process receives a signal. it performs an appropriate action. The default action SIG_DFL 
causes the process to terminate. By calling signal, you can specify what action the process takes 
when it receives a given signal signum is the number of the signal, and action points to the routine 
to execute when signum is received. The action SIG_IGN causes a signal to be ignored. Note that 
the signal SIGKILL, which kills a process, can be neither caught nor ignored. signal() returns a 
pointer to the previous action. 

With the exception of SIGKILL and SIGTRAP, caught signals are reset to the default action 
SIG_DFL. To catch a signal again, the specified action must reissue the signal() call. 

The following list gives machine-independent signals by symbolic name (defined in the header file 
signal.h), numeric value, and description. Signals marked by an asterisk produce a core dump if 
the action is SIG_DFL. 

LEXICON 



signalO 

SIGHUP 1 Hangup 
SIGINT 2 Interrupt 
SIGQUIT 3* Quit 
SIGALRM 4 Alarm clock 
SIG TERM 5 Termination 
SIG REST 6 Restart indication 
SIGSYS 7* Bad system call argument 
SIG PIPE 8 Write on closed pipe 
SIG KILL 9 Kill 
SIG TRAP 10* Breakpoint 
SIGSEGV 11• Segmentation violation 

The following lists gives machine-dependent signals defined in the header file msig.h. 

The following signals are specific to the Zilog Z8002 version of COHERENT: 

SIGUNI 12* Unimplemented instruction 
SIGPRV 13* Privileged instruction 
SIGNVI 14* Non-vectored interrupt 
SIGPAR 15* Parity error 

The following signals are specific to the Zilog Z8001 version of COHERENT: 

SIGEPA 12* Extended processor trap 
SIGPRV 13* Privileged instruction 
SIGNVI 14* Non-vectored interrupt 
SIGNMI 15* Non-maskable interrupt (not in all versions) 

The following signals are specific to the Intel 8086 or 80286 version of COHERENT: 

SIGDIVE 12* Divide error 
SIGOVFL 13* Overflow 

1009 

A signal may be caught during a system call that has not yet returned. In this case, the system call 
appears to fail, with errno set to EINTR. If desired, such an interrupted system call may be 
reissued. System calls which may be interrupted in this way include pauseQ, read() on a device 
such as a terminal, write() on a pipe, and waitO. 

Example 
The following program demonstrates signalQ, kill(), getpid(), and fork(). 

#include <signal.h> 

int got_it; 
int errset; 

/* Each side gets its own copy of all data at the fork */ 

/* 
* Control comes here on SIGTRAP. Do no I/O in signal function. 
* Reset the signal if you ever want another. 
*/ 

void 
sig_ser() 
{ 

got it 1; /* tell the child we got it */ 

LEXICON 



1010 

} 

signalO 

if (0 > signal(SIGTRAP, sig_ser)) 
errset = 17 

/* reset the signal */ 

main() 
{ 

} 

int count; 
int child, parent; 

parent= getpid(); /* Both sides will get a copy */ 

if (signal(SIGTRAP, sig_ser) < 0) { /* sets for both sides */ 
perror("signal set failed"); 
exit(O); 

} 

if (child= fork()) {/*parent gets the child's id*/ 
for (count = O; count < 3; count++) { 

kill(child, SIGTRAP); /*signal the child*/ 

} 

} 

while( lgot_it) 
sleep(l); 

if (errset) 

/* wait for signal */ 

perror("parent: signal reset failed"); 

printf("parent got signal %d\n", count); 
got it = errset = O; 

exit(O); 

for (count = O; count < 3; count++) { 

} 

while(lgot_it) /*wait for signal*/ 
sleep(l); 

if (errset) 
perror("child: signal reset failed"); 

printf("child got signal %d\n", count);/* show we got it*/ 

kill(parent, SIGTRAP); 
got it = errset = O; 

/* signal the parent */ 

exit(O); 

See Also 
ldllO, ptraceQ, sh, signame, system calls 

Diagnostics 
In case of an error, signal() returns a pointer to a function returning int. That is, it returns (int 
(*)Q)-1 for an invalid stgnum. 

LEXICON 



signal.h - sinhO 1011 

QDt•MGlll@'fitnM' 
Declare signals 
#include <signal.h> 

The header file signal.h declares manifest constants that name all of the machine-independent 
signals that the COHERENT system uses to communicate with its processes. The header file msig.h 
declares constants for the machine-dependent signals. 

See Also 
header mes, kill, msig.h, signalQ 

QDMtm·• mm1mi.11H@tm1 
Array of names of signals 
#include <signal.h> 
extem char •signame[NSIG+ 1): 

When a program terminates abnormally, its parent process receives a byte of termination 
information from the wait call. This byte contains a signal number, as defined in the header file 
signal.h. For example, SIGINT indicates an interrupt from the terminal. 

The array signame, indexed by signal number, contains strings that give the meaning of each 
signal. Thus, signame[SIGINT+l] points to the string "interrupt". For portability reasons, all 
programs which wait on child processes (such as the shell sh) should use signame. 

Files 
<signal.h> 

See Also 
sh, signalQ, technical information, wait 

m.111rm'®••fm+1rn@M·""M 
Calculate sine 
#include <math.h> 
double sin(radlan) double radian: 

sinQ calculates the sine of its argument radian. which must be in radian measure. 

Example 
For an example of this function. see the entry for acos(). 

See Also 
mathematics library 

milll®Ml@@!i!Jiijlldffl[.]li!nM) 
Calculate hyperbolic sine 
#include <math.h> 
double sinh(radlan) double radian: 

sinhQ calculates the hyperbolic sine of radian, which is in radian measure. 

Example 
For an example of this function. see the entry for cosh(). 

See Also 
mathematics library 

LEXICON 



1012 size - sizeof 

l!m!J·lhill@J.' 
Print size of an object file 
size lflle •.• ] 

size prints the sizes, in bytes, of the segments of eachjlle (in decimal) and also prints the total size 
of all the segments (in both decimal and octal). Eachjlle must be an object file. 

Please note that because COHERENT 286 and COHERENT 386 use different object formats, size 
does not behave the same on each implementation. 

Under COHERENT 286. size outputs one line for each file, listing the following segments: 

Shared instructions 
Private instructions 
Uninitialized instructions 
Shared data 
Private data 
Uninitialized data 

Under COHERENT 386 size outputs one line for each file, listing the following segments: 

.text 

.data 

.bss 

See Also 
cofl'.h, commands, l.out.h 

Notes 
size makes no concessions to machines that use hexadecimal. 

Em1 Wltii·li-' 
Return size of a data element 

sizeof is a C operator that returns a constant int that gives the size of any given data element. The 
element examined can be a data object, a portion of a data object, or a type cast. sizeof returns the 
size of the element in chars; for example 

long foo; 
sizeof foo; 

returns four. because a long is as long as four chars. 

sizeof can also tell you the size of an array. This is especially helpful for use with external arrays, 
whose size can be set when they are initialized. For example: 

char *arrayname[] = { 

}; 

"COHERENT", "Mark Williams C for the Atari ST", 
"Let's C", "Fast Forward" 

LEXICON 



main () 
{ 

} 

printf("\"arrayname\" has %d entries\n", 
sizeof(arrayname)/sizeof char*); 

sleep - sleepO 1013 

sizeof is especially useful in malloc routines, and when you need to specify byte counts to I/O 
routines. Using it to set the size of data types instead of using a predetermined value will increase 
the portability of your code. 

See Also 
C keywords, data types, operators 

-- lt\I ma,_,,,. ••• ~~"lillil ~'~""~''""'~~~~'''~ 
Stop executing for a specified time 
sleep seconds 

The command sleep suspends execution for a specified number of seconds. This routine is 
especially useful with other commands to the shell. For example, typing 

(sleep 3600; echo coffee break time) & 

executes the echo command in one hour (3,600 seconds) to indicate an important appointment. 

See Also 
alarm(), commands, ksh, pause(), sh 

sleepO - General Function ''~~mmususmmmm•"-"-"WM Mm"-"W!&MMMMMM"W!&"-~''mm"lillil 

Suspend execution for interval 
sleep(seconds) 
unsigned seconds; 

sleep() suspends execution for seconds. 

Example 
The following example, called godot.c, demonstrates how to use sleep(). 

main() 
{ 

printf( "Waiting for Godot .•• \n"); 

for ( ; ; ) { 

} 
} 

See Also 

/* sleep for five seconds */ 
sleep(S); 
printf (" • • • still waiting •.• \n") ; 

general functions 

LEXICON 



1014 sloadO - smail 

The COHERENT system accesses all devices through drivers residing in the system. Except for the 
root device, drivers must be explicitly loaded before use; this operation does not involve re-booting. 

sload() loads the driver given by file as device number major. This number uniquely identifies the 
driver to the system. conp is a reference to a CON structure, as defined in the header file con.h. It 
describes standard entry points and gives other information on the driver. Normally. major and 
conp are obtained from the driver load module; this is the method used by the load command. 

file must be in the correct format. Usually. it is created using the -k option to Id. 

This call is restricted to the superuser. 

Files 
<COn.h> 
/drv/* 

See Also 
con.h, init, l.out.h, Id, suload, system calls 

Diagnostics 
sload() return zero upon successful loading of the appropriate driver. or -1 on errors. sload() errors 
include nonexistent.file. parameter (such as major) out of range, driver already loaded for major, or 
file not a file containing a proper driver. 

Notes 
Because COHERENT 386 version 4.0 does not support loadable device drivers, sload() is not 
included with that release of COHERENT. 

~"""'"'"' --~~""'~~~~~""'~""''"~'''~'~'"'"'~ 
Send UUCP mail 
smail [-AcdLIRrv) -a alias.file -F address -H [hostdomatn] \ 

-h [host] -m num -n [nameltst) -p path.file \ 
-q num -u uuxjlags address ... 

smail sends mail locally for delivery to remote COHERENT systems. 

Options 
smail recognizes the following options: 

-A Print the resolved UUCP addresses. Do not collect a message or mail anything. The -A option 
to smail is only moderately helpful. It will expand any aliases, and expand routes to any 
machine it knows how to reach. However, it will not expand addresses that would otherwise 
get passed to the smart-host. 

-a alias.file 
Read allasjtle instead of /usr/lib/mail/allases to find the list of mailing aliases that you have 
set. 

-c Check /usr/lib/mail/paths for the cost of mailing a message to a given host, without actually 
sending the message. If you wish. you can redesign the path or reset the queueing threshold. 

LEXICON 



smail 1015 

-d Tell small to give a verbose description of what it is doing. Do not invoke other mailers. 

-Faddress 
Use address on the From: line in locally generated mail. This lets you make a message appear 
as if it came from someone else. 

-H hostdomaln 
Set the host's domain. The default is the contents of /etc/domain. 

-hhostname 
Set a hostname. The default is the contents of /etc/uucpname, followed by a period, followed 
by the contents of /etc/domain. Use this option only if you wishtolie to small about your 
machine's name. 

-L Send all addresses to the local mailer for processing, including mail that appears to be for 
remote systems. 

-1 Send a domain address to the local mailer for processing. Normally, only local addresses go to 
the local mailer. 

-m number 
Tell small to hand no more than number jobs to uux for immediate delivery. 

-n [namellst] 
Use name-list style aliasing. In this method, a name is linked to an address. This correctly 
resolves addresses like Santa.Claus@north.pole. If no namellst is named, then 
/usr/lib/mall/namelistis read by default. 

The command nptx builds a file of all permutations of common names and addresses, to make 
such addressing easy. 

-ppathflle 
Readpathflle instead of /usr/lib/mail/paths to find paths to other systems. 

-q number 
Set the queuing threshold to number. When routing mail to a given host, smail checks the 
"cost" of contacting the host; this cost is given in /usr/lib/mail/paths. If the cost is less than 
the queueing threshold, then small sends the mail immediately; otherwise, it queues the mail 
for later shipment. Under COHERENT, the default queueing threshold is 100. 

-R Reroute UUCP paths, trying successively larger righthand substrings of a path until a 
component is recognized. This is called "reroute" routing. 

-r Route the first component of a UUCP path (hostladdress) in addition to routing domain 
addresses (user@domain). This is called "always" routing. 

-u uuxjlags 
Pass uuxjlags to uux for remote mall. This overrides any of the default values and other 
queueing strategies. 

-v Give a verbose description, but invoke other mailers. 

Addresses 
smail understands UUCP-style addresses, both domain-style addresses (e.g., henry@mwc.com) full 
UUCP path names, (e.g., mwc!lepantolhenry), or local addresses (e.g., henry). small takes 
user@domain to be a domain address, host!address to be a UUCP path, and anything else to be a 
local address. 

smail gives precedence to '@' over '!' when parsing mixed addresses. Thus, alb@c is parsed as 
(alb)@c, rather than a!(b@c). 

LEXICON 



1016 smail 

Routing 
There are two forms of an address for E-mail: internal, and external (also called envelope). 

The internal address is what appears on the To: line in the message's header. This is usually the 
address typed in by the person who wrote the message. 

The envelope address is the address that small passes to the mail delivery agent (either uux or 
lmall). 

Resolving is the act of transforming an internal address into an envelope address. There are two 
steps to resolving an address: host resolution, and alias resolution. 

Host resolution determines the computer to which small sends the message. Host resolution is also 
called routing. 

If a message resolves to the local machine. then alias resolution is applied. Alias resolution is also 
called alias expansion. Mail aliases are expanded by alias resolution. If a local address is actually 
an alias, the newly resolved address must go through host resolution again. 

Although small understands domain-style addresses. it can only deliver to UUCP paths and local 
addresses. Thus. it must resolve a domain address into a UUCP path or local address. 

To resolve a domain address. small finds a route to the most specific part of the domain specified in 
the routing table. Two degrees of resolution can occur: 

Full resolution 
small finds a route for the entire domain specification. It either tacks the user specification 
onto the end of the UUCP path. or resolves it into a local address. whichever is appropriate. 

Partial resolution 
small finds a route for only the right portion of the domain specification; e.g .. for 

henry@lepanto.mwc.com 

it finds .mwc.com but cannot identify lepanto. Here. small tacks the complete address (in 
the form domain!user) onto the end of the UUCP path. For example, if small finds that the 
route to mwc.com is via systems Coo, bar, and baz, it constructs the path: 

foo!bar!baz!lepanto.mwc.com!henry 

This assumes that the version of small on system baz will recognize the token 
lepanto.mwc.com as being a domain rather than a host. 

It is an error if a partially resolved address routes to the local host (a null UUCP path), since 
according to the routing table, the local host is responsible for resolving the address more fully. 

The -r flag tells small to attempt to route the first (leftmost) component of a UUCP path - probably 
to impress people with how many UUCP hosts it knows. This is called "always routing". If this fails, 
it passes the unrouted address to uux, in case the path data base is not complete. 

The -R flag tells small to take a UUCP path and route the rightmost host named in the path. This is 
called "reroute" routing. Use it if you have a very up-to-date routing table, and wish to bypass some 
obsolete routing information in the current path. This is generally considered dangerous and anti­
social. 

If a route cannot be found from the available routing data base, then one more attempt to route the 
mail is made by searching for an entry in the database for a route to a smart-host. If this entry 
exists, then small forwards the mail there. for it to deliver. This lets one host depend on another, 
presumably better informed. host to deliver its mail. This kind of arrangement should be worked 
out in advance with the smart-host's administrator. 

LEXICON 



smail 1017 

After small resolves an address, it reparses it to see if it is now a UUCP path or local address. If the 
new address turns out to be another domain address, smail complains. This error occurs when an 
address partially resolves to the local host. 

By default, small does not alter an explicit UUCP path of any mail message. If the stated path is 
unuseable (i.e .. the next host is unknown) then small applies always routing, and attempt to deliver 
the mail to the potentially new address. If this fails too, then it uses reroute routing and makes 
another attempt to deliver the message. Finally, it attempts to to find a path to a smart-host and 
pass the mail to it. 

From-ming 
smail collapses the From_ and >From_ lines to generate a simple "from" argument, which it then 
uses to create its own From line. The rules for from-ming are: concatenate all "remote from" hosts 
(separating them by !'s), and tack on the address from the last From_ line. If that address is in 
user@domain format, rewrite it as domain!user. Ignore host or domain if either is simply the local 
hostname. It also removes redundant information from the From_ line. 

small generates its own From_ line. For UUCP-bound mail, small generates a "remote from 
hostname", where hostname is the UUCP hostname (not the domain name), so that From_ can 
indicate a valid UUCP path, leaving the sender's domain address in From:. 

Headers 
Protocol RFC822, which governs Internet mail, demands that messages contains certain headers. 
including To:, From:, and Date. If these headers are absent in locally generated mail. small inserts 
them. 

Undeliverable Mail 
small returns to sender all undeliverable mail (i.e., unknown user or unknown host). 

Logging 
If you are having problems with mail delivery and wish to log all messages, simply create the 
directory /usr/spool/uucp/ .Log/mail. It will then generate a log in that directory called mail. 

This file can grow quickly on a busy system, so you may want to add it to the script uumvlog, to 
trim it down to size automatically. 

Files 
/bin/lmail - Local mailer 
/bin/mail - Mail user agent 
/usr/llb/mail/aliases-Alias data base 
/usr/llb/mail/namellst- Name list data base 
/usr/lib/mail/paths - Path data base 
/usr/spool/uucp/ .Log/mail/mail- Log of mail 

See Also 
aliases, mail, paths, rmail 

Notes 
small and rmail are links to the same program. 

LEXICON 



1018 smultO - sort 

smultO - Multiple-Precision Mathematics 
Multiply multiple-precision integers 
#include <mprec.h> 
void smult(a, n, c) 
mint •a, •c: int n: 

The COHERENT system includes a suite of routines that allow you to perform multiple-precision 
mathematics. The function smult() multiplies the multiple-precision integer (or mint) pointed to by 
a by the integer n. which is <= 127. It writes the product into the mint pointed to by c. 

See Also 
multiple-precision mathematics 

~"'-~ BL"'-~~~ - ·~~"'-~"-~~"'-"-~"'-"-"'-"-"'-'-~ 
Sort lines of text 
sort [-bcdtlmnru] [-t c] [-o ouiji!e] [-T dlr] [+beg[-end]J[fl!e ... ] 

sort reads lines from eachjl!e, or from the standard input if no file is specified. It sorts what it 
reads, and writes the sorted material to the standard output. 

sort sorts lines by comparing a key from each line. By default, the key is the entire input line (or 
record) and ordering is in ASCII order. The key, however, can be one or more fields within the input 
record; by using the appropriate options, you can select which fields are used as the key, and 
dictate the character that is used to separate the fields. 

The following options affect how the key is constructed or how the output is ordered. 

-b Ignore leading white space (blanks or tabs) in key comparisons. 

-d Dictionary ordering: use only letters. blanks, and digits when comparing keys. This is 
essentially the ordering used to sort telephone directories. 

-f Fold upper-case letters to lower case for comparison purposes. 

-i Ignore all characters outside of the printable ASCII range (octal 040-0176). 

-n The key is a numeric string that consists of optional leading blanks and optional minus sign 
followed by any number of digits with an optional decimal point. Ordering is by the numeric, 
as opposed to alphabetic, value of the string. 

-r Reverse the ordering, i.e., sort from largest to smallest. 

As noted above, the key compared from each line need not be the entire input line. The option +beg 
indicates the beginning position of the key field in the input line, and the optional -end indicates 
that the key field ends just before the end position. If no -end is given, the key field ends at the end 
of the line. Each of these positional indicators has the form +m.nf or -m.nf. where m is the number 
of fields to skip in the input line and n is the number of characters to skip after skipping fields. 
Optional flags] are chosen from the above key flags (bdfinr) and are local to the specified field. 

The following additional options control how sort works. 

-c Check the input to see if it is sorted. Print the first out-of-order line found. 

-m Merge the input files. sort assumes each.fl!e to be sorted already. With large files, sort runs 
much faster with this option. 

-o ouljlle 
Put the output into ouljlle rather than on the standard output. This allows sort to work 
correctly if the output file is one of the input files. 

LEXICON 



spell 1019 

-tc Use the character c to separate fields rather than the default blanks and tabs. For example, -t/ 
uses the slash instead of white space to separate fields; this is useful when sorting file names 
and directory names. 

-Tdlr 
Create temporary files in directory dlr rather than the standard place. 

-u Suppress multiple copies of lines with key fields that compare equally. 

The following example sorts the password file /etc/passwd, first by group number (field 4) and then 
by user name (field 1): 

sort -t: +3n -4 +O -1 /etc/passwd 

Files 
/usr/tmp/sort• - First attempt at temporary files 
/tmp/sort• - Second attempt at temporary files 

See Also 
ASCII, commands, ctype, tsort, uniq 

Diagnostics 
sort returns a nonzero exit status if internal problems occurred or if the file was not correctly 
sorted, in the case of the -c option. 

mllif•lhiuijmr• 
Find spelling errors 
spell [-a)[-bJlflle ... J 

spell builds a set of unique words from a document contained in each inputjlle, or the standard 
input if none. It writes a list of words believed to be misspelled onto the standard output. 

spell should normally be invoked with the document in the form of the input to the text formatter 
nroff rather than the output. spell deletes control information to the formatter by invoking deroil'. 

The default dictionary is for American spelling of English. The -a option specifies this dictionary 
explicitly. Under the -b option, British spelling is checked. This acceptsfavour,flbre. and travelled 
rather than the American spellings favor.fiber, and traveled for the same words. Words ending in 
lze are also accepted when ending in lse (e.g .. digitize, digitise). 

The dictionary has a reasonably complete coverage of proper names as well as technical terms in 
certain fields. However, it covers some fields (e.g .. computer science) better than others (e.g .• 
medicine). 

Looking up a Word 
The COHERENT command look reads spell's dictionaries to find words that resemble a fraction of a 
word that you type. For example, the command 

look consider 

returns the following to the standard output: 

LEXICON 



1020 split 

consider# 
considerable 
considerably 
considerate 
considerately 
consideration# 
considered 
considering 

The '#' indicates a possible plural form by adding 's' to the end of the word. This lets you check the 
spelling of a word without having to enter the word into a file and run spell on it. 

Files 
/usr I diet/ clista - Compressed American dictionary 
/usr /diet/ clistb- Compressed British dictionary 
/usr/dict/spellhist- History file for dictionary maintainer 
/usr/lib/spell 

See Also 
commands, deroff, look, nroff, sort, typo 

Notes 
Dictionaries are not provided for languages other than English. 

No dictionary can be complete. You must add new words to the dictionary to ensure that it fully 
meets your needs. 

Obscure words (such as opcodes, variable names, etc.) are flagged as spelling errors. 

Because the data files required for spell are quite large, they might not be included on COHERENT 
systems for machines with insufficient disk space. As a result, the command might not work as 
expected on all systems. 

~aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa~ 
Split a text file into smaller files 
split [-nllnesl(-ccount][lnjlle [outfile) I 

split divides a file into a number of smaller files. This is especially useful for dividing text files into 
chunks that can be managed by MicroEMACS or similar editors, or for dividing binary files into 
chunks that can be easily transmitted via UUCP. 

split uses tnflle as its input file if given: otherwise, it uses the standard input. If lnfile is '-', split 
uses the standard input. 

split puts its output into files with names prefixed by outfile and suftlxed consecutively with aa, ab, 
ac, and so on. If no outfile is specified, file names are prefixed with x. 

Normally. split puts 1.000 lines in each output file. This default may be changed for text files by 
the option -nllnes, where nllnes gives the desired number of lines per file. When using split on 
binary files, the count argument to the -c option allows you to specify the number of characters to 
place in each output file. 

See Also 
commands 

LEXICON 



spowO - sqrtO 1021 

p.1.n0•®ml@li@MM®@@uij\it1 ••••••••••••••••••••• iliillllllil 
Raise multiple-precision integer to power 
#include <mprec.h> 
void spow(a, n, b) 
mint •a, *b; int n: 

The COHERENT system includes a suite of routines that allow you to perform multiple-precision 
mathematics. spow() raises the multiple-precision integer (or mint) pointed to by a to the power of 
n, and writes the result into the mint pointed to by b. In no case may the exponent be negative. 

See Also 
multiple-precision mathematics 

e·umm•~:11•u·~n~·1•1•m·11-----------------------------Format output 
#include <stdio.h> 
int sprlntf(strlng,format [ , arg ] ... ) 
char •string, 1'ormat: 

sprlntf() formats and prints a string. It resembles the function prlntf(), except that it writes its 
output into the memory location pointed to by string, instead of to the standard output. 

sprlntf() reads the string pointed to by format to specify an output format for each arg; it then writes 
every arg into string, which it ends with a null character. For a detailed discussion of sprlntf()'s 
formatting codes, see prlntf(). 

Example 
For an example of this function, see the entry for sscanf(). 

See Also 
prlntf(), fprlntf(), STDIO 

Notes 
The output string passed to sprlntf() must be large enough to hold all output characters. 

Because C does not perform type checking, it is essential that each argument match its format 
specification. 

At present, sprlntf() does not return a meaningful value. 

&lllM51l@1@!t'tijliiA!t1lrllngmJ 
Compute square root 
#include <math.h> 
double sqrt(z) double z: 
sqrt() returns the square root of z. 

Example 
For an example of this function. see the entry for cell(). 

See Also 
mathematics library 

Diagnostics 
When a domain error occurs (i.e., when z is negative), sqrt() sets errno to EDOM and returns zero. 

LEXICON 





Future Domain TMC-845/850/860/875/885 
Future Domain TMC-840/841 /880/881 
Seagate STOl /ST02 

SS 1023 

This driver has major number 13. It can be accessed either as a block-special device or as a 
character-special device. The minor number specifies the device and partition number for disk-type 
devices; this lets you use up to eight SCSI-IDs, with one logical unit number (LUN) per SCSI-ID and 
up to four partitions per LUN. The present version supports only LUN O per SCSI-ID. 

The first open call on a SCSI disk device reads the partition table into memory. 

Controller Configuration 
For your Future Domain or Seagate host adapter to work with COHERENT, you must install it with 
interrupts enabled. If you have been running your host adapter with interrupts disabled, a good 
first choice for interrupt number is IRQ 5, unless you know that you have another device installed 
on your computer that already uses this interrupt. Consult the instructions provided with your 
host adapter, and the jumper settings, to determine the IRQ number. 

The base address value used by ss is the four-digit hexadecimal memory-segment number of the 
host adapter's starting address. This number Is most often CAOO: other common values are C800, 
CCOO, CEOO, DCOO, and DEOO. You must use the correct value, as specified by the jumper settings 
on your host adapter. 

Device driver variables SS_BASE_ and SS_INT_ correspond to the base address and interrupt vector. 
respectively. Device driver variable NSDRIVE_ must be patched before the driver is loaded. The 
low-order byte of this variable is a bit map that indicates the SCSI-IDs of all installed target devices. 
The high-order byte indicates the type of host adapter. Labelling the bits in the low-order byte of 
NSDRIVE_ is as follows: 

Bit number: 7 6 5 4 3 2 1 0 - least slgnljlcant bit 

There should be a value of one for each installed target device. Do not set a value of one for the 
SCSI-ID of the host adapter. The high-order byte of NSDRIVE_ is OxOO for Seagate STOl and ST02. 
Ox80 for TMC-845/850/860/875/885,and Ox40 for TMC-840/841/880/881. For example, if you 
are using a TMC-885 and a single hard drive with SCSI ID of zero, then set NSDRIVE_ to Ox8001. 
See Lexicon article hs for an example of how to configure a device driver. 

When processing BIOS 1/0 requests prior to booting COHERENT. SCSI host adapters use 
"translation-mode" drive parameters: number of heads, cylinders, and sectors per track. These 
numbers are called translation-mode parameters because they have nothing to do with physical 
drive geometry. The translation-mode parameters used by the BIOS code present on your host 
adapter can be obtained using the dpb utility found on the boot diskette of versions 3.2.0 and later 
of COHERENT. 

ss has a table. drv_parm_. which contains eight two-word entries, one for each possible SCSI-ID. 
The first word of each entry must contain the number of cylinders for the drive. The high-order byte 
of the second word is the number of sectors per track: the low-order byte is the number of heads. 
Entries in drv_parm_ should be patched for each drive which is accessible by the BIOS. Values 
need not be patched for drives inaccessible by the BIOS. Note that BIOS code is executed by 
COHERENT only during the initial bootstrap. After that, drive parameters are of no consequence 
because SCSI 1/0 requests are based upon logical block number. rather than upon 
cylinder I head I sector addressing. 

The installation procedure for COHERENT versions 3.2.0 and later patches all necessary variables 
for the accompanying version of the ss driver by executing the command: 

/etc/mkdev scsi 

LEXICON 



1024 sscanfO 

Minor Device Numbers 
ss usually uses the special files /dev/sd• and /dev/rsd•. For information on the meaning of minor 
numbers with these special files, see the article on ahal54x. 

Loading the Driver 
ss must be loaded on a system that does not have a SCSI hard disk as the root device. To do so, 
use the command /etc/drvld, as follows: 

/etc/drvld -r /drv/ss 

Files 
/dev/sd• - block-special devices 
/dev/rsd• - character-special devices 

See Also 
device drivers, drvld, scsi 

Notes 
Current releases of ss support disk-type devices only. Zero is the only LUN allowed. Future 
versions will add support for tape-type and other devices, as well as nonzero LUN's. 

In version 3.2.0 of COHERENT, another variable, SS_HOST_. must be patched in the driver to be 
equal to the SCSI-ID of the host adapter. This value is six for Future Domain adapters, and seven 
for Seagate. Variable SS_HOST_ has been deleted from versions of the ss driver later than that 
shipped with COHERENT 3.2.0. 

Mi+tclnll:tl•n•~"'~··••••••••••• 
Format a string 
#include <Stdio.h> 
int sscanf(strlng,format [, arg J ••• ) 
char •string; char c:format; 

sscanf() reads the argument string. and uses format to specify a format for each arg. each of which 
must be a pointer. For more information on sscanf()'s conversion codes, see scant(). 

Example 
This example uses sprintf() to create a string, and then reads it with sscanf(). It also illustrates a 
common problem with this routine. 

#include <stdio.h> 

main() 
{ 

} 

char string[80J; 
char sl[lO], s2[10); 

sprintf(string, "123456789012345678901234567890"); 
sscanf(string, "%9c", sl); 
sscanf(string, "%10c", s2); 

printf("\n%s is the string\n", string); 
printf("%s: first 9 characters in string\n", sl); 
printf("%s1 first 19 characters in string\n", s2); 

LEXICON 



stack - standard input 1025 

See Also 
fscanf(), scanf(), STDIO 

Diagnostics 
sscanf() returns the number of arguments filled. It returns zero if no arguments can be filled or if 
an error occurs. 

Notes 
Because C does not perform type checking. an argument must match its format specification. 
sscanf() is best used only to process data that you are certain are in the correct data format. such 
as data that were written with sprintf(). 

sscanf() is difficult to use correctly. and incorrect usage can create serious bugs in programs. It is 
recommended that you use strtok() instead. 

~'-~'-~ SSS~~~~~~~~~~~~~~~~~~ 
The stack is the segment of memory that holds function arguments, local variables, function return 
addresses. and stack frame linkage information. The COHERENT-286 library sets the stack size to 
four kilobytes. You can change the size of the stack by using the command fix:stack. 

If your program uses recursive algorithms. or declares large amounts of automatic data, or simply 
contains many levels of functions calls, the stack may "overflow", and overwrite the program data. 
Note that this is unlikely with COHERENT 386, because the 80386 has implemented dynamic stack 
allocation. 

See Also 
definitions, fix:stack 

standard error - Definition sss~sss~~~~'""~~"'-~111i'Th111111i'Th111WHWHWHWHWHWHWH111i'Th111111i'Th111111i'Th111SSS 

The standard error is the peripheral device or file where programs write error messages by default. 
It is defined in the header file stdio.h under the abbreviation stderr, and by default is the 
computer's monitor. 

The COHERENT shell sh lets you redirect into a file all text written to the standard error device. To 
do so, use the shell operator 2>. For example 

make 2>errorfile 

redirects all error messages generated by make into file errorfile. 

See Also 
definitions, stderr, stdio.h 

standard input - Definition 
The standard input is the device or file from which data are accepted by default. It is defined in the 
header file stdio.h under the abbreviation stdin, and will be the computer's keyboard unless 
redirected by the operating system, a shell, or freopen. 

The COHERENT shell sh lets you redirect the standard input device. To do so, use the shell 
operator<. For example 

mail fwb <textfile 

the standard input device from your terminal to file textflle; in effect. this commands mails the 
contents of textflle to user fwb. 

LEXICON 



1026 standard output - statO 

See Also 
definitions, std.in, std.io.h 

pEm.m;c.tJUmt ••D@IU·M -
The standard output is the device or file where programs write output by default. It is defined in 
the header file std.io.h under the abbreviation stdout. and in most instances is defined to be the 
computer's monitor. 

The COHERENT shell sh lets you redirect into a file all text written to the standard output device. 
To do so, use the shell operator>. For example 

sort myfile >sortfile 

redirects the text output by sort into file sortme. 

See Also 
definitions, std.io.h, stdout 

~~~,,.. ~~~------~~,,~,,.. ..,_,""~""RL~~ 
Find file attributes
#include <sys/stat.h>
int stat(flle, statptr)
char ":file; struct stat •statptr;

stat() returns a structure that contains the attributes of a file, including protection information, file
type, and file size.

file points to the path name of file. statptr points to a structure of the type stat, as defined in the
header file stat.h.

The following summarizes the structure stat:

struct stat {
dev t st_dev; /* Device */
ino t st ino•

- I
/* i-node number

unsigned short st_mode;/* Mode */
short st_nlink; /* Link count */
short st_uid; /* User id */
short st_gid; /* Group id */
dev t st_rdev; /* Real device */
fsize t st _size; /* Size */
time t st_atime; /* Access time */
time - t st_mtime; /* Modify time */
time t st_ctime; /* Change time */

};

*/

The following lists the legal settings for the element st_mode which defines the file's attributes:

LEXICON

statO 1027

S_IFMT 0170000 File types
S_IFREG 0100000 Ordinary file
S_IFDIR 0040000 Directory
S_IFCHR 0020000 Character-special file
S_IFBLK 0060000 Block-special file
S_ISUID 0004000 Set user identifier
S_ISGID 0002000 Set group identifier
S_ISVTX 0001000 Save text bit
S_IREAD 0000400 Owner read permission
S_IWRITE 0000200 Owner write permission
S_IEXEC 0000100 Owner execute permission

st_dev and st_ino together form a unique description of the file. The former is the device on which
the file and its i-node reside, and the latter is the index number of the file. st_mode gives the
permission bits, as outlined above. st_nlink gives the number of links to the file. The user id and
group id of the owner are st_uid and st_gid, respectively. st_rdev. which is valid only for special
files, holds the major and minor numbers for the file.

The entry st_size gives the size of the file, in bytes. For a pipe. the size is the number of bytes
waiting to be read from the pipe.

Three entries for each file give the last occurrences of various events in the file's history. st_atime
gives the time the file was last read or written to. st_mtime gives the time of the last modification,
write for files, create or delete entry for directories. st_ctime gives the last change to the attributes.
not including times and size.

Example
The following example uses stat() to print a file's status.

#include <sys/stat.h>
main()
{

struct stat sbuf;
int status;

if (status= stat("/usr/include", &sbuf)) {
printf("Can't find\n");
exit(!);

}

printf("uid = %d gid
}

Files
<sys/stat.h>

See Also

%d\n", sbuf.st_uid, sbuf.st_gid);

chmod(), chown(), ls, open(), system calls

Notes
stat() differs from the related function fstat() mainly in that fstat() accesses the file through its
descriptor, which was returned by a successful call to open(), whereas stat() takes the file's path
name and opens it before checking its status.

LEXICON

1028 stat.h - statfsO

Diagnostics
stat() returns -1 if an error occurs, e.g .. the file cannot be found. Otherwise, it returns zero.

stat.h - Header File
Definitions and declarations used to obtain file status
#include <sys/stat.h>

stat.h is a header file that contains the declarations of several structures used by the routines fstat
and stat, which return information about a file's status.

See Also
chmod(), fstat(), header me, stat()

The COHERENT system call statfs() returns information about a file system, either mounted or
unmounted.

bu.ff er points to a structure of type statfs, which contains the following members:

short f _fstyp; /* type of the file system */
short f_bsize; /* block size */
short f_frsize; /* fragment size */
long f_blocks; /* number of blocks in the file system */
long f_bfree; /* number of free blocks */
long f_files; /* number of file nodes */
long f - ffree; /* number of free file nodes */
char f _fname(6]; /* name of the volume */
char f _fpack[6]; /* name of the pack */

length is the length of the area into which statfs() can write its output. This should always be set to
sizeof(struct statfs).

path andfstype identify the file system. If the file system is unmounted, then path should name the
device by which the file system is accessed, andfstype should contain the type of the file system. If
the file system is mounted, then path should give the full path name of a file on the file system in
question, andfstype must be set to zero.

statfs() returns zero if all went well. If something went wrong, it returns -1 and sets errno to an
appropriate value.

See Also
fstatfs(), mkfs, system calls, ustat()

Notes
statfs() is available only under COHERENT 386.

LEXICON

static - stddef.h 1029

mmm••.n·11.1. ~"~~,~,,,,,,~,~~
Declare storage class

static is a C storage class. It has two entirely different meanings. depending upon whether it it
appears inside or outside a function.

Outside a function. static means that the function or variable it preceeds may not be seen outside
the module.

Inside a function, static may only precede a variable. It means that that variable is permanently
allocated, rather than allocated on the stack when the function is entered and discarded when the
function exits. If a static variable is initialized, that occurs before the program starts rather than
every time the function is entered. If a function returns a pointer to a variable. often that variable is
declared static within the function. If a pointer to a non-static local variable is returned, that
variable is freed when the function returns and the pointer points to an unprotected location.

Example
The following example demonstrates the uses of the static keyword. It returns the next integer in a
sequence as a string.

/* static to keep function hidden outside of this module */
static char *nextint()
{

}

/* static to protect value between calls */
static int next = O;
/* static to allow the return of a pointer to s */

static char s[5];

sprintf(s, "%d", next++);
return(s);

See Also
auto, C keywords, extern, register variable, storage class

@tr.1111:mrnm• ~-. --"~~"'''~"'""'~-.v
Header for variable numbers of arguments
#include <stdarg.h>

The header stdarg.h declares and defines the routines used to traverse a variable-length argument
list. It declares the type va_Ust and the function va_end, and it defines the macros va_start and
va_arg.

See Also
header mes, varargs.h

Mlftl'llllt®Uli?
Header for standard definitions
#include <stddef.h>

stddef.h defines three types and two macros that are used through the library. They are as follows:

LEXICON

1030 stderr - STDIO

NULL
otl'setof()
ptrdiff_t
slze_t
wchar_t

See Also
header files

Null pointer
Offset of a field within a structure
Numeric difference between two pointers
Type returned by slzeof operator
Typedef for wide chars

~ ~~~~
stderr is the name of the FILE pointer assigned to the standard error device. It is set in the header
file stdlo.h.

See Also
definitions, stdln, stdlo.h, stdout, standard error - -.~~ .. ,~"'"'~~~ -
stdln is the name of the FILE pointer that is assigned to the standard input device. It is set in the
header file stdlo.h.

See Also
definitions, standard Input, stderr, stdlo.h, stdout

~ ~~ -IB~B\1
STDIO is an abbreviation for standard input and output. It refers to a set of standard library
functions that accompany all C compilers and that govern input and output with peripheral devices.

COHERENT includes the following STDIO routines:

clearerr(). . Present status stream
fclose() . . Close a file stream
fdopen() . Open a file stream for 1/0
feof() . . Discover a file stream's status
ferror() . . Discover a file stream's status
mush() . . Flush an output buffer
fgetcQ. . Get a character
fgets(). . . Get a string
fgetw() . . Get a word
ftleno() . . Get a file descriptor
fopen() . . Open a file stream
fprlntf(). . Format and print to a file stream
fputc() . . Output a character
fputs() . . Output a string
fputw() . . Output a word
fread() . . Read a file stream
freopen() . . Open a file stream
fscanf() . . Format and read from a file stream
fseek() . . Seek in a file stream
ftell() . . . Return file pointer position
fwrlte() . . Write to a file stream
getc() . . . Get a character
getchar() . . Get a character
gets() . . Get a string
getw() Get a word

LEXICON

stdio.h - stdlib.h 1031

pclose().
popen().
printf() .
putc() . .
putchar().
puts() . .
putw() ..
rewind()
scanf() .
setbuf().
sprlntf()
sscanf().
ungetc()

. Close a pipe

. Open a pipe

. Print a formatted string

. Output a character

. Output a character

. Output a string

. Output a word

. Reset a file pointer

. Format and input from standard input

. Set alternative file-stream buffers

. Format and print to a string

. Format and read from a string

. Return character to file stream

STDIO routines are buffered by default.

See Also
buffer, FILE, Libraries, stdio.h, stream

QMlll@l•t:tliL"-~~~~~~'~"''~"-"9ll ~~''""""'~~'~'~
Declarations and definitions for I/0

stdio.his a header file that defines several manifest constants used in standard I/0, such as NULL
and FILE, declares the STDIO functions, and defines numerous 1/0 macros.

See Also
header me, STDIO

GW@•=@t•t1@•"'"'~ ~~~~~"'""~~'~'""~''~'''
Declare/define general functions
#include <stdlib.h>

stdlib.h is a header file that is defined in the ANSI standard. It declares a set of general utilities and
defines attending macros and data types. as follows:

Types
div _t Type ofobject returned by div
ldiv_t Type of object returned by ldiv

Manifest Constants
EXIT_FAILURE .
EXIT_SUCCESS.
MB_CUR_MAX
RAND_MAX.

Functions
abort()
abs().
atof()
atoi()
atol()
bsearch().
calloc().
div().
exit()
free()

Value to indicate that program failed to execute properly
Value to indicate that program executed properly
Largest size of multibyte character in current locale
Largest size of pseudo-random number

. End program immediately
Compute the absolute value of an integer
Convert string to floating-point number
Convert string to integer
Convert string to long integer

. Search an array

. Allocate dynamic memory

. Perform integer division
Terminate a program gracefully

. De-allocate dynamic memory to free memory pool

LEXICON

1032 stdout - stimeO

getenv()
labs() ..
ldiv() ..
malloc()
qsort() .
rand() . .
realloc()
srand() .
strtod().
strtol() .
strtoul()
system()

See Also
header files

Read environmental variable
Compute the absolute value of a long integer
Perform long integer division

. Allocate dynamic memory

. Sort an array

. Generate pseudo-random numbers

. Reallocate dynamic memory

. Seed the random-number generator

. Convert string to floating-point number

. Convert string to long integer

. Convert string to unsigned long integer

. Suspend a program and execute another

~~~"'~"~ --"'~~~~"''~ ~~ ~'~ -
stdout is the name of the FILE pointer that is assigned to the standard output device. It is set in 
the header file stdio.h. 

See Also 
definitions, standard output, stderr, stdin, stdio.h 

m@nmm1tijiijlt1nh~~ ~~~~~~~~"'~~ ~~'-W 
The sticky bit is one of the mode bits associated with a file. If the sticky bit is set for an executable 
file and swapping is enabled, COHERENT behaves in a special way when it executes that file. 

When the COHERENT system executes the file the first time, all proceeds normally. When the 
program exits, however. the pure segments are left on the swap device; when the program is re­
invoked, COHERENT reads "pure" code (text) areas from the swap device and all other (impure) 
segments from the file system. This speeds execution of large programs that are executed 
frequently. 

This strategy works well on systems that have large swap devices. Because overuse of the sticky bit 
would quickly swamp the swap device, only the superuser can set the sticky bit. 

See Also 
chmod, definitions 

stimeO - System Call 
Set the time 
#include 
int stime(tlmep) 
time_t •timep; 

stime() sets the system time. tlmep points to a variable of type time_t. which contains the number 
of seconds since midnight GMT of January l, 1970. 

stime() is restricted to the superuser. 

Files 
<sys/types.h> 

See Also 
ctime(), date, ftime(), stat(), system calls, utime() 

LEXICON 



storage class - strchrO 1033 

Diagnostics 
stlme() returns -1 on error, zero otherwise. 

QNEMJfHilldiiii*""·m,@m ~~ ~~''~"""'"~''""""""' 
Storage c ss refers to the part of a declaration that indicates how data are to be stored. The C 
language recognizes the following storage clases: 

auto 
extern 
register 
static 

typedef is technically defined as a storage class as well. but it does not actually indicate how data 
are stored. The default class is auto. 

See Also 
auto, extern, register, static, technical information, typedef 

Qif:iilllll§iild·'i''"''"·--._,,,~,~~'"'""'~~""'~'''''~"''" 
Concatenate strings 
#include <string.h> 
char •strcat(strlng 1, strlng2) 
char •strlngl, •strlng2; 

Streat() appends all characters in strlng2 onto the end of strtngl. It returns the modified strtngl. 

Example 
For an example of this function. see the entry for string functions. 

See Also 
string functions, string.h, strncat() 

Notes 
strlngl must point to enough space to hold itself and strlng2; otherwise, another portion of the 
program may be overwritten. 

strchrO - String Function 
Find a character in a string 
#include <string.h> 
char •strchr(strlng, character) 
char •string; int character; 

strchr() searches for the first occurrence of character within string. The null character at the end of 
string is included within the search. It is equivalent to the COHERENT function index(). 

strchr() returns a pointer to the first occurrence of character within string. If character is not found, 
it returns NULL. 

Having strchr() search for a null character will always produce a pointer to the end of a string. For 
example. 

char *string; 
assert(strchr(string, '\0') 

never fails. 

string+ strlen(string)); 

LEXICON 



1034 strcmpO - strcpyO 

See Also 
string functions 

@k@'U'll§liin·H'"H'P 111 
Compare two strings 
#include <string.h> 
int strcmp(strlngl, strlng2) 
char •strlngl, •strlng2; 

strcmp() compares strlngl with strlng2 lexicographically. It returns zero if the strings are identical, 
returns a number less than zero if strlngl occurs earlier alphabetically than strlng2, and returns a 
number greater than zero if it occurs later. This routine is compatible with the ordering routine 
needed by qsort(). 

Example 
For examples of this function, see the entries for string functions and malloc(). 

See Also 
qsort(), shellsort(), string functions, string.h, stmcmp() 

strcol/O - String Function ~~~~~~~~~~~~~~~~~~~~~~m 
Compare two strings, using locale-specific information 
#include <string.h> 
int strcoll(strlng 1, strlng2) 
char •strlngl; char •strlng2; 

strcoll() lexicographically compares the string pointed to by strlngl with one pointed to by strlng2. 
Comparison ends when a null character is read. 

strcoll() compares the two strings character by character until it finds a pair of characters that are 
not identical. It returns a number less than zero if the character in strlngl is less (i.e., occurs 
earlier in the character table) than its counterpart in strlng2. It returns a number greater than zero 
if the character in strlngl is greater (i.e., occurs later in the character table) than its counterpart in 
strlng2. If no characters are found to differ, then the strings are identical and strcoll() returns zero. 

See Also 
strf..ng functions, strlng.h 

Notes 
The string-comparison routines strcoll(), strcmp(), and stmcmp() differ from the memory­
comparison routine memcmp() in that they compare strings rather than regions of memory. They 
stop when they encounter a null character. but memcmp() does not. 

The ANSI Standard's description of strcoll() emphasizes that it uses locale-specific information, as 
set by the ANSI function setlocale(), to perform string comparisons. The COHERENT system has 
not yet implement ANSI locales; therefore, strcoll() does not differ significantly from strcmp(). It is 
included to support programs written in ANSI C. 

strcpyO - String Function ~ ~ ~ ~~~~~~~~~~~~~~~~~~~ 

Copy one string into another 
#include <string.h> 
char •strcpy(strlng 1, strlng2) 
char •strlngl, •strlng2; 

strcpy() copies the contents of strlng2, up to the null character, into string 1 and returns string 1 . 

LEXICON 



Example 
See string. 

See Also 
memcpyQ, string functions, string.h, stmcpyO 

Notes 

strcspnO - strerrorO 1035 

strlngl must point to enough space to hold strlng2, or another portion of the program or operating 
system may be overwritten. 

E'&tum•§"'"·'i!ld9H·M ~'~'''' ~'"''~~ ~~ 
Return length a string excludes characters in another 
#include <string.h> 
unsigned int strcspn(strlng 1, strlng2) 
char •string 1, •strlng2; 

strcspnO compares strlngl with strlng2. It then returns the length, in characters, for which strlngl 
consists of characters not found in strlng2. 

See Also 
string functions, string.h 

- -._~~"''"~"'''''""''~"'"''~~ lllil The term stream is a metaphor for any entity that can be named and from which bits can flow, such 
as a device or a file. The name "stream" reflects the fact that the C programming environment does 
not depend upon record descriptors and other devices that predetermine what form data can 
assume: instead, data from whatever source are conceived as being a flow of bytes whose 
significance is set entirely by the program that reads them. 

For example, whether 16 bits forms an int, two chars. and should be used as an absolute value or a 
bit map, is entirely up to the program that receives it. It is also irrelevant to the program that 
processes these 16 bits whether they come from the keyboard. from a file on disk, or from a 
peripheral device. 

The FILE structure holds all of the information needed to manipulate a stream. The STDIO 
functions can be used to open, close, or reopen a stream: read data from it: or write data to it. 

See Also 
bit, byte, data formats, definitions, file, FILE, STDIO 

m1u1,;1 •• ;mrp;n.,,,,,.,.,_,~ ~,~,,~~,,~~~,~~'" 
Definitions for message facility 
#include <stream.h> 

stream.h definitions constants and structures used by the routines that implement the COHERENT 
message facility. 

See Also 
header mes 

e1mn·mll§•i'''A'•~~ 
Translate an error number into a string 
#include <string.h> 
char •strerror(error) 
int error; 

LEXICON 



1036 string.h - string functions 

strerror() helps to generate an error message. It takes the argument error, which presumably is an 
error code generated by an error condition in a program. and may return a pointer to the 
corresponding error message. 

The error numbers recognized and the texts of the corresponding error messages are set by 
COHERENT. 

See Also 
perror(), string functions, string.h 

Notes 
strerror() returns a pointer to a static array that may be overwritten by a subsequent call to 
strerror(). 

strerror() differs from the related function perror() in the following ways: strerror() receives the 
error number through its argument error, whereas perror() reads the global constant errno. Also, 
strerror() returns a pointer to the error message, whereas perror() writes the message directly into 
the standard error stream. 

The error numbers recognized and the texts of the messages associated with each error number are 
set by COHERENT. However, strerror() and perror() return the same error message when handed 
the same error number. 

@nit·«ill'®'·r:tlirt-.~~~ 
Declarations for string library 
#include <string.h> 

string.h is the header that holds the declarations and definitions of all ANSI routines that handle 
strings and buffers. 

See Also 
header mes 

amn.1t1149n.z&••MWW-"'~~-··••••••••••••••••••• 
The character string is a common formation in C programs. The runtime representation of a string 
is an array of ASCII characters that is terminated by a null character ('\O'). COHERENT uses this 
representation when a program contains a string constant; for example: 

"I am a string constant" 

The address of the first character in the string is used as the starting point of the string. A pointer 
to a string holds only this address. Note, too, that an array of 20 characters can hold a string of 19 
(rwt 20) non-null characters; the 20th character is the null character that terminates the string. 

The following routines are available to help manipulate strings: 

index() ... 
memchr() . 
memcmp(). 
memcpy() . 
memmove(). 
memset(). 
strcmp() . 
stmcmp() 
strcpy() .. 
stmcmp() 
strcoll() .. 

LEXICON 

. Search string for a character; use strchr instead 

. Search a region of memory for a character 

. Compare two regions of memory 

. Copy one region of memory into another 

. Copy one region of memory into another with which it overlaps 

. Fill a region of memory with a character 

. Compare two strings 

. Compare two lengths for a set number of bytes 

. Copy a string 

. Copy a portion of a string 

. Compare two strings, using locale information 



string functions 1037 

strcspn(). 
strerror(). 
strlen() . . 
strpbrk(). 
strchr(). 
strrchr() 
strspn(). 
strstr() . 
strtok(). 
strxfrm(). 

. Return length one string excludes characters in another 

. Translate an error number into a string 

. Measure the length of a string 

. Find first occurrence in string of character from another string 

. Find leftmost occurrence of character in a string 

. Find rightmost occurrence of character in a string 

. Return length one string includes character in another 

. Find one string within another string 

. Break a string into tokens 

. Transform a string. using locale information 

See their respective entries in the Lexicon for details. 

Example 
This example reads from stdin up to NNAMES names, each of which is no more than MAXLEN 
characters long. It then removes duplicate names, sorts the names, and writes the sorted list to the 
standard output. It demonstrates the functions shellsort, strcat, strcmp, strcpy, and strlen. 

#include <stdio.h> 

#define NNAMES 512 
#define MAXLEN 60 

char *array[NNAMES]; 
char first[MAXLEN], mid[MAXLEN], last[MAXLEN]; 
char *space= 11 

"; 

int compare(); 
extern char *strcat(); 

main () 
{ 

register int index, count, inflag; 
register char *name; 

count = O; 
while (scanf("%s %s %s\n", first, mid, last) 3) { 

strcat(first, space); 
strcat(mid, space); 
name= strcat(first, (strcat(mid, last))); 
in flag = O; 

for (index=O; index < count; index++) 
if (strcmp(array[index], name) == 0) 

in flag = 1; 

LEXICON 



1038 

} 

strings 

if (inflag == 0) { 

} 

} 

if ((array[count] 

} 

malloc(strlen(name) + 1)) ==NULL) { 
fprintf(stderr, "Insufficient memory\n"); 
exit(l); 

strcpy(array[count], name); 
count++; 

shellsort(array, count, sizeof(char *),compare); 
for (index=O; index < count; index++) 

printf("%s\n", array[index]); 
exit(O); 

compare(sl, s2) 
register char **sl, **s2; 
{ 

} 

extern int strcmp(); 
return(strcmp(*sl, *s2)); 

See Also 
ASCII, libraries 

Notes 
The ANSI standard allows adjacent string literals, e.g.: 

"hello" "world" 

Adjacent string literals are automatically concatenated. Thus, the compiler will automatically 
concatenate the above example into: 

"helloworld" 

Because this departs from the Kernighan and Ritchie description of C. it will generate a warning 
message if you use the compiler's -VSBOOK option. 

fjM(t.f llfi•mluijhJ.I ~,. ~"._ ~~ ~~ 
Print all character strings from a file 
strings [-dopx] [-length] [file ... I 

strings looks for ASCII strings in a binary file. A "string" is defined as any sequence of four or more 
printable characters. strings is useful for identifying unknown object files, or for looking at the 
messages printed by commands. You can also use it as a filter if.file is not specified. 

strings recognizes the following command-line options: 

-d Precede each string by its offset in the file in decimal. 

-o Precede each string by its offset in the file in octal. 

LEXICON 



strip - strncatO 1039 

-p Strip the parity bits of all characters in the string prior to comparison. 

-x Precede each string by its offset in the file in hexadecimal. 

Finally, the option -length forces strings to use length as the minimum length for a printable string. 

See Also 
commands, !sprint, od 

~ ~ ffill! ~~~~,~... ~~~~~~~~~~~ 
Strip debug. relocation, and symbol tables from executable file 
strip -drsjlle [ ... ] 

strip removes the symbol table. relocation information, and debug tables from a file. It makes the 
executable file noticeably smaller. 

strip recognizes the following options: 

-d Keep debug information. 

-r Keep relocation information. 

-s Keep symbols. 

See Also 
cc, commands, ld, nm, size 

strlen() measures string. and returns its length in bytes. not including the null terminator. This is 
useful in determining how much storage to allocate for a string. 

Example 
For an example of how to use this function. see the entry for string. 

See Also 
string functions, string.h 

'2"'tf'&ll:mtmli''•M'tm1.,,,,~~,,~~~~~'~'~'~''~'''~'~'~' 
Append one string onto another 
#include <String.h> 
char •strncat(string 1, string2, n) 
char •string 1, •string2; unsigned n; 

strncat() copies up to n characters from strlng2 onto the end of stringl. It stops when n characters 
have been copied or it encounters a null character in strlng2, whichever occurs first. and returns the 
modified string 1 . 

Example 
For an example of this function, see the entry for strncpy. 

See Also 
strcat(), string functions, string.h 

LEXICON 



1040 strncmpO - strncpyO 

Notes 
strlngl should point to enough space to hold itself and n characters of strlng2. If it does not. a 
portion of the program or operating system may be overwritten. 

strncmpO - String Function 
Compare two strings 
#include <string.h> 
int strncmp(strlng 1, strlng2, n) 
char •strlngl, •string2; unsigned n; 

strncmp() compares lexicographically the first n bytes of strlngl with strlng2. Comparison ends 
when n bytes have been compared, or a null character encountered. whichever occurs first. 
strncmp() returns zero if the strings are identical. returns a number less than zero if string 1 occurs 
earlier alphabetically than strlng2, and returns a number greater than zero if it occurs later. This 
routine is compatible with the ordering routine needed by qsort(). 

Example 
For an example of this function, see the entry for stmcpy(). 

See Also 
strcmp(), string functions, strlng.h 

fjiii@f)711J.'1!H·1iiiiA!.,,,"~'"'"~ -=••••••••••••llliil 
Copy one string into another 
#include <string.h> 
char *strncpy(strlng 1, strlng2, n) 
char •strlngl, *strlng2; unsigned n; 

strncpy() copies up to n bytes of strlng2 into string 1 , and returns string 1. Copying ends when n 
bytes have been copied or a null character has been encountered, whichever comes first. If strlng2 
is less than n characters in length, strlng2 is padded to length n with one or more null bytes. 

Example 
This example. called swap.c. reads a file of names, and changes them from the format 

first name [middle_initial] last name 

to the format 

last_name, first_name [middle_initial] 

It demonstrates strncpy, strncat, strncmp. and index. 

#include <stdio.h> 
#define NNAMES 512 
#define MAXLEN 60 

char *array[NNAMESJ; 
char gname[MAXLEN], lname[MAXLEN]; 
extern int strncmp(), strcomp(); 
extern char *strcpy(), *strncpy(), *strncat(), *index(); 

LEXICON 



main(argc, argv) 
int argc; char *argv[]; 
{ 

} 

FILE *fp; 
register int count, num; 
register char *name, string[60], *cptr, *eptr; 
unsigned glength, length; 

if (--argc I= 1) { 

} 

fprintf (stderr, "Usage: swap filename\n"); 
exit ( 1); 

if ((fp = fopen(argv[l), "r")) ==NULL) 
printf("Cannot open %s\n", argv[l]); 

count = O; 

while (fgets(string, 60, fp) !=NULL) { 

} 

if ((cptr = index(string, '.')) ?=NULL) { 
cptr++; 
cptr++; 

} else if ((cptr = index(string,' ')) ?=NULL) 
cptr++; 

strcpy(lname, cptr); 
eptr = index(lname, '\n'); 
*eptr = ','; 

strcat ( lname," "); 
glength = (unsigned)(strlen(string) - strlen(cptr)); 
strncpy(gname, string, glength); 

name= strncat(lname, gname, glength); 
length= (unsigned)strlen(name); 
array[count] = malloc(length + 1); 

strcpy(array[count],name); 
count++; 

for (num = O; num < count; num++) 
printf("%s\n", array(num]); 

exit(O); 

See Also 
strcpy(), string functions, string.h 

Notes 

strncpyO 1041 

strlngl must point to enough space to n bytes; otherwise, a portion of the program or operating 
system may be overwritten. 

LEXICON 



1042 strpbrkO - strspnO 

MMfl.ll§tt11t.H11.rg1m 
Find first occurrence of a character from another string 
#include <string.h> 
char •strpbrk(strlng 1, strlng2) 
char •strlngl, •string2; 

strpbrk() returns a pointer to the first character in strlngl that matches any character in strlng2. It 
returns NULL if no character in string 1 matches a character in strlng2. 

The set of characters that string2 points to is sometimes called the "break string". For example, 

char *string= "To be, or not to be: that is the question."; 
char *brkset = ",;"; 
strpbrk(string, brkset); 

returns the value of the pointer string plus five. This points to the comma, which is the first 
character in the area pointed to by string that matches any character in the string pointed to by 
brkset. 

See Also 
string functions, string.h 

Notes 
strpbrk() resembles the function strtok() in functionality, but unlike strtok(), it preserves the 
contents of the strings being compared. It also resembles the function strchr(), but lets you search 
for any one of a group of characters. rather than for one character alone. 

Atm®llt§m.t.1111;m1t.u1 •••••••••••••••••••••• ~11M•••••~ 
Search for rightmost occurrence of a character in a string 
#include <string.h> 
char •strrchr(string, character) 
char •string; int character; 

strrchr() looks for the last, or rightmost, occurrence of character within string. character is declared 
to be an int, but is handled within the function as a char. Another way to describe this function is 
to say that it performs a reverse search for a character in a string. It is equivalent to the 
COHERENT function rindex(). 

strrchr() returns a pointer to the rightmost occurrence of character, or NULL if character could not 
be found within string. 

See Also 
rindex(), string functions, string.h 

QifWm•••'"'i!!•nk~~-------------._~~fil!llllBBBBmm~~'91 
Return length a string includes characters in another 
#include <string.h> 
unsigned int strspn(strlngl, string2) 
char •stringl; char •string2; 

strspn() returns the length for which string 1 initially consists only of characters that are found in 
string2. For example. 

LEXICON 



char *sl ="hello, world"; 
char *s2 = "kernighan & ritchie"; 
strcspn(sl, s2); 

strstrO - strtodO 1043 

returns two, which is the length for which the first string initially consists of characters found in the 
second. 

See Also 
string functions, string.h 

strstrO - String Function ~~,,~~~~~,~~,,~~~~~~-.-­
Find one string within another 
#include <string.h> 
char •strstr(strlng 1, strlng2) 
char •string I, •strlng2; 

strstr() looks for strtng2 within string 1. The terminating null character is not considered part of 
strlng2. 

strstr() returns a pointer to where strlng2 begins within string 1, or NULL if string2 does not occur 
within string 1 . 

For example, 

char *stringl "Hello, world"; 
char *string2 "world"; 
strstr(stringl, string2); 

returns stringl plus seven, which points to the beginning of world within Hello, world. On the 
other hand, 

char *stringl ="Hello, world"; 
char *string2 ="worlds"; 
strstr(stringl, string2); 

returns NULL because worlds does not occur within Hello, world. 

See Also 
string functions, string.h 

strtod() converts the number given in string to a double-precision floating-point number and 
returns its value. It is a more general version of the function atof(). strtod() also stores a pointer to 
the first character following the number through tallptr, provided tallptr is not NULL. 

strtod() parses the input string into three portions: beginning. subject sequence. and tail. 

The beginning consists of zero or more white-space characters that begin the string. 

The subject sequence is the portion of the input string that strtod() converts into a floating-point 
number. It consists of an optional sign character, a nonempty sequence of decimal digits optionally 
including a decimal-point character, and an optional exponent. If present, the exponent consists of 
either 'e' or 'E' followed by an optional sign and a nonempty sequence of decimal digits. strtod() 

LEXICON 



1044 strtokO 

reads characters until it encounters either a second decimal-point character or exponent marker, or 
any other non-numeral. 

The tall continues from the end of the subject sequence to the null character that ends the string. 

strtod() ignores the beginning portion of the string. It converts the subject sequence to a double­
precision number. Finally. it sets the pointer pointed to by tailptr to the address of the first 
character of the string's tail. 

strtod() returns the double generated from the subject sequence. If no subject sequence could be 
recognized, it returns zero and stores the initial value of string through tailptr. If the number 
represented by the subject sequence is too large or too small to fit into a double, then strtod() sets 
the global constant errno to ERANGE and returns HUGE_ VAL or zero, respectively. 

Example 
The following gives an example for strtod(). 

extern double strtod(); 

main() 
{ 

static char st[]=" 123.4 567.8"; 
char *head, *tail; 

for (head= st;; head= tail) { 

} 
} 

See Also 

double amt= strtod(head, &tail); 

/* No token found is end of string */ 
if (head == tail) 

break; 
printf("%f0, amt); 

atof(), double, errno, general fUnctions, limits.h, stdllb.h, strtol(), strtoul() 

Notes 
strtod() ignores initial white space in the string pointed to by string; white space is defined as being 
all characters so recognized by the function isspace(). 

I ~~~~~-.._~~-.._~~-.._.,_~~~~~~'~"-~-. 

Break a string into tokens 
#include <string.h> 
char •strtok(strlng 1 , strlng2) 
char •string 1 , •strlng2; 

strtok() helps to divide a string into a set of tokens. strtngl points to the string to be divided, and 
strtng2 points to the character or characters that delimit the tokens. 

strtok() divides a string into tokens by being called repeatedly. 

On the first call to strtok(), strtngl should point to the string being divided. strtok() searches for a 
character that is rwt included within strlng2. lfit finds one. then strtok() regards it as the beginning 
of the first token within the string. If one cannot be found. then strtok() returns NULL to signal 
that the string could not be divided into tokens. When the beginning of the first token is found, 
strtok() then looks for a character that Is included within strlng2. When one is found, strtok() 
replaces it with a null character to mark the end of the first token. stores a pointer to the remainder 

LEXICON 



strtokO 1045 

of strlngl within a static buffer, and returns the address of the beginning of the first token. 

On subsequent calls to strtok(), set strlngl to NULL. strtok() then looks for subsequent tokens, 
using the address that it saved from the first call. With each call to strtok(), strlng2 may point to a 
different delimiter or set of delimiters. 

Example 
The following example breaks command_string into individual tokens and puts pointers to the 
tokens into the array tokenllst[). It then returns the number of tokens created. No more than 
maxtoken tokens will be created. command_string is modified to place '\O' over token separators. 
The token list points into command_string. Tokens are separated by spaces, tabs, commas, 
semicolons, and newlines. 

#include <stdlib.h> 
#include <string.h> 
#include <stddef.h> 
#include <stdio.h> 

tokenize(command_string, tokenlist(], maxtoken) 
char *command_string, *tokenlist(]; size_t maxtoken; 
{ 

} 

static char tokensep[]="\t\n 
int tokencount; 
char *thistoken; 

..... , , , 

if(command_string == NULL I I !maxtoken) 
return O; 

thistoken = strtok(command_string, tokensep); 

for(tokencount = O; tokencount < maxtoken && 
thistoken !=NULL;) { 

tokenlist[tokencount++] = thistoken; 
thistoken = strtok(NULL, tokensep); 

} 

tokenlist[tokencount] = NULL; 
return tokencount; 

#define MAXTOKEN 100 
char *tokens[MAXTOKEN]; 
char buf[BO]; 

main() 
{ 

for(;;) { 
inti, j; 

printf("Enter string "); 
fflush(stdout); 
if(gets(buf) == NULL) 

exit(O); 

LEXICON 



1046 

} 
} 

See Also 

strtolO 

i tokenize(buf, tokens, MAXTOKEN); 
for (j = O; j < i; j++) 

printf("%s\n", tokens[j]); 

string functions, string.h 

strtol() converts the number given in string to a long and returns its value; it is a more general 
version of the function atol(). strtol() also stores a pointer to the first character following the 
number through tailptr. provided tailptr is not NULL. 

base gives the base of the number being read, either 0 or a value from 2 to 36. If the given base is 
zero, strtol() determines an implicit base for the number: hexadecimal if the number starts with Ox 
or OX. octal if the number starts with 0, or decimal otherwise. Alternatively, you can specify a base 
between 2 and 36. 

strtol() parses string into three portions: beginning. subject sequence, and tail. 

The beginning consists of zero or more white-space characters that begin the string. 

The subject sequence is the portion of the string that strtol() converts into a long. It consists of an 
optional sign character. an optional prefix Ox or OX if the base is 16, and a nonempty sequence of 
digits in the specified base. For example. if the base is 16, then strtol() recognizes numeric 
characters 'O' to '9' and alphabetic characters 'A' through 'F' and 'a' to 'fas digits. It continues to 
scan until it encounters a nondigit. 

The tail continues from the end of the subject sequence to the null character that ends the string. 

strtol() ignores the beginning portion of the string. It converts the subject se.quence to a long. 
Finally. if tailptr is not NULL. it sets the pointer pointed to by tallptr to the address of the first 
character of the string's tail. 

strtol() returns a long representing the value of the subject sequence. If the input string does not 
specify a valid number, it returns zero and stores the initial value of string through tatlptr. If the 
number it builds is too large or too small to fit into a long. it sets the global variable errno to the 
value of the macro ERANGE and returns WNG_MAX or LONG_MIN. respectively. 

See Also 
atol(), errno, general functions, llmits.h, long, stdllb.h, strtoul() 

Notes 
strtol() ignores initial white space in the input string. White space is defined as being all characters 
so recognized by the function isspace(). 

LEXICON 



strtou/O 1047 

strtou/() - General Function 
Convert string to unsigned long integer 
#include <stdllb.h> 
unsigned long strtoul(strlng, tallptr, base) 
char •string; char ••tallptr: int base: 

strtoulQ converts the number given in string to a unsigned long and returns its value. It is the 
unsigned long counterpart of strtol() and a more general version of the function atol(). strtoul() 
also stores a pointer to the first character following the number through tatlptr. provided tatlptr is 
not NULL. 

base gives the base of the number being read, either 0 or a value from 2 to 36. If the given base is 
zero. strtoul() determines an implicit base for the number: hexadecimal if the number starts with 
Ox or OX, octal if the number starts with 0, or decimal otherwise. Alternatively, the user can specify 
an explicit base between 2 and 36. 

strtoul() parses the string into three portions: beginning, subject sequence, and tail. 

The beginning consists of zero or more white-space characters that begin the string. 

The subject sequence is the portion of the string that strtoul() converts into an unsigned long. It 
consists of an optional sign character, an optional prefix Ox or OX if the base is 16, and a nonempty 
sequence of digits in the specified base. For example, if the base is 16, then strtoul() recognizes 
numeric characters 'O' to '9' and alphabetic characters 'A' through 'F' and 'a' to 'f as digits. It 
continues to scan until it encounters a nondigit. 

The tall continues from the end of the subject sequence to the null character that ends the string. 

strtoulO ignores the beginning portion of the string. It converts the subject sequence to an 
unsigned long. Finally. if tallptr is not NULL. it sets the pointer pointed to by tallptr to the address 
of the first character of the string's tail. 

strtoul() returns an unsigned long representing the value of the subject sequence. If the input 
string does not specify a valid number, it returns zero and stores the initial value of string through 
tallptr. If the number it builds is too large to fit into an unsigned long, it sets the global variable 
errno to the value of the macro ERANGE and returns ULONG_MAX. 

Example 
This example uses strtoul() as a hash function for table lookup. It demonstrates both hashing and 
linked lists. Hash-table lookup is the most efficient when used to look up entries in large tables; 
this is an example only. 

#include <stddef.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 

LEXICON 



1048 strtou/O 

/* 
* For fastest results, use a prime about 15% bigger 
* than the table. If short of space, use a smaller prime. 
*/ 

#define HASHP 11 
struct symbol { 

struct symbol *next; 
char *name; 
char *descr; 

} *hasht[HASHP], codes[] { 

NULL, 
NULL, 
NULL, 
NULL, 
NULL, 
NULL, 
NULL, 
NULL, 

} ; 

void 
buildTable(void) 
{ 

long h; 

"a286" I 

"xy7800", 
"z678abc", 
"xj781", 
"h778a", 
"ql67", 
"18888", 
NULL, 

"frogs togs", 
"doughnut holes", 
"used bits", 
"black-hole varnish", 
"table hash", 
"log(-5.2) ", 
"quid pro quo", 
NULL /* end marker 

register struct symbol *sym, **symp; 

*/ 

for(symp = hasht; symp != (hasht + HASHP); symp++) 
*symp = NULL; 

} 

for(sym = codes; sym->descr != NULL; sym++) { 

} 

/* 
* hash by converting to base 36. There are 
* many ways to hash, but use all the data. 
*/ 

h = strtoul(sym->name, NULL, 36) % HASHP; 
sym->next = hasht[h]; 
hasht[h] = sym; 

struct symbol * 
lookup(char *s) 
{ 

long h; 
register struct symbol *sym; 

LEXICON 



} 

h = strtoul(s, NULL, 36) % HASHP; 
for(sym = hasht[h]; sym !=NULL; sym 

if(lstrcmp(sym->name, s)) 
return(sym); 

return (NULL); 

main(void) 
{ 

char buf[BO]; 
struct symbol *sym; 

buildTable(); 
for ( ; ; ) { 

printf("Enter name"); 
fflush(stdout); 

if(gets(buf) == NULL) 
exit(EXIT_SUCCESS); 

sym->next) 

if((sym = lookup(buf)) ==NULL) 
printf("%s not found\n", buf); 

else 
printf("%s is %s\n", buf, sym->descr); 

} 
} 

See Also 
ermo, general functions, limits.h, stdlib.h, strtol() 

Notes 

struct 1049 

strtoul() ignores initial white space in the input string. White space is defined as being all characters 
so recognized by the function isspace(). 

~"'"'~~~,~~~~" 
Data type 

struct is a C keyword that introduces a structure. The following is an example of how struct can be 
used in the description of a name and address file: 

struct address { 

}; 

char firstname[lO]; 
char lastname[l5]; 
char street[25]; 
char city[lO]; 
char state[2]; 
char zip[S]; 
int salescode; 

The C Programming Language prohibits the assignment of structures, the passing of structures to 
functions, and the returning of structures by functions. COHERENT, however, lifts these 
restrictions. It allows one structure to be assigned to another, provided the two structures are of 

LEXICON 



1050 structure - strxfrmO 

the same type. It also allows structures to be passed by and returned by functions. These features 
are supported by most compilers, but users should be aware that their use can cause problems in 
porting code to some compilers. 

See Also 
array, C keywords, field, initialization, structure 

structure - Definition 
A structure is a set of variables that has been given a name and can be manipulated as a single 
entity. The variables may be of different data types. Structures are a convenient way to deal with 
data elements that belong together, such as names and addresses, employee descriptions, or sales 
and inventory information. 

See Also 
definitions, struct 

structure assignment- Technical Information ~''~'~'''Utl ,~,,~'Utl~~~'Utl 
The C Programming Language forbids structure assignment, the passing of structures to functions. 
and returning structures from functions (as opposed to the passing or returning of pointers to 
structures). The COHERENT C compiler lifts these restrictions. 

Some C compilers transform structure arguments and structure returns into structure pointers. 
Note that the use of structure assignment, structure arguments, or structure returns may create 
problems when porting the code to another C compiler. 

See Also 
portability, struct, structure, technical information 

Notes 
Because this feature deviates from the description of the C language found in the first edition of The 
C Programming Language, compiling with the -VSBOOK option will flag all points where it occurs in 
your program. 

f1®®P•MM·'i''"i'®k~~ 
Transform a string 
#include <string.h> 
unsigned int strxfrm(string 1, string2, n) 
char •strlngl, •string2; unsigned int n); 

strxfrm() transforms string2 using information concerning the program"s locale, as set by the 
function setlocale(). 

strxfrm() writes up to n bytes of the transformed result into the area pointed to by strlngl. It 
returns the length of the transformed string, not including the terminating null character. The 
transformation incorporates locale-specific material into string2. 

If n is set to zero, strxfnn() returns the length of the transformed string. 

If two strings return a given result when compared by strcoll() before transformation. they will 
return the same result when compared by strcmp() after transformation. 

See Also 
string functions, string.h 

Notes 
If strxfrm() returns a value equal to or greater than n, the contents of the area pointed to by string 1 
are indeterminate. 

LEXICON 



sttyO 1051 

COHERENT has not yet implemented the ANSI locale functions. Therefore. strxfnn() behaves the 
same as strcpy. 

mllim§'f1@11fiM!I 
Set terminal modes 
#Include <sgtty.h> 
int stty(fd, sgp) 
intfd; 
struct sgttyb •sgp; 

The COHERENT system call stty() sets a terminal's attributes. See the Lexicon article for stty() for 
information on terminal attributes and their legal values. 

Example 
This example demonstrates both stty() and gtty(). It sets terminal input to read one character at a 
time (that is, it reads the terminal in "raw" form). When you type 'q'. it restores the terminal to its 
previous settings, and exits. For an additional example, see the pipe Lexicon article. 

#include <sgtty.h> 

main () 
{ 

} 

Files 

struct sgttyb os, ns; 
char buff; 

printf ("Waiting for q\n"); 
gtty(l, &os); /*save old state*/ 
ns = os; /* get base of new state */ 
ns.sg_flags I= RAW; /* prevent <ctl-c> from working */ 
ns.sg_flags &= -(ECHOICRMOD);/* no echo for now ..• */ 
stty(l, &ns); /* set mode */ 

do { 
buff = getchar(); 

} while(buff != 'q'); 
/* wait for the keyboard */ 

stty(l, &os); /* reset mode */ 

<sgtty.h> - Header file 

See Also 
exec, gtty(), ioctl(), open(), read(), sgtty.h, stty, system calls, write() 

Notes 
Please note that if you use stty() to change the baud rate on a port. you must first invoke sleep(). If 
you do not, the port reverts back to its default settings. 

LEXICON 



1052 stty 

~~~"'~"'~ "'~~~·~"-"-~•~"-'~'·~· 
Set/print terminal modes
stty [option ...]

If no option is specified, stty prints the modes of the standard output device in the standard error
stream. Otherwise, each option modifies the modes of the standard output device. The device is
usually a terminal. although tapes, disks and other special files may be applicable.

In normal processing ("cooked" mode), the erase and kill characters (normally <crtl-H> and <ctrl­
U>) erase, respectively, one typed character and a typed line. The stop-output and start-output
characters (normally <ctrl-S> and <Ctrl-Q>l stop and restart output. The Interrupt character
(normally DELETE or RUBOUT ASCII 01 77), sends the signal SIG INT, which usually terminates
program execution. The quit character (normally ASCII 034. FS, which differs on various terminals
but is often <ctrl-\>) sends the signal SIGQUIT, which usually terminates program execution with a
core dump. The end of .file character (normally <ctrl-D>) generates an end of file from the terminal.
Each special character can be changed with the appropriate option.

On some machines, the default characters differ from those given above. On the IBM Personal
Computer, for example, the default kill character is <ctrl-U> and the default interrupt character is
<ctrl-C>.

The following table describes each available option. The c argument may be a literal character or
may be of the form •Ax• for <ctrl-X>.

number

0

-a

breakc

cbreak

-cbreak

cooked

crt

-crt

echo

-echo

ek

eofc

erasec

even

-even

ex cl

-ex cl

LEXICON

Set input and output baud rates of the device to the speed number, if possible.

Hang up phone immediately.

Display all modes.

Set the break character to c.

Break after every input character. This allows a program to return after having read N
characters from a terminal, even if no end of file, break or newline character was typed.

Exit from cbreak mode.

Exit from raw mode.

Terminal is a CRT. Echoing is enhanced.

The terminal is not a CRT.

Echo characters as they are received on the input.

Disable echoing.

Set the erase character to '#' and the kill character to '@'.

Set the end of file character to c.

Set the erase character to c.

Accept even-parity characters.

Do not accept even-parity characters.

Exclusive use: subsequent opens will fail.

Non-exclusive use.

flush

-flush

hup

-hup

intc

ldllc

n1

Flush characters waiting in output or input queues.

Do not flush characters.

Hang up the phone on last close.

Do not hang up on last close.

Set the interrupt character to c.

Set the kill character to c.

Disable newline mapping.

stty 1053

-nl Enable newline mapping: map carriage returns to linefeeds on input. and append
carriage returns before linefeeds on output.

odd Accept odd-parity characters.

-odd Do not accept odd-parity characters.

print Print terminal attributes.

quit c Set the quit character to c.

raw Raw mode: suppress all processing and mapping (except echo).

-raw Exit from raw mode.

rawin Suppress all processing and mapping on the input stream.

-rawin Exit from rawin mode.

rawout Suppress all processing and mapping on the output stream.

-rawout Exit from rawout mode.

sane Set the terminal to a known state.

start c Set the start-output character to c.

stop c Set the stop-output character to c.

tabs Do not expand tabs: useful for terminals which process tabs internally.

-tabs Expand tabs to the appropriate number of spaces on output. The system assumes
tabstops are at every eighth column.

tandem Tandem mode. The system will send the programmed stop-output character whenever
there is a danger of losing characters from the input stream due to buffering limitations.
The system will send the start-character when the level of unprocessed characters has
subsided.

-tandem Disable tandem mode.

See Also
ASCII, commands, getty, init, ioctl(), signal()

Notes
The system does not support character delays or mapping upper to lower case.

LEXICON

1054 su-sum

~~~~~~~~~~~~~~~~~~~~~ 
Substitute user id, become superuser 
su [user [command] I 

Default user is root; default command is sh. su changes the real user id and the effective user id to 
that of the user. If user has a login password, su requests it. Then it executes the specified 
command. 

If command is absent, su invokes an interactive sub-shell. 

If user is absent, su assumes user name root (the superuser). 

Files 
/etc/passwd- Login names and passwords 

See Also 
commands, login, newgrp, sh, superuser 

suloadO - System Call 
Unload device driver 
#include <con.h> 
int suload(major) 
int major; 

The COHERENT system accesses all devices through drivers residing in the system. Except for the 
root device, drivers must be explicitly loaded before use; this operation does not involve re-booting. 

suload() unloads the driver identified by major, which was previously loaded by a call to sload(). This 
call is restricted to the superuser. 

Files 
<con.h> 
/drv/• 

See Also 
init, l.out.h, Id, load, sload, system call 

Diagnostics 
suload() returns zero upon successful unloading of the appropriate driver, or -1 on errors. It fails if 
the driver major is not loaded. 

Notes 
Because COHERENT 386 version 4.0 does not support loadable device drivers, suload() is not 
included with that release of COHERENT. 

sum - Command 
Print checksum of a file 
sum [flle ... ) 

sum prints an unsigned integer checksum and a size in blocks (rounding up) for each.file specified. 
If more than one.file is specified, sum also prints the file name. If no.file is specified, sum reads the 
standard input. 

sum may be used to verify the integrity of data transferred across phone lines or stored on an 
unreliable medium. 

LEXICON 



superuser - switch 1055 

See Also 
cmp, commands 

@@i!f# ll~·m~-Qmt!DJllll•lliD'l-~~1111111111111111111111111111111111111111111111111111~111111111111111111111111111111111111111111111111111111111111111~1111111111mm11111111111111111111111111111111111111111111m11111111111111111111111111111111111111111111•~· 
The superuser is the user who has system-wide permissions. He can execute any program. read any 
file, and write into any directory. Thus, superuser status is reserved to the system administrator, 
also called root, who needs this status to control the operation of the system. 

No person should be able to become the superuser without knowing a password. Because the 
superuser in effect "owns" the system, the superuser password should be guarded most carefully. 

See Also 
deftnitions,root,su 

mmmMM""'s11.J. 
Swap a pair of bytes 
void swab(src, dest, nb) char •src, *dest; unsigned nb; 

The ordering of bytes within a word differs from machine to machine. This may cause problems 
when moving binary data between machines. swab() interchanges each pair of bytes in the array src 
that is n bytes long. and places the result into the array dest. The length nb should be an even 
number, or the last byte will not be touched. src and dest may be the same place. 

Example 
This example prompts for an integer; it then prints the integer both as you entered it, and as it 
appears with its bytes swapped. 

#include <stdio.h> 

main() 
{ 

} 

int word; 

printf("Enter an integer: \n"); 
scanf("%d", &word); 
printf("The word is Ox%x\n", word); 
swab(&word, &word, 2); 
printf("The word with bytes swapped is Ox%x\n", word); 

See Also 
dd, canon.h, general functions 

mll1 H=lli#•!i.' 
Test a variable against a table 

switch is a C keyword that lets you perform a number of tests on a variable in a convenient 
manner. For example. 

LEXICON 



1056 sync 

while(foo < 10) 
swit9h(foo) { 

} 

case ls 
dosomething()7 
break7 

case 2s 
somethingelse() 1 

case 3s 
anotherthing()J 
break7 

defaults 
break7 

} 

is equivalent to 

while(foo < 10) { 

} 

if(foo == 1) { 
dosomething()7 
continue7 

} else if (foo == 2) { 
somethingelse()J 
anotherthing()J 
continue7 

} else if(foo == 3) { 
/* Notes compiler eliminates duplicate code */ 

anotherthing()7 
continue7 

} else 
break7 

switch is always used with the case statement, and nearly always with the default statement. 

See Also 
break, C keywords, case, default, keyword, while 

mm!IH.1Ul11ijm•' 
~tern buffers 
sync 

Most COHERENT commands manipulate files stored on a disk. To improve system performance, the 
COHERENT system often changes a copy of part of the disk in a buffer in memory, rather than 
repeatedly performing the time-consuming disk access required. 

sync writes information from the memory buffers to the disk, updating the disk images of all 
mounted file systems which have been changed. In addition, it writes the date and time on the root 
file system. 

sync should be executed before system shutdown to ensure the integrity of the file system. 

LEXICON 



syncO - system calls 

See Also 
commands 

~M:Uf'm' ~embU:rs 
sync() 

sync() is the COHERENT system call that copies the contents of all memory buffers to disk. 

See Also 
system calls 

Q@NUO .. §§l@bl'il!.fif[.J• 
Pass a command to the shell for execution 
Int system(commandllne) char •commandllne; 

1057 

system() passes commandllne to the shell sh, which loads it into memory and executes it. system() 
executes commands exactly as if they had been typed directly into the shell. system() may be used 
by commands such as ed. which can pass commands to the COHERENT shell in addition to 
processing normal interactive requests. 

Example 
This example uses system to list the names of all C source files in the parent directory. 

#include <stdio.h> 
main() 
{ 

system("cd ls *.c > mytemp; cat mytemp"); 
} 

See Also 
exec, fork(), general functions, popen(), wait() 

Diagnostics 
system returns the exit status of the child process, in the format described in wait(): exit status in 
the high byte, signal information in the low byte. Zero normally means success, whereas nonzero 
normally means failure. This, however, depends on the command. If the shell is not executable, 
system returns a special code of octal 0 I 77. 

Dii'MR@ml•i'ri@' •••••••••••••••••••••••••••llllllllllill 
COHERENT system calls 

The COHERENT system makes many services available to the C programmer. A programmer can 
use a COHERENT service through a system call. COHERENT's libraries include intefaces to the 
following system calls: 

access(). 
acct() .. 
alarm(). 
alann2() 
brk() ... 
chdir() . 
chmod() 
chown(). 
chroot() .. 
close() .. 

. Check if file can be accessed in given mode 

. Enable/disable process accounting 

. Set an alarm 

. Set an alarm 

. Change size of data area 
. . Change working directory 
. . Change file protection modes 

. Change ownership of a file 

. Change process's root directory 

. Close a file 

LEXICON 



1058 system calls 

creat() .......... Create/truncate a file 
dup() . . . . . . . . . . . Duplicate a file descriptor 
execveQ . . . . . . . . . Execute a load module 
exit() . . . . . . . . . . . Terminate a program gracefully 
fcntlQ . . . . . . . . . . . Manipulate an open file 
fork() . . . . . . . . . . . Create a new process 
fstat() . . . . . . . . . . . Find file attributes 
fstat() . . . . . . . . . . . Get information about a file system (COHERENT 386 only) 
fstatfs(). . . . . . . . . . Get information about a file system (COHERENT 386 only) 
ftime() . . . . . . . . . . Get the current time (COHERENT 286 only) 
getdents() . . . Read directory entries (COHERENT 386 only) 
getegid() . . . . . . . Get effective group id 
geteuid() . . . . . . . Get effective user id 
getgid() . . . . . . . . . . Get real group id 
getpgrp() . . . . . . . . . Get process group number 
getpld() . . . . . . . . . . Get process id 
getuid(). . . . . . . . . . Get real user id 
gtty() . . . . . . . . . . . Get terminal modes (COHERENT 386 only) 
Ioctl(). . . .. Device-dependent control 
kill(). . . . . . . . . . . . Send a signal to a process 
link() . . . . . . . . . . . Create a link 
lseek() .......... Set read/write position 
mk.dfr() . . . . . . . . . . Create a directory (COHERENT 386 only) 
mknod() . . . . . . . . . Create a special file 
mount() . . . . . . . . . Mount a file system 
msgctl() . . . . . . . . . Control message operation 
msggetQ . . . . . . . . . Get a message queue 
msgrcv() . . . . . . . . . Receive a message 
msgsnd() . . . . . . . . . Send a message 
open(). . . . . . . . . . . Open a file 
pause() . . . . . . . . . . Wait for signal 
pipe() . . . . . . . . . . . Create a pipe 
poll() ........... Query several 1/0 devices (COHERENT 386 only) 
ptrace(). . . . . . . . . . Trace process execution 
read() . . . . . . . Read from a file 
rmdfr() . . . . . . Remove a directory (COHERENT 386 only) 
setgidQ. . . . .. Set group id and user id 
setpgrp() . . . . . Set process group number 
setuid() . . . . . . . . . Set user id 
signal() . . . . . . . . . Specify disposition of a signal 
sload() . . . . . . . . . Load device driver 
stat() . . . . . . . . . . Find file attributes 
statfs() . . . . . . . . . Get information about a file system (COHERENT 386 only) 
stfme() . . . . . . . . . Set the time 
stty() . . . . . . . . . . Set terminal modes (COHERENT 386 only) 
suload(). . . . . . . . . Unload device driver 
sync() . . . . . . . . . . Flush system buffers 
tfck() . . . . . . . . . . Gettime 
tfme() . . . . . . . . . . Get current system time 
tfmes() .......... Obtain process execution times 
umask() . ......... Set file creation mask 
umount(). . . . . . . . Unmount a file system 
uname() . . . . . . . Get name and version of COHERENT (COHERENT 386 only) 
unique() . . . . . . . . . Return a unique long integer 

LEXICON 



unlinkQ. 
ustat() . 
utimeO. 
wait() •• 
write() . 

See Also 
libraries 

Notes 

system maintenance 

. Remove a file 

. Get statistics on a file system (COHERENT 386 only) 

. Change file access and modification times 

. Await completion of child process 

. Write to a file 

1059 

Under COHERENT 386, the library libmisc.a contains a version offtlme(), for those who need it. 

W-"U§iiiii@i@i&llS-••'@H@fu e COHERENT system nutomatically invokes a number of utilities that help COHERENT to 
maintain itself. These utilities will, for example, run programs for you at pre-determined times, 
swap temporary files in and out of memory, update files, and perform other useful tasks. 
COHERENT includes the following system maintenance routines: 

aliases .. 
atrun .... 
boottime .. 
brc .... 
checklist. 
crond ... 
domain .. 
drvld.all . 
getty .. 
hpd .. . 
lnit .. . 
logmsg. 
lpd .... 
modemcap. 
modeminit 
motd ... 
mount.all 
paths .. 
.profile. 
profile . 
ramdisk 
re .... 
tenncap. 
update .. 
uucpname. 

See Also 
Lexicon 

. File of users' aliases 

. Execute programs at a preset time 

. Time of last system boot 

. Perform maintenance chores, single-user mode 

. File systems to check when booting COHERENT 

. Execute commands periodically 

. Set system's mail domain 

. Load drivers when booting COHERENT 

. Terminal initialization 

. Spooler daemon for Hewlett-Packard LaserJet printer 

. System initialization 

. File that holds login prompt 

. Line printer spooler daemon 

. Modem-description language 

. Initialize a modem 

. File that holds message of the day 

. File systems to mount when booting COHERENT 

. Routing data base for mail 

. Set user's personal environment at login 

. Set user's environment at login 

. Script for creating a RAM-disk 

. Perform standard maintenance chores 

. Terminal-description language 

. Update file systems periodically 

. Set system's UUCP name 

LEXICON 



1060 tail- tanO 

rmllli·lliih&il!.' 
Print the end of a file 
tall [+n[bcfl]] Iflle) 
tall [-n[bcflJI Iflle I 

tall copies the last part ofjlle, or of the standard input if none is named, to the standard output. 

The given number tells tail where to begin to copy the data. Numbers of the form +number measure 
the starting point from the beginning of the file: those of the form -number measure from the end of 
the file. 

A specifier of blocks, characters. or lines (b, c, or 1. respectively) may follow the number: the default 
is lines. Ifno number is specified, a default of-IO is assumed. 

The -f option opens the tail of a file. and then displays new material as it is added to a file. This 
command lets you watch a file as it is being built. such as by nroff. Note that when tail is invoked 
with this option, it does not exit: therefore. when you wish to exit, type the interrupt character. 

See Also 
coinlllllnds,dd,egrep,head,sed 

Notes 
Because tail buffers data measured from the end of the file. large counts may not work. 

rmm.lllM®'®11Miiill,Al!1hllnm1)i 
Calculate tangent 
#include <llUlth.h> 
double tan(radlan) double radian; 

tanQ calculates the tangent of its argument radian. which must be in radian measure. 

Example 
For an example of this function. see the entry for acosQ. 

See Also 
llUltheinatlcsllbrary,tanhQ 

Diagnostics 
tan() returns a very large number where it is singular. and sets errno to ERANGE. 

LEXICON 



tanhO - tape 1061 

.. Mmlt@l.F!ISiii!•A!!.1111nM 
Calculate hyperbolic cosine 
#include <math.h> 
double tanh(radlan) double radian; 

tanh() calculates the hyperbolic tangent ofradlan, which is in radian measure. 

Example 
For an example of this function, see the entry for coshQ. 

See Also 
mathematics library 

Diagnostics 
When an overflow occurs, tanhO sets errno to ERANGE. 

This section gives a general explanation of COHERENTs use of industry-standard half-inch, nine­
track magnetic tape and cartridge streaming tape. Exceptions or additional information may be 
found in sections of this manual describing particular devices. 

A tape volume contains files, each consisting of one or more records and terminated by a tape mark. 
Two tape marks terminate the last file. Tape records may vary in length, but cannot exceed 2" 16 
bytes (2" 15 is more practical). 

Like other block-oriented devices, tape units may be accessed through the system's cooked interface 
or through the raw interface. On a cooked device, seeking to any byte offset and reading in any 
number of bytes is possible. It is not possible to read beyond the tape mark at the end of the 
current file. For block I/O requests, all records in the file must be 512 bytes long. Write requests 
must be made in increments of 512 bytes. A cooked tape may be mounted like a disk, but only as a 
read-only file system. 

A raw device bypasses the buffer cache, so I/0 occurs directly to or from the user's buffer. One 
write request generates one tape record, and one read request returns exactly one record. The 
number of bytes read may be less than expected. If the tape mark is read, a count of zero is 
returned, but the system positions the tape at the start of the next tape file. Seeking on a raw 
device is ignored, and mounting is not allowed. Raw (or character) requests are usually performed 
in large units, such as 20 kilobytes. 

A unit cannot be opened if it is off-line or already in use. If the unit is write protected, the unit 
cannot be opened for writing. Closing the device has varying effects, depending on the minor device 
opened and whether the device was opened for reading or writing. In the case of reading, the tape is 
rewound; if the no-rewind device was specified, the tape advances to the next file. In the case of 
writing to a nine-track tape, two tape marks are written at the current position and the tape is 
rewound; if the no-rewind device was specified, two tape marks are written and the tape is 
positioned between them. When you close a device that had been opened for writing, the tape 
volume ends at the current position; data beyond this point are undefined. 

The following device options exist, selected by prefixes to the device name: 

h Read or write data at high density. The exact density depends on the drive model, but 1600 
BPI (high) and 800 BPI (low) are typical. 

LEXICON 



1062 tar 

n Do not rewind on close. 

r The device is raw. 

Hard errors may occur during tape operation. They include detection of the end-of-tape (EOT) 
reflector, reading an unexpectedly long record. or seeking a cooked tape into a tape mark. After an 
error, no further operations may be performed on the unit until the program closes the device and 
the operator rewinds the tape. Soft parity errors may arise due to dirt. bad tape or misaligned 
heads. On writes, the device may attempt to place the record further along the tape. On reads. the 
driver simply rescans the record. After several failures, the driver announces a hard error. 

Most utilities use generic device names, which are links to the actual device files appropriate for the 
site. 

Files 
I dev I ct - Generic cooked cartridge tape device 
/dev/mt- Generic cooked nine-track tape device 
/dev/rct- Generic raw cartridge tape device 
/ dev I rmt - Generic raw nine-track tape device 

See Also 
device drivers 

Diagnostics 
Drivers may report errors to the console. 

Notes 
Not every edition of COHERENT supports magnetic tape. 

~'-" BL~~~~~---~ 
V7 tape archive manager 
tar [crtux[0-7bflmvwU) [blocks) [archlve]flle ... 

tar is a utility that lets you read, write, and update archives in a machine-independent format. Its 
name is an abbreviation for tape archive; however. tar can read/write output to files and floppy 
disks, as well as to magnetic tape. 

Before proceeding further. users should note that tar is an obsolete utility. The conunand ustar 
should be used instead, especially if you wish to move archives from COHERENT to other operating 
systems. 

The first argument of the command line must contain exactly one directive character, followed by 
zero or more option characters. file is the file to be written into or extracted from the archive. lfjlle 
is a directory, tar processes its contents recursively. For directives that read an archive. the 
absence of ajlle argument tells tar to process every file in the archive. For directives that write to 
an archive, the absence of ajlle argument tells tar to process every file in the current directory. 

The directives are as follows: 

c Create a new archive. Overwrite the previous contents of the archive. 

r Replace (append) the named files in the archive. 

t Write a table of contents of the archive to the standard output. 

u Update the archive by replacing the named files that are newer (mtlme larger) than any version 
in the archive. 

LEXICON 



tar 1063 

x Extract the named files from the archive. Overwrite identically names files. tar extracts each 
version of each file, leaving the latest version at the end. 

The options are as follows: 

0-7 A single octal digit specifies a tape drive on which the archive may be found. tar concatenates 
this digit to the default tape name /dev/mt to form the path name accessed. This option, of 
course. is available only to COHERENT systems that support a nine-track magnetic tape drive. 

b The next argument is a number between one and 20. specifying how many blocks are to be 
written in each archive. tar determines the blocking factor automatically on input. When the 
blocking factor is not one. tar automatically writes its output to device /dev/rmt. i.e .. the raw 
tape-drive device. 

f The next argument names the archive. If the argument is a hyphen • -·. it signifies the standard 
input for input directives and the standard output for output directives. 

1 tar preserves links within the structure it writes into its archive. but breaks any links across 
the boundary of the structure. This option requests that tar report all such broken links. 

m Ignore the mtlme for each extracted file. By default. tar restores the mtlme for each extracted 
file. 

v Verbose flag. If directive is t. the output for each file includes its mode, group id. user id, size, 
and mtime, in addition to its path name. Otherwise. tar writes the directive and the path name 
to the standard output for input directives or the standard error for output directives as each 
file is processed. 

w For each file to be processed. tar writes the directive and path name to the terminal device, 
then reads a line from that device and acts on it as follows: 

n Skip the file. 
y Process the file. 
x Exit immediately. 

An empty response is treated as n, and end of file is treated as x. If a directory is skipped. all 
its contents are skipped. If included. all its contents are processed with this option. 

U The version of tar found on some UNIX systems have following bug: when the blocking factor is 
not one, the last few blocks of the last record written may be garbage. This bug is described 
elsewhere by other symptoms. This option says that the tape was created by the buggy 
program. so the trailing garbage should be ignored. 

Examples 
To tar the contents of directory piggy into file piggy.tar, use the command: 

tar cf piggy.tar piggy 

To tar files to a floppy disk. it is sufficient to have a floppy disk formatted with the command 
fdformat. The floppy does not have to have a COHERENT file system on it. For example. to tar 
directory stephen to a high-density, 5.25-inch. formatted floppy disk in drive o. use the following 
command: 

tar cf /dev/fhaO stephen 

Note that this permits you to tar only one archive per floppy disk. To read files from this archive. 
use the command: 

tar xf /dev/fhaO 

LEXICON 



1064 tboot 

Files 
I dev I mt• - Default tape device 
/dev /nnt• - Default tape device for blocking factor greater than one 

See Also 
commands, cpio, dump, link(), restor, stat(), ustar 

Notes 
Path names must be less than 100 characters. Them option does not affect directories. The only 
way to extract the Nth version of a file is with the w option. 

tboot - Technical Information 
Describe the tertiary bootstrap 

Booting is the process of loading COHERENT into memory and setting it into motion. This normally 
occurs after you have turned on your computer. The term comes from the old expression about 
pulling one's self up by one's bootstraps. 

Booting can be quite involved, and uses a number of files, depending upon the version of 
COHERENT being booted and the medium from which you are booting it. The subject of this article, 
tboot, is the booting program that performs tertiary booting. 

To grasp what is meant by "tertiary booting .. , consider how the boot sequence works: 

1. The BIOS loads the first 512 bytes off of the first hard disk and runs it. This program is called 
the master boot. Mark Williams Company recommends that you use the COHERENT master 
boot, because it lets you boot off any partition on either of the first two drives. 

2. The master boot loads the first 512 bytes off the active partition and runs that. This program 
is the "secondary boot .. program. 

The secondary boot is generally responsible for loading the operating system off the active 
parition and running it. 

Recent releases of COHERENT need a more sophisticated program to load the operating system than 
can fit into 512 bytes. In these releases of COHERENT, the secondary boot loads a program off the 
root file system; this program is called the "tertiary boot .. , or tboot. 

tboot evaluates the hardware of your computer to provide ihe operating system (COHERENT) with 
vital information. This evaluation allows COHERENT to run without modification on a wider range 
of hardware. 

tboot is responsible for loading the operating system kernel. It first looks for a file called autoboot, 
which it then loads. If autoboot does not exist, tboot prompts you to type in the name of a kernel. 
e.g .. begin (during installation) or coherent. If you do not remember the name of the kernel you 
wish to boot, you can type dir or ls for a list of files in your root file system. 

Pressing the spacebar when the prompt is displayed prevents execution of /autoboot and causes 
tboot to pause. You can then type the name of an alternate kernel to load (assuming it already 
resides within the root directory), type ls to see a listing of files. or type info for a display of hard­
drive parameters. 

See Also 
booting, technical information 

LEXICON 



technical information - tee 

1tf@i1®111ift.Jiii@Mll•PAW@i 
The Lexicon includes the following entries that describe technical aspects of COHERENT: 

ASCII. .... . 
booting ........ . 
byte ordering . . . . . 
calling conventions 
COHERENT. 
data formats 
data types 
environ .. . 
errno ... . 
execution. 
floppy disks . 
harddisk .. 
keyboard tables . 
libmisc ...... . 
man ........ . 
memory allocation 
modem ..... . 
modem control .. 
ms ..... . 
MS-DOS •• 
portability 
printer. 
rename. 
security 
signame 
storage class 
structure assignment 
terminal ... . 
tboot ....... . 
type checking 
type promotion 

See Also 
Lexicon 

mfllri1lliill611fr' 
Branch pipe output 
tee [ -a J ( -i J [file ... J 

. ASCII table 

. How booting works 

. Machine-dependent order of bytes 

. Principles of the COHERENT system 

. Process environment 

. External integer for return of error status 

. Program execution 

. Information about floppy disks 

. Information about hard disks 

. How to write a keyboard table 

. Archive of miscellaneous library functions 

. Manual macro package 

. Information about modems 

. Information about controlling modems 

. Manuscript macro package 

. That other operating system 

. Information about printers 

. How to rename a file 

. Array of names of signals 

. Information about terminals 

. Describe the tertiary boot 

1065 

tee reads from standard input, usually a pipe, and writes to the standard output. usually a pipe. 
tee also writes a copy of the input data to each file specified. 

The -a flag tells tee to append data to eachfile, analogous to the shell construct "»}Ile". Otherwise, 
it creates eachjlle, analogous to the construct ">file". 

The flag -i means ignore interrupts. 

See Also 
commands, ksh, sh 

LEXICON 



1066 telldirO - tempnamO 

ltftltmfl.¥t;),QLll@ll1A![.]I 
Return the current position within a directory stream 
o:tr_t telldir (dlrp) 
DIR *dlrp; 

The COHERENT function telldirQ is one of a set of COHERENT routines that manipulate directories 
in a device-independent manner. It returns the current position within the directory stream pointed 
to bydlrp. 

If an error occurs. telldirQ exits and sets errno to an appropriate value. 

See Also 
closedir(), dirent.h, general functions, getdentsQ, opendir(), readdir(), rewinddir(), seekdir(), 

Notes 
The value returned by telldirQ should only be used as an argument to seekdlr(). 

telldirQ and seekdir() are unreliable when directory stream has been closed and reopened. It is best 
to avoid using telldirO and seekdirQ altogether. 

Because directory entries can dynamically appear and disappear. and because directory contents 
are buffered by these routines. an application may need to continually rescan a directory to 
maintain an accurate picture of its active entries. 

telldir() is available only under COHERENT 386. 

The COHERENT implementation of the dirent routines was written by D. Gwynn. 

IMU.Ji@iO•jU:ilt.®1@11.@i!•h 
Generate a unique name for a temporary file 
char •tempnam(dlrectory, name): 
char *directory, •name: 

tempnam() constructs a unique temporary name that can be used to name a file. directory points 
to the name of the directory in which you want the temporary file written. If this variable is NULL. 
tempnamO reads the environmental variable TMPDIR and uses it for directory. If neither directory 
nor TMPDIR is given, tempnam() uses /tmp. 

name points to the string of letters that will prefix the temporary name. This string should not be 
more than three or four characters, to prevent truncation or duplication of temporary file names. If 
name is NULL, tempnam() sets it to t. 

tempnam() uses malloc() to allocate a buffer for the temporary file name it returns. If all goes well, 
it returns a pointer to the temporary name it has written. Otherwise, it returns NULL if the 
allocation fails or if it cannot build a temporary file name successfully. 

See Also 
general functions, mktempQ, TMPDIR, tmpnamQ 

Notes 
tempnamQ is not described in the ANSI Standard. Programs that use it will not conform strictly the 
Standard, and may not be portable to other compilers or environments. 

LEXICON 



TERM-term 1067 

m11H•MU•·m"M.1m•••ce 
Name the default terminal type 
TERM=terminal type 

The environmental variable TERM names the type of terminal that you are using. This variable is 
read by every program that uses the termcap or terminfo library, to ensure that the correct 
terminal description is read when the program is invoked. You should set this variable in your 
profile, to ensure that the system understands what type of terminal you use. The file /etc/profile 
sets TERM to ansipc. 

See Also 
environmental variables, me, termcap 

mmm•t1i·"'M' 
Format of compiled terminfo file 

Before it can be used, a file of tenninfo information must be compiled with the command tic. It is 
read by the command setupterm. 

Once compiled, the binary terminfo file is moved into a sub-directory of directory 
/usr/lib/terminfo. To avoid a linear search of a huge COHERENT directory. a two-level scheme is 
used to name the subdirectories: /usr/llb/terminfo/C/name. where name names the terminal and 
C is the first character of name. For example. the terminfo entry for the Wyse 150 terminal is kept 
in the file /usr/lib/terminfo/w/wysel50. Synonyms for a terminal exist as links to the same 
compiled file. 

The binary format of a terminfo file has been designed to be the same on all hardware. The file is 
divided into six parts: header, terminal names, boolean flags, numbers, strings, and string table. 

Header 
The header section begins the file. This section contains the following six short integers: 

1. The magic number (octal 0432). 

2. The size, in bytes, of the names section. 

3. The number of bytes in the boolean section. 

4. The number of short integers in the numbers section. 

5. The number of offsets (short integers) in the strings section. 

6. The size, in bytes. of the string table. 

A short Integer is two bytes long. Under the term file format, OxFFFF represents -1; all other 
negative value are illegal. Minus 1 generally means that a capability is missing from this terminal. 
All short integers are aligned on a short-word boundary. 

Names 
The names section contains the first line of the terminfo description, which lists the names for the 
terminal, each name separated by a vertical bar ' I '. The section is terminated with a NUL. 

Boolean 
The boolean section contains the boolean flags for terminals. There is one flag for each boolean 
capacity recognized by terminfo. The flags appear in the order described in the header file term.h. 
Each flag is one byte long. and is set to zero or one, depending upon whether the capacity is absent 
or present in this terminal. If necessary. this section is ended with a NUL to ensure that the next 
section begins on an even byte. 

LEXICON 



1068 termcap 

Numbers 
The numbers section is similar to the flags section. There is one entry for each numeric capacity 
recognized by termlnfo, each capacity being represented by a short integer. A value of -1 indicates 
that this terminal lacks this capability. Entries appear in the order described in the header file 
tenn.h. 

Strings 
The strings section also contains one short integer for each string capability recognized by tennlnfo. 
A value of -1 means that this terminal lacks this capability. Otherwise, the value gives an offset 
from the beginning of the string table. Entries appear in the order described in the header file 
tenn.h. 

Special characters in "X or \c notation are stored in their interpreted form. Padding information 
and parameter information are stored intact in uninterpreted form. 

String Table 
The final section is the string table. It contains all the values of string capabilities referenced in the 
string section. Each string is null terminated. 

Files 
/usr/llb/tenninfo/•- Default location of object files 

See Also 
curses, me fonnats, infocmp, tic, tennlnfo 
Strang. J .. Mui. L .. O'Reilly, T.: termcap and terminfo. Sebastopol, CA: O'Reilly & Associates, Inc., 
1991. 

Notes 
The total compiled file cannot exceed 4,096 bytes. The name field cannot exceed 128 bytes. 

tenninfo and its related programs are used only under COHERENT 386. 

@W@t·•W@•H@iiijl@@· 
Terminal-description language 
/etc/termcap 

termcap is a language for describing terminals and their capabilities. Terminal descriptions are 
collected in the file /etc/tenncap and are read by tgetent and its related programs to ensure that 
output to a particular terminal is in a format that that terminal can understand. 

A terminal description written in tenncap consists of a series of fields, which are separated from 
each other by colons ':'. Every line in the description, with the exception of the last line, must end 
in a backslash '\ •. Tab characters are ignored. Lines that begin with a '#' are comments. A 
tenncap description must not exceed 1,024 characters. 

The first field names the terminal. Several different names may be used, each separated by a 
vertical bar 'I': each name given, however. must be unique within the file /etc/tenncap. By 
convention. the first listed must be two characters long. The second name is the name by which the 
terminal is most commonly known: this name may contain no blanks in it. Other versions of the 
name may follow. By convention. the last version is the full name of the terminal: here, spaces may 
be used for legibility. Any of these may be used to name your terminal to the COHERENT system. 
For example, the name field for the VT-100 terminal is as follows: 

dlivtlOOivt-lOOiptlOOipt-lOOidec vtl001\ 

Note that the names are separated by vertical bars 'I ', that the field ends with a colon, and that the 
line ends with a backslash. Using any of these names in an export command will make the correct 

LEXICON 



termcap 1069 

terminal description available to programs that need to use it. 

The remaining fields in the entry describe the capabilities of the terminal. Each capability field 
consists of a two-letter code, and may include additional information. There are three types of 
capability: 

Boolean 

Numeric 

This indicates whether or not a terminal has a specific feature. If the field is present, the 
terminal is assumed to have the feature: if it is absend, the terminal is assumed not to have 
that feature. For example, the field 

am: 

is present, termcap assumes that the terminal has automatic margins, whereas if that field 
is not present, the program using termcap assumes that the terminal does not have them. 

This gives the size of some aspect of the terminal. Numeric capability fields have the 
capability code, followed by a '#'and a number. For example, the entry 

co#80: 

means that the terminal screen is 80 columns wide. 

String capabilities 
These give a sequence of characters that trigger a terminal operation. These fields consist of 
the capability code, an equal sign '=', and the string. 

Strings often include escape sequences. A "\E" indicates an <ESC> character: a control 
character is indicated with a carat"'" plus the appropriate letter: and the sequences \b, \f, 
\n, \r, and \tare, respectively. backspace, formfeed. newline. <return>. and tab. 

An integer or an integer followed by an asterisk in the string (e.g., 'Int•') indicates that 
execution of the function should be delayed by Int milliseconds: this delay is termed 
padding, Thus, deletion on lines on the Microterm Mime-2A is coded as: 

dl=20*"W1 

di is the capability code for delete, the equal sign introduces the deletion sequence, 20* 
indicates that each line deletion should be delayed by 20 milliseconds, and "W indicates 
that the line-deletion code on the Mime-2A is <ctrl-W>. 

The asterisk indicates that the padding required is proportional to the number of lines 
affected by the operation. In the above example, the deletion of four lines on the Mime-2A 
generates a total of 80 milliseconds of padding: if no asterisk were present, however, the 
padding would be only 20 milliseconds, no matter how many lines were deleted. Also, when 
an asterisk is used, the number may be given to one decimal place, to show tenths of a 
millisecond of padding. 

Note that with string capabilities, characters may be given as a backslash followed by the 
three octal digits of the character's ASCII code. Thus, a colon in a capability field may be 
given by \072. To put a null character into the string. use \200, because termcap strips 
the high bit from each character. 

Finally, the literal characters ""and '\'are given by"\"" and "\ \ ". 

Capability Codes 
The following table lists termcap's capability codes. Type indicates whether the code is boolean, 
numeric, or string: a dagger 't' indicates that this capability may include padding, and a dagger plus 
an asterisk "t•" indicates that it may be used with the asterisk padding function described above. 

LEXICON 



1070 termcap 

Name Type 
ae •• . stringt 
al .. . stringt• .. 
am •• . boolean .. 
as .. . stringt . . 
be •• . string ... 
bs .. . boolean .. 
bt .. . stringt .. 
bw .. . boolean .. 
cc .. . string ... 
eel •• . stringt• .. 
ce .. . stringt . . 
ch .. . stringt .. 
cl . . . stringt• .. 
cm .. . stringt . . 
co .. . number .. 
er .. . stringt• .. 
cs .. . stringt . . 
CV•• . stringt .. 
da .. . booleant . 
dB .. . number .. 
db .. . boolean .. 
dC .. . number .. 
de .. . stringt• .. 
dF •• . number .. 
di . . . stringt• .. 
dm . string ... 
dN .. . number .. 
do .. . string ... 
dT .. . number .• 
ed .. . string ... 
e1 .. . string ... 
eo .. . string ... 
ff ... . stringt• .. 
he .. . boolean .. 
hd .. . string ... 
ho .. . string. 
hu .. . string. 
hz .. . string. 
le ... . stringt 
if ... . string. 
im .. . string. 
in . boolean. 
lp . . . stringt• . 
is .. . string .. 
k0-k9 .. . string. 
kb .. . string. 
kd. .. . string. 
ke .. . string. 
kh .. . string. 
kl .. . string. 
kn .. . number .. 
ko .. . string ... 
kr .. . string ... 

LEXICON 

Deflnltton 
. End alternate set of characters 
. Add blank line 
. Automatic margins 
. Start alternate set of characters 
. Backspace character, if not <ctrl-H> 
. Backspace character is <ctrl-H> 

. . Backtab 
. Backspace wraps from column 0 to last column 
. Command character in prototype if it can be set at terminal 
. Clear to end of display 
. Clear line 
. Horizontal cursor motion 
. Clear screen 

. . Cursor motion. both vertical and horizontal 
. Number of columns 
. <retum>: default <ctrl-M> 
. Change scrolling region (DEC VTl 00 only): resembles cm 
. Vertical cursor motion 
. Display above may be retained 
. Milliseconds of delay needed by bs 
. Display below may be retained 
. Milliseconds of delay needed by er 
. Delete a character 
. Milliseconds of delay needed by ff 
. Delete a line 
. Enter delete mode 
. Milliseconds of delay needed by n1 

. . Move down one line 

. . Milliseconds of delay needed by tab 

. . Leave delete mode 
. Leave insert mode: use :ei:: if this string is the same as le 
. Erase overstrikes with a blank 
. Eject hardcopy terminal page: default <ctrl-L> 
. Hardcopy terminal 
. Move half-line down. i.e., forw-..rd 1 /2 line feed) 
. Move cursor to home position: use if cm is not set 
. Move half-line up, i.e .. reverse l /2 line feed 
. Cannot print tilde 'N' (Hazeltine terminals only) 
. Insert a character 
. Name of the file that contains is 
. Begin insert mode: use :im=: ific has not been set 
. Nulls are distinguished in display 
. Insert padding after each character listed 
. Initialize terminal 
. Codes sent by function keys 0-9 
. Code sent by backspace key 
. Code sent by down-arrow key 
. Leave "keypad transmit" mode 
. Code sent by home key 
. Code sent by left-arrow key 
. No. of function keys: default is 10 
. Entries for for all other non-function keys 

. . Code sent by right-arrow key 



ks .. . string .. 
ku .. . string .. 
10-19. . string .. 
li .. . number. 
ll .. . string .. 
ma. . string .. 
mi. . boolean. 
ml. . string .. 
ms. . boolean. 
mu . string .. 
DC. . boolean. 
nd. . string .. 
nl . stringt• . 
ns. . boolean. 
OS• . boolean. 
pc. . string .. 
pt . boolean. 
se. . string .. 
sf . stringt 
sg. . number. 
so. . string. 
sr . stringt 
ta . stringt 
tc . string. 
te . string. 
ti . string. 
UC. . string. 
ue. . string. 
ug. . number. 
ul . boolean. 
up. . string. 
us. . string. 
vb. . string. 
ve. . string. 
vs. . string. 
xb. . boolean. 
xn. . boolean. 
xr . boolean. 
XS• . boolean. 
xt. . boolean. 

Examples 

. Begin "keypad transmit'" mode 

. Code sent by up-arrow key 

. Function keys labels if not f0-f9 

. Number of lines 

termcap 

. Move cursor to first column of last line (cm not set) 

. Map keypad-to-cursor movement for vi version 2 

. Cursor may be safely moved while in insert mode 

. Turn on memory lock for area of screen above cursor 

. Cursor can be moved while in standout or underline mode 

. Turn off memory lock 

. <return> does not work 

. Move cursor right ,non-destructively 

. Newline character; default is \n (Obsolete) 

. Terminal is CRT, but does not scroll 

. Terminal can overstrike 

. Pad character any character other than null 

. Terminal's tabs set by hardware; may need to be set with is 

. Exit standout mode 

. Scroll forward 

. Blank characters left by so or se 

. Enter standout mode 

. Reverse scroll 

. Tab character other than <ctrl-1>. or with padding 

. Similar terminal - must be last field in entry 

. End a program that uses cm 

. Begin a program that uses cm 

. Underscore character and skip it 

. Leave underscore mode 

. Blank characters left by us or ue 

. Terminal underlines but does not overstrike 

. Move up one line 

. Begin underscore mode 

. Visible bell; may not move cursor 

. Exit open/visual mode 

. Begin open/visual mode 

. Beehive terminal (fl=<esc>. f2=<crtl-C>) 

. Newline is ignored after wrap 

. <return> behaves like ce \r \n 

. Standout mode is not erased by writing over it 

. Tabs are destructive 

1071 

The following is the termcap description of the Zenith Z-19 terminal. The meaning of each field will 
be described: 

kblh19lheathlh19blheathkitlheath-19lz19lzenithlheathkit h19:\ 
1al=l*\EL1am:bs1cd=\EJ:ce=\EK:cl=\EE:cm=\EY%+ %+ :\ 
1co#S01dc=\EN1dl=l*\EM1do=\EB1ei=\E01ho=\EH1\ 
1im=\E@1li#241mi1nd=\EC1as=\EF1ae=\EG1ms1pt1\ 
1sr=\EI:se=\Eq:so=\Ep1up=\EA1vs=\Ex4:ve=\Ey41\ 
1kb=~h1ku=\EA:kd=\EB1kl•\ED1kr•\EC1kh•\EH1kn#81\ 

1kl=\ES1k2=\ET:k3=\EU:k4=\EV:k5=\EW:\ 
1l6=blue117=red1l8=white1k6=\EP1k7=\EQ1k8=\ER1 

LEXICON 



1072 termcap 

The first field, which occupies line 1. gives the various aliases for this terminal. The Heathkit H-19, 
which appears most prominently, was the home-kit version of the commercially sold Z-19. The 
remaining fields mean the following: 

:al=! •\EL: <esc>L adds new blank line: use 

:am: 
:bs: 
:cd=\EJ: 
:ce=\EK: 
:cl=\EE: 
:cm=\EY%+%+: 
:co#80: 
:dc=\EN:\ 

:dl=l•\EM: 
:do=\EB: 
:ei:\EO: 
:ho:\ER: 
:im=\E@: 
:11#24: 
:mi: 
:nd=\EC: 
:as=\EF: 
:ae=\EG:\ 
:ms: 

:pt: 
:sr=\EI: 
:se=\Eq: 
:so=\Ep: 
:up=\EA: 
:vs=\Ex4: 

:ve=\Ey4:\ 

:kb="h: 
:ku=\EA: 
:kd=\EB: 
:kl=\ED: 
:kr=\EC: 
:kh=\ER: 
:kn#8:\ 
:kl=\ES: 
:k2=\ET: 
:k3=\EU: 
:k4=\EV: 
:k5:\EW:\ 
:16=blue: 
:17=red: 
:18=white: 
:k6=\EP: 
:k7=\EQ: 
:k8=\ER: 

LEXICON 

one millisecond for each line added 
Terminal has automatic margins 
Backspace character is <ctrl>-R (the default) 
<esc>J clears to end of display 
<esc>K clears to end of line 
<esc>E clears screen 
Cursor motion (described later) 
Screen has 80 columns 
<esc>N deletes a character 
(backslash indicates end of a line) 
<esc>M deletes a line 
<esc>B moves cursor down one line 
<esc>O exits from insert mode 
<esc>R moves cursor to home position 
<esc>@ begins insert mode (note that ic is set) 
Terminal has 24 lines 
Cursor may be moved safely while terminal is in insert mode 
<esc>C moves cursor right non-destructively 
<esc>F begins set of alternate characters 
<esc>G ends set of alternate characters 
Cursor may be moved safely while terminal 
is in standout and underline mode 
Terminal has hardware tabs 
<esc>I reverse-scrolls the screen 
<esc>q exits standout mode 
<esc>p begins standout mode 
<esc>A moves the cursor up one line 
<esc>x begins visual mode: insert 
4 milliseconds of padding when visual mode is begun 
<esc>y ends visual mode: insert 
4 milliseconds of padding when visual mode is ended 
Backspace key sends <Ctrl>-R 
Up-arrow key sends <esc>A 
Down-arrow key sends <esc>B 
Left-arrow key sends <esc>D 
Right-arrow key sends <esc>C 
Home key sends <esc>R 
There are eight other keys on the keyboard 
Other key 1 sends <esc>S 
Other key 2 sends <esc>T 
Other key 3 sends <esc> U 
Other key 4 sends <esc> V 
Other key 5 sends <esc>W 
Other key 6 is labeled "blue" 
Other key 7 is labeled "red" 
Other key 8 is labeled "white" 
Other key 6 sends <esc>P 
Other key 7 sends <esc>Q 
Other key 8 sends <esc>R 



termcap 1073 

Note that the last field did not end with a backslash; this indicated to the COHERENT system that 
the termcap description was finished. 

A terminal description does not have to be nearly so detailed. If you wish to use a new terminal. 
first check the following table to see if it already appears by termcap. If it does not. check the 
terminal's documentation to see if it mimics a terminal that is already in /etc/termcap, and use 
that description, modifying it if necessary and changing the name to suit your terminal. If you must 
create an entirely new description, first prepare a skeleton file that contains the following basic 
elements: number of lines, number of columns, backspace, cursor motion, line delete, clear screen. 
move cursor to home position. newline. move cursor up a line, and non-destructive right space. For 
example. the following is the termcap description for the Lear-Siegler ADM-3A terminal: 

laladm3al3allsi adm3a:\ 
1am:bs1cd=AW:ce=AX:cm=\E=%+ %+ 1cl=AZ:co#B01ho=AA1li#241\ 
:nd=<ctrl-L>:up=AK: 

Once you have installed and debugged the skeleton description, add details gradually until every 
feature of the terminal is described. 

Cursor Motion 
The cursor motion characteristic contains printf-like escape sequences not used elsewhere. These 
encode the line and column positions of the cursor, whereas other characters are passed 
unchanged. If the cm string is considered as a function, then its arguments are the line and the 
column to which the cursor is to move; the % codes have the following meanings: 

%d Decimal number, as in printf. The origin is 0. 

%2 Two-digit decimal number. The same as %2d in printf. 

%3 Three-digit decimal number. The same as %3d in printf. 

%. Single byte. The same as %c in printf. 

%+n Add n to the current position value. n may be either a number or a character. 

%>nm If the current position value is greater than n+m; then there is no output. 

%r Reverse order of line and column, giving column first and then line. No output. 

%1 Increment line and column. 

%% Give a % sign in the string. 

%n Exclusive or line and column with 0140 (Datamedia 2500 terminal only). 

%B Binary coded decimal (16 • (n/10))+(n% IO). No output. 

%D Reverse coding (n-(2*(n%16)). No output (Delta Data terminal only). 

To send the cursor to line 3. column 12 on the Hewlett-Packard 2645, the terminal must be sent 
<esc>&al2c03Y padded for 6 milliseconds. Note that the column is given first and then the line, 
and that the line and column are given as two digits each. Thus. the cm capability for the Hewlett­
Packard 2645 is given by: 

:cm=6\E&%r%2c%2Y: 

The Microterm ACT-IV needs the current position sent preceded by a <Ctrl-T>. with the line and 
column encoded in binary: 

:cm=AT%.%.: 

LEXICON 



1074 termcap 

Terminals that use %. must be able to backspace the cursor (bs or be) and to move the cursor up 
one line on the screen (up). This is because transmitting \t, \n, \r. or <ctrl-D> may have 
undesirable consequences or be ignored by the system. 

Similar Terminals 
If your system uses two similar terminals. one can be defined as resembling the other, with certain 
exceptions. The code tc names the similar terminal. This field must be last in the termcap entry. 
and the combined length of the two entries cannot exceed 1.024 characters. Capabilities given first 
over-ride those in the similar terminal, and capabilities in the similar terminal can be cancelled by 
xx@ where xx is the capability. For example. the entry 

hnl2621nljHP 262lnl:ks@:ke@:tc=2621 

defines a Hewlett-Packard 2621 terminal that does not have the ks and ke capabilities, and thus 
cannot tum on the function keys when in visual mode. 

Initialization 
A terminal initialization string may be given with the is capability; if the string is too long. it may be 
read from a file given by the if code. Usually, these strings set the tabs on a terminal with settable 
tabs. If both is and if are given. is will be printed first to clear the tabs, then the tabs will be set 
from the file specified by if. The Hewlett-Packard 2626 has: 

:is=\E&j@\r\E3\r:if=/usr/lib/tabset/stdcrt: 

Terminals Supported 
The following table lists the terminals described in /etc/termcap, and an abbreviated name for 
each. 

Name 

act5 . . 
adm3a 
adm31 
ansipc 
cohibm. 
dos .. 
h1510 
h19 .. 
h19a . 

Terminal 

. Microterm Act V 

. Lear-Siegler ADM3A 

. Lear-Siegler ADM31 

. AT COHERENT console 

. PC COHERENT console 

. DOS 3.1 ANSI.SYS 

. Hazeltine 1510 

. Heathkit H-19 

. Heathkit H-19 in ANSI 
mimel . Microterm Mimel 
mime2a . Microterm Mime2a 
mime3a . Microterm Mime3a 
qvtl02 . . Qume QVT-102 
qume5 . Qume Sprint 5 
tvi912 . Televideo 920 
tvi920 . Televideo 920 
tvi925 . Televideo 925 
vt52. . . DEC VT-52 
vtlOO. . DEC VT-100 
vtlOOn. . DEC VT-100 without initialization 
vtlOOs . . DEC VT-100, 132 columns. 14 lines 
vtlOOw. . DEC VT-100, 132 columns, 24 lines 
wy50 . . . Wyse 50 

Programming With termcap 
The COHERENT library llbterm.a contains the following routines that extract and use the 

LEXICON 



termcap 1075 

descriptions for termcap: 

Read a termcap entry. tgetentQ 

tgetflagO 

tgetnum() 

Check if a given Boolean capability is present in the terminal's termcap entry. 

Return the value of a numeric termcap feature (e.g .• the number of columns on the 
terminal). 

Read and decode a termcap string feature. 

Read and decode a cursor-addressing string. 

tgetstrQ 

tgoto() 

tputsQ Read and decode the leading padding information of a termcap string feature. 

See the Lexicon entry for each function for details. 

The external variable ospeed is the output speed to the terminal as encoded by stty. The external 
variable PC is a padding character if a NUL (<crtl-@>) is not appropriate. 

The following example shows how to read a termcap entry: 

#include <stdio.h> 

static char *CM, *SO, *SE, 
static int rows, cols; 
static int am; 
static int errflag; 
static char *ptr; 
static char *tv_stype; 

extern char *tgoto(); 
extern char *tgetstr(); 
extern int tgetflag(); 
extern int tgetnum(); 
extern void tputs ( ) ; 
extern char PC; 

/* 

*CL; 

/* 
/* 
/* 
/* 
/* 
/* 

termcap cursor position command */ 
get string code from termcap */ 
get boolian flag from termcap */ 
get numeric code from termcap */ 
termcap put data conunand */ 
termcap's pad character */ 

* Get a required termcap string or exit with a message. 
*/ 

static char * 
qgetstr(ref) 
char *ref; 
{ 

} 

register char *tmp; 

if ((tmp = tgetstr(ref, &ptr)) ==NULL) { 

} 

printf("/etc/termcap terminal %s must have a %s= entry\n", 
tv_stype, ref); 

errflag = 1; 

return (tmp); 

LEXICON 



1076 termcap 

I* 
* Get required termcap information for this terminal type. 
*/ 

static void 
tcapopen() 
{ 

} 

extern char *getenv(), *realloc(); 
char *tcapbuf; 
char tcbuf[l024]; /*this must hold the whole tml entry*/ 
char *p; 

/* set up termcap type */ 
if ( (tv_stype = getenv( "TERM")) == NULL) { 

printf("Environment variable TERM not defined\n"); 
exit( 1); 

} 

if (tgetent(tcbuf, tv_stype) I= 1) { 
printf("Terminal type %snot in /etc/termcap\n", tv_stype); 
exit ( 1); 

} 

/* get far too much and shrink later */ 
if ((ptr = tcapbuf = malloc(1024)) ==NULL) { 

printf("out of space\n"); 
exit(l); 

} 

I* get termcap entries for later use */ 
CM qgetstr("cm"); /* this string used by tgoto() */ 
CL qgetstr("cl"); I* this string used to clear screen 
so qgetstr("so"); I* this string used to set standout 

*/ 
*/ 

SE qgetstr("se"); I* this string used by clear standout */ 
if (errflag) /* set if any missing entries *I 

exit(l); 

/* set termcap's pad char */ 
PC = ( ( (p = tgetstr( "pc", &ptr)) == NULL) ? 0 : *p); 

if (tcapbuf I= realloc(tcapbuf, (unsigned)(ptr - tcapbuf))) { 
printf ("Buffer not shrunk in place I \n"); 
exit(l); 

} 

if ((cols= tgetnum("co")) < 0) /*Get rows and columns*/ 
cols = 80; 

if ((rows= tgetnum("li")) < 0) 
rows = 24; 

am tgetflag("am"); /*automatic margins ? */ 

LEXICON 



/* 
* output char function. 
*/ 

static void 
ttputc(c) 
{ 

fputc(c, stdout); 
} 

/* 
* output conunand string, set padding to one line affected. 
* use ttputc as character output function. Use only for 
* termcap created data not your own strings. 
*/ 

void 
putpad(str) 
char *str; 
{ 

tputs(str, 1, ttputc); 
} 

/* 
* Move cursor. 
*/ 

void 
move(col, row) 
{ 

putpad(tgoto(CM, col, row)); 
} 

/* 
* Demonstrate termcap. 
*/ 

main() 
{ 

tcapopen(); 

putpad(CL); 

move(30, 5); 
putpad(SO); 
printf("Termcap Demo"); 
putpad(SE); 

move(O, 7); 

/* clear the screen */ 

/* standout mode */ 

/* end standout mode */ 

termcap 1077 

printf("This terminal has %d columns and %d rows.", cols, rows); 

if (am) { 

} 

move(O, 8); 
printf("Automatic margins."); 

LEXICON 



1078 

} 

Files 

terminal 

move(O, rows); /*quit at bottom of screen*/ 
exit ( 0); 

/etc/termcap- Terminal-description data base 
/usr /llb/libterm.a - Routines for reading a termcap description 

See Also 
captoinfo, curses, modemcap, system maintenance, terminal, terminfo, tgetentQ, tgettla.g(), 
tgetnum(), tgetstr(), tgoto(), tputs() 
Strang. J., Mui, L., O"Reilly. T.: Termcap & Termlnfo. Sebastopol. CA: O'Reilly & Associates, Inc., 
1991. Highly recommended. 

Notes 
COHERENT 386 also supports terminfo, a clone of the UNIX System-V terminal-description system. 
terminfo enjoys a number of features not available under termcap, and is the preferred system 
under COHERENT 386. 

Should you wish to convert to terminfo. the command captoinfo converts a file of termcap 
descriptions to their terminfo analogues. 

terminal- Technical Information 
This artide describes how you can hook up a terminal to your COHERENT system via a serial port. 
It also discusses common problems that arise with this procedure. as diagnosed daily by the 
technical support staff at Mark Williams Company. For information on connecting a modem to your 
computer's serial port, see the article modem. 

Hooking Up a Terminal to COHERENT 
This process is straightforward. but can be confusing if you overlook any details. Typical problems 
include send/receive confusion. baud rate confusion. and shell/no shell confusion. 

Send/Receive Confusion 
A serial connection between your computer and a terminal requires at least three wires: one each for 
pins 2, 3, and 7. These pins. respectively, control send (TD), receive (RD). and sillUal-l!found (Gnd 
or SG). These pin numbers correspond to the 25-pin "DB-25" connectors used on-most equipment. 
If your system has the AT-style nine-pin "DB-9" connectors, you will need to wire to the 
corresponding signals. See the Lexicon entry for RS-232 for details of the pin-outs for these two 
connectors. 

When hooking up a terminal to a serial port using a three-wire connection. you must cross pins 2 
and 3, so that each device's send pin talks to the other device's receive pin. You can plug a device 
called a "null modem" between the cable and the serial port. to do this automatically. Unless 
someone has sat down and taught you how to solder connectors. we strongly urge you to purchase 
the necessary cable and null modem at your local computer store or electronics shop. 

Note that the only symptom of a problem in the cable is that nothing appears on your terminal 
when you type. 

Baud-Rate Confusion 
The terminal and the computer must speak to each other at the same baud rate. A typical symptom 
of baud-rate confusion is garbage characters on the screen. When the wiring is wrong, you see 
nothing; when the baud rate is wrong. you see random collections of characters on the screen. but 
nothing meaningful. 

You can fix baud-rate problems by using the command stty to reset the baud rate on the port, or 

LEXICON 



terminal 1079 

resetting the baud rate on the terminal. The problem should also be solved by editing file 
/etc/ttys. For directions on how to reset the baud rate for a port. see the Lexicon entry for stty; see 
the Lexicon entry for ttys for information on how to edit /etc/ttys. 

Please note, too, that COHERENT supports the following configuration for terminals: 

8 word bits 
l stop bit 
No parity bits 

These settings. as well as the baud rate, must match before your terminal will work correctly. 

The Old Shell Game 
Before a terminal is useful to you, you must enable the port into which it is plugged. Enabling a 
port means that the COHERENT system creates a shell for that port: this, in turn. means that 
COHERENT prints a login prompt on the device plugged into that port, and reads and processes 
interactively commands that are entered from that port. The COHERENT system also restricts 
permissions on all enabled serial ports, so that only the superuser root can read and write to the 
port. This prevents other users who may be using the system from accessing the serial port. 

Note that not all ports need be enabled: printer ports, for example, should not be enabled; nor 
should you enable any port whose device you want to accept data passively. 

When you boot the COHERENT system, it reads system file /etc/ttys and creates a shell for each 
serial port that needs one. One way to enable a port is to log in as the superuser root, then use a 
text editor to change the port's entry in /etc/ttys, as described its Lexicon article. Finally, typing 
the command 

kill quit 1 

forces COHERENT to re-read /etc/ttys and so create a shell for the port. Note that doing this will 
ensure that the port is re-enabled every time you boot. 

A better way to enable a port is to use the command enable. as described in its Lexicon article. For 
example, to put up a shell on COM port /dev/comlr. log in as the superuser root and type the 
command: 

/etc/enable comlr 

Exiting Raw Mode 
A terminal is in cooked mode. In cooked mode, the tty driver interprets and correctly processes 
such predefined characters as the end-of-file character or the quit character. In raw mode, however. 
processing of such characters is turned off; and in general the terminal will behave bizarrely. Raw 
mode is used by programs that do not want the tty driver to interpret characters; for example, a 
program that uses a tty to transmit a binary to another machine does not want the tty driver to be 
interpreting the binary information being passed through it. 

Occasionally. a program will exit abruptly and leave the terminal in raw mode. To return to cooked 
mode. use the command <ctrl-J> stty sane <ctrl-J>. This invokes the command stty. which lets 
you manipulate terminal settings. to restore the previous cooked state. See the Lexicon entry on 
stty for details on raw and cooked modes; this article also describes the options of this most useful 
command. 

See Also 
device drivers, hs, modem, RS-232, sgtty, stty, technical Information, termcap, termlnfo, ttys 

Notes 
One final bit of hard-won wisdom: once you have something working. write down what you did, and 
store it in a place where you won't lose it. Note especially what connectors are where and how they 

LEXICON 



1080 term info 

have been cabled together. It makes life easier just knowing that you are looking for a female-to­
female cable instead of male-to-female or male-to-male. If you know whether to insert a null 
modem, you are even better off. 

COHERENT supports multi-port serial cards as well as COM ports l through 4. See the Lexicon 
entry on device drivers for a list of the devices that COHERENT supports. 

@lhifttl·ll@@11Httjijj@1@@-i•••••••••••••••••••-•••••• 
terminal description language 
/usr/lib/tenninfo 

tenninfo is a system for describing terminals. Descriptions are collect in the file /usr/lib/tenninfo 
and are read by curses, more, vi, and other utilities. By passing her terminal's terminfo entry to a 
program, a user can make sure that the program can take full advantage of her terminal's 
capacities. 

Note that terminfo is included only with COHERENT 386. Under COHERENT 286, programs that 
manipulate terminals must use termcap, which is a similar, but more limited, language. 

terminfo Entries 
Directory /usr/lib/tenninfo consists of a number of sub-directories, one for each terminal type 
being described. A terminal type describes a given make of terminal (e.g .. the Wyse 150) plus some 
special attribute, such as number of characters on a line or a specially defined bank of function 
keys. A terminfo entry can extend over more than one line by indenting every line after the first. A 
line that begin with a pound sign '#' is a comment. 

A tenninfo entry consists of an indefinite number of comma-separated fields. White space after 
each comma is ignored. The first field names the terminal; the remaining fields hold capability 
codes. (Capability codes are discussed in detail below.) Preceding a field with a period·: comments 
out that field, and only that field. 

Naming Terminals 
The first field in a terminfo entry names the terminal being described. The name field consists of 
one or more names, which are separated by vertical-bar characters. The first name given is the 
most common abbreviation for the terminal. The last name is usually a long name that fully 
identifies the terminal. All names in between the first and the last give common synonyms for that 
terminal. All names can contain upper=case characters; the last name can also contain wI-ilte space. 

Terminal names (except for the last, verbose entry) should use the following conventions: 

The hardware should have a root name chosen. e.g .. "wysel50". 

The root name should not contain hyphens, except to prevent synonyms from colliding with 
other names. 

Modes that the hardware can be in, or user preferences, should be indicated by appending a 
hyphen and an indicator of the mode. For example, a wysel50 an old-fashioned 82-key 
keyboard could be called wysel50-o. 

Use the following suffixes whenever possible: 

LEXICON 



Sujflx 
-w 
-am 
-nam 
-n 
-na 
-np 
-rv 

Meaning 
Wide (more than 80 columns) 
With automatic margins (usually default) 
Without automatic margins 
Number of lines on the screen 
No arrow keys 
n pages of memory 
Reverse video 

term info 1081 

Capability Codes 
A capability code describes a capability of a terminal. Capability codes come in three varieties: 

Boolean 

Numeric 

This indicates whether a terminal has a given feature. If the field is present, the 
terminal is assumed to have the capability: if not, then it is assumed not to be 
present. For example, the code am indicates "automatic margins". If am appears 
in a terminal's terminfo entry, then it can execute automatic margins: if not, then 
it can't. 

This gives the size of some aspect of a terminal, such as the number of lines or the 
number of columns. A numeric code is followed by a number sign '#' and then a 
string of digits, which set the value for that code For example, the code cols#80 
indicates that a terminal has 80 columns per row. 

String Capabilities 
This gives a sequence of characters that trigger a terminal operation. For example, 
a terminal may expect a "magic sequence" to wipe the screen clean, to print in 
reverse video, or to change the shape of its cursor. Likewise. a terminal may send a 
"magic sequence" when a particular function key is pressed. For example. the code 
klfl=\E5 indicates that this terminal sends the string <esc>5 when the user 
presses function-key 1. 

Some terminal capabilities may involve padding - that is, telling the terminal to delay execution of 
the capability for a fraction of a second. In some instances. padding may make the difference 
between a terminal's drawing information correction. or displaying a jumble. 

A delay code can appear anywhere in a string capability code. It is introduced by a dollar sign '$' 
and enclosed in angle brackets'<>. The numeric value is always in milliseconds. For example, the 
code el=\EK$<3> indicates that the clear-to-end-of-line code el is invoked by the "magic sequence" 
<esc>K. and that it should involve a three-millisecond delay. Function tputs() provides the delay. 

The delay can be either a number, e.g .. "20", or a number followed by an asterisk, e.g., "3*". An 
asterisk indicates that the padding must be proportional to the number of lines affected by the 
operation: the amount given is the amount of padding required by each line of output. (This is true 
even in the case of the insert-character code.) When an asterisk is specified, it is sometimes useful 
to give a delay of the form "3.5" to specify a delay-per-unit to tenths of milliseconds. (Only one 
decimal place is allowed.) 

The following table gives the commonest terminfo capability codes. The variable is the name by 
which the programmer (at the terminfo level) accesses the capability. The code is the name used in 
the terminfo entry. There is no fixed limit to the length of a code, but the convention is to keep 
them to five characters or fewer. Whenever possible, names are the same as, or similar to, those in 
the ANSI Standard X3.64-l 979. 

The semantics describe features of the code: 

LEXICON 



1082 terminfo 

t You may specify padding. 

t• Padding may be based on the number of lines affected. 

# The string is passed through tpann() with the number of parameters given in the description. 

#I Indicate the Ith parameter. 

Boolean Codes 

Variable 
auto _left_ margin 
auto_ right_ margin 
beehive _glitch . . . 
ceol_standout_glitch . 
eat_newline_glitch 
erase overstrike . 
generic_ type . . . 
hard_copy .... 
has_meta_key .. 
has status line . 
insert_ nul(glitch . 
memory_ above. . . 
memory_ below. . . 
move insert mode 
move - standout mode 
over strike . . .- . . 
status line esc ok - - -
teleray _glitch. . . . 
tilde_glitch ..... 
transparent_ underline. 
xon xoff ..... . 

Numeric Codes 

Variable 
columns 
init tabs 
lines ... 
lines_of_memory 
magic_ cookie _glitch. 
padding_ baud _rate . 
virtual terminal . . . 
width status line . . - -
String Capabilities 

Variable 
back tab ... . 
bell:- .... .. 
carriage _return 
change_scroll_region. 
clear all tabs 
clear - screen . 
cir eol. ... . 
cir eos ... . 
column address. 
command character . 

LEXICON 

Code 
bw. 
am. 
xsb. 
xhp. 
xenl 
eo. 
gn . 
he . 
km. 
hs. 
in. 
da. 
db 
mfr. 
msgr. 
OS ••• 

eslok. 
xt. 
hz . 
ul . . 
xon. 

Code 
cols . 
it . .. 
lines. 
Im. 
xmc 
pb . 
vt .. 
wsl. 

Code 
cbt. 
bel. 
er .. 
csr. 
tbc. 
clear. 
el.. 
ed .. 
hpa. 
cc. 

Description 
. cubl wraps from column 0 to last column 
. Automatic margins 
. Beehive terminal (Fl=escape, F2=<ctrl-C>) 
. Standout not erased by overwriting (HP) 
. Newline ignored after 80 columns (Concept) 
. Erase overstrikes with a blank 
. Generic line type (e.g .. dialup, switch). 
. Hard copy terminal 
. Has a metakey (shift sets parity bit) 
. Has an extra "status line" 
. Insert mode distinguishes NULs 
. Display can be retained above the screen 
. Display can be retained below the screen 
. Safe to move while in insert mode 
. Safe to move in standout modes 
. Terminal overstrikes 
. Escape can be used on the status line 
. Tabs destructive, magic SO char (Teleray 1061) 
. Hazeltine cannot print tildes·~· 
. Underline character overstrikes 
. Terminal uses XON I XOFF handshaking 

Description 
. Number of columns in a line 
. Tabs initially every n spaces 
. Number of lines on screen or page 
. Lines of memory if greater than lines; zero, variable 
. Number of blank characters left by smso or rmso 
. Lowest baud rate where CR/NL padding is needed 
. Virtual terminal number 
. Number of columns in the status line 

Description 
. Back tabt 
. Audible signal (bell)t 
. Carriage return t• 
. change to lines # 1 through #2 (vt 1 OO)t# 
. Clear all tab stops. t 
. Clear screent• 
. Clear to end of linet 
. Clear to end of displayt• 
. Set cursor columnt# 
. Terminal-settable command character in prototype 



cursor address 
cursor-down. . 
cursor-home. . 
cursor)nvi~ible. 
cursor left ~ . . . . 
cursor-mem address. 
cursor-normal. 
cursor= right . . 
cursor to ll . . 
cursor_up ... 
cursor visible . 
delete character. 
delete-line ... 
dis status line. . 
doWn half-line. . 
enter -alt charset mode . 
enter-blink mode. 
enter-bold mode . 
enter-ca mode ... 
enter-delete mode 
enter-dim mode .. 
enter-insert mode 
enter yrotected _mode 
enter reverse mode. . 
enter - secure -mode . . 
enter - standout mode 
enter-underline mode . 
erase - charse . . -: . . . . 
exit ait charset mode . 
exit-attribute mode. 
exit-ca mode - . . 
exit-delete mode . . 
exit-insert - mode . . 
exit-standout mode 
exit-underline mode . 
flash screen . -: . . 
form -feed ..... . 
from=status_line .. 
init_lstring. 
init_2string .... 
init_ 3string. . . . 
init file ..... . 
insert character. 
insert-line . . . 
insert Yadding. 
key_ backspace. 
key_catab. 
key_clear. 
key_ctab . 
key_dc .. 
key di. .. 
key=down. 
key_eic . 
key_eol .. 

cup .. 
cudl. 
home 
civis. 
cubl. 
mrcup. 
cnorm. 
cun . 
11 ••• 
cuul. 
cvvis. 
dchl. 
dll. 
dsl .. 
hd .. 
smacs. 
blink .. 
bold .. 
smcup. 
smdc. 
dim .. 
smir. 
prot . 
rev .. 
invis. 
smso. 
smul. 
ch .. 
nnacs 
sgrO . 
rmcup. 
rmdc. 
nnir . 
rmso. 
rmul. 
Dash. 
ff .. 
fsl . 
isl . 
is2 . 
is3. 
if .. 
ichl 
ill . 
ip .. 
kbs. 
ktbc 
kclr 
kctab 
kdchl 
kdll . 
kcudl 
knnir 
kel.. 

term info 1083 

. Cursor motion relative to row 1 column 2t# 

. Move cursor down one line 

. Move cursor to home position (if no cup) 

. Make cursor invisible 

. Move cursor left one space 

. Memory-relative cursor addressing 

. Make cursor appear normal (undo vs and vi) 

. Move cursor right one space 

. Last line, first column (if no cup) 

. Upline (cursor up) 

. Make cursor very visible 

. Delete character+• 

. Delete linet• 

. Disable status line 

. Half-line down (forward 1 /2 linefeed) 

. Start alternate character sett 

. Turn on blinking 

. Turn on bold (extra bright) 

. String to begin programs that use cup 

. Delete mode (enter) 

. Turn on half-bright mode 

. Insert mode (enter) 

. Turn on protected mode 

. Turn on reverse-video 

. Turn on blank mode (characters invisible) 

. Begin stand-out mode 

. Start underscore mode 

. Erase #1 characterst# 

. End alternate character sett 

. Turn off all attributes 

. String to end programs that use cup 

. End delete mode 

. End insert mode 

. End stand out mode 

. End underscore mode 

. Visible bell (may not move cursor) 

. Hardcopy terminal page ejectt• 

. Return from status line 

. Terminal-initialization string 

. Terminal-initialization string 

. Terminal-initialization string 

. Name of file containing is 

. Insert charactert 

. Add new blank linet• 

. Insert pad after character inserted t• 

. Sent by backspace key 

. Sent by clear-all-tabs key 

. Sent by clear-screen or erase key 

. Sent by clear-tab key 

. Sent by delete-character key 

. Sent by delete-line key 

. Sent by down-arrow key 

. Sent by rmir or smir in insert mode 

. Sent by clear-to-end-of-line key 

LEXICON 



1084 term info 

key_eos. 
key_ro .. 
key_fl .. 
key_t2 .. 
key_f3 .. 
key_f4 .. 
key_ffi .. 
key_f6 .. 
key f7 .. 
key)8 .. 
key_f9 .. 
key_flO. 
key_home .. 
key_ic .. 
key_il ... 
key_left .. 
key_ll ... 
key_npage 
key_ppage 
key_right. 
key_sf. . 
key_sr ... 
key stab . 
key=up .. 
keypad local. 
keypad=xmit. 
label ro. 
labeCn. 
labeCt2. 
tabeCra. 
labeCf4. 
labeCffi. 
labeCf6. 
labeCt7. 
tabeCf8. 
tabeCm. 
labeCno. 
meta-on 
meta-off . 
newline .. 
pad_char. 
parm_dch 
parm_delete_line . 
parm_down_cursor. 
parm_ich ..... . 
parm_index ... . 
parm_insert_line . 
parm_left_cursor . 
parm_right_ cursor 
parm_rindex . . . . 
parm_up_cursor .. 
pkey_key. 
pkey_local 
pkey_xmit 

LEXICON 

ked. 
kfO. 
kfl. 
kf2. 
kf3. 
kf4. 
kf5. 
kf6. 
kf7. 
ld8. 
ld9. 
kflO. 
khome. 
kichl 
kill . . 
kcubl 
k1l . 
Imp .. 
kpp .. 
kcufi 
kind. 
kri . . 
khts . 
kcuul. 
rmkx. 
smkx. 
110 
In 
112 
lf3 
lf4 
1f5 
116 
lf7 
ll8 
119 
lflO 
smm. 
rmm. 
nel . 
pad. 
dch. 
di .. 
cud. 
ich. 
indn. 
il .. 
cub. 
cuf. 
rin. 
cuu. 
pfkey 
pfloc. 
pfX .. 

. Sent by clear-to-end-of-screen key 

. Sent by function key 0 

. Sent by function key I 

. Sent by function key 2 

. Sent by function key 3 

. Sent by function key 4 

. Sent by function key 5 

. Sent by function key 6 

. Sent by function key 7 

. Sent by function key 8 

. Sent by function key 9 

. Sent by function key 10 

. Sent by home key 

. Sent by insert char/enter insert-mode key 

. Sent by insert line 

. Sent by left-arrow key 

. Sent by home-down key 

. Sent by next-page key 

. Sent by previous-page key 

. Sent by right-arrow key 

. Sent by scroll-forward/down key 

. Sent by scroll-backward/upkey 

. Sent by set-tab key 

. Sent by terminal up arrow key 

. Exit "keypad transmit" mode 

. Enter "keypad transmit" mode 

. Label on function key 0 if not FO 

. Label on function key I if not Fl 
. . Label on function key 2 if not F2 
. . Label on function key 3 if not F3 
. . Label on function key 4 if not F4 
. . Label on function key 5 if not F5 

. Label on function key 6 if not F6 
. . Label on function key 7 if not F7 
. . Label on function key 8 if not F8 
. . Label on function key 9 if not F9 
. . Label on function key 10 if not FIO 
. . Turn on "meta mode" (eighth bit) 

. Turn off "meta mode" 

. Newline (behaves like CR followed by LF) 

. Pad character (rather than NUL) 

. Delete #1 charst*# 

. Delete #l linest*# 

. Move cursor down #I lines. t• # 

. Insert #1 blank characterst*# 

. Scroll forward #1 linest# 

. Add #1 new blank linest*# 

. Move cursor left #1 spacest# 

. Move cursor right #1 spacest*# 

. Scroll backward #1 linest# 

. Move cursor up #1 linest*# 

. Program function key #1 to type string #2 

. Program function key #I to execute string #2 

. Program function key #I to transmit string #2 



print_ screen . 
prtr_off ... . 
prtr on ... . 
repeat_char . 
reset_ I string. 
reset_ 2string. 
reset_3string. 
reset file ... 
restore cursor . 
row address . . 
save cursor . . 
scroll forward . 
scroll-reverse 
set attributes 
set tab ... 
set-window .. 
tab-: ..... . 
to status line 
underline- char 
up_half_line .. 

Escape Sequences 

mcO 
mc4 
mc5 
rep. 
rsl . 
rs2. 
rs3. 
rf .. 
re .. 
vpa. 
SC •• 

ind. 
ri .. 
sgr. 
hts. 
wind. 
ht. 
tsl 
UC 

hu 

. Print contents of the screen 

. Turn off printer 

. Turn on printer 

. Repeat character #1 #2 times. t*# 

term info 

. Reset terminal completely to sane modes 

. Reset terminal completely to sane modes 

. Reset terminal completely to sane modes 

. Name of file containing reset string 

. Restore cursor to position of last sc 

. Vertical position absolute (set row)t# 

. Save cursor position t 

. Scroll text upt 

. Scroll text down t 

. Define the nine video attributest*# 

. Set a tab in all rows, current column. 

. Current window is lines #1-#2, columns #3-#4 

. Tab to next eight-space hardware tab stop 

. Go to status line, column #1 

. Underscore one char and move past it 

. Half-line up (reverse 1 /2 linefeed) 

1085 

You can use the following escape sequences with any string-capability entry: 

\E 
\e 
"X 
\n 
\r 
\t 
\b 
\f 
\s 
\000 
\,.. 
\, 
\\ 

Parameterized Strings 

<esc> character 
<esc> character 
<ctrl-X> for any appropriate X 
Newline 
Carriage return 
Horizontal tab 
Backspace 
Formfeed 
Space 
Value of a character in three octal digits 
Literal carat 
Literal comma 
Literal backslash 

Cursor-addressing and other strings requiring parameters in the terminal are described by a 
parameterized string capability. with printf()-like escape sequences in it. Each escape sequence is 
introduced with a percent sign '%", followed by one character that described the type of formatting to 
be performed, as follows: 

%% 
%d 
%2d 
%02d 
%3d 
%03d 
%c 
%s 

Literal'%' 
Decimal integer 
Decimal integer with at least two places 
Decimal integer, two places, zero padding 
Decimal integer with at least three places 
Decimal integer, three places, zero padding 
Character 
String 

LEXICON 



1086 terminfo 

%p[I) 
%P[a-z] 
%g[a-z] 
%'c' 
%{nn} 

%+ 
%­
% • 
%/ 
%m 
%& 
%1 
%" 
%= 
%> 
%< 
%! 
%­
%1 

Push Ith parameter 
Set variable [a-z) to pop() 
Push variable [a-z) 
Character constant c 
Integer constant nn 

Addition: push(pop() + pop()) 
Subtraction: push(pop() - pop()) 
Multiplication: push(pop() • pop()) 
Division: push(pop() I pop()) 
Modulo: push(pop() % pop()) 
Bitwise AND: push(pop() op pop()) 
Bitwise OR: push(pop() op pop()) 
Bitwise NOR: push(pop() op pop()) 
Logical AND: push(pop() op pop()) 
Logical OR: push(pop() op pop()) 
Logical NOR: push(pop() op pop()) 
Unary NOT: push(op pop()) 
Unary complement: push(op pop()) 
Add one to first two parmameters (for ANSI terminals) 

The parameterized mechanism is based on a stack. % operations push parameters and constants 
onto the stack, do arithmetic and other operations on the top of the stack, and print out values in 
various formats. Up to nine parameters can be used at once. If-then-else testing is possible, as is 
storage in a limited number of variables. There is no provision for loops or printing strings in any 
format other than %s. 

For example, compare the termcap entry cm and the terminfo entry cup. %+ (add space and print 
as a character) cm would be treated as %pl%' '%+%c. that is, push the first parameter, push 
space. add the top two numbers onto the stack, and output the top item on the stack using 
character (%c) format. For the second parameter. change %pl to %p2. %. (print as a character) 
becomes %pl %c. %d (print in decimal) becomes %pl %d. 

As with tgoto(), characters standing by themselves (no'%' sign) are output as is. 

Changes from termcap to terminfo 
This section describes features of tenninfo that termcap does not contain. 

Defaults 
terminfo does not contain every default found in termcap. termcap, for example, assumed that \r 
was a carriage return unless nc was present, indicating that it did not work, or er was present, 
indicating an alternative. In terminfo, if er is present, the string so given works; otherwise it 
should be assumed rwt to work. The bs and be capabilities are replaced by cub and cubl. (The 
former takes a parameter, moving left that many spaces. The latter is probably more common in 
terminals and moves left one space.) nl (linefeed) has been split into two functions: cudl (moves the 
cursor down one line) and ind (scroll forward). cudl applies when the cursor is not on the bottom 
line, ind applies when it is on the bottom line. The bell capability is now explicitly given as bel. 

The terminfo data base is compiled, unlike termcap. This means that a terminfo source file 
(describing some set of terminals) is processed by the terminfo compiler. producing a binary 
description of the terminal in a file under /usr/lib/terminfo. The function setupterm() reads this 
file. The advantage to compilation is that starting up a program using terminfo is faster. The 
increase in speed comes partly from not having to skip past other terminal descriptions, and partly 
from the compiler having sorted the capabilities into order so that a linear scan can read them in. 

LEXICON 



term info 1087 

The terminfo compiler tic uses the environment variable TERMINFO to be the destination directory 
of the new object files. It is also used by setupterm() to find an entry for a given terminal. First it 
looks in the directory given in TERMINFO and. if not found there, checks /usr/llb/terminfo. 

Basic Example 
The following gives the terminfo description for a simple terminal, the Lear-Siegler ADM-3: 

adm3 I 3 I lsi adm3, 
cr=AM, cudl=AJ, ind=AJ, bel=AG, 
am, cubl=AH, clear=AZ, lines#24, cols#BO 

As you can see, the description is divided into comma-separated fields. The following discusses 
each field in detail. 

adm3 I 3 I Jsi adm3, 
The first field names the terminal. This field is unique in that it is divided into a number of 
sub-fields, which are separated by vertical bar characters. The first sub-field gives the 
name by which the terminal is normally addressed in a program; the last gives a longer, 
descriptive name. 

cr="M, To move the cursor to the left margin, send <ctrl-M>. 

cudl="J, 
To move the cursor down one row, send <ctrl-J>. 

ind="J, 
To scroll the screen up, send <ctrl-J>. Note that the ADM-3. like most terminals, does not 
scroll unless the cursor is on the last row. 

bel="G, 
To ring the terminal's bell, send <ctrl-G>. 

am, This boolean code indicates that the ADM-3 wraps to the leftmost column of the of the next 
row when the cursor reaches the rightmost column. 

cubl="H, 
To move the cursor nondestructively one column to the left, send <ctrl-H>. 

clear="Z, 
To clear the screen, send <ctrl-Z>. 

lines#24, 
The ADM-3 has 24 rows (lines). 

cols#80, 
The ADM-3 has 80 columns. 

C-Leve/ Routines 
The following functions can be called from within a C program to read a terminfo entry: 

LEXICON 



1088 termio 

fixterm() 
putp() 
resetterm() 
setupterm() 
tparm() 
tputs() 
vidattr() 
vidputs() 

Set the terminal into program mode 
Write a string into stdwln 
Reset the terminal into a saved mode 
Initialize terminal capabilities 
Output a parameterized string 
Process a capability string 
Set the terminal's video.attributes 
Set video attributes into a function 

Function setupterm() initializes a terminal. This routine inhales all capabilities at once, and 
performs all other system-dependent initialization. 

A program should call resetterm() when it exits or calls a shell escape, to restore the tty modes. 
When it returns from a shell escape, the program should call fixterm() to set the tty modes back to 
their internal settings. 

tparm() is a more powerful, parameterized string mechanism. It resembles the termcap function 
tgoto(). tgoto() is still available for compatibility. tputs() is unchanged. 

COHERENT-386 curses eliminates the external variables UP, BC, PC, and ospeed. It handles their 
function internally. 

These functions live in library /usr/lib/libcurses.a. 

Files 
/usr/lib/libcurses.a- Routines for reading tenninfo descriptions 
/usr/lib/terminfo/? /•-Directories containing compiled descriptions 

See Also 
captoinfo, curses, fixterm(), putp(), resetterm(), setupterm(), system maintenance, term, 
termcap, tic, tparm(), tputs(), vi, vidaddr(), vidputs() 
Strang, J., Mui, L., O'Reilly, T.: Termcap and Termlnfo. Sebastopol. CA: O'Reilly & Associates, Inc .. 
1991. Highly recommended. 

Notes 
This implementation of tenninfo was written by Pavel Curtis of Cornell University. It was ported to 
COHERENT by Udo Munk. 

tenninfo and its related programs are used only under COHERENT 386. 

termio - Device Driver (COHERENT 386) 
General terminal interface 

COHERENT uses two methods for controlling terminals: sgtty and termio. Programmers who use 
COHERENT 286 must use sgtty. Programmers who use COHERENT 386 may use sgtty or termio, 
whichever they prefer. 

To use sgtty, simply include the statement #include <sgtty.h> in your sources. To use termio, 
include the statement #include <tennio.h>. 

The rest of this article discusses the termio method of controlling terminals. 

When a terminal file is opened, it normally causes the process to wait until a connection is 
established. In practice, users' programs seldom open these files; they are opened by the program 
getty and become a user's standard input, output, and error files. The very first terminal file opened 
by the process group leader of a terminal file not already associated with a process group becomes 
the control terminal for that process group. The control terminal plays a special role in handling 
quit and interrupt signals, as discussed below. The control terminal is inherited by a child process 

LEXICON 



termio 1089 

during a call to fork. A process can break this association by changing its process group using 
setpgrp. 

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters can 
be typed at any time, even while output is occurring. and are only lost when the system's input 
buffers become completely full, which is rare, or when the user has accumulated the maximum 
allowed number of input characters that have not yet been read by some program. Currently, this 
limit is 256 characters. When the input limit is reached, the sytems throws away all the saved 
characters without notice. 

Normally, terminal input is processed in units of lines. A line is delimited by a newline character 
(ASCII LF), an end-of-file character (ASCII EOT), or an end-of-line character. This means that a 
program attempting to read will be suspended until an entire line has been typed. Also, no matter 
how many characters are requested in the read call, at most one line will be returned. It is not, 
how~ver, necessary to read a whole line at once; any number of characters may be requested in a 
read, even one, without losing information. 

During input, the system normally processes erase and kill characters. By default, the backspace 
character erases the last character typed, except that it will not erase beyond the beginning of the 
line. By default, the <ctrl-U> kills (deletes) the entire input line, and optionally outputs a newline 
character. Both these characters operate on a keystroke-by-keystroke basis, independently of any 
backspacing or tabbing which may have been done. Both the erase and kill characters may be 
entered literally by preceding them with the escape character ( \ ). In this case, the escape character 
is not read. You may change the erase and kill characters. 

Certain characters have special functions on input. These functions and their default character 
values are summarized as follows: 

INTR 

QUIT 

ERASE 

KILL 

EOF 

NL 

EOL 

STOP 

( <ctrl-C> or ASCII ETX) generates an Interrupt signal that is sent to all processes 
with the associated control terminal. Normally, each such process is forced to 
terminate, but arrangements may be made either to ignore the signal or to receive a 
trap to an agreed-upon location; see the Lexicon entry for signal. 

(Control-\ or ASCII ES) generates a quit signal. Its treatment is identical to that of 
the interrupt signal except that. unless a receiving process has made other 
arrangements. it will not only be terminated but a core image file (called core) will 
be created in the current working directory. 

(<backspace> or ASCII BS) erases the preceding character. It will not erase beyond 
the start of a line, as delimited by a newline, EOF, or EOL character. 

(<ctrl-U> or ASCII NAK) deletes the entire line, as delimited by a newline, EOF, or 
EOL character. 

(<ctrl-D> or ASCII EOTJ generates an end-of-file character from a terminal. When 
received, all the characters waiting to be read are immediately passed to the 
program without waiting for a newline, and the EOF is discarded. Thus, if no 
characters are waiting, which is to say the EOF occurred at the beginning of a line. 
zero characters will be passed back, which is the standard end-of-file indication. 

(ASCII LF) is the normal line delimiter. It cannot be changed or escaped. 

(ASCII LF) is an additional line delimiter, line NL. It is not normally used. 

(<ctrl-S> or ASCII DC3) can be used to suspend output. It is useful with CRT 
terminals to prevent output from disappearing before it can be read. While output 
is suspended, STOP characters are ignored and not read. 

LEXICON 



1090 termio 

START (<ctrl-Q> or ASCII DC!) resumes output that has been suspended by a STOP 
character. While output is not suspended, START characters are ignored and not 
read. The start/stop characters can not be changed or escaped. 

You can change the character values for INTR, QUIT, ERASE, KILL, EOF, and EOL To suit your 
tastes. The ERASE, KILL, and EOF character may be escaped by a preceding \ character, in which 
case the system ignores its special meaning. 

When the carrier signal from the data-set drops, a hangup signal is sent to all processes that have 
this terminal as the control terminal. Unless other arrangements have been made, this signal 
causes the process to terminate. If the hangup signal is ignored, any subsequent read returns with 
an end-of-file indication. Thus, programs that read a terminal and test for end-of-file can terminate 
appropriately when hung up on. 

When one or more characters are written, they are transmitted to the terminal as soon as previously 
written characters have finished typing. Input characters are echoed by putting them into the 
output queue as they arrive. If a process produces characters more rapidly than they can be 
printed, it will be suspended when its output queue exceeds some limit. When the queue has 
drained down to some threshold, the program resumes. 

Several calls to ioctl apply to terminal files. The primary calls use the following structure, defined 
in <termio.h>: 

#define NCC 8 
struct termio { 

unsigned short c_iflag; /* input modes */ 
unsigned short c_oflag; /* output modes */ 
unsigned short c_cflag; /* control modes */ 
unsigned short c_lflag; /* local modes */ 
char c_line; /* line discipline */ 
unsigned char c_cc [NCC]; /* control chars */ 

} ; 

The special control characters are defined by the array c_cc. The relative positions and initial values 
for each function are as follows: 

0 INTR "C 

1 QUIT "\ 
2 ERASE \b 
3 KILL "U 
4 EOF "D 
5 EOL \n 
6 reserved 
7 reserved 

The field c .Jflag describes the basic terminal input control: 

BRKINT 
IGNPAR 
INPCK 
!STRIP 
ICRNL 
IXON 
IXOFF 

LEXICON 

Signal interrupt on break. 
Ignore characters with parity errors. 
Enable input parity check. 
Strip character. 
Map CR to NL on input. 
Enable start/stop output control. 
Enable start/stop input control. 



termio 1091 

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is 
disabled. This allows output parity generation without input parity errors. 

If !STRIP is set, valid input characters are stripped to 7-bits before being processed; otherwise, all 
eight bits are processed. 

If IXON is set, start/stop output control is enabled. A received STOP character will suspend output 
and a received START character will restart output. All start/stop characters are ignored and not 
read. 

IF IXOFF is set, the system will transmit START /STOP characters when the input queue is nearly 
empty I full. 

The initial input control value is all bits clear. 

The field c_oflag field specifies the system treatment of output: 

OPOST 
OLCUC 
ONLCR 

Postprocess output. 
Map lower case to upper on output. 
Map NL to CR-NL on output. 

If OPOST is set, output characters are post-processed as indicated by the remaining flags; otherwise, 
characters are transmitted without change. 

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case 
character. This function is often used with IUCLC. 

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. 

The initial output control value is all bits clear. 

The field c _cflag describes the hardware control of the terminal, as follows: 

CBAUD Baud rate: 
BO Hangup 
B50 50baud 
B75 75 baud 
BllO 110 baud 
Bl34 134.5 baud 
Bl50 150 baud 
B200 200 baud 
B300 300 baud 
B600 600 baud 
81200 1200 baud 
81800 1800 baud 
82400 2400 baud 
84800 4800 baud 
B9600 9600 baud 
819200 19200 baud 
838400 38400 baud 
CREAD Enable receiver 
PARENB Parity enable 
PARODD Odd parity, else even 
HUPCL Hang up on last close 
CLOCAL Local line, else dial-up 

The CBAUD bits specify the baud rate. The zero baud rate, BO. is used to hang up the connection. 
If BO is specified, the data-terminal-ready signal is not asserted. Normally, this disconnects the line. 
For any particular hardware, the system ignores impossible changes to the speed. 

LEXICON 



1092 termio 

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each 
character. If parity is enabled, the PARODD flag specifies odd parity if set; otherwise, even parity is 
used. 

If CREAD is set, the receiver is enabled. Otherwise. no characters will be received. 

If HUPCL is set, COHERENT disconnects the line when the last process with the line open closes the 
line or terminates; that is. the data-terminal-ready signal is not asserted. 

If CLOCAL is set. the system assumes that the line to be a local, direct connection with no modem 
control. Otherwise. it assumes modem control. 

The line discipline uses the field cjfiag to control terminal functions. The basic line discipline (0) 
provides the following: 

ISIG 
ICANON 
XCASE 
ECHO 
ECHOE 
ECHOK 
ECHO NL 

Enable signals. 
Canonical input (erase and kill processing). 
Canonical upper /lower presentation. 
Enable echo. 
Echo erase character as BS-SP-BS. 
Echo NL after kill character. 
Echo NL. 

If ISIG is set, the system checks each input character against the special control characters INTR 
and QUIT. If an input character matches one of these control characters, the system executes the 
function associated with that character. If ISIG is not set. the system performs no checking; thus, 
these special input functions are possible only if ISIG is set. You can disable these functions 
individually by changing the value of the control character to an unlikely or impossible value (e.g. 
0377). 

If ICANON is set, the system enables canonical processing. This enables the erase and kill edit 
functions, and limits the assembly of input characters into lines delimited by NL. EOF, and EOL. If 
ICANON is not set, read requests are satisfied directly from the input queue. A read will not be 
satisfied until at least MIN characters have been received or the timeout value TIME has expired. 
This allows the system to read efficiently fast bursts of input while still allowing single-character 
input. The MIN and TIME values are stored in the position for the EOF and EOL characters, 
respectively. The time value represents tenths of seconds. 

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it with 
a \ character, and is output preceded by a \ character. In this mode, the following escape 
sequences are generated on output and accepted on input: 

For: Use: 

\' 
\I 
\A 

{ \( 
} \) 
\ \\ 

For example, A is input as \a, \n as \ \n. and \N as \ \ \n. 

If ECHO is set, characters are echoed as received. 

When ICANON is set. the following echo functions are possible: If ECHO and ECHOE are set, the 
erase character is echoed as ASCII BS SP BS, which clears the last character from the screen. If 

LEXICON 



termio.h 1093 

ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS. If ECHOK is set, 
the NL character is echoed after the kill character to emphasize that the line will be deleted. Note 
that an escape character preceding the erase or kill character removes any special function. If 
ECHONL is set, the NL character is echoed even if ECHO is not set. This is useful for terminals set 
to local echo ("half duplex"). Unless escaped, the EOF character is not echoed. Because EOT is the 
default EOF character, this prevents terminals that respond to EOT from hanging up. 

The initial line-discipline control value is all bits clear. 

The primary calls to ioctl have the following form: 

ioctl( fildes, command, arg ) 
struct termio *arg; 

The following commands use this form: 

TCGETA Get the parameters associated with the terminal and store in the termlo structure 
referenced by arg. 

TCSETA Set the parameters associated with the terminal from the structure re(erenced by 
arg. The change is immediate. 

TCSETAW Wait for the output to drain before setting the new parameters. This form should 
be used when changing parameters that affect output. 

TCSETAF Wait for the output to drain, then flush the input queue and set the new 
parameters. 

Additional calls to ioctl have the following form: 

ioctl( fildes, command, arg ) 
int arg; 

The following commands use this form: 

TCFLSH 
Flush both the input and output queues. 

Note that header termio.h defines other constants for purposes of portability. Features designated 
by these constants are unavailable in the current release of COHERENT 386. 

Files 
/dev/tty• 

See Also 
device drivers, ioctl(), stty, terminal, termio.h 

tNMt@•lr:tmD@mtI•llli;!jHII:I:Jl 
Definitions used with terminal input and output 
#include <termio.h> 

termio.h defines structures and constants used by functions that control terminal input and 
output. 

See Also 
headerfiles,termio 

Notes 
Programs that perform terminal control under COHERENT 286 must use sgtty.h. With COHERENT 
386, the programmer may choose between sgtty.h and termio.h terminal control. 

LEXICON 



1094 test 

~ ~~~~~~~~~~~~~~~~~~ 
Evaluate conditional expression 
test expression ... 

test evaluates an expression, which consists of string comparisons. numerical comparisons. and 
tests of file attributes. For example. a test command might be used within a shell command file to 
test whether a certain file exists and is readable. The logical result (true or false) of the expression is 
returned by the command, for use by a shell construct such as if. 

expression is constructed from the following elements, which are true if the given condition holds 
and false if not: 

expl -aexp2 

-bflle 

-cflle 

-dflle 

file 1 -efflle2 

nl -eq n2 

-fflle 

-gflle 

nl -ge n2 

nl -gt n2 

-kflle 

-Lflle 

nl -le n2 

nl -It n2 

-n string 

nl -ne n2 

fllel -ntflle2 

expl -oexp2 

fllel -otflle2 

-pflle 

-rflle 

-sflle 

-t (fd] 

-uflle 

LEXICON 

Both expressions expl and exp2 are true. 

file is a block-special device. ksh only. 

file is a character-special file. ksh only. 

file exists and is a directory. 

fllel is the same file asjl1e2. ksh only. 

Numbers nl and n2 are equal. 

file exists and is not a directory. 

File mode has setgld bit. ksh only. 

Number nl is greater than or equal to n2. 

Number nl is greater than n2. 

File mode has sticky bit. ksh only. 

File is a symbolic link. ksh only. 

Number nl is less than or equal to n2. 

Number nl is less than n2. 

string has nonzero length. 

Numbers nl and n2 are not equal. 

fllel is newer thanflle2. ksh only. 

Either expression expl or exp2 is true. -a has greater precedence than -o. 

fllel is older thanflle2. ksh only. 

file is a named pipe. ksh only. 

file exists and is readable. 

file exists and has nonzero size. 

fd is the file descriptor number of a file which is open and a terminal. If no fd is 
given, it defaults to the standard output (file descriptor 1 ). 

File mode has setuid set. ksh only. 



-wjlle 

-xjlle 

-z string 

.file exists and is writable. 

.file exists and executable. ksh only. 

string has zero length (is a null string). 

string string has nonzero length. 

string 1 = strlng2 
string 1 is equal to strlng2. 

I exp Negates the logical value of expression exp. 

strlngl I= strlng2 

(exp) 

Example 

string 1 is not equal to strlng2. 

Parentheses allow expression grouping. 

tgetentO 1095 

The following example uses the test command to determine whether a file is writable. 

if test I -w /dev/lp 
then 

echo The line printer is inaccessible. 
fi 

Under COHERENT, the command '(' is linked to test. If invoked as '[', test checks that its last 
argument is ')'. This allows an alternative syntax: simply enclose expression in square brackets. For 
example, the above example can be written as follows: 

if [ I -w /dev/lp ] 
then 

echo The line printer is inaccessible. 
fi 

For a more extended example of the square-bracket syntax, see sh. 

See Also 
commands, expr, find, if, ksh, sh, while 

Notes 
The Korn shell's version of this command is based on the public-domain version written by Erik 
Baalbergen and Arnold Robbins. 

®®tt•M11'i'·H!H!M·!d 
Read termcap entry 
int tgetent(bp, name) 
char *bp, •name; 

tgetent() is one of a set of functions that read a tenncap terminal description. It extracts the entry 
from file /etc/termcap for the terminal name and writes it into a buffer at address bp. bp should be 
a character buffer of 1.024 bytes and must be retained through all subsequent calls to the other 
functions. It returns -1 if it cannot open /etc/tenncap. zero if the terminal name given does not 
have an entry. and one upon a successful search. 

tgetent() first looks in the environment to see if the termcap variable had already been set. If it 
finds that the variable tenncap has been set, that the value does not begin with a slash, and that 
the terminal type name in the tenncap variable is the same as that in the environment variable 
TERM. then tgetent() uses the termcap string instead of reading the file /etc/termcap. However. if 

LEXICON 



1096 tgetflagO - tgetstrO 

the termcap string does begin with a slash, then it is used as the path name of a terminal­
capabilities file other than /etc/termcap. This can speed entry into programs that call tgetent(), 
and can be used to help debug new terminal descriptions. 

Files 
/etc/termcap-Terminal capabilities data base 
/usr/lib/libterm.a- Function library 

See Also 
termcap 

@M•@hrlfl•i@l!1Gl®k"~""""~~,"~~ 
Get termcap Boolean entry 
Int tgetOag(name) 
char*name; 

tgetflag() is one of a set of functions that read a termcap terminal description. It returns one if the 
requested Boolean capability name is present in the terminal's termcap entry. zero if it is not. 

Files 
/etc/termcap-Terminal capabilities data base 
/usr /lib/libterm.a - Function library 

See Also 
termcap 

@d@mll@iulfl·H•l.t;i~,~ "''""""'~ ~"~'"'~'~ ~""' -
Get termcap numeric feature 
Int tgetnum(name) 
char •name; 

tgetnum() is one of a set of functions that read a termcap terminal description. It returns the value 
of the numeric feature name. as defined in the terminal's termcap entry. It returns -1 if the feature 
is not present in the terminal's entry. 

Files 
/etc/termcap-Terminal capabilities data base 
/usr/lib/libterm.a- Function library 

See Also 
termcap 

tgetstrO - termcap Function 
Get termcap string entry 
char •tgetstr(name, area) 
char •name, ••area; 

tgetstr() is one of a set of functions that read a termcap terminal description. It reads the string 
value of feature name from the terminal's termcap description. and writes it into the buffer at 
address area. It also advances the value of the pointer to area. 

tgetstr() decodes the abbreviations for the fields used in the termcap entry. except for padding and 
for cursor-addressing information. 

Files 
/etc/termcap-Terminal capabilities data base 
/usr/lib/libterm.a- Function library 

LEXICON 



See Also 
termcap 

~ll@hf+!.ljihAU·l!f Rea )interpret termcap cursor-addressing string 
char •tgoto(cm, destcol, destllne) 
char •cm; int scrcol, scrllne; 

tgotoO - tic 1097 

tgoto() is one of a set of functions that read a termcap terminal description. It decodes a cursor­
addressing string from the cm termcap feature, and writes it onto the screen, at column scrcol and 
line destllne. tgoto() uses the external variables UP (from the up feature) and BC (if be is given 
rather than bs) if it is necessary to avoid placing \n, <ctrl-D>, or <ctrl-@> into the returned string. 
Programs calling tgoto() should turn off the XTABS bits, as tgoto() may write a tab. If a '%' 
sequence is given that is not understood, tgoto() returns "OOPS". 

Files 
/etc/termcap-Terminal capabilities data base 
/usr/Ub/Ubterm.a- Function library 

See Also 
termcap 

m+f ·!id,,6ht·' 
Compile a terminfo description 
tic [-v[n]) source.file 

The command tic compiles a source.file of terminfo information into a binary object. 

source.file must be self-contained. i.e., it may not contain "use"' entries that refer to terminals not 
described fully in the same file. 

The object files generated by tic are normally placed into subdirectories of the directory 
/usr/llb/terminfo. If the environment variable TERMINFO is defined, it is assumed to name an 
alternative directory to use. 

The flag -vn tells tic to output debugging and tracing information. n sets the amount of debugging 
information to produce, as follows: 

Names of files created 
2 Information related to the "use"' facility 
3 Statistics from the hashing algorithm 
5 String-table memory allocations 
7 Entries into the string-table 
8 List of tokens encountered by scanner 
9 All values computed in construction of the hash table 

n is set to one by default. 

Files 
/usr/Ub/terminfo/•- Default location of object files 

See Also 
commands, terminfo, term 
Strang, J., Mui. L .. O'Reilly, T.: termcap and termlnfo. Sebastopol, CA: O'Reilly & Associates, Inc., 
1991. 

LEXICON 



1098 tickO- time 

Notes 
tic was written by Pavel Curtis of Cornell University. It was ported to COHERENT by Udo Munk. 
Neuss, Germany. 

terminfo and its related programs are used only under COHERENT 386. 

~~,~~~ 
Get time 
long tick() 

tick() returns the number of clock ticks since system startup. The number of clock ticks per second 
is set by the manifest constant HZ, which is defined in header file const.h. At present, there are 100 
ticks per second. 

See Also 
alarm(), alann2(), system calls 

~''''''~~~,,~~~~,,~~~~ ~~~~~~ 
COHERENT includes a number of routines that allow you to set and manipulate time. as recorded 
on the system's clock. into a variety of formats. These routines should be adequate for nearly any 
task that involves temporal calculations or the maintenance of data gathered over a long period of 
time. 

All functions. global variables, and manifest constants used in connection with time are defined and 
described in the header files time.h and timeb.h. 

The COHERENT system includes the following functions to manipulate time: 

asctime() 
ctime() 
ftime() 
gm time() 
local time() 
settz() 
time() 

Convert time structure to ASCII string 
Convert system time to an ASCII string 
Get the current time (COHERENT 286 only) 
Convert system time to calendar structure 
Convert system time to calendar structure 
Set local time zone 
Get the current time 

To print out the local time. a program must perform the following tasks: First, read the system time 
with time(). Then, it must pass time()'s output to localtime(). which breaks it down into the tm 
structure. Next, it must pass localtime()'s output to asctime(), which transforms the tm structure 
into an ASCII string. Finally. it must pass the output of asctime() to printf(). which displays it on 
the standard output device. See the entry for asctime() for an example of such a program. 

Example 
For an example of time functions, see the entry for asctime. 

See Also 
libraries 

Notes 
COHERENT 286 implements ftime() as a system call and implements time() as a general function. 
COHERENT 386 implements time() as a system call and eliminates ftime(). Because ftime() is not 
part of the ANSI standard for C. you should strongly consider not using it. and replacing it in 
existing code with time(). 

LEXICON 



rimrm•.1Hlr1fi1.t.1 

Time the execution of a command 
time [command] 

time - timeb.h 1099 

time invokes the given command with any arguments provided. Upon termination, time prints the 
elapsed real time, CPU time in the system, and CPU time in the user program on the standard error 
output. 

See Also 
com11UU1d.s,date,ps,thnes 

Diagnostics 
If the command terminates abnormally. the reason is printed. 

lmi.lllH@@uill1!' 
Get current system time 
#include <time.h> 
#include <sys/types.h> 
thne_t time(tp) time_t •tp: 

tilDeO reads and returns the current system time. COHERENT defines the current system time as 
the number of seconds since January I. 1970, OhOOmOOs GMT. 

tp points to a data element of the type tilDe_t, which is defined in the header file types.h as being 
equivalent to a long. If tp is initialized to a value other than NULL. then thneO attempts to write the 
system time into the address to which tp points. If. however, tp is initialized to NULL. then thne() 
returns the current system time but does not attempt to write it anywhere. 

Example 
For an example of this call. see the entry for ascthne. 

See Also 
date, fthne(), thne (overview) 

Notes 
Under COHERENT 286, thne() is implemented as a general function rather than a system call. 

thne() in general replaces ftime{), which is not recognized by the ANSI Standard. 

rm11=ma•1 
Give time-description structure 
#include <time.h> 

tilDe.h is a header file that contains descriptions and declarations for elements used to manipulate 
system time under COHERENT. 

See Also 
header mes, tilDe 

Ut1@Milllt¥t.rn11 
Declare timeb structure 
#include <sys/tilDeb.h> 

The header file timeb.h declares the structure thneb, which is used by the function ftime to return 
time information. 

LEXICON 



1100 timef.h - timesO 

See Also 
ftimeQ, header files, time 

mnm&•'®'·fll7 
Definitions for user-level timed functions 
#include <tlmef.h> 

tlmef.h defines structures and constants used by user-level timed functions. 

See Also 
header files 

nmw.11111m;11t¥E·!i·mt11il'••••••••••••••••••••••••••••llllllllllli 
Define the timer queue 
#include <tlmeout.h> 

timeout.h defines the timeout queue. The timeout queue can. as its name implies, be used to call a 
function when a process has "timed out". 

See Also 
header files 

mimli•mm§b(.I 
Print total user and system times 
times 

times prints the total elapsed user time and system time for the current shell and all its children. It 
gives each time in minutes, seconds and tenths of seconds. For example, 

lmll. Ss lm35. Ss 

indicates a total user time of 1 minute 11.8 seconds, and a total system time of 1 minute 35.8 
seconds. 

The shell executes times directly. 

See Also 
commands, ksh, time, sh 

ptufifjilll@i·tli' 
Definitions used with times() system call 
#include <times.h> 

tlmes.h defines the structure tbutl'er, which is used to implement the times system call. 

see Also 
headerflles,tlmesQ 

times() reads CPU time information about the current process and its children, and writes it into 
the structure pointed to by tbp. The structure tbutl'er is declared in the header file sys/times.h, as 

LEXICON 



follows: 

struct tbuffer { 

} ; 

long tb_utimei 
long tb_stime; 
long 
long 

tb_cutime; 
tb_cstime; 

/* process user time */ 
/* process system time */ 
/* childrens' user times */ 
/* childrens' system times */ 

TIMEZONE 1101 

All of the times are measured in basic machine cycles, or HZ. which may be obtained from the 
header file sys/const.h. Under AT COHERENT. HZ is 100. 

The chlldrens' times include the sum of the times of all terminated child processes of the current 
process and of all of their children. The user time represents execution time of user code, whereas 
system time represents system overhead. such as executing system calls. processing signals, and 
other monitoring functions. 

Files 
<sys I times.h> 
<sys/ const.h> 

See Also 
acct(), const.h, ftime(), system calls, time() 

TIMEZONE - Environmental Variable 
Time zone information 
TIMEZONE=standard:offset[:daylight: date:date:hour:minutes] 

The COHERENT system records time internally as Greenwich Mean Time (GMT). It does so to make 
it easier to coordinate exchange of information across systems in different time zones around the 
world. 

TIMEZONE is an environmental parameter that holds information about your local time zone. This 
information is used by COHERENT's time routines to convert GMT to the date and time in your local 
area. TIMEZONE takes into account your local time zone's offset from Greenwich. whether your 
country uses daylight savings time, and the date and hour that daylight savings time begins and 
ends. 

To set TIMEZONE, use the command 

export TIMEZONE=[descrlptlon] 

where description is the string that describes your time zone. What this string consists of will be 
described below. Most users write this command into the file .profile, so that TIMEZONE is set 
automatically whenever they log onto the COHERENT system. 

COHERENT's installation procedure creates file /etc/timezone, which sets TIMEZONE. This file is 
executed by /etc/profile when each user logs in. Thus, you must set the TIMEZONE in your 
.profile only if it differs from the system's TIMEZONE as set in /etc/timezone. This would be 
necessary if, for example, a user in New York were to regularly login on a system in Chicago. 

The Description String 
A TIMEZONE description string consists of seven fields that are separated by colons. Fields 1 and 2 
must be filled; fields 3 through 7 are optional. 

Field I gives the name of your standard time zone. Field 2 gives the time zone's offset from 
Greenwich Mean Time in minutes. Offsets are positive for time zones west of Greenwich and 
negative for time zones east of Greenwich. For example, users in Chicago set these fields as follows: 

LEXICON 



1102 TMPDIR 

TIMEZONE=CST1360 

CST is an abbreviation for Central Standard Time, that area's time zone; and 360 refers to the fact 
that Chicago's time zone is 360 minutes (six hours) behind that of Greenwich. 

Field 3 gives the name of the local daylight saving time zone. In Chicago, for example, this field 
would be set as follows: 

TIMEZONE=CST13601CDT 

CDT is an abbreviation for Central Daylight Time. The absence of this field indicates that your area 
does not use daylight saving time. 

Fields 4 and 5 specify the dates on which daylight saving time begins and ends. If field 3 is set but 
fields 4 and 5 are not, changes between standard time and daylight saving time are assumed to 
occur at the times legislated in the United States: at 2 A.M. standard time on the first Sunday in 
April, and at 2 A.M. daylight saving time on the last Sunday in October. 

Fields 4 and 5 each consist of three numbers separated by periods. The first number specifies 
which occurrence of the day in the month marks the change, counting positive occurrences from the 
beginning of the month and negative occurrences from the the end of the month. The second 
number specifies a day of the week, numbering Sunday as one. The third number specifies a month 
of the year, numbering January as one. For example, in Chicago fields 4 and 5 are set to the 
following: 

TIMEZONE=CST13601CDT11,1.41-l.l,lO 

If the first number in either field is set to zero, then the last two numbers are assumed to indicate 
an absolute date. This is done because some countries switch to daylight saving time on the same 
day each year, instead of a given day of the week. 

Finally, fields 6 and 7 specify the hour of the day at which daylight saving time begins and ends, 
and the number of minutes of adjustment. In Chicago, these are set as follows: 

TIMEZONE=CST13601CDT11.1.41-1.1.10:2:60 

The '2' of field 6 indicates that the switch to daylight savings time occurs at 2 A.M. The "60" of field 
7 indicates that daylight savings time changes the local time by 60 minutes. Although 60 minutes 
is the standard change, some regions of the world shift by 30, 45, 90, or 120 minutes; the last shift 
is also called "double daylight saving time". 

For an example of this variable's use in a program, see the entry for asctime. 

See Also 
environmental variables. time (overview) 

Notes 
For those requiring more information on this subject, much research has been performed by 
astrologers. See Time Changes In the World, compiled by Doris Chase Doane (three volumes, 
Hollywood, California, Professional Astrologers, Inc., 1970). 

llMR•1YlliM''·liiii@·"•*''6!91 
Directory that holds temporary files 

The command cc reads the environmental variable TMPDIR to see where you want it to write its 
temporary files. You can speed compilation by building a RAM disk and pointing TMPDIR to point 
at it. 

For example. if you have created a RAM disk and mounted it as I z. then by embedding the 

LEXICON 



tmpnamO - tolowerO 

instruction 

export TMPDIR=/z/tmp 

in your .profile, you can ensure that cc will write all of its temporary files onto the RAM disk. 

See Also 
cc,environ111entalvariables,ra111 

1103 

®l·liflntlllffli@fl'i''"i'•"~ ~· ~"'"'~'~''~'"''~'''~.-
Generate a unique name for a temporary file 
#include <stdio.h> 
char •t111pna111(name); 
char •name; 

t111pna111() constructs a unique name for a file. The names returned by t111pnR111() generally are 
mechanical concatenations of letters, and therefore are mostly used to name temporary files, which 
are never seen by the user. A file named by t111pnR111() does not automatically disappear when the 
program exits. You must explicitly remove it before the program ends if you want it to disappear. 

name points to the buffer into which t111pna111() writes the name it generates. If name is set to 
NULL. t111pna111() writes the name into an internal buffer that may be overwritten each time you call 
this function. 

t111pnR111() returns a pointer to the temporary name. Unlike the related function te111pnR111(), 
t111pnR111() assumes that the temporary file will be written into directory /t111p and builds the name 
accordingly. 

Example 
For an example of this function, see execve(). 

See Also 
general functions, :mkte111p(), STDIO, te111pnR111() 

Notes 
If you want the file name to be written into bt![fer, you should allocate at least L_tmpnRlll bytes of 
memory for it; L_tlllpna111 is defined in the header stdio.h. Under COHERENT, it is 64 characters 
long. 

(@,)~f:mll!W•i®EM•aw••••mm~"''~"'~~ ''""'"''~'~'"9 
Convert characters to lower case 
#include <ctype.h> 
int tolower(c) int c; 

tolower() converts the letter c to lower case. tolower() returns c converted to lower case. 

Note that tolower() is not guaranteed to work correctly if handed anything other than an upper-case 
character. that is. a character for which isupper() returns true. 

Example 
The following example demonstrates tolower() and toupper(). It reverses the case of every character 
in a text file. 

#include <ctype.h> 
#include <stdio.h> 

LEXICON 



1104 touch - toupperO 

main () 
{ 

FILE *fp; 
int ch; 
int filename[lOO]; 

printf("Enter name of file to use: "); 
fflush(stdout); 
gets(filename); 

if ((fp = fopen(filename,"r")) I= NULL) { 
while ((ch= fgetc(fp)) I= EOF) { 

} 
} else 

if (islower(ch)) 
putchar(toupper(ch)); 

else if (isupper(ch)) 
putchar(tolower(ch)); 

else 
putchar(ch); 

printf("Cannot open %s.\n", filename); 
} 

See Also 
ctype, toupper() 

~--------------------~ Update modification time of a file 
touch [ -c ]file ... 

COHERENT keeps track of when each file was last modified. touch changes the modification time 
of each.file to the current time. but does not modify its contents. By default. touch creates.file if it 
does not already exist; the -c flag suppresses this. 

See Also 
commands, make 

tt.mptmlllSN•l11MH·••••••••••••••••••••••••••••• 
Convert characters to upper case 
#include <ctype.h> 
int toupper(c) int c; 

toupper() is a macro that converts the letter c to upper case and returns the converted character. 

Note that toupper() is not guaranteed to work correctly if it is passed something other than a lower­
case character. that is, any character for which islower() returns true. 

Example 
For an example of this routine, see the entry for tolower(). 

See Also 
ctype, tolower() 

LEXICON 



tparmO - tputsO 1105 

ownm•e1r1@n1111191!.Jl•--------------------------lllllllllllllll 
Output a parameterized string 
#include <curses.h> 
tparm(strlng,pl ... p9) 
char •strlng,parml ... par9; 

COHERENT 386 comes with a set of functions that let you use terminfo descriptions to manipulate 
a terminal. tpannQ outputs a parameterized string. 

A parameterized string is a string into which parameters can be inserted, as in a printf() formatting 
string. Under terminfo, a parameterized string can hold up to nine parameters. tpann() expands 
the parameters, inserts them into the appropriate "slots" within the string, and then outputs the 
string. 

See the Lexicon entry on terminfo for more information on parameterized strings. 

cu.rses.h, terminfo, tputs() 

m.mM,,®IWBiliimm@•llGMI' 
Read/ decode leading padding information 
tputs(cp, affcnt, outc) 
register char •cp; int a.[fcnt; int c•outc)(); 

tputs() is one of a set of functions that read a termcap or terminfo terminal description. It decodes 
the leading padding information of the string name. aff cnt is the number of lines affected by the 
operation. and is set to one if it is not applicable. outc is a routine called to write each character. 

Files 
/etc/termcap-Terminal capabilities data base 
/etc/terminfo-Terminal capabilities data base (COHERENT 386 only) 
/usr/lib/libcurses.a- Routines for reading terminfo descriptions 
/usr/lib/libterm.a- Routines for reading termcap descriptions 

See Also 
curses,termcap,terminfo 

Notes 
As noted above, tputs() can read either a termcap or a terminfo description. Obtaining the correct 
version of tputs() varies between COHERENT 286 and COHERENT 386. 

COHERENT 286 implements only termcap. The termcap version of tputs() lives in library 
/usr/lib/libterm.a. 

COHERENT 386 implements both termcap and terminfo. To obtain the termcap version of tputs(), 
link in the library /usr/lib/libterm.a. To obtain the terminfo version, however, link in the library 
/usr /lib/libcurses.a. 

Note that under COHERENT 286, the curses library reads termcap descriptions; whereas under 
COHERENT 386, the curses library reads terminfo and also contains the routines for reading 
terminfo descriptions. For more information on this rather confusing topic, see the Lexicon entries 
for curses. termcap, and terminfo. 

LEXICON 



1106 tr-trap 

••• hih@U.' 
Translate characters 
tr [-eds) string 1 [strtng2) 

tr reads characters from the standard input, possibly translates each to another value or deletes it, 
and writes to standard output. 

Each specified string may contain literal characters of the form a or \b (where b is non-numeric), 
octal representations of the form \ooo (where o is an octal digit), and character ranges of the form X­
Y. tr rewrites each string with the appropriate conversions and range expansions. 

If an input character is in stringl. tr outputs the corresponding character of string2. If string2 is 
shorter than stringl, the result is the last character in string2. 

The following flags control how tr translates characters: 

-c Replace string 1 by the set of characters not in string 1. 

-d Delete characters in string 1 rather than translating them. 

-s The "squeeze" option: map a sequence of the same character from string 1 to one output 
character. 

Example 
The following example prints all sequences of four or more spaces or printing characters from inft.le: 

tr -cs ' --' '\12' <infile I grep •••• 

Here stringl is the range from <space> to ·-·.which includes all printing characters. Because this 
example uses the flags -cs, tr maps sequences of nonprinting characters to newline (octal 12). 

See Also 
ASCII, commands, ctype, sed 

IE'llii•miil@t.' 
Execute command on receipt of signal 
trap [command) [n ... ] 

trap instructs the shell to execute the given command when the shell receives signal n or any other 
signal in the optional list. If the command is omitted, trap resets traps for the given signals to the 
original values. If the command is a null string (i.e., a string that consists only of one null 
character), the shell ignores the given signals. If n is zero, the shell executes the s~cified command 
when it exits. When it is invoked with no arguments, trap prints the signal number and command 
for each signal on which a trap is set. 

The shell executes trap directly. 

Example 
The following example takes two files and outputs only those lines which are the same. 

#If input only one file-name then simply "cat". 
if [ $# = 1 ]J then 

cat $1 
exit O 

LEXICON 



#If input two file-names - Ok, else "Usage". 
else 

if [ $# I= 2 ]; then 

fi 
fi 

echo "Usage1 cmn filel [file2]" 
exit 1 

# TMP is original name of temporary file (/tmp/temp_(pid) 
TMP=/tmp/temp_$$ 

# Temporary file has to be removed 
trap 'rm $TMP; exit 1' 1 2 9 

# Difference between "filel" and "difference between filel and file2" 
# is the common strings "filel" and "file2" 
# The strings that are in "filel" and absent in "file2" print in TMP. 
diff $1 $2 I sed -n -e "s/"< //p" > $TMP 

# The strings that are in "filel" and absent in TMP print in stdout. 
diff $1 $TMP I sed -n -e "s/"< //p" 

# Remove temporary file 
rm $TMP 

See Also 
commands, ksh, sh, signal 

Ellfi·luihfhlr' 
Extended text-formatting language 
troff [option ... ] Iflle ... ] 

troff 1107 

The command troff is the COHERENT typesetter and text-formatting language. It performs typeset­
quality text formatting, suitable for printing on either the Hewlett-Packard LaserJet II or III printers. 
or on any printer for which the Postscript language has been implemented. 

tro" Input 
troff processes each g)venjlle, or the standard input if none is specified, and prints the formatted 
result on the standard output. The input must consist of text with formatting commands embedded 
within it. 

troff provides a full suite of commands that set line length, page length and page offset, generate 
vertical and horizontal motions, indentation, ftll and adjust output lines, and center text. The great 
flexibility of troff lies in its acceptance of user-defined macros to control almost all higher-level 
formatting. For example, the formation of paragraphs, header and footer areas, and footnotes must 
all be implemented by the user via macros. 

troff uses a supeerset of the commands and syntax used by nroff, the other COHERENT text­
formatter: files prepared for the latter usually can be processed through the former without 
requiring any changes. troff differs from nroff in that nroff can perform only monospaced 
formatting. whereas troff can handle multiple fonts of type, both monospaced and proportionally 
spaced. It lets you load font-width tables dynamically, so you can use whatever fonts you have 
loaded into your printer at a g)ven time. troff also lets you move about the page in increments other 
than sixths of an inch vertically or tenths of an inch horizontally. 

LEXICON 



1108 troff 

troff produces output either in the Hewlett-Packard Printer Control Language (PCL) or Postscript. 
whichever you prefer. The former can be printed on the Hewlett-Packard LaserJet family of laser 
printer. and can use any PCL bitmapped "soft font". The latter can be printed on any printer that 
supports the Postscript language, and can use any font for which you have an Adobe Font Metric 
(AFM) description. The default is PCL output; to obtain Postscript. use the -p command-line option. 

Fonts 
troff produces output suitable for printing on a Hewlett-Packard LaserJet or HP-compatible laser 
printer, using either PCL or Postscript. The default font information for PCL format is in file 
/usr/lib/roff/trotJ_pcl/fonts.r, whereas that for Postscript format is in 
/usr/lib/rotJ/trotJ_ps/fonts.r. Both are described in detail below. 

To use other fonts, you must use the .If request (see below) to load afont width table. The font 
width table is a binary file that describes the width of each character in the font and the printer 
command (escape sequence) needed to tell the printer to use the font. The program fwtable can 
build a font width table from a PCL bitmap font or from a Postscript AFM description. See its 
Lexicon entry for details on its use. 

troff output includes a printer command for each desired font change. In Postscript mode. you can 
invoke all fonts that are built into your printer's cartridge. In PCL mode, you can either invoke fonts 
that are built into your printer, either in ROM or in a cartridge, or you can download bitmapped 
"soft fonts" to your printer's RAM. If you use the .le primitive to request a soft font, you must 
download that font into your printer before you print the formatted document, or the results will be 
very strange. To download a soft font to your printer, use the command hpr. See the Lexicon entry 
for hpr for details on its use. 

Command-line Options 
Command-line options may be listed in any order. They are as follows: 

-d 

-D 

-fname 

-!files 

-k 

-1 

-mname 

-nN 

-p 

-raN 

Debug: print each request before execution. This option is very useful when you are 
writing and debugging new macros. 

Display the available fonts. These are all the fonts that have been loaded into trotJ 
with the .If primitive (described below). 

Write the temporary file into file name. 

Read from the standard input after reading the given.files. 

Keep: do not erase the temporary file. 

Landscape mode: output is rotated 90 degrees, with default size 11 by 8.5 inches 
rather than 8.5 by 11 inches. 

Include the macro file /usr/lib/tmac.name in the input stream. 

Number the first page of output N. 

Produce output for a Postscript printer rather than for a HP-compatible printer. 

Set number register a to the value N. 

-rabN Set number register ab to value N. For obvious reasons. ab cannot contain a digit. 

-x Do not eject to the bottom of the last page when text ends. This option lets you use 
troff interactively. which is especially useful when debugging macros. 

If the environmental variable TROFF is set when trotJ is invoked. its contents are prefixed to the list 
of command-line arguments. This allows the user to set commonly used options once in the 
environment rather than on each troff command line. 

LEXICON 



troff 1109 

troff's Primitives 
As noted earlier, troff's command set is a superset of that used by nroff: see the Lexicon entry on 
nroff for information on the commands and escape sequences shared by troff and nroff. This article 
describes the primitives that troff does not share with nroff. 

Please note that the basic troff unit is one-tenth of a point. A printer's point is 1/12 of a pica, 
which is in turn one-sixth of an inch; therefore, there are 72 points and 720 troff units in an inch . 

• coendmark 
Copy input to output file directly, with no processing. If endmark argument is present, troff 
copies input until it finds a line containing endmark followed by \n. If no endmark is given, 
troff copies input until it finds a line containing .co\n. This directive is useful for 
embedding Postscript commands in an input file . 

• csXXNM 
Set font XX to use constant character spacing. The width of each character is N divided by 
36 ems. If M is present, it specifies the width of an em: otherwise, N assumes the point size 
em for the given font . 

• fd Display the currently available fonts . 

• fpNXX 
Associate font name XX with numeric font position N. The given N should be a number 
between 1 and 9. Subsequently, the numeric font position can be used in an escape 
sequence \fN to select the font. (This nomenclature comes from the days when 
phototypesetters used print wheels that were set in fixed positions on the device.) The nroff 
primitive .rf performs a similar task, and is more flexible in its syntax . 

• fzXXN 
Fix the point size of font XX at N. The point size of the font will not be affected by 
subsequent .ps commands or \sN point size escapes . 

• If XXflle [n) 
Load font width table fromflle and use it for font XX. lfjlle is not found, troff looks for 
/usr/llb/roff/troff_pcl/fwt/jlle or /usr/lib/roff/troff_ps/fwt/jlle (depending on whether 
the -p option is used). 

The optional third argument sets the default point size of the loaded font to n. Note that this 
argument takes effect only if troff is running in -p (Postscript) mode. 

For example, to load the font-width table for the PCL bitmapped font cn090rpn.usp (which 
sets Century Roman, nine point, portrait mode) and name it font RS, use the command: 

.lf RS cn090rpn.usp 

To do the same thing under Postscript, use the command: 

.lf RS Century_R.fwt 9 

Thereafter, you can reference font RS with either .ft RS or \f(RS. 

Note that the second argument to this primitive must name a font-width table generated by 
the COHERENT command fwtable, not the font itself, although both may have the same 
name. Look in directories /usr/lib/roff/troff.*/fwt for the set of font-width tables that are 
included with COHERENT. If you purchase additional PCL fonts, you must use fwtable to 
generate font-width tables for them. Note, too, that if you are using troff in PCL mode, you 
must both load the font-width table into troff and use the command hpr to load the font 
itself into your printer: doing one without the other will not produce the results you desire. 

LEXICON 



1110 troff 

Finally. please note that .If is unique to the COHERENT implementation of troff, and 
cannot be ported to other implementations . 

• ps Np Set point size to N points. The default point size is 10 point . 

• rb.ftle Read input fromflle and copy it to the output without processing. This directive is useful 
for including files containing Postscript routines in the output . 

• ss N Set the minimum word spacing to N divided by 36 ems . 

• vs Np Set the vertical spacing to N points. The default vertical spacing for troff is 11 points. 

Escape Sequences 
troff recognizes the following escape sequences, in addition to those recognized by nroff: 

\s'N' Set the point-size escape sequence to N. Like the .ps primitive, it changes the point size to 
N. The specified N may have a leading plus or minus sign to make the new size relative to 
the current point size. 

\XNN Output character NN where NN are two hexadecimal digits. This is useful for forcing troff 
to print characters outside the normal printable range, e.g .• those with the high-order bit 
set. Note that this escape sequence is unique to the COHERENT implementation of troff 
and cannot be ported to other implementations. 

Number Registers 
The basic unit of measure under troff is the decipoint. or one-tenth of a printer's point. A point ts 
one-tenth of a pica. which in tum is one sixth of an inch: therefore. there are 72 points in an inch, 
or 720 decipoints. All troff' number registers that hold information about page or type dimensions 
hold that information in decipoints. For this reason, the decipoint is sometimes called the "machine 
unit." 

The following table shows how other units of measure translate into troff' machine units: 

inch: 
vertical line space: 
centimeter: 
em: 
en: 
pica: 
point: 

u = 720U 
Iv= llOU 
le= 283u 
Im= IOOU 
In= SOU 
IP= 120u 
Ip= lOu 

If you are working with Postscript, you must remember to divide the value of a troff number 
register by ten before you pass the value to Postscript. or you will see very strange results on your 
page - or likelier. no results at all. 

Special Characters 
troff includes a set of escape sequences for setting special characters. These escape sequences are 
defined in the files /usr/llb/roff'/troff'_•/specials.r. If you have additional fonts or an extended 
Postscript cartridge on your printer. you can modify these files to change the current definitions or 
add new ones. 

The following shows the escape sequences currently defined in specials.r, and the character each 
prints: 

\(em \Chy \(bu \(sq II 
\(ru \(14 1/4 \(12 1/2 \(34 3/4 
\(fi fi \(fl fl \(ff ff \(Fi fft 
\(Fl ffl \(de 0 \(dg t \(fm 
\(ct ¢ \(rg ® \(co © \(tm .. 

LEXICON 



troff 1111 

\(pl + \(mi \(eq \(•• * \(sc § \(aa \(ga \Cul 
\(sl I \(*a a \(*b f} \(*g y 
\(*d I) \(*e £ \(*z t \(•y TJ 
\(*h 0 \(*i \(*k IC \(*l A. 
\(•m " \(*n v \(*c !; \(*o 0 

\(*p :rt \(*r p \(*s 0 \(ts s 
\(*t 't \(*u 'U \(*f 4> \(•x x 
\(*q 'ljl \(*w (I) \(*A A \(*B B 
\(*G r \(*D /!;. \(*E E \(*Z z 
\(*Y H \(*H 0 \(*I I \(*K K 
\(*L A \(*M M \(*N N \(*C ::: 
\(*0 0 \(*P I1 \(*R p \(*S I 
\(*T T \(*U y \(*F 11> \(*X x 
\(*Q 11' \(*W Q \(sr ..; \(rn -
\(>= l!: \(<= :s \(== • \(-= 
\(ap \(!= .. \(-> -- \(<- ...... 
\Cua t \(da i \(mu x \(di I 
\(+- :t \(cu u \(ca n \(sb c 
\(sp :> \(ib !;;;; \(ip ~ \(in 00 

\(pd iJ \(gr v \(no \(is I 
\(pt ex \(es 0 \(mo E \(br 

I \(dd + \(rh ~ \(lh <- \(or 
\(ct 0 \(It ( \(lb \ \(rt 

~ \(rb J \(lk ~ \(rk ~ \(bv 
\(If L \(rf J \(le r \(re 

Example 
The following example prints an enormous 'E' on a Hewlett-Packard LaserJet III: 

.sp I Bi 

.ps 500 

.ce 
E 

Printer Configuration 
troft' reads several files in directory /usr/llb/roff/troff_pcl (for normal troff) or 
/usr/llb/roff/troff_ps (for PostScript troff) to find printer-specific information. It reads special 
character definitions from file specfals.r. It reads font loading requests from file fonts.r. It copies file 
.pre at the beginning of the output. It copies file .post at the end of the output. In landscape mode, 
troff looks for files .pre_land and .post_land instead. You can change these files as desired to 
include printer-specific commands in troff output. 

Files 
/tmp/rof* - Temporary files 
/usr/llb/tmac.• -Standard macro packages 
/usr/U.b/roff/troff_pcl/ -Support files directory for PCL 
/usr/llb/roff/troff_ps/ - Support files directory for PostScript 
/usr/llb/roff/troff_•/ .pre- Output prefix 
/usr/llb/roff/troff_ • / .pre_land- Output prefix, landscape mode 
/usr/U.b/roff/troff_•/ .post- Output suffix 
/usr/llb/roff/troff_•/ .post_land-Output suffix, landscape mode 
/usr/llb/roff/troff •/fonts.r- Font definitions 
/usr/U.b/roff/troff:•/fwt/-Directoryfor font width tables 
tusr/U.b/roff/troff_ • /specfals.r- Special character definitions 

LEXICON 



1112 true 

See Also 
col, commands, deroff, fw'table, hpr, man, ms, nroff 
nroff, The Text-Formatting Language, tutorial 

Adobe Systems Incorporated: PostScrlpt Language Reference Manual. Reading, Mass.: Addison­
Wesley Publishing Company. Inc., 1988. 

Adobe Systems Incorporated: PostScrtpt Language Tutorial and Cookbook. Reading, Mass.: Addison­
Wesley Publishing Company. Inc .. 1988. 

Emerson. S.L .• Paulsell. K.: troff Typesettlngfor Unix Systems. Englewood Cliffs. N.J.: Prentice-Hall, 
Inc., 1987 (ISBN 0-13-930959-4). 

Lawson. A.: Printing Types: An Introduction. Boston: Beacon Press, 1971. An excellent, one-volume 
introduction to type and typesetting. 

Tufte, E.W.: The Visual Display of Quantitative Information. Cheshire, Conn.: Graphics Press. 1983. 
Superbly Introduces the subject of graphic design. Especially useful if you wish to explore Postscript. 

University of Chicago Press: A Manual of Style for Authors, Editors, and Copywriters, ed. 12, revised. 
Chicago: University of Chicago Press, 1969. Still the best one-volume reference for copy editors: if 
you're going to publish manuals, you should do It right. 

Notes 
Like nroff, troff should be used with the macro packages ms. which is found in the file 
/usr/lib/tmac.s, and man, which is found in the file /usr/lib/tmac.an. 

troff output. unlike that of nroff. cannot be processed through a terminal driver. 

Laser printers cannot print on an area near each edge of the output page. Output sent to the 
unprintable area will disappear. On some printers, the logical page does not correspond to the 
physical page, so printed troff output may be offset from the specified position on the physical page. 

true - Command 
Unconditional success 
true 

true does nothing. successfully. It always returns zero (i.e., true). 

true is useful in shell scripts when you want to execute a condition indefinitely. For example. the 
following example 

while true; do 
date 

done 

prints the current date and time on your screen forever (or at least until interrupted by typing <ctrl­
C> ). 

See Also 
commands, false, ksh, sh 

Notes 
Under the Korn shell, true is an alias for the partial-comment:. 

LEXICON 



rmllli·iuh.fiUt.1 
Topological sort 
tsort lflle] 

tsort - tty.h 1113 

tsort performs a topological sort of a set of input items. The inputjlle (or the standard input, if no 
jlle is given) specifies an ordering on pairs of items. It consists of pairs of items separated by blanks, 
tabs or newlines. If a pair contains the same item twice, it simply indicates that the item is in the 
input set. Otherwise. the pair indicates that the first item precedes the second in the ordering. 

tsort prints a sorted list of the input items on the standard output. 

See Also 
commands, sort 

Diagnostics 
tsort prints an error message on the standard error if its input contains an odd number of items or 
if the specified ordering includes a cycle. 

•H•!lii116hl·' 
Play 3-D tic-tac-toe 
/usr I games/ttt 

The COHERENT game ttt plays three-dimensional tic-tac-toe. Each playing board is four-by-four, 
and four are stacked on top of each other. You play against the computer; each player selects to 
occupy one "square" on one of the boards. The first player to get four four squares in a row, in any 
direction. wins. 

See Also 
commands 

••• ],,(,iijj,[,t 
Print the user's terminal name 
tty 

t 

tty prints the name of the character-special file that manages your terminal. 

Diagnostics 
tty prints the message "Not a tty." if the user is not associated with any controlling terminal. 

See Also 
commands, who 

EJml@MI#!' 
Define flags used with tty processing 
#include <sys/tty.h> 

tty.h defines flags that are used by routines that handle ttys. 

See Also 
header mes, tty 

LEXICON 



1114 ttynameO - ttys 

w§l&MM •Cf:l@ij!'i111$!!•ll 
Identify a terminal 
char *ttyname(fd) 
intfd; 

Given a file descriptor fd attached to a terminal, ttyname() returns the complete pathname of the 
special file (normally found in the directory I dev). 

Files 
I dev t • - Terminal special files 
/etc/ttys - Login terminals 

See Also 
general functions, ioctl(), fsatty(), tty(), ttyslot() 

Diagnostics 
ttyname() returns NULL if it cannot find a special file corresponding to fd. 

Notes 
The string returned by ttyname() kept in a static area, and is overwritten by each subsequent call. 

EJmlldi·!Hifi!' 
Describe terminal ports 

The file /etc/ttys describes the terminals in the COHERENT system. The process init reads this 
file when it brings up the system in multi-user mode. 

/etc/ttys contains one line for each terminal. Each line consists of the following four fields: 

1. The first field is one character long, and indicates if the device is enabled for logins: 'O' 
indicates that the device is not enabled, and 'l' (one) indicates that logins are enabled for 
the device. 

2. The second field is one character long, and indicates whether the device is local (i.e., a 
terminal) or remote (i.e .. a modem): 'r' indicates remote, and 'I' (lower-case L) indicates local. 
If 'r' is used and a password is included for remacc (remote access) in /etc/passwd, then 
persons logging in on this device will be required to supply the remote-access password. 
(See the Lexicon entry for passwd for more about remacc). 

3. The third field is one character long. and sets the baud rate for the device. Note that a 
device can have either a fixed baud rate, or a variable baud rate. The following table gives 
the codes for fixed baud rates: 

C llO 
G 300 
I 1200 
L 2400 
N 4800 
p 9600 
Q 19200 

The common variable-speed codes terminal types are as follows: 

0 300, 1200,150, 110 
3 2400, 1200,300 

When a user dials into a variable-speed line, a message is sent to the terminal using the 
first speed listed. If the message is unintelligible, the user hits the <break> key and the 

LEXICON 



ttys 1115 

system tries the next speed; and so on, until the correct speed is selected. 

4. The fourth field names the port that this device is plugged into. The following table names 
the ports that COHERENT recognizes: 

console 
comll 
comlr 
comlpl 
comlpr 
com21 
com2r 
com2pl 
com2pr 
com31 
com3r 
com3pl 
com3pr 
com41 
com4r 
com4pl 
com4pr 

The tube and keyboard on your computer 
Serial port coml, local device 
Serial port coml, remote device 
Serial port coml , local device 
Serial port coml, remote device 
Serial port com2, local device 
Serial port com2, remote device 
Serial port com2. local device 
Serial port com2, remote device 
Serial port com3, local device 
Serial port com3, remote device 
Serial port com3, local device 
Serial port com3, remote device 
Serial port com4, local device 
Serial port com4, remote device 
Serial port com4, local device 
Serial port com4, remote device 

Note that if field 2 (described above) says that this is a local device, then you must use a 
port descriptor that ends in 'l'; likewise, if field 2 states that this is a remote device, the port 
descriptor must end in 'r'. Doing otherwise will result in trouble. See Lexicon entry com for 
further details. 

Do not leave trailing spaces at the end of an entry in /etc/ttys. Leaving blanks at the end of a line 
usually results in errors that state that a device could not be found. 

After you have edited /etc/ttys, the following command forces COHERENT to re-read the file and 
use the new descriptions: 

kill quit 1 

Examples 
Consider the following ttys entry: 

llPconsole 

Field 1 is the first character. Here it is set to 'l' (one), which indicates that the device is enabled for 
logins. Field 2 is the second character. Here it is set to 'l' (lower-case L), which indicates that this is 
a local device. Field 3 is the third character. Here, it is set to 'P', which indicates that the device 
operates at the fixed baud rate of 9600 baud. This field is ignored by the console device driver since 
the console is not a serial device. Finally. field 4 is the remainder of the line. Here, it indicates that 
the device in question is the console. 

Now, consider another example: 

lr3com3r 

Field 1 is the first character. Here it is set to 'l' (one), which indicates that the device is enabled for 
logins. Field 2 is the second character. Here it is set to 'r', which indicates that this is a remote 
device, i.e .. a modem. Field 3 is the third character. Here, it is set to '3', which indicates that the 
device operates at variable baud rates of 2400, 1200, and 300. By hitting the <break> key on the 
terminal, the user can select from among those three baud rates, in that order. Finally. field 4 is the 
remainder of the line. Here, it indicates that the device in question is plugged into port com3, and 
is accessed via special file /dev/com3r. 

LEXICON 



1116 

Files 
/etc/ttys 

See Also 

ttyslotO - ttystat 

com, rue formats, getty. hlit, login, stty. terminal, tty 

UMWllW'®F11i11•ii11·1r' 
Return a terminal's line number 
int ttyslot() 

ttyslotO returns the number of the line in the file /etc/ttys that describes the controlling terminal 
(see ttys). 

Files 
/dev/• -Terminal special files 
/etc/ttys- Login terminals 

See Also 
general functions, ioctlQ, isattyQ, tty, ttynameQ 

Diagnostics 
ttyslotO returns zero if an error occurs. 

mmlli·ln!H&!h.' 
Get terminal status 
/etc/ttystat [ -d) port 

ttystat checks the status of the specified asynchronous port in directory /dev. It normally just 
returns an exit status that indicates the status of the port. The option -d tells ttystat to print the 
status of the port on the standard output. 

Example 
The following example prints the status of port I dev I com2r: 

/etc/ttystat -d com2 

If I dev I com2r is enabled, ttystat prints: 

com2r is enabled 

ttystat finds the port status from the /etc/ttys file. 

Files 
/etc/ttys -Terminal characteristics file 

See Also 
commands, disable, enable, ttys 

Diagnostics 
ttystat returns one if the port is enabled and zero if the port is disabled. It returns -2 if an error 
occurs. 

LEXICON 



type checking - typeset 1117 

ot.m;mwu.11 mw1mt.11.mm.1.1 ••••••••••••••••••••••• 
Every expression has a type, such as int. char. or double. C is not strongly typed, which means 
that it allows different types to be mixed relatively freely. and be changed (or cast) from one type to 
another. 

COHERENT checks types more strictly than the C standard implies. COHERENT's type checking 
can be enabled or disabled in degrees, using -VSTRICT and other ''variant" options with the cc 
command. 

See Also 
cc, technical information, type promotion 

typedef is a C facility that lets you define new data types. Such definitions are always made in 
terms of existing data types; for example, 

typedef long time_t; 

establishes the data type time_t, and defines it to be equivalent to a long. By convention, 
programmer-defmeddata types are written in capital letters. 

Judicious use of the typedef facility can make programs easier to maintain, and improve their 
portability. 

See Also 
C keyword, manifest constants, portability, storage class 

um.1r.1.u.m.J.11 m.!.Ulij!lmt.1U.ij!!D ••••••••••••••••••••• lllillllll! 
In arithmetic expressions, COHERENT promotes one signed type to another signed type by sign 
extension, and promotes one unsigned type to another unsigned type by zero padding. For example, 
char promotes to int by sign extension. whereas unsigned char promotes to unsigned int by zero 
padding. 

See Also 
data formats, technical information 

Ug.tJli•l[§i·tli' 
Declare system-specific data types 
#include <sys/types.h> 

The header file types.h declares a number of data types that are used throughout the COHERENT 
system. 

See Also 
header mes 

Uf·f:tf:JlliiD~l·l"•l•E€1D.tE•l'•••••••••••••••••••••••••••••llllllllll 
Set/list variables and their attributes 
typeset 
typeset [+-)fr 
typeset [ irx] variable=value 

The command typeset is built into the Korn shell ksh. It sets or lists all variables and their 
attributes. 

LEXICON 



1118 typo 

When called with an argument of the form vartable=value, it sets variable variable to value. The 
following options modify variable or value: 

1 Store value as an integer 
r Make variable read-only 
x Export variable to the environment 

When called without an argument, typeset lists all variables and their attributes. When called with 
one of the following options, it lists the variables of the appropriate type. When prefixed with a 
hyphen '-', it prints the variable plus its value: when prefixed with a plus sign '+', it prints the 
variable alone: 

f List functions instead of variables 
r List read-only variables 

See Also 
commands, ksh 

IJJDIH•mmp!ll.' 
Detect possible typographical and spelling errors 
typo [-rirs](flle ... ] 

typo proofreads an English-language document for typographical errors. It conducts a statistical 
test of letter digrams and trigrams in each input word against digram and trigram frequencies 
throughout the entire document. From this test, typo computes an index of peculiarity for each 
word in the document. A high index indicates a word less like other words in the document than 
does a low index. Built-in frequency tables ensure reasonable results even for relatively short 
documents. 

typo reads each input jlle (or the standard input if none), and removes punctuation and non­
alphabetic characters to produce a list of the words in the document. To reduce the volume of the 
output, typo compares each word against a small dictionary of technical words and discards it if. 
found. The output consists of a list of unique non-dictionary words with associated index of 
peculiarity, most peculiar first. An index higher than ten indicates that the word almost certainly 
occurs only once in the document. 

typo recognizes the following arguments: 

-n Inhibit use of the built-in English digram and trigram statistics, and inhibit dictionary 
screening of words. More words will be output and the indices of peculiarity will be less 
useful for short documents. 

-r Inhibit the default stripping of nrofl' escape sequences. Normally, typo strips lines 
beginning with'.' and removes the nroff escape sequences'\'. 

-s Produce output files d1grams and trigrams that contain, respectively. the digram and 
trigram frequency statistics for the given document. No indices of peculiarity are calculated 
or printed. If desired, these files may be installed in directory /usr/diet. 

Files 
/tmp/typo• - Intermediate files 
/usr/diet/diet- Limited dictionary 
/usr I diet/ digrams- Digram frequency statistics 
/usr I diet/trigrams- Trigram frequency statistics 

LEXICON 



typo 1119 

See Also 
commands, nroft', sort, spell 

LEXICON 



1120 umask - umaskO 

'''MM 113.1,,1,,,m.~~ ·~-----~~~"'~ --.~~-. ·~~~''""',,.. 
Set the file-creation mask 
umask [mask] 

The.file-creation mask modifies the default mode assigned to each file upon creation. The mode sets 
the permissions granted by the file's owner, plus other important information about a file. 

The command umask sets the default file-creation mask to mask. mask is usually entered as an 
octal number prefixed by a zero digit. If invoked without an argument, umask prints the current 
file-creation mask in octal. 

Note that zero bits in mask correspond to permitted permission bits in the target, and that execute 
permission cannot be enabled via any setting of mask. See the Lexicon entries for umask() and 
chmod for further details on file mode. The shell executes umask directly. 

Example 
Setting mask to octal 022 (i.e., 000 010 010) causes a file created with mode octal·0666 to actually 
have permissions of 

rw- r-- r--

Setting mask to zero (i.e .. 000 000 000) causes a file created with mode octal 0666 to actually have 
permissions of 

rw- rw- rw-

See Also 
chmod, commands, ksh, sh, umask() 

tttd&@nll@@uitJ'm' 
Set file-creation mask 
int umask(mask) 
int mask; 

umask() allows a process to restrict the mode of files it creates. Commands that create files should 
specify the maximum reasonable mode. A parent (e.g. the shell sh) usually calls umask() to restrict 
access to files created by subsequent commands. 

mask should be constructed from any of the permission bits found in chmod() (the low-order nine 
bits). When a file is created with creat() or mknod(), every bit set in the mask is zeroed in mode; 
thus. bits set in mask specify permissions that will be denied. 

umask() returns the old value of the file-creation mask. 

LEXICON 



umount - umountO 1121 

Example 
Setting mask to octal 022 (i.e., 000 010 010) causes a file created with mode octal 0666 to actually 
have permissions of 

rw- r-- r--

Setting mask to zero (I.e., 000 000 000) causes a file created with mode octal 0666 to actually have 
permissions of 

rw- rw- rw-

See Also 
creat(), mknod(), sh, system calls 

Notes 
A file's default permission cannot be set to execute, regardless of the value of umask(). 

umount - Command 
Unmount file system 
I etc/umount special 

umount unmounts a file system special that was previously mounted with the mount command. 

The script /bin/umount calls /etc/umount, and provides convenient abbreviations for commonly 
used devices. For example, typing 

umount fO 

executes the command 

/etc/umount /dev/fhaO 

The system administrator should edit this script to reflect the devices used on your specific system. 

Files 
I etc/mtab - Mount table 
/dev/• 
/bin/umount- Script that calls /etc/umount 

See Also 
clri, commands, fsck, icheck, mount 

Diagnostics 
Errors can occur if special does not exist or is not a mounted file system. 

umountO - System Call 
Unmount a file system 
umount(filesystem) 
char "j"ilesystem; 

umount() is the COHERENT system call that unmounts a file system. jllesystem names the block­
special file through which the file system is accessed. Note that this must have been previously 
mounted by a call to mount(), or the call will fail. 

See Also 
mount(), system calls 

LEXICON 



1122 unalias - uncompress 

fJ!l@@ll+f•]i,foijht1~'~ ""' ""~mmu~-..mmmmRa._'"'~'"''"""'-. 
Remove an alias 
unallas alias .•. 

The command unalias is built into the Korn shell ksh. It removes each alias. 

See Also 
allas,conunands,ksh 

unameO - System Call """""'~""'"'''"'~""'~~~"'"''"'' -Get the name and version of COHERENT 
#include <sys/utsname.h> 
uname(name) 
struct utsname •name; 

The COHERENT system call uname() identifies the current release of the COHERENT operating 
system. It writes its output into the structure pointed to by name. This must be of type utsname, 
which has the following members: 

char sysname[9]; /* system name */ 
char nodename[9]; /* UUCP node name */ 
char release[9]; /* current release */ 
char version[9]; /* current version */ 
char machine[9]; /* hardware */ 

uname() returns a non-negative value upon success. If name points to an invalid address, uname() 
returns -1 and sets errno to an appropriate value. 

See Also 
system calls 

Notes 
uname() is available only under COHERENT 386. 

ll'Ui·iUf·ltitilli·lhlhfilil·~""'''''~ ""''"-..~"'"' """~''""'-.-
Uncompress a compressed file 
uncompress [ -w tmpfile) [.file ... I (COHERENT286) 
uncompress [file ... ) (COHERENT 386) 

uncompress uncompressses one or more files that had been compressed by the command 
compress. 

Each.file's name must have the suffix .z. which was appended onto it by compress; otherwise, 
uncompress prints an error message and exits. When uncompress has uncompressed a.file. it 
removes the .z suffix from that file's name. 

If no file is specified on the command line. uncompress uncompresses matter read from the 
standard input, and writes its output to the standard output. 

Older versions of uncompress could only uncompress files that b,ad been compressed with option -
bl2 or lower, with -bl2 being the default. The edition of uncompress released with COHERENT 
version 3.1 now handles values up to 16. COHERENT 286 uses RAM device /dev/raml for 
temporary storage. For this reason, it is strongly advised that you not use /dev/raml as a RAM 
disk on COHERENT 286 systems. 

The -w option tell uncompress to write its temporary data into tempfile instead of into the RAM 
device /dev/raml. This option is available only under COHERENT286. 

LEXICON 





1124 uniqueO - units 

following describes the available options: 

-c Print each line once, discarding duplicate lines; before each line, print the number of times 
it appears within the file. 

-d Print only lines that are duplicated within the file; print each line only once; do not print 
any counts. 

-u Print only lines that are not duplicated within the file. 

uniq by default behaves as if both -u and -d were specified, so it prints each unique line once. 

Optional specifiers allow uniq to skip leading portions of the input lines when comparing for 
uniqueness. 

-n Skip n fields of each input line, where a field is any number of non-white space characters 
surrounded by any number of white space characters (blank or tab). 

+n Skip n characters in each input line, after skipping fields as above. 

See Also 
comm. commands, sort 

®U·Mllnf ""'' Return a unique ing integer 
long unique() 

unique() returns a unique long integer. The value of this integer is incremented with each call to 
unique(), and is saved in the root file system. 

See Also 
system calls 

l!mlm!f·llnh6!il·' 
Convert measurements 
units [ -u I 

units is an interactive program that tells you how to convert one unit of measurement into another. 
It prompts you for two quantities with the same dimensions (e.g .. two measurements of weigh.t. or 
two of size). It first prints the prompt "You have:" to ask for the unit you wish to convert from, and 
then prints the prompt ''You want:" for the unit you wish to convert to. 

Example 
The following example returns the formula for convert fortnights into days: 

You have1 fortnight 
You want: days 
* 14 
I o.071428 

The following fundamental units are recognized: meter, gram, second, coulomb, radian, bit, 
unitedstatesdollar, sheet, candle, kelvin, and copperpiece (shillings and pence). 

A quantity consists of an optional number (default 1) and a dimension (default none). Numbers are 
floating point with optional sign, decimal part and exponent. Dimensions may be specified by 
fundamental or derived units, with optional orders. A quantity is evaluated left to right: a factor 
preceded by a '/' is a divisor. otherwise it is a multiplier. For example, the earth's gravitational 
acceleration may be entered as any of the following: 

LEXICON 



9.Se+O m+l sec-2 
32 ft/sec/sec 
32 ft/sec+2 

unlinkO 1125 

British equivalents of US units are prefixed with br, e.g. brpint. Some other units include c (speed 
of light), G (gravitational constant), R (gas law constant), phi (golden ratio), % (1/ 100), k (1.024), 
and buck (United States dollar). 

/usr/lib/units is an ASCII file that contains conversion tables. The binary file /usr/lib/binunits 
may be recreated by using the -u option. 

See Also 
bc,coJIU11ands,conv 

Files 
/usr/lib/units- Known units 
/usr /lib/binunits - Binary encoding of units file 

Diagnostics 
If the ASCII file /usr/lib/units has been changed more recently that the binary file 
/usr/lib/binunits, units prints a message and regenerates the binary file before continuing: this 
takes up to a few minutes, depending on the speed of your system. 

The error message "conformability" means that the quantities are not dimensionally compatible. For 
example, m/sec and psi. units prints each quantity and its dimensions in fundamental units. 

Notes 
There are the inevitable name collisions: g for gram vs. gee for Earth's gravitational acceleration, 
exp for the base of natural logarithms vs. e for the charge of an electron, ms for (plural) meters vs. 
millisecond, and of course batman for the Persian measure of weight rather than the Turkish. 

•·fl•®M'·"'~''''"~'"B@ ""~"+" .. "'' .. ''~~ 
Remove a file 
int unlink(name) char *name; 

unlink() removes the directory entry for the given file name, which in effect erases name from the 
disk. name cannot be opened once it has been unlinked. If name is the last link, unlink() frees the 
i-node and data blocks. Deallocation is delayed if the file is open. Other links to the file remain 
intact. 

Example 
This example removes the files named on the command line. 

main(argc, argv) 
int argc; char *argv[]; 
{ 

int i; 

LEXICON 



1126 unmkfs 

for (i = 1; i < argc; i++) { 
if (unlink(argv[i]) == -1) 

} 

} 
} 
exit(O); 

See Also 

printf("Cannot unlink \"%s\"\n", argv[i]); 
exit(l); 

link(), In, nn, nndir, system calls 

Diagnostics 
unlink() returns zero when successful. It returns -1 if file does not exist, if the user does not have 
write and search permission in the directory containingflle. or if file is a directory and the invoker is 
not the superuser. 

tttniit.1f•i·lirlufiliI•P ~~~~"'~~'''~~ .._,"11••••·---~~ 
Construct a prototype file system 
unmkfs [-prefix] directory nblocks (flle] 

unmkfs scans directory and builds prototype files with which you can build file systems on backup 
disks. 

If prefix is given, it creates files preflx.p01. preflx.p02. etc. If it is not given, unmkfs writes its 
output to the standard-output device. 

nblocks gives the maximum size of a prototype file. COHERENT current defines a block as being 
512 bytes (half a kilobyte): thus, to make the maximum size of a prototype file 10 kilobytes. set 
nblocks to 20. 

The.file option tells unmkfs to suppress all files in directory that are older than.file. Ifit is not used, 
then unmkfs builds prototypes for all files in directory. 

unmkfs provides a useful way to back up file systems onto floppy disks. To do this, perform the 
following steps: 

1. unmkfs a directory, producing prototype files. 

2. Format one floppy disk for each prototype file. 

3. Using the prototype files in sucession. mkfs each floppy disk. This puts the indicated files onto 
floppy disk. preserving links. 

Later. you can use the command cpdir to restore all the files from the floppy disks. or you can use 
cp to restore individual files. 

See Also 
commands, mkfs 

Notes 
unmkfs builds a file system in memory as it does its work. With large directory structures, it can 
run out of memory. 

LEXICON 



unsigned - USER 1127 

unsigned - C Keyword 
Data type 

unsigned tells the compiler to treat the variable as an unsigned value. In effect, this doubles the 
largest absolute value that that type can hold, and changes the lowest storage value to zero. 

See Also 
C keywords, data type 

~~,~~~~'~'~~,,~,,,~~''''~'~"'~'~~"'~ 
Execute commands repeatedly 
until sequencel [do sequence2) done 

The shell's until loop executes the commands in sequencel. If the exit status is nonzero, the shell 
then executes the commands in the optional sequence2 and repeats the process until the exit status 
of sequence] is zero. Because the shell recognizes a reserved word only as the unquoted first word 
of a command, both do and done must occur either unquoted at the start of a line or preceded by ';'. 

The shell commands break and continue may be used to alter control flow within an until loop. 
The contruct while has the same form as until but the sense of the test is reversed. 

The shell executes until directly. 

See Also 
break, commands, continue, ksh, sh, test, while 

update - System Maintenance 
Update file systems periodically 
/etc/update 

update periodically calls sync to write to the disk all file system data that are in memory. It never 
exits. 

The initialization command file /etc/re normally executes update. It should not be executed 
directly. 

See Also 
tntt, sync, system maintenance 

uproc.h defines constants and structures used by routines that manage user processes. 

See Also 
header mes 

USER - Environmental Variable 
Name user's identifier 
USER= user _identifier 

The environmental variable USER names your login identifier. For example, if your login identifier is 
fwb, then by typing set you will see the entry USER=fwb. USER is set by login. 

LEXICON 



1128 ustar 

See Also 
environmental variables, ksh, login, sh 

ustar - Command 
Process tape archives 
ustar -c(vw] (-f archive]file .. . 
ustar -r[vw] (-f archtve].ftle .. . 
ustar -t(v] [-f archive] 
ustar -x[lmovw] [-f archive] Iflle ... ] 

ustar reads and writes archive files that conform to the Archive/Interchange File Format specified in 
IEEE Standard 1003.1-1988. 

Options 
ustar recognizes the following command-line options: 

-c Create a new archive. Write each.file into the newly created archive 

-r Append each.file to the end of the archive. 

-t Display a directory (table of contents) of the archive. 

-x Extract each .file from the archive. If .file matches a directory whose contents had been 
written onto the archive, extract that directory recursively. If .file does not exist on the 
system, ustar creates it with the same mode as the one in the archive, except that the set­
user-id and get-group-id modes are not set unless you have appropriate privileges. 

If.file exists, ustar does not change file modes except as described above. It restores the 
owner, the group, and the modification time if possible. 

If the command line does not name a.file, ustar extracts the entire contents of the archive. 
Note that if several files with the same name are in the archive, the last one overwrites all 
earlier ones. 

-f Use the next argument on the command line as the name of the archive instead of the 
default, which is standard input or standard output, whichever is appropriate for the 
options given. Thus, you can use ustar in a pipe. If you specify·-· as the archive name with 
option -f, ustar uses the default input and output streams. 

-1 Order ustar to report if it cannot resolve all of the links to the files being archived. If -1 is 
not specified, no error messages are written to the standard output. This modifier is valid 
only with the -c or -r options. 

-m Do not restore the modification times; set the modification time of the file to the time of 
extraction. This modifier is invalid with the -t option. 

-o Give extracted files your user and group identifiers, rather than those on the archive. This 
modifier is only valid with the -x option. 

-v Verbose operation. With this option, ustar prints the name of each file it processes, 
preceded by the option letter. With the -t option, the -v option tells ustar to give more 
information about the archive's entries than just their names. 

-w Print the action to be taken and the name of the file, then wait for your confirmation. If you 
type a word beginning with 'y', ustar performs the action. Any other input means "no". 
This modifier is invalid with the -t option. 

See Also 
commands, cpio, dd, find, pax 

LEXICON 



ustatO - utimeO 1129 

Notes 
ustar was developed by Mark H. Colburn and sponsored by The USENIX Association. Copyright© 
1989 by Mark H. Colburn (mark@jhereg.MN.ORG). All rights reserved. See the compressed tar 
archive /usr/src/alien/pax.tar.Z for full descriptions of copyright, restrictions, and licensing terms. 

ustar is provided in binary form per the licensing terms set forth by the author. It is distributed as 
a service to COHERENT customers, as is. It is not supported by Mark Williams Company. Caveat 
utllltor. 

mJl§!Qui'l1f' 
Get statistics on a file system 
#include <sys/types.h> 
#include <ustat.h> 
int ustat (device, buffer) 
dev t device; 
stn.lct ustat *buff er; 

The COHERENT system call ustat() returns information about a mounted file system. device names 
the device upon which the file system is mounted. buffer points to a structure of type ustat, which 
contains the following fields: 

daddr t f _tfree; /* number of free blocks */ 
ino t f_tinode; /* number of free i-nodes */ 
char f _fname[6]; /* name of the file system */ 
char f _fpack[ 6]; /* pack name of the file system */ 

Useful information may not be available for fields f_fname and f_fpack; in that case, they are 
initialized to nuls. 

ustat() returns zero if all goes well; otherwise, it returns -1 and sets errno to an appropriate value. 
ustat() can fail for any of the following reasons: 

device does not contain a mounted file system. 

br.![fer points to an illegal address. 

The kernel caught a signal while it was executing the call. 

See Also 
mkfs, statfs(), system calls 

Note 
ustat() is largely superceded by statfs(). 

ustat() is available only under COHERENT 386. 

utimeO - System Call 
Change file access and modification times 
#include <sys/types.h> 
int utime(flle, times) 
char <ljlle; 
time_t tlmes[2]; 

utime() sets the access and modification times associated with the givenjlle to times obtained from 
tlmes[O] and tlmes[l], respectively. The time of last change to the attributes is set to the time of the 
utime() call. 

This call must be made by the owner ofjlle or by the superuser. 

LEXICON 



1130 utmp.h - utsname.h 

Files 
<sys/types.h> 

See Also 
restor, stat(), system calls 

Diagnostics 
utime() returns -1 on errors. such as ifjlle does not exist or the invoker not the owner. 

mlift.j•lllfTE1Uljl' -•••••••••••••••••••••••••• 
Login accounting information 
#include <utmp.h> 

/etc/utmp contains a utmp entry for every user currently logged into the COHERENT system. The 
structure utmp is defined in the the header file utmp.h, as follows: 

#define DIRSIZ 
struct utmp { 

char 
char 
time t 

}; 

14 

ut_line[S]; /*terminal name*/ 
ut_name[DIRSIZ];/* user name */ 
ut_time; /* time of login */ 

If either the user name or terminal name is cleared, the entry is unused. The element ut_line is the 
name of the special file for the user's terminal. and is normally found in the directory /dev. ut_time 
gives the date and time the user logged into COHERENT. 

The file /usr/adm/wtmp maintains a record of all logins and logouts, and may be summarized by 
the command ac. The processes login and init write entries into the file wtmp; neither creates the 
file, so login accounting is disabled unless /usr/adm/wtmp exists. 

Entries in wtmp are identical to those in utmp. A null string in the ut_name field indicates a 
logout; The following three special terminal names may be found in wtmp. When the system is 
booted, init writes a ut_line entry of 'N', When the time is changed with the command date. it 
writes an entry giving the old date ('I ') and an entry giving the new date ('}'). This allows ac to adjust 
connect times appropriately. 

Files 
<Utmp.h> 
/etc/utmp 
/usr/adm/wtmp 

See Also 
ac, date, file formats, header files, init, login, who 

mMMiMllll@MliiJ•,~,~---~~~··•••••••••••••• 
Define utsname structure 
#include <sys/ utsname.h> 

utsname.h defines the structure utsname. This structure holds information that describes a given 
release of the COHERENT system. 

See Also 
header files 

LEXICON 



uucheck - uucico 1131 

wwm•1+Ia·~ulnZ11l6llllt·m•~-----------------l@--~"~-.-------I@ 
Sanity-check the UUCP system 
uucheck [ -fsv I 

uucheck is a script which calls a series of programs designed to locate and fix problems in the 
UUCP system. The phases of the uucheck system all accept the same arguments. 

uucheck recognizes the following options: 

-f Attempt to fix errors in the UUCP system. Note that it is not possible to automatically 
correct all errors. Only root (the super user) can use this option. Note that uucheck -f 
must be run twice to catch all errors. 

-s Run in "silent" mode (i.e., generate no output). Normally uucheck will report all errors and 
warnings encountered. With this option set. only errors internal to uucheck will be 
reported. Option -s overrides option -v. 

-v Generate verbose output messages. This will include messages on what is being checked, 
and often longer messages suggesting remedies. 

The phases of uucheck are: 

uucheckperms 
uucheckname 
uuchecklock 

Notes 

Check file permissions. 
Check /etc/uucpname. 
Look for lock files. 

This system does not and probably cannot identify all possible failure modes of the UUCP system -
nothing beats an experienced UUCP administrator. 

Files 
/usr/lib/uucheck/ - Directory for phases 

See Also 
commands, UUCP 

i!l@tfl,•+I·1·ni@it.1 ~"''""""""'''""~'"''~"~"'~ 
Transmit data to or from a remote site 
/usr/lib/uucp/uucico [ -cslte I [ -rl I [ -sslte I [-sail] [ -Sslte) [ -xlevel] 

uucico is the UUCP command that actually transfers files to or from a remote site. Its syntax is as 
follows: 

-csite Poll site only if files are queued for transmission to it. 

-Ii} Act as slave in polling process; that is, carry out the orders of another uucico that has 
dialed into your system. 

-rl Act as master in polling process; that is, dial out to another system and give it orders. This 
is the default. 

-&site Name site as a place to be polled. site must name one of the entries in 
/usr/lib/uucp/L.sys. 

-sail Poll all sites automatically. 

-Ssite Name site as a place to be polled. site must be a site described in file L.sys. Unlike the -s 
option, this option forces an immediate call to site even if the current time is not specified 
as valid in L.sys. 

LEXICON 



1132 UUCP 

-xlevel Set the debugging level. where level is a number between one and ten, inclusive. uucico 
prints all messages at or below the current debugging level. The following gives the class of 
messages controlled by each level of debugging: 

0 No additional logging 
1 The call and pre-protocol negotiation 
2 Conversation level 
3 File transfer 
4 Spool files 
5 Messages sent out during call/pre-protocol 
6 High-level protocol 
7 Medium-level protocol 
8 Low-level protocol (framing and such) 
9 Actual packet data 

10 Reading configuration files 

If you do not use this option, uucico sets the debugging level to zero. Please note that enabling the 
debugging option causes certain non-COHERENT versions of uucico to fail. 

Example 
To poll the site sys at five minutes after the hour. each hour, put the following entry into 
/usr/lib/crontab: 

05 * * * * /usr/lib/uucp/uucico -ssys -rl 

Files 
/usr/lib/uucp/L.sys- List of reachable systems 
/usr /spool/uucp/ .Log/uucico/ site name- uucico activities log file for site name 
/usr/spool/uucp/sltename- Spool directory for work 

See Also 
commands, cron, uucp, UUCP, uulog, uutouch, uuxqt 

~"''~~'~ ~~"'~~~,, .. 
Unattended communication with remote systems 

UUCP stands for "UNIX to UNIX copy". It is a system of commands that allows you to exchange files 
with other COHERENT or UNIX systems. in an unattended manner. With UUCP, you can send mail 
to other systems, upload files, and execute commands. When configured correctly. UUCP also lets 
other users upload files to your system, copy files from it, and execute commands. All this can be 
done without your having to sit at your console and type commands; thus, files can be transferred 
in the small hours, when telephone rates are lower and computers are relatively free. 

UUCP gives you access to the Usenet, a nation-wide network of UNIX and COHERENT users. 
Access to the Usenet will let you exchange mail with any of the thousands of Usenet users, receive 
mail from them, download source code for many useful programs, and read the latest news on a 
host of subjects. For details on contacting UUNET, a commercially accessible Usenet site, enter the 
command: 

phone uunet 

The UUCP protocol is implemented through a suite of commands and files. The following Lexicon 
entries relate to UUCP: 

LEXICON 



UUCP 1133 

L-devices . . . 
L.sys .... . 
Permissions. 
uucheck. 
uucico .. . 
uucp ... . 
uucpname. 
uudecode 
uuencode 
uuinstall. 
uulog .. . 
uumvlog. 
uuname . 
uurmlock 
uutouch. 
uux ... . 
uuxq .. . 

File that describes devices used by UUCP 
File that describes systems contacted by UUCP 
File that sets remote system permissions 
Sanity check the UUCP system 
Transmit data to a remote site 
Prepare files for transmission 
File that sets your system's UUCP name 
Decode a binary file sent from a remote system 
Encode a binary file for sending to a remote system 
Install UUCP on your system 
Read UUCP log files 
Move UUCP log files to backup archive 
List UUCP names of known systems 
Remote UUCP lock files 
Touch a file to trigger uucico poll 
Execute command on a remote system 
Execute commands requested by a remote system 

The following sections discuss problems that can arise when using UUCP, as diagnosed by the Mark 
Williams Technical Support Staff. 

Using Trailblazer Modems With UUCP 
The Trailblazer modem has been designed to be used with UUCP. It is extremely fast and extremely 
accurate; however, some users reported problems in using COHERENT UUCP with a Trailblazer 
modem. The following describes how Mark Williams Company has configured the Trailblazer 
modem that it uses under COHERENT at 9600 baud. 

To begin. the following gives the permissions in /usr/llb/uucp for selected files: 

-rw-r--r-- 1 uucp 
-rw-r--r-- 1 uucp 
-rw-r--r-- 1 uucp 

uucp 
uucp 
uucp 

196 Wed May 23 10116 L-devices 
740 Tue May 22 15140 L.sys 

2151 Wed Jul 11 10144 Permissions 

The following gives partial contents of file /usr/llb/uucp/L-devices: 

#type line remote baud brand 

#-----
ACU 
ACU 

com31 
com31 

com3r 
com3r 

2400 
9600 

tb2400 
tbf ast 

The following gives partial contents of file /usr/llb/uucp/L.sys (note that# should be replaced by 
the actual phone number): 

uunet Any ACU 9600 # FAST \d\r\c in1-\r-in: \dmwc\r\c rd1 PASSWORD\r 

The following gives partial contents of /usr/llb/uucp/Permissions: 

MACHINE=uunet LOGNAME=uuunet \ 
COMMANDS=rmail1rnews1 \ 
READ=/usr/spool/uucppublic:/tmp \ 
WRITE=/usr/spool/uucppublic1/tmp \ 
SENDFILES=yes REQUEST=no 

The following gives permissions and partial contents of file /etc/ttys: 

LEXICON 



1134 UUCP 

-rw-r--r-- 1 root 

llPconsole 
lrPcom3r 

root 163 Wed Jul 11 11136 /etc/ttys 

Finally, the following gives permissions on /dev/com3r (while enabled): 

c--s------ 1 root root 21 38 Wed Jul 11 11:50 /dev/com3r 

To use the Trailblazer. log in as root. and type the following commands: 

disable com3r 
kermit cbl 9600 /dev/com31 > /tmp/modem_dump 

Note that we disabled the "remote" device but used the "local" modem device when using kermit. 
This allows us to access the modem registers without having to wait for the modem to assert the 
carrier detect signal. 

While talking to the Trailblazer. we sent it ATN? followed by the <Enter> key. We then entered " 
(the circumflex) followed by the letter C in order to exit from kermit. The following gives the results 
contained in file /tmp/modem_dump: 

kermit1 connected ••• 

EO Fl Ml Q9 T VO WO X3 YO &PO &T4 Version BA5.0l 
800=001 801=000 802=043 803=013 804=010 805=008 806=002 8071060 \ 

808=002 809=006 
810=007 811=070 812=050 818=000 825~005 838=000 
841=000 845=000 847=004 8481001 849=000 
850=000 851:252 852=000 8541003 855=000 856=017 857=019 \ 

858:000 859=000 
860=000 861:230 862=003 863=001 864=000 865=000 866=000 867=000 \ 

868=255 869=000 
890=000 891=000 892=000 894=001 895=000 896=001 
8100=000 8101=000 8102=000 8104=000 8105=001 
8110=255 8111=255 8112=001 
8121=000 8130=002 81311001 8255=000 
N01 
Nl1 
N21 
N3: 
N4: 
NS: 
N6: 
N71 
N81 
N91 
0 
kermit1 disconnected. 

/etc/ttys Problems 
Sometimes, UUCP problems will arise because the entry in file /etc/ttys for the serial port your 
modem is using. is either missing or is incorrect. 

LEXICON 



UUCP 1135 

To discover which port UUCP thinks your modem is using. invoke the command uuinstall. Then, 
under its Devices option. look at the remote line. The remote device you specified on this line must 
be described in file /etc/ttys. Ifit is not, then you will find statements in the log file for the site you 
are calling stating that a device was not found. 

If you see errors in the log files that state that a device is not found, and you have checked the 
"remote" entry in uuinstall against the contents of /etc/ttys. the next possible cause may be the 
/etc/ttys entry for the port. Look for trailing spaces at the end of the line that describes the com 
port. If you find a space at the end of a line, delete it. 

com Port Driver Permissions 
By far. the most common problem deals with permissions associated with the com port devices. If 
you are trying to get UUCP to call out on a port, and keep seeing errors of the form 

Dial failed, Line Problem 

in the output of uulog. you may need to fix permissions on the port in question. 

If you are using one com port both for remote logins and to call out using UUCP. note the following: 
When a port is enabled for remote access via a modem. the permissions for the port are changed so 
that only the superuser root can access the port. This prevents someone from inadvertently trying 
to send data out the port. When the port is later disabled so that UUCP can dial out, the 
permissions for that com port are not changed to give everyone access to the port. Remember, when 
UUCP is executing, it is just another user with the name "uucp" and does not have root privileges. 

To set the permissions properly, use the command chmod to reset the permission of the com port 
device in directory /dev. For example. if your UUCP connection is via comlr. log in as the 
superuser root and enter the command: 

chmod 666 /dev/coml* 

Usually, serial ports should have read and write permissions turned on for all users. The main 
exception to this rule is that a port enabled for logins becomes readable and writeable only by root. 
This not a problem for UUCP as the port is disabled (and permissions expanded) temporarily when 
uucico runs. 

Lock Files and Temporary Files 
UUCP controls access to the modem and to various directories and sites via a set of "lock files". 
This is to prevent UUCP from tripping over its own feet by attempting to write more than one file to 
the same site at the same site. 

When a UUCP session fails. it may fail to remove all of its lock files before it exits. depending upon 
the seriousness of the failure. "Stale" lock files and temporary files in directory will prevent UUCP 
from accessing a given site or even from working altogether. Symptoms of this problem are 
messages in the log files that state: 

Site locked 

This. of course. is not indicative of a problem unless no UUCP connection has been made recently 
(within the last minute or so). To cure this problem, log in as the superuser root and then enter the 
command: 

uurmlock 

This will remove all "stale" lock or temporary files. 

UUCP Configuration Files 
By far the most common cause of problems are mistakes in one or another UUCP configuration file. 
If problems persist, check all UUCP configuration files against the descriptions found in 

LEXICON 



1136 uucp 

correspondingly named Lexicon articles. The files in question are ttys, L-devices, L.sys, and 
Permissions. 

UUCP Executable Fite Permissions 
UUCP commands can invoke each other from time to time. If a UUCP executable file's permissions 
are set incorrectly, that command may be prevented from being executed under certain conditions, 
or from reading or writing certain key files. 

Key UUCP executable files are /usr/lib/uucp/uucico, /usr/lib/uucp/uuxqt, /usr/bin/uucp, and 
/usr/bin/uux. These files must belong to user and group uucp. Permissions on these files must be 
6511 (-r-s--s--x). See the Lexicon article for the command chmod for further details on how to reset 
permissions for files. 

UUCP Connects, but ... 
Once UUCP is dialing out, it is extremely difficult to diagnose problems. as they can occur at either 
end of the connection. In most cases, one must know both systems to diagnose problems related to 
communication problems. Check the following: 

Check your chat scripts. Contact the other system's system administrator to be sure that you 
are expecting the correct prompts in the chat script for the system you are calling. 

Use the debugging mode of uucico to watch communications. Debugging mode is accessed 
using the uucico command suff1xed by a -x#. where # is l to 9 which determines the 
debugging level. For example 

/usr/lib/uucp/uucico -smwcbbs -xl 

Please note, the uucico debugging option is incompatible with certain non-COHERENT 
versions of uucico. 

Note also that the COHERENT default mailer does not yet support domains. If domain 
information is being sent to your system, an error may result and possibly cause unexpected 
results or errors from uucico. The error will usually state that a log file could not be written to. 
Alternate mailers are available from the various COHERENT archive sites, as well as the MWC 
UUCP bulletin board system. 

Remote Won't Accept Files ... Where'd My Mail Go? 
If you see messages in your log files that a site would not accept a file from your site, the other site 
may not have its permissions set to allow you to send files to it, or to write the files you are sending 
to a directory that you specified. 

When sending files across systems, check the length of the site name. Currently, COHERENT can 
only work with a seven-character or shorter site name. If you are using an eight-character or longer 
site name, COHERENT will not properly distribute files transferred from your site. To change the 
name of your system, edit the contents of file /etc/uucpname; and to change the name of your 
system's domain, edit the contents of file /etc/domain. 

See Also 
com, commands, domain, L-dev, L.sys, Permissions, terminal, uucico, uucp, uucpname, 
uudecode,uuencode,uuinstall,uulog,uumvlog,uuname,uunnlock,uutouch,uux,uuxqt 
UUCP, Remote Communications Utility, tutorial 

uucp - Command -._,,,-._,~,~~-..~~ 
Ready files for transmission to other systems 
uucp [ -cCdfmr] [-nuser) [-s dlr) [-xn] source ... dest 

uucp copies files source 1 through sourceN to the destination system dest. Either source or 
destination files can contain specifications for the remote system. 

LEXICON 



uucp 1137 

uucp recognizes the following options: 

-c Do not copy the source file into spool directory; rather use the file itself. This is the default. 

-C Copy the source file into spool directory. 

-d Create directories as required on the destination system. 

-f Do not make intermediate directories for the file copy. 

-m Send mail to requester when the file is sent. 

-nuser Notify user on destination system when the file is received. Note that user may contain a 
path. Note that user is relative to the destination machine, not to originating machine or to 
any intervening machine. For example, consider the command: 

uucp -nlepanto!fred myfile joel/tmp 

Here, you are copying myfile from your machine into directory /tmp on machine Joe, and 
sending notification to user fred on machine lepanto. If, however, machine Joe does not 
know how to address machine lepanto, then fred will never be notified of the transfer. 

-r Spool transfer request. but do not initiate uucico. 

-xn Assign debug level n (0 to 9). 

Examples 
The first example copies file foo to directory /bar on system george: 

uucp foo george!/bar 

The next example copies file /foo from system george into directory /tmp on your system: 

uucp george!/foo /tmp 

The next example copies file /foo from system george into file or directory /bar on system ivan: 

uucp george!/foo ivan!/bar 

Note that this assumes your system can talk to both george and ivan and that your system has 
permission to read file /foo on system george as well as to write file /bar on system ivan. 

The next example downloads files /foo and /bar from remote systems ivan and george into 
directory /tmp on your system: 

uucp ivan!/foo george!/bar /tmp 

For an example of using the command find with uucp to spool files automatically, see the entry for 
find. 

Files 
/usr/lib/uucp/L.sys- List of reachable systems 
/usr/lib/uucp/Permissions- List of system permissions 
/usr/spool/uucp/ .Log/• /sltename- uucp activities log files for sltename 
/usr/spool/uucp/sltename- Spool directory for work 

See Also 
commands, mail, uucico, UUCP, uudecode, uuencode, uutouch, uuwatch, uuxqt 

LEXICON 



1138 uucpname - uudecode 

ti!Jt?.J.&@·•@A!,H@iiQ.fi!.tlt-·••••••••••••• 
Set the system's UUCP name 
/ etc/uucpname 

The file /etc/uucpname sets the name by which your system is known to all other system with 
which it communicates via UUCP. To rename your system. simply change the contents of this file. 

The contents of /etc/uucpname is. in effect. your system's oom de plume. It should be unique (or 
as unique as possible). easily remembered. and preferably in good taste. Examples of existing 
systems include lepanto, smiles. and stevesf. You should avoid names taken from popular culture. 
such as calvin. hobbes. or terminator: many other people have already used them. 

Note that system names must obey the following rules: 

UUCP names must be no more than 14 characters long. 

Names must consist of letters and numbers. No punctuation marks. white space, control 
characters, or diacritic marks are permitted. 

Each name must begin with a letter. 

If you wish for your system to communicate with other systems in the world-wide UUCP network. 
you should follow the following restrictions as well: 

UUCP names should be contain no more than seven characters. 

They should use only lower-case letters and digits. 

If you wish to publish a UUCP map entry for your system, it must be unique to the UUCP Mapping 
Project, run by the Usenix Association. Send mail to uucp-map@rutgers.edu for information on 
this project. 

If you are connecting to other machines we recommend that you acquire a registered Fully Qualified 
Domain Name. Every person in the United States may register in the .us domain. Send mail to us­
domain-request@venera.isi.edu for information on this. If you wish to create your own domain 
(e.g .. mwc.com). send mail to info-request@uunet.uu.net for information on this. 

See Also 
domain system maintenance, UUCP 

Notes 
Only the superuser root can edit /etc/uucpname. 

1111t.CfI.J.klli·foh&m.~~"91•••••••••••••••··-
Decode a binary file sent from a remote system 
uudecode [file I 
uudecode takes a file encoded by uuencode and translates it back to binary. Any leading and 
trailing lines added by uucp are discarded. 

If the.file is not specified, standard input is read. 

Example 
Consider the file tmp consisting of: 

LEXICON 



uuencode 1139 

begin 644 sys 
M5&AE('%U:6-K(&)R;W=N(&90>"!J=6UP<R!O=F5R('lH921L87IY(&l09RX* 

end 

Note that the third line is a space followed by a newline. To decode it, type: 

uudecode tmp 

The output contained in file sys will be: 

The quick brown fox jumps over the lazy dog. 

See Also 
commands, uucp, UUCP, uuencode 

Notes 
The user on the remote system must be able to write the file. 

uuencode - Command -._,,,~~~~~~,,~~"-~"-''9 
Encode a binary file for transmission 
uuencode [source] remotedest 

uuencode prepares a binary file for transmission to a remote destination via uucp. uuencode takes 
binary input and produces an encoded version. consisting of printable ASCII characters. on 
standard output, which may be redirected or piped to uucp. If source is not specified, the standard 
input is read. 

The format of the encoded file is as follows: 

1. A header line starting with the characters begin followed by a space. This is followed by the 
mode of the file in octal (see chmod for details) and the name of the output file specified on the 
command line. These last two fields are also separated by a space. The mode and the system 
name can be changed by directing the output into a file and editing it. 

2. The body of the file. consisting of a number of lines, each no more than 62 characters long, 
including a newline character. Each line starts with a character count written as a single 
ASCII character. representing an integer value from 0 (octal 40) to 63 (octal 135) giving the 
number of characters in the rest of the line. This is followed by the encoded characters and a 
newline. The last line of the body is a line consisting of an ASCII space (octal 40). 

3. The trailer line has just the characters end on a line by itself. 

The encoding is done by taking three bytes and storing them in four characters. six bits per 
character. 

Example 
To encode the file tmp consisting of the line 

The quick brown fox jumps over the lazy dog. 

to be sent to the remote system george, enter: 

uuencode tmp george 

The output will be: 

LEXICON 



1140 uuinstall - uumvlog 

begin 644 george 
M5&AE( '%U: 6-K( & )R~W=N( &90>" IJ=6UP<R!O=F5R( '1H92 IL87IY( &109RX* 

end 

Note that the third line consists of a space followed by a newline. 

See Also 
commands, uucp, UUCP, uudecode 

Notes 
The file is expanded by more than one third. causing increased transmission time. This can be a 
factor when sending large files. 

MUMtm•~il·DliDrluuEfilhll·l'~---------1!111 
Install UUCP 
uuinstall 

uuinstall assists with the installation of UUCP. It uses screen templates, help lines, and prompts to 
help walk you through the installation of devices. remote systems, site names. domains. and 
permissions. For a detailed description of its use. see the tutorial on UUCP in the front of this 
manual. 

See Also 
commands, UUCP 

Notes 
Only the superuser root can execute uuinstall. 

~----1!111 Examine UUCP operations 
uulog [ -fx ] [ system I 

uulog copies the last part of the file /usr/spool/uucp/ .Log/uucico/system to see what uucico has 
done recently. system names the remote system whose logfile will be examined. If it is not 
specified, logfiles for all systems are displayed. 

uulog recognizes the following options: 

-f Similar to the command tail -f: this forces uulog to display UUCP activity as it is written into 
the log file, until you interrupt it by typing <ctrl-C>. 

-x Display the log files for the command uuxqt rather than uucico. 

Files 
/usr/spool/uucp/ .Log/uucico/ system- uucico log file for system 
/usr/spool/uucp/ .Log/uuxqt/system- uuxqt log file for system 

See Also 
commands, uucico, uucp, UUCP, uuxqt 

11m.;m+•iil·DliDrlZ11lhl"l1·m1l-••••••••••••••••••••-
Archive UUCP log files 
uumvlog days 

LEXICON 



uuname - uutouch 1141 

uumvlog copies all UUCP log files into backup files, named for their respective commands and the 
date upon which the backup was performed. days gives the number of days for which backup files 
should be kept: if a backup file is more than days days old, then uumvlog will delete it. 

This command should be run by cron, because the UUCP log files can threaten to exhaust available 
file space on a small system unless they are chopped back daily. For directions on how to do this, 
see the tutorial for UUCP or the Lexicon entry for cron. 

Files 
/usr/spool/uucp/.Log/command/system- UUCP log files 

See Also 
commands, crontab, uucico, uucp, UUCP, uuxqt 

IJ/ll•@Rmri·11r1,@.t.a,,~,. -'~~""'"'~'"'""~~~'15 5""'""­
List UUCP names of known systems 
uuname [ -1 J 

uuname lists the names of all systems reachable directly by uucp. When used with the -1 option, it 
reads and prints the contents of file /etc/uucpname, which holds the name of your local system. 

Files 
/etc/uucpname- Name of local system 
/usr/lib/uucp/L.sys- Site and remote login data list 

See Also 
commands, uucico, uucp, UUCP, uulog 

lflt!Wl®1f ri•foi11Fiii•p''',. mR1 ~~---~"'~~'15 - ~'~'""",. 
Remove UUCP lock files 
uurmlock 

UUCP uses a system of lock files to ensure that sites are polled in an orderly manner. It creates a 
lock file named after the site being polled, to prevent more than one invocation of uucico or another 
UUCP command from polling the same site at the same time. On occasion, if UUCP fails or crashes, 
it will neglect to clean up its lock files, thus preventing itself from polling the locked sites. 

The command uurmlock removes all UUCP lock files. You should run this if you suspect that 
UUCP has died in a disorderly manner and has left lock files lying around unattended. 

Before you run uurmlock, examine the output of the command ps to ensure that no UUCP 
command is running at the moment (and so has legitimately locked a site). Note that only the 
superuser root can run uurmlock. 

Files 
/usr/spool/uucp/LCK.•- UUCP lock files 

See Also 
commands, UUCP 

mnM'N•lli•1u!11fuit·~''''"~,. -~- '"~'~'" 
Touch a file to trigger uucico poll 
uutouch system 

uutouch creates an empty control file for system in the directory /usr/spool/uucp/system. This 
forces UUCP to poll system when uucico is called with the option -sany. If the empty file for system 
aready exists, it is left alone. 

LEXICON 



1142 uux 

There are three types of files in the spool directory /usr/spool/uucp/system: 

C. Command file. 

D. Data file. 

X. Execute file. 

Example 
A typical usage is to put the following line into /usr/llb/crontab: 

0 7 * * * /usr/lib/uucp/uutouch george 

This forces UUCP to schedule a poll to the remote system george at 7 AM local time. The actual poll 
take place when uucico is started. 

Files 
/usr/spool/uucp/sltename- Directory for uucp work files 

See Also 
commands, cron, uucico, uucp, UUCP, uuxqt 

!!% if •1uu@•iel 
Execute a command on a remote system 
uux [-a user] (-mpz] command-string 

The command uux executes commands on a remote system. uux works in conjunction with the 
UUCP system. It is not generally used by the end user, but is instead called by the various UUCP 
subsystem components to request that work be performed at a remote system. For security 
reasons, you can execute on the remote system only the commands that are explicitly permitted by 
the remote system, as described in the entry for your system in the remote system's copy of 
/usr /lib/uucp/Permissions. 

If all permissiohs are in order, an appropriately named X. file is created in the remote system's 
directory /usr/spool/uucp/yoursystem, where yoursystem gives the name by which the remote 
system knows your system. This file is then executed by the remote system's copy of uuxqt. 

command-string consists of a command name followed by zero or more arguments. Both the 
command name and the arguments may be prefixed by an optional system name (sitename) and an 
exclamation mark. Note that all special characters must be escaped or enclosed in quotation marks 
to avoid being processed by your system's shell. 

For example, the simplest form of the uux command is: 

uux host!command argO arg2 argN 

where host is the name of the remote system being contacted, as described in the file 
/usr/llb/uucp/L.sys, command is the name of the command to execute on the remote system, and 
argO through argN give the arguments to command. 

If an argument names a file. that file can either be on the remote system, on your system, or on 
some third system. For example, the command 

uux widget!lpr /usr/sally/herfile 

requests site widget to print its own file /usr/sally/herflle. On the other hand, the command 

uux widget!lpr !$HOME/myfile 

LEXICON 



uux 1143 

requests that site widget print on its line printer the file myfile from your home directory on your 
home system. Note that the '!' that prefixes myfile indictes that it is on your system. Finally, the 
command 

uux widgetllpr ZEUSl/usr/fred/hisfile 

requests that widget print file /usr/fred/hisflle which resides on site ZEUS. Note that if widget 
does not know how to contact site ZEUS, the command will fail. 

If you wish, you can embed the shell operators'<'.'>'.';', or' I' within a uux command. This lets you 
construct a more powerful command than you could do otherwise. Commands that contain these 
operators must, of course, be quoted so ensure that your shell does not interpret them. For 
example, the command 

uux "widgetlpr /usr/sally/herfile > ZEUS!-/fred/hisfile" 

tells uux to use pr to format its file /usr/sally/herfile, and write the output into file 
/usr/spool/uucppublic/fred/hisffieon site ZEUS. (Note that the tilde·-·. as always, is a synonym 
for /usr/spool/uucppubllc.) Again, the command will fail if you do not have appropriate 
permissions on widget or ifwidget does not have appropriate permissions on ZEUS. 

The operator·-· lets you use the standard input when constructing a uux command. For example, 
the command 

who I uux - widgetllpr 

executes the who command on your system, pipes the output to uux, and tells uux to invoke the 
command lpr on remote system widget to print the list of users on your system. 

uux will attempt to transfer any needed input files to the system which will be executing the 
requested command. You must enclose in parentheses any output files generated by command, to 
distinguish them from input file names. 

uux recognizes the following options: 

-a user 
Use user as the name of the requester. The default is the requester's login name. 

-r Queue up the uux request but do not invoke uucico to actually handle the transfer. The 
default is to initiate uucico. 

-n Suppress notification of command completion. The default is to send mail to the requester 
after the command has been run. 

-p Input to uux will be via a pipe or input redirection. 

-z Notify requester when command-string succeeds. The default is to not generate a notification. 

Examples 
The following script uses a remote system to print files. Print files specified on the command line 
are sent unprocessed to system prnsrvr for printing using command lpr. Note that since the -r 
option is specified to uux, uucico will not be invoked automatically. thus causing the requests 
simply to be queued. 

for i in $* 
do 

uux -r prnsrvrllpr 1$i 
done 

LEXICON 



1144 uuxqt 

The next example copies file /foo from system george and file /bar from system norms to your 
system and then invokes command cmp to compare the contents of the files. The results of the 
comparison are placed in output file /tmp/cmp.results on the local system. and notification of 
command completion is sent via electronic mail. 

uux -z "lcmp -1 georgel/foo norms!/bar >/tmp/cmp.results" 

Note that this example assumes that your system can talk to both george and norms and that your 
system has permission to read file /foo on system george as well as to read file /bar on system 
norms. 

The last example runs a remote C compile on system cserver using local file mycode.c as input and 
producing executable file mycode as output. Any C compiler error messages will be placed in file 
/tmp/errors on the local system. 

uux 'cserver!cc -0 -o (lmycode) lmycode.c >!/tmp/errors' 

See Also 
commands, UUCP, uuxqt 

~"'~'~~~,,~,,~, 
Execute commands requested by a remote system 
uuxqt 

uuxqt takes the execute files, those marked with the prefix X. in the directory 
/usr/spool/uucp/sltename, and executes them. It will only execute programs for which the remote 
system has permission. 

uuxqt may be called by either uucp or uucico. It is not generally considered a user-callable 
program. 

Files 
/usr/spool/uucp/sltename- Directory for execute files 

See Also 
commands, uucico, uucp, UUCP, uux 

LEXICON 



1¢Mtl.D 11'6@1Q141Hllrl@elj 
Return pointer to next argument in argument list 
#include <stdarg.h> 
typename *va_arg(llstptr, typename) 
va_list llstptr, typename; 

va_argO - va_endO 1145 

va_arg() returns a pointer to the next argument in an argument list. It can be used with functions 
that take a variable number of arguments, such as prlntf or scanf, to help write such functions 
portably. It is always used with va_endQ and va_startQ within a function that takes a variable 
number of arguments. 

llstptr is of type va_list, which is defined in the header stdarg.h. This object must first be initialized 
by the macro va_startQ. 

typename is the name of the type for which va_argQ is to return a pointer. For example, if you wish 
va_argQ to return a pointer to an integer, typename should be of type int. 

va_arg() can only handle "standard" data types. i.e., those data types that can be transformed to 
pointers by appending an asterisk •••. 

Example 
For an example of this macro, see the entry for variable arguments. 

See Also 
variable arguments 

Notes 
If there is no next argument for va_arg() to handle, or if typename is incorrect, then the behavior of 
va_argQ is undefined. 

The ANSI Standard demands that va_arg() be implemented only as a macro. If its macro definition 
is suppressed within a program, its behavior is undefined. 

1M;t.a ll'i@iilt'!ii·i!ill@llO 
Tidy up after traversal of argument list 
#include <stdarg.h> 
void va_end(llstptr) 
va_list llstptr; 

va_end() helps to tidy up a function after it has traversed the argument list for a function that takes 
a variable number of arguments. It can be used with functions that take a variable number of 
arguments, such as prlntf or scanf, to help write such functions portably. It should be used with 
the routines va_argQ and va_start() from within a function that takes a variable number of 
arguments. 

LEXICON 



1146 va _ startO - variable arguments 

llstptr is of type va_list(), which is declared in header stdarg.h. llstptr must first have been 
initialized by macro va_start. 

Example 
For an example of this function, see the entry for variable arguments. 

See Also 
variable arguments 

Notes 
If va_list() is not initialized by va_start(), or if va_end() is not called before a function with variable 
arguments exits, then the behavior of va_endQ is undefined. 

MIMtttt•'Ell6!914"'"11m1t' 
Point to beginning of argument list 
#include <stdargs.h> 
void va_start(ltstptr, rightparm) 
va_list llstptr, type rightparm; 

va_startQ is a macro that points to the beginning of a list of arguments. It can be used with 
functions that take a variable number of arguments, such as printf() or scanf(), to help implement 
them portably. It is always used with va_arg() and va_end() from within a function that takes a 
variable number of arguments. 

llstptr is of type va_list, which is a type defined in the header stdarg.h. 

rightparm is the rightmost parameter defined in the function's parameter list. Its type is set by the 
function that is using va_start(). Undefined behavior results if any of the following conditions apply 
to rightparm: if it has storage class register; if it has a function type or an array type; or if its type 
is not compatible with the type that results from the default argument promotions. 

Example 
For an example of this macro, see the entry for variable arguments. 

See Also 
variable arguments 

Notes 
The ANSI Standard demands that va_start be implemented only as a macro. If the macro definition 
of va_start is suppressed within a program, the behavior is undefined. 

1WtiM@t1.tJtUt§cl€••WQM4H~---··••••111111111••111111111•••••••••••111111111111 
The ANSI Standard mandates the creation of a set of routines to help implement functions, such as 
printf and scanf, that take a variable number of arguments. These routines are called from within 
another function to help it handle its arguments. 

These routines are declared or defined in the header stdarg.h, and are as follows: 

va_arg() 
va_end() 
va_start() 

Return pointer to next argument in argument list 
Tidy up after an argument list has been traversed 
Initialize object that holds function arguments 

va_arg() and va_start() must be implemented as macros: va_end() must be implemented as a library 
function. All three use the special type va_list, which is an object that holds the arguments to the 
function being implemented. 

LEXICON 



vi 1147 

Example 
The following example concatenates multiple strings into a common allocated string and returns the 
string's address. 

#include <stdarg.h> 
#include <stdlib.h> 
#include <stddef.h> 
#include <stdio.h> 

char * 
multcat(numargs) 
int numargs; 
{ 

} 

va list argptr; 
char *result; 
int i, siz; 

/* get size required */ 
va_start(argptr, numargs); 
for(siz = i = O; i < numargs; i++) 

siz += strlen(va_arg(argptr, char*)); 

if ((result= calloc(siz + 1, 1)) ==NULL) { 
fprintf(stderr, "Out of space\n"); 
exit(EXIT_FAILURE); 

} 
va_end(argptr); 

va_start(argptr, numargs); 
for(i = O; i < numargs; i++) 

strcat(result, va_arg(argptr, char*)); 
va_end(argptr); 
return(result); 

int 
main(void) 
{ 

} 

printf(multcat(5, "One ", "two ", "three " 
"testing", ".\n")); 

See Also 
libraries, stdarg.h 

lfllif•lrrr11ijld1I 
Clone of Berkeley-style screen editor 
vi (options I [ +cmd I [ftlel ... ftle27 I 

vi is a link to the editor elvis. which is a clone of the UNIX editors ex and vi. For details on how to 
run vi, see the entry for elvis in the Lexicon. 

LEXICON 



1148 vidattrO - view 

See Also 
commands, ed, ex, elvis, me, view 

Notes 
elvis is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall 
(kirkenda@lcs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda),assisted by numerous volunteers. 
It is freely redistributable, subject to the restrictions noted in included documentation. Source code 
for elvis is available through the Mark Williams bulletin board, USENET. and numerous other 
outlets. 

elvis is distributed as a service to COHERENT customers, as is. It is not supported by Mark 
Williams Company. Caveat uttlltor. 

rmmimll@""®"i"'G'•~""~~"''"''a .. "''~-----~ Set the terminal's video attributes 
#include <curses.h> 
vidattr(newmode) 
int newmode; 

COHERENT 386 comes with a set of functions that let you use terminfo descriptions to manipulate 
a terminal. vidattr() sends one or more video attributes to the terminal opened by a call to 
setupterm(). newmode is any combination of the macros A_STANDOUT. A_UNDERLINE, 
A_REVERSE. A_BLINK. A_DIM, A_BOLD, A_INVIS, A_PROTECT, and A_ALTCHARSET. OR'd 
together. Their names are self-explanatory; all are defined in the header file curses.h. 

See Also 
curses.h, setupterm(), terminfo, vidputs() 

rmmtt®ll@iui!,jd@llU31~'~ -.~~"""''W - • a.-. ~'"'''"'-'a 
Write video attributes into a function 
#include <curses.h> 
vidputs(newmode ,outc) 
int newmode; 
int (*outc)(); 

COHERENT 386 comes with a set of functions that let you use terminfo descriptions to manipulate 
a terminal. vidputs() resets the video attributes of the terminal that had been opened by a call to 
setupterm(). 

newmode is any combination of the macros A_STANDOUT, A_ UNDERLINE, A_REVERSE, A_BLINK. 
A_DIM. A_BOLD. A_INVIS, A_PROTECT, and A_ALTCHARSET. OR'd together. Their names are 
self-explanatory; all are defined in the header file curses.h. 

outc points to a function that takes a single character as an argument, e.g .. putchar(). 

The related function vidattr() resets video attributes without requiring a pointer to a function. 

See Also 
curses.h, setupterm(), terminfo, vidattr() 

view - Command 
~~~""''~''' '"'~'"'~-...~~~'1111-------~ Screen-oriented viewing utility 

view file 1 ... flle2 7

view is a link to elvis, which is a clone of the UNIX vi/ex set of editors. Invoking elvis through this
link forces it to operate solely in read-only mode, just as the UNIX view utility operates.

LEXICON

For information on how to use this version of view, see the Lexicon page for elvis.

See Also
commands, ed, elvis, ex, me, vi

Notes

vi rec 1149

view is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous volunteers.
It is freely redistributable, subject to the restrictions noted in included documentation. Source code
for virec is available through the Mark Williams bulletin board, USENET. and numerous other
outlets.

elvis is distributed as a service to COHERENT customers, as is. It is not supported by Mark
Williams Company. Caveat utllitor.

Emfi·luU.EH!.•
Recover the modified version of a file after a crash
virec (-d tmpdlr) texifllename ...
virec </tmp/elvXXX

virec extracts the most recent version of a text file from a temporary file in /tmp.

When you edit a file with elvis. only about five kilobytes of the file are stored in RAM; the rest is
stored in a file in /tmp. virec extracts the "undo" version from the file stored in /tmp. This is most
useful when the system (or elvis) crashes in the middle of a long editing session, since the "undo"
version of the file contains everything except your last change.

There are two ways to use virec. The first, and most common, way to invoke virec is to give it the
name of the file you were editing; it finds the matching file in /tmp and writes the newest available
version of the file over the existing version. It then deletes the /tmp file.

The second way is to use the'<' to let virec read a particular /tmp file via stdin. Use this method
when you either have forgotten which file you were editing and want to see its contents, or when
you wish to recover a file without losing either the /tmp file or the current version of the text file.

The -d option tells virec to look for a temporary file in directory rather than in /tmp.

Files
/tmp/elv•-Temporaryfile created by elvis

See Also
commands, elvis

Notes
virec is copyright © 1990 by Steve Kirkendall, and was written by Steve Kirkendall
(kirkenda@cs.pdx.edu or ... uunet!tektronix!psueea!eecs!kirkenda), assisted by numerous volunteers.
It is freely redistributable, subject to the restrictions noted in included documentation. Source code
for virec is available through the Mark Williams bulletin board. USENET. and numerous other
outlets.

Please note that this program is distributed as a service to COHERENT users. but it is not
supported by Mark Williams Company. Caveat utllltor.

LEXICON

1150 void - volatile

Dll'M'M·m'
Data type

The keyword void indicates that the function does not return a value. Using void declarations
makes programs clearer and is useful in error checking. For example, a function that prints an
error message and calls exit to terminate a program should be declared void because it never
returns. A function that performs a calculation and stores its result in a global variable (rather than
retum.ing the result), or one that returns no value, should also be declared void to prevent the
accidental use of the function in an expression.

See Also
Ckeywords

•·11•@ifi·!I.'
Qualify an identifier as frequently changing

The type qualifier volatile marks an identifier as being frequently changed, either by other portions
of the program, by the hardware, by other programs in the execution environment, or by any
combination of these,,. This alerts the translator to re-fetch the given identifier whenever it
encounters an expression that includes the identifier. In addition, an object marked as volatile
must be stored at the point where an assignment to this object takes place.

See Also
C keyword, const

Notes
Although COHERENT recognizes this keyword, the semantics are not implemented in this release.
Thus, storage declared to be volatile might have references removed by optimizations that the
compiler performs. The compiler will generate a warning if the peephole optimizer is enabled and
the keyword volatile is detected.

LEXICON

wait- waitO 1151

wait - Command --~''''''~'--~'''~~~~~ ~'~~'~'~'~''~'''''~
Await completion of background process
wait [pld)

Typing the character '&' after a command tells the shell sh to execute it as a background (or
detached) process; otherwise, it is executed as aforeground process. You can perform other tasks
while a background process is being executed. The shell prints the process id number of each
background process when it is invoked. ps reports on currently active processes.

The command wait tells the shell to suspend execution until the child process with the given pld is
completed. If no pld is given. wait suspends execution until all background processes are
completed. If the process with the given ptd is not a child process of the current shell, wait returns
immediately.

The shell executes wait directly.

See Also
co11111Ulnds,ksh,ps,sh

Notes
If a subshell invokes a background process and then terminates, wait will return immediately rather
than waiting for termination of the grandchild process.

-'''''''~~-.~~~~~
Await completion of a child process
wait(statp)
int •statp;

wait() suspends execution of the invoking process until a child process (created with fork())
terminates. It returns the process identifier of the terminating child process. If there are no
children or if an interrupt occurs. it returns -1.

If it is successful. wait() returns the process identifier of the terminated child process. In addition,
wait() fills in the integer pointed to by statp with exit-status information about the completed
process. If statp is NULL, wait() discards the exit-status information.

wait() fills in the low byte of the status-information word with the termination status of the child
process. A child process may have terminated because of a signal. because of an exit call, or have
stopped execution during ptrace(). Termination with exit(), which is normal completion, gives status
0. Other terminations give signal values as status (as defined in the article on signal()). The 0200
bit of the status code indicates that a core dump was produced. A status of 0177 indicates that the
process is waiting for further action from ptrace().

The high byte of the returned status is the low byte of the argument to the exit() system call.

LEXICON

1152 wall - whence

If a parent process does not remain in existence long enough to wait() on a child process, the child
process is adopted by process 1 (the initialization process).

See Also
_exit(), fork(), ksh, ptrace(), signal(), sh, system calls

~mll!lmmll!lmmmll!lmmmmll!lm~mmm~~
Send a message to all logged-in users
/etc/wall

wall types a message to every user currently logged into the COHERENT system, with the exception
of the sender. It can be used to inform users of information of general interest: for example, that
man has landed on the moon, or that the system is going down in 15 minutes.

wall reads the message to be broadcast from the standard input until end of file. When it sends the
message, it prefaces it with the herald "Broadcast message ... ", which includes an audible warning.
Only the superuser should invoke I etc/wall (to override access protections of the target terminals).

Files
/etc/utmp- Current users file
/dev/tty*

See Also
commands, msg, who, write

Diagnostics
The message "Cannot send to user on ttyname" indicates that wall cannot write to the given user.

~~~~"-"-~---------------------i\lil\lll~ ~ Count words, lines, and characters in text files 
we [-clw] lflle .. . ] 

we counts words, lines, and characters in eachjlle. If nojlle is given, we uses the standard input. If 
more than onejlle is given, we also prints a total for all of the files. 

we defines a word to be a string of characters surrounded by white space (blanks, tabs, or 
newlines). It defines the number of lines to be the number of newline characters in the file, plus 
one. 

we recognizes the following options: 

-c Count only characters. 

-l Count only lines. 

-w Count only words. 

The default action is to print all counts. 

See Also 
commands 

Mi@if{•i·lid1@it·'---------------------~,._---~ 
List a command's type 
whence [-v] command ... 

The command whence is built into the Korn shell ksh. It lists the type for each command. Option -v 
lists function and alias values as well. 

LEXICON 



See Also 
commands, ksh 

@Nk&fClfi•1inrrij!d·-~~'""~--.. .... ,.._-
Locate source, binary, and manual files 
whereis [-bmrsu] [-BMS dlr ... -fl name ... 

where is 1153 

The command whereis locates source files, binary files (executables). and manual pages 
(documentation) that match a given name. Prior to searching. whereis strips name of any path 
information, extensions, and the s. prefix. 

By default, whereis searches the following directories: 

Sources 
/usr /src/cmd 
/usr /src/games 
I usr I src /local 
/usr/src/alien 
/usr /include 
/usr /include/ sys 

Options 

Binaries 
/bin 
/usr/bin 
/usr/games 
/usr/local 
/etc 
/lib 
/usr /lib 

Manual Pages 
/usr/man/* 

whereis recognizes the following command-line options: 

-b Search only for binary files. 

-B Use the directory list specified by dlr instead of the default directory list for binary files. 

-f Terminate the directory list introduced by options -B, -M, or -S, and treat any additional 
command-line arguments as file names to be searched for. 

-m Search only for manual pages (documentation files). 

-M Use the directory list specified by dir instead of the default directory list for manual pages. 

-r Search recursively downward from the directories specified by dlr or from the default 
directories. This option is useful when the searched directories contain sub-directories. By 
default, whereis searches only the directories specified or the default directories. 

-s Search only for source files. 

-S Use the directory list specified by dir instead of the default directory list for source files. 

-u Search for "unusual" files. A file is said to be unusual if it does not have one entry for each of 
the three search categories. 

Please note that if you use options -B, -S, or -M, you must use the -f option to terminate the 
directory list specified by dir. 

Example 
The following example finds all commands in directory bin that have either no corresponding source 
code in directory src or no corresponding documentation in directory doc: 

whereis -u -M doc -s src -B bin -f bin/* 

See Also 
commands, find, qfind, which 

LEXICON 



1154 which - while 

Notes 
wherels is copyright © 1980, l 990 by The Regents of the U Diversity of California. All rights reserved. 

wherels is distributed as a service to COHERENT customers, as is. It is not supported by Mark 
Williams Company. Caveat uttlttor. 

-.1·!il!Mjr Locate executable\ es 
which command ... 

which displays the full path name associated with command. It searches the directories named by 
environment variable PATH for the first executable that matches command and that you have 
permission to execute. If which can find no executable that matches your request, an error 
message is displayed. 

Example 
The following example displays the path names that correspond to commands write, vi, myprog, 
and fsck: 

which write vi myprog fsck 

See Also 
commands, find, PATH, qflnd, wherels 

mlm'·"''"F"'·' Execute commands repeatedly 
while sequencel [do sequence2] done 

The shell construct while controls a loop. It first executes the commands in sequencel. If the exit 
status is zero, the shell executes the commands in the optional sequence2 and repeats the process 
until the exit status of sequence 1 is nonzero. Because the shell recognizes a reserved word only as 
the unquoted first word of a command, both do and done must occur unquoted at the start of a line 
or preceded by ':'. 

The shell commands break and continue may be used to alter control flow within a while loop. The 
until construct has the same form as while, but the sense of the test is reversed. 

The shell executes while directly. 

See Also 
break,commands,continue,ksh,sh,test,until 

mlm1 HMtMlel 
Introduce a loop 
while(condltlon) 

while is a C keyword that introduces a conditional loop. condition is tested on reiteration of the 
loop, and the loop ends when condition is no longer satisfied. For example, 

while (foo < 10) 

introduces a loop that will continue until the variable foo is reset to ten or greater. Note that the 
statement 

while ( 1) 

will loop forever, unless interrupted by a break, goto, or return statement. 

LEXICON 



who- write 1155 

See Also 
break, C keywords, continue, do, f'or 

mms·"r"@S' Print who is ogge in 
who (/lle] [am l) 

The command who prints the names of the users who are logged in to the system. For each user, 
who prints her name, terminal name, login date, and login time. The form who am l prints this 
information only about yourself. 

If.file is specified, who uses it instead of /etc/utmp to obtain information about who is logged in. 
This is useful, for example, with the file /usr/adm/wtmp, which contains a continuous record of 
logins, logouts and reboots. When .file is specified, who displays logouts: otherwise, they are 
suppressed. 

Files 
/etc/utmp-To get user information 

See Also 
ac, commands, sa 

WMt1+•i•Bl·DlllDU·ll1l------------------------~~~-----lllllll Wildcards are characters that, in some circumstances, can represent a range of ASCII characters. 
Another name for them is "metacharacters". The wildcards available under the COHERENT are as 
follows: 

? Match any one character. 

• Match any number of characters, or no characters at all . 

I I A set of characters enclosed between '[' and ')' match any one character of the set. Sets of 
characters may include ranges, such as [a-z] for all lower-case letters or (0-9] for all 
numerals. 

[I I A set of characters enclosed between '[!' and ')' match any one character except one of the 
set. Sets of characters may include ranges, such as [a-z] for all lower-case letters or [0-9] 
for all numerals. For example, the command 

ls [!abc]* 

prints the names of all files except those that begin with a, b, or c. 

\ Ignore the special meaning of a wildcard. 

See Also 
definitions, egrep, pattern, pnmatchO 

mmllri·lrr"'b"'·' 
Converse with another user 
write user [ tty I 

The COHERENT system provides several commands that allow users to communicate with each 
other. write allows two logged-in users to have an extended, interactive conversation. 

write initiates a conversation with user. If tty is given, write looks for the user on that terminal; this 
is useful if a user is marked as being logged in on more than one device. Otherwise, write holds the 
conversation with the first instance of user found on any tty. 

LEXICON 



1156 writeO 

If found, write notifies user that you are beginning a conversation with him. All subsequent lines 
typed into write are forwarded to the user's terminal, except lines beginning with '!', which are sent 
to the shell sh. Typing end of me (usually <ctrl-D> J terminates write and sends user the message 
"EOT" to tell him that communication has ended. 

Two users typing lines to write at about the same time can cause extreme confusion, so users 
should agree on a protocol to limit when each is typing. The following protocol is suggested. One 
user initiates a write to another, and waits until the other user replies before beginning. The first 
user then types until he wishes a reply and suffixes "o" (over) to indicate he is through. The other 
user does the same, and the conversation alternates until one user wishes to terminate it. This user 
types "oo" (over and out). The other user replies in the same way, indicating he too is finished. 
Finally each of the users leave write by typing end-of-file (usually <ctrl-D>). 

Any user may deny others the permission to write to his terminal by using the command mesg. 

Files 
/etc/utmp 
/dev/• 

See Also 
commands, mail, mesg, msg, sh, wall, who 

Notes 
You should use write only for extended conversations. Use msg to send brief communications to a 
logged in user, and mail to communicate with a user not currently logged in. wall broadcasts a 
message to all logged in users. 

amml§!§hlll!' 
Write to a file 
int write(fd, btiffer, n) 
intfd: char •btiffer: Int n: 

write() writes n bytes of data, beginning at address buffer, into the me associated with the me 
descriptorfd. Writing begins at the current write position, as set by the last call to either write() or 
lseek(). write() advances the position of the file pointer by the number of characters written. 

Example 
For an example of how to use this function, see the entry for open(). 

See Also 
STDIO, system calls 

Diagnostics 
write() returns -1 if an error occurred before the write() operation commenced, such as a bad me 
descriptorfd or invalid buffer pointer. Otherwise, it returns the number of bytes written. It should 
be considered an error if this number is not the same as n. 

Notes 
write() is a low-level call that passes data directly to COHERENT. It should not be mixed with high­
level calls, such as tread(), fwrlte(), fputs(), or fprlntf(). 

LEXICON 



Ellidmlli@YM·HH®@"Mt+ 
Extended greatest-common-divisor function 
#Include <mprec.h> 
void xgcd(a, b, r, s, g) 
mint •a, *b, •r, •s, •g: 

xgcdO 1157 

The COHERENT system includes a suite of routines that allow you to perform multiple-precision 
mathematics. The function xgcd() is an extended version of the greatest-common-division function. 
It sets the multiple-precision integer (or mint) pointed to by g to the greatest common divisor of the 
mint pointed to by a and that pointed to by b. It also sets the mints pointed to by r and s so the 
following relation holds: 

g=a*r+b*s 

r. s, and g must all be distinct. 

See Also 
multiple-precision mathematics 

LEXICON 



1158 yacc 

mrm1+I.mn.1m.1 

Parser generator 
yacc [option ... ]file 
cc y.tab.c [-ly) 

Many programs process highly structured input according to given rules. Compilers are a familiar 
example. Two of the most complicated parts of such programs are lexical analysts and parsing 
(sometimes called syntax analysts). The COHERENT system includes two powerful tools called lex 
and yacc to assist you in performing these tasks. lex takes a set of lexical rules and writes a lexical 
analyzer, whereas yacc takes a set of parsing rules and writes a parser; both output C source code 
that can be compiled into a full program. 

The term yacc is an acronym for "yet another compiler-compiler". In brief, the yacc input file 
describes a context free grammar using a BNF-like syntax. The output is a file y.tab.c; it contains 
the definition of a C function yyparse(), which parses the language described in.file. The output is 
ready for processing by the C c~mpiler cc. Ambiguities in the grammar are reported to the user, but 
resolved automatically by precedence rules. The user must provide a lexical scanner yylex(), which 
you may generate with lex. The yacc library includes default definitions of main, yylex, and 
yyerror, and may be included with the option -ly on the cc command line. 

yacc recognizes the following options: 

-d Enable debugging output; implies -v. 

-hdr header.file 
Put the header output in header.file instead of y.tab.h. 

-itemsN 

-l ltsiftle 

Allow N items per state. This option is designed to help yacc users deal with the ANSI C 
grammar. 

Place a description of the state machine, tokens, parsing actions, and statistics in file ltsiftle. 

-sprodN 
Allow N symbols per production; default, 20. This option is designed to help yacc users 
deal with the ANSI C grammar. 

-st Print statistics on the standard output. 

-v Verbose option. Like -1, but places the listing in file y.output by default. 

The following options are useful if table overflow messages appear: 

-ntermsN 
Allow for N nonterminals; default, 100. 

LEXICON 



-prodsN 
Allow for N productions (rules); default, 350. 

-statesN 
Allow for N states; default, 300. 

-termsN 
Allow for N terminal symbols; default 100. 

-typesN 
Allow for N types; default, ten. 

Files 
y.tab.c - C source output 
y.tab.h - Default C header output 
y.output - Default listing output 
/lib/yyparse.c - Protoparser 
/tmp/y(ao]• - Temporaries 
/usr/include/action.h- Header referenced by protoparser 
/usr/Ub/Uby.a- Library 

See Also 
cc, commands, lex 
Introduction to yacc, Yet Arwther Compiler-Compiler 

yes 1159 

DeRemer F. Pennello TJ: Efficient computation of LALR(l) lookahead sets. SIGPLAN conference, 
1979. 

Diagnostics 
yacc reports the number of R/R (reduce/reduce) and S/R (shift/reduce) conflicts (ambiguities) on 
the standard error stream. 

IDlfi•HiiuijiH•' 
Print infinitely many responses 
yes [ string I 

With no argument, yes prints the string y\n forever .. · If a string is named on the command line, 
then yes prints it forever. · 

Example 
The following example scribbles the string foo\n over a high-density. 5.25-inch floppy disk in drive 
0 (drive A): 

yes foo >/dev/fhaO 

See Also 
commands 

LEXICON 



1160 zcat - zeropO 

-~ - -~~~~''111 ~~~~~--------~ 
Concatenate a compressed file 
zcat [-w tmpjile] [.file ... ] (COHERENT286) 
zcat [.file ... ] (COHERENT 386) 

zcat uncompresses each .file "on the fly."' and prints the uncompressed text onto the standard 
output. Each.file must have been compressed by the command compress and have the sutnx .z. 
If no.file is specified on the command, zcat uncompresses matter read from the standard input. 

Example 
zcat is extremely useful for extracting selected items from large archives; it spares you the overhead 
of having to uncompress the entire archive just to get at one or two files. 

For example, to extract myfile from the compressed archive backup.tar.Z. use the following 
command line: 

zcat backup.tar.Z I tar xvf - myfile 

See Also 
commands, compress, ram, uncompress 

Notes 
The COHERENT-286 edition of zcat includes the option -w - the "workfile" option. zcat writes its 
temporary data into tmpjile rather than writing it into the RAM device /dev/raml. This option is 
not available under COHERENT 386. 

Older versions of zcat could only uncompress files that had been compressed with option -bl2 or 
lower, with -bl2 being the default if the option was omitted. The current release of zcat (under both 
COHERENT 286 or COHERENT 386) now handles values up to -bl6. COHERENT 286 uses RAM 
device /dev/raml for temporary storage. For this reason, it is strongly advised that you not use 
/dev/raml as a RAM disk under COHERENT286. 

zeropO - Multiple-Precision Mathematics 
Indicate if multi-precision integer is zero 
#include <mprec.h> 
int zerop(a) 
mint •a; 

The COHERENT system includes a suite of routines that allow you to perform multiple-precision 
mathematics. The function zerop() returns true if the multiple-precision integer (or mint) pointed 
to by a is zero; otherwise, it returns false. 

LEXICON 



zeropO 1161 

See Also 
multiple-precision mathematics 

LEXICON 



Error Messages 

The following lists the error messages produced by major utilities within COHERENT. 

The following gives the error messages returned by the COHERENT kernel. The messages describe 
two categories of error: 

Hardware: These IIJessages indicate serious problems with your system hardware. If any 
appears, you need to contact a representative of the hardware manufacturer. Note that the 
symbol '#' in the following messages stands for a number that appears when the kernel prints 
the message on the console. When reporting the problem, be sure to include the number 
actually printed out. 

Halts: These messages appear when COHERENT has crashed. 

When you see a halt message on the console, copy it down, as well as all other information on the 
screen. If the advice offered in this section does not help the problem, call Mark Williams Support. 

Arena# too small (hardware) 

Bad block# (alloc) (hardware) 
The kernel attempted to allocate a block of memory, only to find that there was something 
physically wrong with it. 

Bad block# (free) (hardware) 
The kernel attempted to free a block of memory, only to find that there was something 
physically wrong with it. 

Bad free # (hardware) 

Bad freelis t (halt) 
Thefreellst is a list of free blocks on the disk. The COHERENT system maintains this list so 
it can see where it can write data on the disk. This message indicates that the freelist has 
been corrupted somehow. To fix this problem, run /etc/shutdown to return to single-use 
mode; use sync to flush the buffers; use umount to unmount the affected file system; and 
then run fsck to repair the file system. 

Bad segment count (hardware) 

Bus error at# (hardware) 

Cannot allocate stack (hardware) 

Cannot create process (hardware) 

Corrupt arena (hardware) 

Illegal instruction at# (hardware) 

Inode # busy (hardware) 

Inode table overflow (hardware) 

1162 



Not a separate l/D machine (hardware) 

Out of i-nodes (halt) 

The COHERENT System 1163 

A COHERENT file system has one i-node for each file it maintains. The number of i-nodes 
is set when the file system is created. If you have numerous small files on a file system, it is 
possible to exhaust that file system's resources even though the command df shows that 
space remains on the file system. To get around this problem, you must delete files, one file 
for each i-node needed: or you must use ar to archive a mass of files. To do this, first use 
/etc/shutdown to return the system to single-user mode, as described above. Delete files, 
or use ar as described above. Then use sync to flush all buffers, and use the command 
umount to unmount the affected file system. Then run fsck on the affected file system 
before rebooting. fsck checks COHERENT file systems and fixes them if necessary. Consult 
the Lexicon entry on fsck before you use this program for the first time. 

Out of space (m,n) (halt) 
When this error message appears, your file system still ha.S i-nodes but the alloted disk 
space has been exhausted; perhaps you have a few large files that are eating up disk space. 
To get around this problem, you must delete or compress files to clear up disk space. First, 
use /etc/shutdown to return to single-user mode, as described above; then delete files or 
compress them as described above until enough space has been cleared to allow you to 
continue your work. Use sync to flush buffer, use umount to unmount the affected file 
system, and run fsck on the affected file system. Then reboot. 

Random trap (hardware) 

Raw 1/0 from non user (hardware) 

System too large (hardware) 

Swapio bad parameter (hardware) 

Swapio error (hardware) 

The following gives the error messages returned by the COHERENT C compiler, the assembler as 
(both the 286 and 386 editions), and the linker Id (also in 286 and 386 editions). The messages are 
in alphabetical order. and each is marked as to whether it is a fatal. error. warning, or strict 
condition. The compilation phases are cpp, the preprocessor: ccO, the parser: eel, the code 
generator: and cc2, the optimizer. 

A fatal message usually indicates a condition that caused the compiler to terminate execution. Fatal 
errors from the later phases of compilation often cannot be fixed, and may indicate problems in the 
compiler or assembler. 

An error message points to a condition in the source code that the compiler cannot resolve. This 
almost always occurs when the program does something illegal, e.g .. has unbalanced braces. 

Warning messages point out code that is compilable, but may produce trouble when the program is 
executed. A strict message refers to a passage in the code that is unorthodox and may not be 
portable. 

as 286 Error Messages 
. (error) 

Dot label error. This indicates that a period was used as a label, e.g .. ".:". 

ERROR MESSAGES 



1164 The COHERENT System 

a (error) 
Addressing error. This is generated by nearly any kind of operand/instruction mismatch or 
semantic error in address fields. 

string: cannot create (error) 
The assembler cannot create the output file it was requested to create. This often is due to 
a problem with the output device; check and make sure that it is not full, and that it is 
working correctly. 

internal error, c=number in expr. (error) 
The assembler has detected a situation that "should not occur"'. Please send a copy of the 
source code that triggered this error to Mark Williams Company. For immediate help 
during business hours, contact Mark Williams Company technical support. 

m (error) 

o (error) 

p (error) 

q (error) 

r (error) 

s (error) 

u (error) 

Multiple definition. The offending line is involved in the multiple definition of a label. 

An unrecognized opcode mnemonic was found. Contrast this with error 'q', where the 
opcode is recognized but the syntax is in error. 

Phase error. The value of a label changed during the assembly. An instruction has a size 
that differs between the first and second passes. 

Questionable syntax. The assembler has no idea how to parse this line, and it has given 
up. 

Relocation error. The program attempted to create or use an expression in a way that the 
linker cannot resolve. 

Segment error. The program attempted to initialize something in a segment that contains 
only uninitialized data. 

A symbol is used but never defined. The symbol's name is displayed. 

as 386 Error Messages 
.align must be 1. 2 or 4 (error) 

.align must work after the link. These are the only values for which this can be true. 

Ambiguous operand length. n bytes selected (warning) 
The assembler cannot tell the operand length by looking at the opcode and the operands. 
You may want to do something like change mov to movl. 

Arithmetic between addresses on different segments (error) 
You may only add or subtract addresses if they are in the same segment. 

Bad scale (error) 
Address scale must be 0, 1, 2, 4, or 8. 

16 bit addressing mode used in 32 bit code (warning) 
You probably don't want to do this. For example, you may want to say (%esi), not (%81). 

ERROR MESSAGES 



The COHERENT System 1165 

32 bit addressing mode used in 16 bit code (warning) 
You probably don't want to do this. For example, you may want to say (%si), not (%esi). 

Cannot fopen(strlng, string) {fatal) 

cannot insert \0 in string (error) 
\ 0 terminates strings. Instead of 

.byte "hello\n\O" 

use: 

.byte "hello\n", 0 

Character constant n long (error) 
Character constants must be one byte long . 

. comm must have tag (error) 
The format of .comm is .comm name, size. 

Command option 'c' missing its argument {fatal) 

Data defined in . bss (error) 
The .bss segment is uninitialized data. You cannot place actual values there . 

. define must have a label (error) 

Duplicate symbol 'string' (error) 
symbol is defined on two different lines . 

. else detected logic type n {fatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

End of line after backslash reading parm (error) 
Macro parmeters may not be broken up with backslash. 

End of line after backslash (error) 

End of line detected in character constant (error) 

End of line detected in string (error) 

End of macro building .while (error) 
A .macro ended while reading in a • while loop . 

. endi detected logic type n {fatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

Error in binary number (error) 

Error in octal number (error) 

Found n parms expected n (error) 

Illegal combination of opcode and operands (error) 
Although the opcode is valid and the operands are valid, there is no form of this opcode 
which takes this combination of operands in this order. 

Illegal use of local symbol (error) 

Illegal use of of predefined symbol string. (error) 

ERROR MESSAGES 



1166 The COHERENT System 

Improper instruction following lock (warning) 
Only a few lnstructions are valid after a lock instruction. See your machine documentation 
for details. 

Improper instruction following rep (warning) 
Only a few instructions are valid after a rep instruction. See your machine documentation 
for details. 

Indirect mode on invalid instruction (error) 
Indirection is only allowed on call and jump near instructions. 

Internal error relative branch logic (fatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

Invalid .mlist option must be on or off (error) 

Invalid character 'c' string at position n (error) 

Invalid character OxOxn string at position n (error) 

Invalid data type, must be symbol (error) 

Invalid opcode: 'string' (error) 
The string in the opcode position is not one of our opcodes 9r one of your macros. 

Invalid operand type (error) 

string is an improper register in this context (error) 

Label ignored (error) 
This statement cannot take a label. 

Label on invalid operator (error) 

Label required (error) 

Length n string range exceeded (error) 
Strings may not exceed 32 kilobytes. 

Logic error in macro def 'string' n (fatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

Logic error in umark (fatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

Macro definition must have a label (error) 

.mexit not in macro (error) 

Missing .endi (error) 
Input ended leaving .if open. 

Missing .endm (error) 
Input ended leaving .macro open. 

Missing .endw (error) 
Input ended leaving .while open. 

Mixed 386 /286 addressing modes (error) 
No opcode allows mixed 286 and 386 addressing modes. 

Mixed 386 /286 data modes (error) 
No 386 opcode allows mixed 286 and 386 data modes. 

ERROR MESSAGES 



The COHERENT System 1167 

Mixed length addressing registers (error) 
Addressing registers must both be the same length. 

more than one file to process (fatal) 
The assembler will only process one file at a time. 

Name required (error) 
The format of set is .set name, value 

no work (fat.al) 
There were no files listed on the command line. 

NULL address in relative branch ([at.al) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

Octal number n truncated to char (error) 
An octal number in a string was too big. 

Optype n in lex (fatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

Org to invalid value (error) 
You may not .org to doubles or strings. 

Org to wrong segment (error) 
You must .org to the current segment. 

Out of space (fat.al) 
A call to mallocO failed. The typical large consumers of RAM are macros and .defines: 
symbols consume less. Can you break your assembly into smaller pieces? Could you be in 
some sort of endless recursion or loop? 

Parm n not found (error) 
An attempt to .shift too far has been made . 

. parmct not in macro (error) 
.pannct returns the number of parameters in the current macro. 

Phase error 'string' (error) 
A symbol is defined one way in one phase of the assembly and another way in the next 
phase. 

Redefinition of 'string' (error) 
An assembler internal symbol is being redefined. 

Seek error on object file (fatal) 

Seek error on object file (fatal) 

.shift not in macro (error) 
.shift shifts macro parameters. It has no meaning outside a macro. 

String must be on .byte (error) 
For example: 

,byte "This is how we place a string", 0 

Symbol may not be double (error) 
You may not convert a symbol to a floating-point value. 

ERROR MESSAGES 



1168 The COHERENT System 

Symbol may not be float (error) 
You may not convert a symbol to a floating-point value. 

Syntax error (error) 
The syntax of this statement makes no sense to the parser. This can be a variety of 
problems. 

Table error kind Oxn detected ifatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

This code may not work the same way on all chips (warning) 
Some chips may not execute this code as expected. 

Too many operands (error) 
No 386 opcode has more than three operands. 

Undefined symbol 'string' (error) 
A symbol was used without defming it or using a -g option. You must defme local symbols 

Unexpected .else statement (error) 

Unexpected .endi statement (error) 

Unexpected .endm ignored (error) 

Unexpected .endw (error) 

Unexpected return from parser ifatal) 
Logic error in assembler. Please report this problem to Mark Williams technical support. 

Unknown command option c ifatal) 

Unlikely output file 'string' ifatal) 
Output file-names should have .o suffixes. Because this is generally a typographical error, 
as aborts to avoid overwriting an important file. 

Unmatched 'c' (error) 
A delimeter, [, (,),or I is unmatched in this command. 

Unmatched bracket in parmeter (error) 
Line ended leaving an open bracket or parenthesis. 

Write error on object file ifatal) 

cpp Error Messages 
string argument mismatch (error) 

The argument string does not match the type declared in the function's prototype. Either 
the function prototype or the argument should be changed. 

#assert failure (error) 
The condition being tested in a #assert statement has failed. 

## at beginning of macro (error) 
Macro replacement lists may contain tokens that are separated by ##, but ## cannot 
appear at the beginning or the end of the list. The tokens on either side of the ## are 
pasted together into one token. 

## at end of macro (error) 
Macro replacement lists may contain tokens that are separated by ##, but ## cannot 
appear at the beginning or the end of the list. The tokens on either side of the ## are 
pasted together into one token. 

ERROR MESSAGES 



The COHERENT System 1169 

string: cannot create {fatal) 
The preprocessor cpp cannot create the output file string that it was asked to create. This 
often is due to a problem with the output device: check and make sure that it is not full and 
that it is working correctly. 

string: cannot open {fatal) 
The compiler cannot open the file string of source code that it was asked to read. cpp may 
not have been told the correct directory in which this file is to be found: check that the file 
is located correctly, and that the -I options, if any, are correct. 

cannot open include file string {fatal) 
The program asked for file string, which was not found in the same directory as the source 
file, nor in the default Include directory specified by the environmental variable INCDIR, 
nor in any of the directories named in -I options given to the cc command. 

conditional stack overflow {fatal) 
A series of #if expressions is nested so deeply that it overflowed the allotted stack space. 
You should simplify this code. 

#define argument mismatch (warning) 
The definition of an argument in a #define statement does not match its subsequent use. 
One or the other should be changed. 

#elif used without #if or #ifdef (error) 
An #elif control line must be preceded by an #if, #ifdef, or #ifndef control line. 

#elif used after #else (error) 
An #elif control line cannot be preceded by an #else control line. 

#else used without #if or #ifdef (error) 
An #else control line must be preceded by an #if, #ifdef, or #ifndef control line. 

#endif used without #if or #ifdef (error) 
An #endif control line must be preceded by an #if, #ifdef, or #ifndef control line. 

EOF in comment {fatal) 
Your source file appears to end in mid-comment. The file of source code may have been 
truncated, or you failed to close a comment: make sure that each open-comment symbol'/*' 
is balanced with a close-comment symbol •• /'. 

EOF in macro string invocation (error) 
Your source file appears to end in a macro call. The source file may be been truncated. 

EOF in midline (warning) 
Check to see that your source file has not been truncated accidentally. 

EOF in string (error) 
Your file appears to end in the middle of a quoted string literal. Check to see that your 
source file has not been truncated accidentally. Also, check that you did not accidentally 
embed a <ctrl-Z> in the line. 

#error: string {fatal) 
An #error control line has been expanded, printing the remaining tokens on the line and 
terminating the program. 

error in #define syntax (error) 
The syntax of a #define statement is incorrect. See the Lexicon entry for #define for more 
information. 

ERROR MESSAGES 



1170 The COHERENT System 

error in #include syntax (error) 
An #include directive must be followed by a string enclosed by either quotation marks (" ") 
or angle brackets ( <> ). Anything else is illegal. 

identifier string has too many arguments (error) 
Too many actual parameters have been provided. 

illegal control line (error) 
A '#' is followed by a word that the compiler does not recognize. 

illegal cpp character (n decimal) (error) 
The character noted cannot be processed by cpp. It may be a control character or a non­
ASCII character. 

illegal use of defined (error) 
The construction defined(token) or defined token is legal only in #if. #elif. or #assert 
expressions. 

string in #if (error) 
A syntax error occurred in a #if declaration. string describes the error in detail. 

include stack overflow {fatal) 
A set of #include statements is nested so deeply that the allotted stack space cannot hold 
them. Examines the files for a loop. You should try to fold some of the header files into 
one, instead of having them call each other. 

macro body too long {fatal) 
The size of the macro in question exceeds the limit designed into the preprocessor. Try to 
shorten or split the macro. 

macro expansion buffer overflow in string {fatal) 
A macro call has expanded into more characters than cpp can handle. Try to shorten the 
macro, or break it up. 

macro string redefined (error) 
The program redefined the macro string. 

macro string requires arguments (error) 
The macro calls for arguments that the program has not supplied. 

macros nested number deep, loop likely (error) 
Macros call each other number times; you may have inadvertently created an infinite loop. 
Try to simplify the program. 

missing #endif (error) 
An #U, #ifdef, or #lfndef statement was not closed with an #endU statement. 

missing output file (fatal) 
The preprocessor cpp found a -o option that was not followed by a file name for the output 
file. 

multiple #else's (error) 
An #If, #ifdef, or #ffndef expression can be followed by no more than one #else expression. 

nested comment (warning) 
The comment introducer sequence·;•• has been detected within a comment. Comments do 
not nest. 

new line in string literal (error) 
A newline character appears in the middle of a string. If you wish to embed a newline 
within a string. use the character constant '\n'. If you wish to continue the string on a new 

ERROR MESSAGES 



line, insert a backslash'\' before the new line. 

newline in macro argument (warning) 

The COHERENT System 1171 

A macro argument contains a newline character. This may create trouble when the 
program is run. 

out of space (fatal) 
The compiler ran out of space while attempting to compile the program. To remove this 
error, examine your source and break up any functions that are extraordinarily large. 

parameter must follow # (error) 
Macro replacement lists may contain# followed by a macro parameter name. The macro 
argument is converted to a string literal. 

preprocessor assertion failure (warning) 
A #assert directive that was tested by the preprocessor cpp was found to be false. 

string redefined (error) 
cpp macros should not be redefined. You should check to see that you are not #lncludeing 
two different versions of a file somehow, or attempting to use the same macro name for two 
different purposes. 

too many arguments in a macro (fatal) 
The program uses more than the allowed ten arguments with a macro. 

too many directories in include list (fatal) 
The program uses more than the allowed ten #include directories. 

string: unknown option (fatal) 
The preprocessor cpp does not recognize the option string. Try re-typing the cc command 
line. 

cco Error Messages 
ambiguous reference to "string" (error) 

string is defined as a member of more than one struct or union. is referenced via a pointer 
to one of those structs or unions. and there is more than one offset that could be assigned. 

argument list has incorrect syntax (error) 
The argument list of a function declaration contains something other than a comma­
separated list of formal parameters. 

array bound must be a constant (error) 
An array's size can be declared only with a constant; you cannot declare an array's size by 
using a variable. For example, it is correct to say foo[5], but illegal to say 

bar = 5; 
foo[bar]; 

array bound must be positive (error) 
An array must be declared to have a positive number of elements. The array flagged here 
was declared to have a negative size, e.g .. foo[-6]. 

array bound too large (error) 
The array is too large to be compiled with 16-bit index arithmetic. You should devise a way 
to divide the array into compilable portions. 

ERROR MESSAGES 



1172 The COHERENT System 

array row has 0 length (error) 
This message can be triggered by either of two problems. The first problem is declaring an 
array to have a length of zero; e.g .. foo[OJ. The second problem is failing to declare the size 
of a dimension other than the first in a multi-dimensional array. C allows you to declare an 
indefinite number of array elements of n bytes each, but you cannot declare n array 
elements of an indefinite length. For example, it is correct say foo[J[5] but illegal to say 
foo[5J[J. 

bad argument storage class (error) 
An argument was assigned a storage class that the compiler does not recognize. The only 
valid storage class is register. 

bad external storage class (error) 
An extern has been declared with an invalid storage class. e.g .. register or auto. 

bad field width (error) 
A field width was declared either to be negative or to be larger than the object that holds it. 
For example, char foo:9 or char foo:-1 will trigger this error. 

bad filler field width (error) 
A filler field width was declared either to be negative or to be larger than the object that 
holds it. For example, char foo:9 or char foo:-1 will trigger this error. 

bad flexible array declaration (error) 
A flexible array is missing an array boundary; e.g .. foo[5J[J. C permits you to declare an 
indefinite number of array elements of n bytes each, but you cannot declare an array to 
have n elements of an indefinite number of bytes each. 

break not in a loop (error) 
A break occurs that is not inside a loop or a switch statement. 

call of non function (error) 
What the program attempted to call is not a function. Check to make sure that you have 
not accidentally declared a function as a variable; e.g .. typing char •foo; when you meant 
char •too();. 

cannot add pointers (error) 
The program attempted to add two pointers. ints or longs may be added to or subtracted 
from pointers, and two pointers to the same type may be subtracted, but no other 
arithmetic operations are legal on pointers. 

cannot apply unary'&' to a register variable (error) 
Because register variables are stored within registers, they do not have addresses. which 
means that the unary & operator cannot be used with them. 

cannot apply unary '&' to an alien function (error) 
The unary '&' operator cannot be used with any function that has been declared to be of 
type alien. alien functions cannot be called by pointers. 

cannot cast double to pointer (error) 
The program attempted to cast a double to a pointer. This is illegal. 

cannot cast pointer to double (error) 
The program attempted to cast a pointer to a double. This is illegal. 

cannot cast structure or union (error) 
The program attempted to cast a struct or a union. This is illegal. 

ERROR MESSAGES 



The COHERENT System 1173 

cannot cast to structure or union (error) 
The program attempted to cast a variable to a union or struct. This is illegal. 

cannot declare array of functions (error) 
For example, the declaration extern int ("t)[)(); declares f to be an array of pointers to 
functions that return ints. Arrays of functions are illegal. 

cannot declare flexible automatic array (error) 
The program does not explicitly declare the number of elements in an automatic array. 

cannot initialize fields (error) 
The program attempted to initialize bit fields within a structure. This is not supported. 

cannot initialize unions (error) 
The program attempted to initialize a union within its declaration. unions cannot be 
initialized in this way. 

case not in a switch (error) 
The program uses a case label outside of a switch statement. See the Lexicon entry for 
case. 

character constant overflows long (error) 
The character constant is too large to fit into a long. It should be redefined. 

character constant promoted to long (warning) 
A character constant has been promoted to a long. 

class not allowed in structure body (error) 
A storage class such as register or auto was specified within a structure. 

compound statement required (error) 
A construction that requires a compound statement does not have one, e.g .. a function 
definition, array initialization, or switch statement. 

constant expression required (error) 
The expression used with a #if statement cannot be evaluated to a numeric constant. It 
probably uses a variable in a statement rather than a constant. 

constant "number" promoted to long (warning) 
The compiler promoted a constant in your program to long; although this is not strictly 
illegal, it may create problems when you attempt to port your code to another system, 
especially if the constant appears in an argument list. 

constant used in truth context (strict) 
A conditional expression for an if. while, or for statement has turned out to be always true 
or always false. For example, while(l) will trigger this message. 

construction not in Kernighan and Ritchie (strict) 
This construction is not found in The C Programming Language; although it can be compiled 
by COHERENT, it may not be portable to another compiler. 

continue not in a loop (error) 
The program uses a continue statement that is not inside a for for while loop. 

declarator syntax (error) 
The program used incorrect syntax in a declaration. 

default label not in a switch (error) 
The program used a default label outside a switch construct. See the Lexicon entry for 
default. 

ERROR MESSAGES 



1174 The COHERENT System 

divide by zero (warning) 
The program will divide by zero if this code is executed. Although the program can be 
parsed, this statement may create trouble if executed. 

duplicated case constant (error) 
A case value can appear only once in a switch statement. See the Lexicon entries for case 
and switch. 

empty switch (warning) 
A switch statement has no case labels and no default labels. See the Lexicon entry for 
switch. 

error in enumeration list syntax (error) 
The syntax of an enumeration declaration contains an error. 

error in expression syntax (error) 
The parser expected to see a valid expression. but did not find one. 

exponent overflow in floating point constant (warning) 
The exponent in a floating point constant has overflowed. The compiler has set the 
constant to the maximum allowable value, with the expected sign. 

exponent underflow in floating point constant (warning) 
The exponent in a floating point constant has underflowed. The compiler has set the 
constant to zero, with the expected sign. 

external syntax (error) 
This could be one of several errors, most often a missing'{'. 

file ends within a comment (error) 
The source file ended in the middle of a comment. If the program uses nested comments, it 
may have mismatched numbers of begin-comment and end-comment markers. If not, the 
program began a comment and did not end it, perhaps inadvertently when dividing by 
•something, e.g .. a=b/•cd;. 

function cannot return a function (error) 
The function is declared to return another function, which is illegal. A function. however. 
can return a pointer to a function. e.g .. int c•signal(n, a))(). 

function cannot return an array (error) 
A function is declared to return an array. which is illegal. A function. however. can return a 
pointer to a structure or array. 

functions cannot be parameters (error) 
The program uses a function as a parameter. e.g .. int q(); x(q);. This is illegal. 

identifier "string" is being redeclared (error) 
The program declares variable string to be of two different types. This often is due to an 
implicit declaration. which occurs when a function is used before it is explicitly declared. 
Check for name conflicts. 

identifier "string" is not a label (error) 
The program attempts to goto a nonexistent label. 

identifier ~·string" is not a parameter (error) 
The variable "string" did not appear in the parameter list. 

identifier "string" is not defined (error) 
The program uses identifier string but does not define it. 

ERROR MESSAGES 



The COHERENT System 1175 

identifier "string" not usable (error) 
string is probably a member of a structure or union which appears by itself in an 
expression. 

illegal character constant (error) 
A legal character constant consists of a a backslash'\' followed by a, b, f, n, r, t, v, x, or up 
to three octal digits. 

illegal character (number decimal) (error) 
A control character was embedded within the source code. number is the decimal value of 
the character. 

illegal # construct (error) 
The parser recognizes control lines of the form #line number (decimal) or #flle_name. 
Anything else is illegal. 

illegal integer constant suffix (error) 
Integer constants may be suffixed with u, U. 1, or L to indicate unsigned, long, or unsigned 
long. 

illegal label "string" (error) 
The program uses the keyword string as a goto label. Remember that each label must end 
with a colon. 

illegal operation on "void" type (error) 
The program tried to manipulate a value returned by a function that had been declared to 
be of type void. 

illegal structure assignment (error) 
The structures have different sizes. 

illegal subtraction of pointers (error) 
A pointer can be subtracted from another pointer only if both point to objects of the same 
size. 

illegal use of a pointer (error) 
A pointer was used illegally, e.g .. multiplied, divided, or &-ed. You may get the result you 
want if you cast the pointer to a long. 

illegal use of a structure or union (error) 
You may take the address of a struct, access one of its members, assign it to another 
structure, pass it as an argument, and return. All else is illegal. 

illegal use of floating point (error) 
A float was used illegally. e.g., in a bit-field structure. 

illegal use of "void" type (error) 
The program used void improperly. Strictly, there are only void functions; COHERENT also 
supports the cast to void of a function call. 

illegal use of void type in cast (error) 
The program uses a pointer where it should be using a variable. 

inappropriate signed (error) 
The signed modifier may only be applied to char, short, int, or long types. 

inappropriate "long" (error) 
Your program used the type long inappropriately. 

ERROR MESSAGES 



1176 The COHERENT System 

inappropriate "short" (error) 
Your program used the type short inappropriately. 

inappropriate "unsigned" (error) 
Your program used the type unsigned inappropriately. 

indirection through non pointer (error) 
The program attempted to use a scalar (e.g., a long or int) as a pointer. This may be due to 
not de-referencing the scalar. 

initializer too complex (error) 
An initializer was too complex to be calculated at compile time. You should simplify the 
initializer to correct this problem. 

integer pointer comparison (strict) 
The program compares an integer or long with a pointer without casting one to the type of 
the other. Although this is legal, the comparison may not work on machines with non­
integer size pointers, e.g .. Z8001 or LARGE-model on the i8086 family. or on machines with 
pointers larger than ints. e.g .. the M68000 family of microprocessors. 

integer pointer pun (strict) 
The program assigns a pointer to an integer, or vice versa, without casting the right-hand 
side of the assignment to the type of the left-hand side. For example, 

char *foo; 
long bar; 
foo = bar; 

Although this is permitted, it is often an error if the integer has less precision than the 
pointer does. Make sure that you properly declare all functions that returns pointers. 

internal compiler error {fatal) 
The program produced a state that should not happen during compilation. Try to localize 
the offending statement if at all possible. Forward a minimal program that exhibits the 
error, preferably on a machine-readable medium. to Mark Williams Company. together with 
the version number of the compiler, the command line used to compile the program. and 
the system configuration. For immediate advice during business hours. telephone Mark 
Williams Company technical support. 

"string" is a enum tag (error) 
"string" is a struct tag (error) 
"string" is a union tag (error) 

string has been previously declared as a tag name for a struct. union. or enum, and is now 
being declared as another tag. Perhaps the structure declarations have been included 
twice. 

"string" is not a tag (error) 
A struct or union with tag string is referenced before any such struct or union is declared. 
Check your declarations against the reference. 

"string" is not a typedef name (error) 
string was found in a declaration in the position in which the base type of the declaration 
should have appeared. string is not one of the predefined types or a typedef name. See the 
Lexicon entry on typedef for more information. 

"string" is not an "enum" tag (error) 
An enum with tag string is referenced before any such enwn has been declared. See the 
Lexicon entry for enum for more information. 

ERROR MESSAGES 



The COHERENT System 1177 

class "string" [number) is not used (strict) 
Your program declares variable string or number but does not use it. 

label "string" undefined (error) 
The program does not declare the label string, but it is referenced in a goto statement. 

left side of "string" not usable (error) 
The left side of the expression string should be a pointer. but is not. 

!value required (error) 
The left-hand value of a declaration is missing or incorrect. See the Lexicon entries for 
lvalue and rvalue. 

member "string" is not addressable (error) 
The array string has exceeded the machine's addressing capability. Structure members are 
addressed with 16-bit signed offsets on most machines. 

member "string" is not defined (error) 
The program references a structure member that has not been declared. 

mismatched conditional (error) 
In a'?:' expression, the colon and all three expressions must be present. 

missing "(" (error) 
The if. while. for, and switch keywords must be followed by parenthesized expressions. 

missing "=" (warning) 
An equal sign is missing from the initialization of a variable declaration. Note that this is a 
warning, not an error: this allows COHERENT to compile programs with "old style" 
initializers. such as int i 1. Use of this feature is strongly discouraged, and it will disappear 
when the ANSI standard for the C language is adopted in full. 

missing "," (error) 
A comma is missing from an enumeration member list. 

missing":" (error) 
A colon ':' is missing after a case label. after a default label, or after the '?' in a '?'-':' 
construction. 

missing":" (error) 
A semicolon ';' does not appear after an external data definition or declaration, after a struct 
or union member declaration, after an automatic data declaration or definition, after a 
statement, or in a for(;;) statement. 

missing ")" (error) 
A right bracket ']' is missing from an array declaration, or from an array reference; for 
example, foo[5. 

missing "f' (error) 
A left brace '{' is missing after a struct tag. union tag, or enum tag in a definition. 

missing "}" (error) 
A right brace '}' is missing from a struct, union. or enum definition, from an initialization, 
or from a compound statement. 

missing "while" (error) 
A while command does not appear after a do in a do-while() statement. 

missing label name in goto (error) 
A goto statement does not have a label. 

ERROR MESSAGES 



1178 The COHERENT System 

missing member (error) 
A'.' or'->' is not followed by a member name. 

missing right brace (error) 
A right brace is missing at end of file. The missing brace probably precedes lines with 
errors reported earlier. 

missing "string" (error) 
The parser ccO expects to see token string. but sees something else. 

missing semicolon (error) 
External declarations should continue with',' or end with';'. 

missing type in structure body (error) 
A structure member declaration has no type. 

multiple classes (error) 
An element has been asigned to more than one storage class, e.g., extern register. 

multiple types (error) 
An element has been assigned more than one data type, e.g., int float. 

non terminated string or character constant (error) 
A line that contains single or double quotation marks left off the closing quotation mark. A 
newline in a string constant may be escaped with'\'. 

number has too many digits (error) 
A number is too big to fit into its type. 

only one default label allowed (error) 
The program uses more than one default label in a switch expression. See the Lexicon 
entries for default and switch for more information. 

out of tree space (fatal) 
The compiler allows a program to use up to 350 tree nodes; the program exceeded that 
allowance. 

parameter string is not addressable (error) 
The parameter has a stack frame offset greater than 32,767. Perhaps you should pass a 
pointer instead of a structure. 

potentially non portable structure access (strict) 
A program that uses this construction may not be portable to another compiler. 

return type/function type mismatch (error) 
What the function was declared to return and what it actually returns do not match, and 
cannot be made to match. · 

return(e) illegal in void function (error) 
A function that was declared to be type void has nevertheless attempted to return a value. 
Either the declaration or the function should be altered. 

risky type in truth context (strict) 
The program uses a variable declared to be a pointer, long, unsigned long, float, or double 
as the condition expression in an if. while, do, or '?'-':'. This could be misinterpreted by 
some C compilers. 

size of string overflows size_t (strict) 
A string was so large that it overran an internal compiler limit. You should try to break the 
string in question into several small strings. 

ERROR MESSAGES 



The COHERENT System 1179 

size of union "string" is not known (error) 
A pointer to a struct or union is being incremented, decremented, or subjected to array 
arithmetic. but the struct or union has not been defined. 

size of string too large (error) 
The program declared an array or struct that is too big to be addressable. e.g., long 
a[20000]; on a machine that has a 64-kilobyte limit on data size and four-byte longs. 

sizeof truncated to unsigned (warning) 
An object's sizeofvalue has lost precision when truncated to a size_t integer. 

sizeoflstrlng) set to number (warning) 
The program attempts to set the value of string by applying sizeof to a function or an 
extern: the compiler in this instance has set string to number. 

storage class not allowed in cast (error) 
The program casts an item as a register. static, or other storage class. 

string initializer not terminated by NUL (warning) 
An array of chars that was initialized by a string is too small in dimension to hold the 
terminating NUL character. For example, char foo[3] = "ABC". 

structure "string" does not contain member "m" (error) 
The program attempted to address the variable strlng.m, which is not defined as part of the 
structure string. 

structure or union used in truth context (error) 
The program uses a structure in an if. while, or for, or '?:'statement. 

switch of non integer (error) 
The expression in a switch statement is not type int or char. You should cast the switch 
expression to an int if the loss of precision is not critical. 

too many adjectives (error) 
A variable's type was described with too many of long. short. or unsigned. 

too many arguments (fatal) 
No function may have more than 30 arguments. 

too many initializers (error) 
The program has more initializers than the space allocated can hold. 

too many structure initializers (error) 
The program contains a structure initialization that has more values than members. 

trailing "." in initialization list (warning) 
An initialization statement ends with a comma. which is legal. 

type clash (error) 
The parser expected to find matching types but did not. For example. the types of el and 
e2 in (x) ? el : e2 must either both be pointers or neither be pointers. 

type of function "string" adjusted to string (warning) 
This warning is given when the type of a numeric constant is widened to unsigned, long, or 
unsigned long to preserve the constant's value. The type of the constant may be explicitly 
specified with the u or L constant suffixes. 

type of parameter "string" adjusted to string (warning) 
The program uses a parameter that the C language says must be adjusted to a wider type, 
e.g .. char to int or float to double. 

ERROR MESSAGES 



1180 The COHERENT System 

type required in cast (error) 
The type is missing from a cast declaration. 

unexpected end of enumeration list (error) 
An end-of-fie flag or a right brace occurred in the middle of the list of enumerators. 

union "string" does not contain member m (error) 
The program attempted to address the variable string m. which is not defined as part of the 
structure string. 

zero modulus (warning) 
The program will perform a modulo operation by zero if the code just parsed is executed. 
Although the program can be parsed, this statement may create trouble if executed. 

cc1 Error Messages 
associative expression too complex (fatal) 

An expression that uses associative binary operators (e.g .. '+')has too many operators: for 
example, i=il+i2+13+ ••• +130;. You should simplify' the expression. 

expression too complex (fatal) 
The code generator cannot generate code for an expression. You should simplify' your code. 

internal compiler error (fatal) 
The program produced a state that should not happen during compilation. Try to localize 
the offending statement if at all possible. Forward a minimal program that exhibits the 
error, preferably on a machine-readable medium, to Mark Williams Company. together with 
the version number of the compiler. the command line used to compile the program, and 
the system configuration. For immediate advice during business hours. telephone Mark 
Williams Company technical support. 

misplaced ":"operator (error) 
The program used a colon without a preceding question mark. It may be a misplaced label. 

switch overflow (fatal) 
The program has more than ten nested switches. 

too many cases (fatal) 
The program cannot allocate space to build a switch statement. 

unexpected EOF (fatal) 
EOF occurred in the middle of a statement. The temporary ftle may have been corrupted or 
truncated accidentally. Check your disk drive to see that it is working correctly. 

cc2 Error Messages 
string: cannot reopen (fatal) 

The optimizer in cc2 cannot reopen a file with which it has worked. Make sure that your 
mass storage device is working correctly and that it is not full. 

internal compiler error (fatal) 
The program produced a state that should not happen during compilation. Try to localize 
the offending statement if at all possible. Forward a minimal program that exhibits the 
error, preferably on a machine-readable medium. to Mark Williams Company, together with 
the version number of the compiler, the command line used to compile the program, and 
the system configuration. For immediate advice during business hours. telephone Mark 
Williams Company technical support. 

ERROR MESSAGES 



The COHERENT System 1181 

unexpected EOF (fatal) 
EOF occurred in the middle of a statement. The temporary file may have been corrupted or 
truncated accidentally. Check your disk drive to see that it is working correctly. 

write error on output object file (fatal) 
cc2 could not write the relocatable object module. Most likely. your mass storage device 
has run out of room. Check to see that your disk drive or hard disk has enough room to 
hold the object module, and that it is working correctly. 

Id 286 Error Messages 
address wraparound (fatal) 

A segment of the program has exceeded the size allowed by the microprocessor's 
architecture. 

bad.disk: disk error (fatal) 
Id either cannot read or cannot write to the mass-storage device. Check the disk you are 
using to see that it is working correctly. 

cannot create string (fatal) 
The linker Id cannot create the output file it was requested to create. This often is due to a 
problem with the output device; check and make sure that it is working correctly and is not 
full. 

cannot open string (seg number) (fatal) 
The linker Id cannot open the object module that it was asked to read. Make sure that the 
storage device is working correctly. and that Id has been given the correct names of the file 
and of the directory in which it is stored. 

can't open libstring .a (fatal) 
The linker Id cannot open a library that it has been asked to link into your program. Make 
sure that you named the library correctly and that the LIBPATll is set correctly if you used 
the -1 option to the cc command line. 

can't open temp file (fatal) 
The linker Id cannot open a temporary file. Make sure that your mass storage device is 
working correctly. 

can't read string (fatal) 
The linker Id cannot read the file named. Make sure that your mass storage device is 
working correctly. and that Id has been given the correct names of the file and of the 
directory in which it is stored. 

disk error (fatal) 
The linker Id encountered a problem with the storage device when it attempted to read or 
write a file. Check that the disk is working correctly. 

no input found (fatal) 
The Id command line names no object or archive files to link. 

out of space (fatal) 
malloc could not allocate adequate space in memory for the linker Id to work. 

outdated ranlib (warning) 
The date stamp on the library file is younger than that in the ranlib header. If the library 
has been altered. the ranlib can be updated with the archiver ar; see the Lexicon entry on ar 
to see how this is done. If the library has not been altered, this message may be due to an 
installation error; see the Lexicon entry on ranlib for more information. 

ERROR MESSAGES 



1182 The COHERENT System 

Id 386 Error Messages 
archive 'string' is corrupt (fatal) 

This file makes no sense as a COFF archive. 

file string: module string: bad header (message) 
Put modules on load list. 

can't find 'string' (fatal) 
Can't locate requested library. 

cannot create 'string' (fatal) 
Cannot create linker output file. 

cannot execute loadable driver 'string' (fatal) 

entry point 'string' not in .text (message) 

error reading 'string' (fatal) 

'string' is not a COFF archive (fatal) 
All files ending .a should be COFF archives. 

kernel interface failed (fatal) 
This will become more elaborite when the kernel is done 

Library must be created with ar -s option (fatal) 
The ar -s option gives libraries a symbol table for the use ofld. 

No work (fatal) 
There were no object files loaded. 

pass l . n errors (fatal) 
At the end of pass 1 there were n errors detected. The link stopped here. 

symbol 'string' redefined in file 'string': module 'string' (message) 
A symbol is defined in incompatible ways in different files. 

symbol 'string' redefined in file 'string' (message) 
A symbol is defined in incompatible ways in different files. 

file string: module string: relocation out of range Oxn (message) 
A relocation record points outside the range of its segment. 

symbol 'string' severe warning symbol defined as a common and a global (message) 
A symbol was defined as a common. e.g. 

int x; 

and as a global. e.g.: 

int x = 5; 

There is no good way to fix this without reading the code and thinking about the variable 
usage. The linker turned the global into an external. That is, it turned 

int x; 

into 

extern int x; 

ERROR MESSAGES 



The COHERENT System 1183 

This matches the UNIX linker. 

file string: module string: unknown r_type n in segment n record n (message) 
Unknown type on COFF relocation record. 

unlikely input file name 'string' (message) 
Input file names must end .o for object or .a for archive. 

symbol 'string' warning defined with lengths n and n (message) 
A common was defined with different lengths. while this is legal it is very unusual in C 
programs. This warning may be turned off with the -c flag 

symbol 'string' warning. redefines builtin symbol (message) 
Some symbols such as _end and _end_text are special to the linker. In general. symbols 
beginning_ are reserved to implementors and should be avoided by users. Your definition 
has been used. 

write error (fatal) 

The COHERENT command fsck checks the COHERENT file systems. This command produces an 
especially rich set of error messages, both to keep you abreast of its actions and to warn you of 
potential problems with a file or file system. 

fsck can correct most of the common error conditions it detects: however, before it will ask for your 
approval before it makes any changes that modify a file system. Therefore, if it detects an error that 
it can correct. it will stop and ask your permission. 

The following describes fsck's error messages and questions. The error messages fall into two 
categories: warnings, which describe something possibly wrong with a file; and fatals, which 
indicate that something has gone wrong with a file system or with fsck with which fsck cannot 
cope. Each question describes the condition in question; here, it is followed by advice on what is 
probably the correct response. 

Initialization 
Can't open checklist file: /etc/checklist{fata1J 

Too many file systems in checklist file: I etc/ checklist {fatal) 

file is not a block or character device; OK? [yes/no): (question) 
You are attempting to fsck a file that is not a block or character device. If you are certain it 
is a file system. then answer yes to continue. 

Can't open:jile syslem (warning) 

Can't stat:jile system (warning) 

Size check: fsize blocks isizejirst non-I-node block (warning) 

Too large free block count (warning) 

Too large free i-node count (warning) 

fsck:jile syslem: Bad Super Block: number (warning) 

file system mounted on point as of time (message) 

ERROR MESSAGES 



1184 The COHERENT System 

flle system unmounted. Last mounted on point. (message) 

Phase 1: Check Blocks and Sizes 
Unknown File Type i-number = number (Clear) [yes/no): (question) 

The mode field in the specified i-node is unknown. If you wish. you can clear the named i­
node. 

Excessive Bad Blocks i-number =number (Continue) [yes/no) (question) 
The specified i-node references an excessive number of bad blocks. You can continue with 
the fsck (at the next i-node), or abort. 

DUP Table Overflow (Continue) [yes/no] (question) 
The table of duplicately referenced disk blocks has overflowed. You can continue with the 
fsck (as best as it is able), or abort. 

Excessive Dup Blocks i-number = number (Continue) [yes/no] (question) 
The specified i-node references an excessive number of duplicate blocks. You can continue 
with the fsck (at the next i-node), or abort. 

Bad block number. i-number = number (warning) 

Dup Block number. i-number = number (warning) 

Directory Misaligned i-number = number (warning) 

Possible Directory Size Error i-number = number (warning) 

Possible File Size Error i-number = number (warning) 

Phase 1 b: Rescan for more Duplicates 
Dup Block number, i-number = number (warning) 

Phase 2: Check Path Names 
Root i-node is unallocated. Terminating{fata!J 

File System Read-Only (NO WRITE) (fatal) 

Can't malloc memory, phase 2 (fatal) 

Fixblock error. (fatal) 

Tried to checkpath i-node number which is not dir. (fatal) 

Root i-node is not a directory (FIX) [yes/no] (question) 
The root i-node must be a directory. fsck is asking whether you wish to fix this. If not, 
then fsck will abort. 

Dup/Bad blocks in root i-node (Continue) [yes/no) (question) 
The root i-node has bad or duplicate blocks. This may require a guru to fix properly. fsck 
is asking whether you want it to continue. If not, then fsck will abort. 

I-number is out of range I=flle name (Remove) [yes/no) (question) 
flle has an i-node number that is out of range. fsck is asking if you wish to remove the 
stated file (which. after all, does not exist). 

Unallocatedjlle (Remove) [yes/no) (question) 
flle's i-node is unallocated. fsck is asking if you wish to remove the stated file (which, after 
all. does not exist). 

ERROR MESSAGES 



The COHERENT System 1185 

Bad or Dup blocks in directory /file (Remove) [yes I no) (question) 
The given file's i-node references bad or duplicately referenced blocks. fsck is asking if you 
wish to remove.file from the directory. 

Null name entry in block number in directory name/ I-node (warning) 

Non null padded entry in block number in directory name I I-node (warning) 

Embedded slashes in entry in block number in directory name/ I-node (warning) 

Inconsistent . entry in block number in directory name/ I-node (warning) 

Inconsistent .. entry in block number in directory name /I-node (warning) 

Bad entry in block number in directory name/I-node (warning) 

i-number = number is in a bad inode block. (warning) 

I-node number is a multiply referenced directory i-node. (warning) 

Name too long. (warning) 

Phase 3: Check Connectivity 
UnrefDir name (Reconnect) [yes/no) (question) 

The given directory's i-node is unreferenced. You are asked if you would like to reconnect 
the stated directory. If you answer yes, then the directory will be reconnected in directory 
/lost+found in the given file system. If not, it will remain unreferenced and you will be 
asked later if you would like to remove it. 

Dir i-number = number connected. Parent was i-number = number (warning) 

Dir i-number = number connected. It has bad/dup blocks. (warning) 

Dir i-number = number connected. It has no .. entry. (warning) 

Sorry. No lost+found directory. (warning) 

Sorry. No space in lost+ found directory. (warning) 

Phase 4: Check Reference Counts 
Unrefl-node type file name (Reconnect) [yes/no) (question) 

The given i-node is unreferenced. fsck is asking if you wish to reconnect it to the stated file. 
If you answer yes, then the file will be reconnected in directory /lost+found in the given file 
system. If not, it will remain unreferenced and you will be asked later if you would like to 
remove it. 

Unrefl-node type file name (Clear i-node) [yes/no) (question) 
The given i-node is unreferenced. fsck asks if you wish to clear the i-node completely. If 
you answer yes, the file is lost forever. You have already decided not to reconnect it, so 
there seems to be no reason to keep it anyway. 

Bad/Dup blocks in I-node type file name (Clear i-node) [yes/no) (question) 
The given i-node contains bad or duplicately referenced blocks. You are asked if you would 
like to clear the inode completely. If you answer yes, then the file will be lost forever. 

Link count discrepancy in I-node type file name 

ERROR MESSAGES 



1186 The COHERENT System 

Count= count. should be count (Adjust) [yes/no) (question) 
The given i-node claims to have a different number of links than was actually found in the 
file system. You are asked if you wish to adjust the count found in the i~node. If you 
answer yes, then fsck will correct the i-node count. 

Free i-node count wrong in superblock. (FIX) [yes/no] (question) 
The free i-node count in the superblock is incorrect. You should allow fsck to repair it 
unless you are a guru and have reason to believe that fsck should not use the redundancy 
in the file system (via all previously reported messages) to repair this crucial piece of data in 
the superblock. 

Phase 5: Check Free List 
Free Block count wrong in superblock. (FIX) [yes/no) (question) 

The free block count in the superblock is incorrect. You should allow fsck to repair it 
unless you are a guru and have reason to believe that fsck should not use the redundancy 
in the file system (via all previously reported messages) to repair this crucial piece of data in 
the superblock. 

Excessive bad/dup blocks in free list (Continue) [yes/no) (question) 
This indicates that there are excessive bad or duplicately referenced blocks in the free list off 
of the superblock. This is a very bad condition. You should choose to continue, which will 
fall to phase 6 to salvage the free list. If you answer no, then fsck will abort. 

Bad Free List (SALVAGE) [yes/no) (question) 
fsck is asking if you want it to salvage the free list automatically. This is almost certainly a 
good thing to do. 

Number Bad blocks in Free List (warning) 

Number Dup blocks in Free List (warning) 

Number Blocks missing (warning) 

Phase 6: Salvage Free List 
Invalid interleave factors in superblock. Default free-block list spacing assumed. (warning) 

Can't malloc space for interleave table. Free-block list is not rebuilt. (warning) 

Cleanup 
Number files number blocks number free (message) 

Expect roughly number missing blocks next time fsck is run as a result of i-nodes being cleared. 
(message) 

***** File System system was modified ***** (message) 

*****BOOT Coherent (NO SYNC!) *****(message) 
Do as the message says: reboot COHERENT without running the command sync. 

General Messages 
Bad action in virtual system (fatal) 

Can not Seek: Blk num: number (CONTINUE) [yes/no) (question) 
The given action could not be performed. If you choose to not continue. fsck will abort. If 
you choose to continue. the results may be unpredictable. 

ERROR MESSAGES 



The COHERENT System 1187 

Can not Read: Blk num: number (CONTINUE) [yes/no] (question) 
The given action could not be performed. If you choose to not continue, fsck will abort. If 
you choose to continue, the results may be unpredictable. 

Can not Write: Blk num: number (CONTINUE) [yes/no] (question) 
The given action could not be performed. If you choose to not continue. fsck will abort. If 
you choose to continue, the results may be unpredictable. 

Cannot create temp file name (fatal) 

Cannot close Ram Disk Close I dev I rram 1 close (fatal) 

Cannot open Ram Disk Close I dev /rram 1 close (fatal) 

Cannot open read/write Ram Disk /dev/rraml (fatal) 

Can't access ram disk /dev/rraml, use the -t option (fatal) 

Can't stat temp file name (fatal) 

Error seeking tmp file (fatal) 

Error writing tmp file (fatal) 

Error writing to tmp file (fatal) 

internal linktable corruption. (fatal) 

Invalid Response (fatal) 

Out of Range Block number: number (CONTINUE) [yes/no] (question) 
The given action could not be performed. If you choose to not continue, fsck will abort. If 
you choose to continue, the results may be unpredictable. 

Possible file system on ram disk /dev/rraml. use the -t option (fatal) 

Ram disk close /dev/rramlclose not mknoded properly (fatal) 

Ram disk I dev I rram l not mknoded properly (fatal) 

Temp File must not be on file system to fsck (fatal) 

Too many links in i-node number (fatal) 

The following gives the error messages that can be produced by make. Its message describe fatal 
conditions, errors, or warnings, as described above. 

; after target or macroname (error) 
A semicolon appeared after a target name or a macro name. 

Bad macro name (error) 
A bad macro name was used; for example, a macro name included a control character. 

= in or after dependency (error) 
An equal sign '=' appeared within or followed the definition of a macro name or target file; 
for example, OBJ=atod.o=factor.owill produce this error. 

Incomplete line at end of file (error) 
An incomplete line appeared at the end of the makefile. 

ERROR MESSAGES 



1188 The COHERENT System 

Macro definition too long (error) 
The macro definition exceeds the limited designed into the preprocessor. 

Multiple actions for name (error) 
A target is defined with more than one single-colon target line. 

Multiple detailed actions for name (error) 
A target is defined with more than one single-colon target line. 

Must use "::"for name (error) 
A double-colon target line was followed by a single-colon target line. 

Newline after target or macroname (error) 
A newline character appears after a target name or a macro name. 

'::'not allowed for name (error) 
A double-colon target line was used illegally; for example, after single-colon target line. 

::: or : in or after dependency list (error) 
A triple colon is meaningless to and therefore illegal wherever it appears. A single colon 
may be used only in a target line (which is also called the dependency list), and nowhere 
else. 

Out of core (adddep) (error) 
This results from a system problem. Try reducing the size of your makefile. 

Out of range number input. (warning) 
You attempted to use a numeric value that is out of range. 

Out of space (error) 
System problem. Try reducing the size of your makefile. 

Out of space (lookup) (error) 
System problem. Try reducing the size of your makefile. 

Syntax error (error) 
The syntax of a line is faulty. 

Too many macro definitions (error) 
The number of macros you have created exceeds the capacity of your computer to process 
them. 

= without macro name or in token list (error) 
An equal sign '=' can be used only to define a macro, using the following syntax: 
"MACRO=dejlnltlon". An incomplete macro definition. or the appearance of an equal sign 
outside the context of a macro defmition, will trigger this error message. 

: without preceding target (error) 
A colon appeared without a target file name, e.g .. :string. 

The following gives nrotrs error messages, and hints about how to correct the situation. Errors are 
of two types: simple errors, which simply cause an error message to be printed on your screen: and 
panics, which causes processing to abort. Note that a panic will leave behind a half-written 
temporary file; you may wish to look at the end of it to see just how far processing proceeded, but 
otherwise it should be thrown away. 

ERROR MESSAGES 



The COHERENT System 1189 

-f option requires file argument {fatal) 

.bd not implemented yet 

.co: unexpected EOF before string (error) 

.dt not implemented yet 

.el without .ie (error) 

.fc not implemented yet 

.he not implemented yet 

.hw not implemented yet 

.hy not implemented yet 

.ie nested more than N levels (error) 
The .ie/ .el combination can be nested only 15 levels deep . 

. ie without matching .el (error) 
Every .ie must be followed by an .el. 

.If: string, file "string" (error) 
nroff could not load a font-width table from file string . 

.lf: "string" is not a PCL font width table (error) 
nroff expects a PCL font-width table, but file string is not in the PCL font-width format . 

.lf: "string" is not a Postscript font width table (error) 
nroff expects a Postscript font-width table, but file string is not in the Postscript font-width 
format . 

.lf: cannot load more than N fonts (error) 
nroff has a static limit on the number of font-width tables that can be loaded at one time . 

.If: cannot open file "string" (error) 

.lf: requires fontname and filename (error) 

.nm not implemented yet 

.nn not implemented yet 

.pi not implemented yet 

.rb: cannot open file string (error) 

.rb: no file specified (error) 

.rf: requires name and new name (error) 

\}without matching \{(error) 
Every\} must be preceded by a\{. 

arguments too long (error) 

attempted zero divide (error) 

attempted zero modulus (error) 

bad adjustment type (error) 

ERROR MESSAGES 



1190 The COHERENT System 

bad argument reference (error) 

bad directive N {fatal) 

bad font N {fatal) 

bad font Nat dev_font, nfonts=N {fatal) 

bad font N, nfonts=N {fatal) 

bad pattern {fatal) 

bad tab stop (error) 

bad tab stop (error) 

botch: fontname(N) {fatal) 
nroff cannot handle font N and must abort processing. 

botch: swdmul=N psz=N swddiv=N {fatal) 
An undefined error has occurred within nroff. The printed numbers give the value of nrofl's 
internal registers. If such an error occurs regularly when you process a given piece of text. 
please send the text in question and a copy of the error message to Mark Williams technical 
support. 

bracket building not implemented yet 

cannot create temp file {fatal) 

cannot dehyphenate {fatal) 

cannot end diversion (error) 

cannot find current file (error) 

cannot find font XX (error) 

cannot find font N (error) 

cannot find register string (error) 

cannot open string (error) 

cannot open file "string" (error) 

cannot pop environment (error) 

cannot read environment {fatal) 

cannot remove string (error) 

cannot reopen temp file {fatal) 

cannot write environment {fatal) 

delimiter argument too large (error) 

diversion buffer odd alignment {fatal) 

environment does not exist (error) 

environments stacked too deeply (error) 

field with too large (error) 

ERROR MESSAGES 



file "string" not found (error) 

flushd -- current diversion null (fatal) 

font position out of range (error) 

fonts.r not found (fatal) 

illegal hex digit (error) 

The COHERENT System 1191 

The escape sequence \XNN prints a character by its literal hexadecimal value. This should 
be used when processing characters that are not normally printable on the terminal screen. 
Digit N can be the numerals 'O' through '9', the letters 'a' through 'f, or the letters 'A' 
through 'F'. All other characters will trigger this error. 

illegal option: string (fatal) 

incomplete macro in trap (fatal) 

line buffer overflow (fatal) 

no room for new font name XX (error) 

out of space - memory string (fatal) 

request 'string' not found (error) 

section N of title too large (error) 

special character XX not found (error) 

syntax error (error) 

temporary file write error ifatal) 

too many tab stops (error) 

unexpected end of file if atal) 

unknown macro I register type N (fatal) 

vertical line drawing not implemented yet (error) 

word buffer overflow (fatal) 

ERROR MESSAGES 



1192 The COHERENT System 

ERROR MESSAGES 



Index 

#to 

# ......................... 382 
## ........................ 383 
#define . . . . . . . . . . . . . . . . . . 179, 384 
#elif. . . . . . . . . . . . . . . . . . . . . . . 385 
#else ...................... 385 
#endif ...................... 386 
#if ........................ 386 
#ifdef ...................... 386 
#ifndef . . . . . . . . . . . . . . . . . . . . . 387 
#include . . . . . . . . . . . . . . . . . 1 78, 387 
#line ....................... 387 
#pragrna . . . . . . . . . . . . . . . . . . . . 388 
#undef ..................... 389 

$ ........................ 62,67 

&. . . . . . • . . . . . . . . . . 42, 58, 755. 994 
&&. . • • • • • . • • . • • . . . • • • 70, 755. 994 

) .......................... 73 

•...................... 60-61. 73 
*) •••••••.•••••...••.••••••• 73 

• (comma). . . . . . . . . . . . . . . . . . . . . 42 

- (hyphen) . . . . . . . . . . . . . . . . . . . . 42 

. profile . . . . . . . . . . . . . . . . . . . . . 934 

/ .......................... 62 
I (slash) ................... 27-28 
/bin. . . . . . . . . . . . . . . . . . . 14. 28, 67 
/dev ........................ 28 
I dev I console . . . . . . . . . . . . . . . . . 731 
/dev/tty/?/?. . . . . . . . . . . . . . . . . . 731 
/drv ........................ 28 
/etc ........................ 28 
/etc/default/async. . . . . . . . . . . . . . 455 
/etc/drvld . . . . . . . . . . . . . . . . . . . . 28 
/etc/group ................... 511 
/etc/passwd ............... 28. 47-48 
/etc/re . . . . . . . . . . . . . . . 397, 473, 731 
/etc/ttys ................ 28, 43. 731 
/etc/update ................ 27. 474 
/etc/utmp . . . . . . . . . . . . . . . . 474, 731 
/etc/wtmp. . . . . . . . . . . . . . . . . . . 474 
/lib ........................ 29 
/u ......................... 29 
/usr ........................ 29 
/usr/adm .................... 29 
/usr/adm/acct .............. 55. 397 
/usr/adm/savacct ............... 55 

The COHERENT SYSTEM 1193 

/usr/adm/wtmp ............. 53. 393 
/usr/bin . . . . . . . . . . . . . . . . . . . 29 
/usr/games ................... 29 
/usr/games/lib/fortunes ........... 29 
/usr/include ................... 29 
/usr/lib/crontab .............. 29. 41 
/usr/lib/lib.b . . . . . . . . . . . . . . . 469 
/usr/man . . . . . . . . . . . . . . . . . . 29 
/usr /msgs . . . . . . . . . . . . . . . . . . 29 
/usr/pub. . . . . . . . . . . 29 
/usr/spool. . . . . . . . . . 29 
/usr/wtmp. . . . . . . . . 731 

24-hour time. . . . . . . . . . . . . . . . . . . 42 
2> ..................... 756. 995 

: (colon). . . . . . . . . . . . . . . . . . . . . . 67 

. . . . . 57, 755. 994 
:: (double semicolon). 

< ...•...•••••. 
<& •••.•.••••.. 
<&- •.•••••..•. 
<< ........... . 
<ctrl-0> ........ . 
<ctrl-H> ............. . 
<erase> ............. . 
<interrupt>. . . . . . . . . . . . 
<kill> .............. . 
<Return> ............ . 

...... 74 

30,756,995 
. . 757, 996 
.. ... 996 
.. 756. 995 
. ... 10, 36 

. ........ 6 

...... 6, 40 

. . . . . . . . . 7 
6.40 
7.38 

> •.•...•... 
>& •••..•••• 
>&- ...•.••. 
>> •••....•. 

..... 414 

15,30,67.70,756,995 
. ...... 757, 996 
.......... 996 

. . . . . . . . . . . . 756, 995 

? .......................... 61 

[ .............. . 
.stg.mail ......... . 

I .............. . 

62.413 

. . 817 

62,413 

DATE . . . . . . . . . . . . . . . . . . 389 
-end . -:-. . . . . . . . . . . . . . . . . . . . 799 
- end bss . . . . . . . 799 
- end-data. . . . . . . 799 
- end-text . . . . . . . 799 
-FILE . . . . . . . . 390 
-LINE-.......... 390 

STDC_ •.......•........... 390 
TIME .................... 391 

DECVAX. . . . . . . . . . . . . . . . . 556, 676 
-exit() . . . . . . . . . . . . . . . . . . . . . . 391 
-1386 . . . . . . . . . . . . . . . . . 556 
)EEE. . . . . . . . . . . . . . . . . . . 556, 676 

INDEX 



1194 The COHERENT SYSTEM 

a.out .. 
abort() .• 
abs() ... 
ac ......... . 
access permission. 
access() .... 
access.h .. 
accounting. 

login ... 
process 
reports ... 
starting login . . 
starting process 

acct() ..... . 
acct.h ....... . 
accton ....... . 
acos() ....... . 
action.h ...... . 

A 

adding a modem . . . . . . . . 
adding a terminal. 
adding hard disk . 
address ...... . 
aggregate .. . 
ahal54x 
alO ... . 
all ... . 
alarm() . 
alarm2() 
alias ... 
aliases ..... . 
alignment .... . 
alloc() ....... . 
alloc.h ....... . 
alloca() ...... . 
altering stack size. 
ANSI Standard ... 
apostrophe. . . 
approx(). 
ar ......... . 
ar.h ........ . 
archive 

. . . . . . . 502 

. . . . . . . 392 

. . . . . . . 392 
393 

. . . . . 22 

. . . . 394 

.... 395 
52 
52 
53 
52 
53 
55 

395 
396 
397 
397 
398 
847 

1078 
. . . . 717 

171. 177, 398 
408 
399 
531 
531 
401 
401 
402 
402 
404 
789 
404 
404 
171 
388 

. .. 61 
789 

.. 405 

. . 406 

extracting from compressed . . . 
archive file, Tormat . . . . . . . . . . 

1160 
. . 406 

. . . . 551 
407. 1162 

178,407 
.... 174 

archive files . . . . . . . . . . . . . . 
arena ................. . 
argc .................. . 
argument ............... . 
arguments .............. . 
arguments, variable number of .. . 
argv ........ . 
ARHEAD ..... . 
array ....... . 
array, search ... . 
ARTAIL •....•. 

...... 8 
1146 

178,407 
406.408 

.... 408 

. ... 479 
406,409 

as ......... . 
error messages . 

as 286 ...... . 

. . . . 171 
1163-1164 

. . . . . . . 410 

INDEX 

as 386 ........ . 
ASCII ...... . 
ASCII file .... . 
ascii.h ...... . 
asctime() .... . 
asfix ....... . 
ASHEAD .... . 
asin() ...... . 
ask() ....... . 
ASKCC ..... . 
assembler 

80286 instructions 
8086 instructions . 
address descriptors . . 
blank between tokens. 
blank character . . . . 
C compatibility. . . . . 
comments ....... . 
current location counter . . 
diagnostics ..... 
directives . . . . . . . . 
error messages . . . . . . . . 
expressions . . . . . . . . . . 
function arguments . . . . . 
function return values . . . 
function-calling conventions . . 
identifiers . . . . . . 
labels name. . . . . . . 
labels temporary. . . . . . . 
names ......... . 
naming conventions. . 
operators .. . 
options -g ..... . 
options -f ..... . 
options -o ..... . 
private data . . . . . 
private instruction. 
register names . . . 
registers ...... . 
sections ...... . 
shared data. . 
shared instruction. 
statements . . . . . 
strings section . . . 
symbol table . . . . 
symbols ...... . 
tabulation between tokens . 
tokens ............ . 
type propagation. . . . . . . 
uninitialized data . . . . . . 
uninitialized instruction . . 

assembler directive 
ascii ..... . 
blkb ..... . 
blkw. 
bssd. 
bssi 
byte 
even. 
globl . 

425 
448 
667 
450 
451 
451 

. . 426. 452 
452 
789 
452 

421 
416 
415 
411 
411 
421 
411 
412 
424 
414 

1163-1164 
413 
422 
422 
422 
411 
414 
414 
411 
422 
413 
410 
410 
410 
412 
412 
410 
423 
412 
412 
412 
414 
412 
412 
411 
411 
411 
413 
412 
412 

415 
415 
415 
414 
414 
415 
415 
415 



odd .. 
page. 
prvd. 
prvt .. 
shrd. 
shri. . 
strn . 
symt. 
title .. 
word ........ . 

assembler expressions 
grouping ..... . 

assembler operators 
• 
+ ......... . 
binary - ..... . 
unary- ..... . - ......... . 

assembler statements 
assignment . . 
null ..... . 

assembler types 
absolute .... . 
register .... . 
relocatable . . . 
undefined ..... 

assembly language . . . . . 
assembly-language generator . 
assembly-language programs . 
assert() ............ . 
assert.h ............ . 
assertion, check at run time 
ASTAIL. 
asy ... 
async .. 
at .... 
atan() .. 
atan2() . 
ATclock. 
atod.c .. 
atof() . 
atoi() .. . 
atol() .. . 
atrun .. 
auto .. . 
awk ... . 

tutorial 

B 

background . . . . . . 
running programs in . . 

background process . . . . 
background, execution in . 

415 
415 
414 
414 
414 
414 
414 
414 
415 
415 

413 

414 
413-414 

414 
413 
413 

414 
414 

413 
413 
413 
413 

44, 172 
168 

. . 170 

. . 452 

. . 453 

.. 452 
426.453 

. . . 453 

... 455 
457,459 

460 
461 
461 
169 
461 
462 
462 
463 
463 
463 
189 

. . . 994 

... 862 

. 58, 755 
754,993 

backup .... 
backup files . 
backups 

. . . ... 676 

strategies . 
bad ..... . 
badscan .. . 

551,617. 1062, 1128 

. 49 
465 
465 

The COHERENT SYSTEM 1195 

banner ... 
banner() .. 
basename . 
Bathsheba. 
baud rate .. 

table .. . 
be ...... . 

assignment . . 
exponentiation operator 
library .. . 
tutorial ...... . 

BCD format ..... . 
bedaemon() ...... . 
bibliography . . . . . . 
binary coded decimal. . . . 
Binary Compatibility Standard . 
binary files . . 
binary search 
bind .. . 
bit ..... . 
bit map .. . 
bit-fields . . 
block .... . 
block, disk ..... . 
block-special device. 
boot ..... . 

device . . . . 
secondary ..... . 
tertiary ...... . 

boot.fha ........ . 
bootable floppy disk . 
booting ........ . 

master boot program . 
booting, tertiary . 
boots tap 

uninstall ....... . 
bootstrap ......... . 
boottime .......... . 
boottime, check file system . . . 
boottime, load loadable drivers . 
boottime, mount file system. 
boottime, standard chores. 
Bourne shell . 
brace . . . . . . . 
braces ............ . 
brc .............. . 
break ............ . 
break a string into tokens . 
brk() .... 
bsearch(). 
bssd .. . 
bssi .. . 
buf.h .. 
buffer .. 
build .. 
builtin . 
byte ..... . 
byte ordering. 

c 

466 
789 
466 
298 
531 
990 
467 
253 
251 
267 
251 
674 
789 
187 

.. 674 
388,433 

667 
479 
469 
470 
471 
470 
471 

. 20 
471 
471 
472 

472-473 
473 
472 
475 
472 
471 

1064 

736 
472-473 

477 
511 
616 
859 
952 

. 993 
45,65 

174 
478 
478 

1044 
478 
479 
412 
412 
481 
481 
482 
482 
482 
487 

INDEX 



1196 The COHERENT SYSTEM 

c .......... . 
c .......... . 
c 

program linker . 
C keywords ... 
C language . . . . . 

tutorial ..... 
C preprocessor . . 

error messages . 
C programming 

introduction . . 
cabs() ....... . 
cal. ........ . 
calendar ...... . 
calling conventions . 
calloc() ... 
candaddr(). 
candev() .. 
canino() .. 
canint() .. 
canlong() . 
canon.h .. 
canshort() 
cansize() . 
cantime(). 
canvaddr(). 
captoinfo .. 
carriage return 
case ...... . 
case sensitivity 

44-45. 529 
484 

. 45 
520 
520 
167 

168, 554 
1168 

171 
484 
485 
485 
486 
492 
493 
493 
493 
494 
494 
494 
496 
496 
497 
497 
497 

. . . . 174 
73, 497-498 

in file names . . . . . . . . 11 
in shell variable . . . . . . 64 

cast. . . . . . . . .... 498 
cat. . . . . . . . . . . 8. 15, 30, 499 
caveat utilitor . . . . . . . . . . 499 
cc . . . . . . . . . . 44-45. 167, 499 

error messages. . . 1163 
Micro EMACS mode . . . . . . . 105 

ccO . . . . . . . . . . . . . 168, 504 
error messages . . . . . . . 11 71 

eel . . . . 168, 505, 1180 
cc2 . . . . 168, 505, 1180 
cc3 . . . . . 168, 505 
CCHEAD . . 503, 505 
CCTAIL. . 503, 506 
cd . . 16, 67, 506 
cdmp ... 506 
ceil(). . . . . . . 507 
cgrep . . . ... 508 
char. . . . . . . . . 176, 509 
character, copy . . . . . . . 835, 837-838 
character, fill an area with. . . . . . . . 839 
character. reverse search for . . . . . . . 1042 
character, search for in region of memory 835 
character. search for in string 1033, 1042 
character, search string for . 1042 
character-special device . 471 
chars .h . . . . . . . . . . . . . 509 
chase. . . . . . . . . . . . . . 509 

INDEX 

chdir() .............. . 510 
510 
452 

check .............. . 
check assertion at run time . . 
checklist . 
chgrp .. 
chmod . 
chmod() .. 
chmog ... 
choices 

in case statements. 
chown .. 
chown(). 
chroot .. 
chroot(). 
ckermit. 
clear .... 
clearerr() . . . . . . 
close standard input . . 
close the standard output . 
close() ... 
closedir() . . . . . . . 
clri. ............. . 
cmp ............. . 
code generator. . . . . . . . 

. . 511 
. . . . 511. 513 
23, 59, 511. 513 

. 513 

. . . 513 

.... 73 
513-514 

514 
514 
515 
515 
525 
525 
996 
996 
525 
526 
526 

code, conditional inclusion, end . 
code, include code conditionally . 
code, include conditionally 

68-69, 526 
168 

. .. 386 
386-387 

386 
COFF 

definition 
linking .. 

coff.h .... 
COHERENT 
coherent .. 
COHERENT 

description . . 
editions . . . . . . .. 

527 
781 
527 
528 
473 

hardware requirements . . . . . . 
on same hard drive as MS-DOS. 
principles . . . . . . . 

. . 1 

. . 1 

. . 1 
659 
528 

. . 9 

.. 9 
737 

rebooting ...... . 
shutting down ... . 
uninstall ...... . 

COHERENT file format. 
COHERENT system 

error messages . . . . . 
col ............. . 
Colburn, Mark H . .... . 
color, setting on terminal 
Columbia University . 
com. 
com! 
com2 
com3 
com4 
comm .. 
command 

definition . . . . . . 
command, definition . 
commands ...... . 

background. . . . . 

603 

1162 
530 

50, 553, 914. 1129 
544 
520 
531 
533 
533 
534 
535 
535 

.. 8 
754,993 

. 535 
. ... 58 



COHERENT ...... . 
concurrent execution . 
first part. .. . 
in files .... . 
value ........ . 

comment ....... . 
compare strings ... . 
compare two regions . 
compare two strings . 
compiler ....... . 

c .......... . 
error messages . . . . . . . . . 
function-calling conventions. 
naming conventions. . . 

compiling without linking .. 
compress ........... . 
computer 

connecting via serial port. 
computer language . . . . . . 
computer time accounting. . 
con.h ................ . 
conditional inclusion of code, end 
conforming translator, mark 
connector 

DB-9P .. 
RS-232C 
serial. 

console. 
const .. 
const.h. 
cont ... 
continue 
control key . 
conv ..... 

57 
58 

. 8 
58 
68 

175 
1035, 1042 

837 
1034 

167 
. 45 
1163 
422 
422 
170 
542 

1078 
172 

. 52 
543 
386 
390 

964 
964 
964 
543 
546 
547 

.. 6 
547 

.. 6 

convert string to floating-point number. 
convert string to long integer . . . . . . . 
convert string to unsigned long integer . 
cooked devices ............... . 

547 
1043 
1046 
1047 
1052 
. 27 cooked files ........ . 

cooked terminal . . . . . . . 
copy a region of memory. . 
copy header into program . 
core .......... . 
core dump file format 
cos() .. 
cosh(). 
cp ... 
cpdir . 
cpio .. 
cpp .. 

error messages . . . . . . 
floating-point numbers . 

crackers 
crcl6() . 
creat() .. 
cron ... 
crontab. 
crypt . 
crypt(). 
ct .... 

1079 
835, 837-838 

387 
.. 548 
.. 548 
.. 549 
. . 549 
18,550 

. . 551 
50,551 

168,554 
1168 
676 

..... 5 

. . . 789 

... 557 
29,42.557 

. . 559 
48,561 

561 
. . 562 

The COHERENT SYSTEM 1197 

ctags .. 
ctime() . 
ctrl key. 
ctype .. 
ctype.h . 
current directory 
current line within source file. 
curses .... . 
curses.h .. . 
Curtis, Pavel . 
cut. . 
CWD ..... 

daemon ..... 
definition . . 

data formats . . 
data structure . 
data types .. . 
date ....... . 
date of translation 
db ......... . 

setting registers 
DB-25 connector 
DB-9P connector 
de ..... 
dcheck .. 
dd ..... 
debugging 
decvax d() 
decvax-f(). 
defaulC .. 

directory. 
prompt 

defined .. 
definitions . 
deftty.h .. . 
del key ........ . 
dereferencing, pointer 
deroff. 
detab . 
device 

boot 
root . 

device drivers 
device-independent I IO 
df .. 
diff .... . 
diff3 ... . 
dir.h ... . 
directory . 

current 
home .. 
parent. 
removing 
root ... 
tree-structured. 

dirent.h. . . . 
dirs ........ . 

D 

562 
563 

. . 6 
564 
565 

14,28 
390 
566 
578 

731. 1088, 1098 
578 

. ...... 579 

580 
789 
580 
176 
581 

39,582 
389 

44,46,582 
585 
964 
964 
593 
595 
595 

. 46 
596 
597 
597 

. 67 

. 67 
597 
598 
598 

.. 7 
920 
598 
599 

472 
472 
599 

26.529 
20.600 

601 
602 
603 

11-12,603 
... 14, 28 

12-13, 60, 67 
. . 67 
.. 20 
13,27 

529 
604 
604 

INDEX 



1198 The COHERENT SYSTEM 

disable . . . 604 
disk 

block. . . . . 20 
disk usage . . . 20 
disk, floppy. . . 676 
disk, MS-DOS. 676 
div(). . . . . . . 604 
div t. . . . . . . . . 604 
division, integer . . 604. 783 
do. . . . . . . . . . 70, 605 
dollar . . 482 
domain. 605 
done. . . 70 
dos . . . 606 
doscat. . 608 
doscp.. 608 
doscpdir 611 
dosdel. . 612 
dosdir. . . 612 
dosformat 613 
doslabel. . 613 
dosls . . . 614 
dosmkdir . 614 
dosrm. . . 614 
dosrmdir . . . . . . . 615 
dot command . . . . . 68 
double . . . . . . . . . ........ 615 

convert from DECVAX to IEEE format . 729 
convert from IEEE to DECVAX format . 596 

drvld 28. 615 
drvld.all. . . . . . 616 
du. . . . . . . 20. 617 
dump.. . 27, 617 
dumpdate 618 
dumpdir . . . 619 
dumptape.h . 619 
dup() . . . . . 619 
dup2(). . . . . . . . 620 
duplicate file stream . 996 
duplicate stream . . . 757 

ebcdic.h 
echo. 
ed .. 

$. 
&. 
• 
+ . 

. (dot) 

, ..... . 
<ctrl-D>. 

? ...... . 

E 

adding lines. . .. 
advanced commands 
backslash ...... . 

INDEX 

. . . . 621 

.. 60, 621 
7.44.622 

115-116 
136 
115 
122 
122 

112. 122 
116 
140 
110 
116 
126 
112 
132 
128 

caret ........ . 
carriage return . . . 
changing lines . . . 
characters, special. 
commands, advanced . 
commands. global ... 
copying blocks of texts 
current, line . . . . . . 
deleting lines . . . . . . 
file. editing commands . 
file. name, in ed command . 
global substitute .. 
global, command. . 
inserting lines . 
joining lines. . . . . 
line. locators ... . 
line, number ... . 
line, number ranges .. 
line. number zero ... 
line. numbers, relative 
move. blocks of text . . 
pattern ...... . 
print command .. . 
prompt character . 
removing lines . . . 
reverse searching . 
sed ......... . 
special characters . 
spliting lines . . . . . . 
substitute command . 
tutorial 

edata .. 
EDITOR. 
egrep 
elif. .. . 
else .. . 
elvis .. . 
enable .. 
end . . . . . . . .. 
end conditional inclusion of code. 
end-of-file indicator .. 
endgrent() 
endpwent() . 
enter .. 
enum ... . 
ENV .... . 
env .... . 
environ ... . 
environmental variables . 
envp .. . 
EOF ..... . 
eol ...... . 
epson .... . 
Epson MX-80 
erase .... . 
errno ..... . 
errno.h . . . . . .. 
error message. return text of . 
error messages 

assembler .......... . 

135 
110 
118 

121. 134 
122. 132 

141 
125 

114. 139 
117 
132 
113 
121 

128, 141 
114 
129 
126 
111 
115 
125 
122 
124 
119 
115 
112 
116 
132 
112 
134 
130 
119 
109 
798 
626 
626 

. .. 72 
72, 184,628 

628 
635 
798 
386 
639 
636 
636 

.. 6 
637 
637 
637 
638 
638 
639 
639 

.. 6 
640 
928 

40-41 
641 
641 

1035 

1163-1164 



cc ... 
ccO .. 
eel .. 
cc2 .. 
cpp .. 
fsck . 
linker 
make. 
nroff .. 
system. 

esac ... . 
etext ... . 
eval ....... . 
event scheduling 
ex .... 
example. 
exec ... 
execl() .. 
execle() . 
execlp() ... 
executable file . 
executable files . . 
executable program .. 
execute upon failure . 
execute upon success 
execution. 
execv() .. 
execve(). 
execvp(). 
exit ... 
exit() .. 
exp() .. 
export. 
expr .. 
extern. 

fabs() .. 
factor .. 
factor.c. 
failure. . . . . . .. 
failure. execute upon. 
false ... 
fatal() .. 
fblk.h .. 
fc .... 
FCEDIT. 
fclose() . 
fcntl() .. 
fcntl.h .. 
fd ... . 
fd.h .. . 
fdformat 
fdioctl.h. 
fdisk ... 
fdisk.h . 
fdopen(). 
feof() ... 
ferror() . 

F 

1163 
1171 
1180 
1180 
1168 
1183 

1181-1182 
1187 
1188 
1162 
. 73 
798 
643 

. 41 
644 
381 
645 
645 
645 
645 
646 
168 
168 
994 
994 
646 
647 
647 

. 648 
181. 649 
. . 649 
.. 649 
66.650 

651 
.. 652 

654 
654 
169 

. 68 
. 755 

72.654 
789 
654 
655 
655 
655 
656 
656 
656 

. 657 
49,657 

658 
659 
660 
660 
661 
661 

The COHERENT SYSTEM 1199 

fflush() 
fgetc(). 
fgets .. 
fgets(). 
fgetw(). 
fi ... . 
field .. . 
FILE .. . 
file ...... . 

block special . 
concatenation 
copying .... 
creating empty . 
creation . . 
include .... . 
links ...... . 
mailing .... . 
modification time 
move ..... . 
name ..... . 
of commands . 
protection . 
prototype . 
raw ..... 
removal of. 
rename .. 
restoring. . . 
special character. . 

file descriptor . . . 
file format 

archive file . . . . . 
COHERENT file .. 
core dump ..... . 

file format, processing accounting . 
file formats. . . . . . . . . . 
file locking, UUCP ....... . 
file system 

layout ............ . 
mounting non-COHERENT. 
root ............. . 

663 
664 
177 
665 
666 

. 72 
.. 666 
176,667 

11, 666-667 
27 
15 
18 
61 
16 
46 
21 

815 
46 
17 
11 
58 
48 
24 
27 
19 
17 
51 
27 

668 

406 
603 
548 
396 

. 668 
350, 1141 

file, generate name for temporary file 

. 27 
678 

. 26 
1103 
639 
387 
606 

file, indicate end of ...... . 
file, source, include ...... . 
file, transfer to/from MS-DOS 
file-creation mask. 
fileno() . . . 
files 

back up .... . 

1120 
669 

551 
backup .... . 
cooked ..... . 

fill an area with a character . 
filsys.h ............ . 
filter .............. . 

. 617. 1062. 1128 
... 27 
. . 839 
. . 669 
31, 669 

find .............. . 
find one string within another 
fixstack ............ . 
fixterm() ............ . 
flexible arrays . . . . . . . . . . 
float ...................... . 

convert from DECVAX to IEEE format. 

670 
1043 
671 
672 
408 
672 
729 

INDEX 



1200 The COHERENT SYSTEM 

convert from IEEE to DECVAX format . 
floating-point number, create from string 
floating-point numbers ... 

597 
1043 

169 
676 
676 

inclusion . . 
floor() ..................... . 
floppy disk 

bootable .................. . 475 
606 
676 

floppy disk, copy MS-DOS files to/from .. 
floppy disks . . . . 
Floyd, Bob ... 
fnkey ... 
font, soft . 
fopen .. 
fopen() . 
for .... 
fork() .. 
fortune . 
fperr.h . 
fprintf[) . 
fputc() .. 
fputs() .. 
fputw() . 
fread() .. 
free() ... 
freelist . 
freopen() 
frexp() .. 
from .. . 
fscanf() ...... . 
fsck ........ . 

error messages . 
fseek() .. 
fstat() .. 
fstatfs() . 
ftell() ... 
ftime() .. 
function ..... . 
function keys . . . . 
function, pointer to . 
fwrite() . . . . 
fwtable ........ . 

gallows ........ . 
gcd() .......... . 
general functions . . . 

G 

......... 835 
....... 679 

. ........ 928 

. . . 177. 179, 181 

......... 679 
70, 177, 182-183,681 

682 
682 
683 
683 
683 
684 
684 
685 
685 

1162 
685 
686 
687 
688 

26-27. 689 
1183 
690 
691 
693 
693 
694 

173,694 
679 
920 
694 
695 

.... 334 
. 696 

.... 696 
generate name for temporary file . . 
getc() ... 
getchar() . 

1103 
698 
699 
699 
700 
700 
701 
701 
702 
702 
702 
790 
703 

getdents(). 
getegid(). 
getenv() .. 
geteuid() . 
getgid() .. 
getgrent() . 
getgrgid() . 
getgrnam() . . 
getline() .. 
getlogin() . . . 

INDEX 

getopt() . 703 
getopts . 704 
getpass() 705 
getpgrp() . . . . . 705 
getpid() . . . . . . 705 
getpw() . . . . . . 705 
getpwent() . . . . 706 
getpwnam(). . . . 707 
getpwuid() . . . . 708 
gets() . . 708 
getty. . . 709 
getuid() . 710 
getw() . . 711 
getwd() . 711 
GMT. . . 40, 711 
gmtime() . . 712 
goto . . . . . 712 
grave accent . . . . . . 67 
grep . . . 39, 713 
group. . . . . . . 714 

id. . . . . . . . . 47 
name...... . 47 

group structure . 715 
grp.h . . . . . . . 715 
gtty() . . . . . . . 715 
guess . . . . . . . 715 
guillotine . . . . . . 334 
Gwynn.D. 526,700,904,954,961,977, 1066 

H 

hard disk. . . . . . . . . ...... . 717 
717 
719 
606 
720 

adding. . . . . . . . . ...... . 
adding another. . . . . . . . . . . . . 

hard disk. copy MS-DOS files to/from. 
hash .......... . 
hashing, example . . . 
hdioctlJi ....... . 
head .......... . 
header file . . . . . . . 
header files. . . . . . . 
header, copy into program. 
help ............. . 
here document . . . . . . . 
Hewlett-Packard LaserJet . 
high-level language .. 
Hoare. C.A.R. . . 
HOME .•...•. 
home directory . 
hp ... . 
hpd .. . 
hpr .. . 
hpskip . 
hs .... 
hypot() . 

i-node .. 
list .. 

I 

1047 
720 
720 

. 173, 178 

. ... 721 

. ... 387 
. ... 9, 723 

754,756,993,995 
. ... 928 
. 172, 529 
.. .. 946 
. . 67, 723 
. 12-13, 60 

723 
724 
724 
725 
725 
727 

728 
. 26 



1/0 redirection 15. 30 
i8086 

registers. . . 423 
IAPX286 . . . . 556 
icheck. . . . . . . . . . . . . 728 
identifier. define as macro . 384 
idle . . . 473 
ieee d(). . . . . . . . . . . . 729 
ieee -f() . . . . . . . . . . . . 729 
if. .-. . . . . . . . . . . . . . 72. 729-730 
IFS . . . . . . . . . . . . . . . . . 730 
include code conditionally. 385-387 
include file . . . . . . . . . . . . . . 721 
include source file . . . . . . . . . 387 
inclusion of code, conditional. end. . . . . 386 
index() . . . . . . . . . . 730, 1033 
infocmp. . . . . . . . . . . . . 731 
init . . . . . . . . . . . . 473. 731 
initialization . . . . . . . 408. 732 
initialization of pointers 920 
ino.h . . . . . . 735 
inode.h. . . . . 735 
install . . . . . . 735 
instruction set. 171 
instructions . . 1 71 
int . . . . . . . . . . . . . . . . . . . 1 79. 738 
intep;er division . . . . . . . . . . . . . 604, 783 
IntefBinary Compatibility Standard. . . . 388 
interprocess communication . . . 867, 1004 
interrupt . . . . . . . . . . . . . . 738 
introduction to C programming. 171 
io.h . . . . 738 
ioctl() . . . 738 
ipc.h. . . . 739 
is fs() . . . 790 
isalnum() . 739 
isalpha() 739 
isascii() . 7 40 
isatty() . 7 40 
iscntrl(). 740 
isdigit() . 7 40 
islower(). 7 41 
ispos(). . 7 41 
isprint(). 741 
ispunct() 7 41 
isspace() 742 
isupper() 742 
itom() . . 742 

jO() ....... . 
jl() ....... . 
jday _to_ time() . 
jday _to_ tm() . 
jn() ..... . 
jobs .... . 
join .... . 
Julian date. 

J 

743 
744 
790 
790 
744 
744 
745 
790 

The COHERENT SYSTEM 1201 

kermit. ....... . 
kermit. interactive . 
Kernighan. Brian W. 
keyboard tables . 
keys. function . 
keyword 

parameters . 
kill ..... . 
kill() ....... . 
King David ... . 
KingLear .... . 
Kirkendall, Steve 
Korn shell .. . 
ksh ...... . 
KSH VERSION 

I ..... . 
L-devices. 
Lout ... 
l.out.h .. 
L.sys .. . 
l3tol() .. . 
LaserJet . 
LASTERROR. 
le ...... . 
lease() .... . 
LCK files .. . 
Id ...... . 

error messages . 
ldexp() ... 
LDHEAD. 
ldiv() ... 
ldiv t .. 
LDTAIL. 
let ... . 
lex ... . 

$ .. . 
%% .. 
%S .. 
%{%} .. 
(and). 
• 
+ .. 

I I . 
<>. 
? ..... . 
abbreviations. 
action ..... 
alternatives . . 
angle brackets . 
BEGIN action .. 
beginning of line $ . 
braces ....... . 
braces, in patterns. 
character classes .. 

K 

746 
515 
172 
749 
679 

. . ....... 65 

. 40-41, 43-44. 753 

. ........ 754 

. ........ 298 
. ......... 297 

563,635,644,956, 1148 
754 
754 

L 

.......... 773 

774 
774 
410 
775 
776 
778 
928 
779 

7, 14, 779 
790 

350, 1141 
. . 45, 780 
1181-1182 

783 
782-783 

. .. 783 

. .. 783 
782, 784 

784 
784 
215 
207 
218 
222 
214 
213 
212 
215 
215 
218 

213-214 
217 
207 
214 
218 
218 
215 
209 
214 
212 

INDEX 



1202 The COHERENT SYSTEM 

context match . . 
context, separate. 
context, start . . . 
context, switch . . 
definitions ..... . 
defmitions section . 
dot ....... . 
ECHO ..... . 
end of line ... . 
exception ... . 
grouping. () . . . 
header section . 
lex specification 
macro ..... . 
match. exception. 
match, in context 
match, longest . . . . . . . . 
match, non-graphic characters 
match, optional . . . . . 
non-graphic character . 
non-graphic characters. 
optional match . . . . . . 
pattern ....... . 
patterns ....... . 
program generator. . 
regular expressions . 
REJECT ....... . 
repetion, zero or more. 
repetition . . . . . . . . . . 
repetition, specific count . 
repetitions, zero or more . 
repetitions, zero or one . 
rules ........... . 
rules, context start .. . 
rules, with same action. 
section, header .... 
sections, definitions. 
start condition . . . . 
statements . . . . . . 
statements multiple . 
tokens. 
tutorial 
yacc .. 
yylex .. 
yytext . 
yywrap. 
I .... 

Lexicon. . . . 
introduction 

If. .... . 
lib.b ... . 
libc ... . 
libcurses . 
libl. ... . 
libm ... . 
libmisc .. 
libmp ... 
LIBPATH. 
libraries .. 
library ... 

INDEX 

215-216 
. .. 218 
... 217 
. . . 219 
207.218 

221 
211 
220 
215 
212 
214 
222 
205 
217 
212 

215-216 
213 
214 
213 
214 
215 
213 

. 207 
210-211 

205 
210 
220 
212 
212 
214 
209 
214 
207 
217 
210 
222 
221 
217 
208 
209 
223 
205 
223 
221 
210 

208.223 
214 
787 
379 
788 
467 
696 
566 

. 784 
170,825 

. . . 788 

. .. 877 
504,795 

795 
173 

be ... . 
c .... . 
curses .. 
lex ..... 
mathematics . . . 
miscellaneous functions . . . . . 
multiple-precision mathematics. 
standardC ...... . 
termcap ........ . 
terminal operations . . 
yacc .. 

libterm ... 
libterm.a .. 
liby .... . 
limits.h .. . 
line control. . . 
line numbering, reset. 
linefeed ........ . 
lines .......... . 
link() ......... . 
linked list, example. . 
linker ......... . 

error messages . . . . . 
linker-defined symbols . . . 
linking without compiling . 
links ............. . 
In .............. . 

467 
. 45 
566 
784 
825 
788 
877 
696 

1068 
1074 
1158 
1068 
1074 
1158 
796 
387 
387 

. . 6 
797 
798 

1047 
168 

1181-1182 
. . 798 

load-module execution. . . . . 
locale-specific string transformation. 
local time() 

170 
. .. 20 
21. 799 
. . 646 

1050 
... 799 
350, 1141 

793 
793 
793 
793 
793 
793 
794 
801 
801 

lock files . 
lockexist() 
lockit() .. 
locknrm(). 
lockntty() . 
lockrm() .. 
locktty() .... 
lockttyexist(). 
log() ..... . 
loglOO ... . 
logging in 

-definition . 
logging out . . 
login ..... . 

time ... . 
login accounting 
login identifier . . 
logmsg ..... . 
long. . . . . . . . . . . . ... 
long integer. create from string . 
longjmp(). 
look ....... . 
loop ....... . 
lower case 

in file names . 
Ip ... . 
lpd ... . 
lpioctl.h. 
lpr .... 
lpskip .. 

.. 5 
. . . . 10 
10,48,801 

. 52 
393 
883 
802 
802 

1046 
803 
803 
177 

. 11 
804 
805 
805 
805 
806 



Ir .... . 
ls ... . 
lseek() .. 
ltol3() .. 
lvalue .. 
Ix .•.. 

M 

.. .. 806 
8, 14,806 

808 
809 
809 
810 

m4. . . . . . . . . . . .... 44, 46, 811 
argument .................. 270 
argument substitution . . . . . . . . . . 271 
changequote . . . . . . . . . . . . . . . . 272 
decision-making macro. . . . . . . . . . 272 
deer . . . . . . . . 274-275 
defme . . . . . . 270 
divert . . . . . . . ... 273 
divnum . . . . . . ... 273 
dnl. . . . . . . . . ... 272 
dumpdef. . . . . . ..... 271. 277 
endless loop . . 277 
errprint . . . . . . . . . . . . . . 273 
eval. . . . . . . . . ... 275 
expression evaluation. . . . . . 275 
extra newlines . . 272-273 
ifdef . . . . 272 
ifelse. . . . . . . 275 
include . . . . . 272 
incr. . . . . . . . 274 
index. . . . . . . 275 
macro name recognition 270 
maketemp. . . . . . . . . 276 
nestable quotes . . . . . 270 
output stream . . . . . . 273 
quote marks removing . 270 
quoted text . . . 269 
repeat . . . . . . 275 
sinclude. . . 272 
string length . . 275 
substr. . . . . . 273 
syscmd . . . . 276-277 
translit . . . 274 
tutorial . . . 269 
undefine. . . 271 
undivert . . . 2 73 
unquoted text . 269 

machine instructions. . . . . . . . . 46 
machine.h . . . . . . ........ 813 
macro. . . . . . . . . ... 44. 173, 813 
macro, undefme. . . . . . . . . . . . . . . . 389 
madd() . . . . . . . . ........ 814 
mail. . . . . . . 30, 36, 38, 814-815 

receiving. . . . . . . . . . . . . . . . . . . . 38 
main . . . . . . . . . . . . . . . . . 45, 1 73, 175 
main() ................... · . . . 817 
major device number. . . . . . . . . . . . . 600 
majornumber ................. 818 
make . . . . . . . . . . . . . 46, 818 

$•. . . . . . . . . . . . 286 
$< ••••••••••••••.••••••• 286 

The COHERENT SYSTEM 1203 

$? . • • . . . . • . . • ..•. 286 
$@.......... . .... 286 
- . . . . . . . . . . . . . 284, 289 
.DEFAULT. . . . . . 289 
.IGNORE . . . . . . . . . . . 289 
.SILENT . . . . . . . . . . . . 289 
.SUFFIXES . . . . . . . . . . 286 
/usr/lib/makeactions 284, 286 
/usr/lib/makemacros 284, 286 
actions. . . . . . 284, 286 
archive. . . . . . . 287-288 
assembler. . . . . . . . . . . . . . . . . . 286 
colon. . . . . . . . . . . . . . . . . . 281. 287 
command line . . . . . . . . . 281, 284-285 
command line, macro definition. . . . . 285 
command line, options . . . . . . . . . . 284 
command line, target specification . . . 285 
command, error . . . . 284, 289 
command, printing 284 
comment . . . . 282 
debug option . . 284 
default rules . . 286 
double colon . . 287 
error messages. 1187 
error status . . . . 284, 289 
errors . . . . . . . . . ... 289 
exit status. . . . . . . . . . 289 
file . . . . . . . . . . . 281, 284 
file modification time . . . . . 284 
file option . . . . . . . . . . . . 284 
hyphen . . . . . . . . . . .... 284 
ignore errors option . . . . 284, 289 
interrupt . . . . . . . . . . . 289 
lex . . . . . . . . . . . . . . . 286 
macro. . . . . . . . . .... 285 
macro, definition. . . 282, 284-285 
macro, printing. . . . . . . . 284 
macros. . . . . . . . . . . . 284, 286 
Makefile . . . . . . . . . 284 
modification time . . . 284 
no execution option . . 284 
no rules option . . . . . 284 
options . . . . . . . . . 284 
print option . . . . . . . 284 
printing . . . . . . . . . 284 
program, maintenance . . . 288 
program, specification . . 281. 284 
return value . . . . . 289 
rules option. . . . . . 284 
silent option . . 284, 289 
special targets . . . . 289 
specification . . 281. 284 
target . . . . . . 285, 289 
target, line . . 287 
target, printing . . . 284 
target, program. . . . . 285 
target, specification . . 285 
tesf suites . . . . . . . . 288 
touch option . 284 
tutorial . . . . . . . . . 279 

INDEX 



1204 The COHERENT SYSTEM 

usr/lib/IDakeactions 
yacc. . . . . . . 

malloc() ......... . 
malloc.h ........ . 
man ........... . 
Mandrake the Magician 
manifest constant .... 
manual 

how to use ..... . 
user reaction report . . . 

mark a conforming translator. 
mask. default . . . . . 
master boot program . 
match() ........ . 
math.h ....... . 
mathematics library 
mboot .. 
mcmp(). 
mcopy(). 
mdata.h 
mdiv() .. 
me .... 

tutorial 
mem ..... 
memccpy(). 
memchr() .. 
memcmp(). 
memcpy() .. 
memmove(). 
memok() .... 
memory allocation 
memory, copy .. . 
memset() ..... . 
mesg ........ . 
message of the day . 
message passing 

driver ... 
msgctl() .. 
msgget() .. 
msgrcv() .. 
msgsnd() . 

metaphone() . 
MicroEMACS .. 

<ctrl-@>. 
<ctrl-A> . 
<Ctrl-B>. 
<ctrl-C>. 
<ctrl-D>. 
<ctrl-E> . 
<ctrl-F> . 
<Ctrl-G>. 
<ctrl-L> . 
<ctrl-N>. 
<ctrl-P> . 
<ctrl-T> . 
<ctrl-U> ... 
<ctrl-U><ctrl-L> 
<ctrl-V> . 
<ctrl-W> .... . 
<ctrl-X> .... . 

INDEX 

,·, 

286 
286 
821 
823 

. 9, 29, 823-824 
... 960 
384,825 

. . 2 

. . 3 
390 

1120 
471 
790 

.. 825 
170,825 
471, 826 

826 
. . 827 
.. 827 
.. 827 
32, 827 

. 75 
834 
835 
835 
837 
837 
838 
838 

.. 838 
835, 837-838 

839 
840 
858 

867 
868 
870 
871 . 
873 

. 790 
32. 827 
.. 83 
. . 78 
.. 78 

105 
80 
78 
78 
88 
84 
78 
78 
84 
91 
85 
79 

. . 83 
89, 106 

<Ctrl-X>!. 
<ctrl-X>l 
<ctrl-X>2 . 
<ctrl-X>< . . 
<Ctrl-X><ctrl-B> .. 
<ctrl-X><ctrl-C> . . 
<ctrl-X><ctrl-F> .. 
<ctrl-X><ctrl-N> .. 
<ctrl-X><ctrl-P> .. 
<ctrl-X><ctrl-R> . 
<Ctrl-X><ctrl-S> . 
<ctrl-X><ctrl-V> . 
<ctrl-X><ctrl-W>. 
<ctrl-X><ctrl-Z> 
<ctrl-X>> ... 
<ctrl-X>B . 
<ctrl-X>E . 
<ctrl-X>F . 
<ctrl"X>K . 
<ctrl-X>N . 
<ctrl-X>P 
<ctrl-X>Z 
<ctrl-Y> . 
<ctrl-Z> . 
<ctrl> . 
<del> .. 
<esc>! . 
<esc>% 
<eSC>2. 
<esc>< ... 
<esc><del> 
<esc>>. 
<esc>?. 
<esc>B. 
<eSC>C. 
<esc>D 
<esc>F. 
<esc>L. 
<esc>R .. 
<esc>S .. 
<esc>U .. 
<esc>V .. 
<return> .. 
arguments . . 
arguments, default value .. 
arguments, deleting. . . . . . 

105 
. 95, 97 
. .. 97 

106 
... 95 
. 79. 82 

93 
98 
98 
93 
79 
94 

. 89, 93 
. 98 

106 
. 99 

100 
85 
95 
97 
97 
97 
81 
90 
75 
81 
98 
88 

107 
. 79 
. 81 
. 79 

107 
78 
84 
80 
78 
84 
87 
86 
84 
79 

. 77, 87 
91 
91 
92 
91 
92 
97 

arguments, increasing or decreasing .. 
arguments, selecting values ...... . 
arguments, with create window . 
arrowkeys ...... . 
automatic mode . . . . 
back .......... . 
backspace key . . . . . 
backward, end of line . 
backward, one space . 
backward, one word . 
beginning of text . 
block indentation 
block-kill text ... 
buffer status . . . 

77 
105 
78 
77 
78 
78 
78 
79 
85 
82 
95 



buffer status command. . . . . . . . . . 
buffer status command, with windows. 
buffer status window . . . . 

. 95 
100 
95 
92 
95 
82 
92 
92 
95 
95 
93 
94 
99 
95 
88 
84 
85 
86 

buffer, definition . . . . . . . 
buffer, delete . . . . . . . . . 
buffer, for killed text ..... 
buffer, how differs from file. 
buffer, naming . . . . . . . . 
buffer, need unique names. . 
buffer, prompting for new name. 
buffer, replace with named file. . 
buffer, switch b. . . . . . 
buffer, with windows . . 
buffers, number allowed 
cancel a command. . . . 
capitalization . . . . . . . 
center line on screen . . 
commands ........ . 
compiling and debugging. 
copying text. . . . . . . . . 
cursor movement display. 
delete buffer command . . 
delete key ......... . 
delete text, versus killing . 
end macro command .. . 
end of text ......... . 
erase text ......... . 
erase text, by line . . . . . . 
erase text, erasing spaces . 
erase text, to the left . . . . 
erase text, to the right . . 
execute macro command . 
exit .•............ 
extended commands . . . 
foption .......... . 
file and buffer commands . 
file, definition ........ . 
file, how differs from buffer. 
file, naming . . . . . . . . . . 
file. rename ......... . 
file, replace buffer with named f. 
file, with windows . 
forward, end of line . . . 
forward, one space. . . . 
forward, one word . . . . 
help window . . . . . . . 
help, in MicroEMACS . . . 
kill and move commands . 
kill text, block ..... . 
kill text, versus deleting 
killing and deleting . 
left ............ . 
line position . 
lowercase ........ . 
metakey ......... . 
move text ........ . 
movement commands .. 
next error ........ . 
next line ......... . 
number of buffers allowed . 

105 
99 

. 77 

. 95 

. 81 

. 80 
100 

79 
80 
81 
80 
81 
80 

100 
. 89 
. 89 
832 

93 
92 
92 
92 
93 
93 
99 
78 
78 
78 

106 
106 
82 
83 
80 
80 
78 
78 
84 

103 
• 82 

... 77 
106 

. .. 78 

. .. 95 

The COHERENT SYSTEM 1205 

previous error . . . 
previous line . . . . 
program interrupt . 
quit ........ . 
quit without saving text. 
redraw screen . . . . . . 
rename file . . . . . . . . 
repetition . . . . . . . . . 
replace buffer with named file . 
restore (yank back) killed text . 
return indent . 
reverse search 
right ..... . 
saving text . . 
screen down . 
screen redraw 
screen up ... 
scroll down . . 
scroll up ..... 
search and replace. . . 
search, forward. 
search, reverse . . . . . 
searching ....... . 
store command. . . . . . 
switch buffer command. 
switch buffers . . . 
text, block kill . . . 
text, capitalize . . . 
text, erase to left . . 
text, erase to right . 
text, kill by lines .. 
text, lowercase . . . 
text, move. . . . . . . . . . . . . 
text, move from one buffer to another 
text, restore (yank back) 
text. saving . . . . . . . . 
text, uppercase ..... . 
text, write to new file . . 
text, yank back (restore) 
transpose characters . 
tutorial ........ . 
uppercase ....... . 
visit command . . . . . 
window manipulation. . . . 
window, buffer status command use . 
window, copying text among. . 
window, enlarge ........ . 
window, move within . . . . . . 
window, moving text among . 
window, number possible . . 
window, saving text . . . . . . 
window, scroll down. . . . . . 
window, shifting between .. . 
window, shrink .......... . 
window, use with editing .... . 
window, using multiple buffers . 
word wrap .......... . 
write text to new file . . . . . 
yank back text . . . . . . . . 

MicroKVETCH Electronic Nag. 

106 
. 78 

105 
79 
82 
84 
93 
79 
93 
81 
85 
87 

.. 78 
79,89 

79 
84 
79 
98 
98 
88 
86 
87 
86 
90 
99 
94 
83 
84 
81 
80 
81 
84 
82 
94 
81 
89 
84 
89 
81 
84 
75 
84 
94 
97 

100 
99 

. 97 

. 98 

. 99 

. 97 
100 
98 
97 
98 
99 
99 
85 
93 

81, 92 
• 306 

INDEX 



1206 The COHERENT SYSTEM 

microprocessor 
min() ..... . 
minit() ..... . 
minor device number. 
minor number. 
mintfr(). 
misc.h .. 
mitom() .. 
mkdir ... 
mkdir() .. 
mkfnames 
mkfs .... 
mknod .. 
mknod() .. 
mktemp(). 
mneg() .. 
mnttab.h. 
mode ... 
mode field 
modem .. 

adding. 
cabling. 

modem control . . . . 
modem problems, UUCP. 
modem, Trailblazer. with UUCP 
modemcap. 
modeminit. 
modf() .. 
modulus 
mon.h. 
moo .. 
more .. 
motd .. 
mount .. 
mount() .. 
mount.all. 
mount.h . 
mout() ... 
move files. 
mprec.h .. 
ms .... . 
MS-DOS ...... . 

concatenate a file 
copy directories . 
copy files ..... 
delete a file from . . . . . . . . 
differences from COHERENT ..... 
equivalent COHERENT commands . 
format a floppy disk . . . . 
label a floppy disk . . . . . . . . . . . 
list contents . . . . . . . . . . . . . . 
list contents of directories ..... . 
make a directory. . . . . . . . . . . . 
on same hard drive as COHERENT . 
remove a directory. . . . . . . 
remove a file . . . . . . . . . . 

171 
840 
840 
600 
841 
841 
789 
841 

16, 841 
. . 842 
. . 842 
24.843 

845 
846 
846 
846 
847 

. 15 

. 22 
847 
847 
964 
853 

1134 
1133 
851 
853 
854 
854 
855 

. 855 
16. 856 

. . 858 
24,859 

858 
859 
860 
860 

. 17 
860 

29, 860 
862 
608 
611 
608 
612 
862 
862 
613 
613 
614 
612 
614 
659 
615 
614 
678 
606 

MS-DOS file system, mounting. 
MS-DOS, copies files to/from .. 
MS-DOS, reading floppy. 
msg ................ . 

. ... 677 
36, 867-868 

INDEX 

msg.h .. 
msgctl(). 
msgget(). 
msgrcv() 
msgs ... 
msgsnd(). 
msig.h . 
msqrt() .. 
msub() .. 
mtab.h .. 
mtioctl.h . 
mtoi() .. 
mtos() ... 
mtype() .. 
mtype.h .. 
mult(). . . . .. 
multi-tasking, definition. 
multi-user, cfefinition. . . 
multiple source files . . . . ... 
multiple-precision mathematics 
multiprocessing execution. 
multitasking . . . 
multiuser ..... 

868 
868 
870 
871 

38,872 
873 
874 
875 
875 
875 
876 
876 
876 
876 
877 
877 
862 
862 
169 
877 

754,993 
. .. 528 
... 528 
. .. 473 multiuser mode . 

Munk, Udo. 
mv .... 
mvdir .. 
mvfree(). 
MWC .. 

731, 1088, 1098 
17.880 

881 
881 

.. 556 

N 

n.out.h ........ . 
name of system . . . . 
name, generate for temporary file 
named pipe 
ncheck. 
newcpy() .... . 
new!¥'p ..... . 
newllne 

in C strings . . 
newusr ... . 
nkb ....... . 
nlist() ...... . 
nm.......... . 
non-COHERENT file system 

mounting .......... . 
not modifiaole, type qualifier . 
notmem() ....... . 
nptx .......... . 
nroff .......... . 

% number register. 
%, page number .. 
.AB macro ... 
.ad primitive . 
.AE macro. 
.AI macro .. . 
.AU macro .. . 
.BD macro .. 
.bp primitive . 

882 
1138 
1103 
882 
883 
791 
883 

.. 45 
47.883 

884 
887 
888 

678 
546 
890 
891 

29,34,891 
.. . 317 
... 304 
. .. 302 

310-311 
302 

. .. 302 

. .. 302 
. .... 307 

303,308,313 



.br primitive 

.CD macro . 

.ce primitive 

.da primitive 

.DEmacro . 

.di primitive. 

.DS macro .. 

.ds primitive 

.el primitive . 

.ev primitive 

.FEmacro .. 

.fi primitive . 

.FOmacro .. 

.FS macro .. 

.ft primitive . 

.hd primitive 

.ID macro .. 

.ie primitive. 

.IP macro . 

. KEmacro .. 

.KS macro .. 

.LD macro .. 

.ll primitive . 

.ls primitive. 

.It primitive . 

.na primitive 

.nf primitive. 

.NH macro . 

.nr primitive 

. pl primitive. 

. po primitive 

.PP macro. 

.QEmacro 

.QS macro. 

.RE macro. 

.RS macro. 

.SH macro. 

.sp primitive 

.ta primitive. 

.tc primitive. 

.ti primitive . 

.TL macro .. 

.tl primitive .. 

. wh primitive .. 
/usr/lib/tmac . 
adjust ..... . 
begin page ..... . 
block-centered display 
boldface ...... . 
break ........ . 
breakinp; line . . . . . 
centered display . . . 
characters. special. . 
command, argument 
command, break .... 
command. conditional . 
command. divert ..... 
command, environment. 
command, fill ...... . 
command, line length .. 

309,314 
. 307 

. . . 313 

... 342 

. . . 306 
341-342 

. . . 306 
303,323 
... 332 
... 335 
... 306 

310-311 
316 
306 
340 
316 
307 
332 
296 
308 
308 

.. 307 
308.329 
... 336 
317,339 
310-311 

... 310 

... 301 

... 325 
. . . . . 313 

. 308, 331, 335 

. 294, 296, 315 
300 
300 

....... 298 

....... 298 
. . . . . . . . 301 

296,308,312,314 
313 
313 
314 
302 
317 
316 
345 
310 
308 
307 

.. 304 
309.312 

295 
307 
305 
296 
309 
331 
341 
335 
310 
308 

The COHERENT SYSTEM 1207 

command, line space . 
command, page offset. 
command, title length. 
command, when .. 
comments ..... . 
conditional input . 
CTstring ..... . 
display ....... . 
display indented . . . 
display, block-centered . 
display. centered .. 
display, indented. . 
display. left .. . 
diversion ... . 
error messages . 
expression 
fill ... . 
fonts ... . 
footer .. . 
footnote .. 
header. . . . . 
headings, section 
hyphenation . . . . 
indentation, relative . . 
indented display . . 
indented, display. . 
italic ... . 
justify .. . 
justify text . . 
keep ..... . 
left display . . 
line, length .. 
LTstring .. . 
macro ..... . 
macro definition . . 
macro, arguments . 
macro, definition .. 
macro, name . . 
margin, right . . . . 
margins ...... . 
measurement. . . . . 
measurement, absolute. 
measurement, units .. 
ms macros .... . 
new page ..... . 
no-fill ....... . 
numbered heading. 
page number . 
page, break .... . 
page. offset .... . 
paragraph ..... . 
paragraph tag .. . 
paragraph. indented. 
paragraph, quoted. 
quoted paragraph . 
register, number .. 
relative indent . 
Roman ..... . 
RT string ... . 
section heading 

. .. 336 
308,335 

317 
316 
309 
331 
303 
306 
307 
307 
307 
307 
307 
341 

1188 
329 
310 
304 

. 303, 317 
306 
303 
301 
295 
298 
307 
307 
304 
310 
295 

306,308 
307 
308 

. .. 303 

. .. 314 

... 293 
318-319 

319 
296 
295 
309 
329 
332 

316.329 
293 
308 
310 
301 
304 
308 
308 

296,312 
297 
296 
300 
300 
325 
298 
304 
303 
301 

INDEX 



1208 The COHERENT SYSTEM 

skip lines ..... . 
space, vertical .. . 
specification . . . . 
stack, environment 
string ........ . 
string, within strings 
strings ....... . 
tab ......... . 

mfe~~ ~~r~~~~h .. : 
traps .... . 
tutorial .. . 
unit, default 
units ..... 

nroff macros . . . 
Nudleman, Mark 
NUL ....... . 
NULL ...... . 
null ........ . 
null pointer . . . . . . . . . . 
number of arguments, variable. 
nybble ........ . 

object format. . 
object module . 
od ....... . 
open() ..... . 
opendir() ... . 
operating system . 
operator ..... . 

0 

precedence . . . 
operator, stringize. . 
9perator, token-pasting 
operators ........ . 
optimization . . . . . . . . . 
optimizer Io bject generator 
option ........... . 
options .......... . 
order 

of matched file names. 
ospeed ........ . 
output formatting .. . 

packed decimal . 
PAGER ..... . 
param.h .... . 
parameter ...... . 

assigning keyword . 
fewer ... 
keyword. 
name .. . 
null .. . 
option .. . 
positional . 
references . 
substitution 

INDEX 

p 

308 
296 
309 
337 
323 
324 
303 
313 
297 
303 

314,318 
291 
330 
329 

. 29 
858 
899 

181, 900 
900 
920 

1146 
900 

... 901 
168, 170 

901 
901 
903 
528 
904 
905 
382 

. 383 
172,413 

168 
168 
. 8 

. 14 

. 62 
1075 
. 45 

674 
907 
907 
. 8 
65 
63 
65 

. 8 
63 

. . . 8 
62-63, 66 

.. 63 
.. 46, 69 

parent directory . 
parentheses . . . 
Parkinson's law . 
parser. ..... . 
partition 

. 67 

. 45 

. 20 
168 

root, changing size of. 719 
partition, adding COHERENT p. . . . . . . 71 7 
passwd. . 28, 40, 48, 907-908 
password. 32, 40, 47-48 
paste . . . . . . . . 908 
patch . . . . . . . . 910 
PATH . . . . 28, 67, 912 
path name . . 12-13 

fully specified. . 13 
path(). . . 911 
path.h. . . 912 
pathn() . . 791 
paths . . . 912 
patterns 39, 60, 62 
pause() . 914 
pax . . . 914 
PC. . . . 1075 
PCL. . . 928 
pclose() . 914 
permission 

access .. 
read .. . 
write .. . 

Permissions 
perror() . 
phone ... 
picture() . 
PID .... 
pin out 

. 22 

. 23 

. 23 
915 
917 
917 
794 

. 42 

DB-9P. 964 
~~~ . 004 

pipe. 31, 755, 917, 994
pipe() 918
pipeline, definition 754, 993
pnmatch() 920
pointer 1 73, 920
pointer dereferencing. 920
pointer type 920
pointer type derivation . 920
pointer-type mismatch. 920
poll(). . . 923
poll.h . . . 924
popd. . . . 924
popen(). . 925
port. . . . 925
portability . . 925
Postscript 928, 935
pow() 926
pr 34, 926
precedence, 905
prep. 927
preprocessing directive, include source file 387
preprocessing directive, reset line number 387
print. 928
printer 640, 723- 724, 805, 928

cabling, serial
printf ..
printf()
proc.h
process

background.
id.

process accounting, file format .
prof
profile
program

cfebuggtng.
modularity

program execution
programming

structured .
prompt
protected mode

definition
protection
prototype.
prps.
prvd.
prvi
ps ..
PSI .
PS2 ...
ptrace().
pty.
Puddnhead Wilson
pun
pushd .. .
putc() .. .
putchar().
putp().
puts() .
putw().
pwd ..
pwd.h.

qfind
qsort()
question mark.
quot.

RAM .. .
ram .. .
raml ..
ramdisk.
rand() ..
randl()
random access.
ranlib
raw devices. .
raw files ...
raw terminal.

Q

R

..... 964
45, 174, 177

. . . . 931

. ... 933
42,58.933
.. ... 58
42.58. 705

396
933
934

. 46

. 46
646

. 46
32,60,67

527
. 48
. 24
935
412
412

42.58.937
67.939
67.939

939
941
315
942
942
943
943
944
944
944

17.945
. . 945

946
946

. 61
947

951
949
950
950
951
791
951
952

1053
. 27
1079

The COHERENT SYSTEM 1209

re 952
read. 952
read permission . . 23
read() 953
read-only memory. 955
readdir() 954
read only 954
real time 53
realloc() 955
reboot. 51. 955
rebooting COHERENT 9
receiving mail 38
redirect file stream . . . 757. 996
redirect standard error. 756. 995
redirect standard input 756, 995
redirect standard output. 756. 995
redirect standard output and append 756, 995
redirection 15
ref. 955
referenced type 920
regerror() . 791
regexec() 791
regexp() 791
regexp.h 791
region of memory. copy 835, 837-838
region of memory. search for character . . 835
regions. compare . . 837
register 1 71. 956
register declaration. 956
register names. . . . 410
register variable . . . 956
regsub(). 791
regular expressions. 39
refeases, software, preparing . 735
remacc. 908
remote access password . 908
remote communication. 84 7
remove a directory . 20
rename. 956
rename a file 956
rename files 1 7
replace() 791
reset line number. 387
resetterm() . 95 7
restor . 957
restore

files .. .
return

. 51
6, 959

rev · · · · · · 960
1042
960
960

961, 1042
167, 172

19, 21, 961
962

. . 20. 963
963
955

12-13. 31, 44. 964

reverse search for character in string .
rewind()
rewinddir() . . .
rindex()
Ritchie. Dennis
rm ...
rmail .
rmdir .
rmdir()
ROM
root ..

INDEX

1210 The COHERENT SYSTEM

device ...
directory ..
file system

root partition
changing size of . .

rpow() ..••...•
RS-232
rub out key
rubik
run time, check assertion .
rvalue

s

.... 472

. 27

..... 26

719
.... 964

. 964

. . . 7
965

. 452
. . . . 966

sa.. . . 967
sbrk(). . 968
scanft). . 968
scat. . . 970
sched.h. . 972
screen editor 32
script 57, 59, 62
SCSI. 972
sdiv() 972
search an array 4 79
search for character in a string. . . 1033, 1042
search for character in region of memory . 835
search string for character 1042
secondary boot 4 72
SECONDS 973
security. . 973
sed 974

$ 147
> . . • • 144
change lines . . 153
ed 143
including a file. 153
line range. . . . 147
line selection . . 146
next line. 155
p command withs . 148
pattern . . . 147
pipes. 143
re~ingin.. l~
substitution 144
tutorial 143

seekdir() 976
seg.h 977
sem. 977
sem.h. 978
semaphores

driver ...
semctl() .
semget().
semop() .

semctl() .. .
semget() .. .
semicolon ..
semicolons . .
semop() ..
set

INDEX

977
978
980
981
978
980
174

..... 57
981

. . . . 983

setbuf()
setgid()
setgrent()
setjmp()
setjmp.h
setpgrp() ..
setpwent()
settz()
setuid()
setupterm()
sgtty
sp:t:ty.h
sii

tutorial
shared memory

driver
shmctl()
shmget()

SHELL
shell

984
985
985
985
986
986
987
987
987
988
988

. 993
28,30,59,993

. 57

1004
1005
1006

. 1003

script
28,30,57
... 59
... 57
. .. 57

sequential execution of commands .
simple commands .
variable

shell, Bourne
Shell, D.L ...
shell, Korn
shellsort()
shift .. .
shm .. .
shm.h ..
shmctl().
shmget()
short ..
showflagO .
shrd
shri
shutdown
shutting down COHERENT . .
signal()
signal.h
signame
sin()
single-user mode
sinh() ..
size
sizeof
skip()
slash

in path name .
sleep ..
sleep()
sload()
smail
smart host ..
smult()
soft fonts.

. 64. 66
993

1003
754

1003
1003
1004
1005
1005
1006
1008

791
412
412

1008
.. 9
1008
1011
1011

. 1011
473, 1008

1011
1012
1012

791

. 13
1013
1013
1014
1014
913

software, installing under COHERENT

1018
928
735
735 software, preparing releases. . .

sort 1018

soundex
source file
source file inclusion
source file name. . . .
source file. current line
source file, time translated
space .. .
span() .. .
special file

block ..
spell
spelling, looking up a word
split ...
splitter()
spow() ..
sprintfU.
sqrt() ..
srand() .
srandl().
srcpath.
SS ••••
sscanfU.
stack

alter size of .
stack size.
standard

input
output

standard error .
standard 1/0 ...
standard input .
standard output.
stat() .. .
stat.h .. .
statfs() ..
static ...
stdarg.h ..
stddelh ..
stderr ..
stdin ..
STDIO ..
stdio.h .
stdlib.h.
stdout ..
sticky bit .. .
stime()
storage class .
strca{()
strchr() ..
strchtr() ..
strcmp() ..
strcmpl() .
strcoll() ..
strcpy() ..
strcspn() .
stream ..
stream.h.
strerror()

790
170
387
390
390
391

. 64
791

. 27
1019
1019
1020
790

1021
1021
1021
1022

791
1022
1022
1024
1025

782
171

. 30

. 30
. 1025
. .. 29
. 1025

15, 1026
1026
1028
1028
1029
1029
1029
1030
1030

. 1030
178, 1031

1031
1032

51I.1032
1032
1033
1033
1033

792
1034

792
1034
1034
1035
1035
1035

string functions
string transformation, locale specific

1035
1036
1050

The COHERENT SYSTEM 1211

string, break into tokens. 1044
string, compare two. 1034
string, comparison l 035, 1042
string, convert to floating-point number 1043
string, convert to long integer. l 046
string, convert to unsignecflong integer. l 04 7
string. find one within another . . . l 043
string, reverse search for character l 042
string, search for character . . 1042
string, search for character in 1033, 1042
string-ize operator 382
string.h 1036
strings . 1038
strip. . . 1039
strlen() . 1039
strn . . . 412
strncat() . 1039
strncmp(). 1040
strncpy() 1040
strpbrk() 1042
strrchr(). 1042
strspn() . 1042
strstr() . 1043
strtod() . 1043
strtok() . 1044
strtol(). . I 046
strtoul() . 104 7
struct . . 1049
structure . . 1050

group . . . 715
structure assignment. 1050
structured

programming.
structured programming.
strxfrm()
stty
stty()
SU ••••••••••
subject sequence .
substitution

in commands. . . .
of parameters. . . .

success
success, execute upon .
succotash .
suload() .. .
sum
superuser
swab() ..
switch ..
symt ...
sync ..
sync() ..
system

time ...
system calls
system maintenance .
system name.
system()

. 46
172

. . . . 1050

. 6, 40, 1052
1051

.. 44, 1054
1043, 1046-1047

.. 60
46,69

. 68
. 755
. 560

1054
. 1054

31, 44, 1055
1055
1055

. 412
26-27,51,474, 1056

1057

. 53
1057
1059
1138
1057

INDEX

1212 The COHERENT SYSTEM

T

tab
tail
tan() ..•.•.••.
tanh()
tape
tar
tboot
technical information. . . .
tee
telldir()
tempnam()
temporary file, generate name . . .
TERM ••••••..
term
termcap
terminal

adding
cabling
cooked
functions
interface
mode
raw

terminfo
compile source file
de-compile binary
file format

termio
termio.h
tertiary booting . .
test
testing

. 40
1060
1060
1061
1061
1062

473, 1064
1065
1065
1066
1066
1103
1067
1067
1068

. 40, 1078
1078

.... 964
1079

988, 1088
988, 1088

..... 27
1079
1080
1097

. 731
1067
1088
1093
1064

. 68, 1094

strings 69
text of error message, return 1035
tgetent(). 1095
tgetflag() 1096
tgetnum(). 1096
tgetstr() I 096
tgoto(). 1097
The C Programming Language I 72
Thompson, Ken 167
tic . 1097
tick(). 1098
time 39, 1098-1099
time source file is translated 391
time() 1099
time.h. 1099
time_ to _Jday() 792
timeb.h. 1099
timef.h 1100
timeout.h. 1100
times 1100
times() • . . 1100
times.h. 1100
timesharing 528
TIMEZONE. 110 I
timezone 40
tm_to_Jday() 792

INDEX

TMPDIR. 1102
tmpnam(). 1103
token pasting 383
token, break a string into sequence of. . 1044
token, definition. 754, 993
token-pasting operator. 383
tolower() 1103
touch. 1104
toupper(). 1104
tparm() • • • . • 1105
tputs(). 1105
tr 1106
Trailblazer modem with UUCP . . 1133
transform a string. 1050
translation, date. 389
translator. mark conforming . . . 390
trap. 1106
tree-structured . 529
trim() . . 792
troff. 34, 1107
true . . . 1112
tsort. . . 1113
ttt. . . . 1113
tty......... 1113
tty.h. 1113
ttyname() 1114
ttys 1114
ttyslot() 1116
ttystat. 1116
type checking . . 111 7
type promotion 111 7
type qualifier, not modifiable . 546
type, pointer . . . 920
type, referenced. 920
typedef 111 7
types.h 111 7
typeset 111 7
typo. 1118

ucase() .
umask .
umask().
umount.
umount()
unalias
uname()
uncompress . . .
undefine a macro . . .
ungetc()
uninstall bootstrap . .
uninstall COHERENT
union ..
uniq .. .
unique()
units
unlink()
unlockit()
unlockntty() ...

u

. 792
1120
1120

25-26, 1121
1121
1122
1122
1122
389

1123
736
737

1123
1123

. 1124
.. 29, 1124

1125
794

. 794

unlocktty() 794
unmkfs . 1126
unsigned. 1127
unsigned long integer, create from string 104 7
until. . . . 73, 1127
update 474, 1127
uproc.h. 1127
usage() 792
USENIX. 50
USENIX Association 553
USER. . 1127
user

id
name .. .
time .. .

user name.
user reaction report
usr .. .
ustar
ustat()
utime() .. .
utmp.h .. .
utsname.h.
uucheck
uucico .. .
UUCP
uucp
UUCP

domain name. .
lock files
system name .
tutorial .

uucpname.
uudecode.
uuencode.
uuinstall .
uulog ...
uumvlog .
uuname .
uurmlock.
uutouch
uux ..
uuxqt ...

va_arg()
va end()
va - start()
value from command .
variable

shell
variable arguments .
vertical bar .
vfind() ..
vi
vidattr()
vidputs()
Viduya, Robert
view

v

47
47
53
30

. . 3

. 13
49, 1128

1129
1129
1130
1130
1131
1131
1132
1136

1136
350, 1141

1136
347

1138
1138
1139
1140
1140
1140
1141
1141
1141
1142
1144

1145
1145
1146
. 68

64,66
1146
. 73
793

1147
1148
1148
497

1148

The COHERENT SYSTEM 1213

vinit() ..
virec .. .
void .. .
volatile .
vopen()
vshutdown() .

wait ...
wait() ..
wall ...
WC ••••
whence.
whereis.
which ..
while ..
who
wild pointer
wildcards ..
word
write
write permission
write()

xdump()

w

x

XENIX file system, mounting .
xgcd() ..
xopen()

yacc
%%
%left
%nonassoc.
%prec
%right
%token
accept action .
action statements .
action, accept.
action, error .
action, reduce
action, shift. .
actions

y

792
1149
1150
1150
793
792

58, 1151
1151

50, 1152
1152
1152
1153
1154

. ... 73, 1154
30,35,50, 1155

.... 920
1155

. .. 470
36, 1155

. 23
1156

792
678

1157
792

1158
230

239-240
... 240
. .. 240

239-240
236,239

230

ambiguity.
ambiguity, default handling .
ambiguity, resolution .
associative, left.
associative, right. .
associativity
Backus-Naur Form

231
230
230
230
230
232
237
238
238
239
239
238
229
229
231
237

BNF
comments, in rules
default, action . . .
definition section .
definitions section .

. 230, 238

. . . . 231

INDEX

1214 The COHERENT SYSTEM

error action . . .
error, recovery .
error, token . . .
LALR ••.••••
left-to-right parsing .. .
library
library, yacc . .
LR parsing
nonassoctative
nonterminals . .
parse actions . .
precedence . . .
production . . .
push-down list.
reduce
reduction
ril!ht
rule format . . .
rule, actions . .
rule, format. . .
rule, sections . .
rule, style
rule, type
rule, values . . .
rules section . .
rules, precedence
section, definition
section, rules
shift
shift-reduce conflicts ..
stack
start symbol
terminals
token definition
token, definition
token, error.
token, value
tutorial
type, of nonterminal .. .
user code
value, qualification . . .
yyerrok
yyparse
{}.

yes..
yn() •••••••..

zcat ...
zerop() ..

{} ...

Ii::

INDEX

z

. ... 230

. 240-241

. 240-241
229
229
229
229
229
240
231
230

. 239-240

. ... 231

. ... 230

. 230, 238
231
240
231
233
232
231
232
236
233
230
240
230
230

. 230, 238

. ... 238

. ... 230

. 230-231

. ... 231

. ... 231

. ... 236

. 240-241
234
225
236
231
236
241
229
230

1159
792

1160
1160

. 45

. 31,73.755,994

. . . . 69, 755, 994

MARK WILLIAMS COMPANY ("MWC 11)

Software License Agreement

YOU SHOULD CAREFULLY READ TIIIS SOFIWARE LICENSE AGREEMENT BEFORE BREAKING TIIE
SEAL ON THE DISKETIB ENVELOPE. BREAKING THE SEAL INDICATES YOUR ACCEPTANCE OF THE
IBRMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE WITH 'IllEMz.. YOU SHOULD
PROMP'ILY RETURN THE DISKETIB UNOPENED, AND YOUR MONEY WILL BE REFUNDtD.
MWC provides this software and licenses its use to you. You assume responsibility for the selection of the software to
achieve your intended results, and for the installation, use and results obtained from it.

LICENSE
MWC grants you a license only to: (a) use the software on a single machine; and (b) ropy the software into any
machine readable form for backup purposes in support of your use oI the software on the single machine.

As an exception to the foregoing paragraph, we grant you the riitllt to include ~rtions of the MWC Runtime Library
(as defined below) in software programs that you develop, ca!Ted Composite Programs, and to use, distribute ana
ficense Composite Programs to third parties without payment of any fee. You shall, however, include in each
Composite P"roP.m, and on the exterior label of every diskette, a ropyright notice in this form: "Portions of this
program, ropynght 1982, 1992, Mark Williams Company." As an express condition to the use of the software.?. you
agree to inaemmfy and hold MWC harmless from an claims by you and third parties arising out of the use or any
composite Program. Any portion of the Runtime Library merged into another program will rontinue to be subject to
the terms and conditions of this Agreement. "Runtime Library" is defined as the set of copyrighted MWC language
subroutines provided with the sofiware, a portion of which must be linked to and become part of a Composite
Program for that Program to run on a computer.
You may not transfer the software, or any copy, modification or merged portion, in whole or in part, except as
expressly provided herein.

TERM
You may terminate the license at any time by destroying the software together with all ropies, modifications and
merged portions in any form. It will also terminate upon conditions set forth elsewhere in this Agreement or if you
fail lo comply with any terms or conditions of this Agreement. You agree upon termination to destroy the software
together with all copies, modifications and merged portions in any form. The license shall terminate upon termination
olthis Agreement.

LIMITED WARRANTY
EXCEPT FOR 1llE LIMIIBD WARRANTY SET FORTH IN THE NEXT PARAGRAPH, THE PROGRAM IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED
INCLUDING.JJUT NOT LIMIIBD TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND. FITNESS
FOR A PAR11CULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE YOU (AND NOT MWC OR ANY
AUTIIORIZED MWC DEALER) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVIONGJi.~!'AIR
OR CORRECTION. MWC DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOt< 1 wARE
WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFIWARE WILL BE
UNINTERRUPIBD OR ERROR FREE.
MWC warrants to the original licensee that the diskettes on which the software program is recorded is free from
defects in material and workmanship under normal use and service for a ~riod of 60 <lays from the delivery date as
evidenced by a ropy of your receipt. Your exclusive remedy is the return of the diskettes as described below.
IN NO EVENT WILL MWC BE LIABLE TO YOU FOR ANY DAMAGES INCLUDING ANY LOST PROFITS
LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE SOFIW ARE EVEN IF MWC OR AN AUTHORIZED MWC DEALER HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

MISCELLANEOUS
If you are dissatisfied with the diskette[s] for any reason whatsoever (including if the diskettes are defective in
material or workmanship), you may return them for re~lacement or refund of amounts previously ~id them so long
as the return is made withln 60 days after purchase, ano is accompanied by (a) a Return Authorization Number form
Mark Williams Company, (b) your receiP,t, (c) an affirmative statement that you have not retained any copies of the
software (including 1)3ck-up ropies) and ld) a statement as to the reason for the return.
You may not sublicense, assign or transfer the license to the software except as expressly provided in this Agreement.
Any attempt otherwise to sublicense, assign or transfer any of the rights, duties or obligations hereunder is void. This
Agreemenf will be governed by the laws of the State of Illinois.
Should you have any _questions concerning this Agreement, you may contact MWC by writing to the Mark Williams
Company, 60 Revere Drive, Northbrook, IL 60062.
YOU ACKNOWLEDGE THAT YOU HA VE READ THIS AGREEMENT UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS IBRMS AND CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLEIB AND
EXCLUSIVE STAIBMENT OF THE AGREEMENT BETWEEN US WHICH SUPERSEDES ANY PROPOSAL
OR PRIOR AGREEMENT, ORAL OR WRITIBN, AND ANY OTHER COMMUNICATIONS BETWEEN US
RELATING TO THE SUBJECT MATIBR OF THIS AGREEMENT.

fll Mark Williams
Company

