
Microsoft®
GW -BASIC® Interpreter
User's Reference

Microsoft Corporation

Information in this document is subject to change without notice and does
not represent a commitment on the part of Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other mediu:ql for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1986

Portions copyright COMPAQ Computer Corporation, 1985

Microsoft®, MS-DOS®, GW-BASIC® and the Microsoft logo are registered
trademarks of Microsoft Corporation.

EGA® and IBM® are registered trademarks of International Business Machines
Corporation.

Document Number 410130013-320-ROI-0686

Introduction

This manual is an alphabetical reference to GW-BASIC instructions: state
ments, functions, commands, and variables.

The name and type of each instruction is listed at the top of the page, and
is followed by:

Purpose

Syntax

Comments

The purpose of the instruction

The complete notation of the instruction

Pertinent information about the instruction, and
what happens when it is encountered by GW-BASIC

Examples An illustration of the instruction as it might appear
in a program

Notes Any special information about the instruction

1

ABS Function

ABS Function

Purpose:

To return the absolute value of the expression n.

Syntax:

ABS(n)

Comments:

n must be a numeric expression.

Examples:

PRINT ABS(7*(-5))
35
Ok

Prints 35 as the result of the action.

2

ASC Function

ASC Function

Purpose:

To return a numeric value that is the ASCII code for the first character of
the string x$.

Syntax:

ASC(x$)

Comments:

If x$ is null, an "Illegal Function Call" error is returned.

If x$ begins with an uppercase letter, the value returned will be within the
range of 65 to 90.

If x$ begins with a lowercase letter, the range is 97 to 122.

Numbers 0 to 9 return 48 to 57, sequentially.

See the CHR$ function for ASCII-to-string conversion.

See Appendix C in the OW-BASIC User's Guide for ASCII codes.

Examples:

10 X$="TEN"
20 PRINT ASC(X$)
RUN

84
Ok

84 is the ASCII code for the letter T.

3

ATN Function

ATN Function

Purpose:

To return the arctangent of x, when x is expressed in radians.

Syntax:

ATN(x)

Comments:

The result is within the range of -7r/2 to 7r/2.

The expression x may be any numeric type. The evaluation of ATN is per
formed in single precision unless the /d switch is used when GW-BASIC is
executed.

To convert from degrees to radians, multiply by 7r/180.

Examples:

1 0 I NPUT X
20 PRINT ATN(X)
RUN
? 3
1.249046
Ok

Prints the arctangent of 3 radians (1.249046).

4

AUTO Command

AUTO Command

Purpose:

To generate and increment line numbers automatically each time you press
the RETURN key.

Syntax:

AUTO [line number][,[increment]]
AUTO .[,[increment]]

Comments:

AUTO is useful for program entry because it makes typing line numbers
unnecessary.

AUTO begins numbering at line number and increments each subsequent
line number by increment. The default for both values is 10.

The period (.) can be used as a substitute for line number to indicate the
current line.

If line number is followed by a comma, and increment is not specified, the
last increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk
appears after the number to warn that any input will replace the existing
line. However, pressing RETURN immediately after the asterisk saves the
line and generates the next line number.

AUTO is terminated by entering CTRL-BREAK or CTRL-C. GW-BASIC will then
return to command level.

Note

The line in which CTRL-BREAK or CTRL-C is entered is not saved. To be
sure that you save all desired text, use CTRL-BREAK and CTRL-C only on
lines by themselves.

5

AUTO Command

Examples:

AUTO 100,50

Generates line numbers 100, 150, 200, and so on.

AUTO

Generates line numbers 10, 20, 30, 40, and so on.

6

BEEP Statement

BEEP Statement

Purpose:

To sound the speaker at 800 Hz (800 cycles per second) for one-quarter
of a second.

Syntax:

BEEP

Comments:

BEEP, CTRL-G, and PRINT CHR$(7) have the same effect.

Examples:

2340 IF X>20 THEN BEEP

If X is out of range, the computer beeps.

7

BLOAD Command

BLOAD Command

Purpose:

To load an image file anywhere in user memory.

Syntax:

BLOAD jilename[,offset]

Comments:

filename is a valid string expression containing the device and filename.

offset is a valid numeric expression within the range of 0 to 65535. This is
the offset into the segment, declared by the last DEF SEG statement, where
loading is to start.

If offset is omitted, the offset specified at BSA VE is assumed; that is, the
file is loaded into the same location it was saved from.

Note

BLOAD does not perform an address range check. It is possible to
BLOAD anywhere in memory. You must not BLOAD over the GW-BASIC
stack space, a GW-BASIC program, or the GW-BASIC variable area.

While BLOAD and BSA VE are useful for loading and saving machine
language programs, they are not restricted to them. The DEF SEG state
ment lets you specify any segment as the source or target for BLOAD and
BSA VE. For example, this allows the video screen buffer to be read from
or written to the diskette. BLOAD and BSA VE are useful in saving and
displaying graphic images.

8

BLOAD Command

Examples:

10 DEF SEG=&HB800
20 BLOADIIPICTUREII,O

(This example may not work in some screen modes.)

The DEF SEG statement in line 10 points the segment at the screen buffer.

The DEF SEG statement in line 10 and the offset of 0 in line 20 guarantee
that the correct address is used.

The BLOAD command in line 20 loads the file named picture into the
screen buffer.

Note

The BSAVE example in the next section illustrates how the file named
picture is saved.

9

BSAVE Command

BSA VE Command

Purpose:

To save portions of user memory on the specified device.

Syntax:

BSA VE filename,offset,length

Comments:

filename is a valid string expression containing the filename.

offset is a valid numeric expression within the range of 0 to 65535. This
is the offset into the segment, declared by the last DEF SEG statement,
where saving is to start.

length is a valid numeric expression within the range of 0 to 65535, specify
ing the length of the memory image to be saved.

If filename is less than one character, a "Bad File Number" error is issued
and the load is aborted.

Execute a DEF SEG statement before the BSA VE. The last known DEF
SEG address is always used for the save.

The DEF SEG statement must be used to set up the segment address to the
start of the screen buffer. An offset of 0 and a length of 16384 specify that
the entire 16K screen buffer is to be saved.

Examples:

10 DEF SEG=&HB800
20 BSAVE II PICTURE II ,0,16384

The DEF SEG statement in line 10 points the segment at the screen buffer.

The BSA VE command in line 20 saves the screen buffer in the file named
picture.

10

CALL Statement

CALL Statement

Purpose:

To call an assembly (or machine) language subroutine.

Syntax:

CALL numvar[(variables)]

Comments:

numvar is the starting point in memory of the subroutine being called as an
offset into the current segment.

variables are the variables or constants, separated by commas and enclosed
in parentheses, that are to be passed to the routine.

The CALL statement is recommended for interfacing assembly language
programs with GW-BASIC. Although the USR function may also be used,
CALL is compatible with more languages, produces a more readable source
code, and can pass multiple arguments.

Invocation of the CALL statement causes the following to occur:

• Each parameter location in the variable is pushed onto the stack.
The parameter location is a 2-byte offset into GW-BASIC's data
segment.

• The return address code segment (CS) and the offset are pushed
onto the stack.

• Control is transferred to the user routine by the segment address
given in the last DEF SEG statement and the offset given in the
variable name.

• The user routine now has control. Parameters may be referenced by
moving the stack pointer (SP) to the base pointer (BP) and adding a
positive offset to BP.

• The called routine may destroy the contents of any registers.

• The called program must know how many parameters were passed.
Parameters are referenced by adding a positive offset to BP, assum
ing the called routine moved the current stack pointer into BP
(that is, MOV BP,SP).

11

CALL Statement

• The called program must know the variable type for numeric
parameters passed.

• The called routine must do a RET n, where n is the number of
parameters in the variable times 2. This is necessary in order to
adjust the stack to the point at the start of the calling sequence.

• Values are returned to GW-BASIC by including in the argument list
the name of the variable that is to receive the result.

• If the argument is a string, the parameter offset points to three
bytes called the string descriptor. Byte 0 of the string descriptor con
tains the length of the string (0 to 255). Bytes 1 and 2, respectively,
are the lower- and upper-eight bits of the string starting address in
the string space.

• If the argument is a string literal in the program, the string de
scriptor points to program text. Be careful not to alter or destroy
a program this way. To avoid unpredictable results, add + "" to
the string literal in the program, as in the following:

20 A$=IIBASICII+ IIII

This forces the string literal to be copied into the string space. Now
the string may be modified without affecting the program.

Note

Strings may be altered by user routines, but their length must
not be changed. GW-BASIC cannot correctly erase strings if their
lengths are modified by external routines.

For more information on the CALL statement and USR function, see Ap
pendix D in the GW-BASIC User's Guide.

Example 1:

100 DEF SEG=&H2000
110 ARK=O
120 CALL ARK(A,B$,C}

12

CALL Statement

Line 100 sets the segment to hex 2000. ARK is set to zero so that the call to
ARK executes the subroutine at location 2000:0.

Example 2:

The following sequence of 8086 Assembly Language demonstrates access of
the parameters passed and stored in variable C:

PUSH BP
MOV BP,SP
MOV BX,8[BP]
MOV CL,[BX]
MOV DX,1 [BX]

MOV SI,10[BP]
MOV DI,6[BP]
MOVSW
RET 6

Gets current stack position in BP.
Gets address of B$ descriptor.
Gets length of B$ in CL.
Gets address of B$ text in DX.

Gets address of A in SI.
Gets pointer to C in DI.
Stores variable A in C.
Restores stack and returns.

MOVSW copies only two bytes. This is sufficient if variables A and Care
integer. Four bytes must be copied if they are single precision; eight bytes,
if they are double precision.

Example 3:

100 DEF SEG=&H2000
110 ACC=&H7FA
120 CALL ACC(A,B$,C)

Line 100 sets the segment to hex 2000. The value of variable ACC is added
into the address as the low word after the DEF SEG value is shifted four
bits to the left (this is a function of the microprocessor, not of GW-BASIC).
Here, ACC is set to &H7F A, so that the call to ACC executes the subrou
tine at the location hex 2000:7FA (absolute address hex 207FA).

13

CDBL Function

CDBL Function

Purpose:

To convert x to a double-precision number.

Syntax:

CDBL(x)

Comments:

x must be a numeric expression.

Example:

10 A=454.67
20 PRINT AiCDBL(A)
RUN
454.67 454.6700134277344
Ok

Prints a double-precision version of the single-precision value stored in the
variable named A.

The last 11 numbers in the double-precision number have no meaning in
this example, since A was previously defined to only two-decimal place
accuracy.

Note

14

See the CINT and CSNG functions for converting numbers to integer
and single-precision, respectively.

CHAIN Statement

CHAIN Statement

Purpose:

To transfer control to the specified program and pass (chain) variables
to it from the current program.

Syntax:

CHAIN[MERGE] filename[,[line][,[ALL][,DELETE range]]]

Comments:

MERGE overlays the current program with the called program.

Note

The called program must be an ASCII file (previously saved with the a
option) if it is to be merged (see the MERGE command).

filename is the name of the program that is called to be chained to. The
.BAS extension is assumed unless another is specified.

line is a line number or an expression that corresponds to a line number in
the called program. It is the starting point for execution of the called pro
gram. For example, the following begins execution of PROG 1 at line 1000:

10 CHAIN IPROG1",1000

If line is omitted, execution begins at the first line.

line is not affected by a RENUM command. However, the line numbers in
the specified range are affected by a RENUM command.

ALL specifies that every variable in the current program is chained to the
called program. For example:

20 CHAIN IPROG1",1000,ALL

15

CHAIN Statement

If the ALL option is omitted, the current program must contain a
COMMON statement to list the variables that are passed.

CHAIN executes a RESTORE before it runs the program that it is to be
chained to. The READ statement then gets the first item in the DATA
statement. Reading will not resume where it left off in the program that
is being chained.

After an overlay is executed and used for a specific purpose, it is usually
desirable to delete it so that a new overlay may be brought in. To do this,
use the DELETE command.

The CHAIN statement with the MERGE command leaves the files open and
preserves the current option base setting.

If the MERGE command is omitted, the OPTION BASE setting is pre
served, and CHAIN preserves no variable types or user-defined functions
for use by the chained program. That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statement containing shared variables must be re
stated in the chained program.

When using the MERGE command, place user-defined functions before any
CHAIN MERGE statements in the program. Otherwise, they will be unde
fined after the merge is complete.

16

CHDIR Command

CHDIR Command

Purpose:

To change from one working directory to another.

Syntax:

CHDIR pathname

Comments:

pathname is a string expression of up to 63 characters.

To make sales the working directory on Drive A: and inventory the working
directory on Drive B: (assume A: is the default drive), type the following
commands:

CHDIR "SALES"
CHDIR "B:INVENTORY"

17

CHR$ Function

CHR$ Function

Purpose:

To convert an ASCII code to its equivalent character.

Syntax:

CHR$(n)

Comments:

n is a value from 0 to 255.

CHR$ is commonly used to send a special character to the terminal or
printer. For example, you could send CHR$(7) to sound a beep through the
speaker as a preface to an error message, or you could send a form feed,
CHR$(12), to the printer.

See the ASC function for ASCII-to-numeric conversion.

ASCII Codes are listed in Appendix C of the GW-BASIC User's Guide.

Examples:

PRINT CHR$(66);
B
Ok

This prints the ASCII character code 66, which is the uppercase letter B.

PRINT CHR$(13);

This command prints a carriage return.

18

CINT Function

CINT Function

Purpose:

To round numbers with fractional portions to the next whole number
or integer.

Syntax:

CINT(x)

Comments:

If x is not within the range of - 32768 to 32767, an "Overflow" error occurs.

See the FIX and INT functions, both of which return integers.

Examples:

PRINT CINT(45.67)
46
Ok

45.67 is rounded up to 46.

Note

See the CDBL and CSNG functions for converting numbers to the
double-precision and single-precision data types, respectively.

19

CIRCLE Statement

CIRCLE Statement

Purpose:

To draw a circle, ellipse, and angles on the screen during use of the
Graphics mode.

Syntax:

CIRCLE(xcenter,ycenter),radius[,[color][,[start],[end][,aspect]]]

Comments:

xcenter and ycenter are the x- and y- coordinates of the center of the ellipse,
and radius is the radius (measured along the major axis) of the ellipse. The
quantities xcenter and ycenter can be expressions. The center attributes can
use either absolute or relative coordinates.

color specifies the color of the ellipse. Its value depends on the current
screen mode.

See the COLOR and SCREEN statements for more information on using
colors in the different screen modes.

In the high-resolution mode, 0 indicates black and 1 indicates white.
The default for the high-resolution mode is 1.

The start and end angle parameters are radian arguments between - 2 * 'IT

and 2 * 'IT that specify where the drawing of the ellipse is to begin and end. If
start or end is negative, the ellipse is connected to the center point with a
line, and the angles are treated as if they are positive (note that this is dif
ferent from adding 2 * 'IT).

aspect describes the ratio of the x radius to the y radius (x:y). The default
aspect ratio depends on the screen mode, but gives a visual circle in either
graphics mode, assuming a standard monitor screen aspect ratio of 4:3.

If the aspect ratio is less than 1, then the radius is given in x-pixels. If it is
greater than 1, the radius is given in y-pixels.

20

CIRCLE Statement

In many cases, an aspect ratio of 1 gives better ellipses in the medium
resolution mode. This also causes the ellipse to be drawn faster. The start
angle may be less than the end angle.

Example 1:

10 SCREEN1: CIRCLE(100,100), 50

Draws a circle of radius 50, centered at graphics points 100x and 100y.

Example 2:

1 ' This will draw 17 ellipses
10 CLS
20 SCREEN 1
30 FOR R=160 TO 0 STEP-10
40 CIRCLE (160,100),R",,5/18
50 NEXT

Example 3:

10 'This will draw 5 spheres
2 0 GoTo 160
50 IF VERT GoTo 100
60 CIRCLE (X,Y),R,C",.07
7 0 FOR I = 1 TO 5
80 CIRCLE (X,Y),R,C",I*.2:NEXT
90 IF VERT THEN RETURN
100 CIRCLE (X,Y),R,C",1.3
110 CIRCLE (X,Y),R,C",1.9
120 CIRCLE (X,Y),R,C",3.6
130 CIRCLE (X,Y),R,C",9.8
140 IF VERT GO TO 60
150 RETURN
160 CLS: SCREEN 1: COLOR 0,1: KEY OFF: VERT=O
170 X=160:Y=100:C=1:R=50:GoSUB 50
180 X=30:Y=30:C=2:R=30:GoSUB 50
190 X=30:Y=169:GoSUB 50
200 X=289:Y=30:GoSUB 50
210 X=289:Y=169:GoSUB 50
220 LINE (30,30)-(289,169),1
230 LINE (30,169)-(289,30),1
240 LIN E (30, 1 69) - (289 , 30) , 1 , B
250 Z$=INKEY$: IF Z$=IIII THEN 250
RUN

21

CIRCLE Statement

CLEAR Command

Purpose:

To set all numeric variables to zero, all string variables to null, and to close
all open files. Options set the end of memory and reserve the amount of
string and stack space available for use by GW-BASIC.

Syntax:

CLEAR[,[expressionl][,expression2]]

Comments:

expressionl is a memory location that, if specified, sets the maximum
number of bytes available for use by GW-BASIC.

expression2 sets aside stack space for GW-BASIC. The default is the previous
stack space size. When GW-BASIC is first executed, the stack space is set to
512 bytes, or one-eighth of the available memory, whichever is smaller.

GW-BASIC allocates string space dynamically. An "Out of String Space" error
occurs only if there is no free memory left for GW-BASIC to use.

The CLEAR command:

• Closes all files

• Clears all COMMON and user variables

• Resets the stack and string space

• Releases all disk buffers

• Turns off any sound

• Resets sound to music foreground

• Resets PEN to off

• Resets STRIG to off

• Disables ON ERROR trapping

22

CLEAR Command

Examples:

CLEAR

Zeroes variables and nulls all strings.

CLEAR 32768

Zeroes variables, nulls strings, protects memory above 32768, does not
change the stack space.

CLEAR, ,2000

Zeroes variables, nulls strings, allocates 2000 bytes for stack space, and
uses all available memory in the segment.

CLEAR ,32768,2000

Zeroes variables, nulls strings, protects memory above 32768, and allocates
2000 bytes for stack space.

23

CLOSE Statement

CLOSE Statement

Purpose:

To terminate input/output to a disk file or a device.

Syntax:

CLOSE [[#]filenumber[,[#]filenumber] .. ']

Comments:

filenumber is the number under which the file was opened.

The association between a particular file or device and file number ter
minates upon execution of a CLOSE statement. The file or device can then
be reopened using the same or a different file number.

A CLOSE statement with no file number specified closes all open files
and devices.

A CLOSE statement sent to a file or device opened for sequential output
writes the final buffer of output to that file or device.

The END, NEW, RESET, SYSTEM, or RUN and LOAD (without r option)
statements always close all files or devices automatically. STOP does not
close files.

Examples:

250 CLOSE

This closes all open devices and files.

300 CLOSE 1, #2, #3

Closes all files and devices associated with file numbers 1, 2, and 3.

24

CLS Statement

CLS Statement

Purpose:

To clear the screen.

Syntax:

CLS [n]

Comments:

n is one of the following values:

Value of n

o
1

2

Effect

Clears the screen of all text and graphics

Clears only the graphics viewport

Clears only the text window

If the graphics viewport is active, CLS without argument clears only the
viewport. If the graphics viewport is inactive, CLS clears the text window.

If the screen is in alpha mode, the active page is cleared to the currently
selected background color (see the SCREEN and COLOR statements).

If the screen is in graphics mode, the entire screen buffer is cleared to back
ground color.

The screen may also be cleared by pressing CTRL-HOME, or by changing the
screen mode with the SCREEN or WIDTH statements.

CLS returns the cursor to the upper-left corner of the screen, and sets the
last point referenced to the center of the screen.

If the VIEW statement has been used, CLS clears only the last viewport
specified.

25

CLS Statement

Examples:

1 CLS

This clears the screen.

26

COLOR Statement

COLOR Statement

Purpose:

To select display colors

Syntax:

COLOR [foreground][,[background][,border]]

COLOR [background][,[palette]]

COLOR [foreground][,[background]]

Comments:

In general, COLOR allows you to select the foreground and background
colors for the display. In SCREEN 0 a border color can also be selected. In
SCREEN 1 no foreground color can be selected, but one of two four-color
palettes can be selected for use with graphics statements. The different
syntaxes and effects that apply to the various screen modes are described
below:

Mode

SCREEN 0

Effect

Modifies the current default text foreground and back
ground colors, and the screen border. The foreground
color must be an integer expression in the range
0-31. It is used to determine the "foreground" color
in text mode, which is the default color of text. Six
teen colors can be selected with the integers 0 - 15.
A blinking version of each color can be selected by
adding 16 to the color number; for example, a blink
ing color 7 is equal to 7 + 16, or 23. Thus, the legal
integer range for foreground is 0 - 31.

The background color must be an integer expression
in the range 0 - 7, and is the color of the background
for each text character. Blinking colors are not per
mitted.

The border color is an integer expression in the range
0-15, and is the color used when drawing the screen
border. Blinking colors are not permitted.

27

COLOR Statement

SCREEN 1

SCREEN 2

28

If no arguments are provided to COLOR, then the
default color for background and border is black (color
0), and for foreground, is as described in the SCREEN
statement reference pages.

In mode 1, the COLOR statement has a unique syntax
that includes a palette argument, which is an odd or
even integer expression. This argument determines
the set of display colors to use when displaying partic
ular color numbers.

For hardware configurations that do not have an
IBM® Enhanced Graphics Adapter (EGA), the default
color settings for the palette parameter are equivalent
to the following:

COLOR ,0

COLOR ,1

'Same as the next three PALETTE
'statements
'1 = green, 2 = red, 3 = yellow

'Same as the next three PALETTE
'statements
'1 = cyan, 2 = magenta, 3 = hi.
'intense white

With the EGA, the default color settings for the
palette parameter are equivalent to the following:

COLOR , 0 'Same as the next three PALETTE
'statements

PALETTE 1 ,2 'Attribute 1 color 3 (green)
PALETTE 2,4 'Attribute 2 = color 5 (red)
PALETTE 3,6 'Attribute 3 = color 6 (brown)

COLOR , 1 'Same as the next three PALETTE
'statements

PALETTE 1 ,3 'Attribute 1 color 3 (cyan)
PALETTE 2,5 'Attribute 2 = color 5 (magenta)
PALETTE 3,7 'Attribute 3 = color 15 (white)

Note that a COLOR statement will override previous
PALETTE statements.

No effect. An "Illegal function call" error occurs if
COLOR is used in this mode.

SCREEN 7-
SCREEN 10

COLOR Statement

In these modes, no border color can be specified. The
graphics background is given by the background color
number, which must be in the valid range of color
numbers appropriate to the screen mode. See the
SCREEN statement reference pages for more details.
The foreground color argument is the default line
drawing color.

Arguments outside valid numeric ranges result in "Illegal function call"
errors.

The foreground color may be the same as the background color, making
displayed characters invisible. The default background color is black, or
color number 0, for all display hardware configurations and all screen
modes.

With the Enhanced Graphics Adapter (EGA) installed, the PALETTE state
ment gives you flexibility in assigning different display colors to the actual
color-number ranges for the foreground, background, and border colors dis
cussed above. See the PALETTE statement reference pages for more details.

For more information, see CIRCLE, DRAW, LINE, PAINT, PALETTE,
PRESET,PSET,SCREEN

Examples:

The following series of examples show COLOR statements and their effects
in the various screen modes:

SCREEN 0
COLOR 1 , 2, 3 'foreground=1, background=2, border=3

SCREEN
COLOR 1 , 0 'foreground=1, even palette number
COLOR 2, 1 'foreground=2, odd palette number

SCREEN 7
COLOR 3,5 'foreground=3, background=5

SCREEN 8
COLOR 6,7 'foreground=6, background=7

SCREEN 9
COLOR 1 ,2 'foreground=1, background=2

29

COM(n) Statement

COM(n) Statement

Purpose:

To enable or disable trapping of communications activity to the specified
communications adapter.

Syntax:

COM(n) ON
COM(n) OFF
COM(n) STOP

Comments:

n is the number of the communications adapter 1 or 2.

Execute a COM(n) ON statement before an ON COM(n) statement to allow
trapping. After COM(n) ON, if a nonzero number is specified in the ON
COM(n) statement, BASIC checks every new statement to see if any char
acters have come in the communications adapter.

With COM(n) OFF, no trapping takes place, and all communications
activity will be lost.

With COM(n) STOP, no trapping takes place. However, any communication
that takes place will be remembered so that immediate trapping will occur
when COM(n) ON is executed.

30

COMMON Statement

COMMON Statement

Purpose:

To pass variables to a chained program.

Syntax:

COMMON variables

Comments:

variables are one or more variables, separated by commas, that you want
to pass to the chained program.

The COMMON statement is used in conjunction with the CHAIN
statement.

COMMON statements may appear anywhere in a program, although
it is recommended that they appear at the beginning.

Any number of COMMON statements may appear in a program, but the
same variable cannot appear in more than one COMMON statement. To
pass all variables using the CHAIN statement, use the ALL option, and
omit the COMMON statement.

Place parentheses after the variable name to indicate array variables.

Examples:

100 COMMON A, B, C, D(),G$
110 CHAIN IA:PROG3"

This example chains to program PROG3 on disk drive A:, and passes the
array D along with the variables A, B, C, and string G$.

31

CONT Command

CONT Command

Purpose:

To continue program execution after a break.

Syntax:

CONT

Comments:

Resumes program execution after CTRL-BREAK, STOP, or END halts a pro
gram. Execution continues at the point where the break happened. If the
break took place during an INPUT statement, execution continues after
reprinting the prompt.

CONT is useful in debugging, in that it lets you set break points with the
STOP statement, modify variables using direct statements, continue pro
gram execution, or use GO TO to resume execution at a particular line
number.

If a program line is modified, CONT will be invalid.

32

COS Function

COS Function

Purpose:

To return the cosine of the range of x.

Syntax:

COS(x)

Comments:

x must be the radians. COS is the trigonometric cosine function. To convert
from degrees to radians, multiply by 'IT/IBO.

COS(x) is calculated in single-precision unless the / d switch is used when
GW-BASIC is executed.

Example 1:

10 X=2*COS(.4)
20 PRINT X
RUN

1.842122
Ok

Example 2:

10 PI=3.141593
20 PRINT COS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*PI/180
50 PRINT COS(RADIANS)
RUN
-1
-1
OK

33

CSNG Function

CSNG Function

Purpose:

To convert x to a single-precision number.

Syntax:

CSNG(x)

Comments:

x must be a numeric expression (see the CINT and CDBL functions).

Examples:

10 A#=975.3421222#
20 PRINT A#; CSNG(A#)
RUN

975.3421222 975.3421
Ok

34

CSRLIN Variable

CSRLIN Variable

Purpose:

To return the current line (row) position of the cursor.

Syntax:

y=CSRLIN

Comments:

y is a numeric variable receiving the value returned. The value returned
is within the range of 1 to 25.

The CSRLIN Variable returns the vertical coordinate of the cursor on the
active page (see the SCREEN statement).

x = POS(O) returns the column location of the cursor. The value returned
is wi thin the range of 1 to 40, or 1 to 80, depending on the current screen
width (see the POS function).

Examples:

10 Y=CSRLIN
20 X=POS(O)
30 LOCATE 24,1
40 PRINT "HELLO"
50 LOCATE Y,X
RUN
HELLO
Ok

The CSRLIN Variable in line 10 records the current line.

The POS function in line 20 records the current column.

In line 40, the PRINT statement displays the comment "HELLO" on the
24th line of the screen.

The LOCATE statement in line 50 restores the position of the cursor to the
original line and column.

35

CVI, CVS, CVD Functions

CVI, CVS, CVD Functions

Purpose:

To convert string values to numeric values.

Syntax:

CVI(2-byte string)
CVS(4-byte string)
CVD(8-byte string)

Comments:

Numeric values read in from a random-access disk file must be converted
from strings back into numbers if they are to be arithmetically manipu
lated.

CVI converts a 2-byte string to an integer. MKI$ is its complement.

CVS converts a 4-byte string to a single-precision number. MKS$ is its
complement.

CVD converts an 8-byte string to a double-precision number. MKD$ is its
complement.

(See MKI$, MKS$, and MKD$.)

Examples:

70 FIELD #1,4 AS N$, 12 AS B$...
80 GET #1
90 Y=CVS(N$)

36

CVI, CVS, CVD Functions

Line 80 reads a field from file #1 (the field read is defined in line 70), and
converts the first four bytes (N$) into a single-precision number assigned to
the variable Y.

Since a single-precision number can contain as many as seven ASCII charac
ters (seven bytes), when writing a file using MKS$ conversion, and reading
with the CVS conversion, as many as three bytes per number recorded are
saved on the storage medium. Even more may be saved if double-precision
numbers are required. MKD$ and CVD conversions would be used in this
case.

37

DATA Statement

DATA Statement

Purpose:

To store the numeric and string constants that are accessed by the program
READ statement(s).

Syntax:

DATA constants

Comments:

constants are numeric constants in any format (fixed point, floating-point,
or integer), separated by commas. No expressions are allowed in the list.

String constants in DATA statements must be surrounded by double quota
tion marks only if they contain commas, colons, or significant leading or
trailing spaces. Otherwise, quotation marks are not needed.

DATA statements are not executable and may be placed anywhere in the
program. A DATA statement can contain as many constants as will fit on
a line (separated by commas), and any number of DATA statements can be
used in a program.

READ statements access the DATA statements in order (by line number).
The data contained therein may be thought of as one continuous list of
items, regardless of how many items are on a line or where the lines are
placed in the program. The variable type (numeric or string) given in the
READ statement must agree with the corresponding constant in the DATA
statement, or a "Type Mismatch" error occurs.

DATA statements may be reread from the beginning by use of the
RESTORE statement.

For further information and examples, see the RESTORE statement and
the READ statement.

38

DATA Statement

Example 1:

80 FOR 1=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the DATA statements into
array A. After execution, the value of A(l) is 3.08, and so on. The DATA
statements (lines 110-120) may be placed anywhere in the program; they
may even be placed ahead of the READ statement.

Example 2:

5 PRINT
10 PRINT "CITY","STATE","ZIP"
20 READ C$,S$,Z
30 DATA IIDENVER,I,IICOLORADO",80211
40 PRINT C$,S$,Z
RUN

CITY
DENVER,
Ok

STATE
COLORADO

ZIP
80211

This program reads string and numeric data from the DATA statement
in line 30.

39

DATE$ Statement and Variable

DATE$ Statement and Variable

Purpose:

To set or retrieve the current date.

Syntax:

As a statement:

DATE$=v$

As a variable:

v$=DATE$

Comments:

v$ is a valid string literal or variable.

v$ can be any of the following formats when assigning the date:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

If v$ is not a valid string, a "Type Mismatch" error results. Previous values
are retained.

If any of the values are out of range or missing, an "Illegal Function Call"
error is issued. Any previous date is retained.

The current date (as assigned when the operating system was initialized)
is fetched and assigned to the string variable if DATE$ is the expression
in a LET or PRINT statement.

The current date is stored if DATE$ is the target of a string assignment.

40

DATE$ Statement and Variable

With v$=DATE$, DATE$ returns a 10-character string in the form mm
dd-yyyy. mm is the month (01 to 12), dd is the day (01 to 31), and yyyy
is the year (1980 to 2099).

Examples:

v$=DATE$
Ok
PRINT V$
01-01-1985
Ok

41

DEF FN Statement

DEF FN Statement

Purpose:

To define and name a function written by the user.

Syntax:

DEF FNname[argumenfs] expression

Comments:

name must be a legal variable name. This name, preceded by FN, becomes
the name of the function.

arguments consists of those variable names in the function definition that
are to be replaced when the function is called. The items in the list are
separated by commas.

expression is an expression that performs the operation of the function.
It is limited to one statement

In the DEF FN statement, arguments serve only to define the function;
they do not affect program variables that have the same name. A variable
name used in a function definition mayor may not appear in the argument.
If it does, the value of the parameter is supplied when the function is
called. Otherwise, the current value of the variable is used.

The variables in the argument represent, on a one-to-one basis, the argu
ment variables or values that are to be given in the function call.

User-defined functions may be numeric or string. If a type is specified in
the function name, the value of the expression is forced to that type before
it is returned to the calling statement. If a type is specified in the function
name and the argument type does not match, a "Type Mismatch" error
occurs.

A user-defined function may be defined more than once in a program by
repeating the DEF FN statement.

42

DEF FN Statement

A DEF FN statement must be executed before the function it defines may
be called. If a function is called before it has been defined, an "Undefined
User Function" error occurs.

DEF FN is illegal in the direct mode.

Recursive functions are not supported in the DEF FN statement.

Examples:

400 R=1: S=2
410 DEF FNAB(X,Y)=X A3/YA2
420 T=FNAB(R,S)

Line 410 defines the user-defined function FNAB. The function is called in
line 420. When executed, the variable T will contain the value R3 divided
by 82

, or .25.

43

DEFINT/SNG/DBLlSTR Statements

DEFINT/SNG/DBL/STR Statements

Purpose:

To declare variable types as integer, single-precision, double-precision,
or string.

Syntax:

DEFtype letters

Comments:

type is INT (integer), SNG (single-precision number), DBL (double-precision
number), or STR (string of 0-255 characters).

letters are letters (separated by commas) or range of letters of the alphabet.

A DEFtype statement declares that variable names beginning with the
letter(s) specify that type of variable. However, a type declaration character
(%,!,#,$) always takes precedence over a DEFtype statement in the typing of
a variable.

If no type declaration statements are encountered, BASIC assumes all vari
ables are single-precision. Single-precision is the default value.

Examples:

10 DEFDBL L-P

All variables beginning with the letters L, M, N, 0, or P will be double
precision variables.

10 DEFSTR A
20 A=1I120#1I

All variables beginning with the letter A will be string variables. The $
declaration is unnecessary in this example.

10 DEFINT I-N,W-Z
20 W$=1I120#1I

44

DEFINT/SNG/DBL/STR Statements

All variables beginning with the letters I, J, K, L, M, N, W, X, Y, or Z will
be integer variables. W$ in Line 20 establishes a string variable beginning
with the letter W. However, the variable W will remain an integer else
where in the program.

45

DEF SEG Statement

DEF SEG Statement

Purpose:

To assign the current segment address to be referenced by a subsequent
BLOAD, BSA VE, CALL, PEEK, POKE, or USR.

Syntax:

DEF SEG [address]

Comments:

address is a numeric expression within the range of 0 to 65535.

The address specified is saved for use as the segment required by BLOAD,
BSA VE, PEEK, POKE, and CALL statements.

Entry of any value outside the address range (0-65535) results in an
"Illegal Function Call" error, and the previous value is retained.

If the address option is omitted, the segment to be used is set to GW-BASIC's
data segment (DS). This is the initial default value.

If you specify the address option, base it on a I6-byte boundary.

Segment addresses are shifted 4 bits to the left; so to get the segment
address, divide the memory location by 16.

For BLOAD, BSA VE, PEEK, POKE, or CALL statements, the value is
shifted left four bits (this is done by the microprocessor, not by GW-BASIC)
to form the code segment address for the subsequent call instruction
(see the BLOAD, BSA VE, CALL, PEEK, and POKE statements).

GW-BASIC does not perform additional checking to assure that the resultant
segment address is valid.

46

DEF SEG Statement

Examples:

10 DEF SEG=&HB800

Sets segment to screen buffer.

20 DEF SEG

Restores segment to BASIC DS.

Note

DEF and SEG must be separated by a space. Otherwise, GW-BASIC will
interpret the statement DEFSEG= 100 to mean, "assign the value 100
to the variable DEFSEG."

47

DEF USR Statement

DEF USR Statement

Purpose:

To specify the starting address of an assembly language subroutine to be
called from memory by the USR function.

Syntax:

DEF USR[n] = integer

Comments:

n may be any digit from 0 to 9. The digit corresponds to the USR routine
address being specified. If n is omitted, DEF USRO is assumed.

integer is the offset address of the USR routine. If more than 10 USR rou
tines are required, DEF USR[n] may appear in the program as many times
as necessary to redefine the USR[n] starting address.

Add the current segment value to the integer to get the starting address of
the user routine.

When an Assembly Language Subroutine is called, the GW-BASIC program
execution is paused, and control is transferred to the Assembly Language
program. When that program is executed, control is returned to the
GW-BASIC program at the point of interruption.

Examples:

190 DEF SEG=O
200 DEF USRO=24000
210 X=USRO(Y A2/2.82)

Lines 190 and 200 set the absolute address.

48

DEF USR Statement

Line 210 calls the USR routine located at that address, and passes the
integer value of the expression contained within the parentheses to the
user program (see USR).

Note

This statement is given here primarily to provide compatibility with
other GW-BASIC implementations. The more versatile CALL statement
should be used if this downward compatibility is unimportant.

49

DELETE Command

DELETE Command

Purpose:

To delete program lines or line ranges.

Syntax:

DELETE [line numberl][-line number2]
DELETE line numberl-

Comments:

line number 1 is the first line to be deleted.

line number2 is the last line to be deleted.

GW-BASIC always returns to command level after a DELETE command is
executed. Unless at least one line number is given, an "Illegal Function
Call" error occurs.

The period (.) may be used to substitute for either line number to indicate
the current line.

Examples:

DELETE 40

Deletes line 40.

DELETE 40-100

Deletes lines 40 through 100, inclusively.

DELETE -40

Deletes all lines up to and including line 40.

DELETE 40-

Deletes all lines from line 40 to the end of the program.

50

DIM Statement

DIM Statement

Purpose:

To specify the maximum values for array variable subscripts and allocate
storage accordingly.

Syntax:

DIM variable(subscripts)[,variable(subscripts)] ...

Comments:

If an array variable name is used without a DIM statement, the maximum
value of its subscript(s) is assumed to be 10. If a subscript greater than the
maximum specified is used, a "Subscript out of range" error occurs.

The maximum number of dimensions for an array is 255.

The minimum value for a subscript is always 0, unless otherwise specified
with the OPTION BASE statement.

An array, once dimensioned, cannot be redimensioned within the program
without first executing a CLEAR or ERASE statement.

The DIM statement sets all the elements of the specified arrays to an initial
value of zero.

Examples:

10 DIM A(20)
20 FOR 1=0 TO 20
30 READ A(I)
40 NEXT I

This example reads 21 DATA statements elsewhere in the program and
assigns their values to A(O) through A(20), sequentially and inclusively. If
the A array is single-precision (default accuracy) then line 10 will allocate
84 bytes of memory to this array (4 bytes times 21 elements).

51

DRAW Statement

DRAW Statement

Purpose:

To draw a figure.

Syntax:

DRAW string expression

Comments:

The DRAW statement combines most of the capabilities of the other graph
ics statements into an object definition language called the Graphics Macro
Language (GML). A GML command is a single character within a string,
optionally followed by one or more arguments.

The DRAW statement is valid only in graphics mode.

Movement Commands

Each of the following movement commands begins movement from the
current graphics position. This is usually the coordinate of the last graphics
point plotted with another GML command, LINE, or PSET. The current
position defaults to the center of the screen (160,100 in medium resolution;
320,100 in high resolution) when a program is run. Movement commands
move for a distance of scale factor *n, where the default for n is 1; thus,
they move one point if n is omitted and the default scale factor is used.

Command Moves

Un up

Dn down

Ln left

Rn right

En diagonally up and right

Fn diagonally down and right

52

Gn

Hn

diagonally down and left

diagonally up and left

DRAW Statement

This command moves as specified by the following argument:

Mx,y Move absolute or relative. If x is preceded by a +
or -, x and yare added to the current graphics
position, and connected to the current position by a
line. Otherwise, a line is drawn to point x,y from
the current position.

The following prefix commands may precede any of the above movement
commands:

B

N

Move, but plot no points.

Move, but return to original position when done.

The following commands are also available:

An

TAn

Cn

Sn

xstring; variable

Set angle n. n may range from 0 to 3, where 0 is 0°,
1 is 90°, 2 is 180°, and 3 is 270°. Figures rotated 90°
or 270° are scaled so that they will appear the same
size as with 0° or 180° on a monitor screen with the
standard aspect ratio of 4:3.

Turn angle n. n can be any value from negative 360
to positive 360. If the value specified by n is posi
tive, it turns the angle counterclockwise. If the
value specified by n is negative, it turns clockwise.

Set color n. See the COLOR, PALETTE, and
SCREEN statements for discussions of valid colors,
numbers, and attributes.

Set scale factor. n may range from 1 to 255. n is
divided by 4 to derive the scale factor. The scale
factor is multiplied by the distances given with U,
D, L, R, E, F, G, H, or relative M commands to get
the actual distance traveled. The default for S is 4.

Execute substring. This command executes a second
substring from a string, much like GOSUB. One
string executes another, which executes a third,
and so on.

string is a variable assigned to a string of move
ment commands.

53

DRAW Statement

Ppaint, boundary Specifies the colors for a graphics figure and creates
a filled-in figure.

Numeric Arguments:

paint specifies what color you want the figure filled
in with.

boundary specifies the border color (outline).

See the COLOR, PALETTE, and SCREEN state
ments for discussions of valid colors, numbers, and
attributes.

You must specify values for both paint and
boundary when used.

This command (Ppaint,boundary) does not paint
color tiling.

Numeric arguments can be constants like "123" or "= variable;", where
variable is the name of a variable.

When you use the second syntax, "= variable;", the semicolon must be used.
Otherwise, the semicolon is optional between commands.

You can also specify variables using V ARPTR$(variable).

Example 1:

To draw a box in medium resolution:

10 SCREEN 1
20 A=20
30 DRAW IIU=A;R=A;D=A;L=A;II
RUN

54

DRAW Statement

Example 2:

The aspect ratio to draw a square on a standard screen is 4:3, as shown
below:

To draw a 96-pixel-wide square on a 640 x 200 pixel screen (SCREEN 2), do
the following calculations:

Horizontal value = 96
Vertical value = 96*(2001640)*(4/3)

or

V ertical value = 40
Horizontal value = 40*(640/200)*(3/4)

The horizontal values equals 4/3 of the vertical values.

Example 3:

To draw a triangle in medium resolution:

10 CLS
20 SCREEN 1
30 PSET (60,125)
40 DRAW IIE100; F100; L199 11

RUN

55

EDIT Command

EDIT Command

Purpose:

To display a specified line, and to position the cursor under the first digit of
the line number, so that the line may be edited.

Syntax:

EDIT line number
EDIT.

Comments:

line number is the number of a line existing in the program.

A period (.) refers to the current line. The following command enters EDIT
at the current line:

EDIT .

When a line is entered, it becomes the current line.

The current line is always the last line referenced by an EDIT statement,
LIST command, or error message.

If line number refers to a line that does not exist in the program, an "Unde
fined Line Number" error occurs.

Examples:

EDIT 150

Displays program line number 150 for editing.

56

END Statement

END Statement

Purpose:

To terminate program execution, close all files, and return to command
level.

Syntax:

END

Comments:

END statements may be placed anywhere in the program to terminate
execution.

Unlike the STOP statement, END does not cause a "Break in line xxxx"
message to be printed.

An END statement at the end of a program is optional. GW-BASIC always
returns to command level after an END is executed.

END closes all files.

Examples:

520 IF K#1000 THEN END ELSE GOTO 20

Ends the program and returns to command level whenever the value
of K exceeds 1000.

57

ENVIRON Statement

ENVIRON Statement

Purpose:

To allow the user to modify parameters in GW-BASIC's environment string
table. This may be to change the path parameter for a child process, (see
ENVIRON$, SHELL, and the MS-DOS utilities PATH command), or to pass
parameters to a child by inventing a new environment parameter.

Syntax:

ENVIRON string

Comments:

string is a valid string expression containing the new environment string
parameter.

string must be of the following form

parmid = text

where parmid is the name of the parameter, such as PATH.

parmid must be separated from text by an equal sign or a blank. ENVIRON
takes everything to the left of the first blank or equal sign as the parmid;
everything following is taken as text.

text is the new parameter text. If text is a null string, or consists only of a
single semicolon, then the parameter (including parmid =) is removed from
the environment string table, and the table is compressed. text must not
contain any embedded blanks.

If parmid does not exist, then string is added at the end of the environment
string table.

If parmid does exist, it is deleted, the environment string table is com
pressed, and the new string is added at the end.

58

ENVIRON Statement

Examples:

Assuming the environment string table is empty, the following statement
will create a default path to the root directory on Disk A:

ENVIRON IIPATH=A:\II

If your work subdirectory were john, you would be able to get DEBUG from
the root.

A new parameter may be added:

ENVIRON IICOMSPEC=A:\COMMAND.COM II

The environment string table now contains

PATH=A:\;COMSPEC=A:\COMMAND.COM

The path may be changed to a new value:

ENVIRON IIPATH=A:\SALES;A:\ACCOUNTING II

The path parameter may be appended by using the ENVIRON$ function
with the ENVIRON statement:

Finally, delete the parameter COMSPEC:

ENVIRON IICOMSPEC=;II

The environment string table now contains

PATH=A:\SALES;A:\ACCOUNTING;B:\SAMPLES

59

ENVIRON$ Function

ENVIRON$ Function

Purpose:

To allow the user to retrieve the specified environment string from the
environment table.

Syntax:

v$ = ENVIRON$(parmid)
v$ = ENVIRON$(nthparm)

Comments:

parmid is a valid string expression containing the parameter to search for.

nthparm is an integer expression in the range of 1 to 255.

If a string argument is used, ENVIRON$ returns a string containing the
text following parmid = from the environment string table.

If parmid is not found, then a null string is returned.

If a numeric argument is used, ENVIRON$ returns a string containing the
nth parameter from the environment string table.

If there is no nth parameter, then a null string is returned.

The ENVIRON$ function distinguishes between upper- and lowercase.

Examples:

The following lines:

ENVIRON IIPATH=A:\SALES;A:\ACOUNTING;B:\MKT: II 'Create entry
PRINT ENVIRON$(IIPATH II) 'Print entry

will print the following string:

A:\SALES;A:\ACCOUNTING;B:\MKT

60

ENVIRON$ Function

The following line will print the first string in the environment:

PRINT ENVIRON$(1)

The following program saves the environment string table in an array so
that it can be modified for a child process. After the child process completes,
the environment is restored.

1 0 DIM E NVTBL $ (1 0) II
20 NPARMS= 1
30 WHILE LEN(ENVIRON$(NPARMS)) #0
40 ENVTBL$ (NPARMS)= ENVIRON$(NPARMS)
50 NPARMS= NPARMS + 1
60 WEND
70 NPARMS= NPARMS-1
72 WHILE LEN(ENVIRON$(1))#0
73 A$=MID$(ENVIRON$(1),1 ,INSTR (ENVIRON$(1) ,11=11))
74 ENVIRON A$+II;II
75 WEND
90 ENVIRON "MYCHILDPARM1=SORT BY NAME"
100 ENVIRON "MYCHILDPARM2=LIST BY NAME"

1000 SHELL IIMYCHILD"'RUNS "MYCHILD.EXE II
1002 WHILE LEN(ENVIRON$(1))#0
1003 A$=MID$(ENVIRON$(1),1 ,INSTR(ENVIRON$ (1) ,"="))
1004 ENVIRON A$+II;II
1005 WEND
1010 FOR 1=1 TO NPARMS
1020 ENVIRON ENVTBL$(I)
1030 NEXT I

The DIM statement in line 10 assumes no more than 10 parameters will
be accessed.

In line 20, the initial number of parameters is established as 1.

In lines 30 through 70, a series of statements are used to adjust and correct
the paramenter numbers.

Line 71 deletes the present environment.

61

ENVIRON$ Function

Lines 72 through 80 create a new environment. Line 74 deletes the string.

Lines 80 through 100 store the new environment.

Lines 1000 through 1030 repeat the procedure by deleting the present
environment and restore the parameters established in the first part of the
program.

62

EOF Function

EOF Function

Purpose:

To return -1 (true) when the end of a sequential or a communications file
has been reached, or to return 0 if end of file (EOF) has not been found.

Syntax:

v = EOF(file number}

Comments:

If a GET is done past the end of the file, EOF returns -1. This may be
used to find the size of a file using a binary search or other algorithm.
With communications files, a -1 indicates that the buffer is empty.

Use EOF to test for the end of the file while inputting to avoid "Input Past
End" errors.

Examples:

10 OPEN 11111,1 ,IIDATAII
20 c=o
30 IF EOF(1) THEN 100
40 INPUT#1,M(C)
50 C=C+1 :GOTO 30
100 END
RUN

The file named DATA is read into the M array until the end of the file is
reached, then the program branches to line 100.

63

ERASE Statement

ERASE Statement

Purpose:

To eliminate arrays from a program.

Syntax:

ERASE list of array variables

Comments:

Arrays may be redimensioned after they are erased, or the memory space
previously allocated to the array may be used for other purposes.

If an attempt is made to redimension an array without first erasing it,
an error occurs.

Examples:

200 DIM 8 (250)

450 ERASE A,8
460 DIM 8(3,4)

Arrays A and B are eliminated from the program. The B array is redimen
sioned to a 3-column by 4-row array (12 elements), all of which are set to a
zero value.

64

ERDEV and ERDEV$ Variables

ERDEV and ERDEV$ Variables

Purpose:

To return the actual value (ERDEV) of a device error, and the name of the
device (ERDEV$) causing the error.

Syntax:

ERDEV
ERDEV$

Comments:

ERDEV will contain the error code from interrupt 24H in the lower 8 bits.
Bits 8 to 15 from the attribute word in the Device Header Block are mapped
directly into the upper 8 bits.

ERDEV$ will contain the 8-byte character device name if the error was on
a character device. It will contain the 2-byte block device name (A:, B:, etc.)
if the device was not a character device.

Examples:

Installed device driver Ipt2: caused a "Printer out of paper" error via
INT 24H.

ERDEV contains the error number 9 in the lower 8 bits, while the upper 8
bits contain the upper byte of the Device Header word attributes.

ERDEV$ contains IILPT2: II

65

ERR and ERL Variables

ERR and ERL Variables

Purpose:

To return the error code (ERR) and line number (ERL) associated with
an error.

Syntax:

v=ERR
v=ERL

Comments:

The variable ERR contains the error code for the last occurrence of an
error. All the error codes and their definitions are listed in Appendix A
of the GW-BASIC User's Guide.

The variable ERL contains the line number of the line in which the error
was detected.

The ERR and ERL Variables are usually used in IF-THEN, or ON
ERROR ... GOTO, or GOSUB statements to direct program flow in error
trapping.

If the statement that caused the error was a direct mode statement, ERL
will contain 65535. To test if an error occurred in a direct mode statement,
use a line of the following form:

IF 65535=ERL THEN ...

Otherwise, use the following:

10 IF ERR=error code THEN ... GOSUB 4000
20 IF ERL=line number THEN ... GOSUB 4010

66

ERR and ERL Variables

Note

If the line number is not on the right side of the relational operator,
it cannot be renumbered by RENUM.

Because ERL and ERR are reserved variables, neither may appear to the
left of the equal sign in a LET (assignment) statement.

67

ERROR Statement

ERROR Statement

Purpose:

To simulate the occurrence of an error, or to allow the user to define
error codes.

Syntax:

ERROR integer expression

Comments:

The value of integer expression must be greater than 0 and less than 255.

If the value of integer expression equals an error code already in use by
GW-BASIC, the ERROR statement simulates the occurrence of that error,
and the corresponding error message is printed.

A user-defined error code must use a value greater than any used by the
GW-BASIC error codes. There are 76 GW-BASIC error codes at present. It is
preferable to use a code number high enough to remain valid when more
error codes are added to GW-BASIC.

User-defined error codes may be used in an error-trapping routine.

If an ERROR statement specifies a code for which no error message has
been defined, GW-BASIC responds with the message "Unprintable Error."

Execution of an ERROR statement for which there is no error-trapping
routine causes an error message to be printed and execution to halt.

For a complete list of the error codes and messages already defined in
GW-BASIC, refer to Appendix A in the GW-BASIC User's Guide.

Examples:

The following examples simulate error 15 (the code for "String too long"):

LIST
1 0 S= 1 0
20 T=5

68

ERROR Statement

30 ERROR S+T
40 END
Ok
RUN
String too long in 30

Or, in direct mode:

Ok
ERROR 15 (you type this line)
S t r i n g too 1 0 n g (GW - 8 A SIC t Y pes t his lin e)
Ok

The following example includes a user-defined error code message:

110 ON ERROR GOTO 400
120 INPUT IIWHAT I S YOUR 8ET II ; 8
130 IF 8#5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT IIHOUSE LIMIT IS $5000"
410 IF ERL=130 THEN RESUME 120

69

EXP Function

EXP Function

Purpose:

To return e (the base of natural logarithms) to the power of x.

Syntax:

EXP(x)

Comments:

x must be less than 88.02969.

If EXP overflows, the "Overflow" error message appears; machine infinity
with the appropriate sign is supplied as the result, and execution continues.

EXP(x) is calculated in single-precision, unless the /d switch is used when
GW-BASIC is executed.

Examples:

10 X = 5
20 PRINT EXP(X-1)
RUN

54.59815
Ok

Prints the value of e to the 4th power.

70

EXTERR Function

EXTERR Function

Purpose:

To return extended error information.

Syntax:

EXTERR(n)

Comments:

EXTERR returns "extended" error information provided by versions of
DOS 3.0 and greater. For versions of DOS earlier than 3.0, EXTERR always
returns zero. The single integer argument must be in the range 0-3
as follows:

Value of n

o
1

2

3

Return Value

Extended error code

Extended error class

Extended error suggested action

Extended error locus

The values returned are not defined by GW-BASIC, but by DOS. Refer to the
MS-DOS Programmer's Reference (version 3.0 or later) for a description
of the values returned by the DOS extended error function.

The extended error code is actually retrieved and saved by GW-BASIC each
time appropriate DOS functions are performed. Thus, when an EXTERR
function call is made, these saved values are returned.

71

FIELD Statement

FIELD Statement

Purpose:

To allocate space for variables in a random file buffer.

Syntax:

FIELD [II] filenum, width AS stringuar [,width AS stringuar] ...

Comments:

filenum is the number under which the file was opened.

width is the number of characters to be allocated to the string variable.

string variable is a string variable that will be used for random file access.

A FIELD statement must have been executed before you can

• get data out of a random buffer after a GET statement

• enter data before a PUT statement

For example, the following line allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$, the next 10 positions to ID$,
and the next 40 positions to ADD$:

FIE L D 1, 20 AS N $, 1 0 A SID $, 40 A S ADD $

FIELD only allocates space; it does not place any data in the random file
buffer.

The total number of bytes allocated in a FIELD statement must not exceed
the record length specified when the file was opened. Otherwise, a "Field
overflow" error occurs (the default record length is 128).

Any number of FIELD statements may be executed for the same file, and
all FIELD statements executed are in effect at the same time.

72

FIELD Statement

Note

Do not use a fielded variable name in an INPUT or LET statement.
Once a variable name is fielded, it points to the correct place in the
random file buffer. If a subsequent INPUT or LET statement with
that variable name is executed, the variable's pointer is moved to
string space (see the LSET/RSET and GET statements).

73

FILES Command

FILES Command

Purpose:

To print the names of the files residing on the specified drive.

Syntax:

FILES [pathname]

Comments:

If pathname is omitted, the command lists all files in the current directory
of the selected drive. pathname may contain question marks (?) to match
any character in the filename or extension. An asterisk (*) as the first char
acter of the filename or extension will match any file or any extension.

This syntax also displays the name of the directory and the number of bytes
in the file. When a tree-structured directory is used, two special symbols
also appear.

Subdirectories are denoted by <DIR> following the directory name.

Examples:

FILES
FILES II*.BAS II
FILES IIB:*.*II
FILES IITEST?BAS II

FILES now allows pathnames. The directory for the specified path is
displayed. If an explicit path is not given, the current directory is assumed.

FILES IIACCTS\II

Lists all files in the directory named accts that are on the diskette in Drive
B: and have the extension of .pay.

FILES IIB:ACCTS*.PAY II

Lists all files in the directory named accts that are on the diskette in Drive
B: and have the extension of .P A Y.

74

FIX Function

FIX Function

Purpose:

To truncate x to a whole number.

Syntax:

FIX(x)

Comments:

FIX does not round off numbers, it simply eliminates the decimal point and
all characters to the right of the decimal point.

FIX(x) is equivalent to SGN(x)*INT(ABS(x)). The major difference between
FIX and INT is that FIX does not return the next lower number for nega
tive x.

FIX is useful in modulus arithmetic.

Examples:

PRINT FIX(58.75)
58

Ok

PRINT FIX(-58.75)
-58

Ok

75

FOR and NEXT Statements

FOR and NEXT Statements

Purpose:

To execute a series of instructions a specified number of times in a loop.

Syntax:

FOR variable=x TO y [STEP z]

NEXT [variable][,variable .. .]

Comments:

variable is used as a counter.

x, y, and z are numeric expressions.

STEP z specifies the counter increment for each loop.

The first numeric expression (x) is the initial value of the counter. The
second numeric expression (y) is the final value of the counter.

Program lines following the FOR statement are executed until the NEXT
statement is encountered. Then, the counter is incremented by the amount
specified by STEP.

If STEP is not specified, the increment is assumed to be 1.

A check is performed to see if the value of the counter is now greater than
the final value (y). If it is not greater, GW-BASIC branches back to the state
ment after the FOR statement, and the process is repeated. If it is greater,
execution continues with the statement following the NEXT statement.
This is a FOR-NEXT loop.

The body of the loop is skipped if the initial value of the loop times the sign
of the step exceeds the final value times the sign of the step.

76

FOR and NEXT Statements

If STEP is negative, the final value of the counter is set to be less than the
initial value. The counter is decremented each time through the loop, and
the loop is executed until the counter is less than the final value.

Nested Loops

FOR-NEXT loops may be nested; that is, a FOR-NEXT loop may be placed
within the context of another FOR-NEXT loop. When loops are nested, each
loop must have a unique variable name as its counter.

The NEXT statement for the inside loop must appear before that for the
outside loop.

If nested loops have the same end point, a single NEXT statement may be
used for all of them.

The variableCs) in the NEXT statement may be omitted, in which case the
NEXT statement will match the most recent FOR statement.

If a NEXT statement is encountered before its corresponding FOR state
ment, a "NEXT without FOR" error message is issued and execution is
terminated.

Examples:

The following example prints integer values of the variable 1% from 1 to 10
in steps of z. For fastest execution, I is declared as an integer by the % sign.

1 0 K=10
20 FOR 1%=1 TO K STEP 2
30 PRINT 1%

60 NEXT
RUN

1
3
5
7
9

Ok

77

FOR and NEXT Statements

In the following example, the loop does not execute because the initial
value of the loop exceeds the final value. Nothing is printed by this
example.

10 R=O
20 FOR 5=1 TO R
30 PRINT 5
40 NEXT 5

In the next example, the loop executes 10 times. The final value for the loop
variable is always set before the initial value is set.

1 0 5=5
20 FOR 5=1 TO 5+5
30 PRINT 5;
40 NEXT
RUN

2 3 4 5 6 7 8 9 1 0
Ok

78

FRE Function

FRE Function

Purpose:

To return the number of available bytes in allocated string memory.

Syntax:

FRE(x$)
FRE(x)

Comments:

Arguments (x$) and (x) are dummy arguments.

Before FRE (x$) returns the amount of space available in allocated string
memory, GW-BASIC initiates a "garbage collection" activity. Data in string
memory space is collected and reorganized, and unused portions of frag
mented strings are discarded to make room for new input.

If FRE is not used, GW-BASIC initiates an automatic garbage collection
activity when all string memory space is used up. GW-BASIC will not initiate
garbage collection until all free memory has been used. Garbage collection
may take 1 to 1.5 minutes.

FRE("") or any string forces a garbage collection before returning the
number of free bytes. Therefore, using FRE("") periodically will result in
shorter delays for each garbage collection.

It should be noted that the CTRL-BREAK function cannot be used during this
housecleaning process.

Examples:

PRINT FRE(O)
14542

Ok

Your computer may return a different value.

79

GET Statement (Files)

GET Statement (Files)

Purpose:

To read a record from a random disk file into a random buffer.

Syntax:

GET [#]file number[,record number]

Comments:

file number is the number under which the file was opened.

record number is the number of the record, within the range of 1 to
16,777,215.

If record number is omitted, the next record (after the last GET) is read into
the buffer.

After a GET statement, INPUT# and LINE INPUT# may be used to read
characters from the random file buffer.

GET may also be used for communications files. record number is the
number of bytes to be read from the communications buffer. record number
cannot exceed the buffer length set in the OPEN COM(n) statement.

Examples:

The following example opens the vendor file for random access, defines the
fields, reads a record, then displays it:

10 OPEN IIRII,1,IIA:VENDOR.FILII
20 FIELD 1,30 AS VENDNAMES$,20 AS ADDR$,15 AS CITY$
30 GET 1
40 PRINT VENDNAMES$,ADDR$,CITY$
50 CLOSE 1

This example opens the file vendor.fil for random access, with fields defined
in line 20. In line 30, the GET statement reads a record into the file buffer.
Line 40 displays the information from the record just read. Line 50 closes
the file.

80

GET Statement (Graphics)

GET Statement (Graphics)

Purpose:

To transfer graphics images from the screen.

Syntax:

GET (x1,yl)-(x2,y2),array name

Comments:

The PUT and GET statements are used to transfer graphics images to and
from the screen. PUT and GET make animation and high-speed object
motion possible in either graphics mode.

The GET statement transfers the screen image bounded by the rectangle
described by the specified points into the array. The rectangle is defined
the same way as the rectangle drawn by the LINE statement using the
,B option.

The array is used simply as a place to hold the image, and can be of any
type except string. It must be dimensioned large enough to hold the entire
image. The contents of the array after a GET will be meaningless when
interpreted directly (unless the array is of the type integer, as shown
below).

The storage format in the array is as follows:

• 2 bytes given x dimension in bits

• 2 bytes given y dimension in bits

• the array data itself

The data for each row of pixels is left-justified on a byte boundary. If less
than a multiple of eight bits is stored, the rest of the byte will be filled out
with zeros. The required array size in bytes is as follows:

4 + INT((x* bitsperpixel + 7)/S)*y

81

GET Statement (Graphics)

See the SCREEN statement for bitsperpixel values for different screen
modes.

The bytes-per-element of an array are as follows:

• 2 for integer

• 4 for single-precision

• 8 for double-precision

The number of bytes required to get a 10 by 12 image into an integer array
is 4 + INT((10*2 + 7)/8)*12, or 40 bytes. An integer array with at least 20
elements is necessary.

If OPTION BASE equals zero, an integer array can be used to examine the
x and y dimensions and the data. The x dimension is in element 0 of the
array, and the y dimension is in element 1. Integers are stored low byte
first, then high byte, but data is transferred high byte first (leftmost), then
low byte.

It is possible to get an image in one mode and put it in another, although
the effect may be quite strange because of the way points are represented in
each mode.

Examples:

10 CLS:SCREEN 1
20 PSET(130,120)
30 DRAW IU25;E7;R20;D32;L6;U12;L14"
40 DRAW ID12;L6":PSET(137,102)
50 DRAW IU4;E4;R8;D8;L12"
60 PSET(137,88)
70 DRAW IE4;R20;D32;G4":PAINT(139,87)
80 DIM A(500)
90 GET (125,130)-(170,80),A
100 FOR 1=1 TO 1000:NEXT I
110 PUT (20,20),A,PSET
120 FOR 1=1 TO 1000:NEXT I
130 GET (125,130)-(170,80),A
140 FOR 1=1 TO 1000:NEXT I
150 PUT (220,130) ,A,PRESET

82

GOSUB ... RETURN Statement

GOSUB ... RETURN Statement

Purpose:

To branch to, and return from, a subroutine.

Syntax:

GOSUB line number

RETURN [line number]

Comments:

line number is the first line number of the subroutine.

A subroutine may be called any number of times in a program, and a sub
routine may be called from within another subroutine. Such nesting of sub
routines is limited only by available memory.

A RETURN statement in a subroutine causes GW-BASIC to return to the
statement following the most recent GOSUB statement. A subroutine can
contain more than one RETURN statement, should logic dictate a RETURN
at different points in the subroutine.

Subroutines can appear anywhere in the program, but must be readily dis
tinguishable from the main program.

To prevent inadvertent entry, precede the subroutine by a STOP, END, or
GOTO statement to direct program control around the subroutine.

Examples:

10 GOSUB 40
20 PRINT IIBACK FROM SUBROUTINE II
30 END
40 PRINT IISUBROUTINE II ;
50 PRINT II INII;
60 PRINT II PROGRESS"
70 RETURN

83

GOSUB ... RETURN Statement

RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

The END statement in line 30 prevents re-execution of the subroutine.

84

GOTO Statement

GOTO Statement

Purpose:

To branch unconditionally out of the normal program sequence to a speci
fied line number.

Syntax:

GOTO line number

Comments:

line number is any valid line number within the program.

If line number is an executable statement, that statement and those follow
ing are executed. If it is a nonexecutable statement, execution proceeds at
the first executable statement encountered after line number.

Examples:

10 READ R
20 PRINT "R =";R;
30 A = 3.14*RI\2
40 PRINT "AREA =";A
50 GO TO 10
60 DATA 5,7,12
RUN
R = 5 AREA 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Out of data in 10
Ok

The "out of data" advisory is generated when the program attempts to read
a fourth DATA statement (which does not exist) in line 60.

85

HEX$ Function

HEX$ Function

Purpose:

To return a string that represents the hexadecimal value of the numeric
argument.

Syntax:

v$=HEX$(x)

Comments:

HEX$ converts decimal values within the range of - 32768 to + 65535 into
a hexadecimal string expression within the range of 0 to FFFF.

Hexadecimal numbers are numbers to the base 16, rather than base 10
(decimal numbers). Appendixes C and G in the GW-BASIC User's Guide
contain more information on hexadecimals and their equivalents.

x is rounded to an integer before HEX$(x) is evaluated. See the OCT$ func
tion for octal conversions.

If x is negative, 2's (binary) complement form is used.

Examples:

10 CLS:INPUT IIINPUT DECIMAL NUMBERII;X
20 A$=HEX$(X)
30 PRINT X IIDECIMAL IS IIA$II HEXADECIMAL II
RUN
INPUT DECIMAL NUMBER? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok

86

IF Statement

IF Statement

Purpose:

To make a decision regarding program flow based on the result returned by
an expression.

Syntax:

IF expression[,] THEN statement(s)[,][ELSE statement(s)]

IF expression[,] GOTO line number[[,] ELSE statement(s)]

Comments:

If the result of expression is nonzero (logical true), the THEN or GOTO line
number is executed.

If the result of expression is zero (false), the THEN or GOTO line number is
ignored and the ELSE line number, if present, is executed. Otherwise, exe
cution continues with the next executable statement. A comma is allowed
before THEN and ELSE.

THEN and ELSE may be followed by either a line number for branching,
or one or more statements to be executed.

GOTO is always followed by a line number.

If the statement does not contain the same number of ELSE's and THEN's
line number, each ELSE is matched with the closest unmatched THEN.
For example:

IF A=B THEN IF B=C THEN PRINT IIA=C II ELSE PRINT IIA < # CII

will not print "A < > C" when A < > B.

If an IF ... THEN statement is followed by a line number in the direct mode,
an "Undefined line number" error results, unless a statement with the
specified line number was previously entered in the indirect mode.

Because IF ... THEN ... ELSE is all one statement, the ELSE clause cannot be
on a separate line. All must be on one line.

87

IF Statement

Nesting of IF Statements

IF ... THEN ... ELSE statements may be nested. Nesting is limited only by the
length of the line. For example, the following is a legal statement:

100 IF X # Y THEN PRINT IIGREATERII ELSE IF Y # X THEN&
110 PRINT IILESS THANII
200 ELSE PRINT IIEQUAL II

Testing Equality

When using IF to test equality for a value that is the result of a floating
point computation, remember that the internal representation of the value
may not be exact. Therefore, test against the range over which the accuracy
of the value may vary.

For example, to test a computed variable A against the value 1.0, use the
following statement:

100 IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with a relative error of less
than 1.0E - 6.

Examples:

The following statement gets record number N, if N is not zero.

200 IF N THEN GET#1,N

In the following example, a test determines if N is greater than 10 and less
than 20. If N is within this range, DB is calculated and execution branches
to line 300. If N is not within this range, execution continues with line 110.

100 IF(N<20) and (N#10) THEN DB=1979-1:GOTO 300
110 PRINT IIOUT OF RANGE II

The next statement causes printed output to go either to the terminal or to
the line printer, depending on the value of a variable (IOFLAG). If IOFLAG
is zero, output goes to the line printer; otherwise, output goes to the ter
minal.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

88

INKEY$ Variable

INKEY$ Variable

Purpose:

To return one character read from the keyboard.

Syntax:

v$=INKEY$

Comments:

If no character is pending in the keyboard buffer, a null string (length zero)
is returned.

If several characters are pending, only the first is returned. The string will
be one or two characters in length.

Two character strings are used to return the extended codes described in
Appendix C of the GW-BASIC User's Guide. The first character of a two
character code is zero.

No characters are displayed on the screen, and all characters except the
following are passed to the program:

CTRL-BREAK
CTRL-NUM-LOCK
CTRL-ALT-DEL
CTRL-PRTSC
PRTSC

Examples:

1 0 CLS: PR I NTIIPRESS RETURN
20 TIMELIMIT% = 1000
30 GoSUB 1010
40 IF TIMEoUT% THEN PRINT "Too LoNG Il ELSE PRINT "GOOD SHOW"
50 PRINT RESPoNSE$
60 END

89

INKEY$ Variable

1000 REM TIMED INPUT SUBROUTINE
1010 RESPONSE$=
1020 FOR N%=1 TO TIMELIMIT%
1030 A$=INKEY$:IF LEN{A$)=O THEN 1060
1040 IF ASC{A$)=13 THEN TIMEOUT%=O:RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT N%
1070 TIMEOUT%=1: RETURN

When this program is executed, and if the RETURN key is pressed before
1000 loops are completed, then "GOOD SHOW" is printed on the screen.
Otherwise, "TOO LONG" is printed.

Since an INKEY$ statement scans the keyboard only once, place INKEY$
statements within loops to provide adequate response times for the
operator.

90

INP Function

INP Function

Purpose:

To return the byte read from machine port n.

Syntax:

INP(n)

Comments:

n represents a valid machine port number within the range of 0 to 65535.

The INP function is one way in which a peripheral device may communi
cate with a GW-BASIC program.

INP is the complementary function to the OUT statement.

Examples:

100 A=INP(56)

Upon execution, variable A contains the value present on port 56. The
number returned will be within the range of 0 to 255, decimal.

The assembly language equivalent to this statement is

MOV DX,56
IN AL,DX

91

INPUT Statement

INPUT Statement

Purpose:

To prepare the program for input from the terminal during program
execution.

Syntax:

INPUT[;][prompt string;] list of variables
INPUT[;][prompt string,] list of variables

Comments:

prompt string is a request for data to be supplied during program execution.

list of variables contains the variable(s) that stores the data in the prompt
string.

Each data item in the prompt string must be surrounded by double quota
tion marks, followed by a semicolon or comma and the name of the variable
to which it will be assigned. If more than one variable is given, data items
must be separated by commas.

The data entered is assigned to the variable list. The number of data items
supplied must be the same as the number of variables in the list.

The variable names in the list may be numeric or string variable names
(including subscripted variables). The type of each data item input must
agree with the type specified by the variable name.

Too many or too few data items, or the wrong type of values (for example,
numeric instead of string), causes the messsage "?Redo from start" to be
printed. No assignment of input values is made until an acceptable response
is given.

A comma may be used instead of a semicolon after prompt string to
suppress the question mark. For example, the following line prints the
prompt with no question mark:

INPUT IIENTER BIRTHDATE",B$

92

INPUT Statement

If the prompt string is preceded by a semicolon, the RETURN key pressed by
the operator is suppressed. During program execution, data on that line is
displayed, and data from the next PRINT statement is added to the line.

When an INPUT statement is encountered during program execution, the
program halts, the prompt string is displayed, and the operator types in the
requested data. Strings that input to an INPUT statement need not be sur
rounded by double quotation marks unless they contain commas or leading
or trailing blanks.

When the operator presses the RETURN key, program execution continues.

INPUT and LINE INPUT statements have built-in PRINT statements.
When an INPUT statement with a quoted string is encountered during pro
gram execution, the quoted string is printed automatically (see the PRINT
statement).

The principal difference between the INPUT and LINE INPUT statements
is that LINE INPUT accepts special characters (such as commas) within a
string, without requiring double quotation marks, while the INPUT state
ment requires double quotation marks.

Example 1:

To find the square of a number:

1 0 I NPUT X
20 PRINT X "SQUARED IS" XA2
30 END
RUN
?

The operator types a number (5) in response to the question mark:

5 SQUARED IS 25
Ok

Example 2:

To find the area of a circle when the radius is known:

10 PI=3.14
20 INPUT "WHAT IS THE RADIUS";R
30 A=PI*R A 2

93

INPUT Statement

40 PRINT liTHE AREA OF THE CIRCLE ISII;A
50 PRINT
60 GO TO 20
RUN
WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

Note that line 20 in the above example makes use of the built-in PRINT
statement contained within INPUT.

94

INPUTII Statement

INPUT# Statement

Purpose:

To read data items from a sequential file and assign them to program
variables.

Syntax:

INPUT# file number, variable list

Comments:

file number is the number used when the file was opened for input.

variable list contains the variable names to be assigned to the items in
the file.

The data items in the file appear just as they would if data were being
typed on the keyboard in response to an INPUT statement.

The variable type must match the type specified by the variable name.

With INPUT#, no question mark is printed, as it is with INPUT.

Numeric Values

For numeric values, leading spaces and line feeds are ignored. The first
character encountered (not a space or line feed) is assumed to be the start
of a number. The number terminates on a space, carriage return, line feed,
or comma.

Strings

If GW-BASIC is scanning the sequential data file for a string, leading spaces
and line feeds are ignored.

If the first character is a double quotation mark ("), the string will consist
of all characters read between the first double quotation mark and the
second. A quoted string may not contain a double quotation mark as a char
acter. The second double quotation mark always terminates the string.

95

INPUT# Statement

If the first character of the string is not a double quotation mark, the string
terminates on a comma, carriage return, or line feed, or after 255 charac
ters have been read.

If the end of the file is reached when a numeric or string item is being
INPUT, the item is terminated.

INPUT# can also be used with random files.

96

INPUT$ Function

INPUT$ Function

Purpose:

To return a string of x characters read from the keyboard, or from file
number.

Syntax:

INPUT$(x[,[#]file number)]

Comments:

If the keyboard is used for input, no characters will appear on the screen.
All control characters (except CTRL-BREAK) are passed through. CTRL-BREAK
interrupts the execution of the INPUT$ function.

The INPUT$ function is preferred over INPUT and LINE INPUT state
ments for reading communications files, because all ASCII characters may be
significant in communications. INPUT is the least desirable because input
stops when a comma or carriage return is seen. LINE INPUT terminates
when a carriage return is seen.

INPUT$ allows all characters read to be assigned to a string. INPUT$ will
return x characters from the file number or keyboard.

For more information about communications, refer to Appendix F in the
GW-BASIC User's Guide.

Example 1:

The following example lists the contents of a sequential file in hexadecimal:

1 0 OPEN II I II 1 1 111DATAII
20 IF EO F (1) TH ENS 0
30 PRINT HEX$(ASC(INPUT$(1 , #1)));
40 GOTO 20
50 PRINT
60 END

97

INPUT$ Function

Example 2:

In the following program, the program pauses, awaiting a keyboard entry
of either P or S. Line 130 continues to loop back to line 100 if the input is
other than P or S.

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUT$(1)
120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

98

INSTR Function

INSTR Function

Purpose:

To search for the first occurrence of string y$ in x$, and return the position
at which the string is found.

Syntax:

INSTR([n,]x$,y$)

Comments:

Optional offset n sets the position for starting the search. The default value
forn is 1.

If n equals zero, the error message "Illegal argument in line number" is
returned.

n must be within the range of 1 to 255. If n is out of this range, an "Illegal
Function Call" error is returned.

INSTR returns 0 if

• n>LEN(x$)

• x$ is null

• y$ cannot be found

If y$ is null, INSTR returns n.

x$ and y$ may be string variables, string expressions, or string literals.

Examples:

10 X$="ABCDEBXYZ"
20 Y$="B"
30 PRINT INSTR(X$,Y$) ;INSTR(4,X$,Y$)
RUN

2 6
Ok

99

INSTR Function

The interpreter searches the string" ABCDFBXYZ" and finds the first
occurrence of the character B at position 2 in the string. It then starts
another search at position 4 (D) and finds the second match at position
6 (B). The last three characters are ignored, since all conditions set out
in line 30 were satisfied.

100

INT Function

Purpose:

To truncate an expression to a whole number.

Syntax:

INT(x)

Comments:

Negative numbers return the next lowest number.

The FIX and CINT functions also return integer values.

Examples:

PRINT INT(98.89)
98

Ok

PRINT INT(-12.11)
-13
Ok

INT Function

101

IOCTL Statement

IOCTL Statement

Purpose:

To allow GW-BASIC to send a "control data" string to a character device
driver anytime after the driver has been opened.

Syntax:

IOCTL[I/:]file number,string

Comments:

file number is the file number open to the device driver.

string is a valid string expression containing characters that control
the device.

IOCTL commands are generally 2 to 3 characters followed by an optional
alphanumeric argument. An IOCTL string may be up to 255 bytes long,
with commands within the string separated by semicolons.

Examples:

If a user had installed a driver to replace lptl, and that driver was able
to set page length (the number of lines to print on a page before issuing a
form feed), then the following lines would open the new lptl driver and set
the page length to 66 lines:

OPEN IIlPT1: II FOR OUTPUT AS #1
IOCTl #1,IIPl66 11

The following statements open lptl with an initial page length of 56 lines:

OPEN II\DEV\lPT1 11 FOR OUTPUT AS #1
IOCTl # 1 ,IIPl56 11

102

IOCTL$ Function

IOCTL$ Function

Purpose:

To allow GW-BASIC to read a "control data" string from an open character
device driver.

Syntax:

IOCTL$([#]file number)

Comments:

file number is the file number open to the device.

The IOCTL$ function is generally used to get acknowledgment that an
IOCTL statement succeeded or failed. It is also used to get device informa
tion, such as device width after an IOCTL statement requests it.

Examples:

10 'GW is a possible command
20 'for get device width
30 OPEN "\DEV\MYLPT" AS#1
40 IOCTYL#1,IGW"
50 'Save it in WID
60 WID=VAL(IOCTL$(#1))

103

KEY Statement

KEY Statement

Purpose:

To allow rapid entry of as many as 15 characters into a program with one
keystroke by redefining GW-BASIC special function keys.

Syntax:

KEY key number,string expression
KEY n,CHR$(hexcode) + CHR$(scan code)
KEY ON
KEY OFF
KEY LIST

Comments:

key number is the number of the key to be redefined. key number may range
from 1-20.

string expression is the key assignment. Any valid string of 1 to 15 charac
ters may be used. If a string is longer than 15 characters, only the first 15
will be assigned. Constants must be enclosed in double quotation marks.

scan code is the variable defining the key you want to trap. Appendix H in
the GW-BASIC User's Guide lists the scan codes for the keyboard keys.

hexcode is the hexadecimal code assigned to the key shown below:

Key Hexcode

EXTENDED &H80

CAPS LOCK &H40

NUMLOCK &H20

ALT &H08

CTRL &H04

SHIFT &HOl, &H02, &H03

104

KEY Statement

Hexcodes may be added together, such as in &H03, which is both shift keys.

Initially, the function keys are assigned the following special functions:

F1 LIST F2 RUN<-

F3 LOAD II F4 SAVEll

F5 CONT<- F6 ,IILPT1:" <-

F7 TRON<- F8 TROFF<-

F9 KEY FlO SCREEN 000<-

Note

<- (arrow) means that you do not have to press RETURN after each of
these keys has been pressed.

Anyone or all of the 10 keys may be redefined. When the key is pressed,
the data assigned to it will be input to the program.

KEY key number:'5tring expre55ion"

Assigns the string expression to the specified key.

KEY LIST

Lists all 10 key values on the screen. All 15 characters of each value
are displayed.

KEY ON

Displays the first six characters of the key values on the 25th line of the
screen. When the display width is set at 40, five of the 10 keys are dis
played. When the width is set at 80, all 10 are displayed.

KEY OFF

Erases the key display from the 25th line, making that line available for
program use. KEY OFF does not disable the function keys.

105

KEY Statement

If the value for key number is not within the range of 1 to 10, or 15 to 20,
an "Illegal function call" error occurs. The previous KEY assignment
is retained.

Assigning a null string (length 0) disables the key as a function key.

When a function key is redefined, the INKEY$ function returns one charac
ter of the assigned string per invocation. If the function key is disabled,
INKEY$ returns a string of two characters: the first is binary zero; the
second is the key scan code.

Examples:

10 KEY 1,IMENU"+CHR$(13)

Displays a menu selected by the operator each time key 1 is pressed.

1 KEY OFF

Turns off the key display.

10 DATA KEY1,KEY2,KEY3,KEY4,KEY5
20 FOR N=1 TO 5:READ SOFTKEYS$(n)
30 KEY N,SOFTKEYS$(I)
40 NEXT N
50 KEY ON

Displays new function keys on line 25 of the screen.

20 KEY 1,""

Disables function key 1.

106

KEY(n) Statement

KEY(n) Statement

Purpose:

To initiate and terminate key capture in a GW-BASIC program.

Syntax:

KEY(n) ON
KEY(n) OFF
KEY(n) STOP

Comments:

n is a number from 1 to 20 that indicates which key is to be captured.
Keys are numbered as follows:

Key Number

1-10

11

12

13

14

15-20

Key

Function keys F1 through FlO

CURSOR-UP

CURSOR-LEFT

CURSOR-RIGHT

CURSOR-DOWN

Keys defined in the following format (see KEY
statement): KEY n,CHR$(hexcode) + CHR$(scan
code)

Execution of the KEY(n) ON statement is required to activate keystroke
capture from the function keys or cursor control keys. When the KEY(n)
ON statement is activated and enabled, GW-BASIC checks each new state
ment to see if the specified key is pressed. If so, GW-BASIC performs a
GOSUB to the line number specified in the ON KEY(n) statement. An
ON KEY(n) statement must precede a KEY(n) statement.

When KEY(n) OFF is executed, no key capture occurs and no keystrokes
are retained.

107

KEY(n) Statement

If KEY(n) STOP is executed, no key capture occurs, but if a specified key
is pressed, the keystroke is retained so that immediate keystroke capture
occurs when a KEY(n) ON is executed.

For further information on key trapping, see the ON KEY (n) statement.

108

KILL Command

KILL Command

Purpose:

To delete a file from a disk.

Syntax:

KILL filename

Comments:

filename can be a program file, sequential file, or random-access data file.

KILL is used for all types of disk files, including program, random data,
and sequential data files.

Note

You must specify the filename's extension when using the KILL com
mand. Remember that files saved in GW-BASIC are given the default
extension .bas.

If a KILL command is given for a file that is currently open, a "File already
open" error occurs.

Examples:

The following command deletes the GW-BASIC file data, and makes the space
available for reallocation to another file:

200 KILL IDATA1.BAS"

The following command deletes the GW-BASIC file raining from the subdirec
tory dogs:

KILL "CATS\DOGS\RAINING.BAS"

109

LEFT$ Function

LEFT$ Function

Purpose:

To return a string that comprises the leftmost n characters of x$.

Syntax:

LEFT$(x$,n)

Comments:

n must be within the range of 0 to 255. If n is greater than LEN(x$), the
entire string (x$) will be returned. If n equals zero, the null string (length
zero) is returned (see the MID$ and RIGHT$ substring functions).

Examples:

10 A$=1I8ASIC II

20 B$=LEFT$(A$,3}
30 PRINT 8$
RUN
BAS
Ok

The leftmost three letters of the string "BASIC" are printed on the screen.

110

LEN Function

Purpose:

To return the number of characters in x$.

Syntax:

LEN(x$)

Comments:

N onprinting characters and blanks are counted.

Examples:

x$ is any string expression.

10 X$="PORTLAND 7 OREGON"
20 PRINT LEN(X$)
16
Ok

LEN Function

Note that the comma and space are included in the character count of 16.

111

LET Statement

LET Statement

Purpose:

To assign the value of an expression to a variable.

Syntax:

[LET] variable = expression

Comments:

The word LET is optional; that is, the equal sign is sufficient when assign
ing an expression to a variable name.

The LET statement is seldom used. It is included here to ensure compati
bility with previous versions of BASIC that require it.

When using LET, remember that the type of the variable and the type of
the expression must match. If they don't, a "Type mismatch" error occurs.

Example 1:

The following example lets you have downward compatibility with an older
system. If this downward compatibility is not required, use the second
example, as it requires less memory.

110 LET D=12
120 LET E=12/\2
130 LET F=12/\4
140 LET SUM=D+E+F

112

Example 2:

110 D=12
120 E=12"2
130 F=12"4
140 SUM=D+E+F

LET Statement

113

LINE Statement

LINE Statement

Purpose:

To draw lines and boxes on the screen.

Syntax:

LINE [(xl ,yl)] - (x2,y2) [,[attribute][,B[F]][,style]]

Comments:

xl,yl and x2,y2 specify the end points of a line.

Resolution mode is determined by the SCREEN statement.

attribute specifies color or intensity of the displayed pixel (see the COLOR
and PALETTE statements).

B (box) draws a box with the points (xl,yl) and (x2,y2) at opposite corners.

BF (filled box) draws a box (as ,B) and fills in the interior with points.

Note

If attribute is not specified, two commas must be used before B or BF.

LINE supports the additional argument style. style is a 16-bit integer mask
used when putting down pixels on the screen. This is called line-styling.

Each time LINE stores a point on the screen, it uses the current circulating
bit in style. If that bit is 0, no store will be done. If the bit is 1, then a nor
mal store is done. After each point, the next bit position in style is selected.

Since a 0 bit in style does not clear out the old contents, you may wish
to draw a background line before a styled line, in order to force a known
background.

114

LINE Statement

style is used for normal lines and boxes, but is illegal for filled boxes.

If the BF parameter is used with the style parameter, a "Syntax" error
will occur.

When out-of-range values are given in the LINE statement, the coordinates
that are out of range are not visible on the screen. This is called
line-clipping.

In the syntax shown here, the coordinate form STEP (x offset,y offset) is not
shown. However, this form can be used wherever a coordinate is used.

In a LINE statement, if the relative form is used on the second coordinate,
it is relative to the first coordinate.

After a LINE statement, the last referenced point is x2 ,y2.

The simplest form of LINE is the following:

LINE - (xz,yz)

This draws a line from the last point referenced to the point (xz,yz) in the
foreground color.

Examples:

LIN E (0, 1 a a) - (639 , 1 a a)

Draws a horizontal line that divides the screen in half from top to bottom in
SCREEN 2.

LIN E (1 6 a , a) - (160 , 1 99)

Draws a vertical line that divides the screen in half from left to right in
SCREEN 1; makes a one-quarter/three-quarter division in SCREEN 2.

LIN E (0, a) - (31 9, 1 99)

Draws a diagonal line from the top left to lower right corner of the screen
in SCREEN 1, and from the upper left corner to the center bottom of the
screen in SCREEN 2.

115

LINE Statement

LINE (10,10)-(20,20),2

Draws a line in color 2 if SCREEN 1 was previously specified (see the
COLOR statement).

10 CLS
20 LINE -(RND*319,RND*199) ,RND*4
30 GO TO 20

Draws lines forever using random attributes.

10 FOR X=O TO 319
20 LINE (X,0)-(X,199),X AND 1
30 NEXT

Draws an alternating pattern: line on, line off.

10 CLS
20 LINE -(RND*639,RND*199) ,RND*2,8F
30 GOTO 20

Draws lines all over the screen.

LINE (0,0)-(100,175),,8

Draws a square box in the upper left corner of the screen.

LINE (0,0)-(100,175),,8F

Draws the same box and fills it in.

LINE (0,0)-(100,175),2,8F

Draws the same filled box in magenta in SCREEN 1.

LINE (0,0)-(100,350),,8

Draws the same box if SCREEN 2 is specified.

400 SCREEN 1
41 0 LIN E (1 60 , 1 00) - (1 60 , 1 99) , , , & H C C C C

Draws a vertical dotted line down the center of the screen in SCREEN 1.

116

LINE Statement

220 SCREEN 2
230 LINE(300,100)-(400,SO) "B,&HAAAA

Draws a rectangle with a dotted line in SCREEN 2.

Draws a dotted line from the upper left corner to the screen center.

117

LINE INPUT Statement

LINE INPUT Statement

Purpose:

To input an entire line (up to 255 characters) from the keyboard into a
string variable, ignoring delimiters.

Syntax:

LINE INPUT [;][prompt string;lstring variable

Comments:

prompt string is a string literal, displayed on the screen, that allows user
input during program execution.

A question mark is not printed unless it is part of prompt string.

string variable accepts all input from the end of the prompt to the carriage
return. Trailing blanks are ignored.

LINE INPUT is almost the same as the INPUT statement, except that it
accepts special characters (such as commas) in operator input during pro
gram execution.

If a line-feed/carriage return sequence (this order only) is encountered, both
characters are input and echoed. Data input continues.

If LINE INPUT is immediately followed by a semicolon, pressing the
RETURN key will not move the cursor to the next line.

A LINE INPUT may be escaped by typing CTRL-BREAK. GW-BASIC returns
to command level and displays Ok.

Typing CONT resumes execution at the LINE INPUT line.

118

LINE INPUT Statement

Example:

100 LINE INPUT A$

Program execution pauses at line 100, and all keyboard characters typed
thereafter are input to string A$ until RETURN, CTRL-M, CTRL-C, or
CTRL-BREAK is entered.

119

LINE INPUT# Statement

LINE INPUT# Statement

Purpose:

To read an entire line (up to 255 characters), without delimiters, from a
sequential disk file to a string variable.

Syntax:

LINE INPUT# file number, string variable

Comments:

file number is the number under which the file was opened.

string variable is the variable name to which the line will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage
return. If a line feed/carriage return sequence (this order only) is encoun
tered, it is input.

LINE INPUT# is especially useful if each line of a data file has been bro
ken into fields, or if a GW-BASIC program saved in ASCII mode is being read
as data by another program.

Examples:

1 a OPEN "0",1 ," I NFo"
20 LINE INPUT "CUSToMER INFoRMATION?";C$
30 PRINT#1, C$
40 CLOSE 1
50 OPEN III,1,"INFO"
60 LINE INPUT#1, C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION?

If the operator enters

LINDA JONES 234,4

120

MEMPHIS

then the program continues with the following:

LINDA JONES
Ok

234,4 MEMPHIS

LINE INPUT# Statement

121

LIST Command

LIST Command

Purpose:

To list all or part of a program to the screen, line printer, or file.

Syntax:

LIST [linenumber][-linenumber][,filename]

LIST [linen umber-][,filename]

Comments:

linenumber is a valid line number within the range of 0 to 65529.

If filename is omitted, the specified lines are listed to the screen.

Use the hyphen to specify a line range. If the line range is omitted, the
entire program is listed. linen umber- lists that line and all higher num
bered lines. -linen umber lists lines from the beginning of the program
through the specified line.

The period (.) can replace either linen umber to indicate the current line.

Any listing may be interrupted by pressing CTRL-BREAK.

Examples:

LIST

Lists all lines in the program.

LIST -20

Lists lines 1 through 20.

LIST 10-20

Lists lines 10 through 20.

122

LIST Command

LIST 20-

Lists lines 20 through the end of the program.

123

LLIST Command

LLIST Command

Purpose:

To list all or part of the program currently in memory to the line printer.

Syntax:

LLIST [linenumber][-linenumberl
LLIST [linen umber-]

Comments:

GW-BASIC always returns to command level after a LLIST is executed. The
line range options for LLIST are the same as for LIST.

Examples:

See the examples in the LIST statement.

124

LOAD Command

LOAD Command

Purpose:

To load a file from diskette into memory.

Syntax:

LOAD filename[,r]

Comments:

filename is the filename used when the file was saved. If the extension was
omitted, .bas will be used.

LOAD closes all open files and deletes all variables and program lines
currently residing in memory before it loads the designated program.

If the r option is used with LOAD, the program runs after it is loaded, and
all open data files are kept open.

LOAD with the r option lets you chain several programs (or segments of the
same program). Information can be passed between the programs using the
disk data files.

Examples:

LOAD "STRTRK",R

Loads the file strtrk.bas and runs it, retaining all open files and variables
from a previous program intact.

125

LOC Function

LOC Function

Purpose:

To return the current position in the file.

Syntax:

LOC(file number)

Comments:

file number is the file number used when the file was opened.

When transmitting or receiving a file through a communications port, LOC
returns the number of characters in the input buffer waiting to be read.
The default size for the input buffer is 256 characters, but can be changed
with the /e: option on the GW-BASIC command line. If there are more than
255 characters in the buffer, LOC returns 255. Since a string is limited to
255 characters, this practical limit alleviates the need to test for string size
before reading data into it. If fewer than 255 characters remain in the
buffer, then LOC returns the actual count.

With random disk files, LOC returns the record number just read from,
or written to, with a GET or PUT statement.

With sequential files, LOC returns the number of 128-byte blocks read
from, or written to, the file since it was opened. When the sequential file is
opened for input, GW-BASIC initially reads the first sector of the file. In this
case, the LOC function returns the character 1 before any input is allowed.

If the file was opened but no disk input/output was performed, LOC returns
a zero.

Examples:

200 IF LOC(1)#50 THEN STOP

The program stops after 51 records are read or written.

126

LOCATE Statement

LOCATE Statement

Purpose:

To move the cursor to the specified position on the active screen. Optional
parameters cause the cursor to blink on and off, and define the start and
stop raster lines for the cursor. A raster line is the vertical or horizontal
distance between two adjacent, addressable points on your screen.

Syntax:

LOCATE [row][,[col][,[cursor][,[start] [,stop]]]]

Comments:

row is the screen line number, a numeric expression within the range of
1 to 25.

col is the screen column number, a numeric expression within the range of
1 to 40, or 1 to 80, depending upon screen width.

cursor is a boolean value indicating whether the cursor is visible; zero is off,
nonzero is on.

start is the cursor start scan line, a numeric expression within the range of
o to 31.

stop is the cursor stop scan line, a numeric expression within the range of
o to 31.

When the cursor is moved to the specified position, subsequent PRINT
statements begin placing characters at this location. Optionally, the
LOCATE statement may be used to start the cursor blinking on or off,
or change the size of the blinking cursor.

Any values entered outside of these ranges results in "Illegal function call"
errors. Previous values are retained.

As you set up the parameters for the LOCATE statement, you may find
that you do not wish to change one or more of the existing specifications.
To omit a parameter from this LOCATE statement, insert a comma for
the parameter that is being skipped. If the omitted parameter(s) occurs at
the end of the statement, you do not have to type the comma.

127

LOCATE Statement

If the start scan line parameter is given and the stop scan line parameter is
omitted, stop assumes the start value.

Examples:

1 0 LOCATE 1, 1

Moves the cursor to the home position in the upper left corner.

20 LOCATE ,,1

Makes the cursor visible. Its position remains unchanged. Notice that the
first two parameters are not used. A comma has been inserted for each
omitted parameter.

30 LOCATE ",7

Cursor position and visibility remain unchanged. Sets the cursor to appear
at the bottom of the character starting and ending on scan line 7.

40 LOCATE 5,1,1,0,7

Moves the cursor to line 5, column 1, and turns the cursor on. The cursor
covers an entire character cell, starting at scan line 0 and ending on scan
line 7.

128

LOCK Statement

LOCK Statement

Purpose:

To restrict the access to all or part of a file that has been opened by another
process. This is used in a multi-device environment, often referred to as a
network or network environment.

Syntax:

LOCK [#]n [,[record number] [TO record number]]

Comments:

n is the number that was assigned to the file as it was originally numbered
in the program.

record number is the number of the individual record that is to be locked.
Or, if a range of records are to be locked, record number designates the
beginning and ending record of the specified range.

The range of legal record numbers is 1 to 232 - 1. The limit on record size
is 32767 bytes.

The record range specified must be from lower to (the same or) higher
record numbers.

If a starting record number is not specified, the record number 1 is
assumed.

If an ending record number is not specified, then only the specified record
is locked.

The following are examples of legal LOCK statements:

LOCK #n

LOCK #n,X

LOCK #n, TO Y

LOCK #n, X TO Y

locks the entire file n

locks record X only

locks records 1 through Y

locks records X through Y

With a random-access file, the entire opened file, or a range of records

129

LOCK Statement

within an opened file, may be locked, thus denying access to those records
to any other process that has also opened the file.

With a sequential access file that has been opened for input or output, the
entire file is locked, regardless of any record range specified. This is not
considered an error. The specification of a range in the LOCK statement
regarding the sequential file will simply be disregarded.

The LOCK statement should be executed on a file or record range within
a file before attempting to read or write to that file.

The locked file or record range should be unlocked before the file is closed.
Failure to execute the UNLOCK statement can jeopardize future access to
that file in a network environment.

It is expected that the time in which files or regions within files are locked
will be short, and thus the suggested usage of the LOCK statement is
within short-term paired LOCK/UNLOCK statements.

Examples:

The following sequence demonstrates how the LOCK/UNLOCK statements
should be used:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 4
UNLOCK #1, 5 TO 8

The following example is illegal:

LOCK #1, 1 TO 4
LOCK #1, 5 TO 8
UNLOCK #1, 1 TO 8

130

LOF Function

LOF Function

Purpose:

To return the length (number of bytes) allocated to the file.

Syntax:

LOF(file number)

Comments:

file number is the number of the file that the file was opened under.

With communications files, LOF returns the amount of free space in the
input buffers.

Examples:

The following sequence gets the last record of the random-access file file.big,
and assumes that the file was created with a default record length of 128
bytes:

10 OPEN IIRII,1 ,IIFILE.BIG II

20 GET #1 ,LOF(1)/128

131

LOG Function

LOG Function

Purpose:

To return the natural logarithm of x.

Syntax:

LOG(x)

Comments:

x must be a number greater than zero.

LOG(x) is calculated in single-precision, unless the /d switch is used when
GW-BASIC is executed.

Examples:

PRINT LOG(2)
.6931471

PRINT LOG(1)
o

132

LPOS Function

LPOS Function

Purpose:

To return the current position of the line printer print head within the line
printer buffer.

Syntax:

LPOS(x)

Comments:

LPOS does not necessarily give the physical position of the print head.

x is a dummy argument.

If the printer has less than the 132 characters-per-line capability, it may
issue internal line feeds and not inform the computer internal line printer
buffer. If this has happened, the value returned by LPOS(x) may be incor
rect. LPOS(x) simply counts the number of printable characters since the
last line feed was issued.

Examples:

The following line causes a carriage return after the 60th character is
printed on a line:

100 IF LPOS(X)#60 THEN LPRINT CHR$(13)

133

LPRINT and LPRINT USING Statements

LPRINT and LPRINT USING Statements

Purpose:

To print data at the line printer.

Syntax:

LPRINT [list of expressions][;]
LPRINT USING string exp; list of expressions[;]

Comments:

list of expressions consists of the string or numeric expression separated
by semicolons.

string expressions is a string literal or variable consisting of special format
ting characters. The formating characters determine the field and the for
mat of printed strings or numbers.

These statements are the same as PRINT and PRINT USING, except that
output goes to the line printer. For more information about string and
numeric fields and the variables used in them, see the PRINT and PRINT
USING statements.

The LPRINT and LPRINT USING statements assume that your printer is
an 80-character-wide printer.

To reset the number of characters that you can print across the printed
page (assuming that your printer is wider than 80 characters), see the
WIDTH statement.

134

LSET and RSET Statements

LSET and RSET Statements

Purpose:

To move data from memory to a random-file buffer and left- or right-justify
it in preparation for a PUT statement.

Syntax:

LSET string variable = string expression
RSET string variable = string expression

Comments:

If string expression requires fewer bytes than were fielded to string variable,
LSET left-justifies the string in the field, and RSET right-justifies the
string (spaces are used to pad the extra positions).

If the string is too long for the field, characters are dropped from the right.

To convert numeric values to strings before the LSET or RSET statement is
used, see the MKI$, MKS$, and MKD$ functions.

LSET or RSET may also be used with a nonfielded string variable to left
justify or right-justify a string in a given field.

Examples:

110 A$=SPACE$(20)
120 RSET A$=N$

These two statements right-justify the string N$ in a 20-character field.
This can be valuable for formatting printed output.

135

MERGE Command

MERGE Command

Purpose:

To merge the lines from an ASCII program file into the program already
in memory.

Syntax:

MERGE filename

Comments:

filename is a valid string expression containing the filename. If no exten
sion is specified, then GW-BASIC assumes an extension of .bas.

The diskette is searched for the named file. If found, the program lines on
the diskette are merged with the lines in memory. After the MERGE com
mand, the merged program resides in memory, and GW-BASIC returns to the
direct mode.

If the program being merged was not saved in ASCII code with the a option
to the SAVE command, a "Bad file mode" error is issued. The program in
memory remains unchanged.

If any line numbers in the file have the same number as lines in the pro
gram in memory, the lines from the file replace the corresponding lines
in memory.

Examples:

MERGE IISUBRTN"

Merges the file subrtn.bas with the program currently in memory, provided
subrtn was previously saved with the a option. If some of the program lines
are the same as those in the subrtn.bas file being merged, then the original
program lines are replaced by the lines from subrtn.bas.

136

MID$ Function

MID$ Function

Purpose:

To return a string of m characters from v$, beginning with the nth
character.

Syntax:

MID$(x$,n[,m])

Comments:

n must be within the range of 1 to 255.

m must be within the range of 0 to 255.

If m is omitted, or if there are fewer than m characters to the right of n,
all rightmost characters beginning with n are returned.

If n> LEN(x$), the MID$ function returns a null string.

If m equals 0, the MID$ function returns a null string.

If either n or m is out of range, an "Illegal function call error" is returned.

For more information and examples, see the LEFT$ and RIGHT$ functions.

Examples:

10 A$=IIGOOD II
20 B$=IIMORNING EVENING AFTERNOON II
30 PRINT A$;MID$(B$,8,8)
RUN
GOOD EVENING
Ok

Line 30 cuncatenates (joins) the A$ string to another string with a length of
eight characters, beginning at position 8 within the B$ string.

137

MID$ Statement

MID$ Statement

Purpose:

To replace a portion of one string with another string.

Syntax:

MID$(stringexpl ,n[,mD = stringexp2

Comments:

Both nand m are integer expressions.

stringexpl and stringexp2 are string expressions.

The characters in stringexpl, beginning at position n, are replaced by the
characters in stringexp2.

The optional m refers to the number of characters from stringexp2 that are
used in the replacement. If m is omitted, all of stringexp2 is used.

Whether m is omitted or included, the replacement of characters never goes
beyond the original length of stringexpl.

Examples:

10 A$=IIKANSAS CITY, MOil
20 MID$(A$,14)=IIKSII
30 PRINT A$
RUN
KANSAS CITY, KS
Ok

Line 20 overwrites "MO" in the A$ string with "KS".

138

MKDIR Command

MKDIR Command

Purpose:

To create a subdirectory.

Syntax:

MKDIR pathname

Comments:

pathname is a string expression, not exceeding 63 characters, identifying
the subdirectory to be created.

Examples:

MKDIR IIC:SALES\JOHN II

Creates the subdirectory john within the directory sales.

139

MKI$, MKS$, MKD$ Functions

MKI$, MKS$, MKD$ Functions

Purpose:

To convert numeric values to string values.

Syntax:

MKI$(integer expression)
MKS$(single-precision expression)
MKD$(double-precision expression)

Comments:

MKI$ converts an integer to a 2-byte string.

MKS$ converts a single-precision number to a 4-byte string.

MKD$ converts a double-precision number to an 8-byte string.

Any numeric value placed in a random file buffer with an LSET or a RSET
statement must be converted to a string (see CVI, CVS, CVD for the com
plementary functions).

These functions differ from STR$ because they change the interpretations
of the bytes, not the bytes themselves.

Examples:

90 AMT=(K+T)
100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$=MKS$(AMT)
120 LSET N$=A$
130 PUT #1

140

NAME Command

NAME Command

Purpose:

To change the name of a disk file.

Syntax:

NAME old filename AS new filename

Comments:

old filename must exist and new filename must not exist; otherwise, an
error results.

After a NAME command, the file exists on the same diskette, in the same
disk location, with the new name.

Examples:

NAME "ACCTS" AS "LEDGER"
Ok

The file formerly named accts will now be named ledger. The file content
and physical location on the diskette is unchanged.

141

NEW Command

NEW Command

Purpose:

To delete the program currently in memory and clear all variables.

Syntax:

NEW

Comments:

NEW is entered at command level to clear memory before entering a
new program. GW-BASIC always returns to command level after a NEW
is executed.

Examples:

NEW
OK

or

980 PRINT liDo You Wish To Quit (YIN)
990 ANS$=INKEY$: IF ANS$= THEN 990
1000 IF ANS$=IIY .. THEN NEW
1010 IF ANS$="N II THEN 980
1020 GOTO 990

142

OCT$ Function

OCT$ Function

Purpose:

To convert a decimal value to an octal value.

Syntax:

OCT$(x)

Comments:

x is rounded to an integer before OCT$(x) is evaluated.

This statement converts a decimal value within the range of - 32768
to + 65535 to an octal string expression.

Octal numbers are numbers to base 8 rather than base 10 (decimal
numbers).

See the HEX$ function for hexadecimal conversion.

Examples:

10 PRINT OCT$(18)
RUN
22
Ok

Decimal 18 equals octal 22.

143

ON COM(n)-ON TIMER(n) Statements

ON COM(n), ON KEY(n), ON PEN, ON PLAY(n),
ON STRIG(n), and ON TIMER(n) Statements

Purpose:

To create an event trap line number for a specified event (such as communi
cations, pressing function or cursor control keys, using the light pen, or
using joysticks).

Syntax:

ON event specifier GOSUB line number

Comments:

The syntax shown sets up an event trap line number for the specified event.
A line number of 0 disables trapping for this event.

Once trap line numbers have been set, event trapping itself can be con
trolled with the following syntax lines:

event specifier ON When an event is ON, and a nonzero line
number is specified for the trap, then every time
BASIC starts a new statement, it checks to see if
the specified event has occurred. If it has, BASIC
performs a GOSUB to the line specified in the
ON statement.

event specifier OFF When an event is OFF, no trapping occurs and
the event is not remembered, even if it occurs.

event specifier STOP When an event is stopped, no trapping can occur,
but if the event happens, it is remembered so an
immediate trap occurs when an event specifier
ON is executed.

When a trap is made for a particular event, the trap automatically causes a
stop on that event, so recursive traps can never take place.

The return from the trap routine automatically does an ON unless an
explicit OFF has been performed inside the trap routine.

144

ON COM(n)-ON TIMER(n) Statements

When an error trap takes place, this automatically disables all trapping.

Trapping will never take place when BASIC is not executing a program.

The following are valid values for event specifier:

COM(n)
KEY(n)

n is the number of the COM channel (lor 2).
n is a function key number 1-20. 1 through 10
are the function keys F1 through FlO. 11
through 14 are the cursor control keys as fol
lows:

11 = Cursor Up

12 = Cursor Left

13 = Cursor Right

14 = Cursor Down

15-20 are user-defined keys.

PEN Since there is only one pen, no number is
given.

PLAY(n) n is an integer expression in the range of
1-32. Values outside this range result in "Ille
gal function call" errors.

STRIG(n) n is 0, 2, 4, or 6. (0 = trigger AI; 4 = trigger A2;
2 = trigger B1; 6 = trigger B2).

TIMER(n) n is a numeric expression within the range of
1 to 86,400. A value outside of this range
results in an "Illegal function call" error.

RETURN line number This optional form of RETURN is primarily
intended for use with event trapping. The
event-trapping routine may want to go back
into the GW-BASIC program at a fixed line
number while still eliminating the GOSUB
entry that the trap created.

Use of the nonlocal RETURN must be done
with care. Any other GOSUB, WHILE, or FOR
that was active at the time of the trap
remains active.

If the trap comes out of a subroutine, any
attempt to continue loops outside the subrou
tine results in a "NEXT without FOR" error.

145

ON COM(n)-ON TIMER(n) Statements

Special Notes About Each Type of Trap

COM Trapping

Typically, the COM trap routine will read an entire message from the COM
port before returning.

It is recommended that you not use the COM trap for single character
messages, since at high baud rates the overhead of trapping and reading
for each individual character may allow the interrupt buffer for COM
to overflow.

KEY Trapping

Trappable keys 15 to 20 are defined by the following statement:

KEY(n),CHR$[hexcode] + CHR$[scan code]

n is an integer expression within the range of 15 to 20 defining the key to
be trapped.

hexcode is the mask for the latched key: (CAPS LOCK, NUM LOCK, ALT, CTRL,
LEFT SHIFT, RIGHT SHIFT)

scan code is the number identifying one of the 83 keys to trap. Refer to
Appendix H in the GW-BASIC User's Guide for key scan codes.

The appropriate bit in hexcode must be set in order to trap a key that is
shifted, control-shifted, or alt-shifted. hexcode values are as follows:

Mask Hexcode Indicates that

EXTENDED &H80 Key is extended
CAPS LOCK &H40 CAPS LOCK is active
NUMLOCK &H20 NUM LOCK is active
ALT &H08 The ALT key is pressed
CTRL &H04 The CTRL key is pressed
LEFT SHIFT &H02 The left SHIFT key is pressed
RIGHT SHIFT &H01 The right SHIFT key is pressed

146

ON COM(n)-ON TIMER(n) Statements

For trapping shifted keys, you may use the value &H01, &H02, or &H03.
The left and right SHIFT keys are coupled when &H03 is used.

Refer to the KEY(n) statement for more information.

No type of trapping is activated when GW-BASIC is in direct mode. Function
keys resume their standard expansion meaning during input.

A key that causes a trap is not available for examination with the INPUT
or INKEY$ statement, so the trap routine for each key must be different if
a different function is desired.

If CTRL-PRTSC is trapped, the line printer echo toggle is processed first.
Defining CTRL-PRTSC as a key trap does not prevent characters from being
echoed to the printer if CTRL-PRTSC is pressed.

Function keys 1 through 14 are predefined. Therefore, setting scan codes
59-68, 72, 75, 77, or 80 has no effect.

PLAY(n) Trapping

A PLAY event trap is issued only when playing background music
(P LAY 11MB ••). PLAY event music traps are not issued when running in
MUSIC foreground (default case, or PLAYIIMF .•).

Choose conservative values for n. An ON PLA Y(32) .. statement will cause
event traps so often that there will be little time to execute the rest of your
program.

The ON PLA yen) statement causes an event trap when the background
music queue goes from n to n - 1 notes.

STRIG Trapping

Using STRIG(n) ON activates the interrupt routine that checks the trigger
status. Downstrokes that cause trapping will not set STRIG(O), STRIG(2),
STRIG(4), or STRIG(6) functions.

147

ON COM(n)-ON TIMER(n) Statements

TIMER(n) Trapping

An ON TIMER(n) event trapping statement is used with applications need
ing an internal timer. The trap occurs when n seconds have elapsed since
the TIMER ON statement.

Example 1:

This is a very simple terminal program.

10 REM liON COM(n)" EXAMPLE
20 OPEN "COM1 :9600,0,7" AS #1
30 ON COM(1) GOSUB 80
40 COM(1) ON
50 REM TRANSMIT CHARACTERS FROM KEYBOARD
60 A$=INKEY$:IF A$=""THEN 50
70 PRINT #1 ,A$; :GOTO 50
80 REM DISPLAY RECEIVE CHARACTERS
90 ALL=LOC (1) : I FALL < 1 THEN RETURN
100 B$=INPUT$(ALL,#1) :PRINT B$;:RETURN

Example 2:

Prevents a CTRL-BREAK or system reset during a program.

10 KEY 15,CHR$(4)+CHR$(70) REM Trap ABREAK
20 KEY 16,CHR$(12)+CHR$(83) REM Trap system reset
30 ON KEY(15) GOSUB 1000
40 ON KEY(16) GOSUB 2000
50 KEY(15) ON
60 KEY(16) ON

1000 PRINT "I'm sorry, I can't let you do that"
1010 RETURN
2000 ATTEMPS=ATTEMPS+1
2010 ON ATTEMPS GOTO 2100,2200,2300,2400,2500
2100 PRINT "Mary had a little lamb":RETURN
2200 PRINT lilts fleece was white as snow":RETURN
2300 PRINT "And everywhere that Mary went":RETURN
2400 PRINT liThe lamb was sure to go":RETURN
2500 KEY(16) OFF REM If they hit us once more ...
2510 RETURN REM then BASIC dies ...

148

ON COM(n)-ON TIMER(n) Statements

Example 3:

Displays the time of day on line 1 every minute.

10 ON TIMER(60) GOSUB 10000
20 TIMER ON

10000 OLDROW=CSRLIN REM Saves the current row
10010 OLDCOL=POS(O) REM Saves the current column
10020 LOCATE 1,1 :PRINT TIME$
10030 LOCATE OLDROW,OLDCOL REM Restores row and column
10040 RETURN

149

ON ERROR GOTO Statement

ON ERROR GO TO Statement

Purpose:

To enable error trapping and specify the first line of the error-handling
subroutine.

Syntax:

ON ERROR GOTO line number

Comments:

Once error trapping has been enabled, all errors detected by GW-BASIC,
including direct mode errors (for example, syntax errors), cause GW-BASIC to
branch to the line in the program that begins the specified error-handling
subroutine.

GW-BASIC branches to the line specified by the ON ERROR statement until
a RESUME statement is found.

If line number does not exist, an "Undefined line" error results.

To disable error trapping, execute the following statement:

ON ERROR GO TO a

Subsequent errors print an error message and halt execution.

An ON ERROR GOTO 0 statement in an error-trapping subroutine causes
GW-BASIC to stop and print the error message for the error that caused the
trap. It is recommended that all error-trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for which there is no recovery
action.

If an error occurs during execution of an error-handling subroutine, the GW
BASIC error message is printed and execution terminated. Error trapping
does not occur within the error-handling subroutine.

150

ON ERROR GOTO Statement

Examples:

10 ON ERROR GO TO 1000

1000 A=ERR:B=ERL
1010 PRINT A,B
1020 RESUME NEXT

Line 1010 prints the type and location of the error on the screen (see the
ERR and ERL variables).

Line 1020 causes program execution to continue with the line following the
error.

151

ON ... GOSUB and ON ... GOTO Statements

ON ... GOSUB and ON ... GOTO Statements

Purpose:

To branch to one of several specified line numbers, depending on the value
returned when an expression is evaluated.

Syntax:

ON expression GOTO line numbers
ON expression GOSUB line numbers

Comments:

In the ON ... GOTO statement, the value of expression determines which
line number in the list will be used for branching. For example, if the value
is 3, the third line number in the list will be the destination of the branch.
If the value is a noninteger, the fractional portion is rounded.

In the ON ... GOSUB statement, each line number in the list must be the
first line number of a subroutine.

If the value of expression is zero or greater than the number of items in the
list (but less than or equal to 255), GW-BASIC continues with the next exe
cutable statement.

If the value of expression is negative, or greater than 255, an "Illegal func
tion call" error occurs.

Examples:

100 IF R<1 or R#4 then print IIERRORII:END

If the integer value of R is less than 1, or greater than 4, program execu
tion ends.

200 ON R GOlD 150,300,320,390

If R= 1, the program goes to line 150.

If R = 2, the program branches to line 300 and continues from there. If R = 3,
the branch will be to line 320, and so on.

152

OPEN Statement

OPEN Statement

Purpose:

To establish input/output (110) to a file or device.

Syntax:

OPEN mode,[#]file number,filename[,reclen]

OPEN filename [FOR mode][ACCESS access][lock] AS [#]file number [LEN = reclenl

Comments:

filename is the name of the file.

mode (first syntax) is a string expression with one of the following
characters:

Expression

o
I

R

A

Specifies

Sequential output mode

Sequential input mode

Random input/output mode

Position to end of file

mode (second syntax) determines the initial positioning within the file, and
the action to be taken if the file does not exist. If the FOR mode clause is
omitted, the initial position is at the beginning of the file. If the file is not
found, one is created. This is the random 110 mode. That is, records may be
read or written at any position within the file. The valid modes and actions
taken are as follows:

INPUT

OUTPUT

Position to the beginning of the file. A "File not
found" error is given if the file does not exist.

Position to the beginning of the file. If the file does
not exist, one is created.

153

OPEN Statement

APPEND

RANDOM

Position to the end of the file. If the file does not
exist, one is created.

Specifies random input or output mode.

mode must be a string constant. Do not enclose mode in double quotation
marks. access can be one of the following:

READ

WRITE

READ WRITE

file number is a number between 1 and the maximum number of files
allowed. The number associates an 110 buffer with a disk file or device.
This association exists until a CLOSE or CLOSE file number statement
is executed.

reclen is an integer expression within the range of 1-32767 that sets the
record length to be used for random files. If omitted, the record length
defaults to 128-byte records.

When reclen is used for sequential files, the default is 128 bytes, and reclen
cannot exceed the value specified by the /s switch.

A disk file must be opened before any disk 110 operation can be performed
on that file. OPEN allocates a buffer for 110 to the file and determines the
mode of access that is used with the buffer.

More than one file can be opened for input or random access at one time
with different file numbers. For example, the following statements are
allowed:

OPEN "B:TEMp l FOR INPUT AS #1
OPEN "B:TEMP" FOR INPUT AS #2

However, a file may be opened only once for output or appending. For
example, the following statements are illegal:

OPEN "TEMP" FOR OUTPUT AS #1
OPEN "TEMP" FOR OUTPUT AS #2

154

OPEN Statement

Note

Be sure to close all files before removing diskettes from the disk drives
(see CLOSE and RESET).

A device may be one of the following:

A:,B:,C: ... Disk Drive

KYBD: Keyboard (input only)

SCRN: Screen (output only)

LPT1: Line Printer 1

LPT2: Line Printer 2

LPT3: Line Printer 3

COM1: RS-232 Communications 1

COM2: RS-232 Communications 2

For each device, the following OPEN modes are allowed:

KYBD:

SCRN:

LPTl:

LPT2:

LPT3:

COM1:

COM2:

Input Only

Output Only

Output Only

Output Only

Output Only

Input, Output, or Random Only

Input, Output, or Random Only

Disk files allow all modes.

When a disk file is opened for APPEND, the position is initially at the
end of the file, and the record number is set to the last record of the file
(LOF(x)1128). PRINT, WRITE, or PUT then extends the file. The program
may position elsewhere in the file with a GET statement. If this is done,
the mode is changed to random and the position moves to the record
indicated.

155

OPEN Statement

Once the position is moved from the end of the file, additional records may
be appended to the file by executing a GET #x, LOF(x)lreclen statement.
This positions the file pointer at the end of the file in preparation for
appending.

Any values entered outside of the ranges given result in "Illegal function
call" errors. The files are not opened.

If the file is opened as INPUT, attempts to write to the file result in "Bad
file mode" errors.

If the file is opened as OUTPUT, attempts to read the file result in "Bad
file mode" errors.

Opening a file for OUTPUT or APPEND fails if the file is already open in
any mode.

Since it is possible to reference the same file in a subdirectory via different
paths, it is nearly impossible for GW-BASIC to know that it is the same file
simply by looking at the path. For this reason, GW-BASIC does not let you
open the file for OUTPUT or APPEND if it is on the same disk, even if the
path is different. For example if mary is your working directory, the follow
ing statements all refer to the same file:

OPEN IIREPORT II
OPEN II\SALES\MARY\REPORT II
OPEN II .. \MARY\REPORT II
OPEN II .. \ .. \MARY\REPORT II

At anyone time, it is possible to have a particular diskette filename open
under more than one file number. Each file number has a different buffer,
so several records from the same file may be kept in memory for quick
access. This allows different modes to be used for different purposes; or,
for program clarity, different file numbers to be used for different modes
of access.

If the LEN = reclen option is used, reclen may not exceed the value set by
the Is:reclen switch option in the command line.

In a network environment, the use of the OPEN statement is based upon
two different sets of circumstances:

156

• Devices may be shared on a network for specific purposes only, so
that OPEN statements may be restricted to specific modes among
those which might be requested, such as: INPUT, OUTPUT,
APPEND, and default (Random).

OPEN Statement

• Files may be restricted by the implementation of an OPEN state
ment that allows a process to specify locking to the successfully
opened file. The locking determines a guaranteed exclusivity range
on that file by the process while the OPEN statement is in effect.

lock can be one of the following:

SHARED

LOCK READ

LOCK WRITE

LOCK READ
WRITE

default

"deny none" mode. No restrictions are placed on the
read/write accessibility of the file to another pro
cess, except that the default mode is not allowed by
any of the modes including SHARED.

"deny read" mode. Once a file is opened with the
LOCK READ access, no other process is granted
read-access to that file. An attempt to open a file
with this access will be unsuccessful if the file is
currently open in default mode or with a read
access.

"deny write" mode. A file successfully opened with
LOCK WRITE access may not be opened for a write
access by another process. An attempt to open a file
with this access will be unsuccessful if the file has
been opened in default mode, or with a write access
by another process.

"deny all" or "exclusive" mode. If a file is success
fully opened with this access, the process has
exclusive access to the file. A file that is currently
open in this mode cannot be opened again in any
mode by any process.

"compatibility" mode, in which the compatibility
with other BASICs is understood. No access is speci
fied. The file may be opened any number of times
by a process, provided that the file is not currently
opened by another process. Other processes are
denied access to the file while it is open under
default access. Therefore, it is functionally
exclusive.

When an attempt is made to open a file that has been previously accessed
by another process, the error "Permission Denied" will result. An example
of a situation generating this error is when a process attempts to OPEN
SHARED on a file that is already OPEN LOCK READ WRITE by
another process.

157

OPEN Statement

If an OPEN statement fails because the mode is incompatible with net
work-installed sharing access to a device, the error generated is "Path/File
Access Error." An example of this is when a process is attempting to OPEN
a file for output on a directory that has been shared for read only.

For more information about using files in a networking environment, see
the LOCK and UNLOCK statements.

Examples:

10 OPEN IIIII,2,IIINVENIl

Opens file 2, inven, for sequential input.

158

OPEN "COM(n) Statement

OPEN "COM(n) Statement

Purpose:

To allocate a buffer to support RS-232 asynchronous communications with
other computers and peripheral devices in the same manner as OPEN for
disk files.

Syntax:

OPEN ··COM[n]:[speed][,parity][,data] [,stop][,RS][,CS[n]][,DS[n]]

[,CD[n]][,LF] [,PE]" AS [#]filenum [LEN = number]

Comments:

COM[n] is a valid communications device: coml: or com2:.

speed is a literal integer specifying the transmit/receive baud rate.

Valid speeds are as follows:

75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, and 9600. The default
is 300 bps.

parity is a one-character literal specifying the parity for transmitting and
receiving.

Valid characters specifying parity are as follows:

S

M

o

SPACE. Parity bit always transmitted and received as
space (0 bit).

MARK. Parity bit always transmitted and received as
mark (1 bit).

ODD. Odd transmit parity; odd receive parity checking.
Default is even.

E EVEN. Even transmit parity; even receive parity checking.
Even is default.

N NONE. No transmit parity; no receive parity checking.

data is a literal integer indicating the number of transmit/receive data bits.

159

OPEN "COM(n) Statement

Valid values for the number of data bits are 4, 5, 6, 7, and 8, the default is
7 bits.

Note

Four data bits with no parity is illegal; eight data bits with any parity
is illegal.

stop is a literal integer expression returning a valid file number.

Valid values for number of stop bits are 1 and 2. If omitted, 75 and 110 bps
transmit two stop bits. All others transmit one stop bit.

filenum is a number between 1 and the maximum number of files allowed.
A communications device may be opened to only one file number at a time.

The filenum is associated with the file for as long as the file is open, and is
used to refer other COM 110 statements to the file.

Any coding errors within the filename string result in "Bad file name"
errors. An indication as to which parameters are in error is not given.

number is the maximum number of bytes that can be read from the com
munications buffer when using the GET or PUT default of 128 bytes.

A "Device timeout" error occurs if "data set ready" (DSR) is not detected.

The RS, CS, DS, DC, LF, and PE options affect the line signals as follows:

160

Option

RS

CS[n]

DS[n]

CD[n]

LF

PE

Function

suppresses RTS (request to send)

controls CTS (clear to send)

controls DSR (data set ready)

controls CD (carrier detect)

sends a line feed at each return

enables parity checking

OPEN "COM(n) Statement

n is the number of milliseconds to wait (0-65535) for that signal before a
device timeout error occurs. Defaults are: CS1000, DS1000, and CDO. If RS
was specified, then CSO is the default. If n is omitted, then timeout is set
to O.

See Appendix F in the GW-BASIC User's Guide for more information about
communications.

Examples:

In the following, File 1 is opened for communications with all defaults:
speed at 300 bps, even parity, seven data bits, and one stop bit.

1 0 OPEN "COM1: II AS 1

In the following, File 2 is opened for communications at 2400 bps. Parity
and number of data bits are defaulted.

20 OPEN "COM1: 2400" AS #2

In the following, File 1 is opened for asynchronous 110 at 1200 bits/second.
No parity is to be produced or checked.

10 OPEN ICOM1:1200,N,8" AS #1

161

OPTION BASE Statement

OPTION BASE Statement

Purpose:

To declare the minimum value for array subscripts.

Syntax:

OPTION BASE n

Comments:

n is 1 or o. The default base is O.

If the statement OPTION BASE 1 is executed, the lowest value an array
subscript can have is 1.

An array subscript may never have a negative value.

OPTION BASE gives an error only if you change the base value. This
allows chained programs to have OPTION BASE statements as long as
the value is not changed from the initial setting.

Note

162

You must code the OPTION BASE statement before you can define or
use any arrays. If an attempt is made to change the option base value
after any arrays are in use, an error results.

OUT Statement

OUT Statement

Purpose:

To send a byte to a machine output port.

Syntax:

OUT h,j

Comments:

h and} are integer expressions. h may be within the range of 0 to 65535.
} may be within the range of 0 to 255. h is a machine port number, and}
is the data to be transmitted.

OUT is the complementary statement to the INP function.

Examples:

100 OUT 12345,225

Outputs the decimal value 225 to port number 12345. In assembly
language, this is equivalent to the following:

MOV DX,12345
MOV AL,255
OUT DX,AL

163

PAINT Statement

PAINT Statement

Purpose:

To fill in a graphics figure with the selected attribute.

Syntax:

PAINT (x start,y start)[,paint attribute[,border attribute][,bckgrnd attribute]]

Comments:

The PAINT statement fills in an arbitrary graphics figure of the specified
border attribute with the specified paint attribute. If paint attribute is not
given, it will default to the foreground attribute (3 or 1). border attribute
defaults to paint attribute. See the COLOR and PALETTE statements for
more information.

PAINT must start on a nonborder point; otherwise, PAINT will have
no effect.

PAINT can fill any figure, but painting jagged edges or very complex fig
ures may result in an "Out of memory" error. The CLEAR statement may
be used to increase the amount of stack space available.

Points that are specified outside the limits of the screen will not be plotted
and no error will occur.

See the SCREEN statement for a description of the different screen modes.

Paint Tiling

PAINT tiling is similar to LINE styling. Like LINE, PAINT looks at a
tiling mask each time a point is put down on the screen.

If paint attribute is omitted, the standard foreground attribute is used.

If paint attribute is a numeric formula, then the number must be a valid
color, and it is used to paint the area as before.

164

PAINT Statement

If paint attribute is a string formula, then tiling is performed as follows:

The tile mask is always eight bits wide and may be from 1 to 64 bytes long.
Each byte in the tile string masks eight bits along the x axis when putting
down points. Each byte of the tile string is rotated as required to align
along the y axis, such that:

where y is the position of the graphics cursor on the y axis.

tile _length is the length in bytes of the tile string defined by the user
(1 to 64 bytes).

This is done so that the tile pattern is replicated uniformly over the entire
screen (as if a PAINT (0,0) .. were used).

x Increases --# Bit of Tile Byte
x,y 8 7 6 5 4 3 2 1

:x:x:x:x:x:x:x:x:
:x:xlxlxlxlxlxlxl
lxlxlxlxlxlxlxlxl

lxlxlxlxlxlxlxlxl

Tile byte 1
Tile byte 2
Tile byte 3

Tile byte 64
{maximum allowed}

In high-resolution mode (SCREEN 2), the screen can be painted with Xs by
the following statement:

PAINT {320,1 OO} ,CHR${&H81 }+CHR${&H42}+CHR${&H24}+
CHR${&H18}+CHR${&H18}+CHR${&H24}+CHR${&H81 }

This appears on the screen as follows:

x increases --#

o ,0 x x CHR$ {&H81 } Tile
o , 1 x x CHR${&H42} Tile
0,2 x x CHR${&H24} Tile
0,3 x x CHR${&H18} Tile
0,4 x x CHR${&H18} Tile
0,5 x x CHR${&H24} Tile
0,6 x x CHR${&H42} Tile
0,7 x x CHR$ {&H81 } Tile

byte
byte
byte
byte
byte
byte
byte
byte

165

1
2
3
4
5
6
7
8

PAINT Statement

Since there are two hits per pixel in medium-resolution mode (SCREEN 1),
each byte of the tile pattern describes only four pixels. In this case, every
two bits of the tile byte describes one of the four possible colors associated
with each of the four pixels to be put down.

bckgrnd attribute specifies the background tile pattern or color byte to skip
when checking for boundary termination. bckgrnd attribute is a string for
mula returning one character. When omitted, the default is CHR$(O).

Occasionally, you may want to paint tile over an already painted area that
is the same color as two consecutive lines in the tile pattern. PAINT quits
when it encounters two consecutive lines of the same color as the point
being set (the point is surrounded). It is not possible to draw alternating
blue and red lines on a red background without bckgrnd attribute.
PAINT stops as soon as the first red pixel is drawn. By specifying red
(CHR$(&HAA)) as the background attribute, the red line is drawn over
the red background.

You cannot specify more than two consecutive bytes in the tile string that
match the background attribute. Specifying more than two results in an
"Illegal function call" error.

Examples:

10 CLS
20 SCREEN 1
30 LINE (0,0)-(100,150),2,8
40 PAINT (50,50),1,2
50 LOCATE 20,1

The PAINT statement in line 40 fills in the box drawn in line 30 with
color 1.

166

PALETTE, PALETTE USING Statements

P ALETTE, PALETTE USING Statements

Purpose:

Changes one or more of the colors in the palette

Syntax:

PALETTE [attribute,color]
PALETTE USING integer-array-name (arrayindex)

Comments:

The PALETTE statement works only for systems equipped with the IBM®
Enhanced Graphics Adapter (EGA). A GW-BASIC palette contains a set of
colors, with each color specified by an attribute. Each attribute is paired
with an actual display color. This color determines the actual visual color
on the screen, and is dependent on the setting of your screen mode and your
actual physical hardware display.

PALETTE with no arguments sets the palette to a known initial setting.
This setting is the same as the setting when colors are first initialized.

If arguments are specified, color will be displayed whenever attribute is
specified in any statement that specifies a color. Any color changes on the
screen occur immediately. Note that when graphics statements use color
arguments, they are actually referring to attributes and not actual colors.
PALETTE pairs attributes with actual colors.

For example, assume that the current palette consists of colors 0, 1, 2,
and 3. The following DRAW statement:

DRAW IC3L100"

selects attribute 3, and draws a line of 100 pixels using the color associated
with the attribute 3, in this case, also 3. If the following statement:

PALETTE 3,2

is executed, then the color associated with attribute 3 is changed to color 2.
All text or graphics currently displayed on the screen using attribute 3 are
instantaneously changed to color 2. All text or graphics subsequently dis
played with attribute 3 will also be displayed in color 2. The new palette of
colors will contain 0, 1, 2, and 2.

167

PALETTE, PALETTE USING Statements

With the USING option, all entries in the palette can be modified in one
PALETTE statement. The integer-array-name argument is the name of an
integer array, and the array index specifies the index of the first array ele
ment in the integer-array-name to use in setting your palette. Each
attribute in the palette is assigned a corresponding color from this integer
array. The array must be dimensioned large enough to set all the palette
entries after arrayindex. For example, if you are assigning colors to all 16
attributes, and the index of the first array element given in your PALETTE
USING statement is 5, then the array must be dimensioned to hold at least
20 elements (since the number of elements from 5 - 20, inclusive, is 16):

DIM PAL%(20)

PALETTE USING PAL%(5)

If the color argument in an array entry is -1, then the mapping for the
associated attribute is not changed. All other negative numbers are illegal
values for color.

You can use the color argument in the COLOR statement to set the default
text color. (Remember that color arguments in other BASIC statements are
actually what are called attributes in this discussion.) This color argument
specifies the way that text characters appear on the display screen. Under
a common initial palette setting, points colored with the attribute ° appear
as black on the display screen. Using the PALETTE statement, you could,
for example, change the mapping of attribute 0 from black to white.

Remember that a PALETTE statement executed without any parameters
assigns all attributes their default colors.

168

PALETTE, PALETTE USING Statements

The following table lists attribute and color ranges for various monitor types
and screen modes:

Table 1

SCREEN Color and Attribute Ranges

SCREEN Monitor Attribute Color
Mode Attached Adapter Range Range

0 Monochrome MDPA NA NA

Monochrome EGA 0-15 0-2

Color CGA NA 0-31a

Color/Enhancedd EGA 0-31a 0-15

1 Color CGA NA 0-3

Color/Enhancedd EGA 0-3 0-15

2 Color CGA NA 0-1

Color/Enhancedd EGA 0-1 0-15

7 Color/Enhancedd EGA 0-15 0-15

8 Color/Enhancedd EGA 0-15 0-15

9 Enhancedd EGAb 0-3 0-15

Enhancedd EGAc 0-15 0-63

10 Monochrome EGA 0-3 0-8

~ Attributes 16 - 31 refer to blinking versions of colors 0 - 15
With 64K of EGA memory

~ With greater than 64K of EGA memory
IBM Enhanced Color Display

NA = Not Applicable
CGA = IBM Color Graphics Adapter
EGA = IBM Enhanced Graphics Adapter
MDP A = IBM Monochrome Display and Printer Adapter

See the SCREEN statement reference page for the list of colors available
for various SCREEN mode, monitor, and graphics adapter combinations.

169

PALETTE, PALETTE USING Statements

Examples:

PALETTE 0,2

PALETTE 0,-1

'Changes all points colored with attribute 0
'to color 2

'Does not modify the palette

PALETTE USING A%(O) 'Changes each palette entry. Since th,
'array is initialized to zero when it
'is first declared, all attributes ar
Inow mapped to display color zero. Th
Iscreen will now appear as one single
Icolor. However, it will still be
'pos s ible to execute BASIC statements

PALETTE

170

'Sets each palette entry to its appropriate
'initial display color. Actual initial colors
'depend on your screen hardware configuration

PCOpy

PCOpy Command

Purpose:

To copy one screen page to another in all screen modes.

Syntax:

PCOpy sourcepage, destinationpage

Comments:

The sourcepage is an integer expression in the range 0 to n, where n is
determined by the current video-memory size and the size per page for
the current screen mode.

The destinationpage has the same requirements as the sourcepage.

For more information, see CLEAR and SCREEN.

Examples:

This copies the contents of page 1 to page 2:

PCOPY 1,2

171

PEEK Function

PEEK Function

Purpose:

To read from a specified memory location.

Syntax:

PEEK(a)

Comments:

Returns the byte (decimal integer within the range of 0 to 255) read from
the specified memory location a. a must be within the range of 0 to 65535.

The DEF SEG statement last executed determines the absolute address that
will be peeked into.

PEEK is the complementary function to the POKE statement.

Examples:

10 A=PEEK(&H5AOO)

The value of the byte, stored in user-assigned hex offset memory location
5AOO (23040 decimal), will be stored in the variable A.

172

PEN Statement and Function

PEN Statement and Function

Purpose:

To read the light pen.

Syntax:

As a statement:

PENON
PEN OFF
PEN STOP

As a function:

x = P(n)

Comments:

x is the numeric variable receiving the PEN value.

n is an integer within the range of 0 to 9.

PEN ON enables the PEN read function.

PEN OFF disables the PEN read function.

PEN STOP disables trapping. It remembers the event so that immediate
trapping occurs when PEN ON is executed.

x = PEN(n) reads the light pen coordinates.

The PEN function is initially off. A PEN ON statement must be executed
before any PEN read function calls can be made, or a PEN read function
call results in an "Illegal function call" error.

Light pen coordinates:

n = 0 If PEN was down since last poll, returns -1; if not,
returns o.

173

PEN Statement and Function

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

Returns the x-pixel coordinate when PEN was last
activated. The range is within ° to 319 for medium
resolution, ° to 639 for high resolution.

Returns the y-pixel coordinate when PEN was last
activated. The range is within ° to 199.

Returns the current PEN switch value. Returns -1
if down, ° if up.

Returns the last known valid x-pixel coordinate.
The range is within ° to 319 for medium resolution,
or ° to 639 for high resolution.

Returns the last known valid y-pixel coordinate.
The range is wi thin ° to 199.

Returns the character row position when PEN was
last activated. The range is within 1 to 24.

Returns the character column position when PEN
was last activated. The range is within 1 to 40, or 1
to 80, depending on the screen width.

Returns the last known valid character row. The
range is within 1 to 24.

Returns the last known valid character column
position. The range is within 1 to 40, or 1 to 80,
depending on the screen width.

For execution speed improvements, turn the pen off with a PEN OFF state
ment for those programs not using the light pen.

When the pen is in the border area of the screen, the values returned will
be inaccurate.

Examples:

50 PEN ON
60 FOR 1=1 to 500
70 X=PEN(O) :X1=PEN(3)
80 Print X,X1
90 NEXT
100 PEN OFF

This example prints the pen value since the last poll and the current value.

174

PLAY Statement

PLAY Statement

Purpose:

To play music by embedding a music macro language into the string
data type.

Syntax:

PLAY string expression

Comments:

The single-character commands in PLAY are as follows:

A-G [#, + ,-]

L(n)

MF

MB

A-G are notes. # or + following a note produces
a sharp; - produces a flat.

Any note followed by #, +, or - must refer to
a black key on a piano.

Sets the length of each note. L4 is a quarter note,
Ll is a whole note, and so on. n may be from 1
to 64.

Length may also follow the note to change the
length for that note only. A16 is equivalent to
L16A.

Music foreground. PLAY and SOUND statements
are to run in foreground. That is, each subsequent
note or sound is not started until the previous note
or sound is finished. This is the initial default.

Music background. PLAY and SOUND statements
are to run in background. That is, each note or
sound is placed in a buffer allowing the BASIC pro
gram to continue execution while music plays in
the background. As many as 32 notes (or rests)
can be played in background at one time.

175

PLAY Statement

176

MN

ML

MS

N(n)

O(n)

pen)
T(n)

. (period)

Xstring;

Music normal. Each note plays seven-eighths of the
time determined by L (length).

Music legato. Each note plays the full period
set by L.

Music staccato. Each note plays three-quarters
of the time determined by L.

Play note n. n may range from 0 to 84. In the 7
possible octaves, there are 84 notes. n set to 0
indicates a rest.

Octave 0 sets the current octave. There are 7
octaves (0 through 6). Default is 4. Middle C is
at the beginning of octave 3.

Pause. P may range from 1-64.
Tempo. T sets the number of L4s in a minute.
n may range from 32-255. Default is 120.

A period after a note increases the playing time
of the note by 3/2 times the period determined by
L (length of the note) times T (tempo). Multiple
periods can appear after a note, and the playing
time is scaled accordingly. For example, A. will
cause the note A to play one and one half times the
playing time determined by L (length of the note)
times T (the tempo); two periods placed after A (A ..)
will cause the note to be played at 9/4 times its
ascribed value; an A with three periods (A ...) at
27/8, etc.

Periods may also appear after. a P (pause), and
increase the pause length as described above.

Executes a substring, where string is a variable
assigned to a string of PLAY commands.

Because of the slow clock interrupt rate, some notes
do not play at higher tempos; for example, 1.64 at
T255. These note/tempo combinations must be
determined through experimentation.

>n

<n

Note

PLAY Statement

A greater-than symbol preceding the note n plays
the note in the next higher octave.

A less-than symbol preceding the note n plays the
note in the next lower octave.

Numeric arguments follow the same syntax described under the DRAW
statement.

n as an argument can be a constant, or it can be a variable with = in front
of it (= variable). A semicolon is required after the variable and also after
the variable in Xstring.

177

PLA Y(n) Function

PLA Y(n) Function

Purpose:

To return the number of notes currently in the background music queue.

Syntax:

PLAY(n)

Comments:

n is a dummy argument, and may be any value.

PLA Y(n) returns 0 when in music foreground mode.

The maximum returned value of x is 32.

Examples:

10 I when 4 notes are left in
20 I gueue play another tune
30 PLAY IIMBABCDABCDABCD II
40 IF PLAY (0) =4 then 200

200 PLAY IIMBCDEFCDEF"

178

PMAP Function (Graphics)

PMAP Function (Graphics)

Purpose:

To map expressions to logical or physical coordinates.

Syntax:

x = PMAP (exp,function)

Comments:

This function is valid for graphics modes only.

x is the physical coordinate of the point that is to be mapped.

exp is a numeric variable or expression.

Function

o
1

Maps

logical expressions to physical x

logical expressions to physical y

2 physical expressions to logical x

3 physical expressions to logical y

PMAP is used with WINDOW and VIEW to translate coordinates.

179

POINT Function

POINT Function

Purpose:

To read the color or attribute value of a pixel from the screen.

Syntax:

POINT(x,y)
POINT(function)

Comments:

In the first syntax, x and yare coordinates of the point to be examined.

If the point given is out of range, the value -1 is returned.

See the COLOR and PALETTE statements for valid color and attribute
values.

POINT with one argument allows you to retrieve the current graphics
coordinates.

POINT(function) returns the value of the current x or y graphics coordi
nates as follows:

180

Function

o
1

2

3

Returns

the current physical x coordinate.

the current physical y coordinate.

the current logical x coordinate if WINDOW is
acti ve; otherwise, it returns the current physical x
coordinate as in 0 above.

the current logical y coordinate if WINDOW is
active; otherwise, it returns the current physical y
coordinate as in 1 above.

POINT Function

Example 1:

10 SCREEN 1
20 FOR C=O TO 3
30 PSET (10,10},C
40 IF POINT(10,10}<#C THEN PRINT "BROKEN BASIC!"
50 NEXT C
RUN

Example 2:

The following inverts the current state of a point:

10 SCREEN 2
20 IF POINT(I,I}<#O THEN PRESET(I,I) ELSE PSET(I,I}
RUN

Example 3:

The following is another way to invert a point:

20 PSET (I,I},1-POINT(I,I)
RUN

181

POKE Statement

POKE Statement

Purpose:

To write (poke) a byte of data into a memory location.

Syntax:

POKE a,b

Comments:

a and b are integer expressions.

The integer expression a is the offset address of the memory location to
be poked. The DEF SEG statement last executed determines the address.
GW-BASIC does not check any offsets that are specified.

The integer expression b is the data to be poked.

b must be within the range of 0 to 255. a must be within the range of 0
to 65535.

The complementary function to POKE is PEEK. The argument to PEEK is
an address from which a byte is to be read.

POKE and PEEK are useful for efficient data storage, for loading assembly
language subroutines, and for passing arguments and results to and from
assembly language subroutines.

Examples:

20 POKE &H5AOO,&HFF

Places the decimal value 255 (&HFF) into the hex offset location (23040
decimal). See the PEEK function example.

182

POS Function

POS Function

Purpose:

To return the current cursor position.

Syntax:

POS(c)

Comments:

The leftmost position is 1.

c is a dummy argument.

Examples:

10 CLS
20 WIDTH 80
30 A$=INKEY$:IF A$= THEN GO TO 30 ELSE PRINT A$;
40 IF POS(X)#10 THEN PRINT CHR$(13);
50 GOTO 30

Causes a carriage return after the 10th character is printed on each line of
the screen.

183

PRESET and PSET Statements

PRESET and PSET Statements

Purpose:

To display a point at a specified place on the screen during use of the
graphics mode.

Syntax:

PRESET(x,y)[,color]

PSET(x,y)[,color]

Comments:

(x,y) represents the coordinates of the point.

color is the color of the point.

Coordinates can be given in either absolute or relative form.

Absolute Form

(absolute x,absolute y) is more common and refers directly to a point without
regard to the last point referenced. For example:

(10,10)

Relative Form

STEP (x offset,y offset) is a point relative to the most recent point refer
enced. For example:

STEP (1 0 ,1 0)

Coordinate values can be beyond the edge of the screen. However, values
outside the integer range (- 32768 to 32767) cause an "Overflow" error.

(0,0) is always the upper-left corner and (0,199) is the lower-left corner in
both high resolution and medium resolution.

184

PRESET and PSET Statements

See the COLOR and PALETTE statements for more information.

If the value for color is greater than 3, an "Illegal function call" error
is returned.

Example 1:

The following draws a diagonal line from (0,0) to (100,100).

10 CLS
20 SCREEN 1
30 FOR 1=0 TO 100
40 PSET (1,1)
50 NEXT
60 LOCATE 14,1

Example 2:

The following clears out the line by setting each pixel to O.

40 FOR 1=100 TO 0 STEP -1
50 PSET(I,I),O
60 NEXT I

185

PRINT Statement

PRINT Statement

Purpose:

To output a display to the screen.

Syntax:

PRINT [list of expressions][;]
?[list of expressions][;]

Comments:

If list of expressions is omitted, a blank line is displayed.

If list of expressions is included, the values of the expressions are displayed.
Expressions in the list may be numeric and/or string expressions, separated
by commas, spaces, or semicolons. String constants in the list must be
enclosed in double quotation marks.

For more information about strings, see the STRING$ function.

A question mark (?) may be used in place of the word PRINT when using
the GW-BASIC program editor.

Print Positions

GW-BASIC divides the line into print zones of 14 spaces. The position of each
item printed is determined by the punctuation used to separate the items in
the list:

Separator

space(s)

186

Print Position

Beginning of next zone

Immediately after last value

Immediately after last value

PRINT Statement

If a comma, semicolon, or SPC or TAB function ends an expression list, the
next PRINT statement begins printing on the same line, accordingly spaced.
If the expression list ends without a comma, semicolon, or SPC or TAB
function, a carriage return is placed at the end of the lines (GW-BASIC places
the cursor at the beginning of the next line).

A carriage return/line feed is automatically inserted after printing width
characters, where the width is 40 or 80, as defined in the WIDTH state
ment. This results in two lines being skipped when you print exactly 40 (or
80) characters, unless the PRINT statement ends in a semicolon.

When numbers are printed on the screen, the numbers are always followed
by a space. Positive numbers are preceded by a space. Negative numbers
are preceded by a minus (-) sign. Single-precision numbers are represented
with seven or fewer digits in a fixed-point or integer format.

See the LPRINT and LPRINT USING statements for information on send
ing data to be printed on a printer.

Examples:

10 X$= STRING$(10,45)
20 PRINT X$IIMONTHLY REPORTII X$
----------MONTHLY REPORT---------
Ok

45 is the decimal equivalent of the ASCII symbol for the minus (-) sign.

187

PRINT USING Statement

PRINT USING Statement

Purpose:

To print strings or numbers using a specified format.

Syntax:

PRINT USING string expressions;list of expressions[;]

Comments:

string expressions is a string literal or variable consisting of special for
matting characters. The formatting characters determine the field and the
format of printed strings or numbers.

list of expressions consists of the string or numeric expressions separated
by semicolons.

String Fields

The following three characters may be used to format the string field:

\n spaces\

188

Specifies that only the first character in the string
is to be printed.

Specifies that 2 + n characters from the string are to
be printed.

If the backslashes are typed with no spaces, two
characters are printed; if the backslashes are typed
with one space, three characters are printed, and
so on.

If the string is longer than the field, the extra char
acters are ignored. If the field is longer than the
string, the string is left-justified in the field and
padded with spaces on the right. For example:

10 A$=IILOOKII:B$=IIOUT II
30 PRINT USING II!II;A$;B$
40 PRINT USING II

\ \II;A$;B$
50 PRINT USING II

\ \II;A$;B$;II!!II
RUN

&

Numeric Fields

RUN
Lo
LOOKOUT
LOOK OUT!!

PRINT USING Statement

Specifies a variable length string field. When the
field is specified with &, the string is output exactly
as input. For example:

10 A$=IILooK II :B$=lIoUT Il

20 PRINT USING II!II;A$
30 PRINT USING II&II;B$
RUN
LOUT

The following special characters may be used to format the numeric field:

A pound sign is used to represent each digit posi
tion. Digit positions are always filled. If the number
to be printed has fewer digits than positions speci
fied, the number is right-justified (preceded by
spaces) in the field.

A decimal point may be inserted at any position in
the field. If the format string specifies that a digit
is to precede the decimal point, the digit always is
printed (as 0 if necessary). Numbers are rounded as
necessary. For example:

PRINT USING 11##.##11;.78
0.78
OK

PRINT USING 11###.##11;987.654
987.65
OK

PRINT USING 11##.##11 ;10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at
the end of the format string to separate the printed
values on the line.

189

PRINT USING Statement

+

**

$$

**$

190

A plus sign at the beginning or end of the format
string causes the sign of the number (plus or
minus) to be printed before or after the number.

A minus sign at the end of the format field causes
negative numbers to be printed with a trailing
minus sign. For example:

PRINT USING I +##.##";-68.95,2.4,55.6,-9
-68.95 +2.40 +55.60 -0.90
OK

PRINT USING"##.##-I;-68.95,22.449,-7.01
68.95 22.45 7.01-
OK

A double asterisk at the beginning of the format
string causes leading spaces in the numeric field to
be filled with asterisks. The ** also specifies two
more digit positions. For example:

PRINT USING "**#.#";12.39,-0.9,765.1
12.4 -09765.1
Ok

A double dollar sign at the beginning of the format
string causes a dollar sign to be printed to the
immediate left of the formatted number. The $$
specifies two more digit positions, one of which is
the dollar sign. The exponential format cannot be
used with $$. Negative numbers cannot be used
unless the minus sign trails to the right. For
example:

PRINT USING "$$###.##";456.78
$456.78
Ok

The **$ at the beginning of the format string com
bines the effects of the above two symbols. Leading
spaces are filled with asterisks, and a dollar sign is
printed before the number. **$ specifies three more
digit positions, one of which is the dollar sign. For
example:

PRINT USING "**$##.##";2.34
***$2.34

PRINT USING Statement

A comma to the left of the decimal point in the for
mat string causes a comma to be printed to the left
of every third digit to the left of the decimal point.
A comma at the end of the format string is printed
as part of the string.

PRINT USING 11####.##11;1234.5
1234.50
Ok

Four carets may be placed after the digit position
characters to specify exponential format. The four
carets allow space for E + xx to be printed. Any
decimal point position may be specified. The signifi
cant digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or - is
specified, one digit position is used to the left of the
decimal point to print a space or a minus sign. For
example:

PRINT USING 1I##.##AAAAII;234.56
2.35E+02
Ok

PRINT USING 1I.####AAAA_II;888888
Ok

PRINT USING 1I+.##AAAAII;123
+.12E+03
Ok

Note that in the above examples the comma is not
used as a delimiter with the exponential format.

An underscore in the format string causes the next
character to be output as a literal character. For
example:

PRINT USING 1I_!##.##_!1I;12.34
!1 2. 34!
Ok

The literal character itself may be an underscore by
placing II _II in the format string.

191

PRINT USING Statement

%

192

A percent sign is printed in front of the number if
the number to be printed is larger than the speci
fied numeric field. If rounding causes the number
to exceed the field, a percent sign is printed in front
of the rounded number. For example:

PRINT USING "##.##";111.22
%111.22

PRINT USING ".##"1;.999
% 1 • a a
If the number of digits specified exceeds 24, an
"Illegal function call" error results.

PRINT# and PRINT# USING Statements

PRINT# and PRINT# USING Statements

Purpose:

To write data to a sequential disk file.

Syntax:

PRINT#file number,[USINGstring
expressions;]list of expressions

Comments:

file number is the number used when the file was opened for output.

string expressions consists of the formatting characters described in the
PRINT USING statement.

list of expressions consists of the numeric and/or string expressions to be
written to the file.

Double quotation marks are used as delimiters for numeric and/or string
expressions. The first double quotation mark opens the line for input; the
second double quotation mark closes it.

If numeric or string expressions are to be printed as they are input, they
must be surrounded by double quotation marks. If the double quotation
marks are omitted, the value assigned to the numeric or string expression
is printed. If no value has been assigned, 0 is assumed. The double quota
tion marks do not appear on the screen. For example:

1 0 PRINT#1,A
0

1 0 A=26
20 PRINT#1,A
26

1 0 A=26
20 PR I NT#1 ,IIAII
A

193

PRINT# and PRINT# USING Statements

If double quotation marks are required within a string, use CHR$(34) (the
ASCII character for double quotation marks). For example:

100 PRINT#1 ,IIHe said,IIHello ll , I thinkll
He said, 0, I think

because the machine assigns the value 0 the variable "Hello."

100 PRINT#1, IIHe said, IICHR$(34)
IIHello,IICHR$(34) II I think. 1I
He said, IIHello,1I I think

If the strings contain commas, semicolons, or significant leading blanks,
surround them with double quotation marks. The following example will
input "CAMERA" to A$, and "AUTOMATIC 93604-1" to B$:

10 A$=IICAMERA,AUTOMATIC II :B$=1I93604-1 11

20 PRINT#1,A$;B$
30 INPUT#1,A$,B$

To separate these strings properly, write successive double quotation marks
using CHR$(34). For example:

40 PRINT#1 ,CHR$(34) ;A$;CHR$(34) ;CHR$(34) ;8$; CHR$(34)

IICAMERA,AUTOMATIC II1I 93604-1 11

The PRINT# statement may also be used with the USING option to control
the format of the disk file. For example:

PRINT#1,USINGII$$###.##.II;J;K;L

PRINT# does not compress data on the diskette. An image of the data is
written to the diskette, just as it would be displayed on the terminal screen
with a PRINT statement. For this reason, be sure to delimit the data on the
diskette so that it is input correctly from the diskette.

In list of expressions, numeric expressions must be delimited by semicolons.
For example:

PRINT#1,A;B;C;X;Y;Z

If commas are used as delimiters, the extra blanks inserted between print
fields will also be written to the diskette. Commas have no effect, however,
if used with the exponential format.

194

PRINT# and PRINT# USING Statements

String expressions must be separated by semicolons in the list. To format
the string expressions correctly on the diskette, use explicit delimiters in
list of expressions. For example, the following:

10 A$=ICAMERA II :B$=193604-1"
20 PRINT#1,A$,B$

gives a diskette image of:

CAMERA93604-1

Because there are no delimiters, this would not be input as two separate
strings. To correct the problem, insert explicit delimiters into the PRINT#
statement as follows:

This gives the following diskette image, which can be read back into two
string variables:

CAMERA,93604-1

195

PUT Statement (Files)

PUT Statement (Files)

Purpose:

To write a record from a random buffer to a random disk file.

Syntax:

PUT[#]file number[,record number]

Comments:

file number is the number under which the file was opened.

record number is the number of the record. If it is omitted, the record has
the next available record number (after the last PUT).

The largest possible record number is 232
- 1. This will allow you to have

large files with short record lengths. The smallest possible record number
is 1.

The PRINT#, PRINT# USING, LSET, RSET, or WRITE# statement may
be used to put characters in the random file buffer before a PUT statement.

In the case of WRITE # , GW-BASIC pads the buffer with spaces up to an
enter.

Any attempt to read or write past the end of the buffer causes a "Field
overflow" error.

PUT can be used for communications files. Here record number is the
number of bytes written to the file. Record number must be less than or
equal to the length of the buffer set in the OPEN "COM(n) statement.

196

PUT Statement (Graphics)

PUT Statement (Graphics)

Purpose:

To transfer graphics images to the screen.

Syntax:

PUT(x,y),array,[,action verb]

Comments:

action verb may be PSET, PRESET, AND, OR, or XOR.

(X,y) are the coordinates of the top-left corner of the image to be transferred.

The PUT and GET statements transfer graphics images to and from the
screen. PUT and GET make possible animation and high-speed object
motion in either graphics mode.

The PUT statement transfers the image stored in the array onto the screen.
The specified point is the coordinate of the upper-left corner of the image.
An "Illegal function call" error results if the image to be transferred is too
large to fit onto the screen.

The action verb is used to interact the transferred image with the image
already on the screen. PSET transfers the data onto the screen verbatim.

PRESET is the same as PSET except that an inverse image (black on
white) is produced.

AND transfers the image only if an image already exists under the
transferred image.

OR superimposes the image onto the existing image.

XOR is a special mode often used for animation. XOR causes the points
on the screen to be inverted where a point exists in the array image.
This behavior is exactly like the cursor on the screen.

197

PUT Statement (Graphics)

XOR is especially useful for animation. When an image is put against a
complex background twice, the background is restored unchanged. An object
can be moved around the screen without obliterating the background.

The default action mode is XOR.

For more information about effects within the different modes, see the
COLOR, PALETTE, and SCREEN statements.

Animation of an object is usually performed as follows:

1. Put the object(s) on the screen.

2. Recalculate the new position of the object(s).

3. Put the object(s) on the screen a second time at the old location(s) to
remove the old image(s).

4. Return to Step 1, this time putting the object(s) at the new location.

Movement done this way leaves the background unchanged. Flicker can be
cut down by minimizing the time between Steps 4 and 1, and by making
sure that there is enough time delay between Steps 1 and 3. If more than
one object is being animated, process every object at once, one step at
a time.

If it is not important to preserve the background, animation can be per
formed using the PSET action verb.

Leave a border around the image (when it is first gotten) as large or larger
than the maximum distance the object will move. Thus, when an object is
moved, this border effectively erases any points. This method may be some
what faster than the method using XOR described above since only one
PUT is required to move an object. However, the image to be PUT must
be larger than the existing image.

Examples:

10 CLS:SCREEN 1
20 PSET (130,120)
30 DRAW IU25;E7;R20;D32;L6;U12;L14"
40 DRAW ID12;L6":PSET(137,102)
50 DRAW IU4;E4;R8;D8;L12"
60 PSET (137,88)
70 DRAW IE4;R20;D32;G4":PAINT (131,119)
80 DIM A (500)
90 GET (125,130)-(170,80),A

198

100 FOR 1= 1 TO 1000:NEXT I
110 PUT (20,20),A,PSET
120 FOR 1= 1 TO 1000:NEXT i
130 GET (125,130)-(170,80),A
140 FOR 1= 1 TO 1000:NEXT I
150 PUT (220,130) ,A,PRESET

PUT Statement (Graphics)

199

RANDOMIZE Statement

RANDOMIZE Statement

Purpose:

To reseed the random number generator.

Syntax:

RANDOMIZE [expression]

RANDOMIZE TIMER

Comments:

If expression is omitted, GW-BASIC suspends program execution and asks for
a value by displaying the following line:

Random number seed (-32768 to 32767)?

If the random number generator is not reseeded, the RND function returns
the same sequence of random numbers each time the program is run.

To change the sequence of random numbers every time the program is run,
place a RANDOMIZE statement at the beginning of the program, and
change the argument with each run (see RND function).

RANDOMIZE with no arguments will prompt you for a new seed. RAN
DOMIZE [expression] will not force floating-point values to integer.
expression may be any numeric formula.

To get a new random seed without prompting, use the new numeric TIMER
function as follows:

RANDOMIZE TIMER

Example 1:

The internal clock can be set at intervals.

10 RANDOMIZE TIMER
20 FOR 1=1 to 5
30 PRINT RND;
40 NEXT I

200

RANDOMIZE Statement

RUN
.88598 .484668 .586328 .119426 .709225
Ok

RUN
.803506 .162462 .929364 .292443 .322921
Ok

Example 2:

The internal clock can be used for random number seed.

5 N=VAL{MID${TIME$,7,2))
10 RANDOMIZE N
20 PRINT N
30 PRINT RND
RUN
36
.2466638
Ok
RUN

37
.6530511
Ok
RUN

38
5.943847E+02

Ok
RUN

40
.8722131

Ok

'get seconds for seed
'install number
'print seconds
'print random number generated

201

READ Statement

READ Statement

Purpose:

To read values from a DATA statement and assign them to variables.

Syntax:

READ list of variables

Comments:

A READ statement must always be used with a DATA statement.

READ statements assign variables to DATA statement values on a one-to
one basis.

READ statement variables may be numeric or string, and the values
read must agree with the variable types specified. If they do not agree,
a "Syntax" error results.

A single READ statement may access one or more DATA statements.
They are accessed in order. Several READ statements may access the same
DATA statement.

If the number of variables in list of variables exceeds the number of ele
ments in the DATA statement(s), an "Out of data" message is printed.

If the number of variables specified is fewer than the number of elements
in the DATA statement(s), subsequent READ statements begin reading
data at the first unread element. If there are no subsequent READ state
ments, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.

202

READ Statement

Examples:

80 FOR 1=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the DATA statements into
array A. After execution, the value of A(1) is 3.08, and so on. The DATA
statement (lines 110-120) may be placed anywhere in the program; they
may even be placed ahead of the READ statement.

5 PRINT
10 PRINT IICITyll,IISTATEII,IIZIPIl
20 READ C$,S$,Z
30 DATA IIDENVER,II,IICOLORADOII,80211
40 PRINT C$,S$,Z
RUN

CITY STATE ZIP
DENVER,COLORADO 80211
Ok

This program reads string and numeric data from the DATA statement
in line 30.

203

REM Statement

REM Statement

Purpose:

To allow explanatory remarks to be inserted in a program.

Syntax:

REM[comment]

'[comment]

Comments:

REM statements are not executed, but are output exactly as entered when
the program is listed.

Once a REM or its abbreviation, an apostrophe ('), is encountered, the pro
gram ignores everything else until the next line number or program end is
encountered.

REM statements may be branched into from a GOTO or GOSUB statement,
and execution continues with the first executable statement after the REM
statement. However, the program runs faster if the branch is made to the
first statement.

Remarks may be added to the end of a line by preceding the remark with
an apostrophe (') instead of REM.

Note

204

Do not use REM in a DATA statement because it will be considered
to be legal data.

REM Statement

Examples:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 20
440 SUM=SUM+V(I)
450 NEXT I

or

129 FOR 1=1 TO 20 'CALCULATED AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

205

RENUM Command

RENUM Command

Purpose:

To renumber program lines.

Syntax:

RENUM[new number],[old number][,incrementR]]

Comments:

new number is the first line number to be used in the new sequence.
The default is 10.

old number is the line in the current program where renumbering is to
begin. The default is the first line of the program.

increment is the increment to be used in the new sequence. The default
is 10.

RENUM also changes all line number references following ELSE, GOTO,
GOSUB, THEN, ON ... GOTO, ON ... GOSUB, RESTORE, RESUME, and ERL
statements to reflect the new line numbers. If a nonexistent line number
appears after one of these statements, the error message "Undefined line
x in y" appears. The incorrect line number reference x is not changed by
RENUM, but line number y may be changed.

RENUM cannot be used to change the order of program lines (for example,
RENUM 15,30 when the program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529. An "Illegal function call"
error results.

Examples:

RENUM

Renumbers the entire program. The first new line number will be 10. Lines
increment by 10.

206

RENUM Command

RENUM 300,,50

Renumbers the entire program. The first new line number will be 300.
Lines increment by 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they start with line number 1000 and
are incremented by 20.

207

RESET Command

RESET Command

Purpose:

To close all disk files and write the directory information to a diskette
before it is removed from a disk drive.

Syntax:

RESET

Comments:

Always execute a RESET command before removing a diskette from a disk
drive. Otherwise, when the diskette is used again, it will not have the
current directory information written on the directory track.

RESET closes all open files on all drives and writes the directory track
to every diskette with open files.

208

RESTORE Statement

RESTORE Statement

Purpose:

To allow DATA statements to be reread from a specified line.

Syntax:

RESTORE[line number]

Comments:

If line number is specified, the next READ statement accesses the first item
in the specified DATA statement.

If line number is omitted, the next READ statement accesses the first item
in the first DATA statement.

Examples:

10 READ A,B,C,
20 RESTORE
30 READ D,E,F
40 DATA 57,68,79

Assigns the value 57 to both A and D variables, 68 to Band E, and so on.

209

RESUME Statement

RESUME Statement

Purpose:

To continue program execution after an error-recovery procedure has
been performed.

Syntax:

RESUME
RESUME 0
RESUME NEXT
RESUME line number

Comments:

Anyone of the four formats shown above may be used, depending upon
where execution is to resume:

Syntax

RESUME or RESUME 0

RESUME NEXT

RESUME line number

Result

Execution resumes at the statement that
caused an error.

Execution resumes at the statement
immediately following the one that
caused an error.

Execution resumes at the specified line
number.

A RESUME statement that is not in an error trapping routine causes
a"RESUME without error" message to be printed.

210

RESUME Statement

Examples:

10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT IITRY AGAINII:RESUME 80

If an error occurs after line 10 is executed, the action indicated in line 900
is taken and the program continues at line 80.

211

RETURN Statement

RETURN Statement

Purpose:

To return from a subroutine.

Syntax:

RETURN [line number]

Comments:

The RETURN statement causes GW-BASIC to branch back to the statement
following the most recent GOSUB statement. A subroutine may contain
more than one RETURN statement to return from different points in the
subroutine. Subroutines may appear anywhere in the program.

RETURN line number is primarily intended for use with event trapping. It
sends the event-trapping routine back into the GW-BASIC program at a fixed
line number while still eliminating the GOSUB entry that the trap created.

When a trap is made for a particular event, the trap automatically causes
a STOP on that event so that recursive traps can never take place. The
RETURN from the trap routine automatically does an ON unless an expli
cit OFF has been performed inside the trap routine.

The nonlocal RETURN must be used with care. Any GOSUB, WHILE,
or FOR statement active at the time of the trap remains active.

212

RIGHT$ FUNCTION

RIGHT$ FUNCTION

Purpose:

To return the rightmost i characters of string x$.

Syntax:

RIGHT$(x$,i)

Comments:

If i is equal to or greater than LEN(x$), RIGHT$ returns x$. If i equals
zero, the null string (length zero) is returned (see the MID$ and LEFT$
functions).

Examples:

10 A$="DISK BASIC"
20 PRINT RIGHT${A$,5)
RUN
BASIC
Ok

Prints the rightmost five characters in the A$ string.

213

RMDIR Command

RMDIR Command

Purpose:

To delete a subdirectory.

Syntax:

RMDIR pathname

Comments:

pathname is a string expression, not exceeding 63 characters, identifying
the subdirectory to be removed from its parent.

The subdirectory to be deleted must be empty of all files except "." and " .. "
or a "Path file/access" error is given.

Examples:

Referring to the sample directory structure illustrated in CHDIR, the
following command deletes the subdirectory report:

RMDIR IISALES\JOHN\REPORT II

214

RND Function

RND Function

Purpose:

To return a random number between 0 and 1.

Syntax:

RND[(x)]

Comments:

The same sequence of random numbers is generated each time the program
is run unless the random number generator is reseeded (see the RANDOM
IZE statement). If x is equal to zero, then the last number is repeated.

If x is greater than 0, or if x is omitted, the next random number in the
sequence is generated.

To get a random number within the range of zero through n, use the follow
ing formula:

INT(RND*(n + 1»

The random number generator may be seeded by using a negative value
for x.

Examples:

10 FOR 1=1 TO 5
20 PRINT INT(RND*1 01);
30 NEXT
RUN
53 30 31 51 5
Ok

Generates five pseudo-random numbers within the range of 0-100.

215

RUN Command

RUN Command

Purpose:

To execute the program currently in memory, or to load a file from the
diskette into memory and run it.

Syntax:

RUN [line number][,r]

RUN filename[,r]

Comments:

RUN or RUN line number runs the program currently in memory.

If line number is specified, execution begins on that line. Otherwise, execu
tion begins at the lower line number.

If there is no program in memory when RUN is executed, GW-BASIC returns
to command level.

RUN filename closes all open files and deletes the current memory contents
before loading the specified file from disk into memory and executing it.

The r option keeps all data files open.

If you are using the speaker on the computer, please note that executing
the RUN command will turn off any sound that is currently running and
will reset to Music Foreground. Also, the PEN and STRIG statements are
reset to OFF.

Examples:

RUN NEWFIL,R

Runs NEWFIL without closing data files.

216

SAVE Command

Purpose:

To save a program file on diskette.

Syntax:

SA VE filename,[,a]
SAVE filename,[,p]

Comments:

SAVE Command

filename is a quoted string that follows the normal MS-DOS naming conven
tions. If filename already exists, the file will be written over. If the exten
sion is omitted, .bas will be used.

The a option saves the file in ASCII format. Otherwise, GW-BASIC saves the
file in a compressed binary format. ASCII format takes more space on the
diskette, but some diskette access commands (for example, the MERGE
command and some MS-DOS commands, such as TYPE) may require an
ASCII format file.

The p option protects the file by saving it in an encoded binary format.
When a protected file is later run or loaded, any attempt to list or edit it
fails. When the p option is used, make an additional copy under another
name or diskette to facilitate future program maintenance.

Examples:

The following command saves the file com2.bas in the ASCII format:

SAVE COM2,A

The following command saves the file prog. bas in binary format, and pro
tects access:

SAVE PROG,P

217

SCREEN Function

SCREEN Function

Purpose:

To return the ASCII code (0-255) for the character at the specified row (line)
and column on the screen.

Syntax:

x = SCREEN(row,col[,z])

Comments:

x is a numeric variable receiving the ASCII code returned.

row is a valid numeric expression within the range 1 to 25.

col is a valid numeric expression 1 to 40, or 1 to 80, depending upon screen
width setting. See the WIDTH statement.

z is a valid numeric expression with a true or false value. It may be used
only in alpha mode.

The ordinal of the character at the specified coordinates is stored in the
numeric variable. In alpha mode, if the optional parameter z is given and
is true (nonzero), the color attribute for the character is returned instead
of the ASCII code for the character (see the COLOR statement).

Any values entered outside of the range indicated result in an "Illegal func
tion call" error. Row 25 may be referenced only if the function key is off.

Examples:

100 X=SCREEN (10,10)

If the character at 10,10 is A, then X is 65.

11 0 X= SCREEN (1,1,1)

Returns the color attribute of the character in the upper-left corner of the
screen.

218

SCREEN Statement

SCREEN Statement

Purpose:

To set the specifications for the display screen.

Syntax:

SCREEN [mode] [,[colorswitch]][,[apage]][,[vpage]]

Comments:

The SCREEN statement is chiefly used to select a screen mode appropriate
for a particular display-hardware configuration. Supported hardware confi
gurations and screen modes are described below.

MDP A with Monochrome Display: Mode °
The IBM Monochrome Display and Printer Adapter (MDP A) is used to con
nect only to a monochrome display. Programs written for this configuration
must be text mode only.

CGA with Color Display: Modes 0, 1, and 2

The IBM Color Graphics Adapter (CGA) and Color Display are typically
paired with each other. This hardware configuration permits the running
of text mode programs, and both medium-resolution and high-resolution
graphics programs.

EGA with Color Display: Modes 0, 1, 2, 7, and 8

The five screen modes 0, 1,2,7, and 8 allow you to interface to the IBM
Color Display when it is connected to an IBM Enhanced Graphics Adapter
(EGA). If EGA switches are set for CGA compatibility, programs written for
modes 1 and 2 will run just as they would with the CGA. Modes 7 and 8 are
similar to modes 1 and 2, except that a wider range of colors is available in
modes 7 and 8.

219

SCREEN Statement

EGA with Enhanced Color Display: Modes 0, 1, 2, 7, and 8

With the EGA/IBM Enhanced Color Display configuration, modes 0, 1,2,7,
and 8 are virtually identical to their EGA/Color Display counterparts. Two
possible differences are as follows:

1. In mode 0, the border color cannot be the same as for the EGA/Color
Display because the border cannot be set on an Enhanced Color
Display when it is in 640 x 350 text mode.

2. The quality of the text is better on the Enhanced Color Display (an
8 x 14 character box for Enhanced Color Display versus an 8 x 8
character box for Color Display).

EGA with Enhanced Color Display: Mode 9

The full capability of the Enhanced Color Display is taken advantage of in
this mode. Mode 9 allows the highest resolution possible for the EGA/En
hanced Color Display configuration. Programs written for this mode will
not work for any other hardware configuration.

EGA with Monochrome Display: Mode 10

The IBM Monochrome Display can be used to display monochrome graphics
at a very high resolution in this mode. Programs written for this mode will
not work for any other hardware configuration.

Arguments

The mode argument is an integer expression with legal values 0, 1,2,7,8,
9, and 10. All other values are illegal. Selection of a mode argument
depends primarily on your program's anticipated display hardware, as
described above.

Each of the SCREEN modes is described individually in the
following paragraphs.

220

SCREEN Statement

SCREEN 0

• Text mode only

• Either 40 x 25 or 80 x 25 text format with character-box size of
8 x 8 (8 x 14 with EGA)

• Assignment of 16 colors to any of 2 attributes

• Assignment of 16 colors to any of 16 attributes (with EGA)

SCREEN 1

• 320 x 200 pixel medium-resolution graphics

• 80 x 25 text format with character-box size of 8 x 8

• Assignment of 16 colors to any of 4 attributes

• Supports both EGA and eGA

• 2 bits per pixel

SCREEN 2

• 640 x 200 pixel high-resolution graphics

• 40 x 25 text format with character-box size of 8 x 8

• Assignment of 16 colors to any of 2 attributes

• Supports both EGA and eGA

• 1 bit per pixel

SCREEN 7

• 320 x 200 pixel medium-resolution graphics

• 40 x 25 text format with character-box size of 8 x 8

• 2,4, or 8 memory pages with 64K, 128K, or 256K of memory,
respectively, installed on the EGA

• Assignment of any of 16 colors to 16 attributes

• EGA required

• 4 bits per pixel

221

SCREEN Statement

SCREEN 8

• 640 X 200 pixel high-resolution graphics

• 80 x 25 text format with character-box size of 8 x 8

• 1, 2, or 4 memory pages with 64K, 128K, or 256K of memory,
respectively, installed on the EGA

• Assignment of any of 16 colors to 16 attributes

• EGA required

• 4 bits per pixel

SCREEN 9

• 640 x 350 pixel enhanced-resolution graphics

• 80 x 25 text format with character-box size of 8 x 14

• Assignment of either 64 colors to 16 attributes (more than 64K of
EGA memory), or 16 colors to 4 attributes (64K of EGA memory)

• Two display pages if 256K of EGA memory installed

• EGA required

• 2 bits per pixel (64K EGA memory)
4 bits per pixel (more than 64K EGA memory)

SCREEN 10

• 640 x 350 enhanced-resolution graphics

• 80 x 25 text format with character-box size of 8 x 14

• Two display pages if 256K of EGA memory installed

• Assignment of up to 9 pseudo-colors to 4 attributes.

• EGA required

• 2 bits per pixel

222

SCREEN Statement

The following are default attributes for SCREEN 10, monochrome display:

Attribute Value Displayed Pseudo-Color

° Off

1 On, normal intensity

2 Blink

3 On, high intensity

The following are color values for SCREEN 10, monochrome display:

Color Value Displayed Pseudo-Color

° Off

1 Blink, off to on

2 Blink, off to high intensity

3 Blink, on to off

4 On

5 Blink, on to high intensity

6 Blink, high intensity to off

7 Blink, high intensity to on

8 High intensity

For both composite monitors and TVs, the colorswitch is a numeric expres
sion that is either true (nonzero) or false (zero). A value of zero disables
color and permits display of black and white images only. A nonzero value
permits color. The meaning of the colorswitch argument is inverted in
SCREEN mode 0.

For hardware configurations that include an EGA and enough memory to
support multiple-screen pages, two arguments are available. These apage
and vpage arguments determine the "active" and "visual" memory pages.
The active page is the area in memory where graphics statements are writ
ten; the visual page is the area of memory that is displayed on the screen.

Animation can be achieved by alternating the display of graphics pages.
The goal is to display the visual page with completed graphics output, while
executing graphics statements in one or more active pages. A page is dis
played only when graphics output to that page is complete. Thus, the
following program fragment is typical:

223

SCREEN Statement

SCREEN 7,,1,2 'work in page 1, show page 2

Graphics output to page 1
while viewing page 2

SCREEN 7, ,2,1 'work in page 2, show page 1

Graphics output to page 2
while viewing page 1

The number of pages available depends on the SCREEN mode and the
amount of available memory, as described in the following table:

Table 2

SCREEN Mode Specifications

Attribute Color EGA Page
Mode Resolution Range Range Memory Pages Size

0 40 - column text NA 0-15a NA 1 2K
80 - column text NA 0-15a NA 1 4K

1 320 x 200 0-3h 0-3 NA 1 16K
2 640 x 200 0-lh 0-1 NA 1 16K
7 320 x 200 0-15 0-15 64K 2 32K

128K 4
256K 8

8 640 x 200 0-15 0-15 64K 1 64K
128K 2
256K 4

9 640 x 350 0-3 0-15 64K 1 64K
0-15 0-63 128K 1 128K
0-15 0-63 256K 2

10 640 x 350 0-3 0-8 128K 1 128K
256K 2

a Numbers in the range 16-31 are
blinking versions of the colors 0-15.

h Attributes applicable only with EGA.

224

SCREEN Statement

Attributes and Colors

For various screen modes and display hardware configurations, different
attribute and color settings exist. (See the PALETTE statement for a dis
cussion of attribute and color number.) The majority of these attribute and
color configurations are summarized in the following table:

Table 3

Default Attributes and Colors for Most Screen Modes

Attributes for Mode Color Display Monochrome Display

1,9 2 O,7,8,9b Numberc Color Numberc Color

0 0 0 0 Black 0 Off
1 1 Blue (Underlined) a

2 2 Green 1 On a

3 3 Cyan 1 On a

4 4 Red 1 On a

5 5 Magenta 1 On a

6 6 Brown 1 On a

7 7 White 1 On a

8 8 Gray 0 Off
9 9 Light Blue High intensity

(underlined)
10 10 Light Green 2 High intensity

1 11 11 Light Cyan 2 High intensity
12 12 Light Red 2 High intensity

2 13 13 Light Magenta 2 High intensity
14 14 Yellow 2 High intensity

3 1 15 15 High-intensity 0 Off
White

~ Off when used for background.
With EGA memory> 64K.

C Only for mode 0 monochrome.

225

SCREEN Statement

The default foreground colors for the various modes are given in the follow
ing table:

Table 4

Default Foreground Colors

Default foreground attribute

Screen Color/Extendeda Monochrome
mode Display Display

0 7 7

1 3 NA
2 1 NA
7 15 NA
8 15 NA
9 3b NA
10 NA 3

a IBM Enhanced Color Display
b 15 if greater than 64K of EGA memory
NA=Not Applicable

226

Default foreground color

Color/Extendeda

Display

7

15

15
15
15

63

NA

Monochrome
Display

1

NA
NA
NA
NA
NA
8

SGN Function

SGN Function

Purpose:

To return the sign of x.

Syntax:

SGN(x)

Comments:

x is any numeric expression.

If x is positive, SGN(x) returns 1.
If x is 0, SGN(x) returns 0.
If x is negative, SGN(x) returns -1.

This statement is similar to, but not the same as, SIN(x), which returns a
trigonometric function in radians, rather than in ones and zeros.

Examples:

10 INPUT IIEnter valuell,x
20 ON SGN(X)+2 GOTO 100,200,300

GW-BASIC branches to 100 if X is negative, 200 if X is 0, and 300 if X is
positive.

227

SHELL Statement

SHELL Statement

Purpose:

To load and execute another program or batch file. When the program fin
ishes, control returns to the GW-BASIC program at the statement following
the SHELL statement. A program executed under the control ofGW-BASIC is
referred to as a child process.

Syntax:

SHELL [string]

Comments:

string is a valid string expression containing the name of a program to run
and (optionally) command arguments.

The program name in string may have any extension that MS-DOS COM
MAND.COM supports. If no extension is supplied, COMMAND will look
for a .COM file, then an .EXE file, and finally, a .BAT file. If none is found,
SHELL will issue a "File not found" error.

Any text separated from the program name by at least one blank space will
be processed by COMMAND as program parameters.

GW-BASIC remains in memory while the child process is running. When the
child process finishes, GW-BASIC continues at the statement following the
SHELL statement.

SHELL with no string will go to MS-DOS. You may now do anything that
COMMAND allows. When ready to return to GW-BASIC, type the MS-DOS
command EXIT.

Examples:

SHELL
A>DIR
A>EXIT
Ok

228

SHELL Statement

Write some data to be sorted, use SHELL SORT to sort it, then read the
sorted data to write a report.

10 OPEN IISORTIN.DATII FOR OUTPUT AS #1
20 'write data to be sorted

1000 CLOSE 1
1010 SHELL IISORT <SORTIN.DAT >SORTOUT.DATII
1020 OPEN IISORTOUT.DATII FOR INPUT AS #1
1030 'Process the sorted data

229

SIN Function

SIN Function

Purpose:

To calculate the trigonometric sine of x, in radians.

Syntax:

SIN(x)

Comments:

SIN(x) is calculated in single-precision unless the Id switch is used when
GW-BASIC is executed.

To obtain SIN(x) when x is in degrees, use SIN(x*1T/180).

Examples:

PRINT SIN(1 .5)
.9974951
Ok

The sine of 1.5 radians is .9974951 (single-precision).

230

SOUND Statement

SOUND Statement

Purpose:

To generate sound through the speaker.

Syntax:

SOUND freq,duration

Comments:

freq is the desired frequency in Hertz (cycles per second). freq is a numeric
expression within the range of 37 to 32767.

duration is the desired duration in clock ticks. Clock ticks occur 18.2 times
per second. duration must be a numeric expression within the range of
o to 65535.

Values below .022 produce an infinite sound until the next SOUND or
PLAY statement is executed.

If duration is zero, any active SOUND statement is turned off. If no
SOUND statement is running, a duration of zero has no effect.

The sound is executed in foreground or background depending on the PLAY
statement.

Examples:

The following example creates random sounds of short duration:

2500 SOUND RND*1000+37,2
2600 GOTO 2500

231

SOUND Statement

The following table shows the relationship of notes and their frequencies
in the two octaves adjacent to middle C.

Table 5

Relationships of Notes and Frequencies

Note Frequency Note Frequency

C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 987.770
C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500

*Middle C.

By doubling or halving the frequency, the coinciding note values can be
estimated for the preceding and following octaves.

To produce periods of silence, use the following statement:

SOU N D 32 767 , duration

To calculate the duration of one beat, divide beats per minute into the
number of clock ticks in a minute (1092).

232

SOUND Statement

The following table illustrates tempos requested by clock ticks:

Table 6

Tempos Requested by Clock Ticks

Beats/ Ticks/
Tempo Notation Minute Beat

very slow Larghissimo
Largo 40-66 27.3-18.2
Larghetto 60-66 18.2-16.55
Grave
Lento
Adagio 66-76 16.55-14.37

slow Adagietto
Andante 76-108 14.37-10.11

medium Andantino
Moderato 108-120 10.11-9.1

fast Allegretto
Allegro 120-168 9.1-6.5
Vivace
Veloce
Presto 168-208 6.5-5.25

very fast Prestissimo

233

SPACE$ Function

SP ACE$ Function

Purpose:

To return a string of x spaces.

Syntax:

SPACE$(x)

Comments:

x is rounded to an integer and must be within the range of 0 to 255 (see the
SPC function).

Examples:

10 FOR N=1 TO 5
20 X$=SPACE$(N)
30 PRINT X$;N
40 NEXT N
RUN
1

2
3

Ok

4
5

Line 20 adds one space for each loop execution.

234

SPC Function

SPC Function

Purpose:

To skip a specified number of spaces in a PRINT or an LPRINT statement.

Syntax:

SPC(n)

Comments:

n must be within the range of 0 to 255.

If n is greater than the defined width of the printer or the screen, the value
used will be n MOD width.

A semicolon is assumed to follow the SPC(n) command.

SPC can only be used with the PRINT, LPRINT, and PRINT# statements
(see the SPACE$ function).

Examples:

PRINT IIOVER II SPC(15) IITHEREII
OVER THERE
Ok

235

SQR Function

SQR Function

Purpose:

Returns the square root of x.

Syntax:

SQR(x)

Comments:

x must be greater than or equal to o.

SQR(x) is computed in single-precision unless the /d switch is used when
GW-BASIC is executed.

Examples:

10 FOR X=10
20 PRINT X;
30 NEXT

TO 25 STEP 5
SQR(X)

RUN
1 0
1 5
20
25
Ok

236

3.162278
3.872984
4.472136
5

STICK Function

STICK Function

Purpose:

To return the x and y coordinates of two joysticks.

Syntax:

x=STICK(n)

Comments:

x is a numeric variable for storing the result.

n is a valid numeric expression within the range of 0 to 3.

Value of n

o

1

2

3

Coordinate Returned

x coordinate of joystick A. Stores the x and y
values for both joysticks for the following three
function calls.

y coordinate of joystick A.

x coordinate of joystick B.

y coordinate of joystick B.

237

STOP Statement

STOP Statement

Purpose:

To terminate program execution and return to command level.

Syntax:

STOP

Comments:

STOP statements may be used anywhere in a program to terminate exe
cution. When a STOP is encountered, the following message is printed:

B rea kin 1 i n e nnnnn

Unlike the END statement, the STOP statement does not close files.

GW-BASIC always returns to command level after a STOP is executed.
Execution is resumed by issuing a CONT command.

Examples:

10 INPUT A,B,C
20 K=AA2*5.3:L=B A3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
? 1,2,3
BREAK IN 30
Ok
PRINT L
30.76923
Ok
CONT
11 5.9
Ok

238

STR$ Function

STR$ Function

Purpose:

To return a string representation of the value of x.

Syntax:

STR$(x)

Comments:

STR$(x) is the complementary function to VAL(x$) (see the VAL function).

Examples:

5 REM ARITHMETIC FOR KIDS
1 0 INPUT IITYPE A NUMBER II ; N
20 ON LEN(STR$(N)) GOSUB 30,40,50

This program branches to various subroutines, depending on the number
of characters typed before the RETURN key is pressed.

239

STRIG Statement and Function

STRIG Statement and Function

Purpose:

To return the status of the joystick triggers.

Syntax:

As a statement:

STRIG ON
STRIG OFF

As a function:

x=STRIG(n)

Comments:

x is a numeric variable for storing the result.

n is a valid numeric expression within the range of ° to 7.

STRIG ON must be executed before any STRIG(n) function calls may be
made. Once STRIG ON is executed, GW-BASIC will check to see if a button
has been pressed before every statement is executed. STRIG OFF disables
the checking.

n is a numeric expression within the range of ° to 7 that returns the
following values:

Value of n

°
I

2

240

Returns

- I if trigger Al was pressed since the last
STRIG(O) statement; returns 0, if not.

- I if trigger Al is currently pressed; returns 0,
if not.

- I if trigger B I was pressed since the last
STRIG(2) statement; returns 0, if not.

3

4

5

STRIG Statement and Function

-1 if trigger B1 is currently pressed; returns 0,
if not.

- 1 if trigger A2 was pressed since the last
STRIG(4) statement; returns 0, if not.

-1 if trigger A2 is currently pressed; returns 0,
if not.

241

STRIG(n) Statement

STRIG(n) Statement

Purpose:

To allow the use of a joystick by enabling or disabling the trapping
of its buttons.

Syntax:

STRIG(n) ON
STRIG(n) OFF
STRIG(n) STOP

Comments:

n is 0, 2, 4, or 6, corresponding to the buttons on the joystick, where

o is button Al
2 is button Bl
4 is button A2
6 is button B2

Examples:

STRIG(n) ON

Enables trapping of the joystick buttons. After this statement is executed,
GW-BASIC checks to see if this button has been pressed before executing
following statements.

STRIG(n) OFF

Disables GW-BASIC from checking the state of the button.

STRIG(n) STOP

Disables trapping of a given button through the ON STRIG(n) statement.
But any pressings are remembered so that trapping may take place once it
is re-enabled.

242

STRING$ Function

STRING$ Function

Purpose:

To return

• a string of length n whose characters all have ASCII code}, or

• the first character of x$

Syntax:

STRING$(nJ)
STRING$(n,x$)

Comments:

STRING$ is also useful for printing top and bottom borders on the screen or
the printer.

n and} are integer expressions in the range of 0 to 255.

Examples:

10 X$ = STRING${10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN
----------MONTHLY REPORT---------
Ok

45 is the decimal equivalent of the ASCII symbol for the minus (-) sign.

Appendix C in the GW-BASIC User's Guide lists ASCII character codes.

243

SWAP Statement

SWAP Statement

Purpose:

To exchange the values of two variables.

Syntax:

SWAP variable1 ,variable2

Comments:

Any type variable may be swapped (integer, single-precision, double
precision, string), but the two variables must be of the same type or a
"Type mismatch" error results.

Examples:

LIST
10 A$=IIONE II:B$=IIALL II:C$=IIFOR II
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok
ONE FOR ALL
ALL FOR ONE
Ok

Line 30 swaps the values in the A$ and B$ strings.

244

SYSTEM Command

SYSTEM Command

Purpose:

To return to MS-DOS.

Syntax:

SYSTEM

Comments:

Save your program before pressing RETURN, or the program will be lost.

The SYSTEM command closes all the files before it returns to MS-DOS.
If you entered GW-BASIC through a batch file from MS-DOS, the SYSTEM
command returns you to the batch file, which continues executing at the
point it left off.

Examples:

SYSTEM
A>

245

TAB Function

TAB Function

Purpose:

Spaces to position n on the screen.

Syntax:

TAB(n)

Comments:

If the current print position is already beyond space n, TAB goes to that
position on the next line.

Space 1 is the leftmost position. The rightmost position is the screen width.

n must be within the range of 1 to 255.

If the TAB function is at the end of a list of data items, GW-BASIC will not
return the cursor to the next line. It is as though the TAB function has an
implied semicolon after it.

TAB may be used only in PRINT, LPRINT, or PRINT# statements (see the
SPC function).

Examples:

10 PRINT "NAME" TAB(25) "AMOUNT": PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "G. T. JONES","$25.00"
RUN
NAME AMOUNT

G. T. JONES
Ok

246

$25.00

TAN Function

TAN Function

Purpose:

To calculate the trigonometric tangent of x, in radians.

Syntax:

TAN(x)

Comments:

TAN(x) is calculated in single-precision unless the /d switch is used when
GW-BASIC is executed.

If TAN overflows, the "Overflow" error message is displayed; machine
infinity with the appropriate sign is supplied as the result, and
execution continues.

To obtain TAN (x) when x is in degrees, use TAN(x*1T1180).

Examples:

10 Y = TAN(X)

When executed, Y will contain the value of the tangent of X radians.

247

TIME$ Statement and Variable

TIME$ Statement and Variable

Purpose:

To set or retrieve the current time.

Syntax:

As a statement:

TIME$ = string exp

As a variable:

string exp = TIME$

Comments:

string exp is a valid string literal or variable that lets you set hours (hh),
hours and minutes (hh:mm), or hours, minutes, and seconds (hh:mm:ss).

hh sets the hour (0-23). Minutes and seconds default to 00.

hh:mm sets the hour and minutes (0-59). Seconds default to 00.

hh:mm:ss sets the hour, minutes, and seconds (0-59).

If string exp is not a valid string, a "Type mismatch" error results.

As you enter any of the above values, you may omit the leading zero, if any.
You must, however, enter at least one digit. If you wanted to set the time
as a half hour after midnight, you could enter TIME$ = "0:30", but not
TIME$ = ":30".

If any of the values are out of range, an "Illegal function call" error is
issued. The previous time is retained.

The current time is stored if TIME$ is the target of a string assignment.

248

TIME$ Statement and Variable

The current time is fetched and assigned to the string variable if TIME$ is
the expression in a LET or PRINT statement.

If string exp = TIME$, TIME$ returns an 8-character string in the form
hh:mm:ss.

Examples:

The following example sets the time at 8:00 A.M.:

TIME$ = 1108:00 11
Ok
PRINT TIME$
08:00:05
Ok

The following program displays the current date and time on the 25th line
of the screen and will sound on the minute and half minute.

10 KEY OFF:SCREEN O:WIDTH 80:CLS
20 LOCATE 25,5
30 PRINT DATE$,TIME$;
40 SEC=VAL(MID$(TIME$,7,2))
50 IF SEC=SSEC THEN 20 ELSE SSEC=SEC
60 IF SEC=O THEN 1010
70 IF SEC=30 THEN 1020
80 IF SEC<57 THEN 20

1000 SOUND 1000,2:GOTO 20
1010 SOUND 2000,8:GOTO 20
1020 SOUND 400,4:GOTO 20

249

TIMER Function

TIMER Function

Purpose:

To return single-precision floating-point numbers representing the elapsed
number of seconds since midnight or system reset.

Syntax:

v=TIMER

Comments:

Fractions of seconds are calculated to the nearest degree possible. TIMER is
read-only.

250

TRON/TROFF Commands

TRON/TROFF Commands

Purpose:

To trace the execution of program statements.

Syntax:

TRON
TROFF

Comments:

As an aid in debugging, the TRON (trace on) command enables a trace flag
that prints each line number of the program as it is executed. The numbers
appear enclosed in square brackets.

TRON may be executed in either the direct or indirect mode.

The trace flag is disabled with the TROFF (trace off) command, or when
a NEW command is executed.

Examples:

TRON
Ok
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT
70 END
RUN
[10][20][30][40] 1 10 20
[50][60][30][40] 2 2030
[50][60][70]
Ok
TROFF
Ok

251

UNLOCK Statement

UNLOCK Statement

Purpose:

To release locks that have been applied to an opened file. This is used
in a multi-device environment, often referred to as a network or network
environment.

Syntax:

UNLOCK [#]n [,[record number] [TO record number]]

Comments

n is the number that was assigned to the file as it was originally numbered
in the program.

record number is the number of the individual record that is to be unlocked.
Or, if a range of records are to be unlocked, record number designates the
beginning and ending record of the specified range.

The range of legal record numbers is 1 to 232
- 1. The limit on record size

is 32767 bytes.

The record range specified must be from lower to (the same or) higher
record numbers.

If a starting record number is not specified, the record number 1 is
assumed.

If an ending record number is not specified, then only the specified record
is unlocked.

The following are legal UNLOCK statements:

UNLOCK #n unlocks the entire file n

UNLOCK #n, X unlocks record X only

UNLOCK #n, TO Y unlocks records 1 through Y

UNLOCK #n, X TO Y unlocks records X through Y

The locked file or record range should be unlocked before the file is closed.

252

UNLOCK Statement

Failure to execute the UNLOCK statement can jeopardize future access to
that file in a network environment.

In the case of files opened in random mode, if a range of record numbers is
specified, this range must match exactly the record number range given in
the LOCK statement.

The "Permission denied" message will appear if a syntactically correct
UNLOCK request cannot be granted. The UNLOCK statement must match
exactly the paired LOCK statement.

It is expected that the time in which files or regions within files are locked
will be short, and thus the suggested usage of the LOCK statement is
within short-term paired LOCK/UNLOCK statements.

Examples:

The following demonstrates how the LOCK/UNLOCK statements should
be used:

L 0 C K # 1, 1 TO 4
L 0 C K # 1, 5 TO 8
UNLOCK #1, 1 TO 4
UNLOCK #1, 5 TO 8

The following example is illegal:

LOCK #1, 1 TO 4
L 0 C K # 1, 5 TO 8
UNLOCK #1, 1 TO 8

253

USR Function

USR Function

Purpose:

To call an assembly language subroutine.

Syntax:

v = USR[n](argument)

Comments:

n specifies which USR routine is being called.

argument can be any numeric or string expression.

Although the CALL statement is recommended for calling assembly
language subroutines, the USR function call may also be used. See Appen
dix D in the GW-BASIC User's Guide for a comparison of CALL and USR
and for a detailed discussion of calling assembly language subroutines.

Only values 0-9 are valid for n. If n is omitted, USRO is assumed (see DEF
USR for the rules governing n).

If a segment other than the default segment (GW-BASIC data segment, DS)
is used, a DEF SEG statement must be executed prior to a USR call. This
ensures that the code segment points to the subroutine being called.

The segment address given in the DEF SEG statement determines the
starting segment of the subroutine.

For each USR function, a corresponding DEF USR statement must have
been executed to define the USR call offset. This offset and the currently
active DEF SEG segment address determine the starting address of the
subroutine.

If more than 10 user routines are required, the value(s) of DEF USR may
be redefined for the other starting addresses as many times as needed.

The type (numeric or string) of the variable receiving the function call must
be consistent with the argument passed. If no argument is required by the
assembly language routine, then a dummy argument must be supplied.

254

V AL Function

V AL Function

Purpose:

Returns the numerical value of string x$.

Syntax:

VAL(x$)

Comments:

The VAL function also strips leading blanks, tabs, and line feeds from the
argument string. For example, the following line returns - 3:

VAL(II -3 11
)

The STR$ function (for numeric to string conversion) is the complement
to the V AL(x$) function.

If the first character of x$ is not numeric, the V AL(x$) function will return
zero.

Examples:

10 READ NAME$,CITY$,STATE$,ZIP$
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$»96699 THEN
PRINT NAME$ TAB(25) lIoUT OF STATE II
30 IF VAL(ZIP$»=90801 AND VAL(ZIP$)<=90815 THEN
PRINT NAME$ TAB(25) IILoNG BEACH II

255

V ARPTR Function

V ARPTR Function

Purpose:

To return the address in memory of the variable or file control block (FCB).

Syntax:

v ARPTR(variable name)
V ARPTR(/lfile number)

Comments:

V ARPTR is usually used to obtain the address of a variable or array so it
can be passed to an assembly language subroutine. A function call of the
following form:

VARPTR(A(O))

is usually specified when passing an array, so that the lowest-addressed
element of the array is returned.

All simple variables should be assigned before calling V ARPTR for an
array, because the addresses of the arrays change whenever a new simple
variable is assigned.

V ARPTR (#file number) returns the starting address of the GW-BASIC File
Control Block assigned to file number.

VARPTR (variable name) returns the address of the first byte of data identi
fied with the variable name.

A value must be assigned to variable name prior to execution of VARPTR;
otherwise, an "Illegal function call" error results.

Any type variable name may be used (numeric, string, or array), and the
address returned will be an integer within the range of 32767 to - 32768.
If a negative address is returned, it is added to 65536 to obtain the actual
address.

256

V ARPTR Function

Offsets to information in the FeB from the address returned by V ARPTR
are shown in the following table:

Table 7

Offsets to FeB Information

Offset Length Name Description

0 1 Mode The mode in which the file was opened:
1 Input only
2 Output only
4 Random I/O
16 Append only
32 Internal use
64 Future use
128 Internal use

1 38 FCB Diskette file control block.

39 2 CURLOC Number of sectors read or written for
sequential access.
The last record number + 1 read or
written for random files.

41 1 ORNOFS Number of bytes in sector when read
or written.

42 1 NMLOFS N umber of bytes left in INPUT buffer.

43 3 *** Reserved for future expansion.

46 1 DEVICE Device Number:
0-9 Disks A: through J:
255 KYBD:
254 SCRN:
253 LPTl:
252 CASl:
251 COM1:
250 COM2:
249 LPT2:
248 LPT3:

47 1 WIDTH Device width.

48 1 POS Position in buffer for PRINT.

49 1 FLAGS Internal use during BLOAD/BSA VE.
Not used for data files.

50 1 OUTPOS Output position used during tab
expansion.

257

V ARPTR Function

51

179

181

183
185

186

188

128

2

2

2

1

2

n

Example 1:

BUFFER

VRECL

PHYREC

LOGREC

OUTPOS

FIELD

100 X=VARPTR(Y)

Physical data buffer. Used to transfer
data between DOS and BASIC. Use
this offset to examine data in
sequential 110 mode.

Variable length record size. Default is
128. Set by length option in OPEN
statement.

Current physical record number.

Current logical record number.

Future use.

Disk files only. Output position for
PRINT, INPUT, and WRITE.

Actual FIELD data buffer. Size is
determined by S: switch. VRECL bytes
are transferred between BUFFER and
FIELD on 110 operations. Use this
offset to examine file data in random
110 mode.

When executed, the variable X will contain an address that points to the
storage space assigned to the variable Y.

Example 2:

10 OPEN IIDATA.FILII AS #1
20 FCBADR = VARPTR(#1)
30 DATA DR = FCBADR+188
40 A$ = PEEK(DATADR)

In line 20, FCBADR contains the start of FCB.

In line 30, DATADR contains the address of the data buffer.

In line 40, A$ contains the first byte in the data buffer.

258

v ARPTR$ Function

v ARPTR$ Function

Purpose:

To return a character form of the offset of a variable in memory.

Syntax:

VARPTR$(variable)

Comments:

variable is the name of a variable that exists in the program.

Note

Assign all simple variables before calling V ARPTR$ for an array ele
ment, because the array addresses change when a new simple variable
is assigned.

V ARPTR$ returns a three-byte string of the following form:

I Byte 0 I Byte 1 I Byte 2 I

Byte 0 contains one of the following variable types:

2

3

4

8

integer

string

single-precision

double-precision

Byte 1 contains the 8086 address format, and is the least significant byte.
Byte 2 contains the 8086 address format, and is the most significant byte.

259

v ARPTR$ Function

Examples:

100 X = USR(VARPTR$(Y))

260

VIEW Statement

VIEW Statement

Purpose:

To define a physical viewport limit from xl,yl (upper-left x,y coordinates) to
x2,y2 (lower-right x,y coordinates).

Syntax:

VIEW [[SCREEN][(xl ,y I)-(x2 ,y2) [,[fill][,[border 1]]]

Comments:

RUN or VIEW with no arguments define the entire screen as the viewport.

(xl,yl) are the upper-left coordinates.

(x2,y2) are the lower-right coordinates.

The fill attribute lets you fill the view area with color.

The border attribute lets you draw a line surrounding the viewport if space
for a border is available. If border is omitted, no border is drawn.

The x and y coordinates must be within the physical bounds of the screen
and must define the rectangle within the screen that graphics map into.
The x and y coordinate pairs will be sorted, with the smallest values placed
first.

Points are plotted relative to the viewpoint if the screen argument is omit
ted; that is, xl and y 1 are added to the x and y coordinates before the point
is plotted.

It is possible to have a varied number of pairs of x and y. The only restric
tion is that xl cannot equal x2, and y 1 cannot equal y2.

Points are plotted absolutely if the SCREEN argument is present. Only
points within the current viewpoint will be plotted.

When using VIEW, the CLS statement clears only the current viewport. To
clear the entire screen, you must use VIEW to disable the viewports. Then
use CLS to clear the screen. CLS does not move the cursor to home. Press
CTRL-HOME to send the cursor home, and clear the screen.

261

VIEW Statement

Examples:

The following defines a viewport such that the statement PSET(0,0),3 would
set down a point at the physical screen location 10,10.

V I EW (1 0 , 1 0) - (200 , 1 00)

The following defines a viewport such that the point designated by the
statement PSET(0,0),3 would not appear because 0,0 is outside of the
viewport. PSET(10,10),3 would be within the viewport.

VIEW SCREEN (10,10)-(200,100)

262

VIEW PRINT Statement

VIEW PRINT Statement

Purpose:

To set the boundaries of the screen text window.

Syntax:

VIEW PRINT [topline TO bottomlinel

Comments:

VIEW PRINT without topline and bottomline parameters initializes the
whole screen area as the text window. The whole screen area consists of
lines 1 to 24; by default, line 25 is not used.

Statements and functions that operate within the defined text window
include CLS, LOCATE, PRINT, and SCREEN.

The screen editor will limit functions such as scroll and cursor movement
to the text window.

For more information, see VIEW.

263

WAIT Statement

WAIT Statement

Purpose:

To suspend program execution while monitoring the status of a machine
input port.

Syntax:

WAIT port number, n[,j]

Comments:

port number represents a valid machine port number within the range
of 0 to 65535.

n and} are integer expressions in the range of 0 to 255.

The WAIT statement causes execution to be suspended until a specified
machine input port develops a specified bit pattern.

The data read at the port is XORed with the integer expression}, and then
ANDed with n.

If the result is zero, GW-BASIC loops back and reads the data at the port
again. If the result is nonzero, execution continues with the next statement.

When executed, the WAIT statement tests the byte n for set bits. If any of
the bits is set, then the program continues with the next statement in the
program. WAIT does not wait for an entire pattern of bits to appear, but
only for one of them to occur.

It is possible to enter an infinite loop with the WAIT statement. You can
exit the loop by pressing CTRL-BREAK, or by resetting the system.

If} is omitted, zero is assumed.

Examples:

100 WAIT 32,2

Suspends machine operation until port 32 receives 2 as input.

264

WHILE-WEND Statement

WHILE-WEND Statement

Purpose:

To execute a series of statements in a loop as long as a given condition
is true.

Syntax:

WHILE expression

[loop statements]

WEND

Comments:

If expression is nonzero (true), loop statements are executed until the
WEND statement is encountered. GW-BASIC then returns to the WHILE
statement and checks expression. If it is still true, the process is repeated.

If it is not true, execution resumes with the statement following the WEND
statement.

WHILE and WEND loops may be nested to any level. Each WEND matches
the most recent WHILE.

An unmatched WHILE statement causes a "WHILE without WEND" error.
An unmatched WEND statement causes a "WEND without WHILE" error.

265

WHILE-WEND Statement

Examples:

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1
110 WHILE FLIPS
115 FLIPS=O
120 FOR N=1 TO J-1
130 IF A$(N»A$(N+1) THEN SWAP A$(N) ,A$(N+1) :FLIPS=1
140 NEXT N
150 WEND

266

WIDTH Statement

WIDTH Statement

Purpose:

To set the printed line width in number of characters for the screen and
line printer.

Syntax:

WIDTH size
WIDTH file number, size
WIDTH II devil, size

Comments:

size, an integer within the range of 0 to 255, is the new width.

file number is the number of the file that is open.

dev is a valid string expression identifying the device. Valid devices are
SCRN:, LPT1:, LPT2:, LPT3:, COM1:, and COM2:.

Changing Screen Width

The following statements are used to set the screen width. Only a 40-
or 80-column width is allowed.

WIDTH size
WIDTH II SCRN: II ,size

See the SCREEN statement for more information.

Changing SCREEN mode affects screen width only when moving between
SCREEN 2 and SCREEN 1 or SCREEN o.

Note

Changing the screen width clears the screen and sets the border screen
color to black.

267

WIDTH Statement

Changing Lineprinter Width

The following WIDTH statement is used as a deferred width assignment for
the lineprinter. This statement stores the new width value without actually
changing the current width setting:

WIDTH "LPT1 :",size

A statement of the following form recognizes this stored width value:

OPEN ILPT1:" FOR OUTPUT AS number

and uses it while the file is open:

WIDTH file number,size

If the file is open to lptl:, lineprinter width is immediately changed to the
new size specified. This allows the width to be changed at will while the file
is open. This form of WIDTH has meaning only for lptl:. After outputting
the indicated number of characters from the open file, GW-BASIC inserts a
carriage return at the end of the line and wraps the output, if the width is
less than the length of the record.

Valid widths for the lineprinter are 1 through 255.

Specifying WIDTH 255 for the lineprinter (lptl:) enables line wrapping.
This has the effect of infinite width.

Any value entered outside of these ranges results in an "Illegal function
call" error. The previous value is retained.

U sing the WIDTH statement on a communications file causes a carriage
return to be sent after the number of characters specified by the size
attribute. It does not alter either the receive or transmit buffer.

Examples:

10 WIDTH ILPT1:",75
20 OPEN "LPT1: II FOR OUTPUT AS #1

6020 WIDTH #1,40

Line 10 stores a line printer width of 75 characters per line.

268

WIDTH Statement

Line 20 opens file # 1 to the line printer and sets the width to 75 for subse
quent PRINT #1, statements.

Line 6020 changes the current line printer width to 40 characters per line.

269

WINDOW Statement

WINDOW Statement

Purpose:

To draw lines, graphics, and objects in space not bounded by the physical
limits of the screen.

Syntax:

WINDOW[[SCREEN](xl,yl)-(x2,y2)]

Comments:

(xl,yl) and (x2,y2) are the coordinates defined by the user. These coordi
nates, called the world coordinates, may be any single-precision, floating
point number. They define the world coordinate space that graphics state
ments map into the physical coordinate space, as defined by the VIEW
statement.

WINDOW is the rectangular region in the world coordinate space. It allows
zoom and pan. It allows the user to draw lines, graphics, and objects in
space not bounded by the physical limits of the screen. To do this the user
specifies the world coordinate pairs (xl,yl) and (x2,y2). GW-BASIC then con
verts the world coordinate pairs into the appropriate physical coordinate
pairs for subsequent display within screen space.

WINDOW inverts, with the screen attribute omitted, the y coordinate on
subsequent graphics statements. This places the (xl,yl) coordinate in the
lower-left and the (xl,y2) coordinate in the upper-right corner of the screen.
This allows the screen to be viewed in true Cartesian coordinates.

The coordinates are not inverted when the SCREEN attribute is included.
This places the (xl,yl) coordinate in the upper-left corner and the (x2,y2)
coordinate in the lower-right corner of the screen.

The WINDOW statement sorts the x and y argument pairs into ascending
order. For example

WINDOW (50,50) - (1 0 , 1 0)

becomes

WINDOW (1 0 , 1 0) - (50 ,50)

270

WINDOW Statement

Or

WINDOW (-2,2)-(2,-2)

becomes

WINDOW (-2,-2)-(2,2)

All coordinate pairs of x and yare valid, except that xl cannot equal x2 and
y 1 cannot equal y2.

WINDOW with no arguments disables previous window statements.

Example 1:

If you type the following:

NEW
SCREEN 2

the screen uses the standard coordinate attributes as follows:

0,0320,0639,0

\/y increases
320,100

0,199320,100639,199

Example 2:

If you type the following:

WINDOW (-1, -1) - (1 , 1)

the screen uses the Cartesian coordinates as defined in the following
statement:

-1,10,11,1
/\y increases

0,0

\/y decreases
-1,10,11,1

271

WINDOW Statement

Example 3:

If you type the following:

WINDOW SCREEN (-1,-1)-(1,1)

the screen uses the non-inverted coordinate as defined in the following
statement:

-1,-10,-11,-1
Iy decreases

0,0

\/y increases
-1,10,11,1

RUN, SCREEN, and WINDOW with no attributes disable any WINDOW
definitions and return the screen to its normal physical coordinates.

272

WRITE Statement

WRITE Statement

Purpose:

To output data to the screen.

Syntax:

WRITE[list of expressions]

Comments:

If list of expressions is omitted, a blank line is output. If list of expressions
is included, the values of the expressions are output at the terminal. The
expressions in the list may be numeric and/or string expressions, and must
be separated by commas or semicolons.

When printed items are output, each item will be separated from the last by
a comma. Printed strings are delimited by double quotation marks. After
the last item in the list is printed, GW-BASIC inserts a carriage return/line
feed.

The difference between WRITE and PRINT is that WRITE inserts commas
between displayed items and delimits strings with double quotation marks.
Positive numbers are not preceded by blank spaces.

WRITE outputs numeric values using the same format as the PRINT
statement.

Examples:

10 A=80:8=90:C$=IITHAT'S ALL"
20 WRITE A,8,C$
RUN
80, 90,IITHAT'S ALLII
Ok

273

WRITER Statement

WRITE# Statement

Purpose:

To write data to a sequential file.

Syntax:

WRITE #filenum, list of expressions

Comments:

filenum is the number under which the file was opened for output.

list of expressions is a list of string and/or numeric expressions separated by
commas or semicolons.

The WRITE# and PRINT# statements differ in that WRITE# inserts com
mas between the items as they are written and delimits strings with quota-

. tion marks, making explicit delimiters in the list unnecessary. Another
difference is that WRITE# does not put a blank in front of a positive
number. After the last item in the list is written, a carriage return/line feed
sequence is inserted.

Examples:

Let A$ = "CAMERA" and B$ = "93604-1". The following statement:

WRITE#1,A$,B$

writes the following image to disk:

IICAMERAII, 1193604-1 11

A subsequent INPUT$ statement, such as the following, would input
"CAMERA" to A$ and "93604-1" to B$:

INPUT#1,A$,B$

274

