
Microsoft@
Macro Assembler
for the MS-DOS® Operating System

User's Guide

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1984, 1985

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS-DOS, MS, and XENIX are registered trademarks of Microsoft
Corporation. The High Performance Software is a trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Document Number 410610001-400-ROI-1285
Part Number 016-014-023

Contents

1 Introduction 1

1.1 Overview 3
1.2 What You Need 3
1.3 What You Should Know Before You Begin 4
1.4 Books on Assembly Language 5
1.5 How To Begin 7
1.6 New Features 7
1. 7 Compatibility with Assemblers

and Compilers 9
1.8 Notational Conventions 10

2 MASM: A Macro Assembler 13

2.1 Introduction 15
2.2 Starting and Using MASM 15
2.3 Using MASM Options 20
2.4 Reading the Assembly Listing 32

3 LINK: A Linker 43

3.1 Introduction 45
3.2 Starting and Using LINK 45
3.3 Using Link Options 55
3.4 How LINK Works 68

4 SYMDEB:
A Symbolic Debug Utility 73

4.1 Introduction 77
4.2 Setting Up for Symbolic Debugging 77
4.3 Starting SYMDEB 82
4.4 Using SYMDEB Options 87
4.5 Specifying Parameters for Commands 91
4.6 Using SYMDEB Commands 99
4.7 Sample SYMDEB Session 163

iii

Contents

5 CREF:
A Cross-Reference Utility 175

5.1 Introduction 177
5.2 Using CREF 177
5.3 Cross-Reference Listing Format 180

6 LIB: A Library Manager 183

6.1 Introduction 185
6.2 Starting and Using LIB 186
6.3 Creating a New Library 192
6.4 Checking a Library's Consistency 193
6.5 Creating a Library-Reference Listing 194
6.6 Maintaining Libraries 195

7 MAKE:
A Program Maintainer 201

7.1 Introduction 203
7.2 Using MAKE 203
7.3 Maintaining a Program: An Example 211

Appendixes 213

A Error Messages 215

A.1 Introduction 217
A.2 MASM Error Messages 217
A.3 LINK Error Messages 231
A.4 SYMDEB Error Messages 238
A.5 MAPSYM Error Messages 240
A.6 CREF Error Messages 241
A.7 LIB Error Messages 242
A.8 MAKE Error Messages 245
A.9 EXEP ACK Error Messages 247
A.10 EXEMOD Error Messages 248

iv

Contents

B Exit Codes 251

B.1 Introduction 253
B.2 Exit Codes with Make 253
B.3 Exit Codes with MS-DOS Batch Files 253
BA Exit Codes for Programs

in the Macro Assembler Package 254

C Using EXEP ACK and EXEMOD 259

C.1 Introduction 261
C.2 The EXEPACK Utility 261
C.3 The EXEMOD Utility 262

Index 265

v

Tables

Table 2.1

Table 2.2

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 4.5

Table 6.1

vi

IX Option and Directives 30

Special Characters in Listings 34

Radixes for SYMDEB 93

Unary Operators 98

Binary Operators 98

SYMDEB Commands 99

Flag Values 144

LIB Commands 185

Chapter 1

Introduction

1.1 Overview 3
1.2 What You Need 3
1.3 What You Should Know Before You Begin
1.4 Books on Assembly Language 5
1.5 How To Begin 7
1.6 New Features 7
1.7 Compatibility with Assemblers

and Compilers 9
1.8 Notational Conventions 10

4

1

Introduction

1.1 Overview

The Microsoft@ Macro Assembler User's Guide explains how to create and
debug assembly-language programs using the Microsoft Macro Assembler
(MASM) and the other utilities in the macro assembler package.

The macro assembler package consists of the following programs and files:

Filename

MASM.EXE

LINK.EXE

SYMDEB.EXE

MAPSYM.EXE

CREF.EXE

LIB.EXE

MAKE.EXE

EXEP ACK.EXE

EXEMOD.EXE

COUNT.ASM

README.DOC

Description

Microsoft Macro Assembler

Microsoft 8086 Object Linker

Microsoft Symbolic Debug Utility

Microsoft Symbol File Generator

Microsoft Cross-Reference Utility

Microsoft Library Manager

Microsoft Program Maintenance Utility

Microsoft EXE File Compression Utility

Microsoft EXE File Header Utility

Sample source file for SYMDEB session

Updated information obtained after the manual
was printed

The function of each program and an explanation of how to invoke and
operate the programs is given in the remaining chapters of this guide.

Sections 1.2-1.8 explain what you need to create assembly-language pro
grams, what steps you need to take to create these programs, and documen
tation conventions followed in this guide.

1.2 What You Need

The Microsoft Macro Assembler creates programs that can be executed
under the 8086/80186/80286 family of microprocessors. It provides a logi
cal program syntax ideally suited for the segmented architecture of these
processors. Using MASM you can assemble programs for computers hav
ing the 8086, 8088, 80186, and 80286 microprocessors, and programs for
computers with 8087 and 80287 math coprocessors.

3

Microsoft Macro Assembler User's Guide

In addition to a computer with one of the microprocessors listed above, you
must have Version 2.0 or later of the MS-DOS® or PC-DOS operating sys
tem. Since these two operating systems are essentially the same, this
manual uses the term MS-DOS to include both variations. Your computer
system should also have at least 128K of memory. (The Shell command (!)
of SYMDEB may require more memory.) While it is possible to operate
the Macro Assembler with one double-sided disk drive, two disk drives or
one disk drive and a hard disk are recommended.

To create assembly-language source files, you need a text editor capable of
producing ASCII (American Standard Code for Information Interchange)
format files with no control codes. Many text editors that normally use
control codes or other special formats for documents also provide a pro
gramming or non-document mode for producing ASCII files.

1.3 What You Should Know Before You Begin

In order to use the Macro Assembler, you should be familiar with the fol
lowing:

4

• How to use both the assembler itself, and the other programs pro
vided with the Microsoft Macro Assembler package. This informa
tion is covered in the Microsoft Macro Assembler User's Guide
(sometimes abbreviated User's Guide).

• How to program in assembly language. This information is covered
partially in the Microsoft Macro Assembler Reference Manual (some
times abbreviated Reference Manua~. The directives, operands,
operators, expressions, and other language features understood by
MASM are explained in the reference manual. However, the refer
ence manual is not designed to teach novice users how to program
in assembly language.

• How to use the instruction sets for the 8086/80186/80286 micropro
cessors (and the 8087/80287 instruction set if you have a math
coprocessor). This information is not covered in either the user's
guide or the reference manual. The instruction set for the 8086
family of microprocessors is listed in Appendix A of the Microsoft
Macro Assembler Reference Manual. Also, the Intel® Corporation
pocket reference manual for the instruction sets is included with the
Macro Assembler package. However, you need to have some
knowledge of the instruction sets in order to use these reference
tools.

Introduction

In addition, you may need to know about MS-DOS structure and function
calls, and about the basic input and output systems (BIOS) of the comput
ers that will run your programs. This information is not covered in either
the Microsoft Macro Assembler User's Guide or the Microsoft Macro Assem
bler Reference Manual.

If you are updating from a previous version of the Microsoft or IBM Macro
Assembler, or if you will be using the assembler with a Microsoft or IBM
high-level language, make sure you read Sections 1.6 and 1.7 for a summary
of new features and potential compatibility problems.

Note

Many IBM languages are produced for IBM by Microsoft. Among the
IBM languages that are the same or very similar to the corresponding
Microsoft languages are IBM Personal Computer Macro Assembler, IBM
Personal Computer FORTRAN, IBM Personal Computer Pascal, and
IBM Personal Computer BASIC Compiler. These languages are com
patible with the Microsoft Macro Assembler Version 4.0 except as noted
in Section 1. 7.

1.4 Books on Assembly Language

The following books may be useful in helping you learn how to program in
assembly language:

Lafore, Robert, Assembly Language Primer for the IBM PC & XT. New
York: Plume/Waite, 1984.

An introduction to assembly language including some information on
DOS function calls and IBM-type BIOS.

Willen, David, and Jeffrey Krantz, 8088 Assembler Language Programming:
The IBM PC. Indianapolis: Howard W. Sams & Co. Inc, 1983.

An introduction to assembly language including some information on
DOS function calls and IBM-type BIOS.

Ii

Microsoft Macro Assembler User's Guide

Bradley, David J., Programming for the IBM Personal Computer. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1983.

Intermediate discussion of assembly language including information on
macros, the 8087, MS-DOS (prior to Version 2.0), and IBM BIOS.

Sargent, Murray, III, and Richard L. Shoemaker, The IBM Personal Com
puter from the Inside Out. Menlo Park: Addison-Wesley Publishing
Company, 1984.

An introduction to assembly language with an emphasis on using IBM
type hardware features.

Scanlon, Leo J., IBM PC Assembly Language: A Guide for Programmers.
Bovie, :rvID: Robert J. Brady Co., 1983.

An introduction to assembly language including information on
MS-DOS function calls.

Schneider, AI, Fundamentals of IBM PC Assembly Language. Blue Ridge
Summit, PA: Tab Books Inc., 1984.

An introduction to assembly language including information on
MS-DOS function calls.

Rector, Russel and George Alexy, The 8086 Book. Berkeley:
Osborne/McGraw Hill, 1980.

Reference book on 8086 instruction set and architecture.

Norton, Peter, The Peter Norton Programmer's Guide to the IBM PC.
Bellevue, WA: Microsoft Press, 1985.

Information on using IBM-type BIOS and MS-DOS function calls.

Morgan, Christopher and the Waite Group, Bluebook of Assembly Routines
for the IBM PC. New York: New American Library, 1984.

Sample assembly routines that can be integrated into assembly or
high-level-language programs.

iAPX 286 Programmer's Reference Manual. Santa Clara, CA: Intel Corpora
tion, 1984.

Reference manual for all 8086-family instruction sets.

Microsoft MS-DOS Programmer's Reference Manual. Bellevue, WA:
Microsoft Corporation.

Reference manual for MS-DOS.

6

Introduction

These books are listed for your convenience only. Microsoft Corporation
does not endorse these books (with the exception of those published by
Microsoft Press) or recommend them over others on the same subjects.

1.5 How To Begin

You begin by creating an assembly-language source file, then carrying out
the following four steps needed to make an executable program:

1. Use a text editor to create an assembly-language source file.

2. Use MASM to assemble the source file.

3. Use LINK to link the assembled file with other assembled files or
with routines from libraries.

4. Use SYMDEB to test the resulting program.

You can automate these steps by using MAKE to create a description file
containing the commands needed to invoke each step. You can simplify
debugging by using CREF to make a cross-reference listing of all symbols
in your program. You can use LIB to construct the program libraries you
may need to create your executable programs.

Once you have tested the program, you can invoke it from the MS-DOS
command line at any time. Programs that you create, like other MS-DOS
programs, can accept command parameters, can be copied to other systems,
and can be invoked from batch files or MAKE description files.

1.6 New Features

New features have been added to several of the programs in the Macro
Assembler Package.

Version 4.0 of the Microsoft Macro Assembler (MASM) has been optimized
to improve performance. It now assembles code two to three times faster
than any prior release. In addition, the input/output buffers and macro
text have been moved out of the symbol space, allowing assembly of larger
source files.

7

Microsoft Macro Assembler User's Guide

Conditional error directives are another new feature of MASM 4.0. These
directives allow you to check parameters, boundaries, and other assembly
time values, and generate an error if predefined conditions are not true.
Conditional error directives are explained in Section 7.3 of the Microsoft
Macro Assembler Reference Manual.

The following new options have been added to MASM:

Option

/Bnumber

/C
/L
/Dsymbol

/Ipath

/N
/P

/T
/V
/Z

Action

Sets the file buffer to any size between 1K and 63K in
order to minimize disk access.

Creates a cross-reference file.

Creates an assembly listing.

Defines a symbol (for conditional directives) from the
command line or from prompts when starting
MASM.

Sets path by which assembler will search for files
specified with an INCLUDE directive.

Suppresses symbol table in listing.

Checks for impure code that would cause problems in
80286 protected mode.

Suppresses all messages if no errors are encountered.

Displays extra statistics to the screen after assembly.

Displays source lines containing errors on the screen
(without the option, only the error message is shown).
Previous versions of MASM always showed both
source line and error message.

The /0 (Octal) option is no longer supported. MASM options are dis
cussed in more detail in Section 2.3.

The format of the listing files produced by MASM has changed in several
ways. See the example and description in Section 2.4. Several new exit
codes have been added. See the list of exit codes in Appendix B.

LINK has two new options: the /EXEP ACK option allows you to pack
executable files during linking, while the /HELP option allows you to see a
list of LINK options (see Sections 3.3.1 and 3.3.3). In addition, LINK has
been optimized to make linking faster.

8

Introduction

Several options have been added to SYMDEB since the version released
with the Microsoft Macro Assembler, Version 3.0. The new options are
listed below:

Option

IK

IN

Action

Enables SCROLL LOCK or BREAK key as an interactive
break-point key.

Enables non-maskable interrupt break systems for
non-IBM computers.

IS Enables screen swapping between a SYMDEB screen
and a program screen.

I" commands" Executes the specified commands on start-up.

SYMDEB options are discussed in detail in Section 4.4.

CREF now uses all available memory space, allowing the program to pro
cess larger cross-reference files.

Two new capabilities and several options have been added to the MAKE
utility. MAKE now supports macro definitions and inference rules. These
features and the new MAKE options are described in Chapter 7.

The Macro Assembler Package now includes the EXEPACK utility, which
allows you to pack executable files, and the EXEMOD utility, which
allows you to modify the MS-DOS file header of .EXE files. These utilities
are described in Appendix C.

1.7 Compatibility with Assemblers
and Compilers

If you are upgrading from a previous version of the Microsoft or IBM Macro
Assembler, you may need to make some adjustments before assembling
source code developed with previous versions. The potential compatibility
problems are listed below:

• Some previous versions of the IBM Macro Assembler wrote segments
to object files in alphabetical order. The current version writes seg
ments to object files in the order encountered in the source file. You

9

Microsoft Macro Assembler User's Guide

can use the / A option to order segments alphabetically if this seg
ment order IS crucial in your previous source code. See Section 2.3.1
in this User's Guide.

• Some early versions of the Macro Assembler did not have strict type
checking. Source code developed with these assemblers may pro
duce error messages when assembled with newer versions. In some
cases, listings in magazines and books are developed with the older
assemblers. The source code can easily be made compatible using
the PTR operator. Section 5.6 in the Microsoft Macro Assembler
Reference Manual describes strict type checking and how to modify
source code developed without this feature.

The Microsoft Macro Assembler is compatible with Microsoft (and most
IBM) high-level languages. An exception occurs when LINK is used with
IBM COBOL 1.0, IBM FORTRAN 2.0, or IBM Pascal 2.0. If source code
developed with these compilers has overlays, you must use the linker pro
vided with the compiler. Do not use the Microsoft linker.

When using SYMDEB, symbols may not be interpreted correctly in pro
grams developed with old versions of FORTRAN and Pascal (Microsoft ver
sions prior to 3.3 or IBM versions prior to 2.0). You can use the Symbol Set
command (Z) to correct the symbol addresses (see Section 4.6.28).

1.8 Notational Conventions

This manual uses the following notational conventions in defining
assembly-language syntax, and in presenting examples:

Convention

Bold type

10

Meaning

Bold type indicates commands, parameter names,
or symbols that must be typed as shown. In most
cases, upper- and lowercase letters can be freely
intermixed. One exception is text within double
quotation marks (II text ll

). Text in quotation
marks is usually case-sensitive.

Examples

[displacement] [DI]
[DI+displacement]
[DI]. displacement
[DI]+displacement

Italics

[]

'"

Introduction

Note that in the examples above, the brackets must
be typed as shown. The register name DI must also
be typed as shown, though you could use lowercase
letters. The plus sign (+) in both the second and
fourth examples, and the period (.) in the third
example must be typed as shown.

Italics indicate a placeholder: a name that you
must replace with the value or file name required
by the program.

Example

jlpath

In the example above, the slash (/) and the letter I
must be entered as shown (except that the I could
be lowercase). However, path is a placeholder
representing a path name supplied by the user.
You could enter any path name such as B: \ or
\MASM\PROJECTl. When a placeholder is used in
a syntax example at the start of a section, the text
below usually describes the types of values that can
replace the placeholder.

Double brackets indicate that the enclosed item is
optional. Don't confuse double brackets with single
brackets ([n, which must be typed as shown.

Example

BP [number] address [passcount] ["commands"]

In the example above, you must enter BP as
shown. You must also enter a value for the address
placeholder. Values for the placeholders number,
passcount, and commands can be entered if you
wish, or they can be left blank. If you enter a value
for commands, you must enclose the value in quota
tion marks (1111) •

A series of commas indicates that you can repeat
the preceding item type if you separate each of the
items with commas.

Example

[name] recordname < [initialvalue",] >
In the example above, you may provide a name and

11

Microsoft Macro Assembler User's Guide

12

Special
typeface for
examples

you must provide a recordname. You may provide
more than one initialvalue as long as you separate
the values with commas. Note that you must type
the angle brackets even if you do not provide any
initialvalue.

A vertical bar between items indicates that only
one of the separated items can be used. You must
make a choice between the items.

Example

D [address: range]

In the example above, you must enter the letter D.
You may enter either an address or a range (but not
both).

Example text in this manual is shown in a special
typeface so that it will look more like listings on
the screen or produced with a printer.

Examples that represent source code follow these
conventions:

• Lowercase letters for symbols, labels, instruc-
tions, and registers

• Uppercase letters for reserved words

• Uppercase letters for hexadecimal digits

• Lowercase letters for radix indicators

• Upper- and lowercase letters for comments

These are documentation conventions, not
language requirements. Your source code can gen
erally use any combination of upper- and lowercase
letters, though your code will be clearer if you
choose a convention and use it consistently.

Examples

count

print

DB o
mov ax/bx
ASSUME cs:_text/ds:DGROUP
PROC near

Chapter 2

MASM: A Macro AsselTIbler

2.1 Introduction 15
2.2 Starting and Using MASM 15
2.2.1 Assembly Using Prompts 15
2.2.2 Assembly Using a Command Line 17
2.3 Using MASM Options 20
2.3.1 Writing Segments in Alphabetical Order 21
2.3.2 Writing Segments in Source-Code Order 22
2.3.3 Setting the File Buffer Size 22
2.3.4 Creating a Pass 1 Listing 23
2.3.5 Defining Assembler Symbols 23
2.3.6 Setting a Search Path for Include Files 24
2.3.7 Preserving Case-Sensitivity in Names 25
2.3.8 Preserving Case-Sensitivity

in Public and External Names 26
2.3.9 Converting Names to Uppercase 26
2.3.10 Suppressing the Tables in the Listing File 27
2.3.11 Checking for Impure Code 27
2.3.12 Creating Code for a Floating-Point Processor 28
2.3.13 Creating Code for a Floating-Point Emulator 28
2.3.14 Displaying Extra Assembly Statistics 29
2.3.15 Listing False Conditionals 29
2.3.16 Displaying Error Lines on the Screen 31
2.3.17 Specifying a Cross-Reference File 31
2.3.18 Specifying a Listing File 32

13

2.3.19 Suppressing Messages for Successful Assembly 32
2.4 Reading the Assembly Listing 32
2.4.1 Reading Code in the Listing 33
2.4.2 Reading a Macro Table 36
2.4.3 Reading a Structure and Record Table 36
2.4.4 Reading a Segment and Group Table 37
2.4.5 Reading a Symbol Table 39
2.4.6 Reading a Pass 1 Listing 41

14

MASM: A Macro Assembler

2.1 Introduction

The Microsoft Macro Assembler (MASM) assembles 8086, 80186, and
80286 assembly-language source files and creates relocatable object files
that can be linked and executed under the MS-DOS operating system. This
chapter explains how to invoke MASM and describes the format of assem
bly listings generated by MASM. For a complete description of the syntax
of assembly-language source files, see the Microsoft Macro Assembler Refer
ence Manual.

2.2 Starting and Using MASM

Sections 2.2.1 and 2.2.2 explain how to start and use MASM to assemble
your program source files. You can assemble source files with MASM using
two different methods: by responding to a series of prompts, or with an
MS-DOS command line.

Once you have started MASM, it either processes the files you have
specified, or prompts for additional files. You can terminate MASM at any
time by pressing CONTROL-C.

2.2.1 Assembly Using Prompts

You can direct MASM to prompt you for the files it needs by starting
MASM with just the command name. Follow these steps:

1. Type

MASM

and press the RETURN key at the MS-DOS command level. MASM
displays the following prompt:

Source filename [.ASMJ:

2. Type the name of the file you wish to assemble and press the
RETURN key. Include a drive and path name if the file is not in the
current directory. If you do not give an extension, the assembler
supplies the extension .ASM. The assembler requires a source file,
so you cannot press just the RETURN key at this prompt as you can
at other prompts.

16

Microsoft Macro Assembler's User Guide

Once you have pressed the RETURN key, MASM displays this
prompt:

Object filename [source. OBJ] :

3. Note that source is the name of the file specified at the "Source
filename" prompt. Type the name of the file to receive the relocat
able object code and press the RETURN key. If you do not give a
file-name extension, the assembler uses .DBJ by default. If you
want to use the default file name (represented by source), do not
type a file name. Just press the RETURN key.

Once you have pressed the RETURN key, MASM displays this
prompt:

Source listing [NUL. LST] :

4. If you want the assembler to create a file listing, type the name of
the file to receive the listing and press the RETURN key. If you do
not give a file-name extension, the assembler uses .LST by default.
If you do not want to create an assembly listing, do not type a file
name. Just press the RETURN key.

Once you have pressed the RETURN key, MASM displays this
prompt:

Cross-reference [NUL.CRf]:

5. If you want the assembler to create a cross-reference file, type the
name for the file and press the RETURN key. If you do not supply a
file-name extension, the assembler uses .CRF by default. If you do
not want a cross-reference listing, do not type a file name. Just
press the RETURN key.

Once you have pressed the RETURN key, MASM assembles the given source
file.

You can specify one or more options at the end of each prompt line. Each
option must be preceded by a forward slash (/) or a dash (-). MASM
options are described in section 2.3.

You must use an appropriate path name for any file that is not in the
current drive and directory.

At any prompt, you can type the rest of the file names in the command line
format. For example, you can choose the default responses for all remain
ing prompts by typing a semicolon (;) after any prompt (as long as you have
supplied a source-file name), or you can type commas (,) to indicate several

16

MASM: A Macro Assembler

files, as described in Section 2.2.2. When MASM encounters a semicolon, it
immediately chooses the default responses and processes the remaining files
without displaying any more prompts.

Examples

MASM

Source filename [.ASM]: file
Object filename [file.OBJ]: b:file
Source listing [NUL.LST]: PRN /D
Cross-reference [NUL.CRF]: b:\cref\file

This example directs MASM to assemble the source file f i Ie. asm on the
current drive and place the relocatable object code in fi Ie. ob j on the
current directory of Drive B. The device name and the /D option at the
"Source listing" prompt direct MASM to send a listing (including a Pass 1
listing) to the line printer (the /D option is described in Section 2.3.1).
MASM also sends cross-reference data to fi Ie. cr f in the \cre f dIrec
tory of Drive B.

MASM

Source filename [.ASM]: file
Object filename [file.OBJ]: f123;

The example above directs MASM to assemble the source file fi Ie. asm
and place the relocatable object code in the object file f123. ob j. The
semicolon (;) after the object-file name directs the assembler to select the
default file names for the remaining prompts. This means the assembler
creates no assembly listing or cross-reference listing.

2.2.2 Assembly Using a Command Line

You can assemble a program source file by typing the MASM command
name and the names of the files you wish to process. The command line has
the following form:

MASM sourcefile [,[obJectfile] [,[listingfile] [,[crossreferencefile]]]] [options] [;]

The sourcefile must be the name of the source file to be assembled. If you
do not supply a file-name extension, MASM supplies the extension .ASM.

17

Microsoft Macro Assembler's User Guide

The options can be any combination of MASM options described in Section
2.3. Options may be placed anywhere on the command line.

The optional objectfile is the name of the file to receive the relocatable
object code. If you do not supply a name, MASM uses the source-file name,
replacing the extension with .OBJ.

The optional listingfile is the name of the file to receive the assembly listing.
The assembly listing shows the assembled code for each source statement
and the names and types of symbols defined in the program. If you do not
supply a file-name extension, MASM supplies the extension .LST.

The optional crossreferencefile is the name of the file to receive the cross
reference output. The resulting cross-reference file can be processed with
CREF, the :Microsoft Cross-Reference Utility, to create a cross-reference
listing of the symbols in the program for use in program debugging. If you
do not supply a file-name extension, MASM supplies .CRF by default.

You can use a semicolon (;) in the command line to select defaults for the
remaining file names. A semicolon after the source-file name selects a
default object-file name and suppresses creation of the assembly listing and
cross-reference files. A semicolon after the object-file name suppresses just
the listing and cross-reference files. A semicolon after the listing-file name
suppresses only the cross-reference file.

All files created during the assembly will be written to the current drive
and directory unless you specify a different drive for each file. You must
separately specify the alternate drive and path for each file that you do not
want to go on the current directory.

You can also specify a device name instead of a file name. For example,
NUL for no file or PRN for the printer.

Note

18

Unless a semicolon (;) is used, all the commas in the command line are
required. If you want the file name for a given file to be the default (the
file name of the source file), place the commas that would otherwise
separate the file name from the other names side by side (,,).

Spaces in a command line are optional. If you make an error entering
any of the file names, MASM displays an error message and prompts
for new file names, using the method described in the previous section.

MASM: A Mucro Assembler

Examples

MASM file.asID, file.obj, file. 1st, file.erf

The example above is equivalent to:

MASM file",;

The source file f i 1 e . asm is assembled. The generated relocatable code is
copied to the object file f i 1 e . ob j. MASM also creates an assembly list
ing and a cross-reference file. These are written to fi le. 1st and
file.erf, respectively.

MASM startup, ,stest;

The example above directs MASM to assemble the source file
startup. asm. The assembler then writes the relocatable object code to
the default object file, startup. ob j. MASM creates a listing file named
stest. 1st, but the semicolon keeps the assembler from creating a cross
reference file.

MASM startup, ,stest,;

The example above is exactly the same as the previous example except that
the assembler creates a cross-reference file startup. er f. This is because
the semicolon follows a comma marking the place of the cross-reference file
instead of following the file name of the list file.

MASM B:\sre\build;

The example above directs MASM to find and assemble the source file
bui Id. asm in the directory \sre on Drive B. The semicolon causes the
assembler to create an object file named build. obj in the current direc
tory, but prevents MASM from creating an assembly listing or cross
reference file. Note that the object file is placed on the current drive, not
the drive specified for the source file.

19

Microsoft Mncro Assembler's User Guide

2.3 Using MASM Options

The MASM options control the operation of the assembler and the format
of the output files it generates.

MASM has the following options:

Option

/A
/S
IBnumber

Ie
/L
ID

IDsymbol

IIpath

IML
11vfX
IMU

IN
IP
/R
IE
IT
IV
IX
IZ

Action

Writes segments in alphabetical order

Writes segments in source-code order

Sets buffer size

Specifies a cross-reference file

Specifies an assembly listing file

Creates Pass 1 listing

Defines assembler symbol

Sets include file search path

Preserves case sensitivity in names

Preserves case sensitivity in public and external names

Converts names to uppercase

Suppresses tables in listing file

Checks for impure code

Creates code for real floating-point instructions

Creates code for emulated floating-point instructions

Suppresses messages for successful assembly

Displays extra statistics to screen

Includes false conditionals in listings

Displays error lines on screen

You can place options anywhere on a MASM command line. An option
affects all relevant files in the command line even if the option appears at
the end of the line. Options can be specified with either a forward slash (I)
or a dash (-), and with either upper- or lowercase letters. The options I A,
I a, -A, and -a are equivalent.

20

MASM: A Mucro Assembler

Note

You should not use source-file names containing dashes. Although the
dash is a legal character for MS-DOS file names, the assembler will
interpret a dash as the beginning of an assembler option. For example,
the file name fi le-c will be interpreted by the assembler as fi Ie fol
lowed by the invalid option -c. An error message will result.

2.3.1 Writing Segments in Alphabetical Order

Syntax

/A

The / A option directs MASM to place the assembled segments in alpha
betical order before copying them to the object file. If this option is omit
ted, MASM copies the segments in the order encountered in the source file.

Note

Some previous versions of the macro assembler ordered segments alpha
betically by default. Listings in books and magazines may be written
with these early versions in mind. If you have trouble assembling and
linking a listing taken from a book or magazine, try using the / A
option.

Example

MASM file /A;

This example creates an object file, fILE. OBJ, whose segments are
arranged in alphabetical order. Thus, if the source file fILE. ASM contains
segments with the class types 'DATA', 'CODE', and 'STACK', the as
sembled segments in the object file have the order 'CODE', 'DATA', and
, STACK'. The significance of segment order and class type are discussed in
more detail in Sections 3.4.2 and 3.4.3 in this manual, and in Section 3.4.3
of the Microsoft Macro Assembler Reference Manual.

21

Microsoft Macro Assembler's User Guide

2.3.2 Writing Segments in Source-Code Order

Syntax

IS
The /S option tells MASM to place the assembled segments in the object
file in the same order in which they appear in the source file. This is the
default order. The /S option is provided for compatibility with XENIX®.

2.3.3 Setting the File Buffer Size

Syntax

IBnumber

The /B option directs the assembler to change the size of the file buffer
used for the source file. The number is the number of 1024-byte (1K)
memory blocks allocated for the buffer. You can set the buffer to any size
from lK to 63K (but not 64K). The default size of the buffer is 32K.

A buffer larger than your source file allows you to do the entire assembly in
memory, greatly increasing assembly speed. However, you may not be able
to use a large buffer if your computer does not have enough memory or if
you have too many resident programs using up memory. If you get an error
message indicating insufficient memory, you can decrease the buffer size and
try again.

Examples

MASM file" /B16;

The example above decreases the buffer size to 16K.

MASM file, ,/B63;

The example above increases the buffer size to 63K.

22

MASM: A Mucro .Assembler

2.3.4 Creating a Pass 1 Listing

Syntax

/D

The /D option tells MASM to add a Pass 1 listing to the assembly-listing
file, making the assembly listing show the results of both assembler passes.
A Pass 1 listing is typically used to locate program phase errors. Phase
errors occur when the assembler makes assumptions about the program in
Pass 1 that are not valid in Pass 2.

The /D option does not create a Pass 1 listing unless you also direct
MASM to create an assembly listing. It does direct the assembler to
display error messages for both Pass 1 and Pass 2 of the assembly, even if
no assembly listing is created. See Section 2.4.6 for more information
about Pass 1 listings.

Example

MASM file,,/D;

This example directs the assembler to create a Pass 1 listing for the source
file f i 1 e . aSffi. The listing is placed in the file f i 1 e . 1 st.

2.3.5 Defining Assembler Symbols

Syntax

/Dsymbol

The /Dsymbol option directs MASM to define a symbol that can be used
during the assembly as if it were defined in the source file. The specified
symbol is defined as a null-text string. This is similar to using the EQU
directive within the source file to define a string.

The /Dsymbol option can be used to define symbols that can be evaluated
by the IFDEF and IFNDEF conditional-assembly directives. These direc
tives are explained in Section 7.2.3 of the Microsoft Macro Assembler Refer
ence Manual.

23

Microsoft Macro Assembler's User Guide

Example

MASM file,,/Dwide;

This example defines the symbol wide and gives it a null value. The sym
bol could then be used in the following conditional-assembly block:

IFDEF wide
PAGE 50,132

ENDIF

When the symbol is defined in the command line, the listing file is for
matted for a 132-column printer. When the symbol is not defined in the
command line, the listing file is given the default width of 80 (see the
description of the PAGE directive in Section 9.8 of the Microsoft Macro
Assembler Reference Manual).

2.3.6 Setting a Search Path for Include Files

Syntax

/Ipath

The /1 option is used to set search paths for include files. You can set up
to 10 search paths by using the option for each path. The order of search
ing is the order in which the paths are listed in the command line. The
INCLUDE directive and include files are discussed in Section 9.2 of the
Microsoft Macro Assembler Reference Manual.

Example

MASM file" /Ib:\io /I\macro ;

This command line might be used if the source file contains the following
statement:

INCLUDE dos.mac

In this case, MASM would search for file dos . mac first in directory \io
on Drive B, then in directory \macro on the current drive, and finally in
the current directory.

24

MASM: A Macro Assembler

You should not specify a path name with the INCLUDE directive if you
plan to specify search paths from the command line. For example, if the
source file contained the statement

INCLUDE a:\macro\dos.mac

MASM would search path a: \macro and would ignore any search paths
specified in the command line.

2.3.7 Preserving Case-Sensitivity in Names

Syntax

jML

The (ML option directs the assembler to preserve lowercase letters in
label, variable, and symbol names. All names that have the same spelling,
but use letters of different cases are considered different. For example, with
the /ML option, DATA and data are different. Without the option, the
assembler automatically converts all lowercase letters in a name to upper
case.

The /ML option is typically used when object modules created with
MASM are to be linked with object modules created by a case-sensitive
compiler.

Example

MASM file /ML,,;

This example directs the assembler to preserve lowercase letters in any
names defined in the source file f i 1 e . asm.

25

Microsoft Macro Assembler's User Guide

2.3.8 Preserving Case-Sensitivity
in Public and External Names

Syntax

/MX

The /MX option directs the assembler to preserve lowercase letters in pub
lic and external names. MASM converts all other names to uppercase.

Public and external names include any label, variable, or symbol names
defined using the EXTRN directive or the PUBLIC directive. See
Chapter 6 of the Microsoft Macro Assembler Reference Manual for more
information on global directives. If the /MX option is specified, the assem
bler writes public and external names to the object file in exactly the form
in which they appear in the source file. The names DATA and Data would
be different if written to the object file with the /MX option.

The /MX option is used to ensure that the names of routines or variables
copied to the object module have unique spelling regardless of whether they
are spelled with upper- or lowercase letters. The option is used with any
source file to be linked with object modules created by a case-sensitive com
piler.

Example

MASM file /MX",;

The preceding example directs MASM to preserve lowercase letters in any
public or external names defined in the source file fi Ie. asm.

2.3.9 Converting Names to Uppercase

Syntax

/MU

The /MU option causes the assembler to convert lowercase letters to
uppercase in public and external names. This is the default. The /MU
option is provided for compatibility with XENIX.

26

MASM: A Macro Assembler

2.3.10 Suppressing the Tables in the Listing File

Syntax

/N

The IN option tells the assembler to omit all tables from the end of the
listing file. If this option is not chosen, MASM will include tables of mac
ros, structures, records, segments and groups, and symbols. The code por
tion of the listing file is not changed by the IN option.

Example

MASM filel,IN;

2.3.11 Checking for Impure Code

Syntax

/P

The IP option directs MASM to check for impure code in the 80286 pro
tected mode. This option has no effect unless assembly is being controlled
by the .286p directive. The .286p and other instruction-set directives are
explained in Section 3.3 of the Microsoft Macro Assembler Reference
Manual.

Code that moves data into memory with the as: override instruction is
acceptable in nonprotected 286 mode and in 8086 and 80186 mode. How
ever, such code may cause problems in protected mode. When the IP mode
is in effect, the assembler checks for these situations and generates error
100 if it encounters them.

Example

MASM file IP;

This example instructs MASM to check for impure code where instruction
data are moved directly into memory through a as: override instruction.

27

Microsoft Macro Assembler's User Guide

2.3.12 Creating Code for a Floating-Point Processor

Syntax

/R

The IR option directs the assembler to generate floating-point instruction
code that can be executed by an 8087 or 80287 coprocessor. Programs
created using the IR option can run only on machines having an 8087 or
80287 coprocessor.

Example

MASM file/R,,;

This example directs MASM to assemble the source file f i 1 e . asrn and
create actual 8087 or 80287 instruction code for floating-point iUt:ltrucLions.

2.3.13 Creating Code for a Floating-Point Emulator

Syntax

/E

The IE option directs the assembler to generate floating-point instruction
code that emulates the 8087 or 80287 coprocessor. This option is for the
convenience of programmers who already own a math-emulation library
such as the ones provided with Microsoft C, Pascal, and FORTRAN. The
Microsoft Macro Assembler package does not include a math-emulation
library.

If you intend to execute a program that uses 8087 or 80287 instructions on
machines that do not have an 8087 or 80287 coprocessor, you must use the
IE option during assembly, and then link the resulting object file with a
math-emulation library. The library contains routines that emulate 8087
and 80287 floating-point instructions.

28

MASM: A Macro Assembler

Example

MASM file /E;
LINK file" ,math. lib

This example directs MASM to create emulation code for any fioating
point instructions it finds in the program. Note that the object file is
linked with a math-library file in the second command line. If you try to
use the IE option without a math library, you will be able to assemble the
file successfully, but you will get error messages when you try to link the
object file.

2.3.14 Displaying Extra Assembly Statistics

Syntax

IV
The IV option directs the assembler to send additional statistics to the
screen at the end of assembly. In addition to the normal data on errors and
symbol space, MASM reports the number of lines and symbols processed.
(The V in the option name is mnemonic for verbose.)

Example

MASM file/V;

2.3.15 Listing False Conditionals

Syntax

IX
The IX option directs MASM to copy to the assembly listing all state
ments forming the body of an IF directive whose expression (or condition)
evaluates to false. If you do not give the IX o£tion in the command line,
MASM suppresses all such statements. The IX option lets you display
conditionals that do not generate code. This option applies to all "if" direc
tives: IF, IFE, IF!, IF2, IFDEF, IFNDEF, IFB, IFNB, IFIDN, and
IFDIF. Conditional-assembly directives are explained in Section 7.2 of the
Microsoft Macro Assembler Reference Manual.

29

Microsoft Macro Assembler's User Guide

The .SFCOND, .LFCOND, and .TFCOND directives modify the effect
of the IX option. A .SFCOND in the source file suppresses false condi
tionals while a .LFCOND directive restores listing of false conditionals.
Both these directives work regardless of whether the IX option is given on
the command line. A • TFCOND directive in the source file reverses the
normal meaning of the IX option. When the IX option has been given and
the assembler encounters a . TFCOND directive in a source file, subse
quent false conditionals are suppressed. The next. TFCOND directive
restores the listing.

The following table illustrates the effect of the. TFCOND, .SFCOND,
and .LFCOND directives on the IX option:

Table 2.1

IX Option and Directives

Source File Directive:

.SFCOND

.LFCOND

.TFCOND

No directive

IX Option Action:

Has no effect; false conditionals not listed

Has no effect; false conditionals listed

Toggles between listing & suppressing false conditionals

Lists false conditionals

The IX option does not affect the assembly listing unless you direct the
assembler to create an assembly-listing file. See Section 9.10 in the Micro
soft Macro Assembler Reference Manual for more information about direc
tives that control listing of false conditionals.

Example

MASM file, ,IX;

If the source file, fi le. asm contains two. TFCOND directives, the
assembler will start listing false conditionals at the first directive and con
tinue until it reaches the second. It will continue to toggle between listing
and suppressing each time it encounters a new. TFCOND directive.

30

MASM: A Macro Assembler

2.3.16 Displaying Error Lines on the Screen

Syntax

/Z

The /Z option directs MASM to display lines containing errors on the
screen. Normally when the assembler encounters an error, it displays only
an error message describing the problem. When you use the /Z option in
the command line, the assembler displays the source line that produced the
error in addition to the error message. MASM assembles faster without
the / Z option, but you may find the convenience of seeing incorrect source
lines worth the slight cost in processing speed.

Previous versions of MASM always showed both the source line and the
error message.

Example

MASM file/Z;

2.3.17 Specifying a Cross-Reference File

Syntax

/e

The / C option directs MASM to create a cross-reference file even if one
was not specified in the command line or in response to prompts. A cross
reference file specified with the / C option always has the base name of the
source file plus the extension .dRF. You cannot specify a file name with
this option. The / C option is provided for compatibility with XENIX.

31

Microsoft Macro Assembler's User Guide

2.3.18 Specifying a Listing File

Syntax

/L

The /L option directs MASM to create an assembly-listing file even if one
was not specified in the command line or in response to prompts. An
assembly-listing file specified with the /L option always has the base name
of the source file plus the extension .LST. You cannot specify a file name
with this option. The /L option is provided for compatibility with XENIX.

2.3.19 Suppressing Messages for Successful Assembly

Syntax

/T

The /T option suppresses all messages if the source file is assembled
without any warning errors or severe errors. The copyright message and
information about errors and symbol space appear only if at least one error
is encountered. This option may be useful in batch files if the user does not
want the output cluttered with unnecessary messages. (The T in the option
name is mnemonic for terse.)

2.4 Reading the Assembly Listing

MASM creates an assembly listing of your source file whenever you give an
assembly-listing file name on the MASM command line or in response to
the MASM prompts. The assembly listing contains both the statements in
the source-program file, and the object code generated for each statement.
The listing also shows the names and values of all labels, variables, and
symbols in your source file.

The assembler creates tables for macros, structures, records, segments,
groups, and other symbols. These tables are placed at the end of the
assembly listing (unless you suppress them with the /N option). MASM
lists only the types of symbols encountered in the program. If your pro
gram has no macros, there will be no macro section in the symbol table.

32

MASM: A Mncro Assembler

The assembly listing also contains error messages if errors occurred during
assembly. MASM places each message below the statement that caused
the error. At the end of the listing, the assembler tells how many error and
warning messages it issued.

Sections 2.4.1-2.4.6 explain the format of assembly listings and the mean
ings of special symbols used in listings.

2.4.1 Reading Code in the Listing

The assembler lists the code generated from the statements of a source file.
Each line has the form:

[Linenumber] offset code statement

The optional linenumber is the number of the line starting from the first
statement in the assembly listing. Line numbers are produced only if you
request a cross-reference file. Line numbers in the listing do not always
correspond to the same lines in the source file.

The offset is the offset from the beginning of the current segment to the
code. The code is the actual instruction code or data generated for the
statement. MASM gives the actual numeric value of the code in hexa
decimal if possible. Otherwise, it indicates what action is necessary to com
pute the value. The statement is the source statement shown exactly as it
appears in the source file, or as expanded by a macro.

If any errors occur during assembly, each error message and error number
will be printed directly below the statement where the error occurred.
Refer to Appendix A for a list of MASM errors. Error messages show the
source-file name, the source-line number, the error number, and an error
message as shown below:

28 nov ds/ax
work.ASM(22) : error 10: Syntax error

Note that the 22 in the error message is the line number in the source file.
The 28 on the code line is the line number of the listing file, which may not
be the same as the source line. Line numbers in the listing file are produced
only if you request a cross-reference file.

The assembler uses the special characters shown in Table 2.2 to indicate
addresses that need to be resolved by the linker or values that were gen
erated in a special way:

33

Microsoft Macro Assembler's User Guide

Table 2.2

Special Characters in Listings

Character

R
E

nn:

nn/
nn[xx]

Meaning

Relocatable address; linker must resolve

External address; linker must resolve

Segment/group address; linker must resolve

EQU or equal-sign () directive

Segment override in statement

REP or LOCK prefix instruction

DUP expression; nn copies of the value xx

n

a
Macro expansion nesting level (+ if more than nine)

Line from INCLUDE file

Example

Microsoft MACRO Assembler Version 4.00 9/25/85 13:58:46

Page 1-1

1 quit MACRO
2 mov ah,4Ch
3 int 21h
4 ENDM
5
6 FFFF max EQU 65535
7
8 EXTRN work:NEAR
9

10 0000 stack SEGMENT para public
11 0000 0100 [DB 256 DUP (?)
12 ??
13
14
15 0100 stack ENDS
16

'STACK'

17 0000 data SEGMENT public 'DATA'
18 0000 0064[buffer DW 100 DUP (?)
19 ????

34

20
21
22 00C8
23
24 0000
25
26
27 0000
28

test .ASM (22) :
29 0003
30
31 0006
32 0008
33 OOOA
34

B8 ---- R

error 10:
E8 0000 E

B4 4C
CD 21

data

code

start:

Syntax error

1
1

code

Microsoft MACRO Assembler Version 4.00

Macros:

N a m e

QUIT

Segments and Groups:

N a m e

CODE
DATA
STACK

Symbols:

N a m e

BUFFER

MAX

START

WORK

26 Source Lines
28 Total Lines
29 Symbols

Lines

2

Size

OOOA
00C8
0100

Type

L WORD

Number

L NEAR

L NEAR

50002 Bytes symbol space free

o Warning Errors
1 Severe Errors

Align

PARA
PARA
PARA

Value

FFFF

0000

0000

MASM: A Macro Assembler

ENDS

SEGMENT public 'CODE'
ASSUME cs:code, ds:data

mov
nov

call
quit
mov
int
ENDS
END

aX,data
dS,ax

work

ah,4Ch
21h

start

9/25/85 13:58:46

Symbols-1

Combine Class

PUBLIC 'CODE'
PUBLIC 'DATA'
PUBLIC 'STACK'

Attr

0000 DATA Length

CODE

External

0064

36

Microsoft Macro Assembler's User Guide

The line numbers referencing the sample source file indicate that a cross
reference file was requested when the file was assembled. Source and refer
ence files for this sample listing are shown in Section 5.3.

2.4.2 Reading a Macro Table

The table at the end of a listing file shows the names and sizes of all macros
defined in the source file. The list has two columns with the headings Name
and Lines, as shown in the following example:

BIOSCALL
DISPLAY
DOSCALL
KEYBOARD
LOCATE .
SCROLL .

N a m e Lines

2
3
2
4
7
6

The Name column lists the names of all macros. The names are listed in
alphabetical order and are spelled exactly as given in the source file except
that lowercase letters are converted to uppercase (unless conversion is
suppressed with the /J\1L option). Names longer than 31 characters are
truncated. The Lines column lists the number of lines in the macro.

2.4.3 Reading a Structure and Record Table

The table at the end of a listing file shows the names and dimensions of all
structures and records in the source file.

The Name column lists the name of the structure or record, and this is fol
lowed on succeeding indented lines by the names of the fields within the
structure or record. The names are listed in alphabetical order and are
spelled exactly as given in the source file, except that lowercase letters are
converted to uppercase (unless conversion is suppressed with the ;:ML
option). Names longer than 31 characters are truncated.

36

MASM: A Mucro Assembler

The following example shows the format for structures:

STRUC1 .
COUNT
VALUE
NAME .

N a m e Width # fields
Shift Width Mask Initial

001A
0000
0001
0015

0003

For a structure, the Width column lists the size (in bytes) of the structure.
The # fields column lists the number of fields in the structure. Both
values are in hexadecimal.

For a record, the Width column lists the size (in bits) of the record. The #
fields column lists the number of fields in the record.

For fields of structures, the Shi ft column lists the offset (in bytes) from
the beginning of the structure to the field. This value is in hexadecimal.
The other columns are not used.

The following example shows the format for records:

RECO .
FL1
FL2

REC1 .
FL1
FL2
FL3

N a m e Width # fields
Shift Width Mask Initial

0005
0003
0000
OOOA
0006
0003
0000

0002
0008
0003
0003
0004
0003
0003

07F8
0007

03CO
0038
0007

0400
0002

0000
0000
0000

For fields in a record, the Shi ft column lists the offset (in bits) from the
low-order bit of the record to the low-order bit in the field. The Width
column lists the number of bits in the field. The Mask column lists the
maximum value of the field, expressed in hexadecimal. The Ini tial
column lists the initial value of the field, if any. For each field, the table
shows the mask and initial values as if they were placed in the record and
all other fields were set to O.

2.4.4 Reading a Segment and Group Table

The following example of a table at the end of a listing file shows the
names, sizes, and attributes of all segments and groups in the source file:

37

Microsoft Macro Assembler's User Guide

N a m e Size Align Combine Class

DGROUP GROUP
DATA 0024 WORD PUBLIC 'DATA'
STACK 0014 WORD STACK 'STACK'
CONST 0000 WORD PUBLIC 'CONST'
HEAP 0000 WORD PUBLIC 'MEMORY'
MEMORY 0000 WORD PUBLIC 'MEMORY'

FIRST 0037 WORD PUBLIC 'CODE'
MAIN_STARTUP 007E PARA NONE 'MEMORY'

The table has five columns: Name, Size, Align, Combine, and Class.

The Name column lists the names of all segments and groups. The names in
the list are given in alphabetical order, except that the names of segments
belonging to a group are placed under the group name. Names are spelled
exactly as given in the source file; lowercase letters are converted to upper
case (unless the j1v.1L option is used). Names longer than 31 characters are
truncated.

The Size column lists the byte size (in hexadecimal) of each segment.
Since a group has no size, only the word GROUP is shown.

The Al i gn column lists the align type of the segment. The types can be
any of the following:

byte

word

para

page

at

If the segment is defined with no explicit align type, MASM lists the
default align type for that segment.

The Combine column lists the combine type of the segment. The types can
be anyone of the following:

38

none

public

stack

memory

MASM: A Macro Assembler

common

address (for at combine type)

If no explicit combine type is defined for the segment, the listing shows
NONE, representing the private combine type. If the Al ign column con
tains AT, the Combine column contains that hexadecimal address of the
beginning of the segment.

The Cl ass column lists the class name of the segment. The name is
spelled exactly as given in the source file except that lowercase letters are
converted to uppercase (unless the j:MI.I option is used). If no name is
given, none is shown.

For a complete explanation of the align and combine types, and class
names, see Section 3.4 of the Microsoft Macro Assembler Reference Manual.

2.4.5 Reading a Symbol Table

The following example of a table at the end of a listing file shows the
names, types, values, and attributes of all symbols in the source file:

Symbols:

SYMO
SYM1
SYM2
SYM3
SYM4
SYM5
SYM6
SYM7
SYM8
SYM9
LABO
LAB1

N a m e Type Value Attr

Number 0005
Text 1.234
Number 0008
Alias SYM4
Text 5 [BP] [D!]
Opcode
L BYTE 0002 DATA
L WORD 0012 DATA
L DWORD 0022 DATA
L QWORD 0000
L FAR 0000
L NEAR 0010 CODE

Global

External
External

The table has four columns: Name, Type, Value, and Attr.

The Name column lists the names of all symbols. The names in the list are
given in alphabetical order and are spelled exactly as given in the source
file, except that lowercase letters are converted to uppercase (unless conver
sion is suppressed with the /rvtL option for all names or with the /:rv:tX
option for public and external names). Names longer than 31 characters
are truncated.

39

Microsoft Macro Assembler's User Guide

The Type column lists each symbol's type. A type is given as one of the
following:

Type

LNEAR

LFAR

NPROC

FPROC

Number

Alias

Opcode

Text

Definition

A near label

A far label

A near procedure label

A far procedure label

An absolute label

An alias for another symbol

An instruction opcode

A memory operand, string, or other value

If the svmbol is defined bv an EOU directive or an eOl1al-si{!n (=) direc-
eI "'.., J. U \ I

tive, the Type column will show either Number, Opcode, Al i as, or Text.
If the symbol represents a variable, label, or procedure, the Type column
will show the symbol's length if it is known. A length is given as one of the
following:

Type

BYTE
WORD

DWORD

QWORD

TBYTE
number

Length

One byte (8-bits)

One word (16-bits)

Doubleword (2 words)

quadword (4 words)

Ten-bytes (5 words)

Length in bytes of a structure variable

If the symbol represents an absolute value defined with an EQU or equal
sign (:) directive, the Value column shows the symbol's value. The value
may be another symbol, a string, or a constant numeric value (in hexa
decimal), depending on whether the type is Al i as, Text, or Number. If
the type is Opcode, the Va 1 ue column will be blank. If the symbol
represents a variable, label, or procedure, the Va 1 ue column shows the
symbol's hexadecimal offset from the beginning of the segment in which it
is defined.

40

MASM: A Macro Assembler

The Attr column shows the attributes of the symbol. The attributes
include the name of the segment (if any) in which the symbol is defined, the
scope of the symbol, and the code length. A symbol's scope is given only if
the symbol is defined using the EXTRN and PUBLIC directives. The
scope can be External or Global. The code length (in hexadecimal) is
given only for procedures. The Attr column is blank if the symbol has no
attribute.

2.4.6 Reading a Pass 1 Listing

When you specify the jD option in the MASM command line, the assem
bler puts a Pass 1 listing in the assembly-listing file, making the listing file
show the results of both assembler passes. The listing is intended to help
locate the sources of phase errors.

The following examples illustrate the Pass 1 listing for a source file that
assembled without error. Although an error was produced on Pass 1,
MASM corrected the error 011 Pass 2 and completed assembly correctly.

During Pass 1, the j le instruction to a forward reference produces an error
message:

0017 7E 00
PASS_CMP.ASM(20)

0019 BB 1000
001C

jle smlstk
: error 9 : Symbol not defined SMLSTK

mov bX,4096
smlstk:

MASM displays this error since it has not yet encountered the definition
for the symbol smlstk.

By Pass 2, smlstk has been defined and the assembler can fix the instruc
tion, so no error occurs:

0017 7E 03
0019 BB 1000
001C

jle
mov

smlstk:

smlstk
bX,4096

The j 1 e instruction's code now contains 03 instead of 00. This is a jump
of 3 bytes.

Since MASM generated the same amount of code for both passes, there
was no phase error. If a phase error had occurred, the assembler would
have displayed an error message.

41

Microsoft Macro Assembler's User Guide

In the following program fragment, a mistyped label creates a phase error:

0000
0000 E9 0000 U

PASS_TST.ASM(2)
0003
0003 88 0001
0006

code segment
jmp go

error 9: Symbol not defined GO
go label byte

mov ax, 1
code ends

In Pass 1, the label go is used in a forward reference and creates a Symbol
not de fined error. The assembler assumes that the symbol will be
defined later and generates 3 bytes of code, reserving 2 bytes for the
symbol's actual value.

In Pass 2, the label go is known to be a label of BYTE type, which is an
illegal type for the JMP instruction. As a result, MASM produces only 2
bytes of code in Pass 2, 1 byte less than in Pass 1. The result is a phase
error:

0000
0003 R

PASS_TST.ASM(2)
0003

PASS_TST.ASM(3)
0003 B8 0001
0006

code segment
jmp go

error 57: Illegal size for item
go label byte

error 6: Phase error between passes
mov ax, 1

code ends

Most Pass 1 errors are resolved in Pass 2, so they are not counted as either
warning or severe errors in the error count. However, there are five Pass 1
errors that cannot be resolved during Pass 2. They are counted in the error
count and listed on the first page of the listing file even if no Pass 1 listing
is requested. The following five Pass 1 errors will be included in the listing:

Code Message

2 Register already defined

5 Redefinition of symbol

13 Must be declared in pass 1

17 Forward reference is illegal

85 End of file, no END directive

42

Chapter 3

LINK: A Linker

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14

Introduction 45
Starting and Using LINK 45

Using Prompts to Specify LINK Files 45
Using a Command Line to Specify LINK Files
Using a Response File to Specify LINK Files
Giving Search Paths with Libraries 52
The Map File 53
The Temporary Disk File - VM. TMP 54

Using Link Options 55
Viewing the Options List 56
Pausing to Change Disks 56
Packing Executable Files 58
Producing a Public-Symbol Map 58
Copying Line Numbers to the Map File 59
Preserving Lowercase 60
Ignoring Default Libraries 61
Setting the Stack Size 62
Setting the Maximum Allocation Space 63
Setting a High Start Address 64
Allocating a Data Group 64
Removing Groups from a Program 65
Setting the Overlay Interrupt 66
Setting the Maximum Number of Segments

48
50

67

43

3.3.15 Using DOS Segment Order 68
3.4 How LINK Works 68
3.4.1 Alignment of Segments 69
3.4.2 Frame Number 69
3.4.3 Order of Segments 70
3.4.4 Combined Segments 70
3.4.5 Groups 71
3.4.6 Fixups 71

44

LINK: A Linker

3.1 Introduction

The Microsoft 8086 Object Linker, (LINK), creates executable programs
from object files generated by the Microsoft Macro Assembler (MASM) or
by high-level-language compilers, such as C or Pascal. The linker copies
the resulting program to an executable (.EXE) output file. The user can
then run the program by typing the file's name on the MS-DOS command
line.

To use LINK, you must create one or more object files, then submit these
files, along with any required library files, to the linker for processing.
LINK combines code and data in the object files and searches the named
libraries to resolve external references to routines and variables. It then
copies a relocatable execution image and relocation information to the exe
cutable file. Using the relocation information, MS-DOS can load the exe
cutable image at any convenient memory location and execute it. LINK
can process programs that contain up to one megabyte of code and data.

Section 3.2 explains how to use the linker to create executable programs.
Section 3.3 defines each of the options you can use in a LINK command
line to control the linking process. Section 3.4 explains how LINK creates
programs.

3.2 Starting and Using LINK

This section explains how to start and use the linker to create executable
programs. You can use LINK in three different ways: by answering a series
of prompts, by supplying an MS-DOS command line, or by using a response
file. The three methods can also be mixed.

Once you start LINK, it will either process the files you supplied or prompt
you for additional files. You can stop the linker at any time by pressing the
CONTROL-C key combination.

3.2.1 Using Prompts to Specify LINK Files

When you type the command name LINK at the MS-DOS prompt, the
linker will prompt you for the information it needs. Follow these steps:

46

Microsoft Macro Assembler User's Guide

46

1. Type

LINK

and press the RETURN key. LINK prompts you for the object files
you wish to link by displaying the following message:

Object Modules [.OBJ]:

2. Type the name or names of the object files you wish to link. If you
do not supply file-name extensions, LINK supplies .OBJ by
default. If you have more than one name, make sure you separate
them with spaces or plus signs (+). If you have more names than
can fit on one line, type a plus sign (+) as the last character on the
line and press the RETURN key. LINK prompts for additional
object files.

Once you have given all object-file names, press the RETURN key.
The linker displays the following prompt:

Run File [filename. EXE] :

3. Note that filename is the Rame as the first file name entered at the
"Object Modules" prompt. Type the name of the executable file
you wish to create, and press the RETURN key. If you do not give an
extension, LINK supplies .EXE by default. If you want LINK to
supply a default executable-file name, just press the RETURN key.
The file name will be the same as the first object file, but the file
will have the extension .EXE.

Once you have pressed the RETURN key, LINK displays the prompt:

List File [NUL.MAP]:

4. Type the name of the map file you wish to create, then press the
RETURN key. If you do not supply a file-name extension, the linker
uses .MAP by default. If you do not want a map file, do not type a
file name. Just press the RETURN key.

Once you have pressed the RETURN key, LINK displays the prompt:

Libraries [.LIB]:

5. Type the nam'~s of any library files containing routines or variables
referenced but not defined in your program. If you give more than
one name, make sure the names are separated by spaces or plus
signs (+). If you do not supply file-name extensions, the linker uses
.LIB by default. If you have more names than can fit on one line,
type a plus sign (+) as the last character on the line and press the
RETURN key. LINK prompts for additional file names.

LINK: A Linker

After entering all names, press the RETURN key. If you do not want
to search any libraries, do not enter any names. Just press the
RETURN key.

LINK now creates the executable file.

When entering file names, you must give a path name for any file that is
not on the current drive and directory. You can use LINK options by typ
ing them after the file name at any prompt. If the linker cannot find an
object file, it displays a message and waits so that you can change disks if
necessary.

At any prompt, you can type the rest of the file names in the command line
format described in Section 3.2.2. For example, you can choose the default
responses for all remaining prompts by typing a semicolon (;) after any
prompt, or you can type commas (,) to indicate several files. (If you type a
semicolon at the "Object Modules" prompt, be sure to supply at least one
object-file name.) When the linker encounters a semicolon, it immediately
chooses the default responses and processes the remaining files without
displaying any more prompts.

Example

LINK

Object Modules [.OBJ]: moda+modb+
Object Modules [.OBJ]: modc+startupjPAUSE
Run File [moda.EXE]:
List File [NUL.MAP]: abc
Libraries [.LIB]: b:\lib\math

This example links the object modules moda . ob j, modb . ob j, mode. ob j,
and startup. ob j. It searches the library file math. 1 ib on Drive B of
the \lib directory for routines and data used in the program. It then
creates an executable file named moda . exe, and a map file named
abe. map. The /P AUSE option in the "Object Modules" prompt line
causes LINK to pause while you change disks. The linker then creates the
executable file (see Section 3.3.2).

47

Microsoft Macro Assembler User's Guide

3.2.2 Using a Command Line to Specify LINK Files

You can create an executable program by typing LINK followed by the
names of the files you wish to process. The command line has the following
general form:

LINK obfectfiles [, [executablefile] [, [mapfile] [, [libraryfile]]]] [options] [;]

The obJectfiles include the name or names of object files that you want to
link together. The files must have been created using MASM or a high
level-language compiler. The linker requires at least one object file. If you
do not supply an extension, LINK provides the extension .OBJ.

The optional executablefile is a placeholder for the name you wish to give
the executable file LINK will create. If you do not supply an executablefile,
LINK creates a file name by using the file name of the first object file in
the command line and appending the extension .EXE.

The optional mapfile is the name of the file to receive the map listing. If you
do not supply an extension, the linker provides the extension . MAP . If you
specify the /MAP or /LINENUMBERS option, a map file will be created
even if no map file was specified in the command line.

The optional libraryfiles include the name or names of the libraries contain
ing routines that you wish to link to create a program. If you do not sup
ply an extension, LINK supplies the extension .LIB.

The options control the operation of LINK. You can use any of the
options listed in Section 3.3. You can put options anywhere on the com
mand line.

The commas (,) separating file names for the different types of files are
required even if no file name is supplied. If you want the file name for a file
to be the default (the same as the base name of the first object file), you can
type the comma that would follow the file name without actually supplying
a file name. You can use a semicolon (;) anywhere after the object file to
terminate the command line. If you type the comma after the object file,
LINK will supply the default name for the executablefile and suppress the
mapfile and the libraryfiles.

If you do not supply all file names in the command line and do not end with
a semicolon, the linker will prompt for additional files, using the prompts
described in Section 3.2.1. If you give more than one object file or library
file, you must separate the names with spaces or with plus signs (+).

48

LINK: A Linker

If you do not specify a drive or directory for a file, LINK assumes the file
will be on the current drive and directory. You cannot specify the drive or
directory for the objectfile and expect LINK to supply the same drive and
directory for other files. The location of each file must be given specifically.

Note

When linking modules produced with a high-level-language compiler
that supports overlays, you must specify overlay modules by putting
them in parentheses. Since MASM has no overlay manager, you can
only specify overlays for object files linked with the run-time library of
a language compiler that supports overlays. For example, you can use
overlays with modules compiled with Microsoft FORTRAN, Version 3.2
and later, Microsoft Pascal, Version 3.2 and later, and Microsoft 0,
Version 3.0 and later. See your language compiler manual for details on
specifying overlays.

Examples

LINK file.obj, file.exe, file.map, routine. lib

The first example is equivalent to the following line:

LINK file, "routine

It uses the object file fi le . ob j to create the executable file f i 1 e . exe.
LINK searches the library fi le. 1 ib for routines and variables used
within the program. It also creates a file called fi 1e. map containing a list
of the program's segments and groups.

LINK startup+file,b:file,\map\file;

The second example uses the two object files startup. obj and
f i 1 e . ob j on the current drive to create an executable file named
fi le. exe on Drive B. LINK creates a map file on the \map directory of
the current drive, but does not search any libraries.

LINK moda modb modc startup/PAUSE, ,abc,b:\lib\math

The final example links the object modules moda. obj, modb. obj,
mode. ob j, and startup. ob j. The linker searches through the library
file math. 1 ib in the \1 ib directory on Drive B for routines and data used

49

Microsoft Macro Assembler User's Guide

in the program. It then creates an executable file named moda . exe, and a
map file named abc. map. The PAUSE option in the command line causes
the linker to pause while you change disks before creating the executable
file (see Section 3.3.2).

3.2.3 Using a Response File to Specify LINK Files

You can create a program by listing, in a response file, the names of all the
files to be processed, and by giving the name of the response file on the
LINK command line. The simplest way to use a response file is with a com
mand line having the following form:

LINK @ filename

A response file can also be specified at any prompt, or at any position in a
command line. The input from the response file will be treated exactly as
though it had been entered at prompts or in a command line, except that
carriage-return/line-feed combinations in the file are treated the same as
the RETURN key in response to a prompt, or a comma in a command line.

When specifying a response file, the filename must be the name of the
response file, and it must be preceded by an at sign (@). If the file is in
another directory or on another disk drive, a path name must be provided.

You can name the response file anything you like. The file content has the
following general form:

objectfiles
[executablefile]
[mapfile]
[libraryfiles]

Elements that have already been provided at prompts or with a partial
command line can be omitted.

Each group of file names must be placed on a separate line. If you have
more names than can fit on one line, you can continue the names on the
next line by typing a plus sign (+) as the last character in the current line.
If you do not supply a file name for a group, you must leave an empty line.
Options can be given on any line.

You can place a semicolon (;) on any line in the response file. When LINK
encounters the semicolon, it automatically supplies default file names for all
files you have not yet named in the response file. The remainder of the
response file is ignored.

60

LINK: A Linker

When you create a program with a response file, the linker displays each
response from your response file on the screen in the form of prompts. If
the response file does not contain names for required files, LINK prompts
for the missing names and waits for you to enter responses.

Note

A response file should end with either a semicolon (;) or a carriage
return/line-feed combination. If you fail to provide a final carriage
return/line-feed in the file, the linker will display the last line of the
response file and wait for you to press the RETURN key.

EXRlIlple

moda modb modc startup /PAUSE
abc
b:\lib\math

The response file above tells the linker to link the four object modules
moda, modb, mode, and startup. LINK pauses to permit you to swap
disks before producing the executable file moda. exe. The linker also
creates a map file abc. map, and searches the library math. 1 ib in the
\1 ib directory of Drive B.

The following procedure combines all three methods of supplying file
names. Assume you have a response file called 1 ibrary that contains one
line:

libl+lib2+lib3+lib4

Now start LINK with a partial command line:

LINK objectl object2

LINK takes objeetl. obj and object2. obj as its object files, and
prompts for the next file:

Run file [objectl.EXE]: exec
List file [NUL.MAP]:
Libraries [.LIB]: @library

You enter exec so that the linker will name the executable file exee . exe .
You press the RETURN key to indicate that no map file is desired, and you

61

Microsoft Macro Assembler User's Guide

enter @1 ibrary so that the linker will read in the response file containing
the four library-file names.

3.2.4 Giving Search Paths with Libraries

You can direct LINK to search directories and disk drives for the libraries
you have named in a command by specifying one or more search paths with
the library names, or by assigning the search paths to the environment
variable LIB before you invoke LINK. Environment variables are
explained under the SET command in the Microsoft MS-DOS User's Guide.

A search path is the path specification of a directory or drive name. You
enter search paths along with library names on the LINK command line or
in response to the "Libraries" prompt. You can specify up to 16 search
paths. You can also assign the search paths to the LIB environment vari
able, using the MS-DOS SET command. In the latter case, the search
paths must be separated by semicolons (;).

If a drive or directory name is included in the file name for a library in the
LINK command line, the linker searches there only. If no drive or direc
tory is given, LINK searches for library files in the following order:

1. First the linker searches the current drive and directory.

2. If the library is not found and one or more search paths have been
given in the command line, the linker searches the specified search
paths in the order in which they were given.

3. If the library is still not found and a search path has been set with
the LIB environment variable, the linker searches there.

4. If the library is still not found, LINK prints an error message.

Examples

LINK file, ,file,A:\altlib\math.lib+common+B:+D:\lib\

In the first example, the linker will search only the \a1 t1 ib directory on
drive A to find the library rna th. 1 ib, but to find common. 1 ib it will
search the current directory on the current drive, the current directory on
drive B, and finally, directory \1 ib on drive D.

SET LIB=C:\lib;U:\system\lib
LINK file"file.map,math+common

62

LINK: A Linker

In the second example, LINK will search the current directory, directory
\lib on drive C, and directory \system\lib on drive U to find the
libraries math. 1 ib and common. 1 ib.

3.2.5 The Map File

The map file lists the names, load addresses, and lengths of all segments in
a program. It also lists the names and load addresses of any groups in the
program, the program start address, and messages about any errors it may
have encountered. If the /MAP option is used in the LINK command line,
the map file lists the names and load addresses of all public symbols.

Segment information has the general form shown in this example:

Start
OOOOOH
01730H

Stop
0172CH
01E19H

Length
0172DH
006EAH

Name
TEXT
DATA

Class
CODE
DATA

The Start and Stop columns show the 20-bit addresses (in hexadecimal)
of the first and last byte in each segment. These addresses are relative to
the beginning of the load module, which is assumed to be address OOOOH.
The operating system chooses its own starting address when the program is
actually loaded. The Length column gives the length of the segment in
bytes. The Name column gives the name of the segment, and the Class
column gives the segment's class name.

Group information has the general form:

Origin
0000:0
0173:0

Group
I GROUP
DGROUP

In this example, IGROUP is the name of the code (instruction) group and
DGROUP is the name of the data group.

At the end of the listing file, the linker gives you the address of the pro
gram entry point.

If you have specified the /MAP option in the LINK command line, the
linker adds a public-symbol list to the map file. The symbols are presented
twice: once in alphabetical order, then in the order of their load addresses.
The list has the general form shown in the following example:

63

Microsoft Macro Assembler User's Guide

Address

0000:1567
0000:1696
0000:010B
0000:131C
0173:0035

Address

0000:010B
0000:131C
0000:1567
0000:1696
0000:0035

Publics by Name

BRK
CHMOO
CHKSTK
CLEARERR
FAC

Publics by Value

CHKSTK
CLEARERR
BRK
CHMOO
FAC

The addresses of the public symbols are in segment:offset format. They
show the location of the symbol relative to the beginning of the load
module, which is assumed to be at address 0000:0000.

When the /RIGR and /DS.f~LOCATE options are used (see Sections
3.3.10 and 3.3.11) and the program's code and data combined do not exceed
64K, the map file may show symbols that have unusually large segment
addresses. These addresses indicate a symbol whose location is below the
actual start of the program code and data. For example, the symbol entry

FFFO:OA20 TEMPLATE

shows that TEMPLATE is located below the start of the program. Note that
the 20-bit address of TEMPLATE is 00920h.

3.2.6 The Temporary Disk File - VM. TMP

LINK normally uses available memory for the link session. If it runs out of
available memory, it creates a temporary disk file named VM. TMP in the
current working directory. When the linker creates this file, it displays the
following message:

VM.TMP has been created.
Do not change diskette in drive letter

Note that letter will be the proper drive name. After this message appears,
you must not remove the disk from the drive specified by letter until the
link session ends. The /P AUSE option cannot be used if a temporary file is
created. After LINK has created the executable file, it deletes the tem
porary file automatically.

64

LINK: A Linker

Warning

Do not use the file name VM. TMP for your own files. When the linker
creates the temporary file, it destroys any previous file having the same
name.

3.3 Using Link Options

The linker options specify and control the tasks performed by LINK. All
options begin with the linker-option character, the forward slash (f). You
can use an option anywhere on a LINK command line.

LINK has the following options:

Option

fHELP

fPAUSE

fEXEPACK

fMAP
fLINENUMBERS

fNOIGNORECASE

fNODEF AULTLIBRARYSEARCH

fSTACK

fCPARMAXALLOC

fHIGH

fDSALLOCATE

fNOGROUP ASSOCIATION

Action

Shows options list

Pauses during linking

Packs executable file

Creates public symbol map

Copies line numbers to map
file

Preserves case sensitivity in
names

Overrides default libraries

Sets stack size

Sets maximum allocation
space

Sets high load address

Allocates data group

Sets group association over
ride

66

Microsoft Macro Assembler User's Guide

/OVERLAYINTERRUPT

/SEGMENTS

/DOSSEG

Sets overlay interrupt

Sets maximum number of
segments

Specifies MS-DOS segment
ordering

You can abbreviate option names as long as your abbreviations contain
enough letters to distinguish the specified option from other options.
Minimum abbreviations are listed for each option.

Many of the LINK options set values in the MS-DOS program header. You
will understand these options better if you understand how the header is
organized. The program header is described in the Microsoft MS-DOS
Programmer's Reference Manual and in some reference books on MS-DOS.

3.3.1 Viewing the Options List

Syntax

/HELP

The /RELP option causes LINK to write a list of the available options to
the screen. This may be convenient if you need a reminder of the available
options. You should not give a file name when using the /RELP option.

Minimum abbreviation: /RE

Example

LINK /HELP

3.3.2 Pausing to Change Disks

Syntax

/PAUSE

The /P AUSE option causes LINK to pause before writing the executable
file to disk so that you can swap disks before the linker writes the execut
able (.EXE) file to disk.

56

LINK: A Linker

If the /PAUSE switch is given, the linker displays the following message
before creating the run file:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

Note that letter is the proper drive name. This message appears after the
linker has read data from the object files and library files, and after it has
written data to the map file, if one was specified. LINK resumes process
ing when you press the RETURN key. After LINK writes the executable file
to disk, the following message appears:

Please replace original diskette
in drive letter and press <ENTER>

Minimum abbreviation: /P

Note

Do not remove the disk used for the VM. TMP file, if one has been
created. If the temporary disk message appears when you have specified
the /P AUSE option, you should press CONTROL-C to terminate the
LINK session. Rearrange your files so that the temporary file and the
executable file can be written to the same disk, then try again.

Example

LINK file/PAUSE,file,,\lib\math

This command causes the linker to pause just before creating the execut
able file fi Ie. exe. After creating the executable file, LINK pauses again
to let you replace the original disk.

67

Microsoft Macro Assembler User's Guide

3.3.3 Packing Executable Files

Syntax

/EXEPACK

The /EXEP ACK ol?tion directs LINK to remove sequences of repeated
bytes (typically nulls) and optimize the load-time relocation table before
creating the executable file. Executable files linked with the option may be
smaller, and thus load faster than files linked without the option. However,
the Microsoft Symbolic Debug Utility (SYMDEB) cannot be used with
packed files.

The /EXEP ACK option will not always save a significant amount of disk
space (and may sometimes actually increase file size). Programs that have
a large number of load-time relocations (about 500 or more) and long
streams of repeated characters will usually be shorter if packed. If you're
not sure if your program meets these conditions, try linking it both ways
and compare the results.

Minimum abbreviation: /E

Example

LINK program IE ;

This example creates a packed version of file program. exe.

3.3.4 Producing a Public-Symbol Map

Syntax

/MAP

The /MAP option causes LINK to produce a listing of all public symbols
declared in your program. This list is copied to the map file created by the
linker. For a complete description of the listing-file format, see Section
3.2.5. The /MAP option is required if you want to used SYMDEB for
symbolic debugging tsee Section 4.2).

68

LINK: A Linker

Note

If you do not specify a map file in a LINK command, you can use the
/MAP option to force the linker to create a map file. LINK gives the
forced map file the same file name as the first object file specified in the
command and the default extension . MAP .

Minimum abbreviation: /M

Example

LINK file,,/MAP;

This command creates a map of all public symbols in the file f i 1 e . ob j .

3.3.5 Copying Line Numbers to the Map File

Syntax

/LINENUMBERS

The /LINENUMBERS option directs the linker to copy the starting
address of each program source line to a map file. The starting address is
actually the address of the first instruction that corresponds to the source
line. The MAPSYM program can be used to copy line-number data to a
symbol file, which can then by used by SYMDEB.

The linker copies the line-number data only if you give a map-file name in
the LINK command line, and only if the given object file has line-number
information. Line numbering is available in some high-level-language com
pilers, including Microsoft FORTRAN and Pascal, versions 3.0 and later,
and Microsoft eVersion 2.0 and later.

MASM does not copy line-number information to the object file. If an
object file has no line-number information, the linker will ignore the
/LINENUMBERS option.

69

Microsoft Macro Assembler User's Guide

Note

If you do not specify a map file in a LINK command, you can still use
the /LINENUMBERS option to force the linker to create a map file.
Just place the option at or before the "List File" prompt. LINK gives
the forced map file the same file name as the first object file specified in
the command and gives it the default extension • MAP .

Minimum abbreviation: /LI

Example

LINK file/LINENUMBERSI,em+slibfp

This example causes the line-number information in the object file
fi le. ob j to be copied to the map file fi le. map.

3.3.6 Preserving Lowercase

Syntax

/NOIGNORECASE

The INOIG NORECASE option directs LINK to treat upper- and lower
case letters in symbol names as distinct letters. Normally, LINK considers
upper- and lowercase letters to be identical, treating the names TWO I two I

and Two as the same symbol. When you use the /NOIGNORECASE
. option, the linker treats TWO, Two, and two as different symbols.

The INOIG NORECASE option is typically used with object files created
by high-level-language compilers. Some compilers treat upper- and lower
case letters as distinct letters and assume the linker will do the same.

If you are linking modules created with MASM to modules created with a
case-sensitive language such as 0, make sure public symbols have the same
sensitivity in both modules. For example, you could make all variables in 0
distinctive by spelling, regardless of case, and then link without the

60

LINK: A Linker

/NOIGNORECASE option. Another alternative would be to use the
/l\1L or 1v.1X option to make public variables in MASM case-sensitive.
Then link with the INOIGNORECASE option.

Minimum abbreviation: INOI

Example

LINK filel+file2/NOI, "em+mlibfp

This command causes the linker to treat upper- and lowercase letters in
symbol names as distinct letters. The object file fi le. obj is linked with
routines from the standard C language library \S 1 ibc . 1 ib located in the
\1 ib directory. The C language expects upper- and lowercase letters to be
treated as distinct.

3.3.7 Ignoring Default Libraries

Syntax

/NODEF AULTLIBRARYSEARCH

The INODEFAULTLIBRARYSEARCH option directs the linker to
ignore any library names it may find in an object file. A high-Ievel
language compiler may add a library name to an object file to ensure that a
default set of libraries is linked with the program. Using this option over
rides these default libraries and lets you explicitly name the libraries you
want by including them on the LINK command line.

Minimum abbreviation: INOD

Example

LINK startup+file/NOD" ,em+slibfp+slibc

This example links the object files startup. obj and file. obj with rou
tines from the libraries em, s 1 ib fp, and s 1 ibc. Any default libraries that
may have been named in startup. obj or file. obj are ignored.

61

Microsoft Macro Assembler User's Guide

3.3.8 Setting the Stack Size

Syntax

/STACK:size

The jSTACK option sets the program stack to the number of bytes given
by szze. The linker usually calculates a program's stack size automatically,
basing the size on the size of any stack segments given in the object files. If
/STACK is given, the linker uses the given size in place of any value it
may have calculated.

The size can be any positive integer value in the range 1 to 65535. The
value can be a decimal, octal, or hexadecimal number. Octal numbers must
begin with a zero. Hexadecimal numbers must begin with a leading zero
followed by a lowercase x. For example, OxlE.

The stack size can also be changed after linking with the EXEMOD util
ity. See Appendix C.

Minimum abbreviation: /ST

Examples

LINK file/STACK:512 1, ;

The first example sets the stack size to 512 bytes.

LINK moda+modb/run/ST:OxFF/ab/\lib\start;

The second example sets the stack size to 255 (FFh) bytes.

LINK startup+file/ST:0301, ;

The final example sets the stack size to 24 (30 octal) bytes.

62

LINK: A Linker

3.3.9 Setting the Maximum Allocation Space

Syntax

lOP ARMAXALLOO:number

The lOP ARMAXALLOO option sets the maximum number of 16-byte
paragraphs needed by the program when it is loaded into memory. This
number is used by the operating system when allocating space for the pro
gram prior to loading it.

LINK normally sets the maximum number of paragraphs to 65535. Since
this represents all addressable memory, the operating system always denies
the request and allocates the largest contiguous block of memory it can
find. If the lOP ARMAXALLOO option is used, the operating system
will allocate no more space than given by this option. This means any
additional space in memory is free for other programs.

The number can be any integer value in the range 1 to 65535. It must be a
decimal, octal, or hexadecimal number. Octal numbers must begin with a
zero. Hexadecimal values must begin with a leading zero followed by a
lowercase x. For example, Ox2B.

If number is less than the minimum number of paragraphs needed by the
program, LINK ignores your request and sets the maximum value equal to
the minimum needed. The minimum number of paragraphs needed by a
program is never less than the number of paragraphs of code and data in
the program.

You can also change the maximum allocation after linking with the EXE
MOD utility. See Appendix C.

Note

The lOP ARMAXALLOO option can be used to link files before
debugging so that the SYMDEB Shell command (!) can be used. See
Section 4.6.26.

Minimum abbreviation: 10

63

Microsoft Macro Assembler User's Guide

Examples

LINK file/C:15,,;

The first example sets the maximum allocation to 15 paragraphs.

LINK moda+modb,run/CPARMAXALLOC:Oxff,ab;

The second example sets the maximum allocation to 255 (FFh) paragraphs.

LINK startup+file,/C:030, ;

The final example sets the maximum allocation to 24 (30 octal) paragraphs.

3.3.10 Setting a High Start Address

Syntax

/HIGH

The /HIGH option sets the program's starting address to the highest pos
sible address in free memory. If the /HIGH option is not given, the
program's starting address is set as low as possible in memory.

Minimum abbreviation: /H

Example

LINK startup+file/HIGH, I ;

This example sets the starting address of the program in f i 1 e . exe to the
highest possible address in free memory.

3.3.11 Allocating a Data Group

Syntax

/DSALLOCATE

The /DSALLOCATE option directs the linker to reverse its normal pro
cessing when assigning addresses to items belonging to the group named

64

LINK: A Linker

DGROUP. Normally, LINK assigns the offset OOOOh to the lowest byte in a
group. If /DSALLOCATE is given, LINK assigns the offset FFFFh to
the highest byte in the group. The result is data that appear to be loaded
as high as possible in the memory segment containing DGROUP.

The /DSALLOCATE option is typically used with the /RIGR option to
take advantage of unused memory before the start of the program. The
linker assumes that all free bytes in DGROUP occupy the memory
immediately before the program. To use the group, a segment register
must be set to the start address of DGROUP.

Minimum abbreviation: /D

Example

LINK startup+ f2_1e/HIGH/DSALLOCATE I I I em+mlibfp

This example directs the linker to place the program as high in memory as
possible, then adjust the offsets of all data items in DGROUP so that they
are loaded as high as possible within the group.

3.3.12 Removing Groups from a Program

Syntax

/NOGROUPASSOCIATION

The /NOGROUP ASSOCIATION option directs LINK to ignore group
associations when assigning addresses to data and code items.

Note

This option exists strictly for compatibility with older versions of FOR
TRAN and Pascal (Microsoft version 3.13 or earlier, or any IBM version
prior to 2.0). The /NOGROUP ASSOCIATION option should never
be used except to lmk with object files produced by those compilers, or
with the run-time libraries that accompany the old compilers.

IVfinimum abbreviation: /NOG

65

Microsoft Macro Assembler User's Guide

3.3.13 Setting the Overlay Interrupt

Syntax

/OVERLA YINTERRUPT:number

The /OVERLAYINTERRUPT option sets the interrupt number of the
overlay loading routine to number. This option overrides the normal over
lay interrupt number (03Fh).

The number can be any integer value in the range 0 to 255. It must be a
decimal, octal, or hexadecimal number. Octal numbers must have a leading
zero. Hexadecimal numbers must start with a leading zero followed by a
lowercase x. For example, Ox3B.

MASM does not have an overlay manager. Therefore this option can only
be used if you are linking with a run-time module from a language compiler
that does support overlays. Check your compiler documentation, as this
option is not appropriate for use with some compilers.

Note

You should not use interrupt numbers that conflict with the standard
MS-DOS interrupts.

Minimum abbreviation: /0

Exam.ples

LINK f~le/O:255",87+s1ibfp

The first example sets the overlay interrupt number to 255.

LINK moda+modb, run/OVERLAY:Oxff,ab.map,em+mlibfp

The second example sets the overlay interrupt number to 255 (FFh).

66

LINK: A Linker

LINK startup+file,/O:0377, ,em+mlibfp

The final example sets the overlay interrupt number to 255 (377 octal).

3.3.14 Setting the Maximum Number of Segments

Syntax

/SEGMENTS:number

The /SEGMENTS option directs the linker to process no more than
number segments per program. If it encounters more than the given limit,
the linker displays an error message, and stops linking. The option is used
to override the default limit of 128 segments.

If /SEGMENTS is not given, the linker allocates enough memory space to
process up to 128 segments. If your program has more than 128 segments,
you will need to set the segment limit higher to increase the number of seg
ments LINK can process. If you get the following LINK error message:

Segment limit set too high

you should set the segment limit lower.

The number can be any integer value in the range 1 to 1024. It must be a
decimal, octal, or hexadecimal number. Octal numbers must have a leading
zero. Hexadecimal numbers must start with a leading zero followed by a
lowercase x. For example, Ox4B.

Minimum abbreviation: /SE

Example

LINK file/SE:192,,;

The first example sets the segment limit to 192.

LINK moda+modb,run/SEGMENTS:Oxff,ab,em+mlibfp;

The second example sets the segment limit to 255 (FFh).

67

Microsoft Macro Assembler User's Guide

3.3.15 Using DOS Segment Order

Syntax

jDOSSEG

The /DOSSEG option causes LINK to arrange all segments in the execut
able file according to the MS-DOS segment-ordering convention. This con
vention has the following rules:

1. All segments having the class name I CODE I are placed at the
beginning of the executable file.

2. Any other segments that do not belong to the group named
I DGROUP I are placed immediately after the I CODE I segments.

3. All segments belonging to I DGROUP' are placed at the end of the
file.

The normal segment order when the /DOSSEG option is not used is
explained in Section 3.4.3.

Minimum abbreviation: /DO

Example

LINK start+test/DOSSEG" ,math+common

This command causes the linker to create an executable file, named
fi Ie. exe, whose segments are arranged according to the MS-DOS
segment-ordering convention. The segments in the object files
start. ob j and test. ob j, and any segments copied from the libraries
rna th. I ib and common. I ib are arranged in the order specified above.

3.4 How LINK Works

LINK creates an executable file by concatenating a program's code and
data segments according to the instructions supplied in the original source
files. These concatenated segments form an "executable image" which is
copied directly into memory when you invoke the program for execution.
Thus the order and manner in which the linker copies segments to the

68

LINK: A Linker

executable file defines the order and manner in which the segments will be
loaded into memory.

You can tell the linker how to link a program's segments by giving segment
attributes with a SEGMENT directive or by using the GROUP directive
to form segment groups. These directives define group associations, classes,
and align and combine types that define the order and relative starting
addresses of all segments in a program. This information works in addition
to any information you supply through command-line options.

The following sections explain the process LINK uses to concatenate seg
ments and resolve references to items in memory.

3.4.1 Alignment of Segments

The linker uses a segment's align type to set the starting address for the
segment. The align types are byte, word, para, and page. These
correspond to starting addresses at byte, word, paragraph, and page boun
daries, representing addresses that are multiples of 1, 2, 16, and 256,
respectively. The default align type is para.

When the linker encounters a segment, it checks the align type before copy
ing the segment to the executable file. If the align type is word, para, or
page, the linker checks the executable image to see if the last byte copied
ends at an appropriate boundary. If not, LINK pads the image with extra
null bytes.

3.4.2 Frame Number

The linker computes a starting address for each segment in a program. The
starting address is based on a segment's align type and the size of the seg
ments already copied to the executable file. The address consists of an
offset and a "canonical frame number". The canonical frame number
specifies the address of the first paragraph in memory that contains one or
more bytes of the segment. A frame number is always a multiple of 16 (a
paragraph address). The offset is the number of bytes from the start of the
paragraph to the first byte in the segment. For byte and word align
types, the offset may be nonzero. The offset is always zero for para and
page align types.

The frame number of a segment can be obtained from a LINK file. The
frame number is the first five hexadecimal digits of the "start" address
specified for the segment.

69

Microsoft Macro Assembler User's Guide

3.4.3 Order of Segments

LINK copies segments to the executable file in the same order that it
encounters them in the object files. This order is maintained throughout
the program unless the linker encounters two or more segments having the
same class name. Segments having identical class names belong to the
same class type, and are copied to the executable file as contiguous blocks.

Segment loading order and methods of controlling loading order by assign
ing class types are discussed in more detail in Section 3.4.3 of the Microsoft
Macro Assembler Reference Manual.

3.4.4 Combined Segments

LINK uses combine types to determine whether or not two or more seg
ments sharing the same segment name should be combined into a single,
large segment. The combine types are public, stack, common, memory,
at, and private. Combine types are also described in Section 3.4.2 of the
Microsoft Macro Assembler Reference Manual.

If a segment has combine type public, the linker will automatically com
bine it with any other segments having the same name and belonging to the
same class. When LINK combines segments, it ensures that the segments
are contiguous and that all addresses in the segments can be accessed using
an offset from the same frame address. The result is the same as if the seg
ment were defined as a whole in the source file.

The linker preserves each individual segment's align type. This means that
even though the segments belong to a single, large segment, the code and
data in the segments retain their original align type. If the combined seg
ments exceed 64K, LINK displays an error message.

If a segment has combine type stack, the linker carries out the same com
bine operation as for public segments. The only difference is that stack
segments cause LINK to copy an initial stack-pointer value to the execut
able file. This stack-pointer value is the offset to the end of the first stack
segment (or combined stack segment) encountered. If you use the stack
type for stack segments, you do not need to give instructions that load the
segment into the SS register.

If a segment has combine type common, the linker automatically combines
it with any other segments having the same name and belonging to the

70

LINK: A Linker

same class. When LINK combines common segments, however, it places
the start of each segment at the same address, creating a series of overlap
ping segments. The result is a single segment which is no larger than the
largest of the combined segments.

The linker treats segments with combine type IIleIIlory exactly like seg
ments with combine type public. MASM provides combine type IIleIIlory
for compatibility with linkers that support a separate combine type for
IIleIIlory segments.

A segment has combine type private only if no explicit combine type is
defined for it in the source file. LINK does not combine private segments.

3.4.5 Groups

Groups permit non-contiguous segments that do not belong to the same
class to be addressable relative to the same frame address. When LINK
encounters a group, it adjusts all memory references to items in the group
so that they are relative to the same frame address.

Segments in a group do not have to be contiguous, do not have to belong to
the same class, and do not have to have the same combine type. The only
requirement is that all segments in the group fit within 64K.

Groups do not affect the order in which the segments are loaded. Unless you
use class names and enter object files in the right order, there is no guaran
tee that the segments will be contiguous. In fact, the linker may place seg
ments that do not belong to the group in the same 64K of memory.
Although LINK does not explicitly check that all segments in a group fit
within 64K of memory, the linker is likely to encounter a "fixup-overflow"
error if this requirement is not met.

Groups, and how to define them, are discussed in Section 3.6 of the Micro
soft Macro Assembler Reference Manual.

3.4.6 Fixups

Once the starting address of each segment in a program is known, and all
segment combinations and groups have been established, the linker can "fix
up" any unresolved references to labels and variables. To fix up unresolved
references, the linker computes an appropriate offset and segment address
and replaces the temporary values generated by the assembler with the new
values.

71

Microsoft Macro Assembler User's Guide

LINK carries out fixups for four different references:

• Short

• Near self-relative

• Near segment-relative

• Long

The size of the value to be computed depends on the type of reference. If
LINK discovers an error in the anticipated size of a reference, it displays a
fix up-overflow message. This can happen, for example, if a program
attempts to use a 16-bit offset to reach an instruction in a segment having a
different frame address. It can also occur if all segments in a group do not
fit within a single 64K block of memory.

A short reference occurs in JMP instructions that attempt to pass control
to labeled instructions that are in the same segment or group. The target
instruction must be no more than 128 bytes from the point of reference.
The linker computes a signed, 8-bit number for this reference. It displays
an error message if the target instruction belongs to a different segment or
group (has a different frame address), or if the target is more than 128
bytes distant (in either direction).

A near self-relative reference occurs in instructions which access data rela
tive to the same segment or group. The linker computes a 16-bit offset for
this reference. It displays an error message if the data are not in the same
segment or group.

A near segment-relative reference occurs in instructions which attempt to
access data in a specified segment or group, or relative to a specified seg
ment register. LINK computes a 16-bit offset for this reference. It
displays an error message if the offset of the target within the specified
frame is greater than 64K or less than 0, or if the beginning of the canoni
cal frame of the target is not addressable.

A long reference occurs in CALL instructions that attempt to access an
instruction in another segment or group. LINK computes a 16-bit frame
address and 16-bit offset for this reference. The linker displays an error
message if the computed offset is greater than 64K or less than 0, or if the
beginning of the canonical frame of the target is not addressable.

72

Chapter 4

SYJVIDEB:
A SYlTlbolic Debug Utility

4.1
4.2
4.2.1

4.2.2

4.2.3

4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3

4.4.4
4.4.5
4.5
4.5.1
4.5.2

Introduction 77
Setting Up for Symbolic Debugging 77

Setting Up for Symbolic Debugging
when Using MASM 78
Setting Up for Symbolic Debugging
when Using a Language Compiler 79
Creating a Symbol File
with the MAPSYM Program 81

Starting SYMDEB 82
Starting SYMDEB with Only an Executable File
Starting SYMDEB for Symbolic Debugging 84
Passing Arguments to a Loaded Program 85
Starting SYMDEB without a File 86

Using SYMDEB Options 87
Designating IBM-Compatible Mode 87
Enabling the Interactive Breakpoint Key 88
Enabling Non-Maskable Interrupts
for Non-IBM Hardware 89
Enabling Screen Swapping 89
Specifying Start-Up Commands 90

Specifying Parameters for Commands 91
Symbols ·91
Numbers 93

83

73

4.5.3 Addresses 94
4.5.4 Address Range 94
4.5.5 Object Range 95
4.5.6 Line Numbers 96
4.5.7 Strings 97
4.5.8 Expressions 97
4.6 Using SYMDEB Commands 99
4.6.1 Assemble Command 100
4.6.2 Breakpoint Commands 103
4.6.2.1 Breakpoint Set Command 103
4.6.2.2 Breakpoint Clear Command 105
4.6.2.3 Breakpoint Disable Command 105
4.6.2.4 Breakpoint Enable Command 106
4.6.2.5 Breakpoint List Command 107
4.6.3 Comment Command 108
4.6.4 Compare Command 108
4.6.5 Display Command 109
4.6.6
4.6.6.1
4.6.6.2
4.6.6.3
4.6.6.4
4.6.6.5
4.6.6.6
4.6.6.7
4.6.6.8
4.6.7

Dump Commands 110
Dump Command 110
Dump ASCII Command 112
Dump Bytes Command 113
Dump Words Command 114
Dump Doublewords Command 115
Dump Short-Reals Command 116
Dump Long-Reals Command 117
Dump Ten-Byte Reals Command 118

Enter Commands 119
4.6.7.1 Enter Command 119

74

4.6.7.2
4.6.7.3
4.6.7.4

Enter Bytes Command
Enter ASCIT Command
Enter Words Command

120
122
122

4.6.7.5 Enter Doublewords Command 123
4.6.7.6 Enter Short-Reals Command 124
4.6.7.7 Enter Long-Reals Command 125
4.6.7.8 Enter Ten-Byte Reals Command 126
4.6.8 Examine Symbol Map Commands 126
4.6.9 Fill Command 129
4.6.10 Go Command 130
4.6.11 Help Command 132
4.6.12 Hex Command 132
4.6.13 Input Command 133
4.6.14 Load Command 133
4.6.15 Move Command 135
4.6.16 Name Command 136
4.6.17 Open Map Command
4.6.18 Output Command

137
139

4.6.19 PTrace Command 139
4.6.20 Quit Command 141
4.6.21 Redirection Commands 141
4.6.22 Register Command 143
4.6.23 Screen Swap Command 147
4.6.24 Search Command 147
4.6.25 Set Source Mode Command 148
4.6.26 Shell Escape Command 150
4.6.27 Source Line Command 152
4.6.28 Stack Trace Command 152

76

4.6.29 Symbol Set Command 154
4.6.30 Trace Command 155
4.6.31 Unassemble Command 157
4.6.32 View Command 160
4.6.33 Write Command 161
4.7 Sample SYMDEB Session 163
4.7.1 Assembling and Loading 165
4.7.2 Examining a Program with SYMDEB 166

76

SY.MDEB: A Symbolic Debug Utility

4.1 Introduction

The Microsoft Symbolic Debug Utility (SYMDEB) is a debugging program
that helps you test executable files. You can display and execute program
code, set "breakpoints" that stop the execution of your program, examine
and change values in memory, and debug programs that use the floating
point emulation conventions used by Microsoft languages.

SYMDEB lets you refer to data and instructions by name rather than by
address. SYMDEB can access program locations through addresses, glo
bal symbols, or line-number references, making it easy to locate and debug
specific sections of code.

You can debug C, Pascal, and FORTRAN programs at the source-file level
as well as at the machine level. You can display the source statements of a
program, the disassembled machine code of the program, or a combination
of source statements and disassembled machine code. SYMDEB accepts
source line numbers as arguments to commands for displaying and chang
ing data, setting breakpoints, and tracing execution.

This chapter explains how to use SYMDEB. In particular, it explains
how to prepare and use symbol (.SYM) files, how to start SYMDEB, and
how to use SYMDEB commands to debug programs.

4.2 Setting Up for Symbolic Debugging

SYMDEB is a useful tool even without its symbolic-debugging features. If
you wish to use it as a nonsymbolic debugger, no setup is necessary. Sim
ply start SYMDEB without a symbol file, as described in Section 4.3.
However, if you wish to take full advantage of SYMDEB's symbolic
features during program development, you must first set up a symbol file
that can be used by SYMD EB.

The steps for setting up a symbol file vary depending on whether you are
developing your program with the Microsoft Macro Assembler (MASM) or
with a compatible high-level language such as Microsoft Pascal, Microsoft
C, or Microsoft FORTRAN. This chapter concentrates on the techniques
for debugging programs prepared with MASM, but it also briefly covers
the SYMDEB features that apply only to high-level-language programs.

77

Microsoft Macro Assembler User's Guide

All symbols to be used during debugging must be declared public. This is
done automatically by most high-level-language compilers. However, you
must do it yourself when developing programs with MASM.

4.2.1 Setting Up for Symbolic Debugging
when Using MASM

The following assemblers are compatible with SYMDEB, and can be used
for symbolic debugging:

Microsoft Macro Assembler, Version 1.0 and later

IBM Personal Oomputer Macro Assembler, Version 1.0 and later

To prepare symbol files when developing programs with a compatible
assembler, follow these steps:

78

1. Declare public any symbols that you may wish to use in SYMDEB.
Symbols that you may want to declare include procedure names,
variable names, and labels. Segment and group names should not
be declared public. They are automatically included in the map file
and can be used during debugging.

You may want to insert symbols in your program to use as break
points in SYMDEB, even though these symbols are not actually
used by your program. For example, you could put a label in the
code segment at a key point, even though that label is never used by
a control instruction such as JMP or LOOP.

For example, you could include the following lines in your source file
before assembly:

public
public

prompt,namebuf, fname, buffer ;Data variables
entry, get_file, open_file, ok ;Code labels

2. Assemble your source file with MASM. You should probably
specify a list file in the MASM command line and then print a copy
of it. This is not necessary, but debugging is usually easier if you
can refer to a listing. For example, type:

MASM test, , ;

3. Link the object file to produce an executable version of the pro
gram. Include a map (.MAP) file and the /MAP option in the
LINK command line. It is not enough to specify a map file. You
must also use the /MAP option. If you do not, you will get an
error message when you try to create a symbol file with the
MAPSYM program. For example, type:

SYMDEB: A Symbolic Debug Utility

LINK test,,/MAP;

4. Use the MAPSYM program to create a symbol file, as described in
Section 4.2.3. For example, type:

MAPSYM test

SYMDEB is now ready for symbolic debugging as described in Section
4.3.2.

4.2.2 Setting Up for Symbolic Debugging
when Using a Language Compiler

The following compilers are compatible with SYMDEB and can be used
for symbolic debugging:

Microsoft FORTRAN, Version 3.0 and later

Microsoft Pascal, Version 3.0 and later

Microsoft C, Version 2.0 and later

Microsoft Macro Assembler, Version 1.0 and later

Microsoft BASIC Compiler, Version 1.0 and later

Microsoft Business BASIC Compiler, Version 1.0 and later

IBM Personal Computer FORTRAN, Version 2.0 and later

IBM Personal Computer Pascal, Version 2.0 and later

IBM Personal Computer Macro Assembler, Version 1.0 and later

IBM Personal Computer BASIC Compiler, Version 1.0 and later

However, not all these compilers support the source-line display capabilities
of SYMDEB. Compilers that can generate the needed source-line informa
tion for MAPSYM and SYMDEB include:

Microsoft FORTRAN, Version 3.0 and later

Microsoft Pascal, Version 3.0 and later

Microsoft C, Version 2.0 and later

IBM Personal Computer FORTRAN, Version 2.0 and later

IBM Personal Computer Pascal, Version 2.0 and later

79

Microsoft Macro Assembler User's Guide

If you have a compatible compiler, follow these steps to prepare a symbol
file:

1. Compile your source file. If your compiler has an optimization
feature, debugging will be easier if you use the option that disables
optimization. If your compiler can write line-number information
to the object file, you may need to use an option in the command
line to enable line numbers.

2. Link the object file to produce an executable version of the pro
gram. Use the /MAP option in the LINK command line. If your
compiler supports source-line display, you should also use the
/LINENUMBERS option.

3. Use the MAPSYM program to produce a symbol file as described
in Section 4.2.3.

4. Start SYMDEB for symbolic debugging as described in Section
4.3.2.

5. Use the SYMDEB Go command (G) to execute the program up to
the first procedure or function. This takes you past the start-up
routine from the standard library of the high-level language you are
using. Normally you will not want to trace through this initial rou
tine. You can usually start debugging at the start of your program.

In C programs, the first function is always _main (C adds a lead
ing underscore to procedure names such as main). In FORTRAN,
the first procedure is MAIN. In Pascal the first procedure is the one
that names the program (the first procedure in the source code).

Examples

MSC /Zd IOd test.c;
LINK test,,/MAP/LINE;
MAPSYM test
SYMDEB test.sym test.exe
-G _main

The first example shows how to prepare a pr09,ram for symbolic debugging
using Microsoft C, Version 3.0 or later. The / Zd option directs the com
piler to write line-number information to the object file, and the /Od
option turns off optimization.

PASI /L test.pas;
PAS 2
PAS 3
LINK test,,/MAP/LINE;

80

SYMDEB: A Symbolic Debug Utility

MAPSYM test
SYMDEB test.sym test.exe
-G test

The preceding example shows how to prepare a program for s;.:mbolic
debugging using Microsoft Pascal, Version 3.3 or later. The jL option
directs the compiler to write line-number information to the object file.
After starting SYMDEB, you will usually want to "Go" to the first pro
cedure in the source code (the one that names the program).

FORl test. for;
PAS 2
PAS 3
LINK test" /MAP /LINE;
MAPSYM test
SYMDEB test.sym test.exe
-G MAIN

The final example shows how to prepare a program for symbolic debugging
using Microsoft FORTRAN, Version 3.3 or later. The compiler automati
cally writes line-number information to the object file. After starting
SYMDEB, you will usually want to "Go" to the MAIN procedure.

4.2.3 Creating a Symbol File
with the MAPSYM Program

Symbol files containing data for symbolic debugging can be created with
the Microsoft Symbol File Utility (MAPSYM). The program converts the
contents of the program's symbol (.MAP) file into a form suitable for load
ing with SYMDEB. Symbol files created with MAPSYM can contain up
to 10000 symbols per segment and as many segments as are allowed by
machine memory.

The MAPSYM command line has the form:

MAPSYM [/L:-L] mapfilename

The mapfilename is the file name (and optionally, the path name) for a sym
bol (.MAP) file created during linking. If you do not specify a file name
extension, .MAP will be assumed.

The symbol-map file can be created by specifying a map file and the /MAP
option when linking. If your compiler writes line-number information to
the object file, you should also use the /LINENUMBERS option.

81

Microsoft Macro Assembler User's Guide

The /L option is the only one available with MAPSYM. It directs
MAPSYM to display information on the screen about the conversion. The
information includes the names of groups defined in the program, the pro
gram start address, the number of segments, and the number of symbols
per segment. The /L option can also be specified as -L, /1, or -I.

Example

MAPSYM /L file

MAPSYM takes data from fi Ie. map to create fi Ie. sym on the
current drive and directory. Information about the conversion is sent to
the screen.

Note

The symbol (.SYM) file is always created on the current drive and
directory . You cannot specify a destination in the command line, and
you should not give a drive or directory for the map file. If you wish to
place the symbol and map files on one drive while the MAPSYM pro
gram is on another, you should call the MAPSYM program from the
drive with the map file. For example, to create test. sym on Drive B
when the MAPSYM program is on Drive A and test. map is on Drive
B, type:

A>B:
B>A:MAPSYM test

4.3 Starting SYMDEB

To start SYMDEB, enter the SYMDEB command line at the MS-DOS
command prompt. The SYMDEB command line has the following form:

SYMDEB [options] [symbolfiles] [executablefile] [arguments]

The options are one or more of the options described in Section 4.4. The
symbolfiles are the names of symbol files. The executablefile is the name of a

82

SYMDEB: A Symbolic Debug Utility

binary or executable file to be loaded by SYMDEB. The arguments are
parameters that you want to pass to the executablefile.

Once started, SYMDEB displays a start-up message. The message is fol
lowed by the SYMDEB command prompt (-). When you see the prompt
you can enter SYMDEB commands.

4.3.1 Starting SYMDEB with Only an Executable File

You can direct SYMDEB to load an executable file (.EXE, .HEX, .COM,
or .BIN) by giving the name of the file on the SYMDEB command line.
You can do this if you do not need to use symbol files, or if you are examin
ing a program for which you do not have source code.

Whenever you load an executable file, SYMDEB prepares a 256-byte pro
gram header in the lowest available segment in memory, then copies the
contents of the file to the free memory immediately following the header.
SYMDEB copies the size of the program (in bytes) to the BX:CX register
pair. It then adjusts the segment and other registers to the initial values
defined in the file.

Note

If the file is an .EXE or .HEX file, the MS-DOS executable file header
will be stripped off during loading. Therefore, the program size will not
match the file size, as it will for .COM and .BIN files.

Example

SYMDEB snap.com
Microsoft Symbolic Debug Utility
Version 4.00
(C) Copyright Microsoft Corp 1984, 1985
Processor is [8086]
-R
AX=OOOO BX=OOOO CX=2975 DX=OOOO SP=fffE BP=OOOO S1=OOOO D1=OOOO
DS=2110 ES=2110 SS=2110 CS=2110 1P=0100 NV UP E1 PL NZ NA PO NC
2110:0100 E91f29 JMP 2A22

83

Microsoft Macro Assembler User's Guide

In the example above, SYMDEB is started with a .COM file. Notice the
line Processor is [8086] in the start-up message. This indicates that
the system running SYMDEB has the 8086 tor the similar 8088) processor.
The message would show 80186 or 80286 if the system had one of those pro
cessors.

The Register command (R) has been entered after start-up to show the ini
tial status of the registers. Notice that CX contains 2975 (10613 decimal),
indicating that the length of the program is 10613 bytes. You can confirm
this by leaving SYMDEB and checking the file length with the MS-DOS
DIR command. File length will match for .COM files, but not for .EXE
files.

4.3.2 Starting SYMDEB for Symbolic Debugging

When developing and debugging programs, you may want to load symbol
information along with an executable file so that you can refer to data and
instructions by name rather than by address. Start SYMDEB for sym
bolic operation by specifying one or more symbol files on the command line.
Specifying a symbol file directs SYMDEB to load the named file and
allows you use the symbols defined by that file in SYMDEB commands.

You may specify more than one symbol file. Multiple symbol files are typi
cally used with programs that consist of several separate executable files
(such as programs that call overlays, execute other programs, or use device
drivers). You must make sure that all symbol files are specified before the
executable file. Any files specified after the executable file are assumed to
be program arguments.

If you load multiple symbol files, only one of them will be opened initially.
If one of the symbol files has the same name as the executable file, it will be
opened. Otherwise, the first symbol file specified in the command line will
be opened. During the SYMDEB session, you may use the Open Map com
mand (XO) to open

o
• a different symbol file. The previous symbol file will be

closed, since only one can be open at a time. See Section 4.6.17 for more
information on opening symbol files.

You need not specify an executable file when you load symbols. You might
load symbols without an executable file to debug a resident program, or if
you wished to load the executable file later in the session using the Name
command (N) and Load command (L).

84

SYMDEB: A Symbolic Debug Utility

Note

Do not rename symbol files and then attempt to load them in the
SYMDEB command line. Renamed symbol files will have the wrong
address when loaded.

Example

SYMDEB count. sym count. exe
-R
AX=OOOO BX=OOOO CX=0900 DX=OOOO 8P=0100 BP=OOOO 81=0000 D1=OOOO
D8=2125 E8=2125 88=21C5 C8=2135 1P=OOOO NV UP E1 PL NZ NA PO NC
2135:0000 B84021 MOV AX,DATA

In the example above, SYMDEB copies symbolic information from
count. sym into memory, prepares the program header, then loads
count .exe.

The R command has been entered to show the initial status of the registers.
Notice that the ex register contains 0900 (2304 decimal). This is the
length of the executable file minus the MS-DOS file header, which was
stripped off during loading. (The SYMDEB start-up message would nor
mally appear, but is omitted from this and other examples in the rest of the
chapter.)

SYMDEB testl.sym test.sym test.exe

In the example above, SYMDEB copies symbolic information from the files
testl . sym and test. sym into memory, prepares the program header,
then loads test. exe. The symbol file test. sym is opened instead of
testl . sym because it has the same name as the executable file.

4.3.3 Passing Arguments to a Loaded Program

You can pass one or more arguments to a program by typing the arguments
immediately after the executable-file name on the SYMDEB command
line. SYMDEB will copy all arguments to the program header in exactly
the form you type them.

85

Microsoft Macro Assembler User's Guide

Example

SYMDEB ptest.exe paraml param2 param3 param4
-D SD 9£

50 41 52 PAR 23B6:0050
23B6:0060
23B6:0070
23B6:0080
23B6:0090

41 4D 31 20 20 20 20 20-00 00 00 00 00 50 41 52 AMi PAR
41 4D 32 20 20 20 20 20-00 00 00 00 00 00 00 00 AM2
lC 20 70 61 72 61 6D 31-20 70 61 72 61 6D 32 20 . paraml param2
70 61 72 61 6D 33 20 70-61 72 61 6D 34 OD 00 OD param3 param4 ...

In the example, the Dump command (D) has been entered to show the
status of the program header after loadIng. The first and second parame
ters are parsed as file names into the default file control blocks. These
blocks start at bytes 5Dh and 6Dh of the program header. The length of the
parameter list is in the byte at 80h. An exact copy of the parameter list
starts at byte 8Ih of the header. The program header is described in more
detail in Section 4.6.16.

4.3.4 Starting SYMDEB without a File

You can start SYMDEB without a file by typing SYMDEB. When you
start SYMDEB without a file name, it creates a program header, but does
not attempt to load a program. You can then either create a program with
the Assemble command (A) or Enter command (E), or you can use the
Name command (N) and Load command (L) to name and load whatever
files you wish.

When you start SYMDEB without a file, it sets the segment registers to
the bottom of free memory, sets the Instruction Pointer (IP) to 0100h,
clears all flags, and sets the remaining registers to zero.

Example

SYMDEB
-R
AX=OOOO BX=OOOO
DS=23B2 ES=23B2
23B2:0100 8AE5

CX=OOOO DX=OOOO SP=FFEE
SS=23B2 CS=23B2 1P=OlOO

MOV AH,CH

BP=OOOO S1=OOOO D1=OOOO
NV UP E1 PL NZ NA PO NC

In the example, the Register command (R) is entered after the start-up
message to indicate the initial status of the registers.

86

SYMDEB: A Symbolic Debug Utility

4.4 Using SYMDEB Options

The following options can be entered on the SYMDEB command line:

Option

IIBM

IK
IN
IS
I" commands"

Effect

Enable IBM-compatible mode

Enable break key

Enable non-masked interrupt

Enable screen flip

Designates start-up commands

Options should be entered before the executable file on the command line so
that SYMDEB will not interpret them as parameters. The option designa
tor can be either a slash (I) or a dash (-), and the option letter can be
specified with either upper- or lowercase letters.

Note

Files containing a dash in the file name must be renamed before use
with SYMDEB. Otherwise, SYMDEB will interpret the dash as an
option designator.

4.4.1 Designating lBM-Compatihle Mode

Syntax

/1 I-I

The II or IIBM option directs SYMDEB to use features available on
IBM-compatible computers. The /1 option is not necessary if you have an
IBM Personal Computer since SYMDEB automatically checks the
hardware on start-up. If SYMDEB does not find that the hardware is an

87

Microsoft Mucro .Assembler User's Guide

IBM Personal Computer, it assumes that the hardware is a generic MS-DOS
machine, unless the II option is used. Without the option, SYMDEB can
not take advantage of special hardware features such as the 8259 Interrupt
Controller, IBM-style video display, and other capabilities of the IBM basic
input and output system (BIOS).

Example

SYMDEB /1 file.sym file.exe

4.4.2 Enabling the Interactive Breakpoint Key

Syntax

/K:-K

The IK option enables the scroll-lock (break) key on IBM and compatible
computers as an interactive breakpoint key. If the key is enabled, you can
usually stop program execution by pressing it. For example, you could use
the breakpoint key to get out of an endless loop started with the Go com
mand (G).

The interactive breakpoint key acts like a hardware-activated interrupt key
(as described in Section 4.4.3), except that it is less reliable. The interac
tive breakpoint key does not work in certain situations, such as when inter
rupts are turned off. If the program is waiting for input, press CONTROL-C
rather than the BREAK key to interrupt program execution.

Note

88

If you have an IBM Personal Computer AT, the system request (SYS
REQ) key can be used as an interactive break key even if you do not use
the IK option.

SYMDEB: A Symbolic Debug Utility

Example

SYMDEB jK file.sym file.exe

4.4.3 Enabling Non-Maskable Interrupts
for Non-IBM I-Iardware

Syntax

IN:-N
The /N option enables you to use non-maskable interrupt break systems on
non-iBM computers. To use non-maskable interrupts, your system must be
equipped with the proper hardware. For example, you can use the IN
option with these products:

o IBM Professional Debug Utility

o Software Probe (Atron Corp.)

SYMDEB only requires the hardware provided with these products; no
additional software is needed. If you are using one of these products with a
non-IBM system, you must use the IN option to take advantage of the
break capability. You do not need to use the option if you are using an
IBM Personal Computer. Using a non-maskable interrupt break system is
more reliable than the interactive break key because its operation is
independent of the state of interrupts and other conditions.

4.4.4 Enabling Screen Swapping

Syntax

18: -8

The /S option allows you to flip back and forth between a screen showIng
the debugger and a screen showing the program being debugged. This

89

Microsoft Macro Assembler User's Guide

feature is particularly useful for graphics and other programs that send
changing data to the screen. However, using the /S option does use up an
additional 32K of system memory.

This option works only with IBM computers and some compatible comput
ers. To use it with a compatible computer, you must also use the /1 option
in the command line. The /S option cannot be used with graphics modes
that use more than 32K of memory.

Example

SYMDEB /I/S file.sym file.exe

The example above assumes an IBM-compatible computer. If you have an
IBM Personal Computer, you do not need the /1 option.

4.4.5 Specifying Start-Up Commands

Syntax

/licommandsil : -licommands il

The start-up command option directs SYMDEB to execute the commands
contained within double quotation marks on start-up. This feature can be
used to start SYMDEB from a batch file or to execute a series of com
mands that you use at the beginning of every SYMDEB session. A semi
colon (;) separates each command from other commands in the list.

Examples

SYMDEB /"d40;u;r" file.exe

In the first example, SYMDEB loads file. exe, dumps the program
header starting at 40h, unassembles the first few instructions, and shows
the start-up status of the registers.

SYMDEB /"s+;g _main;v" cprog.sym cprog.exe

In the second example, SYMDEB loads the symbol file cprog. sym and
the executable file l written in C) cprog. exe. Next, it sets the display
mode to show source lines, executes the program up to the start of the

90

SYMDEB: A Symbolic Debug Utility

_main function (always the first function in C programs), and displays the
first few source lines. If the program were written in Pascal or FORTRAN,
you would use the Go command (G) in the quoted commands to execute up
to the first procedure of the program.

4.5 Specifying Parameters for Commands

SYMDEB commands have always have the following general form:

commandname parameters

Note that commandname is a one- or two-character command name, and
parameters are numbers, symbols, or expressions that represent values or
addresses to be used by the command. Any combination of upper- and
lowercase letters may be used in commands and parameters. In most cases
the first parameter can be placed immediately after commandname with no
space between them.

The number of parameters used with each command depends on the com
mand. If a command takes two or more parameters, you must separate
them with commas (,) or with spaces.

Examples

OS _avg L 10
U .22
F ds:100,l10 ff,fe,Ol,OO

Sections 4.5.1-4.5.8 describe the different kinds of command parameters in
detail.

4.5.1 Symbols

Syntax

name

A symbol is a name that represents a register, an absolute value, a segment
address, or a segment offset. A symbol consists of one or more characters,

91

Microsoft Macro Assembler User's Guide

but always begins with a letter, an underscore (_), a question mark (?), an
at sign (@), or a dollar sign ($).

When using SYMDEB to debug high-level-language programs, you should
familiarize yourself with any conventions your compiler uses for designating
symbols. For example, the Microsoft C Compiler automatically adds a
leading underscore to the beginning of every global name.

Symbols are only available for debugging when the symbol file that defines
their names and values has been loaded.

Notes

SYMDEB is case-insensitive; it treats corresponding upper- and lower
case letters as the same letter. Symbols whose spellings differ only in
case are treated as the same symbol. If a symbol file has two such sym
bols, only one of the symbols will be recognized by SYMDEB. Any
attempt to access information about the other symbol will always
return information about the first. Symbols that have the same spelling
as registers are ignored. Register names always take precedence. Be
careful to give symbols unique names that do not mimic or conflict with
instructions, register names, or hexadecimal numbers.

Examples

_main
next_loop
DGROUP
startup
code_seg

The symbols above are valid. Avoid using symbols such as the following,
because they will cause problems, either during assembly or with
SYMDEB:

AX
faa
ADD

92

Don't use register name
Don't use hexadecimal number
Don't use instruction name

SYMDEB: A Symbolic Debug Utility

4.5.2 Numbers

Syntax

digitsY
digits 0
digitsQ
digitsT
digitsII

A number represents an integer number. It is a combination of binary,
octal, decimal, or hexadecimal digits plus an optional radix. The digits can
be one or more digits of the specified radix: Y, 0, Q, T, or H. If no radix
is specified, H (hexadecimal) is assumed. The radix can be specified with
either an upper- or lowercase letter (lowercase is used as a convention in
examples). The following table lists the digits that can be used with each
radix:

Table 4.1

Radixes for SYMDEB

Radix Type Digits

Y Binary 01

o or Q Octal 01234567

T Decimal 0123456789

II Hexadecimal 0123456789ABCDEF

Hexadecimal numbers have precedence over symbols. Thus fAA is always
interpreted as a hexadecimal number. Be careful not to give such ambigu
ous names to symbols.

Examples

0111111y 77q 63t
01001010100101y 112450 4773t

03Fh
12A5h

3F
12A5

93

Microsoft Macro Assembler User's Guide

4.5.3 Addresses

Syntax

segment: offset

An address is a combination of two 16-bit values, one representing a seg
ment address, the other a segment offset. When combined, the values
specify a unique memory location.

A full address has both a segment address and an offset, separated by a
colon (:). A partial address is just an offset. In both cases, the segment or
offset can be any number, register name, or symbol. For most commands,
the default segment address is the current contents of the DS register.
However, for the Assemble (A), Go (G), Load (L), PTrace (P), Trace (T),
Unassemble (U), and Write (W) commands, the default segment address is
the contents of the OS register.

Addresses can be specified as a positive or negative offset of a symbol. For
example, the byte 5 bytes beyond the symbol pr int can be specified as
print+5.

Examples

CS:0100
04BA: IP
CS:_main
pixel-10
DGROUP:count
buffer_l

4.5.4 Address Range

Syntax

startaddress endaddress

A range is a pair of memory addresses that bound a sequence of contiguous
memory locations. Note that the span of the range is from startaddress to
endaddress, inclusive.

94

SYMDEB: A Symbolic Debug Utility

If a command takes a range, but you do not supply a second address,
SYMDEB usually assumes a range of 128 bytes. If a command takes a
range followed immediately by a third parameter, you must supply a second
address. If you do not, SYMDEB uses the third parameter as the second
address.

Examples

_main _main+20
CS:100 110
get_out-30 get_out
buffer1 buffer2
140 stop

4.5.5 Object Range

Syntax

startaddress L count

An object range is a combination of a memory address and a count of
"objects" that specifies a range of contiguous bytes, words, instructions, or
other objects in memory. The startaddress specifies the address of the first
object in the list and L count specifies the number of objects in the list.

An object range can be used with the Dump (D), Fill (F), Search (S), and
Unassemble (U) commands only. Each command determines the size and
type of objects in the list: the Dump Bytes command (DB) has byte objects,
the Dump Words command (DW) has words, the Unassemble command has
instructions, and so on.

Examples

seg1:table L 10

If you specified the sample range above with the Dump Bytes command,
SYMDEB would dump the first 10 bytes beginning at segl: table. If
you specified the same range with the Un assemble command, SYMDEB
would unassemble the next 10 instructions starting at segl: table.

96

Microsoft Macro .Assembler User's Guide

4.5.6 Line Numbers

Syntax

.+numberi-number
• [filename:] number
.symbol[+number:-number]

A line number is a combination of decimal numbers, file names, and sym
bols that specifies a unique line of text in a program source file. Line
number designations always start with a dot(.). Line numbers can only be
used with programs developed with compilers that copy line-number data
to the object file. See Section 4.2.2. Programs developed with MASM or
an incompatible compiler cannot use line numbers.

In the first form shown in the syntax above, the combination specifies a
relative line number. The number is an offset (in lines) from the current
source line to the new line. If the plus sign (+) is specIfied, the new line is
closer to the end of the source file. If the minus sign (-) is specified, the new
line is closer to the beginning. SYMDEB displays an error message if
there is no current line number, or if no source line exists for the specified
line number.

In the second form shown in the syntax, the combination specifies an abso
lute line number. If a filename is specified, the specified line is assumed to
be in the source file corresponding to the symbol file identified by filename.
If no filename is specified, the current instruction address (the current
values of the as and IP registers) determines which source file contains the
line. SYMDEB displays an error message if filename does not exist, or if
no source line exists for the specified line number.

In the third form, the combination specifies a symbolic line number. The
symbol can be any instruction or procedure label. If number is specified, the
number is an offset (in lines) from the specified label or procedure name to
the new line. If the plus sign (+) is specified, the new line is closer to the
end of the source file. If the minus sign (-) is specified, the new line is
closer to the beginning. SYMDEB disp)ays an error message if the symbol
does not exist, or if no source line exists for the specified line number.
Examples

.+5

.10

96

5th line down from current line
10th line in the current source file

SYMDEB: A Symbolic Debug Utility

.sample:10

._main

._main+5

10th line in the source file named by 'sample'
First line in the routine '_main'
5th line in the routine' main'

A symbol such as _main can also be used to specify a line number. The
symbol _main is equivalent to . _main. Note, however, that _main+3
specifies an address that is 3 bytes from _main, but . _main + 3 specifies a
source line that is 3 lines from main.

4.5.7 Strings

Syntax

\ &' characters'
" characters"

A string represents a list of ASCII values. It can be any combination of
characters enclosed in single (') or double (") quotation marks. The start
ing and ending quotation marks must be the same type. If a matching quo
tation mark appears as part of the string, it must be specified twice, to
prevent SYMDEB from ending the string too soon.

Examples

'This is a string.'
"This is a string."
'This "string" is okay.'
"This ""string"" is okay."
'This "string" is okay.'
"This 'string' is okay."

4.5.8 Expressions

An expression is a combination of parameters and operators that evaluates
to an 8-, 16-, or 32-bit value. Expressions can be used as values in any com
mand. An expression can combine any symbol, number, or address with
any of the unary operators in Table 4.2, or binary operators in Table 4.3.

Unary address operators assume DS as the default segment for addresses.
Expressions are evaluated in order of operator precedence. If adjacent
operators have equal precedence, the expression is evaluated from left to
right. Parentheses can be used to override this order.

97

Microsoft Macro Assembler User's Guide

Table 4.2

Unary Operators

Operator

+
NOT
SEG
OFF
BY
WO
DW
POI
PORT
WPORT

Table 4.3

Meaning

Unary plus
Unary minus
1 's complement
Segment address of operand
Address offset of operand
Low-order byte from specified address
Low-order word from specified address
Double word from specified address
Pointer from specified address (same as DW)
1 byte from specified port
Word from specified port

Binary Operators

Operator

*
~OD
+
AND
XOR
OR

Examples

4+2*3

Meaning

Multiplication
In teger division
Modulus
Segment override
Addition
Subtraction
Bitwise Boolean AND
Bitwise Boolean exclusive OR
Bitwise Boolean OR

Equals
SEC 0001:0002 Equals
OFF 0001:0002 Equals
4+ (2* 3) Equals
(4+2)*3 Equals

98

Precedence

Highest

Lowest

10 (OAh)
1
2
10 (OAh)
18 (12h)

Precedence

Highest

Lowest

SYMDEB: A Symbolic Debug Utility

4.6 Using SYl\IIDEB Commands

The following table lists all SYMDEB commands.

Table 4.4

SYMDEB Commands

Command

?

<{
>}

*
A
BC
BD
BE

BL

BP
C

D

E

F
G

Command Name

Display Values, Display Help

Shell Escape

Source Line Display

Redirect Input

Redirect Output

Redirect Input and Output

Comment

Assemble

Breakpoint Clear

Breakpoint Disable(s)

Breakpoint Enable

Breakpoint List

Breakpoint Set

Compare

Dump

Enter

Fill

Go

Command

H

I
K

L

M
N

0
P

Q

R

S

T

U

V

W
X

XO
Z

Command Name

Hex

Input

Stack Trace

Load

Move

Name

Output

PTrace

Quit

Register

Search, Set Source

Mode

Trace

Unassemble

View

Write

Examine Symbol

Map

Open Symbol Map

Set Symbol Value

99

Microsoft Macro Assembler User's Guide

When entering SYMDEB commands, you can use any of the special edit
ing keys described in the Microsoft MS-DOS User's Guide. You can also
press CONTROL-C to abort execution of a SYMDEB command, or press
CONTROL-S to suspend execution of a SYMDEB command.

CONTROL-C and CONTROL-S can abort or suspend execution of the Go com
mand (G) if the program being debugged is engaged in input or output. If
the program is not engaged in input or output, the only way to stop execu
tion is with the break key if the /K option was used, or with a hardware
interrupt device if one is installed on your system. See Section 4.4.2 for
more information on the /K option and Section 4.4.3 for information on
hardware interrupt devices.

4.6.1 Assemble Command

Syntax

A[address]

The Assemble command (A) assembles 8086-family (8086, 8087, 8088,
80186, 80287, 80286-unprotected) instruction mnemonics and places the
resulting instruction codes into memory at the specified address. The only
8086-family mnemonics that cannot be assembled are 80286 protected
mode mnemonics. If no address is specified, the assembly starts at the
address specified by the current values of the OS and IP registers.

When you type the Assemble command, the specified address is displayed.
SYMDEB then waits for you to enter a new instruction in the standard
8086-family instruction-mnemonic form. You can enter instructions in
either upper- or lowercase, or both (the examples use lowercase for instruc
tions and data, and uppercase for reserved words).

To assemble a new instruction, type the desired mnemonic and press the
RETURN key. SYMDEB assembles the instruction into memory and
displays the next available address. To conclude assembly and return to
the SYMDEB prompt, press the RETURN key only.

If an instruction you enter contains a syntax error, SYMDEB displays the
message Error, redisplays the current assembly address, and waits for you
to enter a correct instruction.

100

SYMDEB: A Symbolic Debug Utility

The following rules govern entry of instruction mnemonics:

1. The far return mnemonic is RETF.

2. String manipulation mnemonics must explicitly state the string size.
For example, use MOVSW to move word strings and MOVSB to
move byte strings.

3. SYMDEB automatically assembles short, near, or far jumps and
calls, depending on byte displacement to the destination address.
These may be overridden with the NEAR or FAR prefix, as shown
in the following examples:

jmp 502
jmp NEAR 505
jmp fAR 50A

The NEAR prefix can be abbreviated to NE, but the FAR prefix
cannot be abbreviated.

4. SYMDEB cannot tell whether some operands refer to a word
memory location or to a byte memory location. In these cases, the
data type must be explicitly stated with the prefix WORD PTR or
BYTE PTR. Acceptable abbreviations are WO and BY. Two
examples are shown below:

mov WORD PTR [bpJ,l
mov BYTE PTR [si-1J,symbol

5. SYMDEB cannot tell whether an operand refers to a memory loca
tion or to an immediate operand. SYMDEB uses the convention
that operands enclosed in square brackets refer to memory. Two
examples are shown below:

mov aX,21
mov ax, [21J

The first statement moves 21h into AX. The second statement
moves the data at offset 21h into AX.

6. The DB opcode assembles byte values directly into memory. The
DW opcode assembles word values directly into memory, as shown
in the following examples:

DB l,2,3,4,"This is an example."
DB 'This is a double quote: '"
DB "This is a single quote: '"
OW 1000,2000,3000, "Bach"

101

Microsoft Macro Assembler User's Guide

7. SYMDEB supports all forms of register-indirect commands, as
shown in the following examples:

add bx,34[bp+2]. [si-1]
pop [bp+di]
push [si]

8. All opcode synonyms are also supported, as shown in the following
examples:

loopz 100
loope 100
ja 200
jnbe 200

If you examine instructions with the Un assemble command (U),
SYMDEB may show a synonymous instruction or opcode, rather
than the one you entered.

9. Do not assemble and execute 8087 or 80287 instructions if your sys
tem is not equipped with one of these math coprocessors. The
WAlT instruction, for example, will cause your system to hang up
if you try to execute it without the appropriate chip.

Examples

-A
42BE:0100 mov
42BE:0102 mav
42BE:0104 int
42BE:0106 mav
42BE:0108 int
42BE:010A

ah,2
dl,7
21
ah,4C
21

The first example assembles a short program that beeps and returns to
MS-DOS. Section 4.6.33 shows how to save this program to disk as a file
called be 11 . com.

-u test L 2
CODE:TEST:
39BO:0040 89C3
-A test
39BO:0040 mav
39BO:0042
-U test L 2
CODE:TEST:
39BO:0040 89Cl

102

ex, ax

MOV BX,AX

MOV CX,AX

SYMDEB: A Symbolic Debug Utility

The second example modifies the instruction at address test so that it
moves data into the CX register instead of the BX register. The Unas
semble command (U) is used to show the instruction before and after the
assembly.

4.6.2 Breakpoint Commands

SYMDEB allows you to set and use "sticky" breakpoints. The five follow
ing commands govern breakpoint manipulation:

Command

BP

BC

BD

BE

BL

Command Name

Breakpoint Set

Breakpoint Clear

Breakpoint Disable

Breakpoint Enable

Breakpoint List

These commands are discussed in logical, rather than alphabetical, order in
Sections 4.6.2.1-4.6.2.5.

4.6.2.1 Breakpoint Set Command

Syntax

BP [number] address [passcount] [II commands ll
]

The Breakpoint Set command (BP) creates a "sticky" breakpoint at
address. When encountered during program execution, sticky breakpoints
stop the program execution and cause SYMDEB to display the current
values of all registers and flags in the Register command (R) format (see
Section 4.6.22). Sticky breakpoints, unlike breakpoints created by the Go
command (G), remain in the program until removed using the Breakpoint
Clear command (BC), or temporarily disabled using the Breakpoint Disable
command (BD).

SYMDEB allows up to 10 sticky breakpoints (0 through 9). The number
specifies which breakpoint is to be created. Spaces between BP and number
are not allowed. If no number is specified, the first available breakpoint
number is used. The address can be any valid instruction address (that is,
it must be the first byte of an instruction opcode). The passcount specifies

103

Microsoft Macro Assembler User's Guide

the number of times the breakpoint is to be ignored before being taken. It
can be any 16-bit value. The commands are an optional list of commands
to be executed each time the breakpoint is taken. Each SYMDEB com
mand in the list can include parameters, and is separated from the next
command by a semicolon (;).

Examples

The first example creates a sticky breakpoint at do_again.

-BP .19 3

The second example creates a sticky breakpoint at line 19 of the source file
(or if there is no executable statement at line 19, at the first executable
statement after line 19). The breakpoint is ignored three times before
being taken.

-BP8 add

The third example creates breakpoint 8 at address add.

-BP 100 10

The fourth example creates a breakpoint at address 100 in the current OS
segment. This breakpoint is ignored 16 (10h) times before being taken.

-BP 3206:2A02 "rdi di+1;g"

The final example increments the contents of the DI register by one when
ever address 3206:2A02 is reached. Since neither the Register command
(R) nor the Go command (G) stops to request input, the program will
appear to execute normally, although program speed will decrease while the
command is being executed.

104

SYMDEB: A Symbolic Debug Utility

4.6.2.2 Breakpoint Clear Command

Syntax

Be listl*

The Breakpoint Clear command (BC) permanently removes one or more
previously set breakpoints. If lz'st is specified, the command removes the
breakpoints named in the list. The lz'st can be any combination of integer
values from 0 to 9. If * is specified, the command removes all breakpoints.

Examples

-BC 0 4 8

The first example removes breakpoints 0, 4, and 8.

-BC *

The second example removes all breakpoints.

4.6.2.3 Breakpoint Disable Command

Syntax

BD listl*

The Breakpoint Disable command (BD) temporarily disables one or more
breakpoints from a program. The breakpoints are not deleted. They can
be restored at any time by using the Breakpoint Enable command (BE).

If list is specified, the command disables the breakpoints named in the list.
The list can be any combination of integer values from 0 to 9. If * is
specified, the command disables all breakpoints.

105

Microsoft Macro Assembler User's Guide

Examples

-BD 0 4 8

The first example disables breakpoints 0, 4, and 8.

-BD *

The second example disables all breakpoints.

4.6.2.4 Breakpoint Enable Command

Syntax

BE listl*

The Breakpoint Enable command (BE) restores one or more breakpoints
temporarily disabled by a BreakpOInt Disable command (BD).

If list is specified, the command enables the breakpoints named in the list.
The list can be any combination of integer values from ° to 9. If * is
specified, the command enables all previously disabled breakpoints.

Examples

-BE 0 4 8

The first example enables breakpoints 0, 4, and 8.

-BE *

The second example enables all disabled breakpoints.

106

SYMDEB: A Symbolic Debug Utility

4.6.2.5 Breakpoint List Command

Syntax

BL

The Breakpoint List command (BL) lists current information about all
breakpoints created by the Breakpoint Set command (BP). The BL com
mand displays the breakpoint number, the enabled status, the address of
the breakpoint, the number of passes remaining, and the initial number of
passes (in parentheses). If you are in source-line mode (see Section 4.6.25),
the line number for each breakpoint is also shown.

The enable status can be e for enabled, d for disabled, or v for virtual. A
virtual breakpoint is a breakpoint set at a symbol whose .EXE file has not
yet been loaded.

If no breakpoints are currently defined, nothing is displayed.

Example

-BL
o e 11BC:0036 [IGROUP:_main+OB (0036)] main.c:8
4 d IlBC:OIOO [IGROUP: __ cropzeros+08 (0100)] 0010 (OOOA)
8 e IlBC:0002 [IGROUP:_add] add.c:2 "DW;G"

The example above is taken from a C program in order to illustrate line
numbers. Breakpoint 0 is enabled at address IGROUP: _main+OB (seg
ment 11BC, offset 36). This address is at line 8 of source file main. c.

Breakpoint 4 is disabled at address IGROUP: __ cropzeros+08. Since
the breakpoint is disabled, the source line is not shown. This breakpoint
initially had a pass count of 16 (10h) and now has 10 (OAh) remaining
passes to be taken before the breakpoint.

Breakpoint 8 is enabled at address IGROUP: _add. This address is at line
2 of source file add. c. It has no initial pass count. Whenever breakpoint 8
is reached, the command list OW; G (Dump Word and Go) is executed.

107

Microsoft Macro Assembler User's Guide

4.6.3 Comment Command

Syntax

*comment

The Comment command is an asterisk (*) followed by text. SYMDEB
echoes the text of the comment to the screen (or other output device). This
command is useful in combination with the redirection commands to save
or print commented copies of a SYMDEB session.

Example

-RCX 80
-* Change the count in CX to 80
Change the count in ex to 80

4.6.4 Compare Command

Syntax

C range address

The Compare command (C) compares the bytes in the memory locations
specified by range with the corresponding bytes in the memory locations
beginning at address. If all corresponding bytes match, SYMDEB displays
its prompt and waits for the next command. If one or more corresponding
bytes do not match, each pair of mismatched bytes is displayed.

Examples

-C 100,01EE 300
39BB:102 OA 00 39BB:302
39BB:108 OA 01 39BB:308

The first example compares the block of memory from 100h to 1FFh with
the block of memory from 300h to 3FFh. It indicates that the second and
eighth bytes are different in the two areas of memory.

108

SYl\1DEB: A Symbolic Debug Utility

-C test L 100 test+100

The second example compares the 256 (100h) bytes starting at symbol
test with the 256 bytes starting at the address 256 bytes beyond test.
SYMDEB produces no output, so the bytes are the same.

4.6.5 Display Command

Syntax

? expression

The Display command (7) displays the value of expression. The command
evaluates the expression, then displays the value in a variety of formats.
The formats include a full address, a 16-bit hexadecimal value, a full 32-bit
hexadecimal value, a decimal value (enclosed in parentheses), and a string
value (enclosed in double quotation marks). The string characters will be
shown as dots if their value is less than 32 (20h) or greater than 126 (7Eh).

The expression can be any combination of numbers, symbols, addresses, and
operators. For a list of operators, see Section 4.5.8.

Examples

-7 9*8
0048h 00000048 (72) "H"

The first example displays the value of the expression 9 * 8.

-7 .19
39EO:0017h 00039E17 (237079) " "

The second example displays the address in memory of line 19 in the source
file. The Display command is a convenient way to find addresses for source
code.

-7 CS:_main
39EO:0002h 00039E02 (237058) " "

The third example displays the value of the symbolic address CS : _main.

109

Microsoft Macro Assembler User's Guide

-7 WO DGROUP:_environ
2E36h 00002E36 (11830) ".6"

The final example displays the word at the symbolic address
DGROUP: _environ.

4.6.6 Dump Commands

SYMDEB has several commands for dumping data from memory to the
screen (or other output device). The dump commands are listed below:

Command Command Name

D Dump

DA Dump ASCII

DB Dump Bytes

DW Dump Words

DD Dump Doublewords

DS Dump Short Reals

DL Dump Long Reals

DT Dump Ten-Byte Reals

Sections 4.6.6.1-4.6.6.8 discuss these commands in logical, rather than
alphabetical, order.

4.6.6.1 Dump Command

Syntax

D [address: range]

The Dump command (D) displays the contents of memory at the specified
address or in the specified range of addresses. The Dump command dumps

110

SYMDEB: A Symbolic Debug Utility

data in the format of the most recently entered dump command (as
described in the next seven sections). If no other dump command has been
entered, the default dump format is the format of the Dump Bytes com
mand (DB).

The Dump command disphl.Ys one or more lines, depending on the address
or range specified. Each line displays the address of the first item
displayed. The command always displays at least one value. If a range is
specified, SYMDEB displays all values in the range. If neither address nor
range is specified, SYMDEB dumps memory starting at the byte after the
last byte dumped by a previous dump command. If no previous dump com
mand has been used, SYMDEB dumps data starting from the current loca
tion of the instruction pointer (IP). If no segment is specified in an initial
dump command, SYMDEB uses the DS register value as the default seg
ment.

The Dump command name must be separated by at least one space from
any address or range value.

Examples

-OA ds:100
04BA:0100 A string ..
-0
04BA:010B Text ...

In the first example, the Dump command displays the ASCII string at the
address immediately following the string displayed by the Dump ASCII
command. The Dump command uses the ASCII format because the last
dump command was DA (Dump ASCII).

-ow ds:100 101
04BA:0100 2041
-D ds:324 325
04BA:0324 FE31

In the second example, the Dump command displays the word at the
address ds: 324. The format is words because the last dump command
was Dump Words (DW).

111

Microsoft Macro Assembler User's Guide

4.6.6.2 Dump ASCn Command

Syntax

DA [address: range]

The Dump ASCII command (DA) displays the ASCII characters at a
specified address or in a specified range of addresses. The command
displays one or more lines of characters, depending on the address or range
specified. Up to 48 characters per line are displayed. Unprintable charac
ters, such as carriage returns and line feeds, are displayed as dots (.).
ASCII characters below 32 (20h) and above 126 (7Eh) are unprintable.

If an address is specified, the command continues to display ASCII charac
ters until the first null byte is encountered, or until 128 bytes have been
displayed. If a range is specified, the command continues to display ASCII
characters until the end of the range. If neither address nor range is
specified, the command displays all characters up to the first null byte, or
until 128 bytes have been displayed. This display begins at the current
dump address: the address immediately after the last byte previously
displayed. If the L option is used in a range, the Dump ASCII command
continues to display characters until the specified number of characters has
been displayed.

Examples

-DA DS:100 110
04BA:OIOO A string .. Text ..

The first example displays the ASCII val ues of the bytes from DS : 100 to
DS: 110. Unprintable characters are shown as dots.

-DA
04BA:Olll Some letters

The second example displays characters at the current dump address. If
the last byte in the previous Dump ASCII command was 04BA:0110, this
command displays the bytes starting at 04BA:0111.

-DA prompt
294A:OOOO Enter file name: $.

112

SYMDEB: A Symbolic Debug Utility

The final example displays the characters at the symbolic address prompt.

4.6.6.3 Dump Bytes Command

Syntax

DB [address: range]

The Dump Bytes command (DB) displays the hexadecimal and ASCII
values of the bytes at the specified address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range supplied.

Each line displays the address of the first byte in the line, followed by up to
16 hexadecimal by te values. The byte values are immediately followed by
the corresponding ASCII values. The hexadecimal values are separated by
spaces, except the eighth and ninth values, which are separated by a dash
(-). ASCII values are printed without separation. Unprintable ASCII
values (lower than 20h or higher than 7Eh) are displayed as dots (.). No
more than 16 hexadecimal values are displayed in a line. The command
displays values and characters until the end of the range or until the first
128 bytes have been displayed.

Examples

-DB cs:100 110
04BA:0100 41 20 73 74 72 69 6E 67-04 01 05 54 65 78 OD OA A string ... Text ..
04BA: 0110 2E

The first example displays the byte values from cs : 100 to 110. ASCII
characters are shown on the right.

-DB

The second example displays 128 bytes starting at the current dump
address. If the last byte in the previous dump command was 04BA:OII0,
this command displays the bytes starting at 04BA:Ol11. The dumped bytes
are not shown in this example.

-DB buffer buffer+f
2145:0020 -66 75 6E 63 74 69 6F 6E function
2145:0030 OD OA 20 20 20 20 20 20

113

Microsoft Macro Assembler User's Guide

The final example displays the first 16 (OFh) bytes starting at the symbolic
address buffer.

4.6.6.4 Dump Words Command

Syntax

DW [address: range]

The Dump Words command (DW) displays the hexadecimal values of the
words (2-byte values) at address or in the specified range of addresses. The
command displays one or more lines, depending on the address or range
specified. Each line displays the address of the first word in the line, fol
lowed by up to 8 hexadecimal word values. The hexadecimal values are
separated by spaces. The command displays values until the end of the
range or until the first 64 words have been displayed.

Examples

-DW cs:100 110
04BA:0100 2041 7473 6972 676E 0104 5405 7865 OAOD
04BA:0110 002E

The first example displays the word values from cs: 100 to cs: 110. No
more than eight values per line are displayed.

-DW

The second example displays 64 words starting at the current dump
address. If the last byte in the previous dump command was 04BA:0110,
this command displays the words starting at 04BA:0111. The dumped
bytes are not shown in this example.

-DW buffer buffer+f
2145:0028 7566 636E 6974 6E6F OAOD 2020 2020 2020

The final example displays the first eight words (OFh bytes) starting at the
symbolic address bu f fer.

114

SYMDEB: A Symbolic Debug Utility

4.6.6.5 Dump Doublewords Command

Syntax

DD [address! range]

The Dump Doublewords command (DD) displays the hexadecimal values of
the doublewords (4-byte values) at address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first dou
bleword in the line, followed by up to four hexadecimal doubleword values.
The words of each doubleword are separated by a colon. The values are
separated by spaces. The command displays values until the end of the
range or until the first 32 doublewords have been displayed.

Examples

-DD cs:100 110
04BA:0100 7473:2041 676E:6972 5405:0104 OAOD:7865
04BA:0110 0000:002E

The first example displays the doubleword values from cs: 100 to cs: 110.
No more than four doubleword values per line are displayed.

-DD

The second example displays 32 doublewords starting at the current dump
address. If the last byte in the previous dump command was 04BA:OII0,
this command displays the doublewords starting at 04BA:Oll1. The
dumped bytes are not shown in this example.

-DD buffer buffer+f
2145:0028 636E:7566 6E6F:6974 2020:0AOD 2020:2020

The final example displays the first four doublewords (OFh bytes) starting
at the symbolic address bu f fer.

116

Microsoft Macro Assembler User's Guide

4.6.6.6 Dump Short-Reals Command

Syntax

DS [addresslrange]

The Dump Short-Reals command (DS) displays the hexadecimal and
decimal values of the short (4-byte) floating-point numbers at address or in
the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa
decimal values are separated by spaces.

The decimal value has the form:

+l-O.decimaldigitsE+l-mantissa

The sign of the number is followed by a 0 and a decimal point (.). Next
come as many as 16 dec£mald£g£ts (although only 7 of these digits are
significant). The decimal digits are followed by the letter E, which marks
the start of the mant£ssa. Next comes the sign of the mantissa followed by
the digits of the mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

Examples

-DS ds:l00
04BA:0100 A3 68 21 A3 -0.8749985175576769E-17

The first example displays the short-real floating-point number at the
address ds : 100. Only one value per line is displayed.

-DS pi
210C:0140 DB OF 49 40 +0. 3141592741012573E+1

116

SYMDEB: A Symbolic Debug Utility

The second example displays the short-real floating-point number at the
symbolic address pi.

4.6.6.7 Dump Long-Reals Command

Syntax

DL [addressirange]

The Dump Long-Reals command }DL) displays the hexadecimal and
decimal values of the long (8-byte floating-point numbers at the specified
address or in the specified range 0 addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa
decimal values are separated by spaces.

The decimal value has the form:

+1-0. decimaldigitsE+I-mantissa

The sign of the number is followed by a 0 and a decimal point (.). Next
come as many as 16 decimaldigits. The decimal digits are followed by the
letter E, which marks the start of the mantissa. Next comes the sign of the
mantissa, followed by the digits of the mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

Examples

-DL DS:l00
04BA:OI00 04 C6 06 10 IF 01 33 CO -0. 1900438022771233E+2

The first example displays the long-real floating-point number at the
address DS : 100. Only one value per line is displayed.

-DL pi
210C:0120 11 2D 44 54 FB 21 09 40 +0. 314159265358979E+l

117

Microsoft Macro Assembler User's Guide

The second example displays the long-real floating-point number at the
symbolic address pi.

4.6.6.8 Dump Ten-Byte Reals Command

Syntax

DT [address: range]

The Dump Ten-Byte Reals command (DT) displays the hexadecimal and
decimal values of the 10-byte floating-point numbers at the specified
address or in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa
decimal values are separated by spaces.

The decimal value has the form:

+:-O.decimaldigitsE+:-mantissa

The sign of the number is followed by a 0 and a decimal point (.). Next
come as many as 16 decimaldigits. The decimal digits are followed by the
letter E, which marks the start of the mantissa. Next comes the sign of the
mantissa followed by the digits of the mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

Examples

-DT DS:l00
04BA:0100 66 21 A3 06 2B A3 04 2B A3 OE +0.5145365070468582E-3804

The first example displays the 10-byte real floating-point number at the
address DS : 100. Only one number per line is displayed.

-DT pi
210C:0100 DE 87 68 21 A2 DA OF C9 00 40 +0. 314159265358979E+1

118

SYMDEB: A Symbolic Debug Utility

The second example displays the IO-byte floating-point number at the sym
bolic address pi.

4.6.7 Enter Commands

SYMDEB has several commands for entering data from the keyboard (or
other input device) to memory. The enter commands are listed below:

Command Command Name

E Enter

EA Enter ASCII

EB Enter Bytes

EW Enter Words

ED Enter Doublewords

ES Enter Short Reals

EL Enter Long Reals

ET Enter Ten-Byte Reals

The next sections discuss these commands in logical, rather than alphabeti
cal, order.

4.6.7.1 Enter Command

Syntax

E address [list]

The Enter command (E) enters one or more values into memory at address.
The size of the value which may be entered depends on the most recently
used Enter command. If no Enter command has been used, the Enter Bytes
command (EB) is assumed.

If an error occurs while entering a value, the value remains unchanged. If
you do not supply a list of values to be entered, SYMDEB prompts for a
new value at address by displaying the address and its current value fol
lowed by a dot (.). You can then replace the value by typing the new value
after the current value. The command ignores extra trailing digits or other
characters.

119

Microsoft Macro Assembler User's Guide

To exit the Enter command, press the RETURN key. You can exit the com
mand at any time.

The different variations of the Enter command are explained in the next
seven sections.

4.6.7.2 Enter Bytes Command

Syntax

EB address [list]

The Enter Bytes command (EB) enters one or more byte values into
memory at address. If the optional list is specified, the command replaces
the byte at the specified address and the bytes at each subsequent address
until all values in the list have been used.

If you do not supply a list, SYMDEB prompts for a new value at address
by displaying the address and its current value followed by a dot (.). You
can then replace the value, skip to the next value, return to a previous
value, or exit the command.

• To replace the byte value, type the new value after the current
value.

• To skip to the next byte, press the SPACE bar. Once you have
skipped to the next byte, you can change its value or skip to the
next byte. If you skip beyond an 8-byte boundary, SYMDEB
starts a new display line by displaying the new address and value.

• To return to the preceding byte, type a hyphen (-). When you
return to the preceding byte, SYMDEB starts a new display line
with the address and value of that byte.

• To stop entering bytes and return to the SYMDEB prompt, press
the RETURN key. You can exit the command at any time.

Examples

-EB CS:100 01 2B E5

The first example replaces the 3 bytes at C8:100, C8:101, and C8:102 with
01, 2B, and E5, respectively.

120

SYMDEB: A Symbolic Debug Utility

-EB CS:l00

The second example causes SYMDEB to display the current value on the
line following the command and wait for you to enter a new value. In the
examples below an underscore represents the cursor:

-EB CS:l00
2344:0100 F3.

You can then change the value F 3 to the new value 5E by typing 5E as
shown below

-EB CS:l00
2344:0100 F3.5e_

You can then skip to the next byte value by pressing the SPACE bar.

-EB CS:l00
2344:0100 F3.5e 10.

Then type the next value:

-EB CS:l00
2344:0100 F3.5e

Press the SPACE bar:

-EB CS:l00
2344:0100 F3.5e 10.76 BO.

You could then return to the previous value to correct a mistake by typing
a minus sign:

-EB CS:l00
2344:0100 F3.5e
2344:0100 76.

Type the correct value:

-EB CS:l00
2344:0100 F3.5e
2344:0100 76.77

10.76

10.76

BO.-

BO.-

121

Microsoft Macro Assembler User's Guide

Press the RETURN key to stop entering bytes. After you press the RETURN
key, the SYMDEB prompt reappears as shown below:

-EB CS:I00
2344:0100 F3.5e
2344:0100 76.77

10.76 BO.-

4.6.7.3 Enter ASCII Command

Syntax

EA address [list]

The Enter ASCII command (EA) works exactly the same as the Enter Bytes
command (EB), described in the previous section.

Example

-EA data_seg:msg2 "Can't open file"

In the example above, the string Can I t open f i 1 e is entered starting at
the symbolic address data_seg: msg2. You could use the Enter Bytes
command to do the same thing, or you could enter nonstring values as
shown in Section 4.6.7.2 using the Enter ASCII command.

4.6.7.4 Enter Words Command

Syntax

EW address [value]

The Enter Words command (EW) enters a word value into memory. The
optional value consists of a single word value.

122

SYMDEB: A Symbolic Debug Utility

If no value is specified, the command displays the word at address and
prompts for a replacement. If a value is specified, the command replaces
the word at the specified address, then displays the next word and prompts
for a replacement.

The Enter Words command continues to display words and prompt for
replacement values until you exit the command by pressing the RETURN
key.

Example

-EW CS:400 4e3a
2344:0402 ED32.8ad8
2344:0404 lD3C.

In the example above, the word at C8:400 is replaced with 04E3A. SYM
DEB displays the next word (ED32) and prompts for a replacement. The
number 8AD8 is supplied as the next word, and the RETURN key is pressed
to stop entering words.

4.6.7.5 Enter Doublewords Command

Syntax

ED address [value]

The Enter Doublewords command (ED) enters a doubleword value into
memory. The optional value consists ot one doubleword value. Double
words must be typed as two words separated by a colon (:).

If no value is specified, the command displays the doubleword at address
and prompts for a replacement. If a value is specified, the command
replaces the doubleword at the specified address, then displays the next
doubleword and prompts for a replacement.

The Enter Doublewords command continues to display doublewords and
prompt for replacement values until you exit the command by pressing the
RETURN key.

123

Microsoft Macro Assembler User's Guide

Example

-ED CS:100 12EF:CD01
2344:0104 440E:1234.1234:5678
2344:0108 8ED9:1234.

In the example above, the doubleword at 08:100 is replaced with
12EF:ODOl. SYMDEB displays the next doubleword (440E:1234) and
prompts for a replacement. The number 1234:5678 is supplied as the next
doubleword, and the RETURN key is pressed to stop entering doublewords.

4.6.7.6 Enter Short-Reals Command

Syntax

ES address [value]

The Enter 8hort-Reals command (ES) enters a short-real value into
memory. The optional value consists of one short-real value.

If no value is specified, the command displays the short-real value at the
specified address and prompts for a replacement. If a value is specified, the
command replaces the short-real value at the specified address, then
displays the next short-real value and prompts for a replacement.

The Enter Short-Reals command continues to display short-real values and
prompt for replacement values until you exit the command by pressing the
RETURN key.

Example

-ES pi 3.1415926

The example above enters 3.1415926 at the symbolic address pi. The
same number could also be entered as shown below:

-ES pi
210C:0130 -0.1256210825216E+16
210C:0134 -0.4309309980615894E-31

+0. 3141S926e+1

If you used the Dump Short-Reals command (DS) to examine the value just

124

SYMDEB: A Symbolic Debug Utility

entered (as shown below), up to 16 digits would be displayed, but the last
nine digits would not be significant:

-DS pi
210C:0130 DA OF 49 40 +0. 3141592502593994E+l

4.6.7.7 Enter Long-Reals Command

Syntax

EL address [value]

The Enter Long-Reals command (EL) enters a long-real value into memory.
The optional value consists of one long-real value.

If no value is specified, the command displays the long-real value at the
specified address and prompts for a replacement. If a value is specified, the
command replaces the long-real value at the specified address, then displays
the next long-real value and prompts for a replacement.

The Enter Long-Reals command continues to display long-real values and
prompt for replacement values until you exit the command by pressing the
RETURN key.

Example

-EL pi 3.141592653589793

The example above enters 3.141592653589793 at the symbolic address pi.
The same number could also be entered as shown below:

-EL 170
210C:0170 +0. 1343280735843091E+65299
210C:0178 -0.1040230032441619E-71

+0. 3141592653589793e+1

126

Microsoft Macro Assembler User's Guide

4.6.7.8 Enter Ten-Byte Reals Command

Syntax

ET address [value]

The Enter Ten-Byte Reals command (ET) enters a lO-byte real value into
memory. The optional value consists of a single IO-byte real value.

If no value is specified, the command displays the lO-byte real value at the
specified address and prompts for a replacement. If a value is specified, the
command replaces the lO-byte real value at the specified address, then
displays the next lO-byte real value and prompts for a replacement.

The Enter Ten-Byte Reals command continues to display lO-byte real
values and prompt for replacement values until you exit the command by
pressing the RETURN key.

Example

-ET pi 3.141592653589793

The example above enters 3.141592653589793 at the symbolic address pi.
The same number could also be entered as shown below:

-ET pi
210C:0150 +0.0204654128113587E+7898
210C:015A +0.5976239733286124E+3896

+0. 3141592653589793e+1

4.6.8 Examine Symbol Map Commands

Syntax

x [*]
X? [mapname!] [segmentname:] [symbolname]

The Examine Symbol Map commands (X or X?) display the names and
addresses of the symbols in the current symbol maps. SYMDEB creates a
symbol map for each symbol-file name specified in the SYMDEB command
line. The Examine Symbol Map commands can then be used to examine the
contents of the maps.

126

SYMDEB: A Symbolic Debug Utility

The X form of the Examine Symbol Map command displays the name and
load segment addresses of the current symbol map and the segments in that
map. If the asterisk (lie) is specified, the command displays the names and
load segment addresses for all currently loaded symbol maps.

The X? form of the Examine Symbol Map command displays the names
and addresses of one or more symbols in the symbol map. If a mapname! is
specified, the command displays information for that symbol map. The
mapname must be the file name (without extension) of the corresponding
symbol file. The file name must by followed by an exclamation point (!).

If segmentname: is specified, the command displays the name and load seg
ment address for that segment. The segmentname must be the name of a
segment named within the explicitly specified or currently open symbol
map. The segmentname must be followed by a colon (:).

If a symbolname is specified, the command displays the segment address
and segment offset for that symbol. The symbolname must be the name of
a symbol in the specified segment.

To display information about more than one segment or symbol, enter a
partial segmentname or symbolname ending with an asterisk (lie). The aster
isk acts as a wildcard character. SYMDEB displays information about all
segments or symbols whose names start with the same characters with
which segmentname or symbolname start. For example, f *: matches all
segment names that start with f. Similarly, _ * matches all symbols that
start with an underscore (_).

In the examples, assume that SYMDEB was started with the following
command line:

SYMDEB resident.syrn count.syrn count.exe

This command line instructs SYMDEB to load two symbol files and one
executable file: resident. sym, count. sym, and count. exe. Only one
symbol map can be open at a time, so SYMDEB opens the one whose
name matches the name of the executable file (count. sym). If none of the
symbol file names matched, SYMDEB would open the first symbol file in
the command line.

127

Microsoft Macro Assembler User's Guide

Examples

-x
[2154 COUNT]

2164 DATA
[21E8 CODE]

The example above displays the name of the currently open symbol map
and the names and load-segment addresses of the segments in that map.
Brackets indicate that a symbol map or segment is open. An open segment
will be searched first if you give a command that accesses a symbol. The
example indicates that the segment code is open, so symbols in the code
segment will be accessed slightly faster than symbols in the data segment.

-X*
0000 COUNT

0010 DATA
01A3 CODE

[2154 Resident]
2164 DATA

[21E8 CODE]

In the second example above, all currently loaded symbol maps are
displayed. Brackets indicate the open map and segment.

-X?resident!
0000 RESIDENT

The third example displays the load-segment address of the symbol map file
resident.

-X?resident!code:
CODE: (01A3)

The fourth example displays the start address of segment code in the map
file resident.

-X?resident!data:c*
CODE: (01A3)
01E2 CYCLE 04D1 CLEAR

The fifth example displays the addresses of all symbols beginning with c in
the data segment of symbol file resident.

128

SYMDEB: A Symbolic Debug Utility

-X?'"
CODE: (21E8)
0016 GET_FILE 002e OPEN_FILE 0044 OK
0071 CONV_HEX 0075 ROTATE 008F QUIT
OOAA NEW_WORD OOAB OUT_WORD 00B6 IN_WORD
DATA: (2164)
0000 PROMPT 0011 NAMEBUF
0013 FNAME 0028 BUFFER 0828 ERR1

0050 BUFF_READ 0069 DONE
0095 WORD_C 00A4 NEXT_CHAR

083C ERR2 0848 COUNT

The final example disI?lays the addresses of all symbols in the currently
open map file (count).

4.6.9 Fill Command

Syntax

F range list

The Fill command (F) fills the addresses in the specified range with the
values specified in list. If the range specifies more bytes than the number of
values in the list, the list is repeated until all bytes in the range are filled.
If the list has more values than the number of bytes in the range, the com
mand ignores any extra values.

Examples

-F CS:100 L 100 FF

The first example fills 255 (100h) bytes of memory starting at C8:100 with
the value FFh.

-F DGROUP:table L 64 42 79 74 65 73

The second example fills the 100 (64h) bytes starting at DGROUP: table
with the following byte values: 42h, 79h, 74h, 65h, and 73h. These five
values are repeated until all 100 bytes are filled.

129

Microsoft Macro Assembler User's Guide

4.6.10 Go Command

Syntax

G [=startaddress] [breakaddresses]

The Go command (G) passes execution control to the program at the
optional slarladdress. Execution continues to the end of the program or
until the optional breakaddress is encountered. The program also stops at
any breakpoints set using the Breakpoint Set command (BP).

If no startaddress is specified, the command passes execution control to the
address specified by the current values of the OS and IP registers. The
equal sign { ~ indicates that the value is a start address. Any values
specified without the equal sign are assumed to be break addresses.

If a break address is specified, it must specify an instruction address (that
is, the address must contain the first byte of an instruction opcode). Up to
10 addresses can be specified at one time. The addresses can be specified in
any order. If you attempt to set more than 10 breakpoints, SYMDEB
displays an error message. Only the first address encountered during execu
tion will cause a break. All others are ignored. If you want execution to
stop at more than one breakaddress, use the Breakpoint Set command.

When program execution reaches a breakpoint, SYMDEB displays the
current values of all registers and flags. It also displays the next instruc
tion to be executed. The display has the same form as the Register com
mand (R).

130

SYMDEB: A Symbolic Debug Utility

Notes

The Go command (G) uses an IRET instruction to pass control to a
program. To do so, it must set the user stack pointer and push the user
flags, OS register, and IP registers onto the user stack. If the user
stack does not have at least 6 bytes available or is in invalid memory,
the Go command may cause an operating system crash.

To create a breakpoint, SYMDEB places an INT instruction (inter
rupt code OOOh) at each breakpoint address, then restores these
addresses to their original instructions when a breakpoint is encoun
tered. If execution continues to the end of the program, however, or is
halted by some other means, SYMDEB does not replace the interrupt
code. For this reason, you should reload the program with the Name
command. (N) and Load command (L) before attempting to run the pro
gram agaIn.

SYMDEB displays the message Program terminated normally
whenever execution reaches the program end. SYMDEB stops execu
tion and displays the current values of registers and flags.

Examples

In the first example, SYMDEB starts program execution at the instruction
named by the symbolic address _main. Execution continues until the
address _add is reached (or until the end of the program if add is not
encountered).

-G

The second example passes control to the instruction pointed to by the
current values of the OS and IP registers. SYMDEB will continue execu
tion until it reaches either the end of the program or a breakpoint defined
with the Breakpoint Set command (BP).

-G =CS:O CS:7550

The final example passes execution control to the program at address OS:O.
If the instruction at breakpoint address 08:7550 is encountered, SYMDEB
stops execution and displays the current values of registers and flags.

131

Microsoft Macro Assembler User's Guide

4.6.11 Help Command

Syntax

?

The Help command (7) displays a list of all SYMDEB commands and
operators v{ith the syntax for each.

4.6.12 Hex Command

Syntax

H valuel value2

The Hex command (H) displays the sum and diffe:ence of two hexadecimal
numbers. SYMDEB adds valuel to value2 and dIsplays the result. It then
subtracts value2 from valuel and displays that result. The results are
displayed on one line and are always in hexadecimal.

To evaluate more general expressions, use the Display command (D) (see
Section 4.6.5).

Examples

-H 3 4
0007 FFFF

The first example displays the results of 3 + 4 (7) and 3 - 4 (FFFF).

-H afd 2ee
ODE9 0811

The second example displays the results of OAFD + 02EC (ODE9) and OAFD
- 02EC (0811).

132

SYMDEB: A Symbolic Debug Utility

4.6.13 Input Command

Syntax

I port

The Input command (I) reads and displays a byte from the specified port.
The input port can be any 16-bit port address.

Example

-I 2E8
E8

The preceding example reads input port number 2F8 and displays the result
(E8h).

4.6.14 Load Command

Syntax

L [address [drive record count]]

The Load command (L) copies the contents of a named file or the contents
of a specified number of logical disk records into memory. The contents are
copied to the specified address or to a default address, and the BX:OX
register pair is set to the number of bytes loaded.

To load a file, a file name must be supplied before the Load command can
be used. You can give a name by using the Name command (N) (Section
4.6.16), or by passing it as a program argument when you start SYMDEB
(Section 4.3.3). If you do not supply a name, Load uses whatever name is
currently at location DS:5C, where DS is the current value of the DS regis
ter. This is the location of the default file control block that receives any
file name specified with the Name command or any file name passed as a
program argument.

If an address is specified, the command places the contents of the file or sec
tors at the memory locations starting at the specified address. Otherwise,
it places the contents at the address specified by CS:100, where CS is the
current value of the OS register.

133

Microsoft Macro Assembler User's Guide

To load logical records from a disk, the explicit values for address, drive,
record, and count must be specified. The drive must name the drive to be
read. It can be any number in the range 0 to 3, representing Drives A (0), B
(1), C (2), or D (3). The record names the first logical record to be read
from the drive. It can be any 1- to 4-digit hexadecimal number. The count
specifies the number of records to be read from the disk. It can be any 1- to
4-digit hexadecimal number.

Notes

If the named file has an .EXE extension, the Load command (L)
adjusts the load address to the address specified in the .EXE file
header. This means that the address parameter is always ignored for
.EXE files.

Since the Load command strips any header information from an .EXE
file before loading, the number of bytes actually loaded will differ from
the number of bytes in the .EXE file.

If the named file has a .HEX extension, the Load command adds that
file's start address to address before loading the file. If no address is
specified, the file is loaded at its start address.

Examples

-N file.exe
-L

The first example loads the file named f i 1 e . exe into memory at the
address OS:100. The number of bytes loaded (the length of fi le. exe
minus its program header) is copied to the BX:CX register pair.

-L DGROUP:table

The second example loads a file into the memory locations starting at the
symbolic address DGROUP : tab 1 e. The command uses whatever file name
is currently at location DS:50.

134

SYMDEB: A Symbolic Debug Utility

-L workspace 2 34 3

The final example loads three logical records from Drive C (02), beginning
with logical record number 34h, into memory at the symbolic address
workspace.

4.6.15 Move Cormnand

Syntax

M range address

The Move command (M) moves the block of memory specified by range to
the location starting at address.

All moves are guaranteed to be performed without data loss, even when the
source and destination blocks overlap. The destination block is always an
exact duplicate of the original source block. If the destination block over
laps some portion of the source block, the original source will be changed.

To prevent data loss, the Move command copies data starting at the source
block's lowest address whenever the source is at a higher address than the
destination. If the source is at a lower address, the Move command copies
data beginning at the source's highest address.

Examples

-M CS:100 110 CS:500

The first example moves all bytes in the range C8:100 to C8:110 to the
memory locations starting at C8:500.

-M DS:table L 100 workspace

The second example copies the 256 (100h) bytes at the symbolic address
DS : table to the symbolic address workspace.

136

Microsoft Macro Assembler User's Guide

4.6.16 Name Command

Syntax

N [filename] [arguments]

The Name command (N) sets the file name for a subsequent Load command
(L) or vVrite command (W), or sets program arguments for subsequent exe
cution of a loaded program.

If filename is specified, all subsequent Load and Write commands will use
this name when accessing disk files.

If arguments are specified, the command copies all arguments, including
spaces, to the memory location starting at DS:81 and sets the byte at DS:80
to a Gount of the total number of characters copied. In both cases, DS is
the current value of the DS register. Once copied, the arguments are avail
able for access by the program being debugged.

Notes

136

If the first two arguments are also file names, the command creates file
control blocks (FCBs) at addresses DS:5C and DS:6C and copies the
names (in proper format) to these blocks. The FCBs can then be used
by the program being debugged.

The Name command also treats filename as an argument, copying it to
DS:81 and creating an FCB for it at DS:5C. Therefore, setting a new
file name for the Load and Write commands destroys any previous pro
gram arguments.

Each Name command changes one or more of the following memory
locations:

Address

DS:5C

DS:6C

DS:80

DS:81

Contents

FCB for file 1

FCB for file 2

Count of characters

All characters typed

SYMDEB: A Symbolic Debug Utility

Examples

-N filel.exe
-D 80 8f
2BB2:0080 OA 20 66 69 6C 65 31 2E-65 78 65 00 20 63 3A 43 . file1.exe. c:C

The first example sets the file name filel. exe for use by subsequent
Load and Write commands. The Dump command (D) is entered to show
the result. The Name command copies the length of the name (OAh or 10
decimal including the initial space) to byte 80 of the data segment and
copies the file name to the bytes starting at 81.

-N filel.dat file2.dat 1m /b
-D 50 9f
2BB2:0050 CO 21 CB 00 00 00 00 00-00 00 00 00 00 46 49 4C M!K FIL
2BB2:0060 45 33 20 20 20 44 41 54-00 00 00 00 00 20 20 20 E1 OAT
2BB2:0070 20 20 20 20 20 20 20 20-00 00 00 00 00 00 00 00
2BB2:0080 1A 20 66 69 6C 65 32 2E-64 61 74 20 66 69 6C 65 . file1.dat file
2BB2:0090 33 2E 64 61 74 20 2F 60-20 2F 62 00 4E 54 2E 65 2.dat 1m /b.NT.e

The second example sets the program arguments for the program being
debugged. The Dump command has been entered to show the results. The
Name command creates a File Control Block (FCB) for file f i 1 e2 . da t at
DS:5C. It also copies the entire command line (except the command letter
N), to memory starting at DS:81. The characters following the last letter
of the command line are simply data left over from previous commands.

4.6.17 Open Map Command

Syntax

XO [mapname!] [segmentname]

The Open Map command (XO) sets the active symbol map and/or seg
ment. If mapname is specified, the command sets the active symbol map to
the specified map. The mapname must be the file name (without extension)
of one of the symbol files specified in the SYMDEB command line. If seg
mentname is specified, the command sets the active segment to the named
segment. The segmentname must be the name of a segment in the specified
symbol map. All segments in an open map are accessible, but the open seg
ment is searched first. A map file can be opened only if it was loaded by
providing its name in the SYMDEB command line.

137

Microsoft Macro Assembler User's Guide

The examples below assume that SYMDEB was started with the following
command line. The Examine Symbol-Map command is also entered to show
the initial status:

SYMDEB resident.sym count.sym count.exe
-X*
0000 RESIDENT

0010 DATA
01A3 CODE

[2154 COUNT]
2164 DATA

[21E8 CODE]

Examples

-xo resident!
-X*
[0000 RESIDENT]

[0010 DATA]
01A3 CODE

2154 COUNT
2164 DATA
21E8 CODE

The first example opens the symbol map resident.

-xo count!data
-X*
0000 RESIDENT

0010 DATA
01A3 CODE

[2154 COUNT]
[2164 DATA]
21E8 CODE

The second example opens the segment data in the symbol map count.

-xo code
-X*
0000 RESIDENT

0010 DATA
01A3 CODE

[2154 COUNT]

138

2164 DATA
[21E8 CODE]

SYMDEB: A Symbolic Debug Utility

The final example activates the segment code in the current symbol map
(count).

4.6.18 Output Command

Syntax

o port byte

The Output command (0) sends the specified byte to the specified port.
The output port can be any 16-bit port address.

Examples

-0 2f8 4f

The first example sends the byte value 4Fh to output port 2F8h.

-0 3 21

The second example sends the byte value 21h to output port 3.

4.6.19 PTrace Command

Syntax

P [=startaddress] [count]

The PTrace command (P) executes the instruction at the specified startad
dress, then displays the current values of all registers and flags. The display
has the same format as the Register command (R) (see Section 4.6.22).

If the optional startaddress is specified, the command starts execution at
the specified address. Otherwise, it starts execution at the instruction
pointed to by the current OS and IP registers. The equal sign () is neces
sary to indicate a starladdress. If a number is specified without an equal
sign, SYMDEB assumes that the number is a count.

139

Microsoft Macro Assembler User's Guide

If the optional count is specified, the command executes count number of
instructions before stopping. The command displays the current values of
the registers and flags for each instruction before executing the next.

In source-only mode (8+), PTrace operates directly on source lines. In this
mode, PTrace steps over function or procedure calls. The source-only mode
is only available for programs developed with high-level-language com
pilers. See Section 4.6.25 for more information about setting the source
mode.

Note

The PTrace command is identical to the Trace command (T), except
that it automatically executes and returns from any calls or software
interrupts it encounters, leaving execution control at the next instruc
tion after the called routine. The Trace command always stops after
executing the call or interrupt, leaving execution control inside the
called routine. One exception to this rule is that neither the Trace nor
the PTrace command enters interrupt 21h, the MS-DOS function
request interrupt.

Examples

-p =work
AX=0800 BX=0005
D8=2BED E8=2BD2
2BE2:008C BE2EOO

CX=0800 DX=002E SP=OOFE
88=2C72 CS=2BE2 1P=008C

MOV S1,002E

BP=OOOO SI=0017 DI=OOOO
NV UP E1 PL NZ NA PE NC

The first example executes the instruction at work, then displays the
current values of the registers and flags, and the next instruction to be exe
cuted.

-T
AX=0800 BX=0005
DS=2BED E8=2BD2
2BE2:004D E83BOO
-p
AX=0800 BX=0005
DS=2BED ES=2BD2
2BE2:0050 EBED

140

CX=0800 DX=002E SP=OlOO BP=OOOO 8I=0017 D1=OOOO
SS=2C72 C8=2BE2 1P=OO4D NV UP E1 PL NZ NA PE NC

CALL WORD_C

CX=0378 DX=002E 8P=0100 BP=OOOO 81=084E D1=OOOO
SS=2C72 CS=2BE2 IP=0050 NV UP EI PL NZ NA PO NC

JMP OK+05 (003F)

SYMDEB: A Symbolic Debug Utility

In the second example, the first instruction is executed with the Trace com
mand, but the second is executed with the PTrace command so that the
CALL instruction will be executed instead of traced.

4.6.20 Quit Command

Syntax

Q

The Quit command (Q) terminates SYMDEB execution and returns con
trol to MS-DOS.

Example

-Q

This example terminates SYMDEB.

4.6.21 Redirection Commands

Syntax

< devicename
> devicename
= devicename
{ device name
} devicename

- devicename

The Redirection commands redirect the command input and output to the
device named by devicename. The < command causes SYMDEB to read
all subsequent command input from the specified device. The> command
causes SYMDEB to write all subsequent command output to the specified
device. The = command causes SYMDEB to both read from, and write
to, the specified device.

141

Microsoft Macro Assembler User's Guide

The (command reads all input for the debugged program from the
specified device. The 1 command writes all output from the debugged pro
gram to the specified device. The - command causes the debugged program
to both read from, and write to, the specified device.

The devicename can be any MS-DOS device or file name. If COM! or
COM2 is specified, the port's baud rate and other modes must be properly
set for the attached terminal. If redirection does not appear to work
correctly, check your MS-DOS manual and hardv:arc manuals to make sure
the lines are set up correctly.

The Redirection commands are typically used to debug programs that
require full use of the console screen. For example, you might redirect out
put from a graphics program to a color graphics monitor while reading the
SYMDEB output on a monochrome monitor.

Note

If input is redirected to COM! or COM2, the CONTROL-S and
CONTROL-C keystroke combinations are unavailable and will be ignored.
Make sure the device you specify is available before using a redirection
command.

Examples

->COMl

!he first example redirects SYMDEB command output to the COM! dev
Ice.

-=COMl

The second example redirects command input from, and output to, COM!.

->outfile.txt

The third example redirects command output to the file outfile. txt.
The cursor disappears. Any keystrokes you type will not be echoed to the
screen, but they will be sent to the file. Make sure you know exactly what
commands you want to send to the file before you begin. To close the file,
enter the command >CON or Q.

142

SYMDEB: A Symbolic Debug Utility

-<infile.txt

The final example redirects command input from file infile. txt to
SYMDEB. If the file contains a series of SYMDEB commands (separated
by carriage returns), SYMDEB will execute the commands to the end of
the file. The last command in the file should be either Q or <CON. If you
fail to place one of these commands at the end of the file, you will have to
~o a warm boot since there will be no way to tell SYMDEB to end the ses
SIOn.

4.6.22 Register Command

Syntax

R [registername[[]value]]

The Register command (R) displays the contents of the central processing
unit (CPU) registers and ahows the contents to be changed to new values.

If no registername is specified, the command displays all registers, flags, and
the instruction at the address pointed to by the current as and IP register
values.

The register display shows the next statement to be executed and attempts
to evaluate it, if that is appropriate. If an operand of the instruction con
tains memory expressions or immediate data, SYMDEB will evaluate
operands. If the instruction is an MS-DOS call, the function number will be
shown. If the as and IP registers are currently at a breakpoint or a
memory location, the register display will indicate the symbol or break
point. Examples are shown at the end of this section.

The Trace command (T) and PTrace command (P) show registers in the
same format as the Register command.

If registername is specified, the command displays the current value of the
register and prompts for a new value. If both registername and value are
specified, the command changes the register to the specified value.

I

The register name can be any of the following names: AX, BX, ax, DX,
as, DS, SS, ES, SP, BP, SI, DI, IP, PC, or F.

143

Microsoft Macro Assembler User's Guide

IP and PC name the same register: the instruction pointer. F is a special
name for the flags register. The other registers are discussed in Section
5.2.5 of the Microsoft Macro Assembler Reference Manual.

To change a register value, supply the name of the register when you enter
the Register command. If you do not also supply a value, the command
displays the name of the register, its current value, and a prompt consisting
of a colon. Type the new value and press the RETURN key. If you do not
want to change the value, just press the RETURN key. If you type an illegal
register name, SYMDEB displays a Bad Register! message.

To change a flag value, supply the register name F when you enter the
Register command. The command displays the current value of each flag as
a two-letter name. The flag values are shown below:

Table 4.5

Flag Values

FLAG SET CLEAR

Overflow OV NY
Direction DN (decrement) UP (increment)
Interrupt EI (enabled) DI (disabled)
Sign NG (negative) PL (positive)

Zero ZR NZ

Auxiliary Carry AC NA
Parity PE (even) PO (odd)

Carry CY NC

At the end of the list of values, the command displays a dash (-). Enter
new values after the dash for the flags you wish to change, then press the
RETURN key. You can enter flag values in any order. Spaces between values
are not required. Flags for which new values are not entered remain
unchanged. If you do not want to change any flags, simply press the
RETURN key.

If more than one value is entered for a flag, a Double flag! message will
be displayed. If you enter names other than those shown above, the com
mand returns a Bad Flag! message. In both cases, the flags up to the
error are changed; flags at and after the error are not.

144

SYMDEB: A Symbolic Debug Utility

Examples

-R

The first example displays all register and flag values, as well as the instruc
tion at the address pointed to by the CS and IP registers. In S+ or S&
mode, the display might look like this:

-R
AX=0008 BX=OA68 CX=0034 OX=OOOO SP=OA64 BP=OA70 S1=00E6 01=OA7A
OS=151B ES=151B SS=151B CS=151B 1P=0036 NV UP E1 PL NZ NA PE NC
8: a = add(f, g);
11BC:0036 83EC08 SUB SP,+08 ;BR2

Notice the comment at the right of the last line showing that the current
address is at breakpoint 2.

In S- mode, the display might look like this:

-R
AX=4AOO BX=4500 cx=oooo ox=cooo SP=FFEE BP=OOOO S1=OOOO 01=0000
OS=2382 ES=2382 S8=2382 CS=2382 IP=0104 NV UP EI PL NZ NA PO NC
2382:0104 C021 1NT 21 ;Modify Allocated Memory

The instruction is shown last. Notice the comment indicating the MS-DOS
function number about to be executed. The function number is taken from
the AH register.

-R
AX=4AOO BX=4500 cx=oooo ox=cooo SP=FFEE BP=OOOO 81=0000 01=0000
08=2382 ES=2382 S8=2382 C8=2382 1P=0100 NV UP E1 PL NZ NA PO NC
COOE:START:
2382:0100 B745 MOV BR,45 ; 'E'

In the second example immediately above, notice the words CODE: START:
indicating that the next instruction is at the symbol START in the CODE
segment. The; I E I to the right of the instruction indicates that 45 evalu
ates to the ASCII code for E. This may not always be relevant to the pur
pose of the instruction, but often it is useful.

-R
AX=4AOO BX=4500 cx=oooo ox=cooo SP=FFEE
08=2382 E8=2382 S8=2382 CS=2382 1P=0102
2382:0102 8A34 MOV DR, [S1]

BP=OOOO S1=OOOO 01=0000
NV UP E1 PL NZ NA PO NC

OS:OOOO=CO

In the third example immediately above, the memory operand [S I] in the
instruction is evaluated on the right side of the screen as OS: OOOO=CD.
This means that the byte pointed to by SI is at offset 0 in the DS segment,

146

Microsoft Macro Assembler User's Guide

and that it contains the value CDh.

-RIP 100

The fourth example changes the IP register to the value lOOh (256
decimal).

-R AX

The fifth example displays the current value of the AX register and
prompts for a new value. The display will look like this (the underscore
represents the SYMDEB cursor):

-R AX
AX. OEOO

You can now type any 16-bit value after the colon (:). For example, to
change the AX value to lOOh, enter 100 as shown below:

-R AX
AX. OEOO
:100

You could also press the RETURN key if you decided not to change the regis
ter value.

-R F

The final example displays the current flag values and prompts for changes.
The display should look like this (the underscore represents the SYMDEB
cursor):

-R F
NV UP DI NG NZ AC PE NC -

You must use the prompt method to change flag values; any value in the
command line is ignored. For example, to set the carry flag, enter CYas
shown below:

-R F
NV UP DI NG NZ AC PE NC -CY

146

SYMDEB: A Symbolic Debug Utility

4.6.23 Screen Swap Command

Syntax

\

The Screen Swap command (\) allows you to switch from the debugging
screen to the program screen. This command is convenient for programs
that update the screen frequently, or for graphics programs in which the
program out,p.ut cannot be shown on the SYMDEB screen. After you enter
a backslash t \), the program screen immediately replaces the SYMDEB
screen. After you inspect the current status of the program screen, you can
press any key to return to the SYMDEB screen.

This command is only available if you use the /S option when starting
SYMDEB and your computer is an IBM Personal Computer or a close
compatible. If your computer is an IBM compatible, you must also use the
/1 option.

4.6.24 Search Command

Syntax

S range list

The Search command (S) searches the specified range of memory locations
for the byte values specified in list. If the bytes are found, the command
displays the addresses of each occurrence of the bytes in the list. Other
wise, it displays nothing.

The list can have any number of bytes. Each byte value must be separated
from the others by a space or comma (,). If the list contains more than one
byte, the Search command does not display an address unless the bytes
beginning at that address exactly match the value and order of the bytes in
the list. Examples

-s buffer 1 1500 "error"
2BBA:040A
2BBA:05E3
2BBA:0604

147

Microsoft Macro Assembler User's Guide

The first example displays the address of each memory location containing
the string error. The command searches the first 1500h bytes at the
address specified by bu f fer. The string was found at the three addresses
shown by SYMDEB.

-S DS:I00 200 OA
3CBA:0132
3CBA:01C2

The second example displays the address of each memory location in the
range DS:I00 to DS:200 containing the byte value OAh. The value was
found at the two addresses shown by SYMDEB.

4.6.25 Set Source Mode Command

Syntax

8-\&\+

The Set Source Mode command (S) sets the display mode for commands
that display instruction code. If the plus sign (+) is specified, SYMDEB
displays the actual program source line corresponding to the instruction to
be displayed. If the minus sign (-) is specified, SYMDEB disassembles and
displays the instruction code in memory. If the ampersand (&) is specified,
SYMDEB displays both the program source line and the disassembled
code.

Initially, SYMDEB displays intermingled source lines and disassembled
code (the S& setting).

The Set Source Mode command is only meaningful if you are debugging
executable files produced with high-level-language compilers. Since MASM
cannot send line numbers to the object file, you cannot create a map file
that SYMDEB can use to relate assembler instructions to source-code
lines. All three source modes work as if the setting were S- when you
debug programs created with MASM or an incompatible compiler.

If no symbol file is loaded, or the symbol file does not contain line-number
information, SYMDEB ignores subsequent requests to display source lines.
If the S& command is specified, SYMDEB displays source lines only when
the current instruction address specified by CS:IP matches a line number.
The Set Source Mode command affects instructions displayed by the
Unassemble command (V) (see Section 4.6.2). When the source mode is set

148

SYMDEB: A Symbolic Debug Utility

to S-, the Unassemble command displays only disassembled instruction
code. When the source mode is S+ or S&, the Unassemble command inter
mingles disassembled instructions with program source lines.

The Set Source Mode command also affects the Register (R), Trace (T),
and PTrace (P) commands. In S+ mode, these commands process one
source line at a time (which may correspond to more than one line of
disassembled instructions). In S- mode disassembled instructions are
shown, but not source lines. In S& mode disassembled instructions and
line numbers are shown.

Source lines have the form:

linenumber:source

Source lines are always displayed before any disassembled instructions. If
SYMDEB must change the current source file to display a requested line,
it displays the name of the new source file before displaying the line.

Note

Whenever SYMDEB must access a source file for the first time, it
searches the current working directory for a source file with the same
base name as the symbol file. If the source file is not found, SYMDEB
displays the following prompt:

Source file name for mapname (cr for none)?

Note that mapname is the file name of the symbol file. To display
source lines, you must type the name of the corresponding source file.
The file name must include the file-name extension. If SYMDEB can
not find the named file, it prompts for a new name.

At times, you may wish to suppress display of source lines. In such
cases, just press the RETURN key when SYMDEB prompts for the file
name. SYMDEB will suppress the actual source lines and display a
map name and line number instead.

One case in which you must suppress display of source lines is with
early versions of Pascal and FORTRAN (prior to 3.31). The run-time
object files of these compilers contain line-number information. When
SYMDEB tries to access these lines, it will prompt you for the source
file name. Press the RETURN key to ignore this request, since you will
not have access to the run-time source files.

149

Microsoft Macro Assembler User's Guide

Examples

-S+

The first example sets SYMDEB to source-line display mode.

-S&

The second example sets SYMDEB to combined source-line and disassem
bly display mode. On subsequent commands, SYMDEB displays both the
source line and disassembled instruction code.

4.6.26 Shell Escape Command

Syntax

! [command]

The Shell Escape command (!) allows you to execute COMMAND.COM
and MS-DOS commands from within SYMDEB. The Shell command by
itself executes COM"MAND.COM with no arguments, saving the current
debugging context. After you are finished executing DOS commands, type
the MS-DOS command EXIT and you will return to SYMDEB at the
point where you left off.

In addition, you can type an MS-DOS command or an executable program
file name directly after the Shell Escape command. The command will exe
cute automatically, and, when it is completed, return control to SYMDEB.

160

SYMDEB: A Symbolic Debug Utility

Note

In order to use the Shell Escape command, the executable file being
debugged must release the memory it does not need. A program can do
this by using MS-DOS function call 4Ah (Modify Allocate Memory).
This gives MS-DOS space to load the new COMMAND.COM. the
same thing can be accomplished by linking with the / CP ARMAXAL
LOC option.

Programs developed with Version 3.0 or later of Microsoft C do this
automatically if they have been executed up to function _main. Pro
grams developed with Version 3.30 or later of Microsoft Pascal or
Microsoft FORTRAN also release memory if they have been executed
up to the first procedure. SYMDEB, when loaded by itself, also frees
memory. However, programs developed with MASM or an incom
patible compiler must contain code to adjust memory if the Shell
Escape command is to be used.

SYMDEB will print the message Not enough memory if memory
has not been released.

The SYMDEB statement connector (;) cannot be used after the Shell
Escape command, since all text encountered after the command is passed to
COMMAND. COM will be interpreted as an MS-DOS command line.
SYMDEB uses the COMSPEC environment variable to locate a copy of
COMMAND.COM.

Examples

-!dir b:*.asm

In the first example, the MS-DOS internal command dir is executed, its
output is shown on the screen, and control is returned to SYMDEB.

-!chkdsk b:

In the second example, the MS-DOS external command chkdsk is exe
cuted, the status of the disk in Drive B is displayed, and control is returned
to SYMDEB. The file name specified could be for any executable file, not
just for MS-DOS external programs.

161

Microsoft Macro Assembler User's Guide

4.6.27 Source Line Command

Syntax

A single period (.) displays the current source code line. This command
\vorks regardless of the current source mode. The command has no effect if
you are debugging a program created with MASM or an incompatible com
piler.

Example

for (i = 0; i <= SIZE; i++);

The example above shows the current source line of the current source file
(from a C program, in this case).

4.6.28 Stack Trace Command

Syntax

K [number]

The Stack Trace command (K) allows you to display the current stack
frame. The first line of the display shows the name of the current pro
cedure, arguments to the procedure, and the file name and line number of
the call to the procedure. The succeeding lines (if any) trace the call. For
example, the next line displays the name of, and arguments to, the pro
cedure that called the current procedure, and so on.

SYMDEB only displays the arguments to a procedure if it is able to deter
mine the number of arguments. By specifying the optional number, you can
force SYMDEB to display number words of arguments. For example, if
the number of arguments to a procedure varies and SYMDEB cannot
determine the exact number of actual arguments, no arguments will be
displayed unless you give some value as the number argument.

162

SYMDEB: A Symbolic Debug Utility

Note

The Stack Trace command only works on procedures that follow the
calling conventions used by Microsoft high-level languages. If a pro
gram produced with MASM does not follow these conventions, the
command will be ignored. An example of a procedure call that follows
these conventions is shown in Section 3.10 of the Microsoft Macro
Assembler Reference Manual. The procedure shown in Section 5.2.9 of
the same manual does not follow the conventions and would not work
with the Stack Trace command.

Example

-K
IGROUP:_fact(0003) from .fact.c:12
IGROUP:_fact(0004) from .fact.c:12
IGROUP:_fact(0005) from .fact.c:12
IGROUP:_fact(0006) from .fact.c:3
IGROUP:_main(?)

In the example above, the first line of output indicates that the current pro
cedure _ fact (actually a function, since the example is in C), has one argu
ment with a current value of 3. The procedure was called from line 12 of
source file fact. c. The other output lines indicate that _ fact is recur
sive and has called itself three times. The procedure was originally called
from line 3 of the source file.

The procedure _main was also called, but SYMDEB could not determine
how many arguments it had. You can force SYMDEB to give you the
value for the first argument of _main, as shown below:

-K 1
IGROUP:_fact(0003) from .fact.c:12
IGROUP:_fact(0004) from .fact.c:12
IGROUP:_fact(0005) from .fact.c:12
IGROUP:_fact(0006) from .fact.c:3
IGROUP:_main(OOOl)

The last output line now indicates that the first argument of _main has a
value of 1. This information may not always be relevant, depending on
nature of the code being examined.

153

Microsoft Macro Assembler User's Guide

4.6.29 Symbol Set Command

Syntax

Z symbol value

The Symbol Set command (Z) sets the address of the specified symbol to
the specified vaiue.

Note

One specific situation in which you must set a symbol to a specific value
is with old versions of FORTRAN and Pascal (Microsoft versions prior
to 3.3 or IBM versions prior to 2.0). After starting SYMDEB and going
to the first procedure of the program, use the Symbol Set command to
set the address of DGROUP to the current value of the DS register.
This enables you to access symbolic variable names within DGROUP.
The correct address is set automatically with later versions of FOR
TRAN and Pascal.

Examples

-z close 4C

The first example sets the address of the symbol close to the value 4Ch.

SYMDEB fortprog.sym fortprog.exe
-G main
-Z DGROUP DS

The second example starts SYMDEB with an early-version FORTRAN
program, goes to the first procedure (main), and sets the value of the vari
able DGROUP to the current value of the DS register. You could do the
same with early versions of Pascal, except. that the first procedure would be
the procedure having the program name. After this sequence of commands,
symbols in DGROUP will have the correct addresses and can be accessed nor
mally.

164

SYMDEB: A Symbolic Debug Utility

4.6.30 Trace Command

Syntax

T [==.startaddress] [count]

The Trace command (T) executes the instruction at startaddress, then
displays the current values of all registers and flags. The display has the
same format as the Register command (R).

If the optional startaddress is specified, the command starts execution at
the specified address. Otherwise, it starts execution at the instruction
pointed to by the current OS and IP registers. The equal sign () indi
cates a startaddress. If a number is specified without an equal SIgn, SYM
DEB assumes the number is a count.

If the optional count is specified, the command continues to execute count
number of instructions before stopping. The command displays the current
values of the registers and flags for each instruction before executing the
next instruction.

Use the Trace command if you want to trace through calls and interrupts.
If you want to execute interrupts or calls without tracing through them,
you should use the PTrace command (P) instead. Both commands execute
DOS function calls (interrupt 21h) without tracing through them.

In source-only mode (S+), the Trace command operates directly on source
lines. In this mode, the Trace command executes function or procedure
calls while the PTrace command steps over them. This applies only to pro
grams developed with high-level languages. Tracing through source lines
works better if you turn off optimization when you compile the program
(see Section 4.2.2).

Notes

The Trace command uses the hardware trace mode of the 8086, 8088,
80186, or 80286 microprocessor. Consequently, you may also trace
instructions stored in ROM (read-only memory).

155

Microsoft Macro Assembler User's Guide

Examples

-T 2
AX=0924 BX=OOOO
DS=39E7 ES=39CC
39DC:000F B40A
AX=OA24 BX=OOOO
DS=39E7 ES=39CC
39DC:00ll CD21

CX=0900 DX=0017 SP=0100 BP=OOOO SI=OOOO DI=OOOO
SS=3A6C CS=39DC 1P=OOOF NV UP E1 NG NZ AC PE CY

MOV AH,OA
CX=0900 DX=0017 SP=0100 BP=OOOO S1=OOOO D1=OOOO
SS=3A6C CS=39DC 1P=OOll NV UP EI NG NZ AC PE CY

INT 21 ;Buffered Keyboard Input

The first example executes the next two executable source lines, and
displays them.

-T _open
AX=OA24 BX=OOOO
DS=39E7 ES=39CC
39DC:0025 32CO

CX=0900 DX=0019 SP=OlOO
SS=3A6C CS=39DC 1P=0025

XOR AL,AL

BP=OOOO S1=OOOO D1=OOOO
NV UP EI NG NZ AC PE CY

The second example executes the instruction at _open, then displays the
current values of the registers and flags. It also displays the next instruc
tion to be executed. If you are in source-only mode (S+), this example exe
cutes the instruction at _open, then displays the next source line.

-T
AX=OAOO BX=OOOO CX=0900 DX=0019 SP=0100
DS=39E7 ES=39CC SS=3A6C CS=39DC 1P=0027
39DC:0027 B43D MOV AH,3D

BP=OOOO SI=OOOO DI=OOOO
NV UP EI PL ZR NA PE NC

• I-I , -

The third example executes the instruction pointed to by the current as
and IP register values.

- -T =013
AX=OAOO BX=OOOO CX=0900 DX=0019 SP=0100
DS=39E7 ES=39CC SS=3A6C CS=39DC IP=0015

BP=OOOO SI=0019 DI=OOOO
NV UP EI PL ZR NA PE NC

DS:OOIA=OO 39DC:0015 8ASC01 MOV BL, [S1+01]

The fourth example executes the instruction at 013h in the current OS seg
ment.

-S+
-T 7
3:
7:
9:
12:
7:
9:
12:

166

printf ("%dO, fact (6)) ;
int i;
if (i == 1)

return(i * fact(i-1));
int i;
if (i == 1)

return(i * fact(i-1));

SYMDEB: A Symbolic Debug Utility

The final example sets the source-line mode to source only and traces
through seven source lines. In source-only mode, no registers are shown,
only source lines.

4.6.31 Unassemble Command

Syntax

U [range]

The Unassemble command (U) displays the instructions and/or statements
of the program being debugged. The format of the display del?ends on the
current display mode set by the Set Source Mode command (S), and on
whether the program was developed with a high-level language. The
different display modes all work as if the source-mode setting was S- when
you debug programs developed with MASM or an incompatible compiler.

When you use the either the S+ or S& mode on programs with a compati
ble compiler, SYMDEB displays source lines mixed with disassembled
instructions. One source line is shown for each corresponding group of
assembly-language statements. Source lines are read from the source file.
Assembly-language statements are translated from memory bytes. The S+
and S& modes work the same with the Unassemble command (they are
different for the Trace command (T) and the PTrace command (P).
For both source and mixed modes, SY1v1DEB requires that a symbol map
be loaded with the program and that line-number information for the
source file be in the map. If no line-number information exists for a
specified portion of a program, SYMDEB will not display source text.

If the optional range is specified, the command displays instructions gen
erated from code within the specified range. If no range is specified, the
command displays the instructions generated from the first eight lines of
code at the current unassemble address. The current unassemble address is
the address of the first byte (line) after the last byte (line) displayed by the
previous Unassemble command.

SYMDEB displays both the hexadecimal and ASCII value of 8-bit immedi
ate operands. The hexadecimal value is shown as part of the instruction;
the ASCII value is shown as a comment (following a semicolon) on the same
display line.

80286 protected-mode mnemonics cannot be displayed.

167

Microsoft Macro Assembler User's Guide

Examples

-8+
-u .19

i := 1;
B81300
50
9A82001126
C7066AOOOI00

MOV
PUSH
CALL
MOV

notprime := false;

AX,0013
AX
DEBEQQ_CODE:LNTEQQ
Word Ptr [006A],0001

19:
2492:00CC
2492:00CF
2492:00DO
2492:00D5
20:
2492:00DB
2492:00DE

B81400 MOV AX,0014
50 PUSH AX

The first example displays line 19 in the source code, followed by the
disassembled instruction code for the statement at line 19 and part of the
instructions for line 20. The source code in this example is in Pascal.

-8&
-u .18 L 10
18: 103 CONTINUE
294E:007C AIB200 MOV
294E:007F 40 INC
294E:0080 A3B200 MOV
294E:0083 3DOAOO CMP
294E:0086 7EA5 JLE
19: CALL BUBBLE(R,10)
294E:0088 B86000 MOV
294E:008B IE PUSH
294E:008C 50 PUSH
294E:008D B88COB MOV
294E:0090 IE PUSH
294E:0091 50 PUSH
294E:0092 9A35014E29 CALL
20: WRITE (*,002)
294E:0097 33CO XOR

AX, [00B2]
AX
[00B2] ,AX

AX,OOOA
MAIN+2C (002D)

AX,0060
DS
AX
AX,OB8C
DS
AX
MAIN_:BUBBLE

AX, AX

The second example displays 10 lines of disassembled instruction code and
program-source lines beginning at the address line 18. The source code is in
FORTRAN in this example.

-u CS:02AD
4:{
IGROUP:_main:
1156:02AD 55 PUSH BP
1156:02AE 8BEC MOV BP,SP
1156:02BO B80200 MOV AX, 0002
1156:02B3 E893FF CALL chkstk
7: for (i='a'; i<'z'; i++)
1156:02B6 C746FE6100 MOV Word Ptr [BP-02],0061

168

SYMDEB: A Symbolic Debug Utility

The third example displays eight lines of disassembled instruction code and
program source code beginning at CS : 02AD. Eight lines is the default if
no range is specified. The source code is in C in this example.

-u conv_hex
CODE:CONV_HEX:
29D2:0071 B104 MOV CL,04
29D2:0073 B504 MOV CH,04
CODE:ROTATE:
29D2:0075 D3C3 ROL BX,CL
29D2:0077 SAD3 MOV DL,BL
29D2:0079 SOE20f AND DL,Of
29D2:007C SOC230 ADD DL,30 ; '0'
-u
29D2:007f SOfA3A CMF DL,3A .'. ,
29D2:00S2 7C03 JL ROTATE+12 (00S7)
29D2:00S4 SOC207 ADD DL,07
29D2:00S7 B402 MOV AH,02
29D2:00S9 CD21 INT 21
29D2:00SB fECD DEC CH
29D2:00SD 75E6 JNZ ROTATE
CODE:QUIT:

The fourth example shows the effect of the Unassemble command when
SYMDEB is used on a sample program produced by MASM. The com
mand disassembles eight lines of code beginning at the symbolic address
conv _hex, then unassembles the next eight lines. No source-mode com
mand is entered since the display will be the same regardless of the current
mode.

-s-
-u _main L OA
IGROUP:_main:
1156:02AD 55
1156:02AE SBEC
1156:02BO BS0200
1156:02B3 ES93ff
1156:02B6 C746FE6100
1156:02BB ffOEEC05
1156:02Bf S33EEC0500
1156:02C4 7C11
1156:02C6 SA46fE
1156:02C9 SB1EEA05

PUSH
MOV
MOV
CALL
MOV
DEC
eMF
JL
MOV
MOV

BP
BP,SP
AX, 0002
chkstk
Word Ptr [BP-02],0061
Word Ptr [05EC]
Word Ptr [05EC],+00
_main+2A (02D7)
AL, [BP-02]
BX, [05EA]

159

Microsoft Macro Assembler User's Guide

The final example displays 10 (OAh) lines of disassembled code starting at
the address _main. The program in this example is written in C, but since
no source lines are shown, the format of the symbols is the only indication
of the source.

4.6.32 View Command

Syntax

V address

The View command (V) displays source lines beginning at the specified
address. The symbol fife must contain line-number information for source
lines to be displayed. This means that the View command has no effect on
programs developed with MASM or an incompatible compiler.

With compatible compilers, this command always shows source lines,
regardless of the current source mode (8-, S&, or 8+).

Example

-v fune
4:{
5: int i;
6:
7: for (i='a'; i<'z'; i++)
8: putchar(i);
9: for (i='A'; i<'z'; i++)
10: putchar(i);
11: for (i='O'; i<'9'; i++)

The example above displays eight source lines beginning at the address
specified by _ func. The example shows C code, but FORTRAN or Pascal
code would be displayed in the same way.

160

SYMDEB: A Symbolic Debug Utility

4.6.33 Write Command

Syntax

W [address [drive record count]]

The Write command (W) writes the contents of a specified memory loca
tion to a named file, or to a specified logical record on disk.

To write to a file, the file name must be previously set with a Name com
mand (N), and the BX:CX register pair must be set to the number of bytes
to be written. If no address is specified, the command copies bytes starting
from the address CS:100, where CS is the current value of the CS register.
If address is specified, the command copies bytes starting at that address.

To write to a logical record on disk, the address, drive, record, and count
must be specified. The drive must name the d~ive to be written to. It can
be any number in the range 0 to 3, representing Drive A (0), B (1), C (2), or
D (3). The record specifies the first logical record to receive the data. It
can be any 1- to 4-digit hexadecimal number. The count specifies the
number of records to be written to the disk. It can be any 1- to 4-digit hex
adecimal number.

Warning

Do not write data to an absolute disk sector unless you are sure the sec
tor is free. Writing to reserved or occupied sectors can destroy the con
tents of a file or even the entire disk.

If the file you are debugging is a .COM or .BIN file, you can make changes
to the program with SYMDEB and then write the program to a file.
When you load the file, the file length, starting address, and file name will
be set correctly for writing. However, if you use the Go (G), Ptrace (P), or
Trace (T) commands during debugging, or if you change the BX:CX regis
ter values, you must reset each of these conditions before writing the file to
disk.

You cannot use the Write command to write .EXE or .HEX files to disk.
However, it is possible to modify these files with SYMDEB. The steps are

161

Microsoft Macro Assembler User's Guide

outlined below. This is an advanced technique that may require some
experimentation.

1. Start SYMDEB with the executable file and note the hexadecimal
values of the first few instructions of the program.

2. Quit SYMDEB and rename the file so that its extension is not .EXE
or .HEX. For example, change f i 1 e . exe to f i 1 e . e.

3. Start SYMDEB with the renamed executable file. SYMDEB will not
strip off the MS-DOS file header as it normally does with .EXE and
.HEX files. Therefore, the first instructions will be an attempt by
SYMDEB to make sense of the data in the file header. They will not
be the initial instructions of the program. (Don't load symbol files,
since all symbolic data will be incorrect.)

4. Use the Search command (S) and the value of the first instructions to
find the start of the program. This may take some trial and error. The
starting address will vary, depending on the order of segments and
other factors.

5. Once you have found the start of the program, you can find the instruc
tions that need to be modified and make the appropriate changes.

6. Set the parameters for the Write command and write the whole file,
including the file header, to disk. Make sure you include the file header
in the program length entered to the BX:CX register pair.

7. Quit SYMDEB and rename the file back to its original name.

Examples

-N b:bell.com
-R BX 00
-R ex OA
-w 100

The first example writes 10 (OAh) bytes to the file named bell. com on
Drive B. The bytes to be written start at address 100. The program
bell. com is shown in section 4.6.1.

-w workspace 2 34 3

The example above writes three logical records to Drive C, starting at
record number 34h. The bytes to be written start at the address
workspace.

162

SYMDEB: A Symbolic Debug Utility

4.7 Sample SYl\1DEB Session

This sample session gives examples of commonly used SYMDEB com
mands. The assembly-language program used in the session is called
count. exe. It prompts for a file name, opens the specified file, counts the
words in the file, and prints the total on the screen. The source code for
the program is shown on the next few pages. In order to keep the code as
short as possible, the program has minimal error checking and prints the
total in hexadecimal. This source file is included on your distribution disk.

Note the following points about the source file:

• The first line, after the macros, in the source file declares public
each of the variable names used to store program data.

• The next two lines declare public some of the labels used in the pro
gram code. Only labels at key points that might be accessed by
SYMDEB are declared.

• Several labels declared in the code are not used by any statement in
the code. For example, get_ f i 1 e, open_ f i 1 e, and conv _hex
are not used by any jump or loop instructions. They are placed at
important points in the code so that SYMDEB can access those
addresses by name.

When developing your own programs, you may want to temporarily
place symbols at problem areas. Declare these labels public for test
ing, and then remove them when the program is debugged.

o All numbers in the source code are specified in hexadecimal. This
makes it easier to compare the code to SYMDEB displays, which
always show hexadecimal numbers.

o The source code contains a bug that will be identified and corrected
during the sample session.

dosint

error

PUBLIC
PUBLIC
PUBLIC

MACRO
mov
int
ENDM

function
ah, function
21h

" Call the DOS interrupt
" Put function number in AH

MACRO errnum Display error and exit
mov dX,OFFSET err&errnum;; Load address of error message
dosint 09h Display string function
mov al,errnum " Exit with return code of errnum
dosint 4Ch QUit
ENDM

prompt,namebuf,fname,buffer,errl,err2,count,new_flag
get_file,open_file,ok,buff_read,done,conv_hex,rotate
quit,word_c,next_char,new_word,old_word,out_word,get_out

163

Microsoft Macro Assembler User's Guide

stack

stack

data
prompt
namebuf
fname
buffer
err1
err2
count
nevcflag
data

code

start:

access:

ok:

done:

conY_hex:

rotate:

show:

164

SEGMENT word stack 'STACK'
DB 100h DUP(7)
ENDS

SEGMENT
DB

word public 'DATA'
'Enter file name: $'

DB
DB
DB
DB
DB
OW
DB
ENDS

1Sh,7 Maximum length of file name
1Sh DUP (7) is 1Sh (21d)
800h DUP(7) Buffer size is 800h (2048d)
'Can' 't access file' ,0Dh,OAh, '$'
'I/O error' ,0Dh,OAh, '$' ° InitializA wnrd count to 0
1 ; Initialize new word to true (1)

SEGMENT byte public 'CODE'
ASSUME cs:code,ds:data

moy
moy

mov
dosint
mov
dosint
mov
moy
mov

mov
dosint

mov
xor
dosint
jnc
error

mov
moy
mov
dosint
jc
cmp
je
call
jmp
error

dosint

mov
mov
mov
rol
mov
and
add
cmp
jl
add
dosint
dec

aX,data
dS,ax

dX,OFFSET
09h
dX,OFFSET
OAh
si,dx

prompt

namebuf

bl, BYTE PTR [si+1]
BYTE PTR [si+bx+2] ,0;

dl,OAh
02h

dX,OFFSET fname
al,al
3Dh
ok
1

bX,ax
dX,OFFSET buffer
cX,800h
3Fh
io_err
ax,O
done
word_c
SHORT io_loop
2

3Eh

bX,count
cl,4
ch,4
bX,cl
dl,bl
dl,OFh
dl,30h
dh,3Ah
show
dl,07h
02h
ch

Load data segment address

Load address of prompt string
Display it
Load address for file name buffer
Get file name string
Set SI to start of file name buffer
Put the number of bytes read in BL
Put ° at end to make ASCIIZ string

(0 overrides CR from prompt)
Load linefeed character
Print it

Load offset of ASCIIZ string
Set code ° - open for reading
Try to open the file
If opened, then process file

else error macro

Move file handle to BX
Give address to dump file contents
Set buffer size
Read a buffer of data from file
If there's a read error, then quit

else see if we read anything
If not, we're done

else count what we read
Do it again
Error macro

Close (file handle already in BX)

Put count in BX for processing
Load number of bits to rotate
Load count for digits
Rotate left digit to right
Move to DL for processing
Mask off left digit
Convert to ASCII digit
Is it greater than 97
If not, display character

else convert hex letter
Display character function
Decrement the digit count

jnz rotate

quit: xor al,al
dosint 4Ch

word c PROC
push
mov
mov
mov
mov

next char: inc
mov
cmp
jle
cmp
je
jmp

new_word: inc
xor

old_word: loop
jmp

out_word: mov
loop

get_out: add
mov
pop
ret

word_c ENDP

code ENDS
END

NEAR
bx
si,OFFSET buffer-l
bx,O
cX,ax
ah, new_flag

si
aI, [si]
al,20h
out_word
ah,l
new_word
old_word

bx
ah,ah
next_char
get_out
ah,l
next_char

count,bx
new_flag, ah
bx

start

SYMDEB: A Symbolic Debug Utility

If count isn't zero, do it again

else set 0 for return code
Return to DOS function

Procedure to count words in buffer
Save BX - it has file handle
Load address one byte before buffer
Set BX to 0 for word count
Put number of characters read in CX
Set new word flag (AH)

Bump index (adjust on first pass)
Get next character
Compare to space
If less, we're not in a word

else is new word flag TRUE?
If flag is TRUE, it's a new word

else it's an old word

Bump word count
Set new word flag to FALSE (0)
Get next character
Fall through at end of buffer
Set new word flag to true (1)
Get next character

Add buffer count to variable
Save current flag status
Restore file handle

4.7.1 Assembling and Loading

The steps for assembling and loading count. exe are shown below. The
example assumes that all files are on the same drive.

1. Assemble the program. You may want to print a listing file for
comparison, as shown below:

MASM count,,:

2. Link the object file using the /MAP option:

LINK count,,/MAP;

3. Create a symbol file:

MAPSYM count

4. Start SYMDEB with the symbol file, the executable file, and any
options you wish to use:

SYMDEB /S/K/"R;X?*" count.sym count.exe

166

Microsoft Macro Assembler User's Guide

In the example, the /S option is used so that the program screen will be
separate from the SYMDEB screen. The /K option is used so that we can
escape if we accidentally get into an endless loop. The start-up command
option is used to start with a register display and a list of symbols.

The example assumes you have an IBM Personal Computer. If you have an
IBM-compatible computer, you should add the /1 option so that the /S and
/K options will be functional. If your computer is not an IBM or compati-
hlp vnll ~~n lp~",TP nllt thp I~ <:>nrl IT< nntinn'" ",inl'o thou ",ill 1-. uo n.n. nffn"t "-'.&"', J '-' ,",&.AI'&'" .&.'-"'-"', """ '-'''-LV V.I..1.v I, """".1.'-1. I ""PV.1.'-'.I..I.U, U.l.J..l"","" V.l.J.\,.;J ".1..1.1. .l.lU,,",, J..1V ""'.1J.\...\,.ov.

4.7.2 Examining a Program with SYMDEB

In the following session, hexadecimal numbers are used except where noted.
When you start SYMDEB with the command line shown in the previous
section, the following display appears:

Microsoft Symbolic Debug Utility
Version 4.00
(C) Copyright Microsoft Corp 1984, 1985
Processor is [8086J
AX=OOOO BX=OOOO CX=OA09 DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO
DS=292A ES=292A SS=293A CS=29CE IP=OOOC NV UP EI PL NZ NA PO NC
29CE:000C B84A29 MOV AX,DATA

CODE: (29CE)
0018 GET_FILE
0073 CONV_HEX
00B3 NEW_WORD
DATA: (294A)
0000 PROMPT
0012 NAMEBUF
0849 COUNT

002E OPEN_FILE 0046 OK 0052 BUFF_READ 006B DONE
0077 ROTATE 0091 QUIT 0097 WORD_C 00A4 NEXT_CHAR
00B6 OLD_WORD OOBS OUT_WORD OOBF GET_OUT

0014 FNAME 0029 BUFFER 0829 ERR1 0830 ERR2
084B NEW_FLAG

The first lines after the start-up message show the register status. These
lines are produced with the first command (R) specified with the start-up
command option. Notice that the stack pomter (SP register) is at 100h,
the number of bytes assigned to the stack.

The second command (X? *) specified with the start-up command option
displays all the symbols loaded from the symbol file.

The first few instructions load the segment and display a prompt. We'll
skip them and start by going directly to the instructions that get a file
name for processing:

166

-G get_file
AX=0924 BX=OOOO
DS=294A ES=292A
CODE:GET_FILE:
29CE:0018 BA1200

SYMDEB: A Symbolic Debug Utility

CX=OA09 DX=OOOO SP=0100
SS=293A CS=29CE IP=0018

MOV DX,0012

BP=OOOO SI=OOOO DI=OOOO
NY UP EI PL NZ NA PO NC

According to the symbol display shown when SYMDEB was started, the
symbol get_ f i I e is at address 18h. The register display confirms that
after going to get_ fi Ie, the instruction pointer (IP) is at address 18h.

Note

If you did not start SYMDEB with the /S option, the prompt Enter
f i I e name: will appear at this point. This session includes informa
tion about the double-screen display available with IBM and compatible
computers. If your computer doesn't have this capability, all the
prompts and displays described for the program screen will actually
appear on the SYMDEB screen.

Now take a look at the next few instructions using the Un assemble com
mand (U):

-u
29CE:001B B40A
29CE:001D CD21
29CE:001F 8BF2
29CE:0021 8A5C01
29CE:0024 C6400200
29CE:0028 B20A
29CE:002A B402
29CE:002C CD21

MOV
INT
MOV
MOV
MOV
MOV
MOV
INT

AH,OA
21
SI,DX
BL, [SI +01]
Byte Ptr [BX+SI+02],00
DL,OA
AH,02
21

Notice that an Unassemble command with no argument starts at the next
instruction after the current address (lBh, in this case). Step through the
next few instructions with the Trace (T) and PTrace (P) commands:

-T
AX=0924 BX=OOOO
DS=294A ES=292A
29CE:001B B40A
-T
AX=OA24 BX=OOOO
DS=294A ES=292A
29CE:001D CD21

CX=OA09 DX=0012 SP=0100 BP=OOOO SI=OOOO DI=OOOO
SS=293A CS=29CE IP=OOlB NY UP EI PL NZ NA PO NC

MOV AH,OA

CX=OA09 DX=0012 SP=0100 BP=OOOO SI=OOOO DI=OOOO
SS=293A CS=29CE IP=OOlD NY UP EI PL NZ NA PO NC

INT 21 ;Buffered Keyboard Input

167

Microsoft Macro Assembler User's Guide

-p
AX=OAOO BX=OOOO CX=OA09 DX=0012 SP=OlOO BP=OOOO S1=OOOO D1=OOOO
DS=294A ES=292A SS=293A CS=29CE 1P=OOlF NY UP E1 PL NZ NA PO NC
29CE:001F 8BF2 MOV S1,DX

Notice how the registers change with each instruction. The PTrace instruc
tion is not strictly necessary for skipping over interrupt 2Ih, but it is a
good idea to get in the habit of using it, since SYMDEB will trace through
any interrupt except 2Ih. Tracing interrupts is sometimes useful, but usu
ally you will want to execute them.

After you execute MS-DOS function OAh, SYMDEB waits for you to enter
a file name. If you started SYMDEB with the /S option, the program
screen will temporarily replace the SYMDEB screen at this point. In this
session, count. exe is used to count the words in count. asm. Enter
count. asm at the file-name prompt.

The results can be examined with the Dump command (D):

-D namebuf fname-l
294A:0010 15 09
-D fname buffer-l
294A:0010 63 6F 75 6E-74 2E 61 73 60 00 00 00 count .asm ...
294A:0020 00 00 00 00 00 00 00 00-00

The dump is in the Dump Bytes (DB) format (the default when you start
SYMDEB). The first byte of namebu f contains the maximum number of
bytes available for the file name as set in the source code (15h). The second
byte contains the actual number of characters entered (09h). The dump of
fname confirms that the variable is indeed I5h bytes long and that 09h
ASCII bytes and a carriage return (ODh) were entered. You can check the
Microsoft MS-DOS Programmer's Reference Manual or some other MS-DOS
reference book to confirm that this is the proper format for strings entered
with MS-DOS function OAh.

The next few instructions change fname to the ASCIIZ format (a String
terminated by a null) used by the file functions of MS-DOS VersIOn 2.0 and
later:

-T
AX=OAOO BX=OOOO
DS=294A ES=292A
29CE:0021 8AsC01

168

CX=OA09 OX=0012 SP=0100
SS=293A CS=29CE 1P=0021

MOV BL, [S1 +01]

BP=OOOO S1=0012 01=0000
NV UP E1 PL NZ NA PO NC

OS:0013=09

SYMDEB: A Symbolic Debug Utility

-T
AX=OAOO BX=0009 CX=OA09 OX=0012 SP=0100 BP=OOOO S1=0012 01=0000
OS=294A ES=292A SS=293A CS=29CE 1P=0024 NV UP E1 PL NZ NA PO NC
29CE:0024 C6400200 MOV Byte Ptr [BX+S1+02],00 OS:0010=00
-T
AX=OAOO BX=0009 CX=OA09 OX=0012 SP=0100 BP=OOOO S1=0012 01=0000
OS=294A ES=292A SS=293A CS=29CE 1P=0028 NV UP E1 PL NZ NA PO NC
29CE:0028 B20A MOV OL,OA

Notice how memory locations in operands are expanded on the far right of
the screen. For example, the operand [BX +S1 +02J evaluates to
DS: 0010=OD, which means that memory offset 1Dh (09+12+02) of the
data segment contains ODh (line feed). The instruction

MOV Byte Ptr [BX+S1+02],00

replaces the line feed with a zero as illustrated by the dump below. Com
pare the tenth byte of this dump with the same byte in the earlier dump of
fname.

-D fname buffer-l
294A:0010 63 6F 75 6E-74 2E 61 73 60 00 00 00 count .asm ...
294A:0020 00 00 00 00 00 00 00 00-00

If you started SYMDEB with the /S option, you can enter a backslash (\)
to see the current status of the program screen. If you do this, notice that
the cursor is at the start of the first line. This is because a carriage return
was provided without a line feed. The next two instructions solve this
problem by printing a line feed.

Now execute the next few instructions and examine the status of the regis
ters after opening a file and reading a buffer full of data:

-G buff_read
AX=0800 BX=0005 CX=0800 DX=0029 8P=0100 BP=OOOO 81=0012 D1=OOOO
DS=294A ES=292A SS=293A C8=29CE 1P=0052 NV UP E1 PL ZR NA PE NC
CODE:BUFF_READ:
29CE:0052 720A JB BUFF_READ+OC (005E)

At this point ex still contains the size of the file input buffer, BX contains
the file handle (05h, in the example), and DX contains the offset of the
input buffer. Interrupt 3Fh has just been used to read the first 800h (2048
decimal) bytes of text from the file to the buffer. The following ASCII
dump shows the contents of the buffer:

-DA buffer L 100
294A:0029 dosint MACRO function ;; Call t
294A:0059 he DOS interrupt mov ah,functio
294A:0089 n ;; Put function number in AH ..

169

Microsoft Macro Assembler User's Guide

294A:07A9
294A:07D9
294A:0809

i+l] ; Put the number of bytes read in BL ..
mov BYTE PTR [si+bx+2],0; Put 0 at en

d to make ASCIIZ string ..

When you enter the DA command, several screens full of data scroll past.
Notice the double dots scattered throughout the text. These are carriage
return/line-feed combinations, as you can confirm if you dump bytes
instead of ASCII characters. If you typed the source code yourself, you may
see dots representing tab characters instead of series of spaces (depending
on how your editor handles tabs).

Next, set some breakpoints to examine different parts of the program:

-BP next_char "DA ds:si+l L l;R"
- BP ne"cW'ord
-BP buff_read "DW count count+l;R"

These breakpoints are chosen because they represent three levels within the
program. Two of them have quoted commands that will be executed each
time the breakpoint is reached. To execute to the first break, enter the Go
command (G):

-G
294A:0029 d
AX=OlOO BX=OOOO
DS=294A ES=292A
CODE:NEXT_CHAR:
29CE:00A4 46

CX=0800 DX=0029
SS=293A CS=29CE

INC SI

SP=OOFC
IP=00A4

BP=OOOO SI=0028 DI=OOOO
NY UP EI PL NZ NA PE NC

;BRO

The program stops each time it reads in a new character. The quoted com
mand DA ds: si + 1 L 1 displays the character that is about to be read
and the quoted command R displays the registers. Enter the Go command
again. This takes you to the second breakpoint:

-G
AX=0164 BX=OOOO CX=0800 DX=0029 SP=OOFC BP=OOOO SI=0029 DI=OOOO
DS=294A ES=292A SS=293A CS=29CE IP=00B3 NY UP EI PL ZR NA PE NC
CODE:NEW_WORD:
29CE:00B3 43 INC BX ;BRl

If you enter the Go command several times, you will stop at the first break
point for each new character and at the second breakpoint every time you
start a new word. Notice how BX, which contains the word count, is

170

SYMDEB: A Symbolic Debug Utility

incremented every time you reach the second breakpoint (BR1). Reading
in every character is a slow process. You can speed things up by disabling
the first breakpoint (BRO):

-BD 0

Now when you enter the Go command a few times, you move through the
buffer faster, stopping only when you reach a new word. You can speed
things up more by disabling the second breakpoint. The example display
also shows a breakpoint list:

-BD 1
-BL
o d 29CE:00A4 [CODE:NEXT_CHAR] "DA DS:S1+1 L l;R"
1 d 29CE:00B3 [CODE:NEW_WORD]
2 e 29CE:00S2 [CODE:BUFF_READ] "DW COUNT COUNT+1;R"
-G
294A:0849 00E1
AX=0800 BX=OOOS CX=0800 DX=0029 SP=0100 BP=OOOO S1=0828 D1=OOOO
DS=294A ES=292A SS=293A CS=29CE 1P=00S2 NV UP E1 PL NZ NA PE NC
CODE:BUFF_READ:
29CE:00S2 720A JB BUFF_READ+OC (OOSE) ;BR2

From the breakpoint list, you can see that breakpoints 0 and 1 are still in
memory. You can turn them back on with the Breakpoint Enable com
mand (BE) any time you want.

When you enter the Go command, execution now stops after reading a
whole buffer. The quoted command DW count count + 1 shows the vari
able where the current word total is stored. The word count is Elh (225
decimal) after reading the first buffer.

The sample file contains only a few buffers of text, so after you enter the Go
command several times, the program will terminate without finding the
breakpoint. You will see the following message:

-G

Program terminated normally (0)

When the program terminates, use the Quit command (Q) to return to
DOS. If you started SYMDEB with the /S option, the program screen
should look like this:

Enter file name: count.asm
02;8

171

Microsoft Macro Assembler User's Guide

The total shown (02; 8) is not a valid hexadecimal number. (If you typed
count. asm yourself wIth different comments or spacing, you might not see
this problem, but it will become obvious if you try counting the words in
other text files.) The bug is probably in the routine that converts binary
numbers to hexadecimal. To find and correct it, restart SYMDEB. (Don't
try to run the program without quitting SYMDEB and restarting.) Then
enter the following command:

AX=0004 BX-02B8
DS=294A ES=292A
CODE:CONY_HEX:
29CE:0073 BI04

CX=0800 DX=004~ SP=OlOO BP=OOOO S1=0775 D1=OOOO
SS=293A CS=29CE 1P=0073 NY UP E1 PL ZR NA PE NC

MOV CL,04

This shows the status of the registers the first time through the conversion
loop. Notice that BX contains the total word count taken from the vari
able count. This is the number we want to print. To examine processing
of the digit that prints incorrectly, set a breakpoint with a passcount of
three:

-BP rotate 3
-G
AX=0232 BX=B802
DS=294A ES=292A
CODE:ROTATE:
29CE:0077 D3C3

CX=0204 DX=0032 SP=OlOO BP=OOOO S1=0775 D1=OOOO
SS=293A CS=29CE IP=0077 NY UP E1 PL NZ NA PO CY

ROL BX,CL ;BRO

Notice that the register containing the loop count (CH) contains 2. The
loop has already been executed twice and this is the third pass. Trace
through the next four instructions:

-T 4
AX=0232 BX=802B
DS=294A ES=292A
29CE:0079 8AD3
AX=0232 BX=802B
DS=294A ES=292A
29CE:007B 80E20F
AX=0232 BX=802B
DS=294A ES=292A
29CE:007E 80C230
AX=0232 BX=802B
DS=294A ES=292A
29CE:0081 80FE3A

CX=0204 DX=0032 SP=OlOO
SS=293A CS=29CE IP=0079

MOV DL,BL
CX=0204 DX=002B SP=OlOO
SS=293A CS=29CE 1P=007B

AND DL,OF
CX=0204 DX=OOOB SP=OlOO
SS=293A CS=29CE 1P=007E

ADD DL,30
CX=0204 DX=003B SP=OlOO
SS=293A CS=29CE IP=0081

CMP DH,3A

BP=OOOO S1=0775 DI=OOOO
NY UP E1 PL NZ NA PO CY

BP=OOOO S1=0775 D1=OOOO
NY UP E1 PL NZ NA PO CY

BP=OOOO S1=0775 D1=OOOO
NY UP E1 PL NZ NA PO NC

; '0'
BP=OOOO S1=0775 D1=OOOO

NY UP E1 PL NZ NA PO NC .,. ,

The first instructions seem all right. The number in BX is rotated and its
lower byte moved to BL. The second digit is masked off and 30h is added
to convert to an ASCII digit. But then 3Ah (the ASCII code for the

172

SYMDEB: A Symbolic Debug Utility

character one above the digit 9) is compared to DH (which contains zero).
The number we want to compare is in DL, not DH. That's probably the
bug. Use the Assemble command (A) to fix it:

-A
29CE:0081 cmp dl,3A
29CE:0084

You don't need to supply an address since the Assemble command assumes
the current IP address if none is specified. Enter the correct instruction on
the first line, then press the RETURN key on the next line to indicate you
don't want to assemble any more instructions. Now trace through the next
three instructions:

-T 3
AX=0232 BX=802B
DS=294A ES=292A
29CE:0084 7C03
AX=0232 BX=802B
DS=294A ES=292A
29CE:0086 80C207
AX=0232 BX=802B
DS=294A ES=292A
29CE:0089 B402

CX=0204 DX=003B SP=OlOO BP=OOOO SI=0775 DI=OOOO
SS=293A CS=29CE 1P=0084 NY UP EI PL NZ NA PO NC

JL ROTATE+12 (0089)
CX=0204 DX=003B SP=OlOO BP=OOOO SI=0775 DI=OOOO
SS=293A CS=29CE IP=0086 NY UP E1 PL NZ NA PO NC

ADD DL,07
CX=0204 DX=0042 SP=OlOO BP=OOOO SI=0775 DI=OOOO
SS=293A CS=29CE 1P=0089 NY UP EI PL NZ AC PE NC

MOV AH,02

The digit is now adjusted from a semicolon (ASCII 3Bh) to a C (ASCII 42h).
If the instruction hadn't been changed, the program would have jumped
over the adjustment instruction. Use the Go command (G) twice to run the
rest of the program. It should print the word count correctly now.

You can now fix the bug in the source code and reassemble. This type of
minor bug is the kind that is often difficult to spot from reading source
code. SYMDEB lets you see what is happening inside the processor so that
you can examine operations and locate bugs easily.

173

Chapter 5

CREF:
A Cross-Reference Utility

5.1 Introduction 177
5.2 Using CREF 177
5.2.1 Creating a Cross-Reference File 177
5.2.2 Creating a Cross-Reference Listing

Using Prompts 178
5.2.3 Creating a Cross-Reference Listing

Using a Command Line 179
5.3 Cross-Reference Listing Format 180

176

CREF: A Cross-Reference Utility

5.1 Introduction

The Microsoft Cross-Reference Utility (CREF), creates a cross-reference
listing of all symbols in an assembly-language program. A cross-reference
listing is an alphabetical list of symbols in which each symbol is followed by
a series of line numbers. The line numbers indicate the lines in the source
program that contain a reference to the symbol.

CREF is intended for use as a debugging aid to speed up the search for
symbols encountered during a debugging session. The cross-reference list
ing, together with the symbol table created by the assembler, can make
debugging and correction of a program easier.

5.2 Using CREF

CREF creates a cross-reference listing for a program by converting a non
ASCII cross-reference file, produced by the assembler, into a readable ASCII
file. You create the cross-reference file by supplying a cross-reference file
name when you invoke the assembler . You create the cross-reference listing
by invoking CREF and supplying the name of the cross-reference file.

Sections 5.2 and 5.3 explain how to create a cross-reference file for CREF
and how to use CREF to create a cross-reference listing.

5.2.1 Creating a Cross-Reference File

You can create a cross-reference file by supplying a cross-reference file name
when you invoke MASM. MASM offers two ways to name this file: in
response to a command prompt, or on the command line with other file
names.

To create a cross-reference file using a prompt, enter MASM, then supply the
file name in response to the fourth command prompt. For example, to
create a cross-reference file test. cr f for the program test. asm, type

MASM

Source filename [.ASM]: test
Object filename [test.OBJ]: test
Source listing [NUL.LST]: test
Cross-Reference [NUL.CRE]: test

177

Microsoft Macro Assembler User's Guide

If you do not type a file name after the "Cross-Reference" prompt, the
assembler will not create a cross-reference file. If you do not supply an
extension, MASM uses the extension .CRF. This is the extension
expected by CREF and is recommended for all cross-reference files.

To create a cross-reference file from a command line, place the name as the
fourth parameter in the MASM command line. For example, to create a
cross-reference file (test. cr f) for the source file (test. asm), type:

MASM test, test, test, test

This command also creates object and listing files for the program while the
program is being assembled. MASM parameters must be separated by
commas. Even if you do not supply a name for a given parameter, you still
must supply a comma. See Section 2.2.1 for more information.

5.2.2 Creating a Cross-Reference Listing
Using Prompts

You can direct CREF to prompt you for file names when it starts by typ
ing just the CREF command name. CREF displays a series of prompts
asking for the file names. To start CREF with prompts, follow these
steps:

178

1. From the MS-DOS prompt, type

CREF

and press the RETURN key. Once CREF starts, it displays the
prompt

Cross-Reference [.CRF]:

2. Type the name of the cross-reference file that you wish to convert to
a cross-reference listing, then press the RETURN key. You need not
supply a file-name extension if your cross-reference file already has
the extension .CRF. If your cross-reference file does not have this
extension, you must supply the correct extension at this time.

Once you supply a file name, CREF displays the following prompt:

Listing [filename. REF] :

Note that filename is the default file name for the cross-reference
listing.

CREF: A Cross-Reference Utility

3. Press the RETURN key if you wish to use the default name for the
cross-reference listing. Otherwise, type the file name you want and
then press the RETURN key. If you do not supply a file-name exten
sion, CREF uses .REF.

Once you have supplied the file names, CREF reads the cross-reference file
and creates the new listing. It also displays the number of symbols in the
cross-reference file.

Example

CREF
Microsoft Cross Reference Utility Version 3.50
(C) Copyright Microsoft Corp 1981, 1983, 1984, 1985

Cross reference [.CRF]: test
Listing [test.REF]:

8 Symbols

In the example above, CREF creates reads test. cr f and processes it to
produce test. re f. Eight symbols were cross-referenced.

5.2.3 Creating a Cross-Reference Listing
Using a Command Line

You can create a cross-reference listing by typing CREF followed by the
names of the files you want to process. The command line has the form:

CREF crossreferencefile [,crossreferencelisting] [;]

The crossreferencefile is the name of the cross-reference file created by
MASM, and the crossreferencelisting is the name of the readable ASOII file
you wish to create.

If you do not supply file-name extensions when you name the files, CREF
will automatically provide .CRF for the cross-reference file and .REF for
the cross-reference listing. If you do not want these extensions, you must
supply your own.

You can select a default file name for the listing file by typing a semicolon
immediately after crossreferencefile. The default file name has the same file

, name as the cross-reference file, but uses the extension .REF instead of
.CRF.

179

Microsoft Macro Assembler User's Guide

You can specify a directory or disk drive for either of the files. You can
also name output devices such as CON (display console) and PRN (printer).

Examples

CREE test.crf,test.ref

The first example uses the cross-reference file test. cr f to crea.te a. cross
reference listing test. re f. It is equivalent to

CREE test,test

or

CREE test;

The following example directs the cross-reference listing to the screen. No
file is created.

CREE test,con

5.3 Cross-Reference Listing Format

The cross-reference listing contains the name of each symbol defined in
your program. Each name is followed by a list of line numbers representing
the line or lines in the program listing file in which a symbol is defined or
used. Line numbers in which a symbol is defined are marked with a pound
sign (#).

Each page in the listing begins with the title of the program. The title is
the name or string defined by the TITLE directive in the source file. See
Section 9.6 in the Microsoft Macro Assembler Reference Manual.

For example, assume that the following source program is in the file
test. asm:

quit

max

180

MACRO
mov ah,4Ch
int 21h
ENDM

EQU 65535

EXTRN work:NEAR

; Return to DOS
;;DOS exit function

CREF: A Cross-Reference Utility

stack

stack

data
buffer
data

code

start:

code

SEGMENT para public 'STACK'
DB 256 DUP(?)
ENDS

SEGMENT public 'DATA'
DW 100 DUP(?)
ENDS

SEGMENT public 'CODE'
ASSUME cs:code,ds:data

mov aX,data Load
mov dS,ax
call work Call
quit Call
ENDS
END start

address

procedure
macro

To assemble the program and create a cross-reference file, type:

MASM test,test,test,test

The listing file test. 1st produced by this assembly will look like the fol
lowing listing (the tables at the end of the listing are not shown):

Microsoft MACRO Assembler Version 4.00 9/25/85 13:58:46

1
2
3
4
5
6 FFFF
7
8
9

10 0000
11 0000 0100 [
12 ??
13
14
15 0100
16
17 0000
18 0000 0064 [
19 ????
20
21
22 00C8
23
24 0000
25
26
27 0000 B8 ---- R
28
29 0003 E8 0000 E
30

Page 1-1

quit MACRO
mov ah,4Ch
int 21h
ENDM

max EQU 65535

EXTRN work:NEAR

stack SEGMENT para public 'STACK'
DB 256 DUP(?)

stack ENDS

data SEGMENT public 'DATA'
buffer DW 100 DUP(?)

data ENDS

code SEGMENT public 'CODE'
ASSUME cs:code,ds:data

start: mov
mov
call
quit

aX,data
dS,ax
work

181

Microsoft Macro Assembler User's Guide

31 0006 B4 4C
32 0008 CD 21
33 OOOA
34

1
1

code

mov
int
ENDS
END

ah,4ch
21h

start

To create a cross-reference listing of the file test. cr f, type:

CREF test, test

The resulting cross-reference listing in Lhe file test. re f will have the fol
lowing format:

Microsoft Cross-Reference Version 4.00 Wed Sep 25 12:12:40 1985

Symbol Cross-Reference (# is definition) Cref-1

BUFFER 18 18#

CODE 24 24# 24 25 33

DATA 17 17# 17 22 25 27

MAX 6 6#

QUIT 30

STACK 10 10# 10 15
START 27 27# 34

WORK 8 8# 29

8 Symbols

Compare the line numbers in the cross-reference listing to the listing file.
Don't try to count lines in the source file, since line numbers there usually
won't match line numbers in the listing and cross-reference listing files.

182

Chapter 6

LID: A Library Manager

6.1 Introduction 185
6.2 Starting and Using LIB 186
6.2.1 Starting LIB with Prompts 186
6.2.2 Starting LIB with a Command Line 188
6.2.3 Starting LIB with a Response File 189
6.2.4 Setting the Library-Page Size 191
6.3 Creating a New Library 192
6.4 Checking a Library's Consistency 193
6.5 Creating a Library-Reference Listing 194
6.6 Maintaining Libraries 195
6.6.1 Adding a Module to a Library 195
6.6.2 Deleting Library Modules 196
6.6.3 Replacing Library Modules 197
6.6.4 Copying Library Modules 198
6.6.5 Moving Library Modules 198
6.6.6 Combining Libraries 199

183

LID: A Library Manager

6.1 Introduction

The Microsoft Library Manager (LIB) creates, organizes, and maintains
program libraries. A program library is a collection of one or more "object
modules." Object modules are assembled or compiled instructions and data
that are ready for linking. A library stores object modules that other pro
grams may need for execution. Libraries are used by the program linker to
include routines and variables used, but not defined, in the source code of a
program.

LIB creates a library by copying the contents of one or more object files
into a library file. An object file contains a single object module, created by
MASM or a high-level-language compiler. When LIB adds an object
module to a library, it places the module's name in the library's table of
contents. When LINK searches the library for the names of routines and
variables used in a program, it checks the table of contents. When it finds
the routine, it extracts a copy of the module containing that routine and
links the module to the program. Thus, only modules containing routines or
variables used by the program are extracted and linked.

LIB can perform the following four tasks with library files:

• Create a new library

• Check an existing library for consistency

• Print a library-reference listing

• Maintain libraries

The last task, maintaining libraries, is the most common. The command
symbols in Table 6.1 are used in library maintenance. They are discussed
in detail in Section 6.6.

Table 6.1

LIB Commands

Symbol Meaning

+ Add
Delete

-+ Replace
* Copy
-* Move

185

Microsoft Macro Assembler User's Guide

Each of the four kinds of LIB tasks can be done with prompts, a command
line, a response file, or a combination of the three methods.

This chapter first describes in a general way the three methods of starting
and using LIB. It then describes in detail each of the four tasks you can
perform with LIB. LIB commands are discussed in connection with the
fourth task, maintaining library files.

6.2 Starting and Using LID

You can give the names of files for LIB to work on, and the commands
specifying what you want LIB to do, in three ways: by answering a series of
prompts, by entering a command line, or by supplying a response file. You
can stop LIB at any time by pressing CONTROL-C.

6.2.1 Starting LID with Prompts

You can let LIB prompt you for the information it needs by typing LIB at
the MS-DOS command level. Follow these steps:

186

1. Type

LIB

and press the RETURN key. LIB starts and displays the prompt:

Library name:

2. Type the name of the library you wish to work on. If you do not
supply a file-name extension, LIB supplies the extension .LIB. If
you wish to create a new library, type the new name and press the
RETURN key.

LIB now looks for the specified library file. If it finds the file, LIB
displays the next prompt. If it does not find the file, LID displays
the prompt:

Library file does not exist. Create?

Type y to create the library file or type n to return to the MS-DOS
command level.

LID: A Library Manager

If you want to change the default page size, you can specify the
option:

/P AGESIZE:number

after entering the library name. The number is the desired page
size. See Section 6.2.4.

Once the library is ready for work, LIB displays the prompt:

Operations:

3. Type the command or commands you wish to perform on the given
library and press the RETURN key. If you have more commands than
can fit on one line, type an ampersand (&) as the last character on
the line and press the RETURN key. LIB will then prompt for
further commands.

Once you have typed all commands, press the RETURN key. If you
only want LIB to check the consistency of the library, do not type
any commands-just press the RETURN key.

Once you have pressed the RETURN key, LIB displays the prompt:

List file:

4. Type the name of the new library-reference listing file and press the
RETURN key. Make sure the file name has the extension you want.
LIB will not provide a default extension. If you do not want a
library-reference listing file, do not type a name-just press the
RETURN key.

If you did not give commands to modify the library, LIB creates the
list file and returns to DOS at this point. If you did give commands
at the "Operations" prompt, LIB displays the following prompt:

Output library:

5. Type the name of the output file you wish to create and press the
RETURN key. If you do not supply a file-name extension, LIB sup
plies the extension .LIB. You can press the RETURN key without
giving a file name if you want LIB to use the name of the old
library file. In this case, LIB saves a backup copy of the current
library by replacing its .LIB extension with the extension .BAle

LIB now carries out the commands you have requested.

You can direct LIB to select the default responses to all remaining prompts
by typing a semicolon (;) at any prompt line after the "Library name"
prompt. At any prompt, you can fill in the rest of the file names and com
mands in the command-line format (see Section 6.2.2). You must supply a
path name for any file that is not on the current drive and directory.

187

Microsoft Macro Assembler User's Guide

Example

LIB

Library name: math
Operations: +sin +cos &
Operations: +atan +exp
List file: math
Output library: mathl

This example creates a new library called mathl. 1 ib from the contents of
the old library math. 1 ib. LIB also adds the modules in the object files
sin.obj, cos.obj, atan.obj, and exp.obj to the new library. A
library-reference listing file called math (with no extension) is created.

6.2.2 Starting LIB with a Command Line

You can start LIB and also give all the commands and files to be processed
on a single MS-DOS command line. The LIB command line has the form:

LIB oldlibrary [!PAGESIZE:number] [commands][,[listfile] [,[newlibrary]]] [;]

The oldlibrary names the library file to be worked on. If you do not supply
a file-name extension, LIB supplies .LIB.

The /P AGESIZE option defines the page size of the library. The default
page size is 16 bytes. This option is discussed in detail in Section 6.2.4.

The commands are LIB commands from among those listed in Section 6.6.
They specify what tasks are to be performed on the given library. If you do
not specify any commands, LIB will create a library cross-reference listing
without doing any operations.

The optional listfile is the name of the library-reference listing file. If no file
name is given, LIB does not create a lis tfi Ie.

The optional newlibrary is the name of the new library file to which you
wish to copy the modified library. If no file name is given, LIB uses the
oldlibrary file name and renames the oldlibrary file by giving it the extension
. BAle

If one of the files specified in the command line is in another directory or on
a different drive, you must supply an appropriate path name.

188

LID: A Library Manager

If you give a listfile, you must separate it from the last command with a
comma (,). If you give a newlibrary, you must separate it from the listfile
with a comma (,) or from the last command with two commas (,,).

You can use a semicolon (;) after any entry except the oldlibrary to direct
LIB to use the default responses for the remaining entries. If used, the
semicolon should be the last character on the command line.

Examples

LIB lang +heap;

The first example instructs LIB to add the module heap to the library
1 ang . 1 ib. The semicolon at the end of the command line tells LIB to use
the default responses for the library-reference listing and the new library
file. This means that no reference listing is created and that the changes
are written back to the original library file. The old library file is renamed
to lang. bak.

LIB lang +heap,lang.lst,langl.lib

The second example creates a new library named langl . 1 ib by modifying
the library 1 ang . 1 ib. The new library is identical to the old one, except
that the module heap has been added. LIB also creates a listing file for
the library named lang. 1st.

6.2.3 Starting LIB with a Response File

You can direct LIB to read commands and file names from a response file
by supplying the name of the response file when you invoke LIB. The sim
plest form of the command line has the form

LIB @ responsefile

A response file can also be specified at any prompt, or at any position in a
command line. The input from the response file will be treated exactly as if
it had been entered at prompts or in a command line. However, note that
carriage-return/line-feed combinations in the response file are treated the
same as the RETURN key entered in response to a prompt, or a comma used
in a command line.

189

Microsoft Macro Assembler User's Guide

When starting LIB, the responsefile must be the name of the response file,
and it must be preceded by an at sign (@). If the file is in another direc
tory or on another disk drive, a path name must be provided.

You can name the response file anything you like. The file has the follow
ing form:

library [/P AGESIZE:number]
If ,11
[commanas~

[listf£le]
[output-file]

Elements that have already been provided at prompts or with a partial
command line can be left out.

Each file name must appear on a separate line. Any number of commands
may be placed on a line. If you have more commands than can fit on one
line, you can extend the line by typing an ampersand (&) at the end of the
line.

You can place a semicolon (;) on any line in the response file. When LIB
encounters the semicolon, it automatically supplies default file names for all
files you have not yet named in the response file. The remainder of the file
is ignored.

When you create a program with a response file, LIB displays each response
from your response file on the screen in the form of prompts. If the
response file does not contain names for required files, LIB prompts for the
missing names and waits for you to enter responses.

Note

190

A response file should end with a semicolon (;) or a carriage
return/line-feed combination. If you fail to provide a final carriage
return/line-feed in the file, LINK will display the last line of the
response file and wait for you to'press the RETURN key.

LID: A Library :Manager

Example

p1ib
+cursor +heap +stack
cross. 1st

This response file causes LIB to work on the library p1 ib. 1 ib. The com
mands in the second line instruct LIB to add the modules cursor, heap,
and stack to the new library file. A library-reference listing called
cross. 1st is created. Since no name is specified for the output library,
the new library file will have the same name as the old. The old version will
be renamed to p1 ib. bak.

6.2.4 Setting the Library-Page Size

You can set the library-page size by adding a page-size option after the
library-file name in the LIB command line or after the new library-file
name at the "Library name" prompt. The option has the form:

/PAGESIZE:number

The number specifies the new page size. It must be an integer value
representing a power of 2 between the values 16 and 32768. The option
name can be abbreviated to /P:number.

The page size of a library affects the alignment of modules stored in the
library. Modules in the library are aligned to always start at a position
that is a multiple of the page size (in bytes), calculated from the beginning
of the file. The default page size is 16 bytes for a new library or the current
page size for an existing library.

Note

Because of the indexing technique used by LIB, a library with a large
page size can hold more modules than a library with a smaller ~age size.
However, for each module in the library, an average of number/2 bytes
of storage space is wasted (where number is the page size). In most
cases, a small page size is advantageous; you should use a small page
size unless you need to put a very large number of modules in a library.

191

Microsoft Macro Assembler User's Guide

Examples

LIB

Library name: math jPAGESIZE:256
Operations: +tangent
List file: mathtan.lst
Output library: mathtan

This example creates a new library file named mathtan. 1 ib from the old
library file math. 1 ib. The page size is set to 256 bytes. The module
tangent is added to the new library file and a library-reference listing
called mathtan. 1st is created.

The example below shows how the same library would be created with a
command line:

LIB math/P:256,+tangent,mathtan.lst,mathtan

6.3 Creating a New Library

You can create a new library by giving the name of the new library file
when you invoke LIB. The name of the new library must not be the name
of an existing file, or LIB will assume you want to modify the existing file.

When you give the name of a library file in response to the "Library name"
prompt, LIB searches for that file. If the specified library file does not
exist, LIB displays the following prompt:

Library file does not exist. Create?

Type y to create the file or n to abort the library session.

If no file exists for a library name given in a command line, LIB creates the
library, processes the commands, and fills in the rest of the command line.
If you give the new library name in a command line without additional
commands or files, LID changes to prompt mode and asks if you want to
create the new library.

192

LID: A Library Manager

EX8I1lples

LIB

Library name: display jPAGESIZE:64
Library does not exist. Create? y
Operations: +cursor +scroll +position
List file:

In the example above, a library called display .lib is created from the
object files cursor. ob j, scro 11 . ob j, and posi tion . ob j. The new
library is created with a page size of 64 bytes.

You could create the same library with the following command line:

LIB display /P:64 +cursor +scroll +position;

6.4 Checking a Library's Consistency

You can check to make sure a library's contents are consistent and usable
by running LIB without commands. Type a semicolon (;) at the "Opera
tions" prompt or after the file name at the "Library name" prompt. You
can also type a command line with the name of the library you wish to
check followed by a semicolon. LID then makes sure all entries in the
library can be accessed. If any problems are discovered, LID displays an
error message. Otherwise, it displays nothing.

Consistency checks are typically used to verify that the contents of existing
libraries are usable. For example, if you copied a library from another disk,
you can run a consistency check to verify that the copied library is intact.

Note that LID.automatically checks object modules for consistency before
adding them to the library, so you do not need to check the library each
time you add a module.

EX8I1lples

LIB

Library name: math;

This example checks to make sure all modules in math. 1 ib are valid and
usable. You can do the same thing with the following command line:

LIB math;

193

Microsoft Macro Assembler User's Guide

6.5 Creating a Library-Reference Listing

You direct LIB to create a library-reference listing whenever you give a file
name at the "List file" prompt or in the listfile position of a LIB command
line. A library-reference listing consists of two lists: a list of all public sym
bols in the library, and a list of all modules in the library.

In the first list, all symbols are listed alphabetically. Each symbol name is
followed by the name of the module in which it is referenced. The list has
the form:

START
SUM
SUM2
EXIT

main
add
add
error

In the second list, all modules are listed alphabetically. The module name
is followed by an alphabetical listing of the public symbols referenced in
that module. The list has the form:

main Offset: 0OOOO200H Code and data size: 20H
START

add Offset: 0OOOO400H Code and data size: 20H
SUM SUM2

error Offset: 0OOOO600H Code and data size: CH
EXIT

You can get a listing of an existing file by pressing the RETURN key at the
"Operations" prompt and entering a file name at the "List file" prompt.
The same thing can be done in a command line by typing a comma (,) after
the library name and then typing the name of the file containing the
library-reference listing.

Examples

LIB

Library name: math
Operations:
List file: math

194

LID: A Library Manager

The example above creates a library-reference listing file called math (with
no extension). The following command line does the same thing except
that the library-reference listing is shown on the screen instead of being
sent to a file:

LIB math, con

6.6 Maintaining Libraries

The LIB commands specify the maintenance tasks to be carried out on a
given library. The commands are used to add, delete, and replace modules
in a given library. They can also copy and move modules to new libraries.

Commands can be given on the LIB command line, in response to the LIB
"Operations" prompt, or in a response file.

Make sure you have sufficient disk space to do the commands you specify.
LIB may need additional space for a listing file and for a new library file.
LIB will save the old version of a library file with the extension .BAK if
you specify that the modified library file should have the same name as the
original. You may get an error message if there is not enough space on the
disk for both the new library file and the backup library file.

6.6.1 Adding a Module to a Library

Syntax

+ o bfectfile

The Add command (+) adds the object module in the specified objectfile to
the current library. The objectfile must be the file name of an object file. If
you do not specify a file-name extension, LIB supplies .OBJ by default. If
the file is in another directory or on a different disk, you must supply an
appropriate path name. There must be no spaces between the plus sign (+)
and the name.

LIB searches for the file you have named, and adds the object file's con
tents to the current library. LIB then strips the drive name, path name,
and the file-name extension (if any) from the object-file name and places the
resulting name in the library's table of contents. LIB always appends
object modules to the end of the library file.

196

Microsoft Macro Assembler User's Guide

Examples

LIB math +sin.obj;

The first example adds the module in the file sin. ob j to the library
math. 1 ib. No list file is created.

LIB \lib\math +cos, math;

The second example adds the module in the file cos. ob j to the library
math. lib in the \lib directory. A list file math (with no extension) is
created.

LIB math +A:\src\atan;

The final example adds the module in the file atan. ob j to the library
math. 1 ib. The object file is in the \src directory on Drive A. No list file
is created.

6.6.2 Deleting Library Modules

Syntax

-modulename

The Delete command (-) deletes the object module identified by the place
holder modulename from the current library. The module name must be
spelled exactly as it appears in the library's table of contents. Case is not
significant when specifying module names.

Note

196

LIB carries out all Delete commands before attempting to carry out
any Add commands (+) regardless of the order in which the commands
appear in the command line. This order of execution prevents confu
sion in LIB when a new version of a module replaces an existing version
in the library file.

LID: A Library Manager

Examples

LIB math - sin;

The first example deletes the module sin from the library math. 1 ib. No
list file is created.

LIB \lib\math - cos, math;

The second example deletes the module cos from the library math. 1 ib in
the \1 ib directory. The list file math (with no extension) is created.

LIB math +A:\src\atan - atan;

The final example deletes module atan. ob j from library math. 1 ib. It
then adds the module in the object file A: \src\atan. ob j to the library.
Note that the Delete command is carried out before the Add (+) command
even though the Add command comes first on the command hne.

6.6.3 Replacing Library Modules

Syntax

-+ modulename

The Replace command (-+) replaces the module identified by modulename
with the module in an object file having the same name. The modulename
must have exactly the same spelling as the name in the library's table of
contents (case is not significant). LIB first deletes this module, then
searches the current working directory for a file having the same file name
and the file-name extension .OBJ.

If the file is found, LIB adds it to the library file. If LIB cannot find the
file containing the replacement module, it displays an error message.

Example

LI B math - +cos;

This example deletes the module cos. ob j then finds the file cos. ob j in
the current directory and adds the contents to the library file. No listing is
created.

197

Microsoft Macro Assembler User's Guide

6.6.4 Copying Library Modules

Syntax

*modulename

The Copy command (*) extracts from the library a copy of the module
identified by modulcname, and copies it to an objed file having the same
name. The modulename must have exactly the same spelling as the name in
the library's table of contents (case is not significant). If the module is not
in the library file, LIB displays an error message.

When LIB copies the module to an object file, it creates a file whose file
name is the same as that of the module, but whose file-name extension is
.OBJ. The file is placed in the current working directory.

Example

LIB math *cos;

This example creates a file named cos. ob j in the current working direc
tory. The file contains the object module copied from the math. 1 ib
library. The module cos remains unchanged in the library file.

6.6.5 Moving Library Modules

Syntax

-*modulename

The Move command (-*) moves the module identified by modulename from
the current library to an object file having the same name as the module.
The modulename must be spelled exactly as it appears in the library's table
of contents (case is not significant). If the module is not in the library file,
LIB displays an error message.

The move is equivalent to copying the module to an object file, as described
above, then deleting the module from the library.

198

Llli: A Library Manager

Example

LIB math - *cos

This example moves the module cos into an object file named cos. ob j in
the current working directory. The module is deleted from the library
rna tho No list file is created.

6.6.6 Combining Libraries

Syntax

+libraryname

The Add command (+) can also be used to add the contents of another
library to the current library. The libraryname must be the name of the
library file you wish to add. You must give the file-name extension of the
file. Otherwise, LIB assumes the file is an object file.

LIB appends the modules of the named library to the end of the current
library without destroying the named library or deleting any modules.

Note

LIB can be used to add the contents of XENIX and Intel-style libraries
to MS-DOS libraries.

Example

LIB mathl +math.lib;

This example adds the modules contained in the library rna th. 1 ib to the
modules in the library mathl . 1 ib.

199

Chapter 7

MAKE:
A Program Maintainer

7.1 Introduction 203
7.2 Using MAKE 203
7.2.1 Creating a MAKE Description File
7.2.2 Starting MAKE 205
7.2.3 Using MAKE Options 206
7.2.4 Using Macro Definitions 207
7.2.5 Nesting Macro Definitions 208
7.2.6 Using Special Macros 209
7.2.7 Inference Rules 210
7.3 Maintaining a Program: An Example

203

211

201

MAKE: A Program Maintainer

7.1 Introduction

The Microsoft Program Maintenance Utility (MAKE) automates the pro
cess of maintaining assembly- and high-level-language programs. MAKE
automatically carries out all tasks needed to update a program after one or
more of its source files has changed.

Unlike other batch-processing programs, MAKE compares the last
modification date of the file or files that may need updating with the
modification dates of files on which these target files depend. MAKE then
carries out the given task only if a target file is out of date. MAKE does
not assemble, compile, and link all files just because one file has been
updated. This can save much time when creating programs that have many
source files or take several steps to complete.

The following sections explain how to use MAKE and illustrate how to
maintain a sample assembly-language program.

7.2 UsingMAKE

To use MAKE, you must create a MAKE description file that defines the
tasks you wish to accomplish and specifies the files on which these tasks
depend. Once the description file exists, you invoke MAKE and supply
the file name as a parameter. MAKE then reads the contents of the file
and carries out the requested tasks. The following sections explain how to
create a MAKE description file and how to start MAKE.

7.2.1 Creating a MAKE Description File

You can create a MAKE description file with a text editor. A MAKE
description file consists of one or more target/dependent descriptions.
Each description has the following general form:

targetfile : dependentfiles
commandl
[command2]

The targetfile is the name of a file that may need updating, dependentfile is
the name of a file on which the target file depends, and the commands are
the names of executable files or MS-DOS internal commands.

203

Microsoft Macro Assembler User's Guide

The targetfile and dependentfile must be valid file names. A path name
must be provided for any file that is not on the same drive and directory as
the description file.

Any number of dependent files can be given, but only one target name is
allowed. Dependent-file names must be separated by at least one space. If
you have more dependent files than can fit on one line, you can continue the
names on the next line by typing a backslash (\) followed by a new line.

The command can be any valid MS-DOS command line consisting of an
executable-file name or an MS-DOS internal command. Any number of
commands can be given, but each must begin on a new line and must be
preceded by a TAB, or by at least one space. The commands are carried out
only if one or more of the dependent files has been modified since the target
file was created.

OIJ.e way to remember the MAKE format is to think of it as an "if-then"
statement in the following format:

If a dependentfile is older than the targetfile, or
If a dependentfile does not exist,

Then do commands.

You can give any number of target/ dependent descriptions in a description
file. You must make sure, however, that the last line in one description is
separated from the first line of the next by at least one blank line.

The pound character (#) is a comment character. All characters after the
comment character on the same line are ignored. When comments appear
in a command lines section, the comment character (#) must be the first
character on the line (no leading white space). On any other lines, the com
ment character can appear anywhere.

Note

204

The order in which you place the target/dependent descriptions is
important. MAKE examines each description in turn and makes its
decision to carry out a given task based on the file's current
modification date. If a command in a later description modifies a file,
MAKE has no way to return to the description in which that file is a
target.

MAKE: A Program Maintainer

Example

startup.obj: startup.asm
MASM startup,startup,nul,nul

print.obj: print.asm
MASM print,print,print,print

print.ref: print.crf
CREF print,print

print.exe: startup.obj print.obj \lib\syscal.lib
LINK startup+print,print,print/map,\lib\syscal;

print.sym: print.map #make a symbol file for debugging
#use the -1 option to print information

MAPSYM -1 print.map

This example defines the actions to be carried out to create five target files.
Each file has at least one dependent file and one command. The target
descriptions are given in the order in which the target files will be created.
Thus, startup. ob j and pr int . ob j are examined and created, if neces
sary, before pr int. exe.

Note that a comment appears on the same line as the target description for
pr int. sym. However, in the command lines section, the comment appears
on a separate line, since the comment character (#) must be the first char
acter on the line.

7.2.2 Starting MAKE

MAKE must be started with a command line. You cannot use prompts.
The MAKE command line has the form:

MAKE [options] [macrodefinitions] filename

The options are one or more of the options described in section 7.2.3. The
macro definitions are one or more macro definitions as described in Section
7.2.4. The filename is the name of a MAKE description file. A MAKE
description file, by convention, has the same file name (but with no exten
sion) as the program it describes. Although any file name can be used, this
convention is preferred.

Once you start MAKE, it examines each target description in turn. If a
given target file is out of date with respect to its dependent file or if the file
does not exist, MAKE executes the given command or commands. Other
wise, it skips to the next target description.

205

Microsoft Macro Assembler User's Guide

When MAKE finds an out-of-date dependent file, it displays the command
or commands from the targetl dependent description, then executes the
commands. If MAKE cannot find a specified file, it displays a message
informing you that the file was not found. If the missing file is a target file,
MAKE continues execution, since the missing file will in many cases be
created by subsequent commands.

If the missing file is a dependent or command file, MAKE stops execution
of the description file. lviAKE also stops execution and displays the exit
code if the command returns an error.

When MAKE executes a command, it uses the same environment used to
invoke MAKE. Thus, environment variables such as PATH are available
for these commands.

7.2.3 Using MAKE Options

The options available with the MAKE command modify its behavior as
described below.

Option Action

ID

II

/N

/S

Examples

This option causes MAKE to display the last modification
date of each file as the file is scanned.

This option causes MAKE to ignore exit codes (also called
return or "errorlevel" codes) returned by programs called by
the MAKE description file. MAKE will continue execution
of the next lines of the description file despite the errors.

When this option is given, MAKE displays commands that
would be executed by a description file, but does not actually
execute the commands.

This option causes MAKE to execute in "silent" mode. That
is, lines are not displayed as they are executed.

MAKE IN test

The first example directs MAKE to display commands from the MAKE
description file named test without executing them.

MAKE ID test

206

MAKE: A Program Maintainer

The second example directs MAKE to execute the instructions from
test, displaying the last modification time of each file as it is scanned.

7.2.4 Using Macro Definitions

Macro definitions let you associate a symbolic name with a particular value.
By using macro definitions, you can change values used in the description
file without having to edit every line that uses a particular value.

The form of a macro definition is:

name=value

The form for using a previously defined macro definition is:

$ (name)

Occurrences of the pattern * (name) in the description file are replaced with
the specified value. The name is converted to uppercase; f1 ags and
fLAGS are equivalent. If you define a macro name but leave the value
blank, the value will be a null string.

Macro definitions can be placed in the MAKE description file or given on
the MAKE command line. A name is also considered defined if it has a
definition in the current environment. For example, if the environment
variable PATH is defined in the current environment, occurrences of
$ (PATH) in the description file will be replaced with the PATH value.

In the MAKE description file, each macro definition must appear on a
separate line. Any white space (tab and space characters) between name
and the equal-sign () or between the equal-sign and value is ignored. Any
other white space is considered part of value. To include white space in a
macro definition on the command line, enclose the entire definition in
double quotation marks (").

If the same name is defined in more than one place, the following order of
precedence applies:

1. Command line definition

2. Description file definition

3. Environment definition

207

Microsoft Macro Assembler User's Guide

Example

base=abc
buf=/B63

$ (base) .obj: $ (base) .asm
MASM $ (base) $ (buf) ,$(base) ,$ (base) ,$ (base)

$ (base) .exe: $ (base) .obj \lib\math.lib
LINK $(base),$(base),$(base) /map,\lib\math

The sample MAKE description file above shows macro definitions for the
names base and buf. MAKE replaces each occurrence of $ (base)
with abc. If the description file is called assemble, you can give the fol
lowing command:

MAKE base=def assemble

This command line enables you to override the definition of base in the
description file, causing de f to be assembled and linked instead of abc.

If you want to override the 63K buffer size specified by the macro bu f in
the MAKE description file and instead use the MASM default buffer size
of 32K, you could start MAKE with the following command line:

MAKE buf= assemble

Since the value for bu f is blank, it will be treated as a null string. How
ever, since the null string was given from the command line, which has
higher precedence than the definition in the description file, bu f will be
expanded to a null string and no option will be passed in the MASM com
mand line.

7.2.5 Nesting Macro Definitions

Macro definitions can be nested. In other words, a macro definition can
include another macro definition. For example, you might have the follow
ing macro definition in the MAKE description file picture:

LIBS=$(DLIB)\math.lib $ (DLIB)\graphics.lib

You could then start MAKE with the following command line:

MAKE DLIB=d:\lib

208

MAKE: A Program Maintainer

In this case, every occurrence of the macro LI B8 would be expanded to:

d:\lib\math.lib d:\lib\graphics.lib

Be careful to avoid infinitely recursive macros such as the following:

A $ (8)
8 $ (C)
C $ (A)

7.2.6 Using Special Macros

MAKE recognizes three special macro names and will automatically sub
stitute a value for each. The special names and their values are:

Name Value Substituted

Base name portion of the target (without the extension)

Complete target name

Complete list of dependencies

These macro names can be used in description files, as shown in the follow
ing example:

Example

test.exe: modl.obj mod2.obj mod3.obj
link $**, $@;
mapsym $*

The example above is equivalent to the following:

test:exe: modl.obj mod2.obj mod3.obj
link modl.obj mod2.obj mod3.obj, test.exe;
mapsym test

209

Microsoft Macro Assembler User's Guide

7.2.7 Inference Rules

MAKE allows you to create inference rules that specify commands for
target/dependent descriptions even when there is no explicit command in
the MAKE description file. An inference rule is a way of telling MAKE
how to produce a file with one type of extension from a file with the same
base name and a second type of extension.

For example, if you define a. rule for producing .OBJ files from .ASf-v1 files,
the actual commands do not have to be repeated in the description file for
each target/dependent description. Inference rules take the following form:

.dependentextension. targetextension :
commandl
[command2]

For lines that do not have explicit commands, MAKE looks for a rule that
matches both the target's extension and the dependent's extension. If it
finds such a rule, MAKE performs the commands given by the rule.

MAKE looks first for dependency rules in the current description file, but
if it does not find an appropriate rule, it will search for the tools
initialization file, tools. ini. MAKE looks for tools. ini in the
current drive and directory (or in any directories specified with the MS-DOS
PATH command).

If MAKE finds tools. ini, it looks through the file for a line beginning
with the tag [make], which must come at the beginning of the line. Infer
ence rules following this line will be applied if appropriate.

Example

.asm.obj:
MASM $*. asm, , ;

testl.obj: testl.asm

test2.obj: test2.asm
MASM test2.asm;

In the sample description file above, an inference rule is defined in the first
line. The file name in the rule is specified with the special macro name $ *

210

MAKE: A Program Maintainer

so that the rule will apply to any base name. When MAKE encounters the
dependency for files testl. ob j and testl. asrn, it looks first for com
mands on the next line. When it does not find any, MAKE checks for a
rule that may apply and finds the rule defined in the first lines of the
description file. MAKE applies the rule, replacing the $ * macro with
testl when it executes the command:

MASM testl.asm,,;

When MAKE reaches the second dependency for the test2 files, it does
not search for a dependency rule, since a command is explicitly stated for
this target/dependent description.

7.3 Maintaining a Program: An Example

MAKE is especially useful for programs in development, because it offers a
quick way to recreate a modified program after small changes.

Consider a test program name test. asrn that is being used to debug the
routines in a library file named rna th. 1 ib. The purpose of test. asrn is
to call one or more routines in the library so a study of their interaction can
be made. Each time test. asrn is modified, it has to be assembled, a
cross-reference listing has to be created, the assembled file has to be linked
to the library, and finally, a symbol file has to be created to use with the
Microsoft Symbolic Debug Utility (SYMDEB).

The following target/dependent descriptions copied to the MAKE descrip
tion file test will carry out all of these tasks:

test.obj: test.asm
MASM test, test, test, test

test.ref: test.crf
CREF test, test

test.exe: test.obj \lib\math.lib
LINK test,test,test/map,\lib\math

test.sym: test.map
MAPSYM /L test.map

These lines define the actions to be carried out to create four target files:
test. obj, test. re f, test. exe, and test. syrn. Each file has at
least one dependent file and one command. The target/dependent

211

Microsoft Macro Assembler User's Guide

descriptions are given in the order in which the target files will be created.
Thus, test. sym depends on test. map, which is created by LINK;
test. exe depends on test. ob j, which is created by MASM; and
test. re f depends on test. cr f, which is also created by MASM.

Once the description file is in place, you can create test. asm using a text
editor, then invoke MAKE to create all other required files. The command
line should have the following form:

MAKE test

MAKE carries out the following steps:

1. MAKE compares the modification date of test. asm with
test.obj. If test. obj is out of date (or does not exist),
MAKE executes the following command:

MASM test,test,test,test

Otherwise, it skips to the next target description.

2. MAKE compares the dates of test. re f and test. cr f. If
test. re f is out of date, it executes the following command:

CREf test,test

3. MAKE compares test. exe with the dates of test. ob j and
the library file math. 1 ib. If test. exe is out of date with
respect to either file, MAKE executes the following command:

LINK test,test,test/map,\lib\math.lib

4. MAKE compares the dates of test. sym and test. map. If
test. sym is out of date, MAKE executes the following command:

MAPSYM /L test.map

When test. asm is first created, MAKE will execute all commands, since
none of the target files exists. If you invoke MAKE again without chang
ing any of the dependent files, it will skip all commands. If you change the
library file math .lib, but make no other changes, MAKE will execute
the LINK command, since test. exe is now out of date with respect to
math. 1 ib. It will also execute MAPSYM, since test. map is created by
LINK.

212

Appendixes

A Error Messages 215
B Exit Codes 251
C Using EXEP ACK and EXEMOD 259

213

Appendix A

Error Messages

A.l Introduction 217
A.2 MASM Error Messages 217
A.3 LINK Error Messages 231
A.4 SYMDEB Error Messages 238
A.5 MAPSYM Error Messages 240
A.6 CREF Error Messages 241
A.7 LIB Error Messages 242
A.8 MAKE Error Messages 245
A.9 EXEP ACK Error Messages 247
A.I0 EXEMOD Error Messages 248

216

Error Messages

A.1 Introduction

This appendix lists and explains the error messages that can be generated
by the programs in the Microsoft Macro Assembler package.

A.2 MASM Error Messages

This section lists and explains the messages displayed by the Microsoft
Macro Assembler, MASM. The assembler displays a message whenever it
encounters an error during processing. It displays a warning message when
ever it encounters an instance of questionable statement syntax.

An end-of-assembly message is displayed at the end of processing, even if no
errors occurred. The message tells how many bytes of symbol space are free
and gives a count of the error and warning messages it displayed during the
assembly. If the IV option is used, the number of source lines, the total
number of lines (including macro expansions), and the number of symbols
are also shown.

1108 Source Lines
1286 Total Lines

215 Symbols

44814 Bytes symbol space free

o Warning Errors
o Severe Errors

The first three lines of the message are only shown on the screen if the IV
option is used. The entire message is copied to the end of the source list
ing, whether the IV option is used or not.

MASM error messages are listed in numerical order in this section with a
short explanation where necessary. References to sections of the Microsoft
Macro Assembler User's Guide (User's Guide) and sections of the Microsoft
Macro Assembler Reference Manual (Reference Manua~ are included where
appropriate.

217

Microsoft Macro Assembler User's Guide

Code

o

1

2

3

4

5

6

218

Message

Block nesting error

Nested procedures, segments, structures, macros, IRe,
IRP, or REPT are not properly terminated. An example of
this error is closing an outer level of nesting with inner
level(s) still open.

Extra characters on line

This occurs when sufficient information to define the
instruction directive has been received on a line and
superfluous characters beyond the line are received.

Register already defined

This message indicates an internal error. If you get this
message, notify Microsoft Corporation using the Software
Problem Report at the end of the Reference Manual.

Unknown symbol type

MASM does not recognize the size type specified in a label
or external declaration. For example,

here LABEL bite

Rewrite with a valid type such as BYTE, WORD, NEAR,
etc.

Redefinition of symbol

If a symbol is defined in two places, this error occurs in Pass
1 on the second declaration of the symbol. S~e errors 5 and
26.

Symbol is multi-defined

If a symbol is defined in two places, this error occurs in Pass
2 on each declaration of the symbol. See errors 4 and 26.

Phase error between passes

The program has ambiguous instruction directives such that
the location of a label in the program changed in value
between Pass 1 and Pass 2 of the assembler. An example of
this is a forward reference coded without a segment override
where one is required. There would be an additional byte

7

8

9

10

11

12

13

14

15

Error Messages

(the code segment override) generated in Pass 2, causing the
next label to change. You can use the /D option to produce
a Pass 1 listing to aid in resolving phase errors between
passes. See Sections 2.3.4 and 2.4.6.

Already had ELSE clause

Attempt to define an ELSE clause within an existing ELSE
clause (you cannot nest ELSE without nesting
IF ... ENDIF).

Not in conditional block

An ENDIF or ELSE is specified without a previous
conditional-assembly directive being active.

Symbol not defined

A symbol is used without being defined. One potential
source of this error is shown in Section 2.4.6.

Syntax error

The syntax of the statement does not match any recogniz
able syntax.

Type illegal in context

The type specified is of an unacceptable size.

Should have been group name

Expecting a group name, but something else was given.

Must be declared in pass 1

An item was referenced before it was defined in Pass 1. For
example, I F DE BUG is illegal if the symbol DE BUG is not
previously defined. See Section 7.2.1 in the Reference
Manual.

Symbol type usage illegal

Illegal use of a PUBLIC symbol. See Section 6.2 of the
Reference Manual.

Symbol already different kind

Attempt to define a symbol differently from a previous
definition.

219

Mlcrosoft Macro Assembler User's Guide

16

17

18

19

20

21

22

23

24

220

Symbol is reserved word

Attempt to use an assembler reserved word illegally. For
example, to declare MOV as a variable.

Forward reference is illegal

Attempt to reference something before it is defined in Pass
1. For example, the following· lines produce an error:

DB
count EQU

count DUP (7)
10

The statements would be legal if the lines were reversed.

Must be register

Register expected as operand, but you furnished a symbol.

Wrong type of register

Directive or instruction expected one type of register, but
another was specified. For example, INC CS; you cannot
increment the code segment.

Must be segment or group

Expecting segment or group, but something else was
specified.

Symbol has no segment

Trying to use a variable with SEG, but the variable has no
known segment.

Must be symbol type

Must have type WORD, DW, QW, BYTE, or similar
designation, but received something else.

Already defined locally

Tried to define a symbol as EXTRN that had already been
defined locally.

Segment parameters are changed

List of arguments to SEGMENT was not identical to the
list the first time this segment was used.

25

26

27

28

29

30

31

32

Error Messages

Not proper align/combine type

SEGMENT parameters are incorrect. Check the align and
combine types to make sure you have entered valid types
from among those discussed in Section 3.4 of the Reference
Manual.

Reference to mult defined

The instruction references a symbol that has been multi
defined. See errors 4 and 5.

Operand was expected

Assembler is expecting an operand but an operator was
received.

Operator was expected

Assembler was expecting an operator but an operand was
received.

Division by 0 or overflow

An expression is given that results in a division by 0 or a
number larger than can be represented.

Shift count is negative

A shift expression is generated that results in a negative
shift count.

Operand types must match

Assembler gets different kinds or sizes of arguments in a
case where they must match. For example, mov ax I bh is
illegal; either both operands must be word or both must be
byte. See Section 5.5 of the Reference Manual.

Illegal use of external

Use of an external in some illegal manner. For example,

DB count DUP(?)

is illegal if count is declared external. See Section 6.3 of
the Reference Manual.

221

Microsoft Macro Assembler User's Guide

33

34

35

36

37

38

39

40

41

42

222

Must be record field name

Expected a record field name but got something else.

Must be record or field name

Expecting a record name or field name and received some
thing else.

Operand must have size

Expected operand to have a size, but it did not. Often this
error can be remedied by using the PTR operator to specify
a size type.

Must be var, label or constant

Expecting a variable, label, or constant but received some
thing else.

Must be structure field name

Expecting a structure field name but received something
else.

Left operand must have segment

Used something in right operand that required a segment in
the left operand. For example, :symbol is illegal; use
seg:symbol.

One operand must be const

This is an illegal use of the addition operator. See Section
5.3.1 of the Reference Manual.

Operands must be same or 1 abs

Illegal use of the subtraction operator. See Section 5.3.1 in
the Reference Manual.

Normal type operand expected

Received STRUC, BYTE, WORD, or some other invalid
operand when expecting a variable label.

Constant was expected

Expecting a constant and received an item that does not
evaluate to a constant. For example, a variable name or

43

44

45

46

47

48

Error Messages

external. See Section 7.2.5 in the Reference Manual for one
example of how this can happen.

Operand must have segment

Illegal use of SEG directive. See Section 5.3.12 in the
Reference Manual for valid use of the SEG operator.

Must be associated with data

Use of code-related item where data-related item was
expected. For example:

here: mov aX,LENGTH ds:here

This line attempts to address an item through DS when the
item is actually addressable to es.

Must be associated with code

Use of data-related item where code-related item was
expected. For example

jmp test

if the symbol test was declared in the data segment.

Already have base register

More than one base register was used in an operand. For
example:

mov ax, [bx+bpJ

Already have index register

More than one index register was used in an operand. For
example:

mov ax, [si +diJ

Must be index or base register

Instruction requires a base or index register and some other
register was specified in square brackets ([]). For example:

mov ax, [bx+ax]

223

Microsoft Macro Assembler User's Guide

49

50

51

52

53

54

55

56

224

Illegal use of register

Use of a register with an instruction where no valid register
is possible.

Value is out of range

Value is too large for expected use. For example,

mav al,5000

is illegal; you must use a byte value for a byte register.

Operand not in IP segment

An operand cannot be accessed because it is not in the
current IP segment.

Improper operand type

Use of an operand in a way that prevents opcode generation.

Relative jump out of range

Conditional jumps must be within the range -128 to +127
bytes of the current instruction, and the specific jump is
beyond this range. You can usually correct the problem by
reversing the condition of the conditional jump and using an
unconditional jump (JMP) to the out-of-range label.

Index displ. must be constant

Illegal use of index displacement.

Illegal register value

The register value specified does not fit into the "reg" field
(the value is greater than 7).

No immediate mode

Immediate data were supplied as an operand for an instruc
tion that cannot use immediate data. For example, the fol
lowing statement is illegal:

mav ds,data

You must move the segment address into a general register
and then move it from that register to DS.

57

58

59

60

61

62

63

64

Error Messages

Illegal size for item

Size of referenced item is illegal. For example, shift of a
doubleword. One example of an illegal size error is shown in
Section 2.4.6. The error also frequently occurs when you try
to assemble source code written for assemblers that have
less strict type checking than the Microsoft Macro Assem
bler (such as early versions of the IBM assembler). Usually
you can solve the problem by changing the size of the item
with the PTR operator. See Section 5.5 of the Reference
Manual.

Byte register is illegal

Use of one of the byte registers in context where it is illegal.
For example, PUSH AL is illegal; use PUSH AX.

CS register illegal usage

Trying to use the OS register illegally. For example, XCHG
CS I AX is illegal.

Must be AX or AL

Specification of some register other than .AX or AL where
only these are acceptable. For example, the IN instruction
requires.AX or AL as its right operand.

Improper use of segment reg

Specification of a segment register where this is illegal. For
example, an immediate move to a segment register.

No or unreachable CS

Attempt to jump to a label that is unreachable.

Operand combination illegal

Specification of a two-operand instruction where the combi
nation specified is illegal.

Near JMP/CALL to different CS

Attempt to do a NEAR jump or call to a location in a code
segment defined with a different ASSUME:CS.

226

Microsoft Macro Assembler User's Guide

65

66

67

68

69

70

72

73

74

75

226

Label can't have seg. override

Illegal use of segment override. See Section 5.3.7 of the
Reference Manual for examples of valid use of the segment
override operator.

Must have opcode after prefix

Use of a REPE, REPNE, REPZ, or REPNZ instruction
without specifying any opcude after it.

Can't override ES segment

Trying to override the ES segment in an instruction where
this override is not legal. For example, STOS
DS:TARGET is illegal.

Can't reach with segment reg

No ASSlJME directive makes the variable reachable.

Must be in segment block

Attempt to generate code when not in a segment.

Can't use EVEN on BYTE segment

The EVEN directive was used, even though the segment
was declared to be a byte segment. See Section 3.9 of the
Reference Manual.

Illegal value for DUP count

The DUP count must be a constant that evaluates to a
positive integer greater than zero.

Symbol already external

Attempt to define a symbol as local that is already external.

DUP is too large for linker

Nesting of DUP operators was such that too large a record
was created for the linker. See Section 4.3.6 of the Refer
ence Manual.

Usage of ? (indeterminate) bad

Improper use of the undefined operand (?). For example,
? + 5 is illegal.

76

77

78

79

80

81

82

83

84

85

Error Messages

More values than defined with

Too many initial values given when defining a variable using
a REC or STRUC type.

Only initialize list legal

Attempt to use STRUC name without angle brackets
« ».
Directive illegal in STRUC

All statements within STRUC blocks must either be com
ments preceded by a semicolon (;), or one of the define direc
tives (DB, DW, etc.).

Override with DUP is illegal

In a STRUC initialization statement, you tried to use
DUP in an override.

Field cannot be overridden

In a STRUC initialization statement, you tried to give a
value to a field that cannot be overridden.

Override is of wrong type

In a STRUC initialization statement, you tried to use the
wrong size on override. For example, you tried to use a
string such as HELLO for DW field when you should use
DB for strings.

Register can't be forward ref

An attempt was made to forward reference a segment.

Circular chain of EQU aliases

An alias EQU eventually points to itself.

8087 opcode can't be emulated

Either the 8087 opcode or the operands you used with it
produce an instruction that the emulator cannot support.

End of file, no END directive

You forgot an end statement or there is a nesting error.

227

Microsoft Macro Assembler User's Guide

86

87

88

89

90

91

92

93

94

228

Data emitted with no segment

Code that is not located within a segment attempted to gen
erate data. An example is shown below:

code

code

test

SEGMENT

ENDS
push
OW
END

ax
?

Either of the two statements near the end of the sample
would generate the error. Any statement that generates
code or allocates data must be in a segment.

Forced error - pass1

You forced an error with the .ERR! directive.

Forced error - pass2

You forced an error with the .ERR2 directive.

Forced error

You forced an error with the .ERR directive.

Forced error - expression equals 0

You forced an error with the .ERRE directive.

Forced error - expression not equal 0

You forced an error with the .ERRNZ directive.

Forced error - symbol not defined

You forced an error with the .ERRNDEF directive.

Forced error - symbol defined

You forced an error with the .ERRDEF directive.

Forced error - string blank

You forced an error with the .ERRB directive.

95

96

97

98

99

100

Error Messages

forced error - string not blank

You forced an error with the .ERRNB directive.

forced error - strings identical

You forced an error with the .ERRIDN directive.

forced error - strings different

You forced an error with the .ERRDIF directive.

Override value is wrong length

The override value for a structure field is too large to fit in
the field. An example is shown below:

x STRUC
xl DB "A"
x ENDS

y X <"AB">

The override value is a string consisting of two bytes, while
the structure declaration only provided room for one.

Line to long expanding symbol

A symbol defined by an EQU or equal-sign () directive is
so long that expanding it will cause the assembler's internal
buffers to overflow. This message may indicate a recursive
text macro.

Impure memory reference

The code contains an attempt to store data into the code
segment when the .826p directive and the /P option are in
effect. An example of storing code to the code segment is
shown below:

code SEGMENT
ASSUME cs:code

c_word DW 7

code
mov
ENDS

cs:c_word,data

229

Microsoft Macro Assembler User's Guide

The /P option checks for such statements, which are
acceptable in nonprotected mode, but can cause problems in
protected mode.

101 Missing data; zero assumed

An operand is missing from a statement. For example:

mav ax,

The code is assembled as if it were:

mav ax,O

This is a warning error, and the object file is not deleted as
it is with severe errors.

In addition to the numbered error messages listed above, MASM may gen
erate the following unnumbered error messages:

Out of Memory

All available memory has been used, either because the source file is too
long, or because there are too many symbols defined in the symbol
table. There are several things you can do to resolve this problem.
First, try assembling with only an object file. If this works, you can
reassemble specifying a null object file to get a listing or cross-reference
file. You can also rewrite the source file to take up less symbol space.
Techniques for reducing symbol space include: minimizing use of mac
ros, structures, and the EQU and equal-sign () directives; using short
symbol names; using tab characters in macros rather than series of
spaces; using macro comments (;;) rather than normal comments (;);
purging macro definitions after the last use.

Internal Error

230

Note the conditions when the error occurs and contact Microsoft Cor
poration using the Software Problem Report at the end of the Reference
Manual.

Error Messages

A.3 LINK Error Messages

This section lists the error messages that can occur when linking programs
with the Microsoft 8086 Object Linker, LINK. The messages are in alpha
betical order.

Ambiguous swi tch error: "option"

User did not enter a unique option name after the option indicator (I).
For example, the command

LINK IN main;

will generate this error, since LINK can't tell which of the three
options beginning with the letter "N" you intended to use. See Section
3.3 for more information on LINK options.

Array element size mismatch

A far communal array has been declared with two or more different
array-element sizes (for example, declared once as an array of charac
ters and once as an array of real numbers). This error cannot occur
with object files produced by MASM. It only occurs with Microsoft C
and any other compiler that supports far communal arrays.

Attempt to put segment name in more than one group
in file filename

A segment was declared to be a member of two different groups.
Correct the source and recreate the object files.

Bad value for cparMaxAlloc

The number specified using the lOP ARMAXALLOC option is not in
the range 1 to 65535. See Section 3.3.9.

Cannot find library: fikname.lib. Enter new file spec:

The linker cannot find filename. 1 ib. The user should respond to the
prompt with a new file name, a new path specification, or both.

Cannot open list file

The disk or the root directory is full. Delete or move files to make
space.

231

Microsoft Macro Assembler User's Guide

Cannot open response file

LINK cannot find the response file specified by the user. This usually
indicates a typing mistake.

Cannot nest response files

User named a response file within a response file.

Cannot open run file

The disk or the root directory is full. Delete or move files to make
space.

Cannot open temporary file

The disk or the root directory is full. Delete or move files to make
space.

Cannot reopen list file

User did not actually replace the original disk when asked to. Restart
the linker.

Common area longer than 65536 bytes

User's program has more than 64K of communal variables. This error
cannot appear with object files generated by MASM. It can only occur
with programs produced by Microsoft C or other compilers that support
communal variables.

Data record too large

LEDATA record (in an object module) contains more than 1024 bytes
of data. This is a translator error. Note the translator (compiler or
assembler) that produced the incorrect object module and the cir
cumstances. Notify Microsoft Corporation using the Software Problem
Report at the end of the Reference Manual. LEDATA is an MS-DOS
term. It is explained in the MS-DOS Programmer's Reference Manual
and some other MS-DOS reference books.

Dup record too large

232

LIDATA record (in an object module) contains more than 512 bytes of
data. Most likely, an assembly module contains a structure definition
that is very complex, or a series of deeply nested DUP operators. For
example:

array DB 10 DUP(ll DUP (12 DUP (13 DUP (...))))

Error Messages

Simplify and reassemble. LIDATA is an MS-DOS term. It is explained
in the MS-DOS Programmer's Reference Manual and in some other MS
DOS reference books.

fikname is not a valid library

The file specified as a library file is invalid. LINK will abort.

f ixup over flow near number in segment name in filename
offset number

Some possible causes are: 1) A group is larger than 64K; 2) the user's
program contains an inter-segment short jump or inter-segment short
call; 3) the user has a data item whose name conflicts with that of a
subroutine in a library included in the link; or 4) the user has an
EXTRN declaration inside the body of a segment, for example:

code SEGMENT public 'CODE'
EXTRN main: far

start PROC far
call main
ret

start ENDP
code ENDS

The following construction is preferred:

EXTRN main: far
code SEGMENT public 'CODE'
start PROC far

call main
ret

start ENDP
code ENDS

Revise the source and recreate the object file.

Incorrect DOS version, use DOS 2.0 or later

LINK will not run on versions of MS-DOS or PC-DOS prior to 2.0.
Reboot your system with a valid version, and try linking again.

Insufficient stack space

There is not enough memory to run the linker.

233

Microsoft Macro Assembler User's Guide

Interrupt number exceeds 255

A number greater than 255 has been given as a value for the /OVER
LAYINTERRUPT option. Try again with a number in the range 0
to 255. See Section 3.3.13.

Invalid numeric switch specification

An incorrect value was entered for one of the linker switches (options).
For example, a chara.cter string was entered for an option that requires
a numeric value.

Invalid object module

One of the object modules is invalid. Try recompiling. If the error per
sists, contact Microsoft Corporation using the Software Problem Report
form at the end of the Reference Manual.

NEAR/HUGE conflict

Conflicting near and huge definitions for a communal variable. This
error cannot appear with object files generated by MASM. It can only
occur with programs produced by Microsoft C or other compilers that
support communal variables.

Nested left parentheses

User has made a typing mistake while specifying the contents of an
overlay on the command line. See your compiler manual for instruc
tions on specifying overlays for LINK. MASM does not have an over
lay manager, so this problem can only occur if you are linking with a
library from a high-level language that supports overlays.

No object modules specified

User failed to supply the linker with any object-file names.

Out of space on list file

Disk on which list file is being written is full. Free more space on the
disk and try again.

Out of space on run file

234

Disk on which .EXE file is being written is full. Free more space on the
disk and try again.

Error Messages

Out of space on scratch file

Disk in default drive is full. Delete some files on that disk, or replace
with another disk, and restart the linker.

Overlay manager symbol already defined: name

User has defined a symbol name that conflicts with one of the special
overlay manager names. Change the incorrect name and relink. See
your compiler manual for instructions on specifying overlays for LINK.
MASM does not have an overlay manager, so this problem can only
occur if you are linking with a library from a high-level language that
supports overlays.

Relocation table overflow

More than 32768 long calls, long jumps, or other long pointers in the
user's program. Rewrite program, replacing long references with short
references where possible, and recreate object module. Note: Pascal
and FORTRAN users should first try turning off the debugging option.

Segment limit set too high

The limit on the number of segments allowed was set too high (over
1024) using the /SEGMENTS option. See Section 3.3.14.

Segment limit too high

There is insufficient memory for the linker to allocate tables to describe
the number of segments requested (the default of 128 or the value
sRecified with the /SEGMENTS option). Try linking again using the
/SEGMENTS option to select a smaller number of segments (for
example, 64 if the default was used previously), or free some memory by
eliminating resident programs or shells.

Segment size exceeds 64K

User has a small-model program with more than 64K of code, or user
has a middle-model program with more than 64K of data. Try compil
ing and linking middle- or large-model.

Stack size exceeds 65536 bytes

The size specified for the stack using the /STACK option is more than
65536 bytes. See Section 3.3.8.

236

Microsoft Macro Assembler User's Guide

Symbol table overflow

The user's program has more than 256K of symbolic information (pub
lics, externals, segments, groups, classes, files, etc.). Combine modules
and/ or segments and recreate the object files. Eliminate as many public
symbols as possible.

Terminated by user

The user entered CONTROL-C.

Too many external symbols in one module

User's object module specified more than the limit of 1023 external
symbols. Break up the module.

Too many group-, segment-, and class-names
in one module

User's program contains too many group, segment, and class names.
Reduce the number of groups, segments, or classes, and recreate the
object files.

Too many groups

User's program defines more than nine groups. Reduce the number of
groups.

Too many GRPDEfs in one module

LINK encountered more than nine group definitions (GRPDEFs) in a
single module. Reduce the number of GRPDEFs or split up the
module. The term GRPDEF is explained in the MS-DOS
Programmer's Reference Manual and in some other reference books on
MS-DOS.

Too many libraries

User tried to link with more than 16 libraries. Combine libraries, or use
modules that require fewer libraries.

Too many overlays

User's program defines more than 63 overlays. Reduce the number of
overlays.

Too many segments

236

The user's program has more than the maximum number of segments as
specified by the default of 128 or by the SEGMEI'1"TS option. Relink

Error Messages

using the /SEGMENTS option with an appropriate number of seg
ments. See Section 3.3.14.

Too many segments in one module

The user's object module has more than 255 segments. Split the
modules or combine segments.

Too many TYPDEFs

An object module contains too many TYPDEF records. These records
describe communal variables. This error cannot appear with object files
generated by MASM. It can only occur with programs produced by
Microsoft C or other compilers that support communal variables.
TYPDEF is an MS-DOS term. It is explained in the MS-DOS
Programmer's Reference Manual and in some other reference books on
MS-DOS.

Unexpected end-of-file on library

The disk containing the library has probably been removed. Replace
the disk with the library and try again.

Unexpected end-of-file on scratch file

Disk with VM.TMP was removed. See Section 3.2.6.

Unmatched left parenthesis

User has made a typing mistake while specifying the contents of an
overlay on the command line. See your compiler manual for instruc
tions on specifying overlays for LINK. MASM does not have an over
lay manager, so this problem can only occur if you are linking with a
library from a high-level language that supports overlays.

Unmatched right parenthesis

User has made a typing mistake while specifying the contents of an
overlay on the command line. See your compiler manual for instrue
tions on specifying overlays for LINK. MASM does not have an over
lay manager, so this problem can only occur if you are linking with a
library from a high-level language that supports overlays.

Unrecognized switch error: option

User entered an unrecognized character after the option indicator (/).
For example:

LINK /ABCDEF main;

237

Microsoft Macro Asscmbler Uscr's Guide

Unresolved externals

A symbol was declared external in one module, but it was not declared
public in the module in which it was defined. A symbol must be defined
and declared public (using the PUBLIC directive) in one and only one
module before it can be used as an external symbol (using the EXTRN
directive) by other modules.

VM.TMP is an illegal file name and has been ignored

User has specified VM. TMP as an object file name. Rename file and
link again.

Warning: no stack segment

User's program contains no stack segment specified with stack combine
type. Normally, every program should have a stack segment with the
combine type specified as stack. You can ignore this message if you
have a specific reason for not defining a stack or for defining one
without the stack combine type.

Warning: too many public symbols

The (MAP option was used to request a sorted listing of public sym
bols In the map file, but there are too many symbols to sort. The linker
will produce an unsorted listing of the public symbols.

A.4 SYl\1DEB Error Messages

The Microsoft Symbolic Debug Utility, SYMDEB, displays an error mes
sage whenever it detects a command it cannot complete. SYMDEB
displays the command that caused the error, followed by the message
Error. A caret (") points to the approximate location of the error in the
command line. For example, the following display appears on the screen
when you enter too many arguments for the Dump command (D).

001 2
~ Error

At other times SYMDEB may display error messages to let you know more
about the error. You may see any of the following error messages. Each
error terminates the SYMDEB command under which it occurred, but
does not terminate SYMDEB itself.

238

Error Messages

Bad breakpoint number!

You typed an invalid breakpoint number (the number must be in the
range 0 to 9).

Bad Flag!

You attempted to alter a flag, but the characters typed were not among
the acceptable pairs of flag values. See the Register command (R) in
Section 4.3.5 for the list of acceptable flag entries.

Breakpoint error!

You typed BP without giving an address, or there are no more free
breakpoints (all 10 have been set).

Can't debug packed files!

Files which have been packed with the /EXEP ACK option of the
linker, or with the EXEPACK program, cannot be debugged. See Sec
tion 3.3.3 for more information on the /EXEP ACK option, or Section
8.1 for information on the EXEPACK utility.

COMMAND. COM not found!

You typed the Shell Escape command (!), but the shell cannot be
created because COMMAND. COM was not found.

No program to debug!

You tried to redirect program I/O (input/output) when there was no
program to debug.

Not enough memory!

You typed the Shell Escape character (!), but there is not enough free
memory to execute COMMAND.COM. See Section 4.6.26.

Too many breakpoints!

You specified more than 10 breakpoints as parameters to the Go com
mand (G). Retype the Go command with 10 or fewer breakpoints.

Bad register!

You typed the Register command (R) with an invalid register name.
See the Register command (Section 4.6.22) for the list of valid register
names.

239

Microsoft Macro Assembler User's Guide

Double flag!

You typed two values for one flag. You may specify a flag value only
once. See the Register command (R) in Section 4.6.22.

Breakpoint list or '*' expected!

You typed a Breakpoint Clear (BC), Breakpoint Disable (BD), or
Breakpoint Enable (BE) command without giving a list of breakpoints
to act on.

Error reading .SYM file!

The symbol file you requested in the SYMDEB command line cannot
be read. The file may be empty, or a disk error may have occurred.

A.5 MAPSYM Error Messages

The Microsoft Symbol File Generator, MAPSYM, terminates operation
and displays one of the following messages whenever it encounters an error:

Can't create: mapname

Can't create a symbol map for the file specified by mapname.

Can't open MAP f i 1 e: mapfile

Usually indicates that the map file specified by mapname does not exist.

mapsym: out of memory

MAPSYM cannot find enough system memory to process the symbol
map. Get rid of resident programs or add memory.

mapsym: segment table (number) exceeded

More than 1024 segments used in the map file. The number indicates
the number of segments requested.

No public symbols
Re-link with 1M switch!

240

You did not use the 1M option when linking. This option must be
specified in order to Include public symbols in the map file.

Error Messages

Unexpected eo f reading: mapfile

The specified mapfile is not in a valid format. This could mean that the
file is corrupted. Try linking again to create a new map file.

usage: MAPSYM [/lJ maplist

You entered the command line incorrectly. Re-enter the command with
the syntax shown. The single brackets ([]) in the error message indicate
that your choice of the item within them is optional.

Wr i te fai 1 on: symbolfile

The specified symbolfile cannot be written. The disk is full or some
other file error occurred.

A.6 CREF Error Messages

The Microsoft Cross-Reference Utility, CREF, terminates operation and
displays one of the following messages when it encounters an error:

can't open cross-reference file for reading

The .CRF file is not found. Make sure the file is on the specified disk
and that the name is spelled correctly in the command line.

can't open listing file for writing

May indicate that the disk is full or write protected, that a file with the
specified name already exists, or the specified device is not available.

cref has no switches

You specified an option in the command line with the slash (/) or dash
(-) character, but CREF has no options.

extra file name ignore

You specified more than two files in the file name. CREF will create
the reference file using only the first two files given.

line invalid, start again

No .CRF file was provided in the command line or at the prompt.
CREF will display this message followed by a prompt asking for a
.CRF file.

241

Microsoft Macro Assembler User's Guide

out of heap space

CREF cannot find enough memory to process the files. Try again with
no resident programs or shells, or add more memory.

premature eof

You specified a file that is not a valid .CRF file, or the file is damaged.

read error on stdlo

This error only occurs if the program receives a CONTROL-Z from the
keyboard or from a redirected file.

A.7 LID Error Messages

The following error messages may be displayed by the Microsoft Library
Manager, LIB:

cannot create extract file filename

The disk or root directory is full, or the extract file specified by filename
already exists with read-only protection. Make space on the disk or
change the protection of the extract file.

cannot create new library

The disk or root directory is full, or the library file already exists with
read-only protection. Make space on the disk or change the protection
of the library file.

cannot open response file

The given response file was not found.

cannot open VM.TMP

The disk or root directory is full. Delete or move files to make space.

cannot read from VM

242

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

Error Messnges

cannot rename old library

LIB could not rename the old library to have a .BAK extension
because the .BAK version already existed with read-only protection.
Change the protection on the old .BAK version.

cannot reopen library

The old library could not be reopened after it was renamed to have a
.BAK extension.

cannot write to VM

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

comma or newline expected

A comma or carriage return was expected in the command line, but did
not appear. This may indicate an inappropriately placed comma, as in
the line:

LIB math.lib,-modl+mod2;

The line should have been entered as:

LIB math. lib -modl+mod2;

error writing to cross reference file

The disk or root directory is full. Delete or move files to make space.

error writing to new library

The disk or root directory is full. Delete or move files to make space.

Free: not allocated

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

insufficient memory

LIB does not have enough memory to run. Remove any shells or
resident programs and try again, or add more memory.

243

Microsoft Macro Assembler User's Guide

internal failure

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

invalid library

The library does not conform to the format expected by LID.

Invalid object module name near location
in file libraryname

The module specified by name is not a valid object module.

Mark: not allocated

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

missing terminator

The response to an Output library: prompt was not terminated by
a carriage return.

no more virtual memory

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

page size too small

Page size specified with the /PAGESIZE option must be 16 or greater.

too many symbols

The maximum number of symbols allowed in a library file is 4609.

syntax error

The given command did not follow correct LIB syntax as specified in
Chapter 6.

syntax error (bad input)

244

The given command did not follow correct LIB syntax as specified in
Chapter 6.

Error Messages

syntax error (bad file spec)

A command operator such as a minus sign (-) was given without a fol
lowing module name.

syntax error (switch name expected)

A forward slash (/) was given without the P AGESIZE option.

syntax error (switch val expected)

The /PAGESIZE option was given without a following value.

unexpected EOF on command input

An end-of-file character was received prematurely in response to a
prompt.

unknown switch

An unknown option was given. The /P AGESIZE option is the only
one currently recognized by LIB.

write to extract file failed

The disk or root directory is full. Delete or move files to make space.

write to library file failed

The disk or root directory is full. Delete or move files to make space.

A.8 MAKE Error Messages

Most error messages displayed by the Microsoft Program Maintenance Util
ity, MAKE, have the following form:

filename linenumber : message

The filename is the MAKE description file. The linenumber is the line
where the error occurred. If an error occurs after MAKE has finished read
ing through the file, the linenumber will be listed as 1 even though this will
not be the correct line number. The message is one of the error messages
listed below:

246

Microsoft Macro Assembler User's Guide

Exec not available on DOS l.x

MAKE requires MS-DOS or PC-DOS Version 2.0 or later.

expansion too big

A line with macros expands to longer than 512 bytes. Try rewriting the
make file to use two short lines instead of one long one.

line too long

A line in the make file is longer than 128 characters. Try rewriting the
make file to use two short lines instead of one long one.

make: command - errorcode

One of the programs or commands called in the make file was not able
to execute correctly. MAKE terminates and displays the command fol
lowed by the code of the error that caused it to fail. Error codes are
described in Appendix B of this User's Guide.

make: colon missing in fikname

A line that should be a target-dependent line lacks a colon indicating
the separation between target and dependent. MAKE expects any line
following a blank line to be a target-dependent line.

make: dependent 'fikna~e' does not exist,
target 'filename' not bui 1 t

MAKE could not continue because a required dependent file did not
exist. Make sure all named files are present and that they are spelled
correctly in the MAKE description file.

make: infinitely recursive macro

A circular chain of macros was defined. For example:

A=$ (B)
B=$ (C)
C=$ (A)

make: multiple source

An inference ruler has been defined more than once.

make: out of memory

246

MAKE has run out of memory for processing the make file. Try to
reduce the size of the make file by reorganizing or splitting it.

Error Messages

make: out of space

MAKE has run out of memory for processing the make file. Try to
reduce the size of the make file by reorganizing or splitting it.

make: syntax error

The make file has a line beginning with an equal sign (=).

make: target does not exist I filename I

This usually does not indicate an error. It warns the user that the tar
get file did not exist. MAKE executes any commands given in the
target/ dependent description since in many cases the target file will be
created by a later command in the MAKE description file.

Stack overflow

Recursive macros have used up all available memory. Reduce the
number or levels of nested macros.

usage: make [/nJ [/dJ [/iJ [/sJ [name=value ... J file

MAKE has not been invoked correctly. Try entering the command line
again with the syntax shown i~ the message.

A.9 EXEP ACK Error Messages

The Microsoft EXE File Compression Utility, EXEP ACK, generates the
following error messages:

exepack: can't change load-high program

When the minimum allocation value and the maximum allocation value
are both zero, the file cannot be compressed.

exepack: error reading relocation table

The file cannot be compressed because the relocation table cannot be
found or is invalid.

exepack: invalid .EXE file (actual length < reported)

The second and third fields in the file header indicate a file size greater
than the actual size.

247

Microsoft Macro Assembler User's Guide

exepack: invalid .EXE file (bad header)

The given file is not an executable file or has an invalid file header.

exepack: filename: No such fi Ie or directory

The file specified by filename cannot be found.

exepack: filename: Permission denied

The file specified by filename is a read-only file.

exepack: out of memory

The EXEP ACK utility does not have enough memory to operate.

Out of space on output file

The disk or root directory is full. Delete or move files to make space.

exepack: too many segments in relocation table

The given file is too large to be compressed in the available system
memory.

usage: exepack <infile> <outfile>

The EXEP ACK command line was not specified properly. Try again
using the syntax shown.

You may also encounter MS-DOS error messages if the EXEP ACK pro
gram cannot read from, write to, or create a file.

A.IO EXEMOD Error Messages

The Microsoft EXE File Header Utility, EXEMOD, generates the following
error messages:

exemod: can't change load-high program

248

When the minimum allocation value and the maximum allocation value
are both zero, the file cannot be modified.

Error Messages

exemod: file not .EXE

EXEMOD automatically appends the .EXE extension to any file name
without an extension; in this case, no file with the given name and an
.EXE extension could be found.

exemod: invalid .EXE file (actual length < reported)

The second and third fields in the file header indicate a file size greater
than the actual size.

exemod: invalid .EXE file (bad header)

The specified file is not an executable file or has an invalid file header.

exemod: min> max (correcting max)

If the minimum allocation value is greater than the maximum alloca
tion value, the maximum allocation value is adjusted. This is a warn
ing message only; the modification is still performed.

exemod: min < stack (correcting min)

If the minimum allocation value is not enough to accommodate the
stack (either the original stack request or the modified request), the
minimum allocation value is adjusted. This is a warning message only;
the modification is still performed.

exemod: filename: No such fi le or directory

The file specified by filename cannot be found.

exemod: filename: Permission denied

The file specified by filename is a read-only file.

exemod: (warning) packed file

The given file is a packed file. This is a warning only. EXEMOD will
still modify the file. The values shown if you ask for a display of MS
DOS header values will be the values after the packed file is expanded.

usage:exemod file [-/h] [-/stack n] [-/max n] [-/min n]

The EXEMOD command line was not specified properly. Try again
using the syntax shown. Note that the option indicator can be either a
slash (/) or a dash (-). The single brackets ([]) in the error message
indicate that your choice of the item within them is optional.

249

Microsoft Macro Assembler User's Guide

The EXEMOD utility also produces error messages when the file header is
not in recognizable .EXE format, or if errors occur in reading from, or
writing to, a file.

260

Appendix B
Exit Codes

B.l Introduction 253
B.2 Exit Codes with Make 253
B.3 Exit Codes with MS-DOS Batch Files
B.4 Exit Codes for Programs

in the Macro Assembler Package 254
B.4.l MASM Exit Codes 254
B.4.2 LINK Exit Codes 255
B.4.3 SYMDEB Exit Codes 255
B.4.4 MAPSYM Exit Codes 256
B.4.5 CREF Exit Codes 256
B.4.6 LIB Exit Codes 256
B.4.7 MAKE Exit Codes 256
B.4.8 EXEPACKExit Codes 257
B.4.9 EXEMOD Exit Codes 257

253

261

Exit Codes

B.l Introduction

All the programs in the Microsoft Macro Assembler package return a code
(sometimes called an "errorlevel" code) that can be used by MS-DOS batch
flIes or other programs such as MAKE. If the program finishes without
errors, it returns a code of O. The code returned varies if the program
encounters an error. This appendix lists the numbers returned when a pro
gram encounters an error.

B.2 Exit Codes with Make

MAKE automatically stops execution if a program executed by one of the
commands in the MAKE description file encounters an error. The exit
code is displayed as part of the error message.

For example, assume the MAKE description Jile test contains the follow
ing lines:

test.obj: test.asm
MASM test;

If the source code in test. asm contains an assembly error, you would see
this message the first time you use MAKE with the file -test:

make: MASM test; - error 7

This error message indicates that the command MASM test; in the
MAKE description file returned code 7.

B.3 Exit Codes with MS-DOS Batch Files

If you prefer to use MS-DOS batch files instead of MAKE, you can test the
code returned with the IF ERRORLEVEL command. The sample batch
file below, called ASMBL . BAT, illustrates how:

MASM %1;
If NOT ERRORLEVEL 1 LINK %1;
If NOT ERRORLEVEL 1 %1

263

Microsoft Macro Assembler User's Guide

If you execute this sample batch file with the command ASMBL test,
MS-DOS first executes the command MASM test; and returns a code of 0
if MASM is successful, or a higher code if MASM encounters an error. In
the second line, MS-DOS tests to see if the code returned by the previous
line is 1 or higher. If it is not (that is, if the code is 0), MS-DOS executes
the command LINK test; and again returns a code which will be tested
by the third line.

B.4 Exit Codes for Programs
in the Macro Assembler Package

An exit code of 0 always indicates execution of the program with no fatal
errors. Warning errors also return exit code o. Some programs can return
various codes indicating different kinds of errors, while other programs
return only 1 to indicate that an error occurred. The exit codes for each
program are listed in Sections BA.I-BA.9.

B.4.1 MASM Exit Codes

Code Meaning

o No error

1 Argument error

2 Unable to open input file

3 Unable to open listing file

4 Unable to open object file

5 Unable to open cross-reference file

6 Unable to open include file

7 Assembly error

8 Memory allocation error

10 Error defining symbol from command line

11 User interrupted

254

Exit Codes

Note that if the exit code is 7, MASM automatically deletes the invalid
object file.

B.4.2 LINK Exit Codes

Code Meaning

o No error

1 All LINK fatal errors not listed below

16 Data record too large

32 No object modules specified

33 Cannot open list file

66 Common area longer than 65536 bytes

96 Too many libraries

144 Invalid object module

145 Too many TYPDEFs

146 Too many group-, segment-, and/or class-names in one
module

147 Too many segments, or too many segments in one module

148 Too many overlays

149 Segment size exceeds 64K

150 Too many groups or too many GRPDEFs in one module

151 Too many external symbols in one module

177 Group larger than 64K

B.4.3 SYMDEB Exit Codes

SYMDEB does not return exit codes. However, it does display return
codes returned by programs run within SYMDEB. For example, if you
run LINK from within SYMDEB and it encounters an error that returns
1, you will see the following line:

Program terminated normally (1)

266

Microsoft Macro Assembler User's Guide

B.4.4 MAPSYM Exit Codes

Code Meaning

o No error

1 Write failure, can't create symbol file, or no such map file.

4 Unexpected end-of-file (usually invalid map file), out of
memory, too many segments, or no public symbols.

B.4.5 CREF Exit Codes

Code Meaning

o No error

1 Any CREF fatal error

B.4.6 LID Exit Codes

Code Meaning

o No error

1 All LIB fatal errors not listed below

4 Internal error

13 Too many symbols

16 Page size too small

B.4.7 MAKE Exit Codes

Code Meaning

o No error

1 Any MAKE fatal error

If a program called by a command in the MAKE description file produces
an error, the exit code will be displayed in the MAKE error message.

266

B.4.8 EXEP ACK Exit Codes

Code

o
1

Meaning

No error

Any EXEP ACK fatal error

B.4.9 EXEMOD Exit Codes

Code

o
1

Meaning

No error

Any EXEMOD fatal error

Exit Codes

267

Appendix C
Using EXEP ACK and EXEMOD

C.1 Introduction 261
C.2 The EXEP ACK Utility 261
C.3 The EXEMOD Utility 262

269

Using EXEPACK and EXEMOD

0.1 Introduction

The Microsoft EXE File Compression Utility, EXEP ACK, and the Micro
soft EXE File Header Utility EXEMOD, supplied with the Microsoft
Macro Assembler package, allow you to modify executable program files.

EXEP ACK compresses executable files by removing sequences of repeated
characters from the file and by optimizing the relocation table. EXEMOD
allows you to examine and modify file header information. The following
sections explain how to use the EXEP ACK and EXEMOD programs.

0.2 The EXEP AOK Utility

EXEP ACK compresses sequences of identical characters from a specified
executable file and optimizes the relocation table. Using EXEP ACK, you
can significantly reduce the size of some files and decrease the time required
to load them.

EXEP ACK will not always give a significant savings in disk space (and
may sometimes actually increase file size). Programs that have a large
number of load-time relocations (about 500 or more) and long streams of
repeated characters will usually be shorter if packed.

The EXEP ACK program has exactly the same function as the LINK
/EXEP ACK option except that EXEP ACK works on files that have
already been linked. One use for this utility is to pack the files provided
with the Microsoft Macro Assembler package. The savings in disk space is
insignificant for most of these programs, but the size of MAPSYM.EXE
can be reduced significantly.

The EXEP ACK command line format is:

EXEP ACK executablefile packedfile

The executablefile is the file to be packed and packedfile is the name for the
packed file. The packedfile should have a different name or be on a different
disk since EXEPACK will not pack a file onto itself.

261

Microsoft Macro Assembler User's Guide

Do not try to get around the limitation against packing a file onto itself by
specifying the same file in a different way. You may be able to fool EXE
PACK, but the result will be a damaged file. If you want the packed file
to replace the original, you should use a separate name for the packed file,
then delete the original and rename the packed copy.

When using EXEP ACK to pack an executable overlay file or a file that
calls overlays, the packed file should be always be renamed back to the
original name.

0.3 The EXEMOD Utility

EXEMOD modifies fields in the MS-DOS file header. In order to use this
utility, you need to understand the MS-DOS conventions for file headers.
They are explained in the Microsoft MS-DOS Programmer's Reference
Manual and in some other reference books on MS-DOS.

Some of the options available with EXEMOD are the same as LINK
options except that they work on files that have already been linked.
Unlike the LINK options, the EXEMOD options require that values be
given in hexadecimal.

To display the current status of the header fields, type:

EXEMOD executablefile

To modify one or more of the fields in the file header, type:

EXEMOD executablefile [/H] : [/STACK number] [/MIN number] [/MAX number]

EXEMOD expects the executablefile to be the name of an existing file with
the .EXE extension. If the filename is given without an extension, EXE
MOD appends .EXE and searches for that file. If you supply a file with an
extension other than .EXE, EXEMOD displays an error message.

The options in examples are shown with the forward slash (/) option desig
nator, but a dash (-) may also be used. Options can be given in either
upper- or lowercase, but they cannot be abbreviated. The options and their
effects are described in the following list:

262

Option

/STACK number

j:MIN number

/MAX number

/H

Note

Using EXEPACK Bnd EXEMOD

Effect

Sets the initial SP (stack pointer) value to
number, where number is a hexadecimal value
setting the number of bytes. The minimum allo
cation value is adjusted upward, if necessary.
This option has the same effect as the LINK
/STACK option.

Sets the minimum allocation value to number,
where number is a hexadecimal value setting the
number of paragraphs. The actual value set may
be different from the requested value if adjust
ments are necessary to accommodate the stack.

Sets the maximum allocation to number, where
number is a hexadecimal value setting the
number of paragraphs. The maximum allocation
value must be greater than, or equal to, the
minimum allocation value. This option has the
same effect as the LINK /CPARMAXALLOC
option.

This option displays the current status of the
MS-DOS program header. Its effect is the same
as entering EXEMOD with an executablefile,
but no options. The /H option should not be
used with other options.

The /STACK option can be used on programs assembled with MASM
or programs compiled with the Microsoft C Compiler Version 3.0 or
later, the Microsoft Pascal Compiler Version 3.3 or later, or the Micro
soft FORTRAN Compiler Version 3.3 or later. Use of the /STACK
option on programs developed with other compilers may cause the pro
grams to fail, or EXEMOD may return an error message.

EXEMOD works on packed files. When it recognizes a packed file, it will
print the following message:

exemod: (warning) packed file

It will then continue to modify the file header.

263

Microsoft Macro Assembler User's Guide

When packed files are loaded, they are expanded to their unpacked state in
memory. If the EXEMOD jSTACK option is used on a packed file, the
value changed is the value that SP will have after expansion. If either the
j:rvnN or jSTACK option is used, the value will be corrected as necessary
to accommodate unpacking of the modified stack. The jMAX.. option
operates as it would for unpacked files.

If the header of a packed file is displayed, the CS:IP and SS:SP values are
displayed as they will be after expansion, whir.h is not the sa.me as the
actual values in the header of the packed file.

Examples

EXEMOD test.exe
test.exe

Minimum load size (bytes)
Overlay number
Initial CS:IP
Initial SS:SP
Minimum allocation (para)
Maximum allocation (para)
Header size (para)
Relocation table offset
Relocation entries

(hex)

419D
o

0403:0000
0000:0000

o
FFFF

20
1E

1

(dec)

16797
o

o
o

65535
32
30

1

The first example shows the file header for file test. exe. The following
command line shows how to modify the header:

EXEMOD test.exe /STACK FF /MIN FF /MAX FFF

The second example shows a display of values after the modification:

EXEMOD test.exe
test.exe (hex) (dec)

Minimum load size (bytes) 528D 20877
Overlay number 0 0
Initial CS: IP 0403:0000
Initial SS:SP OOOO:OOFF 256
Minimum allocation (para) FF 256
Maximum allocation (para) FFE 4095
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 1

264

Index (User's Guide)

10-byte reals
dumping, 118
entering, 126

.286p directive, 27
8086/80186/80286 instruction set, 3, 4
8087 or 80287 instruction set, 28
8087 /80287 instruction set, 3, 4

/ A option, MASM, 21
Absolute disk sector, 161
Add (+) command, LIB, 195
Address ranges, SYIvIDEB parameters,

94
Addresses, SYMDEB parameters, 94
Align type, 69
Argument passing, SYIvIDEB, 85, 136
Arguments to commands, 77, 83
ASCIIZ format, 168
Assemble command, 100, 173
Assembler, described, 15
Assembler. See MASM
Assemblers, compatible with SYIvIDEB,

78
Assembly language, learning, 5
Assembly listing, Pass 1, 23

/B option, MASM, 22
Backslash, Screen-Swap Command,

147
Batch files, 253
Binary operators, SYIvIDEB, 97
BIOS (basic input/output system), 5
BIOS, SYMDEB, 88
Breakpoint address, 130
Breakpoint commands in SYMDEB

Breakpoint Clear, 105
Breakpoint Disable, 105, 171
Breakpoint Enable, 106
Breakpoint List, 107, 171
Breakpoint Set, 103

Breakpoint display with register, 145
Breakpoin t set, 170, 172

C language with SYMDEB, 80, 90, 92,
151, 159, 160

/C option, MASM, 31
Calling conventions, 153
Case-sensitive compilers, 25, 26
Case-sensitivity options

options for LINK, 26
options for MASM, 25

Class type, LINK, 70
.COM files, modifying with SYMDEB,

161
Combine (+) command, LIB, 199
Combine types

at, 70
common, 70
memory, 71
private, 71
public, 70
stack, 70

Combining segments, 70
Command lines

with CREF, 179
with LIB, 188
with LINK, 48
with MASM, 17

Comment command, 108
Comments, in SYMDEB, 108
Compare command, SYMDEB, 108
Compatibility

IBM languages, 5
language compilers, 10
other assemblers, 5, 9
with SYIvIDEB, 78, 79

Compilers
compatible with SYMDEB, 59, 79
overlays, 49, 66

Compressing executable files, 261
COMSPEC environment variable, 151
Conventions, notational, 10
Coprocessors

instruction sets for, 4
Copy (*) command, LIB, 198
/CP ARMAXALLOC option, LINK, 63,

151

266

Index (User's Guide)

CREF
command line, 179
cross-reference file, 177
described, 177
error messages, 241
exit codes, 256
invoking, 178, 179
prompts, 178

Cross-reference file, 18
Cross-reference files

comparing with listing, 33
creating, 16, 31, 177

Cross-reference utility. See CREF
Cross-reference

converting to listing, 178, 179
listing format, 180

CS: override directive, 27

jD option, MAKE, 206
/D option, MASM, 23
bebug utility. See SYMDEB
Description file, MAKE, 203
Disassembly mode, SYMDEB, 157
Disk swapping, 56
Display command, SYMDEB, 109
Display modes in SYMDEB

disassembly, 157
mixed, 157
source, 157

jDOSSEG option, LINK, 68
IDSALLOCATE option, LINK, 64
/Dsymbol option, MASM, 23
Dump Commands in SYMDEB

Dump 10-Byte Reals, 118
Dump, 110, 168
Dump ASCII, 112, 169, 170
Dump Bytes, 113
Dump Doublewords, 115
Dump Long Reals, 117
Dump Short Reals, 116
Dump Words, 114

IE option, MASM, 28
Enter Commands in SYMDEB

Enter 10-Byte Reals, 126
Enter, 119
Enter ASCII, 122
Enter Bytes, 120

266

Enter Commands in SYMDEB
{continued}

Enter Doublewords, 123
Enter Long-Reals, 125
Enter Short-Reals, 124
Enter Words, 122

Environment variables
LIB, 52

EQU directive, 23
Error message format, 33
Error messages

CREF, 241
EXEMOD, 248
EXEPACK, 247
LIB, 242
LINK, 231
MAKE, 245
MAPSYM, 240
MASM, 217
SYMDEB, 238

Errorlevel codes. See Exit codes
Examine Symbol-Map command,

SYMDEB, 126, 166
.EXE files, modifying with SYMDEB,

161
Executable files, modifying, 262
Executable files

compressing, 261
creating, 45

Executable image, 68
EXEMOD, 262
EXEMOD

described, 9, 262
error messages, 248
exit codes, 257
jH option, 263
/MAX option, 263
/MIN option, 263
/STACK option, 263

/EXEPACK option, LINK, 58
EXEPACK

described, 9, 261
error messages, 247
exit codes, 257

Exit codes, 8, 253
Expression evaluation with SYMDEB,

97, 109
External address, 34
External names, 26

False conditionals, 29
File control blocks, 86, 133, 136
File handle, 169
File header, MS-DOS, 56, 83, 85, 162
Files on distribution disk, 3
Fill command, SYMDEB, 129
Fixups, LINK, 71
Flags register, SYMDEB, 144
Floating-point emulator, 28
Floating-point processor, 28
FORTRAN, with SYMDEB, 81, 91,

149, 151, 154, 158
Forward references, MASM, 42
Frame number, canonical, 69
Function calls, tracing with SYMDEB,

140, 155, 168

Go command with SYMDEB, 130, 167,
169, 170,172

Groups
assembly listing, 37
linking, 71

/H option, EXEMOD, 263
Hardware interrupt devices, 89, 100
Help command, SYMDEB, 132
/HELP Option, LINK, 56
Hex command, SYMDEB, 132
/HIGH option, LINK, 64, 65
High start address, setting, 64, 65
High-level-language compilers

source mode, SYMDEB, 148

/1 option
MAKE, 206
MASM, 24

IBM languages, compatibility, 5
/IBM option, SYMDEB, 87, 90,147,

166
IBM-compatible mode, SYMDEB, 87
IF directives, 29
Impure code, checking for, 27
Include files, 24
Inference rules, 210
Input command, SYMDEB, 133
Interactive breakpoint key, 88, 100,

166

Index (User's Guide)

/K option, SYMDEB, 88, 166

IL option (MAPSYM), 82
/L option, MASM, 32
Language compiler compatibility, 10
Learning assembly language, 5
LIB commands

Add (+), 195
Combining (+), 199
Copy (*), 198
listed, 195

Move (-*1' 198 Remove -), 196
Replace -+),197

LIB
checking consistency, 193
command line, 188
creating a library, 192
described, 185
environment variable, 52
error messages, 242
exit codes, 256
library files, 186, 188
library-reference listing, 194
/PAGESIZE option, 188, 191
prompts, 186

Libraries. See LIB
Libraries

combining, 199
consistency, 193
creating, 192
library-reference listing, 194
managing, 185
page size, 191

Library files, 46, 48, 186, 188
LIB

response file, 189
Line numbers

MASM listings, 33
SYMDEB parameters, 96

/LINENUMBERS option, LINK, 59,
80, 81

LINK options
ICP ARMAXALLOC, 63, 151
/DOSSEG,68
/DSALLOCATE, 64
/EXEPACK,58
/HELP, 56
/HIGH, 64, 65

267

Index (User's Guide)

LINK options (continued)
/LlNENUMBERS, 59, 80, 81
listed, 55
I~, 58, 80, 81, 165
/NODEFAUL TLIBRARYSEARCH,

61
INOGROUPASSOCIATION,65
INOIGNORECASE, 60
I OVERLAYINTERRUPT , 66
IPAUSE,56
ISEGMENTS, 67
/STACK,62

LINK
align type, 69
command line, 48
described, 45
error messages, 231
exit codes, 255
groups, 71

Linking
described, 45, 68

LINK
invoking, 45
library files, 46, 48
library search, 61
map file, 46, 48, 53, 58, 59
operation, 68
overlays, 49, 66
preserving case-sensitivity, 60
prompts, 45
response file, 50
search paths, 52
temporary file, 54

Listing-file format, MASM, 8
Load command, SYMDEB, 133
Logical record, loading with SYMDEB,

134
Logical record writing, SYMDEB, 161
Long reals

dumping with SYMDEB, 117
entering with SYMDEB, 125

Macro Assembler. See MASM
Macros

assembly listing, 36
macro definitions, MAKE, 207
macro expansion, MASM, 34

MAKE description file, 203
MAKE options

268

MAKE options (continued)
ID,206
II, 206
IN, 206
/S,206

MAKE
dependent file, 204
described, 203
description file, 203
error messages, 245
example, 211
exit codes, 253, 256
inference rules, 210
invoking, 205
macro definitions, 207
messages, 206
special macro names, 209
target file, 204

Map file, required for SYMDEB, 78
Map files

creating, 46, 59
format, 48
including line numbers, 59
including public symbols, 53
I~ option, LINK, 58
/MAP option, SYMDEB, 80, 81, 165
MAPSYM

/L option, 82
creating symbol maps, 79, 80, 81, 165
drive and directory specification, 82
error messages, 240
exit codes, 256

MASM options
lA, 21
IB,22
IC,31
ID,23
IDsymbol,23
IE, 28
11,24
IL,32
1111, 25
IMU,26
IMX,26
IN, 27
IP,27
IR,28
/S,22
IT, 32
using, 16, 17, 20

MASM options (continued)
IV, 29
IX, 29
/Z,31

MASM
additional statistics, 29
assembly listing, 32
checking for impure code, 27
command line, 17
converting to uppercase, 26
cross-reference file, 16, 18, 31, 177
defining assembler symbols, 23
described, 15
displaying error lines, 31
error messages, 217
exit codes, 254
false conditionals, 29
floating-point emulator, 28
floating-point processor, 28
group table, 37
invoking, 15
macro listing, 36
options

/V,217
Pass 1 listing, 23, 41
phase errors, 41
preserving case-sensitivity, 25, 26
prompts, 15
record table, 36
segment ordering, 21, 22
segment table, 37
setting file buffer, 22
setting search paths, 24
structure table, 36
suppressing unnecessary tables, 27
symbol table, 39

/MAX option, EXEMOD, 263
Maximum memory allocation,

controlling, 263
Maximum memory allocation,

controlling, LINK, 63
Memory release for SYMDEB, 151
Memory requirements, 4
/MIN option, 263
Minimum allocation value, controlling,

263
Mixed mode, SYMDEB, 157
/ML option, MASM, 25
Modify allocate memory function,

MASM, 151

Index (User's Guide)

Modifying executable files, 262
Move (-*) command, LIB, 198
Move command, SYMDEB, 135
MS-DOS, version requirements, 4
MS-DOS

file header, SYMDEB, 83, 85, 162
function calls, 5
Program header, 263

IMU option, MASM, 26
/MX option, MASM, 26

IN option, MAKE, 206
IN option, MASM, 27
/N option, SYMDEB, 89
Name command, SYMDEB, 136
New features, 7
/NODEFAUL TLIBRARYSEARCH

option, LINK, 61
/NOGROUP ASSOCIATION option,

LINK, 65
/NOIGNORECASE option, LINK, 60
Nonmaskable interrupts, SYMDEB, 89
Numbers, SYMDEB parameters, 93

Object ranges, SYMDEB parameters,
95

Octal option not supported, 8
Open Map command, 137
Operators

SYMDEB, 97, 98
Order of segments, 70
Output command, SYMDEB, 139
/OVERLAYINTERRUPT option,

LINK, 66
Overlays, LINK, 49, 66

/P option, MASM, 27
Packing executable files, 58
/PAGESIZE option, LIB, 188, 191
Parameters for commands, SYMDEB,

91
Pascal with SYMDEB, 81, 90, 149, 151,

154, 158
Pass 1 listing, 41
PATH command, MS-DOS, 210
/PAUSE Option, LINK, 56
PC-DOS. See MS-DOS

269

Index (User's Guide)

Phase errors, MASM, 23, 41
Ports, accessing, 133, 139
Procedure calls, tracing, 140, 155
Program header, inspecting, 263
Program header, SYrvIDEB, 83, 86
Program maintainer. See MAKE
Programs on distribution disk, 3
PTrace command, 139, 167
Public, declaring symbols for

SYMDEB, 78, 163
Public names, 26

Quit command, SYMDEB, 141
Quoted commands option, SYMDEB,

90, 166

/R option, MASM, 28
Radixes in SYMDEB, 93
Records, assembly listing, 36
Redirection command, SYMDEB, 141
Register command, SYMDEB, 143, 166
Relocatable address, 34
Remove (-) command, LIB, 196
Replace (-+) command, LIB, 197
Return codes. See Exit Codes

/S option, MAKE, 206
/S option, MASM, 22
IS option, SYMDEB, 89, 147, 166, 167
Sample session, SYMDEB, 163
Screen-Swap command, SYMDEB, 89,

147, 169
Search command, SYMDEB, 147, 162
Search paths, LINK, 52
Segment number, setting maximum, 67
Segment order

compatibility, 9
MS-DOS convention, 68

/SEGMENTS option, LINK, 67
Segments

assembly listing, MASM, 37
SET command, LINK, 52
Set Source-Mode command, 148
.SFCOND directive, MASM, 30
Shell Escape command, SYMDEB, 150
Short reals

dumping, with SYMDEB, 116

270

Short reals {continued}
entering, with SYMDEB, 124

Source file
specifying with SYMDEB, 149
SYMDEB, 96

Source lines
compatible compilers, 79
tracing, 149

Source-Line command, SYMDEB, 152
Source-l'v1ode command, SYMDEB, 148
Source-mode example, 157
Special macro names, MAKE, 209
Spelling of symbol names, 92
Stack frame, 152
/STACK option, EXEMOD, 263
ISTACK option, LINK, 62
Stack size, controlling, 263
Stack size

con trolling with LINK, 62
Stack Trace command, SYMDEB, 152
Start-up commands option, SYMDEB,

90, 166
Start-up routine, executing with

SYMDEB,80
Statement evaluation, SYMDEB, 143,

145
Sticky breakpoints, SYMDEB, 103
Strict type checking, 10
Strings in SYMDEB parameters, 97
Structures, assembly listing, 36
Suppressing messages, MASM, 32
Symbol maps

examining, 126
opening, 137

Symbol space, 7
Symbolic debugger. See SYMDEB
Symbolic debugging, 77, 84
Symbol-map files

creating, 81
format, 53
loading, 84
multiple, 84
opening, 84

Symbols, assembly listing, 39
Symbols in SYMDEB parameters, 91
Symbol Set command, 154
SYMDEB command parameters

address range, 94
addresses, 94
described, 91

SYMDEB command parameters
(continued)

line numbers, 96
numbers, 93
object range, 95
strings, 97
symbols, 91

SYMDEB commands
Assemble, 100, 173
Breakpoint Clear, 105
Breakpoint Disable, 105, 171
Breakpoint Enable, 106
Breakpoint List, 107, 171
Breakpoin t Set, 103, 170, 172
Comment, 108
Compare, 108
Display, 109
Dump 10-Byte Reals, 118
Dump, 110, 168
Dump ASCII, 112, 169, 170
Dump Bytes, 113
Dump Doublewords, 115
Dump Long Reals, 117
Dump Short Reals, 116
Dump Words, 114
Enter 10-Byte Reals, 126
Enter, 119
Enter ASCII, 122
Enter Bytes, 120
Enter Doublewords, 123
Enter Long Reals, 125
Enter Short Reals, 124
Enter Words, 122
Examine Symbol Map, 126, 166
Fill, 129
Go, 130, 166, 169, 170, 172
Help, 132
Hex, 132
Input, 133
listed, 99
Load, 133
Move, 135
Name, 136
Open Map, 137
Output, 139
PTrace, 139, 167
Quit, 141
Redirection, 141
Register, 143, 166
Screen Swap, 147, 169

Index (User's Guide)

SYMDEB commands (continued)
Search, 147, 162
Set Source Mode, 148
Shell Escape, 150
Source Line, 152
Symbol Set, 154
Trace, 152, 155, 167, 172, 173
Unassemble, 157, 167
View, 160
Write, 161

SYMDEB options
/IBM, 87, 90, 147, 166
IK, 88,166
IN, 89
IS, 89, 147, 166, 167
start-up commands, 90, 166

SYMDEB
argument passing, 85, 136
assembly rules, 101
breakpoint instructions explained,

131
case-insensitivity, 92
declaring symbols public, 78, 163
described, 77
editing keys, 100
error messages, 238
exit codes, 255
expressions, 97
flags register, 144
function calls, 140, 155, 168
operators, 97, 98
procedure calls, 140, 155
processor line, 84
program files, 83
program header, 83, 86
radixes, 93
sample session, 163
source file, 96
starting, 82
starting without a file, 86
statement evaluation, 143, 145
symbol-map file, 81, 84

/T option, MASM, 32
Target/ dependent descriptions,

MAKE, 203
Text editor, 4
Text string, :MASM, 23
.TFCOND directive, MASM, 30

271

Index (User's Guide)

TOOLS.INI file, MAKE, 210
Trace command, SYMDEB, 155, 167,

172, 173
Type checking, strict, 10

Unary operators, SYMDEB, 98
Unassemble command, SYMDEB, 157,

167
Ut.ilit.ies

EXEMOD, 262
EXEPACK, 261

IV option, 217
IV option, MASM, 29
View command, SYMDEB, 160
Virtual breakpoint, SYMDEB, 107
VM.TlvIP file, LINK, 54

Write command, SYMDEB, 161

/X option, MASM, 29

/Z option, MASM, 31

272

Microsoft®
Macro Assembler
for the MS-DOS® Operating System

Reference Manual

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1984, 1985

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS-DOS, MS, and XENIX are registered trademarks of Microsoft
Corporation. The High Performance Software is a trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Document Number 410610002-400-ROo-1285

Contents

1 Introduction 1

1.1 Overview 3
1.2 About This Manual 3
1.3 Notational Conventions 4

2 Elements of the Assembler 9

2.1 Introduction 11
2.2 Character Set 11
2.3 Integers 11
2.4 Real Numbers 13
2.5 Encoded Real Numbers 13
2.6 Packed Decimal Numbers 14
2.7 Character and String Constants 15
2.8 Names 15
2.9 Reserved Names 16
2.10 Statements 17
2.11 Comments 18
2.12 CO:M:MENT Directive 19

3 Program Structure 21

3.1 Introduction 23
3.2 Source Files 23
3.3 Instruction-Set Directives 25
3.4 SEG:MENT and ENDS Directives 27
3.5 END Directive 35
3.6 GROUP Directive 36
3.7 ASSU:ME Directive 39
3.8 ORC Directive 40
3.9 EVEN Directive 41
3.10 PROC and ENDP Directives 41

iii

Contents

4 Types and Declarations 45

4.1 Introduction 47
4.2 Label Declarations 47
4.3 Data Declarations 48
4.4 Symbol Declarations 54
4.5 Type Declarations 56
4.6 Structure and Record Declarations 60

5 Operands and Expressions 65

5.1 Introduction 67
5.2 Operands 67
5.3 Operators and Expressions 78
5.4 Expression Evaluation and Precedence 92
5.5 Forward References 93
5.6 Strong Typing for Memory Operands 95

6 Global Declarations 97

6.1 Introduction 99
6.2 PUBLIC Directive 99
6.3 EXTRN Directive 100
6.4 Program Example 101

7 Conditional Directives 103

7.1 Introduction 105
7.2 Conditional-Assembly Directives 105
7.3 Conditional Error Directives 110

8 Macro Directives 115

8.1
8.2
8.3

Introduction 117
Macro Directives 117
Macro Operators 128

9 File Control Directives 133

9.1 Introduction 135
9.2 INCLUDE Directive 136

iv

Contents

9.3 .RADIX Directive 137
9.4 %OUT Directive 138
9.5 NAlvfE Directive 138
9.6 TITLE Directive 139
9.7 SUBTTL Directive 140
9.8 P AGE Directive 140
9.9 .LIST and .XLIST Directives 142
9.10 .SFCOND, .LFCOND,

and . TFCOND Directives 142
9.11 .LALL, .XALL, and .SALL Directives 144
9.12 . CREF and .XCREF Directives 145

Appendixes 147

A Instruction Summary 149

A.1 Introduction 151
A.2 8086 Instructions 152
A.3 8087 Instructions 159
A.4 80186 Instruction Mnemonics 163
A.5 80286 Nonprotected Instructions 164
A.6 80286 Protected Instruction Mnemonics 165
A.7 80287 Instruction Mnemonics 166

B Directive Summary 167

B.1 Introduction 169
B.2 MASM Directives 169
B.3 MASM Operators 177

C Segment Names
for High-Level Languages 183

C.1 Introduction 185
C.2 Text Segments 186
C.3 Data Segments - Near 188
C.4 Data Segments - Far 189
C.5 BSS Segments 190
C.6 Constant Segments 191

Index 193

v

Contents

Figures

Figure 3.1

Figure 3.2

vi

LINK Program Loading Order

LINK Segment Loading Order

34

38

Tables

Table 2.1

Table 2.2

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 7.1

Table A.1

Table B.1

Table B.2

Digits Used with Each Radix 12

Reserved Names 17

Register Operands 70

Flag Positions 71

Arithmetic Operators 79

Relational Operators 81

Logical Operators 82

. TYPE Operator and Variable Attributes

Operator Precedence 93

Conditional Error Directives 110

Syntax Abbreviations 151

Directives 169

Operator Precedence 177

89

vii

Chapter 1
Introduction

1.1 (}yervievv 3
1.2 About This Manual 3
1.3 Notational Conventions 4

1

Introduction

1.1 Overview

This reference manual describes the syntax and structure of assembly
language for MASM, the Microsoft® Macro Assembler. MASM is an
assembler for the Intel® 8086/80186/80286 family of microprocessors. It
can assemble the instructions of the 8086, 8088, 80186, and 80286
microprocessors, and the 8087 and 80287 floating-point coprocessors. It
has a powerful set of assembly-language directives that gives you complete
control of the segmented architecture of the 8086, 80186, and 80286
microprocessors. MASM instruction syntax allows a wide variety of
operand data types, including integers, strings, packed decimals, floating
point numbers, structures, and records.

The assembler produces 8086, 8088, 80186, or 80286 relocatable object
modules from assembly-language source files. The relocatable object
modules can be linked, using LINK, the Microsoft 8086 Object Linker, to
create executable programs for the MS-DOS'3 operating system.

MASM is a macro assembler. It has a full set of macro directives that let
you create and use macros in a source file. The directives instruct MASM
to repeat common blocks of statements, or replace macro names with the
blocks of statements they represent. MASM also has conditional directives
that provide for selective exclusion of portions of a source file from assem
bly, or inclusion of additional program statements by simply defining a
symbol.

MASM carries out strict syntax checking of all instruction statements,
including strong typing for memory operands, and detects questionable
operand usage that could lead to errors or unwanted results.

MASM produces object modules compatible with object modules created
by many high-level-language compilers. Thus, programs can be constructed
by combining MASM object modules with object modules created by C,
Pascal, FORTRAN, or other language compilers.

1.2 About This Manual

This reference manual supplements the Microsoft Macro Assembler User's
Guide, which explains program operation and the steps required to create
executable programs from source files.

3

Microsoft Macro Assembler Reference Manual

This reference manual does not teach assembly-language programming, nor
does it give detailed descriptions of the 8086, 80186, and 80286 instruction
sets. For further information on these topics, other references are avail
able. Some of these are listed in the introduction to the Microsoft Macro
Assembler User's Guide.

Chapter 1 concludes with an explanation of notational conventions used
throughout the Microsoft Macro Assembler Reference Manual. Chapter 2
discusses the elements of the assembler, reserved vlords, characters that can
be used in a program, and how to form numbers, names, statements and
comments compatible with the assembler. Chapter 3 details the program
structure directives, which allow definition of code and data organization,
and the instruction-set directives used for specifying which instruction set
or sets will be used during assembly. Chapter 4 explains generating data
for programs, declaration of labels, variables and other symbols, and type
definition for data blocks. Chapter 5 deals with combining operators and
operands into expressions for assembly-language statements and directives.
Chapter 6 covers the global-declaration directives that allow transforma
tion of local symbols into global symbols available to all program modules.
Chapters 7 and 8 discuss the uses of, and relationship between, conditional
assembly directives and macro directives. Chapter 9 explains the file
control directives and how to use them to control source files and the files
read and created by MASM during assembly.

Appendix A ~rovides a list of the instruction names and syntax for the
8086/80186/80286 family of processors. For quick reference, the Microsoft
Macro Assembler package also includes a copy of Intel Corporation's
8086/8088/8087/80186/80188 Programmer's Pocket Reference Guide.
Appendix :f3 lists the directives you can use in MASM source files, while
Appendix C gives some guidance on linking MASM object files to object
files from high-level-language compilers.

1.3 Notational Conventions

This manual uses the following notational conventions in defining
assembly-language syntax, and in presenting examples:

Convention

Bold type

4

Meaning

Bold type indicates commands, parameter names,
or symbols that must be typed as shown. In most
cases, upper- and lowercase letters can be freely
intermixed. One exception is text within double

Italics

[]

Introduction

quotation marks (II textll). Text in quotation
marks is usually case-sensitive.

Examples

[dt'splacement] [DI]
[DI + displacement]
[DI]. dt'splacement
[DI]+displacement

Note that in the examples above, the brackets must
be typed as shown. The register name DI must
also be typed as shown, though you could use
lowercase letters. The plus sign (+) in the second
and fourth examples, and the period (.) in the third
example must be typed as shown.

Italics indicate a placeholder: a name that you
must replace with the value or file name required
by the program.

Example

jlpath

In the example above, the slash (/) and the letter I
must be entered as shown (except that the I could
be lowercase). However, path is a placeholder
representing a path name supplied by the user.
You could enter any path name such as B: \ or
\MASM\PROJECTl. When a placeholder is used in
a syntax example at the start of a section, the text
below usually describes the types of values that can
replace the placeholder.

Double brackets indicate that the enclosed item is
optional. Don't confuse double brackets with single
brackets ([]), which must be typed as shown.

Example

BP [number] address [passcount] [" commands "]

In the example, above, you must enter BP as
shown. You must also enter a value for the address
placeholder. Values for the placeholders number,
passcount, and commands can be entered if you
wish, or they can be left blank. If you enter a value
for commands, it must be enclosed in quotation
marks (1111) •

5

Microsoft Macro Assembler Reference Manual

6

'"

Special
typeface for
examples

A series of commas indicates that you can repeat
the preceding item type if you separate each of the
items with commas.

Example

[name] recordname < [initialvalue",] >
In the example above, you may provide a name and
you must provide a recordnam.p.. You may provide
more than one initialvalue as long as you separate
the values with commas. Note that you must type
the angle brackets even if you do not provide any
initialvalue.

A vertical bar between items indicates that only
one of the separated items can be used. You must
make a choice between the items.

Example

D [address: range]

In the example above, you must enter the letter D.
You may enter either an address or a range (but not
both).

Example text in this manual is shown in a special
typeface so that it will look more like listings on
the screen or listings produced with a printer.

Examples that represent source code follow these
conventions:

o Lowercase for symbols, labels, instructions, and
registers

o Uppercase for reserved words

o Uppercase for hexadecimal digits

o Lowercase for radix indicators

o Upper- and lowercase for comments

These are conventions, not requirements. Your
source code can use any combination of upper- and
lowercase letters, though your code will be clearer
if you choose a convention and use it consistently.

Examples

count

print

DB
mov
PROC

o
aX,bx
near

Introduction

7

Chapter 2

Elements of the AsseITlbler

2.1 Introduction 11
2.2 Character Set 11
2.3 Integers 11
2.4 Real Numbers 13
2.5 Encoded Real Numbers 13
2.6 Packed Decimal Numbers 14
2.7 Character and String Constants 15
2.8 Names 15
2.9 Reserved Names 16
2.10 Statements 17
2.11 Comments 18
2.12 CO:MMENT Directive 19

9

Elements of the Assembler

2.1 Introduction

All assembly-language programs consist of one or more statements and
comments. A statement or comment is a combination of characters,
numbers, and names. Names and numbers are used to identify values in
instruction statements. Oharacters are used to form the names or numbers,
or to form character constants.

Section 2.2 lists the characters that can be used in a program and Sections
2.3-2.12 describe how to form numbers, names, statements, and comments.

2.2 Character Set

MASM recognizes the following character set:

ABO D E F G HI J KL MN 0 P QR STU V WXY Z

abcdefghijklmnopqrstuvwxyz

0123456789

? @ - $:.[]()<> (1

+-/*&%!'-I\=# ",,'"

2.3 Integers

Syntax

digits
digitsB
digitsQ
digitsO
digitsD
digitsH
digitsR

An integer is an integer number: a combination of binary, octal, decimal, or
hexadecimal digits plus an optional radix. The digits are combinations of

11

Microsoft Macro Assembler Reference Manual

one or more digits of the specified radix: B, Q, 0, D, or H. The real
number designator R can also be used. If no radix is given, the assembler
uses the current default radix (decimal, unless you have changed it with the
.RADIX directive). The radix specifier can be either upper- or lowercase;
sample code in this manual uses lowercase. Table 2.1 lists the digits that
can be used with each radix.

Table 2.1

Digits Used with Each Radix

Radix Type Digits

B Binary 01

Qor 0 Octal 01234567

D Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

R Real Number 0123456789ABCDEF

Hexadecimal numbers must always start with a decimal digit (0 to 9). If
necessary, put a leading 0 at the left of the number to distinguish between
hexadecimal numbers that start with a letter, and symbols. For example,
OABCh is interpreted as a hexadecimal number, but ABCh is interpreted as
a symbol. The hexadecimal digits A through F can be either upper- or
lowercase. Sample code in this manual uses uppercase.

The real number designator (R) can only be used with hexadecimal
numbers consisting of 8, 16, or 20 significant digits (a leading 0 can be
added).

The maximum number of digits in an integer depends on the instruction or
directive in which the integer is used. The default radix can be specified by
using the .RADIX directive (see Section 9.3).

Examples

01011010b
01111b

12

132q
170

5Ah
OFh

gOd
15d

Elements of the Assembler

2.4 Real Numbers

Syntax

[+i-] digits.digits[E[+i-]digits]

A real number is a number consisting of an integer, a fraction, and an
exponent. The digits can be any combination of decimal digits. Digits
before the decimal point (.) represent the integer. Those following the point
represent the fraction. The digits after the exponent mark (E) represent
the exponent, which is optional. If an exponent is given, a plus (+) or
minus (-) sign may be used to indicate its sign.

Real numbers can be used only with the DD, DQ, and DT directives. The
maximum number of digits in the number and the maximum range of
exponent values depend on the directive. See Sections 4.3.3, 4.3.4, and
4.3.5 in this reference manual.

Examples

25.23
2.523El
2523.0E-2

2.5 Encoded Real Numbers

Syntax

digitsR

An encoded real number is an 8-, 16-, or 20-digit hexadecimal number that
represents a real number in encoded format. An encoded real number has a
sign, a biased exponent, and a mantissa. These values are encoded as bit
fields within the number. The exact size and meaning of each bit field de
pends on the number of bits in the number. The digits must be hexadeci
mal digits. The number must begin with a decimal digit (0-9) and must be
followed by the real number designator (R).

13

Microsoft Macro Assembler Reference Manual

Encoded real numbers can be used only with the DD, DQ, and DT direc
tives. The number of digits for the encoded numbers used with DD, DQ,
and DT must be 8, 16, and 20 digits, respectively. (If a leading 0 is sup
plied, the number must be 9, 17, or 21 digits.) See Sections 4.3.3, 4.3.4,
and 4.3.5.

Examples

DD
DQ

3F800000r
3FFOOOOOOOOOOOOOr

1.0 for DD
1.0 for DQ

2.6 Packed Decimal Numbers

Syntax

[+1-] digits

A packed decimal number represents a decimal integer to be stored in
packed decimal format. Packed decimal storage has a leading-sign byte
and 9 value bytes. Each value byte contains two decimal digits. The high
order bit of the sign byte is 0 for positive values, and 1 for negative values.

Packed decimals have the same format as other decimal integers, except
that they can take an optional plus (+) or minus (-) sign and can be
defined only with the DT directive. A packed decimal must not have more
than 18 digits.

Examples

DT
DT

14

1234567890
-1234567890

Encoded as 00000000001234567890h
Encoded as 80000000001234567890h

Elements of the Assembler

2.7 Character and String Constants

Syntax

, characters'
.. characters"

A character constant consists of a single ASCII (American Standard Code
for Information Interchange) character. A string constant consists of two
or more ASCII characters. Constants must be enclosed in right single quo
tation marks or double quotation marks. String constants are case
sensitive.

Single quotation marks must be encoded twice when used literally within
constants that are also enclosed by single quotation marks. Similarly,
double quotation marks must be encoded twice when used in constants that
are also enclosed within double quotation marks.

Examples

'a'
lab'
"a"
"This is a message."
'Can' 't find file.'
"Can't find file."
"This ""value"" not found."
'This "value" not found.'

2.8 Names

Syntax

characters

Can't find file.
Can't find file.
This "value" not found.
This "value" not found.

A name is a combination of letters, digits, and special characters used as a
label, variable, or symbol in an assembly-language statement. Names have
the following formatting rules:

16

Microsoft Macro Assembler Reference Manual

• A name must begin with a letter, an underscore (_), a question
mark (?), a dollar sign ($), or an at sign (@).

• A name can have any combination of upper- and lowercase letters.
All lowercase letters are converted to uppercase by the assembler,
unless the /1vtL option is used during assembly, or unless the name
is declared with a PUBLIC or EXTRN directive and the /MX
option is used during assembly.

~ j1 ... name can have any number of characters, but only the first 31
characters are used. All other characters are ignored.

Examples

subrout3
Array
_main

2.9 Reserved Names

A reserved name is any name with a special, predefined meaning to the
assembler. Reserved names include instruction and directive mnemonics,
register names, and operator names. These names can be used only as
defined and must not be redefined.

All upper- and lowercase combinations of these names are treated as the
same name. For example, the names Length and LENGTH are the same
name for the LENGTH operator.

Table 2.2 lists all reserved names except instruction mnemonics. For a
complete list of instruction mnemonics, see Appendix A.

16

Elements of the Assembler

Table 2.2

Reserved Names

.186 DI .ERRNZ LENGTH .SALL

.286c DL ES .LFCOND SEG

.286p DQ EVEN .LIST SEGMENT

.287 DS EXlTM LOCAL .SFCOND

.8086 DT EXTRN LOW SHL

.8087 DW FAR LT SHORT
- DWORD GE MACRO SHR
AH DX GROUP MASK SI
AL ELSE GT MOD SIZE
AND END HIGH NAME SP
ASSUME ENDIF IF NE SS
AX ENDM IF1 NEAR STRUC
BH ENDP IF2 NOT SUBTTL
BL ENDS IFB OFFSET TBYTE
BP EQ IFDEF OR .TFCOND
BX EQU IFDIF ORG THIS
BYTE .ERR IFE %OUT TITLE
CH .ERR1 IFIDN PAGE TYPE
CL .ERR2 IFNB PROC .TYPE
COMMENT .ERRB IFNDEF PTR WIDTH
.CREF .ERRDEF INCLUDE PUBLIC WORD
CS .ERRDIF IRP PURGE .XALL
CX .ERRE IRPC QWORD .XCREF
DB .ERRIDN LABEL .RADIX .XLIST
DD .ERRNB .LALL RECORD XOR
DH .ERRNDEF LE REPT

2.10 Statements

Syntax

[name] mnemonic [operands] [;comment]

A statement is a combination of an optional name, a mandatory instruction
or directive mnemonz'c, one or more optional operands, and an optional
comment. A statement represents an action to be taken by the assembler,
such as generating a machine instruction or generating 1 or more bytes of
data.

17

Microsoft Macro Assembler Reference Manual

Statements are formed according to the following rules:

o A statement can begin in any column.

o A statement must not have more than 128 characters and must not
contain an embedded carriage-return/line-feed combination. In
other words, continuing a statement on multiple lines is not
allowed.

e All statements except the last one ill Lhe file must be terminated by
a carriage-return/line-feed combination.

Examples

count DB o
mov aX,bx
ASSUME cs:_text,ds:DGROUP

print PROC near

2.11 Comments

Syntax

; text

A comment is any combination of characters preceded by a semicolon (;)
and terminated by an embedded carriage-return/line-feed combination.
Comments describe the action of a program at the given point, but are
otherwise ignored by the assembler and have no effect on assembly.

Comments can be placed anywhere in a program, even on the same line as a
statement. However, if the comment shares the line with a statement, it
must be to the right of all names, mnemonics and operands. A comment
following a semicolon must not continue past the end of the line on which it
begins; that is, it must not contain any embedded carriage-return/line-feed
combination characters. For very long comments, the COMMENT direc
tive can be used.

18

Elements of the Assembler

Examples

This comment is alone on a line.
mov ax, bx ; This comment follows a statement.

Comments can contain reserved words like PUBLIC.

2.12 COl\l:li\t1ENT Directive

Syntax

COMMENT delimiter
text
delimiter [text]

The COMMENT directive causes the assembler to treat all text between
delimiter and delimiter as a comment. The delimiter character must be the
first nonblank character after the COMMENT keyword. The text is all
remaining characters up to the next occurrence of the delimiter. The text
must not contain the delimiter character.

The COMMENT directive is typically used for multiple-line comments.
Although text can appear anywhere on the same line as the last delimiter,
all text on the same line as the last delimiter is ignored by the assembler.

Examples

comment *
This comment continues until the
next asterisk.

*

The preceding and following examples illustrate how blocks of text can be
designated as comments.

comment +
The assembler ignores the statement
following the last delimiter
+ mov ax, 1

19

(

Chapter 3

Program Structure

3.1 Introduction 23
3.2 Source Files 23
3.3 Instruction-Set Directives 25
3.4 SEGNlENT and ENDS Directives

3.4.1 Align Type 28
3.4.2 Combine Type 28
3.4.3 Class Type 30
3.4.4 Program Example 32
3.4.5 Segment Nesting 35
3.5 END Directive 35
3.6 GROUP Directive 36
3.7 ASSUME Directive 39
3.8 ORG Directive 40
3.9 EVEN Directive 41
3.10 PROC and ENDP Directives 41

27

21

Program Structure

3.1 Introduction

The program-structure directives let you define the organization that a
program's code and data will have when loaded into memory. The
program-structure directives include the following:

Directive Meaning

SEGMENT Segmen t definition

ENDS Segment end

END Source-file end

GROUP Segment groups

ASSUME Segment registers

ORG Segment origin

EVEN Segment alignment

PROC Procedure definition

ENDP Procedure end

Section 3.2 and Sections 3.4-3.10 describe these directives in detail. Sec
tion 3.3 describes the instruction-set directives, which let you specify the
instruction set or sets to be used during assembly.

3.2 Source Files

Every assembly-language program is created from one or more "source"
files: text files that contain statements defining the program's data and
instructions. MASM reads source files and assembles the statements to
create object modules. LINK, the Microsoft 8086 Object Linker, can then
be used to prepare these object modules for execution.

Source files must be in standard ASCII format: they must not contain con
trol codes, and each line must be separated by a carriage-return/line-feed
combination. Statements can be entered in upper- or lowercase. Sample
code in this manual uses uppercase letters for MASM reserved words and
for class types, but this is a convention, not a requirement.

23

Microsoft Macro Assembler Reference Manual

All source files have the same form: zero or more program segments fol
lowed by an END directive (a source file containing only macros, struc
tures, or records might have zero segments). The END directive, required
in every source file, signals the end of the source file. The END directive
also provides a way to define the program entry point or starting address
(if any).

The following example illustrates the source-file format. It is a complete
assembly-language program that uses l'v1S-DOS functions (or system calls)
to print the message He 110 wor 1 d on the screen.

Example

data
string
data

code

start:

code

stack

stack

SEGMENT
DB

; Program Data Segment
"Hello world",13,lO,"$"

ENDS

SEGMENT
ASSUME cs:code,ds:data

mov
mov
mov
mov
int
mov
int
ENDS

aX,data
dS,ax
dX,OFFSET string
ah,09h
21h
ah,4Ch
21h

SEGMENT stack
DW 64 DUP (7)
ENDS

END start

Program Code Segment

Program Entry Point
Load data segment location

into DS register
Load string location
Call string display

Call terminate function

Program Stack Segment
Define stack space

; Mark end and define start

The following main features of this source file should be noted:

24

1. The SEGMENT and ENDS statements, which define segments
named data, code, and stack.

2. The variable str ing in the data segment, which defines the string
to be displayed. The variable data are defined in the da ta seg
ment. They include the quoted dollar sign (" $ ") required by the
MS-DOS display-string function, as well as the ASCII codes for a
carriage-return/line-feed combination.

Program Structure

3. The instruction label start in the code segment, which marks the
start of the program instructions.

4. The DW statement in the stack segment, which defines the unini
tialized data space to be used for the program stack.

5. The ASSUME statement for the data and code segments, which
specifies which segment registers will be associated with the labels,
variables, and symbols defined within the segments. An assume
statement is not needed for the stack segment since the combine
type stack tells MASM that the segment is associated with the
SS register. See Section 3.4.2 for more information on combine
types.

6. The first two code instructions, which load the address of the data
segment into the DS register. These instructions are not necessary
for the code and stack segments because the code-segment address
is always loaded into the CS register and the stack-segment address
is automatically loaded into the SS register when you use the stack
combine type.

7. The last two instructions in the code segment, which use MS-DOS
function 4Ch to return to DOS. While there are other techniques
for returning to DOS, this is the one recommended for most
assembly-language programs.

8. The END directive, which indicates the end of the source file, and
specifies start as the program entry point.

3.3 Instruction-Set Directives

Syntax

.8086

.8087

.186

.286c

.286p

.287

The instruction-set directives enable the instruction sets for the given
microprocessors. When a directive is given, MASM will recognize and
assemble any subsequent instructions belonging to that microprocessor.

26

Microsoft Macro Assembler Reference Manual

The instruction-set directives, if used, must be placed at the beginning of
the program source file to ensure all instructions in the file are assembled
using the same instruction set.

The .8086 directive enables assembly of instructions for the 8086 and 8088
microprocessors. It also disables assembly of the instructions unique to the
80186 and 80286 processors. Similarly, the .8087 directive enables assem
bly of instructions for the 8087 floating-point coprocessor and disables
assembly of instructions unique to the 80287 coprocessor.

Since MASM assembles 8086 and 8087 instructions by default, the .8086
and .8087 directives are not required if the source files contain 8086 and
8087 instructions only. Using the default instruction sets ensures that your
programs will be usable on all processors in the 8086/80186(80286 family.
However, they will not take advantage of the more powerfu instructions
available on the 80186, 80286, and 80287 processors.

The .186 directive enables assembly of the 8086 instructions plus the addi
tional instructions for the 80186 microprocessor. This directive should be
used for programs that will be executed only by an 80186 microprocessor.

The .286c directive enables assembly of 8086 instructions and nonpro
tected 80286 instructions (identical to the 80186 instructions). The .286p
directive enables assembly of the protected instructions of the 80286 in
addition to the 8086 and nonprotected 80286 instructions. The .286c
directive should be used with programs that will be executed only by an
80286 microprocessor, but do not use the protected instructions of the
80286. The .286p directive can be used with programs that will be exe
cuted only by an 80286 processor using both protected and nonprotected
instructions.

The .287 directive enables assembly of instructions for the 80287 floating
point coprocessor. This directive should be used with programs that have
floating-point instructions and are intended for execution only by an 80286
microprocessor.

Even though a source file may contain the .8087 or .287 directive, MASM
also requires the /R or /E option in the MASM command line to define
how to assemble floating-point instructions. The /R option directs the
assembler to generate the actual instruction code for the floating-point
instruction. The IE option enables the assembler to generate code that
can be used by a floating-point-emulator routine. See Sections 2.3.12 and
2.3.13 of the Microsoft Macro Assembler User's Guide.

26

Program Structure

3.4 SEG:MENT and ENDS Directives

Syntax

name SEGMENT [align] [combine] ['class']
name ENDS

The SEGMENT and ENDS directives mark the beginning and end of a
program segment. A program segment is a collection of instructions and/or
data whose addresses are all relative to the same segment register.

The name defines the name of the segment. This name can be unique or be
the same name given to other segments in the program. Segments with
identical names are treated as the same segment.

The optional align, combine, and class types give the linker instructions on
how to set up segments. They should be specified in order, but it is not
necessary to enter all types, or any type, for a given segment.

Note

Don't confuse the byte and word align types with the BYTE and
WORD reserved words used to specify data type with operators such
as THIS and PTR. Also, the page align type and the public combine
type should not be confused with the PAGE and PUBLIC directives.
The distinction should be clear from context since the align and com
bine types are only used on the same line as the SEGMENT directive.
To make the difference even clearer, align and combine types are shown
with lowercase letters in this manual, although you can actually enter
them in either case.

Sections 3.4.1-3.4.4 describe the three program-loading options and give an
example program. Segment nesting is also explained in Section 3.4.5.
Some of the information in this section is also discussed in Section 3.4 of
the Microsoft Macro Assembler User's Guide.

27

Microsoft Macro Assembler Reference Manual

3.4.1 Align Type

The optional align type defines the alignment of the given segment. The
alignment defines the range of memory addresses from which a starting
address for the segment can be selected. The align type can be anyone of
the following:

Align Type

byte

word

para

page

Meaning

Use any byte address

Use any word address (2 bytes/word)

Use paragraph addresses (16 bytes/paragraph)

Use page addresses (256 bytes/page)

If no align type is given, para is used by default. The actual start address
is not computed until the program is loaded. The linker ensures that the
address will be on the given boundary.

3.4.2 Combine Type

The optional combine type defines how to combine segments having the
same name. The combine type can be anyone of the following:

28

Combine Type Meaning

public Concatenates all segments having the same name
to form a single, contiguous segment. All instruc
tion and data addresses in the new segment are
relative to a single segment register, and all offsets
are adjusted to represent the distance from the
beginning of the new segment.

stack Concatenates all segments having the same name
to form a single, contiguous segment. This com
bine type is the same as the public combine type,
except that all addresses in the new segment are
relative to the SS segment register. The stack
pointer (SP) register is initialized to the ending
address of the segment. Stack segments should
normally use the stack type, since this automati
cally initializes the SS register. If you create a
stack segment and do not use the stack type, you
must give instructions to load the segment address
into the SS register.

common

memory

at address

Program Structure

Creates overlapping segments by placing the start
of all segments having the same name at the same
address. The length of the resulting area is the
length of the longest segment. All addresses in the
segments are relative to the same base address. If
data are declared in more than one segment having
the same name and common type, the most
recently declared data replace any previously
declared data.

Is treated by the Microsoft 8086 Object Linker
(LINK) exactly like a public segment. MASM
allows you to define segments with memory type
even though LINK does not support a separate
memory type. This feature is provided for com
patibility with other linkers that may support a
combine type conforming to the Intel definition of
memory type.

Causes all label and variable addresses defined in
the segment to be relative to the given address.
The address can be any valid expression, but must
not contain a forward reference, that is, a reference
to a symbol defined later in the source file. An at
segment typically contains no code or initialized
data. Instead, it represents an address template
that can be placed over code or data already in
memory, such as the screen buffer. The labels and
variables in the at segments can then be used to
access the fixed instructions and data.

If no combine type is given, the segment is not combined. Instead, it
receives its own physical segment when loaded into memory.

Note

Normally you should provide at least one stack segment in a program.
If no stack segment is declared, LINK will display a warning message.
You can ignore this message if you have a specific reason for not declar
ing a stack segment.

29

Microsoft Macro Assembler Reference Manual

3.4.3 Class Type

The optional class type defines which segments are to be loaded in contigu
ous memory. Segments having the same class name are loaded into
memory one after another. All segments of a given class are loaded before
segments of any other class. The class name must be enclosed in single quo
tation marks ('). Class names are not case-sensitive unless the j:ML or
I'MX option is used during assembly, or the /NOIGNORECASE option
IS used when linking.

Note

The names assigned for class types of segments should not be used for
other symbol definitions in the source file. For example, if you give a
segment the class name 'CONSTANT', you should not give the name
constant to any variable or labels in the source file. If you do, the
error Symbol already different kind will be generated.

If class types are not specified, LINK copies segments to the executable file
in the same order they are encountered in the object files. This order is
maintained throughout the program unless LINK encounters two or more
segments having the same class name. Segments having identical class
names belong to the same class, and are copied as contiguous blocks to the
executable file.

Example

DATAX segment 'DATA'
DATAX ends

TEXT segment 'CODE'
TEXT ends

DATAZ segment 'DATA'
DATAZ ends

In the preceeding example-program fragment, the segments DATAX and
DATAZ both have class type 'DATA'. As a result, both segments are copied
to the executable file before the TEXT segment.

30

Program Structure

All segments belong to a class. Segments for which no class name is expli
citly stated have the null-class name, and will be loaded as contiguous
blocks with other segments having the null-class name. LINK imposes no
restriction on the number or size of segments in a class. The total size of
all segments in a class can exceed 64K.

Since LINK processes modules in the order in which it receives them on the
command line, you may not always be able to easily specify the order in
which you want segments to be loaded. For example, assume your program
has four segments that you want loaded in the following order: CODE,
DATA, CaNST, STACK. The CODE, CaNST, and STACK segments are
defined in the first module of your program, but the DATA segment is
defined in the second module. LINK will not put the segments in the
proper order because it will first load the segments encountered in the first
module.

You can avoid this problem by creating and assembling a dummy program
file containing empty segment definitions in the order in which you wish to
load your real segments. Once this file is assembled, you can give it as the
first object file in any invocation of LINK. The linker will automatically
load the segments in the order given.

For example, the following dummy program file defines the loading order of
segments in a program having segments named CODE, DATA, CaNST, and
STACK.

CODE segment para public 'CODE'
CODE ends
DATA segment para public 'DATA'
DATA ends
CaNST segment para public 'CaNST'
CaNST ends
STACK segment para stack 'STACK'
STACK ends

The dummy program file must contain definitions for all classes to be used
in your program. If it does not, LINK will choose a default loading order
which mayor may not correspond to the order you desire. When linking
your program, the dummy program must be the first object file specified in
the LINK command line.

Do not use a dummy program file with Microsoft 0, Pascal, FORTRAN, or
compiled BASIC. These languages follow the MS-DOS segment-ordering
convention described in Section 3.3.15 of the Microsoft Macro Assembler
User's Guide. This loading order must not be modified.

31

Microsoft Macro Assembler Reference Manual

Another way to control segment order is with the MASM / A option. This
option directs MASM to write segments to the object file in alphabetical
order. You can give segments names with alphabetical order that matches
the order in which you want them loaded and then use the / A option. To
make this strategy work with multiple-module programs, you should define
all segments in the first module specified in the LINK command line. Some
of the definitions may be dummy segments. See Section 2.3.1 of the Micro
soft Macro Assembler User's Guide for more information on the / A option.

Note

Some previous versions of the assembler ordered segments alphabeti
cally by default. If you have trouble assembling and linking source
code listings from books or magazines, try using the / A option. List
ings written for the old version assemblers may not work without this
option.

3.4.4 Program Example

The following source code illustrates one way in which the align and com
bine types can be used. Figure 3.1 (following the example below) shows the
way LINK would load the given program into memory. The memory
combine type is not shown since it is the same as public. The class types
are not used in the sample program, but they are illustrated in Section
3.4.3 and in the example in Section 3.B.

Note

32

Although a given segment name can be used more than once in a source
file, each segment definition using that name must have either exactly
the same attributes, or attributes that do not conflict.

Example

seg_a
start:

seg_c

seg_d

seg_d

seg_a

SEGMENT word public

ENDS

SEGMENT page stack

ENDS

SEGMENT para common

ENDS

SEGMENT at OB800h

ENDS
END start

NAME module 2

SEGMENT word public

ENDS

SEGMENT page stack

ENDS

SEGMENT para common

ENDS
END

Program Structure

33

Microsoft Macro Assembler Reference Manual

OB800h

hIe First availa
para addres s

hIe First availa
page addres s

hIe First availa
word addres s

34

High

f---

f---

'-

f---

f---

~

f---

f-J

Low

seg_d SEGMENT at OB800h

seg_c SEGMENT para common
in moduIe_ 2

seg_c SEGMENT para common
in moduIe_l

seg_b SEGMENT page stack
in moduIe_ 2

seg_b SEGMENT page stack
in module_l

ss register initialized to this address

seg_a SEGMENT word public
in module_ 2

seg_a SEGMENT word-public
in moduIe_l

Figure 3.1 LINK Program Loading Order

Program Structure

3.4.5 Segment Nesting

Segments can be nested. When MASM encounters a nested segment, it
temporarily suspends assembly of the enclosing segment and begins assem
bly of the nested segment. When the nested segment has been assembled,
MASM continues assembly of the enclosing segment. Overlapping seg
ments are not permitted.

Example

sample
main

canst
array
canst

main
sample

SEGMENT word public 'CODE'
PROC far

SEGMENT word public 'CaNST'
DW array_data
ENDS

RET
ENDP
ENDS

outside segment

nested segment

end nesting

This example-code fragment contains two segments: a code segment called
sample and a data segment called canst. The canst segment is nested
within the sample segment.

3.5 END Directive

Syntax

END [expression]

The END directive marks the end of a module. The assembler ignores any
statements following this directive.

The optional expression defines the program entry point, the address at
which program execution is to start. If the program has more than one
module, only one of these modules can define an entry point. The module
with the entry point is called the "main module". If no entry point is
given, none is assumed.

36

Microsoft Macro Assembler Reference Manual

Note

If you fail to define an entry point for the main module, your program
may not be able to initialize correctly. The program will assemble and
link without error messages, but it may crash when you attempt to run
it. Remember, one (and only one) module must define an entry point.

Examples

end
end start

3.6 GROUP Directive

Syntax

name GROUP segmentname",

The GROUP directive associates a group name with one or more seg
ments, and causes all labels and variables defined in the given segments to
have addresses relative to the beginning of the group rather than to the
beginning of the segments in which they are defined. The segmentname
must be the name of a segment defined using the SEGMENT directive, or
a SEG expression (see Sections 3.4 and 5.3.12). The name must be unique.

The GROUP directive does not affect the order in which segments of a
group are loaded. Loading order depends on each segment's class, or on the
order in which object modules are given to the linker. Section 3.4.5 of the
Microsoft Macro Assembler User's Guide also discusses groups and how they
are handled by the linker.

Segments in a group need not be contiguous. Segments that do not belong
to the group can be loaded between segments that do. The only restriction
is that the distance (in bytes) between the first byte in the first segment of
the group and the last byte in the last segment must not exceed 65535.
Therefore, if the segments of a group are contiguous, the group can occupy
up to 64K of memory.

36

Program Structure

Group names can be used with the ASSUME directive (Section 3.7) and as
an operand prefix with the segment override operator (:) (Section 5.3.7).

Note

A group name must not be used in more than one GROUP directive in
any source file. If several segments within the source file belong to the
same group, all segment names must be given in the same GROUP
directive.

Example

dgroup GROUP aseg,bseg
ASSUME ds:dgroup

aseg SEGMENT byte public 'DATAl'

sym_a:

aseg ENDS

bseg SEGMENT byte public 'DATA2 '

sym_b:

bseg ENDS

cseg SEGMENT byte public 'DATAl'

sym_c:

cseg ENDS
END

The order in which LINK will load these segments is shown in Figure 3.2.
LINK loads aseg first because it occurs first in the source file. Next,
LINK loads cseg because it has the same class type as aseg. LINK
loads bseg last. However, aseg and bseg are declared part of the same
group, despite their separation in memory. This means that the symbols
sym_a and sym_b have offsets from the beginning of the group, which is
also the beginning of aseg. The offset of sym_c is from the beginning of
cseg. This sample is intended to illustrate the way LINK organizes seg
ments in a group, rather than to show a typical use of a group.

37

Mierosoft Maero Assembler Referenee Manual

Il'

t
offset
syIll- c

~
offset
sym- b

t
offset

,II SyIlL a

~

38

high

SYIll- b

syIll- C

syIll- a

low

j-

t-

-
1-

f-

-
1-

I--

1-

bseg SEGMENT byte public 'DATA2'
(part of dgroup)

cseg SEGMENT byte public 'DATAl'
(not part of dgroup)

aseg SEGMENT byte public 'DATAl'
(part of dgroup)

Figure 3.2 LINK Segment Loading Order

Program Structure

3.7 ASSUME Directive

Syntax

ASSUME segmentregister:segmentname",
ASSUME NOTHING

The ASSUME directive specifies segmentregister as the default segment
register for all labels and variables defined in the segment or group given by
segmentname. Subsequent references to the label or variable will automati
cally assume the selected register when the effective address is computed.

The ASSUME directive can define up to four selections: one for each of the
four segment registers. The segmentregister can be anyone of the segment
register names: OS, DS, ES, or SS. The segmentname must be one of the
following:

• The name of a segment that was previously defined with the SEG
MENT directive

• The name of a group that was previously defined with the GROUP
directive

• The keyword NOTHING

The keyword NOTHING cancels the current segment selection. The
statement ASSUME NOTHING cancels all register selections made by a pre
vious ASSUME statement.

Note

The segment-override operator (:) can be used to override the current
segment register selected by the ASSUME directive.

39

Microsoft Macro Assembler Reference Manual

Examples

ASSUME cs:CODE
ASSUME cs:cgroup,ds:dgroup,ss:nothing,es:nothing
ASSUME NOTHING

3.8 ORG Directive

Syntax

ORG expression

The ORG directive sets the location counter to expression. Subsequent
instruction and data addresses begin at the new value.

The expression must resolve to an absolute number. In other words, all
symbols used in the expression must be known on the first pass of the
assembler. The location-counter symbol (*) can also be used.

Examples

ORG 120h
mov aX,dx

In the first example, the statement mov ax, dx begins at byte 120h in the
current segment.

array
ORG
DW

$+2
100 dup (0)

In the second example, the variable array is declared to start at the
address 2 bytes beyond the current address. See Section 5.2.4 for more
information on the location-counter symbol (*).

40

Program Structure

3.9 EVEN Directive

Syntax

EVEN

The EVEN directive aligns the next data or instruction byte on a word
boundary. If the current value of the location counter is odd, the directive
increments the location counter to an even value and generates one NOP
(no operation) instruction. If the location counter is already even, the
directive does nothing.

Note

The EVEN directive must not be used in byte-aligned segments.

Example

testl

test2

ORC
DB
EVEN
DW

o
1

513

In this example, the EVEN directive tells MASM to increment the loca
tion counter, and generates a single NOP instruction (90h). This means
the offset of test2 is 2, not 1, as it would be without the EVEN directive.

3.10 PROC and ENDP Directives

Syntax

name PROC [distance]
statements

name ENDP

The PROC and ENDP directives mark the beginning and end of a pro
cedure. A procedure is a block of instructions that forms a program sub
routine. Every procedure has a name with which it can be called.

41

Microsoft Macro Assembler Reference Manual

The name must be a unique name, not previously defined in the program.
The optional distance can be either NEAR or FAR. NEAR is assumed if
no distance is given. The name has the same attributes as a label, and can
be used as an operand in a jump, call, or loop instruction.

Any number of statements can appear between the PROC and ENDP
statements. The procedure should contain at least one RET directive to
return control to the point of call. Nested procedures are allowed.

Example

push
push
push
call
add

addup PROC

push

mov
mov

add

add

pop
RET

addup ENDP

ax
bx
cx
addup
sp,6

near

bp

bp,sp
ax, [bp+4]

ax, [bp+6]

ax, [bp+8]

bp

Push third parameter
Push second parameter
Push first parameter
Call the procedure
Destroy the pushed parameters

Return address for near call
takes two bytes

Save base pointer - takes two more
so parameters start at 4th byte

Load stack into base pointer
Get first parameter

4th byte above pointer
Get second parameter

6th byte above pointer
Get third paramter

8th byte above pointer
Restore base
Return

In this example, three numbers are passed as parameters for the procedure
addup. Parameters are often passed to procedures by pushing them before
the call so that the procedure can read them off the stack.

42

Program Struc.ture

Note

The parameter-passing method in this example conforms to the stan
dard used in Microsoft high-level languages. As a result, this procedure
could be traced using the Stack Trace command (K) of the Microsoft
Symbolic Debug Utility (SYMDEB), described in Section 4.6.28 of the
Microsoft Macro AssemMer User's Guide.

43

Chapter 4
Types and Declarations

4.1 Introduction 47
4.2 Label Declarations 47
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.4.1
4.4.2
4.4.3

Near-Label Declarations 47
Proced ure Labels 48

Data Declarations 48
DB Directive 49
DW Directive 50
DD Directive 50
DQ Directive 51
DT Directive 52
DUP Operator 53

Symbol Declarations 54
Equal-Sign (==) Directive 54
EQU Directive 55
LABEL Directive 56

4.5 Type Declarations 56
4.5.1 STRUC and ENDS Directives 57
4.5.2 RECORD Directive 58
4.6 Structure and Record Declarations 60
4.6.1
4.6.2

Structure Declarations
Record Declarations

60
62

45

Types and Declarations

4.1 Introduction

This chapter explains how to generate data for a program; how to declare
labels, variables, and other symbols that refer to instruction and data loca
tions; and how to define types that can be used to generate data blocks con
taining multiple fields, such as structures and records.

4.2 Label Declarations

Label declarations create "labels." A label is a name that represents the
address of an instruction. Labels can be used in jump, call, and loop
instructions to direct program execution to the instruction at the address of
the label.

4.2.1 Near-Label Declarations

Syntax

name:

A near-label declaration creates an instruction label that has NEAR type.
The label can be used in subsequent instructions in the same segment to
pass execution control to the corresponding instruction.

The name must be unique, not previously defined, and it must be followed
by a colon (:). Furthermore, the segment containing the declaration must
be associated with the CS segment register (see Section 3.7 for information
on the ASSUME directive). The assembler sets the name to the 'current
value of the location counter.

A near-label declaration can appear on a line by itself or on a line with an
instruction. Labels must be declared with the PUBLIC or EXTRN direc
tive if they are located in one module but called from another module (see
Chapter 6).

Examples

start:
cycle: inc si

47

Microsoft Macro Assembler Reference Manual

4.2.2 Procedure Labels

Syntax

name PROC [distance]

The PROC directive creates a label name and optionally assigns it a dis
tance. The distance can be NEAR or FAR. The label then represents the
address of the first instruction of a procedure. The label can be used in a
CALL instruction (or in a jump or loop instruction) to direct execution
control to the first instruction of the procedure. If you do not specify the
type for a procedure, the assembler assumes NEAR as the default.

When the PROC label definition is encountered, the assembler sets the
label's value to the current value of the location counter and sets its type to
NEAR or FAR. If the label has FAR type, the assembler also sets its seg
ment value to that of the enclosing segment.

NEAR labels can be used with jump, call, or loop instructions to transfer
program control to any address in the current segment. FAR labels can be
used to transfer program control to an address in any segment outside the
current segment.

Labels must be declared with the PUBLIC and EXTRN directive if they
are located in one module but called from another module (see Chapter 6).

4.3 Data Declarations

The data-declaration directives let you generate data for a program. The
directives translate numbers, strings, and expressions into individual bytes,
words, or other units of data. The encoded data are copied to the object
file.

48

Types and Declarations

The data-declaration directives are listed below:

Directive Meaning

DB Define byte

DW Define word

DD Define doubleword

DQ Define quadword

DT Define ten bytes

Sections 4.3.1-4.3.5 describe these directives in detail.

4.3.1 DB Directive

Syntax

[name] DB initialvalue",

The DB directive allocates and initializes a byte (8 bits) of storage for each
initialvalue. The initialvalue can be an integer, a character string constant,
a DUP operator, a constant expression, or a question mark (?). The ques
tion mark represents an undefined initial value. If two or more initial
values are given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type BYTE whose offset value is the current location-counter value.

A string constant can have any number of characters, as long as it fits on a
single line. When the string is encoded, the characters are stored in the
order given, with the first character in the constant at the lowest address
and the last at the highest.

Examples

integer
string
message
constantexp
empty
mUltiple
duplicate
high_byte

DB
DB
DB
DB
DB
DB
DB
DB

16
lab'
"Enter your name: "
4*3
7
1,2,3, '$'
10 dup (7)
255

49

Microsoft Macro Assembler Reference Manual

4.3.2 DW Directive

Syntax

[name] DW initialvalue",

The DW directive allocates and initializes a word (2 bytes) of storage for
each initialvalue. The initialvalue can be an integer, a one- or two-character
string constant, a DUP operator, a constant expression, an address expres
sion, or a question mark (?). The question mark represents an undefined
initial value. If two or more expressions are given, they must be separated
by commas (,).

The name is optional. If name is given, the directive creates a variable of
type WORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte. Either 0 or
the first character is placed in the high-order byte.

Examples

integer
character
string
constantexp
addressexp
empty
mUltiple
duplicate
high_word
arrayptr
arrayptr2

OW
OW
OW
OW
OW
OW
OW
OW
OW
OW
OW

4.3.3 DD Directive

Syntax

[name] DD initialvalue",

16728
'a'
'bc'
4*3
string
7
1,2,3, '$'
10 dup (7)
65535
array
offset OGROUP:array

The DD directive allocates and initializes a doubleword (4 bytes) of storage
for each initialvalue. The initialvalue can be an integer, a real number, a
one- or two-character string constant, an encoded real number, a DUP
operator, a constant expression, an address expression, or a question mark

60

Types and Declarations

(?). The question mark represents an undefined initial value. If two or
more initial values are given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type DWORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte, and the
first character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

Examples

integer
character
string
real
encodedreal
constantexp
aDDsegexp
empty
mUltiple
duplicate
high_double

DO
DO
DO
DO
DO
DO
DO
DO
DO
DO
DO

4.3.4 DQ Directive

Syntax

[name] DQ initialvalue",

16728
'a'
'be'
1.5
3fOOOOOOr
4*3
real
7
1,2,3, '$'
10 dup(7)
4294967295

The DQ directive allocates and initializes a quadword (8 bytes) of storage
for each initialvalue. The initialvalue can be an integer, a real number, a
one- or two-character string const:.nt, an encoded real number, a DUP
operator, a constant expression, or a question mark (?). The question mark
represents an undefined initial value. If two or more initial values are
given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type QWORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte, and the
first character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

61

Microsoft Macro Assembler Reference Manual

Examples

integer
character
string
real
encodedreal
constantexp
empty
multiple
duplicate
high_quad

DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ

4.3.5 DT Directive

Syntax

[name] DT initialvalue",

16728
'a'
'be'
1.5
3FOOOOOOOOOOOOOOr
4*3
?
1,2,3, '$'
10 dup (?)
18446744073709551615

The DT directive allocates and initializes 10 bytes of storage for each ini
tialvalue. The initialvalue can be an integer expression, a packed decimal, a
one- or two-character string constant, an encoded real number, a DUP
operator, or a question mark (?). The question mark represents an
undefined initial value. If two or more initial values are given, they must
be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type TBYTE whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte, and the
first character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

Note

62

The DT directive assumes that constants with decimal digits are
packed decimals, not integers. If you want to specify a la-byte integer,
you must follow the number with the letter that specifies the number
system you are using (for example, "D" or "d" for decimal or "H" or
"h" for hexadecimal).

Types and Declarations

Examples

packeddecimal
integer
character
string
real
encodedreal
empty
multiple
duplicate
high_tbyte

DT
DT
DT
DT
DT
DT
DT
DT
DT
DT

4.3.6 DUP Operator

Syntax

count DUP(initialvalue",)

1234567890
16728d
'a'
'bc'
1.5
3fOOOOOOOOOOOOOOOOOOr
?
1,2,3, '$'
10 dup (?)
1208925819614629174706175d

The DUP operator is a special operator that can be used with the data
declaration directives and other directives to specify multiple occurrences
of one or more initial values. The count sets the number of times to define
initialvalue. The initial value can be any expression that evaluates to an
integer value, a character constant, or another DUP operator. If more
than one initial value is given, the values must be separated by commas (,).
DUP operators can be nested up to 17 levels. The initial value (or values)
must always be placed within parentheses.

Examples

DB 100 DUP (1)

The first example generates 100 bytes with initial value 1.

ow 20 DUP (1, 2 , 3, 4)

The second example generates 80 words of data. The first four words have
the initial values 1, 2, 3, and 4, respectively. This pattern is duplicated for
the remaining words.

DB 5 DUP(5 DUP(SOUP (1»)

The third example generates 125 bytes of data, each byte having the initial
value 1.

53

Microsoft Macro Assembler Reference Manual

DD 14 DUP (7)

The final example generates 14 doublewords of uninitialized data.

4.4 Symbol Declarations

The symbol-declaration directives let you create and use symbols . .. fl. .. sym
bol is a descriptive name representing a number, text, an instruction, or an
address. Symbols make programs easier to read and maintain by using
descriptive names to represent values. A symbol can be used anywhere its
corresponding value is allowed.

The symbol declaration directives are listed below:

Directive

EQU
LABEL

Meaning

Assign absolutes

Equate absolutes, aliases, or text symbols

Create instruction or data labels

Sections 4.4.1-4.4.3 describe the directives in detail.

4.4.1 Equal-Sign () Directive

Syntax

name=expression

The equal-sign (=) directive creates an absolute symbol by assigning the
numeric value of expression to name. An absolute symbol is simply a name
that represents a 16-bit value. No storage is allocated for the number.
Instead, the assembler replaces each subsequent occurrence of name with
the value of expression. The value is variable during assembly, but is a con
stant at run time.

The expression can be an integer, a one- or two-character string constant, a
constant expression, or an address expression. Its value must not exceed
65535. The name must be either a unique name, or a name previously
defined using the equal-sign (=) directive.

Absolute symbols can be redefined at any time.

54

Examples

integer
string
constantexp
addressexp

4.4.2 EQU Directive

Syntax

name EQU express't'on

16728
'ab'
3 * 4
string

Types and Declarations

The EQU directive creates absolute symbols, aliases, or text symbols by
assigning expression to name. An absolute symbol is a name that
represents a 16-bit value; an alias is a name that represents another sym
bol; and a text symbol is a name that represents a character string or other
combination of characters. The assembler replaces each subsequent
occurrence of the name with either the text or the value of the expression,
depending on the type of expression given.

The name must be a unique name, one which has not been previously
defined. The expression can be an integer, a string constant, a real number,
an encoded real number, an instruction mnemonic, a constant expression,
or an address expression. Expressions that evaluate to values in the range
o to 65535 create absolute symbols and cause MASM to replace the name
with a value. All other expressions cause the assembler to replace the name
with text.

The EQU directive is sometimes used to create simple macros. Note that
the assembler replaces a name with text or a value before attempting to
assemble the statement containing the name.

Symbols defined using the EQU directive cannot be redefined.

Examples

k EQU 1024 Replaced with value
pi EQU 3.14159 Replaced with text
matrix EQU 20 * 30 Replaced with value
staptr EQU [bp] Replaced with text
clearax EQU xor aX,ax Replaced with text
prompt EQU 'Type Enter' Replaced with text
bpt EQU BYTE PTR Replaced with text

66

Microsoft Macro Assembler Reference Manual

4.4.3 LABEL Directive

Syntax

name LABEL type

The LABEL directive creates a new variable or label by assigning the
current location-counter value and the given type to name.

The name must be unique and not previously defined. The type can be any
one of the following:

BYTE
WORD

DWORD

QWORD

TBYTE
NEAR
FAR

The type can also be the name of a valid structure type.

Examples

barray
warray

LABEL
OW

BYTE
100 OUP (7)

In this example, barray and warray refer to the same data. The data
can be accessed by byte with barray or by word with warray.

4.5 Type Declarations

The type-declaration directives let you define data types that can be used
to create program variables consisting of multiple elements or fields. The
directives associate one or more named fields with a given type name. The
type name can then be used in a data declaration to create a variable of the
given type.

66

Types and Declarations

The type-declaration directives are listed below:

Directive

STRUC and ENDS

RECORD

Declaration

Structure types

Record types

Sections 4.5.1 and 4.5.2 describe these directives in detail.

4.5.1 STRUC and ENDS Directives

Syntax

name STRUC
fielddefinitions
name ENDS

The STRUC and ENDS directives mark the beginning and end of a type
definition for a structure. A type definition for a structure defines the name
of a structure type and the number, type, and default values of the fields
contained in the structure.

A structure definition creates a template for data. Though this template is
used by MASM during assembly, it does not in itself create any data.
Data can only be created when you declare a structure, as described in Sec
tion 4.6.1.

The name defines the new name of the structure type. It must be unique.
The fielddefinitions define the structure's fields. Any number of field
definitions can be given. The definitions must have one of the following
forms:

[name] DB defaultvalue",
[name] DW defaultvalue",
[name] DD defaultvalue" ,
[name] DQ defaultvalue",
[name] DT defaultvalue" ,

The optional name specifies the field name; the DB, DW, DD, DQ, and
DT directives define the size of each field; and defaultvalue defines the value
to be given to the field if no initial value is given when the structure vari
able is declared. The name must be unique, and, once defined, represents
the offset from the beginning of the structure to the corresponding field.

67

Microsoft Macro Assembler Reference Manual

The default value can define a number, character or string constant, or
symbol. It may also contain the DUP operator to define multiple values
for the field. If the default value is a string constant, the field has the same
number of bytes as characters in the string. If multiple default values are
given, they must be separated by commas (,).

A definition of a structure type can contain field definitions and comments
only. It must not contain any other statements. Therefore, structures
cannot be nested.

Example

table

table

STRUC
count
value
tname
ENDS

DB
OW
DB

10
10 DUP (7)
'font3'

In this example, the fields are count, val ue, and tname. The count field
is a single-byte value initialized to 10; va 1 ue is an array of 10 uninitialized
word values; and tname is a character array of 5 bytes initialized to
, font3'. The field names count, val ue, and tname have the offset
values 0, 1, and 21, respectively.

4.5.2 RECORD Directive

Syntax

recordname RECORD fieldname:width[=expression]",

The RECORD directive defines a record type for an 8- or 16-bit record
that contains one or more fields. The recordname is the name of the record
type to be used when creating the record; fieldname is the name of a field in
the record, width is the number of bits in the field; and expression is the ini
tial (or default) value for the field.

Any number of jieldname:wz"dth=expressz"on combinations can be given for a
record, as long as each is separated from its predecessor by a comma (,).
The sum of the widths for all fields must not exceed 16 bits.

The width must be a constant in the range 1 to 16. If the total width of all
declared fields is larger than 8 bits, then the assembler uses 2 bytes. Other
wise, only 1 byte is used.

68

Types and Declarations

If =expression is given, it defines the initial value for the field. If the field
is at least 7 bits wide, you can use an ASCII character for expression. The
expression must not contain a forward reference to any symbol.

In all cases, the first field you declare goes into the most significant bits of
the record. Successively declared fields are placed in the succeeding bits to
the right. If the fields you declare do not total exactly 8 bits or exactly 16
bits, the entire record is shifted right so that the last bit of the last field is
the lowest bit of the record. Unused bits will be initialized to 0 in the high
end of the record.

The RECORD directive creates a template for data. This template is
used by the assembler during assembly, but it does not in itself create any
data. Data can only be created when you declare a record, as described in
Section 4.6.2.

Examples

encode RECORD hi:4, mid:3, 10:3

The example above creates a record type encode having three fields: hi,
mid, and 10. Each record declared using this type will occupy 16 bits of
memory. The hi field will be in bits 6 to 9 (bit 9 is bit 1 in the high byte);
the mid field will be in bits 3 to 5; and the 10 field will be in bits 0 to 2.
The remaining high-order bits will be unused. The bit diagram below
shows what the record type will look like:

hi mid 10
I I I

I I I I I I
1 01 01 01 01 01 01 01 o I 0 1 01 01 01 01 01 01 01

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Since no initial values are given, the record type has all bits set to o. Note
that this is only a template maintained by the assembler. No data are
created.

item RECORD char:7='Q', weight:4=2

The example above creates a record type i tern having two fields: char and
weight. These values are initialized to the letter Q and the number 2,
respectively. Unused bits are set to 0, as shown in the bit diagram below.

69

Microsoft Macro Assembler Reference Manual

char

I
I

weight
I

I I I
01 01 01 01 01 1 1 01 1 I 0 1 01 01 1 1 01 01 1 1 01
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

4.6 Structure and Record Declarations

Structure and record declarations allow you to generate blocks of data
bytes with many elements or fields. A structure or record declaration con
sists of the name of a previously defined structure or record, and a set of
initial values.

Sections 4.6.1-4.6.2 describe these declarations in detail.

4.6.1 Structure Declarations

Syntax

[name] struciurename < [initialvalue",] >

A structure variable is a variable with one or more fields of different sizes.
The name is the name of the variable; structurename is the name of a struc
ture type created using the STRUC directive; and initialvalue is one or
more values defining the initial value of the structure. One initial value can
be given for each field in the structure.

The name is optional. If not given, the assembler allocates space for the
structure, but does not create a name you can use to access the structure.

The initialvalue can be an integer, string constant, or expression that evalu
ates to a value having the same type as the corresponding field. The angle
brackets « » are required even if no initial value is given. If more than
one initial value is given, the values must be separated by commas (,). If
the DUP operator (see Section 4.3.6) is used, only the values within the
parentheses need to be enclosed in angle brackets.

You need not initialize all fields in a structure. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field, which was originally determined by the structure type. If there is no
default value, the field is uninitialized. Section 5.2.9 illustrates several ways
to use structure data after they have been declared.

60

Types and Declarations

Note

You cannot initialize any structure field that has multiple values if this
field was given a default initial value when the structure was defined.
For example, assume the following structure definition:

strings

strings

STRUC
buffer DB 100 DUP (7)
crlf DB 13,10
query DB 'Filename: '
endmark DB 36
ENDS

Can't override
Can't override
String <= can override

The buffer and crl f variables cannot be overridden because they
have multiple values. The query variable can be overridden as long as
the overriding data are no longer than query (10 bytes). Similarly, the
endmark field can be overridden by any byte value.

Examples

struct1 table <>

The preceding example creates a structure variable named structl whose
type is given by the structure type table. The initial values of the fields
in the structure are set to the default values for the structure type, if any.
For example, if table were defined with the structure definition in the
example in Section 4.5.1, the first byte of structl would be 10; 10 unini
tialized words would follow; and finally would come the byte string font3.

struct2 table <0" >

The second example creates a structure variable named struct2. Its type
is also table. The initial value for the first field is set to o. The default
values defined by the structure type are used for the remaining two fields.
If tab 1 e were defined with the structure definition in the example in Sec
tion 4.5.1, the initial value of 0, set with the structure declaration above,
would override the initial value of 10, set with the original structure
definition.

struct3 table 10 DUP «0, , »

61

Microsoft Macro Assembler Reference Manual

This final example creates a variable, struct3, containing 10 structures of
the type table. The first field in each structure is set to the initial value
of o. All remaining fields receive the default values.

4.6.2 Record Declarations

Syntax

[name] recordname < [initialvalue",] >

A record variable is an 8- or 16-bit value whose bits are divided into one or
more fields. The name is the name of the variable; recordname is the name
of a record type that has been created using the RECORD directive; and
initialvalue is one or more values defining the initial value of the record.
One initialvalue can be given for each field in the record.

The name is optional. If no name is given, MASM allocates space for the
record, but does not create a variable that you can use to access the record.

The optional initialvalue can be an integer, string constant, or any expres
sion that resolves to a value no larger than can be represented in the field
width specified when the record was defined. Angle brackets « » are
required even if no initial value is given. If more than one initial value is
~iven, the values must be separated by commas (,). If the DUP operator
lsee Section 4.3.6) is used, only the values within the parentheses need to be
enclosed in angle brackets. You do not have to initialize all fields in a
record. If an initial value is left blank, the assembler automatically uses
the default initial value of the field. This is defined by the record type. If
there is no default value, the field is uninitialized.

Sections 5.2.10 and 5.2.11 illustrate ways to use record data after it has
been defined.

Examples

rec1 encode <>

The first example creates a variable named recl whose type is given by the
record type encode. The initial values of the fields in the record are set to
the default values for the record type, if any. For example, if encode were
defined with the definition in the example in Section 4.5.2, recl would be
0, since the fields were not initialized in the definition.

table item 10DUP«'A',2»

62

Types and Declarations

This second example creates a variable named table containing 10
records of the record type i tern. The fields in these records are all set to
the initial values A and 2. If the i tern definition from the example in Sec
tion 4.5.2 were used, the A would override the initial value of Q in the
record definition.

char weight

I
I

I I
I

I
1 01 01 01 01 01 1 I 01 o I 0 1 01 01 1 1 01 01 1 1 01

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

The bit diagram above shows the value of the 10 bytes created by the
record declaration.

passkey encode <,,7>

The final example creates a record variable named passkey. Its type is
encode. The initial values for the first two fields are the default values
defined by the record type. The initial value for the third field is 7. If the
record definition from Section 4.5.2 were used, the first two fields would
remain 0, since they were not initialized. The bit diagram below shows
what the record looks like.

hi mid 10

I
I

I I
I

I I
I

I
I 01 01 01 01 01 01 01 o I 0 1 01 01 01 01 1 1 1 1 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

63

Chapter 5
Operands and Expressions

5.1 Introduction 67
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.3
5.3.1
5.3.2
5.3.3

Operands 67
Constant Operands 68
Direct-Memory Operands 68
Relocatable Operands 69
Location-Counter Operand 69
Register Operands 70
Based Operands 72
Indexed Operands 72
Based-Indexed Operands 73
Structure Operands 74
Record Operands 76
Record-Field Operands 77

Operators and Expressions 78
Arithmetic Operators 78
Slffi and SHL Operators 80
Relational Operators 80

5.3.4 Bitwise Operators 82
5.3.5 Index Operator 83
5.3.6 PTR Operator 83
5.3.7 Segment-Override Operator 85
5.3.8 Structure Field-Name Operator 85
5.3.9 SHORT Operator 86

66

5.3.10 TIllS Operator 86
5.3.11 HIGH and LOW Operators 87
5.3.12 SEG Operator 87
5.3.13 OFFSET Operator 88
5.3.14 TYPE Operator 88
5.3.15 ~TTlT,1 A .l- on

• J.. .1 r .b VperalJOr Ott

5.3.16 LENGTH Operator 90
5.3.17 SIZE Operator 90
5.3.18 WIDTH Operator 91
5.3.19 MASK Operator 92
5.4 Expression Evaluation and Precedence 92
5.5 Forward References 93
5.6 Strong Typing for Memory Operands 95

66

Operands and Expressions

5.1 Introduction

This chapter describes the syntax and meaning of operands and expressions
used in assembly-language statements and directives. Operands represent
values, registers, or memory locations to be acted on by instructions or
directives. Expressions combine operands with arithmetic, logical, bitwise,
and attribute operators to calculate a value or memory location that can be
acted on by an instruction or directive. Operators indicate what operations
will be performed on one or more values in an expression to calculate the
value of the expression.

5.2 Operands

An operand is a constant, label, variable, or other symbol that is used in an
instruction or directive to represent a value, register, or memory location to
be acted on.

The operand types are listed below:

Constant

Direct-memory

Relocatable

Location-counter

Register

Based

Indexed

Based-indexed

Structure

Record

Record-field

67

Microsoft Macro Assembler Reference Manual

5.2.1 Constant Operands

Syntax

number: string: expression

A constant operand is a number, string constant, symbol, or expression
that evaluates to a fixed value. Constant operands, unlike other operands,
represent values to be acted on, rather than memory addresses.

Examples

mav aX,9
mav al, I c I

mav bX,65535/3
mav cX,caunt

Note that count in the last example is a constant only if it was defined
with the EQU or equal-sign (=) operator. If count is a symbol represent
ing a relocatable value or address, it is not a constant.

5.2.2 Direct-Memory Operands

Syntax

segment: offset

A direct-memory operand is a pair of segment and offset values that
represents the absolute memory address of 1 or more bytes of memory. The
segment can be a segment register (aS, DS, SS, or ES), a segment name, or
a group name. The offset must be an integer, absolute symbol, or expres
sion that resolves to a value within the range 0 to 65535.

Examples

mav dX,ss:0031h
mav bX,data:O
mav aX,DGROUP:black

68

Operands nnd Expressions

5.2.3 Relocatable Operands

Syntax

symbol

A relocatable operand is any symbol that represents the memory address
(segment and offset) of an instruction or of data to be acted upon. Relocat
able operands, unlike direct-memory operands, are relative to the start of
the segment or group in which the symbol is defined, and have no explicit
value until the program has been linked.

Examples

call main
mov bx/value
mov bX,OFFSET dgroup:table
mov cx/count

Note that count in the last example is a relocatable operand if it was
defined with the DW directive. If count was defined with the EQU or
equal-sign (=) operator, it is a constant.

5.2.4 Location-Counter Operand

Syntax

The location counter is a special operand that, during assembly, represents
the current location within the current segment. The location counter has
the same attributes as a near label. It represents an instruction address
that is relative to the current segment. Its offset is equal to the number of
bytes generated for that segment to that point. After each statement in the
segment has been assembled, the assembler increments the location counter
by the number of bytes generated.

69

Microsoft Macro Assembler Reference Manual

Example

'Program options: ',13,10 help
F1
F2

DB
DB
DB

'F1 This help screen',13,10
F2 Save file',13,10

FlO DB
DISTANCE =

FlO
$-help

Exit program',13,lO, '$'

In this example, the location counter forces the assembler to count the total
length of a group of declared strings, saving the programmer the trouble of
counting each byte.

5.2.5 Register Operands

Syntax

registername

A register operand is the name of a CPU register. Register operands direct
instructions to carry out actions on the contents of the given registers. The
registername can be any of the register names in Table 5.1.

Table 5.1

Register Operands

Register Operand Type Register N arne

16-bit general purpose AX BX CX DX
8-bit high registers AH BH CH DH
8-bit low registers AL BL CL DL

16-bit segment CS DS SS ES
16-bit pointer and index SP BP SI DI

Any combination of upper- and lowercase letters is allowed.

The AX, BX, ex, and DX registers are 16-bit, general-purpose registers.
They can be used for any data or numeric manipulation. The AH, BH,

70

Operands and Expressions

CH, DH registers represent the high-order 8 bits of the corresponding
general-purpose registers. Similarly, AL, BL, CL, and DL represent the
low-order 8 bits of the general-purpose registers.

The CS, DS, SS, and ES registers are the segment registers. They contain
the current segment addresses of the code, data, stack, and extra segments,
respectively. All instruction and data addresses are relative to the segment
address in one of these registers.

The SP register is the I6-bit stack-pointer register. The stack pointer con
tains the current top-of-stack address. This address is relative to the seg
ment address in the SS register and is automatically modified by instruc
tions that access the stack.

The BX, BP, DI, and SI registers are I6-bit, base and index registers.
These are general-purpose registers typically used for pointers to program
data. Address expressions using the BP register have offsets in the SS seg
ment by default. Expressions using BX, SI, or DI have offsets in the DS
segment by default. The DI register always has an offset in the ES seg
ment when used with string instructions.

The unnamed, I6-bit flag register contains nine I-bit flags whose positions
and meanings are defined in Table 5.2.

Table 5.2

Flag Positions

Flag Bit

o
2
4
6
7
8
9
10
11

Meaning

Carry flag
Parity flag
Auxiliary flag
Zero flag
Sign flag
Trap flag
Interrupt-enable flag
Direction flag
Overflow flag

Although the 16-bit flag register has no name, the contents of the register
can be accessed using the LAHF, SAHF, PUSHF, and POPF instruc
tions. See Appendix A.2, 8086 Instructions.

71

Microsoft Macro Assembler Reference Manual

5.2.6 Based Operands

Syntax

displacement[BP]
displacement[BX]

A based operand represents a memory address relative to one of the base
registers: BP or BX. The displacement can be any immediate or direct
memory operand. It must evaluate to an absolute number or memory
address. If no displacement is given, zero is assumed.

The effective address of a based operand is the sum of the displacement
value and the contents of the given register. If BP is used, the operand's
address is relative to the segment pointed to by the SS register. If BX is
used, the address is relative to the segment pointed to by the DS register.

Based operands have a variety of alternate forms. Equivalent forms include
the following:

[displacement] [BP]
[BP+displacement]
[BP].displacement
[BP]+displacement

In each case, the effective address is the sum of the displacement and the
contents of the given register.

Examples

mov ax, [bp]
mov ax, [bx]
mov ax,12[bx]
mov ax,fred[bp]

5.2.7 Indexed Operands

Syntax

displacement[SI]
displacement[DI]

An indexed operand represents a memory address relative to one of the
index registers: SI or DI. The displacement can be any immedi3.te or

72

Operands and Expressions

direct-memory operand. It must evaluate to an absolute number or
memory address. If no displacement is given, zero is assumed.

The effective address of an indexed operand is the sum of the displacement
value and the contents of the given register. The address is relative to the
segment pointed to by the DS register.

Indexed operands have a variety of alternate forms. Equivalent forms
include the following:

[displacement] [DI]
[DI+displacement]
[DI]. displacement
[DI]+displacement

In each case, the effective address is the sum of the displacement and the
contents of the given register.

Examples

mav ax, [si]
mav ax, [di]
mav ax,12[di]
mav ax,fred[si]

5.2.8 Based-Indexed Operands

Syntax

displacement[BP] [81]
displacement[BP] [DI]
displacement[BX] [81]
displacement[BX] [DI]

A based-indexed operand represents a memory address relative to a combi
nation of base and index registers. The displacement can be any immediate
or direct-memory operand. It must evaluate to an absolute number or
memory address. If no displacement is given, zero is assumed.

The effective address of a based-indexed operand is the sum of the displace
ment value and the contents of the given registers. If the BD register is
used, the address is relative to the segment pointed to by the SS register.
Otherwise, the address is relative to the segment pointed to by the DS
register.

73

Microsoft Macro Assembler Reference Manual

Based-indexed operands have a variety of alternate forms. Equivalent
forms include the following:

[displacement] [BP] [DI]
[BP+DI+displacement]
[BP + DI]. displacement
[DI] +displacement+ [BP]

In each case, the eH'ective address is the sum of the displacement and the
contents of the given registers. Either base register can be combined with
either index register, but combining two base or two index registers is not
allowed.

Examples

mov
mov
mov
mov
mov
mov

ax, [bp] [si]
ax, [bx+di]
ax, 12 [bp+di]
ax, fred [bx] [si]
ax, fred [bx] [bp]
ax, fred [di] [si]

5.2.9 Structure Operands

Syntax

variable·field

Error - base registers combined
Error - index registers combined

A structure operand represents the memory address of one member of a
structure. The variable must either be the name of a structure or it must be
a memory operand that resolves to the address of a structure. The field
must be the name of a field within that structure. The variable is separated
from field by the structure field-name operator (.), which is described in
Section 5.3.8.

The effective address of a structure operand is the sum of the offsets of vari
able and field. The address is relative to the segment or group in which the
variable is defined.

74

Operands and Expressions

Examples

date STRUC
month OW ?
day OW ?
year OW ?

date ENOS

current date date <'ja', '01', '84'>

mov ax,current_date.day
mov current_date.year, '85'

In the example above, the structure is first defined and declared. The first
MOV instruction puts' 01 ' (the value of current_date. day) in the
AX register. The next instruction puts the value '85' in the variable
current_date.year.

stframe STRUC stack frame
retadr DW ? from lowest ...
dest DW ?
source DW ?
nbytes DW ? ... to highest address

stframe ENDS

copy PROC NEAR Push nbytes, source, dest before calling
mov bx,sp Load stack into base register
mov aX,ds
mov eS,ax (es) data segment
mov di, ss: [bx] . dest (di) destination
mov si,ss: [bx] .source (si) source
mov cx,ss: [bx] .nbytes ; (cx) nbytes
rep movsb move bytes from ds:si to es:di
ret

copy ENDP

In this example, structure operands are used to access values on the stack.

Note

The procedure in the example above does not conform to the method of
passing parameters used in Microsoft higil-Ievellanguages. As a result,
you could not use the SYMDEB Stack Trace command (K) in this case
procedure. See Section 4.6.27 in the Microsoft Macro Assembler User's
Guide.

76

Microsoft Macro Assembler Reference Manual

5.2.10 Record Operands

Syntax

recordname < [value]", >

A record operand refers to the value of a record type. The operands can be
in expressions. The recordname must be the name of a record type defined
in the source file. The optional value is the value of a field in the record. If
more than one value is given, the values must be separated by commas (,).
Values include expressions or symbols that evaluate to constants. The
enclosing angle brackets (< >) are required, even if no value is given. If
no value for a field is given, the default value for that field is used. In the
next example, assume the following record definition:

encode RECORD hi:4, mid:3, 10:3

Example

reel encode <3,2,1>
mov aX,rec1

In this example, a constant with the value 209 (ODlh) is moved into the AX
register. The following bit diagram illustrates how the value is obtained:

hi mid 10
I I I

I I I I I I
0 1 01 01 01 01 0 1 01 o I 1 1 1 01 1 1 01 01 01 1 1
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Using record operands is similar to declaring a record and then using the
declared data except that, in using record operands, you are using constant
data. See Section 4.6.2 for information on declaring record data.

76

Operands llnd Expressions

5.2.11 Record-Field Operands

Syntax

record-fieldname

The record-field operand represents the location of a field in its correspond
ing record. The operand evaluates to the bit position of the low-order bit
in the field and can be used as a constant operand.

The record-fieldname must be the name of a previously defined record field.
In the next example, assume the following record definition and declaration:

encode RECORD hi:4, mid:3, 10:3
rec1 encode <9,7,4>

At this point reel has a value of 636 (27Ch), shown in this bit diagram:

hi mid 10
I I I

I I I I I I
01 01 01 01 01 01 11 o I 0 I 11 11 11 11 11 01 01
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Example

mov cl,hi
mov dX,rec1
ror dX,cl
mov rec1,dx

This example copies 6, the shift count for hi, to register CL. The contents
of reel are copied to DX. The shift count of field three (hi) is then used
to rotate the value of reel so that the value of hi is now at the lowest bit.
The new value is then put back into reel. At this point reel has a value
of 61449 (OF009h), as shown in the bit diagram below.

hi mid 10
I I I

I I I I I I
1 I 1 I 1 1 I 01 01 01 o I 0 1 01 01 01 1 1 01 01 1 1
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

77

Microsoft Macro Assembler Reference Manual

5.3 Operators and Expressions

An expression is a combination of operands and operators that evaluates to
a single value. Operands in expressions can include any of the operands
described in this chapter. The result of an expression can be a value or a
memory location, depending on the types of operands and operators used.

The assembler provides a variety of operators. Arithmetic, shift, relational,
and bitwise operators manipulate and compare the values of operands.
Attribute operators manipulate the attributes of operands, such as their
type, address, and size.

Sections 5.3.1-5.3.4 describe the arithmetic, relational, and logical opera
tors in detail. Attribute operators are described in Sections 5.3.5-5.3.19.
In addition to the operators described here, you can use the DUP operator
(Section 4.3.6) and the special macro operators (Section 8.3).

5.3.1 Arithmetic Operators

Syntax

expressionl*expression2
expressionl/ expression2
expressionlM 0 D expression2
expressionl + expression2
expressionl-expression2
+expression
-expresswn

Arithmetic operators provide the common mathematical operations. Table
5.3 lists the operators and their meanings.

78

Operands and Expressions

Table 5.3

Arithmetic Operators

Operator

+

*
/
MOD

+

Meaning

Positive (unary)

Negative (unary)

Multiplication

Integer division

Remainder after division (modulus)

Addition

Subtraction

For all arithmetic operators except + and -, expressionl and expression!!
must be integer numbers. The + operator can be used to add an integer
number to a relocatable memory operand. The - operator can be used to
subtract an integer number from a relocatable memory operand. The
operator can also be used to subtract one relocatable operand from
another, but only if the operands refer to locations within the same seg
ment. The result is an absolute value.

Note

The unary plus and minus (used to designate positive or negative
numbers) are not the same as the binary plus and minus (used to desig
nate addition or subtraction). The unary plus and minus have a higher
level of precedence, as shown in Table 5.7 in Section 5.4.

Examples

14 * 4
14 / 4
14 MOD 4
14 + 4
14 4
14 +4
14 -4
alpha + 5

Equals 56
Equals 3
Equals 2
Equals 18
Equals 10
Equals 10
Equals 18
Add 5 to alpha's offset

79

Microsoft Macro Assembler Reference Manual

alpha - 5
alpha - beta

Subtract 5 from alpha's offset
Subtract beta's offset from alpha's

5.3.2 SIffi and S~ Operators

Syntax

express£on SHR cotmt
expression SHL count

The SHR and SHL operators shift expression right or left by count number
of bits. Bits shifted off the end of the expression are lost. If the count is
greater than or equal to 16, the result is O. The bits will be shifted by 8 or
16 bits, depending on whether the value being shifted is a word or a byte.

Note

Do not confuse the assembler's SHR and SHL operators with the pro
cessor instructions having the same names.

Examples

mov aX,Oll10111b SHL 3
mov ah,Oll10111b SHR 3

Move 0000000ll10111000b
Move 0000ll10b

Notice that 16 bits are shifted into a word register (ax) in the first example.
In the second example, only 8 bits are shifted because the register (ah)
holds only 1 byte.

5.3.3 Relational Operators

Syntax

expressionl EQ expression!!
expressionl NE expression!!
expressionl L T expression!!
expressionl LE expression!!
expressionl GT expression!!
expressionl GE expression!!

80

Operands and Expressions

The relational operators compare expressionl and expression2 and return
true (OFFFFh) if the condition specified by the operator is satisfied, or false
(OOOOh) if it is not. The expressions must resolve to absolute values. Table
5.4 lists the operators and the values they return if the specified condition
is satisfied.

Table 5.4

Relational Operators

Operator Returned Value

EQ
NE
LT
LE
GT
GE

True OFFFh if expressions are equal.
True OFFFh if expressions are not equal.
True OFFFh if left expression is less than right.
True OFFFh if left expression is less than or equal to right.
True OFFFh if left expression is greater than right.
True OFFFh if left expression is greater than or equal to right.

Relational operators are typically used with conditional directives and con
ditional instructions to direct program control.

Note

The EQ and NE operators treat their arguments as 16-bit numbers.
Numbers specified with the 16th bit on are considered negative
(OFFFFh is -1). Therefore, the expression -1 EQ OFFFFh is true,
while the expression -1 NE OFFFFh is false.

The LT, LE, GT, and GE operators treat their arguments as 17-bit
numbers, where the 17th bit specifies the sign. Therefore, OFFFFh is
the largest positive unsigned number (65535); it is not -1. The expres
sion 1 GT -1 is true (OFFFFh), while the expression 1 GT OFFFFh is
false (0).

81

Microsoft Macro Assembler Reference Manual

Examples

1 EQ 0 False
1 NE 0 True
1 LT 0 False
1 LE 0 False
1 GT 0 True
1 GE 0 True

5.3.4 Bitwise Operators

Syntax

NOT expression
expressionl AND expression2
expressionl OR expression2
expressionl XOR expression2

The logical operators perform bitwise operations on expressions. In a bit
wise operation, the operation is performed on each bit in an expression
rather than on the expression as a whole. The expressions must resolve to
absolute values.

Table 5.5 lists the logical operators and their meanings:

Table 5.5

Logical Operators

Operator

NOT
AND
OR
XOR

Examples

NOT 11110000b
01010101b AND
01010101b OR
01010101b XOR

82

Meaning

Inverse
Boolean AND
Boolean OR
Boolean exclusive OR

; Equals 1111111100001111b or 0000l111b
11110000b Equals 01010000b
11110000b Equals 11110101b
11110000b Equals 10100101b

Operands and Expressions

5.3.5 Index Operator

Syntax

[expressionl] [expression2]

The index operator, [], adds the value of expressionl to expression2. This
operator is identical to the + operator, except that expressionl is optional.

If expressionl is given, the expression must appear to the left of the opera
tor. It can be any integer value, absolute symbol, or relocatable operand.
If no expressionl is given, the integer value 0 is assumed. If expressionl is a
relocatable operand, expression2 must be an integer value or absolute sym
bol. Otherwise, expression2 can be any integer value, absolute symbol, or
relocatable operand.

The index operator is typically used to index elements of an array, such as
individual characters in a character string.

Examples

mov
mov
mov
mav

al / string[3]
ax, array [4]
string[last]/al
eX,DGROUP: [1]

Move 4th element of string
Move 5th element of array
Move into LAST element of string
Move 2nd byte of DGROUP

Note that the last example is identical to the following statement:

mov ex , dgroup:1.

5.3.6 PTR Operator

Syntax

type PTR expression

The PTR operator forces the variable or label given by expression to be
treated as a variable or label having the type given by type. The type must
be one of the following names or values:

83

Microsoft Macro Assembler Reference Manual

Type Value

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

NEAR OFFFFh

FAR OFFFEh

The expression can be any operand. The BYTE, WORD, and DWORD
types can be used with memory operands only. The NEAR and FAR
types can be used with labels only.

The PTR operator is typically used with forward references to explicitly
define what size or distance a reference has. If it is not used, the assembler
assumes a default size or distance for the reference. The PTR operator is
also used to enable instructions to access variables in ways that would oth
erwise generate errors. For example, you could use the PTR operator to
access the high-order byte of a WORD size variable.

Section 5.6 discusses how the PTR operator can be used to avoid errors
associated with strong type checking. These errors include Illegal
size for item and Operand types must match.

Examples

call FAR PTR subrout3
mov BYTE PTR [array],l
add al,BYTE PTR [full_word]

In these examples the PTR operator overrides a previous data declaration.
The procedure subrout3 might have been declared NEAR, while array
and full_word could have been declared with the DW directive.

84

5.3.7 Segment-Override Operator

Syntax

segmentregister: expression
segmentname: expression
groupname: expression

Operands and Expressions

The segment-override operator (:) forces the address of a given variable or
label to be computed using the beginning of the given segmentregz'ster, seg
mentname, or groupname. If either segmentname or groupname is given, the
name must have been assigned to a segment register with a previous
ASSUME directive and defined using a SEGMENT or GROUP direc
tive. The expressz'on can be an absolute symbol or relocatable operand. The
segmentregz'ster must be as, DS, SS, or ES.

By default, the effective address of a memory operand is computed relative
to the DS, SS, or ES register, depending on the instruction and operand
type. Similarly, all labels are assumed to be NEAR. These default types
can be overridden using the segment-override operator.

Examples

mov ax, es: [bx] [si]
mov _TEXT:far_label,ax
mov aX,DGROUP:variable
mov al,cs:0001H

5.3.8 Structure Field-Name Operator

Syntax

variable·field

The structure field-name operator (.) is used to designate a field within a
structure. The variable is an operand (often a previously declared structure
variable) and field is the name of a field within a structure. This operator
is equivalent to the addition operator (+) in based or indexed operands.

85

Microsoft Macro Assembler Reference Manual

Example

inc month. day
mov time.min,O
mov [bx] .dest

5.3.9 SHORT Operator

Syntax

SHORT label

The SHORT operator sets the type of the given label to SHORT. Short
labels can be used in JMP instructions whenever the distance from the
label to the instruction is not more than 127 bytes. Instructions using
short labels are 1 byte smaller than identical instructions using near labels.

Example

jmp SHORT do_again Jump less than 128 bytes

5.3.10 TillS Operator

Syntax

THIS type

The THIS operator creates an operand whose offset and segment values are
equal to the current location-counter value and whose type is given by type.
The type can be anyone of the following:

86

BYTE
WORD

DWORD

QWORD

TBYTE
NEAR
FAR

Operands and Expressions

The THIS operator is typically used with the EQU or equal-sign (=)
directive to create labels and variables. This is similar to using the
LABEL directive to create labels and variables.

Examples

tag EQU THIS BYTE

The preceding example is equivalent to the statement tag LABEL BYTE.

check = THIS NEAR

The final example is equivalent to the statement check LABEL NEAR.

5.3.11 IDGH and LOW Operators

Syntax

HIGH expression
LOW expression

The mGB and LOW operators return the high and low 8 bits, respec
tively, of expression. The HIGH operator returns the high-order 8 bits of
expression; the LOW operator returns the low-order 8 bits. The expression
can be any value.

Examples

mov
mov

ah,HIGH word_value
al,LOW OABCDh

5.3.12 SEG Operator

Syntax

SEG expression

Move high byte of word_value
Move OCDh

The SEG operator returns the segment value of expression. The expression
can be any label, variable, segment name, group name, or other symbol.

87

Microsoft Macro Assembler Reference Manual

Examples

mov aX,SEC variable_name
mav aX,SEC label_name

5.3.13 OFFSET Operator

Synta.."'C

OFFSET expression

The OFFSET operator returns the offset of expressz'on. The expression
can be any label, variable, segment name, or other symbol. The returned
value is the number of bytes between the item and the beginning of the seg
ment in which it is defined. For a segment name, the returned value is the
offset from the start of the segment to the most recent byte generated for
that segment.

The segment-override operator (:) can be used to force OFFSET to return
the number of bytes between the item in expression and the beginning of a
named segment or group. This is the method used to generate valid offsets
for items in a group. See the second example below.

Examples

mav bX,OFFSET subraut3
mav bX,OFFSET dgraup:array

The returned value is always a relative value that is subject to change by
the linker when the program is actually linked.

5.3.14 TYPE Operator

Syntax

TYPE expression

The TYPE operator returns a number representing the type of expression.
If expression is a variable, the operator returns the size of the operand in
bytes. If expression is a label, the operator returns OFFFFh if the label is
NEAR, and OFFFEh if the label is FAR. Note that the returned value
can be used to specify the type for a PTR operator, as in the second of the
following two examples.

88

Operands and Expressions

Examples

rnav aX,TYPE array
jrnp (TYPE get_lac) PTR destiny

5.3.15 . TYPE Operator

Syntax

• TYPE expression

The. TYPE operator returns a byte that defines the mode and scope of
expression. If expression is not valid, • TYPE returns a O.

Table 5.6 lists the variable's attributes as returned in bits 0, 1,5, and 7.

Table 5.6

. TYPE Operator and Variable Attributes

Bit Position

o
1
5
7

If Bit =0

Not program-related
Not data-related
Not defined
Local or public scope

If Bit =1

Program-related
Data-related
Defined
External scope

If both the scope bit and defined bit are zero, expression is not valid.

The. TYPE operator is typically used with conditional directives, where an
argument may need to be tested in order to make a decision regarding pro
gram flow.

Example

x
z

DB
EQU

12
.TYPE x

This example sets z to 22h (OOlOOOlOb). Bit 0 is not set in z because x is
not program-related. Bit 1 IS set because x is data-related. Bit 5 is set

89

Microsoft Macro Assembler Reference Manual

because x is defined. Bit 7 is not set because x is local. The remaining bits
are never set.

5.3.16 LENGTH Operator

Syntax

LENGTH variable

The LENGTH operator returns the number of BYTE, WORD,
DWORD, QWORD, or TBYTE elements in variable. The size of each
element depends on the variable's defined type.

Only variables defined using the DUP operator return values that are
greater than 1. The returned value is always the number preceding the first
DUP operator.

In the next two examples, assume the following definitions:

array DW
table DW

Examples

100
100

DUP (1)
DUP (1, 10 DUP (7))

mov eX,LENGTH array

In the preceding example, LENGTH returns 100.

mov eX,LENGTH table

In the final example, LENGTH returns 100. The returned value does not
depend on any nested DUP operators.

5.3.17 SIZE Operator

Syntax

SIZE variable

The SIZE operator returns the total number of bytes allocated for variable.
The returned value is equal to the value of LENGTH times the value of
TYPE.

90

Operands and Expressions

In the next example, assume the following definition:

array ow 100 DUP (1)

Example

mov bX,SIZE array

In this example, SIZE returns 200.

5.3.18 -wIDTH Operator

Syntax

WIDTH recordJieldname: record

The WIDTH operator returns the width (in bits) of the given record field
or record. The recordfieldname must be the name of a field defined in a
record. The record must be the name of a record.

In the next examples, assume the following record definition and record
declaration:

rtype RECORD field1:3,field2:6,field3:7
reel rtype <>

Examples

wid1 WIDTH field1 Equals 3
wid2 WIDTH field2 Equals 6
wid3 WIDTH field3 Equals 7
widree WIDTH rtype Equals 16

Remember, the field name represents the bit count. For example, fieldl
equals 13 (the width of field2 plus the width of field3) while WIDTH
fieldl equals 3.

91

Microsoft Macro .Assembler Reference Manual

5.3.19 MASK Operator

Syntax

MASK recordfieldnamel record

The MASK operator returns a bit mask for the bit positions in a record
occupied by the given record field. A bit in the mask contains a 1 if that
bit corresponds to a field bit. All other bits contain O.

The recordfieldname must be the name of a field defined in a record.

In the next example, assume the following record definition and record
declaration:

rtype RECORD fieldl:3,field2:6,field3:7
reel rtype <>

Example

ml MASK fieldl Equals EOOOh (1110000000000000b)
m2 MASK field2 Equals lF80h (1111110000000b)
m3 MASK field3 Equals 007Fh (1111111b)
mree = MASK rtype Equals OFFFFh (llllllllllllllllb)

5.4 Expression Evaluation and Precedence

Expressions are evaluated according to the rules of operator precedence and
order. Operations of highest precedence are performed first. Operations of
equal precedence are performed from left to right. This default order of
evaluation can be overridden by using enclosing parentheses. Operations in
parentheses are always performed before any adjacent operations. Table
5.7 lists the precedence of all operators. Operators on the same line have
equal precedence.

92

Opernnds nnd Expressions

Table 5.7

Operator Precedence

Precedence

(Highest)
1
2
3
4
5
6
7
8
9
10
11
12
13
(Lowest)

Examples

8/4 * 2
8 / (4 * 2)
8 + 4 * 2
(8 + 4) * 2
8 EQ 4 AND 2 LT 3
8 EQ 4 OR 2 LT 3

Operators

LENGTH, SIZE, WIDTH, MASK, 0, [], <>
• (structure field-name operator)

PTR, OFFSET, SEG, TYPE, THIS
HIGH,LOW
+,- (unary)
*,/, MOD, SHL, SHR
+, - (binary)
EQ, NE, LT, LE, GT, GE
NOT
AND
OR,XOR
SHORT, .TYPE

Equals 4
Equals 1
Equals 16
Equals 24
Equals OOOOh (false)
Equals OFFFFh (true)

5.5 Forward References

Although the assembler permits forward references to labels, variable
names, segment names, and other symbols, such references can lead to
assembly errors if not used properly. A forward reference is any use of a
name before it has been declared. For example, in the JMP instruction
below, the label target is a forward reference.

jrnp target
rnov ax, 0

target:

93

Microsoft Macro Assembler Reference Manual

Whenever the assembler encounters an undefined name in Pass 1, it
assumes that the name is a forward reference. If only a name is given, the
assembler makes assumptions about that name's type and segment register,
and uses these assumptions to generate code or data for the statement. For
example, in the JMP instruction above, MASM assumes that target is
an instruction label having NEAR type. It generates 3 bytes of instruction
code for the instruction.

The assembler bases its assumptions on the statement containing the for
ward reference. Errors can occur when these assumptions are incorrect.
For example, if target were really a FAR label and not a NEAR label,
the assumption made by the assembler in Pass 1 would cause a phase error.
In other words, the assembler would generate 5 bytes of instruction code for
the JMP instruction in Pass 2 but only 3 in Pass 1.

To avoid errors with forward references, the segment override (:), PTR,
and SHORT operators should be used whenever necessary to override the
assumptions made by the assembler. The following guidelines list situa
tions in which these operators should be used:

94

• If a forward reference is a variable that is relative to the ES, SS, or
CS register, then use the segment-override operator (:) to specify
the variable's segment register, segment, or group.

Examples

mav aX,ss:stacktap
inc data:time[l]
add ax,dgraup:_I

If the segment-override operator is not used, the assembler assumes
that the variable is relative to the DS register.

• If a forward reference is an instruction label in a JMP instruction,
then use the SHORT operator if the instruction is less than 128
bytes from the point of reference.

Example

jmp SHORT target

If SHORT is not used, the assembler assumes that the instruction
is greater than 128 bytes away. This does not cause an error, but it
does cause the assembler to generate an extra, and unnecessary,
NOP instruction.

• If a forward reference is an instruction label in a CALL or JMP
instruction, then use the PTR operator to specify the label's type.

Operands and Expressions

Examples

call FAR PTR print
jmp FAR PTR exit

The assembler assumes that the label has NEAR type, so PTR
need not be used for NEAR labels. If the label has FAR type,
however, and FAR PTR is not used, a phase error will result.

• If the forward reference is a segment name with a segment-override
operator (:), use the GROUP statement to associate the segment
name with a group name, then use the ASSUME statement to
associate the group name with a segment register.

Example

dgroup GROUP stack
ASSUME ss:dgroup

code SEGMENT

mov aX,stack:stacktop

If you do not associate a group with the segment name, the assem
bler may ignore the segment override and use the default segment
register for the variable. This usually results in a phase error in
Pass 2.

5.6 Strong Typing for Memory Operands

The assembler carries out strict syntax checks for all instruction state
ments, including strong typing for operands that refer to memory locations.
This means that any relocatable operand used in an instruction that
operates on an implied data type must either have that type, or have an
explicit type override (PTR operator).

For example, in the following program segment, the variable str ing is
incorrectly used in a move instruction.

string DB "A message."

mov aX,string[l]

96

Microsoft Macro Assembler Reference Manual

This statement will result in an Operand types must match error mes
sage since str ing has BYTE type and the instruction expects a variable
having WORD type.

To avoid this error, the PTR operator must be used to override the
variable's type. The following statement will assemble correctly and exe
cute as expected:

mov ax/WORD PTR string[l]

Note

96

Many assembly-language program listings in books and magazines are
written for assemblers with weak typing for operands. These programs
may produce error messages such as Illegal size for i tern or
Operand types must match when assembled as listed using the
Microsoft Macro Assembler. You can correct lines that produce errors
by using the PTR operator to assign the correct size to variables.

Chapter 6

Global Declarations

6.1 Introduction 99
6.2 PUBLIC Directive 99
6.3 EXTRN Directive 100
6.4 Program Example 101

97

Global Declarations

6.1 Introduction

The global-declaration directives allow you to define labels, variables, and
absolute symbols that can be accessed globally, that is, from all modules in
a program. Global declarations transform "local" symbols (labels, vari
ables, and other symbols that are specific to the source files in which they
are defined) into "global" symbols that are available to all other modules of
the program.

The two global-declaration directives are PUBLIC and EXTRN. The
PUBLIC directive is used in public declarations, which transform locally
defined symbols into global symbols, making them available to other
modules. The EXTRN directive is used in external declarations, making a
global symbol's name and type known in a source file so that the global
symbol may be used in that file. Every global symbol must have a public
declaration in exactly one source file of the program. A global symbol can
have external declarations in any number of other source files. Sections
6.2-6.4 describe and demonstrate the global-declaration directives in detail.

6.2 PUBLIC Directive

Syntax

PUBLIC name",

The PUBLIC directive makes the variable, label, or absolute symbol
specified by name available to all other modules in the program. The name
must be the name of a variable, label, or absolute symbol defined within the
current source file. Absolute symbols, if given, can only represent 1- or 2-
byte integer or string values.

The assembler converts all lowercase letters in name to uppercase before
copying the name to the object file. The /ML and /1YfX options can be
used in the MASM command line to direct the assembler to preserve lower
case letters when copying public and external symbols to the object file.
Sections 2.3.7 and 2.3.8 of the Microsoft Macro Assembler User's Guide
describe the /ML and /1YfX options.

Symbols must be declared public before they can be used for symbolic
debugging. See Section 4.2 of the Microsoft Macro Assembler User's Guide
for details on how to prepare and use symbol files with SYMDEB.

99

Microsoft Macro Assembler Reference Manual

Example

PUBLIC
true
status DB
start LABEL
clear PROC

true,status,start,clear
OFFFFH
1
FAR
NEAR

The values declared Dublic in this examDle include an absolute symbol. a
variable, a label, and a procedure. ~ . .

6.3 EXTRN Directive

Syntax

EXTRN name: type",

The EXTRN directive defines an external variable, label, or symbol of the
specified name and type. An external item is any variable, label, or symbol
that has been declared with a PUBLIC directive in another module of the
program. The type must match the type given to the item in its actual
definition. It can be anyone of the following:

BYTE
WORD

DWORD

QWORD

TBYTE
NEAR
FAR
ABS

The ABS type is for symbols that represent absolute numbers.

Although the actual address is not determined until the object files are
linked, the assembler may assume a default segment for the external item,
based on where the EXTRN directive is placed in the module. If the direc
tive is placed inside a segment, the external item is assumed to be relative
to that segment, and the item's public declaration (in some other module)

100

Global Declarations

must be in a segment having the same name and attributes. If the directive
is outside all segments, no assumption is made about what segment the
item is relative to, and the item's public declaration can be in any segment
in any module. In either case, the segment-override operator (:) can be
used to override the default segment of an external variable or label.

Example

EXTRN tagn:near
EXTRN varl:word,var2:dword

6.4 Program Example

The following source files illustrate a program that uses public and external
declarations to access instruction labels. The program consists of two
modules, named main and task. The main module is the program's ini
tializing module. Execution starts at the instruction labeled start in
main, and passes to the instruction labeled pr int in task. An MS-DOS
system call in the task module is used to print Hello on the screen. Exe
cution then returns to the instruction labeled exi t in the main module.

Main Module

NAME
PUBLIC
EXTRN

stack SEGMENT
DW

stack ENDS

data SEGMENT
data ENDS

code SEGMENT
ASSUME

start:
mov
mov
jmp

main
exit
print:near

word stack 'STACK'
64 DUP (7)

word public 'DATA'

byte public 'CODE'
cs:code,ds:data

aX,data
dS,ax
print

Load segment location
into DS register

Go to PRINT in other module

101

Microsoft Macro Assembler Reference Manual

exit:

code

mov
int
ENDS
END

Task Module

data
string
data

code

print:

code

NAME
PUBLIC
EXTRN

SEGMENT
DB
ENDS

SEGMENT
ASSUME

mov
mov
int
jmp
ENDS
END

ah, 4Ch
21h

start

task
print
exit:near

word public 'DATA'
"Hello",13,lO, "$"

byte public 'CODE'
cs:code, ds:data

dX,OFFSET string
ah,09h
21h
exit

Call terminate function

Load string location
Call string display function

Go back to other module

In this example, the symbol exi t is declared public in the main module so
that it can be accessed from another source module (task in the example).
The main module also contains an external declaratIOn of the symbol
pr into This declaration defines pr int to be a near label so that it can be
accessed from the main module, even though it is assumed to be located
and declared public in another source module. A JMP instruction later in
the module has this label as its destination.

The symbol pr int is declared public in the task module so that it can be
accessed from another module tmain in the example). The symbol exi t is
defined as a near label so that it can be accessed from this module, even
though it is assumed to be located and declared public in the other module.

Before this program can be executed, these source files must be assembled
individually, then linked together using LINK.

102

Chapter 7

Conditional Directives

7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
7.3.1
7.3.2
7.3.3
7.3.4

Introduction 105
Conditional-Assembly Directives 105

IF and lFE Directives 106
lFl and lF2 Directives 107
lFDEF and lFNDEF Directives 107
lFB and lFNB Directives 108
IFIDN and IFDIF Directives 109

Conditional Error Directives 110
. ERR, .ERR1, and .ERR2 Directives
.ERRE and .ERRNZ Directives 112
.ERRDEF and .ERRNDEF Directives
.ERRB and .ERRNB Directives 113

111

112

7.3.5 .ERRIDN and .ERRDlF Directives 114

103

Conditional Directives

7.1 Introduction

The Microsoft Macro Assembler provides two types of conditional direc
tives. Conditional-assembly directives test for a specified condition and
assemble a block of statements if the condition is true. Conditional error
directives test for a specified condition and generate an error if the condi
tion is true.

Both kinds of conditional directives only test assembly-time conditions.
They cannot test run-time conditions since these are not known until an
executable program is run. Only expressions that evaluate to constants
during assembly can be compared or tested.

Since macros and conditional-assembly directives are often used together,
you may need to refer to Chapter 8 to understand some of the examples in
this chapter. In particular, conditional directives are frequently used with
the special macro operators described in Section 8.3.

7.2 Conditional-Assembly Directives

The conditional.,.assembly directives include the following:

IF

IFE

IF!

IF2

IFDEF

IFNDEF

IFB

IFNB

IFIDN

IFDIF

ELSE

ENDIF

The IF directives and the ENDIF and ELSE directives can be used to

106

Microsoft Macro Assembler Reference Manual

enclose the statements to be considered for conditional assembly. The con
ditional block takes the following form:

IF
statements

[ELSE
statements]
ENDIF

The statements following IF can be any valid statements, including other
conditional blocks. The ELSE directive and its statements are optional.
ENDIF ends the block.

The statements in the conditional block are assembled only if the condition
specified by the corresponding IF directive is satisfied. If the conditional
block contains an ELSE directive, only the statements up to the ELSE
directive will be assembled. The statements following the ELSE directive
are assembled only if the IF condition is not met. An ENDIF directive
must mark the end of any conditional-assembly block. No more than one
ELSE directive is allowed for each IF directive.

IF directives can be nested up to 255 levels. To avoid ambiguity, a nested
ELSE directive always belongs to the nearest preceding IF directive that
does not have its own ELSE.

7.2.1 IF and IFE Directives

Syntax

IF expression
IFE expression

The IF and IFE directives test the value of an expression. The IF directive
grants assembly if the value of expression is true lnonzero). The IFE direc
tive grants assembly if the value of expression is false (0). The expression
must resolve to an absolute value and must not contain forward references.

Example

IF debug

ENDIF

106

EXTRN dump:FAR
EXTRN trace:FAR
EXTRN breakpoint:FAR

Conditional Directives

In this example, the variables within the block will only be declared exter
nal if the symbol debug evaluates to true (nonzero).

7.2.2 lFI and lF2 Directives

Syntax

IF1
IF2

The IFl and IF2 directives test the current assembly pass. The IFl direc
tive grants assembly only on Pass 1. IF2 grants assembly only on Pass 2.
The directives take no arguments.

Example

IF1
%OUT Beginning Pass 1

ELSE
%OUT Beginning Pass 2

ENDIF

7.2.3 lFDEF and lFNDEF Directives

Syntax

IFDEF name
IFNDEF name

The IFDEF and IFNDEF directives test whether or not the given name
has been defined. The IFDEF directive grants assembly only if name is a
label, variable, or symbol. The IFNDEF directive grants assembly if name
has not yet been defined.

The name can be any valid name. Note that if name is a forward reference,
it is considered undefined on Pass 1, but defined on Pass 2.

Example

IFDEF buffer
buf1 DB 10 DUP(?)

ENDIF

107

Microsoft Macro Assembler Reference Manual

In this example, bu f 1 is allocated only if bu f fer has been previously
defined. One way to use this conditional block would be to leave buffer
undefined in the source file and define it if you needed it by using the
/Dsymbol option when you start MASM. For example, if the conditional
block is in test. aSID, you could start the assembler with the command
line:

MASM test /Dbuffer;

The symbol bu f fer would be defined, and as a result the conditional
assembly block would allocate bufl. However, if you didn't need bufl,
you could use the command line:

MASM test;

7.2.4 lFB and lFNB Directives

Syntax

IFB < argument>
IFNB < argument>

The IFB and IFNB directives test argument. The IFB directive grants
assembly if argument is blank. The IFNB directive grants assembly if
argument is not blank. The arguments can be any name, number, or
expression. The angle brackets « » are required.

The IFB and IFNB directives are intended for use in macro definitions.
They can control conditional-assembly of statements in the macro, based
on the parameters passed in the macro call. In such cases, argument should
be one of the dummy parameters listed by the MACRO directive.

Example

pushall

pushall
pushall

108

MACRO regl,reg2,reg3,reg4,reg5,reg6
IFNB <regl> ;; If parameter not blank

ENDIF
ENDM

push regl push one register and repeat
pushall reg2,reg3,reg4,reg5,reg6

aX,bx,si,ds
cS,es

Conditional Directives

In this example, pusha 11 is a recursive macro that continues to call itself
until it encounters a blank argument. Any register or list of registers (con
sisting of up to six registers) can be passed to the macro for pushing.

7.2.5 IFIDN and IFDIF Directives

Syntax

IFIDN <argumentl>,<argument2>
IFDIF < argumentl >, < argument2>

The IFIDN and IFDIF directives compare argumentl and argument2. The
IFIDN directive grants assembly if the arguments are identical. The
IFDIF directive grants assembly if the arguments are different. The argu
ments can be any names, numbers, or expressions. To be identical, each
character in argumentl must match the corresponding character in argu
ment2. Case is significant. The angle brackets « » are required. The
arguments must be separated by a comma (,).

The IFIDN and IFDIF directives are intended for use in macro definitions.
They can control conditional assembly of macro statements, based on the
parameters passed in the macro call. In such cases, the arguments should
be dummy parameters listed by the MACRO directive.

Example

divide

divide

MACRO
IfDIf
mov
mov
div
ENDIf
ENDM

6,%test

numerator, denominator
<denominator>,<O> If not dividing by zero
ax, numerator "divide AX by BX
bx, denominator
bx " Result in accumulator

In this example, a macro uses the IFDIF directive to check against dividing
by a constant that evaluates to O. The macro is then called, using a per
cent sign (%) on the second parameter so that the value of the parameter,
rather than its name{ will be evaluated. See Section 8.3.4 for a discussion
of the expression (%) operator.

109

Microsoft Macro Assembler Reference Manual

If the parameter test was previously defined with the statement

test EQU o

then the condition fails and the code in the block will not be assembled.
However, if the parameter test was defined with the statement

test DW o

error 42, Constant was expected, will be generated. This is because
the assembler has no way of knowing the run-time value of test.
Remember, conditional directives can only evaluate constants that are
known at assembly time.

7.3 Conditional Error Directives

Conditional error directives can be used to debug programs and check for
assembly-time errors. By inserting a conditional error directive at a key
point in your code, you can test assembly-time conditions at that point.
You can also use conditional error directives to test for boundary condi
tions in macros.

The conditional error directives, and the errors they produce, are listed in
Table 7.1.

Table 7.1

Conditional Error Directives

Directive Number Message

.ERR1 87 forced error - passl

.ERR2 88 forced error - pass2

.ERR 89 forced error

.ERRE 90 forced error - expression equals 0

.ERRNZ 91 forced error - expression not equal 0

.ERRNDEF 92 forced error - symbol not defined

.ERRDEF 93 forced error - symbol defined

.ERRB 94 forced error - string blank

.ERRNB 95 forced error - string not blank

.ERRIDN 96 forced error - strings identical

.ERRDIF 97 forced error - strings different

110

Conditional Directives

Like other fatal assembler errors, those generated by conditional error
directives cause the assembler to return exit code 7. If a fatal error is
encountered during assembly, MASM will delete the object module. All
conditional error directives exc~pt ERR! generate fatal errors.

7.3.1 .ERR, .ERR1, and .ERR2 Directives

Syntax

.ERR

.ERR1

.ERR2

The .ERR, .ERR!, and .ERR2 directives force an error at the points at
which they occur in the source file. The .ERR directive forces an error
regardless of the pass, while the .ERR! and .ERR2 directives force the
error only on their respective passes. The .ERR! directive only appears on
the screen or in the listing file if you use the /D option to request a Pass 1
listing. Unlike other conditional error directives, it is not a fatal error.

You can place these directives within conditional-assembly blocks or mac
ros to see which blocks are being expanded.

Example

IFDEF dos

ELSE

ENDIF

IFDEF xenix

ELSE
.ERR
ENDIF

This example makes sure that either the symbol dos or the symbol xenix
is defined. If neither is defined, the nested ELSE condition is assembled
and an error message is generated. Since the .ERR directive is used, an
error would be generated on each pass. You could use the .ERR2 directive
if you wanted only a fatal error, or you could use the .ERR! directive if
you wanted only a warning error.

111

Microsoft Macro Assembler Reference Manual

7.3.2 .ERRE and .ERRNZ Directives

Syntax

.ERRE expression

.ERRNZ expression

The .ERRE and .ERRNZ directives test the value of an expression. The
.ERRE directive generates an error if the expression is false (0). The
.ERRNZ directive generates an error if the expression is true (nonzero).
The expression must resolve to an absolute value and must not contain for
ward references.

Example

buffer MACRO
.ERRE
bname
ENDM

count,bname
count LE 128 "
DB count DUP(O);;

Allocate memory, but
no more than 128 bytes

buffer 128,buf1
buffer 129,buf2

Data allocated - no error
Error generated

In this example, the .ERRE directive is used to check the boundaries of a
parameter passed to the macro buffer. If count is less than or equal to
128, the expression being tested by the error directive will be true (nonzero)
and no error will be generated. If count is greater than 128, the expres
sion will be false (0) and the error will be generated.

7.3.3 .ERRDEF and .ERRNDEF Directives

Syntax

.ERRDEF name

.ERRNDEF name

The .ERRDEF and .ERRNDEF directives test whether or not name has
been defined. The .ERRDEF directive produces an error if name is defined
as a label, variable, or symbol. The .ERRNDEF directive produces an
error if name has not yet been defined. If name is a forward reference, it is
considered undefined on Pass 1, but defined on Pass 2.

112

Conditional Directives

Example

.ERRDEF symbol
IFDEF configl

. symbol EQU 0

ENDIF
IFDEF config2

. symbol EQU 1

ENDIF
.ERRNDEF symbol

In this example, the .ERRDEF directive at the beginning of the condi
tional blocks makes sure that symbo 1 has not been defined before entering
the blocks. The .ERRNDEF directive at the end ensures that symbo 1
was defined somewhere within the blocks.

7.3.4 .ERRB and .ERRNB Directives

Syntax

.ERRB < string>

.ERRNB <string>

The .ERRB and .ERRNB directives test the given string. The .ERRB
directive generates an error if string is blank. The .ERRNB directive gen
erates an error if string is not blank. The string can be any name, number,
or expression. The angle brackets (< >) are required.

These conditional error directives can be used within macros to test for the
existence of parameters.

Example

work MACRO realarg,testarg
.ERRB <realarg> , I Error if no parameters
.ERRNB <testarg> Error if more than one parameter

ENDM

113

Microsoft Macro Assembler Reference Manual

In this example, error directives are used to make sure that one, and only
one, argument is passed to the macro. The .ERRB directive generates an
error if no argument is passed to the macro. The .ERRNB directive gen
erates an error if more than one argument is passed to the macro.

7.3.5 .ERRIDN and .ERRDIF Directives

Syntax

.ERRID N < stringl >, < string2>

.ERRDIF < stringl >, < string2>

The .ERRIDN and .ERRDIF directives test whether two strings are
identical. The .ERRIDN directive generates an error if the strings are
identical. The .ERRDIF generates an error if the strings are different.
The strings can be names, numbers, or expressions. To be identical, each
character in stringl must match the corresponding character in string2.
String checks are case-sensitive. The angle brackets (< >) are required.

Example

addem
Error if ad2 is 'ax'
Error if ad2 is 'AX'

MACRO adl,ad2,sum
.ERRIDN <ax>,<ad2> "
.ERRIDN <AX>,<ad2>
mov aX,adl " Would overwrite if ad2 were AX
add aX,ad2
mov sum, ax " Sum must be register or memory
ENDM

In this example, the .ERRIDN directive is used to protect against passing
the AX register as the second parameter, because the macro won't work if
the AX register is passed as the second parameter. Note that the directive
is used twice to protect against the two most likely spellings.

114

Chapter 8

Macro Directives

8.1 Introduction 117
8.2 Macro Directives 117
8.2.1 MACRO and ENDM Directives 118
8.2.2 Macro Calls 121
8.2.3 LOCAL Directive 122
8.2.4 PURGE Directive 123
8.2.5 REPT and ENDM Directives 124
8.2.6 ffiP and ENDM Directives 125
8.2.7 ffiPC and ENDM Directives 126
8.2.8 EXITM Directive 127
8.3 Macro Operators 128
8.3.1 Substitute Operator 129
8.3.2 Literal-Text Operator 130
8.3.3 Literal-Character Operator 131
8.3.4 Expression Operator 131
8.3.5 Macro Comment 132

116

Mucro Directives

8.1 Introduction

This chapter explains how to create and use macros in your source files. It
discusses the macro directives and the special macro operators. Since mac
ros are closely related to conditional directives, you may need to review
Chapter 7 to follow some of the examples in this chapter.

Macro directives enable you to write a named block of source statements,
then use that name in your source file to represent the statements. During
assembly, MASM automatically replaces each occurrence of the macro
name with the statements in the macro definition. You can place a block of
statements anywhere in your source file any number of times by simply
defining a macro block once, then inserting the macro name at each loca
tion where you want the macro block to be assembled. You can also pass
parameters to macros.

A macro can be defined any place in the source file as long as the definition
precedes the first source line that calls that macro. Macros can be kept in a
separate file and made available to the program through an INCLUDE
directive (see Section 9.2).

Often a task can be done by either a macro or procedure. For example, the
Addup procedure shown in Section 3.10 does the same thing as the Addup
macro in Section 8.2.1. Macros are expanded on every occurrence of the
macro name, so they can increase the length of the executable file if called
repeatedly. Procedures take up less space, but the increased overhead of
saving and restoring addresses and parameters can make them slower.

8.2 Macro Directives

The macro directives are listed below:

MACRO

ENDM
LOCAL

PURGE
REPT

117

Microsoft Macro Assembler Reference Manual

IRP

IRPC

EXITM

The MACRO and ENDM directives designate the beginning and end of a
macro block. The LOCAL directive lets you define labels used only within
a macro, and the PURGE directive lets you delete previously defined mac
ros. The EXITM directive allows you to exit from a macro before all the
statements in the block are expanded.

The REPT, IRP, and IRPC directives let you create contiguous blocks of
repeated statements. These repeat blocks are frequently placed within
macros, but they can also be used independently. You can control the
number of repetitions by specifying a number; or by allowing the block to
be repeated once for each parameter in a list; or by having the block
repeated once for each character in a string.

8.2.1 MACRO and ENDM Directives

Syntax

name MACRO [dummyparameter",]
statements
ENDM

The MACRO and ENDM directives create a macro having name and con
taining the given statements.

The name must be a valid name and must be unique. It is used in the
source file to invoke the macro. The dummyparameter is a name that acts
as a placeholder for values to be passed to the macro when it is called. Any
number of dummyparameters can be specified, but they must all fit on one
line. If you give more than one, you must separate them with commas (,).
The statements are any valid MASM statements, including other macro
directives. Any number of statements can be used. The dummy parame
ters can be used any number of times in these statements.

A macro is "called" any time its name appears in a source file (macro names
in comments are ignored). MASM copies the statements in the macro
definition to the point of the call, replacing any dummy parameters in these
statements with actual parameters passed in the call.

118

Macro Directives

Macro definitions can be nested. This means a macro can be defined within
another macro. MASM does not process nested definitions until the outer
macro has been called. Therefore, nested macros cannot be called until the
outer macro has been called at least once. Macro definitions can be nested
to any depth. Nesting is limited only by the amount of memory available
when the source file is assembled.

Macro definitions can contain calls to other macros. These nested macro
calls are expanded like any other macro call, but only when the outer macro
is called. Macro definitions can also be recursive: they can call themselves,
as illustrated in the example in Section 7.2.4.

Example

addup MACRO
mov
add
add
ENDM

adl,ad2,ad3
ax, adl
ax, ad2
ax, ad3

first parameter in AX
Add next two parameters

and leave sum in AX

The preceding example defines a macro named addup, which uses three
dummy parameters to add three values and leave their sum in the AX
register. The three dummy parameters will be replaced with actual values
when the macro is called.

MASM assembles the statements in the macro only if the macro is called,
and only at the point in the source file from which it is called. Thus, all
addresses in the assembled code will be relative to the macro call, not the
macro definition. The macro definition itself is never assembled.

You must be careful when using the word MACRO after the TITLE,
SUBTTL, and NAME directives. Since the MACRO directive overrides
these directives, placing the word macro immediately after these directives
would cause the assembler to begin to create macros named TITLE,
SUBTTL, and NAME. For example, the line:

TITLE Macro file

may be intended to give an include file the title "Macro File", but its effect
will be to create a macro called TI TLE that accepts the dummy parameter
file. Since there will be no corresponding ENDM directive, an error will
usually result.

To avoid this problem, you should alter the word macro in some way when
using it in a title or name. For example, change the spelling or add an
underline character (MAKRO or _MACRO).

119

Microsoft Macro Assembler Reference Manual

Note

MASM replaces all occurrences of a dummy parameter's name, even if
you do not intend it to. For example, if you use a register name such as
AX or BH for a dummy parameter, MASM replaces all occurrences of
that register name when it expands the macro. If the macro definition
contains statements that use the register, not the dummy, the macro
will be incorrectly expanded.

Note

120

Macros can be redefined. You need not purge the first macro before
redefining it. The new definition automatically replaces the old
definition. If you redefine a macro from within the macro itself, make
sure there are no lines between the ENDM directive of the nested
redefinition and the ENDM directive of the original macro. The fol
lowing example may produce incorrect code:

dostuff MACRO

dostuff MACRO

ENDM
;; Comments or statements not allowed
ENDM

To correct the error, remove the line between the ENDM directives.

Macro Directives

8.2.2 Macro Calls

Syntax

name [actualparameter",]

A macro call directs MASM to copy the statements of the macro name to
the point of call and to replace any dummy parameters in these statements
with the corresponding actual parameters. The name must be the name of
a macro defined earlier in the source file. The actualparameter can be any
name, number, or other value. Any number of actual parameters can be
given, but they must all fit on one line. Multiple parameters must be
separated by commas, spaces, or tabs.

MASM replaces the first dummy parameter with the first actual parame
ter, the second with the second, and so on. If a macro call has more actual
parameters than Jummy parameters, the extra actual parameters are
ignored. If a call has fewer actual parameters than dummy parameters, any
remaining dummy parameters are replaced with a null (blank) string. You
can use the IFB, IFNB, .ERRB, and .ERRNB directives to have your
macros check for null strings and take appropriate action. See Sections
7.2.4 and 7.3.4.

If you wish to pass a list of values as a single actual parameter, you must
place angle brackets « » around the list. The items in the list must be
separated by commas (,).

Examples

allocblock 1,2,3,4,5

The first example passes five numeric parameters to the macro called
allocblock.

allocblock <1,2,3,4,5>

The second example passes one parameter to all ocb lock. The parameter
is a list of five numbers.

addup bx, 2, count

121

Microsoft Macro Assembler Reference Manual

The final example passes three parameters to the macro addup. MASM
replaces the corresponding dummy parameters with exactly what is typed
in the macro call parameters. Assuming that addup is the same macro
defined at the end of Section 8.2.1, the assembler would expand the macro
to the following code:

mov ax, bx
add ax, 2
add ax, count

See Section 2.4 of the Microsoft Macro Assembler User's Guide for an ex
ample of how macros are shown in listing files.

8.2.3 LOCAL Directive

Syntax

LOCAL dummyname,,,

The LOCAL directive creates unique symbol names for use in macros. The
dummyname is a name for a placeholder that is to be replaced by a unique
name when the macro is expanded. At least one dummyname is required. If
you give more than one, you must separate the names with commas (,). A
dummyname can be used in any statement within the macro.

MASM creates a new actual name for the dummy name each time the
macro is expanded. The actual name has the following form:

??number

The number is a hexadecimal number in the range 0000 to FFFF. Do not
give other symbols names in this format, since doing so will produce a label
or symbol with multiple definitions. In listings, the dummy name is shown
in the macro definition, but the actual names are shown for each expansion
of the macro.

The LOCAL directive is typically used to create a unique label that will
only be used in a macro. Normally, if a macro containing a label is used
more than once, MASM will display an error message indicating the file
contains a label or symbol with multiple definitions, since the same label
will appear in both expansions. To avoid this problem, all labels in macros
should be dummy names declared with the LOCAL directive.

122

Macro Directives

Note

The LOCAL directive can be used only in a macro definition, and it
must precede all other statements in the definition. If you try to put a
comment line or an instruction before the LOCAL directive, a warning
error will result.

Example

power

again:

gotzero:

MACRO
LOCAL
mov
mov
jcxz
mov
mul
loop

ENDM

factor,exponent
again/gotzero
cx,exponent
aXil
gotzero
bx,factor
bx
again

Declare symbols for macro
Exponent is count for loop

II Multiply by 1 first time
Get out if exponent is zero

Multiply until done

In this example, the LOCAL directive defines the dummy names again
and gotzero. These names will be replaced with unique names each time
the macro is expanded. For example, the first time the macro is called,
again will be assigned the name 770000 and gotzero will be assigned
770001. The second time through again will be assigned 770002 and
gotzero will be assigned 770003, and so on.

8.2.4 PURGE Directive

Syntax

PURGE macroname",

The PURGE directive deletes the current definition of the macro called
macroname. Any subsequent call to that macro causes the assembler to
generate an error.

The PURGE directive is intended to clear memory space no longer needed
by a macro. If macro name is an instruction or directive mnemonic, the
directive name is restored to its previous meaning.

123

Microsoft Macro Assembler Reference Manual

The PURGE directive is often used with a "macro library" to let you
choose those macros from the library that you really need in your source
file. A macro library is simply a file containing macro definitions. You add
this library to your source file using the INCLUDE directive, then remove
unwanted definitions using the PURGE directive.

It is not necessary to PURGE a macro before redefining it. Any
redefinition of a macro automatically purges the previous definition. Also,
any macro can purge itself as long as the P1JRGE directive is on the last
line of the macro.

Examples

PURGE addup

The first example deletes the macro named addup.

PURGE mac1, mac2, mac9

The second example deletes the macros named macl , mac2 , and mac9.

8.2.5 REPT and ENDM Directives

Syntax

REPT expression
statements
ENDM

The REPT and ENDM directives enclose a block of statements to be
repeated expression number of times. The expression must evaluate to a
16-bit unsigned number. It must not contain external or undefined sym
bols. The statements can be any valid statements.

Example

x

x

124

REPT

DB
ENDM

o
10
x + 1
x

Macro Dircctivcs

This example repeats the equal-sign () and DB directives 10 times. The
resulting statements create 10 bytes of data whose values range from 1 to
10.

8.2.6 ffiP and ENDM Directives

Syntax

IRP dummy name, <parameter", >
statements
ENDM

The IRP and ENDM directives designate a block of statements to be
repeated once for each parameter in the list enclosed by angle brackets
(< ». The dummyname is a name for a placeholder to be replaced by the
current parameter. The parameter can be any legal symbol, string,
numeric, or character constant. Any number of parameters can be given.
If you give more than one parameter, you must separate them with commas
(,). The angle brackets (< >) around the parameter list are required. The
statements can be any valid assembler statements. The dummyname can be
used any number of times in these statements.

When MASM encounters an IRP directive, it makes one copy of the state
ments for each parameter in the enclosed list. While copying the state
ments, it substitutes the current parameter for all occurrences of dum
myname in these statements. If a null parameter (< >) is found in the list,
the dummy name is replaced with a null value. If the parameter list is
empty, the IRP directive is ignored and no statements are copied.

Example

IRP x,<O,l,2,3,4,5,6,7,8,9>
DB 10 DUP (x)

ENDM

This example repeats the DB directive 10 times, duplicating the numbers in
the list once for each repetition. The resulting statements create 100 bytes
of data with the values 0 through 9 duplicated 10 times.

125

Microsoft Macro Assembler Reference Manual

Notes

Assume an IRP directive is used inside a macro definition and the
parameter list of the IRP directive is also a dummy parameter of the
macro. In this case, you must enclose that dummy parameter within
angle brackets. For example, in the following macro definition, the
dummy parameter x is used as the parameter list for the IRP directive:

alloc MACRO
IRP
DB
ENDM
ENDM

x
y,<x>
Y

If this macro is called with

alloc <0,1,2,3,4,5,6,7,8,9>

the macro expansion becomes

IRP
DB
ENDM

y,<O,l,2,3,4,5,6,7,8,9>
Y

The macro removes the brackets from the actual parameter before
replacing the dummy parameter. You must provide the angle brackets
for the parameter list yourself.

8.2.7 ffiPC and ENDM Directives

Syntax

IRPC dummyname,string
statements
ENDM

The IRPC and ENDM directives enclose a block of statements that is
repeated once for each character in string. The dummyname is a name for a
placeholder to be replaced by the current character in the string. The
string can be any combination of letters, digits, and other characters. The
string should be enclosed with angle brackets (< » if it contains spaces,

126

Macro Directives

commas, or other separating characters. The statements can be any valid
assembler statements. The dummyname can be used any number of times
in these statements.

When MASM encounters an IRPC directive, it makes one copy of the
statements for each character in the string. While copying the statements,
it substitutes the current character for all occurrences of dummyname in
these statements.

Example

IRPC x,0123456789
DB x + 1

ENDM

This example repeats the DB directive 10 times, once for each character in
the string 0123456789. The resulting statements create 10 bytes of data
having the values 1 through 10.

8.2.8 EXITM Directive

Syntax

EXITM

The EXITM directive tells the assembler to terminate macro or repeat
block expansion and continue assembly with the next statement after the
macro call or repeat block. The EXITM directive is typically used with
IF directives to allow conditional expansion of the last statements in a
macro or repeat block.

When EXITM is encountered, the assembler exits the macro or repeat
block immediately. Any remaining statements in the macro or repeat block
are not processed. If EXITM is encountered in a macro or repeat block
nested in another macro or repeat block, MASM returns to expanding the
outer level block.

127

Microsoft Macro Assembler Reference Manual

Example

alloc MACRO times
x 0
REPT times Repeat up to 256 times

IFE x - OFFh , , Does x = 255 yet?
EXITM , , If so, quit
ELSE
DB x , I Else allocate x
ENDIF

x x + 1 , , Increment x
ENDM
ENDM

This example defines a macro that creates no more than 255 bytes of data.
The macro contains an IFE directive that checks the expression x-OFFh.
When this expression is 0 (x equal to 255), the EXITM directive is pro
cessed and expansion of the macro stops.

8.3 Macro Operators

The macro and conditional directives use the following special set of macro
operators:

Operator

&

<>

%
;;

Definition

Substitute operator

Literal-text operator

Literal-character operator

Expression operator

Macro comment

When used in a macro definition or a conditional-assembly directive, these
operators carry out special control operations, such as text substitution.
They are described in Sections 8.3.1-8.3.5.

128

Macro Directives

8.3.1 Substitute Operator

Syntax

&dummyparameter

or

dummyparameter&

The substitute operator (&) forces MASM to replace dummyparameter
with its corresponding actual parameter value. The operator is used any
where a dummy parameter immediately precedes or follows other charac
ters, or whenever the parameter appears in a quoted string.

Example

errgen
error&x

MACRO
DB
ENDM

Y,x
'Error &y - &x'

In the example above, MASM replaces &x with the value of the actual
parameter passed to the macro errgen. If the macro is called with the
statement

errgen I,wait

the macro is expanded to

errorwait DB 'Error I - wait'

129

Microsoft Macro ABsembler Reference Manual

Note

For complex, nested macros, you can use extra ampersands (&) to delay
the actual replacement of a dummy parameter. In general, you need to
supply as many ampersands as there are levels of nesting.

For example, in the following macro definition, the substitute operator
is used twice with z to make sure its replacement occurs while the IRP
directive is being processed:

alloc MACRO
IRP
x&&z
ENDM
ENDM

x
z,<1,2,3>
DB z

In this example, the dummy parameter x is replaced immediately when
the macro is called. The dummy parameter z, however, is not replaced
until the IRP directive is processed. This means the parameter is
replaced once for each number in the IRP parameter list. If the macro
is called with

alloc var

the expanded macro will be

var1
var2
var3

DB
DB
DB

1
2
3

8.3.2 Literal-Text Operator

Syntax

<text>

The literal-text operator directs MASM to treat text as a single literal ele
ment regardless of whether it contains commas, spaces, or other separators.
The operator is most often used with macro calls and the IRP directive to
ensure that values in a parameter list are treated as a single parameter.

130

Macro Directives

The literal text operator can also be used to force MASM to treat special
characters such as the semicolon (;) or the ampersand (&) literally. For
example, the semicolon inside angle brackets < j > becomes a semicolon,
not a comment indicator.

MASM removes one set of angle brackets each time the parameter is used
in a macro. When using nested macros, you will need to supply as many
sets of angle brackets as there are levels of nesting.

8.3.3 Literal-Character Operator

Syntax

!charader

The literal-character operator forces the assembler to treat character as a
literal character. For example, you can use it to force MASM to treat spe
cial characters such as the semicolon (;) or the ampersand (&) literally.
Therefore, !j is equivalent to <; >.

8.3.4 Expression Operator

Syntax

%text

The expression operator (%) causes the assembler to treat text as an
expression. MASM computes the expression's value, using numbers of the
current radix, and replaces text with this new value. The text must
represent a valid expression.

The expression operator is typically used in macro calls where the program
mer needs to pass the result of an expression to the macro instead of to the
actual expression.

131

Microsoft Macro Assembler Reference Manual

Example

printe

sym1
sym2

MACRO
IF2
%OUT
ENDIF
ENDM

EQU
EQU

msg,num

* &msg&num *

100
200

printe <sym1 + sym2

In this example, the macro call

" On pass 2 only
Display message and number

to screen

>,%(sym1 + sym2) Macro call

printe <sym1 + sym2 = >,%(sym1 + sym2)

passes the text literal syml + sym2 = to the dummy parameter msg. It
passes the value 300 (the result of the expression syml + sym2) to the
dummy parameter Dum. The result is that MASM displays the message
syml +sym2=300 when it reaches the macro call during the assembly.
The %OUT directive, which sends a message to the screen, is described in
Section 9.4 and the IF2 directive is described in Section 7.2.2.

8.3.5 Macro Comment

Syntax

;; text

A macro comment is any text in a macro definition that does not need to be
copied in the macro expansion. All text following the double semicolon (;;)
is ignored by the assembler and will appear only in the macro definition
when the source listing is created.

The regular comment operator (;) can also be used in macros. However,
regular comments may appear in listings when the macro is expanded.
Macro comments will appear in the macro definition, but not in macro
expansions. Whether or not regular comments are listed in macro expan
sions depends on the use of the .LALL, .XALL, and .SALL directives
described in Section 9.11.

132

Chapter 9

File Control Directives

9.1 Introduction 135
9.2 INCLUDE Directive 136
9.3 .RADIX Directive 137
9.4 %OUT Directive 138
9.5 NAME Directive 138
9.6 TITLE Directive 139
9.7 SUBTTL Directive 140
9.8 P AGE Directive 140
9.9 .LIST and .XLIST Directives 142
9.10 .SFCOND, .LFCOND,

and. TFCOND Directives 142
9.11 .LALL, .XALL, and .SALL Directives 144
9.12 .CREF and .XCREF Directives 145

133

File Control Directives

9.1 Introduction

This chapter describes the MASM file-control directives, which provide
control of the source, object, and listing files read and created by the
assembler.

The file-control directives include the following:

Directive

INCLUDE

. RADIX

%OUT

NAME

TITLE

SUBTTL

PAGE
.LIST

.XLIST

.LFCOND

.SFCOND

.TFCOND

.LALL

.SALL

.XALL

.CREF

.XCREF

Meaning

Include a source file

Change default input radix

Display message on console

Copy name to object file

Set program-listing title

Set program-listing subtitle

Set program-listing page size and line width

List statements in program listing

Suppress listing of statements

List false conditional in program listing

Suppress false-conditional listing

Toggle false-conditional listing

Include macro expansions in program listing

Suppress listing of macro expansions

Exclude comments from macro listing

List symbols in cross-reference file

Suppress symbol listing

Sections 9.2-9.12 describe these directives in detail.

136

Microsoft Macro Assembler Reference Manual

9.2 INCLUDE Directive

Syntax

INCLUDE filename

The INCLUDE directive inserts source code from the source file given by
filename into the current source file during assembly. The filename must
name an existing file. A full or partial path name may be given if the file is
not in the current working directory. MASM first looks for the "include"
file (the source file specified by filename) in any paths specified with the
MASM /1 option, then it checks the current directory. If the named file is
not found, the assembler displays an error message and stops.

When the assembler encounters an INCLUDE directive, it opens the
specified source file and immediately begins assembling its statements.
When all statements have been read, MASM continues assembly with the
statement immediately following the directive.

Nested INCLUDE directives are allowed. A file named by an INCLUDE
directive can contain INCLUDE directives. MASM marks included state
ments with the letter C in listings.

Directories can be specified in INCLUDE path names with either the
backslash (\) or the forward slash (/). This is for XENIX® compatibility.

You should specify a file name, but no path name with the INCLUDE
directive if you plan to set a search path with the MASM /1 option. The
/1 option is discussed in Section 2.3.6 of the Microsoft Macro Assembler
User's Guide.

Examples

INCLUDE entry
INCLUDE b:\include\record
INCLUDE /include/as/stdio
INCLUDE localinc\define.inc

136

File name
Path name
Path name
Partial path name

File Control Directives

9.3 .RADlX Directive

Syntax

.RADIX expression

The .RADIX directive sets the input radix for numbers in the source file.
The expression is a number in the range 2 to 16. It defines whether the
numbers are binary, octal, decimal, hexadecimal, or numbers of some other
base. The most common bases are listed below:

Base Number type

2 binary

8 octal

10 decimal

16 hexadecimal

The expression is always considered a decimal number, regardless of the
current input radix. The default input radix is decimal.

Notes

The .RADIX directive does not affect the DD, DQ, or DT directives.
Numbers entered in the expression of these directives are always
evaluated as decimal unless a radix specifier is appended to the value.

The .RADIX directive does not affect the optional radix specifiers, B
and D, used with integer numbers. When B or D appears at the end of
any integer, it is always considered to be a radix specifier even if the
current input radix is 16.

For example, if the input radix is 16, the number OABeD will be inter
preted as OABC decimal, an illegal number, instead of as OABCD hexa
decimal, as intended. Type OABCDh to specify OABCD in hexadecimal.
Similarly, the number lIB will be treated as 11 binary, a legal number,
but not lIB hexadecimal, as intended. Type 11Bh to specify lIB in
hexadecimal.

137

Microsoft Macro Assembler Reference Manual

Examples

.RADIX 16

.RADIX 2

The first example sets the input radix to hexadecimal, while the second sets
the input radix to binary.

9.4 %OUT Directive

Syntax

%OUT text

The %OUT directive instructs the assembler to display the text on the
screen when it reaches the line containing the specified text during assem
bly. The directive is useful for displaying messages at specific points of a
long assembly.

The %OUT directive generates output for both assembly passes. The IF!
and IF2 directives can be used to control when the directive is processed.

Example

IF1
%OUT First Pass - OK

ENDIF

This sample block could be placed at the end of a source file so that the
message First Pass - OK would be displayed at the end of the first
pass, but ignored on the second pass.

9.5 NAME Directive

Syntax

NAME module name

The NAME directive sets the name of the current module to modulename.
A module name is used by the linker when displaying error messages.

138

File Control Directives

The modulename can be any combination of letters and digits. Although
the module name can be any length, only the first six characters are used.
The name must be unique and not a reserved word.

If the NAME directive is not used, the assembler creates a default module
name using the first six characters of the text specified in the TITLE direc
tive. If no TITLE directive is found, the default name A is used.

Example

NAME Grafix

This example sets the module name to Gra fix.

9.6 TITLE Directive

Syntax

TITLE text

The TITLE directive specifies the program-listing title. It directs MASM
to copy text to the first line of each new page in the program listing. The
text can be any combination of characters up to 60 characters in length.

No more than one TITLE directive per module is allowed. The first 6 non
blank characters of the title are used as the module name if the module
does not contain a NAME directive.

Example

TITLE Graphics - First program

This example sets the title to Graphics - First program. If the
module does not contain a NAME directive, the module name will be set
to Graphi (the first six characters of Graphics.)

139

Microsoft Macro Assembler Reference Manual

9.7 SUBTTL Directive

Syntax

SUBTTL text

The SUBTTL directive Rpecifies the listing subtitle. It directs the assem
bler to copy text to the line immediately following the title on each new
page in the program listing. The text can be any combination of characters.
Only the first 60 characters are used. If no text is given, the subtitle line is
left blank.

Any number of SUBTTL directives can be given in a program. Each new
directive replaces the current subtitle with the new text.

Examples

SUBTTL Point Plotting Routines

The example above creates the subtitle Point Plotting Routines.

SUBTTL

The example above creates a blank subtitle.

9.8 PAGE Directive

Syntax

PAGE length, width

PAGE +
PAGE

The PAGE directive can be used to designate the line length and width for
the program listing, to increment the section and adjust the section number
accordingly, or to generate a page break in the listing.

140

File Control Directives

If length and width are specified, the PAGE directive sets the maximum
number of lines per page to length, and the maximum number of characters
per line to width. The length must be in the range 10 to 255. The default
page length is 50. The width must be in the range 60 to 132. The default
page width is 80. If width is specified, but length is not, a comma (,) must
precede width.

If a plus sign (+) follows PAGE, the section number is incremented and
the page number is reset to 1. Program listing page numbers have the form

section- page

where section is the section number within the module, and page is the page
number within the section. By default, section and page numbers begin
with 1-1.

If no argument is given, PAGE starts a new output page in the program
listing. It copies a form-feed character to the file and generates a title and
subtitle line.

Examples

PAGE

The first example creates a page break.

PAGE 58,60

The second example sets the maximum page length to 58 lines, and the
maximum width to 60 characters.

PAGE ,132

The third example sets the maximum width to 132 characters. The current
page length (either the default of 50 or a previously set value) remains
unchanged.

PAGE +

The final example increments the current section number and sets the page
number to 1. For example, if the preceding page was 3-6, the new page
would be 4-1.

141

Microsoft Macro Assembler Reference Manual

9.9 .LIST and .XLIST Directives

Syntax

.LIST

.XLIST

The .LIST and .XLIST directives control which source-program lines are
copied to the program listing. The .XLIST directive suppresses copying of
subsequent source lines to the program listing. The .LIST directive
restores copying. The directives are typically used in pairs, to prevent a
particular section of a source file from being copied to the program listing.

The .XLIST directive overrides all other listing directives.

Example

.XLIST Listing suspended here

.LIST Listing resumes here

9.10 .SFCOND, .LFCOND,
and. TFCOND Directives

Syntax

.SFCOND

.LFCOND

.TFCOND

The .SFCOND and .LFCOND directives determine whether false
conditional blocks should be listed.

142

File Control Directives

The .SFCOND directive suppresses the listing of any subsequent condi
tional blocks whose IF condition is false. The .LFCOND directive
restores the listing of these blocks. Like .LIST and .XLIST, false
conditional listing directives can be used to suppress listing of conditional
blocks in sections of a program.

The. TFCOND directive sets the default mode for listing of conditional
blocks. This directive works in conjunction with thejX option of the
assembler. If IX is not given in the MASM cornman line, .TFCOND
causes false-conditional blocks to be listed by default. If IX is given,
. TFCOND causes false-conditional blocks to be suppressed. Every time a
new. TFCOND is inserted in the source code, listing of false-conditionals
is turned off if it was on, or on if it was off.

The IX option is discussed in Section 2.3.15 of the Microsoft Macro Assem
bler User's Guide.

Example

test1 DB 0 Symbol defined so all conditionals false

IX not used IX used
.SFCOND
IFNDEF test1 Not listing Not listed
test2 DB 128
ENDIF
.LFCOND
IFNDEF test1 Listed Listed
test2 DB 128
ENDIF
.TFCOND
IFNDEF test1 Listed Not listed
test2 DB 128
ENDIF
.TFCOND
IFNDEF test1 Not listed Listed
test2 DB 128
ENDIF

In the example above, the listing for the last two conditionals would be
reversed if the IX option were used. The first block with .TFCOND
would not be listed and the second block would be listed.

143

Microsoft Macro Assembler Reference Manual

9.11 .LALL, .XALL, and .SALL Directives

Syntax

.LALL

.XALL

.SALL

The .LALL, .XALL, and .SALL directives control the listing of the state
ments in macros that have been expanded in the source file. The assembler
lists the full macro definition, but lists macro expansions only if the appro
priate directive is set.

The .LALL directive causes MASM to list all the source statements in a
macro, including comments preceded by a single semicolon (;), but not
those preceded by a double semicolon (;;). The .XALL directive lists only
those source statements that generate code or data. Comments are ignored.

The .SALL directive suppresses listing of all macro expansions. That is,
the assembler copies the macro call to the source listing, but does not copy
the source lines generated by the call.

The .XALL directive is in effect when MASM first begins execution.

For the sample listing below, assume that the following macro has been
defined at the beginning of the source file:

tryout MACRO
;;Macro comment line

Normal comment line
IF2
ASSUME cs:code
DW 20 DUP (7)
mov aX,bx
ENDIF
ENDM

No code or data
No code or data
Generates data
Generates code
No code or data

Assume also that the macro has been called once in the source file with each
of the following macro listing directives:

.LALL
tryout Call with .LALL

.XALL
tryout Call with .XALL

.SALL
tryout Call with .SALL

144

File Control Directives

Example

0005 0014[
????

002D 8B C3

002F 0014[
0057 8B C3

1
1
1
1
1
1
1
1

1
1

.LALL

.XALL

.SALL

tryout
; Normal comment line
IF2 No code or data
ASSUME cs:code No code or data
DW 20 DUP(?) Generates data

mov aX,bx
ENDIF

tryout
DW 20 DUP (?)
mov aX,bx

tryout

Generates code
No code or data

Generates data
Generates code

Notice that the macro comment line is never listed in macro expansions.
The normal comment line is listed only with the .LALL directive.

9.12 .CREF and .XCREF Directives

Syntax

.CREF

.XCREF [name",]

The .CREF and .XCREF directives control the generation of cross
references for the macro assembler's cross-reference file. The .XCREF
directive suppresses the generation of label, variable, and symbol cross
references. The .CREF directive restores this generation.

If name is specified with .XCREF, only that label, variable, or symbol will
be suppressed. All other names will be cross-referenced. The named label,
variable, or symbol will also be omitted from the symbol table of the pro
gram listing. If two or more names are to be given, they must be separated
by commas (,).

145

Microsoft Macro Assembler Reference Manual

Example

.XCREF

. CREE

.XCREF testl,test2

146

Suppress cross-referencing
of symbols in this block

Restore cross-referencing
of symbols in this block

Don't cross-reference testl or test2
in this block

Appendixes

A Instruction Summary 149
B Directive Summary 167
C Segment Names

for High-Level Languages 183

147

Appendix A

Instruction Summary

A.1 Introduction 151
A.2 8086 Instructions 152
A.3 8087 Instructions 159
A.4 80186 Instruction Mnemonics 163
A.5 80286 Nonprotected Instructions 164
A.6 80286 Protected Instruction Mnemonics
A.7 80287 Instruction Mnemonics 166

165

149

Instruction Summary

A.1 Introduction

The Microsoft Macro Assembler (MASM) is an assembler for the Intel
8086/80186/80286 family of microprocessors. It is capable of assembling
instructions for the 8086, 8088, 80186, and 80286 microprocessors and the
8087 and 80287 floating-point coprocessors. Programs must use the
instruction syntax described in this chapter.

By default, MASM recognizes the 8086 and 8087 instruction sets only (the
8088 set is identical to the 8086 set). If a source program contains 80186,
80286, or 80287 instructions, one or more instruction-set directives must be
used in the source file to enable assembly of the additional instructions
available in those instruction sets. Sections A.2-A.7 provide lists of the
syntax of all instructions recognized by MASM with the various
instruction-set directives.

Table A.l explains the abbreviations used in the syntax descriptions.

Table A.I

Syntax Abbreviations

Ab breviation

accum

reg

segreg

rim

immed

mem

label

src

dest

Meaning

One of the accumulators: AX or AL
One of the byte or word registers
Byte: AL, AH, BL, BH, CL, CH, DL, DH
Word: AX, BX, CX, DX, SI, DI, BP, SP
One of the segment registers: CS, DS, SS, ES
One of the general operands: register, memory address,
indexed operand, based operand, based-indexed operand

8- or 16-bit immediate value: constant or symbol

One of the memory operands: label, variable, symbol

Instruction label

Source in string operations

Destination in string operations

151

Microsoft Macro Assembler Reference Manual

A.2 8086 Instructions

The 8086 instructions are listed below. (The 8088 instructions are identical
to 8086 instructions.) MASM assembles 8086 instructions by default.

162

Syntax

AAA

AAD

AAM

AAS

ADC accum,immed

ADC r/m,immed

ADC r/m,reg

ADC reg,r/m

ADD accum,immed

ADD r/m,immed

ADD r/m,reg

ADD reg,r/m

AND accum,immed

AND r/m,immed

AND r/m,reg

AND reg,r/m

CALL label

CALL rim
CBW

CLC

CLD

CLI

Action

ASCII adjust for addition

ASCII adjust for division

ASCII adjust for multiplication

ASCII adjust for subtraction

Add immediate with carry to
accumulator

Add immediate with carry to operand

Add register with carry to operand

Add operand with carry to register

Add immediate to accumulator

Add immediate to operand

Add register to operand

Add operand to register

Bitwise AND immediate with
accumulator

Bitwise AND immediate with operand

Bitwise AND register with operand

Bitwise AND operand with register

Call instruction at label

Call instruction indirect

Convert byte to word

Clear carry flag

Clear direction flag

Clear interrupt flag

CMC

CMP accum, immed

CMP rlm,immed

CMP rlm,reg

CMP reg,rlm

CMPS src,dest

CMPSB

CMPSW

CWD

DAA

DAS

DEC rim

DEC reg

DIV rim

ESC immed,rlm

HLT

IDIV rim

IMUL rim

IN accum, immed

IN accum,DX

INC rim

INC reg

INT3

INT immed

INTO

IRET

JA label

JAE label

Instruction Summary

Complement carry flag

Compare immediate with accumulator

Compare immediate with operand

Compare register with operand

Compare operand with register

Compare strings

Compare strings byte for byte

Compare strings word for word

Convert word to doubleword

Decimal adjust for addition

Decimal adjust for subtraction

Decrement operand

Decrement 16-bit register

Divide accumulator by operand

Escape with 6-bit immediate and operand

Halt

Integer divide accumulator by operand

Integer multiply accumulator by operand

Input from port (8-bit immediate)

Input from port given by DX

Increment operand

Increment 16-bit register

Software interrupt 3 (encoded as one
byte)

Software interrupts 0-255

Interrupt on overflow

Return from interrupt

Jump on above

Jump on above or equal

153

Microsoft Macro Assembler Reference Manual

JB label Jump on below

JBE label Jump on below or equal

JC label Jump on carry

JCXZ label Jump on CX zero

JE label Jump on equal

JG label Jump on greater

JGE label Jump on greater or equal

JL label Jump on less than

JLE label Jump on less than or equal

JMP label Jump to instruction at label

JMP rim Jump to instruction indirect

JNA label Jump on not above

JNAE label Jump on not above or equal

JNB label Jump on not below

JNBE label Jump on not below or equal

JNC label Jump on no carry

JNE label Jump on not equal

JNG label Jump on not greater

JNGE label Jump on not greater or equal

JNL label Jump on not less than

JNLE label Jump on not less than or equal

JNO label Jump on not overflow

JNP label Jump on not parity

JNS label Jump on not sign

JNZ label Jump on not zero

JO label Jump on overflow

JP label Jump on parity

JPE label Jump on parity even

JPO label Jump on parity odd

164

JS label

JZ label

LAHF
LDS r/m

LEA r/m

LES r/m

LOCK

LODS src

LODSB

LODSW

LOOP label

LOOPE label

LOOPNE label

LOOPNZ label

LOOPZ label

MOV accum,mem

MOV mem,accum

MOV r/m,immed

MOV r/m,reg

MOV r /m,segreg

MOV reg, immed

MOV reg,r/m

MOV segreg,r/m

MOVS dest,src

MOVSB

MOVSW

MUL r/m

NEG r/m

NOP

Instruction Summary

Jump on sign

Jump on zero

Load AH with flags

Load operand into DS

Load effective address of operand

Load operand into ES

Lock bus

Load string

Load byte from string into AL

Load word from string into AX

Loop

Loop while equal

Loop while not equal

Loop while not zero

Loop while zero

Move memory to accumulator

Move accumulator to memory

Move immediate to operand

Move register to operand

Move segment register to operand

Move immediate to register

Move operand to register

Move operand to segment register

Move string

Move string byte by byte

Move string word by word

Multiply accumulator by operand

Negate operand (2's complement)

No operation

166

Microsoft Macro Assembler Reference Manual

156

NOT r/m

OR accum,immed

OR r/m,immed

OR r/m,reg

OR reg,r/m

OUT DX,accum

OUT immed, accum

POP r/m

POP reg

POP segreg

POPF

PUSH r/m

PUSH reg

PUSH segreg

PUSHF

RCL r/m,l

RCL r/m,CL

RCR r/m,l

RCR r/m,CL

REP
REPE
REPNE
REPNZ
REPZ
RET [immed]

ROL r/m,l

ROL r/m,CL

ROR r/m,l

ROR r/m,CL

Invert operand bits (1 's complement)

Bitwise OR immediate with accumulator

Bitwise OR immediate with operand

Bitwise OR register with operand

Bitwise OR operand with register

Output to port given by DX

Output to port (8-bit immediate)

Pop 16-bit operand

Pop 16-bit register from stack

Pop segment register

Pop flags

Push 16-bit operand

Push 16-bit register onto stack

Push segment register

Push flags

Rotate left through carry by 1 bit

Rotate left through carry by CL

Rotate right through carry by 1 bit

Rotate right through carry by CL

Repeat

Repeat if equal

Repeat if not equal

Repeat if not zero

Repeat if zero

Return after popping bytes from stack

Rotate left by 1 bit

Rotate left by CL

Rotate right by 1 bit

Rotate right by CL

SAHF

SAL rim,!

SAL r/m,CL

SAR rim,!

SAR r/m,CL

SBB accum, immed

SBB r/m,immed

SBB r/m,reg

SBB reg,r/m

SCAS dest

SCASB

SCASW

SHL rim,!

SHL r/m,CL

SHR rim,!

SHR r/m,CL

STC

STD

STI

STOS dest

STOSB

STOSW

SUB accum, immed

SUB r /m, immed

SUB r/m,reg

SUB reg,r/m

TEST accum, immed

TEST r/m,immed

Instruction Summary

Store AH into flags

Shift arithmetic left by 1 bit

Shift arithmetic left by CL

Shift arithmetic right by 1 bit

Shift arithmetic right by CL

Subtract immediate and carry flag

Subtract immediate and carry flag

Subtract register and carry flag

Subtract operand and carry flag

Scan string

Scan string for byte in AI.,

Scan string for word in AX

Shift left by 1 bit

Shift left by CL

Shift right by 1 bit

Shift right by CL

Set carry flag

Set direction flag

Set interrupt flag

Store string

Store byte in AL at string

Store word in AX at string

Subtract immediate from accumulator

Subtract immediate from operand

Subtract register from operand

Subtract operand from register

Compare immediate bits with
accumulator

Compare immediate bits with operand

157

Microsoft Macro Assembler Reference Manual

TEST r/m,reg

TEST reg,r/m

WAIT

XCHG accum,reg

XCHG r/m,reg

XCHG reg,accum

XCHG reg,r/m

XLAT mem

XOR accum,immed

XOR r/m,immed

XOR r/m,reg

XOR reg,r/m

Compare register bits with operand

Compare operand bits with register

Wait

Exchange accumulator with register

Exchange operand with register

Exchange register with accumulator

Exchange register with operand

Translate

Bitwise XOR immediate with
accumulator

Bitwise XOR immediate with operand

Bitwise XOR register with operand

Bitwise XOR operand with register

The string instructions (CMPS, LODS, MOVS, SCAS, and STOS) use
the DS, SI, ES, and DI registers to compute operand locations. Source
operands are assumed to be at DS:rSI]; destination operands at ES:[DI].
The operand type (BYTE or WORD) may be defined by the instruction
mnemonic. For example, eMPSB specifies BYTE operands and
CMPSW specifies WORD operands. For the eMPS, LODS, MOVS,
SeAS, and STOS instructions, the src and dest operands are dummy
operands that define the operand type only. The offsets associated with
these operands are not used. The src operand can also be used to specify a
segment override. The ES register for the destination operand cannot be
overridden.

Examples

cmps WORD PTR string,WORD PTR es:O
lads BYTE PTR string
mav BYTE PTR es:O,BYTE PTR string

The REP, REPE, REPNE, REPNZ, and REPZ instructions provide
ways to repeatedly execute a string instruction for a given count or while a
given condition is true. If a repeat instruction immediately precedes a
string instruction (both instructions must be on the same line), the instruc
tions are repeated until the specified repeat condition is false, or the ex
register is equal to zero. The repeat instruction decrements ex by one for
each execution.

168

Instruction Summary

Example

mav cX,lO
rep scasb

In this example, SCASB is repeated 10 times.

A.3 8087 Instructions

The 8087 instructions are listed below. MASM assembles 8087 instruc
tions by default.

Syntax

F2XMl

FABS

FADD

FADD mem

FADD ST, ST(i)

FADD ST(i),ST

F ADDP ST(i),ST

FBLD mem

FBSTP mem

FOHS

FCLEX

FOOM

FCOMST

FCOM ST(i)

FCOMP

FCOMPST

FCOMP ST(i)

FOOMPP

Action

Calculate 2x_

Take absolute value of top of stack

Add real

Add real from memory

Add real from stack

Add real to stack

Add real and pop stack

Load 10-byte packed decimal on stack

Store 10-byte packed decimal and pop

Change sign on the top stack element

Clear exceptions after WAlT

Compare real

Compare real with top of stack

Compare real with stack

Compare real and pop stack

Compare real with top of stack and pop

Compare real with stack and pop stack

Compare real and pop stack twice

169

Microsoft Macro Assembler Reference Manual

160

FDECSTP

FDISI

FDIV

FDIV mem

FDIV ST ,ST(i)

FDIV ST(i),ST

FDIVP ST(i),ST

FDIVR

FDIVR mem

FDIVR ST,ST(z)

FDIVR ST(i),ST

FDIVRP ST(i),ST

FENI

FFREE

FFREE ST

FFREE ST(i)

FIADD mem

FICOM mem

FICOMP mem

FIDIV mem

FIDIVR mem

FILD mem

FIMUL mem

FINCSTP

FINIT

FIST mem

FISTP mem

Decrement stack pointer

Disable interrupts after WAIT

Divide real

Divide real from memory

Divide real from stack

Divide real in stack

Divide real and pop stack

Reversed real divide

Reversed real divide from memory

Reversed real divide from stack

Reversed real divide in stack

Reversed real divide and pop stack twice

Enable interrupts after WAlT

Free stack element

Free top-of-stack element

Free ith stack element

Add 2- or 4-byte integer

2- or 4-byte integer compare

2- or 4-byte integer compare and pop
stack

2- or 4-byte integer divide

Reversed 2- or 4-byte integer divide

Load 2-, 4-, or 8-byte integer on stack

2- or 4-byte integer multiply

Increment stack pointer

Initialize processor after WAlT

Store 2- or 4-byte integer

Store 2-, 4-, or 8-byte integer and pop
stack

FISUB mem

FISUBR mem

FLD mem

FLDI

FLDCW mem

FLDENVmem

FLDL2E

FLDL2T

FLDLG2

FLDLN2

FLDPI

FLDZ

FMUL

MUL mem

FMUL ST,ST(z)

FMUL ST(i),ST

FMULP ST(i),ST

FNCLEX

FNDISI

FNENI

FNINIT

FNOP

FNSAVE mem

FNSTCWmem

FNSTENVmem

FNSTSW mem

FPATAN

FPREM

Instruction Summnry

2- or 4-byte integer subtract

Reversed 2- or 4-byte integer subtract

Load 4-, 8-, or 10-byte real on stack

Load +1.0 onto top of stack

Load con trol word

Load 8087 environment (14 bytes)

Load log2e onto top of stack

Load log210 onto top of stack

Load log102 onto top of stack

Load loge2 onto top of stack

Load pi onto top of stack

Load +0.0 onto top of stack

Multiply real

Multiply real from memory

Multiply real from stack

Multiply real to stack

Multiply real and pop stack

Clear exceptions with no WAIT

Disable interrupts with no WAIT

Enable interrupts with no WAIT

Initialize processor, with no WAIT

No operation

Save 8087 state (94 bytes) with no
WAIT

Store control word with no WAIT

Store 8087 environment with no WAIT

Store 8087 status word with no WAIT

Partial arctangent function

Partial remainder

161

Microsoft Macro Assembler Reference Manual

162

FPTAN

FRNDINT

FRSTOR mem

FSAVE mem

FSCALE

FSQRT

FST

FSTST

FST ST(z)

FSTCW mem

FSTENVmem

FSTP mem

FSTSW mem

FSUB

FSUB mem

FSUB ST,ST(z)

FSUB ST(z),ST

FSUBP ST(t),ST

FSUBR

FSUBR mem

FSUBR ST ,ST(z)

FSUBR ST(i),ST

FSUBRP ST(z),ST

FTST

FWAIT

FX.AM

FXCH

FFREE ST

Partial tangent function

Round to integer

Restore 8087 state (94 bytes)

Save 8087 state (94 bytes) after WAIT

Scale

Square root

Store real

Store real from top of stack

Store real from stack

Store control word with WAIT

Store 8087 environment after WAIT

Store 4-, 8-, or 10-byte real and pop
stack

Store 8087 status word after WAIT

Subtract real

Subtract real from memory

Subtract real from stack

Subtract real to stack

Subtract real and pop stack

Reversed real subtract

Reversed real subtract from memory

Reversed real subtract from stack

Reversed real subtract in stack

Reversed real subtract and pop stack

Test top of stack

Wait for last 8087 operation to complete

Examine top-of-stack element

Exchange contents of stack element

Exchange top-of-stack element

FFREE ST(i)

FXTRACT

FYL2X

FYL2PI

Instruction Summary

Exchange top-of-stack and ith element

Extract exponent and significand

Calculate Y log2x

Calculate Y log2(x+ 1)

A.4 80186 Instruction Mnemonics

The 80186 instruction set consists of all 8086 instructions plus the follow
ing instructions. The .186 directive must be used to enable these instruc
tions.

Syntax

BOUND reg, mem

ENTER immed16, immed8

IMUL reg, immed

IMUL reg,r/m,immed

INS mem,DX

INSB mem,DX

INSW mem,DX

LEAVE

OUTS DX,mem

OUTSB DX,mem

OUTSW DX,mem

POPA

PUSH immed

PUSHA

RCL r/m,immed

RCR r/m,immed

ROL r/m,immed

Action

Detect value out of range

Enter procedure

Integer multiply register by immediate

Integer multiply general operand by
immediate and store result in register

Input string from port DX

Input byte string from port DX

Input word string from port DX

Leave procedure

Output byte/word string to port DX

Output byte string to port DX

Output word string to port DX

Pop all registers

Push immediate data onto stack

Push all registers

Rotate left through carry by immediate

Rotate right through carry by immediate

Rotate left by immediate

163

Microsoft Macro Assembler Reference Manual

ROR r/m,immed

SAL r/m,immed

SAR r/m,immed

SHL r/m,immed

SHR r/m,immed

Rotate right by immediate

Shift arithmetic left by immediate

Shift arithmetic right by immediate

Shift left by immediate

Shift right by immediate

A.5 80286 Nonprotected Instructions

The 80286 nonprotected instruction set consists of all 8086 instructions
plus the following instructions. The .286c directive must be used to enable
these instructions.

164

Syntax

BOUND reg,mem

ENTER immed16, immed8

IMUL reg,immed

IMUL reg,r/m,immed

INS mem,DX

INSB mem,DX

INSW mem,DX

LEAVE

OUTS DX,mem

OUTSB DX, mem

OUTSW DX, mem

POPA

PUSH immed

PUSHA

RCL r/m,immed

RCR r/m,immed

Action

Detect value out of range

Enter procedure

Integer multiply register by immediate

Integer multiply general operand by
immediate and store result in register

Input string from port DX

Input byte string from port DX

Input word string from port DX

Leave procedure

Output byte/word string to port DX

Output byte string to port DX

Output word string to port DX

Pop all registers

Push immediate data onto stack

Push all registers

Rotate left through carry by immediate

Rotate right through carry by immediate

ROL r/m,immed

ROR r/m,immed

SAL r/m,immed

SAR r/m,immed

SHL r/m,immed

SHR r/m,immed

Instruction Summary

Rotate left by immediate

Rotate right by immediate

Shift arithmetic left by immediate

Shift arithmetic right by immediate

Shift left by immediate

Shift right by immediate

A.6 80286 Protected Instruction Mnemonics

The 80286 protected instruction set consists of all 8086 and 80286 non
protected instructions plus the following instructions. The .286p directive
must be used to enable these instructions.

Syntax

ARPL mem,reg

CLTS

LAR reg,mem

LGDT mem

LIDT mem

LLDT mem

LMSWmem

LSL reg, mem

LTR mem

SGDT mem

SIDT mem

SLDT mem

SMSW mem

STR mem

VERR mem

Action

Adjust requested privilege level

Clear task-switched flag

Load access rights

Load global-descriptor table (8 bytes)

Load interrupt-descriptor table (8 bytes)

Load local-descriptor table

Load machine-status word

Load segment limit

Load task register

Store global-descriptor table (8 bytes)

Store interrupt-descriptor table (8 bytes)

Store local-descriptor table

Store machine-status word

Store task register

Verify read access

165

Microsoft Macro Assembler Reference Manual

VERWmem Verify write access

A.7 80287 Instruction Mnemonics

The 80287 instruction set consists of all 8087 instructions plus the follow
ing additional instructiuns. The .287 direcLive must be used to enable
these instructions.

166

FSETPM

FSTSW AX

FNSTSW AX

Set protected mode

Store status word in AX (wait)

Store status word in AX (no-wait)

Appendix B

Directive Summary

B.1 Introduction 169
B.2 MASM Directives 169
B.3 MASM Operators 177

167

Directive Summary

B.l Introduction

Directives give the assembler directions and information about input and
output, memory organization, conditional assembly, listing and cross
reference control, and definitions. Table B.1 lists all directives.

Table B.I

Directives

.186 ENDP IFI ORG

.286c ENDS IF2 %OUT

.286p EQU IFB PAGE

.287 .ERR IFDEF PROa

.8086 .ERRI IFDIF PUBLIC

.8087 .ERR2 IFE PURGE
- .ERRB IFIDN • RADIX
ASSUME .ERRDEF IFNB RECORD
COMMENT .ERRDIF IFNDEF REPT
.CREF .ERRE INCLUDE .SALL
DB .ERRIDN IRP SEGMENT
DD .ERRNB IRPC .SFCOND
DQ .ERRNDEF LABEL STRUC
DT .ERRNZ .LALL SUBTTL
DW EVEN .LFCOND .TFCOND
ELSE EXITM .LIST TITLE
END EXTRN LOCAL .XALL
ENDIF GROUP MACRO .XCREF
ENDM IF NAME .XLIST

Any combination of upper- and lowercase letters can be used when giving
directive names in a source file.

B.2 MASM Directives

The directives you can use in MASM source code are listed below with the
syntax and function of each. This list is for reference only. See the
appropriate chapters in this manual for details.

169

Microsoft Macro Assembler Reference Manual

.186

Enables assembly of 80186 and 8086 instructions .

. 286c

Enables assembly of 80286 nonprotected instructions and 8086 instruc
tions.

Enables assembly of 80286 protected instructions and 8086 instructions .

. 287

Enables assembly of 80287 and 8087 instructions .

. 8086

Enables assembly of 8086 instructions (and the identical 8088 instruc
tions) while disabling assembly of instructions available only with
80186 and 80286. This is the default mode .

. 8087

Enables assembly of 8087 instructions while disabling assembly of
instructions available only with 80287. This is the default mode.

name = expresszon

Assigns the numeric value of expression to name.

ASSUME segmentregister:segmentname",

Selects segmentregister to be the default segment register for all symbols
in the named segment or group. If segmentname is NOTHING, no
register is selected.

COMMENT delimiter text delimiter

Treats as a comment all text between the given pair of delimiters
delimiter .

. CREF

Restores listing of symbols in the cross-reference listing file.

170

Directive Summary

[name] DB initialvalue,,,

Allocates and initializes a byte (8 bits) of storage for each initialvalue.

[name] DW initialvalue",

Allocates and initializes a word (2 bytes) of storage for each
initialvalue.

[name] DD initialvalue",

Allocates and initializes a doubleword (4 bytes) of storage for each
initialvalue.

[name] DQ initialvalue",

Allocates and initializes a quadword (8 bytes) of storage for each
initialvalue.

[name] DT initialvalue",

Allocates and initializes 10 bytes of storage for each given initialvalue.

ELSE

Marks the beginning of an alternate block within a conditional block.

END [expression]

Marks the end of the module and, optionally, sets the program entry
point to expression.

ENDIF

Terminates a conditional block.

ENDM

Terminates a macro or repeat block.

nameENDP

Marks the end of a procedure definition.

name ENDS

Marks the end of a segment or of a structure-type definition.

171

Microsoft Macro Assembler Reference Manual

name EQU expression

Assigns expression to name .

. ERR

Generates error .

. ERRl

Generates error on Pass 1 only .

. ERR2

Generates error on Pass 2 only .

. ERRB < argument>

Generates error if the argument is blank .

. ERRDEF name

Generates error if name is a previously defined label, variable,
or symbol.

.ERRDIF < stringl >, < string2>

Generates error if the strings are different .

. ERRE expression

Generates error if the expression is false (O) .

. ERRIDN < stringl >, < string2>

Generates error if the strings are identical.

.ERRNB < argument>

Generates error if the argument is not blank .

. ERRNDEF name

Generates error if name has not yet been defined .

. ERRNZ expression

Generates error if expression is true (nonzero).

172

Directive Summary

EVEN

If necessary, increments the location counter to an even value and gen
erates one NOP instruction (90h).

EXITM

Terminates expansion of the current repeat or macro block and begins
assembly of next statement outside the block.

EXTRN name: type,,,

Defines an external variable, label, or symbol called name whose type
is type.

name GROUP segmentname",

Associates a group name name with one or more segments.

IF expression

Grants assembly if expression is true (nonzero).

IF!

Grants assembly on Pass 1 only.

IF2

Grants assembly on Pass 2 only.

IFB < argument>

Grants assembly if argument is blank.

IFDEF name

Grants assembly if name is a previously defined label, variable,
or symbol.

IFDIF < argumentl >, < argument2>

Grants assembly if the arguments are different.

IFE expression

Grants assembly if expression is false (O).

173

Microsoft Macro Assembler Reference Manual

IFID N < argumentl >, < argument2>

Grants assembly if the arguments are identical.

IFNB < argument>

Grants assembly if argument is not blank.

IFNDEF name

Grants assembly if name has not yet been defined.

INCLUDE filename

Inserts source code from the source file given by filename into the
current source file during assembly.

IRP dummyname, <parameter", >

Marks start of a block that will be repeated for as many parameters as
are given, with the current parameter replacing the placeholder dum
myname on each repetition.

IRPC dummyname, < string>

Marks start of a block that will be repeated for as many characters as
there are in string, with the current character replacing the placeholder
dummyname on each repetition.

name LABEL type

Creates a new variable or label by assigning the current location
counter value and the given type to name .

. LALL

Lists all statements in a macro .

. LFCOND

Restores the listing of conditional blocks .

. LIST

Restores listing of statements in the program listing.

LOCAL dummyname",

174

Declares dummyname within a macro as a placeholder for an actual
name to be created when the macro is expanded.

Directive Summary

name MACRO dummyparameter",

Marks the beginning of macro name and establishes each item called
dummyparameter as a placeholder for the expressions passed when the
macro is called.

NAME modulename

Sets the name of the current module to modulename.

PURGE macroname",

Deletes the named macros.

ORG expression

Sets the location counter to expression.

%OUT text

Displays text at the user's terminal.

name PROC type

Marks the beginning of procedure name, of specified type.

PAGE length,width

Sets line length and character width of the program listing.

PAGE +
Increments section-page 'numbering.

PAGE

Generates a page break in the listing.

PUBLIC name",

Makes each variable, label, or absolute symbol specified as name avail
able to all other modules in the program .

. RADIX expression

Sets the input radix for numbers in the source file to expression.

recordname RECORD fieldname: width[=expression] '"

Defines a record type for an 8- or 16-bit record that contains one or
more fields.

176

Microsoft Macro Assembler Reference Manual

REPT expression

Marks the start of a block that is to be repeated expression number of
times .

. SALL

Suppresses listing of all macro expansions.

name SEG:r-,.1El"~T [align] [combine] ['class']

Marks the beginning of a program segment called name and having seg
ment attributes align, combine, and class .

. SFCOND

Suppresses listing of any subsequent conditional blocks whose IF condi
tion evaluates to false (0).

nameSTRUC

Marks the beginning of a type definition for a structure.

SUBTTL [text]

Defines the listing subtitle .

. TFCOND

Sets the default mode for listing of conditional blocks.

TITLE text

Defines the program listing title .

. XALL

Lists only those macro statements that generate code or data .

. XCREF [name,,,]

Suppresses the listing of symbols in the cross-reference listing file .

. XLIST

Suppresses listing of subsequent source lines to the program listing.

176

Directive Summnry

B.3 MASM Operators

The operators recognized by MASM are listed by precedence in Table B.2.
Operations of highest precedence are performed first. Operations of equal
precedence are performed from left to right. This default order can be
overridden using enclosing parentheses.

Table B.2

Operator Precedence

Precedence

(Highest)
1
2
3
4
5
6
7
8
9
10
11
12
13
(Lowest)

Operators

LENGTH, SIZE, WIDTH, MASK, 0, [], < >
• (structure field name operator)
.
PTR, OFFSET, SEG, TYPE, THIS
HIGH,LOW
+,- (unary)
*, /, MOD, SIlL, SHR
+, - (binary)
EQ, NE, LT, LE, GT, GE
NOT
AND
OR,XOR
SHORT, .TYPE

The syntax of each operator is shown in the following list:

expressionl lie expression2

Multiply expressionl by expression2.

expressionl / expression2

Divide expressionl by expression2.

expressionl + expression2

Add expressionl to expression2.

177

Microsoft Macro Assembler Reference Manual

expressionl - expression2

Subtract expression2 from expression1.

+ expression

Retain the current sign of expression.

-expresszon

Reverse the sign of expression.

segmentregister: expression

Override the default segment of expression with segmentregister.

segmentname: expression

Override the default segment of expression with segmentname.

groupname: expresszon

Override the default segment of expression with groupname.

variable·field

Add the offset of field to the offset of variable.

expressionl [expression2]

Add the value of expressionl to the value of expression2.

&dummyparameter

Replace dummyparameter with its actual parameter value.

dummyparameter&

Replace dummyparameter with its actual parameter value.

<text>

Treat text as a single literal element.

! character

178

Treat character as a literal character rather than as an operator
or symbol.

Directive Summary

%text

Treat text as an expression and compute its value rather than treating
it as a string.

;; text

Make text into a comment that will not be listed in expanded macros.

expressionl AND expression2

Do a bitwise Boolean AND on expressionl and expression2.

count DUP (initialvalue)

Specify count number of declarations of initialvalue.

expressionl EQ expression2

Return true (OFFFFh) if expressionl equals expression2, or return false
(0) if it does not.

expressionl GE expression2

Return true (OFFFFh) if expressionl is greater than or equal to
expression2, or return false (0) if it is not.

expressionl GT expression2

Return true (OFFFFh) if expressionl is greater than expression2, or
return false (0) if it is not.

HIGH expression

Return the high byte of expression.

expressionl LE expression2

Return true (OFFFFh) if expressionl is less than or equal to expression2,
or return false (0) if it is not.

LENGTH variable

Return the length of variable in the size in which the variable was
declared.

LOW expression

Return the low byte of expression.

179

Microsoft Macro Assembler Reference Manual

expressionl LT expression2

Return true (OFFFFh) if expressionl is less than expression2, or return
false (0) if it IS not.

MASK recordfieldname

Return a bit mask in which the bits for recordfieldname are set and all
other bits are not set.

MASK record

Return a bit mask in which the bits used in record are set and all other
bits are not set.

expressionl MOD expression2

Return the remainder of dividing expressionl by expression2.

expressionl NE expression2

Return true (OFFFFh) if expressionl does not equal expression2, or
return false (0) if it does.

NOT expression

Reverse all bits of expression.

OFFSET expression

Return the offset of expression.

expressionl OR expression2

Do a bitwise Boolean OR on expressionl and expression2.

type PTR expression

Force the expression to be treated as having the specified type.

SEG expression

Return the segment of expression.

expression SHL count

Shift the bits of expression left count number of bits.

180

Directive Summnry

SHORT label

Set type of label to short (having a distance less than 128 bytes from
the current location-counter value).

expression SHR count

Shift the bits of expression right count number of bits.

SIZE variable

Return the total number of bytes allocated for variable.

THIS type

Create an operand of specified type whose offset and segment values are
equal to the current location-counter value.

TYPE expression

Return the type of expression .

. TYPE expression

Return a byte defining the mode and scope of expression.

WIDTH recordfieldname

Return the width in bits of the current recordfieldname.

WIDTH record

Return the width in bits of the current record.

expressionl XOR expression2

Do a bitwise Boolean XOR on expressionl and expression2.

181

Appendix C

Segment Names
for High-Level Languages

C.1 Introduction 185
C.2 Text Segments 186
C.3 Data Segments - Near 188
C.4 Data Segments - Far 189
C.5 BSS Segments 190
C.6 Constant Segments 191

183

Segment Names for High-Level Languages

e.1 Introduction

This appendix describes the naming conventions used to form assembly
language source files compatible with object modules produced by recent
Microsoft language compilers. Compilers that use these conventions
include the following:

Microsoft C Version 3.0 or later

Microsoft Pascal Version 3.3 or later

Microsoft FORTRAN Version 3.3 or later

High-level-language modules have the following four predefined segment
types:

Type

TEXT

DATA

BSS

CONST

Use

For program code

For program data

For uninitialized space

For constant data

Any assembly-language source file to be assembled and linked to a high
level-language module must use these segments, as described in Sections
C.2-C.B.

High-level-language modules also have three different memory models:

Model Use

For single code and data segments Small

Middle

Large

For multiple code segments, but a single data segment

For multiple code and multiple data segments

Assembly-language source files to be assembled for a given memory model
must use the naming conventions detailed in Sections C.2-C.B.

186

Microsoft Macro Assembler Reference Manual

0.2 Text Segments

Syntax

[preJix]- TEXT SEGMENT byte public 'CODE'
ASSUME cs: [preJix]- TEXT

statements
[preJix]- TEXT ENDS

A text segment defines a module's program code. It contains statements
that define instructions and data within the segment. A text segment must
have the name prefix- TEXT, where prefix can be any valid string. For
middle- and large-model programs, the module's own name is recom
mended. For small-model programs, prefix is omitted; the segment must be
called _ TEXT.

A segment can contain any combination of instructions and data state
ments. These statements must appear in an order that creates a valid pro
gram. All instructions and data addresses in a text segment are relative to
the OS segment register. Therefore, the ASSUME statement must appear
at the beginning of the segment. This statement ensures that each label
and variable declared in the segment will be associated with the OS seg
ment register (see Section 3.7).

Text segments should have byte align type and public combine type, and
must have the class name 'CODE'. These define loading instructions to be
passed to the linker. Although other segment attributes are available, they
should not be used. For a complete description of the attributes, see Sec
tions 3.4.1, 3.4.2, and 3.4.3.

The following formats are used for each of the different memory models:

Model

Small model

186

Requirements

Only one text segment is allowed. The seg
ment must not exceed 64K. All procedure and
statement labels should have the NEAR type.

Segment Names for High-Level Languages

Example

TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

main
_TEXT

PROC near

ENDP
ENDS

Middle or large model Multiple text segments are allowed. However,
no segment can exceed 64K. To distinguish
one segment from another, each should have
its own name. Since most modules contain
only one text segment, the module's name is
often used as part of the text segment's name.
All procedure and statement labels should
have the FAR type, unless they will only be
accessed from within the same segment.

Example

SAMPLE_TEXT SEGMENT byte public 'CODE'
ASSUME cs:SAMPLE_TEXT

_main PROC far

_main ENDP
SAMPLE_TEXT ENDS

187

Microsoft Macro Assembler Reference Manual

0.3 Data Segments - Near

Syntax

DGROUP GROUP_DATA
ASSUME ds:DGROUP

_DATA SEGMENT word public 'DATA'
statements
_DATA ENDS

A near data segment defines initialized data in the segment pointed to by
the DS segment register when the program starts execution. The segment
is NEAR because all data in the segment are accessible without giving an
explicit segment value. All programs have exactly one near data segment.
Only large-model programs can have additional data segments.

A near data segment's name must be _ DATA. The segment can contain
any combination of data statements defining variables to be used by the
program. The segment must not exceed 64K of data. All data addresses in
the segment are relative to the predefined group DGROUP. Therefore,
the GROUP and ASSUME statements must appear at the beginning of
the segment. These statements ensure that each variable declared in the
data segment will be associated with the DS segment register and
DGROUP (see Sections 3.6 and 3.7).

Near data segments must have word align type, public combine type, and
must have the class name 'DATA'. These define loading instructions that
are passed to the linker. Although other segment attributes are available,
they must not be used. For a complete description of the attributes, see
Sections 3.4.1-3.4.3.

Example

DGROUP

_DATA
count
array
string

DATA

188

GROUP DATA
ASSUME ds:DGROUP

SEGMENT word public 'DATA'
OW 0
OW 10 dup(l)
DB "Type CANCEL then press RETURN", OAh, 0
ENDS

Segment Nnmes for r-TIgh-Levcl Lnngunges

0.4 Data Segments - Far

Syntax

prefix-DATA SEGMENT word public 'FAR_DATA'
statements
prefix-DATA ENDS

A far data segment defines data or data space that can be accessed only by
specifying an explicit segment value. Only large-model programs can have
far data segments.

A far data segment's name must be prefix- DATA, where prefix can be any
valid string. The name of the first variable declared in the segment is
recommended. The segment can contain any combination of data state
ments defining variables to be used by the program. The segment must not
exceed 64K of data. All data addresses in the segment are relative to the
ES segment register. When accessing a variable in a far data segment, the
ES register must be set to the appropriate segment value. Also, the seg
ment override operator (:) must be used with the variable's name (see Sec
tion 5.3.7).

Far data segments must have word align type, public combine type, and
should have the class name 'F AR_ DATA'. These define loading instruc
tions that are passed to the linker. Although other segment attributes are
available, they must not be used. For a complete description of the attri
butes, see Sections 3.4.1-3.4.3.

Example

ARRAY_DATA
array DW

DW
DW
OW

table DW
ARRAY DATA

SEGMENT word public 'fAR_DATA'
o
1
2
4
1600 DUP(?)
ENDS

189

Microsoft Macro Assembler Reference Manual

0.5 BSS Segments

Syntax

DGROUP GROUP_BSS
ASSUME ds:DGROUP

_ BSS SEGMENT word public 'BSS'
statements
_BSS ENDS

A BSS segment defines uninitialized data space. A BSS segment's name
must be _ BSS. The segment can contain any combination of data state
ments defining variables to be used by the program. The segment must not
exceed 64K. All data addresses in the segment are relative to the pre
defined group DGROUP. Therefore, the GROUP and ASSUME state
ments must appear at the beginning of the segment. These statements
ensure that each variable declared in the BSS segment will be associated
with the DS segment register and DGROUP (see Sections 3.6 and 3.7).

Note

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If a source file contains both a DATA
and a BSS segment, the directive

DGROUP GROUP _DATA,_ESS

should be used.

A BSS segment must have word align type, public combine type, and
must have the class name 'BSS'. These define loading instructions that are
passed to the linker. Although other segment attributes are available, they
must not be used. For a complete description of the attributes, see Sections
3.4.1-3.4.3.

Example

DGROUP GROUP _ESS
ASSUME ds:DGROUP

ESS SEGMENT word public 'ESS'

190

Segment Names for High-Level Languages

count
array
string

BSS

DW
DW
DB
ENDS

7
10 DUP (7)
30 DUP (7)

C.6 Constant Segments

Syntax

DGROUP GROUPCONST
ASSUME ds:DGROUP

CONST SEGMENT word public 'CONST'
statements
CONST ENDS

A constant segment defines constant data that will not change during pro
gram execution. Constant segments are typically used in large-model pro
grams to hold the segment values of far data segments.

The constant segment's name must be CONST. The segment can contain
any combination of data statements defining constants to be used by the
program. The segment must not exceed 64K. All data addresses in the seg
ment are relative to the predefined group DGROUP. Therefore, the
GROUP and ASSUME statements must appear at the beginning of the
segment. These statements ensure that each variable declared in the con
stant segment will be associated with the DS segment register and
DGROUP (see Sections 3.6 and 3.7).

Note

The group name DGROUP must not be defined in more than one
GROUP directive in a source file. If a source file contains a DATA,
BSS, and CONST segment, the directive

DGROUP GROUP _DATA,_BSS,CONST

should be used.

191

Microsoft Macro Assembler Reference Manual

A constant segment must have word align type, public combine type, and
must have the class name 'CONST'. These define loading instructions
that are passed to the linker. Although other segment attributes are avail
able, they must not be used. For a complete description of the attributes,
see Sections 3.4.1-3.4.3.

Example

DGROUP

CONST
segl
seg2
CONST

GROUP CONST
ASSUME ds:DGROUP

SEGMENT word public 'CONST'
DW ARRAY_DATA
DW MESSAGE_DATA
ENDS

In this example, the constant segment receives the segment values of two
far data segments: ARRAY_DATA and MESSAGE_DATA. These data seg
ments must be defined elsewhere in the module.

192

Index (Reference Manual)

= Equal-sign directive, 54
% Expression operator, 131
! Literal-character operator, 131
< > Literal-text operator, 130
;; Macro comment operator, 132
: segmen t-override operator, 85
& Substitute operator, 129
? Undefined operand, 49
.186 directive, 26, 163
.286c directive, 26, 164
.286p directive, 26, 165
.287 directive, 26, 166
80186 instructions, 163
80286 nonprotected instructions, 164
80286 protected instructions, 165
80287 instructions, 166
.8086 directive, 26
8086 instructions, 152
.8087 directive, 26
8087 instructions, 159
8088 instructions, 152

ABS type, 100
Absolute segments, 29
Absolute symbols, defined, 54
Actual parameters, macros, 118, 121
Align type, illustrated, 32
Alignment of segments, 28, 40, 41
AND operator, 82
Angle brackets « », 108
Arithmetic operators, 78
ASCII format, 23
Assembly listing

false conditionals, 142
macros, 144
page breaks, 140
page dimensions, 140
subtitle, 140
suppressing, 142
symbols, 145
title, 139

ASSUME directive, 39, 85
at segments, 29

Based operands, 72
Based-indexed operands, 73
Bitwise operators, 82
BSS segments, 190

Character constant, 15
Character set, 11
Class type, defined, 30
Combine type

defined,28
illustrated, 32

COMMENT directive, 19
Comments, 18, 19
common segments, 29
Compilers, 3, 4
Compilers

linking with assembly modules, 185
using with MASM, 3, 4

Conditional-assembly
directives, 105
nesting, 106

Conditional directives, 105
assembly passes, 107, 111, 112
macro arguments, 108, 109, 113, 114
operators, 128
symbols, 107, 112
values of true and false, 106, 112

Conditional error directives, 110
Constant operands, 68
Constant segments, 191
Constants

default radix, 137
with conditional directives, 105, 110

Conventions, notational, 4
.CREF directive, 145
Cross-reference listing

symbols, 145

Data segments, with high-level
languages, 188

Data-declaration directives, 48
Data

193

Index (Reference Manual)

Data (continued)
10-byte words, 52
bytes, 49
doublewords, 50
quadwords, 51
words, 50

DB directive, 49
DD directive, 50
Declarations

10-byte words, 52
byte data, 49
doubleword data, 50
quadword data, 51
word data, 50

Default segment registers, 39
Directive summary, 169
Direct-memory operands, 68
Displacement, 72
DQ directive, 51
DT directive, 52
Dummy parameters, macros, 118, 121
Dummy-program file, 31
DUP operator, 53
DW directive, 50
/E option, MASM, 26

Effective address, 85
ELSE directive, 106
Encoded real number, 13
END directive, 24, 35
ENDIF directive, 106
ENDM directive, 118, 124, 125, 126
ENDP directive, 41
ENDS directive, 27
Entry point, 35
EQ operator, 80
EQU directive, 55
Equal-sign (=) directive, 54
.ERR directive, 111
.ERR1 directive, 111
.ERR2 directive, 111
.ERRB directive, 113
.ERRDEF directive, 112
.ERRDIF directive, 114
.ERRE, 112
.ERRIDN directive, 114
.ERRNB directive, 113
.ERRNDEF directive, 112
.ERRNZ, 112

194

EVEN directive, 41
Exit code, 111
EXITM directive, 127
Exponent, 13
Expression operator (%), 131
Expressions, defined, 78
External symbols, 100
EXTRN directive, 47,48,100

FAR data segments
with high-level languages, 189

FAR, procedure, 42
Fatal errors, 111
Fields

records, 58
structures, 57, 61

File-control directives, 135
Forward references

defined, 93
relative to segment, 94
use of SHORT directive, 94
with instruction labels, 94
with segment override, 95

GE operator, 80
Global directives

defined, 99
illustrated, 101

Global symbols, 99, 100
GROUP directive, 36, 85
Groups

defined, 36
illustrated, 37
size restriction, 36

GT operator, 80

Hexadecimal numbers, 12
HIGH operator, 87
High-level languages

linking with assembly modules, 185
procedure conventions, 43, 75
with dummy files, 31

High-level-language compilers, 3, 4

/1 option, with INCLUDE directive,
136

IF directive, 106
IF1 directive, 107
IF2 directive, 107
IFB directive, 108
IFDEF directive, 107
IFDIF directive, 109
IFE directive, 106
IFIDN directive, 109
IFNB directive, 108
IFNDEF directive, 107
INCLUDE directive

defined, 136
with macros, 117, 124

Index operator, 83
Indexed operands, 72
Instruction sets, 4
Instruction summary, 4, 151
Instruction-set directives, 25
Integer, 11
IRP directive, 125
IRPC directive, 126

LABEL directive, 56
Labels

default segments, 39
defined, 47
in macros, 122
near, 47
procedures, 41, 48

.LALL directive, 144
Large model, 187
LE operator, 80
LENGTH operator, 90
.LFCOND directive, 142
.LIST directive, 142
Listing

false conditionals, 142
macros, 144
suppressing, 142
symbols, 145

Literal-character operator (!), 131
Literal-text operator « », 130
Loading options for segments, 28
LOCAL directive, 122
Location counter, 41, 47, 69
LOW operator, 87
L T operator, 80

Index (Reference Manual)

Macro comment (;;), 132
MACRO directive, 118
Macro directives, 117
Macros

actual parameters, 118, 121
argument testing, 109, 114
calling, 121
compared to procedures, 117
defined, 117
deleting, 123
dummy parameters, 118, 120, 121
exiting early, 127
nested, 119, 130
operators, 128
placeholders, 122
recursive, 119
redefining, 120, 124

MASK operator, 92
Memory models, 185
memory segments, 29
Messages to screen, 138
Middle model, 187
/ML option, MASM, 30
Modular programming, 99
Module

end, 35
main, 35

Modules
names, 138
subtitles, 140
titles, 139

jMX option, MASM, 30

NAME directive, 138
Names

defined, 15
groups, 36
module, 138
segment class types, 30
segments, 27

NE operator, 80
NEAR data segments, 188
NEAR, procedure, 42
Nesting

conditionals, 106
include files, 136
macros, 11 g, 1 ~O
segments

35

196

Index {Reference Manual}

/NOIGNORECASE option, LINK, 30
NOT operator, 82
NOTHING, ASSUME, 39
Null class type, 31

OFFSET operator, 88
Operands

based, 72
based indexed, 73
constant, 68
defined, 67
direct memory, 68
indexed, 72
location counter, 69
record field, 77
records, 76
register, 70
relocatable, 69
strong typing, 95
structures, 74

Operators
arithmetic, 78
bitwise, 82
defined, 78
expression (%), 131
HIGH, 87
index, 83
LENGTH, 90
literal character (!), 131
literal text « », 130
LOW, 87
macro comment (;;), 132
MASK, 92
OFFSET, 88
precedence, 92, 177
PTR, 83
relational, 80
SEG, 87
segment override (:), 85, 88
shift, 80
SHORT, 86
SIZE, 90
structure field name, 85
substitute (&), 129
THIS, 86
TYPE, 88
.TYPE,89
WIDTH, 91

OR operator, 82

196

ORG directive, 40
%OUT directive, 138
Output messages to screen, 138

Packed decimal numbers, 14
PAGE directive, 140
Parameter passing conventions, 43, 75
Placeholder, 122
Precedence of operators, 92, 177
Private (type unspecified) segments, 29
PROC directive, 41
Procedures

compared to macros, 117
conventions, 43, 75
defined, 41
labels, 48

Program
entry point, 35
loading options, 28
segments, 27

PTR operator, 83
PUBLIC directive, 47, 48, 99
Public segments, 28
Public symbols, 99
PURGE directive, 123
/R option, MASM, 26

Radix, 11
.RADIX directive

defined, 137
limitations, 137

Real number, 13
Real number, encoded, 13
RECORD directive, 58
Records

declarations, 62
field operands, 77
MASK operator, 92
operands, 76
variables, 62
WIDTH operator, 91

Recursive macros, 109, 119
Register operands, 70
Relational operators, 80
Relocatable operands, 69
Repeat blocks, 124, 125, 126
REPT directive, 124
Reserved names, 16

RET instruction, 42
.SALL directive, 144

Search paths for include files, 136
SEG operator, 87
SEG~NT directive, 27, 85
Segment-override (:) operator, 85, 88
Segment

order, 30
Segments

alignment, 28, 40, 41
at, 29
class types, 30
combine types, 28
common, 29
definition, 27
groups, 36
loading options, 28
memory, 29
nesting, 35
origin, 40
public, 28
stack, 28
unspecified (private) type, 29

.SFCOND directive, 142
Shift count, records, 77
Shift operators, 80
SHL operator, 80
SHORT operator, 86
SHR operator, 80
SIZE operator, 90
Small model, 186
Source files

defined, 23
end, 35
illustrated, 24
including, 136

STACK segments, 28
Stack Trace command, SYMDEB, 43,

75
Statements, defined, 17
String constant, 15
String instructions, 158
Strong typing, 3, 95
STRUC directives, 57
Structure field-name operator, 85
Structures

declaration, 60
initializiation limits 61

Index (Reference Manual)

Structures (continued)
operands, 74
variables, 60

Substitute operator (&), 129
Subtitles, 140
SUBTTL Directive, 140
Symbols

absolute, 54, 55
aliases, 55
default segments, 39
defined, 54
external, 100
global, 99, 100
labels, 56
public, 99
relocatable operands, 69
variables, 56

Template for records, 59
Text segment, 186
.TFCOND directive, 142
THIS operator, 86
TITLE directive, 139
TYPE operator, 88
. TYPE operator, 89
Types

operand matching, 95
record, 58
structure, 57

Undefined operand (7), 49, 50, 51, 52
Uninitialized data space, 190

Variables, default segments, 39

Weak typing in other assemblers, 96
WIDTH operator, 91
Width, structures, 58
IX option, MASM, 143
.XALL directive, 144
.XCREF directive, 145
.XLIST directive, 142

XOR operator, 82

197

MICRE-3S0F~
16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717

Software
Problem Report

Name __ __

Street __ __

City _____________________ State _____ Zip ______ _

Phone ___________________ Date ______ _

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

_____ Software Problem

__ Software Enhancement

Software Description

Microsoft Product __

__ Documentation Problem
(Document # ________ _

__ Other

Rev. _____ . __ Registration # ____________ _

Operating System

Rev. ______ _ Supplier _____________________ _

Other Software Used _______________________ _

Rev. _________ Supplier _____________________ _

Hardware Description

Manufacturer _______ CPU _______ Memory ___ KB

Disk Size ___ If Density: Sides:

Single__ Single __

Double __ Double __

Peripherals ________________________________ _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

Microsoft Use Only

Tech Support ____ _ Date Received ___ _

Routing Code ____ _ Date Resolved ___ _

Report Number ___ _

Action Taken:

