§.
s}
=
=
&
3
g
&
a
g
W

| cft@ a Asmbler 51 *

CODE
MoV ax Pdata

BR M kB
il
MUY ,,j jn{g

T A

Microsoft.

M acro
A SSEMBLER

FOR THE MS-DOSe OPERATING SYSTEM

PROGRAMMER'’S GUIDE

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software
described in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. The purchaser may make one copy of the software for backup
purposes. No part of this manual may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying and recording,
for any purpose other than the purchaser’s personal use without the written per-
mission of Microsoft Corporation.

o Copyright Microsoft Corporation, 1987. All rights reserved.
Simultaneously published in the U.S. and Canada.

Microsoft®, MSe, MS-DOSe , XENIXe, and CodeViewe are registered trademarks of
Microsoft Corporation.

IBMs is a registered trademark of International Business Machines Corporation.
Intel® is a registered trademark of Intel Corporation.
ProKey® is a registered trademark of RoseSoft Incorporated.

SuperKey® is a registered trademark of Borland International, Inc.

Document No. 410610014-500-R00-0787
10987

OF (ONTENTS

Introduction

INEW FeatureS.ouaneiieiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeesevaeaes Xix
System Requirements......coeeeeeeervvveeeeeeeeeereeeneineneennnn. XX
About This Manual .
and Other Assembler Documentation XX
IBMs Compilers and Assemblers.......ccccvveeeeeeeennnnn. xxiii
Books on Assembly Languagecccoeevveeeeeeeeenenene xxiii
Notational Conventionseeeeeeeeeeeeeeeeeeeeennnnnnn. XxXiv
Getting Assistance or Reporting Problems.......... xxviii
Part 1 > Using Assembler Programs
1 Getting Started.....ocericrricrennne, 5
1.1 Setting Up Your SyStem c.ceeeeeerureeeeerrereveeeeeensennneennenees 7
1.1.1 Making Backup COpIeS weeeeurrernerererienereneeeneennnnns 7
1.1.2 Choosing a Configuration Strategy....cceeeeervnennen. 7
1.1.3 Copying FileS eeeeereeerrieerrneeerrnieerereeerneesseeesnnns 9
1.1.4 Setting Environment Variables ..ccoceevuerennerennnns 10
1.2 Choosing a Program Type.....ccccceeeevvvereerrvreneecennnnens 10
1.3 The Program-Development Cycleccccccuuveeeeennen.. 11
1.4 Developing Programscccceeceeeeeeecevveeeeesenrnneeeeeeeeenns 14
1.4.1 Writing and Editing
Assembly-Language Source Code.....ceeeruuneennn. 14
1.4.2 Assembling Source Files ...cceeeeererennereerenneeennnn. 17
1.4.3 Converting Cross-Reference Filesccvvvveeeennnn. 17
1.4.4 Creating Library Files .ccceeeeeeereereeeevenecereennnnen. 18

iii

2.2

2.3
2.4

2.5

iv

1.4.5
1.4.6
1.4.7

Linking Object Files veeuveereeueeeneeneenrireeeneeneennnns

DebUZEING . ueeiurernerrnirrereeeneeneereneenersecreceneeanns

Converting to .COM Format...c.ceceeeveeneeenennnns

Running the Assembler.......ccovvveeeeiiieerrneeeeeesennnennen. 23
2.1.1 Assembly Using a Command Line......ccceeeeeennnes 23
2.1.2 Assembly Using Prompts ..eeeeeeeeneeeeeerneeceeeennnnes 25
Using Environment Variables.....cccccceervevevericneeennnnee. 26
2.2.1 The INCLUDE Environment Variable.............. 26
2.2.2 The MASM Environment Variableccoeeervnnnnns 27
Controlling Message Outputccevuveeeereeeeerneeeeenennns 28
Using MASM Optionscceeeeeveeeeeeeeeseecvnneeeseeennenes 29
2.4.1 Specifying the Segment-Order Method............. 30
2.4.2 Setting the File-Buffer Size ..ccceueeeeueeeeennereennnnns 31
2.4.3 Creating a Pass 1 Listing ..eeecerrecereennnceeeennnnnn 32
2.4.4 Defining Assembler Symbolscceeeevvreecerrennnn. 32
2.4.5 Creating Code for a Floating-Point Emulator...33
2.4.6 Getting Command-Line Help .c.cevveeerenerennnnnnnns 34
2.4.7 Setting a Search Path for Include Files............ 30
2.4.8 Specifying Listing and Cross-Reference Files....30
2.4.9 Specifying Case Sensitivity .eceereereneerennereneneeens 36
2.4.10 Suppressing Tables in the Listing File.............. 37
2.4.11 Checking for Impure Code.....ccccovureeeeeerererannnns 37
2.4.12 Controlling Display of Assembly Statistics 38
2.4.13 Setting the Warning Level ...cccccuvuveeeeeeereennnnnn. 39
2.4.14 Listing False ConditionalScevueeereeereneeennnnnnnes 40
2.4.15 Displaying Error Lines on the Screen 41
2.4.16 Writing Symbolic Information

t0 the Object File cvvveerruereeneeeeneeennereenneeeeennnns 41
Reading Assembly Listings.....ccceeeeeerierreiiirvnnennnenneen. 42
2.5.1 Reading Code in a LiSting ...cccceeeeervnneeseenvunnnns 42
2.5.2 Reading a Macro Table cccceeeeerrenreceeeeeennnneennnnn. 45
2.5.3 Reading a Structure and Record Table............ 45
2.5.4 Reading a Segment and Group Table 46
2.5.5 Reading a Symbol Table ..ceerrereeeeernnereeennunnnnns 47
2.5.6 Reading Assembly Statistics ..cceeeeerreeeeerrvennneens 49
2.5.7 Reading 2 Pass 1 Listing..ceeerreneeeerrnnceeeennnnnnens 49

(CONTENTS

(CONTENTS

3.2

Part 2 > Using Directives

4
4.1

4.2
4.3

4.4
4.5

9.1

Using CREF ..., 51

USING CREFueetiieereeeercieeeeeeeeeireeeeeeeeenneeees 53
3.1.1 Using a Command Line

to Create a Cross-Reference Listing ...ccccuveeeeeee. 93
3.1.2 Using Prompts

to Create a Cross-Reference Listingceeeueeee.. o4
Reading Cross-Reference Listingscocveveeeeeneennneee. 59

Writing Source Code.........cvennee.. 63
Writing Assembly-Language Statements.................. 65
4.1.1 Using Mnemonics and Operands.....ccceeeeeeveneeenes 66
4.1.2 Writing CommentsS.....cceeeeueeeeeemrecerceanscessannecsns 67
Assigning Names t0 Symbols.........ueeeereeiiinneeeeeennenns 67
CONStANTS. cevveveeeerereeneeeersrereeessnteeeesreeeessssseessssssenes 69
4.3.1 Integer COnStantS cevuveeeerrrnereeerereeerrenerennnnnnnens 70
4.3.1.1 Specifying Integers with Radix Specifiers...70
4.3.1.2 Setting the Default RadiX..coovevrirernrnenens 71
4.3.2 Packed Binary Coded Decimal Constants......... 72
4.3.3 Real-Number Constantsceeeveervneeeeeeeensnsennns 73
4.3.4 String ConstantS...ceeeeereeeerrneerrereresneeersecerseneens 74
Defining Default Assembly Behaviorcccceeeeevennes 75
Ending a Source File.....ouuuveevvviveeeeeieeccccceeeeennn. 78
Defining Segment Structure............... 81
Simplified Segment Definitions.......cccovvveeeeererernnneeen. 83
5.1.1 Understanding Memory Modelsccceeeeereunnnens 84
5.1.2 Specifying DOS Segment Order...cccoeeeeeeeerennennns 89
5.1.3 Defining the Memory Model.....cccevveerereeennnnnnn. 87
5.1.4 Defining Simplified Segments.....cceevrveeeeernuaaens 88
5.1.5 Using Predefined Equates .c.cccceevuieriniiniinrannanen. 90
5.1.6 Simplified Segment Defaults ..cuvveeereenvcernennennes 92
5.1.7 Default Segment Namescevvueereerererreennccaeeeens 93

9.2

9.3
0.4
9.9

5.6

6.1
6.2

6.3

6.4
6.5

vi

Full Segment Definitions......ccvceereveeeerneeerenineeennnnnee
5.2.1 Setting the Segment-Order Method ...cc.euveuvenen.
5.2.2 Defining Full Segments....cceeereerueererneeeereeeennenns 97
5.2.2.1 Controlling Alignment with Align Type98
5.2.2.2 Setting Segment Word Size
With Use TYPE vevverririinininceceniieisnnninennens 98
5.2.2.3 Defining Segment Combinations
with Combine Type..cuceceeierecreasasacacannes 100
5.2.2.4 Controlling Segment Structure
With Class TYPe ceveveeececorerescsnesacersnces 104
Defining Segment GIoupS.....cccceeevverecreeresrnerersennnees 106
Associating Segments with Registers......ccccevuverennnee 109
Initializing Segment Registers......cccoevvverrrrueeerennnnee. 111
5.5.1 Initializing the CS and IP Registers ...c.ccceeeuues 111
5.5.2 Initializing the DS Register .cccccvveeerereerrrennenns 112
5.5.3 Initializing the SS and SP Registers.......ceu..... 114
5.5.4 Initializing the ES RegiSter c..ecevrveererrereennnnnnns 115
Nesting Segments....ccccceevvvrvenreeeeeerreereerecsssssrsnennnns 115
Defining Labels and Variables........117
Using Type SpecifierS....cceevveeerervueerecreeencrneeerennnee 119
Defining Code Labels.....cccceevverevueeeneennvneenneeeennneen. 120
6.2.1 Near Code Labels...ccccerrrerrererureeeernreneerennenees 120
6.2.2 Procedure LabelS....cceeererniereunererenereeneeeenennees 121
6.2.3 Code Labels Defined
with the LABEL Directive....ceuuveereeerencersenneens 122
Defining and Initializing Dataccceeevveeeereerennnnne 123
6.3.1 Variables...cccciiieeuenieieererernnnnerieeeeeeeerennsoennes 123
6.3.1.1 Integer Variables..cccovrerracacrienecarnennens 124
6.3.1.2 Binary Coded Decimal Variables............ 127
6.3.1.3 String Variables c.ccovucerririiininiiiiecacnnes 127
6.3.1.4 Pointer Variables..cccvveeirririeiairienacnens 128
6.3.1.5 Real-Number Variables..ccccocvuvurnriacannens 130
6.3.2 Arrays and Buffers ...cccceeueeeiineeeenneeenncrenennnns 135
6.3.3 Labeling Variablescceeuevreeeeereeeeennnnncsieneens 136
Setting the Location Counter......cccecovveeeevveerecnnnee. 137
AlIgNIng Data......eeeeeeeeevnveeererniineeeeneenineeeeneeennnens 138

(CONTENTS

(CONTENTS

7.2

8.1
8.2
8.3
8.4
8.5

9.1
9.2

Using Structures and Records.........141
SEIUCTUTES ceevivreeeeeeecirreeeerrrereeeeeseieeeeeesesesesnnnnne 143
7.1.1 Declaring Structure TYPesS ..eevvvreveeveenceesereeeens 143
7.1.2 Defining Structure Variables cc.ccceeueeeunrennnnnen. 145
7.1.3 Using Structure Operands....cceeeeeeveenereennnenenn. 146
RECOTAS c.vvvrreeeeeeeerirreeeeccere e e cecinee e e cssreeaeeeeeeeeeens 147
7.2.1 Declaring Record Types...ceeeeerreereveerneennenenns 148
7.2.2 Defining Record Variables....ccceeereueereneerennnenns 150
7.2.3 Using Record Operands

and Record Variableseeeeeeeeeeerneeeneeennneennens 151
7.2.4 Record OperatorS...crceeeeereeceeneeerevecernsesanncenes 153

7.2.4.1 The MASK Operator cccceevevecneieseeiecnennes 153

7.2.4.2 The WIDTH Operator ...eeeeeeervneeeeerennns 153
7.2.5 Using Record-Field Operands..c.cccoceueeueennnnnen. 154

Creating Programs

from Multiple Modules................ 157
Declaring Symbols Public........cccceiiiireiiiiiiniiinnnnnnnen. 160
Declaring Symbols Externalccccuveeeeeecevvnnnennneen. 161
Using Multiple Modules........cceervrvereeereerrrnueneeneenen. 164
Declaring Symbols Communal..........ccceeevvurreerennnen. 165
Specifying Library Files ...ccccoovvvvreeiieeinieeiineeneennneen. 169
Using Operands and Expressions..171
Using Operands with Directivescccceeeeeeevcunnnnene. 173
USING OPErators ...cccceeeeeeeereeeeeeereeriessseeseeeeeeeesnennnnnns 174
9.2.1 Calculation Operators ...ccceeeeerreeeraeeeneeneacennns 174

9.2.1.1 Arithmetic Operators .c.cceeeervecnriecnennnnes 175

9.2.1.2 Structure-Field-Name Operator .cccceuenens 176

9.2.1.3 Index Operator...cceeeeecucrceiacecncncnenennnnns 177

9.2.1.4 Shift Operators ccoeeeeervecececerersnrescncecenes 178

9.2.1.5 Bitwise Logical Operators...c.ccceesueerncnnns 179
9.2.2 Relational Operators ..cceeeeeeeeereeerereeseenneceeenns 180
9.2.3 Segment-Override Operator ..ccceeeeeeveeeeerneneeenns 181

vii

9.3
9.4

9.5

10
10.1

10.2

viii

0.2.4 Type Operators ccceeeeeceeceseececcracecsessssssacasases
9.2.4.1 PTR Operator.cccccicecececerercssncesecacnennes
9.2.4.2 SHORT Operator «cceeeereveceiecesenenecennnes
0.2.4.3 THIS Operator.cceeceececececeesececessececnennes 183
9.2.4.4 HIGH and LOW Operators «.cceeeeeeeeenennes 184
0.2.4.5 SEG Operator.icicecececeerecacececsencscecncns 184
9.2.4.6 OFFSET Operator .eevuueeeeeeeeeeeesvnnaseenees 185
9.2.4.7 TYPE Operator..ccccecececucecececacncacecanes 136
9.2.4.8 TYPE Operator.ccccceseccecececacacacecacesanns 187
9.2.4.9 LENGTH Operator .ccecececercecacscscacnenacs 188
9.2.4.10 SIZE Operator ceceveeeescssercessascsccssescesces 188

0.2.5 Operator Precedencecceeevvveveeneeeeerevvnneeenees 189

Using the Location Counterccceevvveeereneeeeennnne 190

Using Forward References......ccccceevveeeeeenveeeecnnnnnee 191

9.4.1 Forward References to LabelS..cccceeeerrrenuunanees 192

9.4.2 Forward References to Variables ...cceeeerrenennnes 194

Strong Typing for Memory Operands........c.ccceeeuunee 194

Assembling Conditionally................. 197

Using Conditional-Assembly Directives.................. 199

10.1.1 Testing Expressions
with IF and IFE DirectiveS...ceceeeueeeereeeennenennns 200

10.1.2 Testing the Pass
with IF1 and IF2 Directivescccevvvvvereeeeennnnns 201

10.1.3 Testing Symbol Definition
with IFDEF and IFNDEF Directivesc...... 201

10.1.4 Verifying Macro Parameters
with IFB and IFNB Directives....cccvvveeeeeeennnnns 202

10.1.5 Comparing Macro Arguments
with IFIDN and IFDIF Directives ...cuuueeeeeeennn. 203

Using Conditional-Error Directivesccccccceeereunneee. 204

10.2.1 Generating Unconditional Errors
with .ERR, .ERR1, and .ERR2......ccccceervueeeen. 205

10.2.2 Testing Expressions
with .ERRE or .ERRNZ Directives..ccceeeevvrenens 206

10.2.3 Verifying Symbol Definition
with .ERRDEF and .ERRNDEF Directives.....207

(CONTENTS

(CONTENTS

11

11.1

11.2

11.3

114

11.5

11.6

10.2.4 Testing for Macro Parameters

with .ERRB and .ERRNB Directives.....c......... 207
10.2.5 Comparing Macro Arguments
with .ERRIDN and .ERRDIF Directives......... 208

Using Equates, Macros,

and Repeat Blocks.........cooervvcvrienene. 211
Using EqQUAtesuuveeeeeeriiieieiceeeeeceeeeeccccneeee 213
11.1.1 Redefinable Numeric Equates....ccccceeeeevnnnnnnne. 213
11.1.2 Nonredefinable Numeric Equates...c.ccceeuueeeennes 214
11.1.3 String EqUateS..ccccvreeeererrereeerrrrerereereeneneeennnns 216
USING MACTOS. . uvvriieeeeeeiiiiereerireirerrreseeeeeesssssssssnsanns 217
11.2.1 Defining MacroS..eeeeeeeeeeeereeeereceeeneernaeeneeennnns 218
11.2.2 Calling MacroS..ceeeeeeereeereeeceeersrereeeresseneersnnes 219
11.2.3 Using Local SYmboIS cueeeeerreeerreeeeenneeernneennnnns 220
11.2.4 Exiting from a Macro «..ceeeeeeeeevreeeeerrenenceennens 222
Defining Repeat Blockseueeeeeeieeoouieiieiiieeeennnnn. 223
11.3.1 The REPT Directive..cvseeeereerrurieeeereeenneeennnes 223
11.3.2 The IRP Directive ceeeevueerenneeeenneeeersnneeeneernnnns 224
11.3.3 The IRPC Directive.oeeureereeeeeneereneerneeenecsneennes 225
Using Macro Operatorsoeeeeeeeeevvveeereeeeeereeeeenenennns 226
11.4.1 Substitute OPerator .c.ccvveeeeeervrevereerreseneernnnns 226
11.4.2 Literal-Text Operator..cceeeeceeeeereeeerneeersneeennnes 228
11.4.3 Literal-Character Operatorccceveeeerevveeeeennen. 229
11.4.4 Expression Operator..cccccceeeceeseeecerneseereecenenees 230
11.4.5 Macro COmMMENTS cevveererrreeeerernneneseeesvecnsannnnes 231
Using Recursive, Nested,

and Redefined Macros......ccccevveeeeeeeeeeeecerinvneenenennens 231
11.5.1 USing ReCUISION cevvvveeeerereeeeeeennrenseererennesennenns 231
11.5.2 Nesting Macro Definitions....ccueeeeerereecerrvanenns 232
11.5.3 Nesting Macro Calls ..ccceeeereruunereeereeeeernnnneeeens 233
11.5.4 Redefining MacroS...cccvreeeeeerrunereeeernneeesnenncens 234
11.5.5 Avoiding Inadvertent Substitutionsc........ 234
Managing Macros and Equates........ccceevveeerevcneeeeen. 235
11.6.1 Using Include FileS...cuuuuruererreemreeereensesennosesess 235
11.6.2 Purging Macros from Memoryceeeveeeceennees 237

ix

(CONTENTS

12 Controlling Assembly Output........
12.1 Sending Messages
to the Standard Output Device.........ccceevveeerennneene. 241
12.2 Controlling Page Format in Listings......cccceeeeuuueeee. 242
12.2.1 Setting the Listing Title ceeevreeerreceereieereeneennnns 242
12.2.2 Setting the Listing Subtitle....cccevruueecerrereennnns 243
12.2.3 Controlling Page Breaksccceeeveurereneerenneenenns 243
12.3 Controlling the Contents of Listingsccoceeereunneee. 245
12.3.1 Suppressing and Restoring Listing Output249
12.3.2 Controlling Listing of Conditional Blocks....... 246
12.3.3 Controlling Listing of MacroS...cceeeeeevvveececnnns 247
12.4 Controlling Cross-Reference Outputccueeeeeeeee. 249

Part 3 <> Using Instructions
13 Understanding

8086-Family Processors............... 255
13.1 Using the 8086-Family Processors......cccccceeeeevneenn. 257
13.1.1 Processor Differencescceveeeerernneeerenereeceenenes 257
13.1.2 Real and Protected Modesccevueeerneernnnnnnnne. 259
13.2 Segmented Addresses.....cceeeevvveeeeeeeeeerirnneeeeeenernnees 260
13.3 Using 8086-Family Registers.....ccccceeeevevnveeeeenrrunen. 261
13.3.1 Segment Registers.ccceeeeeerurereerreeeceeeneeceeennnenes 263
13.3.2 General-Purpose RegiSters ..veeveeerrereeenneeennnens 264
13.3.3 Other RegiSters..ccccrrrereeerrruereeernnreerenenreeeeenns 266
13.3.4 The Flags RegiSter coecccvueeerrnereernerenncernneeeeennns 266
13.3.5 8087-Family Registers .uueeeeeereerennereeeeeeeneenenn 268
13.4 Using the 80386 Processor Under DOS................... 269
14 Using Addressing Modes................. 271
14.1 Using Immediate Operands........cccceeeeeeevveeeeeeneenns 273
14.2 Using Register Operands.......coevveeeeeeeeeivnveeeeeeesennns 274

(CONTENTS

14.3

15

15.1

15.2

15.3

15.4

15.5
16

16.1

16.2

Using Memory Operands........ceeeevveeeeeeeeerrnneeeceennnn. 276
14.3.1 Direct Memory Operands....cccceeeveeeeenecreeneseenes 276
14.3.2 Indirect Memory Operandscccceveeereevneeenenns 278
14.3.3 80386 Indirect Memory Operands....ccccceeeueenes 282

Loading, Storing,

and Moving Data........rcoernnnen. 287
Transferring Datacccvvvvveeeeeciirieeeecciieeeeeeeeeens 289
15.1.1 Copying Data ceeeeerereererneeernieernnieeenneeerneeersenes 289
15.1.2 Exchanging Data ..ccccevvvereeeeeeeeereennnnneeeeeeennnns 290
15.1.3 LooKing Up Data euueeeereeeeenneeerenreeereeeereneennnnns 290
15.1.4 Transferring Flags..ccceeeeeeeuueeerrenneeeenneeeeennnss 291
Converting between Data, SizeS......cccceeeeeveevvvnnennns 292
15.2.1 Extending Signed Values ..cc.ccevveeervnnerenneeennnnns 292
15.2.2 Extending Unsigned Values.....cocevueeervneeenennns 294
15.2.3 Moving and Extending Values....ccceeevureeeannnnn. 294
Loading Pointers......ieeeeeeeeeeceeerreeeeeeeeeeeeeeeeeeeenens 295
15.3.1 Loading Near Pointers...ccceeereerrvereeernnneeennenns 295
15.3.2 Loading Far Pointers...cccccueeeeueeerenneeenneeennenns 296
Transferring Data to and from the Stack............... 298
15.4.1 Pushing and POpPPINg ceeeevereererrnrererreeerneeernenes 208
15.4.2 Using the Stack .cevvveeeeeuieennieerniieeenneeeeneeennenns 301
15.4.3 Saving Flags on the Stack.....ccveeeerrneeenneeennnnns 301
15.4.4 Saving All Registers on the Stackcccvveeennenes 302
Transferring Data to and from Ports 303
Doing Arithmetic
and Bit Manipulations.................... 305
AddINg coceeeiiiiiiiiieiiirreeeeeceeereee e rreraraaaaeeens 307
16.1.1 Adding Values Directly...cccoeererrereeeenverneeennnnn. 307
16.1.2 Adding Values in Multiple Registers 309
SUDEIACTING «evvvveeeeeeeee e e e e e 309
16.2.1 Subtracting Values Directly ..ceeeveeerveeeenvenneens 310
16.2.2 Subtracting with Values

in Multiple RegiSters oveeeereeeeerereencerernnenennnnnns 311

xi

16.3
16.4
16.5

16.6

16.7
16.8

17
17.1

17.2
17.3
17.4

xii

MUIEIPLYING «.vveerreeerireeeerireecerreeeecreeeesneeecsneeeeans
DiVIAING ceeeverrnrrereieeieeieeceerrrreneereeeeeesesccssnnnnensessans
Calculating with Binary Coded Decimals................ 316
16.5.1 Unpacked BCD Numbers.....cccevvvevereeeererencenns 317
16.5.2 Packed BCD NUmDberIS...ceeeerrerereeneenevereerecennns 319
Doing Logical Bit Manipulations.......cccceevveeeeeeeennne 320
16.6.1 AND Operations ..cceeeeeeneeeeeneceesnneceesneceesnenesnes 321
16.6.2 OR Operationsccceevveeeeeeeeeeeeeessrerennseseeseens 322
16.6.3 XOR OpErations cccceeerreceereeeeeeersvenenereseeeeesnnes 322
16.6.4 INOT OperationS..cceceeeeeeeevneeeserervecececernecsenne 323
Scanning for Set Bits.......cccceeeveeerreeerreeecseenneenennee 324
Shifting and Rotating BitSccccceeeeevveeerreeeccnnneenn. 325
16.8.1 Multiplying and Dividing by Constants.......... 327
16.8.2 Moving Bits
to the Least-Significant Position.....cceeeeueeeeeenes 329
16.8.3 Adjusting MasksS .ceeeeeeeeeeenneceennecerenneneenneceannns 329
16.8.4 Shifting Multiword Values ...cccceeeerrrrvvenneennnnn. 329
16.8.5 Shifting Multiple BitS..ccceeueereneecerrneeeeneeeenenes 330
Controlling Program Flow................ 331
JUMPING ceeeevieiiiiiiiiieniirieerereeeeeeeeeeeeeesernnaseenenee 333
17.1.1 Jumping Unconditionally...cccceeeeererrnunreerrennnne 333
17.1.2 Jumping Conditionally ...cceeceeeureererereeenneeeenenns 335
17.1.2.1 Comparing and Jumping...cceeeeveececencnces 339
17.1.2.2 Jumping Based on Flag Status...cccceeveeens 338
17.1.2.3 Testing Bits and Jumping...ceeeeeeeucnencnnns 340
17.1.2.4 Testing and Setting Bits «ceceeverveenrnencnnns 341
LOOPING .eeeeeieeeinrrreeeeieriereeeeeeeeeerneneesessssnneessssssssnnns 343
Setting Bytes Conditionallyccceevvveeeeervneeeeennne. 345
Using Procedures........covvveeeeeeeeeinnveeeeenesnnneeeeeseesnnnns 346
17.4.1 Calling Procedures ..cc.ceevuueerereceerneeeeneeernncenns 347
17.4.2 Defining Procedurescceveeeeerneerenneceeeneecenennes 347
17.4.3 Passing Arguments on the Stack ...ccceeeereeeenenns 349
17.4.4 Using Local Variables ...ccceevuereererrnneceerennecceens 301
17.4.5 Setting Up Stack Frames ..cceeeeeeeeeeeeevenneecenens 354

(CONTENTS

(CONTENTS

17.6

18

18.1
18.2
18.3
18.4
18.5
18.6
18.7

19

19.1

19.2
19.3

19.4

Using INterrupts..ccccueeeeeeeeecveeeeienccineieeensccsnnneeeeen. 350
17.5.1 Calling INterrupts ceeeeeerveeneeeeeereeerenneeneeeennnnees 356
17.5.2 Defining and Redefining Interrupt Routines ...308
Checking Memory Ranges.......ccceeevveeeecinneereccnnneenn. 361
Processing Strings.........ccevoervcvernnnnee. 363
Setting Up String Operations.......cceeeeeeeeveeersrveennnns 365
MoVING StriNES.cceieieiiiiiiiieiiirrreeeeeeeereeeeeseeeseeeeaneen 368
Searching Stringscceccveeeereecrveeeeenecieeeeeeeesessnnnnns 370
Comparing StringS ...ccevevveeeerreervneeeeresinnereeeeessesssnens 371
Filling Strings ..ccocevvveeeiiiiriieeeeereereeeeeeeeneneeeeeeens 373
Loading Values from Strings......cccceeeieeeeiieenreennnnnn 374
Transferring Strings to and from Ports.................. 375
Calculating
with a Math Coprocessor................ 377
Coprocessor Architectureceeeeeveveerivnveeeeniienenen. 379
19.1.1 Coprocessor Data Registers ...cceeeeererrenneeeeeennns 380
19.1.2 Coprocessor Control Registers ..ccveevrueereneennnns 381
Emulationcceiiieieeiiiirieeccccrneeecceennnneeeeeeenes 382
Using Coprocessor Instructionsccccceeeeeeeeeeeeeennne. 382
19.3.1 Using Implied Operands

in the Classical-Stack FOrm ...cccevveveernnnneennnn. 383
19.3.2 Using Memory Operands....ccceeereecerreenneenecennens 384
19.3.3 Specifying Operands

in the Register FOrm cu.eveevueeeerereeenneeeneeennnnnns 385
19.3.4 Specifying Operands

in the Register-Pop Form....ceeeverveeeerreeeeeennnn. 386
Coordinating Memory AcCesS.....ceovuveeeerrrveerenennenee 387

xiii

(CONTENTS

19.5 Transferring Dataccoeeeevevnivreeeeeeeinicnieiiiiiiicnnes
19.5.1 Transferring Data to and from Registers
19.5.2 Loading Constants ...cccccveeerereeeeeeesrsneeseeeeennnns 391
19.5.3 Transferring Control Data ...ceeeeeeervveerereeennnns 392

19.6 Doing Arithmetic Calculations....cccccceeeeevvuuveeeninnes 393

19.7 Controlling Program FloW.......cccceeieeeeriiiiiiiinnnanenne. 399
19.7.1 Comparing Operands

to Control Program FIOW......ceueeeeueeeenereenennnn. 401
19.7.2 Testing Control Flags
after Other InstructionS...cccceeeevreeeeveeerverennennns 404

19.8 Using Transcendental Instructions.........ccccceeeennnns 404

19.9 Controlling the Coprocessor.......cceveeevuereeeeeerreeernnns 406

20 Controlling the Processor............... 409

20.1 Controlling Timing and Alignmentcccvvveeeene... 411

20.2 Controlling the Processor.......cccovvvveeeereeeeeeeeeenennn. 411

20.3 Controlling Protected-Mode Processes.................... 412

20.4 Controlling the 80386........ccceeeerirrvreeeeeericrrrreeeeeeans 413

Appendixes

A New Features ..o, 417
A.1 MASM Enhancements......cceevvevevveeeiiinneneiiininenennnn. 419
A1l 80386 SUPPOTT everrreererrueerrreerreecerseeersenernnnes 419
A.1.2 Segment SImplification ..ccceeeeeereeeeereieerneeennnnns 420
A.1.3 Performance ImprovementsS....ccceeeerueeereneennnnes 420
A.1.4 Enhanced Error Handlingeeeeveeeevveceneneennnnns 421
A.15 NeW OPHIONS ceereererrererreeeeernnreessenersescerneeennnns 421
A.1.6 Environment Variables..occveveeeenieeenieneeneneenes 422
A17T String Equates.ccceeiieieeeeerieeeeneeerneneaneeennnnes 422
A.1.8 RETF and RETN Instructions .cceeeveeeeeeeneenenes 422
A.1.9 Communal Variables coveevveevneereeneeneererneennennes 422
A.1.10 Including Library Files ccoveeeeeeerreererernereennnnnens 422
A.1.11 Flexible Structure DefinitionS...ceeeuveueeneveeneenes 423

xiv

(CONTENTS

Link Enhancements.......ccceevuveeerieirvevencinnneeereennnene 423
The CodeView Debugger.....ccceeeveurieeerrieeeeerresrnnnne 423
A4 SETENV ettt ne e 424
A.5 Compatibility with Assemblers
and Compilers......cciiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeereeeaees 424
B Error Messages and Exit Codes427
B.1 MASM Messages and Exit Codes.......cccveeeerevrnnnnene. 429
B.1.1 Assembler Status Messagesccoveeeerrvreerunnnnnns 429
B.1.2 Numbered Assembler MessageS...ceeeevveeervnnnnnns 430
B.1.3 Unnumbered Error Messagesccecevveeerennnnn. 446
B.1.4 MASM Exit CodeS..ceuuuererrrrurirereerrrenceeennnnneees 448
B.2 CREF Error Messages and Exit Codes.................... 449
| §376 (5 451

XV

Figures

Figure 1.1
Figure 5.1

Figure 5.2
Figure 6.1

Figure 6.2
Figure 6.3

Figure 13.1
Figure 13.2
Figure 13.3
Figure 15.1
Figure 16.1
Figure 17.1
Figure 17.2
Figure 17.3
Figure 19.1
Figure 19.2
Figure 19.3

xvi

The Program-Development Cycle 12
Segment Structure

with Combine and Align Types.....ccceveuvveeee. 103
Segment Structure with Groups........ccueee... 108
Encoding for Real Numbers

in IEEE Format.......cccccvveeeeeiiiiiiiiniinninnnnnnne 132
Encoding for Real Numbers

in Microsoft Binary Format.........cccccvveeeennnnn. 133
Encoding for Real Numbers

in Temporary-Real Formatcc......... 134
Register for 8088-80286 Processors.............. 262
Extended Registers of 80386 Processor......... 263
Flags for 8088-80386 Processorscceueen.. 267
Stack Status after Pushes and Pops............. 299
Shifts and Rotates....cceeeevvuvereeeereriinneeeeennnnnns 326
Procedure Arguments on the Stack.............. 351
Local Variables on the Stack.......ccccovveeeeennne 353
Operation of Interrupts.....cccevevveeeeerrrveneennn. 357
Coprocessor Data Registers.....cccoeeveveeecunneenn. 380
Coprocessor Control Registers........ccceeruvneenn. 381

Coprocessor and Processor Control Flags.....400

(CONTENTS

(CONTENTS

"Tables

Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1

Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 10.1
Table 14.1
Table 14.2
Table 16.1
Table 17.1

Table 18.1
Table 19.1
Table 19.2

Table A.1

Warning LevelS ... 39
Symbols and Abbreviations in Listings 43
Reserved Names.....cceeeeeeeriieeiiieiiiiieeeeees 69
Digits Used with Each RadiX......cccceveveeunnnneee. 70
Default Segments and Types

for Standard Memory Models......................... 93
Arithmetic Operators....coecccvveeeeerervivveneeeennn. 175
Logical Operators....ccccceeeevveeeeeerrerrvnveeeeeenenn. 179
Relational Operators......ccoccvevveveeeieveeeeeeenenn. 180
.TYPE Operator and Variable Attributes....186
Operator Precedence........uueeeeeeeieeeeeeeeeeeeennnn. 190
Conditional-Error Directives......ccceeeeevennnenn. 204
Register Operands......cccoeeevvenereennnnineeeeeeenn. 275
Indirect Addressing Modes.......cuvveeeveeeeenennnn. 279
Values Returned by Logical Operations....... 320
Conditional-Jump Instructions

Used after Compareccccevveeeeereernvneeeenennn. 337
Requirements for String Instructions............ 367
Coprocessor Operand Formscceeeeeeeennn.... 383
Control-Flag Settings

after Compare or Test......cccvvvveeeiirevneeeinnnns 401
80386 and 80387 Instructions.........cccceeeennee 420

xvil

INTRODUCTION

Welcome to the Microsofte Macro Assembler (MASM). This package pro-
vides all the tools you need to create assembly-language programs.

The Macro Assembler provides a logical programming syntax suited to the
segmented architecture of the 8086, 8088, 80186, 80188, 80286, and 80386
microprocessors (8086-family), and ‘the 8087 80287 and 80387 math
coprocessors (8087-family).

The assembler produces relocatable object modules from assembly-
language source files. These object modules can be linked using LINK, the
Microsoft Overlay Linker, to create executable programs for the MS-DOSe
operating system. Object modules created with MASM are compatible
with many high-level-language object modules, including those created
with the Microsoft BASIC, C, FORTRAN, and Pascal compilers.

MASM has a variety of standard features that make program develop-
ment easier:

e It has a full set of macro directives.
e It allows conditional assembly of portions of a source file.

e It supports a wide range of operators for creating complex
assembly-time expressions.

o It carries out strict syntax checking of all instruction statements,
including strong typing for memory operands.

New Features

This version of the assembler has the following major new features:

e All instructions and addressing modes of the 80386 processor and
80387 coprocessor are now supported.

e The new CodeViews window-oriented debugger allows source-level
debugging on assembly-language files and has many other powerful
features.

e New segment directives allow simplified segment definitions. These
optional directives implement the segment conventions used in
Microsoft high-level languages.

xix

Microsoft Macro Assembler Programmer’s Guide

e Error messages have been clarified and enhanced.

e The default format for initializing real-number variables has been
changed from Microsoft Binary to the more common IEEE (Insti-
tute of Electrical and Electronic Engineers, Inc.) format.

Note

In addition to these new features, there are numerous minor enhance-
ments. If you are updating from a previous version of the Microsoft
Macro Assembler, you may want to start by reading Appendix A,
“New Features.” This appendix summarizes new features added for
Version 5.0 and discusses compatibility issues.

System Requirements

In addition to a computer with one of the 8086-family processors, you
must have Version 2.0 or later of the MS-DOS or IBMe PC-DOS operating
system. (Since these two operating systems are essentially the same, this
manual uses the term DOS to include both.) To run the assembler itself,
your computer system must have approximately 192K (kilobytes) of
memory. The CodeView debugger requires approximately 320K. Actual
memory requirements vary depending on the DOS version used, the
memory used by any resident programs, and the size of the files being
assembled or debugged.

About This Manual

and Other Assembler Documentation

This manual is intended as a reference manual for writing applications
programs in assembly language. It is not intended as a tutorial for
beginners, nor does it discuss systems programming or advanced tech-
niques.

This manual is divided into three major parts. Part 1 is called “Using
Assembler Programs,” and it comprises chapters 1-3. Chapters 4-12 make
up Part 2, “Using Directives.” The third part, called “Using Instructions,”
comprises chapters 13-20. Two appendixes follow Part 3.

XX

Information

Introduction

Important topics for the programmer and their references are listed below:

Location

How to set up the
assembler software

An overview of the
program-development
process

How to use the assembler
and the other programs
provided with the
Microsoft Macro
Assembler package

An overview of the format
for assembly-language
source code

How to program in the
version of assembly
language recognized by

An overview of the
architecture of 8086-
family processors

Chapter 1, “Getting Started,” tells how
to set up the assembler and utility
software.

Chapter 1, “Getting Started,” describes
the program-development process and
gives brief examples of each step.

Part 1, “Using Assembler Programs,”
describes the command lines, options,
and output of MASM and CREF. The
Microsoft CodeView and Utilities
manual describes the command lines,
options, commands, and output of the
CodeView debugger, LINK, LIB,
MAKE, and other utilities. Error mes-
sages are described in Appendix B of the
respective manuals. The command-line
syntax for all assembler programs is
summarized in the Microsoft Macro
Assembler Reference.

Chapter 1, “Getting Started,” shows
examples of assembly-language source
files, and Chapter 4, “Writing Source
Code,” (in Part 2) discusses basic con-
cepts in a reference format.

Part 2, “Using Directives,” explains the
directives, operands, operators, expres-
sions, and other language features under-
stood by MASM. However, the manual
is not designed to teach novice users how
to program in assembly language. If you
are new to assembly language, you will
still need additional books or courses.
Some tutorial books that may be helpful
are listed later in this introduction.

Chapter 13, “Understanding 8086-
Family Processors,” (in Part 3) discusses
segments, memory use, registers, and
other basic features of 8086-family pro-
Cessors.

xxi

Microsoft Macro Assembler Programmer’s Guide

How to use the
instruction sets for the
8086, 80186, 80286, or
80386 microprocessor

Reference data
on 1nstructions

How to use the
instruction sets of the
8087, 80287, or 80387
math coprocessor

Information on DOS
structure and function
calls

How to write assembly-
language routines for
high-level languages

Hardware features of your
computer

Part 3, “Using Instructions,” describes
each of the instructions. The material is
intended as a reference, not a tutorial.
Beginners may need to study other books
on assembly language.

Another manual in the Macro Assembler
package, the Microsoft Macro Assembler
Reference, lists each instruction alpha-
betically and gives data on encoding and
timing for each. This data is particularly
useful for programmers who wish to
optimize assembly code.

Chapter 19, “Calculating with a Math
Coprocessor,” describes the coprocessor
instructions and tells how you can use
the most important ones.

Although this information may be useful
to many programmers, it is beyond the
scope of the documentation provided
with the Microsoft Macro Assembler
package. You can find information on
DOS in the Microsoft MS-DOS
Programmer’s Reference and in many
other books about DOS. Some of the
books listed later in this introduction
cover these topics.

The Microsoft Mized-Language Program-
ming Guide describes the calling and
naming conventions of Microsoft high-
level languages and tells how to write
assembly modules that can be linked
with modules created with high-level
languages.

For some assembly-language tasks, you
may need to know about the basic input
and output systems (BIOS) or other
hardware features of the computers that
run your programs. Consult the techni-
cal manuals for your computer or one of
the many books that describe hardware
features. Some of the books listed later
in this introduction discuss hardware
features of IBM and IBM-compatible
computers.

Introduction

IBM: Compilers and Assemblers

Many IBM languages are produced for IBM by Microsoft. IBM languages
similar to corresponding Microsoft languages include the following:
IBM Personal Computer Macro Assembler, Versions 1.0 and 2.0
IBM Personal Computer FORTRAN, Version 3.z
IBM Personal Computer C, Version 1.0
IBM Personal Computer Pascal, Versions 1.0 to 3.z
IBM Personal Computer BASIC Compiler, Versions 1.0 and 2.0

These languages are compatible with the Microsoft Macro Assembler Ver-
sion 5.0, except as noted in Appendix A, “New Features.”

Books on Assembly Language

The following books may be useful in learning to program in assembly
language:

Duncan, Ray. Advanced MS-DOS. Redmond, Wash.: Microsoft Corpora-
tion, 1986.

An intermediate book on writing C and assembly-language programs
that interact with MS-DOS (includes DOS and BIOS function descrip-
tions

Intel Corporation. tAPX 886 Programmer’s Reference Manual. Santa,
Clara, Calif. 1986.

Reference manual for 80386 processor and instruction set (manuals for
previous processors are also available)

Jourdain, Robert. Programmer’s Problem Solver for the IBM PC, XT and
AT. New York: Brady Communications Company, Inc., 1986.

Reference of routines and techniques for interacting with hardware
devices through DOS, BIOS, and ports (high-level routines in BASIC
and low- or medium-level routines in assembler)

Lafore, Robert. Assembly Language Primer for the IBM PC & XT. New
York: Plume/Waite, 1984.

An introduction to assembly language, including some information on
DOS function calls and IBM-type BIOS

xxiii

Microsoft Macro Assembler Programmer’s Guide

Metcalf, Christopher D., and Sugiyama, Marc B. COMPUTE!’s Beginner’s
Guide to Machine Language on the IBM PC & PCyr. Greensboro, N.C.:
COMPUTE! Publications, Inc., 1985.

Beginning discussion of assembly language, including information on
the instruction set and MS-DOS function calls

Microsoft. Microsoft MS-DOS Programmer’s Reference. Redmond, Wash.
1986, 1987.
Reference manual for MS-DOS

Morgan, Christopher, and the Waite Group. Bluebook of Assembly Rou-
tines for the IBM PC. New York: New American Library, 1984.
Sample assembly routines that can be integrated into assembly or
high-level-language programs

Norton, Peter. The Peter Norton Programmer’s Guide to the IBM PC. Red-
mond, Wash.: Microsoft Press, 1985.
Information on using IBM-type BIOS and MS-DOS function calls

Scanlon, Leo J. IBM PC Assembly Language: A Guide for Programmers.
Bowie, Md.: Robert J. Brady Co., 1983.

An introduction to assembly language, including information on DOS
function calls

Schneider, Al. Fundamentals of IBM PC Assembly Language. Blue Ridge
Summit, Pa.: Tab Books Inc., 1984.

An introduction to assembly language, including information on DOS
function calls

These books are listed for your convenience only. Microsoft Corporation
does not endorse these books (with the exception of those published by
Microsoft) or recommend them over others on the same subjects.

Notational Conventions

This manual uses the notation described in the following list.

Example Description
of Convention of Convention
Examples The typeface shown in the left column is used

to simulate the appearance of information
that would be printed on your screen or by
your printer. For example, the following

xxiv

Program

Fragment

KEY TERMS

Introduction

source line is printed in this special typeface:
mov ax,WORD PTR string[3]

When discussing this source line in text, items
appearing on the line, such as string[3],
also appear in the special typeface.

A column of dots in syntax lines and program
examples shows that a portion of the program
has been omitted.

For example, in the following program frag-
ment, only the opening lines and the closing
lines of a macro are shown. The internal lines
are omitted since they are not relevant to the
concept being illustrated.

work MACRO realarg, testarg

.ERRB <realarg> ;; Too few
.ERRNB <testarg> ;; Too many

. ;. Just right
ENDM

Bold letters indicate command line options,
assembly-language keywords or symbols, and
the names of files that come with the Micro-
soft Macro Assembler package.

For instance, the directive ORG, the instruc-
tion MOV, the register AX, the option /ZI,
and the file name MASM are always shown
in bold when they appear in text or in syntax
displays (but not in examples).

In syntax displays, bold type indicates any
words, punctuation, or symbols (such as com-
mas, parentheses, semicolons, hyphens, equal
signs, or operators) that you must type
exactly as shown.

For example, the syntax of the IFDIF direc-
tive is shown as follows:

IFDIF <argument!>,<<argument2>

The word IFDIF, the angle brackets, and the
comma are all shown in bold. Therefore they
must be typed exactly as shown.

XXV

Microsoft Macro Assembler Programmer’s Guide

placeholders

[optional items]

{ choicel | choice2}

Repeating
elements...

xxvi

Words in italics are placeholders for variable
information that you must supply. For exam-
ple, the syntax of the OFFSET operator is
shown below:

OFFSET expression

This indicates that any ezpression may be
supplied following the OFFSET operator.
When writing source code to match this syn-
tax, you might type

OFESET here+6

in which here+6 is the expression. The place-
holder is shown in italics both in syntax
displays and in descriptions explaining syntax
displays.

Double brackets surround optional syntax ele-
ments. For example, the syntax of the index
operator is shown as follows:

[ezpressioni][expression?]

This indicates that expressionl is optional,
since 1t is contained in double brackets, but
ezxpression? is required and must be enclosed
in brackets.

When writing code to match this syntax, you
might type [bx], leaving off the optional
expressionl, or you might type test[5],
using test as expressionl.

Braces and vertical bars indicate that you
have a choice between two or more items.
Braces enclose the choices, and vertical bars
separate the choices. You must choose one of
the items.

For example, the /W (warning-level) option
has the following syntax:

/W{0|1]|2}

You can type /WO, /W1, or /W2 to indicate
the desired level of warning. However, typing
/W3 is illegal since 3 is not one of the choices
enclosed in braces.

Three dots following an item indicate that
more items having the same form may be
entered.

Introduction

For example, the syntax of the PUBLIC
directive 1s shown below:

PUBLIC name [,name]...

The dots following the second name indicate
that you can enter as many names as you like
as long as each is preceded by a comma. How-
ever, since the first name is not in brackets,
you must enter at least one name.

Defined terms and Quotation marks set off terms defined in the

“Prompts” text. For example, the term “indeterminate”
appears in quotation marks the first time it is
defined.

Quotation marks also set off command-line
prompts in text. For example, one LINK
prompt would be described in text as the
“object modules” prompt.

KEY NAMES Small capital letters are used for the names of
keys and key sequences that you must press.
Examples include ENTER and CONTROLA-C.

B Example

The following example shows how this manual’s notational conventions
are used to indicate the syntax of the MASM command line:

MASM [options] sourcefile [,[objectfile] [,[listingfile] [,[crossreferencefile]]]] [;]

This syntax shows that you must first type the program name, MASM.
You can then enter any number of options. You must enter a sourcefile.
You can enter an objectfile preceded by a comma. You can enter a
listingfile, but if you do, you must precede it with the commas associated
with the sourcefile and objectfile. Similarly, you can enter a
crossreferencefile, but if you do, you must precede it with the commas
associated with the other files. You can also enter a semicolon at any point
after the sourcefile.

For example, any of the following command lines would be legal:

MASM test.asm;

MASM /ZI test.asm:

MASM test.asm, ,test.lst;

MASM test.asm,,,test.crf

MASM test.asm, test.obj, test.lst, test.crf
MASM test.asm,,,

xxvii

Microsoft Macro Assembler Programmer’s Guide

Getting Assistance or Reporting Problems

If you need help or you feel you have discovered a problem in the software,
please provide the following information to help us locate the problem:

e The assembler version number (from the logo that is printed when
you invoke the assembler with MASM)

e The version of DOS you are running (use the DOS VER command)

e Your system configuration (the type of machine you are using, its
total memory, and its total free memory at assembler execution
time, as well as any other information you think might be useful)

e The assembly command line used (or the link command line if the
problem occurred during linking)

e Any object files or libraries you linked with if the problem occurred
at link time.

If your program is very large, please try to reduce its size to the smallest
possible program that still produces the problem.

Use the Product Assistance Request form at the back of this manual to
send this information to Microsoft.

If you have comments or suggestions regarding any of the manuals accom-
panying this product, please indicate them on the Document Feedback
card at the back of this manual.

If you are not already a registered MASM owner, you should fill out and

return the Registration Card. This enables Microsoft to keep you informed
of updates and other information about the assembler.

xxviii

[JSING

ASSEMBLER
PROGRAMS

PART1 O [JsiNG AssEMBLER PROGRAMS

Part 1 of the Programmer’s Guide (comprising
chapters 1-3) summarizes the process of creating
programs from assembly-language source files.

Chapter 1 tells you how to set up an efficient
system for producing programs. It also gives you
examples of simple assembly-language source
files and a quick summary of each of the utility
programs used in program development.

Chapters 2 and 3 describe the two assembler
programs, MASM and CREF, in detail. Other
utility programs, such as LINK, LIB, MAKE,
and the CodeView debugger, are described in the
Microsoft CodeView and Utilities manual.

(.HAPTER

GETTING STARTED

1.1 Setting Up YOUE SYBLEN......coocorcersessosanmssssrasssssnsans 7

1.1 . Making Barkup Coples .cceisisusssssassnisapsssnssssse ¥ j

1.1.2 Choosing a Configuration Strategy 1

113 GO .. . coo0isssssisiniisasts ORITEE s sones 9

1.1.4 Setting Environment Variablesc..cceeruuee... 10

1.2 Choosing a Program TYpe......ccccceeeereeeereecrennnnnen 10

1.3 The Program-Development Cycle..........cccuvene..... 11

1.4 Developing Programs........cccocceeeeeeerrrnneeeererrrnnnnnens 14
1.4.1 Writing and Editing

Assembly-Language Source Code 14

1.4.2 Assembling Source Files...ccccceerrrrernnernennnnn. 17

1.4.3 Converting Cross-Reference Files................. 17

1.4.4 Creating Library Files....c..cccecerecenseosercccossens 18

14.5 LinKiBE ODIECt Filen .oooeissovssocsssissssvesivessovocs 18

1.4.6 Converting to .COM Formatcevveeernennnnn. 19

LAT DRBMERIRE «issoisiscircirssvorensmseriivatssirvmitioiscssss 20

Getting Started

This chapter tells you how to set up Microsoft Macro Assembler files and
to start writing assembly-language programs. It gives an overview of the
development process and shows examples using simple programs. It also
refers you to the chapters where you can learn more about each subject.

1.1 Setting Up Your System

After opening the Microsoft Macro Assembler package, you should take
these four setup steps before you begin developing assembler programs:
Make backup copies of the disks in the assembler package.
Choose a configuration strategy.

Copy the assembler files to the appropriate disks and directories.

Ll O

Set environment variables.

1.1.1 Making Backup Copies

You should make backup copies of the assembler disks before attempting
to use any of the programs in the package. Put the copies in a safe place
and use them only to restore the originals if they are damaged or des-
troyed.

All the files on the disks are listed in the file PACKING.LST on Disk 1.

The files on the disk are not copy protected. You may make one backup
copy for your own use. You may not distribute any executable, object, or
library files on the disk. The sample programs are in the public domain.

No license is required to distribute executable files that are created with
the assembler.

1.1.2 Choosing a Configuration Strategy

There are several kinds of files on the distribution disk. You can arrange
these files in a variety of ways. The two most important considerations are
whether or not you have a hard disk and whether you want to use environ-
ment variables.

Microsoft Macro Assembler Programmer’s Guide

Program development can be affected by the environment variables

described below:

Variable

Description

PATH

LIB

INCLUDE

MASM

LINK

T™P

INIT

Specifies the directories where DOS looks for exe-
cutable files.

A common setup with language products is to
place executable files in the directory \ BIN and
include this directory in the PATH environment
string.

Specifies the directory where LINK looks for
library and object files.

A common setup with language products is to put
library and object files in the directory \LIB and
include this directory in the LIB environment
string.

Specifies the directory where MASM looks for
include files.

A common setup with language products is to put
macro files and other include files in the directory
\INCLUDE and to put this directory in the
INCLUDE environment string.

Specifies default options that MASM uses on
start-up.

Specifies default options that LINK uses on
start-up.

Specifies the directory where LINK places tem-
porary files if it needs to create them.

Specifies the directory where MAKE looks for the
file TOOLS.INI, which may contain inference
rules.

See the documentation of MAKE in the Microsoft
CodeView and Utilities manual for information on
inference rules.

If you have a hard disk, you will probably want to use environment vari-
ables to specify locations for library, macro, and executable files. If you do
not have a hard disk, you may prefer to leave all files in the root directory.

If you already have other language products on a hard disk, you should
consider how your assembler setup interacts with your other languages.

8

Getting Started

Some users may prefer to have separate directories for library and include
files for each language. Others may prefer to have all library and include
files in the same directories. If you want all language files in the same
directories, make sure you do not have any files with the same names as
the ones provided with the Microsoft Macro Assembler.

If you have 5 1/4-inch disks, you will not be able to get all the tools you
need for assembly-language development on one disk. A typical setup is
shown below:

Disk Files

1 Source, object, library, and macro files on Disk 1 with
a) source and working object files in the root directory,
b) library and standard object files in directory \ LIB,
and (c) macro files in directory \INCLUDE.

2 Executable files for developing programs on Disk 2. This
could include MASM, LINK, a text editor, and possi-
bly MAKE, LIB, or CREF. These files may not all fit
on a standard 360K disk, so you will have to decide
which are most important for you.

3 The CodeView debugger and any additional utilities on
Disk 3.

With this setup, you could keep Disk 1 in Drive A. Then swap Disks 2 and
3 depending on whether you are developing programs or debugging.

1.1.3 Copying Files

A setup batch file called SETUP.BAT is provided on Disk 1. You can run
it to automatically copy the assembler files to your work disk. The setup
program will ask for information about your system and how you want to
set 1t up. Before copying anything to your system, the setup program tells
you what it is about to do and prompts for your confirmation.

If you prefer, you can ignore the setup program and copy the files yourself.
See the PACKING.LST file for a list of files.

Warning

If you have previous versions of the assembler or other programs such
as LINK, LIB, or MAKE, you may want to make backup copies or
rename the old files so that you do not overwrite them with the new
versions.

Microsoft Macro Assembler Programmer’s Guide

1.1.4 Setting Environment Variables

If you wish to use environment variables to establish default file locations
and options, you will probably want to set the environment variables in
your AUTOEXEC.BAT or other batch files. The setup program does
not attempt to set any environment variables, so you must modify any
batch files yourself.

The following lines could be added for a typical hard-disk setup:

PATH C:\BIN

SET LIB=C:\LIB

SET INCLUDE=C:\INCLUDE
SET MASM=/ZI

SET LINK=/CO

The following lines might be used for the floppy-disk setup described in
Section 1.1.2:

PATH B:\:A:\

SET LIB=A:\LIB

SET INCLUDE=A:\INCLUDE
SET MASM=/ZI

SET LINK=/CO

1.2 Choosing a Program Type

MASM can be used to create different kinds of program files. The source-
code format is different for each kind of program. The primary formats are
described below:

Type Description

EXE The .EXE format is the most common format for programs
that will execute under DOS.

In OS/2, a similar .EXE format will be the only format
available for stand-alone programs that take advantage of
multitasking. Programs in the .EXE format can have multi-
ple segments and can be of any size. Modules can be created
and linked using either the assembler or most high-level-
language compilers, including all the Microsoft compilers.
Modules created in different languages can be

10

.COM

Binary
files

Device
drivers

Code
for

ROMs

Getting Started

combined into a single program. This is the format recom-
mended by Microsoft for programs of significant size and
purpose. The source format for creating this kind of program
1s described and illustrated throughout the rest of the
manual.

The .COM format is sometimes convenient for small pro-
grams.

Programs in this format are limited to one segment. They
can be no larger than 64K (unless they use overlays). They
have no file header and are thus smaller than comparable
.EXE files. This makes programs in the .COM format a
good choice for small stand-alone assembler programs of
several thousand bytes or less. One disadvantage of the
.COM format is that executable files cannot contain sym-
bolic and source line information for the CodeView
debugger. You can only debug COM in assembly mode. The
source format for .COM programs is illustrated briefly in
this chapter and described fully in the Microsoft MS-DOS
Programmer’s Reference Guide.

Binary files are used for procedures that will be called by the
Microsoft and IBM BASIC interpreters.

They are also used by some non-Microsoft compilers. See the
manual for the language you are using for details on prepar-
ing source files.

Device drivers that set up and control I/O for hardware dev-
ices can be developed with the assembler.

The source format for device drives is described in the
Microsoft MS-DOS Programmer’s Reference.

The assembler can be used to prepare code that is down-
loaded to programmable ROM chips. The format is usually a
binary format. Methods of translating binary files into a for-
mat that can be used in ROM chips vary.

1.3 The Program-Development Cycle

The program-development cycle for assembly language is illustrated in

Figure 1.1.

11

Microsoft Macro Assembler Programmer’s Guide

Figure 1.1 The Program-Development Cycle
12

Getting Started

The specific steps for developing a stand-alone assembler program are
listed below:

1.

Use a text editor to create or modify assembly-language source
modules. By convention, source modules are given the extension
.ASM. Source modules can be organized in a variety of ways. For
instance, you can put all the procedures for a program into one
large module, or you can split the procedures between modules. If
your program will be linked with high-level-language modules, the
source code for these modules is also prepared at this point.

Use MASM to assemble each of the modules for the program.
MASM may optionally read in code from include files during
assembly. If assembly errors are encountered in a module, you
must go back to Step 1 and correct the errors before continuing.
For each source (LASM) file, MASM creates an object file with the
default extension .OBJ. Optional listing (.LST) and cross-
reference (.CRF? files can also be created during assembly. If your
program will be linked with high-level-language modules, the
source modules are compiled to object files at this point.

Optionally use LIB to gather multiple object files (.OBJ) into a
single library file having the default extension .LIB. It is generally
used for object files that will be linked with several different pro-
grams. An optional library list file can also be created with LIB.

Use LINK to combine all the object files and library modules that
make up a program into a single executable file (with the default
extension .EXE). An optional .MAP file can also be created.

Use EXE2BIN to convert executable files to a binary format if
necessary. It is necessary for programs in the .COM format and
for binary files that will be read into an interpreter or compiler.
Skip this step for programs in the .EXE format.

Debug your program to discover logical errors. Debugging may
involve several techniques, including the following:

e Running the program and studying its input and output

e Studying source and listing files

e Using CREF to create a cross-reference-listing (.REF) file
e Using CodeView (CV) to debug during execution

If logical errors are discovered, you must return to Step 1 to
correct the source code.

All or part of the program-development cycle can be automated by using
MAKE with make description files. MAKE is most useful for developing
complex programs involving numerous source modules. Ordinary DOS
batch files may be more efficient for developing single-module programs.

13

Microsoft Macro Assembler Programmer’s Guide

1.4 Developing Programs

The text below takes you through the steps involved in developing pro-
grams. Examples are shown for each step. The chapters and manuals that
describe each topic in detail are cross-referenced.

1.4.1 Writing and Editing
Assembly-Language Source Code

Assembly-language programs are created from one or more source files.
Source files are text files that contain statements defining the program’s
data and instructions.

To create assembly-language source files, you need a text editor capable of
producing ASCII (American Standard Code for Information Interchange)
files. Lines must be separated by a carriage-return-line-feed combination.

If your text editor has a programming or nondocument mode for produc-
ing ASCII files, use that mode.

The following examples illustrate source code that produces stand-alone
executable programs. Example 1 creates a program in the .EXE format,
and Example 2 creates the same program in the .COM format.

If you are a beginner to assembly language, you can start experimenting
by copying these programs. Use the segment shell of the programs, but
insert your own data and code.

® Example 1

TITLE hello
DOSSEG @ ; Use Microsoft segment conventions
.MODEL SMALL conventions and small model

.STACK 100h(® ; Allocate 256-byte stack
.DATAQ®
message DB "Hello, world.",13,10 ; Message to be written
lmessage EQU $ - message ; Length of message
® .CODE
start: mov ax,@DATA ; Load segment location
mov ds,ax ® ; into DS register
mov bx, 1 ; Load 1 - file handle for
; standard output
mov cx, lmessage ; Load length of message
©mov dx,OFFSET message ; Load address of message
mov ah,40h ; Load number for DOS Write function
int 21h ; Call DOS
mov ax, 4CO0h ; Load DOS Exit function (4Ch)
@ ; in AH and O errorlevel in AL
int 21h ; Call DOS
END start(®

14

Getting Started

Note the following points about the source file:

1.

The .MODEL and DOSSEG directives tell MASM that you
intend to use the Microsoft order and name conventions for seg-
ments. These statements automatically define the segments in the
correct order and specify ASSUME and GROUP statements.
You can then place segments in your source file in whatever order
you find convenient using the .STACK, .DATA, .CODE, and
other segment directives. These simplified segment directives are a
new feature of Version 5.0. They are optional; you can still define
the segments completely by using the directives required by earlier
versions of MASM. The simplified segment directives and the
Microsoft naming conventions are explained in Section 5.1.

A stack of 256 (100 hexadecimal) bytes is defined by using the
.STACK directive. This is an adequate size for most small pro-
grams. Programs with many nested procedures may require a
larger stack. See Sections 5.1.4, “Defining Simplified Segments,”
and 5.2.2, “Defining Full Segments,” for more information on
defining a stack.

The .DATA directive marks the start of the data segment. A
string variable and its length are defined in this segment.

The instruction label start in the code segment follows the
.CODE directive and marks the start of the program instructions.
The same label is used after the END statement to define the
point where program execution will start. See Sections 4.5, “End-
ing a Source File,” and 5.5.1, “Initializing the CS and IP Regis-
ters,” for more information on using the END statement and
defining the execution starting point.

The first two code instructions load the address of the data seg-
ment into the DS register. The symbol @DATA is an equate
representing the name of the segment created with the DATA
directive. Predefined segment equates are explained in Section
5.1.5. The DS register must always be initialized for source files in
the .EXE format. Section 5.5 tells how each segment is initialized.

The string variable defined earlier is displayed using DOS function
40h (where “h” stands for hexadecimal). File handle 1 (the
predefined handle for standard output) is specified to display to the
screen. Strings can also be displayed using function 09h. See the
Microsoft MS-DOS Programmer’s Reference or other DOS reference
books for more information on DOS calls.

DOS function 4Ch is used to terminate the program. While there
are other techniques for returning to DOS, this is the one recom-
mended by Microsoft.

15

Microsoft Macro Assembler Programmer’s Guide

The following example shows source code that can be used to create the
same program shown earlier, but in the .COM format:

® Example 2

TITLE Thello

_TEXT SEGMENT ; Define code segment
ASSUME cs:_TEXT,ds:_TEXT,ss:_TEXT
ORG 100h ; Set location counter to 256
start: jmp begin ; Jump over data
message DB "Hello, world.",13,10 ; Message to be written
lmessage EQU $ - message ; Length of message
begin: mov bx, 1 ; Load 1 - file handle for
H standard output
mov cx, lmessage ; Load length of message
mov dx,OFFSET message ; Load address of message
mov ah, 40h ; Load number for DOS Write function
int 21h ; Call DOsS
mov ax, 4CO0h ; Load DOS Exit function (4Ch)
; in AH and O errorlevel in AL
int 21h ; Call DOS
; Data could be placed here
_TEXT ENDS

END start

Note the following points in which .COM programs differ from .EXE pro-
grams:

1. The .MODEL directive cannot be used to define default segments
for .COM files. However, segment definition is easy, since only one
segment can be used. The align, combine, and class types need not
be given, since they make no difference for single-module .COM
programs.

2. All segment registers are initialized to the same segment by using
the ASSUME directive. This tells the assembler which segment to
associate with each segment register. See Section 5.4, “Associating
cSlegments with Registers,” for more information on the ASSUME

irective.

3. The ORG directive must be used to start assembly at byte 256
(100h). This leaves room for the DOS Program Segment Prefix,
which is automatically loaded into memory at run time. See Sec-
tion 6.4, “Setting the Location Counter,” for information on how
the ORG directive changes the location counter.

4. Although any program data must be included in the single seg-
ment, it must not be executed. You can use the JMP instruction to
skip over data (as shown in the example) or you can put the data
at the end after the program returns to DOS.

16

Getting Started

1.4.2 Assembling Source Files
Source modules are assembled with MASM. The MASM command-line

syntax is shown below:
MASM [options] sourcefile [,[objectfile] [,[listingfile] [,[crossreferencefile]]]] [;]

Assume you had an assembly source file called hello.asm. For the
fastest possible assembly, you could start MASM with the following com-
mand line:

MASM hello;

The output would be an object file called hello.obj. To assemble the
same source file with the maximum amount of debugging information, use
the following command line:

MASM /V /Z /ZI hello,,,:

The /V and /Z options instruct MASM to send additional statistics and
error information to the screen during assembly. The /ZI option instructs
MASM to include the information required by the CodeView debugger in
the object file. The output of this command is three files: the object file
hello.obj, the listing file hello.lst, and the cross-reference file
hello.crf.

Chapter 2, “Using MASM,,” describes the MASM command line, options,
and listing format in more detail.
1.4.3 Converting Cross-Reference Files

Cross-reference files produced by MASM are in a binary format and must
be converted using CREF. The command-line syntax is shown below:

CREF crossreferencefile [,crossreferencelisting] [3]

To convert the cross-reference file hello.crf into an ASCII file that
cross-references symbols that are used in hello.asm, use the following
command line:

CREF hello;

The output file is called hello.ref.

The CREF command line and listing format are described in Chapter 3,
“Using CREF.”

17

Microsoft Macro Assembler Programmer’s Guide

1.4.4 Creating Library Files

Object files created with MASM or with Microsoft high-level-language
compilers can be converted to library files by using LIB. The command-
line syntax is shown below:

LIB oldlibrary [/PAGESIZE:number] [commands] [,[listfile] [,[newlibrary]]] [;]

For example, assume you had used MASM to assemble two source files
containing graphics procedures and you want to be able to call the pro-
cedures from several different programs. The object files containing the
procedures are called dots.objand lines.obj.

You could combine these files into a file called graphics.1lib using the
following command line:

LIB graphics +dots +lines:
If you later wanted to add another object file called circles.obj and

at the same time get a listing of the procedures in the library, you could
use the following command line:

LIB graphics +circles, graphics.lst

The LIB command line, commands, and listing format are explained in
the Microsoft CodeView and Utilities manual.

1.4.5 Linking Object Files

Object files are linked into executable files using LINK. The LINK
command-line syntax is shown below:

LINK [options] objectfiles [,[executablefile] [,[mapfile] [,[lbraryfiles]]]] [;]

Assume you want to create an executable file from the single module
hello.obj. The source file was written for the .EXE format (see Section
1.4.1, “Writing and Editing Assembly-Language Source Code”) and was
assembled using the /ZI option. You plan to debug the program with the
CodeView debugger. Use the following command line:

LINK /CO hello:
The output file is hello.exe. It contains symbolic and line-number

information for the debugger. The file can now be run from the DOS com-
mand line or from within the CodeView debugger.

18

Getting Started

After you have debugged the program, you will probably want to create a
final version with no symbolic information. To do so, use the following
command line:

LINK hello:

This command line could also be used if the source file had been prepared
in the .COM Format. However, in that case the output file hello.exe
could not be run. Another step is required, as described in Section 1.4.6,
“Converting to .COM Format.”

Now assume that you want to create a large program called
picture.exe that has two object files (picture and picture2)and
calls external procedures from the library file described in Section 1.4.4,
“Creating Library Files.” Use the following command line:

LINK /CO picture picture2,,,graphics;

The library file graphics.1ib would need to be in the current directory
or in the directory described by the LIB environment variable. The pro-
cedure calls would have to be declared external in the source file, as
described in Section 8.2, “Declaring Symbols External.”

The LINK options, command line, and listing format are described in the
Microsoft CodeView and Utilities manual.

1.4.6 Converting to .COM Format

Source files prepared in the .COM format require an additional conver-
sion step after linking. The program that does the conversion is called
EXE2BIN. It is not included in the Macro Assembler package, but it does
come with the MS-DOS and PC-DOS operating systems. The syntax is
shown below:

EXE2BIN ezefile [binaryfile]

To convert a file called hello.exe to an executable file called
hello.com, use the following command line:

EXE2BIN hello hello.com

Note that you must specify the extension .COM, since .BIN is the default
extension. The .EXE file must have been prepared from source and object
files in the valid .COM format.

EXE2BIN can also be used to prepare binary files for use with the Micro-

soft or IBM BASIC interpreters. See the BASIC interpreter manual for
more information.

19

Microsoft Macro Assembler Programmer’s Guide

1.4.7 Debugging

The CodeView debugger is usually the most efficient tool for debugging
assembler programs. The command-line syntax is shown below:

CV [options] executablefile [arguments]

To debug a program called hello.exe on an IBM Personal Computer,
use the following command line:

CV hello

Note that in order for the debugger to display symbolic information, the
program should have been assembled with the /ZI option and linked with
the /CO option. Additional CodeView options may be required for other
situations. For instance, graphics programs always require the /S option.
To debug a graphics program called circles.com on an IBM-
compatible computer, use the following command line:

CV /W/1/S circles.com
The /W and /I options tell the debugger to use IBM-compatible features.
Note that the .COM extension must be specified, since the debugger

assumes files without extensions are .EXE files.

For information about CodeView command lines, options, and commands,
see the Microsoft CodeView and Utilities manual.

20

USING MASM

2.

N
b

R

1

-

Running the Assembler.........ccccceeeerrveercrrnneeccnnnen. 23
2.1.1 Assembly Using a Command Line 23
2.1.2 Assemibly USIng Prompls......oesorsssssatssnenssins 25
Using Environment Variablesccccceeevuvvvvnennn.. 26
2.2.1 The INCLUDE Environment Variable 26
2.2.2 The MASM Environment Variable 27
Controlling Message Output........ccocveeevivrerecnnnnnn. 28
Using MASM Options........ccceeeeeeerrsnneeeesesssneeneecees 29
2.4.1 Specifying the Segment-Order Method 30
2.4.2 Setting the File-Buffer Size......ccceeeerrnnrannenn31
2.4.3 Creating A Pass 1 Listing.....ocoreorsersrisnsesenses 32
2.4.4 Defining Assembler Symbolscccevvveeerernennens 32
2.4.5 Creating Code

for a Floating-Point Emulatorccceeeevveenn.33
2.4.6 Getting Command-Line Helpc..ccceevenennee..34
2.4.7 Setting a Search Path for Include Files......... 39
2.4.8 Specifying Listing

and Cross-Reference Files......ccceeereneeeenncesenes 35
2.4.9 Specifying Case Sensitivity..ccoeeeeerereerveeennenne 36
2.4.10 Suppressing Tables in the Listing File 37
2.4.11 Checking for Inpurs Codle....cuansssomsosssivons 37
2.4.12 Controlling Display of Assembly Statistics....38
2.4.13 Setting the Warning Level....cccccceeennneceeaensonne 39
2.4.14 Listing False Conditionalscc.ceeervvreneeennnnn. 40
2.4.15 Displaying Error Lines on the Screen............ 41

2.4.16 Writing Symbolic Information
SRR TIDIEOE U0 ..coonerssrssersnssnesensssonsaesansass 41

CHAPTER

2.5 Reading Assembly Listingscocoeeeevvvvvreeiincevnnnnenn. 42
2.5.1 Reading Code in a Listingccoeeeervveeerunnnnnnn. 42
2.5.2 Reading a Macro Table...cccceevvveeeerreeernnnnnnn.. 45
2.5.3 Reading a Structure and Record Table......... 45
2.5.4 Reading a Segment and Group Table........... 46
2.5.5 Reading a Symbol Table ...ccceevveerervnreernnnenne. 47
2.5.6 Reading Assembly Statistics ..cccceeerrererrnnennnn. 49
2.5.7 Reading a Pass 1 Listing ...ceeeevvveeernneennnnnnnn. 49

22

Using MASM

The Microsoft Macro Assembler (MASM) assembles 8086, 80186, 80286,
and 80386 assembly-language source files and creates relocatable object
files. Object files can then be linked to form an executable file.

This chapter tells you how to run MASM, explains the options and
environment variables that control its behavior, and describes the format
of the assembly listings it generates.

2.1 Running the Assembler

You can assemble source files with MASM by using two different meth-
ods: by giving a command line at the DOS prompt or by responding to a
series of prompts.

Once you have started MASM, it attempts to process the source file you
specified. If errors are encountered, they are output to the screen and
MASM terminates. If no errors are encountered, MASM outputs an
object file. It can also output listing and cross-reference files if they are
specified. You can terminate MASM at any time by pressing CONTROL-C
or CONTROL-BREAK.

2.1.1 Assembly Using a Command Line

You can assemble a program source file by typing the MASM command
name and the names of the files you wish to process. The command line
has the following form:

MASM [options] sourcefile [,[objectfile] [,[listingfile] [,[crossreferencefile]]]] [;]

The options can be any combination of the assembler options described in
Section 2.4. The option letter or letters must be preceded by a forward
slash (/) or a dash (-). Examples in this manual use a forward slash. The
forward slash and dash characters cannot be mixed in the same command
line. Although shown at the beginning of the syntax line above, options
may actually be placed anywhere on the command line. An option affects
alfl r}flelvant files in the command line even if the option appears at the end
of the line.

The sourcefile must be the name of the source file to be assembled. If you
do not supply a file-name extension, MASM supplies the extension .ASM.

The optional objectfile is the name of the file to receive the relocatable

object code. If you do not supply a name, MASM uses the source-file
name, but replaces the extension with .OBJ.

23

Microsoft Macro Assembler Programmer’s Guide

The optional listingfile is the name of the file to receive the assembly list-
ing. The assembly listing shows the assembled code for each source state-
ment and for the names and types of symbols defined in the program. If
you do not supply a file-name extension, the Macro Assembler supplies the
extension .LST.

The optional crossreferencefile is the name of the file to receive the cross-
reference output. The resulting cross-reference file can be processed with
CREF, the Microsoft Cross-Reference Utility, to create a cross-reference
listing of the symbols in the program. The cross-reference listing can be
used for program debugging. If you do not supply a file-name extension,
MASM supplies .CRF by default.

You can use a semicolon (;) anywhere after the sourcefile to select defaults
for the remaining file names. A semicolon after the source-file name selects
a default object-file name and suppresses creation of the assembly-listing
and cross-reference files. A semicolon after the object-file name suppresses
just the listing and cross-reference files. A semicolon after the listing-file
name suppresses only the cross-reference file.

All files created during the assembly are written to the current drive and
directory unless you specify a different drive for each file. You must sepa-
rately specify the alternate drive and path for each file that you do not
want to go on the current directory.

You can also specify a device name instead of a file name—for example,
NUL for no file or PRN for the printer.

Note

If you want the file name for a given file to be the default (the file
name of the source file), place the commas that would otherwise
separate the file name from the other names side by side (,,). Unless a
semicolon (;) is used, all the commas in the command line are required.

Spaces in a command line are optional. If you make an error entering
any of the file names, MASM displays an error message and prompts
for new file names, using the method described in Section 2.1.2,
“Assembly Using Prompts.”

24

Using MASM

B Examples

MASM file.asm, file.obj, file.lst, file.crf

The example above is equivalent to the command line below:
MASM file,,,:

The source file file.asm is assembled. The generated relocatable code is
copied to the object file file.obj. MASM also creates an assembly list-
ing and a cross-reference file. These are written to file.lst and
file.crf, respectively.

MASM startup, ,stest:

The example above directs MASM to assemble the source file
startup.asm. The assembler then writes the relocatable object code to
the default object file, startup.obj. MASM creates a listing file named
stest.lst, but the semicolon keeps the assembler from creating a cross-
reference file.

MASM startup, ,stest, ;

The example above is the same as the previous example except that the
semicolon follows a comma that marks the place of the cross-reference file.
The assembler creates a cross-reference file startup.crf.

MASM B:\src\build;

The example above directs MASM to find and assemble the source file
build.asm in the directory \src on Drive B. The semicolon causes the
assembler to create an object file named build.obj in the current direc-
tory, but prevents MASM from creating an assembly-listing or cross-
reference file. Note that the object file is placed on the current drive, not
the drive specified for the source file.

2.1.2 Assembly Using Prompts

You can direct MASM to prompt you for the files it needs by starting
MASM with just the command name. MASM prompts you for the input
it needs by displaying the following lines, one at a time:

Source filename [.ASM]:
Object filename [source.OBJ]:
Source listing [NUL.LST]:
Cross-reference [NUL.CRF]:

25

Microsoft Macro Assembler Programmer’s Guide

The prompts correspond to the fields of MASM command lines. MASM
waits for you to respond to each prompt before printing the next one. You
must type a source-file name (though the extension is optional) at the first
prompt. For other prompts, you can either type a file name, or press the
ENTER key to accept the default displayed in brackets after the prompt.

File names typed at prompts must follow the command-line rules
described in Section 2.1.1, “Assembly Using a Command Line.” You can
type options after any of the prompts as long as you separate them from
file names with spaces. At any prompt, you can type the rest of the file
names in the command-line format. For example, you can choose the
default responses for all remaining prompts by typing a semicolon (;) after
any prompt (as long as you have supplied a source-file name), or you can
type commas (,) to indicate several files.

After you have answered the last prompt and pressed the ENTER key,
MASM assembles the source file.

2.2 Using Environment Variables

The Macro Assembler recognizes two environment variables: INCLUDE
and MASM. The subsections below describe these environment variables
and their use with the assembler.

Environment variables are described in general in the DOS user’s guide.

2.2.1 The INCLUDE Environment Variable

The INCLUDE environment variable can specify the directory where
include files are stored. This makes maintenance of include files easier,
particularly on a hard disk. All include files can be kept in the same direc-
tory. If you keep source files in different directories, you do not have to
keep copies of include files in each directory.

The INCLUDE environment variable is used by MASM only if you give
a file name as an argument to the INCLUDE directive (see Section 11.6.1,
“Using Include Files”). If you give a complete file specification, including
directory or drive, MASM only looks for the file in the specified directory.

When a file name is specified, MASM looks for the include file first in any
directory specified with the /I option (see Section 2.4.7, “Setting a Search
Path for Include Files”). If the /T option is not used or if the file is not
found, MASM next looks in the current directory. If the file is still not

26

Using MASM

found, MASM looks in the directories specified with the INCLUDE
environment variable in the order specified.

B Examples

SET INCLUDE=C:\INCLUDE

This line defines the INCLUDE environment string to be C:\INCLUDE.
Include files placed in this directory can be found automatically by
MASM. You can put this line in your AUTOEXEC.BAT file to set the

environment string each time you turn on your computer.

2.2.2 The MASM Environment Variable

The MASM environment variable can be used to specify default assembler
options. If you define the options you use most in the environment vari-
able, you do not need to type them on the command line every time you
start the Macro Assembler.

When you start MASM, it reads the options in the environment variable
first. Then it reads the options in the command line. If conflicting options
are encountered, the last one read takes effect. This means that you can
override default options in the environment variable by giving conflicting
options in the command line.

Some options define the default action. If given by themselves, they have
no effect since the default action is taken anyway. However, they are use-
ful for overriding a nondefault action specified by an option in the environ-
ment variable.

Some assembler directives have the same effect as options. They always
override related options.

Note

The equal sign (=) is not allowed in environment variables. Therefore
the /D option when used with the equal sign cannot be put in an
environment variable. For example, the following DOS command line
is illegal and will cause a syntax error:

SET MASM=/Dtest=5

27

Microsoft Macro Assembler Programmer’s Guide

® Examples
SET MASM=/A/Z1/Z

The command line above sets the MASM environment variable so that
the]£ZI and /Z options are in effect. The line can be put in an

C. BAT file to automatically set these options each time you
start your computer.

Assume you have set the MASM environment string using the line shown
above, and you then start MASM with the following command line:

MASM /S test:

The S option, which specifies sequential segment ordering, conflicts with
the /A option, which specifies alphabetical segment ordering. The
command-line option overrides the environment option, and the source file
has sequential ordering. (See Section 5.2.1, “Setting the Segment-Order
Method,” for information on the s1gn1ﬁcance of segment order.)

However, if the source file contains the .ALPHA directive, it overrides all
options and specifies alphabetical segment order.

2.3 Controlling Message Output

During and immediately after assembly, MASM sends messages to the
standard output device. By default, this device is the screen. However, the
display can be redirected so that instead it goes to a file or to a device
such as a printer.

The messages can include a status message for successful assembly and
error messages for unsuccessful assembly. The message format and the
error and warning messages are described in Appendix B, “Error Messages
and Exit Codes.”

Some text-editing programs can use error information to locate errors in
the source file. Typically, MASM is run as a shell from the editor and the
assembler output is redirected into a file. The editor then opens the file
and uses the data in it to locate errors in the source code. The errors may
be located by line number, or by a search for the text of the error line.

If your text editor does not support this capability directly, you may still
be able to use keystroke macros to set up similar functions. This requires
either an editor that supports keystroke macros or a keyboard enhancer
such as ProKeye or SuperKeye.

28

Using MASM

B Example

MASM file; > errors

This command line sends to the file errors all messages that would nor-
mally be sent to the screen.

2.4 Using MASM Options

The MASM options control the operation of the assembler and the format
of the output files it generates. Options can be entered with any combina-
tion of uppercase and lowercase letters.

MASM has the following options:

Option Action

/A Writes segments in alphabetical order
/Bnumber Sets buffer size

/C Specifies a cross-reference file

/D Creates Pass 1 listing

/D symbol]= value]

Defines assembler symbol

/E Creates code for emulated floating-point instruc-
tions

/H Lists command-line syntax and all assembler
options

/Ipath Sets include-file search path

/L Specifies an assembly-listing file

/ML Makes names case sensitive

/MU Converts names to uppercase letters

/MX Makes public and external names case sensitive

/N Suppresses tables in listing file

/P Checks for impure code

/S Writes segments in source-code order

/T Suppresses messages for successful assembly

1A' Displays extra statistics to screen

J/W{0|1]|2} Sets error-display level

29

Microsoft Macro Assembler Programmer’s Guide

/X Includes false conditionals in listings

/Z Displays error lines on screen

/ZD Puts line-number information in the object file
/Z1 Puts symbolic and line-number information in

the object file

Note

Previous versions of the assembler provided a /R option to enable
8087 instructions and real numbers in the IEEE format. Since the
current version of the assembler enables 8087 instructions and IEEE
format by default, the /R option is no longer needed. The option is
still recognized so that old make and batch files will work, but it has
no effect. The previous default format, Microsoft Binary, can be
specified with the MSFLOAT directive, as described in Section 4.4,
“Defining Default Assembly Behavior.”

2.4.1 Specifying the Segment-Order Method

B Syntax

/S Default
/A

The /A option directs MASM to place the assembled segments in alpha-
betical order before copying them to the object file. The /S option directs
the assembler to write segments in the order in which they appear in the
source code.

Source-code order is the default. If no option is given, MASM copies the
segments in the order encountered in the source file. The /S option is pro-
vided for compatibility with the XENIXs operating system and for over-
riding a default option in the MASM environment variable.

Note

Some previous versions of the IBM Macro Assembler ordered segments
alphabetically by default. Listings in some books and magazines have
been written with these early versions in mind. If you have trouble
assembling and linking a listing taken from a book or magazine, try
using the /A option.

30

Using MASM

The order in which segments are written to the object file is only one fac-
tor in determining the order in which they will appear in the executable
file. The significance of segment order and ways to control it are discussed
in Sections 5.2.1, “Setting the Segment-Order Method” and 5.2.2.3,
“Defining Segment Combinations with Combine Type.”

® Example
MASM /A file:;
The example above creates an object file, FILE.OBJ, whose segments are

arranged in alphabetical order. If the /S option were used instead, or if no
option were specified, the segments would be arranged in sequential order.

2.4.2 Setting the File-Buffer Size

B Syntax

/Bnumber

The /B option directs the assembler to change the size of the file buffer
used for the source file. The number is the number of 1024-byte (1K)
memory blocks allocated for the buffer. You can set the buffer to any size
from 1K to 63K (but not 64K). The default size of the buffer is 32K.

A buffer larger than your source file allows you to do the entire assembly
in memory, greatly increasing assembly speed. However, you may not be
able to use a large buffer if your computer does not have enough memory
or if you have too many resident programs using up memory. If you get an
error message indicating insufficient memory, you can decrease the buffer
size and try again.

B Examples

MASM /Bl16 file:

The example above decreases the buffer size to 16K.

MASM /B63 file;

The example above increases the buffer size to 63K.

31

Microsoft Macro Assembler Programmer’s Guide

2.4.3 Creating a Pass 1 Listing

B Syntax
/D

The /D option tells MASM to add a Pass 1 listing to the assembly-listing
file, making the assembly listing show the results of both assembler passes.
A Pass 1 listing is typically used to locate phase errors. Phase errors occur
when the assembler makes assumptions about the program in Pass 1 that
are not valid in Pass 2.

The /D option does not create a Pass 1 listing unless you also direct

MASM to create an assembly listing. It does direct the assembler to
display error messages for both Pass 1 and Pass 2 of the assembly, even if
no assembly listing 1s created. See Section 2.5.7 for more information
about Pass 1 listings.

® Example
MASM /D file,,:
This example directs the assembler to create a Pass 1 listing for the source

file file.asm. Thefile file.1lst will contain both the first and second
pass listings.

2.4.4 Defining Assembler Symbols

B Syntax
/Dsymbol= value]

The /D option when given with a symbol argument directs MASM to
define a symbol that can be used during the assembly as if it were defined
as a text equate in the source file. Multiple symbols can be defined in a sin-
gle command line.

The value can be any text string that does not include a space, comma, or
semicolon. If no value is given, the symbol is assigned a null string.

As noted in Section 2.2.2, “The MASM Environment Variable,” the ver-
sion of the option using the equal sign cannot be stored in the MASM
environment variable.

32

Using MASM

® Example
MASM /Dwide /Dmode=3 file,,

This example defines the symbol wide and gives it a null value. The sym-
bol could then be used in the following conditional-assembly block:

IFDEF wide
PAGE 50,132
ENDIF

When the symbol is defined in the command line, the listing file is format-
ted for a 132-column printer. When the symbol is not defined in the com-

mand line, the listing file is given the default width of 80 (see the descrip-
tion of the PAGE directive in Section 12.2, “Controlling Page Format in
Listings”).

The example also defines the symbol mode and gives it the value 3. The
symbol could then be used in a variety of contexts, as shown below:

IF mode LT 15 ; Use in expression
scrmode DB mode ; Initialize to mode
ELSE
scrmode DB 15 > Initialize to 15
ENDIF

2.4.5 Creating Code for a Floating-Point Emulator

B Syntax
/E

The /E option directs the assembler to generate data and code in the for-
mat expected by coprocessor emulator libraries. An emulator library uses
the instructions of the 8087, 80287, or 80387 coprocessors, if a coprocessor
is present; otherwise, the library emulates the coprocessor’s activity.

Emulator libraries are only available with high-level-language compilers,
including the Microsoft C, BASIC, FORTRAN, and Pascal compilers. The
option cannot be used in stand-alone assembler programs unless you write
your own emulator library. You cannot simply link with the emulator
library from a high-level language, since these libraries require that the
compiler start-up code be executed.

33

Microsoft Macro Assembler Programmer’s Guide

The Microsoft high-level-language compilers allow you to use options to
specify whether you want to use emulator code. If you link a high-level-
language module prepared with emulator options with an assembler
module that uses coprocessor instructions, you should use the /E option
when assembling.

To the applications programmer, writing code for the emulator is like
writing code for a coprocessor. The instruction sets are the same (except as
noted in Chapter 19, “Calculating with a Math Coprocessor”). However,
at run time the coprocessor instructions are used only if there is a copro-
cessor available on the machine. If there is no coprocessor, the slower code
from the emulator library is used instead.

® Example

MASM /E /MX math.asm:
CL /EPi calc.c math

In the first command line, the source file math.asm is assembled with
MASM by using the /E option. Then the CL program of the C compiler
is used to compile the C source file calc.c with the /FPioption and

finally to link the resulting object file écalc .0bj) with math.obj. The

compiler generates emulator code for floating-point instructions. There are
similar options for the FORTRAN, BASIC, and Pascal compilers.

2.4.6 Getting Command-Line Help

® Syntax

/H

The /H displays the command-line syntax and all the MASM options on
the screen. You should not give any file names or other options with the
/H option.

B Example

MASM /H

34

Using MASM

2.4.7 Setting a Search Path for Include Files

H Syntax
/Ipath

The /I option is used to set search paths for include files. You can set as
many as 10 search paths by using the option for each path. The order of
searching is the order in which the paths are listed in the command line.
The INCLUDE directive and include files are discussed in Section 11.6.1,
“Using Include Files.”

B Example
MASM /Ib:\io /I\macro file:

This command line might be used if the source file contains the following
statement:

INCLUDE dos.inc

In this case, MASM would search for the file dos. inc first in directory
\io on Drive B, and then in directory \macro on the current drive. If the
file was not found in either of these directories, MASM would look next in
the current directory and finally in any directories specified with the
INCLUDE environment variable.

You should not specify a path name with the INCLUDE directive if you
plan to specify search paths from the command line. For example, MASM
would only search the specified path and would ignore any search paths
specified in the command line if the source file contained any of the follow-
Ing statements:

INCLUDE a:\macro\dos.inc
INCLUDE ..\dos.inc
INCLUDE .\dos.inc

2.4.8 Specifying Listing and Cross-Reference Files

B Syntax

/L
/C

The /L option directs MASM to create a listing file even if one was not
specified in the command line or in response to prompts. The /C option

35

Microsoft Macro Assembler Programmer’s Guide

has the same effect for cross-reference files. Files specified with these
options always have the base name of the source file plus the extension
.LST for listing files or .CRF for cross-reference files. You cannot specify
any other file name. Both options are provided for compatibility with the
XENIX operating system.

® Example
MASM /L /C file;

This line creates file.lst and file.crf. It is equivalent to the fol-
lowing command line:

MASM file,,,:
2.4.9 Specifying Case Sensitivity

B Syntax

/MU Default

The /ML option directs the assembler to make all names case sensitive.
The /MX option directs the assembler to make public and external names
case sensitive. The /MU option directs the assembler to convert all names
to uppercase.

By default, MASM converts all names to uppercase. The /MU option is
provided for compatibility with XENIX (which uses -MI by default) and to
override options given in the environment variable.

If case sensitivity is turned on, all names that have the same spelling, but
use letters of different cases, are considered different. For example, with
the /ML option, DATA and data are different. They would also be dif-
ferent with the /MX option if they were declared external or public. Pub-
lic and external names include any label, variable, or symbol names
defined by using the EXTRN, PUBLIC, or COMM directives (see
Chapter 8, “Creating Programs from Multiple Modules”).

If you use the /ZI or /ZD option (see Section 2.4.14, “Listing False Condi-

tionals”), the /MX, /ML, and /MU options affect the case of the sym-
bolic data that will be available to a symbolic debugger.

36

Using MASM

The /ML and /MX options are typically used when object modules
created with SM are to be linked with object modules created by a
case-sensitive compiler such as the Microsoft C compiler. If case sensitivity
is important, you should also use the linker /NOI option.

® Example

MASM /MX module;
LINK /NOI module;

This example shows how to use the /MX option with MASM to assemble
a file with case-sensitive public symbols.

2.4.10 Suppressing Tables in the Listing File

B Syntax

/N

The /N option tells the assembler to omit all tables from the end of the
listing file. If this option is not chosen, MASM includes tables of macros,
structures, records, segments and groups, and symbols. The code portion
of the listing file is not changed by the /N option.

® Example

MASM /N file,,;
2.4.11 Checking for Impure Code

B Syntax

/P

The /P option directs MASM to check for impure code in the 80286 or
80386 privileged mode.

Code that moves data into memory with a CS: override is acceptable in
real mode. However, such code may cause problems in protected mode.
When the /P option is in effect, the assembler checks for these situations
and generates an error if it encounters them.

37

Microsoft Macro Assembler Programmer’s Guide

Real and privileged modes are explained in Chapter 13, “Understanding
8086-Family Processors.” Versions of DOS available at release time do not
support privileged mode.

This option is provided for XENIX compatibility and to warn about pro-
gramming practices that will be illegal under OS/2.

® Example

.CODE
_'.jmp past ;s Don't execute data
addr DW ? ;s Allocate code space for data
past: .
; Calculate value of "addr" here
mov cs:addr,si ; Load register address

The example shows a CS override. If assembled with the /P option, an
error is generated.

2.4.12 Controlling Display of Assembly Statistics

B Syntax

/v
/T

The /V and /T options specify the level of information displayed to the
screen at the end of assembly. (V is a mnemonic for verbose; T is a
mnemonic for terse.)

If neither option is given, MASM outputs a line telling the amount of
symbol space free and the number of warnings and errors.

If the /V option is given, MASM also reports the number of lines and
symbols processed.

If the /T option is given, MASM does not output anything to the screen
unless errors are encountered. This option may be useful in batch or make
files if you do not want the output cluttered with unnecessary messages.

If errors are encountered, they will be displayed whether these options are

given or not. Appendix B, “Error Messages and Exit Codes,” describes the
messages displayed after assembly.

38

Using MASM

2.4.13 Setting the Warning Level

B Syntax
/W{0| 1|2}

The /W option sets the assembler warning level. MASM gives warning
messages for assembly statements that are ambiguous or questionable but
not necessarily illegal. Some programmers purposely use practices that
generate warnings. By setting the appropriate warning level, they can turn
off warnings if they are aware of the problem and do not wish to take
action to remedy it.

MASM has three levels of errors, as shown in Table 2.1.

Table 2.1

Warning Levels

Level Type Description

0 Severe errors Illegal statements

1 Serious warnings Ambiguous
statements or
questionable
programming
practices

2 Advisory warnings Statements that
may produce

inefficient code

The default warning level is 1. A higher warning level includes a lower
level. Level 2 includes severe errors, serious warnings, and advisory warn-
ings. If severe errors are encountered, no object file is produced.

The advisory warnings are listed below:

Number Message

104 Operand size does not match word size
105 Address size does not match word size
106 Jump within short distance

39

Microsoft Macro Assembler Programmer’s Guide

The serious warnings are listed below:

Number Message

1 Extra characters on line

16 Symbol is reserved word

31 Operand types must match

57 Illegal size for item

85 End of file, no END directive
101 Missing data; zero assumed

102 Segment near (or at) 64k limit

All other errors are severe.
2.4.14 Listing False Conditionals

B Syntax

/X

The /X option directs MASM to copy to the assembly listing all state-
ments forming the body of conditional-assembly blocks whose condition is
false. If you do not give the /X option in the command line, MASM
suppresses all such statements. The /X option lets you display condition-
als that do not generate code. Conditional-assembly directives are
explained in Chapter 12, “Controlling Assembly Output.”

The .LFCOND, .SFCOND, and . TFCOND directives can override the
effect of the /X option, as described in Section 12.3.2, “Controlling Listing
of Conditional Blocks.” The /X option does not affect the assembly listing
unless you direct the assembler to create an assembly-listing file.

B Example
MASM /X file,,:
Listing of false conditionals is turned on when file.asm is assembled.

Directives in the source file can override the /X option to change the
status of false-conditional listing.

40

Using MASM

2.4.15 Displaying Error Lines on the Screen

B Syntax

/Z

The /Z option directs MASM to display lines containing errors on the
screen. Normally when the assembler encounters an error, it displays only
an error message describing the problem. When you use the /Z option in
the command line, the assembler displays the source line that produced
the error in addition to the error message. MASM assembles faster
without the /Z option, but you may find the convenience of seeing the
incorrect source lines worth the slight cost in processing speed.

® Example

MASM /Z file;

2.4.16 Writing Symbolic Information

to the Object File
H Syntax
/Z1
/ZD

The /ZI option directs MASM to write symbolic information to the
object file. There are two types of symbolic information available: line-
number data and symbolic data.

Line-number data relates each instruction to the source line that created
it. The CodeView debugger and SYMDEB (the debugger provided with
some earlier versions of MASM) need this information for source-level
debugging.

Symbolic data specifies a size for each variable or label used in the pro-
gram. This includes both public and nonpublic labels and variable names.
Public symbols are discussed in Chapter 8, “Creating Programs from Mul-
tiple Modules.” The CodeView debugger (but not SYMDEB) uses this
information to specify the correct size for data objects so that they can be
used in expressions.

41

Microsoft Macro Assembler Programmer’s Guide

The /ZI option writes both line-number and symbolic data to the object
file. If you plan to debug your programs with the CodeView debugger, use
the /ZI option when assembling and the /CO option when linking. All
the necessary debugging information is available in executable files pre-
pared in the .EXE format. Debugging information is stripped out of pro-
grams prepared in .COM format.

The /ZD option writes line-number information only to the object file. It
can be used if you plan to debug with SYMDEB or if you want to see line
numbers in map files. The /ZI option can also be used for these purposes,
but it produces larger object files. If you do not have enough memory to
debug a program with the CodeView debugger, you can reduce the pro-
gram size by using /ZD instead of /ZI for all or some modules.

The option names /ZI and /ZD are similar to corresponding option names
for recent versions of Microsoft compilers.

2.5 Reading Assembly Listings

MASM creates an assembly listing of your source file whenever you give
an assembly-listing file name on the MASM command line or in response
to the MASM prompts. The assembly listing contains both the state-
ments in the source file and the object code (if any) generated for each
statement. The listing also shows the names and values of all labels, vari-
ables, and symbols in your source file.

The assembler creates tables for macros, structures, records, segments,
groups, and other symbols. These tables are placed at the end of the
assembly listing (unless you suppress them with the /N option). MASM
lists only the types of symbols encountered in the program. For example, if
your program has no macros, there will be no macro section in the symbol
table. All symbol names will be shown in uppercase letters unless you use
the /ML or /MX option to specify case sensitivity.

2.5.1 Reading Code in a Listing

The assembler lists the code generated from the statements of a source file.
Each line has the syntax shown below:

[tinenumber] offset [code] statement

The linenumber is the number of the line starting from the first statement
in the assembly listing. Line numbers are produced only if you request a

42

Using MASM

cross-reference file. Line numbers in the listing do not always correspond
to the same lines in the source file.

The offset is the offset from the beginning of the current segment to the
code. If the statement generates code or data, code shows the numeric
value in hexadecimal if the value is known at assembly time. If the value is
calculated at run time, MASM indicates what action is necessary to com-
pute the value. The statement is the source statement shown exactly as it
appears in the source file, or as expanded by a macro.

If any errors occur during assembly, each error message and error number
will appear directly below the statement where the error occurred. Refer to
Appendix B, “Error Messages and Exit Codes,” for a list of MASM errors
and a discussion of the format in which errors are displayed. An example
of an error line and message is shown below:

71 0012 E8 001C R call doit
test.ASM(46) : error A2071: Forward needs override or FAR

Note that number 46 in the error message is the source line where the
error occurred. Number 71 on the code line is the listing line where the
error occurred. These lines will seldom be the same.

The assembler uses the symbols and abbreviations in Table 2.2 to indicate
addresses that need to be resolved by the linker or values that were gen-
erated in a special way.

Table 2.2
Symbols and Abbreviations in Listings

Character Meaning
R Relocatable address (linker must resolve)
E External address (linker must resolve)

-— Segment /group address (linker must resolve)
= EQU or equal-sign (=) directive

nn: Segment override in statement

nn/ REP or LOCK prefix instruction

nn|zz] DUP expression: nn copies of the value zz

n Macro-expansion nesting level (4 if more than nine)
C Line from INCLUDE file

| 80386 size or address prefix

43

Microsoft Macro Assembler Programmer’s Guide

B Example

The sample listing shown in this section is produced using the /ZI option.
A cross-reference file is specified so that line numbers will appear in the
listing. The command line is as follows:

MASM /ZI listdemo,,,:

The code portion of the resulting listing is shown below. The tables nor-
mally seen at the end of the listing are explained later, in Sections
2.5.2-2.5.7 below.

Microsoft (R) Macro Assembler Version 5.00 9/22/87 14:44:53
Listing features demo Page 1-1
1 PAGE 65,132
2 TITLE Listing features demo
3 (¢} INCLUDE dos.mac
4 C StrAlloc MACRO name, text
5 C name DB &text
6 C DB 13d, 10d
7 C 1lé&name EQU $-name
8 Cc ENDM
9
10
11 = 0080 larg EQU 80h
12
13 DOSSEG
14 .MODEL small
15
16 0100 .STACK 256
17
18 color RECORD b:1,r:3=1,i:1=1,f:3=7
19
20 date STRUC
21 0000 O5 month DB 5
22 0001 07 day DB 7
23 0002 07C3 year DW 1987
‘;’g 0004 date ENDS
26 0000 .DATA
27 0000 1F text color <>
28 0001 09 today date <9,22,1987>
29 0002 16
30 0003 07C3
31
32 0005 0064[buffer DW 100 DUP(?)
33 ????
34]
35
36
37 StrAlloc ending,"Finished."
38 OOCD 46 69 6E 69 73 68 65 1 ending DB 'Finished."
39 O0OD6 OD OA 1 DB 13d, 10d
40

Using MASM

41 0000 .CODE

42

43 0000 B8 ---- R start: mov ax,@DATA

44 0003 8E D8 mov ds, ax

45

46 0005 B8 0063 mov ax,'c'

47 0008 26: 8B OE 0080 mov cx,es:larg

48 000D BF 0052 mov di, 82

49 0010 F2/ AE repne scasb

50 0012 57 push di

51

52 EXTRN work :NEAR

53 0013 E8 0000 E call work

54

55 0016 B8 170C mov ax,4C00
listdemo.ASM(40) : error A2107: Non-digit in number

56 0019 CD 21 int 21h

57

58 001B END start

2.5.2 Reading a Macro Table

A macro table at a listing file’s end gives in alphabetical order the names
and sizes (in lines) of all macros called or defined in the source file.

B Example

Macros:
Name Lines

STRALLOC 3

2.5.3 Reading a Structure and Record Table

All structures and records declared in the source file are given at the end
of the listing file. The names are listed in alphabetical order. Each name is
followed by the fields in the order in which they are declared.

® Example

Structures and Records:

Name Width # fields
Shift Width Mask Initial

COLOR « v v « « « . 0008 0004

B00 0007 0001 0080 0000

R 0004 0003 0070 0010

o 0003 0001 0008 0008

F00 0. 0000 0003 0007 0007
DATE« < .« .. 0004 0003

MONTH« 0000

DAY« 0001

YEAR o ... 0002

45

Microsoft Macro Assembler Programmer’s Guide

The first row of headings only applies to the record or structure itself. For
a record, the “Width” column shows the width in bits while the
“# fields” column tells the total number of fields.

The second row of headings applies only to fields of the record or struc-
ture. For records, the “Shift” column lists the offset (in bits) from the
low-order bit of the record to the low-order bit in the field. The “Width”
column lists the number of bits in the field. The “Mask” column lists the
maximum value of the field, expressed in hexadecimal. The “Initial”
column lists the initial value of the field, if any. For each field, the table
shows the mask and initial values as if they were placed in the record and
all other fields were set to 0.

For a structure, the “Width” column lists the size of the structure in
bytes. The “# fields” column lists the number of fields in the structure.
Both values are in hexadecimal.

For structure fields, the “Shift” column lists the offset in bytes from the
beginning of the structure to the field. This value is in hexadecimal. The
other columns are not used.

2.5.4 Reading a Segment and Group Table

Segments and groups used in the source file are listed at the end of the
program with their size, align type, combine type, and class. If you used
simplified segment directives in the source file, the actual segment names
generated by MASM will be listed in the table.

® Example

Segments and Groups:

Name Size Align Combine Class
DGROUP GROUP
_DATA 00oD8 WORD PUBLIC 'DATA'
STACK 0800 PARA STACK 'STACK'
_TEXT . . . L o oo oo 0018 BYTE PUBLIC 'CODE'

The “Name” column lists the names of all segments and groups. Segment
and group names are given in alphabetical order, except that the names of
segments belonging to a group are placed under the group name in the
order in which they were added to the group.

46

Using MASM

The “Size” column lists the byte size (in hexadecimal) of each segment.
The size of groups is not shown.

The “Align” column lists the align type of the segment.

The “Combine” column lists the combine type of the segment. If no expli-
cit combine type is defined for the segment, the listing shows NONE, rep-
resenting the private combine type. If the “Align” column contains AT,
the “Combine” column contains the hexadecimal address of the beginning
of the segment.

The “Class” column lists the class name of the segment. For a complete

explanation of the align, combine, and class types, see Section 5.2.2,
“Defining Full Segments.”

2.5.5 Reading a Symbol Table

All symbols (except names for macros, structures, records, and segments)
are listed in a symbol table at the end of the listing.

® Example

Symbols:
Name Type Value Attr
BUFFER L WORD 0005 _DATA Length = 0064
ENDING L BYTE OOCD _DATA
LARG NUMBER 0080
LENDING NUMBER OOOB
START L NEAR 0000 _TEXT
TEXT« « L BYTE 0000 _DATA
TODAY« . .. L DWORD 0001 _DATA
WORK L NEAR 0OO0O _TEXT External
@ODE TEXT _TEXT
@CODESIZE TEXT O
@ATA TEXT DGROUP
@ATASIZE TEXT O
@QFARDATA TEXT FAR_DATA
@QFARDATA? TEXT FAR_BSSk
@ILENAME TEXT 1listdemo

47

Microsoft Macro Assembler Programmer’s Guide

The “Name” column lists the names in alphabetical order. The “Type”
column lists each symbol’s type. A type is given as one of the following:

Type Definition

L NEAR A near label

L FAR A far label

N PROC A near procedure label

F PROC A far procedure label

NUMBER An absolute label

ALIAS An alias for another symbol
OPCODE An equate for an instruction opcode
TEXT A text equate

BYTE One byte

WORD One word (two bytes)

DWORD Doubleword (four bytes)

FWORD Farword (six bytes)

QWORD Quadword (eight bytes)

TBYTE Ten bytes

number Length in bytes of a structure variable

The length of a multiple-element variable such as an array or string is the
length of a single element, not the length of the entire variable. For exam-
ple, string variables are always shown as L, BYTE.

If the symbol represents an absolute value defined with an EQU or equal-
sign (=) directive, the “Value” column shows the symbol’s value. The
value may be another symbol, a string, or a constant numeric value (in
hexadecimal), depending on whether the type is ALIAS, TEXT, or
NUMBER. If the type 1is OPCODE, the “Value” column will be blank.
If the symbol represents a variable, label, or procedure, the “Value”
column shows the symbol’s hexadecimal offset from the beginning of the
segment in which it is defined.

The “Attr” column shows the attributes of the symbol. The attributes
include the name of the segment (if any) in which the symbol is defined,
the scope of the symbol, and the code length. A symbol’s scope is given
only if the symbol is defined using the EXTRN and PUBLIC directives.
The scope can be EXTERNAL, GLOBAL, or COMMUNAL. The code
length }in hexadecimal) is given only for procedures. The “Attr” column is
blank if the symbol has no attribute.

48

Using MASM

The text equates shown at the end of the sample table are the ones defined
automatically when you use simplified segment directives (see Section
5.1.1, “Understanding Memory Models”).

2.5.6 Reading Assembly Statistics

Data on the assembly, including the number of lines and symbols pro-
cessed and the errors or warnings encountered, are shown at the end of the
listing. See Appendix B, “Error Messages and Exit Codes,” for further
information on this data.

H Example

48 Source Lines
52 Total Lines
53 Symbols

45570 + 310654 Bytes symbol space free

O Warning Errors
1l Severe Errors

2.5.7 Reading a Pass 1 Listing

When you specify the /D option in the MASM command line, the assem-
bler puts a Pass 1 listing in the assembly-listing file. The listing file shows
the results of both assembler passes. Pass 1 listings are useful in analyzing
phase errors.

The following example illustrates a Pass 1 listing for a source file that
assembled without error on the second pass.

0017 7E 00 jle labell
PASS_CMP.ASM(20) : error 9 : Symbol not defined LABEL1

0019 BB 1000 mov bx, 4096

001C labell:

During Pass 1, the JLE instruction to a forward reference produces an
error message, and the value 0 is encoded as the operand. MASM displays
this error because it has not yet encountered the symbol labell.

Later in Pass 1, labell is defined. Therefore, the assembler knows about
labell on Pass 2 and can fix the Pass 1 error. The Pass 2 listing is shown
below:

0017 7E 03 jle labell
0019 BB 1000 mov bx, 4096
00o1C labell:

49

Microsoft Macro Assembler Programmer’s Guide

The operand for the JLE instruction is now coded as 3 instead of 0 to
indicate that the distance of the jump to labell is three bytes.

Since MASM generated the same number of bytes for both passes, there
was no error. Phase errors occur if the assembler makes an assumption on
Pass 1 that it cannot change on Pass 2. If you get a phase error, you can
examine the Pass 1 listing to see what assumptions the assembler made.

50

31 Uking GBIcooisibi i 53
3.1.1 Using a Command Line
to Create a Cross-Reference Listing.............. 93
3.1.2 Using Prompts
to Create a Cross-Reference Listing.............. 54

3.2 Reading Cross-Reference Listingsccceevveeunnee.. 5%

Using CREF

The Microsoft Cross-Reference Utility (CREF') creates a cross-reference
listing of all symbols in an assembly-language program. A cross-reference
listing is an alphabetical list of symbols in which each symbol is followed
by a series of line numbers. The line numbers indicate the lines in the
source program that contain a reference to the symbol.

CRETF is intended for use as a debugging aid to speed up the search for
symbols encountered during a debugging session. The cross-reference list-
ing, together with the symbol table created by the assembler, can make
debugging and correcting a program easier.

3.1 Using CREF

CREF creates a cross-reference listing for a program by converting a
binary cross-reference file, produced by the assembler, into a readable
ASCII file. You create the cross-reference file by supplying a cross-
reference-file name when you invoke the assembler. See Section 2.1.1,
“Assembly Using a Command Line,” for more information on creating a
binary cross-reference file. You create the cross-reference listing by invok-
ing CREF and supplying the name of the cross-reference file.

3.1.1 Using a Command Line
to Create a Cross-Reference Listing

To convert a binary cross-reference file created by MASM into an ASCII
cross-reference listing, type CREF followed by the names of the files you
want to process.

B Syntax

CREF crossreferencefile [,crossreferencelisting] [3]

The crossreferencefile is the name of the cross-reference file created by
MASM, and the crossreferencelisting is the name of the readable ASCII
file you wish to create.

If you do not supply file-name extensions when you name the files, CREF
automatically provides .CRF for the cross-reference file and .REF for the
cross-reference-listing file. If you do not want these extensions, you must

supply your own.

You can select a default file name for the listing file by typing a semicolon
(;) immediately after crossreferencefile.

53

Microsoft Macro Assembler Programmer’s Guide

You can specify a directory or disk drive for either of the files. You can
also name output devices such as CON (display console) and PRN
(printer).

When CREF finishes creating the cross-reference-listing file, it displays
the number of symbols processed.

Examples

CREEF test.crf,test.ref

The example above converts the cross-reference file test.crf to the
cross-reference-listing file test.ref. It is equivalent to

CREEF test, test
or
CREF test:;

The following example directs the cross-reference listing to the screen. No
file is created.

CREF test,con

3.1.2 Using Prompts
to Create a Cross-Reference Listing

You can direct CREF to prompt you for the files it needs by starting
CREF with just the command name. CREF prompts you for the input it
needs by displaying the following lines, one at a time:

Cross-Reference [.CRE]:
Listing [filename.REF]:

The prompts correspond to the fields of CREF command lines. CREF
waits for you to respond to each prompt before printing the next one. You
must type a cross-reference file name (though the extension is optional) at
the first prompt. For the second prompt, you can either type a file name or
press the ENTER key to accept the default displayed in brackets after the
prompt.

After you have answered the last prompt and pressed the ENTER key,

CREF reads the cross-reference file and creates the new listing. It also
displays the number of symbols in the cross-reference file.

54

Using CREF

3.2 Reading Cross-Reference Listings

The cross-reference listing contains the name of each symbol defined in

your program. Each name is followed by a list of line numbers representing
the line or lines in the listing file in which a symbol is defined or used. Line
numbers in which a symbol is defined are marked with a number sign (#).

Each page in the listing begins with the title of the program. The title is
the name or string defined by the TITLE directive in the source file (see
Section 12.2.1, “Setting the Listing Title”).

® Example

The next three code samples illustrate source, listings, and cross-reference
files for a program. The source file hello.asm is shown below:

TITLE hello

DOSSEG

.MODEL. small

.STACK 100h

.DATA

PUBLIC message, lmessage
message DB "Hello, world."
lmessage EQU $ - message

.CODE
start: mov ax, DGROUP

mov ds, ax

EXTRN display:NEAR
call display

mov ax, 4CO0h
int 21h
END start

To assemble the program and create a cross-reference file, enter the follow-
ing command line:

MASM hello,,,:

The listing file hello.lst produced by this assembly is shown below:

55

Microsoft Macro Assembler Programmer’s Guide

Microsoft (R) Macro Assembler Version 5.00

hello

0100

VOOV P W

10 0000

16 0000
17 0003
20 0005

22 0008
23 OOOB

25 000D

Microsoft (R) Macro Assembler Version 5.

hello

48

B8
8E
E8

B8
CD

65 6C 6C 6F 2C 20
6F 72 6C 64 2E

---- R
D8
0000 E

4C00
21

Segments and Groups:

DGROUP .
_DATA
STACK

_TEXT

Symbols:

DISPLAY
LMESSAGE
MESSAGE
START

@CODE . .
QCODESIZE
@DATA . .
@DATASIZE
@FARDATA .
Q@EARDATA?
@F ILENAME

N

N

ame

ame

24 Source Lines
Lines

24 Total

39 Symbols

message

lmessage

start:

9/22/87 15:39:48
Page 1-1

TITLE hello

DOSSEG

.MODEL. small

.STACK 100h

.DATA

PUBLIC message, lmessa
DB "Hello, world.
EQU $ - message
.CODE

mov ax, DGROUP

mov ds,ax

EXTRN display:NEAR
call display

%e

mov ax,4CO0h

int 21h

END start
(ee] 9/22/87 15:39:48

Symbols-1

Length Align Combine Class
GROUP
000D WORD PUBLIC 'DATA'
0100 PARA STACK 'STACK'
000D BYTE PUBLIC 'CODE'
Type Value Attr
L NEAR 0000 _TEXT External
NUMBER OOOD Global
L BYTE 0000 _DATA Global
L NEAR 0000 _TEXT
TEXT _text
TEXT O

TEXT dgroup
o

TEXT

TEXT far_data
TEXT far_bss
TEXT hellod

45994 + 314294 Bytes symbol space free

O Warning Errors
O Severe Errors

56

Using CREF

To create a cross-reference listing of the file hello.cr £, enter the
following command line:

CREF hello:;

The resulting cross-reference-listing file hello.ref is shown below:

Microsoft Cross-Reference Version 5.00 9/22/87 15:39:48
hello
Symbol Cross-Reference (# is definition) Cref-1
CODE 14
DATA 8
DGROUP 16
DISPLAY. 194 20
LMESSAGE 9 124
MESSAGE. 9 104 12
STACK. 64 6
START. 16# 25
DATA.o oo 8#
_TEXT.« 144
10 Symbols

Notice that line numbers in the listing and cross-reference-listing files may
not identify corresponding lines in the source file.

57

[JSING
| JIRECTIVES

Parr2 > UsING DIRECTIVES

Part 2 of the Programmer’s Guide (comprising
chapters 4-12) describes the directives and
operators recognized by the Microsoft Macro
Assembler. Directives tell you how to generate
code and data at assembly time. Operators tell
you how to combine operands to form assembly-
language expressions.

Chapter 4 introduces basic concepts of the
assembly language recognized by the Microsoft
Macro Assembler. Topics covered include sym-
bols, constants, statement syntax, and processor
directives.

Chapters 5-8 explain the different directives and
operators. The material is organized topically,
with related directives discussed together.
Operators and expressions are discussed
specifically in Chapter 9.

61

WRITING SOURCE CODE

4.1

4.2
4.3

4.4
4.5

Writing Assembly-Language Statements 65

4.1.1 Using Mnemonics and Operandsc..c.eueu.. 66

4.1.2 WEREWEOMMONES ... ocvooeocvemsvsssoniiremmiassssses 67

Assigning Names to Symbols.........ccovvveeernveeennee. 67

@ T T R i 69

4.3.1 - INEORETMIBRERILS ... covvooosvinsssensmismaperersovsnsons 70
4.3.1.1 Specifying Integers

with Radix Specifiers ...ccceceeeerececacncenes 70

4.3.1.2 Setting the Default Radix ..cceveeevnrnneenn. 71

4.3.2 Packed Binary Coded Decimal Constants72

433 RealENUMDEr Constants.....cccosssssossssnsssrsnssse 73

4.8.4 BUIME EDRIERIESooiocrcooveiisosssirroiissuassose 74

Defining Default Assembly Behavior..................... 75

Ending a Source File........cc.cccceccoscresaasssescnsensossesene 78

Writing Source Code

Assembly-language programs are written as source files, which can then be
assembled into object files by MASM. Object files can then be processed
and combined with LINK to form executable files.

Source files are made up of assembly-language statements. Statements are
in turn made up of mnemonics, operands, and comments. This chapter
describes how to write assembly-language statements. Symbol names and
constants are explained. It also tells you how to start and end assembly-
language source files.

4.1 Writing Assembly-Language Statements

A statement is a combination of mnemonics, operands, and comments that
defines the object code to be created at assembly time. Each line of source
code consists of a single statement. Multiline statements are not allowed.
Statements must not have more than 128 characters. Statements can have
up to four fields, as shown below:

B Syntax
[name] [operation] [operands] [;comment]

The fields are explained below, starting with the leftmost field:

Field Purpose

name Labels the statement so that the statement can be
accessed by name in other statements

operation Defines the action of the statement

operands Defines the data to be operated on by the statement

comment Describes the statement without having any effect on
assembly

All fields are optional, although the operand or name fields may be
required if certain directives or instructions are given in the operation
field. A blank line is simply a statement in which all fields are blank. A
comment line is a statement in which all fields except the comment are

blank.

Statements can be entered in uppercase or lowercase letters. Sample code
in this manual uses uppercase letters for directives, hexadecimal letter

65

Microsoft Macro Assembler Programmer’s Guide

digits, and segment definitions. Your code will be clearer if you choose a
case convention and use it consistently.

Each field (except the comment field) must be separated from other fields
by a space or tab character. That is the only limitation on structure
imposed by MASM. For example, the following code is legal:

dosseg;use microsoft segment conventions
.model small;conventions and small model
.stack 100h;allocate 256-byte stack

.data

message db "Hello, world.",13,10;message to be written
lmessage equ § - message;length of message
.code

start: mov ax,@data;load segment location
mov ds,ax;into ds register

mov bx,1;load 1 - file handle for

;standard output

mov cX, lmessage;load length of message

mov dx,offset message;load address of message
mov ah, 40h; load number for dos write function
int 21h;call dos

mov ax,4cOO0h;load dos exit function (4ch)

;in ah and O errorlevel in al

int 21h;call dos

end start

However, the code is much easier to interpret if each field is assigned a
specified tab position and a standard convention is used for capitalization.
The example program in Chapter 1, “Getting Started,” is the same as the
example above except for the conventions used.

4.1.1 Using Mnemonics and Operands

Mnemonics are the names assigned to commands that tell either the
assembler or the processor what to do. There are two types of mnemonics:
directives and instructions.

Directives give directions to the assembler. They specify the manner in
which the assembler is to generate object code at assembly time. Part 2,
“Using Directives,” describes the directives recognized by the assembler.
Directives are also discussed in Part 3, “Using Instructions.”

Instructions give directions to the processor. At assembly time, they are
translated into object code. At run time, the object code controls the
behavior of the processor. Instructions are described in Part 3, “Using
Instructions.”

Operands define the data that is used by directives and instructions. They
can be made up of symbols, constants, expressions, and registers. Sections

66

Writing Source Code

4.2 and 4.3 below discuss symbol names and constants. Operands, expres-
sions, and registers are discussed throughout the manual, but particularly
in Chapter 9, “Using Operands and Expressions,” and Chapter 14, “Using
Addressing Modes.”

4.1.2 Writing Comments

Comments are descriptions of the code. They are for documentation only
and are ignored by the assembler.

Any text following a semicolon is considered a comment. Comments com-
monly start in the column assigned for the comment field, or in the first
column of the source code. The comment must follow all other fields in the
statement.

Multiline comments can either be specified with multiple comment state-
ments or with the COMMENT directive.

B Syntax

COMMENT delimiter [text]
text
delimiter [text]

All teat between the first delimiter and the line containing a second delim-
iter is ignored by the assembler. The delimiter character is the first non-
blank character after the COMMENT directive. The text includes the
comments up to and including the line containing the next occurrence of
the delimiter.

E Example

COMMENT + The plus
sign is the delimiter. The
assembler ignores the statement
following the last delimiter
+ mov ax,1 (ignored)

4.2 Assigning Names to Symbols

A symbol is a name that represents a value. Symbols are one of the most
important elements of assembly-language programs. Elements that must

67

Microsoft Macro Assembler Programmer’s Guide

be represented symbolically in assembly-language source code include vari-
ables, address labels, macros, segments, procedures, records, and struc-
tures. Constants, expressions, and strings can also be represented symboli-
cally.

Symbol names are combinations of letters (both uppercase and lowercase),
digits, and special characters. The Macro Assembler recognizes the follow-
ing character set:

A-Z a-z 0-9
Z @ - 8. L1 ()<>{)+ -/
> T iN=#

Letters, digits, and some characters can be used in symbol names, but
some restrictions on how certain characters can be used or combined are
listed below:

e A name can have any combination of uppercase and lowercase
letters. All lowercase letters are converted to uppercase by the
assembler, unless the /ML assembly option is used, or unless the
name is declared with a PUBLIC or EXTRN directive and the
/MX option is used.

e Digits may be used within a name, but not as the first character.

e A name can be given any number of characters, but only the first
31 are used. All other characters are ignored.

e The following characters may be used at the beginning of a name
or within a name: underscore (—), question mark (?), dollar sign

($), and at sign (@).

e The period (.) is an operator and cannot be used within a name,
but it can be used as the first character of a name.

e A name may not be the same as any reserved name. Note that two
special characters, the question mark (?) and the dollar sign SEB),
are reserved names and therefore can’t stand alone as symbo
names.

A reserved name is any name with a special, predefined meaning to the
assembler. Reserved names include instruction and directive mnemonics,
register names, and operator names. All uppercase and lowercase letter
combinations of these names are treated as the same name.

Table 4.1 lists names that are always reserved by the assembler. Using any
of these names for a symbol results in an error.

68

Writing Source Code

Table 4.1

Reserved Names

$ DATA .ERRNDEF LALL REPT

- DATA? .ERRNZ LE SALL

+ DB EVEN LENGTH SEG

- DD EXITM .LFCOND SEGMENT
. DF EXTRN LIST SEQ

/ DOSSEG FAR LOCAL SFCOND
= DQ JFARDATA LOW SHL

? DS JFARDATA? LT SHORT
[} DT FWORD MACRO SHR

.186 DW GE MASK SIZE

.286 DWORD GROUP MOD STACK
.286P ELSE GT .MODEL STRUC
287 END HIGH NAME SUBTTL
.386 ENDIF IF NE TBYTE
.386P ENDM IF1 NEAR .TFCOND
.387 ENDP IF2 NOT THIS
.8086 ENDS IFB OFFSET TITLE
.8087 EQ IFDEF OR TYPE
ALIGN EQU IFDIF ORG .TYPE
ALPHA .ERR IFE %0ouUT WIDTH
AND .ERR1 IFIDN PAGE WORD
ASSUME .ERR2 IFNB PROC XALL
BYTE .ERRB IFNDEF PTR XCREF
.CODE .ERRDEF INCLUDE PUBLIC XLIST
COMM ERRDIF INCLUDELIB PURGE XOR
COMMENT .ERRE IRP QWORD

.CONST ERRIDN IRPC LRADIX

.CREF .ERRNB LABEL RECORD

In addition to these names in the table above, instruction mnemonics and
register names are considered reserved names. These vary depending on
the processor directives given in the source file. For example, the register
name EAX is a reserved word with the .386 directive but not with the
.2886 directive. Section 4.4, “Defining Default Assembly Behavior,”
describes processor directives. Instruction mnemonics for each processor
are listed in the Microsoft Macro Assembler Reference. Register names are
listed in Section 14.2, “Using Register Operands.”

4.3 Constants

Constants can be used in source files to specify numbers or strings that are
set or initialized at assembly time. MASM recognizes four types of con-
stant values:

69

Microsoft Macro Assembler Programmer’s Guide

Integers
Packed binary coded decimals

Real numbers

Ll

Strings

4.3.1 Integer Constants

Integer constants represent integer values. They can be used in a variety of
contexts in assembly-language source code. For example, they can be used
in data declarations and equates, or as immediate operands.

Packed decimal integers are a special kind of integer constant that can
only be used to initialize binary coded decimal (BCD) variables. They are
described in Sections 4.3.2, “Packed Binary Coded Decimal Constants,”
and 6.2.1.2, “Binary Coded Decimal Variables.”

Integer constants can be specified in binary, octal, decimal, or hexadecimal
values. Table 4.2 shows the legal digits for each of these radixes. For hexa-
decimal radix, the digits can be either uppercase or lowercase letters.

Table 4.2

Digits Used with Each Radix

Name Base Digits

Binary 2 01

Octal 8 01234567

Decimal 10 0123456789
Hexadecimal 16 0123456789ABCDEF

The radix for an integer can be defined for a specific integer by using radix
specifiers; or a default radix can be defined globally with the .RADIX
directive.

4.3.1.1 Specifying Integers with Radix Specifiers

The radix for an integer constant can be given by putting one of the fol-
lowing radix specifiers after the last digit of the number:

70

Writing Source Code

Radix Specifier
Binary B

Octal Qor O
Decimal D

Hexadecimal H

Radix specifiers can be given in either uppercase or lowercase letters; sam-
ple code in this manual uses lowercase letters.

Hexadecimal numbers must always start with a decimal digit (0 to 9). If
necessary, put a leading 0 at the left of the number to distinguish between
symbols and hexadecimal numbers that start with a letter. For example,
OABCh is interpreted as a hexadecimal number, but ABCh is interpreted
as a symbol. The hexadecimal digits A through F can be either uppercase
or lowercase letters. Sample code in this manual uses uppercase letters.

If no radix is given, the assembler interprets the integer by using the
current default radix. The initial default radix is decimal, but you can
change the default with the . RADIX directive.

B Examples

n360 EQU 01011010b + 132q + S5Ah + 90d ; 4 * 90
né0 EQU 00001111b + 170 + OFh + 15d ; 4 * 15

4.3.1.2 Setting the Default Radix

The .RADIX directive sets the default radix for integer constants in the
source file.

B Syntax

RADIX expression

The ezpression must evaluate to a number in the range 2—-16. It defines
whether the numbers are binary, octal, decimal, hexadecimal, or numbers

of some other base.

Numbers given in exzpression are always considered decimal, regardless of
the current default radix. The initial default radix is decimal.

71

Microsoft Macro Assembler Programmer’s Guide

Note

The .RADIX directive does not affect real numbers initialized as vari-
ables with the DD, DQ, or DT directive. Initial values for variables
declared with these directives are always evaluated as decimal unless a
radix specifier is appended.

Also, the .RADIX directive does not affect the optional radix
specifiers, B and D, used with integer numbers. When the letters B or
D appear at the end of any integer, they are always considered to be a
radix specifier even if the current radix is 16.

For example, if the input radix is 16, the number OABCD will be inter-
preted as 0OABC decimal, an illegal number, instead of as 0OABCD hexa-
decimal, as intended. Type OABCDh to specify OABCD in hexadecimal.
Similarly, the number 11B will be treated as 11 binary, a legal
number, but not as 11B hexadecimal as intended. Type 11Bh to
specify 11B in hexadecimal.

B Examples

.RADIX 16 ; Set default radix to hexadecimal
.RADIX 2 ; Set default radix to binary

4.3.2 Packed Binary Coded Decimal Constants

When an integer constant is used with the DT directive, the number is
interpreted by default as a packed binary coded decimal number. You can
use the D radix specifier to override the default and initialize 10-byte

" integers as binary-format integers.

The syntax for specifying binary coded decimals is exactly the same as for
other integers. However, MASM encodes binary coded decimals in a com-
pletely different way. See Section 6.2.1.2, “Defining Binary Coded Decimal
Variables,” for complete information on storage of binary coded decimals.

B Examples

positive DT 1234567890 ; Encoded as 0O0000000001234567890Ch
negative DT -1234567890 ; Encoded as 80000000001234567890h

72

Writing Source Code

4.3.3 Real-Number Constants

A real number is a number consisting of an integer part, a fractional part,
and an exponent. Real numbers are usually represented in decimal format.

B Syntax
[+ | =] integer.fraction[E[+ | —] ezponent]

The integer and fraction parts combine to form the value of the number.
This value is stored internally as a unit and is called the mantissa. It may
be signed. The optional ezponent follows the exponent indicator (E). It
represents the magnitude of the value, and is stored internally as a unit. If
no exgonent is given, 1 is assumed. If an exponent is given, it may be
signed.

During assembly, MASM converts real-number constants given in the
decimal format to a binary format. The sign, exponent, and mantissa of
the real number are encoded as bit fields within the number. See Section
6.3.1.5, “Real-Number Variables,” for an explanation of how real numbers
are encoded.

You can specify the encoded format directly using hexadecimal digits (0-9
or A-F). The number must begin with a decimal digit (0-9) and cannot be
signed. It must be followed by the real-number designator (R). This desig-
nator is used the same as a radix designator except it specifies that the
given hexadecimal number should be interpreted as a real number.

Real numbers can only be used to initialize variables with the DD, DQ,
and DT directives. They cannot be used in expressions. The maximum
number of digits in the number and the maximum range of exponent
values depend on the directive. The number of digits for encoded numbers
used with DD, DQ, and DT must be 8, 16, and 20 digits, respectively. (If
a leading O is supplied, the number must be 9, 17, or 21 digits.) See Sec-
tion 6.3.1.5, “Real-Number Variables,” for an explanation of how real
numbers are encoded.

Note

Real numbers will be encoded differently depending upon whether you
use the MSFLOAT directive. By default, real numbers are encoded
in the IEEE format. This is a change from previous versions, which
assembled real numbers by default in the Microsoft Binary format. The
MSFLOAT directive overrides the default and specifies Microsoft
Binary format. See Section 6.3.1.5, “Real-Number Variables,” for a
description of these formats.

73

Microsoft Macro Assembler Programmer’s Guide

® Example

. Real numbers

shrt DD 25.23
long DQ 2.523E1
ten_byte DT 2523.CE-2

; Assumes .MSFLOAT
mbshort DD 81000000r ;
mblong DQ 8100000000000000r ;

as Microsoft Binary short
as Microsoft Binary long

N
[oN o]

; Assumes default IEEE format
ieeeshort DD 3F800000r ;

1.0 as IEEE short
ieeelong DQ 3EEF0000000000000r ;1.

as IEEE long

[eXe]

; The same regardless of processor directives
temporary DT 3FEF8000000000000000r ; 1.0 as 10-byte temporary real

4.3.4 String Constants

A string constant consists of one or more ASCII characters enclosed in sin-
gle or double quotation marks.

B Syntax

' characters'
“characters"

String constants are case sensitive. A string constant consisting of a single
character is sometimes called a character constant.

Single quotation marks must be encoded twice when used literally within
string constants that are also enclosed by single quotation marks. Simi-
larly, double quotation marks must be encoded twice when used in string
constants that are also enclosed by double quotation marks.

® Examples

char DB 'a’

char2 DB "a"

message DB "This is a message."

warn DB 'Can''t find file.' ; Can't find file.

warn2 DB "Can't find file." ; Can't find file.
string DB "This ""value"" not found." ; This '"value" not found.
string2 DB 'This "value" not found.' ; This "value" not found.

74

‘Writing Source Code

4.4 Defining Default Assembly Behavior

Since the assembler processes sequentially, any directives that define the
behavior of the assembler for sections of code or for the entire source file
must come before the sections affected by the directive.

There are three types of directives that may define behavior for the assem-
bly:

1. The .MODEL directive defines the memory model.
2. Processor directives define the processor and coprocessor.

3. The MSFLOAT directive and the coprocessor directives define
how floating-point variables are encoded.

These directives are optional. If you do not use them, MASM makes
default assumptions. However, if you do use them, you must put them
before any statements that will be affected by them.

The MSFLOAT and .MODEL directives affect the entire assembly and
can only occur once in the source file. Normally they should be placed at
the beginning of the source file.

The .MODEL directive is part of the new system of simplified segment
directives implemented in Version 5.0. It is explained in Section
5.1.3.,“Defining the Memory Model.”

The MSFLOAT directive disables all coprocessor instructions and
specifies that initialized real-number variables be encoded in the Microsoft
Binary format. Without this directive, initialized real-number variables
are encoded in the IEEE format. This is a change from previous versions of
the assembler, which used Microsoft Binary format by default and required
a coprocessor directive or the /R option to specify IEEE format.
MSFLOAT must be used for programs that require real-number data in
the Microsoft Binary format. Section 6.3.1.5, “Real-Number Variables,”
describes real-number data formats and the factors to consider in choosing
a format.

Processor and coprocessor directives define the instruction set that is
recognized by MASM. They are listed and explained below:

Directive Description

.8086 The .8086 directive enables assembly of instructions
for the 8086 and 8088 processors and the 8087 copro-
cessor. It disables assembly of the instructions unique
to the 80186, 80286, and 80386 processors.

75

Microsoft Macro Assembler Programmer’s Guide

76

.186

.286

.286P

.386

.386P

This is the default mode and is used if no instruction
set directive is specified. Using the default instruction
set ensures that your program can be used on all
8086-family processors. However, if you choose this
directive, your program will not take advantage of
the more powerful instructions available on more
advanced processors.

The .186 directive enables assembly of the 8086 pro-
cessor instructions, 8087 coprocessor instructions,
and the additional instructions for the 80186 proces-
sor.

The .286 directive enables assembly of the 8086
instructions plus the additional nonprivileged
instructions of the 80286 processor. It also enables
80287 coprocessor instructions. If privileged instruc-
tions were previously enabled, the .286 directive dis-
ables them.

This directive should be used for programs that will
be executed only by an 80186, 80286, or 80386 pro-
cessor. For compatibility with previous versions of
MASM,, the .286C directive is also available. It is
equivalent to the .286 directive.

This directive is equivalent to the .286 directive
except that it also enables the privileged instructions
of the 80286 processor. This does not mean that the
directive is required if the program will run in pro-
tected mode; it only means that the directive is
required if the program uses the instructions that ini-
tiate and manage privileged-mode processes. These
instructions (see Section 20.3, “Controlling Protected
Mode Processes”) are normally used only by systems
programmers.

The .386 directive enables assembly of the 8086 and
the nonprivileged instructions of the 80286 and 80386
processors. It also enables 80387 coprocessor instruc-
tions. If privileged instructions were previously
enabled, this directive disables them.

This directive should be used for programs that will
be executed only by an 80386 processor.

This directive is equivalent to the .386 directive
except that it also enables the privileged instructions
of the 80386 processor.

Writing Source Code

.8087 The .8087 directive enables assembly of instructions
for the 8087 math coprocessor and disables assembly
of instructions unique to the 80287 coprocessor. It
also specifies the IEEE format for encoding floating-
point variables.

This is the default mode and is used if no coprocessor
directive is specified. This directive should be used
for programs that must run with either the 8087,
80287, or 80387 coprocessors.

.287 The .287 directive enables assembly of instructions
for the 8087 floating-point coprocessor and the addi-
tional instructions for the 80287. It also specifies the
IEEE format for encoding floating-point variables.

Coprocessor instructions are optimized if you use this
directive rather than the .8087 directive. Therefore,
you should use it if you know your program will
never need to run under an 8087 processor. See Sec-
tion 19.3, “Coordinating Memory Access,” for an
explanation.

.387 The .387 directive enables assembly of instructions
for the 8087 and 80287 floating-point coprocessors
and the additional instructions and addressing modes
for the 80387. It also specifies the IEEE format for
encoding floating-point variables.

If you do not specify any processor directives, MASM uses the following
defaults:

e 8086,/8088 processor instruction set

e 8087 coprocessor instruction set

e JEEE format for floating-point variables
Normally the processor and coprocessor directives can be used at the start
of the source file to define the instruction sets for the entire assembly.
However, it is possible to use different processor directives at different
points in the source file to change assumptions for a section of code. For
instance, you might have processor-specific code in different parts of the

same source file. You can also turn privileged instructions on and off or
allow unusual combinations of the processor and coprocessor.

There are two limitations on changing the processor or coprocessor:

1. The directives must be given outside segments. You must end the
current segment, give the processor directive, and then open

77

Microsoft Macro Assembler Programmer’s Guide

another segment. See Section 5.1.5, “Using Predefined Equates,”
for an example of changing the processor directives with simplified
segment directives.

2. You can specify a lower-level coprocessor with a higher-level copro-
cessor, but an error message will be generated if you try to specify
a lower-level processor with a higher-level coprocessor.

The coprocessor directives have the opposite effect of the MSFLOAT
directive. MSFLOAT turns off coprocessor instruction sets and enables
the Microsoft Binary format for floating-point variables. Any coprocessor
instruction turns on the specified coprocessor instruction set and enables
IEEE format for floating-point variables.

® Examples

; .MSFLOAT affects the whole source file
.MSEFLOAT
. 8087 : Ignored

; Legal - use 80386 and 80287
.386
.287
; Illegal - can't use 8086 with 80287
.8086
.287

; Turn privileged mode on and off
. 286P

:286

4.5 Ending a Source File

Source files are always terminated with the END directive. This directive
has two purposes: it marks the end of the source file, and it can indicate
the address where execution begins when the program is loaded.

78

‘Writing Source Code

B Syntax
END [startaddress|

Any statements following the END directive are ignored by the assembler.
For instance, you can put comments on lines after the END directive
without using comment specifiers (;) or the COMMENT directive.

The startaddress is a label or expression identifying the address where you
want execution to begin when the program is loaded. Specifying a start
address is discussed in detail in Section 5.5.1, “Initializing the CS and IP
Registers.”

79

DEFINING
SEGMENT STRUCTURE

5.1 Simplified Segment Definitionscccceveeereunnenne. 83
5.1.1 Understanding Memory Models........cccevrv.... 84
5.1.2 Specifying DOS Segment Ordercceeevveneens 85
5.1.3 Defining the Memory Model........ccceevrrrvennne. 87
5.1.4 Defining Simplified Segments.......cccovuureennnnn.. 88
5.1.5 Using Predefined Equates...ccccccerrrneecernaneennns 90
5.1.6 Simplified Segment Defaults......ccevvreerennnnnnns 92
5.1.7 Default Segment Namesccceeeeeerrveneerrennnnns 93
9.2 Full Segment Definitions.......ccccceeeercneesececccennnannes 95
5.2.1 Setting the Segment-Order Method............... 96
5.2.2 Defining Full Segmentscceeeeeeeernneeeeennnnens 97
5.2.2.1 Controlling Alignment
WILHEANEN "LYDC oo cosessssssrernssestosssossass 98
5.2.2.2 Setting Segment Word Size
WIEHIUSE YD oossivinse sspsrsasesrsssssssocsse 98
5.2.2.3 Defining Segment Combinations
with Combine LYDe «:ccessvassssanssossesass 100
5.2.2.4 Controlling Segment Structure
WIth C1aS8 Ly D6 s eressnes sitssseranseestsras 104
5.3 Defining Segment Groups.......cccceceeereevnveeeeeessennnne 106
5.4 Associating Segments with Registers................... 109
9.9 Initializing Segment Registers........ccoovuveeereeciunne 111
5.5.1 Initializing the CS and IP Registers............ 111
5.5.2 Initializing the DS Register....ccceeeeeeerennnenns 112
5.5.3 Initializing the SS and SP Registers............ 114
5.5.4 Initializing the ES Register....cccoeereerernennenns 115

5.0 DSINg SeZINBNTS.ccorrereerseersssoressssssssrarsansasssonse 115

Defining Segment Structure

Segments are a fundamental part of assembly-language programming for
the 8086-family of processors. They are related to the segmented architec-
ture used by Intele for its 16-bit and 32-bit microprocessors. This architec-
ture is explained in more detail in Chapter 13, “Understanding 8086-
Family Processors.”

A segment is a collection of instructions or data whose addresses are all
relative to the same segment register. Segments can be defined by using
simplified segment directives or full segment definitions.

In most cases, simplified segment definitions are a better choice. They are
easier to use and more consistent, yet you seldom sacrifice any functional-
ity by using them. Simplified segment directives automatically define the
segment structure required when combining assembler modules with mo-
dules prepared with Microsoft high-level languages.

Although more difficult to use, full segment definitions give more complete
control over segments. A few complex programs may require full segment
definitions in order to get unusual segment orders and types. In previous
versions of MASM, full segment definitions were the only way to define
segments, so you may need to use them to maintain existing source code.

This chapter describes both methods. If you choose to use simplified seg-
ment directives, you will probably not need to read about full segment
definitions.

5.1 Simplified Segment Definitions

Version 5.0 of MASM implements a new simplified system for declaring
segments. By default, the simplified segment directives use the segment
names and conventions followed by Microsoft high-level languages. If you
are willing to accept these conventions, the more difficult aspects of seg-
ment definition are handled automatically.

If you are writing stand-alone assembler programs in which segment
names, order, and other definition factors are not crucial, the simplified
segment directives make programming easier. The Microsoft conventions
are flexible enough to work for most kinds of programs. If you are new to
assembly-language programming, you should use the simplified segment
directives for your first programs.

If you are writing assembler routines to be linked with Microsoft high-level
languages, the simplified segment directives ensure against mistakes that
would make your modules incompatible. The names are automatically de-
fined consistently and correctly.

When you use simplified segment directives, ASSUME and GROUP

statements that are consistent with Microsoft conventions are generated

83

Microsoft Macro Assembler Programmer’s Guide

automatically. You can learn more about the ASSUME and GROUP
directives in Sections 5.3 and 5.4. However, for most programs you do not
need to understand these directives. You simply use the simplified segment
directives in the format shown in the examples.

Note

The simplified segment directives cannot be used for programs written
in the .COM format. You must specifically define the single segment
required for this format. See Section 1.4.1, “Writing and Editing
Assembly-Language Source Code,” for more information.

5.1.1 Understanding Memory Models

To use simplified segment directives, you must declare a memory model for
your program. The memory model specifies the default size of data and
code used in a program.

Microsoft high-level languages require that each program have a default
size (or memory model). Any assembly-language routine called from a
high-level-language program should have the same memory model as the
calling program. See the documentation for your language to find out
what memory models it can use.

The most commonly used memory models are described below:

Model Description

Tiny All data and code fits in a single segment. Tiny model
programs must be written in the .COM format. Micro-
soft languages do not support this model. Some com-
pilers from other companies support tiny model either as
an option or as a requirement. You cannot use simplified
segment directives for tiny-model programs.

Small All data fits within a single 64K segment, and all code
fits within a 64K segment. Therefore, all code and data
can be accessed as near. This is the most common model
for stand-alone assembler programs. C is the only Micro-
soft language that supports this model.

Medium All data fits within a single 64K segment, but code may
be greater than 64K. Therefore, data is near, but code is
far. Most recent versions of Microsoft languages support
this model.

Compact All code fits within a single 64K segment, but the total
amount of data may be greater than 64K (although no

84

Defining Segment Structure

array can be larger than 64K). Therefore, code is near,
but data is far. C is the only Microsoft language that
supports this model.

Large Both code and data may be greater than 64K (although
no array can be larger than 64K). Therefore, both code
and data are far. All Microsoft languages support this
model.

Huge Both code and data may be greater than 64K. In addi-
tion, data arrays may be larger than 64k. Both code and
data are far, and pointers to elements within an array
must also be far. Most recent versions of Microsoft
languages support this model. Segments are the same for
large and huge models.

Stand-alone assembler programs can have any model. Small model is ade-
quate for most programs written entirely in assembly language. Since near
data or code can be accessed more quickly, the smallest memory model
that can accommodate your code and data is usually the most efficient.

Mixed-model programs use the default size for most code and data but
override the default for particular data items. Stand-alone assembler pro-
grams can be written as mixed-model programs by making specific pro-
cedures or variables near or far. Some Microsoft high-level languages have

NEAR, FAR, and HUGE keywords that enable you to override the de-
fault size of individual data or code items.

5.1.2 Specifying DOS Segment Order

The DOSSEG directive specifies that segments be ordered according to
the DOS segment-order convention. This is the convention used by Micro-
soft high-level-language compilers.

B Syntax
DOSSEG

Using the DOSSEG directive enables you to maintain a consistent, logi-
cal segment order without actually defining segments in that order in your
source file. Without this directive, the final segment order of the execut-
able file depends on a variety of factors, such as segment order, class
name, and order of linking. These factors are described in Section 5.2,
“Full Segment Definitions.”

Since segment order is not crucial to the proper functioning of most stand-

alone assembler programs, you can simply use the DOSSEG directive and
ignore the whole issue of segment order.

85

Microsoft Macro Assembler Programmer’s Guide

Note

Using the DOSSEG directive (or the /DOSSEG linker option) has
two side effects. The linker generates symbols called —end and
—edata. You should not use these names in programs that contain the
DOSSEG directive. Also, the linker increases the offset of the first
byte of the code segment by 16 bytes in small and compact models.
This is to give proper alignment to executable files created with Micro-
soft compilers.

If you want to use the DOS segment-order convention in stand-alone
assembler programs, you should use the DOSSEG argument in the main
module. Modules called from the main module need not use the DOSSEG
directive.

You do not need to use the DOSSEG directive for modules called from
Microsoft high-level languages, since the compiler already defines DOS seg-
ment order.

Under the DOS segment-order convention, segments have the following
order:

1. All segment names having the class name ’CODE’

2. Any segments that do not have class name ’CODE?’ and are not
part of the group DGROUP
3. Segments that are part of DGROUP, in the following order:

a. Any segments of class BEGDATA (this class name is reserved
for Microsoft use)

b. Any segments not of class BEGDATA, BSS, or STACK
c. Segments of class BSS
d. Segments of class STACK

Using the DOSSEG directive has the same effect as using the /DOSSEG
linker option.

The directive works by writing to the comment record of the object file.
The Intel title for this record is COMENT. If the linker detects a certain
sequence of bytes in this record, it automatically puts segments in the
DOS order.

86

Defining Segment Structure

5.1.3 Defining the Memory Model

The .MODEL directive is used to initialize the memory model. This dir-
ective should be used early in the source code before any other segment
directive.

B Syntax
.MODEL memorymodel

The memorymodel can be SMALL, MEDIUM, COMPACT, LARGE,
or HUGE. Segments are defined the same for large and huge models, but
the (@ datasize equate (explained in Section 5.1.5, “Using Predefined
Equates”) is different.

If you are writing an assembler routine for a high-level language, the
memorymodel should match the memory model used by the compiler or
interpreter.

If you are writing a stand-alone assembler program, you can use any
model. Section 5.1.1 describes each memory model. Small model is the best
choice for most stand-alone assembler programs.

Note

You must use the MODEL directive before defining any segment. If
one of the other simplified segment directives (such as .CODE or
.DATA) is given before the MODEL directive, an error is generated.

B Example 1

DOSSEG
.MODEL small

This statement defines default segments for small-model programs and
creates the ASSUME and GROUP statements used by small-model pro-
grams. The segments are automatically ordered according to the Microsoft
convention. The example statements might be used at the start of the
main (or only) module of a stand-alone assembler program.

87

Microsoft Macro Assembler Programmer’s Guide

B Example 2
.MODEL LARGE

This statement defines default segments for large-model programs and
creates the ASSUME and GROUP statements used by large-model pro-
grams. It does not automatically order segments according to the Micro-
soft convention. The example statement might be used at the start of an
assembly module that would be called from a large-model C, BASIC, FOR-
TRAN, or Pascal program.

® 80386 Only

If you use the .386 directive before the MODEL directive, the segment
definitions defines 32-bit segments. If you want to enable the 80386 proces-

sor with 16-bit segments, you should give the .386 directive after the
.MODEL directive.

5.1.4 Defining Simplified Segments

The .CODE, .DATA, .DATA?, .FARDATA, .FARDATA?,
.CONST, and .STACK directives indicate the start of a segment. They
also end any open segment definition used earlier in the source code.

B Syntax

STACK [size] Stack segment

.CODE [name] Code segment

.DATA Initialized near-data segment
.DATA? Uninitialized near-data segment
FARDATA [name] Initialized far-data segment
JFARDATA? [name] Uninitialized far-data segment
.CONST Constant-data segment

For segments that take an optional name, a default name is used if none is
specified. See Section 5.1.7 for information on default segment names.

Each new segment directive ends the previous segment. The END direc-
tive closes the last open segment in the source file.

The size argument of the .STACK directive is the number of bytes to be

declared in the stack. If no size is given, the segment is defined with a
default size of one kilobyte.

88

Defining Segment Structure

Stand-alone assembler programs in the .EXE format should define a stack
for the main (or only) module. Stacks are defined by the compiler or inter-
preter for modules linked with a main module from a high-level language.

Code should be placed in a segment initialized with the .CODE directive,
regardless of the memory model. Normally, only one code segment is de-
fined in a source module. If you put multiple code segments in one source
file, you must specify name to distinguish the segments. The name can
only be specified for models allowing multiple code segments (medium and
large). Name will be ignored if given with small or compact models.

Uninitialized data is any variable declared by using the indeterminate
symbol (?) and the DUP operator. When declaring data for modules that
will be used with a Microsoft high-level language, you should follow the
convention of using .DATA or .FARDATA for initialized data and
DATA? or FARDATA? for uninitialized data. For stand-alone assem-
bler programs, using the DATAZ? and .FARDATAY? directives is op-
tional. You can put uninitialized data in any data segment.

Constant data is data that must be declared in a data segment but is not
subject to change at run time. Use of this segment is optional for stand-
alone assembler programs. If you are writing assembler routines to be
called from a high-level language, you can use the .CONST directive to
declare strings, real numbers, and other constant data that must be allo-
cated as data.

Data in segments defined with the .STACK, .CONST, .DATA or
DATA? directives is placed in a group called DGROUP. Data in seg-
ments defined with the FARDATA or FARDATA? directives is not
placed in any group. See Section 5.3 for more information on segment
groups. When initializing the DS register to access data in a group-
associated segment, the value of DGROUP should be loaded into DS. See
Section 5.5.2 for information on initializing data segments.

B Example 1

DOSSEG
.MODEL. SMALL
.STACK 100h
.DATA
ivariable DB 5
iarray DW 50 DUP (5)
string DB "This is a string"
uarray DW 50 DUP (?)
EXTRN xvariable:WORD
.CODE
start: mov ax, DGROUP
mov ds,ax
EXTRN xprocedure:NEAR
call xprocedure
END start

89

Microsoft Macro Assembler Programmer’s Guide

This code uses simplified segment directives for a small-model, stand-alone
assembler program. Notice that initialized data, uninitialized data, and a
string constant are all defined in the same data segment. See Section 5.1.7,
“Default Segment Names,” for an equivalent version that uses full segment
definitions.

® Example 2

.MODEL. LARGE

.FARDATA?

fuarray DW 10 DUP (?) ; Far uninitialized data
.CONST

string DB "This is a string" ; String constant
.DATA

niarray DB 100 DUP (5) ; Near initialized data
.FARDATA
EXTR xvariable:FAR

fiarray DW 100 DUP (10) ; Far initialized data
.CODE TASK
EXTR xprocedure :PROC

task PROC
ret

task ENDP
END

This example uses simplified segment directives to create a module that
might be called from a large-model, high-level-language program. Notice
that different types of data are put in different segments to conform to
Microsoft compiler conventions. See Section 5.1.7, “Default Segment
Names,” for an equivalent version using full segment definitions.

5.1.5 Using Predefined Equates

Several equates are predefined for you. You can use the equate names at
any point in your code to represent the equate values. You should not
assign equates having these names. The predefined equates are listed
below:

Name Value

@curseg This name has the segment name of the current
segment. This value may be convenient for
ASSUME statements, segment overrides, or other
cases in which you need to access the current seg-
ment. It can also be used to end a segment, as
shown below:

90

Defining Segment Structure

@curseg ENDS ; End current segment
.286 ; Must be outside segment
.CODE ; Restart segment
@filename This value represents the base name of the current

source file. For example, if the current source file is
task.asm, the value of @filenameis task.
This value can be used in any name you would like
to change if the file name changes. For example, it
can be used as a procedure name:

@filename PROC

@filename ENDP

@codesize If the MODEL directive has been used, the
and @codesize value is O for small and compact
@datasize models or 1 for medium, large, and huge models.

The @datasize value is O for small and medium
models, 1 for compact and large models, and 2 for
huge models. These values can be used in condi-
tional-assembly statements:

IF @datasize

les bx,pointer ; Load far pointer
mov ax,es:WORD PTR {[bx]

ELSE

mov bx,WORD PTR pointer ; Load near pointer
mov ax,WORD PTR [bx]

ENDIF
Segment For each of the primary segment directives, there
equates is a corresponding equate with the same name,

except that the equate starts with an at sign (@)
but the directive starts with a period. For example,
the @code equate represents the segment name
defined by the .CODE directive. Similarly,
@fardata represents the FARDATA segment
name and @fardata? represents the
JFARDATA? segment name. The @data equate
represents the group name shared by all the near
data segments. It can be used to access the seg-
ments created by the DATA, .DATA?,
.CONST, and .STACK segments.

These equates can be used in ASSUME state-
ments and at any other time a segment must be
referred to by name, for example:

ASSUME es:@fardata ; Assume ES to far data
(.MODEL handles DS)

mov ax,@data ; Initialize near to DS
mov ds,ax
mov ax,@fardata ; Initialize far to ES
mov es,ax

91

Microsoft Macro Assembler Programmer’s Guide

Note

Although predefined equates are part of the simplified segment system,
the @curseg and @filename equates are also available when using
full segment definitions.

5.1.6 Simplified Segment Defaults

When you use the simplified segment directives, defaults are different in
certain situations than they would be if you gave full segment definitions.
Defaults that change are listed below:

92

If you give full segment definitions, the default size for the PROC
directive is always NEAR. If you use the MODEL directive, the
PROC directive is associated with the specified memory model:
NEAR for small and compact models and FAR for medium, large,
and huge models. See Section 6.1.2, “Procedure Labels,” for further
discussion of the PROC directive.

If you give full segment definitions, the segment address used as
the base when calculating an offset with the OFFSET operator is
the data segment (the segment associated with the DS register).
With the simplified segment directives, the base address is the
DGROUP segment for segments that are associated with a group.
This includes segments declared with the DATA, .DATAZ?, and
STACK directives, but not segments declared with the .CODE,
JFARDATA, and .FARDATAY? directives.

For example, assume the variable testl was declared in a seg-
ment defined with the .DATA directive and test2 was declared
in a segment defined with the FARDATA directive. The state-
ment

mov ax,OFFSET testl
loads the address of testl relative to DGROUP. The statement
mov ax,OFFSET test2

loads the address of test2 relative to the segment defined by the
JFARDATA directive. See Section 5.3 for more information on
groups.

5.1.7 Default Segment Names

Defining Segment Structure

If you use the simplified segment directives by themselves, you do not need
to know the names assigned for each segment. However, it is possible to

mix full segment definitions with simplified segment definitions. Therefore,
some programmers may wish to know the actual names assigned to all seg-

ments.

Table 5.1 shows the default segment names created by each directive.

Table 5.1
Default Segments and Types for Standard Memory Models

Model Directive Name Align Combine Class Group
Small .CODE _TEXT ‘WORD PUBLIC *CODE’
DATA _DATA ‘WORD PUBLIC '‘DATA’ DGROUP
.CONST CONST ‘WORD PUBLIC *CONST’ DGROUP
.DATA? _BSS ‘WORD PUBLIC ’BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP
Medium .CODE name_TEXT WORD PUBLIC *CODE’
DATA _DATA WORD PUBLIC 'DATA’ DGROUP
.CONST CONST ‘WORD PUBLIC 'CONST’ DGROUP
.DATA? _BSS ‘WORD PUBLIC 'BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP
Compact .CODE _TEXT ‘WORD PUBLIC 'CODE’
.FARDATA FAR_DATA PARA private 'FAR_DATA’
.FARDATA?! FAR_BSS PARA private 'FAR_BSS’
DATA _DATA ‘WORD PUBLIC '‘DATA’ DGROUP
.CONST CONST WORD PUBLIC *CONST’ DGROUP
.DATA? _BSS WORD PUBLIC 'BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP
Large .CODE name_TEXT WORD PUBLIC 'CODE’
or huge .FARDATA FAR_DATA PARA private 'FAR_DATA’
.JFARDATA? FAR_BSS PARA private 'FAR_BSS’
.DATA _DATA ‘WORD PUBLIC 'DATA’ DGROUP
.CONST CONST ‘WORD PUBLIC 'CONST’ DGROUP
.DATA? _BSS ‘WORD PUBLIC '‘BSS’ DGROUP
STACK STACK PARA STACK 'STACK’ DGROUP

93

Microsoft Macro Assembler Programmer’s Guide

The name used as part of far-code segment names is the file name of the
module. The default name associated with the .CODE directive can be
overridden in medium and large models. The default names for the
FARDATA and .FARDATAY? directives can always be overridden.

The segment and group table at the end of listings always shows the

actual segment names. However, the group and assume statements gen-

erated by the MODEL directive are not shown in listing files. For a pro-

gram that uses all possible segments, group statements equivalent to the

following would be generated:

DGROUP GROUP _DATA, CONST, _BSS, STACK

For small and compact models, the following would be generated:
ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP

For medium, large, and huge models the following statement is given:

ASSUME cs:name_TEXT, ds:DGROUP, ss:DGROUP

80386 Only

If the .386 directive is used, the default align type for all segments is
DWORD.

B Example 1

EXTRN xvariable:WORD
EXTRN xprocedure:NEAR

DGROUP GROUP _DATA,_BSS
ASSUME cs:_TEXT, ds:DGROUP, ss:DGROUP
_TEXT SEGMENT WORD PUBLIC 'CODE'
start: mov ax, DGROUP
mov ds,ax
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
ivariable DB 5
iarray DW 50 DUP (5)
string DB "This is a string"
uarray DW 50 DUP (?)
_DATA ENDS
STACK SEGMENT PARA STACK 'STACK'
DB 100h DUP (?)
STACK ENDS
END start

94

Defining Segment Structure

This example is equivalent to Example 1 in Section 5.1.4, “Defining
Simplified Segments.” Notice that the segment order must be different in
this version to achieve the segment order specified by using the DOSSEG
directive in the first example. The external variables are declared at the
start of the source code in this example. With simplified segment direc-
tives, they can be declared in the segment in which they are used.

®m Example 2

DGROUP GROUP _DATA, CONST, STACK
ASSUME cs:TASK_TEXT, ds:FAR_DATA, ss:STACK
EXTRN xprocedure:FAR
EXTR xvariable:FAR

FAR_BSS SEGMENT PARA 'FAR_DATA'

fuarray DW 10 DUP (?) ; Far uninitialized data
FAR_BSS ENDS

CONST SEGMENT WORD PUBLIC 'CONST'

string DB "This is a string" ; String constant
CONST ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'

niarray DB 100 DUP (5) ; Near initialized data
_DATA ENDS

FAR_DATA SEGMENT WORD 'FAR_DATA'

fiarray DW 100 DUP (10)

FAR_DATA ENDS
TASK_TEXT SEGMENT WORD PUBLIC 'CODE

task PROC FAR
ret
task ENDP
TASK_TEXT ENDS
END

This example is equivalent to Example 2 in Section 5.1.4, “Defining
Simplified Segments.” Notice that the segment order is the same in both
versions. The segment order shown here is written to the object file, but it
is different in the executable file. The segment order specified by the com-
piler (the DOS segment order) overrides the segment order in the module
object file.

5.2 Full Segment Definitions

If you need complete control over segments, you may want to give com-
plete segment definitions. The section below explains all aspects of seg-
ment definitions, including how to order segments and how to define all
the segment types.

95

Microsoft Macro Assembler Programmer’s Guide

5.2.1 Setting the Segment-Order Method

The order in which MASM writes segments to the object file can be either
sequential or alphabetical. If the sequential method is specified, segments
are written in the order in which they appear in the source code. If the
alphabetical method is specified, segments are written in the alphabetical
order of their segment names.

The default is sequential. If no segment-order directive or option is given,
segments are ordered sequentially. The segment-order method is only one
factor in determining the final order of segments in memory. The DOS-
SEG directive ésee Section 5.1.2, “Specifying DOS Segment Order”) and
class type (see Section 5.2.2.4, “Controlling Segment Structure with Class
Type”) can also affect segment order.

The ordering method can be set by using the .ALPHA or .SEQ directive
in the source code. The method can also be set using the /S (sequential) or
/A (alphabetical) assembler options (see Section 2.4.1, “Specifying the
Segment-Order Method”). The directives have precedence over the op-
tions. For example, if the source code contains the .ALPHA directive, but
the /S option is given on the command line, the segments are ordered
alphabetically.

Changing the segment order is an advanced technique. In most cases you
can simply leave the default sequential order in effect. If you are linking
with high-level-language modules, the compiler automatically sets the seg-
ment order. The DOSSEG directive also overrides any segment-order
directives or options.

Note

Some previous versions of the IBM Macro Assembler ordered segments
alphabetically by default. If you have trouble assembling and linking
source-code listings from books or magazines, try using the /A option.
Listings written for previous IBM versions of the assembler may not
work without this option.

B Example 1

.SEQ
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS
CODE SEGMENT WORD PUBLIC 'CODE'
CODE ENDS

96

Defining Segment Structure

® Example 2

.ALPHA
DATA SEGMENT WORD PUBLIC 'DATA'
DATA ENDS
CODE SEGMENT WORD PUBLIC 'CODE'
CODE ENDS

In Example 1, the DATA segment is written to the object file first because
it appears first in the source code. In Example 2, the CODE segment is
written to the object file first because its name comes first alphabetically.

5.2.2 Defining Full Segments

The beginning of a program segment is defined with the SEGMENT
directive, and the end of the segment is defined with the ENDS directive.

® Syntax

name SEGMENT [align] [combine] [use] [’ class’]
statements
name ENDS

The name defines the name of the segment. This name can be unique or it
can be the same name given to other segments in the program. Segments
with identical names are treated as the same segment. For example, if it is
convenient to put different portions of a single segment in different source
modules, the segment is given the same name in both modules.

The optional align, combine, use, and ’class’ types give the linker and the
assembler instructions on how to set up and combine segments. Types can
be specified in any order, it is not necessary to enter all types, or any type,
for a given segment.

Defining segment types is an advanced technique. Beginning assembly-
language programmers might try using the simplified segment directives
discussed 1n Section 5.1.

Note

Don’t confuse the PAGE align type and the PUBLIC combine type
with the PAGE and PUBLIC directives. The distinction should be

clear from context since the align and combine types are only used on
the same line as the SEGMENT directive.

97

Microsoft Macro Assembler Programmer’s Guide

Segment types have no effect on programs prepared in the .COM for-
mat. Since there is only one segment, there is no need to specify how
segments are combined or ordered.

5.2.2.1 Controlling Alignment with Align Type

The optional align type defines the range of memory addresses from which
a starting address for the segment can be selected. The align type can be
any one of the following:

Align Type Meaning

BYTE Uses the next available byte address.

WORD Uses the next available word address (2 bytes per
word).

DWORD Uses the next available doubleword address (4

bytes per doubleword); the DWORD align type is
normally used in 32-bit segments with the 80386.

PARA Uses the next available paragraph address (16
bytes per paragraph).

PAGE Uses)the next available page address (256 bytes per
page).

If no align type is given, PARA is used by default.

The linker uses the alignment information to determine the relative start
address for each segment. DOS uses the information to calculate the
actual start address when the program is loaded.

Align types are illustrated in Figure 5.1, in Section 5.2.2.3, “Defining Seg-
ment Combinations with Combine Type.”

5.2.2.2 Setting Segment Word Size with Use Type

® 80386 Only

The use type specifies the segment word size on the 80386 processor. Seg-
ment word size is the default operand and address size of a segment.

The use type can be USE16 or USE32. These types are only relevant if
you have enabled 80386 instructions and addressing modes with the .386
directive. The assembler generates an error if you specify use type when
the 80386 processor is not enabled.

98

Defining Segment Structure

With the 80286 and other 16-bit processors, the segment word size is
always 16 bits. A 16-bit segment can contain up to 65,536 (64K) bytes.
However, the 80386 is capable of using either 16-bit or 32-bit segments.

A 32-bit segment can contain up to 4,294,967,296 bytes (4 gigabytes).
Although MASM permits you to define 4 gigabyte segments in 32-bit seg-
ments, current versions of DOS limit segment size to 64K.

If you do not specify a use type, the segment word size is 32 bits by default
when the .386 directive is used.

The effect of addressing modes is changed by the word size you specify for
the code segment. See Section 14.3.3, “80386 Indirect Memory Operands,”
for more information on 80386 addressing modes. The meaning of the
WORD and DWORD type specifiers is not changed by the use type.
WORD always indicates 16 bits and DWORD always indicates 32 bits
regardless of the current segment word size.

Note

Although the assembler allows you to use 16-bit and 32-bit segments
in the same program, you should normally make all segments the same
size. Mixing segment sizes is an advanced technique that can have
unexpected side effects. For the most part, it is used only by systems
programmers.

B Example 1

;s 16-bit segment

.386
_DATA SEGMENT DWORD USE16 PUBLIC 'DATA'
_DATA ENDS

B Example 2

; 32-bit segment
_TEXT SEGMENT DWORD USE32 PUBLIC 'CODE'

TEXT ENDS

99

Microsoft Macro Assembler Programmer’s Guide

5.2.2.3 Defining Segment Combinations with Combine Type

The optional combine type defines how to combine segments having the
same name. The combine type can be any one of the following:

100

Combine Type

Meaning

PUBLIC

STACK

COMMON

MEMORY

Concatenates all segments having the same
name to form a single, contiguous segment.

All instruction and data addresses in the new
segment are relative to a single segment regis-
ter, and all offsets are adjusted to represent the
distance from the beginning of the segment.

Concatenates all segments having the same
name to form a single, contiguous segment.
This combine type is the same as the PUBLIC
combine type, except that all addresses in the
new segment are relative to the SS segment
register.

The stack pointer (SP) register is initialized to
the length of the segment. The stack segment
of your program should normally use the
STACK type, since this automatically initial-
izes the SS register, as described in Section
5.5.3. If you create a stack segment and do not
use the STACK type, you must give instruc-
tions to initialize the SS and SP registers.

Creates overlapping segments by placing the
start of all segments having the same name at
the same address.

The length of the resulting area is the length of
the longest segment. All addresses in the seg-
ments are relative to the same base address. If
variables are initialized in more than one seg-
ment having the same name and COMMON
type, the most recently initialized data replace
any previously initialized data.

Concatenates all segments having the same
name to form a single, contiguous segment.

The Microsoft Overlay Linker treats
MEMORY segments exactly the same as
PUBLIC segments. MASM allows you to use
MEMORY type even though LINK does not
recognize a separate MEMORY type. This
feature is compatible with other linkers that

Defining Segment Structure

may support a combine type conforming to the
Intel definition of MEMORY type.

AT address Causes all label and variable addresses defined
in the segment to be relative to address.

The address can be any valid expression, but
must not contain a forward reference—that is,
a reference to a symbol defined later in the
source file. An AT segment typically contains
no code or initialized data. Instead, it
represents an address template that can be
placed over code or data already in memory,
such as a screen buffer or other absolute
memory locations defined by hardware. The
linker will not generate any code or data for
AT segments, but existing code or data can be
accessed by name if it is given a label in an AT
segment. Section 6.4, “Setting the Location
Counter,” shows an example of a segment with
AT combine type.

The AT combine type has no meaning in
protected-mode programs, since the segment
represents a movable selector rather than a
physical address. Real-mode programs that use
AT segments must be modified before they can
be used in protected mode. The planned multi-
tasking version of DOS, OS/2, will provide
DOS calls for doing tasks that are often done
by manipulating memory directly under
current versions of DOS.

If no combine type is given, the segment has private type. Segments having
the same name are not combined. Instead, each segment receives its own
physical segment when loaded into memory.

Notes

Although a given segment name can be used more than once in a
source file, each segment definition using that name must have either
exactly the same attributes, or attributes that do not conflict. If types
are given for an initial segment definition, then subsequent definitions
for that segment need not specify any types.

Normally you should provide at least one stack segment (having
STACK combine type) in a program. If no stack segment is declared,
LINK displays a warning message. You can ignore this message if you

101

Microsoft Macro Assembler Programmer’s Guide

have a specific reason for not declaring a stack segment. For example,
you would not have a separate stack segment in a program in the
.COM format.

H Example

The following source-code shell illustrates one way in which the combine
and align types can be used. Figure 5.1 shows the way LINK would load
the sample program into memory. -

NAME module_1

ASEG SEGMENT WORD PUBLIC 'CODE'
start: .
ASEG ENDS
BSEG SEGMENT WORD COMMON 'DATA'
BSEG ENDS
CSEG SEGMENT PARA STACK 'STACK'
CSEG ENDS
DSEG SEGMENT AT OBSOOH
DSEG ENDS

END start

NAME module_2

ASEG SEGMENT WORD PUBLIC 'CODE'
ASEG ENDS
BSEG SEGMENT WORD COMMON 'DATA'
BSEG ENDS

102

Defining Segment Structure

Figure 5.1 Segment Structure with Combine and Align Types

103

Microsoft Macro Assembler Programmer’s Guide

5.2.2.4 Controlling Segment Structure with Class Type

Class type is a means of associating segments that have different names,
but similar purposes. It can be used to control segment order and to iden-
tify the code segment.

The class name must be enclosed in single quotation marks (’). Class
names are not case sensitive unless the /ML or /MX option 1s used dur-
ing assembly.

All segments belong to a class. Segments for which no class name is expli-
citly stated have the null class name. LINK imposes no restriction on the
number or size of segments in a class. The total size of all segments in a
class can exceed 64K.

Note

The names assigned for class types of segments should not be used for
other symbol definitions in the source file. For example, if you give a
segment the class name 'CONSTANT', you should not give the name
constant to variables or labels in the source file.

The linker expects segments having the class name CODE or a class name
with the suffix CODE to contain program code. You should always assign
this class name to segments containing code.

The CodeView debugger also expects code segments to have the class
name CODE. If you fail to assign a class type to a code segment, or if you
give it a class type other than CODE, then labels may not be properly
aligned for symbolic debugging.

Class type is one of two factors that control the final order of segments in
an executable file. The other factor is the order of the segments in the
source file (with the /S option or the .SEQ directivie_{‘zr the alphabetical
order of segments (with the /A option or the .ALPHA directive).

These factors control different internal behavior, but both affect final
order of segments in the executable file. The sequential or alphabetical
order of segments in the source file determines the order in which the
assembler writes segments to the object file. The class type can affect the
order in which the linker writes segments from object files to the execut-
able file.

104

Defining Segment Structure

Segments having the same class type are loaded into memory together,
regardless of their sequential or alphabetical order in the source file.

Note

The DOSSEG directive (see Section 5.1.2, “Specifying DOS Segment
Order”) overrides all other factors in determining segment order.

® Example

A_SEG SEGMENT 'SEG_1'
A_SEG ENDS

B_SEG SEGMENT 'SEG_2'
B_SEG ENDS

C_SEG SEGMENT 'SEG_1'
C_SEG ENDS

When MASM assembles the preceding program fragment, it writes the
segments to the object file in sequential or alphabetical order, depending
on whether the /A option or the . ALPHA directive was used. In the
example above, the sequential and alphabetical order are the same, so the
order will be A_SEG, B_SEG, C_SEG in either case.

When the linker writes the segments to the executable file, it first checks
to see if any segments have the same class type. If they do, it writes them
to the executable file together. Thus A_SEG and C_SEG are placed
together because they both have class type 'SEG_1"'. The final order in
memory is A_SEG, C_SEG, B_SEG.

Since LINK processes modules in the order it receives them on the com-
mand line, you may not always be able to easily specify the order you want
segments to be loaded. For example, assume your program has four seg-
ments that you want loaded in the following order: _TEXT, _DATA,
CONST, and STACK.

The _TEXT, CONST, and STACK segments are defined in the first module
of your program, but the _DATA segment is defined in the second module.
LINK will not put the segments in the proper order because it first loads
the segments encountered in the first module.

You can avoid this problem by starting your program with dummy seg-
ment definitions in the order you wish to load your real segments. The
dummy segments can either go at the start of the first module, or they can
be placed in a separate include file that is called at the start of the first

105

Microsoft Macro Assembler Programmer’s Guide

module. You can then put the actual segment definitions in any order or
any module you find convenient.

For example, you might call the following include file at the start of the
first module of your program:

_TEXT SEGMENT WORD PUBLIC 'CODE'

_TEXT ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'

_DATA ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

STACK SEGMENT PARA STACK 'STACK'

STACK ENDS

The DOSSEG directive may be more convenient for defining segment
order if you are willing to accept the DOS segment-order conventions.

Once a segment has been defined, you do not need to specify the align,
combine, use, and class types on subsequent definitions. For example, if

your code defined dummy segments as shown above, you could define an
actual data segment with the following statements:

_DATA SEGMENT

_DATA ENDS

5.3 Defining Segment Groups

A group is a collection of segments associated with the same starting
address. You may wish to use a group if you want several types of data to
be organized in separate segments in your source code, but want them all
to be accessible from a single, common segment register at run time.

B Syntax

name GROUP segment [,segmend]...

The name is the symbol assigned to the starting address of the group. All
labels and variables defined within the segments of the group are relative
to the start of the group, rather than to the start of the segments in which

they are defined.

The segment can be any previously defined segment or a SEG expression
(see Section 9.2.4.5).

108

Defining Segment Structure

Segments can be added to a group one at a time. For example, you can
define and add segments to a group one by one. This is a new feature of
Version 5.0. Previous versions required that all segments in a group be
defined at one time.

The GROUP directive does not affect the order in which segments of a
group are loaded. Loading order depends on each segment’s class, or on
the order in which object modules are given to the linker.

Segments in a group need not be contiguous. Segments that do not belong
to the group can be loaded between segments that do. The only restriction
is that the distance (in bytes) between the first byte in the first segment of
the group and the last byte in the last segment must not exceed 65,535
bytes.

Note

When the MODEL directive is used, the offset of a group-relative seg-
ment refers to the ending address of the segment, not the beginning.
For example, the expression OFESET STACK evaluates to the end of
the stack segment.

Group names can be used with the ASSUME directive (discussed in Sec-
tion 5.4, “Associating Segments with Registers”) and as an operand prefix
with the segment-override operator (discussed in Section 9.2.3).

® Example

DGROUP GROUP ASEG,CSEG
ASSUME ds : DGROUP
ASEG SEGMENT WORD PUBLIC 'DATA'
asym .
ASEG ENDS
BSEG SEGMENT WORD PUBLIC 'DATA'
bsym .
BSEG ENDS
CSEG SEGMENT WORD PUBLIC 'DATA'
csym '
CSEG ENDS
END

107

Microsoft Macro Assembler Programmer’s Guide

Figure 5.2 shows the order of the example segments in memory. They are
loaded in the order in which they appear in the source code (or in alpha-
betical order if the .ALPHA directive or /A option is specified).

Since ASEG and CSEG are declared part of the same group, they have the
same base despite their separation in memory. This means that the sym-
bols asym and csym have offsets from the beginning of the group, which
is also the beginning of ASEG. The offset of bsym is from the beginning
of BSEG, since it is not part of the group. This sample illustrates the way
LINK organizes segments in a group. It is not intended as a typical use of
a group.

Figure 5.2 Segment Structure with Groups

108

Defining Segment Structure

5.4 Associating Segments with Registers

Many instructions assume a default segment. For example, JMP instruc-
tions assume the segment associated with the CS register; PUSH and
POP instructions assume the segment associated with the SS register;
MOV instructions assume the segment associated with the DS register.

When the assembler needs to reference an address, it must know what seg-
ment the address is in. It does this by using default segment or group
addresses assigned with the ASSUME directive.

Note

Using the ASSUME directive to tell the assembler which segment to
assoclate with a segment register is not the same as telling the proces-
sor. The ASSUME directive only affects assembly-time assumptions.
You may need to use instructions to change run-time assumptions. Ini-
tializing segment registers at run time is discussed in Section 5.5.

B Syntax

ASSUME segmentregister:name [,segmentregister:name]...
ASSUME segmentregister:NOTHING
ASSUME NOTHING

The name must be the name of the segment or group that is to be associ-
ated with the segmentregister. Subsequent instructions that assume a
default register for referencing labels or variables automatically assume
that if the default segment is segmentregister, then the label or variable is
in the name segment or group.

The ASSUME directive can define a segment for each of the segment
registers. The segmentregister can be CS, DS, ES| or SS (F'S and GS are
also available on the 80386). The name must be one of the following:

e The name of a segment defined in the source file with the SEG-
MENT directive

e The name of a group defined in the source file with the GROUP
directive

e The keyword NOTHING

109

Microsoft Macro Assembler Programmer’s Guide

e A SEG expression (see Section 9.2.4.5, “SEG Operator”)

e A string equate that evaluates to a segment or group name (but
not a string equate that evaluates to a SEG expression)

The keyword NOTHING cancels the current segment selection. For
example, the statement ASSUME NOTHING cancels all register selec-
tions made by previous ASSUME statements.

Usually a single ASSUME statement defines all four segment registers at
the start of the source file. However, you can use the ASSUME directive
at any point to change segment assumptions.

Using the ASSUME directive to change segment assumptions is often
equivalent to changing assumptions with the segment-override operator (:)
(see Section 9.2.3). The segment-override operator is more convenient for
one-time overrides, whereas the ASSUME directive may be more con-
venient if previous assumptions must be overridden for a sequence of
instructions.

® Example

DOSSEG
.MODEL. large ; DS automatically assumed to @data
.STACK 100h
.DATA

dl DW 7
.FARDATA

dz DW 9
.CODE

start: mov ax,@data ; Initialize near data
mov ds, ax
mov ax,@fardata ; Initialize far data
mov es,ax

; Method 1 for series of instructions that need override
; Use segment override for each statement

mov ax,es:d2

mov es:d2,bx
; Method 2 for series of instructions that need override
; Use ASSUME at beginning of series of instructions

ASSUME es:@fardata
mov cx,d2

mov d2,dx

110

Defining Segment Structure

5.5 Initializing Segment Registers

Assembly-language programs must initialize segment values for each seg-
ment register before instructions that reference the segment register can
be used in the source program.

Initializing segment registers is different from assigning default values for
segment registers with the ASSUME statement. The ASSUME directive
tells the assembler what segments to use at assembly time. Initializing seg-
ments gives them an initial value that will be used at run time.

Each of the segment registers is initialized in a different way.

5.5.1 Initializing the CS and IP Registers

The CS and IP registers are initialized by specifying a starting address
with the END directive.

B Syntax
END [startaddress]

The startaddress is a label or expression identifying the address where you
want execution to begin when the program is loaded. Normally a label for
the startaddress should be placed at the address of the first instruction in
the code segment.

The CS segment is initialized to the value of startaddress. The IP register
is normally initialized to 0. You can change the initial value of the IP
register by using the ORG directiveésee Section 6.4, “Setting the Loca-
tion Counter”) just before the startaddress label. For example, programs in
the .COM format use ORG 100h to initialize the IP register to 256 (100
hexadecimal).

If a program consists of a single source module, then the startaddress is
required for that module. If a program has several modules, all modules
must terminate with an END directive, but only one of them can define a
startaddress.

111

Microsoft Macro Assembler Programmer’s Guide

Warning

One, and only one, module must define a startaddress. If you do not
specify a startaddress, none is assumed. Neither MASM nor LINK
will generate an error message, but your program will probably start
execution at the wrong address.

B Example

; Module 1
.CODE
start: . ; First executable instruction
EXTRN task:NEAR
call task
END start ; Starting address defined in main module
; Module 2
PUBLIC task
.CODE
task PROC
task ﬁNDP
END ; No starting address in secondary module

If Module 1 and Module 2 are linked into a single program, it is essen-
tial that only the calling module define a starting address.

5.5.2 Initializing the DS Register

The DS register must be initialized to the address of the segment that will
be used for data.

The address of the segment or group for the initial data segment must be
loaded into the DS register. This is done in two statements because a

112

Defining Segment Structure

memory value cannot be loaded directly into a segment register. The
segment-setup lines typically appear at the start or very near the start of
the code segment.

B Example 1

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS
_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME cs:_TEXT,ds:_DATA
start: mov ax, _DATA . Load start of data segment
mov ds,ax ;. Transfer to DS register
_TEXT ENDS
END start

If you are using the Microsoft naming convention and segment order, the
address loaded into the DS register is not a segment address but the
address of DGROUP, as shown in Example 2. With simplified segment
directives, the address of DGROUP is represented by the predefined
equate (@ data.

B Example 2
DOSSEG
.MODEL SMALL
.DATA
. CODE

start: mov ax,@data ; Load start of DGROUP (@data)
mov ds,ax ; Transfer to DS register
léND start

113

Microsoft Macro Assembler Programmer’s Guide

5.5.3 Initializing the SS and SP Registers

The SS register is automatically initialized to the value of the last seg-
ment in the source code having combine type STACK. The SP register is
automatically initialized to the size of the stack segment. Thus SS:SP ini-
tially points to the end of the stack.

If you use a stack segment with combine type STACK, initialization of
SS and SP is automatic. The stack is automatically set up in this way
with the simplified segment directives.

However, you can initialize or reinitialize the stack segment directly by
changing the values of SS and SP. Since hardware interrupts use the same
stack as the program, you should turn off hardware interrupts while
changing the stack. Most 8086-family processors do this automatically,
but early versions of the 8088 do not.

® Example

.MODEL small

.STACK 100h ; Initialize "STACK"
.DATA
.CODE
start: mov ax,@data ; Load segment location
mov ds,ax : into DS register
cli ; Turn off interrupts
mov ss,ax ; Load same value as DS into SS
mov sp,OFFSET STACK ; Give SP new stack size

sti ; Turn interrupts back on

This example reinitializes SS so that it has the same value as DS, and
adjusts SP to reflect the new stack offset. Microsoft high-level-language
compilers do this so that stack variables in near procedures can be ac-
cessed relative to either SS or DS.

114

Defining Segment Structure

5.5.4 Initializing the ES Register

The ES register is not automatically initialized. If your program uses the
ES register, you must initialize it by moving the appropriate segment
value 1nto the register.

B Example

ASSUME es:@fardata ; Tell the assembler
mov ax,@fardata ; Tell the processor
mov es,ax

5.6 Nesting Segments

Segments can be nested. When MASM encounters a nested segment, it
temporarily suspends assembly of the enclosing segment and begins assem-
bly of the nested segment. When the nested segment has been assembled,
MASM continues assembly of the enclosing segment.

Nesting of segments makes it possible to mix segment definitions in pro-
grams that use simplified segment directives for most segment definitions.
When a full segment definition is given, the new segment is nested in the
simplified segment in which it is defined.

E Example 1

; Macro to print message on the screen
; Uses full segment definitions - segments nested

message MACRO text
LOCAL symbol
_DATA SEGMENT WORD PUBLIC 'DATA'
symbol DB &text
DB 13,10, "s"
_DATA ENDS
mov ah,0%h
mov dx, OFFSET symbol
int 21h
ENDM

_TEXT SEGMENT BYTE PUBLIC 'CODE'

message '"Please insert disk"

115

Microsoft Macro Assembler Programmer’s Guide

In the example above, a macro called from inside of the code segment
(_TEXT) allocates a variable within a nested data segment (_DATA). This
has the effect of allocating more data space on the end of the data segment
each time the macro is called. The macro can be used for messages appear-
ing only once in the source code.

® Example 2

; Macro to print message on the screen
; Uses simplified segment directives - segments not nested

message MACRO text
LOCAL symbol
.DATA
symbol DB &text
DB 13,10,"s"
.CODE
mov ah,0%h
mov dx,OFESET symbol
int 21h
ENDM

.CODE

message "Please insert disk"

Although Example 2 has the same practical effect as Example 1, MASM
handles the two macros differently. In Example 1, assembly of the outer
(codel) segment is suspended rather than terminated. In Example 2, assem-
bly of the code segment terminates, assembly of the data segment starts
and terminates, and then assembly of the code segment is restarted.

116

DEFINING [ABELS
AND VARIABLES

6.1 Using Type SuBEONS.......cc.ccco0niessesesensarasmpassscesn 119
6.2 Defining Code Labelsccccceeerernnecccrneeccrsnnencens 120
8.2.1 Near Uode LADeIScoovoressrossrssonssssnssoss 120
822 ProcolimR lBBElscccoviooiiciiniismsninaarbiases 121
6.2.3 Code Labels Defined
with the LABEL Directive....cccccecereeeeccceeneees 122
6.3 Defining and Initializing Data..........ccccouveeeeunnnnen. 123
6.8, A R s avis abvianssosssusesssnn iR VRNV Lbn 123
6.3.1.1 INROEEr Variablesc.cissvsssssssmmssrnsses 124
6.3.1.2 Binary Coded Decimal Variables......... 127
B.3.1.3" SEIINE Variables .. .ooecessentssisonstitostone 127
8.3.1.4 FPointer Variablesicosessssvsesnssrssssns 128
6.3.1.5 Real-Number Variables....cc.ccceevueurnnnens 130
6.3.2 ArravERnH BUllersccivesssssissanasessusssosns 135
6.3.3 Labeling Varinbles ..c...cocsssvssesnssarsnrssessorsss 136
6.4 Setting the Location Counter.........cccccceveunereeeeee. 137

SRR T g T T Sy S e T 138

Defining Labels and Variables

This chapter explains how to define labels, variables, and other symbols
that refer to instruction and data locations within segments.

The label- and variable-definition directives described in this chapter are
closely related to the segment-definition directives described in Chapter 5,
“Defining Segment Structure.” Segment directives assign the addresses for
segments. The variable-and label-definition directives assign offset
addresses within segments.

The assembler assigns offset addresses for each segment by keeping track
of a value called the location counter. The location counter is incremented
as each source statement is processed so that it always contains the offset
of the location being assembled. When a label or a variable name is
encountered, the current value of the location counter is assigned to the
symbol.

This chapter tells you how to assign labels and most kinds of variables.
(Multifield variables such as structures and records are discussed in
Chapter 7, “Using Structures and Records.”) The chapter also discusses
related directives, including those that control the location counter
directly.

6.1 Using Type Specifiers

Some statements require type specifiers to give the size or type of an
operand. There are two kinds of type specifiers: those that specify the size

of a variable or other memory operand, and those that specify the distance
of a label.

The type specifiers that give the size of a memory operand are listed below
with the number of bytes specified by each:

Specifier Number of Bytes

BYTE
WORD
DWORD
FWORD
QWORD
TBYTE 10

R O AN =

119

Microsoft Macro Assembler Programmer’s Guide

In some contexts, ABS can also be used as a type specifier that indicates
an operand is a constant rather than a memory operand.

The type specifiers that give the distance of a label are listed below:

Specifier Description

FAR The label references both the segment and offset of the
label.

NEAR The label references only the offset of the label.

PROC The label has the default type &near or far) of the
current memory model. The default size is always near

if you use full segment definitions. If you use simplified
segment definitions (see Section 5.1) the default type is
near for small and compact models or far for medium,
large, and huge models.

Directives that use type specifiers include LABEL, PROC, EXTRN, and
COMM. Operators that use type specifiers include PTR and THIS.

6.2 Defining Code Labels

Code labels give symbolic names to the addresses of instructions in the
code segment. These labels can be used as the operands to jump, call, and
loop instructions to transfer program control to a new instruction. There
are three types of code labels: near labels, procedure labels, and labels

created with the LABEL directive.

6.2.1 Near Code Labels

Near-label definitions create instruction labels that have NEAR type.
These instruction labels can be used to access the address of the label from
other statements.

B Syntax

name:

The name must not be previously defined in the module and it must be fol-
lowed by a colon Sj) Furthermore, the segment containing the definition
must be the one that the assembler currently associates with the CS regis-

ter. The ASSUME directive is used to associate a segment with a segment
register (see Section 5.4, “Associating Segments with Registers”).

120

Defining Labels and Variables

A near label can appear on a line by itself or on a line with an instruction.
The same label name can be used in different modules as long as each label
is only referenced by instructions in its own module. If a label must be
referenced by instructions in another module, it must be given a unique
name and declared with the PUBLIC and EXTRN directives, as
described in Chapter 8, “Creating Programs from Multiple Modules.”

B Examples

cmp ax,5 ; Compare with 5
ja bigger
jb smaller

; Instructions if A X = 5

E]mp done
bigger: . ; Instructions if AX > 5

_"]mp done
smaller: . ; Instructions if AX < §

done:

6.2.2 Procedure Labels

The start of an assembly-language procedure can be defined with the
PROC directive, and the end of the procedure can be defined with the
ENDP directive.

N Syntax

label PROC [NEAR|FAR]
statements

RET [constant]

label ENDP

The 1label assigns a symbol to the procedure. The distance can be
NEAR or FAR. Any RET instructions within the procedure automati-
cally have the same distance (NEAR or FAR) as the procedure. Pro-
cedures and the RET instruction are discussed in more detail in Section
17.4, “Using Procedures.”

The ENDP directive labels the address where the procedure ends. Every
procedure label must have a matching ENDP label to mark the end of the

procedure. MASM generates an error message if it does not find an
ENDP directive to match each PROC directive.

121

Microsoft Macro Assembler Programmer’s Guide

When the PROC label definition is encountered, the assembler sets the
label’s value to the current value of the location counter and sets its type
to NEAR or FAR. If the label has FAR type, the assembler also sets its
segment value to that of the enclosing segment. If you have specified full
segment definitions, the default distance is NEAR. If you are using
simplified segment definitions, the default distance is the distance associ-
ated with the declared memory model—that is, NEAR for small and com-
pact models or FAR for medium, large, and huge models.

The procedure label can be used in a CALL instruction to direct execu-
tion control to the first instruction of the procedure. Control can be
transferred to a NEAR procedure label from any address in the same seg-
ment as the label. Control can be transferred to a FAR procedure label
from an address in any segment.

Procedure labels must be declared with the PUBLIC and EXTRN direc-
tives if they are located in one module but called from another module, as
described in Chapter 8, “Creating Programs from Multiple Modules.”

B Examples

call task ; Call procedure
task PROC NEAR ; Start of procedure
ret
task ENDP ; End of procedure

6.2.3 Code Labels Defined with the LABEL Directive

The LABEL directive provides an alternative method of defining code
labels.

B Syntax
name LABEL distance

The name is the symbol name assigned to the label. The distance can be a
type specifier such as NEAR, FAR, or PROC. PROC means NEAR or
FAR, depending on the default memory model, as described in Section
4.4, “Starting and Ending Source Files.” You can use the LABEL direc-
tive to define a second entry point into a procedure. FAR. code labels can
also be the destination of far jumps or of far calls that use the RETF
instruction (see Section 17.4.2, “Defining Procedures”).

122

Defining Labels and Variables

H Example

task PROC FAR ; Main entry point

taskl I:.ABEL FAR ; Secondary entry point
x;et

task ENDP ; End of procedure

6.3 Defining and Initializing Data

The data-definition directives enable you to allocate memory for data. At
the same time, you can specify the initial values for the allocated data.
Data can be specified as numbers, strings, or expressions that evaluate to
constants. The assembler translates these constant values into binary
bytes, words, or other units of data. The encoded data are written to the
object file at assembly time.

6.3.1 Variables

Variables consist of one or more named data objects of a specified size.

H Syntax

[name] directive initializer [,initializer]...

The name is the symbol name assigned to the variable. If no name is
assigned, the data is allocated; but the starting address of the variable has

no symbolic name.

The size of the variable is determined by directive. The directives that can
be used to define single-item data objects are listed below:

Directive Meaning

DB Defines byte

DW Defines word (2 bytes)

DD Defines doubleword (4 bytes)

DF Defines farword (6 bytes); normally used only with

80386 processor

123

Microsoft Macro Assembler Programmer’s Guide

DQ Defines quadword (8 bytes)
DT Defines 10-byte variable

The optional initializer can be a constant, an expression that evaluates to
a constant, or a question mark (?). The question mark is the symbol indi-
cating that the value of the variable is undefined. You can define multiple
values by using multiple initializers separated by commas, or by using the
DUP operator, as explained in Section 6.3.2, “Arrays and Buffers.”

Simple data types can allocate memory for integers, strings, addresses, or
real numbers.

6.3.1.1 Integer Variables

When defining an integer variable, you can specify an initial value as an
integer constant or as a constant expression. MASM generates an error if
you specify an initial value too large for the specified variable.

Integer values for all sizes except 10-byte variables are stored in binary
form. They can be interpreted as either signed or unsigned numbers. For
instance, the hexadecimal value OFFCD can be interpreted either as the
signed number —51 or the unsigned number 65,485.

The processor cannot tell the difference between signed and unsigned
numbers. Some instructions are designed specifically for signed numbers. It
is the programmer’s responsibility to decide whether a value is to be inter-
preted as signed or unsigned, and then to use the appropriate instructions
to handle the value correctly.

The directives for defining integer variables are listed below with the sizes
of integer they can define:

Directive Size

DB (bytes) Allocates unsigned numbers from 0 to 255 or
signed numbers from -128 to 127.

These values can be used directly in 8086-family
instructions.

DW (words) Allocates unsigned numbers from 0 to 65,535 or
signed numbers from -32,768 to 32,767. The

124

DD (doublewords)

Defining Labels and Variables

bytes of a word integer are stored in the format
shown below:

low byte high byte

Note that in assembler listings and in most
debuggers (including the CodeView debugger)
the bytes of a word are shown in the opposite
order—high byte first—since this is the way
most people think of numbers. For instance, the
decimal value 1987 is shown as 07C3h in listings
and with the Dump Words (DW) CodeView
command. Internally, the number is stored as
C307h.

Word values can be used directly in 8086-family
instructions. They can also be loaded, used in
calculations, and stored with 8087-family
instructions.

Allocates unsigned numbers from 0 to
4,294,967,295 or signed numbers from
-2,147,483,648 to 2,147,483,647. The words of a
doubleword integer are stored in the format
shown below:

low word high word l

e —

These 32-bit values (called long integers) can be
loaded, used in calculations, and stored with

1256

Microsoft Macro Assembler Programmer’s Guide

DF (farwords)

DQ (quadwords)

8087-family instructions. Some calculations can
be done on these numbers directly with 16-bit
8086-family processors; others involve an
indirect method of doing calculations on each
word separately (see Section 16.1, “Adding”).
These long integers can be used directly in cal-
culations with the 80386 processor.

Allocates 6-byte (48-bit) integers.

These values are normally only used as pointer
variables on the 80386 processor (see Section
6.2.1.4).

Allocates 64-bit integers. The doublewords of a
quadword integer are stored in the format
shown below:

DT

126

These values can be loaded, used in calculations,
and stored with 8087-family instructions. You
must write your own routines to use them with
16-bit 8086-family processors. Some calculations
can be done on these numbers directly with the
80386 processor, but others require an indirect
method of doing calculations on each double-
word separately (see Section 16.1, “Adding”).

Allocates 10-byte (80-bit) integers if the D radix
specifier is used.

By default, DT allocates packed BCD (binary
coded decimal) numbers, as described in Section
6.3.1.2, “Binary Coded Decimal Variables.” If
you define binary 10-byte integers, you must
write your own routines to use routines in calcu-
lations.

Defining Labels and Variables

B Example

integer DB 16 ; Initialize byte to 16
expression DW 4%3 ; Initialize word to 12
empty DQ ? ; Allocate uninitialized long integer
DB 1,2,3,4,5,6 ; Initialize six unnamed bytes
high byte DD 4294967295 ; Initialize double word to 4,294,967, 295
tb DT 2345d ; Initialize 10-byte binary integer

6.3.1.2 Binary Coded Decimal Variables

Binary coded decimals (BCD) provide a method of doing calculations on
large numbers without rounding errors. They are sometimes used in finan-
cial applications. There are two kinds: packed and unpacked.

Unpacked BCD numbers are stored one digit to a byte, with the value in
the lower four bits. They can be defined with the DB directive. For exam-
ple, an unpacked BCD number could be defined and initialized as shown
below:

unpackedr DB 1,5,
2

8,2,5,2,9 ; Initialized to 9,252,851
unpackedf DB 9,2,5,2 1

; Initialized to 9,252,851

2.

Whether least-significant digits can come either first or last, depends on
how you write the calculation routines that handle the numbers. Calcula-
tions with unpacked BCD numbers are discussed in Section 16.5.1.

Packed BCD numbers are stored two digits to a byte, with one digit in the
lower four bits and one in the upper four bits. The leftmost bit holds the
sign (0 for positive or 1 for negative).

Packed BCD variables can be defined with the DT directive as shown
below:

packed DT 9252851 ; Allocate 9,252,851

The 8087-family processors can do fast calculations with packed BCD
numbers, as described in Chapter 19, “Calculating with a Math Coproces-
sor.” The 8086-family processors can also do some calculations with
packed BCD numbers, but the process is slower and more complicated. See
Section 16.5.2 for details.

6.3.1.3 String Variables

Strings are normally initialized with the DB directive. The initializing
value is specified as a string constant. Strings can also be initialized by
specifying each value in the string. For example, the following definitions
are equivalent:

127

Microsoft Macro Assembler Programmer’s Guide

versionl DB 97,98,99 ; As ASCII values
version2 DB ‘a','b’','c’ ; As characters
version3 DB "abc" ; As a string

One- and two-character strings (four-character strings on the 80386) can
also be initialized with any of the other data-definition directives. The last
(or only) character in the string is placed in the byte with the lowest
address. Either O or the first character is placed in the next byte. The
unused portion of such variables is filled with zeros.

B Examples

function9 DB 'Hello',13,10,'s" ; Use with DOS INT 21h
; function 9

asciiz DB "\ASM\TEST.ASM",0 ; Use as ASCIIZ string
message DB "Enter file name: " ; Use with DOS INT 21h
1_message EQU $-message ; function 40h
a_message EQU OFESET message

strl DB "ab" ; Stored as 61 62

str2 DD "ab" ; Stored as 62 61 00 00
str3 DD "a" ; Stored as 61 00 00 OO

6.3.1.4 Pointer Variables

Pointer variables (or pointers) are variables that contain the address of a

data or code object rather than the object itself. The address in the vari-

able “points” to another address. Pointers can be either near addresses or
far addresses.

Near pointers consist of the offset portion of the address. They can be ini-
tialized in word variables by using the DW directive. Values in near-
address variables can be used in situations where the segment portion of
the address is known to be the current segment.

Far pointers consist of both the segment and offset portions of the address.

They can be initialized in doubleword variables, using the DD directive.
Values in far-address variables must be used when the segment portion of

128

Defining Labels and Variables

the address may be outside the current segment. The segment and offset of
a far pointer are stored in the format shown below:

S

segment

B Examples

string DB "Text",0 ; Null-terminated string
npstring DW string ; Near pointer to "string"
fpstring DD string ; Far pointer to '"string"

® 80386 Only

Pointers are different on the 80386 processor if the USE32 use type has
been specified. In this case the offset portion of an address consists of 32
bits, and the segment portion consists of 16 bits. Therefore a near pointer
is 32 bits (a doubleword), and a far pointer is 48 bits (a farword). The seg-
ment and offset of a 32-bit-mode far pointer are stored in the format
shown below:

offset segment

® Example

_DATA SEGMENT WORD USE32 PUBLIC 'DATA'

string DB "Text",0O ; Null-terminated string

npstring DD string ; Near (32-bit) pointer to "string"
fpstring DF string ; Far (48-bit) pointer to "string"
_DATA ENDS

129

Microsoft Macro Assembler Programmer’s Guide

6.3.1.5 Real-Number Variables

Real numbers must be stored in binary format. However, when initializing
variables, you can specify decimal or hexadecimal constants and let the
assembler automatically encode them into their binary equivalents.
MASM can use two different binary formats for real numbers: IEEE or
Microsoft Binary. You can specify the format by using directives (IEEE is
the default).

This section tells you how to initialize real-number variables, describes the
two binary formats, and explains real-number encoding.

Initializing and Allocating Real-Number Variables

Real numbers can be defined by initializing them either with real-number
constants or with encoded hexadecimal constants. The real-number desig-

nator (R) must follow numbers specified in encoded format.

The directives for defining real numbers are listed below with the sizes of
the numbers they can allocate:

Directive Size

DD Allocates short (32-bit) real numbers in either the IEEE
or Microsoft Binary format.

DQ Allocates long (64-bit) real numbers in either the IEEE
or Microsoft Binary format.

DT Allocates temporary or 10-byte (80-bit) real numbers.

The format of these numbers is similar to the IEEE for-
mat. They are always encoded the same regardless of
the real-number format. Their size is nonstandard and
incompatible with Microsoft high-level languages.
Temporary-real format is provided for those who want
to initialize real numbers in the format used internally
by 8087-family processors.

The 8086-family microprocessors do not have any instructions for handling
real numbers. You must write your own routines, use a library that
includes real-number calculation routines, or use a coprocessor. The 8087-
family coprocessors can load real numbers in the IEEE format; they can
also use the values in calculations and store the results back to memory, as
explained in Chapter 19, “Calculating with a Math Coprocessor.”

130

Defining Labels and Variables

B Examples

shrt DD 98.6 ; MASM automatically encodes
long DQ 5.391E-4 H in current format
ten_byte DT -7.31E7
eshrt DD 87453333r ; 98.6 encoded in Microsoft
; Binary format
elong DQ 3F41AA4C6F445B7Ar ; 5.391E-4 encoded in IEEE format

The real-number designator (R) used to specify encoded numbers is
explained in Section 4.3.3, “Real-Number Constants.”

Selecting a Real-Number Format

MASM can encode four- and eight-byte real numbers in two different for-
mats: IEEE and Microsoft Binary. Your choice depends on the type of pro-
gram you are writing. The four primary alternatives are listed below:

1. If your program requires a coprocessor for calculations, you must

use the IEEE format.

2. Most high-level languages use the IEEE format. If you are writing
modules that will be called from such a language, your program
should use the IEEE format. All versions of the C, FORTRAN, and
Pascal compilers sold by Microsoft and IBM use the IEEE format.

3. If you are writing a module that will be called from most previous
versions of Microsoft or IBM BASIC, your program should use the
Microsoft Binary format. Versions that support only the Microsoft
Binary format include:

o Microsoft QuickBASIC through Version 2.01

e Microsoft BASIC Compiler through Version 5.3
e IBM BASIC Compiler through Version 2.0

e Microsoft GW-BASIC interpreter (all versions)
e IBM BASICA interpreter (all versions)

Microsoft QuickBASIC Version 3.0 supports both the Microsoft
Binary and IEEE formats as options.

Future versions of Microsoft QuickBASIC and the BASIC compiler
will support only the IEEE format.

4. If you are creating a stand-alone program that does not use a
coprocessor, you can choose either format. The IEEE format is
better for overall compatibility with high-level languages. Also, the
CodeView debugger can display only real numbers in the IEEE for-
mat. The Microsoft Binary format may be necessary for compati-
bility with existing source code.

131

Microsoft Macro Assembler Programmer’s Guide

Note

When you interface assembly-language modules with high-level
languages, the real-number format only matters if you initialize real-
number variables in the assembly module. If your assembly module
does not use real numbers, or if all real numbers are initialized in the
high-level-language module, the real-number format does not make
any difference.

By default, MASM assembles real-number data in the IEEE format. This
is a change from previous versions of the assembler, which used the Micro-
soft Binary format by default. If you wish to use the Microsoft Binary for-
mat, you must put the MSFLOAT directive at the start of your source

file before initializing any real-number variables (see Section 4.4, “Defining
Default Assembly Behavior”).

Real-Number Encoding

The IEEE format for encoding four- and eight-byte real numbers is illus-
trated in Figure 6.1.

Figure 6.1 Encoding for Real Numbers in IEEE Format

132

Defining Labels and Variables

The parts of the real numbers are described below:

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the
first byte.

2. Exponent in the next bits in sequence (8 bits for short real number
or 11 bits for long real number).

3. All except the first set bit of mantissa in the remaining bits of the
variable. Since the first significant bit is known to be set, it need
not be actually stored. The length is 23 bits for short real numbers
and 52 bits for long real numbers.

The Microsoft Binary format for encoding real numbers is illustrated in
Figure 6.2.

Figure 6.2 Encoding for Real Numbers in Microsoft Binary Format

The three parts of real numbers are described below:

1. Biased exponent (8 bits) in the high-address byte. The bias is 81h
for short real numbers and 401h for long real numbers.

2. Sign bit (0 for positive or 1 for negative) in the upper bit of the
second-highest byte.

133

Microsoft Macro Assembler Programmer’s Guide

3. All except the first set bit of mantissa in the remaining 7 bits of the
second-highest byte and in the remaining bytes of the variable.
Since the first significant bit is known to be set, it need not be
actually stored. The length is 23 bits for short real numbers and 55
bits for long real numbers.

MASM also supports the 10-byte temporary-real format used internally
by 8087-family coprocessors. This format is similar to IEEE format. The
size is nonstandard and is not used by Microsoft compilers or interpreters.
Since the coprocessors can load and automatically convert numbers in the
more standard 4- and 8-byte formats, the 10-byte format is seldom used in
assembly-language programming.

The temporary-real format for encoding real numbers is illustrated in Fig-
ure 6.3.

Figure 6.3 Encoding for Real Numbers in Temporary-Real Format

The four parts of the real numbers are described below:

1. Sign bit (0 for positive or 1 for negative) in the upper bit of the
first byte.

2. Exponent in the next bits in sequence (15 bits for 10-byte real).

3. The integer part of mantissa in the next bit in sequence (bit 63).

4. Remaining bits of mantissa in the remaining bits of the variable.
The length is 63 bits.

Notice that the 10-byte temporary-real format stores the integer part of
the mantissa. This differs from the 4- and 8-byte formats, in which the
integer part is implicit.

134

Defining Labels and Variables

6.3.2 Arrays and Buffers

Arrays, buffers, and other data structures consisting of multiple data
objects of the same size can be defined with the DUP operator. This
operator can be used with any of the data-definition directives described in
this chapter.

® Syntax
count DUP (initialvalue[,initialvalue]...)
The count sets the number of times to define ¢nitialvalue. The initial value
can be any expression that evaluates to an integer value, a character con-
stant, or another DUP operator. It can also be the undefined symbol (?) if
there is no initial value.
Multiple initial values must be separated by commas. If multiple values
are specified within the parentheses, the sequence of values is allocated
count times. For example, the statement

DB 5 DUP ("Text ")
allocates the string "Text " five times for a total of 20 bytes.
DUP operators can be nested up to 17 levels. The initial value (or values)

must always be placed within parentheses.

® Examples

array DD 10 DUP (1) ; 10 doublewords
; initialized to 1
buffer DB 256 DUP (?) . 256 byte buffer
masks DB 20 DUP (040h,020h,04h,02h) ; 80 byte buffer
; with bit masks
DB 32 DUP ("I am here ") ; 320 byte buffer with
; signature for debugging
three_d DD 5 DUP (5 DUP (5 DUP (0))) . 125 doublewords

initialized to O

135

Microsoft Macro Assembler Programmer’s Guide

Note

MASM sometimes generates different object code when the DUP
operator is used rather than when multiple values are given. For exam-
ple, the statement

testl DB ?,2,?2,?,?7 , Indeterminate

is “indeterminate.” It causes MASM to write five zero-value bytes to
the object file. The statement

test2 DB 5 DUP (?) . Undefined

is “undefined.” It causes MASM to increase the offset of the next
record in the object file by five bytes. Therefore an object file created
with the first statement will be larger than one created with the second
statement.

In most cases, the distinction between indeterminate and undefined
definitions is trivial. The linker adjusts the offsets so that the same
executable file is generated in either case. However, the difference is
significant in segments with the COMMON combine type. If COM-
MON segments in two modules contain definitions for the same vari-
able, one with an indeterminate value and one with an explicit value,
the actual value in the executable file varies depending on link order. If
the module with the indeterminate value is linked last, the O initialized
for it overrides the explicit value. You can prevent this by always using
undefined rather than indeterminate values in COMMON segments.
For example, use the first of the following statements:

test3 DB 1 DUP (?) . Undefined - doesn't initialize
test4 DB ? ; Indeterminate - initializes O

If you use the undefined definition, the explicit value is always used in
the executable file regardless of link order.

6.3.3 Labeling Variables

The LABEL directive can be used to define a variable of a given size at a
specified location. It is useful if you want to refer to the same data as vari-
ables of different sizes.

138

Defining Labels and Variables

B Syntax

name LABEL type

The name is the symbol assigned to the variable, and type is the variable
size. The type can be any one of the following type specifiers: BY TE,

WORD, DWORD, FWORD, QWORD, or TBYTE. It can also be the
name of a previously defined structure.

B Examples

warray LABEL WORD ; Access array as 50 vords
darray LABEL DWORD ; Access same array as 25 doublewords
barray DB 100 DUP(?) . Access same array as 100 bytes

6.4 Setting the Location Counter

The location counter is the value MASM maintains to keep track of the
current location in the source file. The location counter is incremented
automatically as each source statement is processed. However, the location
counter can be set specifically using the ORG directive.

® Syntax

ORG ezpression

Subsequent code and data offsets begin at the new offset specified set by
ezpression. The expression must resolve to a constant number. In other

words, all symbols used in the expression must be known on the first pass
of the assembler.

Note

The value of the location counter, represented by the dollar sign ($),
can be used in expression, as described in Section 9.3, “Using the Loca-
tion Counter.”

137

Microsoft Macro Assembler Programmer’s Guide

E Example 1

; Labeling absolute addresses

STUEF SEGMENT AT O ; Segment has constant value O
ORG 410h ; Offset has constant value 410h
equipment LABEL WORD ; Value at 0000:0410 labeled "equipment"
ORG 417h ; Offset has constant value 417h
keyboard LABEL WORD ; Value at 0000:0417 labeled 'keyboard"
STUEF ENDS

.CODE

ASSUME ds:STUFF ; Tell the assembler

mov ax, STUEF ; Tell the processor
mov ds,ax

mov dx, equipment

mov keyboard, ax

Example 1 illustrates one way of assigning symbolic names to absolute
addresses. This technique is not possible under protected-mode operating
systems.

® Example 2

; Format for .COM files

_TEXT SEGMENT
ASSUME cs:_TEXT,ds:_TEXT,ss:_TEXT,es:_TEXT
ORG 100h ; Skip 100h bytes of DOS header
entry: jmp begin ; Jump over data
variable DW ? ; Put more data here
begin: . ; First line of code
. ; Put more code here
_TEXT ENDS

END entry

Example 2 illustrates how the ORG directive is used to initialize the
starting execution point in .COM files.

6.5 Aligning Data

Some operations are more efficient when the variable used in the operation
- 1s lined up on a boundary of a particular size. The ALIGN and EVEN
directives can be used to pad the object file so that the next variable is
aligned on a specified boundary.

138

Defining Labels and Variables

B Syntax 1
EVEN
B Syntax 2

ALIGN number

The EVEN directive always aligns on the next even byte. The ALIGN
directive aligns on the next byte that is a multiple of number. The number
must be a power of 2. For example, use ALIGN 2 or EVEN to align on
word boundaries, or use ALIGN 4 to align on doubleword boundaries.

If the value of the location counter is not on the specified boundary when
an ALIGN directive is encountered, the location counter is incremented
to a value on the boundary. NOP Sno operation) instructions are gen-
erated to pad the object file. If the location counter is already on the boun-
dary, the directive has no effect.

The ALIGN and EVEN directives give no efficiency improvements on
processors that have an 8-bit data bus (such as the 8088 or 80188). These
processors always fetch data one byte at a time, regardless of the align-
ment. However, using EVEN can speed certain operation on processors
that have a 16-bit data bus §such as the 8086, 80186, or 80286), since the
processor can fetch a word if the data is word aligned, but must do two
memory fetches if the data is not word aligned. Similarly, using ALIGN 4
can speed some operations with a 80386 processor, since the processor can
fetch four bytes at a time if the data is doubleword aligned.

Note

The ALIGN directive is a new feature of Version 5.0 of the Microsoft
Macro Assembler. In previous versions, data could be word aligned by
using the EVEN directive, but other alignments could not be
specified.

The EVEN directive should not be used in segments with BY TE
align type. Similarly, the number specified with the ALIGN directive
should be at least equal to the size of the align type of the segment
where the directive 1s given.

139

Microsoft Macro Assembler Programmer’s Guide

B Example

DOSSEG

.MODEL small

.STACK 100h

.DATA

ALIGN 4 ; For faster data access
stuff DW 66,124,573,99,75

ALIGN 4 ; For faster data access
evenstuff DwW ?,2,2,2,?

.CODE
start: mov ax,@data ; Load segment location

mov ds, ax ; into DS

mov es,ax ; and ES registers

mov cx,5 ; Load count

mov si,OFFSET stuff ; Point to source

mov di,OFFSET evenstuff; and destination

ALIGN 4 ; Align for faster loop access
mloop: lodsw ; Load a word

inc ax ; Make it even by incrementing

and ax,NOT 1 ; and turning off first bit

stosw ; Store

loop mloop ; Again

In this example, the words at stuff and evenstuff are forced to dou-
bleword boundaries. This makes access to the data faster with processors
that have either a 32-bit or 16-bit data bus. Without this alignment, the
initial data might start on an odd boundary and the processor would have
to fetch half of each word at a time with a 16-bit data bus or half of each
doubleword with a 32-bit data bus.

Similarly, the alignment in the code segment speeds up repeated access to
the code at the start of the loop. The sample code sacrifices program size
in order to achieve significant speed improvements on the 80386 and more
moderate improvements on the 8086 and 80286. There is no speed advan-
tage on the 8088.

140

USING STRUCTURES
AND RECORDS

T SUractusBB Al ... oo ooonssessonssrbbasinbelontsrsts 143
7.1.1 Declaring Structure TYPeS...cceeseeessrcsssseasees 143
7.1.2 Defining Structure Variables........cccevvuveeenn. 145
7.1.3 Using Structure Operandscccoeeeeervvnnnnnnne 146
1.2 R eoOnti e cossssrssisossnivissssi el il I ubes 147
7.2.1 Declasitig Roeord Types....coccoeressosissnssnassics 148
7.2.2 Defining Record Variablescccevvvuveernnnen. 150
7.2.3 Using Record Operands
and Record Variables....c.ccccvuveeevrecenneeennnns 151
724 ReCOMBIBRIRIOM. ... - cvivosevssciusisnrssmatiosnets 153
1. 241 ThE MASK Operator...cesssssssssnssonsass 153
7.24.2 The WIDTH Operator .covesecseorcussssaess 153

7.2.5 Using Record-Field Operands........c.cccvvveeenn.. 154

Using Structures and Records

The Macro Assembler can define and use two kinds of multifield variables:
structures and records.

Structures are templates for data objects made up of smaller data objects.
A structure can be used to define structure variables, which are made up
of smaller variables called fields. Fields within a structure can be different
sizes, and each can be accessed individually.

Records are templates for data objects whose bits can be described as
groups of bits called fields. A record can be used to define record variables.
Each bit field in a record variable can be used separately in constant
operands or expressions. The processor cannot access bits individually at
run time, but bit fields can be used with logical bit instructions to change
bits indirectly.

This chapter describes structures and records and tells how to use them.

7.1 Structures

A structure variable is a collection of data objects that can be accessed
symbolically as a single data object. Objects within the structure can have
different sizes and can be accessed symbolically.

There are two steps in using structure variables:

1. Declare a structure type. A structure type is a template for data. It
declares the sizes and, optionally, the initial values for objects in
the structure. By itself the structure type does not define any data.
The structure type is used by MASM during assembly but is not
saved as part of the object file.

2. Define one or more variables having the structure type. For each
variable defined, memory is allocated to the object file in the for-
mat declared by the structure type.

The structure variable can then be used as an operand in assembler state-
ments. The structure variable can be accessed as a whole by using the

structure name, or individual fields can be accessed by using structure and
field names.

7.1.1 Declaring Structure Types

The STRUC and ENDS directives mark the beginning and end of a type
declaration for a structure.

143

Microsoft Macro Assembler Programmer’s Guide

B Syntax

name STRUC
fielddeclarations

name ENDS

The name declares the name of the structure type. It must be unique. The
fielddeclarations declare the fields of the structure. Any number of field
declarations may be given. They must follow the form of data definitions
described in Section 6.3, “Defining and Initializing Data.” Default initial
values may be declared individually or with the DUP operator.

The names given to fields must be unique within the source file where they
are declared. When variables are defined, the field names will represent the
offset from the beginning of the structure to the corresponding field.

When declaring strings in a structure type, make sure the initial values are
long enough to accommodate the largest possible string. Strings smaller
than the field size can be placed in the structure variable, but larger
strings will be truncated.

A structure declaration can contain field declarations and comments.
Starting with Version 5.0 of the Macro Assembler, conditional-assembly
statements are allowed in structure declarations. No other kinds of state-
ments are allowed. Since the STRUC directive is not allowed inside struc-
ture declarations, structures cannot be nested.

Note

The ENDS directive that marks the end of a structure has the same
mnemonic as the ENDS directive that marks the end of a segment.
The assembler recognizes the meaning of the directive from context.
Make sure each SEGMENT directive and each STRUC directive has
its own ENDS directive.

® Example

student STRUC ; Structure for student records
id DW ? ; Field for identification #
sname DB "Last, First Middle "

scores DB 10 DUP (100) ; Field for 10 scores

student ENDS

Within the sample structure student, the fields id, sname, and scores
have the offset values 0, 2, and 24, respectively.

144

Using Structures and Records

7.1.2 Defining Structure Variables

A structure variable is a variable with one or more fields of different sizes.
The sizes and initial values of the fields are determined by the structure
type with which the variable is defined.

B Syntax
[name] structurename <[initialvalue [,initialvalue...]] >

The name is the name assigned to the variable. If no name is given, the
assembler allocates space for the variable, but does not give it a symbolic
name. The structurename is the name of a structure type previously

declared by using the STRUC and ENDS directives.

An nitialvalue can be given for each field in the structure. Its type must
not be incompatible with the type of the corresponding field. The angle
brackets (< >) are required even if no initial value is given. If initial-
values are given for more than one field, the values must be separated by
commas.

If the DUP operator (see Section 6.3.2, “Arrays and Buffers”) is used to
initialize multiple structure variables, only the angle brackets and initial
values, if given, need to be enclosed in parentheses. For example, you can
define an array of structure variables as shown below:

war date 365 DUP (<,,1940>)

You need not initialize all fields in a structure. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field, which was originally determined by the structure type. If there is no
default value, the field is undefined.

B Examples

The following examples use the student type declared in the first exam-
ple in Section 7.1.1, “Declaring Structure Types”:

sl student <> ; Uses default values of type

s2 student <1467, "White, Robert D.",6>
; Override default values of first two
fields--use default value of third

sarray student 100 DUP (<>) ; Declare 100 student variables
; with default initial values

145

Microsoft Macro Assembler Programmer’s Guide

Note

You cannot initialize any structure field that has multiple values if this
field was given a default initial value when the structure was declared.
For example, assume the following structure declaration:

stuff STRUC

buffer DB 100 DUP (?) ; Can't override

crlf DB 13,10 ; Can't override

query DB 'Filename: ' ; String <= can override
endmark DB 36 ; Can override

stuff ENDS

The buf fer and crlf fields cannot be overridden by initial values in
the structure definition because they have multiple values. The query
field can be overridden as long as the overriding string is no longer
than query (10 bytes). A longer string would generate an error. The
endmark field can be overridden by any byte value.

7.1.3 Using Structure Operands

Like other variables, structure variables can be accessed by name. Fields
within structure variables can also be accessed by using the syntax shown
below:

B Syntax
variable.field

The variable must be the name of a structure (or an operand that resolves
to the address of a structure). The field must be the name of a field within
that structure. The variable 1s separated from field by a period. The period
is discussed as a structure field-name operator in Section 9.2.1.2.

The address of a structure operand is the sum of the offsets of variable and

field. The address is relative to the segment or group in which the variable
1s declared.

146

Using Structures and Records

B Examples

date STRUC ; Declare structure
month DB ?
day DB ?
year DW ?
date ENDS
.DATA
yesterday date <9, 30,1987> ; Declare structure
today date <10,1,1987> M variables
tomorrow date <10, 2,1987>
.CODE
mov al,yesterday.day ; Use structure variables
mov ah, today .month ; as operands
mov tomorrow.year, dx
mov bx,OFFSET yesterday ; Load structure address
mov ax, [bx] .month ; Use as indirect operand

7.2 Records

A record variable is a byte or word variable in which specific bit fields can
be accessed symbolically. Records can also be doubleword variables with
the 80386 processor. Bit fields within the record can have different sizes.

There are two steps in declaring record variables:

1. Declare a record type. A record type is a template for data. It
declares the sizes and, optionally, the initial values for bit fields in
the record. By itself the record type does not define any data. The
record type is used by MASM during assembly but is not saved as
part of the object file.

2. Define one or more variables having the record type. For each vari-
able defined, memory is allocated to the object file in the format
declared by the type.

The record variable can then be used as an operand in assembler state-
ments. The record variable can be accessed as a whole by using the record
name, or individual fields can be specified by using the record name and a
field name combined with the field-name operator. A record type can also
be used as a constant (immediate data).

147

Microsoft Macro Assembler Programmer’s Guide

7.2.1 Declaring Record Types
The RECORD directive declares a record type for an 8- or 16-bit record

that contains one or more bit fields. With the 80386, 32-bit records can
also be declared.

® Syntax

recordname RECORD field [,field...]

The recordname is the name of the record type to be used when creating
the record. The field declares the name, width, and initial value for the

field.

The syntax for each field is shown below:

B Syntax
fieldname: width[= expression]

The fieldname is the name of a field in the record, width is the number of
bits in the field, and ezpression is the initial (or default) value for the field.

Any number of field combinations can be given for a record, as long as
each is separated from its predecessor by a comma. The sum of the widths
for all fields must not exceed 16 bits.

The width must be a constant. If the total width of all declared fields is
larger than eight bits, then the assembler uses two bytes. Otherwise, only
one byte is used.

80386 Only

Records can be up to 32 bits in width when the 80386 processor is
enabled with .386. If the total width is 8 bits or less, the assembler
uses 1 byte; if the width is 9 to 16 bytes, the assembler uses 2 bytes;
and if the width is larger than 16 bits, the assembler uses 4 bytes.

If expression is given, it declares the initial value for the field. An error
message is generated if an initial value is too large for the width of its
field. If the field is at least seven bits wide, you can use an ASCII character
for expression. The expression must not contain a forward reference to any
symbol.

148

Using Structures and Records

In all cases, the first field you declare goes into the most significant bits of
the record. Successively declared fields are placed in the succeeding bits to
the right. If the fields you declare do not total exactly 8 bits or exactly 16

bits, the entire record is shifted right so that the last bit of the last field is
the lowest bit of the record. Unused bits in the high end of the record are

initialized to 0.

B Example 1

color RECORD blink:1,back:3,intense:1, fore:3

The example above creates a byte record type color having four fields:
blink, back, intense, and fore. The contents of the record type are
shown below:

Since no initial values are given, all bits are set to 0. Note that this is only
a template maintained by the assembler. No data are created.

N Example 2

cw RECORD r1:3=0,1ic:1=0,rc:2=0,pc:2=3,r2:2=1,masks:6=63
Example 2 creates a record type cw having six fields. Each record declared

by using this type occupies 16 bits of memory. The bit diagram below
shows the contents of the record type:

149

Microsoft Macro Assembler Programmer’s Guide

Default values are given for each field. They can be used when data is
declared for the record.

7.2.2 Defining Record Variables

A record variable is an 8-bit or 16-bit variable whose bits are divided into
one or more fields. With the 80386, 32-bit variables are also allowed.

B Syntax
[name] recordname <[initialvalue [,initialvalue...]] >

The name is the symbolic name of the variable. If no name is given, the
assembler allocates space for the variable, but does not give it a symbolic
name. The recordname is the name of a record type that was previously
declared by using the RECORD directive.

An nitialvalue for each field in the record can be given as an integer, char-
acter constant, or an expression that resolves to a value compatible with
the size of the field. Angle brackets (< >>) are required even if no initial
value is given. If initial values for more than one field are given, the values
must be separated by commas.

If the DUP operator (see Section 6.3.2, “Arrays and Buffers”) is used to
initialize multiple record variables, only the angle brackets and initial
values, if given, need to be enclosed in parentheses. For example, you can
define an array of record variables as shown below:

xmas color 50 DUP (<1,2,0,4>)

You do not have to initialize all fields in a record. If an initial value is left
blank, the assembler automatically uses the default initial value of the
field. This is declared by the record type. If there is no default value, each
bit in the field is cleared.

Sections 7.2.3, “Using Record Operands and Record Variables,” and 7.2.4,

“Record Operators,” illustrate ways to use record data after it has been
declared.

B Examples

color RECORD blink:1,back:3,intense:1, fore:3 ; Record declaration
warning color <1,0,1,4> ; Record definition

The definition above creates a variable named warning whose type is

given by the record type color. The initial values of the fields in the vari-
able are set to the values given in the record definition. The initial values

150

Using Structures and Records

would override the default record values, had any been given in the
declaration. The contents of the record variable are shown below:

® Example 2

color RECORD blink:1,back:3, intense:1, fore:3 ; Record declaration
colors color 16 DUP (<>) . Record declaration

Example 2 creates an array named colors containing 16 variables of type
color. Since no initial values are given in either the declaration or the
definition, the variables have undefined (0) values.

® Example 3

cw RECORD r1:3=0,ic:1=0,rc:2=0,pc:2=3,r2:2=1,masks:6=63
newcw cw <,.2,,.>

Example 3 creates a variable named newcw with type cw. The default
values set in the type declaration are used for all fields except the rc field.
This field is set to 2. The contents of the variable are shown below:

7.2.3 Using Record Operands and Record Variables

A record operand refers to the value of a record type. It should not be con-
fused with a record variable. A record operand is a constant; a record vari-
able is a value stored in memory. A record operand can be used with the
following syntax:

151

Microsoft Macro Assembler Programmer’s Guide

B Syntax
recordname <[[value][,value...]]>

The recordname must be the name of a record type declared in the source
file. The optional value is the value of a field in the record. If more than
one value 1s given, each value must be separated by a comma. Values can
include expressions or symbols that evaluate to constants. The enclosing
angle brackets (< >) are required, even if no value is given. If no value
for a field is given, the default value for that field is used.

B Example

.DATA
color RECORD blink:1,back:3,intense:1, fore:3 ; Record declaration
window color <0,6,1,6> ; Record definition
.CODE
mov ah,color <0,3,0,2> Load record operand

: (constant value 32h)
mov bh, window ; Load record variable
; (memory value 6Eh)

In this example, the record operand color <O, 3,0, 2> and the record
variable warning are loaded into registers. The contents of the values are
shown below:

152

Using Structures and Records

7.2.4 Record Operators

The WIDTH and MASK operators are used exclusively with records to
return constant values representing different aspects of previously declared
records.

7.2.4.1 The MASK Operator

The MASK operator returns a bit mask for the bit positions in a record
occupied by the given record field. A bit in the mask contains a 1 if that
bit corresponds to a field bit. All other bits contain O.

B Syntax

MASK {recordfieldname | record}

The recordfieldname may be the name of any field in a previously defined
record. The record may be the name of any previously defined record. The

NOT operator is sometimes used with the MASK operator to reverse the
bits of a mask.

E Example

.DATA
color RECORD blink:1,back:3, intense:1, fore:3
message color <0,5,1,1>
.CODE
mov ah, message ; Load initial 0101 1001
and ah,NOT MASK back ; Turn off AND 1000 1111
: "pback" =000 —meee——
H 0000 1001
or ah,MASK blink ; Turn on OR 1000 0000
: "blink" _________
; 1000 1001
xor ah,MASK intense ; Toggle XOR 0000 1000
; "intense" @ @ o ~--------
; 1000 0001

7.2.4.2 The WIDTH Operator

The WIDTH operator returns the width (in bits) of a record or record
field.

153

Microsoft Macro Assembler Programmer’s Guide

B Syntax
WIDTH { recordfieldname | record}

The recordfieldname may be the name of any field defined in any record.
The record may be the name of any defined record.

Note that the width of a field is the number or bits assigned for that field;
the value of the field is the starting position (from the right) of the field.

H Examples

.DATA
color RECORD blink:1,back:3, intense:1, fore:3
wblink EQU WIDTH blink ; "wblink" =1 "blink" =7
wback EQU WIDTH back ; "wback" =3 '"back" =4
wintense EQU WIDTH intense ; "wintense" = 1 "intense'" = 3
wfore EQU WIDTH fore ; "wfore" =3 '"fore" =0
wcolor EQU WIDTH color ; "wcolor" =8
prompt color <1,5,1,1>

.CODE

IF (WIDTH color) GE 8 ; If color is 16 bit, load

mov ax,prompt ; into 16-bit register

ELSE ; else

mov al,prompt ; load into low 8-bit register

xor ah,ah ; and clear high 8-bit register

ENDIF

7.2.5 Using Record-Field Operands

Record-field operands represent the location of a field in its corresponding
record. The operand evaluates to the bit position of the low-order bit in
the field and can be used as a constant operand. The field name must be
from a previously declared record.

Record-field operands are often used with the WIDTH and MASK opera-
tors, as described in Sections 7.2.4.1 and 7.2.4.2.

B Example

.DATA
color RECORD blink:1,back:3, intense:1, fore:3 ; Record declaration
cursor color <1,5,1,1> ; Record definition

.CODE

154

Using Structures and Records

; Rotate "back" of "cursor" without changing other values

mov
mov
and

mov
shr
inc

shl
and

or

mov

al,cursor
ah,al
al,NOT MASK back

cl,back
ah,cl

ah

ah,cl
ah,MASK back
ah,al

cursor, ah

Ne Ne Ne Ne Ne Ne e

.
.
.
.
.
’
.

Load value from memory
Save a copy for work
Mask out old bits

to save old cursor

Load bit position
Shift to right
Increment

; Shift left again
; Mask off extra bits

to get new cursor

; Combine old and new

. Write back to memory

and

and

or

1101 100l=ah/al
1000 1l1lll=mask

0000 1101=ah
0000 1110=ah

1110 O000O=ah
0111 OOOO=mask

This example illustrates several ways in which record fields can be used as
operands and in expressions.

1556

CREATING PROGRAMS

FROM MULTIPLE MODULES
8.1 Declaring Symbols Publiccccocveercvvuneerisnnneee. 160
8.2 Declaring Symbols External.......ccccccceveeecervcnnnneen 161
8.3 Using Multiple BIGALERcooocesisssorsronssosssamnasains 164
8.4 Declaring Symbols Communalccccevuuennneee. 165

8.5 Specifying Library Files.......cccccccerereneccscrsacccsonees 169

Creating Programs from Multiple Modules

Most medium and large assembly-language programs are created from
several source files or modules. When several modules are used, the scope
of symbols becomes important. This chapter discusses the scope of sym-
bols and explains how to declare global symbols that can be accessed from
any module. It also tells you how to specify a module that will be accessed
from a library.

Symbols such as labels and variable names can be either local or global in
scope. By default, all symbols are local; they are specific to the source file
in which they are defined. Symbols must be declared global if they must

be accessed from modules other than the one in which they are defined.

To declare symbols global, they must be declared public in the source
module in which they are defined. They must also be declared external in
any module that must access the symbol. If the symbol represents unini-
tialized data, 1t can be declared communal-—meaning that the symbol is
both public and external. The PUBLIC, EXTRN, and COMM direc-
tives are used to declare symbols public, external, and communal, respec-
tively.

Notes

The term “local” has a different meaning in assembly language than in
many high-level languages. Often, local symbols in compiled languages
are symbols that are known only within a procedure (called a function,
routine, subprogram, or subroutine, depending on the language). Local
symbols of this type cannot be declared by MASM, although pro-
cedures can be written to allocate local symbols dynamically at run
time, as described in Section 17.4.4, “Using Local Variables.”

By default, the assembler converts all lowercase letters in names
declared with the PUBLIC, EXTRN, and COMM directives to
uppercase letters before copying the name to the object file. The /ML
and /MX options can be used in the MASM command line to direct
the assembler to preserve lowercase letters when copying public and
external symbols to the object file. This should be done when prepar-
ing assembler modules to be linked with modules from case-sensitive
languages such as C.

159

Microsoft Macro Assembler Programmer’s Guide

8.1 Declaring Symbols Public

The PUBLIC directive is used to declare symbols public so that they can
be accessed from other modules. If a symbol is not declared public, the
symbol name is not written to the object file. The symbol has the value of
its offset address during assembly, but the name and address are not avail-
able to the linker.

If the symbol is declared public, its name is associated with its offset
address in the object file. During linking, symbols in different modules—
but with the same name—are resolved to a single address.

Public symbol names are also used by some symbolic debuggers (such as
SYMDEB) to associate addresses with symbols. However, variables and
labels do not need to be declared public in order to be visible in the Code-
View debugger.

B Syntax
PUBLIC name [,name]...

The name must be the name of a variable, label, or numeric equate defined
within the current source file. PUBLIC declarations can be placed any-
where in the source file. Equate names, if given, can only represent 1- or
2-byte integer or string values. Text macros (or text equates) cannot be
declared public.

Note

Although absolute symbols can be declared public, aliases for public
§l)imbols may cause errors. For example, the following statements are
illegal:

PUBLIC 1lines ; Declare absolute symbol public
lines EQU rovs ; Declare alias for lines
rows EQU 25 . Illegal - Assign value to alias

160

Creating Programs from Multiple Modules

® Example

PUBLIC true,status, first,clear
.MODEL, small

true EQU -1
.DATA

status DB 1
.CODE

first LABEL FAR

clear PROC

clear I;‘.NDP

8.2 Declaring Symbols External

If a symbol undeclared in a module must be accessed by instructions in
that module, it must be declared with the EXTRN directive.

This directive tells the assembler not to generate an error, even though the
symbol is not in the current module. The assembler assumes that the sym-
bol occurs in another module. However, the symbol must actually exist
and must be declared public in some module. Otherwise, the linker gen-
erates an error.

B Syntax

EXTRN name:type [,name:type]...

The EXTRN directive defines an external variable, label, or symbol of the
specified name and type. The type must match the type given to the item

in its actual definition in some other module. It can be any one of the fol-
lowing:

Description Types

Distance specifier NEAR, FAR, or PROC

Size specifier BYTE, WORD, DWORD, FWORD,
QWORD, or TBYTE

Absolute ABS

161

Microsoft Macro Assembler Programmer’s Guide

The ABS type is for symbols that represent constant numbers, such as
equates declared with the EQU and = directives (see Section 11.1, “Using
Equates”).

The PROC type represents the default type for a procedure. For pro-
grams that use simplified segment directives, the type of an external sym-
bol declared with PROC will be near for small or compact model, or far
for medium, large, or huge model. Section 5.1.3, “Defining the Memory
Model,” tells you how to declare the memory model using the MODEL
directive. If full segment definitions are used, the default type represented
by PROC is always near.

Although the actual address of an external symbol is not determined until
link time, the assembler assumes a default segment for the item, based on
where the EXTRN directive is placed in the source code. Placement of
EXTRN directives should follow these rules.

e NEAR code labels (such as procedures) must be declared in the
code segment from which they are accessed.

e FAR code labels can be declared anywhere in the source code. It
may be convenient to declare them in the code segment from which
they are accessed if the label may be FAR in one context or
NEAR in another.

e Data must be declared in the segment in which it occurs. This may
require that you define a dummy data segment for the external
declaration.

e Absolute symbols can be declared anywhere in the source code.

B Examplel

EXTRN max:ABS,act:FAR ; Constant or FAR label anywhere
DOSSEG
.MODEL. small

.STACK 100h

.DATA

EXTRN nvar : BYTE ; NEAR variable in near data

.FARDATA

EXTRN fvar :WORD ; FAR variable in far data

.CODE

EXTRN task:PROC . PROC or NEAR in near code
start: mov ax,@data . Load segment

mov ds, ax ; into DS

ASSUME es:SEG fvar ; Tell assembler

mov ax,SEG fvar ; Tell processor that ES

mov es, ax M has far data segment

162

Creating Programs from Multiple Modules

mov ah,nvar ; Load external NEAR variable
mov bx, fvar ; Load external FAR variable
mov cX, max ; Load external constant

call task ; Call procedure (NEAR or FAR)
jmp act ; Jump to FAR label

END start

Example 1 shows how each type of external symbol could be declared and
used in a small-model program that uses simplified segment directives.
Notice the use of the PROC type specifier to make the external-procedure
memory model independent. The jump and its external declaration are
written so that they will be FAR regardless of the memory model. Using
thfise techniques, you can change the memory model without breaking
code.

® Example 2

EXTRN max:ABS, act :FAR ; Constant or FAR label anywhere
STACK SEGMENT PARA STACK 'STACK'
DB 100h DUP (?)
STACK ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
EXTRN nvar :BYTE ; NEAR variable in near data
_DATA ENDS
FAR_DATA SEGMENT PARA 'FAR_DATA'
EXTRN fvar :WORD ; FAR variable in far data
FAR_DATA ENDS
DGROUP GROUP _DATA,STACK
_TEXT SEGMENT BYTE PUBLIC 'CODE'
EXTRN task:NEAR ; NEAR procedure in near code
ASSUME c¢s:_TEXT, ds:DGROUP, ss :DGROUP
start: mov ax, DGROUP ; Load segment
mov ds, ax ; into DS
ASSUME es:SEG fvar . Tell assembler
mov ax,SEG fvar ; Tell processor that ES
mov es,ax ; has far data segment
mov ah,nvar ; Load external NEAR variable
mov bx, fvar ; Load external FAR variable
mov cX,max ; Load external constant
call task . Call NEAR procedure
jmp act ; Jump to FAR label
_TEXT ENDS
END start

Example 2 shows a fragment similar to the one in Example 1, but with full
segment definitions. Notice that the types of code labels must be declared
specifically. If you wanted to change the memory model, you would have
to specifically change each external declaration and each call or jump.

163

Microsoft Macro Assembler Programmer’s Guide

8.3 Using Multiple Modules

The following source files illustrate a program that uses public and exter-
nal declarations to access instruction labels. The program consists of two
modules called hello and display.

The hello module is the program’s initializing module. Execution starts
at the instruction labeled start in the hello module. After initializing
the data segment, the program calls the procedure display in the
display module, where a DOS call is used to display a message on the
scrzenl. Execution then returns to the address after the call in the hello
module.

The hello module is shown below:

TITLE hello

DOSSEG
.MODEL small
.STACK 256
.DATA
PUBLIC message, lmessage
message DB "Hello, world.", 613,10
lmessage EQU $ - message
.CODE
EXTRN display:PROC ; Declare in near code segment
start: mov ax,@data ; Load segment location
mov ds,ax ; into DS register
call display ; Call other module
mov ax, 04CO0h ; Terminate with exit code O
int 21h ; Call DOs
END start ; Start address in main module

The display module is shown below:

TITLE display

EXTRN lmessage :ABS ; Declare anywhere
.MODEL. small
.DATA
EXTRN message:BYTE ; Declare in near data segment
.CODE
PUBLIC display
display PROC
mov bx,1 ; File handle for standard output
mov cx, lmessage ; Message length
mov dx,OFFSET message ; Message address
mov ah, 40h ; Write function
int 21h ; Call DOS
ret
display ENDP
END ; No start address in second module

164

Creating Programs from Multiple Modules

The sample program is a variation of the hello.asm program used in
examples in Chapter 1, “Getting Started,” except that it uses an external
procedure to display to the screen. Notice that all symbols defined in one
module but used in another are declared PUBLIC in the defining module
and declared EXTRN in the using module.

For instance, message and 1message are declared PUBLIC in hello
and declared EXTRN in display. The procedure display is declared
EXTRN in hello and PUBLIC in display.

To create an executable file for these modules, assemble each module
separately, as in the following command lines:

MASM hello:
MASM display:

Then link the two modules:

LINK hello display:
The result is the executable file hello.exe.

For each source module, MASM writes a module name to the object file.
The module name is used by some debuggers and by the linker when it
displays error messages. Starting with Version 5.0, the module name is
always the base name of the source module file. With previous versions,
the module name could be specified with the NAME or TITLE directive.

For compatibility, MASM recognizes the NAME directive. However,
NAME has no effect. Arguments to the directive are ignored.

8.4 Declaring Symbols Communal

Communal variables are uninitialized variables that are both public and
external. They are often declared in include files.

If a variable must be used by several assembly routines, you can declare
the variable communal in an include file, and then include the file in each
of the assembly routines. Although the variable is declared in each source
module, it exists at only one address. Using a communal variable in an
include file and including it in several source modules is an alternative to
defining the variable and declaring it public in one source module and then
declaring it external in other modules.

165

Microsoft Macro Assembler Programmer’s Guide

If a variable is declared communal in one module and public in anbther,
the public declaration takes precedence and the communal declaration has
the same effect as an external declaration.

B Syntax

COMM definition[,definition]...

Each definition has the following syntax:
[NEAR | FAR] label:size[: count]

A communal variable can be NEAR or FAR. If neither is specified, the
type will be that of the default memory model. If you use simplified seg-
ment directives, the default type is NEAR for small and medium models,

or FAR for compact, large, and huge models. If you use full segment
definitions the default type is NEAR.

The label is the name of the variable. The size can be BYTE, WORD,
DWORD, QWORD, or TBYTE. The count is the number of elements.
If no count is given, one element is assumed. Multiple variables can be
defined with one COMM statement by separating each variable with a
comma.

Note

C variables declared outside functions (except static variables) are
communal unless explicitly initialized; they are the same as assembly-
language communal variables. If you are writing assembly-language
modules for C, you can declare the same communal variables in C
include files and in MASM include files.

MASM cannot tell whether a communal variable has been used in another
module. Allocation of communal variables is handled by LINK. As a
result, communal variables have the following limitations that other vari-
ables declared in assembly language do not have:

e Communal variables cannot be initialized. Under DOS, initial
values are not guaranteed to be O or any other value. The variables
can be used for data, such as file buffers, that are not given a value
until run time.

e Communal variables are not guaranteed to be allocated in the

sequence in which they are declared. Assembly-language techniques
that depend on the sequence and position in which data is defined

166

Creating Programs from Multiple Modules

should not be used with communal variables. For example, the fol-
lowing statements do not work:

COMM buffer:WORD:128
lbuffer EQU $ - buffer ; "lbuffer" won't have desired value

bbuf fer LABEL BYTE ; "bbuffer" won't have desired address
COMM wbuffer:WORD:128

e Placement of communal declarations follows the same rules as
external declarations. They must be declared inside a data seg-
ment. Examples of near and far communal variables are shown

below:
.DATA
coMM NEAR nbuffer :BYTE: 30
.FARDATA

COMM FAR fbuffer :WORD:40

e Communal variables are allocated in segments that are part of the
Microsoft segment conventions. You cannot override the default to
place communal variables in other segments.

Near communal variables are placed in a segment called
c—common, which is part of DGROUP. This group is created
and initialized automatically if you use simplified segment direc-
tives. If you use full segment directives, you must create a group
called DGROUP and use the ASSUME directive to associate it
with the DS register.

Far communal variables are placed in a segment called
FAR_BSS. This segment has combine type private and class type
'"FAR_BSS’. This means that multiple segments with the same
name can be created. Such segments cannot be accessed by name.
They must be initialized indirectly using the SEG operator. For
example, if a far communal variable (with word size) is called com-
var, its segment can be initialized with the following lines:

ASSUME ds:SEG comvar ; Tell the assembler
mov ax,SEG comvar ; Tell the processor
mov ds, ax
mov bx, comvar ; Use the variable
® Example 1

IF @datasize

.FARDATA

ELSE

.DATA

ENDIF

COMM var:WORD, buffer:BYTE:10

Example 1 creates two communal variables. The first is a word variable
called var. The second is a 10-byte array called buf fer. Both have the

1687

Microsoft Macro Assembler Programmer’s Guide

default size associated with the memory model of the program in which

they are used.

B Example 2

.DATA

COMM

ASCIIZ
mov
mov
mov
int
mov
xor
mov
mov
EQU
ENDM

address

MACRO

temp:BYTE:128

address
temp, 128

dx, OFFSET temp

ah, OAh

21h

dl, temp[1]
dh, dh

bx, dx

temp [bx+2],0

OFFSET temp+2

Name of address for string
Insert maximum length
Address of string buffer
Get string

Ne Se e e Se Ne

Get length of string

Overwrite CR with null

~e

Example 2 shows an include file that declares a buffer for temporary data.
The buffer is then used in a macro in the same include file. An example of
how the macro could be used in a source file is shown below:

DOSSEG
.MODEL
INCLUDE
.DATA
message DB
.CODE

mov
mov
int

ASCIIZ

mov
mov
mov
int

small
communal.inc

"Enter file name:

dx,OFFSET message
ah,0%h
21h

place

al, 00000010b
dx,place

ah, 3Dh

21h

; Load offset of file prompt
; Display prompt

; Get file name and

return address as ''place"

; Load access code
; Load address of ASCIIZ string
; Open the file

Note that once the macro is written, the user does not need to know the
name of the temporary buffer or how it is used in the macro.

168

Creating Programs from Multiple Modules

8.5 Specifying Library Files

The INCLUDELIB directive instructs the linker to link with a specified
library file. If you are writing a program that calls library routines, you
can use this directive to specify the library file in the assembly source file
rather than in the LINK command line.

B Syntax
INCLUDELIB libraryname

The libraryname is written to the comment record of the object file. The
Intel title for this record is COMENT. At link time, the linker reads this
record and links with the specified library file.

The libraryname must be a file name rather than a complete file
specification. If you do not specify an extension, the default extension
LIB is assumed. LINK searches for the library file in the following order:

1. In the current directory

2. In any directories given in the library field of the LINK command
line

3. In any directories listed in the LIB environment variable

B Example

INCLUDELIB graphics
This statement passes a message from MASM telling LINK to use library
routines from the file graphics.1lib. If this statement is included in a
source file called draw, then the program might be linked with the follow-
ing command line:

LINK draw;

Without the INCLUDELIB directive, the program would have to be
linked with the following command line:

LINK draw,,,graphics:;

169

USING OPERANDS AND
EXPRESSIONS

9.1 Using Operands with Directives........cccccevuveennnne. 173
9.2 Using OpaiBREEE L i isscinsisovisevaisssscsmessiaeness 174
0.2.1 Calculation Operators.....cceeeeerrneeerreecennenees 174
9.2.1.1 Arithmetic Operators....cececeeeeeeceseceees 175

9.2.1.2 Structure-Field-Name Operator.......... 176

9.2.1.3" 1008E DIDETALOT «ovoscssssrasesnsssusnssssrssns bEd

9.2.0 3 UERHE ODOrRtors «oicsscosissicasorssarbesioning 178

9.2.1.5 Bitwise Logical Operatorscceevevenen. 179

9.2.2 Relational Operators.......cccosssssssssssnsnssssrnss 180

9.2.3 Segment-Override Operator.....ccccvveveeeeenns 181

0.2.4 TVDOBEEREONE (oicovesvoivissivessssssmrmissarosvanes 182
D285 N RELCIDEIRIOY +oo0serssiveressashsunrinnonsins 182

D242 R SHOR ODETAtOr cosvessrosnsrssessretsssoans 183

9.2.4.3 " WHIS ODETALOL. cosssississssserssssnssoesoosse 183

9.2.4.4 HIGH and LOW Operators .ccceeeeeennss 184

09.2.4.5 SEG OpPErator...ccscssescssessesssssrssssssss 184

9.2.4.6 OFFSET Operator.cccccceoscescescosccsesess 185

0.2.4.7 .TYPE Operator ...scesessesessssconcssonnss 186

0.2.4.8 TYPE OpPErator «issesescossssssssscssncessces 187

9.2.4.9 LENGTH Operator.cccceccscescecescoscosess 188

9.2.4. 10 SEZE OpraEOr 1o sssssorerssrsssssnersaisesniih 188

0.2.5 Operator Precedenceccccaisssisivssssssrsesssss 189

9.3 Using the Location Counter..........ccceeevveeernnnnenn. 190
9.4 Using Forward References.......cccccceereerervnenennenne. 191
9.4.1 Forward References to Labelscc.cceeevrunnens 192

9.4.2 Forward References to Variables 194

9.5 Strong Typing for Memory Operands.................. 194

Using Operands and Expressions

Operands are the arguments that define values to be acted on by instruc-
tions or directives. Operands can be constants, variables, expressions, or
keywords, depending on the instruction or directive, and the context of
the statement.

A common type of operand is an expression. An expression consists of
several operands that are combined to describe a value or memory loca-
tion. Operators indicate the operations to be performed when combining
the operands of an expression.

Expressions are evaluated at assembly time. By using expressions, you can
instruct the assembler to calculate values that would be difficult or incon-
venient to calculate when you are writing source code.

This chapter discusses operands, expressions, and operators as they are
evaluated at assembly time. See Chapter 14, “Using Addressing Modes,”
for a discussion of the addressing modes that can be used to calculate
operand values at run time. This chapter also discusses the location-
counter operand, forward references, and strong typing of operands.

9.1 Using Operands with Directives

Each directive requires a specific type of operand. Most directives take
string or numeric constants, or symbols or expressions that evaluate to
such constants.

The type of operand varies for each directive, but the operand must
always evaluate to a value that is known at assembly time. This differs
from instructions, whose operands may not be known at assembly time
and may vary at run time. Operands used with instructions are discussed
in Chapter 14, “Using Addressing Modes.”

Some directives, such as those used in data declarations, accept labels or
variables as operands. When a symbol that refers to a memory location is
used as an operand to a directive, the symbol represents the address of the
symbol rather than its contents. This is because the contents may change
at run time and are therefore not known at assembly time.

® Example 1

ORG 100h ; Set address to 100h
var DB 10h ; Address of "var'" is 100h
; Value of "var" is 10h
pvar DW var ; Address of '"pvar" is 101h

; Value of "pvar'" is
address of '"var'" (100h)

173

Microsoft Macro Assembler Programmer’s Guide

In Example 1, the operand of the DW directive in the third statement
represents the address of var (100h) rather than its contents (10h). The
address is relative to the start of the segment in which var is defined.

® Example 2

TITLE doit ; String
_TEXT SEGMENT BYTE PUBLIC 'CODE' ; Key words

INCLUDE \include\bios.inc Pathname

.RADIX 16 ; Numeric constant
tst DW a/b ; Numeric expression

PAGE + ; Special character
sum EQU X * Yy ; Numeric expression
here LABEL WORD ; Type specifier

Example 2 illustrates the different kinds of values that can be used as
directive operands.

9.2 Using Operators

The assembler provides a variety of operators for combining, comparing,
changing, or analyzing operands. Some operators work with integer con-
stants, some with memory values, and some with both. Operators cannot
be used with floating-point constants since MASM does not recognize real
numbers in expressions.

It is important to understand the difference between operators and
instructions. Operators handle calculations of constant values that are
known at assembly time. Instructions handle calculations of values that
may not be known until run time. For example, the addition operator (+)
handles assembly-time addition, while the ADD and ADC instructions
handle run-time addition.

This section describes the different kinds of operators used in assembly-
language statements and gives examples of expressions formed with them.
In addition to the operators described in this chapter, you can use the
DUP operator (Section 6.3.2, “Arrays and Buffers”) the record operators
(Section 7.2.4, “Record Operators”), and the macro operators (Section
11.4, “Using Macro Operators”).

9.2.1 Calculation Operators
MASM provides the common arithmetic operators as well as several other

operators for adding, shifting, or doing bit manipulations. The sections
below describe operators that can be used for doing numeric calculations.

174

Using Operands and Expressions

Note

MASM does 32-bit arithmetic on expressions when the 80386 is
enabled and 16-bit arithmetic when it is not. Constant values used
with calculation operators are extended to 17 bits (33 bits with 80386
enabled) before the calculations are done.

9.2.1.1 Arithmetic Operators

MASM recognizes a variety of arithmetic operators for common
mathematical operations. Table 9.1 lists the arithmetic operators.

Table 9.1

Arithmetic Operators

Operator Syntax Meaning

+ +ezpression Positive (unary)

- —expression Negative (unary)
expressionl*expression? Multiplication

/ expressionl/expression? Integer division

MOD expressionIMODezpression?2 Remainder (modulus)

+ expressionl+expression? Addition

- expressionl—expression? Subtraction

For all arithmetic operators except the addition operator (+) and the sub-
traction operator (), the expressions operated on must be integer con-
stants.

The addition and subtraction operators can be used to add or subtract an
integer constant and a memory operand. The result can be used as a
memory operand.

The subtraction operator can also be used to subtract one memory
operand from another, but only if the operands refer to locations within
the same segment. The result will be a constant, not a memory operand.

Note

The unary plus and minus (used to designate positive or negative

175

Microsoft Macro Assembler Programmer’s Guide

numbers) are not the same as the binary plus and minus (used to
designate addition or subtraction). The unary plus and minus have a
higher level of precedence, as described in Section 9.2.5, “Operator
Precedence.”

B Examplel

intgr = 14 * 3 ;= 42

intgr = intgr / 4 > 42 / 4 =10
intgr = intgr MOD 4 ; 10 mod 4 = 2
intgr = intgr + 4 ;2 +4=6
intgr = intgr - 3 ;6 -3=3
intgr = -intgr - 8 ; -3 -8=-11
intgr = -intgr - intgr > 11 - -11 = 22

Example 1 illustrates arithmetic operators used in integer expressions.

B Example 2

ORG 100h
a DB ? ; Address is 100h
b DB ? ; Address is 10l1h
meml EQU a+5 > meml = 100h + 5 = 105h
mem2 EQU a->5 ; mem2 = 100h - 5 = OFBh
const EQU b - a ; const = 101h - 100h = 1

Example 2 illustrates arithmetic operators used in memory expressions.

9.2.1.2 Structure-Field-Name Operator

The structure-field-name operator (.) indicates addition. It is used to
designate a field within a structure.

B Syntax

variable.field

The variable is a memory operand (usually a previously declared structure

variable) and field is the name of a field within the structure. See Section
7.1, “Structures,” for more information.

176

Using Operands and Expressions

® Example

.DATA
date STRUC ; Declare structure
month DB ?
day DB ?
year DW ?
date ENDS
yesterday date <12,31,1987> ; Define structure variables
today date <1,1,1988>
.CODE
ﬁov bh, yesterday .day ; Load structure variable
mov bx,OFFSET today ; Load structure variable address
inc [bx] .year ; Use in indirect memory operand

9.2.1.3 Index Operator

The index operator ([]) indicates addition. It is similar to the addition (+)
operator.

N Syntax
[expressioni][expression?)

In most cases expressionl is simply added to expression2. The limitations
of the addition operator for adding memory operands also apply to the
index operator. For example, two direct memory operands cannot be
added. The expression labell [label2] is illegal if both are memory
operands.

The index operator has an extended function in specifying indirect
memory operands. Section 14.3.2, “Indirect Memory Operands,” explains
the use of indirect memory operands. The index brackets must be outside
the register or registers that specify the indirect displacement. However,
any of the three operators that indicate addition (the addition operator,
the index operator, or the structure-field-name operator) may be used for
multiple additions within the expression.

For example, the following statements are equivalent:

mov ax,table [bx] [di]
mov ax, table[bx+di]
mov ax, [table+bx+di]
mov ax, [table] [bx] [di]

The following statements are illegal because the index operator does not
enclose the registers that specify indirect displacement:

177

Microsoft Macro Assembler Programmer’s Guide

mov ax, table+bx+di ; Illegal - no index operator
mov ax, [table] +bx+di ; Illegal - registers not
inside index operator

The index operator is typically used to index elements of a data object,
such as variables in an array or characters in a string.

B Example 1

mov al,string[3] ; Get 4th element of string
add ax,array [4] ; Add 5th element of array
mov string[7],al ; Load into 8th element of string

Example 1 illustrates the index operator used with direct memory
operands.

® Example 2
mov ax, [bx] ; Get element BX points to
add ax,array[si] ; Add element SI points to
mov string[di], al ; Load element DI points to
cmp cx,table [bx] [di] ; Compare to element BX and DI

; point to

Example 2 illustrates the index operator used with indirect memory
operands.

9.2.1.4 Shift Operators

The SHR and SHL operators can be used to shift bits in constant values.
Both perform logical shifts. Bits on the right for SHL and on the left for
SHR are zero-filled as their contents are shifted out of position.

B Syntax

expression SHR count
expression SHL count

The expression is shifted right or left by count number of bits. Bits shifted
off either end of the expression are lost. If count is greater than or equal to
16 (32 on the 80386), the result is 0.

Do not confuse the SHR and SHL operators with the processor instruc-
tions having the same names. The operators work on integer constants
only at assembly time. The processor instructions work on register or
memory values at run time. The assembler can tell the difference between
instructions and operands from context.

178

m Examples

mov
mov

ax,01110111b SHL 3
ah,01110111b SHR 3

9.2.1.5 Bitwise Logical Operators

Using Operands and Expressions

; Load 01110111000b
; Load 01110b

The bitwise operators perform logical operations on each bit of an expres-
sion. The expressions must resolve to constant values. Table 9.2 lists the
logical operators and their meanings.

Table 9.2

Logical Operators

Operator Syntax Meaning

NOT NOT expression Bitwise complement

AND expressionl AND expresston?2 Bitwise AND

OR expressionl OR expression?2 Bitwise inclusive OR
XOR expression] XOR expression?2 Bitwise exclusive OR

Do not confuse the NOT, AND, OR, and XOR operators with the pro-
cessor instructions having the same names. The operators work on integer
constants only at assembly time. The processor instructions work on regis-
ter or memory values at run time. The assembler can tell the difference
between instructions and operands from context.

Note

Although calculations on expressions using the AND, OR, and XOR
operators are done using 17-bit numbers (33-bit with .386), the results

are truncated to 16 bits (32 bits with .386).

® Examples

mov
mov
mov
mov
mov

ax,NOT 11110000b
ah,NOT 11110000b
ah,01010101b AND 11110000b
ah,01010101b OR 11110000b
ah,01010101b XOR 11110000b

’

; Load 1111111100001111b

; Load 0O0001111b
. Load 0101000Cb
; Load 11110101b
; Load 10100101b

179

Microsoft Macro Assembler Programmer’s Guide

9.2.2 Relational Operators

The relational operators compare two expressions and return true (-1) if
the condition specified by the operator is satisfied, or false (0) if it 1s not.
The expressions must resolve to constant values. Relational operators are
typically used with conditional directives. Table 9.3 lists the operators and

the values they return if the specified condition is satisfied.

Table 9.3

Relational Operators

Operator Syntax Returned Value

EQ expressionl EQ expression?2 True if
expressions are
equal

NE expressionl NE expression?2 True if
expressions are
not equal

LT expressionl L'T expression? True if left
expression is less
than right

LE expressionl LE expression?2 True if left
expression is less
than or equal to
right

GT expressionl GT expression?2 True if left
expression is
greater than right

GE expressionl GE expression?2 True if left

expression is
greater than or
equal to right

Note

The EQ and NE operators treat their arguments as 16-bit numbers.
Numbers specified with the 16th bit set are considered negative. For
example, the expression -1 EQ OFFEFh is true, but the expression

-1 NE OFFEFh is false.

The LT, LE,GT, and GE operators treat their arguments as 17-bit
numbers, in which the 17th bit specifies the sign. For example,
OFFFFh is 4,294,967,295, not -1. The expression 1 GT -1 is true, but

the expression 1 GT OFFFFh is false.

180

Using Operands and Expressions

® Examples

mov ax,4 EQ 3 ; Load false (O)
mov ax,4 NE 3 ; Load true (-1)
mov ax,4 LT 3 ; Load false (O)
mov ax,4 LE 3 ; Load false (O)
mov ax,4 GT 3 ; Load true (-1)
mov ax,4 GE 3 ; Load true (-1)

9.2.3 Segment-Override Operator

The segment-override operator (:) forces the address of a variable or label
to be computed relative to a specific segment.

B Syntax
segment:expression

The segment can be specified in several ways. It can be one of the segment
registers: CS, DS, SS, or ES (or F'S or GS on the 80386). It can also be a
segment or group name. In this case, the name must have been previously
defined with a SEGMENT or GROUP directive and assigned to a seg-
ment register with an ASSUME directive. The expression can be a con-
stant, expression, or a SEG expression. See Section 9.2.4.5 for more infor-
mation on the SEG operator.

Note

When a segment override is given with an indexed operand, the seg-
ment must be specified outside the index operators. For example,
es: [di] is correct, but [es:di] generates an error.

® Examples

mov ax,ss: [bx+4] ; Override default assume (DS)
mov al,es:082h . Load from ES

ASSUME ds:FAR_DATA ; Tell the assembler and

mov bx,FAR_DATA:count load from a far segment

As shown in the last two statements, a segment override with a segment
name is not enough if no segment register is assumed for the segment
name. You must use the ASSUME statement to assign a segment regis-
ter, as explained in Section 5.4, “Associating Segments with Registers.”

181

Microsoft Macro Assembler Programmer’s Guide

9.2.4 Type Operators

This section describes the assembler operators that specify or analyze the
types of memory operands and other expressions.

9.2.4.1 PTR Operator

The PTR operator specifies the type for a variable or label.

® Syntax
type PTR expression

The operator forces expression to be treated as having type. The expression
can be any operand. The type can be BYTE, WORD, DWORD,
FWORD, QWORD, or TBYTE for memory operands. It can be
NEAR, FAR, or PROC for labels.

The PTR operator is typically used with forward references to define
explicitly what size or distance a reference has. If it is not used, the assem-
bler assumes a default size or distance for the reference. See Section 9.4 for
more information on forward references.

The PTR operator is also used to enable instructions to access variables
in ways that would otherwise generate errors. For example, you could use
the PTR operator to access the high-order byte of a WORD size vari-
able. The PTR operator is required for FAR calls and jumps to forward-
referenced labels.

B Example 1

.DATA
stuff DD ?
buffer DB 20 DUP (?)
.CODE
éall FAR PTR task ; Call a far procedure
Jmp FAR PTR place ; Jump far
mov bx,WORD PTR stuff[O] ; Load a word from a
; doubleword variable
add ax,WORD PTR buffer[bx] ; Add a word from a

byte variable

182

Using Operands and Expressions

9.2.4.2 SHORT Operator

The SHORT operator sets the type of a specified label to SHORT. Short
labels can be used in JMP instructions whenever the distance from the
label to the instruction is less than 128 bytes.

® Syntax

SHORT label

Instructions using short labels are a byte smaller than identical instruc-
tions using the default near labels. See Section 9.4.1, “Forward Reference
to Labels,” for information on using the SHORT operator with jump
instructions.

H Example

jmp again ; Jump 128 bytes or more
jmp SHORT again ; Jump less than 128 bytes

again:

9.2.4.3 THIS Operator

The THIS operator creates an operand whose offset and segment values
are equal to the current location-counter value and whose type is specified
by the operator.

B Syntax

THIS type

The type can be BYTE, WORD, DWORD, FWORD, QWORD, or
TBYTE for memory operands. It can be NEAR, FAR, or PROC for
labels.

The THIS operator is typically used with the EQU or equal-sign (=)

directive to create labels and variables. The result is similar to using the

LABEL directive.

183

Microsoft Macro Assembler Programmer’s Guide

B Examples

tagl EQU THIS BYTE ; Both represent the same variable
tag2 LABEL BYTE

checkl EQU THIS NEAR ; All represent the same address
check2 LABEL NEAR

check3:

check4 PROC NEAR

check4 ENDP

9.2.4.4 HIGH and LOW Operators

The HIGH and LOW operators return the high and low bytes, respec-
tively, of an expression.

B Syntax

HIGH expression
LOW ezpression

The HIGH operator returns the high-order eight bits of expression; the
LOW operator returns the low-order eight bits. The expression must
evaluate to a constant. You cannot use the HIGH and LOW operators
on the contents of a memory operand since the contents may change at
run time.

H Examples

stuff EQU OABCDh
mov ah,HIGH stuff ; Load OABh
mov al,LOW stuff ; Load OCDh

9.2.4.5 SEG Operator

The SEG operator returns the segment address of an expression.

B Syntax
SEG expression
The expression can be any label, variable, segment name, group name, or

other memory operand. The SEG operator cannot be used with constant
expressions. The returned value can be used as a memory operand.

184

Using Operands and Expressions

B Examples

.DATA
var DB ?
.CODE
mov ax,SEG var ; Get address of segment
where variable is declared
ASSUME ds:SEG var ; Assume segment of variable

9.2.4.6 OFFSET Operator

The OFFSET operator returns the offset address of an expression.

B Syntax
OFFSET expression

The expression can be any label, variable, or other direct memory operand.
Constant expressions return meaningless values. The value returned by the
OFFSET operand is an immediate %constant) operand.

If simplified segment directives are given, the returned value varies. If the
item is declared in a near data segment, the returned value is the number
of bytes between the item and the beginning of its group (normally
DGROUP). If the item is declared in a far segment, the returned value is
the number of bytes between the item and the beginning of the segment.

If full segment definitions are given, the returned value is a memory
operand equal to the number of bytes between the item and the beginning
of the segment in which it is defined.
The segment-override operator (:) can be used to force OFFSET to
return the number of bytes between the item in ezpression and the begin-
ning of a named segment or group. This is the method used to generate
valid offsets for items in a group when full segment definitions are used.
For example, the statement

mov bx,OFFSET DGROUP:array
is not the same as

mov bx,OFFSET array

if array is not the first segment in DGROUP.

1856

Microsoft Macro Assembler Programmer’s Guide

E Examples

.DATA
string DB "This is it."
.CODE
n'wv dx,OFFSET string ; Load offset of variable

9.2.4.7 .TYPE Operator

The .TYPE operator returns a byte that defines the mode and scope of an
expression.

N Syntax

TYPE expression

If the expression is not valid, . TYPE returns 0. Otherwise .TYPE returns

a byte having the bit setting shown in Table 9.4. Only bits 0, 1, 5, and 7
are affected. Other bits are always 0.

Table 9.4

.TYPE Operator and Variable Attributes

Bit Position IfBit= 0 IFBit= 1

0 Not program related Program related
1 Not data related Data related

5 Not defined Defined

7 Local or public scope External scope

The .TYPE operator is typically used in macros in which different kinds
of arguments may need to be handled differently.

B Example

display MACRO string
IF ((.TYPE string) SHL 14) NE 8000h
IF2
%OUT Argument must be a variable
ENDIF
ENDIF
mov dx,OFFSET string
mov ah,0%h
int 21h
ENDM

186

Using Operands and Expressions

This macro checks to see if the argument passed to it is data related (a
variable). It does this by shifting all bits except the relevant bits (1 and 0)
left so that they can be checked. If the data bit is not set, an error message
is generated.

9.2.4.8 TYPE Operator

The TYPE operator returns a number that represents the type of an ex-
pression.

B Syntax

TYPE ezxpression

If expression evaluates to a variable, the operator returns the number of
bytes in each data object in the variable. Each byte in a string is con-
sidered a separate data object, so the TYPE operator returns 1 for
strings.

If expression evaluates to a structure or structure variable, the operator
returns the number of bytes in the structure. If ezpression is a label, the
operator returns OFFFFh for NEAR labels and OFFFEL for FAR labels.

If expression is a constant, the operator returns O.

The returned value can be used to specify the type for a PTR operator.

H Examples

.DATA
var DW ?
array DD 10 DUP (?)
str DB "This is a test"
.CODE
mov ax, TYPE var ; Puts 2 in AX
mov bx, TYPE array ; Puts 4 in BX
mov cx,TYPE str ; Puts 1 in CX
jmp (TYPE room) PIR room ; Jump is near or far,
. depending on memory model
room LABEL PROC

187

Microsoft Macro Assembler Programmer’s Guide

9.2.4.9 LENGTH Operator

The LENGTH operator returns the number of data elements in an array
or other variable defined with the DUP operator.

B Syntax

LENGTH variable

The returned value is the number of elements of the declared size in the
variable. If the variable was declared with nested DUP operators, only the

value given for the outer DUP operator is returned. If the variable was
not declared with the DUP operator, the value returned is always 1.

B Examples

array DD 100 DUP (OEEEFFFFh)
table DW 100 DUP (1,10 DUP(?))
string DB 'This is a string’
var DT ?
larray EQU LENGTH array ; 100 - number of elements
ltable EQU LENGTH table . 100 - inner DUP not counted
lstring EQU LENGTH string ; 1 - string is one element
lvar EQU LENGTH var ;1

mov cx,LENGTH array ; Load number of elements
again: . ; Perform some operation on

each element

ioop again

9.2.4.10 SIZE Operator

The SIZE operator returns the total number of bytes allocated for an
array or other variable defined with the DUP operator.

188

Using Operands and Expressions

B Syntax
SIZE variable

The returned value is equal to the value of LENGTH variable times the
value of TYPE variable. If the variable was declared with nested DUP
operators, only the value given for the outside DUP operator is con-
sidered. If the variable was not declared with the DUP operator, the value
returned is always TYPE variable.

® Example

array DD 100 DUP (1)

table DW 100 DUP (1,10 DUP(?))

string DB 'This is a string'

var DT ?

sarray EQU SIZE array ; 400 - elements times size

stable EQU SIZE table ; 200 - inner DUP ignored

sstring EQU SIZE string > 1 - string is one element

svar EQU SIZE var ; 10 - bytes in variable
mov cx,SIZE array ; Load number of bytes

again: . ; Perform some operation on

each byte

ioop again

9.2.5 Operator Precedence
Expressions are evaluated according to the following rules:

o Operations of highest precedence are performed first.
e Operations of equal precedence are performed from left to right.

o The order of evaluation can be overridden by using parentheses.
Operations in parentheses are always performed before any adja-
cent operations.

The order of precedence for all operators is listed in Table 9.5. Operators
on the same line have equal precedence.

189

Microsoft Macro Assembler Programmer’s Guide

Table 9.5

Operator Precedence

Precedence Operators

(Highest)

1 LENGTH, SIZE, WIDTH, MASK, (), [], <>

2 . (structure-field-name operator)

3 :

4 PTR, OFFSET, SEG, TYPE, THIS

5 HIGH, LOW

6 +,— (unary)

7 = /,MOD, SHL, SHR

8 +, — (binary)

9 EQ,NE, LT, LE, GT, GE

10 NOT

11 AND

12 OR, XOR

13 SHORT, .TYPE

(Lowest)
B Examples
a EQU 8/ 4+ 2 ; Equals 4
b EQU 8/ (4 * 2) ; Equals 1
[EQU 8 + 4 + 2 ; Equals 16
d EQU (8 + 4) » 2 ; Equals 24
e EQU 8 OR 4 AND 2 : Equals 8
£ EQU (8 OR 4) AND 3 ; Equals O

9.3 Using the Location Counter

The location counter is a special operand that, during assembly, represents
the address of the statement currently being assembled. At assembly time,
the location counter keeps changing, but when used in source code it
resolves to a constant representing an address.

The location counter has the same attributes as a near label. It represents

an offset that is relative to the current segment and is equal to the number
of bytes generated for the segment to that point.

190

Using Operands and Expressions

B Example 1

string DB "Who wants to count every byte in a string, "
DB "especially if you might change it later."
lstring EQU $-string ; Let the assembler do it

Example 1 shows one way of using the location-counter operand in expres-
sions relating to data.

@ Example 2

cmp ax,bx

j1 shortjump ; If ax < bx, go to "shortjump"

. ; else if ax >= bx, continue
shortjump:

cmp ax,bx

jge $+5 ; If ax >= bx, continue

jmp longjump ; else if ax < bx, go to "longjump"

. ; This is "$+5"
longjump:

Example 2 illustrates how you can use the location counter to do condi-
tional jumps of more than 128 bytes. The first part shows the normal way
of coding jumps of less than 128 bytes, and the second part shows how to
code the same jump when the label is more than 128 bytes away.

9.4 Using Forward References

The assembler permits you to refer to labels, variable names, segment
names, and other symbols before they are declared in the source code.
Such references are called forward references.

The assembler handles forward references by making assumptions about
them on the first pass and then attempting to correct the assumptions, if
necessary, on the second pass. Checking and correcting assumptions on the
second pass takes processing time, so source code with forward references
assembles more slowly than source code with no forward references.

In addition, the assembler may make incorrect assumptions that it cannot
correct, or corrects at a cost in program efficiency.

191

Microsoft Macro Assembler Programmer’s Guide

9.4.1 Forward References to Labels

Forward references to labels may result in incorrect or inefficient code.
In the statement below, the label target is a forward reference:

jmp target ; Generates 3 bytes
. in 16-bit segment

target:

Since the assembler processes source files sequentially, target is unk-
nown when it is first encountered. Assuming 16-bit segments, it could be
one of three types: short (—128 to 127 bytes from the jump), near (-32,768
to 32,767 bytes from the jump), or far (in a different segment than the
jump). MASM assumes that target is a near label, and assembles the
number of bytes necessary to specify a near label: one byte for the instruc-
tion and two bytes for the operand.

If on the second pass the assembler learns that target is a short label, it
will need only two bytes: one for the instruction and one for the operand.
However, it will not be able to change its previous assembly and the
three-byte version of the assembly will stand. If the assembler learns that
target is a far label, it will need five bytes. Since it can’t make this
adjustment, it will generate a phase error.

You can override the assembler’s assumptions by specifying the exact size
of the jump. For example, if you know that a JMP instruction refers to a
label less than 128 bytes from the jump, you can use the SHORT opera-
tor, as shown below:

jmp SHORT target ; Generates 2 bytes
. : in 16-bit segment

target:

Using the SHORT operator makes the code smaller and slightly faster. If
the assembler has to use the three-byte form when the two-byte form
would be acceptable, it will generate a warning message if the warning
level is 2. (The warning level can be set with the /W option, as described
in Section 2.4.13.) You can ignore the warning, or you can go back to the
source code and change the code to eliminate the forward references.

192

Using Operands and Expressions

Note

The SHORT operator in the example above would not be needed if
target were located before the jump. The assembler would have
already processed target and would be able to make adjustments
based on its distance.

If you use the SHORT operator when the label being jumped to is more
than 128 bytes away, MASM generates an error message. You can either
remove the SHORT operator, or try to reorganize your program to
reduce the distance.

If a far jump to a forward-referenced label is required, you must override
the assembler’s assumptions with the FAR and PTR operators, as shown
below:

jmp FAR PTR target ; Generates 5 bytes
. ; in 16-bit segment

target: ; In different segment

If the type of a label has been established earlier in the source code with
an EXTRN directive, the type does not need to be specified in the jump
statement.

H 80386 Only

If the 80386 processor is enabled, jumps with forward references have
different limitations. One difference is that conditional jumps can be either
short or near. With previous processors, all conditional jumps were short.
For 32-bit segments, the number of bytes generated for near and far jumps
1s greater in order to handle the larger addresses in the operand.

B Example 1

.MODEL large ; Model comes first, so use

.386 ; 16-bit segments

.CODE

jmp SHORT place ; Short unconditional jump - 2 bytes
jne SHORT place ; Short conditional jump - 2 bytes
Jjmp place ; Near unconditional jump - 3 bytes
jne place ; Near conditional jump - 4 bytes
Jmp FAR PTR place ; Far unconditional jump - 5 bytes

193

Microsoft Macro Assembler Programmer’s Guide

B Example 2

.386 ; .386 comes first, so use

.MODEL large ; 32-bit segments

.CODE

Jmp SHORT place ; Short unconditional jump - 2 bytes
jne SHORT place ; Short conditional jump - 2 bytes
Jmp place ; Near unconditional jump - 5 bytes
jne place ; Near conditional jump - 6 bytes
jmp FAR PTIR place ; Far unconditional jump - 7 bytes

9.4.2 Forward References to Variables

When MASM encounters code referencing variables that have not yet
been defined in Pass 1, it makes assumptions about the segment where the
variable will be defined. If on Pass 2 the assumptions turn out to be
wrong, an error will occur.

These problems usually occur with complex segment structures that do
not follow the Microsoft segment conventions. The problems never appear
if simplified segment directives are used.

By default, MASM assumes that variables are referenced to the DS regis-
ter. If a statement must access a variable in a segment not associated with
the DS register, and if the variable has not been defined earlier in the
source code, you must use the segment-override operator to specify the
segment.

The situation is different if neither the variable nor the segment in which
it is defined has been defined earlier in the source code. In this case, you
must assign the segment to a group earlier in the source code. MASM will
then know about the existence of the segment even though it has not yet
been defined.

9.5 Strong Typing for Memory Operands

The assembler carries out strict syntax checks for all instruction state-
ments, including strong typing for operands that refer to memory loca-
tions. This means that when an instruction uses two operands with
implied data types, the operand types must match. Warning messages are
generated for nonmatching types.

For example, in the following fragment, the variable stringis
incorrectly used in a move instruction:

194

Using Operands and Expressions

.DATA

string DB "A message."
.CODE
mov ax,string[1]

The AX register has WORD type, but string has BYTE type. There-
fore, the statement generates warning message 37:

Operand types must match

To avoid all ambiguity and prevent the warning error, use the PTR
operator to override the variable’s type, as shown below:

mov ax,WORD PTR string[1l]

You can ignore the warnings if you are willing to trust the assembler’s
assumptions. When a register and memory operand are mixed, the assem-
bler assumes that the register operand is always the correct size. For
example, in the statement

mov ax,string[1]

the assembler assumes that the programmer wishes the word size of the
register to override the byte size of the variable. A word starting at
string[1] will be moved into AX. In the statement

mov string[l], ax

the assembler assumes that the programmer wishes to move the word
value in AX into the word starting at string[1]. However, the
assembler’s assumptions are not always as clear as in these examples. You
should not ignore warnings about type mismatches unless you are sure you
understand how your code will be assembled.

Note

Some assemblers (including early versions of the IBM Macro Assem-
bler) do not do strict type checking. For compatibility with these
assemblers, type errors are warnings rather than severe errors. Many
assembly-language program listings in books and magazines are writ-
ten for assemblers with weak type checking. Such programs may pro-
duce warning messages, but assemble correctly. You can use the /W
option to turn off type warnings if you are sure the code is correct.

195

10.1 Using Conditional-Assembly Directives............... 199

10.1.1 Testing Expressions

with IF and IFE Directivescccceeeeeensecennens 200
10.1.2 Testing the Pass

with IF1 and IF2 Directives ...ccoeeeeeeenneneceens 201
10.1.3 Testing Symbol Definition

with IFDEF and IFNDEF Directives........... 201
10.1.4 Verifying Macro Parameters

with IFB and IFNB Directives....cccccuvueeeens 202
10.1.5 Comparing Macro Arguments

with IFIDN and IFDIF Directives...cc.cccevue.. 203

10.2 Using Conditional-Error Directives.........cccceeu..... 204

10.2.1 Generating Unconditional Errors

with .ERR, .ERR1, and .ERR2 205
10.2.2 Testing Expressions

with .ERRE or .ERRNZ Directives 206
10.2.3 Verifying Symbol Definition

with .ERRDEF and .ERRNDEF Directives..207
10.2.4 Testing for Macro Parameters

with .ERRB and .ERRNB Directives........... 207
10.2.5 Comparing Macro Arguments

with .ERRIDN and .ERRDIF Directives...... 208

Assembling Conditionally

The Macro Assembler provides two types of conditional directives,
conditional-assembly and conditional-error directives. Conditional-
assembly directives test for a specified condition and assemble a block of
statements if the condition is true. Conditional-error directives test for a
specified condition and generate an assembly error if the condition is true.

Both kinds of conditional directives test assembly-time conditions. They
cannot test run-time conditions. Only expressions that evaluate to con-
stants during assembly can be compared or tested.

Since macros and conditional-assembly directives are often used together,
you may need to refer to Chapter 11, “Using Equates, Macros, and Repeat
Blocks,” to understand some of the examples in this chapter. In particular,
conditional directives are frequently used with the operators described in
Section 11.4, “Using Macro Operators.”

10.1 Using Conditional-Assembly Directives

The conditional-assembly directives include the following:

IF IFDEF IFNB
IF1 IFDIF IFNDEF
IF'2 IFE ENDIF
IFB IFIDN ELSE

The IF directives and the ENDIF and ELSE directives can be used to

enclose the statements to be considered for conditional assembly.

B Syntax

IF condition
statements
[ELSE
statements]

ENDIF

The statements following the IF directive can be any valid statements,
including other conditional blocks. The ELSE directive and its statements
are optional. ENDIF ends the block.

199

Microsoft Macro Assembler Programmer’s Guide

The statements in the conditional block are assembled only if the condi-
tion specified by the corresponding IF statement is satisfied. If the condi-
tional block contains an ELSE directive, only the statements up to the
ELSE directive are assembled. The statements that follow the ELSE
directive are assembled only if the IF statement is not met. An ENDIF
directive must mark the end of any conditional-assembly block. No more
than one ELSE directive is allowed for each IF statement.

IF' statements can be nested up to 255 levels. A nested ELSE directive
always belongs to the nearest preceding IF statement that does not have
its own ELSE.

10.1.1 Testing Expressions
with IF and IFE Directives

The IF and IFE directives test the value of an expression and grant
assembly based on the result.

B Syntax

IF expression
IFE expression

The IF directive grants assembly if the value of expression is true
%nonzero). The IFE directive grants assembly if the value of expression is

alse (0). The expression must resolve to a constant value and must not
contain forward references.

® Example

IF debug GT 20
push debug

call adebug

ELSE

call bdebug
ENDIF

In this example, a different debug routine will be called, depending on the
value of debug.

200

Assembling Conditionally

10.1.2 Testing the Pass
with IF'1 and IF2 Directives

The IF1 and IF2 directives test the current assembly pass and grant
assembly only on the pass specified by the directive. Multiple passes of the
assembler are discussed in Section 2.5.7, “Reading a Pass 1 Listing.”

B Syntax

IF1
IF2

The IF1 directive grants assembly only on Pass 1. IF2 grants assembly
only on Pass 2. The directives take no arguments.

Macros usually only need to be processed once. You can enclose blocks of
macros in IF'1 blocks to prevent them from being reprocessed on the
second pass.
®H Example

IF1 ; Define on first pass only

dostuff MACRO argument

ENDM
ENDIF

10.1.3 Testing Symbol Definition
with IFDEF and IFNDEF Directives

The IFDEF and IFNDETF directives test whether or not a symbol has
been defined and grant assembly based on the result.
M Syntax

IFDEF name
IFNDEF name

The IFDEF directive grants assembly only if name is a defined label, vari-

able, or symbol. The IFNDEF directive grants assembly if name has not
yet been defined.

201

Microsoft Macro Assembler Programmer’s Guide

The name can be any valid name. Note that if name is a forward reference,
it is considered undefined on Pass 1, but defined on Pass 2.

® Example

IFDEF Dbuffer
buff DB buffer DUP (?)
ENDIF

In this example, buff is allocated only if buffer has been previously
defined.

One way to use this conditional block is to leave buffer undefined in the
source file and define it if needed by using the /Dsymbol option (see Sec-
tion 2.4.4, “Defining Assembler Symbols.”) when you start MASM. For
example, if the conditional block is in test.asm, you could start the
assembler with the following command line:

MASM /Dbuffer=1024 test:;

The command line would define the symbol buffer; as a result, the con-
ditional assemble would allocate buff. However, if you didn’t need
buff, you could use the following command line:

MASM test:

10.1.4 Verifying Macro Parameters
with IFB and IFNB Directives

The IFB and IFNB directives test to see if a specified argument was
passed to a macro and grant assembly based on the result.

B Syntax

IFB <argument>
IFNB <argument>

These directives are always used inside macros, and they always test
whether a real argument was passed for a specified dummy argument. The
IFB directive grants assembly if argument is blank. The IFNB directive
grants assembly if argument is not blank. The arguments can be any name,
number, or expression. Angle brackets (< >) are required.

202

Assembling Conditionally

B Example

Write MACRO Dbuffer, bytes, handle
IFNB <handle>
mov bx,handle ; (1=stdout, 2=stderr, 3=aux, 4=printer)
ELSE
mov bx, 1 ; Default standard out
ENDIF
mov dx,OFFSET buffer; Address of buffer to write to
mov cx,bytes ; Number of bytes to write
mov ah, 40h
int 21h
ENDM

In this example, a default value is used if no value is specified for the third
macro argument.

10.1.5 Comparing Macro Arguments
with IFIDN and IFDIF Directives

The IFIDN and IFDIF directives compare two macro arguments and
grant assembly based on the result.

B Syntax

IFIDN[I] <argument!>,<argument2>
IFDIF[I] <argumentl>,<<argument2>

These directives are always used inside macros, and they always test
whether real arguments passed for two specified arguments are the same.
The IFIDN directive grants assembly if argumentl and argument? are
identical. The IFDIF directive grants assembly if argument! and
argument? are different. The arguments can be names, numbers, or expres-
sions. They must be enclosed in angle brackets and separated by a comma.

The optional I at the end of the directive name specifies that the directive
is case insensitive. Arguments that are spelled the same will be evaluated
the same, regardless of case. This is a new feature starting with Version
5.0. If the I is not given, the directive is case sensitive.

203

Microsoft Macro Assembler Programmer’s Guide

® Example

divide8 MACRO numerator, denominator
IFDIFI <numerator>,<al> ;; If numerator isn't AL
mov al,numerator b make it AL
ENDIF
xXor ah,ah
div denominator
ENDM

In this example, a macro uses the IFDIFI directive to check one of the
arguments and take a different action, depending on the text of the string.
The sample macro could be enhanced further by checking for other values
that would require adjustment (such as a denominator passed in AL or
passed in AH).

10.2 Using Conditional-Error Directives

Conditional-error directives can be used to debug programs and check for
assembly-time errors. By inserting a conditional-error directive at a key
point in your code, you can test assembly-time conditions at that point.
You can also use conditional-error directives to test for boundary condi-
tions in macros.

The conditional-error directives and the error messages they produce are
listed in Table 10.1.

Table 10.1

Conditional-Error Directives

Directive Number Message

.ERR1 87 Forced error - passl

.ERR2 88 Forced error - pass2

.ERR 89 Forced error

.ERRE 90 Forced error - expression true (O)
.ERRNZ 91 Forced error - expression false (not O)
.ERRNDEF 92 Forced error - symbol not defined
.ERRDEF 93 Forced error - symbol defined
.ERRB 94 Forced error - string blank
.ERRNB 95 Forced error - string not blank
.ERRIDN[&I]] 96 Forced error - strings identical
ERRDIF[]] 97 Forced error - strings different

204

Assembling Conditionally

Like other severe errors, those generated by conditional-error directives
cause the assembler to return exit code 7. If a severe error is encountered
during assembly, MASM will delete the object module. All conditional
error directives except ERR1 generate severe errors.

10.2.1 Generating Unconditional Errors
with .ERR, .ERR1, and .ERR2 Directives

The .ERR, .ERR1, and .ERR2 directives force an error where the direc-
tives occur in the source file. The error is generated unconditionally when
the directive is encountered, but the directives can be placed within
conditional-assembly blocks to limit the errors to certain situations.

B Syntax

.ERR
.ERR1
.ERR2

The .ERR directive forces an error regardless of the pass. The .ERR1
and .ERR2 directives force the error only on their respective passes. The
.ERRI1 directive appears only on the screen or in the listing file if you use
the /D option to request a Pass 1 listing.

You can place these directives within conditional-assembly blocks or mac-
ros to see which blocks are being expanded.

® Example

IFDEF dos

ELSE
IFDEF xenix

ELSE
.ERR
ZOUT dos or xenix must be defined
ENDIF
ENDIF

205

Microsoft Macro Assembler Programmer’s Guide

This example makes sure that either the symbol dos or the symbol
xenix is defined. If neither is defined, the nested ELSE condition is
assembled and an error message is generated. Since the .ERR directive is
used, an error would be generated on each pass. You could use .ERR1 or
.ERR2 to check if you want the error to be generated only on the
corresponding pass.

10.2.2 Testing Expressions
with .ERRE or .ERRNZ Directives

The .ERRE and .ERRNZ directives test the value of an expression and
conditionally generate an error based on the result.
N Syntax

.ERRE expression
ERRNZ expression

The .ERRE directive generates an error if the ezpression is false (0). The
.ERRNZ directive generates an error if the ezpression is true (nonzero‘).
The expression must resolve to a constant value and must not contain for-
ward references.

E Example

buffer MACRO count,bname
.ERRE count LE 128 ., Allocate memory, but
bname DB count DUP (O) 5 no more than 128 bytes
ENDM
buffer. 128,bufl ., Data allocated - no error
buffer 129,buf2 ;. Error generated

In this example, the .ERRE directive is used to check the boundaries of a
parameter passed to the macro buffer. If count is less than or equal
to 128, the expression being tested by the error directive will be true
(nonzero) and no error will be generated. If count is greater than 128,
the expression will be false (0) and the error will be generated.

206

Assembling Conditionally

10.2.3 Verifying Symbol Definition
with .ERRDEF and .ERRNDEF Directives

The .ERRDEF and .ERRNDEF directives test whether or not a symbol
is defined and conditionally generate an error based on the result.
H Syntax

.ERRDEF name
.ERRNDEF name

The .ERRDETF directive produces an error if name is defined as a label,
variable, or symbol. The .ERRINDEF directive produces an error if name
has not yet been defined. If name is a forward reference, it is considered
undefined on Pass 1, but defined on Pass 2.

B Example

.ERRNDEF publevel

IF publevel LE 2
PUBLIC varl, var2

ELSE

PUBLIC varl, var2, var3
ENDIF

In this example, the ERRNDEF directive at the beginning of the condi-
tional block makes sure that a symbol being tested in the block actually
exists.

10.2.4 Testing for Macro Parameters
with .ERRB and .ERRNB Directives

The .ERRB and .ERRNB directives test whether a specified argument
was passed to a macro and conditionally generate an error based on the
result.

® Syntax

.ERRB <argument>
.ERRNB <argument>

These directives are always used inside macros, and they always test
whether a real argument was passed for a specified dummy argument. The

207

Microsoft Macro Assembler Programmer’s Guide

.ERRB directive generates an error if argument is blank. The .ERRINB
directive generates an error if argument is not blank. The argument can be
any name, number, or expression. Angle brackets (< >) are required.

® Example

work MACRO realarg,testarg
.ERRB <realarg> ;; Error if no parameters
.ERRNB <testarg> ; Error if more than one parameter
ENDM

In this example, error directives are used to make sure that one, and only
one, argument is passed to the macro. The .ERRB directive generates an
error if no argument is passed to the macro. The .ERRNB directive gen-
erates an error if more than one argument is passed to the macro.

10.2.5 Comparing Macro Arguments
with .ERRIDN and .ERRDIF Directives

The .ERRIDN and .ERRDIF directives compare two macro arguments

and conditionally generate an error based on the result.

B Syntax

.ERRIDN[I] <argumenti>,<argument2>
.ERRDIF[I] <argumentl>,<<argument2>

These directives are always used inside macros, and they always compare
the real arguments specified for two parameters. The ERRIDN directive
generates an error if the arguments are identical. The . ERRDIF directive
generates an error if the arguments are different. The arguments can be
names, numbers, or expressions. They must be enclosed in angle brackets
and separated by a comma.

The optional I at the end of the directive name specifies that the directive
is case insensitive. Arguments that are spelled the same will be evaluated

208

Assembling Conditionally

the same regardless of case. This is a new feature starting with Version
5.0. If the I 1s not given, the directive is case sensitive.

® Example

adden MACRO adl,ad2, sum
.ERRIDNI <ax>,<ad2> ;; Error if ad2 is "ax"
mov ax,adl ;; Would overwrite if ad2 were AX
add ax,ad2
mov sum, ax ;. Sum must be register or memory
ENDM

In this example, the ERRIDNI directive is used to protect against pass-
ing the AX register as the second parameter, since this would cause the
macro to fail.

209

((HAPTER:

USING EQUATES. MACROS, D
AND REPEAT BLOCKS

111 g B O Nl st i5: oo cssnnnsnsnrsonsobsorsibsntatianss 213
11.1.1 Redefinable Numeric Equates.....ccc.cceeerenuee. 213
11.1.2 Nonredefinable Numeric Equates................ 214
11,1.3 SUSnEEIRIER. o s e coviissrsrssssnssssasnnestbisnants 216

11.2 UUSing MRepom o bt s covissovsosnsomiaisipasssss thuanss 217
11.2.1 ' DoR BRI, cosorsrrosonsrsserssuonsrtientilss 218
1122 CRlUBENEEEIENooiiviissacssssisaresnniioninnsing 219
11.2.3 Using Local SYMDbOIScccversarcocsssossossssersse 220
11.2.4 Exiting from a Macro ..c.ccceeeeeeereeneeerneveceennns 222

11.3 Defining Repeat Bloeksccoussssssssessorassssesss 223
1180 THE TR ERIEOLIVE o.ooooscassarsosvpssisinsssaiehon 223
11.3.2 The IRP ERREIVE....coconvesescorevsorsssnsmrrssions 224
11.8.8 The IBEE DIPSETIVG .cocinsissssssnvssissssnassonstns 225

11.4 Using Macro Operatorscccesssnssssesesssccsssassssene 226
1141 Substitule DDOrabor c..iviscsssssssssesssesssssasesse 226
11.4.2 Literal-Text Operator...cccceceeserssecessccsesescees 228
11.4.3 Literal-Character Operator..c..ccceceeeecercccseee 229
11.4.4 Expression OPerator ...cccsceeceesseeccccssssossesses 230
1145 Macre UOMMERES ... ciiivsisscsscasrsssssssuasasssose 231

11.5 Using Recursive, Nested,
and Redefined MAacTos.......cccceerseneecessenssessnsessccnse 231
11.5.1 UsSing RetursIon. .c.cuoseesscsssossovesosssssorssvessnss 231
11.5.2 Nesting Macro Definitionscccceeeveeernneennnes 232
11.5.3 Nesbing Maer0 Oalls .o iveissssioisssinsisorsinnnsa 233
11,54 Redefining MAGroscossseossssssssesssasensossssese 234

11.5.5 Avoiding Inadvertent Substitutions............ 234

11

('HAPTER

11.6 Managing Macros and Equates
11.6.1 Using Include Files.....ccccuveunee.

11.6.2 Purging Macros from Memory

212

oooooooooooooooooooo

oooooooooooooooooooo

oooooooooooooooooooo

Using Equates, Macros, and Repeat Blocks

This chapter explains how to use equates, macros, and repeat blocks.
Equates are constant values assigned to symbols so that the symbol can be
used in place of the value. Macros are a series of statements that are
assigned a symbolic name (and optionally parameters) so that the symbol
can be used in place of the statements. Repeat blocks are a special form of
macro used to do repeated statements.

Both equates and macros are processed at assembly time. They can sim-
plify writing source code by allowing the user to substitute mnemonic
names for constants and repetitive code. By changing a macro or equate, a
prggrammer can change the effect of statements throughout the source
code.

In exchange for these conveniences, the programmer loses some assembly-
time efficiency. Assembly may be slightly slower for a program that uses
macros and equates extensively than for the same program written
without them. However, the program without macros and equates usually
takes longer to write and is more difficult to maintain.

11.1 Using Equates

The equate directives enable you to use symbols that represent numeric or
string constants. MASM recognizes three kinds of equates:

1. Redefinable numeric equates

2. Nonredefinable numeric equates

3. String equates (also called text macros)

11.1.1 Redefinable Numeric Equates

Redefinable numeric equates are used to assign a numeric constant to a
symbol. The value of the symbol can be redefined at any point during
assembly time. Although the value of a redefinable equate may be different
at different points in the source code, a constant value will be assigned for
each use, and that value will not change at run time.

Redefinable equates are often used for assembly-time calculations in mac-
ros and repeat blocks.

213

Microsoft Macro Assembler Programmer’s Guide

B Syntax
name= expression

The equal-sign (=) directive creates or redefines a constant symbol by
assigning the numeric value of expression to name. No storage is allocated
for the symbol. The symbol can be used in subsequent statements as an
immediate operand having the assigned value. It can be redefined at any
time.

The expression can be an integer, a constant expression, a one- or two-
character string constant (four-character on the 80386), or an expression
that evaluates to an address. The name must be either a unique name or a
name previously defined by using the equal-sign (=) directive.

Note

Redefinable equates must be assigned numeric values. String constants
longer than two characters cannot be used.

B Example

counter = (@) ; Initialize counter
array LABEL BYTE Label array of increasing numbers

REPT 100 ; Repeat 100 times
DB counter ; Initialize number

counter = counter + 1 ; Increment counter
ENDM

This example redefines equates inside a repeat block to declare an array
initialized to increasing values from O to 100. The equal-sign directive is
used to increment the counter symbol for each loop. See Section 11.3 for
more information on repeat blocks.

11.1.2 Nonredefinable Numeric Equates

Nonredefinable numeric equates are used to assign a numeric constant to a
symbol. The value of the symbol cannot be redefined.

214

Using Equates, Macros, and Repeat Blocks

Nonredefinable numeric equates are often used for assigning mnemonic
names to constant values. This can make the code more readable and
easier to maintain. If a constant value used in numerous places in the
source code needs to be changed, then the equate can be changed in one
place rather than throughout the source code.

B Syntax

name EQU expression

The EQU directive creates constant symbols by assigning expression to
name. The assembler replaces each subsequent occurrence of name with
the value of expression. Once a numeric equate has been defined with the
EQU directive, it cannot be redefined. Attempting to do so generates an

€rror.

Note

String constants can also be defined with the EQU directive, but the
syntax is different, as described in Section 11.1.3, “String Equates.”

No storage is allocated for the symbol. Symbols defined with numeric
values can be used in subsequent statements as immediate operands hav-
ing the assigned value.

® Examples

column EQU
row EQU
screenful EQU
line EQU
.DATA
buffer DW
.CODE
mov
mov

80 ; Numeric constant 80
25 ; Numeric constant 25
column * row ; Numeric constant 2000
row ; Alias for "row"
screenful

cx,column
bx, line

215

Microsoft Macro Assembler Programmer’s Guide

11.1.3 String Equates

String equates (or text macros) are used to assign a string constant to a
symbol. String equates can be used in a variety of contexts, including
defining aliases and string constants.

H Syntax

name EQU [<]string[>]
The EQU directive creates constant symbols by assigning string to name.
The assembler replaces each subsequent occurrence of name with string.

Symbols defined to represent strings with the EQU directive can be
redefined to new strings. Symbols cannot be defined to represent strings

with the equal-sign (=) directive.

An

alias is a special kind of string equate. It is a symbol that is